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Introduction

Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense

stars, where about one solar mass is concentrated in a sphere with a radius of

∼ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As

a consequence, whenever the beams cut our line of sight we perceive a radio

pulses, one (or two) per pulsar rotation, with a frequency up to hundred of

times a second.

The pulsar population splits in two main families: the so-called ordinary

pulsars (with spin periods between tens of milliseconds and about 8 seconds,

and spin period derivatives between 10−18 s s−1 and 10−11 s s−1) and the so-

called millisecond pulsars (MSPs, Backer et al. 1982, Nature, 300, 615), having

a spin period smaller than the conventional limit of 30 ms and a spin period

derivate smaller than about 10−18 s s−1. The latter are also dubbed “recycled

pulsars” due to their evolutionary mechanism: in fact, they are old and once

slowly spinning neutron stars, which have been re-accelerated to short rotational

periods via transfer of matter and angular momentum from a stellar companion

in a binary system (e.g. Alpar et al, 1982, Nature, 300, 728)

Owing to their compact nature, rapid spin and high inertia, pulsars are in

general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at

a radio telescope can be used as the ticks of a clock. This holds true in particular

for the sub-class of the MSPs, whose very rapid rotation and relatively older age

(likely implying a fully relaxed neutron star structure), provide better rotational

stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that

they can rival the best atomic clocks on Earth over timespan of few months or

years (e.g. Lorimer, 2008, Living Review in Relativity, 8).

This feature allows us to use MSPs as tools in a cosmic laboratory. This is

performed by exploiting a procedure called timing (see e.g. Lyne & Graham-
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Smith 2005, Pulsar Astronomy,Cambridge Un Press), which consists in the

repeated and regular measurement of the TOAs from a pulsar and then in the

search for trends in the series of the TOAs over various timespans, from fraction

of seconds to decades. After adopting a timing model, one can measure the

differences between the observed TOAs and those predicted by the model and,

by minimizing those differences (called residuals), one can infer the parameters

of the timing model. The values of these parameters represent in turn the

physical quantities opening the possibility of using the pulsars for a variety of

investigation in fundamental physics and astrophysics (e.g. Lorimer & Kramer

2004, Handbook of Pulsar Astronomy, Cambridge Un Press). They range from

very sensitive tests of General Relativity and alternate gravity theories to the

discrimination between various proposed Equations of State for the high density

matter, from constraining the properties of electromagnetic waves in ultra highly

magnetised plasma to the study of the origin and shape of the magnetic field in

the Galaxy, from the determination of the distribution of the ionized component

in the interstellar medium to the investigation of the latest stages in the stars

and binary stars evolution, from the discovery of Earth-mass planets to the

measurement of the gravitational potential well of the globular clusters.

As anticipated above, the study of the binary pulsars has already provided

the most stringent tests to date of General Relativity in strong gravitational

fields and has unambiguously showed the occurrence of the emission of

gravitational waves from a binary system comprising two massive bodies in

a close orbit (Taylor & Weisberg, 1989, ApJ, 345, 434). In last decades a

new exciting perspective has been opened, i.e. to use pulsars also for a direct

detection of the so far elusive gravitational waves and thereby applying the

pulsar timing for cosmological studies (Hellings & Downs 1983, ApJ, 265, L39).

In fact, the gravitational waves (GWs) going across our Galaxy pass over all

the Galactic pulsars and the Earth, perturbing the space-time at the pulsar and

Earth locations, as well as anywhere along the line-of-sight from the Earth and

each of the pulsars. This in turn produces a modulation in the rhythm of the

TOAs of the pulses from all the pulsars, with the variation in the TOAs having

a strength which is proportional to the amplitude of the GW and a periodicity

related to the frequency of the GW. Of course if they are caused by a common

physical phenomenon (like a passing-by GW), these variations of the TOAs are
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expected to be somehow correlated between the various pulsars, allowing us to

disentangle this effect from other effects which could mimic the occurrence of

such modulation, like intrinsic irregularities in the rotation of a pulsar, changing

interstellar medium along the line of sight, error in the reference clocks used for

determining the TOAs and so on.

The consideration of the aforementioned possible sources of additional

effects which could mask the signature of a genuine GW shows that a safe

direct detection of a GW cannot involve the observation and timing of a single

pulsar. Instead, it has been theoretically shown that high precision timing over

a 5-10 years data-span of a network of suitable MSPs forming a so-called Pulsar

Timing Array (PTA) - in which the pulsars are used as the endpoints of arms of

a huge cosmic GW detector - would allow us to overcome the previous problems

and open the possibility of a direct detection of GWs (Foster & Backer 1990,

ApJ, 361, 300). In particular such apparatus is able to detect GWs in the

frequency range between 10−9 and 10−7 Hz, with the best sensitivity around

the nanoHz. Therefore the PTAs nicely complement the other already active

or planned GW detectors (e.g. the review Manchester 2011, AIP, 1357, 65).

Given the frequency range of operation, the most favorable source of GWs

for a PTA appears to be the cosmological background of GWs produced by

the coalescence of supermassive binary black-holes in the early stages of the

Universe evolution, at redshift around 1-2 (Sesana et al. 2008, MNRAS, 390,

192). Also a single merging event of a supermassive binary black-hole could be

detected, provided it is relatively close and involves very high massive black-

holes of about 109 solar masses. However, given these constraints, the latter

event appear less likely as the source of the first clear detection of GWs by

a Pulsar Timing Array. As already mentioned, a problem that arises when

considering the detection of the stochastic GW background is to distinguish

it from other effects, since the background should yield a TOA perturbation,

visible in the timing residuals, similar to that imprinted by the so-called red

timing noise (e.g. Cordes & Shannon 2011, ArXiv e-prints, arXiv:1106.4047C).

This is a kind of noise having power strongly concentrated at lower fluctuation

frequencies and that can be yielded by intrinsic irregularities in the pulsar spin

and by interstellar scintillation. The challenge is hence to separate the GW

background contribution from the red noise one, in order to safely detect the
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former. According to Cordes & Shannon 2011, a PTA made up of a sample of

20 super-stable MSPs, each with timing residuals from red noise contribution

less than 20 ns over time spans of 5 years and with negligible white noise (i.e.

radiometer noise and pulsar jitter), should allow a plausible detection of the GW

background. However, if no such super-stable objects exist (so far we know only

two MSPs having timing residuals less than 50 ns over 5 years, and only one

other less than 100 ns) and hence MSPs have timing noise larger than 20 ns

over 5 years, it will be necessary to time many more MSPs, maybe 100 or even

more. Therefore it is of fundamental importance that more MSPs with timing

noise substantially less than 100 ns in a 5-year span are discovered.

From what said, in order to set up a suitable PTA it is necessary on

one hand to search for new MSPs having the required clock stability and

signal intensity, and on another hand to perform regular high-precision timing

observations of the available sample, combining the results from all the pulsars

with the use of a solid and well tested software, capable of revealing the genuine

GW signal which is searched for.

This work focuses on the first task, in an attempt to enlarge the number of

suitable MSPs, in the framework of the High Time Resolution Universe (HTRU)

survey for pulsars and fast radio transients, that is currently underway at the

64-m Parkes Radio Telescope (NSW, Australia). This experiment (Keith et al.

2010, MNRAS, 409, 619) has been designed in 2007 and started three years ago,

with the main scope of largely increasing (possibly doubling) the total number

of MSPs known in the Galactic Field (there were only about 40 of them until

2009). The enlarged sample may provide some very good MSP-clocks to be

added to the still relatively poor list of objects well suited for belonging to a

PTA.

In the first chapter of this thesis an overview of the pulsar phenomenon

is given, with also a description of the timing technique and its physical

applications. The search methods that can be used to analyse the data in order

to find isolated and binary pulsars are reported in the second chapter. The

third chapter describes part of the work performed by me in the framework of

the HTRU survey; in particular the search for MSPs in the HTRU data with

a data reduction pipeline sensitive also to highly relativistic systems (i.e. to

binary pulsars in close orbits). While performing the aforementioned search,
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it emerged the issue of the inspection of the hundreds of thousands of pulsar

candidates produced by the adopted pipeline, the vast majority of them being

the result of radio interferences. Therefore, a new approach has been explored

for making manageable the human intervention in the procedure of selection of

the trustable candidates, namely the use of an Artificial Neural Network on the

pulsar candidates. The fourth chapter is devoted to report on that. At the end,

a brief summary of this thesis work is given, as well as a list of the publications,

in preparation and resulting from the HTRU collaborative effort.



Chapter 1

Pulsars: an overview

In this chapter an introductory description of the pulsar phenomenon will

be given, together with the explanation of the timing procedure that can

be employed to study several physical issues, making pulsars a powerful tool

for scientific invetigations. One of these applications concerns Pulsar Timing

Arrays, where suitable pulsars of the sub-class of millisecond pulsars should

allow, owing to their exceptional rotational stability, to detect Gravitational

Waves.

This chapter has been largely inspired by the following books: Handbook

of Pulsar Astronomy by Lorimer and Kramer 2005, Pulsar Astronomy, 3rd ed.

by Lyne and Smith 2005, An introduction to Radio Astronomy by Burke and

Smith 2002, An introduction to modern astrophysics by Carroll and Ostlie 1996

and the useful course on Essential Radio Astronomy by J. J. Condon and S. M.

Ransom on the NRAO website (www.cv.nrao.edu/course/astr534/ERA.shtml).

So, they are meant to be the bibliographic references for the content of this

chapter, whenever an alternate explicit reference is not indicated.

1.1 Pulsar physics

1.1.1 Nature and energetics

Pulsars (pulsating radio sources) are fascinating celestial objects discovered in

1967 by Jocelyn Bell (Hewish et al. 1968) through their pulsed emission in the

radio band of the electromagnetic spectrum. Actually, they have been identified

as highly magnetised neutron stars (NSs) which rotate very fast and emit radio

beams by a still not completely understood mechanism; so far, about 2000
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CHAPTER 1. PULSARS: AN OVERVIEW 7

pulsars have been found, and a number of them have been revealed also at

other wavelengths, such as in the optical, X-ray and γ-ray bands.

To understand the origin of a NS, and thus of a pulsar, we must consider

the final evolutionary stage of a massive star, specifically of a star with a mass

between 8 and 25 solar masses (M⊙ ∼ 2 × 1033 g). At the end of its life (i.e.

when it has burned all its fuel) such a star undergoes a supernova explosion,

during which the majority of its matter is ejected in space and only the central

part (the core) of the original star is left, in the form of a compact1 object made

up of degenerate neutrons, whose pressure avoids a further collapse of the core.

Typically, in the end, ∼ 1.2− 2.0 M⊙ (this is the range of NS masses measured

so far) are concentrated in a sphere with a radius of only ∼ 10 km, so that a

NS is an incredibly dense object: its central density reaches in fact 1014 − 1015

g/cm3.

Fast spinning and highly magnetic fields heuristically2 result from

conservation of angular momentum and magnetic flux during the supernova

explosion (and the related implosion of the core). In particular radio-pulsars

have a very small spin period (from milliseconds to seconds) and a very large

magnetic field. Young pulsars have magnetic polar field strenghts of about 1012

G, value that falls to 1010 G for old pulsars and to 108 G for the so-called

recycled pulsars, explained in section 1.1.7; for another type of NSs, namely

the magnetars (two of them also emitting radio pulses), the magnetic field

approaches 1015 G, so that they are the most magnetic objects known in the

Universe.

The presence of a radio pulsar is revealed by a sequence of pulses observed in

the radio band at regular intervals. That happens because the pulsar irradiates

radio beam(s) from one (or both) magnetic poles, and the magnetic axis is

misaligned with respect to the spin axis. Of course we can observe the emission,

in the form of a pulse, only when a beam cuts our line of sight (lighthouse effect,

see fig.1.1). Since we usually see only one of the two beams, we receive pulses

at the same frequency of the pulsar rotation; so the time interval between two

pulses is equal to the pulsar spin period, which is very stable since pulsars are

1The compactness of an object is defined as the ratio M/R between its mass and radius; a
compact object has hence a very large mass concentrated in a small volume.

2The details of the process leading to the building of high magnetic fields in a NS are not yet
assessed.
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extremely massive (and hence with a high inertia) rotators.

However, from the observations it is clear that the pulse period P increases,

although very slowly (the value of Ṗ ranges3 from something of the order of

10−21 s/s for fast spinning millisecond pulsars to 10−10 s/s for very slow long-

period pulsars and magnetars), i.e. the pulsars spin down. The rotational

kinetic energy loss is called spin-down luminosity and usually represents the

total energy output of the pulsar; its value can be calculated by measuring the

spin period and its variation with time, according to the formula:

Ė = −dErot

dt
= −d(IΩ2/2)

dt
= 4π2IṖP−3, (1.1)

where I is the pulsar moment of inertia and Ω = 2π/P is its spin angular

frequency. Since I = kMR2 (where k is a constant that depends on the density

profile of the object and that, in first approximation, can be set equal to 0.4,

i.e. the value for a uniform density sphere), for the typical values of M = 1.4

M⊙ and R = 10 km the moment of inertia is I ∼ 1045 g · cm2 and therefore the

spin-down luminosity is:

Ė ≃ 3.95 × 1031erg s−1

(

Ṗ

10−15

)

(

P

s

)−3

. (1.2)

However, from the observations we know that only a very small fraction of

this energy is emitted in the radio band between 100 MHz and 100 GHz; most

of it is converted into high-energy emission, acceleration of charged particles

(originating the so-called pulsar wind), and probably into magnetic dipole

radiation (i.e. a monochromatic electromagnetic waves, with frequency equal

to the pulsar spin frequency, i.e. of the order of Hz, which is likely quickly

absorbed by the interstellar medium).

1.1.2 Magnetic field

As mentioned in the previous section, at first approximation and without

accounting for any detailed physical mechanism of emission, the energy budget

can be explained considering the fact that the pulsar is a highly magnetised

rotating NS having the magnetic axis not aligned with the spin axis, and

therefore we can apply to it the rotating magnetic dipole model (see fig.1.1).

3www.atnf.csiro.au/people/pulsar/psrcat ; Manchester et al. 2005
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Figure 1.1: Rotating magnetic dipole model of a pulsar. From Handbook of Pulsar
Astronomy by Lorimer and Kramer 2005.

According to such a model, the radiated power is given by the analogue

of Larmor’s formula from electrodynamics (see Jackson 1962), adapted to a

magnetic dipole ~m inclined with respect to the spin axis:

Ėdip =
2

3c3
| ~̈m⊥|2 =

2

3c3
|~m|2Ω4sin2α, (1.3)

where c is the speed of light, α is the angle between the magnetic dipole and

the spin axis, ~m⊥ = ~m sinα is the component of the magnetic dipole moment

perpendicular to the spin axis, and ~m = ~m0 exp(−iΩt). Since the dipole is

inclined it undergoes a variation with time, that causes the emission. Equating

the previuos expression to the spin-down luminosity (eq. (1.1)) we obtain the

variation of the rotational frequency with time:

Ω̇ = −
(

2
|~m|2sin2α

3Ic3

)

Ω3. (1.4)

More in general, we can say that Ω evolves according to a power law:
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Ω̇ = −kΩn, (1.5)

where k is a constant and n is called braking index ; from eq. (1.4) we have that

n = 3 for a magnetic dipole in the vacuum. Deriving Ω̇ with respect to time we

can find an expression for the braking index in terms of Ω or ν = Ω/2π:

n =
ΩΩ̈

Ω̇

2

=
νν̈

ν̇

2

. (1.6)

Again from classical electrodynamics, we have that |~m| ≈ BSR3 for a

uniformly magnetised sphere with radius R and surface magnetic field BS;

replacing |~m| obtained from this expression in eq. (1.4), expressing Ω and

Ω̇ in terms of P and Ṗ , and rearranging, we can obtain BS:

BS =

(

3c3

8π2

I

R6sin2α
PṖ

)1/2

≃ 3.2 × 1019

√

PṖ G, (1.7)

where the last term has been calculated for the canonical values of I = 1045 g ·
cm2 and R = 10 km, and assuming α = 90◦.

Thanks to this important relation, it is possible to infer the value of the

magnetic field at the surface of the pulsar by the observations of P and Ṗ .

1.1.3 A model for the radio emission mechanism

What said in the previous section can not explain why pulsars emit also in

the radio band. Goldreich and Julian 1969 elaborated one of the most popular

models, called polar-cap model, in an effort to explain that emission on the

basis of plasma extracted from the NS surface, for the simplest case in which

magnetic and spin axes are aligned. Any attempts to extend the results to

the more realistic case of magnetic axis inclined with respect to the spin axis

failed (Mestel and Pryce 1992) and nowadays numerical simulations seem to

be the best way to solve the problem, but anyway the polar-cap model is still

useful to describe some basic concepts related to pulsar observations, like the

magnetosphere.

According to that model, since the high dipole magnetic field of the NS

rotates with the star, changing rapidly at any point in space, the few charged

particles inside the NS experience strong Lorentz’s forces, and a high induced
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electric field is yielded; owing to the fact that the NS electrical conductivity

is very high (σ → ∞), the particles assume, in the shortest possible time, a

configuration to perfectly compensate such forces with electrical forces (and

hence balance the induced field with a static field ~E inside the NS):

q ~E = −q

c
~v ∧ ~B, (1.8)

(in cgs units), from which:

~E +
1

c

(

~Ω ∧ ~r
)

∧ ~B = 0, (1.9)

where q is the particle charge, ~r = (r, θ) is the positional vector of the particles

in polar coordinates with respect to the centre of the NS, ~v = ~Ω ∧ ~r is the

particle velocity, and ~B is the NS magnetic field. The charge density ρi of the

particles after the redistribution satisfies Maxwell’s equation, so that:

ρi(r, θ) =
1

4π
∇ · ~E =

1

4π
∇ ·

[

−1

c

(

~Ω ∧ ~r
)

∧ ~B
]

= − 1

4πc

[(

~Ω · ~B
)

∇ · ~r −
(

~r · ~B
)

∇ · ~Ω
]

, (1.10)

and, since ∇ · ~r = (∂r/∂r) + (∂θ/∂θ) = 2 and ~Ω is constant in space:

ρi(r, θ) = − 1

2πc
~Ω · ~B. (1.11)

From this equation we can infer two things: first of all, the absolute value of

the charge density is higher in the regions where ~B is parallel to the spin axis

(poles and equator, in this case); secondly, on the NS surface there is a charge

separation: for example, if at the poles ~Ω· ~B > 0, i.e. ~B and ~Ω point in the same

direction, then the charge density is negative in the poles, while it is positive in

the equator since ~B has opposite direction; vice versa if at the poles ~Ω · ~B < 0.

If outside the NS there is a vacuum, this surface charge separation induce a

strong external electric field (which can be found obtaining the surface electric

field from eq. (1.9) and then the surface electric potential, and using the latter

as a boundary condition to solve Laplace’s equation in the vacuum), which is a

quadrupole field. Evaluating its value on the surface of the NS, and considering

the component parallel to ~B, we find:
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E‖ =





~E · ~B

B





r=R

= −ΩRBS

c
cos3θ, (1.12)

so that, except from the equator where θ = 90◦ and E‖ = 0, it always

exists a component of ~E parallel to ~B, that has a maximum at the poles

and decreases towards the equator, where ~E is perpendicular to ~B. The value

of such a component at the poles is so high that the corresponding electric

force (F = qE‖) acting on the surface charged particles exceeds gravity force

by several orders of magnitude so that, provided that the charges are not

heavily bound, they can be extracted from the surface. The particles are then

channelised along the magnetic field lines and create a plasma which surrounds

the NS, forming the so-called pulsar magnetosphere. The charge distribution ρe

of the particles in the magnetosphere has the same expression as the one inside

the NS (eq. (1.11)), since the plasma outside the star experiences the same

induced electric field as the pulsar interior due to the rotating magnetic field,

and hence the charges arrange to balance it.

Since the magnetic field lines rotate with the NS, also the particles in the

magnetosphere are forced to co-rotate with it, but that is possible only up to

a distance where the tangential velocity vt along the field lines is equal to c;

for longer distances in fact such a velocity should exceed the speed of light in

order to maintain the magnetic field and the plasma in co-rotation with the NS.

Consequently the field lines, that are closed up to that maximum distance, are

forced to open beyond it; we can indicate such a distance as the radius RLC

of the so-called light cylinder (represented in fig.1.1), a surface that contains

all the closed field lines (the last one, for which vt = c, is tangential to it) and

outside which the co-rotation is not possible anymore. So we have:

ΩRLC = c =⇒ RLC =
c

Ω
=

cP

2π
≈ 5 × 104

(

P

s

)

km. (1.13)

The last closed field line define the polar cap on the NS surface, that is the

region with boundary (R, θp), centred on the magnetic pole, that contains only

the open field lines; θp is hence a critical angle, since for θ < θp the charges

flow along the open field lines giving rise to the radio emission, while for θ > θp

the charges are forced along the closed lines to co-rotate with the NS and will
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not leave the magnetosphere ever. From the equation that describe a field line:

sin2θ/r = const, we can obtain an estimate of θp:

sin2θp

R
=

sin290◦

RLC

, (1.14)

from which, for the canonical value of R = 10 km:

sinθp =

√

R

RLC

=

√

RΩ

c
=

√

2πR

cP
≈ 1.4 × 10−2

(

P

s

)−1/2

. (1.15)

The radius of the polar cap on the NS surface, if it is small, is given by:

rp ≃ Rsinθp = 140
(

P

s

)−1/2

m. (1.16)

Electrons in the polar cap are quickly accelerated to relativistic speeds by

the induced electric field; as they move along the open magnetic field lines, which

are curved, these particles experience a centripetal acceleration and hence emit

curvature radiation in the form of high-energy (γ-ray band) photons. These

energetic photons interact with the strong magnetic field or with lower-energy

photons creating electron-positron pairs (γ → e− + e+), which in turn are

accelerated and emit more high-energy photons, but with lower energy. These

photons follow the same destiny as the previous ones, so that a cascade process

is yielded and pairs and photons with progressive lower energies are created,

until emission in the radio band is produced.

Since the particles are relativistic, the radio emission is extremely

collimated in the direction of their motion, i.e. inside the cone defined by

the polar cap. The emission is hence strongly anisotropic and can be seen by

an observer only if his line of sight crosses the direction of the emission cone.

The NS thus emits two narrow radio beams from its magnetic poles; if, as

in a realistic case, the magnetic axis is inclined with respect to the spin axis,

the NS acts as a lighthouse and, as mentioned in section 1.1.1, we observe a

sequence of pulses corresponding to our line of sight cutting the beam. The NS

has therefore become a pulsar.

The radio emission of a pulsar is coherent (see later in the text). In fact,

the brightness temperatures for pulsar radio emission, i.e. the temperature

that a black body should have to radiate the observed brightness, are very
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high, typically between 1025 − 1035 K; we know that the youngest pulsars have

surface temperatures of only ∼ 107 K and central temperatures of only ∼ 109

K (and older pulsars even lower), thus the radio emission can not be thermal.

Furthermore, neither other incoherent processes like emission of curvature or

synchrotron radiation can directly produce the pulsar radio emission, since the

kinetic energy of the emitting particles must always be higher than or equal to

the brightness temperature, but in that case the particles would have a very

high energy and would emit in X-ray or γ-ray bands, not in the radio band.

The high brightness temperatures can be explained if we take into account

collective processes of emission, i.e. if we suppose that, for some mechanism

still unknown, bunches of N electrons in volumes whose dimensions are smaller

than λ (the radiation wavelength) radiate as a unique charge Ne, where e is the

charge of each electron. The generated electromagnetic fields are then coherent

or in phase. Since, according to Larmor’s formula, the power radiated by a

charge q is proportional to q2, it is clear that in this case the radiated power is

N times the power radiated by N electrons that emit incoherently, accounting

for the high brightness temperatures.

1.1.4 Emission features

As already said, pulsars are very weak radio sources. Consequently, in general

we are not able to observe single pulses, unless the source is uncommonly strong;

therefore we need to sum coherently (to fold) hundreds or even thousands of

subsequent pulses, obtaining the so-called integrated pulse profile (see fig.1.2 for

some examples) which has a high enough signal-to-noise ratio (S/N), i.e. can

be well identified above the background noise. While the shapes of the single

pulses can vary considerably from pulse to pulse, the integrated profile has the

property of being very stable for a certain pulsar observed at the same radio

frequency, i.e. it shows always the same shape. Nevertheless, from pulsar to

pulsar such a profile can assume very different shapes, for example it can show

only one peak and a gaussian form, or can be double-peaked, or have even

more complicated shapes. This can be explained by means of two competing

models: the first one is the nested cone model (Rankin 1993; Gil et al. 1993),

according to which the radio beam has a multiple cone structure nested around

a central core component; the second one is the patchy beam model (Lyne and
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Figure 1.2: Examples of integrated pulse profiles. From Handbook of Pulsar
Astronomy by Lorimer and Kramer 2005.

Manchester 1988), according to which in the interior of the radio beam there are

discrete emitting regions whose location are variable in time (likely according to

some stochastic process) and whose integrated (in time) contribution produces

the shape of the pulse profile. In both cases, the number of components in the

pulse profile depends on the portion of the beam that is cut by our line of sight

(see fig.1.3).

In some cases, we observe two pulses separated by about 180◦, i.e. besides

the main pulse also a secondary pulse called interpulse is visible. One hypothesis

is that the latter is emitted by the opposite magnetic pole with respect to the

pole emitting the main pulse, and the geometry of the system allow us to see

both the poles (that is, the magnetic axis is perpendicular to the spin axis).

Another possible explanation suggests that inter-pulses are the emission from

extreme edges of a single wide beam.

As mentioned above, the integrated pulse profile is usually very stable, but

it makes an exception for a number of pulsars, for which instead it can vary in

time, probably due to a precessional effect that makes the radio beam to change

its orientation with respect to our line of sight, or due to a transition between

two competing profiles (mode-changing phenomenon).

Furthermore, the integrated profile varies with the observing frequency.

In many ordinary pulsars (see section 1.1.7) the pulse width is larger and the
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Figure 1.3: Beam models to explain the presence of different components in the
pulse profiles: a) nested cone model (Rankin 1993; Gil et al. 1993); b) patchy beam
model (Lyne and Manchester 1988). Figures from Handbook of Pulsar Astronomy
by Lorimer and Kramer 2005.

profile components are more separated if we observe at low frequencies (these

effects are instead very weak for millisecond pulsars, section 1.1.7 again). Also,

for both the types of pulsars the number of profile components and/or their

relative intensity can change with the observing frequency.

The equivalent width Weq of the pulse is defined as the ratio between the

pulse energy and the peak flux density (i.e. as the width of a top-hat pulse

having the same area and peak flux as the true pulse profile), and for integrated

profiles is often ∼ 10◦ in longitude (or few hundredths in rotational phase)4 φ,

so that the pulse duty cycle δ = Weq/P , where P is the pulse period, is about

3%.

If the S/N is high enough it is possible to observe the individual pulses, that

show a rich diversity of behaviour, i.e. a variety of structures and components;

the statistical distribution of these components over a range of longitudes,

together with the width and the probability distribution of the intensities

of the pulses, determine the stability of the integrated profile. Generally,

the individual pulses are formed by a number of characteristic components

called sub-pulses, having a typical width in longitude of 1◦ to 3◦, which are

interpreted as radiation emitted by different regions of the polar cap within

the distribution of locations covered by the integrated profile. A very common

observed phenomenon is the so-called pulse drifting, i.e. the progressive change

4The longitude runs from 0◦ to 360◦ along a pulsar rotation, whereas the phase conventionally
goes from 0 to 1.
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Figure 1.4: Individual pulses from the pulsar B0943+10, with their energy and, in
the bottom panel, the integrated profile; it can be noted the drift of the sub-pulses
(Deshpande and Rankin 1999).

in longitude of the sub-pulses in successive pulses (see fig.1.4), so that the sub-

pulses cross the ‘window’ of the integrated profile; this is regarded as a lateral

movement of an area of excitation across the polar cap, and the track of this

movement can be possibly closed giving a pattern of excitation rotating round

the polar cap (see fig.1.5).

Another structure of the individual pulses is the microstructure, which

appears on a much shorter time scale (µs) with respect to the sub-pulses, is

broad-band and often quasi-periodic; it appears to be a modulation of sub-

pulse radiation rather than a distinct component of radiation, although it takes

the form of intense micropulses.

Sometimes the emission from some pulsars switches off (i.e. it decreases

to a level well below one per cent of the mean pulsar power) for many pulse

periods, a phenomenon called nulling. A possible interpretation correlates the

nulling with the pulsar age, so that it should happen mainly in old pulsars,

which should hence approach the end of their lives and of their radio emission
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Figure 1.5: Circulation of regions that gives rise to the drifting of the sub-pulses.
Figure from An introduction to Radio Astronomy by Burke and Smith 2002.

(see section 1.1.7) through progressive larger stages of nulling. Anyway, from

observations a clear nulling-age effect is not obvious yet.

In some pulsars, for instance in the Crab pulsar, short bursts of emission can

be observed, called giant pulses, which have an intensity up to 1000 times that

of an individual pulse; in the Crab their lasting is of the order of nanosecond.

They could be connected to the high-energy emission of these pulsars.

The spectra of the pulsar radio emission follow a power law trend for most

pulsars:

Smean(ν) ∝ ν−α 0 ≤ α ≤ 4, (1.17)

where ν is the observing frequency, Smean(ν) is the integrated flux density of

the pulse profile averaged over the pulse period, and α is the spectral index.

The spectra are hence quite steep, especially at higher frequencies. There are

nevertheless some deviations from a single power-law behavior, for examples for

some pulsars it is necessary a two-component power-law model, or there is a roll

over in the spectra at low frequencies or a turn-up at millimeter wavelengths.

The mean flux density of the current samples is about 0.8 mJy (1 Jy = 10−26

W m−2 Hz−1) at a frequency of 1.4 GHz, with a range between 20 µJy and 5

Jy; hence, as already said, pulsars are extremely weak radio sources.
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Radio emission from pulsars is strongly polarised; the average degree

of linear polarisation is about 20% of the total intensity, while for circular

polarisation the average degree is about 10%. The position angle of linear

polarisation can vary considerably throughout the pulse or from pulse to pulse,

so that even if there are strongly polarised individual pulses (that can reach even

100% of polarisation), the integrated profile can be poorly polarised. Usually

the polarisation angle varies with longitude through the pulse, describing a

S-shape curve.

1.1.5 The interstellar medium effects

The radio signals that we receive can be very different from those that left

the pulsars, since to reach our telescopes these signals have to travel through

the interstellar medium (ISM), that is partly made up of ionised particles.

The signal propagation is then influenced by the interaction with the ionised

component of the ISM, by means of three different effects: dispersion, scattering

and scintillation. The dispersion can be explained by propagation through a

homogeneous medium, while for scattering and scintillation it is necessary to

consider propagation through a more realistic turbulent ISM.

Dispersion

As the pulses travel through the ISM, considered as a homogeneous medium,

the time-varying electric field of the radio waves causes the electrons that are

encountered along the way to vibrate; this process slows the radio waves below

the speed of light in a vacuum, with a greater retardation at lower frequencies.

So the group velocity of the wave propagating in the medium is:

vg = cµ = c

√

1 −
(

νp

ν

)2

< c, (1.18)

where µ represents the frequency-dependent index of refraction of the wave in

the medium, ν is the wave (observing) frequency and νp is the plasma frequency,

i.e. the frequency below which a signal is totally absorbed by the medium (from

last equation, if ν < νp the wave can not propagate):

νp =

√

e2ne

πme

, (1.19)
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where e, ne and me are respectively the charge, number density and mass of

an electron. For the ISM typically ne ∼ 0.03 electrons per cm3, so the plasma

frequency is νp ≃ 1.58 kHz. Since pulsar radio signals have frequencies much

higher than νp (and this also make them not to be absorbed by the ISM), we

can approximate eq. (1.18) in this way:

1

vg

≃ 1

c

[

1 +
1

2

(

νp

ν

)2
]

. (1.20)

The signal propagating from the pulsar to the observer is delayed, with

respect to a signal of infinite frequency (for which vg = c), by a time:

t =

(

∫ d

0

dl

vg

)

− d

c
, (1.21)

where d is the lenght of the path; replacing eq. (1.20) we obtain:

t =
e2

2πmec

∫ d
0 nedl

ν2
= D × DM

ν2
≃ 4.15 × 103 DM

ν2
MHz

s, (1.22)

where νMHz is the frequency in MHz,

DM =
∫ d

0
nedl (1.23)

is the dispersion measure, that is usually expressed in pc cm−3 and represents

the column density of the ISM free electrons along the observer line of sight to

the pulsar, and

D =
e2

2πmec
≃ 4.15 × 103 MHz2pc−1cm3s (1.24)

is the dispersion constant.

Thus a sharp pulse emitted at the pulsar, with all its component frequencies

peaking at the same time, is gradually drawn out or dispersed as it travels to

Earth (see fig.1.6), since the lower frequencies are slower than the higher ones,

and the delay depends on the DM ; in fact, the delay between two frequencies

ν1 and ν2, both in MHz, is:

∆t ≃ 4.15 × 103

(

1

ν2
1

− 1

ν2
2

)

DM s. (1.25)

For a known pulsar, by measuring the pulse arrival time at different

frequencies it is then possible to calculate the DM value, and assuming a model
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Figure 1.6: Example of the dispersion of a signal due to the ISM; the recovered
profile is showed in the bottom. Figure provided by Andrew Lyne for the Handbook
of Pulsar Astronomy by Lorimer and Kramer 2005.
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Figure 1.7: The thin screen model. From Pulsar Astronomy, 3rd ed. by Lyne and
Smith 2005.

for the distribution ne of ISM free electrons in the Galaxy (for instance, Cordes

and Lazio 2002) from eq. (1.23) one can find an estimation of the distance of

the pulsar.

Since the pulse profiles of the dispersed signals are totally smeared and can

not be discerned above the background noise, we need to dedisperse in order to

recover the original profile. This technique will be illustrated in chapter 2.

Scattering

As mentioned above, in reality the ISM is not homogeneous, i.e. the electron

density shows changes in concentration that distort and scatter the pulse shape.

This effect can be described in a simplified way by examining the thin screen

model (Scheuer 1968), in which the random irregularities of ne between the

source and the observer are effectively concentrated into a thin screen roughly

midway along the propagation path. Consequently, the photons emitted by the

source that encounter those irregularities are scattered by them and arrive to

the observer at different times (see fig.1.7); if ∆t is the time delay of a scattered

ray with respect to a ray that travelled undeflected, the observed intensity of

the source is:

I(t) ∝ e−∆t/τs , (1.26)

where τs is the scattering timescale:
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Figure 1.8: Broadening of the pulses due to scattering for the pulsar B1831−03,
observed at different frequencies. Figure provided by Oliver Löhmer for the
Handbook of Pulsar Astronomy by Lorimer and Kramer 2005.

τs ∝
d2

ν4
, (1.27)

d is the distance between the pulsar and the observer, and ν is the wave

frequency. Hence, eq. (1.26) explains the observed asymmetric time broadening

of the pulses (scattering tails), which strongly depends on the frequency (see

fig.1.8). That causes a stretching of the true pulse shape with a reduction in

the S/N, especially for lower frequencies5.

In order to remove the scattering effects, the only possibility is observing

at high frequencies.

5Another consequence of scattering is an increasing in the apparent angular size of the source.
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Scintillation

The interstellar scintillation is an effect similar to the optical ‘twinkling’ of

stars due to the Earth atmosphere. In fact, it causes short-term variations in

the observed intensity of many pulsars, and can be accounted for by using the

same thin screen model for a non-homogeneous ISM described in the previous

section.

Due to scattering, the deflected rays arrive at the observer randomly

delayed with respect to the undeflected rays, hence showing different wave

phases φ which, for signals received over the time τs, cover a range of phases

δφ ∼ 2πντs (ν and τs defined as in the previous section). If the phases of the

waves (both scattered and unscattered) do not differ by more than about 1

radian, there can occur interference of these waves at the observation point,

more in general a patchy interference pattern with maxima and minima of

intensity is created at the plane of the observer. Due to relative motions

between the pulsar, the ISM and the observer this plane ‘moves’, so that in

the observation point we experience a change in the intensity of the signals,

that can therefore enhance or reduce.

Since the phase depends on frequency, the limitation in the phase difference

to have interference implies a limitation in the range of frequencies of the

interfering waves, i.e. only the waves with frequencies inside the so-called

scintillation bandwidth ∆ν will contribute:

2π∆ντs ∼ 1 =⇒ ∆ν ∝ 1

τs

∝ ν4. (1.28)

Therefore we see an intensity changing both in time and in frequency, and

the scintillation bandwidth is larger if we observe at high frequencies.

Scintillation can be very useful, for example in the searching for new pulsars,

since sometimes we can luckily observe an otherwise undetectable (because too

faint) pulsar whose intensity is enhanced by scintillation, which makes the S/N

rise and hence allows us to discover the pulsar.

1.1.6 Age

We can calculate an estimate of the pulsar age from the relation of the pulsar

slowdown in the rotating magnetic dipole model, eq. (1.5): Ω̇ = dΩ/dt = −kΩn,
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by integrating it:

∫ t

0
dt = −1

k

∫ Ω

Ωi

Ω−ndΩ,

where Ωi is the initial (i.e. at birth) angular velocity of the pulsar, and Ω is its

angular velocity at the present time t; solving the integral we find:

t = − Ω

(n − 1) Ω̇

[

1 − Ωn−1

Ωn−1
i

]

. (1.29)

Assuming that n 6= 1 and that the angular velocity at birth was much higher

than the present value (Ωi ≫ Ω, according to the core-collapse theories of

massive stars that suggest pulsars are born with very small spin periods, of the

order of ms), we can approximate in this way:

τ = − 1

n − 1

Ω

Ω̇
=

1

n − 1

P

Ṗ
, (1.30)

where P is the present value of the pulsar spin period. The time τ is called

characteristic age, and for purely magnetic dipole braking (n = 3) its expression

is:

τ =
P

2Ṗ
. (1.31)

Hence, from a measurement of its P and Ṗ we can infer the characteristic age

of a pulsar.

Nevertheless, this estimate should be considered with some care. In fact,

comparing the value of the characteristic age with the value of the age obtained

in other ways (such as for example from the association of a pulsar with a

supernova of known age, or from the proper motion6 of the pulsar, see section

1.2.1), the correspondence is good for some pulsars, like the Crab, but is very

bad for others. This can be due to the assumptions we made of a very high

initial angular velocity and that n = 3 is the opportune value of the breaking

index7.
6The proper motion of a celestial object, usually expressed in arcseconds or milli-arcseconds per

year, is a slow, angular change in the object equatorial coordinates due to its intrinsic transverse
velocity along the celestial sphere.

7In fact, recent estimates suggest a wide range of initial spin periods, up to 140 ms; and in some
pulsars there are significant deviations from the value of 3 for the braking index, which may indicate
that part of the torque on the pulsar that causes its spin-down is due to outflow of particles.
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Figure 1.9: Distribution of pulsars on a Hammer-Aitoff projection in Galactic
coordinates. The red stars are those discovered so far by the High Time Resolution
Universe (HTRU) survey.

1.1.7 Population

As already mentioned, about 2000 pulsars are known so far. Their distribution

(fig.1.9) shows that most of them are concentrated on our Galaxy plane, that

is in agreement with the hypothesis that pulsars are the final stage of massive

(O and B) stars, which lie on the Galactic disk too.

While the massive stars show a radial distribution around the Galactic

centre, the known pulsars, from their projection onto the Galactic plane

(fig.1.10), seem to be clustered around the Sun, but this is just an observational

bias, a selection effect due to the fact that pulsars are weak sources and can not

be detected if they are too far away from us; moreover, also the propagation

effects due to the ISM, described in section 1.1.5, that distort the pulses,

contribute to the selection effect. Therefore, it is also expected that in the

Galaxy there are many more active pulsars with respect to the known ones,

maybe about 105 in total (Lorimer et al. 2006).

If we consider the height above and below the Galactic plane, z, the

distribution N(|z|) of the known pulsars is approximately exponential:

N(|z|) = N0e
−|z|/h, (1.32)

where h ∼ 300 − 350 pc (e.g. Mdzinarishvili and Melikidze 2004) is the scale
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Figure 1.10: The observed pulsar distribution (circles and stars) and model electron
density distribution (grey scale) projected onto the Galactic plane. In these
coordinates, the Sun is at (0.0, 8.5) kpc and the Galactic centre is at the origin. The
red stars are the pulsars discovered so far by the High Time Resolution Universe
(HTRU) survey. The electron density distribution is the NE2001 model by Cordes
and Lazio 2002. Darker areas correspond to regions of enhanced electron density.
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Figure 1.11: The P -Ṗ diagram, which represents the evolution of the spin during
the pulsar life. From Handbook of Pulsar Astronomy by Lorimer and Kramer 2005.

height corresponding to a decrease of 1/e in the number of pulsars with respect

to the value N0 on the plane. This value of h is much higher than the value for

the O-B stars (h ∼ 80 pc) and for the supernova remnants (h ≤ 100 pc), but

that can be explained by the fact that if pulsars, as we believe, were born in

supernova explosions (so very close to the plane), during these they probably

received a ‘kick’ of several hundred km s−1 (maybe due to small asymmetries

in the explosions) that made them start to go away from the plane. This is

consistent with the high velocity of pulsars, that can reach and even exceed8

1000 km s−1, calculated by measuring their proper motions (see section 1.2.1).

Pulsar evolution and recycling model

The P -Ṗ diagram in fig.1.11 helps describing the evolution of the pulsar spin

with time. It is evident that two quite different populations of pulsars exist:

8The millisecond pulsars, described in section 1.1.7, are an exception since they have on average
lower velocities, about 100 km s−1.
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the ordinary pulsars, with periods ranging from some hundredths of a second

to few seconds and with Ṗ ∼ 10−17 − 10−11 s s−1, and the millisecond pulsars

(MSPs), with spin periods of the order of millisecond and Ṗ ∼ 10−18 − 10−21 s

s−1.

Since for the magnetic dipole model the characteristic age τ ∝ P/Ṗ

(section 1.1.6) and the magnetic field B ∝
√

PṖ (section 1.1.2), we obtain that

the ordinary pulsars are younger and have very high magnetic field strenghts

(typically τ ∼ 107 yr and B ∼ 1012 G), while millisecond pulsars are older and

have lower magnetic field (typically τ ∼ 109 yr and B ∼ 108 G). Those facts - as

well as the much more frequent occurrence of binary systems in the population

of millisecond pulsars with respect to that of the ordinary pulsars - suggest a

possible evolutionary scenario for the two families of radio pulsars.

According to this scenario, a pulsar is born with a very small spin period,

of the order of tens or hundreds ms, and a high magnetic field, heuristically

as a result of the conservation of angular momentum and magnetic flux during

the collapse of the core of the massive star. This implies that Ṗ is very high

for young pulsars, so that they rapidly spin down and quickly (105 − 106 yr)

reach the ordinary pulsar region in the P -Ṗ diagram. At some point the pulsars

cross a region called death valley entering in the graveyard, i.e. the region in

the diagram where the mechanism of radio emission ‘switches off’.

This is the destiny of an isolated pulsar. Nevertheless, from the observations

we know that a pulsar (ordinary or millisecond) can be part of a binary system,

where the companion can be either a main sequence star, a white dwarf or

another neutron star9. According to the so-called recycling model (Alpar et al.

1982), if an ordinary pulsar is in a binary its final destiny can be different from

the fate of an isolated pulsar because of accretion processes from the companion,

that can result in the production of a millisecond pulsar.

To explain what happens, we need to describe the evolution of a binary

system since its formation (see fig.1.12). Initially the system is made up of

two main sequence stars. The primary more massive star evolves first; if it

satisfies the opportune conditions, at the end of its life it undergoes a supernova

explosion and becomes a neutron star, with fast spin period and high magnetic

9The companion could be even a black hole, due to processes like, for example, the capture of
an isolated pulsar by the black hole gravitational field. Anyway the pulsar-black hole system is still
a ‘Holy Grail’ of astronomy since none of these systems has been found yet.
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Figure 1.12: Possible evolutionary scenarii for a binary system. From Lorimer 2001.

field, which starts to emit as a radio pulsar and slows down, quickly approaching

the ordinary pulsar region in the P -Ṗ diagram.

In a few cases the binary system can survive the supernova explosion, so that

the pulsar and its companion remain bound (ordinary pulsar-main sequence

star system). At some point during its evolution the companion reaches in turn

the stage of red giant, filling or almost filling its Roche Lobe; at that point an

accretion process can start, in which matter and angular momentum from the

companion are transferred to the NS either by Roche Lobe Overflow, via an

accretion disk, or via a plasma wind. At this stage the NS is visible as X-ray

source, while its spin period decreases (due to the accreted angular momentum)

so that the pulsar is ‘spun up’, and its magnetic field decays dramatically

(maybe due to the accretion itself, see for example Jahan Miri and Bhattacharya

1994). It can be shown that higher the accretion rate Ṁ is, lower the achievable

spin period is; since there is an upper limit to the accretion rate (the Eddington

limit, ṀEdd = 1.5 · 10−8R6 M⊙ yr−1, where R6 = RNS/(106cm) and RNS is

the NS radius), there is consequently a lower limit to the spin period that can
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be achieved, given by Pmin ∝ B6/7Ṁ−3/7.

If the companion mass (which the duration of the mass transfer phase depends

on) is suitable, the pulsar can cross the death line again, moving toward the

bottom-left part of the P -Ṗ diagram, and at the end of the accretion it turns on

again as a radio pulsar. For this reason these pulsars are called recycled pulsars ;

from what said, they have very fast spin period and low magnetic field.

The evolution of the companion depends on its mass. If it is sufficiently

massive, after the red giant phase (and hence the accretion phase, during which

the system is called High Mass X-ray Binary, HMXB) the companion will

undergo a supernova explosion in turn; if the binary survives again, at the

end we will have a system made up of a young neutron star and a recycled

pulsar (double neutron star binary)10, where the latter has a spin period of P ≥
20 ms and the orbit of the system is quite eccentric (0.1 ≤ e ≤ 0.9, where e is the

orbit eccentricity). If the companion is not massive enough, it will not undergo

a supernova explosion, and the accretion phase (during which the system is

called Low Mass X-ray Binary, LMXB) will last much longer (up to 108 yr);

consequently, the pulsar spin period can reach much lower values, of the order

of few milliseconds, i.e. the LMXBs are considered to be the progenitors of the

millisecond pulsars. The final system will be therefore typically made up of a

millisecond pulsar and a white dwarf, with almost circular orbits (10−5 ≤ e ≤
10−1) (millisecond pulsar-white dwarf binary).

Nevertheless, from the observations we know that, although almost 80 per

cent of the millisecond pulsars are in binary systems, some of them are isolated.

The reason is still unknown, a possibility could be the ablation of the companion

by the pulsar, but the time scales for ablation seem to be too long. The recent

discovery of a system made up of a MSP and an ultra-low mass Carbon white

dwarf (Bailes et al. 2011), where the latter has a planet mass and can be the

core of a white dwarf that narrowly avoided complete destruction, could give

some insights.

10The only one double-pulsar system known so far, J0737-3039 (Burgay et al. 2003, Lyne et al.
2004), is made up of a 22.7 ms pulsar and a 2.8 s long-period pulsar, in excellent agreement with
this scenario.
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1.2 Pulsar timing

When a new pulsar is discovered, it is submitted to a procedure called timing

in order to obtain the values of its spin and astrometric parameters, and to get

also other information about the binary motion (if the pulsar is part of a binary

system) and the propagation of the pulses throughout the ISM.

Timing a pulsar consists in measuring and ‘phase-connecting’ (see later

in the text) the Times Of Arrival (TOAs) of the pulsar radio pulses to the

telescope. A TOA is defined as the time of arrival of a fiducial point on

the integrated profile of an observation (remembering that this profile is very

stable in shape). This TOA is obtained by a cross-correlation between the

integrated profile typically obtained folding few hundreds or thousands pulses

and a ‘template’ with high S/N (called standard profile, and obtained summing

in phase many earlier observations at the particular observing frequency). The

fraction of period at which we have the best cross-correlation between the two

profiles is added to the starting or to the middle time of the observation, giving

the time of arrival of the fiducial point, i.e. the TOA.

After measuring, we compare these TOAs with the ones predicted by a

given pulsar model, through a multi-parametric fit where we minimize the

differences between the measured and the predicted TOAs (called timing

residuals); in this way we obtain the best fit values for the searched parameters.

On a operational ground, if we consider a model in which the pulsar has spin

frequency ν in a reference frame comoving with the pulsar (described in the

next section), and expand the pulsar spin evolution in a Taylor series around a

reference epoch t0, we obtain at a time t in this frame :

ν(t) = ν0 + ν̇0(t − t0) +
1

2
ν̈0(t − t0)

2 + ..., (1.33)

where ν0, ν̇0, ... are the values calculated in t0.

Whence, remembering that the rotational phase φ(t) results from the

integral of the spin frequency in time

φ(t) = φ0 + ν0(t − t0) +
1

2
ν̇0(t − t0)

2 +
1

6
ν̈0(t − t0)

3 + ..., (1.34)

where φ0 is a reference phase calculated in t0 (and usually assumed to be 0).



CHAPTER 1. PULSARS: AN OVERVIEW 33

If we know the evolution of ν(t) accurately enough, and suppose that both

t0 and t correspond to the arrival of a pulse, our expansion for φ(t) should

give an integer number n at t, i.e. we would be able to predict the phase of

each pulse that will arrive after t0 (phase connection). In other words we can

unambiguously account for every single rotation of the pulsar even over long

periods (years or decades) of time.

In order to obtain the best values for the rotational parameters in the

simple model above, one typically starts with a first guessed set of parameters

and then iteratively proceeds by minimizing the expression:

χ2 =
∑

i

(

φ(ti) − ni

σi

)2

, (1.35)

where ni is the nearest integer to the phases φ(ti) associated to the observed

TOAs ti in the assumed model for the given parameters, and σi is the TOA

uncertainty.

Once the fit is good over a long enough dataspan (see section 1.2.1), one is

confident to have obtained significant values for the model parameters.

The procedure above would hold for TOAs observed in a system comoving

with the pulsar. However, that is never the case and the real observational

situation is that we are observing from a rotating Earth which orbits the Sun.

Moreover the space between us and the source is not empty and the source

itself is moving with respect to us. Therefore, one needs to correct the observed

TOAs before applying to them the simple model above.

The corrections to be applied to the so-called topocentric TOAs (i.e. the

observed TOAs) will be described in the next two sections, taking into account

separately isolated and binary pulsars.

1.2.1 Isolated pulsars

As mentioned in the previous section, if we want to perform the timing of an

isolated pulsar we must make some corrections to the measured TOAs.

First of all, we must consider that our reference frame is not inertial, so

that the pulses arriving at our telescopes are biased by the motion of the Earth

both around its axis and around the Sun. Not correcting for these motions, we

would see a sinusoidal variation of the observed arrival times during one year
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Figure 1.13: The Earth orbital motion causes a sinusoidal variation of the pulse
TOAs in one year. From Pulsar Astronomy, 3rd ed. by Lyne and Smith 2005.

(see fig.1.13).

To remove this effect, we need to transform our topocentric TOAs to

barycentric TOAs, i.e. calculate their values with respect to the barycenter

of the Solar System (SSB), which is to a very good approximation an inertial

reference frame.

Nevertheless, other effects besides the Earth motion must be taken into

account in making this transformation, so that the expression for a barycentric

TOA is:

tSSB = ttopo + tclock −
∆D

ν2
+ ∆R + ∆S + ∆E, (1.36)

where ttopo is the topocentric TOA, tclock represents clock correction that

accounts for differences between the observatory clocks and terrestrial time

standards, ∆D/ν2 accounts for the dispersion delay caused by the ISM (section

1.1.5: ∆D = D×DM , where D is the dispersion constant, eq. (1.24), and DM

the dispersion measure, eq. (1.23));

• ∆R is the Römer delay,
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∆R = −~r · ~s
c

+
(~r · ~s)2 − |~r|2

2cd
, (1.37)

where ~r is the vector connecting the SSB to the Earth and ~s is a unit

vector pointing from the SSB to the pulsar, positioned at a distance d.

The first term in this equation is the light travel time between the Earth

and the SSB, that undergoes the annual sinusoidal variation showed

in image (b) in fig.1.13) due to the Earth motion around the Sun; its

maximum value is about 500cosβ s, where β is the ecliptic latitude. It’s

worth remarking that the occurrence of this annual modulation opens the

possibility of deriving very accurate astrometric positioning of a pulsar

in celestial coordinates.

The second term in the equation is the so-called timing parallax, another

annual effect that causes a variation in the pulse arrival time having

an amplitude of l2cosβ/2cd, where l is the distance between the Earth

and the Sun. This parallax is a measurement of the curvature of the

wavefronts in different positions of the Earth’s orbit around the Sun.

Unfortunately this effect is very small and is measurable only for a

few nearby pulsars, providing, in this case, a very good trigonometric

measurement of the pulsar distance.

• ∆S is the Shapiro delay (Shapiro 1964),

∆S = −2GM⊙

c3
ln (1 + cosθ), (1.38)

where G is Newton’s gravitational constant, M⊙ is the mass of the Sun,

and θ is the angle subtended from the pulsar to the Earth and the Sun

at a certain epoch.

This is a relativistic (General Relativity) effect due to the fact that the

pulses are delayed by travelling through the gravitational field of the solar

system, i.e. due to the space-time curvature created by the presence of

masses (essentially the Sun mass) in it.

• ∆E is the Einstein delay, whose derivative is given by:

d∆E

dt
=
∑

i

GMi

c2ri

+
v2
⊕

2c2
, (1.39)
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where Mi are the masses of all bodies in the solar system except for the

Earth, ri is the distance of the Earth from the mass Mi, and v⊕ is the

Earth velocity with respect to the SSB.

This is a relativistic (Special Relativity) effect due to a combination of

time dilation due to the Earth motion and gravitational redshift caused

by the other bodies in the solar system.

By applying the formula 1.36, we obtain the barycentric TOAs.

If the pulsar is moving with respect to the SSB, we must consider also other

effects due to the transverse component vt of the pulsar velocity, related to its

proper motion µ, according to:

vt = 4.74
µ

mas yr−1

d

kpc
km s−1, (1.40)

where µ =
√

µ2
α + µ2

δ , µα = α̇cosδ, µδ = δ̇, where µα and µδ are the proper

motions in right ascension, α, and declination, δ, respectively.

Although it does not directly enter the timing formula (i.e. the following

corrections are usually applied after having obtained a good set of timing

parameters) it is important to remember another effect of the transverse motion

of a pulsar which impacts on the determination of its intrinsic parameters, i.e.

the so-called Shklovskii effect (Shklovskii 1970) or ‘secular acceleration’. It

affects all the time derivatives of a given quantity, e.g. the derivative of the spin

period, Ṗ . Since this contribution is inversely proportional to d it is usually very

small and can be neglected, but it must be accounted for the case of recycled

pulsars (having small values of Ṗ ) at close distances.

Once we have corrected our measured TOAs, keeping into account all the

mentioned effects, we can fit the TOAs to our model (eq. (1.35)) using the

already mentioned least-square fit procedure.

If the fit is good, the residuals are randomly distributed around zero, i.e. there

are no unmodeled effects (case (a) in fig.1.14). On the contrary, if trends are

presents in the residuals they are an indication for a wrong determination of

some parameter of the model. For example, if Ṗ is underestimated, the residuals

show a parabolic trend (case (b) in the figure), while if there is an error in the
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Figure 1.14: Examples of timing residuals. See the explanation of the different cases
in the text. From Handbook of Pulsar Astronomy by Lorimer and Kramer 2005.

pulsar position (i.e. in the ~s vector), the residuals are sinusoidal with a period

of 1 year (case (c)). In case (d) the proper motion has been neglected, and the

residuals show an annual sinusoidal trend with an increasing amplitude.

1.2.2 Binary pulsars

If the pulsar is part of a binary system, an observer also see the occurrence of

a periodic modulation in the TOAs as the pulsar moves along the orbit, since

they anticipate when the pulsar is approaching us and they delay when it is

going away from us (orbital Doppler effect).

Therefore we need to add new terms in the expression (eq. (1.36)) in order to

take into account the motion of the pulsar around the centre of mass of the

binary system:

tSSB = ttopo + tclock −
∆D

ν2
+ ∆R + ∆S + ∆E

+ ∆RB + ∆SB + ∆EB + ∆AB, (1.41)
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where ∆RB is a further Römer delay caused by the orbital motion of the

pulsar, ∆SB and ∆EB are Shapiro and Einstein delays due to the companion

gravitational field, and finally ∆AB is a delay caused by the aberration of the

electromagnetic waves due to the orbital motion.

If the binary is non-relativistic the pulsar motion follows Kepler’s laws, so

that we can describe it by means of seven independent Keplerian parameters:

the orbital period, Pb; the semi-major axis a of the pulsar orbit around the

common centre of mass; the orbital inclination i, i.e. the angle between the

orbital plane and the plane of the sky; the orbit eccentricity, e; the periastron

longitude, ω; the epoch of periastron passage, T0; the position angle of the

ascending node, Ωasc.

Five parameters are usually obtained by fitting the TOAs (Pb, x = a sini, that

is the projection of the semi-major orbital axis, e, w, T0), whereas a sixth one,

Ωasc, is measurable only in particular cases.

From these parameters it is possible to derive the mass function:

f(Mp, Mc) =
(Mc sini)3

(Mp + Mc)
2 =

4π2 (a sini)3

GP 2
b

, (1.42)

where Mp is the pulsar mass and Mc the companion mass. Owing to this relation

we can put some costraints on the mass of the companion. In fact, assuming a

typical value of Mp = 1.4 M⊙ and an edge on orbit (i = 90◦), from this equation

we obtain the minimum possible value for Mc.

If the pulsar is part of a relativistic binary, i.e. it is in a close orbit with

another massive compact object, like a white dwarf, another neutron star or even

a black hole, the orbital motion can not be described simply by Kepler’s laws,

and other parameters called post-Keplerian parameters need to be added in our

fit, in order to consider the relativistic effects due to the strong gravitational

fields and the high orbital velocities. The most commonly measured parameters

are the relativistic periastron advance ω̇, the parameter γ which takes into

account time dilation and gravitational redshift, the orbital decay Ṗb which

measures the orbital period decreasing rate due to the emission of gravitational

waves, and the range r and shape s of the Shapiro delay caused by the space-

time deformations around the companion star.

It is worth concluding this introduction to the timing of pulsar, noticing
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that unfortunately not all the pulsars are equally good for applying to them the

procedure above. In fact, in few cases the timing residuals show the signatures

of un-modeled variations of the pulsar rotation with time, called timing noise.

The exact origin of that is still debated. It could be due, for example, to changes

in the interior of the NS related to the slow down and concerning for instance

the occurrence of an independent motion of the crust and of the fluid interior.

Alternatively it has been recently proposed that it can be due to random changes

in the magnetic field or in the structure of the magnetosphere. As a matter of

fact, timing noise is more prominent in the younger pulsars, while millisecond

pulsars are, on the contrary, not heavily affected by it and hence are intrinsically

better clocks (see next section).

1.2.3 A Pulsar Timing Array

Owing to the fact that the recycled pulsars (i) are rapidly spinning; (ii) are old

neutron stars (where the internal structure of the star is usually not affected by

the glitches shown in young neutron stars) and (iii) are not heavily affected by

timing noise (section 1.2), they can be exceptional clocks, in some cases rivaling

our best atomic clocks over time spans of months and years: in fact, currently

the spin period of MSPs is known with a very high precision (the period of

J1909-3744 is the one that so far has been measured with the best precision11:

0.0029471080681076401 ± 0.0000000000000000009 s, i.e. with 19 digits after

the decimal point, Verbiest et al. 2009) and their rotational stability, measured

by the σz parameter described in Matsakis et al. 1997, can be as good as 10−15

on a 10-year time span (Verbiest et al. 2009, Verbiest et al. 2008). Precise

timing of these objects is then a powerful tool to investigate several celestial

phenomena.

One of the possible physical uses of the recycled pulsars is in the framework

of the so-called Pulsar Timing Array (PTA), for the detection of gravitational

waves (GWs), whose existence has been verified so far only in an indirect way.

In fact, when a GW passes over our Galaxy pulsars and the Earth, it

perturbs the space-time and hence modulates the signals from the pulsars with

the variation in the TOAs of a strength which is proportional to the amplitude

of the GW and a periodicity related to its frequency.

11www.atnf.csiro.au/people/pulsar/psrcat ; Manchester et al. 2005
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Figure 1.15: A Pulsar Timing Array to detect low-frequency GWs. Credit:
NANOGrav.

The effect of course affects to TOAs of any pulsar, but it is expected to

be tiny (even in the best cases) and therefore if one observes only one pulsar

it turns out to be almost impossible to isolate this effect from many other

possible causes for a periodic variation in the TOAs: for example low-level

residual timing noise, fluctuations in the density of the interstellar medium

along the line of sight, errors in the reference clocks at the observatory, errors

in the planetary ephemeris which are necessary for performing the conversion

from the topocentric to the barycentric TOAs, etc.

Most of these issues can be addressed and solved if one uses not a single but

a ‘network’ of many suitable recycled pulsars placed in different directions of

the sky (that is, a PTA). In fact, it has been theoretically shown that by means

of simultaneous high precision timing of many pulsars belonging to a PTA one

could really obtain a direct detection of GWs (see fig.1.15). In particular, given

the typical interval between timing observations of pulsars (from months to

decades, ∼ 107 s to 109 s) a PTA is sensitive to GWs of frequency smaller than

10−7 Hz and higher than 10−9 Hz, with in practice a better sensitivity for the

latter. This range of nanoHz frequencies is not covered by any other detector

and thus PTAs nicely complements the other (mostly interferometric) detectors

(either ground-based or in space) which have been (or will be) built in the aim

of directly detecting GWs.

In particular the range of the nHz corresponds to the frequency range of the
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predicted stochastic cosmological GW background resulting from the merging

of supermassive BHs in the early phases of the Universe. So, detection and

measurement of this background would result a breakthrough step not only

for gravitational physics, but also for cosmological studies. The possibility of

detecting gravitational signals from single monochromatic sources (like merging

events in massive black-hole binaries, being relatively close to us and involving

very high massive BHs of about 10−9 solar masses) standing above the root-

mean-square (rms) value of the background has been recently investigated by

Sesana and Vecchio 2010, but such signals have a much lower probability

than the background of being detected by a PTA. However a problem arises

concerning a clear detection of the GW background. In fact this has a

dimensionless strain amplitude spectrum hc(f) = Af−2/3 (e.g. Cordes and

Shannon 2011), where hc(f) is the characteristic amplitude of the GW signal as

a function of the frequency f and we can use a fiducial value A = 10−15yr−2/3;

the spectrum of timing residuals ∝ f−13/3 and the rms residual scales as

σgw(T ) ∝ T 5/3, where T is the time span of the observations. Unfortunately

red timing noise (see also the previous section), which is a low-frequency non-

Gaussian noise present in the timing residuals (common in ordinary pulsars

but also expected in MSP at low levels; see e.g. Kaspi et al. 1994 for the first

detection of such a kind of noise in a MSP, B1937+21; Verbiest et al. 2008 for

red timing noise in the closest and brightest MSP known, J0437−4715) due

to irregularities in the pulsar rotation or to interstellar scintillation, yields a

rms residual σr(T ) ∝ T 2±0.2 corresponding to a spectrum of timing residuals

∝ f−5±0.4. Hence the red noise spectrum is similar to the GW background

spectrum, and the challenge will be to separate the red noise contribution from

the GW background one, in order to safely detect the latter. According to

Cordes and Shannon 2011, a minimum of 20 super-stable MSPs, each with rms

timing residuals from red noise contribution less than 20 ns over time spans

of 5 years and with negligible white noise (i.e. radiometer noise and pulsar

jitter), should allow a plausible detection of the GW background. However, if

such super-stable MSPs will not be found (currently we only know two MSPs,

J1713+0747 and J1909−3744, having rms timing residuals less than 50 ns over

a 5-year time span, Demorest et al. 2009, and one other less than 100 ns,

J0437−4715, Manchester 2010) a much larger set of MSPs will be necessary,
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maybe 100 or even more, having timing noise substantially less than 100 ns in

a 5-year span.

Os lowski et al. 2011 have recently discussed the limits in the achievable

precision of pulsar timing. They describe the intrinsic variability of the pulsar

radio emission, which causes stochastic fluctuations in the TOAs, as stochastic

wideband impulse modulated self-noise (SWIMS), a pulsar-intrinsic noise (also

called in other ways, like jitter noise, intermittent emission or simply self-noise)

likely due to the stochastic subpulse structure observed in single pulses, which

yields pulse profile variations. They conclude that this self-noise may be a

limiting factor for timing precision of every MSP currently observed by PTAs,

even when larger and more sensitive antennae will be built. For example, they

found that for MSP J0437−4715 a timing precision better than 30 - 40 ns in

one hour at an observing wavelenght of 20 cm is highly unlikely, owing to the

intrinsic variability of the pulsar signal and hence to SWIM. Also in this case it

would be necessary to significantly increase the number of MSPs in the PTA.

From what said so far, it is clear that the discovery of more MSPs having

the mentioned required features is of fundamental importance for the detection

of the cosmological background of GWs.

As it can be inferred from what said above, the observational problem is

to set up a suitable PTA, and in order to do that two things are necessary:

1. to find a large sample of recycled pulsars randomly distributed in space

and having the required clock stability and signal intensity;

2. to perform regular high precision (100 ns) timing of the available sample.

In order to implement the second point, 3 large collaborations have been

set up: the PPTA (Parkes Pulsar Timing Array), the EPTA (European

Pulsar Timing Array) and NANOGrav, which are already exploiting the largest

radiotelescopes in the world for observing a set of suitable targets.

The first point highlights the importance of the pulsar surveys (see section

1.3) since, as already said, we know only a handful of recycled pulsars having

the suitable features to be part of a PTA and need to largely increase their

number. This Thesis work focused on this task.
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1.3 Why pulsar surveys?

A survey is the observation of a portion of the sky to blindly search for new

objects, in this case pulsars.

The importance of finding new pulsars has been highlighted in the previous

section for the case of the PTAs and the related scientific aim of detecting

gravitational waves and performing investigations in cosmology.

However, recycled pulsars, owing to their often exceptional period stability

and hence to the possibility of high precision timing (see the previous section),

have already shown to be unique physical tools for a wide range of studies

in fundamental physics and astrophysics, some of which are described in the

following.

• Testing General Relativity: as said in section 1.2.2, in a relativistic

binary there are significant deviations from Kepler’s laws of motion;

furthermore, the pulse path from the pulsar to Earth is modified due

to the distortion of the space-time around the pulsar for the presence of

the other compact object. Hence, by comparing the values of the system

parameters obtained from the measured TOAs with the predictions of GR

we can perform precision tests of this theory. The only known double-

pulsar, J0737-3039 (Burgay et al. 2003, Lyne et al. 2004), provides so

far the most precise test of GR in the strong field regime (see fig.1.16);

discovering additional of these systems may allow us to carry out even

more stringent tests of relativistic gravity.

• Studying super-dense matter: the behavior of super-dense matter, whose

density can not be reached in terrestrial laboratories but only in the

interior of a NS, can be studied through the measurement of the structural

and/or rotational parameters of a NS. In fact, for a given mass, radius,

internal density and structure of a NS depend on the Equations of State

(EoS) for the nuclear matter at ultra high density. So far, this EoS is

still unknown and about 30 models have been proposed for that to date,

grouped in two main categories of EoS, the soft EoS and the stiff EoS.

The soft EoS predicts a high compressibility of the super-dense matter, so

that the NS would have a small radius, a high central density and a thin
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Figure 1.16: Kramer et al. 2006 measured all five post-Keplerian parameters and
also the mass ratio R of the two pulsars, finding that GR is correct at the 0.05 per
cent level.

crust; the stiff EoS instead predicts (for the same NS mass of the case

of the soft EoS) a lower compressibility, and hence the NS would have a

larger radius, a lower central density and a thicker crust. Moreover the

stiff EoS predicts a larger maximum mass for a NS than the soft EoS.

So, on one hand, from the measurement of the mass of the NS (as it

is possible in the relativistic pulsar binaries) one can test (and possibly

discriminated) between the EoSs. On another hand, since the minimum

spin period reachable by a rotating NS is12 Pmin ∝
√

R3/M , where R

and M are respectively radius and mass of the NS, the two kinds of EoS

predict different values of Pmin. The discovery of a pulsar with P ≤ 1

ms (sub-millisecond pulsar) would give credit to the soft EoSs, leading

to the rejection of most of the stiff EoSs.

• Studying the plasma physics under extreme conditions: the plasma in

the pulsar magnetosphere experiences super-strong magnetic fields; these

12Pmin has been obtained equating the centrifugal force with the gravitational force at the equator
at the breakup limit. This dependence of Pmin from R and M is roughly reproduced also when
accounting for the relativistic corrections to the neutron star structure.
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extreme physical conditions can be probed if the pulsar is part of a binary

system, as it can be done for example for the double-pulsar system J0737-

3039, where as the pulsars move along their orbits the line of sight from

pulsar A to us passes through the magnetosphere of pulsar B: any change

in the transmission properties of the signals can give information about

the plasma density and the structure of the magnetic field of pulsar B.

• Finding extra-solar planets: if a body having a planet mass is orbiting

around a pulsar, we can observe variations in the TOAs that lead to

reveal the presence of the planet and its mass. This pulsar-planet

systems are not expected to be common, due to the violent conditions

of NS formation, however the first planetary system outside the Solar

System (and the only Earth-mass and Moon mass planet known until

very recently) was discover to orbit a pulsar: in fact the 6.2 ms pulsar

B1257+12 is orbited by three planets (one planet has a Lunar mass, while

the other two are Earth-mass planets). Another system is a pulsar orbited

at the same time by a planet and by a white dwarf: it is the 11 ms pulsar

B1620-26 in the globular cluster M4 (the planet mass is in the range 1-2

Jupiter masses). Finally there is the recently found ‘diamond planet’ in

orbit around the 5.7 ms pulsar J1719-1438 (the planet has a mass near

that of Jupiter, is made up of Carbon and is incredibly dense, see Bailes

et al. 2011; see section 1.1.7 for details), which have been discovered in

the survey for pulsar which is in the focus of the work of this Thesis.

Besides the ones mentioned above, many other astrophysical fundamental

issues can be addressed by means of the study of the young and ordinary pulsars,

such as investigating the magnetic field of the Galaxy and the interstellar

medium.
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Search methods

This chapter describes the different search methods that can be used to process

data in order to find isolated and binary pulsars; in the former case, the so-

called standard search is employed, while in the latter case, especially for close

(short orbital period) binaries, several kinds of acceleration search can be used.

For more details about the content of this chapter see the Handbook of

Pulsar Astronomy by Lorimer and Kramer 2005.

2.1 The sensitivity issue in the search for pulsars

In general, pulsars are very weak radio sources and the mean flux density

decreases at higher frequencies according to a power law (eq. (1.17)); therefore,

to detect them it is very important the sensitivity of the radiotelescope that

we use. The sensitivity Smin is the minimum flux that the antenna is able to

detect at a particular observing frequency ν and corresponding to a particular

threshold (S/N)min , i.e. the minimum S/N that we choose to consider (for

example often the value of 8 is chosen, so that it is less probable that what we

think is a signal is instead only a noise fluctuation). Hence a signal detected

with that (S/N)min has a flux density Smin , given by:

Smin = ǫ
(S/N)min Tsys

G
√

np ∆t ∆νMHz

√

We

P − We

mJy, (2.1)

where ǫ ≥ 1 is a factor that accounts for the loss in sensitivity due to the

digitalisation and the subsequent transmission of the signal, G is the telescope

gain (in K/Jy), np is the number of observed polarisations of the signal (np = 1

for single-polarisation observations, np = 2 if two orthogonal polarisations are

46
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summed), ∆t is the integration time in seconds, ∆νMHz represents the observing

bandwidth in MHz, P is the pulsar period. The system temperature Tsys (in K)

is given by:

Tsys = Trec + Tspill + Tatm + Tsky, (2.2)

where Trec is the noise temperature of the receiver, Tspill is the contribution of

the ‘spillover noise’ due to the ground, Tatm is caused by the Earth atmosphere,

and Tsky represents the noise temperature of the sky background (3 K from the

cosmic microwave radiation, that is everywhere, and a strong contribution from

electrons in the Galactic plane emitting synchrotron radiation, that makes the

Tsky to be a function of sky position and observing frequency, ∝ ν−2.7).

The effective width We of the pulse in eq. (2.1), which we want to be as small

as possible, is given by:

We =
√

W 2
i + (βδt)2 + δt2DM + δt2scatt, (2.3)

where Wi is the intrinsic width of the pulse, β ∼ 2 is an instrument factor, δt is

the sampling time (i.e. the rate at which we record the signals arriving during

the integration time), δtscatt is the broadening of the pulse due to scattering

(δtscatt ∝ ν−4), and δtDM is the pulse broadening caused by dispersion, due to

the fact that the radio pulsar signal is broad-band; if in our telescope we have a

receiver with bandwidth ∆νMHz, and νMHz is the central observing frequency,

deriving eq. (1.22) we can obtain the rate at which the pulse traverse the radio

spectrum:

ν̇ =
dν

dt
=

ν3
MHz

8.3 × 103 DM
MHz s−1, (2.4)

and hence the broadening of the pulse traversing the receiver bandwidth:

∆tDM = 8.3 × 103 ∆νMHz

ν3
MHz

DM s. (2.5)

We can however minimise the dispersion effects by splitting the total bandwidth

into several channels having a frequency width δνMHz, so that in each channel

the broadening will be smaller:

δtDM = 8.3 × 103 δνMHz

ν3
MHz

DM s. (2.6)
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From what said so far, it is clear that for our aim we need to reach a value

of Smin as low as possible. Observing at high frequencies can help since Tsky,

δtscatt and δtDM decrease with increasing frequency, but as already mentioned

also the pulsar flux density decreases; hence a compromise is necessary between

these two things.

To reduce Smin we can also play with the other parameters in the previuos

equations (if technically possible), for example increasing the integration time

∆t, reducing the sampling time δt, using a larger observing bandwidth ∆νMHz

and/or dividing the latter into a high number of channels with width δνMHz;

nevertheless, we must keep in mind that in all these cases the quantity of

collected data can become huge, and therefore we need to have the resources to

store it up and the computing power to analyse such a mass of data.

To decide the strategy of a survey the first thing to do is defining the goals

to be achieved, i.e. for example what kind of pulsars (section 1.1.7) we want to

find.

If our target are the ordinary pulsars we must observe mainly on the

Galactic plane, since they are younger and did not go far away from it yet;

in this direction, however, the ISM density, and hence the DM , is high. In

general that is not a problem for ordinary pulsars, because the broadening of

the pulse induced by the ISM is normally small with respect to P (Pmean ∼ 0.5

s) also at small radio frequencies. Nevertheless, if we want to observe beyond

the Galactic Centre, or find also the youngest pulsars, that have periods of only

few tens of milliseconds, it is opportune to observe at high frequencies (1 ÷
2 GHz)1, so that the ISM effects, especially scattering, for which there are no

technical expedients as for the dispersion, are lower.

If instead we want to find millisecond pulsars, since they are old and hence

already moved we must search above or below the Galactic plane, up to a height

z ∼ 500 pc. Here the ISM density is lower so that its effects should be less

important, but since MSPs have short periods even a small pulse broadening

caused by ISM can drastically reduce the signal strenght. For this reason it is

opportune to observe also MSPs at high frequencies.

1Pulsars can be observed at wavelenghts from about 15 m to 3 cm, i.e. at frequencies from 20
MHz to 10 GHz.
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2.2 Search techniques

Once the signals have been acquired by the radiotelescope, digitalised and

recorded on magnetic tapes, they must be analysed in order to single out

possible periodic signals of a pulsar, immersed in the background noise.

Data analysis is made up of several stages, and different techniques need

to be used depending on what we are searching for (e.g. isolated pulsars,

binary pulsars, single pulses, etc.). The initial two stages are common to all the

techniques, since they ‘clean’ the data from spurious signals and eliminate the

dispersion suffered by the signals when they cross the ISM.

In fact, the first step of processing is identifying Radio Frequency

Interference (RFI), i.e. man-made terrestrial radio signals emitted for example

by radars, satellites, etc. (see also section 4.1 for the RFI problem), which

can cover the weak signals from pulsars and/or even have a periodic pulsar-like

behaviour, that can deceive us inducing to consider them as pulsar candidates.

Nevertheless, a first ‘cleaning’ can be done owing to the fact that most sources

of RFI, being produced on Earth, are undispersed and hence detectable in the

so-called zero-DM data set (i.e. the data set summed in frequency without de-

dispersion). To do that we can use two main approaches, one in the frequency

domain and one in the time domain; for example, as described in Keith et al.

2010, in the HTRU survey pipeline (see chapter 3) we remove both ‘bad’ spectral

channels and ‘bad’ time samples.

‘Bad’ spectral channels are the channels affected by periodic RFI (usually

appearing many times in different sky positions), that can be identified doing

an individual Fourier transform of the zero-DM data set for each channel, so

that the power spectra (see section 2.2.1) are obtained; if we find in them any

frequencies corresponding to a spectral S/N of the detected signals higher than

15, the corresponding frequency channels are rejected2.

‘Bad’ time samples are the ones, in our series of recorded signal samples of an

observation (time series), affected by sporadic bursts of RFI (i.e. non-periodic),

that can be identified by comparing them with the expected mean and standard

deviation of the single zero-DM time series obtained by summing the data in

2It could be possible also to create a spectral ‘mask’, i.e. a list of identified RFI frequencies, for
RFI occurring frequently.
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Figure 2.1: RFI excision: replacement of time samples affected by bursts of RFI
(vertical lines in the left panel) by random noise (right panel). From Keith et al.
2010.

frequency. If a time sample differs from the mean value by more than five

standard deviations (5σ), it is removed from the time series and replaced with

random noise, as in fig.2.1.

Unfortunately, this cleaning is not able to remove all RFI signals, and most

of the candidates indicated by the Fourier domain search in the de-dispersed

time series (section 2.2.1) are RFI.

As already mentioned, the second step of data analysis is the so-called

de-dispersion: this is a technique to eliminate the broadening of a pulse due

to dispersion, i.e. to the different delays experienced by the several frequency

components of the signal as the latter crosses the ISM (section 1.1.5). There

are different algorithms to remove dispersion, the simplest one consists in the

following procedure: after dividing the total observing bandwidth into several

channels with width δνMHz, as said in section 2.1, we consider the time series

as it appears in each channel, assign a value to the DM and calculate the delay

of the signal in every channel with respect to a reference frequency, according

to eq. (1.25); then we apply the calculated delays to the time series in all the

channels (see fig.2.2) and sum all in frequency, obtaining a single de-dispersed

time series.

Since we do not know the origin of a signal and hence the right DM value,

we have to perform many trials producing many de-dispersed time series, each

corresponding to a different DM value. We must be careful with the choice

of the trial DM values though, since if the interval between two values is too



CHAPTER 2. SEARCH METHODS 51

Figure 2.2: De-dispersion criterion (see the text). From Pulsar Astronomy, 3rd ed.
by Lyne and Smith 2005.

large the true DM value of an unknown pulsar could lie within the interval,

with a loss of sensitivity (see fig.2.3); on the other hand, if the interval is too

small we waste computing time to produce de-dispersed time series that for

neighbouring DM values will be almost identical. The minimum value of DM

for which doing de-dispersion makes sense is the one corresponding to a delay,

and hence to a broadening, of the signal over the whole bandwidth3 (eq. (2.5))

equal to the sampling time (since it is the smallest delay that we are able to

measure):

∆tDM = 8.3 × 103 ∆νMHz

ν3
MHz

DMmin = δt, (2.7)

from which:

DMmin = 1.2 × 10−4 ν3
MHz

∆νMHz

δt. (2.8)

The value of DMmin is also the step δDM that we use to increment the DM

values from DMmin to a certain value DMdiag (see below), producing at every

step an increment of δt in the delay over the whole bandwidth, ∆tDM , since

again it makes no sense using a DM step corresponding to an increment in the

3It is therefore the delay between the time of arrival of the signal highest frequency in the
highest channel and the one of the signal lowest frequency in the lowest channel, that is the slowest
component.
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Figure 2.3: S/N versus trial DM relative to the S/N value for a true DM of 50 pc
cm−3, spanning an 8 MHz band centred at 430 MHz, plotted for a variety of pulse
periods. The right choice of the DM step is critical for the detection of pulsars with
periods below a few hundred ms, since they suffer a strong decreasing of the S/N for
wrong DM values, while pulsars with periods above that value do not experience
such an issue. From Handbook of Pulsar Astronomy by Lorimer and Kramer 2005.

delay smaller than the sampling time (and hence not measurable). Therefore

the second trial DM value is DMmin + δDM = 2DMmin, and corresponds to

a delay over the whole bandwidth ∆tDM = 2δt; and so on. We maintain this

value of δDM up to the DM value corresponding to a delay of the signal equal

to the sampling time in each channel (eq. (2.6)) with respect to the previous

channel:

δtDM = 8.3 × 103 δνMHz

ν3
MHz

DMdiag = δt, (2.9)

from which:

DMdiag = 1.2 × 10−4 ν3
MHz

δνMHz

δt. (2.10)

Hence in this case the delay over the whole bandwidth will be ∆tDM = n δt,

where n is the number of channels; this DM value is called diagonal DM. For

values larger than DMdiag the delay, and hence the broadening, in each channel

becomes larger than δt; if it is smaller than 2δt, and we vary the DM again

with a step δDM = DMmin, we produce again an increment in the delay over

the whole bandwidth equal to δt, but this time it is not good, since in this way

we de-disperse pulses broader than δt with a time resolution smaller than the

pulse width itself. Therefore in this case we choose a step δDM such that the
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Figure 2.4: Scheme of the tree algorithm for de-dispersion, in the four-channel
case. Rectangles represent summations; the numbers within them represent the
channel numbers in order of increasing frequency, while the subscripts on the channel
numbers indicate the accumulated delay of a particular datum, in units of the
sampling time τ . Circles indicate the introduction of one unit of delay. From Taylor
1974.

increment in ∆tDM is equal to 2δt. We do the same if the delay in each channel

lies between 2δt and 3δt, choosing for the same reason a DM step such that

the increment in ∆tDM is 3δt; and so on.

The maximum value of DM to reach must be determined depending on

the periodicity that we expect to find. For example, for millisecond pulsars we

de-disperse up to a DM value corresponding to a delay in each channel equal

to half the average period of a MSP (i.e. δtDM ∼ 2 ms), so that the signal can

be still identified.

A problem with the method described above is that it requires n2

operations, so that it is computationally expensive. An alternative method

is the so-called tree-algorithm (Taylor 1974), that requires instead only nlog2n

operations. It is built as a ‘tree’, where each ‘branch’ starts from a different

couple of channels (so that the total number of channels must be an integral

power of 2); the procedure consists in introducing progressive delays into the

paths of the higher frequency channels, and then combining the delayed signals

to produce different de-dispersed output signals (i.e. different de-dispersed

time series), whose number is equal to the number of frequency channels (see

fig.2.4, where the algorithm provides dispersion filters ‘tuned’ to four different

dispersions).

In this method we assume that the delay across the whole bandwidth varies

as a linear function of frequency: ∆tDM ∝ ν, while the exact form of the
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Figure 2.5: Scheme of the main steps of the standard search. From Lorimer 2001.

delay is quadratic (eq. (1.25): ∆tDM ∝ ν−2); this assumption is good if the

employed total bandwidths are narrow, but if they are large, as in many recent

surveys, the approximation is not good. In that case a linearisation approach

can be used, for example padding the data with empty channels so that the

delay approximates a straight line; however, the cost of linearising the data

may exceed the gain from using this algorithm.

In the following sections we describe some of the different techniques used

for the remaining steps of data analysis. Search methods for single-pulses and

for long-period (Pspin > 2 s) pulsars will not be described since they are not

subjects of this thesis.

2.2.1 Standard search

The most common and general procedure to analyse the data searching for

pulsars with unkown period and DM , especially if isolated, is the standard

search, whose main steps are illustrated in fig.2.5.

The first step after de-dispersion is searching the data for the presence of

periodic signals, i.e. for trains of regularly spaced pulses that may be hidden

within the background noise; this can be done moving from the time domain to

the frequency domain, since in this way the periodicity of the signals is brought
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Figure 2.6: A pulse train with period P and pulse width W is Fourier transformed,
giving a spectrum where its periodicity is brought out. From Pulsar Astronomy, 3rd
ed. by Lyne and Smith 2005.

out. In fact, if we have a pulse train with period P and pulse width W , like in

fig.2.6, and we Fourier transform it, we produce in this way a spectrum like the

one in the figure, that shows how much power is associated to each frequency

corresponding to such pulse train. In fact, assuming that the background noise

is purely Gaussian, after the Fourier transformation the noise is still Gaussian,

while the pulse train, being periodic (but not purely sinusoidal) and hence

expressible as the sum of sinusoidal components, produces a series of frequencies,

where ν = 1/P is the fundamental, and 2ν, 3ν, and so on, are the harmonics,

corresponding to the various components. The power of the pulse train is

then distributed among the fundamental and the harmonics, whose number

is calculated to be proportional to P/W . Therefore, pulsars with a large duty

cycle (δ = W/P ) like the MSPs, hence having quasi-sinusoidal pulses so that

also the train is quasi-sinusoidal, have a small number of harmonics and the

power is mainly concentrated in the fundamental feature; pulsars with a small

duty cycle like the ordinary pulsars instead, having narrow pulse widths so that

the pulses and hence the train are not quasi-sinusoidal, have a large number of

harmonics with amplitude comparable to the fundamental.

In order to recover the power distributed among the harmonics, especially

in the last case, we use a technique called ‘incoherent harmonic summing’

illustrated in fig.2.7, where the original spectrum is stretched by a factor of

2, and the resulting spectrum is added to the original one. In this way the
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Figure 2.7: The harmonic summing technique. Figure provided by Dipankar
Bhattacharya for the Handbook of Pulsar Astronomy by Lorimer and Kramer 2005.

second harmonic is summed to the fundamental, so that we recover its power

and the S/N increases, also because the noise increases by a factor of
√

2 while

the amplitudes of the fundamental and the harmonic add directly. The process

can be repeated by stretching the obtained summed spectrum by a factor of 2

again, so that the fourth harmonic can be added to the sum of the fundamental

and the second harmonic; and so on. Taking care to add in odd-numbered

harmonics, we can obtain the sum of the first two, four, eight, sixteen, etc.

harmonics, producing a large increment in the S/N of narrow width pulses.

In reality, however, what we have is a de-dispersed time series made up

of N data points sampled at a time δt, rather than a continuous data stream;

hence to move from the time domain to the frequency domain we compute

the Discrete Fourier Transform (DFT) of the time series. The kth Fourier

component yielded by the DFT has a frequency νk = k/(Nδt) = k/Tobs, where

Tobs is the lenght of the observation and 1 < k < N/2. These νk represent

therefore the frequencies that we are able to reveal for a time series of that

lenght Tobs and sampled at that time δt: the lowest frequency is 1/Tobs, the

highest one is 1/(2δt) and the interval between each frequency and the next one

is 1/Tobs. We can then define a Fourier bin as the frequency interval having νk
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as central frequency and lenght 1/Tobs, i.e. as our spectral resolution. Therefore

the fundamental and the harmonic frequencies of our pulse train hidden in the

time series, once the latter is Fourier transformed, that are spaced by 1/P , will

lie in that frequency range, i.e. in some of the bins, and each of them may

coincide with the central frequency of a bin or not. In the latter case we will

have a not precise knowledge of it.

A problem with using a DFT algorithm is that it requires N2 operations;

given that, for modern applications, time series can have even more than 225

samples, this can become very time consuming. Hence what we use is the Fast

Fourier Transform algorithm (FFT), that is computationally convenient since

it requires only N log2N operations.

The next step of processing is the so-called candidate sorting. The result of

data analysis up to this stage is a usually long list of candidate periods (found

by the FFT) from each DM value used to de-disperse, with their spectral S/N

ratios for all harmonic summings. A pulsar may appear many times in this

list at different S/N values, but the maximum S/N should correspond to the

DM value that is closest to the true DM . Hence in the sorting procedure we

group the candidates with the same period into a single candidate and combine

candidates that are harmonically related; then we select the candidates with

the highest spectral S/N ratios. In this way we obtain a manageable number of

pulsar candidates.

At this stage, we de-disperse and fold the raw data (i.e. the original

dispersed time series) at the candidate DM and period respectively, for each

selected candidate. The folding technique is used to increase the S/N so that

the signal may hopefully be identifiable above the noise in the time domain. It

consists in dividing the de-dispersed time series of lenght Tobs into a number

Nsubint of identical time intervals called subintegrations (usually 32 or 64); each

subintegration is then divided into intervals of lenght equal to the candidate

period P , and each interval is in turn divided into nbins equally spaced elements

(called time bins, for example we can choose nbins = 128) across the candidate

period. Hence every time bin corresponds to a particular rotational phase of

the candidate, and summing the signals in corresponding bins (e.g. the kth bin)

over all the intervals within a subintegration we are doing a coeherent (i.e. in

phase) sum, obtaining an increased S/N of the integrated pulse profile (since
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Figure 2.8: A time series for a pulsar folded at a slightly incorrect period (a) and
at the correct period (b). From Handbook of Pulsar Astronomy by Lorimer and
Kramer 2005.

the signal increases with the number of summed elements, i.e. of intervals, while

the noise increases only with the square root of it).

Nevertheless, this technique requires a precise identification of the period

of the signal. If the candidate period does not match it exactly (i.e. if the signal

frequency does not coincide with the central frequency of the concerned Fourier

bin, which is the candidate frequency), we fold the time series with an imprecise

period and the difference is evident among the subintegrations, since the phase

of the folded signal drifts slightly from subintegration to subintegration, and

therefore the integrated pulse will appear significantly broadened and with

reduced S/N with respect to the correct period case. Hence, making a plot

of the folded signal in all the subintegrations versus the rotational phase, if

the period is correct we see a vertical line across the subintegrations, while if

it is imprecise we see a diagonal line (see fig.2.8). In the latter case then, in

order to find the correct value of the period, we use a procedure called pdm

optimisation, which consists in performing period trials, using different values

around the candidate period (i.e. adding trial delays to the period) to sum all

the subintegrations, until the highest folded S/N is found. This refined value is

called best or optimised period. By analogy, if we de-disperse the data into a
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Figure 2.9: Examples of JREAPER diagnostic plots. Left: plot of the pulsar J1824-
1423; right: plot of a candidate clearly identifiable as RFI. Clockwise from the
bottom left, the sub-plots show the integrated pulse profile, the S/N vs pulse phase
for 32 subintegrations, the S/N vs pulse phase in 16 sub-bands, the dependence of
S/N on DM and on offset from the nominal period, and the spectral S/N vs trial
DM (S/N - DM curve), where the red curve is the observed one, while the green
curve is the theoretical prediction for that candidate.

number Nsubbands of identical sub-bands (into which we choose to divide the total

bandwidth; for example 16) and fold at the best period obtained above, if the

pulse profile is delayed across the de-dispersed sub-bands we can improve our

estimate of the DM performing DM trials around the candidate value, until

again the highest folded S/N is found. This is part of the pdm optimisation

procedure too, and the refined DM value is called best or optimised DM .

The last step of data analysis is the visual inspection of the candidates. In

fact the best P and DM , together with the related parameters, are then used

to make the final diagnostic plots for the candidates, like the ones in fig.2.9,

obtained using the graphical tool JREAPER (Keith et al. 2009). We then

inspect the plots of the candidates having an optimised S/N, i.e. corresponding

to both best P and best DM , higher than a particular value, usually 8 or 9

(since below that value it is more probable that the candidate is not a pulsar),

and we classify them as possible new pulsars (that need to be confirmed by re-

observation) or non-pulsars (noise, RFI)4. The classification is quite subjective,

anyway several features typical of a pulsar can help us to make a decision

4The candidate may also be an already known pulsar, but usually candidates are checked by a
software program during the processing to identify possible known pulsars, to avoid wasting time
during the visual inspection; however, sometimes not all the known pulsars present among the
candidates are identified, hence it is always opportune to double-check at least the most probable
candidates with the pulsar catalogue.
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about a candidate: a high optimised S/N, together with a well defined peak

in the spectral S/N vs trial DM plot (S/N - DM curve), a defined spot in the

gray-scale showing the dependence of the folded S/N on the DM and on the

offset from the nominal (i.e. returned from the Fourier domain search) period,

signal continuity across the sub-bands (visible in the sub-bands vs phase plot,

where the signal should be linear), signal continuity in time (visible in the

subintegrations vs phase plot, where the signal should be linear, or parabolic

in case of pulsars in binary systems, see section 2.2.2), and a well peaked pulse

profile (fig.2.9).

In general, what said is useful to make a distinction between pulsars and

non-pulsars; sometimes, however, a kind of RFI may show these same features,

deceiving and inducing us to re-observe it too.

2.2.2 Acceleration search: pulsars in binary systems

If a pulsar is part of a binary system, we observe an apparent change in the

frequency of the pulse trains from it as the pulsar moves along its orbit: the

time of arrivals of the pulses appear closer each other (blue-shifted) if the pulsar

is moving toward us, while they are more separated (red-shifted) if it is moving

away from us (orbital Doppler effect). Hence the pulsar spin frequency (and

period) seems to vary during the observation time, and this effect is heavier

for close (short orbital period) binaries; that makes the Fourier analysis of the

standard search be less sensitive to binary pulsars, especially if in close binary

systems and observed for a long time. In fact, due to this effect the signal

power in the Fourier spectrum is smeared over a large frequency range (i.e.

many Fourier bins), with a great decrease of the spectral S/N. This could make

a candidate not to be selected during the sorting stage; or, if it is selected, it

could be rejected anyway after folding, since the apparent change in its period

causes a related change in its rotational phase across the folded subintegrations,

visible as a parabolic trend of the signal in the subintegrations vs phase plot,

producing a broadened integrated profile with an even further reduced S/N (see

case (a) in fig.2.10).

However, several techniques can be used to partially, or sometimes fully,

recover the loss of sensitivity due to binary motion; they all are grouped under

the name of acceleration search. In the following a description of some of them
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Figure 2.10: Example of folding results for the time series of a binary pulsar,
(a) folded without any corrections for the orbital motion, (b) folded assuming an
opportune value for its orbital acceleration (note that the integrated pulse profiles are
normalised at the peak hence are not to scale). From Handbook of Pulsar Astronomy
by Lorimer and Kramer 2005.

is given.

Time domain resampling

This technique works in the time domain and consists in resampling the de-

dispersed time series in order to transform it to the rest frame of an inertial

observer with respect to the pulsar, i.e. removing the pulsar orbital motion.

This is done by ‘stretching’ or ‘compressing’ the data using different trial values

for the orbital acceleration, as described below; the new samples in the time

series are created by linear interpolation over the original time series, taking

care that the total number of samples in the two series is the same (see for

example Camilo et al. 2000).

If τ is a time interval in the pulsar frame corresponding to a time interval

t in the non-inertial observer frame, these intervals are related by the formula

of the Doppler effect:

τ(t) = τ0

(

1 +
vl(t)

c

)

, (2.11)
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where vl(t) is the observed radial velocity of the pulsar along the line of sight,

and terms in (vl/c) of order higher than the first have been neglected since

vl << c. The choice of the constant τ0 is explained below.

If we know the orbital parameters of the binary systems we can calculate

vl(t) from Kepler’s laws, but if we are doing a blind search, like in this case, we

need to search over all the orbital parameter space, that is very computationally

expensive. Hence, an economical solution is assuming a constant orbital

acceleration al during the observation, so that vl(t) = alt. In this way, what

we do is resampling our time series using the time intervals calculated by eq.

(2.11) for a range of trial values of the acceleration, producing a new time series

for each of those values.

The value of τ0 is chosen so that τ is equal to the original sampling interval,

δt, at the midpoint of the observation, because this guarantees that the number

of samples in the corrected time series is the same as in the original one; so we

have:

τ(t = Tobs/2) = τ0

(

1 + al
Tobs/2

c

)

= δt =⇒ τ0 =
δt

1 + alTobs/2c
, (2.12)

where Tobs is the observation time.

The acceleration step between two trial values must be chosen with care,

not to over-sample (increasing uselessly the processing time) nor under-sample

(losing sensitivity) the acceleration space. In order to conveniently choose this

step, first of all we calculate the number of Fourier bins an accelerated signal

will occupy if no correction for the orbital motion is applied, i.e. how many

bins are drifted by its frequency over the course of an observation; applying the

formula for the Doppler effect again, we have:

ν(t) = ν0

(

1 − vl(t)

c

)

= ν0

(

1 − alt

c

)

, (2.13)

where ν(t) is the observed pulse frequency and ν0 is the true spin frequency of

the pulsar in its rest frame. Therefore the frequency drift will be:

| ν̇ |= al
ν0

c
. (2.14)
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Then the number z of Fourier bins drifted during the observation time Tobs,

remembering that the width of a bin is ∆ν = 1/Tobs, will be:

z =
| ν̇ | Tobs

∆ν
=

ν0

c
alT

2
obs. (2.15)

If we define ∆al as the amount by which an assumed trial acceleration is different

from the true value, the corresponding number of bins drifted by the signal (i.e.

the residual drift after our correction of the time series) is:

∆z =
ν0

c
∆alT

2
obs, (2.16)

from which:

∆al =
cP0

T 2
obs

∆z, (2.17)

where P0 = 1/ν0 is the true spin period of the pulsar. Since we want ∆z < 1

so that the residual drift lies within our spectral resolution, we obtain:

∆al <
cP0

T 2
obs

. (2.18)

Hence if we choose ∆al as our acceleration step, this choice guarantees that any

pulsar period or harmonic with a period greater than P0 will not drift by more

than one Fourier bin during the observation time, after our correction of the

time series, even if the value of acceleration used to correct it does not coincide

exactly with the true value (but lies within a lenght ∆al from it). For example,

Camilo et al. 2000 chose ∆al = 0.3 m s−2 to correct a 17.5 min time series from

the globular cluster 47 Tucanae, and this choice guarantees a correction within

one Fourier bin for any pulsars with P > 2 ms.

Once the de-dispersed time series has been corrected, producing a number

of new time series equal to the number of trial acceleration values, we perform on

each of these new series the FFT analysis and all the subsequent steps described

for the standard search (section 2.2.1); for a pulsar corrected with an opportune

acceleration value, we obtain the results showed in fig.2.10 case (b), where the

effects of the orbital motion have been fully removed.

This resampling method has however some problems. First of all, since we

made the assumption of a constant acceleration during the observation, this is

valid only if we observe the pulsar for a time corresponding to a small part of

its orbit, i.e. for Tobs << Porb, where Porb is the pulsar orbital period.
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Figure 2.11: Comparison between time-domain and Fourier-domain acceleration
searches.

Another issue is that for long time series (N > 223) the computational

time becomes very long. In fact, each of the nDM de-dispersed time series

yielded for all DM trials is searched for na acceleration trial values, producing

in total nDM × na time series; each of them will be then Fourier analysed, i.e.

a huge number of FFTs must be performed, that for long time series is very

computationally expensive.

Correlation technique

The correlation technique developed by Ransom et al. 2002 is a Fourier-domain

version of the time-domain acceleration search to detect a binary pulsar if

the orbital period is much longer than the observation time; with respect to

the time-domain technique, this method has great computational advantages

when the time series is long. In fact, as said in the previous section, time-

domain techniques require a full-lenght FFT for each trial acceleration, while

the correlation technique requires only a single full-lenght FFT for each de-

dispersed time series, i.e. for each trial DM (see fig.2.11).
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The method that this technique uses to remove the orbital effects consists

in applying a filter to the FFT of the time series to ‘sweep up’ the power of the

signal, spread over a number of Fourier bins, into a single bin. In fact, if we

consider the sinusoidal components of a not sinusoidal signal (like the one from a

pulsar, in its rest frame), the Fourier transform of each of them is a sinc function;

but due to the orbital motion of the pulsar, the Fourier transform that we obtain

is a convolution of the sinc function with a finite impulse response (FIR) filter,

i.e. a filter that spreads the sinc response (hence the power) over a certain finite

number (say m) of bins of the frequency range analysed. Hence, applying an

opportune inverse FIR filter to the Fourier transform in the appropriate bins

we can recover the sinc function (i.e. removing the orbital motion). Therefore

we need to do only one FFT of the whole data set, and then work with ‘local’

Fourier amplitudes, i.e. the ones in the m bins around the true frequency of the

considered signal component.

For a signal with a constant frequency derivative, if Fk−r0
is the Fourier

response of a signal component biased by the orbital motion (where | k− r0 | is

the frequency offset of the kth bin with respect to a reference bin r0), response

which goes to zero as | k − r0 | approaches some number of bins m/2, the

corrected Fourier response is:

Fr0
=

r0+m/2
∑

k=r0−m/2

FkF
∗
r0−k , (2.19)

where we have applied the inverse filter F ∗
r0−k (the complex conjugate of Fk−r0

,

‘frequency-reversed’) to the Fourier response in every bin k within the m

involved bins around r0.

The form of F ∗
r0−k is a function of both r0 and the drifted bins ṙ, to be

precise ṙ is the number of closest bins to r0 where most of the signal power has

been spread (relatively evenly); in fact, in reality an additional small amount

of signal has ‘leaked’ into bins further away, but however eq. (2.19) takes into

account this fact, and the correct Fourier amplitude will be well-approximated

if m is chosen such that ṙ < m ≤ 2ṙ.

For unknown pulsar signals in our time series, since we do not know their

frequencies nor the orbital motions we have to calculate the form of the filter

(and the sum in eq. (2.19)) searching the data both in a range of r and in a
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range of ṙ, i.e. covering portions of the ν− ν̇ plane. From what said, the search

in ṙ is equivalent to the time-domain acceleration search but is computationally

much cheaper.

Using this technique, Ransom et al. 2001 discovered the 1.7 h binary MSP

J1807-2459 (with a spin period of 3.06 ms) in the globular cluster NGC 6544.

The search was conducted choosing the value of 100 as the maximum number

of Fourier bins that could be drifted during the observation (i.e. the maximum

trial value); from eq. (2.15), this choice of zmax = 100 (i.e. +100 and -100

around the frequency) corresponds to an acceleration of 500 m s−2 for a signal

with ν0 = 10 Hz or 5 m s−2 for a signal with ν0 = 1000 Hz, Tobs being 28.9 mins.

Since most known binary pulsars show maximal accelerations of only a few m

s−2, in this way the observers were sensitive to all but the most exotic binaries

or pulsars with spin periods (P0 = 1/ν0) much less than ∼ 2 ms.

Stack search

Another acceleration search that works in the frequency domain is the stack

search, which is even faster than the correlation technique but, differently from

it and from the time-domain resampling, does not perform a coherent search

in acceleration space, i.e. the information on the phase of the signal is lost,

implying a lower sensitivity.

This method consists in splitting a de-dispersed time series into a number ns

of identical segments, each of which is Fourier-transformed separately, yielding

ns spectra. In this way, the width of a Fourier bin in each segment is larger

than for the entire observation, and furthermore during each segment the drift

in frequency of an accelerated signal is smaller; as a consequence, the number

of bins drifted over all the observation is reduced by n2
s.

Then, to compensate for the drift, linear or parabolic frequency shifts

(slides) are applied to each spectrum so that the peaks of an accelerated signal

in each spectrum are alligned; then the spectra are added together (stacked).

The resulting stacked spectrum hence does not show any orbital motion effects,

and the S/N of the signal in it is considerable higher with respect to the standard

search, in spite of the lost of the phase information.
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Phase-modulation search

The phase-modulation technique (Ransom et al. 2003) is

another computationally cheap but incoherent search for binary pulsars, for

the case of orbital periods Porb ≤ 2
3
Tobs, where the approximation of a constant

acceleration during the observation time is not applicable anymore.

Fortunately, if we have an observation covering several orbits of a binary

system, the Fourier power spectrum of the time series shows a characteristic

shape imprinted by the modulation, i.e. the periodic change, in the phase of the

signal due to the orbital motion. In fact, differences in light travel time across

the projected orbit advance or delay the pulse phase in a periodic fashion.

Ransom et al. 2003 demonstrated that the imprint can be described by a

set of sidebands around the spin frequency of the pulsar, and the sidebands

are regularly spaced by a number of Fourier bins rorb = Tobs/Porb. In fact, the

sidebands have periodicities related to Porb, therefore we can obtain the orbital

period, possibly together with its harmonics, by doing an FFT of the region of

the sidebands (like when we obtain the spin periodicities by doing the FFT of

the time series). In this way it is possible to obtain the features of the binary

system.

This technique is being used in a number of searches of globular clusters.



Chapter 3

The acceleration search in the
HTRU survey

This thesis work focuses mainly on the search for recycled pulsars (most of which

are in binary systems) hopefully suitable to be part of a Pulsar Timing Array,

in the context of the High Time Resolution Universe Pulsar Survey (HTRU);

for this purpose the data have been analysed by using an acceleration search

technique, exploiting the processing power of the supercomputers at the Cagliari

Astronomical Observatory (Sardinia, Italy) and, in the last six months of this

PhD, at the Swinburne University of Technology (Melbourne, Australia).

In this chapter I will give a description of the survey and of such a work,

which yielded the discovery of a 2.7 ms recycled pulsar, that so far seems very

promising for the PTA project.

3.1 The HTRU survey

This section describes the outlines of the HTRU survey of the southern sky (a

twin survey is currently underway at the Effelsberg Radiotelescope, in Germany,

for the northern sky); for a more detailed explanation see Keith et al. 2010.

The HTRU survey is the result of an international effort involving several

pulsar groups in Australia (Swinburne University of Technology in Melbourne

and CSIRO Astronomy and Space Science in Sydney) and Europe (Max Planck

Institut für Radioastronomie in Bonn, Jodrell Bank Centre for Astrophysics in

Manchester and Cagliari Astronomical Observatory in Sardinia). It consists in

a uniform digital all-sky survey of the Galaxy for pulsars and radio transients

that is being carried out at the Parkes 64-m Radiotelescope (NSW, Australia)

68
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since November 2008. Owing to the survey parameters and strategy (see below),

we expect that, once it is concluded, about a Petabyte of digital data will be

available.

The problem of storage has been solved by recording the data on 800GB

LTO tapes, more than 400 used to date (November 2011), while supercomputers

in Melbourne, Manchester and Cagliari are currently being employed to process

the data.

The HTRU survey aims at achieving two main goals: the first one is

the study of the Galactic population of pulsars and in particular MSPs, the

second one is the search for transient radio signals on timescales down to tens

of microseconds. For this purpose, the strategy of the survey consists in dividing

the sky into three parts (see fig.3.1). The first part is the low-latitude survey,

which covers the sky region included between −80◦ < l < 30◦ and |b| < 3.5◦ on

the Galactic plane, with pointings of 4300 s that allow to observe more in-depth

through the disk and reach more distant systems, with respect to the previuos

surveys; in this region the presence of faint ordinary pulsars, binary pulsars

and pulsar-BH systems is expected. The second portion is the mid-latitude

survey, which covers the region −120◦ < l < 30◦ and |b| < 15◦ with pointings

of lenght 540 s, where we look for bright MSPs that could be in binary systems

with a white dwarf companion and that could be suitable for a Pulsar Timing

Array. Finally, the third part is the high-latitude survey, which consists of 270 s

pointings covering the sky area with δ < +10◦ (excluding the area overlapping

with the mid-latitude one) and that will allow us to have an overview of the

transient events over the entire southern sky.

Observations are being done by using the Parkes 20cm Multibeam receiver

(Staveley-Smith et al. 1996) and the new digital filterbank Berkeley-Parkes-

Swinburne Recorder (BPSR), which allows a very high frequency and time

resolution and therefore a great sensitivity towards short-term signals. The

observing bandwidth is 400 MHz, centered on 1382 MHz and subdivided

into 1024 spectral channels of width 390 kHz (in order to minimise the

pulse broadening due to dispersion in the ISM, see sections 1.1.5 and 2.1);

unfortunately, the high-frequency part of this band is badly affected by RFI from

a geostationary satellite, hence the effective observing bandwidth is reduced to

341 MHz, centered on 1352 MHz, and the effective number of frequency channels
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Figure 3.1: The HTRU survey. Top: the survey strategy (the picture of the Galaxy is
a computer artwork by CHRIS BUTLER/SCIENCE PHOTO LIBRARY). Bottom:
map of the sky areas covered by the three parts of the survey, on a Hammer-Aitoff
projection in Galactic coordinates; the red region is the low-latitude survey area,
the green one is the mid-latitude survey area, and the blue zone is the high-latitude
survey area.
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Beam Central Inner Ring Outer Ring

Telescope gain (K/Jy) 0.735 0.690 0.581
Half-power beam width (arcmin) 14.0 14.1 14.5
Beam ellipticity 0.0 0.03 0.06
Coma lobe (db) none -17 -14

Table 3.1: Multibeam receiver feed parameters for the central feed, the inner and
the outer rings of feeds. From Manchester et al. 2001.

Figure 3.2: Left: the Parkes Multibeam receiver. Right: beam pattern of the
Multibeam receiver for a cluster of four pointings, with the feed oriented at a Galactic
position angle of 30◦; the first number in each beam is the pointing number, while
the second one is the beam number. From Manchester et al. 2001.

is 874. The data are 2-bit sampled every 64 µs.

The Multibeam receiver is mounted in the prime focus of the telescope

and is made up of 13 feeds, one is in the central position and the others

form two hexagonal rings around it; the 13 corresponding beams on the sky

are spaced by approximately two beamwidhts, and have a FWHM (full width

at half maximum) of 14 arcminutes. The feed parameters are listed in table

3.1. This beam configuration allows a survey to be completed faster, using

interleaved pointings to cover a given region; for example, in fig.3.2 it is shown

how a cluster of only four pointings covers a region about 1.5◦ across, for the

Multibeam receiver oriented at a Galactic position angle of 30◦.
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Survey Mean (K) Max (K) Min (K)

Low 7.6 36.0 1.6
Mid 2.5 9.1 0.6
High 1.0 2.4 0.6

Table 3.2: The mean, maximum and minimum values of the noise temperature of
the sky in the regions covered by the three parts of the HTRU survey. From Keith
et al. 2010.

The minimum detectable flux density (sensitivity) for the centre of the

central beam of a given survey observation, and for a pulsar of period P , can

be computed by using eq. (2.1):

Smin =
ǫ (S/N)min Tsys

G
√

np ∆t ∆νMHz

√

We

P − We

mJy,

where in our case ǫ ∼ 1, (S/N)min = 8, G = 0.735, np = 2, ∆t is equal to 4300,

540 or 270 depending on the considered part of the survey (low, mid or high

latitude respectively), ∆νMHz = 341, and Tsys is measured to be 23 K + Tsky

at 1400 MHz, where Tsky depends strongly on the observed area of the sky (see

table 3.2).

The first term on the right-hand side of the equation, calculated by using

the mean values for Tsky, is equal to 0.20, 0.47 and 0.61 mJy for the low, mid

or high latitude surveys respectively; the second term depends on the pulsar

period and DM : in fig.3.3, it is shown the value of Smin as a function of P and

DM for the mid-latitude survey.

However, we must consider that the sky coverage is not uniform, since the outer

beams of the receiver are less sensitive than the central beam, and furthermore in

each beam the sensitivity reduces towards the edges; hence the mean sensitivity

over the mid-latitude survey is calculated to be ∼ 0.25 mJy.

By a comparison with previous surveys, as for instance the Parkes

Multibeam Pulsar Survey (PMPS), it resulted that the mid-latitude HTRU

survey is significantly more sensitive to short period pulsars at large DMs, as

shown in Keith et al. 2010, owing to a combination of several factors, such as

the narrower frequency channels.

The observations of the low-latitude and high-latitude surveys are still in

progress, while the mid-latitude survey has been completed, and the processing
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Figure 3.3: The mean sensitivity for the mid-latitude survey as a function of pulsar
period and DM , assuming a pulse duty cycle (W/P ) of 5%. It can be noted that
this survey is sensitive to MSPs out to DMs of a few hundred pc cm−3. From Keith
et al. 2010.

of the related data with the HTRU standard pipeline, that analyses the data by

using the standard search method (sections 2.2 and 2.2.1), has also been just

completed.

The processing of the mid-latitude data is being carried out also with the

single-pulse search pipeline and with the acceleration pipeline (i.e. exploiting

an acceleration search technique, see section 2.2.2); the latter was the main task

of this thesis work and will be described in the next section.

The effectiveness of the HTRU survey has been already proved by the

numerous discoveries made so far by analysing the mid-latitude part; those

already published include the first magnetar discovered by its radio emission

(Levin et al. 2010), 13 transient objects (Burke-Spolaor et al. 2011) and 34

pulsars, 12 out of which are MSPs and number among them a ‘black widow’,

a good timer already selected to be part of the Parkes Pulsar Timing Array

(Hobbs et al. 2009) and a MSP with a planet-companion. The discovered MSPs

are reported in Keith et al. 2010, Bates et al. 2011, Keith et al. 2011 and Bailes

et al. 2011.
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3.2 The search for recycled pulsars

Recycled pulsars, especially if in relativistic binary systems (section 1.2.2),

are powerful tools to investigate several physical and astrophysical issues, as

explained in section 1.3; as already mentioned, the main aim of this thesis work

was to find recycled pulsars hopefully suitable for a Pulsar Timing Array, i.e. a

network of this kind of pulsars that would allow to detect Gravitational Waves

in the nanoHz frequency range.

Since we expect to find this type of pulsars mostly at intermediate latitudes

of our Galaxy, the present work focused on analysing the data of the mid-

latitude survey.

In order to choose the opportune analysis method for reaching our goal,

some steps had been necessary, as described in the following sections.

3.2.1 Standard search

The first step was to implement the HTRU pipeline (called hitrun) for

the standard search on the CYBERSAR supercomputer at the Cagliari

Astronomical Observatory, in order to test that the steps common to all

the search methods (RFI removal, de-dispersion, FFT) worked properly.

CYBERSAR (Porceddu and D’Amico 2009) is a 75-node cluster, shared by

different research groups in Cagliari; we had at our disposal 30 dual-core and

dual-CPU nodes, so 4 CPUs per node, each node having 2 scratch disks with 4

GB RAM, and 250 GB of disk storage.

The first stage of our pipeline is RFI removal. First of all, we always remove

from the data a list of channels that we know to be affected by RFI. Then, as

described in section 2.2, we remove both ‘bad’ spectral channels and ‘bad’ time

samples in the zero-DM (pre-dedispersion) data set, i.e. channels where we

found periodicities (by an individual FFT of the data in each channel) with

spectral S/N > 15, and time samples containing bursts of RFI (in the single

zero-DM time series obtained summing the data in frequency) which are then

replaced by random noise (fig.2.1). In the latter case our threshold for removal

is 5σ. In order to remove longer duration RFI bursts, we repeat the process

adding together 2, 4, 8, 16 and 32 consecutive time samples before creating the

single time series.
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The second stage of the pipeline is dedispersion (section 2.2); the chosen

algorithm is a ν−2 dedispersion algorithm, since in our case the ‘tree algorithm’

would require a too high cost for linearising the data with respect to the gain

in efficiency. Our DM trial values range from 0 to 1000 pc cm−3 with a total of

1196 dedispersion steps; in order to perform the process in a shorter time, our

algorithm is a multi-threaded code, i.e. it carries out 4 dedispersion threads

simultaneously, exploiting the feature of 4 CPUs per node in our cluster.

The next steps of our pipeline are those described in section 2.2.1. All

the obtained dedispersed time series are searched for the presence of periodic

signals by doing a FFT of each of them. From the resulting power spectra

we remove the so-called red noise (i.e. a usually significant low-frequency

noise due to fluctuations in the receiver and/or data acquisition systems) at

frequencies below ∼ 10 Hz by subtracting a running mean and dividing by a

running variance, that also yields the normalisation of the spectra. Then any

peaks with a S/N > 6 in the spectra are recorded for later sorting; to recover

the power in the harmonics of narrow pulses, we also perform the harmonic

summing of 2, 4, 8 and 16 harmonics. The seek
1 software is used for both the

searching and the harmonic summing processes.

The candidate sorting is then performed by a software that is part of the

pulsar hunter2 package, which groups detections with the same frequency

into a single candidate and combines harmonically related candidates, yielding

a manageable number of pulsar candidates promoted to the next analysis steps.

We then dedisperse and fold the raw data at the candidate DM and period

for all the sorted candidates, by using the dspsr3 software; for the folding, we

chose to use 32 subintegrations and 128 time bins.

The psrchive package (Hotan et al. 2004) is used at this point to remove

the bad channels and then scrunch in frequency obtaining 16 subbands, and

then to perform the optimisation procedure for each candidate, searching for

the best values of both DM and period. These values are then used to produce

diagnostic plots for each candidate.

The entire processing of the data of one beam, for an observation of lenght

540 s (mid-latitude survey), took about 3.5 hours on a dual processor dual core

1http://sigproc.sourceforge.net/seek/
2http://pulsarhunter.sourceforge.net/
3http://dspsr.sourceforge.net/
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Figure 3.4: Example of the JReaper main screen, where the candidates are plotted
as points on the S/N vs period plane. Selecting a point, the candidate diagnostic
plots are shown. The main screen is zoomed to show a period range up to 6×102

ms. The orange points are known pulsars. When a candidate has been visualised,
the corresponding green cross turns into a green square.

server of the CYBERSAR cluster.

In order to select pulsar candidates to be re-observed (in fact, to confirm

that they actually are pulsars we need to re-detect them), we visually inspect

the candidates by using the JReaper graphical tool (Keith et al. 2009), which

is part of the pulsar hunter package. In fig.3.4 it is shown its main screen,

where the user can choose to display the candidates, as points on a plane, in

different ways, for example with their S/N as a function of period, as in the

figure, or the DM , and so on. This is useful because we can avoid to look at the

diagnostic plots of many candidates just owing to their positions on the display:

for instance, often RFI signals are disposed on a vertical column in the S/N vs

period plane, or they have a very small DM value since they have a terrestrial
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origin; hence we can ignore those points, saving time. Selecting instead a point

on the plane, JReaper will show the corresponding diagnostic plots, as shown

in fig.2.9; the user can then make a decision about it and classify the candidate

as a possible pulsar to be re-observed or not.

After implementing the pipeline on our cluster, I used it to analyse several

survey tapes (each 800 GB LTO tape contains about 7 hours of survey for all the

13 beams of the MB receiver), in order to test if the codes and the cluster were

working properly (and this also yielded some candidates for re-observation).

In order to check the performance of the standard search on accelerated

MSPs, I then tested it on the millisecond pulsar (A) of the double pulsar system

J0737−3039, that is the most exotic object (higly relativistic) known so far and

that is made up of a 22.7 ms recycled pulsar and a 2.8 s ordinary pulsar in a

close binary, with an orbital period of only 2.4 hr.

The result of the test was that the pulsar was not among the final candidates

selected by the pipeline; therefore, looking for it in the list of the candidates

yielded by the FFT step the pulsar was found with a spectral S/N lower than

6, that is the reason why it had not been selected in the sorting step. Hence

by folding the time series by hand using the pulsar period resulting from the

FFT, we obtained the output shown in fig.3.5, which is produced by pdmp, the

optimisation software of the psrchive package. It can be noted that, since no

corrections for the orbital motion have been performed, the signal trend in the

subintegrations vs phase plot is parabolic, due to the orbital Doppler effect, as

explained in section 2.2.2; as a consequence, the integrated profile is broadened

and the S/N is highly reduced: in this case, in fact, the S/N of pulsar A is only

∼ 7 (as we will see in section 3.2.3, removing the orbital motion the S/N will

rise to ∼ 27). Hence, even if the pulsar had been selected at the sorting step, it

would be discarded at this stage, since in our analysis of the survey we inspect

by eye only the candidates having S/N from 8 (or 9) up.

From what said, this test showed that the standard search does not allow

us to find this kind of pulsar.

3.2.2 Simulations

In order to test more in depth the success of the standard search in finding out

recycled pulsars in close binaries, in the mid-latitude HTRU survey, and hence
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Figure 3.5: Output plot produced by pdmp of pulsar A of the double pulsar system
J0737−3039, analysed without correcting for the orbital motion. From the top: the
dependence of S/N on DM and on offset from the nominal period, the S/N vs pulse
phase for 32 subintegrations (left), the S/N vs pulse phase in 16 sub-bands (right)
and the integrated pulse profile (bottom).

to understand which processing method was the best to find different classes

of them, I made some simulations, imagining to observe in our survey three

different pulsar populations:

1. known binary pulsars;

2. the same sample as in point 1. but with each pulsar at a double and a

triple distance from us;

3. fake samples of interesting close binaries with orbital period shorter than

2 hours and different kinds of companion (white dwarf, neutron stars,

black holes) for the pulsar.

Essentially I simulated the selection effects of our survey, in order to see

how many of the pulsars in the different populations would be detected with

the standard search.

The results of the simulations therefore represent our possibilities to find

recycled pulsars in close binaries without any corrections for the orbital motion.
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Simulation 1: known binary pulsars

When I made this first simulation 56 Galactic MSPs with a measured flux

density were known4, 40 out of them were in binaries. One of the latter was

pulsar A of the double pulsar system J0737−3039, tested before.

The first part of the simulation consisted in calculating the minimum flux

that we can detect in the mid-latitude survey (Tobs = 540 s) for each MSP of

the sample, at our observing frequency (1400 MHz). For this pourpose I used

the sensitivity formula (eq. (2.1)), entering the values of the survey parameters

as described in section 3.1 (except for the Tsky, calculated by the code tt408,

which is based on the paper by Haslam et al. 1982, at 408 MHz and then scaled

at 1400 MHz according to ν−2.7), and those of the pulsar parameters. For the

pulse effective width, I used the corresponding values on the catalogue, except

for those pulsars whose width value was absent; in the latter case, I used the

eq. (2.3):

We =
√

W 2
i + (βδt)2 + δt2DM + δt2scatt,

giving a value equal to 15% P for the pulse intrinsic width Wi (where P was

the period of the pulsar), β = 2, the sampling time δt = 64 µs, δtDM given by

eq. (2.6) with δνMHz = 0.39 (the width of our channels), and δtscatt calculated

by the code ne2001 (Cordes and Lazio 2002) at 1 GHz and then scaled at 1400

MHz according to ν−4.4.

For the pulsars of the sample that were in binary systems, I also had to

consider the broadening ∆W of the pulse width due to the Doppler effect. I

assumed that the orbital acceleration of the pulsar along the line of sight was

constant during the observing time (since the latter was always much shorter

than the orbital period), and used a code that from the orbital parameters

of the pulsar, through the Kepler’s laws, is able to calculate the minimum

and maximum values assumed by the acceleration during the orbit, and also

the corresponding values for the pulse broadening ∆Wmin and ∆Wmax (i.e.

the ‘best’ and the ‘worst’ case respectively), according to the lenght of the

observation (the longer the observation the larger the broadening, for a certain

value of acceleration).

4www.atnf.csiro.au/people/pulsar/psrcat
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Hence, for this kind of pulsars, instead of using We in the sensitivity

equation I used WTOT :

WTOT ∼
√

W 2
e + ∆W 2, (3.1)

calculated for both ∆Wmin and ∆Wmax.

The last step was comparing the calculated minimum detectable flux to the

true pulsar flux taken from the catalogue (and scaled with ν−1.7 if it was the

flux at 400 MHz instead of that at 1400 MHz) for each MSP: if the pulsar flux

was higher than the minimum flux, this meant that the pulsar was detectable

in our mid-latitude survey without any corrections for the orbital motion. The

comparison was made for both the best and the worst smearing case.

One of the results was that ∼ 20% of the known sample was undetectable

just for flux reasons, since the true pulsar flux was very low; but the important

result of this simulation for our aim is that, considering the pulse smearing for

the binary pulsars, the double pulsar was undetectable in about 3/4 of its orbit,

because the smearing was greater than 50% for a 9 min observation.

Other 4 binary pulsars could have been undetectable due to the pulse

broadening at least in a fraction of the orbit, but they were bright enough

to be visible anyway despite the smearing.

Simulation 2: double and triple distance

Since, owing to the features of our survey, we are able to detect MSPs with

higher DMs and hence at larger distances, I did the same test as in the first

simulation but doubling and tripling the distance d of each pulsar of the known

sample.

First of all I changed the flux (that is ∝ 1/d2), but keeping DM and

smearing corresponding to the real distance, in order to test just the effects of

the variation in distance.

One of the results was that ∼ 50% of the known sample became

undetectable at double distance and ∼ 75% at triple distance; 2 of the 4 binary

pulsars detectable at the real distance despite the Doppler smearing disappeared

at double distance and minimum Doppler smearing, while the other 2 at triple

distance and only at maximum Doppler smearing.
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Again, however, the important result for us is that the double pulsar was

undetectable in more than 3/4 of its orbit at double distance, while became

undetectable in any fraction of the orbit at triple distance.

Using DM and smearing corresponding to the new distances, the results

did not change; hence in this case the decisive factor is the decrease in flux due

to the increased distance.

Simulation 3: fake samples

In the third simulation I did the same analysis again, but on three different

samples of fake pulsars, which I created through the psrpop5 code and then put

in a close binary system with a white dwarf (WD), a neutron star (NS) or a black

hole (BH) companion (taking into account the pulsar evolution described in

section 1.1.7). Hence this simulation was divided into three parts, as described

below.

a) MSP + WD case

In this part I created a sample of 50,000 MSPs with the following distributions

(from Cordes and Chernoff 1997 and Lorimer et al. 2006):

• luminosity: power law dlogN/dlogL = −2, and with cutoffs Lmin = 1.1

and Lmax = 1600 mJy kpc2;

• spin period: power law dN/dP ∝ P−2, with a lower cutoff at 1 ms and

an upper one at 30 ms;

• radial distribution: Gaussian with σ = 6.5 kpc;

• height distribution: exponential with z-scale height = 0.5 kpc.

First of all I checked if these pulsars would have been detectable in the mid-

latitude survey if they were isolated, repeating the same test on the flux

described in the first simulation and checking if the pulsar position fell in the

sky area covered by the survey. The result was that ∼1% out of the 50,000

pulsars would have been detectable.

5http://psrpop.sourceforge.net
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Then I placed the detectable ones in close (Porb ≤ 2 hr) binary systems

with a WD companion, using a flat distribution for the orbital period ranging

from 0.5 hr to 2 hr with a step of 15 mins; for the mass of the companion, I

also used a flat distribution ranging from 0.01 to 1.2 M⊙ but considering three

intervals:

• 0.01 − 0.05 M⊙ (step: 0.01 M⊙): low mass WDs;

• 0.1 − 0.3 M⊙ (step: 0.05 M⊙): typical He - WDs;

• 0.8 − 1.2 M⊙ (step: 0.1 M⊙): typical CO - WDs.

At this point I checked the detectability of the pulsars in these binary systems

using the usual method, considering the maximum orbital smearing in the

formula for the minimum flux (hence my estimates are lower limits to the

visibility of the binaries with the standard analysis).

The result was that only ∼ 10% of the pulsars detectable if isolated

remained detectable without any corrections for the orbital motion when placed

in this kind of system. About 5% of these detectable binary pulsars had a He -

WD as a companion, none had a CO - WD and all the others had low mass

companions.

b) PSR + NS case

In the second part of the simulation I created a sample of 50,000 recycled

pulsars with the same distributions as the previous case but the spin period,

for which I used a Gaussian with a mean of 85 ms and σ = 65 ms to simulate a

population of mildly recycled MSPs, and the height distribution, for which the

z-scale height was 350 pc.

In this case ∼ 2.4% of 50,000 would have been detectable by the mid-

latitude survey.

Then I placed the detectable ones in a close binary with a NS (creating a

double NS system), hence with a companion mass of Mc = 1.4 M⊙, using the

same orbital period distribution as in the MSP + WD case and considering

again the maximum orbital smearing.

In this way I obtained that ∼ 17% of the previously detectable pulsars

remained detectable by the standard pipeline when put in a double NS system.
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Case (a) Case (b) Case (c)
MSP + WD PSR + NS PSR + BH

Companion mass 0.01 − 1.2 M⊙ 1.4 M⊙ 5 − 10 M⊙

Detectable pulsars* 10% 17% 60%

*(% with respect to the detectable isolated pulsars of the corresponding case)

Table 3.3: Percentages of pulsars still detectable by the standard search in the mid-
latitude survey, with respect to those detectable if isolated in the corresponding
case, when placed in three different kinds of binary system with Porb ≤ 2 hr and
considering the maximum orbital smearing.

c) PSR + BH case

In the last part of the simulation the fake sample was made up of 50,000 ordinary

pulsars, with distributions:

• luminosity: power law with slope = −0.6, Lmin = 0.1 and Lmax = 1000

mJy kpc2;

• spin period: Gaussian with a mean of 550 ms and σ = 450 ms;

• radial distribution: Gaussian with σ = 6.5 kpc;

• height distribution: exponential with z-scale height = 350 pc.

This time ∼ 3.5% of 50,000 would have been detectable by the mid-latitude

survey if isolated.

Placing the detectable ones in a close binary with a BH, using a flat

distribution for the BH mass from 5 to 10 M⊙ (with a step of 0.25 M⊙), the same

orbital period distribution as in the previous cases and the maximum orbital

smearing, the result was that ∼ 60% of the pulsars detectable if isolated were

still detectable by our standard pipeline if put in this type of binaries.

The results of the three parts of this simulation are summarised in table

3.3 and show that, without removing the orbital motion effects, a significant

fraction of the potentially detectable pulsars in orbit shorter than 2 hours would

be missed.
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Global results

The global result of all the simulations is that the standard search is able

to detect in the mid-latitude survey only a small fraction of pulsars in close

binaries, due to the effects of the orbital motion.

As a consequence, in our case the data analysis method suitable to find

this type of pulsars is the acceleration search, which removes those effects.

3.2.3 Acceleration search

Once the opportune analysis method had been established, I worked on

implementing the pipeline for the acceleration search on the CYBERSAR

supercomputer; I did the same work also on the Green Machine supercomputing

facility at Swinburne University, in Melbourne, which consists of 145 Dell Power

Edge 1950 server-class nodes, each with dual quad-core Clovertown processors

(2.33 GHz), 16 GB RAM and 1 TB of disk storage.

The difference in the acceleration pipeline with respect to the standard one

is that, after doing the FFT of the single de-dispersed time series for a certain

value of the trial DM , we use the code presto6 to perform the acceleration

search in the Fourier domain with harmonic summing (up to 16 harmonics, in

our case), yielding the candidates for the sorting step.

To be precise, we used the routine accelsearch in presto, which performs

the correlation technique described in section 2.2.2 and hence searches the data

covering portions of the ν − ν̇ plane; this technique is suitable for the mid-

latitude observations since even in case of quite close binaries the observing

time would be much shorter than the orbital period.

In our pipeline we chose to give as the maximum number of bins drifted by

the frequency during the observing time, due to the orbital motion, zmax = 100

(i.e. +100 and −100 around the frequency), while for the search in frequency

νmin = 1 Hz and νmax = 10000 Hz (both for the highest harmonic). The

acceleration step is calculated through eq. (2.18).

The other steps of the pipeline are the same as the standard pipeline, from

the candidate sorting to the visual inspection (section 3.2.2).

After implementing the pipeline, I did several tests with different known

6http://www.cv.nrao.edu/˜sransom/presto/
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Figure 3.6: Output plot produced by pdmp of pulsar A of the double pulsar system
J0737−3039, analysed with the acceleration search, which removed the orbital
motion correcting for an acceleration value of 222.5 m s−2. From the top: the
dependence of S/N on DM and on offset from the nominal period, the S/N vs pulse
phase for 32 subintegrations (left), the S/N vs pulse phase in 16 sub-bands (right)
and the integrated pulse profile (bottom).

binary pulsars; for example, testing the double pulsar I obtained that the pulsar

was present among the final candidates selected by the pipeline, and the orbital

motion was correctly removed by the code (for an acceleration value of 222.5 m

s−2) as shown in fig.3.6, where the signal trend in the subintegrations vs phase

plot is linear and the integrated profile is good, with a S/N of ∼ 27 (to be

compared with the result without orbital motion corrections, section 3.2.2 and

fig.3.5, where the S/N was only ∼ 7). Hence, this pulsar would not be missed

by our pipeline anymore.

Once the code had been tested, the processing of the mid-latitude data

with the acceleration search could start. To analyse one beam, on one cluster

node, the pipeline takes a long time, from ∼ 20 to ∼ 24 hours, depending on

the amount of RFI present in the data; in case of large quantities of RFI, the

number of candidates yielded per beam can be very high (> 600).

Due to these reasons, despite the use of supercomputers the percentage of

the survey processed so far both in Cagliari and in Melbourne is ∼ 3% of the
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Figure 3.7: Discovery plot of the 2.7 ms pulsar J1832−0835.

total (which, for the mid-latitude survey, is 95,056 beams, i.e. 7312 pointings),

and about one third of the produced candidates has been inspected by eye.

The main result of this work is that one of the candidates that I proposed

to date for re-observation has been confirmed to be a 2.7 ms pulsar with some

interesting features, as described in the next section, that could make it suitable

for a Pulsar Timing Array. Ironically, despite it has been identified through the

acceleration search, this pulsar is isolated (the only isolated MSP found to date

in the HTRU survey!).

3.2.4 PSR J1832−0835

In fig.3.7 it is shown the discovery plot of the pulsar J1832−0835, found with

the acceleration search and having a spin period of only 2.7 ms, no orbital

acceleration and an interesting integrated profile made up of three peaks.

Since in the context of timing (section 1.2 and subsections) usually MSPs

are very stable (except for those very few examples with timing noise), and

furthermore this pulsar shows a sharp profile with several components that

makes more efficient the cross-correlation from which we obtain the TOAs of

the pulses, J1832−0835 could turn out to be a good timer for the PTA project.
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Figure 3.8: Standard profile used for the timing of the 2.7 ms pulsar J1832−0835.

Moreover, since this pulsar typically has a S/N of about 10-15 for an

observing time of 15-20 mins (the variation of the S/N with the observations

is due to the fact that the pulsar scintillates slightly, which confirms that the

DM value is quite low), it is bright enough to allow to obtain quite small

TOAs uncertainties with a reasonable integration time; hence, although it is

slightly fainter than the average of the pulsars of the Parkes PTA, owing to

these features it would be suitable for being part of a timing array. Due to its

position in the sky, it could be a candidate to be observed with the Sardinia

Radio Telescope (SRT), which is part of the European PTA.

The timing of this pulsar started at the Parkes Radio Telescope and is

being performed now at Jodrell Bank, by using the 76-m Lovell Telescope. In

fig.3.8 the standard profile used for the timing is shown. To date, we have only

7 months of timing observations, that are not enough to be sure about its actual

intrinsic stability.

However, so far that seems to be quite good: the timing solution in fig.3.9

has a root mean square of the post-fit residuals between measured and model

arrival times of ∼ 1.8 µs over 7 months of observation (the TOA uncertainties

σi in eq. (1.35) are ∼ 2.5 µs on average over an observation 15-20 min long),

that corresponds to a rotational stability7 of 9.4 ×10−14.

7This value of the stability has been obtained as the ratio between the RMS and the time span,
and is a figure of merit, that is a good estimate since the time span is short. With a longer time
span we will be able to calculate it more precisely by using the σz parameter from Matsakis et al.
1997.
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Figure 3.9: Present timing residuals of the 2.7 ms pulsar J1832−0835 for a data
span of 7 months. The green points correspond to timing observations carried out
by using the Parkes Radio Telescope, while the blue points by using the Lovell Radio
Telescope at Jodrell Bank.

The question now is if it will maintain such a good stability over longer

data span (of the order of years).

In table 3.4 the values of the pulsar parameters obtained through the timing

are summarised; since the data span is shorter than one year, the errors (at 2σ)

in the determination of right ascension, declination and frequency derivative,

which co-vary, are underestimated.

This pulsar will be published soon in a paper of the HTRU collaboration

currently in preparation at the Cagliari Astronomical Observatory, together

with 4 binary MSPs: J1431−5736, J1546−4552, J1825−0322 and J2236−5526,

as soon as we have one year of timing data for all the 5 pulsars.

The timing of these binary pulsars is mainly being performed at the Parkes

Radio Telescope, except for J1825−0322, for which it is mainly being performed

at Jodrell Bank. In fig.3.10 they are shown the standard profiles used for

the timing of the 4 binary pulsars. Their timing solutions are illustrated in

figures 3.11 (J1431−5736), 3.12 (J1546−4552), 3.13 (J1825−0322), and 3.14

(J2236−5526), while in table 3.5 a summary of the values of the parameters

obtained through the timing (with errors at 2σ), for all the four pulsars, is

reported. For the pulsar for which we do not have approximately one year of

timing data, no value is reported for the first period derivative because it is
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Parameter Value

Right ascension (J2000) 18h32m27s.5949(8)
Declination (J2000) -08◦36′54′′.99(5)
Spin frequency (ν) 367.767115561(1) Hz
Frequency derivative (ν̇) -8(4) ×10−16 Hz s−1

Epoch MJD 55759
Dispersion measure (DM) 28.185(1) pc cm−3

Number of TOAs 27
RMS of fit 1.751 µs
TOA range MJD 55670-55885

Table 3.4: Positional and rotational parameter values of J1832−0835 obtained for
a data span of 7 months. The two-sigma errors on the last digit of each parameter
are reported in parentheses. The last three rows report the number of TOAs, the
root mean square of the timing residuals and the time span covered by the timing
data used to obtain the reported ephemerides.

Figure 3.10: Standard profiles used for the timing of the 4 binary MSPs J1431−5736,
J1546−4552, J1825−0322 and J2236−5526.
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Figure 3.11: Present timing residuals of the 4.1 ms pulsar J1431−5736 for a data
span of 325 days.

Figure 3.12: Present timing residuals of the 3.6 ms pulsar J1546−4552 for a data
span of 257 days. The green points correspond to timing observations carried out
by using the Parkes Radio Telescope, while the blue point by using the Lovell Radio
Telescope at Jodrell Bank.
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Figure 3.13: Present timing residuals of the 4.6 ms pulsar J1825−0322 for a data
span of 599 days. The green points correspond to timing observations carried out by
using the Parkes Radio Telescope, while the blue points by using the Lovell Radio
Telescope at Jodrell Bank.

Figure 3.14: Present timing residuals of the 6.9 ms pulsar J2236−5526 for a data
span of 458 days.
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PSRJ J1431-5736 J1546-4552 J1825-0322 J2236-5526

RAJ 14:31:03.4959(4) 15:45:55.948(3) 18:25:55.9523(5) 22:36:51.8515(6)
DECJ -57:40:11.657(9) -45:50:37.52(7) -03:19:57.55(3) -

55:27:48.837(7)
P0 (ms) 4.1105439566762(17) 3.57528861788(6) 4.553527919749(13) 6.90754939267(2)
P1 5.7(11)E-21 – 7.0(7)E-21 9.5(15)E-21
EPOCH
(MJD)

55702.00000 55737.00000 55800.82910 55460.19044

DM (pc/cm3) 131.39(3) 68.390(8) 119.47(4) 20.09(4)
PB (days) 2.726855837(18) 6.20306488(13) 52.6305024(15) 12.6891870(3)
A1 (lt-s) 2.2698868(13) 3.846905(5) 18.266400(12) 8.775870(8)
T0 (MJD) 55461.0699555(10) 55611.38(16) 55805.06(5) 55472.56(7)
ECC – 1.1(2)E-05 0.000194(1) 4.91(18)E-05
OM (deg) – 220(9) 93.2(3) 351(2)

SPAN (days) 325.128 257.172 599.195 457.666
RMS (µs) 2.134 6.295 28.389 9.753

Table 3.5: Positional, rotational and orbital parameters for the four binary
millisecond pulsars soon to be published together with the isolated MSP J1832-0835
discovered in this work. The two-sigma errors on the last digit(s) of each parameter
are reported in parentheses. For the pulsar for which we do not have approximately
one year of timing data, no value is reported for the first period derivative because it
is either unconstrained and/or covaries with the positional parameters. The last two
rows report the time span covered by the timing data used to obtain the reported
ephemerides and the root mean square of the timing residuals.
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Figure 3.15: P − Ṗ diagram showing four of the five MSPs described in the text,
represented by the stars. The grey points are the Galactic radio-pulsars in the
pulsar catalogue, while the circles represent the binary pulsars. The only star not
surrounded by a circle, since isolated, is J1832−0835, for which the determination
of the period derivative is still uncertain due to the fact that the data span is much
less than one year.

either unconstrained and/or covaries with the positional parameters.

The rotational stabilities of the 4 binary MSPs are respectively 7.6 ×10−14

(J1431−5736), 2.8 ×10−13 (J1546−4552), 5.5 ×10−13 (J1825−0322) and 2.5

×10−13 (J2236−5526). Hence J1431−5736 seems to be slightly better than

J1832−0835, whose stability is 9.4 ×10−14, but this is due to the fact that we

have more data for J1431−5736 than for J1832−0835 and therefore we could

obtain a timing solution for the former by using only the most recent data, and

of the highest quality.

Fig.3.15 shows the P − Ṗ diagram with four of the five mentioned MSPs

(those for which the period derivative has been estimated).
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3.2.5 Issues

As already mentioned, the acceleration pipeline presents some issues.

In fact, it requires a very long computing time to analyse one beam, about 1

day, that is 6-7 times the time required by the standard search; this is essentially

due to the long time necessary to presto to perform the acceleration search.

Considering, as already said, that the total number of beams in the mid-latitude

survey is 95,056, it is clear why only a small percentage of the survey has been

processed so far.

Furthermore, the code yields a huge number of candidates for visual

inspection, usually of between 300 and 600 per beam but even more depending

on the amount of RFI in the data. For a large-scale survey as HTRU, this

means a number of candidates that is not human manageable, even inspecting

only the candidates with S/N > 9.

The computing time problem is going to be solved owing to the

implementation of the version for graphic processing units (GPUs) of the

acceleration pipeline, that is now underway at the Swinburne University and

that will be many times faster than the version for CPUs.

For the candidate problem, I worked on an automation approach by the use

of an Artificial Neural Network to distinguish between pulsars and non-pulsars

among the candidates; this work and its results will be described in chapter 4.



Chapter 4

A Neural Net approach to the
candidate problem

As mentioned in the previuos chapter, one of the big issues I dealt with during

the analysis of the HTRU survey data has been the huge number of candidates to

be visually inspected yielded by the pipeline. This was due to both the mass of

data and the strong presence of Radio Frequency Interference (RFI) in it, which

produced lots of false pulsar candidates (most of the total candidates). Such

an issue is common to all the large-scale recent surveys and will be critical also

for the future (for example for surveys carried out with the Square Kilometer

Array); therefore a solution is urgently necessary.

In this chapter I will describe a new approach to the problem consisting

in the use of Artificial Neural Nets (ANNs), in an attempt to make a machine

able to discern between pulsars and non-pulsars among the candidates. The

innovations with respect to previous similar attempts are in our goal and our

method. In fact, in addition to the potential for the discovery of new pulsars, we

aimed to produce a large and novel set of classified candidates that can be used

to better train future machine learning algorithms; to reach this aim, we used

a method consisting of (i) training and then applying to all the HTRU survey

candidates a ‘pseudo-committee’ of ten ANNs, rather than a single neural net,

to explore the consequences of random number generation, and (ii) exploring

the use of different ratios of pulsars and non-pulsars in the training data set of

the nets, and using this ratio to reduce the rate of RFI, among the candidates,

uncorrectly classified as pulsars by the ANNs (although this also led to an

increase in the rate of pulsars wrongly classified as non-pulsars, however in

95
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an acceptable percentage). Owing to this method, the number of candidates

selected by the nets, and hence to visually inspect, reduced to something that

is human manageable. This set could hopefully include new pulsars to be

discovered; furthermore, once the inspection is completed, the set will be used

to produce the mentioned new training set by which improving, in different

possible ways, the training of the nets.

This work has been carried out at the Swinburne University of Technology

(Melbourne, Australia) under the supervision of Dr. Willem van Straten, and is

going to be reported in a paper of the HTRU collaboration (Milia, van Straten

et al., in preparation).

4.1 The RFI problem

As described in section 3.1, the HTRU survey, once it is concluded, is expected

to have yielded about a Petabyte of digital data. Such a mass of data brings

several practical issues with it. Besides the problems of storage and data

processing, respectively solved by using several hundred 800GB LTO tapes and

3 supercomputers, a further big issue is the huge amount of pulsar candidates

resulting from our processing pipeline.

In fact, another key matter that must be taken into account is the

increasing problem of Radio Frequency Interference (RFI). Due to the

extraordinary development of modern technologies and the consequent increase,

both in number and power, of satellites, radars, telecommunication systems

and electronic devices which emit signals in the radio frequency band,

radioastronomers have to face the constant presence of a large amount of RFI

in their data. This can both cover the weak signals coming from pulsars and

behave like pulsars, i.e. showing periodicity that is typical of the latter, thereby

incrementing the number of candidates that must be evaluated in the search

for real pulsars. Although the first step of the HTRU processing pipeline is

RFI removal, which removes both ‘bad’ spectral channels and ‘bad’ time series

(see the first paper of the HTRU series, Keith et al. 2010, and section 2.2), the

presence of RFI among the pulsar candidates is nevertheless overwhelming.

The combination of the RFI problem with the amount of data collected so

far yielded more than 19 million candidates from the beginning of the HTRU
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survey, only for the mid-latitude part analysed with the standard pipeline. Since

all these candidates need to be visually inspected to decide if they are:

1. possible new pulsars (to be re-observed to confirm the identification);

2. already known pulsars;

3. non-pulsars (noise, RFI),

it is evident that such a task is becoming impossible, at least in a ‘reasonable’

time scale. In fact, making a decision about a candidate can require from a

fraction of a second to several minutes, depending on how clearly it belongs to

one of the three mentioned categories; this means that the time necessary to

look at all the candidates from the HTRU survey can range from something of

the order of a year to an entire human lifetime or even more. As a consequence,

a better approach is urgently required.

4.2 Previous automation attempts

An interesting possibility to face the candidate problem is to exploit machine

resources, making the selection process as automatic as possible. This means

that the machine must be able to recognise a possible pulsar, distinguishing it

from noise and RFI signals.

As a first step towards this purpose Keith et al. 2009, using the candidates

resulting from the Parkes Multi-beam Pulsar Survey reprocessing made in 2002

(Faulkner et al. 2004), implemented in the graphical tool JREAPER a ranking

method based on assigning to each candidate a numerical score between 0 and

1 (the latter indicating a pulsar-like candidate), according to the results of

several tests performed on the candidate features (like spin period stability and

variation of the signal-to-noise ratio, S/N, with trial dispersion measure, DM).

This approach yielded very good results, with the discovery of 28 previously

unknown pulsars. One problem with the approach outlined in Keith et al. 2009

is that it is able to identify only typical pulsars, due to the particular settings

of the scoring functions (for example, the spin period stability required to score

high is not good for binaries, that can face a big variation of their spin period

with time as they go along their orbit).
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Reprocessing the same survey, Eatough et al. 2010 (see also Eatough 2009;

Eatough et al. in prep.) used a development of the scoring method consisting

in a machine learning approach (for a good review about the current state of

data mining and machine learning in astronomy, see Ball and Brunner 2010),

more specifically in the employment of an Artificial Neural Network (ANN), i.e.

a software that tries to reproduce the decision-making faculty of the neural net

of the human brain. The method consists in training an ANN to distinguish

between pulsars and non-pulsars according to some criteria (that is the values of

suitable parameters, called ‘input scores’), using a training dataset made up of

known pulsars and certain non-pulsars. The trained net is then launched on the

pulsar candidates, among which it makes a distinction indicating, through the

so-called ‘output scores’, which ones are more probable to be real pulsars (and

that will be then double-checked by eye) and which ones RFI or noise. From

the results obtained by Eatough et al. 2010, this approach seems to be quite

encouraging, both for the discovery of a further new pulsar and since, testing

the trained ANN on a random sample of about 2.5 million candidates resulting

from the survey processing, the net selected as possible pulsars only 13000 out

of them, among which 92 per cent of the known pulsars present in the testing

sample was found (with an average of one pulsar every 30 candidates selected

by the net). The fact that some pulsars have not been recovered can be due,

according to the authors, to different reasons, such as a too small number of

pulsars of a certain type in the training set, abnormal plots (from which the

candidate input scores are taken) generated by the used search software for a

kind of pulsars, and finally the so-called ‘over-training’ of the net. The latter

means that the ANN could have been excessively trained with RFI and/or noise

signals, present in the training set in much greater quantities than pulsars; as

a consequence, the net classification ability might be biased towards the class

of non-pulsars, i.e. the ANN might have considered the missing pulsars as RFI

or noise, since it is more trained to recognise the latter.

Despite all these problems, in part related to the fact that they were the

first attempts to apply an ANN to the pulsar candidate selection, the machine

learning approach looks very promising. For this reason, this method has been

already used for a couple of years for the HTRU survey, submitting to an ANN

the portion of the survey data processed by the HYDRA supercomputer in
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Manchester (Bates 2010). In this case, the net has been trained to discern

on the base of the values of 22 parameters, conveniently chosen so that they

well represent the differences between pulsars and non-pulsars, for example in

pulse profile, DM curve, best candidate parameters (period, S/N, and DM),

and several other features (see section 4.5.1 and subsections for a more detailed

description). The so trained ANN rejects as non-pulsars 99.7 per cent of the

candidates, making the quantity of data to be inspected by eye manageable.

Owing to the use of this net, several new pulsars, among which some MSPs,

have been discovered. It has also been confirmed a strong dependence of the

new and the recovered pulsars on the kind of known pulsars present in the

training set. From this it can be inferred the need to include in the latter as

much variety of pulsars as possible, although for some kind of pulsars, like the

MSPs, the known available sample is quite small; and attention should be paid

to avoid the over-training of the net in favour of a particular sub-class.

4.3 Outline of our approach

Taking cues from the aforementioned works, we started to set up a neural net

to be used for the candidate selection; but, unlike the previous cases, we chose

a different approach.

First of all, besides the discovery of new pulsars, our goal was to produce a

data set to use in the future in order to improve the training of the net. For this

reason, rather than making only a distinction between pulsars and non-pulsars,

we decided to subdivide the ‘positive’ output of the ANN (i.e. the candidates

indicated as pulsars), when inspecting it by eye, in three categories: (i) pulsars,

(ii) non-pulsars and (iii) ‘confusion’, where the latter are the candidates which

it is difficult to make a decision about, and that therefore might equally be

pulsars or non-pulsars. These categories can then be used in different ways

(still to be tested) to create an improved training set. If we choose to keep

trying to recognise pulsars, i.e. we still want to train the net to distinguish

between pulsars and non-pulsars, we can use the obtained pulsar and non-

pulsar categories for the training set, without including the confusing sources,

in order to avoid errors in the training. If we decide to change our approach

instead, training the net to recognise RFI, i.e. to distinguish between ‘RFI’
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and ‘non-RFI’, it might prove useful to include both pulsars and confusion in

the non-RFI category for the training set, hence giving the neural net more

examples of ‘what might not necessarily be RFI’; with this method, both the

number of pulsars wrongly identified as RFI and the number of RFI wrongly

classified as pulsars by the net should reduce (see section 4.5.4).

Another new feature of our approach, with respect to previous techniques,

consists in the method we used to achieve our aim, that was made up of two

parts:

1. Rather then train a single neural net, we trained and then applied to

all the HTRU survey candidates a ‘pseudo-committee’ (see section 4.5.3)

of ten ANNs, in order to overcome the intrinsic randomness of neural

nets (only the candidates indicated as pulsars by all the 10 ANNs are

currently being inspected by eye);

2. We explored the use of different ratios of pulsars and non-pulsars in the

training set, and used this ratio to fine tune the percentage of non-pulsars

misclassified as pulsars by the ANNs, reducing it to a quite small value

(although this also produced an increment in the rate of pulsars wrongly

classified as non-pulsars, however in an acceptable percentage).

Moreover, the number of parameters used by the nets has been increased to 27

(the same 22 used in Manchester and 5 new, see section 4.5.1 and subsections).

This method led to a huge reduction of the number of candidates to

visually inspect among all the HTRU survey candidates. The inspection is

still in progress, with both the aims of finding new pulsars and classifying

the candidates in the pulsar, non-pulsar and confusion categories; once a good

training set has been obtained, the intention is to make it public, so that even

the people who do not have at their disposal a quantity of data sufficient to

train an ANN can be enabled to do it.

One of the problems we dealt with was the presence of some outliers among

the scores of many parameters of the training set (for both pulsars and non-

pulsars); outliers are values that lie well outside the range in which the values

of the scores lie for all the other elements of that class, and they may be correct

or might also correspond to bad data and/or as-yet-undetected software bugs.

Their presence aroused the suspicion that the entries with such outliers might



CHAPTER 4. A NEURAL NET APPROACH TO THE CANDIDATE PROBLEM 101

be eschewing the training process, resulting in inaccurate neural nets. Section

4.5.1 describes the tests performed to investigate this issue.

Before describing this work more in detail, a brief introduction to the ANN

concepts will be given; to study ANNs in depth see for example Bishop 1995.

4.4 Artificial Neural Networks

As already said, ANNs are softwares that try to mimic the brain and its decision-

making faculty; although they are not ‘intelligent’ in the true sense of the

word, they are able to recognise patterns and making simple rules for complex

problems, owing to their learning capability when submitted to a training. It

is especially important the fact that they can generalise from a set of training

data, being able to make predictions also on elements outside the original set.

4.4.1 History of ANNs

The study of the human brain dates back thousands of years but only recently,

owing to the modern day electronics, man has begun to try and emulate the

human brain and its thinking processes.

The preliminary theoretical base for contemporary neural networks was

indipendently proposed by Alexander Bain (Bain 1873) and William James

(James 1890); in their work, both toughts and body activity resulted from

interactions among neurons within the brain.

The modern era of neural network research started in 1943 with the work

done by Warren McCulloch, a neurophysiologist, and Walter Pitts, a logician

(McCullock and Pitts 1943). They developed models of neural networks based

on several assumptions about how neurons worked; their networks were based on

simple neurons which were considered to be binary devices with fixed thresholds.

The results of their model were simple logic functions such as “a or b” and “a

and b”. They also designed and built a primitive artificial neural network using

simple electric circuits.

The next major development in neural network technology arrived in 1949

with a book, “The Organization of Behavior” (Hebb 1949) written by the

psychologist Donald Hebb, which supported and reinforced McCulloch-Pitts’s

theory about neurons and how they work, and described how neural pathways
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are strengthened each time they were used (this principle is the basis of the

training of an ANN).

During the 1950s both corporations and Academia worked on developing

NNs, and the outcome was research stimulation in Artificial Intelligence (AI)

and Neural Networks. In 1954 Farley and Clark first used computational

machines, then called calculators, to simulate a network based on the Hebbian

learning hypothesis at MIT (Farley and Clark 1954); in 1956 other neural

network computational machines were created (Rochester et al. 1956).

Two years later Frank Rosenblatt, a neuro-biologist at Cornell University,

created the Perceptron (Rosenblatt 1958), which was the first ‘practical’

artificial neural network, consisting in a two-layer learning computer network

using simple addition and subtraction. In that way this system could learn to

connect or associate a given input to a random output unit.

Between 1959 and 1960, Bernard Wildrow and Marcian Hoff of Stanford

University, in the USA, developed the ADALINE (ADAptive LINear Elements)

and MADELINE (Multiple ADAptive LINear Elements) models (Widrow and

Hoff 1960). These were the first neural networks that could be applied to real

problems: they are still used as a filter to remove echoes from telephone lines.

They consisted in an analogue electronic device made from simple components;

the method used for learning was different to that of the Perceptron, and

employed the Least-Mean-Squares (LMS) learning rule.

In 1969 Marvin Minsky and Seymour Papert proved that both Perceptron

and ADALINE/MADELINE models had limited capabilities (Minsky and

Papert 1969). The significant result of their work was to eliminate funding

for research with neural network simulations, and the conclusions supported

the disenhantment of reserchers in the field. Furthermore, the capabilities

of artificial neural networks had been completely blown out of proportion by

writers and producers of books and movies, so that people believed that such

neural networks could do anything, resulting in disappointment when people

realised that this was not so. These factors contributed to large-scale critique

of AI and neural networks.

However, although public interest and available funding were minimal,

several researchers continued working to develop neuromorphically based

computational methods for problems such as pattern recognition.
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In 1974 Paul Werbos developed and used the back-propagation learning

method (Werbos 1974), however several years passed before this approach was

popularised. In essence, the back-propagation network is a Perceptron with

multiple layers, a different threshold function in the artificial neuron, and a

more robust and capable learning rule.

One year later Fukushima developed a step wise trained multilayered neural

network for interpretation of handwritten characters, called the Cognitron

(Fukushima 1975). This kind of networks can propagate information in one

direction only, or they can bounce back and forth until self-activation at a node

occurs and the network settles on a final state.

The ability for bi-directional flow of inputs between neurons/nodes was

produced with the Hopfield’s network in 1982, which consisted of only one layer

whose neurons were fully connected with each other. Hopfield presented a paper

(Hopfield 1982) to the scientific community in which he stated that the approach

to AI should not be to purely imitate the human brain but instead to use its

concepts to build machines that could solve dynamic problems. He showed what

such networks were capable of and how they would work, convincing scientists

and researchers at the National Academy of Sciences of the USA to renew

interest into the research of AI and neural networks.

At about the same time at a conference in Japan about neural networks,

Japan announced that they had again begun exploring the possibilities of neural

networks. The United States feared that they would be left behind in terms

of research and technology and almost immediately began funding for AI and

neural network projects.

A general re-emergence of interest in the neural network field was due

to several factors, such as books and conferences, that provided a forum for

people in diverse fields with specialised technical languages, the news media

picked up on the increased activity and tutorials, that helped disseminate the

technology, academic programs and courses, that were introduced at most major

Universities (in US and Europe). 1986 saw the first annual Neural Networks for

Computing conference that drew more than 1800 delegates.

The rediscovery of Werbos’s backpropagation algorithm by Rumelhart,

Hinton and Williams in 1986 was another important factor behind the

repopularisation of neural networks (Rumelhart et al. 1986); they succeeded
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in making the method widely known, so that the back-propagation learning

emerged as the most popular learning set for the training of multilayer

Perceptrons.

Today significant progress has been made in the field of neural networks,

enough to attract a great deal of attention and fund further research. The tasks

to which artificial neural networks are currently applied fall within the following

broad categories:

• function approximation, or regression analysis, including time series

prediction and modeling;

• classification, including pattern and sequence recognition, novelty

detection and sequential decision making;

• data processing, including filtering, clustering, blind signal separation

and compression.

Application areas of ANNs include system identification and control (vehicle

control, process control), game-playing and decision making (backgammon,

chess, etc.), pattern recognition (radar systems, face identification, object

recognition, etc.), sequence recognition (gesture, speech, handwritten text

recognition), medical diagnosis, financial applications, data mining (or

knowledge discovery in databases, ‘KDD’), visualisation and e-mail spam

filtering.

The challenge today lies in finding ways to electronically implement the

principles of neural network technology. Electronics companies are working

on three types of neuro-chips, namely digital, analog and optical. With this

prospect, the future of neural network technology looks very promising.

4.4.2 The human brain Neural Network

ANNs are modelled on the human brain structure. The brain is a part of

the central nervous system and is made up of around 1011 neurons higly

interconnected to form a complex network (see fig.4.1).

In a simplified explanation, each neuron consists of a nucleus, that is

its central part, dendrites, an axon and synaptic connections (see fig.4.2).

Dendrites are the sensing part of the neuron; through them it receives electric
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Figure 4.1: Scheme of a ‘Neural Circuit’, whose lighting up depends on the number
of neurons that are passing on the signal. In the first layer on the left, the activated
neurons are indicated by a cross. Figure taken by M. Arauz from an interesting
and funny interactive experiment with a virtual neuron realized by Children’
s Hospital Boston (http://www.childrenshospital.org/research/ neuron/index.html,
on November 2011).

Figure 4.2: Scheme of a neuron. Dendrites are the sensing part, which receives
the signal from other neurons; if the neuron activates, the axon carries the
signal out to any other neurons connected to the neuron through the synaptic
connections. The Myelin Sheath protects the axon, and also increases the speed
and strength of the signal. Figures taken by M. Arauz from an interesting
and funny interactive experiment with a virtual neuron realized by Children’
s Hospital Boston (http://www.childrenshospital.org/research/ neuron/index.html,
on November 2011).
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Figure 4.3: Scheme of an artificial neuron. From Nissen 2003.

pulses from other neurons, and if these pulses are enough (i.e. they exceed

a certain threshold) the neuron activates and fires a pulse (called ‘action

potential’) through its axon. The pulse will reach any other neurons that the

neuron is connected to, through the synaptic connections. In this way the

information (signal) can propagate across the Neural Net; in fig.4.1 it is shown

a ‘Neural Circuit’, that only lights up if enough of the individual neurons are

passing on the signal.

Both the synaptic connections and the threshold to activate the neuron

change during its life; this allows the Neural Net to learn.

4.4.3 The artificial neuron

An artificial neuron is a mathematical function which tries to reproduce the

behaviour of biological neurons. It takes the form:

y(x) = g

(

n
∑

i=1

wixi

)

, (4.1)

where x = (x1 . . . xn) is the input vector (or pattern), representing the inputs

(‘signals’) received through the n ‘dendrites’, y(x) is the output ‘axon’ and

(w1 . . . wn) are weights determining how much the inputs should be weighted

(in a real neuron, the weights are given by the number of pulses a neuron sends

out, the strenght of the pulses and how closely connected the neurons are). In

fact, the weighted sum is then passed through a (usually non-linear, see below)

function g known as an activation function, which on the basis of the sum

decides if there should be any output from the neuron and, in that case, how

powerful it should be (see fig.4.3).
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Figure 4.4: Graph of a logistic sigmoid function.

The easiest form of the activation function is a simple threshold function

returning 1 or 0 (depending on whether the neuron is firing or not respectively).

However, in the case of artificial neurons it is useful to have a smooth function,

which returns an output between 0 and 1 (or -1 and 1, depending on the function

used), so that also outputs not exactly equal to 1 can be considered as positive

(we can for example fix an output threshold of 0.5 and say that all the outputs

higher than that are positive). Hence, one of the most commonly used activation

function takes the form of a ‘logistic sigmoid function’, having a characteristic

S-shape (see fig.4.4):

g(s) =
1

1 + exp(−s)
, (4.2)

where s =
n
∑

i=1

wixi is the weighted sum in eq. (4.1). This function assumes real

values, is differentiable (that will be necessary for the ‘back-propagation’, see

section 4.4.5) and in general is non-linear, even if for small s it shows a linear

behaviuor.

The inputs and the weights are not restricted and can in principle be

between −∞ and +∞, but they are often small values centered around zero.

4.4.4 Creation of an ANN

Artificial neurons can be combined to create an ANN; the most common kind

of net is the fully connected multilayer feedforward ANN, where the neurons are
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Figure 4.5: Scheme of a fully connected multilayer feedforward ANN. The circles
represent the neurons, arranged in this case in three layers with the same number
of neurons. The arrows between the layers indicate that the connections only go
forward from one layer to the next. From Nissen 2003.

ordered in layers and each neuron of a layer is connected with all the neurons of

the previuos and of the next layers (see fig.4.5). However, the connections only

go forward from one layer to the next, i.e. the information only propagates in

one direction, without going back to the previous layers (there are no loops).

The first layer is the input layer, whose number of neurons is equal to the

number n of components of the input vectors (see previuos section) that we

want to give to the ANN; the last one is the output layer, which contains a

number of neurons equal to the number of desired outputs (for example, if we

just want a ‘yes’ or a ‘no’ answer about our input candidate, the number of

output neurons will be 2: one of them will ‘fire’ only if the answer is yes, the

other only if the answer is no). Between the input and the output layers we

can have a number of hidden layers, made up of any number of neurons, and

the connections (and weights) to and from these layers determine how well the

ANN performs.

That is how the ANN works: as said above, each neuron in the input layer

represents one component of the input vector x = (x1 . . . xn), and sends its

information xi to all the neurons in the hidden layer (assuming for instance

that we have only one of this kind of layers); then each neuron yj in the hidden

layer takes the form:
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yj = g(sy
j ) =

1

1 + exp(−sy
j )

, (4.3)

where sy
j is the weighted sum calculated by that neuron in that layer, for its

interaction with all the neurons of the input layer:

sy
j =

(

n
∑

i=1

wijxi

)

, (4.4)

where wij is the weight associated between the ith neuron in the input layer and

the jth neuron in the hidden layer. The index j = 1, 2, 3, . . . ,m, where m is the

number of neurons in the hidden layer.

Hence also the hidden layer can be represented by a vector y, with

components (y1 . . . ym). The activation function of each neuron in this layer

will decide, on the basis of the sum, about the neuron output; then all these

outputs are sent to the neurons of the next layer, that in this case is the last one.

Here again the weighted sum sz
k =

m
∑

j=1

wjkyj and the function zk = g(sz
k) are

calculated for each neuron (k = 1, 2, 3, . . . , l, where l is the number of neurons

in the output layer); wjk is the weight associated between the jth neuron in the

hidden layer and the kth neuron in the output layer. Again, also this layer can

be represented by a vector z, with components (z1 . . . zl). Since it is the last

layer, the outputs of these neurons will give the final output of the ANN.

4.4.5 Training an ANN

It is clear from what said in the previous section that the weigths are the crucial

part of an ANN, since they determine, through the activation function, the

output of each neuron; hence it is very important that they have the opportune

values to make our ANN work well.

To find these opportune values, the ANN is submitted to a process called

training or learning ; in a supervised learning, the ANN is trained to return a

specific output when given a specific input, i.e. its internal weights, that initially

assume random values, are slowly adjusted (through a continuous training on

a set of input and output data) in order to produce the desired output. The

hope is that, once the ANN is trained, when the net is shown a new set of input

variables it will give a correct output.
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A common algorithm to train ANNs is the so-called ‘backpropagation’

algorithm, that works in reverse from the output to the input layer in this way:

after propagating an input through the net, the error between the obtained

output and the desired output is calculated, and the error is propagated back

through the net while the weights are adjusted in order to make the error

smaller. This is done for all the input vectors, and then repeated for a number

of iterations (also called epochs) until a certain stop criterion is reached.

It can be shown that the weights must be adjusted on the basis of some δ

values, that for the kth neuron in the output layer are calculated according to

this equation:

δk = g′(sz
k) (zk − dk) , (4.5)

where g′ is the derived activation function and dk is the desired output of neuron

k, while for the jth neuron in the hidden layer:

δj = η g′(sy
j )
∑

k

δkwjk, (4.6)

where η is the learning rate parameter, which determines how much the weight

should be adjusted, and the sum runs over all neurons k to which neuron j

sends connections (since in our case we have only one hidden layer, and also the

net is fully connected, the neurons k are all the ones in the output layer).

Hence we calculate the δj values for preceding layers from the δk values of

successive layers. Then we can calculate the ∆w values that the weights should

be adjusted by:

∆wjk = δjzk ; (4.7)

so the weight wjk is adjusted in this way: wjk(t + 1) = wjk(t) + ∆wjk(t + 1),

where t indicates one training iteration, and (t + 1) is the next one. The

backpropagation algorithm then moves on to the next input vector of the

training set, repeating the same process of adjusting the weights.

The δ values are related to the derivatives, with respect to each of the

weights in the ANN, of the so-called error functions Ep, where p labels the

input vectors; these functions can be defined for example as the standard sum-

of-squares functions:
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Ep =
1

2

l
∑

k=1

(zk − dk)2 , (4.8)

or as the mean square error functions:

Ep =
1

l

l
∑

k=1

(zk − dk)2 , (4.9)

the latter meaning that each Ep is the average of all the square errors in each

of the training pairs (input-output).

A total error function can be then defined, for example as the sum of the error

functions of all the inputs in the training set:

E =
∑

p

Ep ; (4.10)

the stop criterion to the training process is typically determined by measuring

the value of E during the training: when it reaches a certain limit the training

is stopped. More advanced stopping criteria involves both training and testing

data (where the latter is another set of data, different from the training set,

used to test if the output given by the ANN is good); for example, if we do the

testing during the training we should stop when the error of the testing data is

not improving anymore, i.e. it has reached a minimum, in order to avoid the

overtraining of the net, that occurs when too much training is applied to a set

of data and the error in the testing set begins to increase again. In fact in that

case the ANN looses generalisation and becomes able to recognise only input

vectors that match precisely those in the training set.

Another stop criterion than the value of the combined mean square error

could be that each of the training pairs should have a mean square error lower

than a given value.

4.5 Our techniques

4.5.1 Scores

The first thing to do to use an ANN is to generate the components of the input

vectors, usually called scores, i.e. numbers that describe the characteristics of

the input.
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In our case the input is a pulsar candidate (or, for the training and testing

sets, known pulsars and certain non-pulsars, i.e. RFI or noise), and we can

create its scores on the basis of the features shown in its diagnostic plot. In the

HTRU pipeline, the values of the basic candidate parameters used to make the

plot like period, S/N, DM , etc., are stored in a text file in the Pulsar Hunter1

Candidate XML (PHCX) format, where XML is the well-defined eXtensible

Markup Language2 format, that can be read both by humans and by softwares.

In this work some Phyton3 scripts have been used to take the information about

the features from the phcx file of the candidate and generate the relative scores.

In this case we chose to create 27 scores, adding 5 to the 22 scores used by

the ANN in Manchester, that should hopefully allow the ANN to well distinguish

the features of a pulsar from those of a non-pulsar and hence to make a correct

decision about a candidate.

In the following I will give a brief description of some of the used scores,

whose summary is reported in table 4.1 (see also Bates 2010 for the 22 scores

used in Manchester).

Profile fitting scores

Since RFI profiles are often described by a sine or a sine squared function,

the candidate profile is fitted with both these functions, and the χ2 values

of the two fits are used as scores. Then the profile is fitted with Gaussian

functions with one or two peaks, that are instead good descriptions of ‘typical’

pulsar profiles, and we take as scores the value of several parameters from the

two fits, such as the FWHM (full width at half maximum) and the χ2 values.

Furthermore, a Gaussian fit on the derivative of the profile is performed, and

the difference between the expectation value of this fit and the expectation value

of the Gaussian fit on the profile is taken as a score.

DM curve fitting scores

From eq. (2.1) we know that the S/N of a pulse follows this relation:

1http://pulsarhunter.sourceforge.net/
2http://www.w3.org/XML
3http://www.python.org/
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Table 4.1: Summary of the scores for the ANN used in this work.

# Score description

Sinusoid Fitting
1 χ2 value from fitting the pulse profile with a sin curve
2 χ2 value from fitting the pulse profile with a sin2 curve

Gaussian Fitting
3 Difference between expectation value of pulse profile and fitted Gaussian
4 Max. value of pulse profile / Max. value of Gaussian
5 FHWM of Gaussian fit
6 χ2 value from Gaussian fit
7 Average FHWM from fitting two Gaussians to pulse profile
8 χ2 value from fitting two Gaussians to pulse profile
9 Fit Gaussian to dy/dx of profile. Difference between expectation values

Candidate Parameters
10 Best period (ms)
11 Best S/N value
12 Best DM value (DMbest)
13 Pulse width

DM Curve Fitting
14 S/N /

√

(P − We)/We

15 After fitting the DM curve, calculate (S/N)fit /
√

(P − We)/We

16 mod(DMfit − DMbest)
17 χ2 value from DM curve fit

Sub-band scores
18 RMS of peak positions in all sub-bands
19 Average correlation coefficient for each pair of sub-bands
20 Sum of correlation coefficients

Pulse Profile Tests
21 Number of peaks in the pulse profile
22 Integrated area under the pulse profile

Subintegration scores
23 RMS of peak positions in all subintegrations
24 Average correlation coefficient for each pair of subintegrations
25 Sum of correlation coefficients
26 Mean of correlation coefficients

27 Entropy
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S/N ∝
√

P − We

We

, (4.11)

where P is the pulse period and We is the effective pulse width, given by eq.

(2.3). Since We is a function of DM , we can evaluate the behaviour of the S/N

for our trial DM values (see fig.2.3), i.e. predict the shape of the DM curve. As

a score to represent this theoretical curve we use the proportionality constant

between the two terms in eq. 4.11, calculated for the peak of the curve, i.e. for

the value of DM at which the pulse would be correctly de-dispersed. Then we

take the actual values of the spectral S/N at each trial DM from the phcx file

of the candidate, and fit these data with the relation above; for a pulsar, the fit

will be good. The χ2 value of this fit is hence another score, together with the

value of the proportionality constant after the fit, (S/N)fit /
√

(P − We)/We.

The last DM fitting score is the deviation of the fitted DM from the best DM

as recorded in the phcx data.

Sub-band and subintegration scores

Since a pulsar is visible right across all the observing bandwidth, not just within

a few of the sub-bands (section 2.2.1), and the shape of the pulse is consistent

over the entire bandwidth, we can test our candidate running a window of a

width equal to the pulse width (taken from the phcx file) along the phase axis

of each sub-band, and integrate within the window. The center of the window

is then identified with the maximum value for each sub-band, so that we can

calculate how close the maxima are to each other. The returned value, that

will be our first sub-band score, is the standard deviation of the positions of

the maxima, that hence should be as low as possible to have a good candidate.

Another score is the correlation coefficient of the amplitudes across the whole

pulse between sub-band pairs, averaged across all the pairs; since the pulse

from a pulsar is strongly correlated across the whole spectrum, in that case the

correlation coefficient is high (i.e. closed to 1). We find the value of one more

score measuring the correlation of the whole profile to each sub-band and adding

all correlation coefficients together (this score is quite similar to the previuos

one).

To test the persistence of the signal over time, in order to be able to identify
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and reject short bursts of RFI, we introduced four new scores related to how

the signal changes over time. Three of them are the equivalent of the three sub-

band scores, but using subintegrations (section 2.2.1) rather than sub-bands;

the fourth score is a mean of the correlation coefficients obtained from the

correlation of the whole profile to each subintegration.

Entropy

We introduced a last new score on the basis of the concept of entropy, that

is a measure of the degree of order of a system: more the latter is ordered,

lower its entropy is. If we have a periodic signal and Fourier transform it, its

degree of order will depend on the quantity of its power being in its harmonics.

For example, a sinusoidal RFI signal will have a very low entropy, because all

of its power will be in one harmonic. A pulsar should have power in multiple

harmonics and therefore have a higher value of entropy. White noise (like the

Gaussian noise) has its power distributed uniformly over the entire frequency

range, i.e. it has equal power in all harmonics and hence maximum entropy.

The entropy score is then calculated by doing an FFT of the candidate pulse

profile, computing the power of each resulting element and finally calculating

the sum:

−
∑

(ki log(ki)) , (4.12)

where ki is the fractional power in each harmonic.

Outlier and dimensionality issues

Training and testing the ANN, as will be described in the following sections,

we dealt with the presence of some outliers among the values of the scores of

the training set; as already said, the outliers are values that lie well outside the

range in which the other values of the scores lie for the same class of inputs

(e.g. in our case pulsars or non-pulsars). There was a suspicion that the inputs

with such outliers might be eschewing the training process, possibly making the

ANN inaccurate. Hence some tests were performed using some ‘filters’, i.e. it

was decided to discard any entry for which one of the scores was more than four

sigma outside the mean for that score. Nevertheless, this resulted in no better

accuracy than when using all entries.



CHAPTER 4. A NEURAL NET APPROACH TO THE CANDIDATE PROBLEM 116

Then this test was repeated with some variations, like using median rather

than mean; calculating separate mean (or median) for each class of inputs and

filtering accordingly; running the test using only the best performing pair or

triplet of score fields; training with the filtered dataset and testing with the

unfiltered one. None of these attempts resulted in measurable improvements in

the ANN performance.

Another issue that can arise when dealing with a generic ANN is related

to dimensionality, i.e. to the number of score fields. In fact, even if in general a

large number of input scores is desirable since it can better represent the input

data, and furthermore the ANN is able to make more complicated decisions,

in many cases it may worsen the ANN performance. This is a problem called

the curse of dimensionality (see for example Bishop 1995): each of the training

entry corresponds to a point in the input space, whose dimension is equal to

the number of score fields (i.e. the scores are the coordinates of the point in

this space); if we imagine to divide the input space in a large number of cells,

each of the training entries correspond to a point in one of the cells, and carries

an associated value of the output variable y. If more than one training point

fall in the same cell, the average value of y for all these points is returned.

Therefore, if we have a new point, we can determine a corresponding value for

y by finding which cell the point falls in (this is the generalisation ability of the

ANN); nevertheless, if we increase the dimensionality of the input space, the

number of training points necessary to have the complete mapping of the space

(i.e. to have at least one training point in each cell) grows exponentially with

the dimensionality. Since in practice the quantity of training data is limited,

increasing dimensionality leads to the point where this data is very sparse, with

many low density or even empty regions. This makes it difficult to the ANN

to generalise from the training data and produce useful new results. However,

the feed-forward ANN is able to exploit correlations in the data and reduce the

dimensionality of the problem.

The dimensionality can also be reduced by eliminating scores that are

irrelevant or redundant, i.e. that are correlated with other scores. For this

reason different kind of elimination tests have been performed on our ANN, for

instance doing training/testing rounds using all available input fields but one,

with a different field left off on each round, in order to see how the performance
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of the ANN varied and understand the significance of the field left off. In another

test, input fields were eliminated one by one but not added back. Finally,

another round of tests was executed performing training/testing rounds with

all possible combinations of two and three input fields.

In all these cases, no significant improvements in the ANN performance

were observed. This confirms that we had sufficiently many training data points

to fully sample the dimensionality of the problem space.

4.5.2 The (Fast)ANN used in this work

The kind of ANN used in this work is the Fast Artificial Neural Network

(FANN)4, a multilayer ANN library in C language created and actively

maintained by the Computer Scientist Steffen Nissen, also author of the report

Implementation of a Fast Artificial Neural Network Library (FANN) (2003).

Moreover, a reference manual is available online5.

We chose to use a FANN because it presents numerous valuable features, for

example the fact that it is an open source, easy to use and fast (up to 150 times

faster execution than other libraries), that it can be trained with different kind

of backpropagation algorithms, and that we can choose among several different

activation functions; but many other features could be enumerated.

Many tests were performed to find the combination of parameters giving

the best performance of the FANN in our case; the result was a FANN with an

architecture 27:18:2 (i.e. 3 layers, with the input layer made up of 27 neurons,

the only one hidden layer with 18 neurons and the output layer with 2 neurons),

a learning algorithm called iRPROP (improved Resilient backPROPagation,

Ingel and Hüsken 2000), that is an improved version of the standard RPROP

(Riedmiller and Braun 1993), and a fast symmetric sigmoid-like activation

function (Elliott 1993), that is a higher-speed approximation of the sigmoid

activation function and takes the form:

y =
x · s

1+ | x · s | , (4.13)

where x is the input to the activation function, y is the output and s is a

steepness parameter (in our case fixed to 0.1); the span of this function is

4http://leenissen.dk/fann/wp/
5http://leenissen.dk/fann/html/files/fann-h.html
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−1 < y < 1. The stop criterion used during training was the mean square error

value (eq. (4.9)). A future work will be to implement in the FANN a stop

criterion based on testing during training.

4.5.3 Application of the FANN to the candidate problem

Our first step to apply the described FANN to the candidate problem was

creating a training and a testing set for the net, both made up of known

pulsars and non-pulsars. Hence we took all the known pulsars re-detected by our

pipeline at the Swinburne University since the beginning of the HTRU survey,

whose number was 644, and a group of 28444 candidates previously classified by

eye, obtained by discarding the known pulsars and the most probable pulsars

from the candidates already visually inspected; then we calculated the scores

described in section 4.5.1 and subsections.

Then we created the training set so that it contained 50% pulsars and 50%

non-pulsars, using half of the known pulsar sample (322) and an equal number

of non-pulsars. The remaining half and the remaining non-pulsars were then

used to create the testing set, so that all the elements contained in the latter

were different from the elements in the training set.

The next step was training the FANN by using the described training

set, where the desired output for each input vector was a vector d = (1,−1)

for pulsars and a vector d = (−1, 1) for non-pulsars (because of the chosen

activation function, see previous section). Then we performed the testing by

using the described testing set; the result was quite good, since the FANN

correctly identified as pulsars 97.52% of the known pulsars present in the testing

set, and as non-pulsars 98.45% of the non-pulsars in the same set.

In order to reduce the effects of the randomness implicit in the training

process, and also any potential biases caused by the selection of the training

and testing sets, a cross-validation system was developed that randomises the

datasets and performs repeated tests while averaging the results. In fact,

using the full available sample of pulsars and non-pulsars, it creates temporary

training sets containing again equal numbers of randomly selected pulsars and

non-pulsars (again half of the known pulsars and an equal number of non-

pulsars) and testing sets containing all the remaining elements; those temporary

sets are then used to do ten rounds of training/testing, the results are logged,
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and the whole process (including the selection of the elements for the two sets)

is repeated nine more times. The result was still quite good, with an average of

97.98% correctly identified pulsars and 97.78% correctly identified non-pulsars.

However, for a large-scale survey like HTRU which yields million candidates

most of which are non-pulsars, even 2% non-pulsars wrongly identified as pulsars

means a very high number of candidates to visually inspect (since all the

candidates indicated as pulsars by the net are then inspected by eye). Hence

we would like to increment the percentage of non-pulsars correctly identified

by the FANN, but maintaining at the same time a high percentage of correctly

identified pulsars.

Two useful concepts in the classification of objects are the completeness

and the efficiency (see for example Ball and Brunner 2010), defined in terms

of true and false positives (TP and FP) and true and false negatives (TN and

FN). In our case:

• TP are the pulsars correctly classified as pulsars by the net;

• FP are the non-pulsars wrongly classified as pulsars;

• TN are the non-pulsars correctly classified as non-pulsars;

• FN are the pulsars wrongly classified as non-pulsars.

The completeness is defined as:

completeness =
TP

TP + FN
, (4.14)

i.e. in our case is the fraction of correctly identified pulsars with respect to the

total of pulsars (correctly or wrongly classified); the efficiency is defined as:

efficiency =
TP

TP + FP
, (4.15)

i.e. in our case is the fraction of correctly identified pulsars with respect to the

total of objects (correctly or wrongly) classified as pulsars.

What we want is that both these quantities be high, since a high

completeness means that many pulsars have been correctly classified as pulsars

and only a few have been wrongly identified as non-pulsars, while a high

efficiency means that most of the objects that have been classified as pulsars
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Figure 4.6: Cross-validation results for nets trained with different percentages of
pulsars and non-pulsars in the training set.

are actually pulsars and only a few non-pulsars have been wrongly identified as

pulsars.

Nevertheless, there is generally a tradeoff involved since it is not possible

to increment both, but a choice needs to be made depending on the application.

In our case, we decided to train several nets with different percentages

of pulsars and non-pulsars in the training set (i.e. not just 50% - 50%), to

investigate the change in the net performance and hence in completeness and

efficiency, in order to choose the best case for our purpose; the cross-validation

results are reported in fig.4.6.

The number of pulsars in the training set was maintained equal to 322, but

the percentage changed according to the change in the number of non-pulsars,

that were added or removed; all the remaining elements of the full sample were

used in the testing set.

As shown in the table, the average percentages of correctly identified pulsars

and non-pulsars (last two columns), with respect to the total of pulsars and to

the total of non-pulsars present in the testing set respectively, are similar for the

50% - 50% case, as we found in the previuos test, but change in an opposite way

when the percentages of pulsars and non-pulsars in the training set are modified
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Figure 4.7: Cross-validation results as functions of the percentage of non-pulsars in
the training set, for pulsars (TP, green curve) and non-pulsars (TN, red curve).

(hence confirming the need of a tradeoff between completeness and efficiency).

In fig.4.7 these cross-validation results as functions of the percentage of non-

pulsars in the training set are shown, both for pulsars and non-pulsars, while in

fig.4.8 completeness and efficiency for each row of the table in fig.4.6 are plotted,

also in this case as functions of the percentage of non-pulsars in the training

set. It is evident from the last plot that incrementing such a percentage we have

significant gains in efficiency with a small penalty in completeness.

At this point we made a particular choice. Since, as already said, our

intention was to cut the number of non-pulsars wrongly classified as pulsars, in

order to have a human manageable number of candidates to visually inspect,

we decided to favour the correct classification of non-pulsars rather than that

of pulsars, choosing to apply to our survey candidates the net trained with 3%

pulsars and 97% non-pulsars, for which the completeness was 0.926 and the

efficiency ∼ 0.851. In fact, such a net was able to correctly identify on average

99.71% non-pulsars and 92.60% pulsars; therefore our FP percentage was only

0.29%, that for million non-pulsars is just a few thousands. It is true that in

this way we have a percentage of FN of 7.4%, i.e. we miss such a percentage

of pulsars since they are wrongly classified as non-pulsars, but considering the

small number of pulsars present among the candidates, this means that we are

missing only a few pulsars: we think that this is quite acceptable, with respect

to the huge number of non-pulsars eliminated.
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Figure 4.8: Completeness (red curve) and efficiency (green curve) plotted for each
row of the table in fig.4.6, as functions of the percentage of non-pulsars in the training
set.

Since neural nets are trained using random numbers and there may not be

a unique minimum in the error function, we wanted to know the consequences

of random training; hence we decided to train, with the mentioned percentage

of pulsars and non-pulsars, a ‘pseudo-committee’6 of 10 nets, and in the end

we exploited it to reduce the number of FP for the visual inspection, choosing

to only look at the candidates classified as pulsars by all the nets (hence that

received 10 ‘yes’ votes). The training sets were made up of elements taken

randomly from the full available sample, hence they should be quite different

for each net.

The testing results for the 10 nets were of between 89.13% and 93.48% for

the correct classification of pulsars (with respectively 99.76% and 99.78% for the

correct identification of non-pulsars), while they were of between 99.68% and

99.88% for the correct classification of non-pulsars (with respectively 90.99%

and 90.06% for the correct identification of pulsars). Hence, in the worst case,

the percentage of FP was 0.32%.

In addition, we must consider the fact that this time we do not want to

average the results of the ten nets, but we want to consider only the candidates

6We call our nets a ‘pseudo-committee’ since they do not constitute exactly a committee, because
in the latter the nets should have different numbers of hidden units, or the same architecture but
trained to different local minima of the error function, or with different kind of net models; moreover
the output of a committee is taken as the average of the outputs of the nets in the committee (Bishop
1995).
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that will receive 10 yes votes; this means that, among them, the percentage

of correctly identified pulsars will be equal to or lower than the lowest testing

result among the nets (i.e., even in the case that all the nets correctly identify

as pulsars exactly the same candidates, the percentage of these candidates with

respect to all the pulsars present among the candidates would be equal to the

lowest testing result, 89.13%, because the net yielding this result is not able to

correctly identify a higher number of pulsars; but since in general the nets will

not classify as pulsars exactly the same candidates, the percentage of correctly

identified pulsars among the 10-yes-vote candidates will be even lower than

89.13%, however not too much). Therefore, we should wonder if this percentage

is still acceptable: it implies that something more than 10.87% pulsars would

be missed. Anyway, as already said, considering the small number of pulsars

present among the candidates we still do not miss many pulsars. However, this

percentage could be improved by considering also for example the candidates

that received only 9 yes votes (that is a sub-class of those which received at least

9 votes, i.e. 9 or 10, since the 10-yes-vote candidates had obviously received

also 9 votes), or even the ones that received only 8 yes votes (sub-class of the

8-yes-vote class, for the same reason); but, as we will show soon, in this way the

number of FP (and hence of candidates to visually inspect) grows considerably.

Anyway this could be something to try in the future.

In order to test our method, we decided to launch the ten trained and tested

nets on all the sample of pulsars (644) used for the training/testing process, and

then on all the sample of non-pulsars (28444) used for the same purpose. The

number of elements that received at least a number of yes votes respectively

from 0 to 10 are shown in table 4.2 for both the cases. The percentage of

pulsars that received 10 yes votes was 86.6%, while the same percentage for

non-pulsars was 0%; this can be explained by considering the fact that the

number of non-pulsars in the training set of each net was overwhelming (97%

of the total of elements) with respect to the number of pulsars, and that each

net had more than one third of the 28444 non-pulsars in its training set.

At this point we took all the candidates yielded by the survey pipeline at

the Swinburne University since the beginning of the survey, whose impressive

number was 19,084,702 (on May 2011), and calculated the scores for all of

them. Given the huge number of candidates, this step was going to be very time
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Yes votes Pulsars Non-pulsars

10 558 0
≥ 9 579 0
≥ 8 589 2
≥ 7 602 4
≥ 6 612 13
≥ 5 622 19
≥ 4 630 36
≥ 3 635 59
≥ 2 639 92
≥ 1 642 193
≥ 0 644 28444

Table 4.2: Number of elements that received at least a number of yes votes
respectively from 0 to 10 after launching the ten trained and tested nets firstly
on all the sample of pulsars (644) and then on all the sample of non-pulsars (28444)
used for the training/testing process.

consuming; hence we ran multiple processes in parallel using the Green Machine

supercomputing facility at Swinburne University (see section 3.2.3). In fact we

divided the candidates into blocks each made up of ∼ 35,000 elements and then

ran the jobs (i.e. the calculation of the scores for each block of candidates) on

different nodes of the supercomputer; then the ten nets were launched on each

block. In this way all the scoring/classifying process took only one day and a

half.

In table 4.3 it is reported the number of candidates that received at least a

number of yes votes respectively from 0 to 10, and the percentage with respect

to the total of candidates; we can see that ∼ 97% of the candidates received 0

yes votes, while 0.21% received 10 yes votes, i.e. ∼ 41,000 candidates.

Hence, in this way we managed to reduce the number of candidates to

visually inspect from more than 19 millions to only ∼ 41,000, i.e. something

that is human manageable. From table 4.3 we can notice that if we chose to

consider for example also the candidates that received only 9 and only 8 votes

(20,095 and 21,215 respectively), in order to increase the number of correctly

identified pulsars, the number of candidates to look at would double.
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Yes votes Candidates Percentages

10 40864 0.21%
≥ 9 60959 0.32%
≥ 8 82174 0.43%
≥ 7 105113 0.55%
≥ 6 131022 0.69%
≥ 5 162651 0.85%
≥ 4 203728 1.07%
≥ 3 261623 1.37%
≥ 2 352612 1.85%
≥ 1 569911 2.99%
≥ 0 19084702 100%

Table 4.3: Number of candidates that received at least a number of yes votes
respectively from 0 to 10, and the percentage with respect to the total of candidates,
after launching the ten trained nets on all the candidates yielded by the survey
pipeline (19,084,702).

4.5.4 Work in progress and future

The work of visually inspecting the 10-yes-vote candidates is in progress. We

made an advanced script in C++ to find known pulsars and their harmonics

(from 1/20 to 20 times the fundamental frequency) possibly present among these

candidates, double-checking the latter with the catalogue of known pulsars. The

script found 2,299 known pulsars (since many pulsars were observed several

times) and 1,181 harmonics (this is a good result, since it means that the nets

are able to recognise harmonics, although no harmonics were in the training

sets). In this way the number of candidates to be inspected further reduced to

37,384.

The hope obviously is that among them there be new pulsars to discover;

moreover, it could be possible also a re-evaluation of a part of previously wrongly

classified data.

Anyway, since most of the 37,000 remaining candidates are surely non-

pulsars, this could mean that many pulsar-like RFI deceived the nets. Hence,

as already explained in section 4.3, our main aim now is to create a better

training set in order to improve the training of the nets.

For this reason, inspecting the candidates, we are dividing them into

three categories, pulsars, non-pulsars and ‘confusion’, where the latter are the
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candidates which it is difficult to make a decision about, and that therefore

might equally be pulsars or non-pulsars. These categories can be used in

different ways (still to be tested) to create the improved training set.

If our approach still consists in making the nets recognise pulsars, i.e.

distinguishing between pulsars and non-pulsars, the confusion category should

not be included in the new training set, in order to avoid errors in the training.

The new training set then should be made up of the newly classified pulsars

added to the pulsars of the old training set, and the newly classified non-pulsars

(the non-pulsars of the old training set should not be included, since they were

obtained by discarding only the most probable pulsars, hence they could include

some confusion as well, undermining the work put into separating the classes).

A different approach can consist in training the nets to recognise RFI, i.e.

to distinguish between RFI and non-RFI, which may provide better results. In

this case, it might be useful that both pulsars and confusion be included in

the non-RFI category (together with the pulsars of the old training set), hence

feeding the ANNs with more examples of ‘what might not necessarily be RFI’.

The RFI category should be made up only of the newly classified non-pulsars as

in the previous case, for the same reason. Since in this case we have a greater

number of classified data points (∼ 40,000) and a better balance between RFI

and non-RFI candidates (owing to the inclusion of the confusion category in

the non-RFI class) with respect to the old training/testing set (in which there

was instead a great asymmetry in the number of pulsars and non-pulsars), the

hope is that we can decrease both FN and FP rates, where in this case FN

are misclassified RFI and FP are misclassified pulsars, obtaining better trained

ANNs.

After obtaining a good training set, we would like to make it public, so that

it can be used for instance also by people not involved in large-scale surveys and

that hence do not have the possibility to make their own training set. Moreover,

we have also the intention to make our scripts an open source.

For the future, besides what said above, we are thinking about other ways

to improve the performance of the nets. For example, since almost all the

known pulsars found among the 10-yes-vote candidates had S/N > 10, it would

be necessary to train the nets with more pulsars having S/N < 10, in order to

make the nets able to correctly classify them as well (their percentage was only
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5% of the pulsar sample that we used for training/testing). Other possibilities

could be exploring other machine learning algorithms (see for example the ones

described by Ball and Brunner 2010) and making new kind of scores, especially

to better identify RFI; for instance, a new score may be the correlation between

the profile of RFI and the folded profile of the candidate: if the correlation is

high (∼ 1), the candidate is rejected. For this purpose it would be valuable if

a catalogue of RFI could be created.
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Summary

The work described in this Thesis has been developed in the context of the High

Time Resolution Universe Survey (HTRU) for pulsars and radio transients,

which is in progress at the 64m Radio Telescope of Parkes, in Australia. It is an

all-sky survey at 20 cm wavelength, the first part of which (dubbed med-latitude

survey) looked at a portion of the Southern sky within ±15 degrees from the

Galactic Plane.

The main aim of the survey is to significantly increase the number of known

millisecond pulsars in the Galactic Field, hopefully doubling the number of

catalogued objects of this category. On a statistical ground, one expect that

a fraction of the new pulsars will turn out to have the requested features -

rapid spinning, high radio flux, sharp pulse profile, good long term rotational

stability - for becoming suitable members of one of the Pulsar Timing Arrays,

whose main scope is the direct detection of gravitational waves released by

supermassive binary black-holes. Moreover, among the new discoveries, one

expect that few objects will turn out to raise interesting scientific cases per se.

In fact, the first processing of the data of the med-latitude survey has

already led to the discovery of ∼ 20 millisecond pulsars (plus about 70 ordinary

pulsars). Among them few very interesting objects (i.e. the binary millisecond

pulsar J1719−1438 having a companion with a Jovian mass) and one (the pulsar

J1017−7156) which is a very good timer and already entered in the list of the

targets of the Parkes Pulsar Timing Array (PPTA).

However, since most of the millisecond pulsars are enclosed in binary

systems, their periodic radio signal suffers the effects of the orbital motion,

and can be missed by the standard codes which are used for searching for

isolated radio pulsars and which have been applied for performing the first

aforementioned processing of the data of the HTRU survey.
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In view of that, within the framework of the HTRU experiment, the part

of my job which is reported in this Thesis developed along the following items.

FIRSTLY it consisted in investigating which kind of pulsar binary systems

(and quantifying with which probability) may have been missed by the first

processing of the data.

From this study, it resulted that ∼ 90% of the binary systems including a

millisecond pulsar and a white dwarf in orbit shorter than ∼ 2 hours may have

not being discovered by a standard pulsar search pipeline. Similar probabilities

(∼ 80% of missed objects) applies to the case of mildly recycled pulsars in

double neutron star systems. Also long period ordinary pulsars could have

escaped discovery (with a probability of ∼ 40%) by using the standard codes, if

they are orbiting around a stellar mass black-hole companion in a shorter than

2 hours orbit.

SECONDLY my work was devoted to set up and test a binary pulsar search

pipeline, suitable for discovering - during a reprocessing of the data of the med-

latitude survey - those millisecond pulsars in tight binaries which may have

escaped discovery in the first data search.

The chosen pipeline involves using a public available suite of codes

(PRESTO) for performing a search for accelerated pulsars (i.e. pulsar in a

binary) in the frequency domain, namely the so-called correlation search. The

pipeline was tested with few known binary pulsars, and in particular on the

famous Double Pulsar PSR J0737−3039, which represents a stereotype for a

relativistic binary in a very close orbit. It was checked that this pulsar would

have been missed by the standard pipeline, whereas it displayed nicely in the

new accelerated pipeline.

THIRDLY my study focused on implementing the aforementioned pipeline

on two large clusters of CPUs (one located at the INAF-Osservatorio di

Cagliari and the other at the Swinburne University of Technology in Melbourne,

Australia) and carrying on the initial part of the data reprocessing and inspection

of the candidates.

Given the very heavy computational effort required by the new pipeline, up
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to now only about 3% of the data have been processed using that, allowing me

to discover a new 2.7 ms millisecond pulsar, PSR J1832−0835, which indeed

turned out to be solitary (of course the code is sensitive both to binary and

isolated pulsars). Follow-up observations of this pulsar provided the positional

and rotational parameters of the source, and revealed that it may also be

a new good source for the use in the Pulsar Timing Arrays. However this

provisional classification will have to be confirmed after few additional months

of observations. This new millisecond pulsar, as well as 4 other millisecond

pulsars discovered and followed-up in the HTRU survey, will be presented in a

paper in preparation.

Furthermore, the data reduction with the new pipeline is keeping on and

will be significantly boosted by the availability in few months of new larger

clusters of computers at the collaboration sites, as well as the adoption of a

new version of the searching codes, suitable for being used on machine based

on Graphical Processor Units (GPUs).

However, besides the long timescale necessary for running the new pipeline,

a problem emerged in the course of the visual inspection of the pulsar candidates

of the med-survey data (both from the standard pipeline and the new pipeline),

i.e. their huge number, mainly due to the overwhelming presence of Radio

Frequency Interference (RFI), which makes a human selection very long and

tedious, if not almost unfeasible in the case of the pipeline for accelerated pulsar

candidates. As a consequence of this consideration, my work

FOURTHLY aimed to test the use of an Artificial Neural Network (ANN) in

an attempt to solve the aforementioned problem, i.e. trying to make a machine

able to distinguish between pulsars and non-pulsars among the candidates.

The possible discovery of new pulsars was not the only goal of such a work:

in fact, the aim was also to create a large and novel training set by which

improving the training of future machine learning algorithms. In order to reach

all these goals, the following method made up of two parts was employed: (i)

the investigation of the consequences of random number generation, for which

reason a ‘pseudo-committee’ of ten ANNs, rather than a single neural net, was

trained and then applied to all the HTRU survey candidates; (ii) the exploration

of the use of different ratios of pulsars and non-pulsars in the training set of
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the nets, exploiting this ratio to fine tune the rate of false positives (i.e. the

non-pulsars wrongly classified as pulsars by the nets) among the candidates.

However, it should be noted that the reduction of such a rate was obtained

at the expense increased false negatives (i.e. the pulsars misclassified as non-

pulsars), although in an acceptable percentage.

Owing to this method, the number of candidates for visual inspection

(among all those yielded by the standard pipeline from the processing of almost

all the med-latitude survey data), reduced from more than 19 millions to ∼
41,000, i.e. a human manageable number. These 41,000 candidates are currently

still being inspected by eye, with the hope of new pulsar discoveries.

Moreover, the candidates under inspection are being divided into three

categories, pulsars, non-pulsars and ‘confusion’ (i.e. those it is difficult to make

a decision about); once the inspection is completed, these categories can be used

in different ways to produce an improved training set for the nets. For example,

the confusion category could be excluded from it , in order to avoid error in

the training. Another possibility, which could maybe produce better results, is

to switch to a different approach, choosing to train the nets to recognise RFI

instead of pulsars, and hence creating the new training set divided into RFI

and non-RFI: the RFI class made up of the non-pulsar category, the non-RFI

class made up of the pulsar and confusion categories. This approach could lead

to reduce both false positive and false negative rates, yielding better trained

ANNs.

Besides the publication (which is in progress) of the results of this

investigation, the plan is to make the obtained training set public, so that

it can be available to all the pulsar community.
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