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To my patients, because improving their care
is the greatest trigger to keep on putting

so many efforts in basic and clinical research
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Abstract (En)

The advancements in basic sciences and the availability of sophisticated technological aids

have led over the last few years to the rise of innovative surgical strategies, the identification of

better prognostic/predictive biomolecular factors, and the development of novel drugs all meant to

profoundly impact the outcome of neurosurgical patients. This thesis touches upon the window of

opportunity to exploit bioengineering techniques in three subspecialties of this vast discipline:

neuro-oncology, radiosurgery and neuro-traumatology. After a thorough identification of some

unresolved clinical problems and the limits of current management strategies in those areas, some

technical solutions are proposed and defined from either experimental hypothesis or clinical

research investigations.

The neuro-oncology section presents the exciting topic of nanodrugs for adjuvant

chemotherapy in high-grade gliomas, the most aggressive primary brain tumours. The use of

hyaluronic acid nanoshells is proposed to encapsulate prodrugs and exploit the mechanisms of

interaction between glioma cells and hyaluronic acid, a natural component of extracellular matrix.

The theoretical advantages of this approach are discussed with details regarding the possible

scalability of this technique to increase the efficacy and biodegradability of other molecules suitable

as contrast media for neuro-imaging and radiotracers for nuclear medicine investigations.

The radiosurgery section in fact continues the previous one, highlighting the rationale for

further implementation of radiosurgical protocols thanks to nanoshell-encapsulated radioenhancers

and multi-imaging fusion protocols. Experimental data on the optimization of radiosurgical plans

for artero-venous malformations close to the motor strip or basal ganglia are presented,

demonstrating the dramatic reduction in radiation dose to the pyramidal tract, and supporting the

anticipated benefits in terms of radioprotection and avoidance of post-radiosurgical deficits.

Finally the neurotrauma section presents the clinical results from a prospective study on an

innovative device for non-invasive monitoring of intracranial pressure, a tool that given the high

reliability demonstrated in this research might find a role in preclinical or neurointensive care

settings and reduce the need for serial neuroimaging in traumatic brain injured patients.

The last chapter concludes this thesis duly outlining some forecasts and supporting literature

for the widespread application of bioengineering enhanced solutions in neurosurgical theatres,

wards or outpatient clinics.
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Abstract (It)

I recenti progressi tecnologici hanno prodotto un’evoluzione della pratica neurochirurgica

permettendo di perfezionare innovative tecniche chirurgiche, di identificare nuovi fattori

prognostici e di sviluppare nuove terapie farmacologiche a beneficio dei nostri pazienti. La presente

tesi ha come scopo principale quello di descrivere le opportunità attualmente offerte

dall’applicazione di tecniche derivate dall’ingegneria biomedica in tre distinte sottospecialità

neurochirurgiche: la neuro-oncologia, la radiochirurgia e la neuro-traumatologia. Partendo da una

accurata definizione di alcune pressanti problematiche pertinenti a queste sottospecialità, vengono

qui proposte alcune ipotesi sperimentali e investigazioni cliniche volte a superare i limiti delle

attuali strategie diagnostiche e terapeutiche.

La sezione neuro-oncologica è interamente incentrata sullo sviluppo di nanofarmaci per

trattamenti chemioterapici in pazienti affetti dai più aggressivi tumori primitivi del sistema nervoso

centrale: i gliomi di alto grado. Nello specifico, l’impiego di nanosfere di acido ialuronico viene

proposto come elegante strategia per ottimizzare il trasporto di chemioterapici basata sulla selettiva

interazione tra cellule gliali e acido ialuronico, uno dei principali componenti della matrice

extracellulare cerebrale. In tal senso, vengono analizzati sia il razionale per proporre tale approccio

terapeutico, che le possibilità di estendere la medesima strategia ad altre molecole appartenenti alla

famiglia dei mezzi di contrasto superparamagnetici impiegati in risonanza magnetica ad alto campo,

o ancora a radiotraccianti utilizzati per indagini di medicina nucleare.

La sezione radiochirurgica infatti prosegue evidenziando le opportunità di ottimizzazione di

protocolli radiochirurgici grazie all’impiego di radioenhancers incapsulati in tali nanosfere, o

mediante la definizione di protocolli di fusione di immagini preoperatorie. In tal senso, vengono

descritti i dati sperimentali relativi a piani di cura per malformazioni arterovenose adiacenti ad aree

cerebrali eloquenti, dimostrando la significativa riduzione della dose radiante al tratto piramidale ed

i relativi benefici in termini di radioprotezione e prevenzione di deficit postradiochiurgici.

Infine la sezione relativa alla neuro-traumatologia offre i risultati sperimentali ottenuti con

un’innovativa strategia per la misurazione non invasiva della pressione intracranica, che alla luce

dell’accuratezza dimostrata potrà presto trovare spazio sia in ambito preclinico che ospedaliero nel

trattamento dei pazienti ricoverati per trauma cranico grave.

Nel capitolo conclusivo vengono infine offerte alcune previsioni, supportate dalla relativa

letteratura scientifica, relative al crescente impiego che l’ingegneria biomedica avrà nei prossimi

anni nella pratica neurochirurgica.
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Chapter I:

What Neurosurgery Can Learn from
Biomedical Engineering

Most Relevant Publication:
Ganau M, Foroni RI, Soddu A, Ambu R. Biomedical Engineering and Nanoneurosurgery: From the
Laboratory to the Operating Room. In Handbook of Clinical Nanomedicine: Nanoparticles,
Imaging, Therapy and Clinical Applications (Editors: Bawa R, Audette GF and Rubinstein I) Pan
Stanford Publishing, Chapter 49: pp 1433-40; 2016
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1.1 Challenges in Neurosurgery

Neurosurgery involves the repair, resection, replacement, or improvement of the Central and

Peripheral Nervous Systems (CNS, PNS) and their functions in numerous ways. Recently, many

remarkable discoveries in neuroscience have deepened the understanding of vexing diseases

affecting both of the CNS and PNS; and this trend, paralleled also by exponential advances in basic

sciences and biomedical engineering, allowed for new translational projects theorized and

implemented by few, enlightened, multidisciplinary research teams. Curiously, until a few decades

ago, when such a cross-sectional approach was not contemplated, most surgeons tended to be

generally unaware of innovative technologies ready for out-of-laboratory use; whereas the vast

majority of scientists often ignored the surgeons’ needs and therefore which new tools, materials

and techniques to propose them.

Nowadays, thanks to the fruitful and dynamic interaction between surgeons, engineers, and

scientists some of our most pressing problems are in the process of being finally solved. As a result

of this never-ending scientific journey, the entire specialty of neurosurgery, which has always

progressed at the intersection between technology and medicine, is now heading toward a

previously unimagined frontiers of diagnosis and treatment. In some areas of our specialty, this

paradigmatic change has already occurred or will become more evident in the next few years when

it is expected to bring about changes in every aspect revolving around our patients: from the design

of hospitals’ wards and operating rooms, till to the functions and potentialities of new drugs and

scalpels.

In this thesis we will initially focus on exploring the applications of biomedical engineering

and allied sciences, such as nanotechnology, in the various neurosurgical subspecialties; before

moving to the next sections devoted to the experimental research conducted during the course of

this PhD in the areas of drug delivery, neuroimaging, and non-invasive monitoring of intracranial

pressure.

1.2 State of the Art in Neuro-Oncology

Primary brain tumours originate in the central nervous system and, although representing

serious pathological conditions which are often life threatening, normally do not spread to
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surrounding tissues. They occur in people of all ages, but are statistically more frequent in children

and older adults; data from the International Agency for Research on Cancer and various other

national registries (including the International Central Brain Tumor Registry of the United States

and the Cancer Research UK) show a crude incidence of 15-30 new cases per 100.000 inhabitants

in industrialized countries, with 70,000 new cases diagnosed worldwide every year.

Fig. 1.1: Artistic representation of a deep sited parieto-temporal brain tumour

The most common primary CNS tumours are meningiomas and gliomas, together

accounting for more than 60% of all primary lesions. Of note, gliomas represent 80% of the

malignant ones. CNS tumours are characterized by a wide clinical and histological heterogeneity;

this is particularly true for gliomas, because 35-40% of them have epigenetic modifications as the

underlying mechanism driving malignancy (Kondo Y, et al. 2014). As a result, scientists and

clinicians all over the world are still unable to predict the clinical evolution of each single patient

diagnosed with CNS neoplastic lesions, and the neuro-oncology community has tried to put all

possible efforts in the identification of better diagnostic and therapeutic strategies aimed at

improving the prognosis of those patients.
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From a strictly surgical perspective, maximum but safe resection, followed in case of

malignant lesions by adjuvant radiotherapy and chemotherapy, has shown the best clinical results in

terms of overall and relapse-free survival. Therefore the surgical and medical treatment of deep-

seated or functionally critically located neoplastic lesions have become the ultimate frontier of

clinical practice. In fact, whenever tumours or other space occupying lesions are located in critical

brain areas, as those responsible for speech or motor functions, aggressive surgical excision might

not be efficiently and safely feasible, requiring instead a tailored management strategy. This led to

the introduction, into daily clinical practice, of innovative techniques for optimized tumour

visualization, such as spectroscopy and intraoperative magnetic resonance imaging (MRI). Also, for

more than a decade, intra-operative neuronavigation, along with cortical and subcortical

electrostimulation (IOM) or awake surgical techniques, have provided the operating neurosurgeon

with a continuous feedback to estimate the extent of resection (Ganau M, et al. 2015).

Fig. 1.2: Preoperative MRI with registration fiducials for intraoperative neuronavigation

Nonetheless margins for improvement are still considerable, given that the rates of complete

resection in resectable tumours are disappointingly low and range from 20% to 60% despite the use

of neuronavigation (Schucht P, et al. 2015). Also, recent studies show that patients with large
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tumours are more prone to worsening in executive functions soon after operation, despite the use of

IOM (Talacchi A, et al. 2010)

Furthermore, beside the current limits in surgical practice, also chemotherapy regimens for

many malignant tumours are failing to deliver the expected results in terms of extended progression

free survival or overall survival, and in almost all histotypes quality of life (QoL) has being

significantly affected by their toxicity.

As a result of this introductive overview, the current prognosis for most brain tumours has

improved over the last 20 years, but unfortunately is still dismal. Many limits of current

management strategies are basically due to the poor understanding of the many biological variables

responsible for the phenotypic behavior of brain tumours. To this regard, several nanodevices for

single cell proteomic analysis are in advanced stage of investigation with potential to shed light on

the fingerprint of brain tumours (Ganau M, et al. 2014).

Fig. 1.3: Microwells and Immunofunctionalized nanosensors for proteomic analysis of gliomas

Such biomolecular markers are potentially of great value to neurosurgeons, radiation

oncologists, and neurooncologists in optimizing brain tumour treatment. They all come with great

expectations, and might prove to be extraordinary tools providing new insights on the biological

understanding of this class of tumours upon which to base enhanced therapeutic strategies.
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1.3 State of the Art in Vascular Neurosurgery

Rupture of a vascular malformation may lead to subarachnoid haemorrhage (SAH) or

intracerebral haemorrhage (ICH). An intracranial aneurysm is the most common cause of SAH,

whereas an arteriovenous malformation (AVM) is more likely to be associated with an ICH. AVMs

are congenital abnormal connections between arteries and veins, bypassing the capillary system.

Fig. 1.4: Artistic representation of cerebral aneurysms (left image) and AVMs (right image)

Clinical registries show that the prevalence of unruptured intracranial aneurysms might be

estimated as 1 in every 20-30 adults, with approximately 1/4 of these aneurysms at risk to rupture in

a lifetime; on the other hand, AVMs have approximately 1/5 to 1/7 the incidence of intracranial

aneurysms, and in roughly 80% of cases they are asymptomatic (National Institute for Neurological

Disorders and Stroke). In case of bleeding, both aneurysms and AVMs may cause life-threatening

acute cerebrovascular events, which typically occur in working-age people. For decades the

mainstay of treatment for those vascular malformation had been clipping or microsurgical excision,

and back then neurosurgeons could have hardly imagined that the treatment of those neurovascular

pathologies was deemed over the years to become less surgical and to include radiosurgical and

endovascular techniques (Allain JC, et al. 2013).



14

Regarding the treatment of aneurysms, the endless evolution of vascular neurosurgery is best

represented by the concept of endovascular remodeling, so that nowadays reconstructing cerebral

arteries diseased with aneurysms is becoming more appealing than clipping or coiling the

aneurismal dome itself (Graziano F, et al. 2014). Nonetheless, stents are also in continuous

evolution and soon they will serve as more than just scaffolds (Barath, K, et al 2004; Salmasi S, et

al. 2014). In fact, their nanofunctionalization is offering to neurovascular specialists surgical

opportunities that were out of reach at the microsurgical level: specifically, the production of

biodegradable and bioactive coated stents are the most emerging trends.

On one hand, encouraging data from cardiac interventional radiography are showing that

biodegradable dual-drug-eluting stent can offer new opportunities for a sequential and sustained

release of anti-platelet (i.e. acetylsalicylic acid) and anti-smooth muscle cells (i.e. paclitaxelin)

drugs to prevent thrombosis or luminal occlusion (the main long-term complication of any

endovascular treatment). On the other hand bioactive coatings restoring an antithrombotic surface

are already offering alternatives to systemic anticoagulation, and could in future be functionalized

to attract magnetized cells to repair the blood vessel. By modifying the stent coatings (i.e. using ion

beams to create biomimetic surface textures) it would be possible to promote endothelial cells

proliferation, activate resident stem cells from the arterial walls, and induce a faster vessel repair

(Myerson JW, et al. 2014; Lee CH, et al. 2014).

Another area of significant innovation is represented by the introduction of laser tissue

soldering (LTS) of biological tissues where the innovative functionalization of current energy

absorbers is offering a substantial breakthrough for vascular anastomosis (i.e. intra-extracranial

bypasses). Various studies on near-infrared absorbing gold nanorods or chromophores-loaded

nanoshells, have demonstrated that with optimally chosen settings of irradiation time, and carefully

selected coating and scaffold properties of energy-absorbing immunoneutral nanoparticles,

improved LTS procedures can become easier to perform, while preserving in the long-term the

vessels’ mechanical properties and patency (Esposito G, et al. 2012).

Regarding cerebral AVMs the current state of the art is toward a multistage/multimodality

management including endovascular embolization plus surgical excision or endovascular

embolization plus radiosurgical treatment. This approach has now allowed to increase the number

of complex AVMs amenable for complete treatment, and has ultimately reduced the cumulative risk

of bleeding of such a multistage/multimodality management compared to the one typical of each

single therapeutic option.
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Fig. 1.5: Left temporo-occipital AVM presenting with intraparenchymal bleeding ( CT on upper series). The

feeders from left posterior cerebral artery and left middle cerebral artery were treated with angiographic

embolization (DSA on second series).The T2 weighted MRI and CT controls at 1 month and 1 year from

treatment (last two series of images) show the good exclusion of the AVM, but unfortunately demonstrate a

large residual poroencephalic cavity.
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Despite these advances in the management of intracranial vascular pathologies, the number

of patients with severe disabilities following their surgical, endovascular or radiosurgical treatment

is still high, calling for a further refinement of current techniques. As witnessed in the last decades

this might only come from a better understanding of the underlying pathophysiology and the

translation of new methodologies into the clinical arena.

1.4 State of the Art in Neuro-Traumatology

Severe traumatic brain injury (TBI) patients represent a substantial proportion of

traumatisms requiring admission to Intensive Care Units (ICU), and can be defined as a disruption

in the normal function of the brain caused by a blunt impact to the head, or by a penetrating head

injury. Among the approximately 30 million injury-related Emergency Department hospitalizations

occurring each year in the United States, 16% include TBI as a primary or secondary diagnosis. Of

note, the related mortality rate may be astonishingly high, with some clinical series reporting a 50%

mortality, resulting in over 50,000 deaths/year (Center for Disease Control and Brain Trauma

Foundation). Severe TBI is classically associated with loss of consciousness for at least 30 minutes

usually with transitory or permanent memory impairment. The related neurologic deficits vary in

intensity, length and clinical manifestation depending on the severity of injuries; as such the degree

of recovery is highly variable: survivors may have motor deficits, abnormal speech, loss of thinking

ability or emotional problems. Initial assessment of TBI patients require evaluation of the extent of

impairment of cognitive functions, usually through international scales such as the Glasgow Coma

Scale (GCS), and neuroradiologic investigations to highlight the nature of the brain damage.

A Computed Tomography (CT) scan performed upon admission to the Emergency

Department may indentify traumatic lesions involving bony structures, such as calvarial and skull

base fractures, and/or intracranial compartments with localized haemorrhagic lesions, such as

extradural, subdural or intraparenchymal haematomas, and/or more diffuse parenchymal lesions,

such as basal contusions or post-traumatic SAH.

Unfortunately all those post-traumatic lesions which are considered as the consequence of

the primary injury may evolve over time due to the occurrence of other pathological mechanisms of

secondary injury, mostly mediated by the inflammatory cascade; as such, any lesion involving the

intracranial compartments may cause mass effect on the surrounding brain structures due to brain

oedema or shift of the midline structures (i.e. ventricular system).
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Fig. 1.6: Artistic representation of intracranial haemorrhages and

subsequent mass effect due to TBI (A: anterior; P: posterior, R: right, L: left)

To tackle the pathologic events related to TBI, monitoring in neurocritical care has evolved

from being primarily focused on intracranial pressure (ICP) and cerebral perfusion pressure to

include a wide array of monitoring modalities, providing insight into oxygenation, perfusion,

electrophysiology and metabolism of the brain.

Today, multimodality neuromonitoring is not only meant to identify second insults or

intracranial complications (such as delayed hemorrhages, increase in ICP, etc.), but also to guide the

clinicians along the difficult choices of therapeutic management. Nonetheless those approaches are

mainly invasive (i.e.,: ventricular catheters, microdialysis catheters, subdural electrocorticography,

etc.) and for this reason have a number of possible complications, spanning from periprocedural

bleeding to high infection rate, which are still limiting their benefits.
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Fig. 1.7: CT scans showing different types of primary injuries in patients with TBI. Note the right acute

subdural haematoma (upper series), left temporal extradural haematoma (second series), the 3D

reconstraction of a left occipital depressed skull fracture extended controlaterally (third series), and the

diffuse bilateral frontobasal contusions (bottom series).
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Whereas these approaches are still the gold standard, we are witnessing a strong trend

toward minimal invasiveness, and this is continuously reshaping monitoring protocols for TBI

worldwide. Non-invasive clinical methods to monitor cerebral metabolism and cerebral electrical

activity have been widely advocated to be a valid alternative to invasive monitoring modalities. For

instance, protocols for continuous monitoring of peripheral blood glucose variability could allow to

identify and prevent secondary injury and systemic inflammatory response syndrome in TBI

patients; and the use of Event-Related Potentials (in particular Mismatch Negativity and other long-

latency components, such as N100 and P300), has been proven reliable in assessing and predicting

the recovery of consciousness in unresponsive patients whose behavioral assessment would

otherwise be impossible in an ICU setting.

Presently, the biggest area of research is devoted to designing and testing devices able to

provide an estimated measure of ICP by a non-invasive way. Some of these methodologies have

already reached clinical stage of development, such as the sonographic measurement of optic nerve

sheath diameter (ONSD), but still lack accuracy, this therefore represents the biggest challenge of

today’s clinical research in neurotrauma.

1.5 Identifying Current and Future Needs in Neurosurgery

The exploitation of biomedical engineering-related technologies is expected to deliver

enhanced diagnostic and therapeutic solutions in each of the above mentioned subfields of

neurosurgery. In particular, the advancements in basic sciences and the subsequent availability of

sophisticated technological aids to surgery are expected to lead in the coming years to the

identification of better prognostic/predictive biomolecular factors, the development of novel drugs,

and the rise of innovative surgical strategies, all meant to profoundly impact the outcome of

neurosurgical patients.

For instance, basic research in neuro-oncology is now shifting into investigating the

complex cellular and molecular processes responsible for the recurrence of the disease, and

clinicians are waiting to see those discoveries translated from bench to bedside. New concepts of

tumour origin and proliferation have led to envisaging the next generation of chemotherapy agents,

which might activate immunologic memory serving as vaccines directed towards gliomas’ specific

antigens (Block O, et al. 2015). These strategies might ultimately lead to the development of drugs
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acting as veritable Trojan horses, and meant to specifically target cancer stem cells and circulating

tumour cells (Ganau M, et al. 2015).

The continuous pursuit of minimal invasiveness will also extend the indications for

radiosurgery which, combining the effectiveness of the conformal 3D dose distributions with a

reduced toxicity of radiation, is already making a significant contribution to the management of

patients harboring brain lesions, either neoplastic, vascular or functional ones. In fact, updated

techniques for radiological planning and robotic neurosurgery are already in advanced stages of

laboratory validation and are meant to increase even further the accuracy of surgical or

radiosurgical treatments.

Also, the scientific contribution of several clinical trials, aimed at better defining the

radiobiological parameters of several brain tumours, is already leading to some attempts to create

tumor control probability models meant to revolutionize in the near future today’s protocols. To this

regard, more accurate imaging techniques might in future play a role in achieving a better surgical

planning and postoperative follow up: key to this will be the designing of enhanced contrast agents

for pre- and intra-operative identification of vascular and neoplastic lesions.

For instance, significant efforts are now put in the characterization of compounds that have a

high affinity in binding to neoplastic cells, which might certainly lead to an optimized definition of

tumours’ boundaries or to an easier differential diagnosis with postoperative changes (i.e.

recurrence, radionecrosis, etc). Similar to this approach, strategies for improved radiosurgical

treatment include the designing of effective radioenhancers which are awaited to increase the

toxicity of radiation while sparing the healthy parenchyma surrounding the target area.

Finally, also neuro-traumatologists have well highlighted the need for new methods of non-

invasive monitoring of TBI patients, aimed at the early identification and limitation of biological

cascade responsible for secondary injuries. The research strategies currently exploited to reach this

goal are based on the continuous refinement of algorithms based on the analysis of multiple

parameters influencing the pressure-volume relationship between ICP, volume of cerebrospinal

fluid (CSF), blood, and brain tissue, and cerebral perfusion pressure (CPP) known as the Monro-

Kellie doctrine.

The needs highlighted in all those neurosurgical subfields confirm that the development of

novel therapies will only come from an unprecedented integration of neuroscience, bioengineering,

molecular biology, and physiology, enabling real personalization and adjustment of treatment,

critical in such challenging pathologies desperately needing concrete improvements in patient

outcomes. The next chapters will focus on our attempts to contribute to these endeavours.
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Chapter II:

Functionalizing Nanodrugs
for Treatement of Brain Tumours

Research presented at:
International School on Smart Nanomaterials 2015, Rostov-on-Don, Russia

Most Relevant Publications:
Ganau M, Tackling gliomas with nanoformulated antineoplastic drugs: suitability of hyaluronic
acid nanoparticles. Clin. Transl. Oncol. 16(2): 220-3; 2014

Ganau L, Paris M, Ligarotti GK, Ganau M. Management of Gliomas: Overview of the Latest
Technological Advancements and Related Behavioral Drawbacks. Behav Neurol. 2015: 862634;
2015

Recognition:
Canada-Italy Innovation Award 2015
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OVERVIEW AND RESEARCH QUESTION

2.1 Background on Gliomas

Gliomas represent the most frequent class of malignant primitive tumours of the central

nervous system (CNS). According to their aggressiveness, the World Health Organization (WHO)

classifies them into Grade 1 and 2, or low-grade gliomas (LGG), and Grades 3 and 4, or high-grade

gliomas (HGG).

Although relatively rare (incidence of 5/100,000 person/years in Europe and North

America), HGG are associated with disproportionately high morbidity and mortality regardless the

application of state of the art treatment strategies; in fact, their outcome remains poor, with a

median survival of only 14.6 months (Ohgaki H, et al. 2009). Also LGG, despite the relatively slow

growth, do not present a good outcome, as approximately 70% of Grade 2 gliomas are known to

evolve to anaplasia, leading to neurological disability and ultimately to death within 5-10 years

(Sanai N, et al. 2011).

Table 2.1: Pathological characteristics of LGG and HGG
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As for most malignant brain tumours, the mainstay for treatment of HGG is maximal

resection (ideally, gross total resection: > 95% of the lesion) followed within 30 days from surgery

by radiation therapy with concurrent or adjuvant chemotherapy (Talacchi A, et al. 2010). In fact,

clinical evidence that a proactive and aggressive treatment plan improve the outcome of glioma

patients when compared to biopsy alone, prompted maximum but safe resection to become the

ultimate goal of the neurosurgical treatment (Talibi SS, et al. 2014). Nonetheless, the improvement

of patients’ outcome following gross total resection of HGG mainly relies on extended progression-

free survival, rather than on improved QoL or overall survival. Specifically, the impact of surgery

on progression-free survival and overall survival has been debated for decades, because of the

contradictory results published prior to the diffusion of routine post-operative MRI and volumetric

analysis of the extent of resection, which ultimately confirmed the importance of radical removal to

extend survival (Schucht P, et al. 2015).

Fig. 2.1: Microphotograph showing the histological pattern of HGG (Hematoxylin-Eosin, 100x): note the

pseudopalisading cells (red arrows), necrosis (asterix) and  hypercellularity (blue arrow)

Concerning LGG, some recent studies have shown similar results confirming that LGG

managed with biopsy or subtotal resection followed by a wait and see approach are a higher risk of

malignant transformation compared to those treated with more extensive tumour removal (Duffau

H, et al. 2009; Soffietti R et al. 2010).
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Other studies suggested that the extent of removal does not influence the outcome, whereas

the best improvements generally come from the postoperative gain of previously impaired

functions. To this regard, Talacchi et al. concluded that although the worsening in executive

functions soon after operation leaves the overall cognitive burden initially unchanged, it is often

transitory and capable of improvement prospectively (Talacchi A, et al. 2010).

Fig. 2.2: MRI spectroscopy of LGG: compared with a normal brain, the signal of Choline (Cho) is elevated

due to increased membrane synthesis in rapidly dividing tumour cells; N-acetyl-aspartate (NAA), a putative

neuronal marker, is decreased due to neuronal loss or dysfunction; the Creatine (Cr) peak is related to the

increased tissue energy metabolism.

In the process to enhance the efficiency of surgical resection, adjuvant radiotherapy has

established itself as one of the most valuable tools, especially because conformational treatments

now allow preservation of surrounding healthy brain parenchyma. A recent study meant to establish

the role of adjuvant radiotherapy on 14,461 patients affected by HGG found a statistically

significant interaction between overall survival and histological grade, whereas no significant

interactions were observed between radiotherapy and extent of resection (Rusthoven CG, et al.

2014).
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Fig. 2.3: Recurrence of left parieto-occipital HGG (T1 and T2 weighted MRI sequences, left and right

respectively): preop scan (top), post radiotherapy follow up (middle), recurrence of the lesion 18 months

after initial surgical excision (bottom).
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Fig. 2.4: Single and multivoxel MRI Spectroscopy from patient in Fig. 2.3 ruling out radionecrosis and

confirming the neoplastic nature of the recurrent left parieto-occipital HGG.
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The effect of radiotherapy is further increased by adjuvant chemotherapy with the

alkylating/DNA methylating  agent temozolomide. This treatment strategy known as Stupp protocol

is nowadays the gold standard regimen for Grade 4 gliomas, as it has demonstrated to provide

patients with a significant increase in 2-year survival from 10.4% to 26.5% (Stupp R, et al. 2005).

Fig. 2.5: Spreading of HGG: note the “butterfly” growth pattern across the corpus callosum with infiltration

of the controlateral hemisphere, suggesting that only radiotherapy and chemotherapy are viable options for

the management of this patient.

Whilst the adjuvant radio- and chemotherapy options have become established treatment

modalities for HGG, their role in LGG is highly debated. Several studies have been conducted over

the years on this topic, and recently some long term survival analyses are becoming available. For

instance, Nitta et al. aiming to test the hypothesis that adjuvant therapy might not be necessary for

LGG cases in which total radiological resection is achieved, enrolled in a longitudinal study a total
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of 153 patients treated for LGG between 2000 and 2010 (Nitta M, et al. 2015). The multivariate

analysis conducted on the data retrieved from those patients did not identify Ki-67/MIB-1

proliferation index (based on monoclonal antibodies directed against different epitopes present

during all active phases of the cell cycle like G1, S, G2, and mitosis, but is absent from resting cells

in G0 phase) or radiotherapy as prognostic factors, but it did identify chemotherapy as a prognostic

factor for progression free survival, and extent of resection for both progression free survival and

overall survival of LGG.

These findings support the current accepted practice of using more aggressive treatment

with radiotherapy only in LGG patients with a poor prognosis, such as those with diffuse tumours

(in particular astrocytomas rather than oligodendrogliomas), and those with partial resection.

Of note, some advancements have also been accomplished in the field of radiation therapy.

For instance, the observation that local control and median survival can be improved through the

radiation dose escalation, has gradually introduced stereotactic radiosurgery (SRS) in the

therapeutic panel for HGG.

Although limited data are available concerning salvage SRS, a 2012 retrospective study of

77 recurrent HGG patients showed that the median post-treatment survival doubled for those

receiving Gamma Knife SRS compared to patients treated with second-surgery alone, and

advocated SRS as an alternative to open surgery for HGG at the time of recurrences, because of the

significantly lower complication rate (Skeie BS, et al. 2012).

The availability of sophisticated technological aids to neurosurgical management of gliomas

is now pushing towards an optimization of all the treatment options described above, with the

ultimate goal to improve the survival and QoL of affected patients. In particular, new solutions

exploiting biodegradable materials are particularly sought to bypass the blood brain barrier (BBB)

which is still the main limiting factor to the introduction of new drugs for second line

chemotherapy, or to reduce the toxicity of radiotherapy and radiosurgery to healthy brain while

increasing their lethal action toward the tumoural mass.

2.2 Understanding the Blood Brain Barrier

More than 97% of CNS drugs fail to go into clinical trials due to poor penetration into the

brain; the impenetrability of the BBB is in fact the major roadblock in developing new therapies and

represents the main reason for this high rate of failure (Pardridge WM, et al. 2007). The brain
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microvasculature is the gate for all metabolic nutrients that supply the CNS: the human brain

consumes about 15-20 W power daily, accounting for 15-20% of the overall basal metabolic rate,

and 15-20% of the oxygen and glucose transported in the blood stream.

What tightly regulates transport into the brain is the biomechanical and biochemical barrier

between the capillaries and the cellular compartment (which include not only neurons and

astrocytes, but also microglia and pericytes) accounting for 3% and 80% respectively of the total

brain volume. The surface area of the microvasculature responsible for the dynamic interaction

between the brain and the blood stream has been esteemed to range between 100 and 200 cm2/g

tissue, corresponding to a total surface area of 15-25 m2. Some further figures explain the

complexity of this system: capillaries may be as small as 7-10 μm in diameter, while the average

intercapillary distance is about 40 μm and most neurons result to be within 10-20 μm of the nearest

capillary (Wong AD, et al. 2013).

The interface known as BBB is very complex: on one hand endothelial cells constitute the

walls of capillaries and are connected by tight junctions (formed by claudins, a family of more than

20 isoforms, as well as occludins) and adherence junctions (formed by vascular endothelial

cadherins, catenins and vinculins), creating a barrier with an extremely high electrical resistivity; on

the other hand the outer surface of capillaries is itself surrounded by pericytes and astrocytes.

Finally, the basement membrane surrounding endothelial cells and pericytes is comprised of

fibronectin, laminin and collagen type IV; and has a thickness of about 100 nm (Dejana E, 2004).

All together those structures convey in what has recently been described as the neurovascular unit: a

concept introduced to recognize the importance of functional interaction between neurons and non-

neuronal cells for the brain’s well being (Hawkins BT, et al. 2005).

Adherence and tight junctions are structurally and functionally linked, as they regulate

paracellular transport; whereas transcellular transport is regulated by specialized transporters,

pumps and receptors.

As such, the BBB is permeable to the passage of H2O and lipid-soluble molecules by

passive diffusion, and to glucose and small aminoacids that are crucial to neural function by

selective transport; on the other hand, it prevents the entry of lipophilic molecules and potential

neurotoxins by way of an active transport mechanism mediated by P-glycoprotein (P.gP).

Highlighting the importance of transport across BBB, it has been estimated that 10-15% of all

proteins in the neurovascular unit are transporters (Wong AD, et al. 2013).

Although the structure above described is homogeneously distributed in almost the entirety

of the CNS, few specialized regions of the brain lack a proper BBB: specifically, the

circumventricular organs located at the surface of the III and IV ventricles (such as the vascular
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organ of lamina terminalis, the subcommissural organ, the median eminence, intermediate lobe and

posterior lobe of the pituitary gland, the subfornical organ, the pineal gland and the area postrema)

allow a direct communication between the brain and the vascular system.

This permeability is functional to the role of periventricular organs, and allows neurons and

glia at these sites to sense changes in the concentration of various molecules, such as hormones,

neurotransmitters and cytokines into the circulation.

Furthermore it is well known that the BBB can exhibit a significant plasticity in response to

abnormal physiological conditions (i.e. to increase the influx of nutrients when needed), and that

several pathologies (such as neuroinflammatory diseases as well as primary and secondary tumours)

or specific drugs (i.e. cyclosporine A, mannitol, etc) can lead to its disruption and subsequently to

an increased permeability (Ito H, et al. 2003; Rapoport SI, 2001).

This spontaneous or temporarily induced permeability has been extensively exploited to

overcome the BBB, and still represent the main strategy to bypass the limitations imposed by

paracellular and transcellular transport. Nonetheless the use of physical and chemical method to

disrupt the BBB comes at a cost in terms of toxicity, especially after repeated exposure, therefore

alternative methods are intensively sought (Hinow P, et al. 2005).

In light of the above, the specific aim of this section is to investigate the opportunity to

develop innovative nanocarriers with potential to overcome the BBB, tackle glioma cells, and

deliver their chemotherapy payload where it is most needed. Specifically, experimental evidence

from the existing literature will be provided to support this theoretical hypothesis, and to envisage

the possibility to intervene in the various stages of the invasive process, or to exploit those

nanocarriers as both diagnostic and therapeutic tools.

EXPERIMENTAL WORK

2.3 Rationale for Proposing Hyaluronic Acid Nanoshells

The development of drug delivery systems able to induce accumulation of a prodrug or its

metabolites in aggressive tumours is providing new approaches to achieve enhanced antitumor

activity while reducing systemic toxicity. Only recently, the integration of core concepts from the
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field of biotechnology, nanotechnology and pharmacodynamics provided us with new insights on

the possibility to identify anti-neoplastic targets and evaluate the theoretical feasibility of producing

drug-incorporated nanoparticles.

Indeed, gliomas could represent the perfect proof of concept for nanoformulated drugs due

to the intrinsic characteristics of those tumours: mainly, the high aggressiveness, poor prognosis,

and high degree of chemo-resistance. A thorough analysis of the current therapeutic armamentarium

available for primary brain tumours, and the possible targets of bioengineered nanoparticles, is

perfectly suited to better understand the opportunities provided by such innovative therapeutic

approaches and maximize their possible research and clinical values.

As previously explained a common concerns that arise while facing pharmacological design

of drugs intended for CNS malignancies include not only delivery to tumour cells and surrounding

tissue, but also penetration through the BBB as tight junctions and Pg.P prevent entry of most

anticancer agents into the brain (Muldoon LL, et al. 2007).

Thus, the major issues for antineoplastic formulations are: 1) the choice of drug

administration (systemic or local) and consequently the residence in the systemic blood circulation

or in the brain tissue adjacent to topic injection, 2) the drug loading efficiency and 3) the burst

release effect through the extracellular matrix (ECM).

To date the systemic side effects are the most important factors influencing patient’s

compliance to treatment and clinical outcomes. In fact beside general toxicity, such as nausea,

cutaneous rash and vomiting, every agent currently in use is responsible for specific side effects (i.e.

myelosuppression for Temozolomide, leukoencephalopathy for Carmustine, etc.), which represent

the main dose limiting functions. Accordingly, the development of a drug delivery system able to

enhance accumulation of a prodrug or its metabolites within gliomas, while reducing its

accumulation elsewhere, would provide a promising approach to achieve enhanced antitumor

activity along with reduced collateral damages (Villano JL, et al. 2009).

Since HA has immunoneutrality, we and others recently proposed it as a biocompatible and

biodegradable material for tissue engineering and development of drug delivery systems (Luo Y. et

al. 1999; Freed LE, et al. 1994; Ganau M, et al 2012). The possibility to develop anticancer agents

using biodegradable microspheres and nanopolymers was proposed for a wide range of antibiotic

and chemotherapeutic agents, basically with the aim to obtain prolonged plasma half-life, improved

solubility and pharmacokinetic features of the resulting conjugate (Emerich DF et al. 2000;

Avgoustakis K, et al. 2002). However, only recently formulations of several drugs or prodrugs

conjugated to polymeric coated HA nanoparticles of Poly(ε-coprolactone), Polylactide, Poly(lactic-

co-glycolic acid), Poly(ethylene)-glycol, Polycarylates and Chitosan were found effective as smart
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delivery systems both in vitro and in vivo (Kundu P, et al. 2012; Madan J, et al. 2012; Tripodo G,

et al. 2015; Xin H, et al. 2012). For instance the conjugation of HA and Poly(ε-coprolactone) has

been exploited for the preparation of drug delivery systems for either oral and parenteral

administration of drugs as Docetaxel for breast cancers (Youm I, et al. 2014); whereas a

HA/Polylactide derivative gel was used as coating material for titanium prosthesis for the

continuous release of antibiotics such as Vancomycin and Tobramycin and the prevention of

postsurgical infections (Pitarresi G, et al. 2013).

The translation to neuro-oncology of those successes in the development of innovative drugs

appears feasible for several reasons as HA conjugates could leverage on numerous advantages over

existing formulations. On one hand, their ability to overcome the BBB and to produce biologic

effects on the CNS is mainly based on receptor-mediated endocytosis in the brain capillary

endothelial cells (Wohlfart S, et al. 2012). On the other, their propensity for tumour targeting takes

advantage of the peculiar interaction between glioma cells and the ECM, as in the case of matrix

metalloproteinases (MMPs) triggered release (Sarkar N, et al. 2008; Gu G, et al. 2013).

Fig. 2.6: Artistic representation of the stages of neoplastic invasion into the ECM

and proposed action of HA-conjugated nanodrugs
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HA is a natural linear polysaccharide constituted by repeating units of N-acetyl-D-

glucosamine and D-glucuronic acid with the monosaccharides linked together by alternating β-1,3

and β-1,4 glycosidic bonds.

The carboxyl groups of HA are predominantly ionized at pH 7.4 and therefore in

physiological conditions, HA appear as a polyanion, known as hyaluronan (Fraser JR, et al. 1997).

HA is found in a wide molecular weight ranging from 20kDa of HA oligomers (o-HA), till to the

high-molecular weight (HMW) of bulk HA (~1.5MDa). In solution, the chains of HA adopt a

random coil conformation, and its high hydrophilic nature leads to multiple hydrogen bonds with

H2O, explaining the viscous and elastic characteristics of the connective tissues in which this

polysaccharide is abundant.

Beside chemical conjugation it has been proved that HA can also be linked to other prodrugs

or to proper delivery systems by weak interactions such as those involved in the formation of ion

pairs (Nitta SK, et al. 2013; Oyarzun-Ampuero FA, et al. 2013), expanding the number of possible

candidates for conjugation with or encapsulation within those nanocarriers.

Fig. 2.7: Chemical Formula of HA and targets for its modification

Indeed, these characteristics not only allow to overcome many of the concerns related to

drug tolerance and side-effects, but also those related to the risk of cytotoxicity and genotoxicity of
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other nanomaterials which have strongly affected the clinical testing of drugs with a previously

unremarkable laboratory track (Greish K, et al. 2012).

Herein the specific reasons supporting the use of HA nanoshells as a therapeutic approach

for the management of gliomas are proposed and discussed.

2.3 a): Extracellular Matrix and Hyaluronidases

During brain development the ECM modulates the migration of glial and neuronal precursor

cells, guides axonal growth cones, synapse formation and cell proliferation. In normal reparative

processes, as well as in primary brain tumours, the ECM is present in increased amounts and

undergoes remodelling.

One of the main components of ECM is HA; it is noteworthy that interactions between

astroglial cells and HA play crucial roles in cell adhesion, growth, and migration during

inflammation, wound healing, and neuro-oncogenesis (Knudson CB, et al. 1993; Rooney P, et al.

1995). HA is increased approximately four-fold in primary brain tumours, reaching levels

comparable to those present during CNS development (Delpech B, et al. 1993).

The primary cell surface receptor for HA is CD44, a transmembrane glycoprotein belonging

to the superfamily of immunoglobulin receptors, implicated in a various range of physiological and

pathological processes, such as cell-matrix interaction and cell migration.

Since the invasive properties of malignant gliomas are due to their adhesion to ECM

components, the overexpression of CD44 and of another ubiquitous receptor for HA, the Receptor

for HA-Mediated Motility (RHAMM), in gliomas may be relevant to their highly invasive

behaviour within the brain.

Noteworthy, a gradient of expression was identified amongst gliomas, with HGG presenting

more RHAMM than does lower grade lesions or normal human astrocytes (Akiyama Y, et al. 2001).

Furthermore, the subsequent penetration of the brain parenchyma by glioma cells is related to the

cleavage of the ECM, and glioma cells have developed multiple mechanisms to achieve this goal.

Whilst CD44 is essential for HA uptake and also for intracellular transportation into

lysosomes, specific enzymes called hyaluronidases (HYALs) are the basis for endogenous or

exogenous HA degradation.

Many isoformes of HYALs exist in the human genome: HYAL1-4, PH20, and HYALP1;

although the precise mechanisms of HYALs expression and secretion in glioma cells are not fully

understood, they certainly correlate with the invasive behaviour of such tumours (Junker N, et al.

2003).
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Fig. 2.8: Artistic representation of a CD44 transmembrane receptor

Another pathway of ECM invasion is represented by MMPs, a large family of endopeptides

(currently consisting of 25 members), which are broadly subclassified as: membrane type MMPs,

collagenases, gelatinases, stromelysins, etc (Rao JS. 2003). MMPs are produced in cells as

proenzymes and require proteolytic cleavage for activation, they are overexpressed in numerous

malignancies, and appear critical for invasion and metastases.

Among MMPs, the two most strongly implicated in glioma invasion seems to be the

gelatinases MMP-2 and MMP-9, which are upregulated by genetic, hypoxic and stromal stimuli

(Csoka AB, et al. 2001).

As such, chemotherapeutic strategies for glioma patients can take advantage of

bioconjugates between HA and anticancer agents because of many reasons: as showed above the

overexpression of CD44 and RHAMM in glioma cells represents the basis to hypothesize the

selective targeting of HA-nanoparticles toward primary brain tumours, and both exogenous and/or

endogenous release of the prodrug carried may be envisaged.

Furthermore, the different response of glioma cells to endogenous and exogenously added

HA appears remarkable: administration of small o-HA, that compete for endogenous HA polymer

interactions, results in attenuation of HA induced signalling (Gilg AG, et al. 2008). This behaviour

antagonizes the malignant properties of glioma cells in vitro and in vivo, for this reason o-HA
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released upon dissolution of the HA nanoshells within the ECM holds the potential for a biological

“weapon” to inhibit glioma invasion, eventually enhancing apoptosis and downregulating key cell

survival mechanisms.

Fig. 2.9: Nanoshells of HA and their mechanism of action

Beyond HGG, one of the aspects that could further extend the theranostic use of HA-

nanoparticles in neuro-oncology could be their ability to track resident and circulating tumour cells

(CTC) as well as resident and circulating tumour neurospheres (TNS) (Cheng B, et al. 2014). In

fact, CTCs are recognized as the main factor responsible for formation of secondary brain

metastasis spreading from solid cancers, whereas TNSs are microaggregates of cancer

stem/progenitor cells recently linked also with cell renewal and tumour recurrency in HGG (Liu G,

et al. 2006). Since, as previously described, the possibility to target HA induced signal interactions

in malignant gliomas is almost certain, envisaging the capability to target even CD44+ TNSs (Anido

J, et al. 2010), would provide further evidence of the groundbreaking potentials of such prodrug

carriers.
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2.3 b): Fabrication Strategy

The technical limitations of encapsulating prodrugs within HA nanoshell were initially

raised especially for the high-molecular weight of bulk HA. Nevertheless, HA degradation to a low-

molecular weight o-HA seems an easy way to overcome this initial problem, and the possibility to

complex a chosen drug with the anionic domain of HA to form the nanospherical aggregates was

recently tested with great success.

In fact the production of cisplatin-incorporated HA nanoformulated drugs can be obtained as

described by Jeong et al. by spontaneous aggregation of nanoparticles of HA and cisplatin, due to

the formation of strong ion complex (Jeong YI, et al. 2008).

The need to experimentally evaluate the pharmacokinetics and pharmacodynamics aspects

of these nanoformulated drugs, which are related to the specific drug/prodrug tested, their molecular

weight and the kind of preparation/administration chosen, appears therefore justified by this

premises.

- To obtain LMW HA, the enzyme hyaluronidase (HAse) (10 units/mg of HA) is

added to a solution of 2.0 g of HMW HA (1500 kDa) in pH 6.5 PBS buffer (4

mg/mL). The degradation is carried out at 37 °C, 190 rpm stirring for 1 h, followed

by 95 °C for 20 min.

- The solution is dialyzed against water for 4 days at room temperature, then filtered

through a 0.2 μm cellulose acetate membrane and lyophilized. This process allows to

obtain 1.12 g of LMW HA (56% of the initial 2.0g of bulk HA).

- The choice of polymer/drug ratio depends on the prodrug tested: previous tests

dissolving in 10ml of deionized water 100mg of LMW HA and various amount of

cisplatin (Chemical Formula H6Cl2N2Pt , Molar Mass 300.01 g/mol) showed that the

best loading efficiency is obtained at a HA/cisplatin rate of 100/5 and 100/10.

The aggregation of HA and cisplatin is obtained through simple ion complexes; the size of

the nanoshells varies from 100 to 200 nm depending on the polymer/drug ratio.

According to the relevant literature it is well known that the MW of HA influence the size of

the nanoshells, so that the higher the MW the larger their diameter; also the lower the ratio the

lower the zeta potential of the nanoshells.

Having confirmed that complexing a given compound with HA to realize nanoshells is

feasible and not particularly difficult, we have identified possible prodrugs with Molar Mass and

chemical characteristics suitable for future preclinical tests.
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2.4 Externalities in Other Areas of Neuro-Oncology

HA nanoparticles as carriers for antineoplastic drugs hold the potential for an innovative,

high throughput therapeutic approach in neuro-oncological chemotherapy protocols, but their use is

also fostering further advancements at the forefront of parallel research fields in neuro-imaging,

nuclear medicine and radiotherapy. In fact their use as innovative nanocarriers promise to provide

better stability, tolerance and biodistribution also for contrast agents, radiotracers and

radiosensitizers.

Among antineoplastic candidates previously considered unsuitable because of their systemic

toxicity or hydrophobicity we attempted to identify drugs with good potential in terms of

cytotoxicity/cytostability but also with MW and other biochemical characteristics suitable for

incorporation into HA-nanoshells.

2.4 a): Chemotherapy

As stated above the MW has been the main limiting factor, knowing that the type of binding

to HA and the size of the prodrug/drug considered directly affect the expected size of the final

compound. Our analysis of current databases led to identify one potential candidate:

Cinnamaldehyde (Chemical Formula C9H8O, Molar Mass 132.16 g/mol).

Cinnamaldehyde (CA) is an active monomer isolated from the stem bark of Cinnamomum

cassia, a traditional oriental medicinal herb, which is known to possess marked antitumor effects in

vitro and in vivo. Its analogues are structurally characterized by the presence of cinnamoyl moiety,

and due to the presence of highly reactive α,β-unsaturated carbonyl pharmacophore in their

structures these molecules are apt to react with some enzymes and/or receptors as electrophiles,

inducing diverse therapeutically relevant pharmacological functions. Naturally occurring molecules,

such as trans-cinnamaldehyde, 2-benzoyloxycinnamaldehyde, and 2-hydroxycinnamaldehyde are

representatives of this group, and have attracted significant interest for their bioactivities, especially

the anti-inflammatory and anti-cancer properties (Chen BJ, et al. 2016). The former are attributed to

CA ability to block nuclear factor-κB activation in immune cells; whereas the latter have been

shown both in terms of cytostatic and cytotoxic effects in a number of human cancer cells including

breast, colorectal, head and neck cancers as well as gliomas.



39

CA demonstrated to inhibit proliferation and to induce apopotosis, the first property is due to

the interaction with cell-matrix adhesion, in fact CA has proven to induce an upregulation of the

expression of E-cadherin and a downregulation of the expression of MMP-2 and MMP-9; whereas

the second property on the apoptotic pathway seems due to the inhibition of the transcription

activity of PI3K/AKT (Li J, et al. 2016). Furthermore tests conducted on p53-wild and p53-mutant

human head and neck cancer cells reveled that CA induces apoptosis regardless of p53 status (Ahn

SG, et al. 2015).

Finally the apoptotic activity of CA has been confirmed also in human U373 glioblastoma

cells characterized by various levels of resistance to different pro-apoptotic stimuli, in those essays

CA showed to overcome the intrinsic resistance of U373 cancer cells to programmed death and to

determine a cytostatic effect (Bruyère C, et al. 2011).

Indeed, compounds possessing both anti-cancer as well as anti-inflammatory properties like

CA may therefore provide an attractive therapeutic tool for cancer therapy; for what specifically

concerns gliomas this is especially relevant when it comes to consider them along other

immunotherapy protocols which are consider another possible effective tool in the battle to prevent

their recurrence (Roth-Walter F, et al. 2014).

2.4 b): NeuroImaging

Conventional or high-Tesla MRI could benefit from new constrat agents capable to early

detect microaggregates of neoplastic cells, this in fact represent a fundamental step to progress in

the early diagnosis of tumours and follow up of patients to rule out recurrence of the disease.

Implementing this approach is pivotal to reach the sensitivity required to track CTCs or detect

metastasis in preclinical phase of development.

Achieving this goal would in fact provide several interesting insights into the neuro-

oncogenesis and in turn lead to the development of screening protocols and ultra-early therapeutic

approaches. To this regard, HA seems to be a good platform to complex Manganese oxide

nanoparticles (Chemical Formula: Mn3O4, Molar Mass 228.812 g/mol) with potential for selective

accumulation within HGGs.

The use of or targeted tumor MRI in vivo has been so far mostly tested with Poly(ethylene)-

glycol. Luo et al. conjugated Mn3O4 with Poly(ethylene)-glycol creating nanoparticles of a mean

diameter of 8.0 nm and characterized by a good water-dispersibility, colloidal stability,

cytocompatibility and hemocompatibility (Luo Y, et al. 2015).
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Chen et al. further investigated the applicability of MnO-Poly(ethylene)-glycol nanoparticles

conjugated with fluorescent dye Cyanine5.5 as a dual-modal imaging nanoprobe for MRI and near

infrared fluorescence. The dual potential imaging role of those nanoparticles was tested conducting

experiments on the detection of brain gliomas in mice, showing both in vivo and ex vivo a

preferential accumulation of those nanoprobes in the tumoural region (Chen JS, et al. 2015).

Finally, encouraging results in terms of cytotoxicity come from tests conducted on

engineered nanoparticles synthesized by the encapsulation of Poly(ethylene)-glycol phospholipid

shell around the MnO core. By quantifying the induction of reactive oxygen species in human

glioblastoma and neuroblastoma cell lines, Choi et al. demonstrated that their cytotoxicity is not

significant and confirmed their high potential as an innovative diagnostic tool (Choi JS, et al. 2015).

2.4 c): Nuclear Medicine

Due to its extraordinary high sensitivity (down to picomolar level) and quantitative nature,

radionuclide-based imaging is considered a standard modality for molecular imaging, although

burdened by the poor resolution (≈ 5 mm) of both Proton Emission Tomography (PET) and Single

Photon Emission Computed Tomography (SPECT) (Toy R, et al. 2014). Indeed, in selected neuro-

oncological cases, the use of PET scans can determine a change in treatment management in up to

50% of the cases, and these performances have further supported the optimization of known tracers

or identification of new ones (Lopci E, et al. 2015).

Among established tracers proposed for gliomas 18F-Fluorodeoxyglucose (Chemical

Formula: C6H11FO5, Molar Mass: 181.1495 g/mol), despite its satisfactory performance in LGG and

inflammation, has lost its initial appeal in favour of 11C-Methionine (Chemical Formula:

C5H11NO2S, Molar Mass: 149.21 g/mol) which has almost no tracer uptake in normal brain tissue,

and shows a significantly increased uptake in HGG (sensitivity and specificity of 89% and 100%,

respectively), with an optimal tumour-to-background ratio (Yamane T, et al. 2010; Huang MC, et

al. 2005; Chung JK, et al. 2002). Among more recently proposed tracers 13N-ammonia

demonstrated to be superior to 18F-Fluorodeoxyglucose in the diagnosis of LGG and HGG for better

tumor to normal gray matter contrast, nonetheless its highest concentrations are usually found in the

heart and liver, whereas pancreas, brain, spleen and stomach only follow in terms of biodistribution

(Shi X, et al. 2013).

The above premises justify a possible attempt to encapsulate those tracers within HA

nanoshells in order to leverage on the elective interaction with CD44 and specifically increase the

vehiculation within the CNS, while reducing the accumulation elsewhere, and favouring their
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release in the ECM adjacent to glioma cells. The main limitation to this approach is that the decay

of those tracers is comprised between few minutes and 1 hour, although previous experiments with
18F-Fluorodeoxyglucose radiolabeled long-circulating Poly(ethylene)-glycol-coated liposomes

showed that they could remain in blood circulation at near constant levels for at least 90 minutes

(Marik J, et al. 2007).  For this, the radionuclides selected so far for conjugation with nanoparticles

(64Cu, 76Br, 89Zr, 124I) are all characterized by longer half-life (Liu Y, et al. 2012). As such, only

further investigation will allow to understand the real value of incorporation or labeling of

nanoparticles with radionuclide for diagnostic or theranostic purposes.

2.4 d): Radiotherapy/Radiosurgery

Noteworthy, HA-nanoshells can have also a role as radiosensitizers: agents administered in

conjunction with radiation therapy and intended to increase the lethal effects of radiation while

limiting the injury caused to adjacent healthy tissue. Several compounds have been proposed as

radiosensitizers for brain tumours, and some of them are in advanced stage of validation.

Table 2.2: Radiosensitizers for brain tumours and their stage of development

For instance, HA-complexed radiosensitizers might potentially expand the opportunities for

adjuvant radiotherapy or radiosurgery with agents such as Bromodeoxyuridine (Chemical Formula

C9H11BrN2O5, Molar Mass 307.10 g/mol), increasing its incorporation into actively replicating

glioma cells during de novo DNA synthesis in the first; or Lonidamine (Chemical Formula
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C15H10Cl2N2O2, Molar Mass 321.158 g/mol) allowing its safer vehiculation within the CNS, while

reducing the related severe side effects (which include organ toxicity and myelosuppression).

Bromodeoxyuridine is known to impair the proliferative capacity of primary tumor-initiating

human glioma cells and may therefore represent a means of targeting cancer stem cells; in fact this

compound significantly suppresses the progression of gliomas even in the absence of radiation

therapy (Levkoff LH, et al. 2008); gven those premises its applicability might theoretically further

increase by the conjugation within HA nanoshells.

Assanhou et al. proposed the co-delivery of Paclitaxel and Lonidamine using a dual-

functionalized liposome (D-α-tocopheryl-Poly(ethylene)-glycol succinate and HA), and

demonstrated a satisfactory loading of both the chemotherapic and radiosensitizer and appropriate

release in the intracellular environment (Assanhou AG, et al. 2015). Noteworthy, the release of

Lonidamide was effective in inducing a suppression of the intracellular adenosine triphosphate

(ATP) production by interfering with the mitochondrial function for enhanced P-gP inhibition, thus

supporting the hopes for its possible role as a regulator of the multidrug resistance process.

HA are thus opening new diagnostic and therapeutic perspectives, and mathematical

simulations are now being held with the purpose of tackling gliomas’ specific antigens to create

compounds for diagnostic or therapeutic scopes that will act as veritable Trojan horses; and as

previously anticipated, their success will mostly depend on the ability to target infiltrating stem

cells and CTCs, both considered as the major responsible for cell renewal and tumour recurrency.

DISCUSSION AND FUTURE DEVELOPMENTS

2.5 Tenets of Hyaluronic Acid Nanoshells

While conventional drugs and contrast agents are rapidly and relatively homogeneously

distributed within the body to both cancer and healthy tissues, the use of nanocarriers allows for a

much effective targeting because their functionalization can lead to an optimal biophysical and

biochemical interaction for site specific distribution.

Nonetheless, attempts to improve chemotherapy homing or contrast agents and

radioenhancers accumulation into brain tumours has so far relied on the enhanced permeability and
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retention effect (EPR), the property by which molecules like liposomes, nanoparticles, and

macromolecular drugs tend to accumulate in tumour tissue much more avidly than they do in

normal tissues (Maeda H, 2001). Essentially, the passive extravasation of molecules as large as 200

nm from the microcirculation to the ECM of the tumour site is favoured by the fact that unlike

healthy vasculature, the neoformed vessels characterizing the tumour microenvironment present a

discontinuous vascular endothelium. The rate of tumour neoangiogenesis results in fact in the

formation of gaps ranging between 100 and 1000 nm in width between pericytes and endothelial

cells (Hashizume H, et al. 2000). Unfortunately, though, EPR is inconsistent in the early stages of

oncogenesis, when therapeutic intervention should be more effective considering the submillimetric

diameter of the lesions, but also throughout the tumour during its later stages of progression.

This consideration has two implications: firstly, it is not possible to rely on EPR either for

diagnostic or therapeutic purposes if we are to tackle parenchymal lesions in their early stages of

growth or if we eventually aim to detect CTCs and cancer stem cells; secondly, only active

mechanisms (i.e. based on ligand-receptor interaction) can allow to target the tumour

microenvironments and deliver nanoparticles within it if we hope to detect and early treat

recurrences close to the surgical site despite complete resection.

Furthermore, whereas nanocarriers can be considered for multiple scopes within the field of

neuro-oncology, special considerations should be taken into account when it comes to each specific

scope: smaller particles are certainly more prone to passive diffusion, while larger particles are

more likely to be characterized by longer blood residence time and higher binding activity. This

latter is also influenced by the length and flexibility of the polymer used which directly determines

the active fractional area.

In general, a diameter between 60 and 100 nm together with a tailored polymeric coating

such as the one advocated for our HA nanoshells seem appropriate to maximize the blood residence

time, while allowing to leverage on both passive and active transport through the BBB (Nagayasu

A, et al. 1999).

In this regard, the presence of CD44 has been demonstrated on endothelial cells and this

could suggest a receptor-mediated transport across the BBB (Savani RC, et al. 2001). Indeed,

experimental evidence has already showed that HA conjugates enhance the delivery of prodrugs

within the CNS significantly more than when treatment for disruption of the BBB are used (the

uptake is 12 folds higher than the basal one when the prodrug is conjugated with HA, versus 8 folds

when cyclosporine is concomitantly administered with the prodrug), also the fact that no further

increase is obtained by using PgP inhibitor cyclosporine confirms that HA conjugates intrinsically

possess the ability to bypass PgP (Mittapalli RK, et al. 2013).
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Nonetheless, the spherical and symmetrical shape poses several disadvantages in terms of

margination and active fractional area, for instance targeted nanorods have been observed to

localize at the target site seven times more than their spherical counterparts (Kohlar P, et al. 2013).

As such, the development of multimodality agents, although attractive, has to face enormous

challenges both during the conception and laboratory implementation. Despite the striking

adaptability to multiple diagnostic and therapeutic scenarios, “one size fits all” does not seems the

right approach to the design of HA nanocarriers, and their functionalization should significantly be

modified depending on whether those nanoparticles are eventually meant to seek the

microvasculature, a deep sited lesion or a blood circulating target.
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Chapter III:

Optimizing Treatment Protocols for
Stereotactic Radiosurgery
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OVERVIEW AND RESEARCH QUESTION

3.1 Principles of Stereotactic Radiosurgery

Lars Leksell the pioneer of stereotactic radiosurgery (SRS) defined this therapeutic option as

“a technique of closed skull destruction of a predetermined intracranial target by single-fraction,

high dose of ionizing radiation using a precision stereotactic apparatus” (Leksell L. 1951). In

contrast with spatially less accurate radiotherapy techniques, SRS has the capacity to

maximize/optimize the dose exposure on the target volume, while minimizing the irradiation of

surrounding critical structures, thereby reducing collateral damage. Those characteristics led SRS to

be considered not only as a potential adjuvant to surgical treatment but in some cases also as a

valuable alternative option.

Radiosurgery includes a wide range of reliable, minimally-invasive options that can be used

as either primary or adjuvant therapy in the management of both malignant and benign pathologies,

including also vascular or functional ones. SRS, in the absolute majority of cases, differs from

conventional “ab externo” radiotherapy (RT) basically because a single large fraction radiation is

used, with very few exceptions, instead than multiple daily fractions. Moreover, RT relies on the

difference in susceptibility between tumor tissue and normal brain whereas SRS delivers an ablative

dose to the target margin with a higher dose delivered centrally. In this regard, the accuracy of SRS

presents a much smaller standard error (less than 0.3mm), and the dose gradient is extremely steep

so that radiation outside of the target volume is minimized.

Currently SRS techniques may utilize different types of penetrating radiation. They include

the cyclotron- or synchrotron-generated particles, such as protons or heavy-charged-particles, and

photon devices such as modified linear accelerators (LINAC) or Gamma Knife (GK):

- Gamma Knife: Its core is represented by 192 individual 60Co sources aligned with a

collimation system, able to delivery each of the radiation beams to a very precise focal

point: as a consequence even very small targets can be treated by a high radiation

dosage, whereas peripheral dose levels remain low (Mamalui-Hunter M, et al. 2013).

GK allows for very complex intracranial SRS treatments, in which accuracy is

guaranteed by possible fusion of different imaging source (CT, MRI, Angiography, etc).

Moreover, critical structures such as optic pathways and cranial nerves may be shielded

through the application of beam blocking patterns that minimize the contribution of

putatively dangerous shots.
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- Linear accelerator radiosurgery: Recognized as an effective alternative to GK

radiosurgery, particularly in case of larger target volumes, the LINAC option is

characterized by an easy patient set-up, and a wide possibility of reaching any irradiation

position within the human body (Rowshanfarzad P, et al. 2013). Few basic parameters

such as, patient couch angle, gantry arc angle, isocenter position, and collimator size are

able to provide significant flexibility in the conformal 3D dose distribution for a single

isocenter. By using multiple isocenters, and exploiting strategies to increase LINAC

accuracy it is also possible to maximize the buffer exposure of the target, and of the

adjacent critical structures (Faught AM, et al. 2013).

- CyberKnife: CyberKnife (CK) combines a lightweight 6-MeV LINAC designed for

radiosurgery and mounted onto a highly maneuverable robotic arm which can position

and point the LINAC (De Salles AA, et al. 2008). In the market for 15 years now, CK

SRS has shown its advantages including easier fractionation, no need for general

anesthesia even in young patients, and flexibility to treat lesions throughout the body. On

the other hand the absence of a stereotactic frame and the mobility of the radiation

source entail a slightly superior error margin if compared to GK SRS (Fürweger C, et al.

2010). In fact whenever the patient moves, internal controls detect the change and stop

radiation, before correcting the trajectory of the beam, and start irradiating all over

again. Moreover, CK operative programs are essentially based on CT scan imaging

recognition; therefore, for peculiar types of targets this might involve a less sophisticated

imaging.

- Proton Beam: High-energy protons represent an extremely important alternative option

to photon and electron beams. In fact, proton beams offer the advantage to improve

tumor control especially for the treatment of small volumes, where it is necessary to

obtain a localized dose distribution in small deep-sited locations, while relative sparing

of the surrounding normal tissue. Furthermore, there is no theoretical limit to the size of

the target lesion, and charged-particle radiosurgery can be precisely contoured to treat

complex shapes. The drawbacks of this techniques include some compromise in spatial

accuracy (because instead of a frame attached to the skull, the patient wears an

immobilizing plastic mask or bite block in the mouth to achieve fixation) and the need

for beam-modifying devices that must be custom-made for each patient, thereby

increasing the time and cost of treatments (DeLaney TF, 2011). Currently only 20

hadrontherapy facilities are distributed worldwide (half of them being situated in
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Europe), and physicist and physicians are still refining the quality of proton treatments

from both a dosimetric point of view, and from the transport beam line control.

Deoxyribonucleic acid (DNA) is the principal target for the biological effects of radiation,

and chromosomes are the principal target for radiation-induced lethality as ionizing radiations

induce single- or double-strand DNA breaks. On a cellular level, cells die while attempting to

divide because of damaged chromosomes, while on a tissue level the type of damage depends on

the cells’ turnover rate, so that for cancer cells in active replication it may become quickly evident.

Nonetheless, in addition to inducing mitotic cell death, radiation can also lead to cell death via the

apoptotic pathway. Therefore, early or acute effects on a population of cells result from the death of

a large number of cells and occur within a few days or weeks of irradiation in tissues with high

turnover rates. Late effects appear after a delay of months and years and occur predominantly in

slowly proliferating tissues (Oh BC, et al. 2007).

The response to radiosurgery may represent more of a continuum than a truly unique

response, however conventionally the linear-quadratic model is the one of choice to estimate the

survival curve of a given population of cells treated with a prescribed radiation dose and for each

individual population of cells this is described by the α/β ratio which governs the shape of the

survival curve.

One key principle to understand SRS is that the histological response depends both on the

radiation dose and the time elapsed after irradiation. As a general rule, at lower doses of radiation ≤

20 Gy delivered as a single fraction, vascular changes such as thrombosis, fibrinoid necrosis of

vessel walls, hyaline degeneration, and hemorrhage predominate in the CNS. These changes

generally occur after prolonged latency and are not apparent until 12 to 14 months after treatment.

Whereas, at doses ≥ 25 Gy, white matter changes, ranging from demyelination to myelomalacia,

predominately at 12 months or longer after treatment (Hopewell JW, et al. 1989; Schultheiss TE, et

al. 1995).

For the biological reasons described above, beside standard single dose radiosurgical

treatment (sSRS), fractionation or multisession protocols are emerging as valuable options for

treating large lesions in critical brain areas, thus reducing the adverse effects on surrounding

structures. Fractionated radiosurgery (fSRS) is particularly advocated for the treatment of primary

lesions, such as HGGs and LGGs, as well as large or multiple metastases and vascular

malformations; and has also proven to be effective in fragile classes of patients as the pediatric one

(Maranzano E, et al. 2011; Minniti G, et al. 2011; Wegner RE, et al. 2013; Sperduto PW, et al.

2013; Hoffman LM, et al. 2013).
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Table 3.1: Early and late biological effects of radiation

The rationale behind fSRS is to increase the total dose while improving outcome; however

some questions are still open to debate: for instance, the optimal number of fSRS sessions, the

marginal isodose (%) and the marginal dose have not been established yet, moreover the exact long-

term incidence of adverse effects on the surrounding brain is still to be determined (Soffietti R, et al.

2013).

Alongside the common uses of SRS as primary (single treatment strategy) or adjuvant

(ancillary treatment for lesion primarily undergoing surgery or chemotherapy) therapeutic option,

salvage SRS (for lesions already treated with all existing therapeutic modalities) is becoming

increasingly relevant. Among the various available management modalities, salvage SRS emerged

along the last decade as the most commonly viable strategy for recurrent or progressive brain

tumors previously treated, as they represent a peculiar challenge mainly due to the intrinsic

characteristics of those patients and their primary pathology. For instance, many clinical studies of

class III evidence have demonstrated satisfying results concerning the local brain control and

survival of patients with relapsed brain disease (Klironomos G, et al. 2013). Due to the increased

life-expectancy in the near future, the number of patients with recurrent brain tumors will certainly
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grow, acting as an impetus to redefine treatment strategies in this direction; all the knowledge

acquired in this process will certainly find application also in the management of other intracranial

vascular or functional lesions.

3.2 Stereotactic Radiosurgery for Cerebral AVMs

SRS is an effective surgical procedure for patients with properly selected intracranial AVMs

and is now being used in the management of lesions previously thought to be unsuitable for any

other form of therapy (Sirin S, et al. 2006).

The ideal goals of radiosurgery in these patients may be briefly summarized as follows: 1)

complete obliteration of the AVMs nidus, sparing the neighboring brain tissue 2) to reduce the risk

of intracerebral hemorrhage, 3) and neurological preservation.

Structurally and functionally different from normal vessels, those within the nidus of the

AVM are of irregular caliber and have segments of thickened walls alternating with thin-walled

segments. Although often thickened, the walls of feeding arteries have generally a normal

ultrastructure, on the other hand the walls of veins exhibit some artery like characteristics with a

fibrohyalinized internal elastic lamina and a unica media consisting of collagen intermingled with

smooth muscle cells and elastic fibers (Wong JH, et al. 2000).

AVMs undergo a continuous vascular remodeling, partly due to the increased flow and shear

stress, and partly due to proper neovascularization processes induced by increased expression of

proangiogenic growth factors, including Vascular Endothelial Growth Factor (VEGF), Fibroblast

Growth Factor (FGF), Transforming Growth Factor alfa (TGFα), and involving upregulation of

Nitric Oxid Synthase (Sonstein WJ, et al. 1996; Kilic T, et al. 2000).

Endothelial cells are highly sensitive to radiation, which induces a high rate of early

endothelial cell death, followed by proliferation of surviving endothelial and smooth muscle cells

with progressive luminal narrowing and intraventricular thrombosis.

Cell adhesions molecules, such as E-selectin and Intercellular Adhesion Molecule-1, and

prothrombotic factors such as von Willenbrand Factor (vWF) are known to play an important role

in those post-SRS changes as their interaction with platelets initiates the intravascular thrombotic

process (Elisevich K, et al. 1994).
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Fig. 3.1: Microphotograph showing the histological pattern of cerebral AVM (Hematoxylin-Eosin, 200x):

note the abundance of abnormal vessels (red arrows) some of which are showing intraluminal thrombosis

The treatment dose is chosen according to appropriate algorithms, balancing the expected

obliteration rate (dose response curve) and the corresponding risk level (dose-complication curve).

For small volume AVMs (< 5cc) obliteration rates ranging from 70% to 95% have been

documented 3 years after a single procedure. In larger AVMs (volume 5-15cc) results are

satisfactory though less spectacular, wth correspondingly higher complication rates (Flickinger JC,

et al. 1996; Pan DH, et al. 2000).

Furthermore when the original radiosurgical procedure leads to an incomplete response,

within the due time, a second treatment may lead to obliteration with an acceptable risk. For all

these reasons staged volume SRS has been advocated either for larger or for critically located

AVMs (Sirin S, et al. 2006).

It is still debated whether radiosurgery leads to a substantial reduction in hemorrhage risk, or

not, before complete obliteration occurs Recently Maruyama et al studied this question and

concluded that hemorrhage were decreasing over time. Their analysis also showed that hemorrhage

was possible, although rare, after seemingly complete angiographic obliteration, due to residual

microscopic nidus or perhaps the collapse of the frail granulation tissue of the AVM scar

(Maruyama K, et al. 2005).
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Fig. 3.2: Angiography performed upon positioning of the stereotactic frame for SRS planning

Fig. 3.3: MRI performed upon positioning of the stereotactic frame for SRS planning
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3.3 Preventing Radionecrosis

Delayed radiation-induced complications remain a significant problem in some patients

treated with SRS. The majority of these adverse events remain difficult to predict, but generally

occur within 3 years of radiosurgical treatment.

Radiation necrosis may be defined clinically radiologically and pathologically: this clinical

entity in fact presents specific imaging characteristics on MRI and PET scans, and often requires

conclusive histopathological confirmation on biopsy specimens (Ganau M, et al. 2012).

The MRI findings considered typical of radionecrosis include: increased T2 changes, likely

representing BBB disruption and accompanying cerebral oedema, central hypointensity in T1

sequences, and contrast enhancement pattern on T1 sequences. (Korytko T, et al. 2006).

White matter necrosis, demyelination and vascular changes are prominent in CNS radiation

injury, however its primum movens seems to be the disruption of BBB with subsequent increased

vascular permeability. This event is likely caused by tissue hypoxia and eventually mediated by

increases in VEGF expression by nearby astrocytes, as supported by experimental evidence in vitro

and in vivo (Rumpel H, et al. 1995; Plateel M, et al. 1995).

The overexpression of VEGF parallels the increased expression of Hypoxia Inducible

Factor-1 (HIF-1), a nuclear protein responsible for the transcription of hypoxia-responsive genes

(Marti HJ, et al. 2000). Further immunohistochemical studies confirmed the increased expression in

the BBB of a transmembrane protein, Glucose transport-1 (Glut-1), which may represent an

adaptive response in meeting the cellular energy demand in such hypoxic environment (Nordal RA,

et al. 2004).

Typically, necrosis developing as a result of radiation exposure occurs as a focal process

near the previously treated site; radionecrosis presents as a coagulative process predominantly

affecting the white matter and causing dramatic perilesional oedema. The pathological events

leading to radionecrosis are considered to be centered on small vessels injured by radiation-induced

secondary damage, and include vascular hyalinization and thrombus deposition leading to vascular

occlusion.

The first line treatment for such condition include steroids, and non-steroidal anti-

inflammatory drugs; others therapies include anticoagulants, hyperbaric oxygen, nonetheless failure

to respond to conservative management may lead to surgical resection of the lesion causing mass

effect on the surrounding brain parenchyma.
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Fig. 3.4: T1 and T2 MRI head of patient with left occipital radionecrosis 96 months post GK SRS for

retrotrigonal AVM, note the radionecrotic nodule surrounded by a dramatic oedema causing compression of

the occipital horm of the lateral ventricle and midline shift (above left); a 2.6 cm round shaped radionecrotic

nodule is excised with microsurgical technique (above right); microphotograph showing the histological

pattern of the radionecrotic nodule (Hematoxylin-Eosin, 200x), note the amorphous material and reactive

gliosis (below left); postop T1 and T2 MRI Head at 3 months from surgical excision showing an almost

complete resolution of the parenchymal oedema.
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Interestingly the incidence of radionecrosis seems to be higher in patient treated with SRS

for vascular lesions in fact as many as 30% of patients present post-SRS imaging changes in the

brain surrounding the previously treated AVM. Fortunately, these effects are asymptomatic in two-

thirds of affected patients, nonetheless in approximately 9% of them the radionecrosis might

become clinically evident and require further medical or surgical treatment  (Finitsis S, et al. 2005;

Flickinger JC, et al. 1996).

The risk of radionecrosis certainly depends on the treatment volume and, to a lesser extent,

the dose administered; however the poor understanding of the molecular and cellular responses

involved in its pathogenesis has so far prevented from identifying possible risk factors, or events

triggering its delayed occurrence, and consequently the design of effective neuroprotective

strategies. This said, the availability of more sophisticated techniques has recently created a

valuable opportunity to improve SRS protocols so that larger lesions can potentially be treated,

while reducing the latency period to obliteration and preserving the adjacent healthy parenchyma.

In light of the above, the specific aim of this section is to investigate how the precision and

safety of SRS GK treatments can be further increased by introducing advanced fusion protocols in

the planning phase. Specifically, experimental evidence from our clinical series at the University  of

Verona will serve to support the hypothesis that those neuroimaging fusion protocol could reduce

the unintended radiation on cortical tracts adjacent to deep sited AVMs, and prevent post-SRS

neurological deficits and radiation induced necrosis.

EXPERIMENTAL WORK

3.4 Fusion Protocols to Preserve Eloquent Areas

In-depth study of the anatomy of any intracranial pathology is a critical component of

neurosurgical planning: from this initial diagnostic step every advantage and disadvantage of

available management options, from a microsurgical approach to a radiosurgical or endovascular

one, or again a combination of all of them, is thoroughly evaluated before a final decision is taken.

As every imaging modality has its pros and cons, imaging fusion protocols have recently

gained significant attention as they provide the clinician with a post-processing set of images that
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allow to simultaneously leverage on the qualities of each single imaging source merged. Actually,

image fusion is the process of using rotation and translation to bring a second image set into

alignment with the first image set. This allows the potential concurrent use of multiple image sets to

define the target and stereotactic space. While a single MRI sequence alone can be used for

delineation of the target, there may be significant advantages to using additional conventional

imaging sets (including other MRI sequences and CT scans) or advanced imaging sets (such as

catheter-based DSA, positon emission tomography (PET) or DTI-based fiber tracking) in order to

more accurately define the surrounding critical structures. Stereotactic space is usually defined by

detection of fiducials on the stereotactic head frame (for framed SRS) or mask system (for

frameless SRS).

Fig. 3.5: Overlapping of stereotactically acquired MRI/CT imaging sets

Noteworthy, while CT scans, despite their poorer resolution of the target, are not susceptible

to geometric distortion, MRI sequences do face this problem. Improvements in neuroradiology and

experimental virtual simulations for surgery/SRS are partly overcoming the risk of error introduced

by inaccuracies of the fusion process, as well as the risk of image changes along the entire fusion

workflow process, that if not properly accounted for can mislead the treating clinician (Sboarina A,

et al. 2010).
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When a neoplastic or vascular lesion is deep sited or is close to eloquent brain areas, or its

relevant anatomical region is perfused by two or more vascular territories or demonstrate a complex

venous drainage each selective imaging modality may provide an incomplete anatomical picture.

Since its introduction, digital subtraction angiography (DSA) has been considered the gold

standard in diagnostic imaging for neurovascular disease (Jalali A, et al. 2015). Nonetheless several

studies have recently demonstrated that bone-subtraction CT Angiography (CTA) is as accurate as

DSA in detecting cerebral aneurysms after SAH. In fact, CTA provides similar information about

aneurysm configuration and measures, and reduces the average effective radiation dose for vascular

diagnostics by 65%. For this diagnostic equivalence in association with dose reduction, some

centers are considering to replace DSA with bone-subtraction CTA in the standard diagnostic work-

up of spontaneous SAH (Aulbach P, et al. 2015).

On the other hand, only MRI can provide meaningful information regarding the surrounding

brain parenchyma, and diffuse tensor imaging (DTI) sequences can add further insights on the white

matter tracts in proximity to the vascular lesion. In fact, hemorrhagic lesions can disrupt and

displace perilesional white matter tracts with the latter occurring in unpredictable directions. To this

regard, it has been well described that observed anisotropy decreases in the perilesional segments

and this is consistent with neural injury following hemorrhagic insults (Faraji AH, et al. 2015).

Those considerations require the use of tractography to accurately define tracts’ orientation

to optimize surgical entry point, minimize morbidity, and enhance neurological outcomes. As

modern post-processing techniques have made the fusion of multiple independently acquired

imaging (DSA, CTA, MRI, etc) even more informative to the cerebrovascular neurosurgeon or

neurointerventionalist, it seems appropriate to include them in the armamentarium of a

comprehensive cerebrovascular neurosurgeon.

3.4 a): AVM in Close Proximity to Corticospinal Tract

Even if GK SRS is considered a non-invasive procedure for deep-sited cerebral AVMs, the

rate of radiation related complications for SRS is not negligible, especially for lesions located in

critical sites (incidence: 3-18%).

This is often a consequence of: 1) a difficult distinction between eloquent and non-eloquent

areas of white matter (which is still based on knowledge of anatomy), 2) presence of anatomical

variants, 3) pathological distortion of conventional landmarks.

Herein we report the protocol developed in the Neurosurgical Department at the University

of Verona for GK SRS treatment of every AVM in close proximity to corticospinal tract (CST).
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All cases treated at our GK centre, with both the 4C model and starting from 2008 even with

the Perfexion model, underwent a 3 Tesla MRI scan in a non stereotactic fashion one day before the

radiosurgical treatment, herein we report the first 15 cases for which a clinical follow up > 5 years

is available.

Table 3.2: Clinical and radiological data pertaining to the patients included in the study

The patients herein described presented with symptomatic cerebral AVMs in close

proximity to the CST (6 cases located in basal ganglia, 5 in motor cortex, 4 in thalamo-

mesencephalic region).

The Spetzler-Martin (S&M) Grade of those AVMs ranged from 2 to 4, although the most

common S&M Grade encountered was 3, representing 59% of the lesions treated. Patient
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characteristics were: young age (mean 24 years), generally with haemorrhagic onset (69% of cases)

and usually without neurological deficits at admission (73% of cases). AVM volume ranged from

1.0 to 38.7 cc.

Fig. 3.6: Postprocessing reconstruction of a basal ganglia AVM (yellow)

in close proximity to the CST (light blue)

3.4 b): Treatment Planning and Clinical Outcome

To preoperatively define the relationship of deep-sited AVMs to the perilesional

corticospinal tracts (CSTs) and obtain qualitative and quantitative data for radiosurgical planning

we created a stereotactic protocol providing high-definition anatomy of both the vascular lesion and

fiber tracts.

The fusion protocol used in those cases can be summarized as follows:

- the acquired images were processed to calculate voxel based fractional anisotropy and to

define fiber tracts bilaterally with a 3 Region of Interest (ROI) approach, including the

cerebral cortex, the posterior limb of the internal capsule and the cerebral peduncle.

- the day of GK treatment the 3D corticospinal tractography was co-registered and

embedded into the 3D conventional MRI volumetric study performed upon positioning

of the stereotactic frame.

- the accuracy of the co-registration process was assessed during planning for SRS

treatment using the Gamma Plan software, and the position of the CST was always

confirmed with the abovementioned 3 ROI.

- to resolve regions of fiber crossing in those patients with subcortical AVMs different

variants of the Spherical Deconvolution algorithm were exploited (the constrained and

the Richardson Lewis methods).
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- two SRS plans were obtained for each patient: one taking into account the 3D

conventional MRI only, and the other including the 3T DTI into the fusion protocol.

The greatest advantage of the fusion protocol was to allow for a better definition of the

isodose line, perfectly shaping the treatment area of the AVMs, while sparing the adjacent white

matter.

Fig. 3.7: Exemplificative case showing how remodelling the isocenters in A1 and B1according to insights

provided by this fusion protocol allows to significantly reduce the CST radiation exposure even without

modifying the prescription dose

DTI based knowledge of CST gave us the chance to modify the radiosurgical planning and

reduce the radiation exposure of CST, realizing a patient tailored treatment. By applying this fusion

protocol we managed in all patients to keep the mean maximum dose to the reconstructed CST ≤

20.5 Gy. Furthermore, dose-volume histograms of the CST revealed that in our cohort the mean

volume of the CST receiving 20 Gy was 85 mm³ while the mean volume receiving 25 Gy was only

23 mm³. At a long clinical follow up (>5 years in all cases) no new motor deficits have been
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observed in this cohort, whereas the AVMs showed the expected radiological involution within 3

years from treatment.

Fig. 3.8: Left silvian AVM. Angiographic pictures before (left top) and after (left bottom) Gamma Knife

treatment. T2 weighted sequences before (right top) and after (left bottom) obliteration clearly show that

AVM disappearance is not associated to any macroscopic damage to the surrounding brain tissue.

Given the increasing availability of the relevant image acquisition and processing

technologies, this novel strategy of combining multiple independently acquired cerebral imaging to

create a more accurate representation of the anatomical distortion associated with deep sited AVMs

has therefore demonstrated to be enough feasible and accurate to be proposed as a valuable adjunct

not only in cerebrovascular cases but also in every other stereotactic procedure.

DISCUSSION AND FUTURE DEVELOPMENTS

3.5 Balancing Safety and Efficacy

Integration of 3D tractography of CST within GK surgery is feasible and effective in AVM

treatment, and in the near future will show its usefulness even for infiltrating lesions such as LGG
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or metastasis. The theoretical power of this approach in many clinical situations is such that 3D

reconstructions could be integrated with neurosurgical navigation systems, with the purpose of pre-

surgical planning and intraoperative navigation.

DTI produces high-quality white matter images, with high spatial resolution and exquisite

anatomical contrast not available from other MRI modalities, providing information about the

course, the displacement, or interruption of white matter tracts around a tumor, as well as a

widening of fiber bundles due to edema or tumor infiltration.

Indeed implementation of fiber tracking, extended also to optic radiation and fasciculus

arcuatus, will enhance the safety of much more treatments; and a growing number of patients will

benefit from the ongoing development of this technique.

This study confirmed that although a CST could be "disrupted" and/or "displaced" by the

vascular malformation, a qualitative and quantitative analysis (focusing on the anatomical

appearance and anisotropy pattern) is always possible and useful. The anisotropy analysis of the

perilesional and nonperilesional segments of the CST close to a given lesion, and the comparison

with the controlateral one, allows determination of the number of fibers in close proximity to the

AVM studied and consequently optimization of the SRS treatment.

DTI is widely used to extract fibre directions, but fails in regions containing multiple fibre

orientations (such as in the 5 cases of subcortical AVM included in our series). One of the most

successful approaches to solve the fiber crossing issue is spherical deconvolution, which can

dramatically improve tractographic results without excessive increase in computational timing and

power (Tournier JD, et al. 2007).

Spherical deconvolution is useful in improving tractographic reconstruction of the lateral

portion of the CST, corresponding to the somatotopic representation of hand, face, tongue, and

voluntary swallowing muscles (Calamante F, et al. 2011). This portion of the CST is hardly

detectable by DTI-based approaches only and the approach used proved robust to noise whilst

preserving angular resolution.

One limitation has been however identified: the presence of haemosiderin in those patients

with previous bleedings, resulting in artifacts limiting the quality of the MRI and therefore affecting

the accuracy of the DTI reconstruction of the CST. As the haemorrhagic presentation is the

commonest for patients harboring cerebral AVM, this needs to be seriously taken into account.

Certainly the prospective validation of this fusison protocol will improve the:

- Assessment of the influence of haemorrhagic presentation on fiber tracks visualization,

and of the correlation with neurologic symptoms,

- Definition of optimal trackability threshold of fractional anisotropy,
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- Definition of the threshold dose of fiber tracts,

- Evaluation of long term fiber reorganization,

- Development of models predicting treatment related complications.

Interestingly, no cases of post-SRS radiological changes have been recorded to far, out of an

expected risk ranging between 30% and 10%. The leading hypothesis is that the initial pathological

condition favoring radionecrosis is the local coexistence of SRS induced vascular damage and

innate tendency to pathological vascularization.

This could be theoretically prevented by a fine modification of the treatment plan ensuring

that the radiation is delivery only to the target with a careful sparing of the surrounding healthy

parenchyma.

As such, we can assume that the optimazed conformational irradiation allowed by the fusion

protocol described could increase the chances to provide a safer treatment to patients harboring

intracerebral AVMs. Furthermore, the immediate externality of this study is the translation of the

approach described to SRS and surgical planning for any other lesion deep sited or close to eloquent

areas.
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OVERVIEW AND RESEARCH QUESTION

4.1 Traumatic Brain Injury and Secondary Damage

TBI is characterized by both a primary and a secondary insult; the first is immediately

consequent to the trauma, the second is a consequence of both intracranial and systemic

impairment, which are highly correlated with mortality (Prisco L, et al.. 2012).

Whereas primary injuries cannot be reversed, the goals of medical and surgical treatment are

directed toward the principles of full damage control and are meant to prevent any further

secondary injuries to the brain. These start minutes to hours after the TBI and usually last several

days. As such, the physical and biological events occurring at cellular and compartmental levels as

a result of TBI are extremely complex, and justify the broad spectrum of possible outcomes. The

first component of post-traumatic events comprises the activation of resident glial cells, microglia,

and astrocytes, and the infiltration of blood leukocytes; the second component regards the secretion

of immune mediators, including pro-inflammatory and anti-inflammatory cytokines, as well as

chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells

in the injured brain region (Woodcock T, et al. 2013).

Table 4.1: Overview of mechanisms responsible for secondary inuries in TBI.
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This cascade of secondary events leads to potentially irreversible damage to neurons that

were unharmed in the primary injury. The early phases are characterized by changes in the blood

flow to the brain, which might be caused by hypovolemic shock and hypotension, often affecting

polytraumatized patients, by the presence of space occupying lesions (such as subdural, extradural

or intraparenchymal haematomas) causing brain herniations, or again by the occurence of diffuse

cerebral oedema. Whatever the case, the resulting cerebral hypoxia induces numerous intracellular

mechanisms attempting to overcome the increased metabolic demand. Inflammation is the direct

consequence of this metabolic inbalance, it can often lead to episodes of vasospasm exacerbating

the decrease in cerebral blood flow (CBF), and therefore the CPP, rapidly inducing the activation of

apoptotic pathways causing neuronal and glial cell death (Liang D, et al. 2013).

Fig. 4.1: Microphotograph showing the histological pattern of TBI (Hematoxylin-Eosin, 100x): note the

oedema disrupting the parenchymal architecture and the early stages of demyelinisation (red arrows)

The predictive role of systemic secondary insults has been already confirmed in many

studies, but only a few of them considered more than three factors all together. Hypocapnia is the

most studied one, followed by hypotension, acidosis, hypoxia and hyperglycemia (Jeremitsky E, et

al. 2003). Severe hypocapnia and hypercapnia reflect aggressive early management of breathing

and both worsen outcome by impairing CBF in a significant way. Unsurprisingly, there is a strong

correlation between early hypotension, hypoxia and mortality (Davis DP, et al. 2006; Chesnut RM,

et al. 1993; Manley G, et al. 2001; Chi JH, et al. 2006). Acidosis and hyperglycemia also play an

important role in predicting the outcome as both represent the response to increased metabolic
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demand; often this excessive neuroendocrine response to stress mediated by counter-regulatory

hormones can ultimately activate irreversible mechanisms of neuronal damage (Rutherford EJ, et

al. 1992; Young B, et al. 1989; Vogelzang M, et al. 2006; Laird AM, et al. 2004).

Fig. 4.2: CT (above) and MRI (below) scans of a TBI patient: note the diffuse contusions in right basal

ganglia, right portion of and brainstem and left temporal lobe; as well as the right temporal pole acute

extradural haematoma and left convexity shallow acute subdural haematoma.

Preventing the event briefly mentioned above is therefore the main target of TBI

management: to this extent, the increase in ICP, which in the absence of an haemorrhagic space

occupying lesion is typically caused by rapidly occurring cerebral oedema, represents the most

important single source of information to monitor the cascade of secondary insults.

Based on the Monroe and Kelly doctrine on pressure-volume relationship, at the beginning

of 19th century the first attempts were made to use spinal measurements of CSF pressure to
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indirectly calculate ICP. Normal ICP varies with age and body pressure but is generally considered

to range between 5 to 15 mmHg in healthy adults in the supine position, and between 3 to 7 and 1.5

to 6 in children and infants respectively (Gilland O, et al. 1974). Later on, during the mid of last

century, the first reports were published on the use of invasive continuous ICP monitoring, leading

to a significant progress in the diagnosis of multiple neurological conditions: namely

hydrocephalus, subarachnoid haemorrhage, and intracranial haematomas (Guillaume K, et al.

1951).

Fig. 4.3: Early CT (above) and 1 month follow up T2 weighted MRI (below) scans of a TBI patient: note the

initial diffuse brain oedema, and the evolution over time of the bilateral

frontal subcortical petechial haemorrhages.

Although few data regarding the monitoring of ICP are available from randomized

controlled trials, such monitoring is currently recommended by clinical practice guidelines of the

most important international societies (i.e. Brain Trauma Foundation; UK National Institute for

Health and Care Excellence; American Association of Neurosurgical Surgeons). ICP monitoring is

indicated in all TBI with GCS between 3 and 8 and an abnormal CT scan (showing haematomas,
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contusions, brain swelling, brain herniation or compression of basal cisterns), whereas in patients

with GCS ≤8 but a normal CT scan ICP monitoring is indicated if two or more of the following

conditions are present: age >40 years, systolic blood pressure under 90 mmHg, uni- or bilateral

motor posturing (Bratton SL, et al. 2007).

ICP is used to guide the medical and surgical management of TBI patients, and in order to

achieve a better understanding of the secondary events is often coupled to other methods to monitor

cerebral oxygen metabolism. In fact, in the setting of severe TBI, given the complexity of cerebral

autoregulation, measurements of the cerebral metabolic rate of oxygen and oxygen extraction

fraction are often necessary to make the distinction between ischaemia and hyperaemia on one

hand, and metabolically coupled hypoperfusion or hyperperfusion on the other. To facilitate the

assessment of CBF autoregulation the pressure reactivity index (PRx) was introduced, and starting

from 1997 computer-aided approaches became available to calculate and continuously monitor it at

the bedside (Steiner LA, et al. 2003; Zweifel C, et al. 2008; Lee JK, et al. 2009).

First-tier therapies used to control ICP range from the use of hypertonic saline solutions to

treat brain oedema, or the evacuation of the haemorrhagic post-traumatic space occupying lesion or

eventually the removal of a piece of the skull in the form of a large decompressive craniectomy

(DC) to prevent brainstem compression caused by malignant swelling of the brain parenchyma.

Fig. 4.4: CT scans showing the progressive evolution of a right frontal subdural haematoma with underlying

frontopolar contusion causing midline shift (A and B). The right hemispheric decompressive

craniectomy allowed the patient to tolerate cerebral oedema and prevented uncal

herniation from compressing the brainstem (C and D).

The use of DC has been advocated in patients with severe diffuse TBI and increased ICP

refractory to first-tier therapies. The DECRA (Decompressive Craniectomy in Patients with Severe

Traumatic Brain Injury) study compared patients who underwent early DC for diffuse TBI with

patients who received standard medical therapy: 70% in the craniectomy group had an unfavourable
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outcome versus 51% in the standard care group. Based on these results, the authors concluded that,

as compared with standard care, DC decreased the mean ICP and the duration of both ventilatory

support and the Intensive Care Unit stay, but was associated with a significantly worse outcome at 6

months, as measured by the score on the Extended Glasgow Outcome Scale (Cooper DJ, et al.

2011).

Fig. 4.5: 3D CT scans showing the extent of calvarial defect resulting from a right hemispheric DC.

Note the ICP bolt and transducer left in place to guide the medical treatment.

Nonetheless, the DECRA trial has received a great deal of criticism because of problems

with randomization and inferability of those recommendations in the clinical practice, and to date

the role of DC when ICP continues to increase ≥20 mmHg remains to be established. The

international scientific community’s glimmers of hopes to address this issue are now put on the

RESCUEicp (Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of

Intra-Cranial Pressure) study, which recently concluded its randomization and enrolment phase.

4.2 Clinical Considerations on Intracranial Pressure

Given its accuracy and reliability, in current clinical practice the continuous invasive ICP

monitoring (I-ICPM), using an intracranial catheter connected to or integrated with a pressure

transducer, has become an important component of most of the patients requiring neurointensive
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care management. Depending on the technique, I-ICPM can be undertaken in different intracranial

anatomical localizations: intraventricular, intraparenchymal, epidural, subdural and subarachnoidal.

Fig. 4.6: Right frontal parenchymal bolt for gold standard I-ICPM,

note the tip of transducer in close proximity to the corpus callosum.

Each of those methods for I-ICPM has specific pros and cons, for instance intraventricular

bolts can have a twofold indication as they can be used to monitor and treat the ICP all at once,

whereas the intraparenchymal bolts allow for a subcortical sensing of ICP and given the shorter

intracranial trajectory are considered slightly safer. I-ICPM however comes at a cost: the most

common complications of invasive methods are due to the elevated infection and haemorrhagic risk.

According to different authors the infection rate correlated to the use of those methods for I-ICPM

can be as high as 27% (Davor D, et al. 2007).

On the other hand, the rate of haemorrhagic complication is highly variable depending on

whether a routine CT scan is performed after the procedure: interestingly when this postoperative

check is routinely performed the incidence of haemorrhagic lesions has been described in as many

as 41% of cases, although only about 10% resulted in larger than 15 mL (Gardner PA, et al. 2009).

A multimodality monitoring armamentarium is certainly warranted not only to provide

clinicians with information characterized by a high degree of complementarity and redundancy, but

also to protect our patients from the use of invasive technologies (Ganau M, et al. 2013).

In the last two decades, numerous efforts have been directed toward the optimization of

multimodal brain monitoring to optimize the clinical management of those patients. In this regard,

the idea of a non-invasive method of measuring ICP is captivating, but currently available
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alternatives to I-ICPM are still lacking precision to be safely considered as reliable as gold standard

methods.

Fig. 4.7: CT scans showing haemorrhagic complications following the insertion of gold standard

intraparenchymal I-ICP. Note the large right frontal intracerebral haemorrhage (above)

and the right frontal extradural haematoma (below).

To date, non invasive ICP monitoring (NI-ICPM) methods can be classified into two

categories: those based on morphological data, assessed with MRI, CT, ultrasound, and fundoscopy,

and physiological ones, assessed with transcranial and ophthalmic Doppler, tympanometry, ONSD,

near-infrared spectroscopy (NIRS), electroencephalography, visual-evoked potentials, and

otoacoustic emissions assessment (Raboel PH, et al. 2012; Czosnyka M, et al. 2014). Presently,

none of the non-invasive techniques seem suitable as a stand-alone substitute for I-ICPM, mostly

because of intra- and interobserver variance. Here we describe the methods which proved to

correlate the most with gold standard methods:

- Transcranial Doppler Ultrasonography: applied to measure blood flow velocity in the

middle cerebral artery and to calculate the pulstatility index which provides values close

to I-ICPM with correlation coefficients ranging between 0.43 and 0.93 (Bellner J, et al.

2004),
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- ONSD: between the sheath of the optic nerve and the optic nerve is a small (0.1-0.2 mm)

space communicating with the intracranial subarachnoid compartment, being therefore

sensible to changes in ICP, so that whenever ICP increases the sheath expands. Its

sensitivity and specificity range between 74-95% and 79-100%, respectively (Geeraerts

T, et al. 2008),

- Tympanic membrane displacement: the technique takes advantage of the

communication of the CSF and the perilymph via the perilymph duct, in fact the

stimulation of the stapedial reflex causes a movement of the tympanic membrane, which

is shown to correlate to ICP although more accurate in healthy subjects rather than in

those with pathologically elevated ICP (Gwer S, et al. 2013),

- NIRS: used to derive the levels of oxygen saturation by estimating deoxygenated and

oxygenated haemoglobin in the brain, NIRS may be used as a non-invasive substitute for

calculation of PRx (Lee JK, et al. 2009). It has demonmay be used as a non-invasive

marker of increased ICP slow waves, and therefore reduced CSF compensatory reserve

(Weerakkody RA, et al. 2010).

Despite still conflicting evidence that it could be realistically associated with better outcome,

I-ICPM in NeuroIntensive Care Units (NICU) represents an invaluable tool for the prevention,

management, and understanding of secondary injuries after traumatic, neoplastic or cerebrovascular

accidents.

In light of the above we attempted to test and optimize a new device based on an innovative

algorithm for the monitoring of ICP, aiming to compare its accuracy and reliability in an hospital

setting with the state-of-the-art I-ICPM.

EXPERIMENTAL WORK

4.3 Accuracy Benchmarking

Preliminary laboratory studies conducted on animal models led to the development of

advanced signal-processing algorithms based on acoustic trans-cranial stimuli for estimation of ICP.
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Fig. 4.8: Comparison between I-ICPM (in red) and NI-ICPM (in black) in an animal model

Given the satisfactory results on preclinical models, these algorithms were eventually

incorporated in a new device for NI-ICPM designed for use in clinical practice (HS-1000, Head

Sense Ltd, Netanya - Israel).

This device exploits an advanced signal analysis method of an acoustic signal, a short beep

sound 10db for ~6 seconds, emitted from a small transmitter incorporated into a earplug placed in

the patient’s ipsilateral ear, and picked by an acoustic sensor incorporated in the other earplug

placed in the contralateral ear. The algorithms developed by the producing company take into

account several parameters, including acoustic bioimpedance, blood pressure and breathing rate; the

device then transforms them into a digital signal and provides an ICP estimate displayed on a tablet

monitor both in the form of a numerical value expressed in mmHg and of a graphic wave. As the

acoustic signal is repeated every 6 seconds, the continuous recording following every impulse

provides a total of 10 data points/minute.

Fig. 4.9: NI-ICP monitoring algorithm and visual interface on a dedicated tablet
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In 2013 the device obtained a CE Mark approval and following its further optimization a

clinical trial was designed to compare its accuracy to gold standard I-ICPM methods

(intraparenchymal or intraventricular ones).

The Italian trial started at the Department of Neurosurgery in Verona once IRB approval was

granted, and the device was tested on all patients with survival expectancy >72 hours undergoing I-

ICPM for TBI or spontaneous ICH at our NICU.

Only patients with local infection in the ear, pregnant/lactating women and children were

excluded from this study. A statistical analysis was performed on all testing session of continuous

monitoring which lasted 1.5-6 hours.

Throughout all parallel ICP monitoring sessions, each patient was positioned in a supine

position, and the head was placed in a 30-degree angle.

Fig. 4.10: Artistic representation of the propagation of the acoustic stimuli across patient’s head

4.3 a): Methods for Comparative Analysis

In each monitoring session, parallel comparison of ICP values from I-ICPM and NI-ICPM

were executed in the following sequence: the ICP values of the I-ICPM and NI-ICPM were both

presented as mean ICP in every 6 seconds. For each data point, the monitor of the NI-ICPM device

was programmed to take a snapshot photo of the standard bedside monitor screen at the end of

signal transmission, and to save it into its database.
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Accordingly, this process allowed for simultaneous collection of data from both I-ICP and

NI-ICP devices, providing a maximum of ~10 independent comparison per minute. The length of

ICP recording sessions depended on the patient’s clinical condition, and the type of I-ICPM (30

minutes for EVD, till to 2 hours for parenchymal microsensor).

The parameters considered in the analysis of data simultaneously collected by the invasive

and non-invasive method were the following ones:

- 3 mmHg variance: in this statistical test we calculated the difference in mmHg between

the I-ICPM and the NI-ICPM values, counting how often the difference between the two

methods was ≤ 3 mmHg, and divided it with the total number of ICP samples. In other

words, this parameter describes the amount (in %) of ICP values that were with a

maximum of 3 mmHg difference with the gold standard I-ICPM.

- 5 mmHg variance: as any I-ICPM method also presents a certain degree of inaccuracy,

(that can be estimated as an internal error factor of 1-2 mmHg) it may be very difficult to

follow the I-ICPM trend to such a narrow agreement, therefore we have considered also

how often the difference between I-ICPM and NI-ICPM was ≤ 5 mmHg, and divided it

with the total number of ICP samples. In other words, this parameter describes the

amount (in %) of ICP values that were with a maximum of 5mmHg difference with the

gold standard I-ICPM. Of note, for the analysis of both the 3 and 5 mmHg variance the

statistical test was conducted on each individual ICP measurement, although the clinical

practice recommends monitoring the ICP for at least 15 minutes to define whether it’s

normal or elevated.

- Robust Parameter: On post-processing analysis all ICP values expressed in mmHg were

classified according to pre-specified cut-off points defined as: A) 0-5 mmHg, B) 5-15

mmHg, C) 15-20 mmHg, D) 20-25 mmHg and E) ≥ 25 mmHg. For each range we

defined a certain severity index method. This cut-off points make sense because a

difference between I-ICPM and NI-ICPM between 3 and 5 mmHg might not have any

clinical meaning for cut-off points A, B or E, but can certainly have importance in the

decision making process at cut-off points C and D because they are universally

considered as the threshold for aggressive medical and surgical management of raised

ICP.

- Cohen’s Kappa (κ) coefficient: to statistically measure the inter-rater agreement

between the two categorical values we opted for the calculation of κ, as it measures the

agreement between two raters who each classify N items into C mutually exclusive

categories. Cohen’s κ is generally thought to be a more robust measure than simple
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percent agreement calculation since κ takes into account the agreement occurring by

chance. κ values range between 0-1 and the strength of agreement can be subclassified

according to the following table providing a reference to the cut-off points of the results:

Table 4.2: Cut-off points for statistical analysis with Cohen’s κ

The κ statistical test was selected as the most suitable option to measure the agreement

rate between two continuous parameters such as the ICP values recorded by the I-ICPM

and the NI-ICPM devices. Since both of them provide for each patient hundreds of

sample points, with each point different than the previous one, κ was the best statistical

method to analyze the accuracy of the NI-ICPM in general and not for every single

sample point.

- Pearson Correlation: the linear correlation between I-ICPM and NI-ICPM was tested

with the Pearson r coefficient, calculating its 95% interval of confidence (CI) and p

value.

- Receiving Operating Characteristics (ROC) Analysis: in order to assess the sensitivity

of signal detection for the NI-ICPM device a ROC analysis was performed considering

as the threshold of 15 mmHg as the cut-off point.

- Bland–Altman: finally all data obtained from both I-ICPM and NI-ICPM have been

compared with the Bland Altman plot, which allows to compare two clinical

measurements where one is known to be characterized by a certain degree of error. This

makes the Bland Altman test suitable in medical statistics to compare a new

measurement technique or method with a gold standard.
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4.4 Clinical Validation

A total of 2795 continuous parallel recordings were analyzed for a total of 39967 data points

from both I-ICPM and NI-ICPM.

Fig. 4.11: CT scans performed on patients with enrolled in the present study.

note the the tip of the I-ICPM transducer within the red circle.

The accuracy of the NI-ICPM device tested is confirmed by a differential pressure <5

mmHg and <3 mmHg in 95% and 70% of total data points respectively.

The correlation between NI-ICPM and I-ICPM values was confirmed by multiple tests:

Blant Altman: 94.27%, Cohen’s κ score: 0.601, and Pearson r: 0.49 with 95% CI: 0.46 - 0.51, and p

value < 0.0001.

The device proved very accurate for cut-off points A) 0-5 mmHg and B) 5-15 mmHg,

whereas it tended to overestimate ICP above 15 mmHg.  Not surprisingly the ROC Curve analysis
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performed for all measurements considering ≥ 15 mmHg as a cut-off point showed an area under

ROC curve of 0.853.

Fig. 4.12: Graphic Statistics: comparison between I-ICPM (in black)

and NI-ICPM (in red) measurements over time

Overall it is possible to conclude that given the potential utility in quantitative ICP

monitoring of the NI-ICPM device tested further algorithm optimization and clinical validation are

certainly warranted. Nonetheless the shift from experimental setting to daily bedside use seems now

closer than ever.

DISCUSSION AND FUTURE DEVELOPMENTS

4.5 Applications in Hospital and Extra-Hospital Settings

Beside the non-invasiveness the device herein tested has a main advantage over NI-ICPM,

because it does not require any calibration at the beginning of the recording process to guarantee

accuracy of monitoring; as well as over other methods for NI-ICPM, as it is not affected by intra- or

interobserver variability.
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A further advantage is the ability to provide clinicians with both a real-time numerical ICP

value in mmHg, as well as its trend described by a waveform. The analysis of waveform of the ICP

is in fact as important as its sole value and trend because it is useful to calculate the PRx and can be

used to estimate optimal CPP levels for individual patients (Czosnyka M, et al. 2014).

Fig. 4.13: Graphical reconstruction of the signal and correlation with respiratory rate and blood pressure

Management of TBI patients however is not the only area of use that can be envisaged: there

are actually several other medical conditions where the N-ICPM device tested could find an

immediate adoption, overcoming the current problems encountered by gold standard methods for I-

ICPM. Briefly we can summarize here a series of clinical scenarios that could benefit from our

studies:

- Stroke: There is a growing interest for the multimodality monitoring of stroke patients,

and data relative to ICP could be of paramount importance to better understand the

different stages of clinical deterioration in patient affected by ischaemic events and their

possible transformation into proper ICH.

- Hydrocephalus: the abnormal accumulation of CSF in the ventricles may lead to

increase in ICP in both the supra- or infratentorial compartments; monitoring ICP in



81

patient requiring shunting procedure could allow to avoid invasive measurements

through lumbar puncture or intraparenchymal bolt, whereas in patient with suspected

malfunction of the shunt would allow to avoid tapping of the shunt reservoir.

- Idiopathic intracranial hypertension (IIH): patients without radiological evidence of

hydrocephalus but complaining of persistent headache can often require an I-ICPM. This

become mandatory whenever visual disturbances occur and the clinicians need to rule

out indications for CSF shunting or more invasive bitemporal decompression or

eventually direct unroofing of optic nerves. As those episodes can occur quite often in

patients with IIH, the possibility to repeat anytime NI-ICPM could expedite the decision

making process.

- Syndromic and non-syndromic Craniosynostosis: although the risk varies depending on

the specific diagnosis a significant proportion of patients with single suture

craniosynostosis may develop raised ICP (4-14%), and the incidence is known to be

much higher (47-67%) in patients with multiple involved sutures (Renier D, et al. 1982;

Gault DT, et al. 1992). The relationship between raised ICP and cognitive outcomes is

still debated, nonetheless monitoring ICP became an established step in the diagnostic

work up of these patients and raised ICP represents to date a clear indication for surgical

treatment (Marchac D, et al. 1994). Given the fragility of those patients obtaining this

information in a non-invasive way would provide remarkable clinical advantages.

- Brain tumour: whenever a wait and see approach is adopted for patients with neoplastic

space occupying lesions, follow up with addition information regarding the trend of ICP

could be a valuable help in the assessment of the patient in the outpatients clinic.

- Elective intracranial surgery: There is a current medical need for ICP monitoring for

patient recovering from any elective intracranial surgery. Retrospective data obtained

from recovery rooms charts lead to estimate that as many as 17% of patient could

possibly experience elevated ICP postoperatively (Sakabe T, et al. 2010).

- Miscellaneous: Additional causes for an increase in ICP include inflammatory or

infective conditions (such as meningitis, encephalopathies, intracranial abscesses, Reye's

syndrome or other encephalitis, etc).

Other considerations should also prompt further research efforts in making NI-ICPM a

reliable alternative to I-ICPM, especially for the pre-hospital triage of patient with suspected raised

ICP. The user-friendliness of the device herein tested makes it suitable for use by paramedics and

could be used to guide decisions regarding transport and hospitalization of sick patients.
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Finally, in the paediatric population NI-ICPM could allow to avoid the general anaesthesia

or sedation otherwise compulsory whenever ICP monitoring becomes pivotal in the decision

making process for the management of hydrocephalus or cranyosynostosis (Sæhle T. et al, 2015).

Also, NI-ICPM could meet the need for monitoring of all those patients whose risk related to I-

ICPM is deemed too high: examples include patient on cardiopulmonary bypass, and premature

infants at risk for developing catastrophic intraventricular or intraparenchymal haemorrhages.

In conclusion, a commitment to the development of methods for NI-ICPM will certainly

ensure that the information needed to drive therapeutic decisions are obtained or retrieved with the

least harmful technique. The continuous research efforts in this area are showing that providing less

costly and more accurate strategies is possible; and only by pursuing this endeavor the scientific

community will effectively achieve the goal of providing more tailored and personalized treatment

approaches to our patients.
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Conclusions and Outlook
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Ganau M, Foroni RI, Ambu R. Surgery in the realms of nanometers. In Commercializing
Nanomedicine: Industrial Applications, Patents and Ethics (Editors: Escoffier L, Ganau M, and
Wong J) Pan Stanford Publishing, Chapter 3: pp 59-75; 2015
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5.1 The Future of Neurosurgical Practice

The advent of biomedical engineering is allowing neurosurgery to overcome many of the

limits of its current clinical practice, and the previous sections offered some excellent examples of

this revolution. However, many other game changing innovations can be forecasted from a careful

analysis of the most recent trends in scientific literature, and the state of the art of neurosurgery will

be continuously reshaped by their influence. Therefore, at the end of this thesis it is appropriate to

outline some of the most striking advancements that in the next few years will be applied either

broadly to all aspects of neurosurgery, or specifically to niche areas of its subspecialties.

Table 5.1: Present application and forecast for application of innovative technologies in neurosurgery.

Neurosurgery as a whole will benefit from progress in diagnostics, visual and haemostatic

aids. Clinicians are nowadays at a crossroad where therapeutic choices are being made not only

considering conventional histological diagnosis but also the latest insights from molecular biology

(Odreman F, et al. 2005).

A significant body of evidence demonstrates that even genetically identical cells can exhibit

significant functional heterogeneity, accordingly molecular diagnostics is rapidly moving beyond

genomics to proteomics, with the aim to identify those post-translational modifications expressed

under pathologic conditions (Krutzik PO, et al. 2004). The proteome and secretome by definition

are dynamics and change both in physiologic and pathologic conditions; the ultimate goal of

determining them is to characterize the flow of information within the cells, through the

intercellular protein circuitry that regulates the extracellular microenvironment.

Indeed, the study of proteomics and molecular biomarkers already allows to identify direct

or indirect predictive factors, and soon it will hopefully determine which affected pathway could
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become a selective therapeutic target for pharmacological or gene therapy. This applies to

degenerative pathologies as well as tumours; in fact, given the cellular and molecular complexity of

the CNS and PNS microenvironment, which suggests the importance to understand intracellular and

intercellular signalling, several progresses have been made in recent years to achieve a precise, high

throughput and low cost analysis of glial cells with potential capability for real-time pathological

screening of multiple and lateral sclerosis, subtyping of brain tumors, and identification of

circulating tumor cells (Ganau M, et al. 2014).

What will also apply to many neurosurgical specialties is the further optimization of current

intraoperative visual aids such as intraoperative ultrasound and related contrast agents, or

microsurgical filters associated with endovascular tracers. Indeed, the advent of those techniques is

already exploited to provide guidance for identification of neoplastic remnants or visualization of

cerebral vasculature during aneurysm clipping. One example is the fact that altered tissue

metabolism is already offering a valuable ploy: HGG in fact may be intraoperatively detected

thanks to the orally or endovenously administered drug 5-aminolevulinic acid (5–ALA) which lead

to fluorescence of tumour cells during surgery, allowing identification and resection of tissue that is

otherwise indistinguishable from the brain parenchyma (Yamada S, et al. 2015).

Also, better haemostatic materials will offer another useful technical breaktrough. In fact,

achieving a satisfactory haemostastis can represent a challenging moment even for experienced

neurosurgeons in any surgical procedure. Noteworthy cases of accidental damage to large vessels’

wall (i.e. dural sinuses) or diffuse oozing from a surgical cavity (i.e. vascular tumors) are amongst

the most common causes of perioperative complications (Ganau M. et al, 2012; Graziano F. et al,

2015; Ganau M, et al. 2015). To address this problem scientists have developed nanoparticles that

exhibit platelet-like functions (PLNs) including site-directed margination, site-specific adhesion,

and site-specific aggregation. Those PLNs are designed to mimic both key mechanical and

biochemical attributes of platelets: in vivo studies in mouse models demonstrated that they

accumulate at the wound site and induce ∼65% reduction in bleeding time, being proposed as

injectable synthetic hemostats for vascularly targeted payload delivery in both cranial and spinal

surgery (Anselmo AC. et al, 2014)

Finally, the prevention of excessive scar formation and postoperative fibrosis will become

easier and straightforward. These inappropriate events can occasionally occur after any surgical

procedure, altering the cicatrization process, disturbing the postoperative course, and rendering

reoperations more difficult and risky. Both cranial and spinal interventions are much affected by

this adverse event: the literature describes this phenomenon as accompanying up to 20% of all

neurosurgical procedures. The scar tissue that forms postoperatively adheres to the dura mater,
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penetrates into the spinal canal, and can cause narrowing symptoms, neurological deficits, and pain.

The incidence and spread of this excessive scar or epidural fibrosis has favored minimally invasive

surgical technique (i.e. by incorporating endoscopic or microscopic access) to minimize the

operative field and the use of isolating substances (i.e. autogenous or heterogeneous materials)

administered intraoperatively (Andrychowski J, et al. 2013). Aiming at reducing the immunological

response and the local inflammatory process, laboratory tests have recently been conducted with the

local use of membranes presenting a biodegradable nanofibrous net of poly(L-lactide-co-

caprolactone) manufactured by an electrospinning process showing that local cicatrization can be

accelerated using innovative materials and that the scar formation and epidural fibrosis can be

limited or modified locally by their double action in preventing local inflammation processes

(Andrychowski J, et al. 2013).

Furthermore, it is worth mentioning how each subspecialty will selectively benefit from the

advent of biomedical engineering from functional and paediatric neurosurgery to spinal surgery.

Functional neurosurgery which encompasses the management of several neurological

diseases from movement disorders, such as Parkinson’s disease and dystonia, to pharmacology

resistant epilepsy, will witness major improvements due to advanced drugs and optimization of

current devices. For instance, epilepsy is still one of the most clinically burdensome neurological

disorders with a high percentage of patients (35-40%) resistant to pharmacotherapy despite the large

number of available drugs, and is constantly benefiting from laboratory discoveries (Rosillo-de la

Torre A, et al. 2014).

In fact, proven therapeutic strategies to control pharmacoresistant epilepsy now include

epilepsy surgery and neuromodulation, and although not all patients are candidates for these

therapies yet, bioengineering-based approaches are already attempting to widen their applicability.

Beyond drug delivery strategy which shares biological properties similar to those used in neuro-

oncology or in neuro-HIV to bypass the BBB and interact with firing epileptic foci, another

appealing area of research is the development of implantable neural interfaces based on

semiconductor nanowires (Ganau M, et al, 2012; Vidu R, et al. 2014).

Used as interface material in contact with neurons they allow to both deliver electrical

stimulation and detect neuronal electrical activity; such approach is therefore opening new areas of

research, including the optimization of spatial accuracy of neurophysiological intraoperative

recording, enhanced microelectrode arrays for deep brain stimulation (DBS), and brain machine

interfaces for neural prosthesis inducing artificial synapses in neuromorphic circuits based on

nanoscale memory devices (Vidu R, et al. 2014).
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Paediatric neurosurgery for instance is witnessing dramatic advancements thanks to the

functionalization of shunt catheters for cerebrospinal fluid diversion, which are daily used in the

treatment of acute and chronic hydrocephalus. The efficacy of ventricular catheters coated with

polypropylene-grafted polyethylene glycol copolymers and silver nanoparticle-embedded

polypropylene-grafted polyethylene glycol copolymers in preventing catheter-related infection and

reducing inflammatory reaction in the periventricular parenchyma has been largely demonstrated in

vitro, in animal models, in the neonatal and the pediatric population (Thomas R, et al. 2012).

Though evidence from randomized clinical trials is still missing, this is the rationale behind the

BASICS trial currently recruiting 1,200 patients in 17 regional neurosurgical units in the UK and

Ireland (Jenkinson MD, et al. 2014).

Also spinal surgery is witnessing a fast-paced evolution due to the collaboration with

material scientists. This is becoming particularly evident in the definition of novel strategies for

biomechanically efficient spinal stabilization and spinal cord injury repair. Several biomaterials

(including nanoscaffolds, demineralized bone matrix, and ceramics) with propensity to incorporate

mesenchymal stem cells, recombinant human bone morphogenetic protein, and

endogenous/exogenous growth factors are already showing ideal characteristics to achieve

enhanced arthrodesis following spinal fixation. The next step in their upgrading is the ongoing

incorporation of micro- and nanoelectromechanical systems (MEMS and NEMS) into current

implants for dynamic stabilization. To this regard successful studies conducted in animal models to

assess the quality of arthrodesis, are now being translated in clinical practice with the aim to reduce

the risk of pullout, osteolysis, and revision surgery (Benzel E, et al. 2004).

Regarding the area of spinal cord injury, whereas cell- and biomolecule-based delivery

strategies, as well as scaffold-based therapeutic strategies have failed when used alone, a

combinatorial approach of all of them has preliminary showed to be effective in laboratory models.

Translation from labs to bedside has been limited by the fact that many biomaterials investigated so

far were plagued by wide range of adverse effects (especially in early stages of research), or by

issues of widespread off-label use.

5.2 Bioethics of Innovative Technologies

The appealing promise of new technologies to redesign the realm of neurosurgery is based

on the assumption that the related scientific discoveries will help providing new effective tools to
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prevent diseases, promote health and alleviate human suffering. Nonetheless, predicting future

degenerative diseases or extending life also bear several unprecedented scenarios. Futhermore, the

principal feature of innovative technologies like nanomedicine or biomedical engineering, which

makes the case for discontinuity with previous biotechnological waves, is the broader field of

possible practical and theoretical applications, so that by entering this new era of neurosurgery we

are accessing a funnel, from whom every initial step might be exponentially amplified down the

road.

Whereas ethics has provided a rational approach to a wide span of moral controversies, in

recent decades bioethicists have specialized themselves to specifically address dilemmas in life

sciences. Dilemmas in innovation technology are common, and they are gradually expanding due to

the widespread diffusion of nanotechnology- and biomedical engineering-driven solutions to

healthcare needs (York E, 2015; Collins FE, 2002).

In light of the status quo depicted above some topics deserving particular attention regard

the choice of the most appropriate diagnostic and therapeutic strategies, the understanding of their

risks and benefits, and the description of the decision making process to patients and their families

to obtain a proper informed consent. On one hand, some studies are demonstrating that patients

more satisfied with respect to decisional involvement seem able to better cope with their disease,

and show a significantly better self-perceived QoL (Lucchiari C, et al. 2010). On the other hand,

clinical evidence available from recent translational research is still poor, inconclusive or

fragmented; and doctors seeking answers in the most up-to-date scientific literature often have

troubles in orientating themselves among preliminary results, experts’ opinions and controversies.

As a result, management choices may differed widely even in a relatively homogeneous group of

specialists (Mathiesen T, 2013). This therefore highlights the importance to reconsider how specific

treatment decisions are taken, especially in an era more and more oriented toward the goal of

personalized medicine.

Providing sensible information regarding new investigations, surgical strategies, or

therapeutic drugs and disclosing all the pros and cons of each single treatment option is technically

and emotionally demanding, time consuming, and may pose special challenges to the process of

requesting and obtaining a fully informed consent. This aspect is even more important when it

comes to enrol patients in experimental trials for two reasons: the inner characteristics of

neurosurgical patients and the nature of innovation.

Neurosurgical pathologies per se often oblige patients to deal with anxiety-provoking

perspectives regarding disease prognosis, surgical risks and treatment-related side effects. For

instance, Triebel et al. in a case control study demonstrated that the capacity to consent to treatment
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tested with standardized psychometric questionnaires is impaired soon after diagnosis of a cerebral

tumour in more than 50% of patients compared to healthy controls (Triebel KL, et al. 2009) Similar

findings were published by Marson et al., specifically they showed that the enrollment of glioma

patients in prospective clinical trials may raise ethical issues, as a 23% to 38% of patients with

HGG show after diagnosis impairments in research consent capacity (Marson DC, et al. 2010).

Furthermore, we must always bear in mind that the clinical status of neurosurgical patients,

especially in neuro-oncological or neuro-vascular cases, is subject to sudden deterioration: as

reported by Sizoo et al. from a neuro-oncological cohort more than half of patients become

incompetent relatively early to make decisions due to delirium, cognitive deficits and/or decreasing

consciousness obliging doctors and caregivers to shift the goal of therapy from primarily life-

prolongation to primarily sustaining the QoL (Sizoo EM, et al. 2012).

Given the nature of many innovative solutions proposed, only a careful reasoning paired to

the rise of such an emerging field of science and technology will help identifying the central ethical

principles and precepts which must be prioritized in shaping the use of those discoveries and

determining the right course of action to benefit from them. For this, in basic sciences the point to

undertake an ethical investigation is to timely address its unpredictable future developments in

timely fashion, whereas in the clinical arena pragmatically recognizing that second opinions and

multidisciplinary meetings must play a pivotal role in rationalizing management strategies to ensure

that each patient receive the best course of treatment.

In fact, from novel diagnostic devices to performance-enhancing drugs, new medical

dilemmas are impacting our goals, values and aspirations as a society. Being well aware that the

fundamental questions behind each aspect of those new drugs and medical devices present ethical

quandaries for the decision makers highlights the importance of engaging the patients and at large

the general public in an open discussion. Despite their complex and often controversial nature, an

essential step in this endeavor is certainly represented by a thorough assessment of the potential risk

posed by nanoproducts, such as the nanodrugs or radioenhancers discussed in this thesis, to human

health. The traditional hazard-driven approach of monocausal toxicological perspective used in

material science and translated to the chemical industry might not be appropriate because of the

intrinsic peculiarities of nanomaterials and their physical chemical and biological properties at the

nanoscale. Since fears about nanomedicine take many forms, mapping out nanorisks, especially

those related to its possible cellular and genetic toxicity, call for a strict law regulation on

translational research at national and international levels.

Yet, part of the problem has been that many aspects, belonging to the sphere of nanoscale

devices or drugs, have appeared so impenetrable to the eyes of the public opinion. Therefore,
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realizing that till now the actual purposes of some scientific breakthrough applied to the medical

field have been rarely explained in a fashion really understandable to the general public, the

upcoming educational challenge for scientists and clinicians will be to favor a new comprehensive

approach, focused on sharing the specific pros and cons of the long-term, large-scale diffusion of

nanomedicine (from chip-on-a-lab assays to nanodrugs or nanomaterials) with patients in order to

obtain a full awareness, along with a proper informed consent, before their use in the clinical

practice. As such, building trust requires now more than ever plans for a strategic and intense

outreach: those are the basis for an easier transition from an asymmetric to a more balanced

transmission of relevant information between science or medical professionals and patients (Ganau

M, et al. 2015).

To contribute to better understanding those issues, during this PhD thesis we have developed

a nanoethical framework which highlights 6 fundamental steps requiring adequate communication

with the general public from conception to clinical application of a bioengineering-enhanced or

nanotechnologically-enhanced product; those steps focus on: 1) identifying the clinical need(s) and

the context in which the new technological solution will be implemented, 2) highlighting the

scope(s) to develop, propose and commercialize the new medical device, 3) evaluating the

advantage(s) and limitations of the new nanotechnological discovery 4) proposing whenever

possible a benchmark comparison with existing gold-standard(s), 5) analyzing with objective

measurements the perceived impact of nanodevices or nanodrugs on the patients and their relatives,

6) monitoring the long-term effect(s) of the nanoproduct (Ganau M, et al. 2016).

Fig. 5.1: Nanoethical framework for ensuring adequate communication with the general public during each

phase of the life-span of any given nanomedical product.
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5.3 Toward Bioengineering-Enhanced Neurosurgery

Delivering the surgical precision at the unprecedented cellular and subcellular length scale is

a future goal along this continuum of minimally invasive neurosurgery, and the development of

nanodevices capable of performing surgery at a molecular or atomic level is the first and foremost

mandate of nanoneurosurgery. Some technologies already allow for operational accuracy at the

nanoscale level, such as nanoknives, nanotweezers, and femtosecond-laser systems.

At present, nanoknives have been deployed and used effectively for microscale cellular

surgery, allowing for precise targeted cutting. Among their greatest advantage is the possibility to

constantly observe their tip in real time, allowing for used feedback, image capture, and even

physiological recording (i.e., by electromyography techniques). Chang et al. examined the in vivo

use of 10 to 100 μm long nanoknives with cutting edges of 20 nm in radius of curvature during

experimental axonal reconstruction. Using those instruments they were able to make very small

incisions (range of 50 to 100 μm long incisions) in nerve tissue in vivo and to repeat those incisions

to progressively pare down the nerve as documented visually and by the accompanying incremental

diminution of evoked motor responses recorded from target muscle (Chang WC, et al. 2007).

Furthermore, these nanoknives showed to be safe in terms of induced neurotoxicity, as evidenced

by the following robust growth of axons and neurons on this experimental material in vitro.

Subcellular surgery is much more complex: proteins and small-molecule metabolites

constantly traffic among intracellular compartments, and it has become increasingly evident that

biological specificity relies heavily on their spatial and temporal segregation and

compartmentalization. The ability to isolate selectively single subcellular compartments for

chemical analysis or transplantation opens new venues for intervening in the cellular pathologies.

Silicon nanotweezers (SNTs), for instance, are a well-known microsystem for molecular

manipulation. They can be used to trap molecules while sensing their biomechanical and

bioelectrical response in minute operations. SNTs can be mass-produced by highly parallel

microsystem technology and their exploitation in single-cell nanosurgery has widespread

applications in biology but so far has been limited by difficulty in maintaining the functionality of

the transported subcellular organelles.

However, beside few exceptions, such as those described above, much of the nanosurgical

instrumentarium is still in the developing phase. Although those instruments serve the needs of

proof-of-concept experiments, more refined equipment will need to be designed specifically to

enable their efficient translation out of the laboratories in the surgical theater.



92

A fundamental question concerning the surgical use of microdevices that have the

characteristic size of only several tens or hundreds of microns is whether such small instruments

can be repeatedly used in an operative field: to reach this stage nanoinstruments must be

mechanically strong and ensure adequate performances. Commonly, the properties of nanomaterials

provide significant advantages when compared to their conventional benchmarks: the ultimate

strength of silicon nitride nanoknives, which range from 2 to 8 GPa, is actually stronger than bulk

steel (on average 0.5 GPa). Moreover, the nanomaterials chosen for the fabrication of instruments

designed for neurosurgery must not be subjected to plastic deformation, which could alter their

performance after repeated use. As a result, although the manufacture of miniature-scaled surgical

devices is based on well-developed and reasonably mature fabrication technology, the actual profile

of such instrumentation in vivo and its potential use in cellular- and subcellular-scale surgical

procedures has yet to be optimized.

Regarding the surgical manipulation of cells, one point concerns the development of

miniaturized micromanipulators to economize on space utilization around the operative field;

another area of critical need is the development of surgical microscopes with sufficient

magnification to visualize down to unprecedented small scales (i.e., isolation of specific parts of

neurons such as axons in peripheral nerve surgery for reconstruction of their functionality) and to

provide optimal working distances between the optical elements and the tissue. For instance, Chang

et al. suggest that the design of future surgical microscopes for cellular-scale neurosurgery should

include on-board lighting and likely also incorporated fluorescence imaging, which provides more

contrast and far better signal-to-noise ratios over bright-field imaging (Chang WC, et al. 2007).

On one hand, the greatest promise of tissue engineering is to deliver artificial cells and

organs for a myriad of purposes while ensuring their maximal biocompatibility; on the other,

biosensors will be combined with improved electrodes and pacing devices to control impaired

neurological functions. In the last decade, the interest toward strategies for tissue repair in

neurodegenerative and inflammatory diseases (i.e. Amyotrophic Lateral Sclerosis, Alzheimer's and

Parkinson's disease) and traumatic injuries (i.e. axonotemesis and neurotemesis following

peripheral nerve and spinal cord injuries) increasingly rose. In the future, should such approaches

prove to be safe and effective, they will likely replace treatments like DBS or nerve grafts from

autologous donor roots.

Due to the complexity of the CNS and PNS: conventional repair approaches used in other

body compartments are usually pointless; in this framework, technologies based on covalent and

non-convalent modification of carbon nanotubes (CNT) and graphene, both allotropes of carbon

and part of the fullerene family, emerged as innovative tools due to their outstanding physical
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properties and the documented ability to interface synapses. Novel functionalized single-walled and

multi-walled CNT nanoscaffolds have overcame the toxicity limitations, due to oxidative stress and

reduced cell viability, typical of non-functionalized CNTs, and proved to deliver safely  neural stem

cells to injured sites of the CNS in animal models (Vidu R, et al. 2014).

Finally, achievements in miniaturizing chip technology, along with progresses in optics and

micro mechanics led to the development of micro- and nanosized robots designed to navigate

human biological systems. For instance, some prototypes using embedded nanoelectronics chemical

sensors have been programmed for the proteomic detection of intravascular levels of nitric oxid

synthase, their interpretation as pattern signals of the early stages of intracranial aneurysm

development, and the communication of those information to the treating physician through

radiofrequency wireless communication allowed by the nanorobots’ antenna (Cavalvanti A, et al.

2009). The rationale of this proposed screening would be to monitor patients with medical or family

history of previous aneurismal subarachnoid hemorrhage replacing the need for serial follow up

with angioCT.

Similarly, others are working on swarm of nanorobots propelled into the bloodstream and

able to recognize glioma cells, destroy them, and then forward information about the presence of

cancer formation to other nanorobots, through acoustic signals in a distributed and decentralized

fashion (Loscrí V, et al. 2015). As far as nanorobots have been conceived aiming at creating

nonbiological entities that do not generate any harmful activities, that can be useful in any kind of

surgery both under general as well as regional anesthesia, that are highly specific and target

oriented, reducing drug-related mortality and morbidity (Sengupt S, et al. 2012).

Given the striking pace of advancement of those technologies, the translation of such

prototypes from laboratory settings to clinical trials is hopefully not far away.

In conclusion, all the progresses highlighted in this thesis which find application in several

aspects of neurosurgery have proved not only to be potentially game-changing, but also to be meant

to evolve ubiquitously. In this PhD thesis the reasons why this bioengineering-enhanced revolution

has what it takes to push forward the boundaries of our clinical practice has been constantly

pinpointed. As such, we will probably witness in the forthcoming of our clinical and surgical

careers that what is deemed untreatable today, has realistic chances to become treatable if not

curable in the coming decades.
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Abbreviation List

ATP: Adenosine Triphosphate

BBB: Blood Brain Barrier

CA: Cinnamaldehyde

CBF: Cerebral Blood Flow

CI: Confidence Interval

CNS: Central Nervous System

CNT: Carbon Nanotubes

CPP: Cerebral Perfusion Pressure

CSF: Cerebro-Spinal Fluid

CT: Computed Tomography

CTA: Computed Tomography Angiography

CTC: Circulating Tumour Cell

DBS: Deep Brain Stimulation

DC: Decompressive Craniectomy

DECRA: Decompressive Craniectomy in Patients with Severe Traumatic Brain Injury

DSA: Digital Subtraction Angiography

DTI: Diffuse Tensor Imaging

ECM: Extra Cellular Matrix

EPR: Enhanced Permeability and Retention

EVD: External Ventricular Drainage

FGF: Fibroblast Growth Factor

Glut-1: Glucose Transport-1

GK: Gamma Knife

HA: Hyaluronc Acid

HGG: High Grade Gliomas

HIF-1: Hypoxia Inducible Factor 1

HYAL: Hyaluronidasis

ICH: Intracerebral Haemorrhage

ICP: Intracranial Pressure

I-ICPM: Invasive ICP Monitoring
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ICU: Intensive Care Unit

IIH: Idiopathic Intracranial Hypertension

IOM: Intraoperative Neurophysiological Monitoring

IRB: Institutional Review Board

LGG: Low Grade Gliomas

LINAC: Linear Particle Accellerator

MEMS: Microelectromechanical System

MRI: Magnetic Resonance Imaging

MWI: Molecular Weight

NEMS: Nanoelectromechanical System

NI-ICPM: Non-Invasive ICP Monitoring

ONSD: Optical Nerve Sheath Diameter

P.gP: P-Glycoprotein

PET: Positron Emission Tomography

PLN: Platelet-like Nanoparticles

PNS: Peripheral Nervous System

PRx: Cerebrovascular Reactivity

RHAMM: Receptor for HA-Mediated Motility

ROC: Receiving Operating Characteristics Analysis

RT: Radiotherapy

SAH: Subarachnoid Haemorrhage

SNTs: Silicon Nanotweezers

SPECT: Single Photon Emission Computed Tomography

TGF: Transforming Growth Factor

TNS: Tumour Neurosphere

TNF: Tumour Necrosis Factor

5-ALA: 5-Aminolevulinic Acid

vWF: von Willebrand Factor

VEGF: Vascular Endothelial Growth Factor
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