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World economy is strictly linked to the availability of fossil fuels, which nowadays 

meet the world’s growing energy demand. However, the intensive exploitation of fossil 

fuels as main source of energy is currently recognized to be not sustainable due to the 

continuous depletion of available resources as well as to their contribution to 

environmental pollution and greenhouse gases emissions (Ahmad et al., 2011). 

Moreover global warming (GW) induced by increasing concentrations of greenhouse 

gases (GHG) in the atmosphere has become today an important environmental concern. 

The major anthropogenic sources of GHG are transportations, energy sectors and 

agriculture which are responsible in European Union (EU) for more than 20%, 60% and 

9% of emissions, respectively (EEA 2004, 2007). 

A worldwide problem has become the depletion of petrochemical fuels and the 

continuous rise in oil prize that call us to make a global effort in order to find 

alternative energetic sources. 

Currently, many options are being studied and implemented in practice to meet the 

sustainability goals agreed under the Kyoto Protocol (1992) with different degrees of 

success. Wind, geothermal, solar (either thermal or photovoltaic), hydroelectric, ocean 

wave, carbon sequestration and bio fuels energy are been developed as more 

sustainable alternative energy sources compared with the combustion of fossil fuels 

(Dewily and Van Langenhove, 2006; Schiermeier et al., 2008).  

The use of fossil fuels is now widely accepted as unsustainable, due to depleting 

resources and the accumulation of GHG in the environment that have already exceeded 

dangerously high thresholds. For this reason, the production of renewable sources of 

energy such as biofuels is recognized to be critical to fulfill a sustainable economy and 

face global climate changes (Cheng and Timilsina, 2011). Therefore, biofuels deriving 

from feedstocks such as plants, organic wastes or algae could help to reduce the world’s 

oil dependence (Naik et al., 2010).  

In fact, biomass feedstocks are intrinsically renewable since they are produced through 

a natural process, i.e. photosynthesis that is continuously replenished by sunlight. 

Moreover, biofuels would mitigate global warming problems since all the CO2 emitted 

during their burning can be fixed by plants used as biomass feedstock, through 

photosynthetic mechanisms. On the other hand, first and second generation biofuels are 

characterized by several drawbacks which can limit their exploitation as alternative 

source of energy.   
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One important goal for the gradual replacement of fossil fuels by renewable energy 

sources, as a measure for transportation emissions reduction, is the use of biofuels 

which are seen as real contributors to reach those goals, particularly in the short term. 

Today the most common biofuels are biodiesel and bio-ethanol, which can replace 

diesel and gasoline, respectively. In EU biodiesel represent 82% of total biofuels 

production (Bozbas, 2008) and is still growing in Europe, South America and United 

States, based on political and economic objectives. 

The first generation biofuel production systems (starch- and sugar-based ethanol 

production crops) demonstrated the feasibility of generating liquid transportation fuels 

from renewable sources, but at initially low energy-conversion efficiencies and high 

cost. However since vegetable oil produced by crops of first generation may also be 

used for human consumption, this can lead to an increase in price of food-grade oils, 

causing the cost of biodiesel to increase and preventing its usage. Plants that produce 

high levels of cellulose and hemicellulose biomass (which can be converted into sugars 

using advanced enzyme catalysts) are being developed as second generation biofuel 

production systems. These biofuel crops do not compete directly with food production, 

require less agronomic inputs and have lower environmental impacts than first 

generation biofuels.  

Morevor the use of biodiesel from second generation crops may also be advantageous 

since they do not require arable lands and do not affect biodiversity deriving from the 

cutting of existing forests and the use of potential invasive crops that may disrupt the 

biological integrity of local ecosystems and important ecological areas (Scarlat et al., 

2008; RFA, 2008). However the main drawback of second generation biofuels is that 

they cannot be produced at a rate which coud meet the growing energy demand of the 

transopration sector. This is due to the fact that they are produced from feedstocks such 

as wastes or agricultural residues whose production is constrained by the original 

productive process from which they come. Morevoer second generation biofuels 

process have not still attained the economic sustainability.  

Although biofuels are still more expensive than fossil fuels their production is 

increasing in countries around the world also encouraged by policy measures and 

biofuels targets for transport (COM, 2006). 

A transition to a third generation biofuels, such as microalgae, is than needed since 

low-cost and profitable biodiesel should be produced from low-cost feedstocks in order 

not to compete with edible vegetable oils and should have lower environmental 
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impacts. Thus transition can also contribute to a reduction in land requirements due to 

their higher energy yields per hectare as well as to their non-requirement of agricultural 

land. 

Concerning potential feedstock microalage are among the more interesting possibilities 

currently being investigated and implemented at pilot scale or even at industrial scale.  

Their use as a possible solution to the problem of GW is desirable since this group of 

fast-growing unicellular organisms shows several advantages which make them one of 

the most promising and attractive renewable sources for a fully sustainable and low-

carbon economy portfolio. Between their advantages: widespread availability, absent 

(or very reduced) competition with agricultural land, utilization of cheap and abundant 

nutrient sources (sunlight, carbon dioxide, water), high oil and biomass yields, high 

quality and versatility of the by-products, generation of biomass for biofuel production 

with concomitant CO2 sequestration and suitability for wastewater treatments and other 

industrial plants (Vilchez et al., 1997; Olguín, 2003; Mulbry et al., 2008; EABA, 

2012). 

The high potentiality of algae based biofuels is confirmed by the number of recent 

papers available in the literature related to the use of microalgae in the energy sector 

(Usui and Ikenouchi, 1997; Borowitzka, 1999; Kargi and Ozmihçi, 2004; Chisti, 2007), 

by the growing investments of private companies (Solazyme, Ocean Nutrition Canada, 

Cellana, AlgaeLink) and governments (US Dep. Energy, 2010) in algae-related 

research activity as well as by the increasing number of filed patents (Burton and 

Cleeland, 2008; Wu and Xiong, 2009; Cao and Concas, 2010; Parsheh et al., 2010; 

Rispoli et al., 2011). 

Despite this growing interest, the current microalgae-based technology is still not 

widespread since it is affected by technical and economic constraints that hinder its full 

scale-up (Chen et al., 2011). Therefore, great R&D efforts are currently undertaken to 

produce biodiesel at competitive costs and with the required quality starting from 

microalgae feedstock. In particular given the potential benefits of microalgae, their 

cultivation should be studied and optimized to make them competitive as fuel 

producing systems in the global market (Debska et al., 2010). 

The main technical barriers are related to the fact that photosynthetic efficiency, growth 

rate and lipid content of microalgae are still low if compared to the rate of fuel demand 

of the transportation market.  
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In order to overcome such drawback, scientific community is moving on three main 

directions. The first one is the identification of cultivation conditions and 

photobioreactors configurations that maximize lipid productivity and CO2 fixation by 

means of a reduced number of known microalgae (Yoo et al., 2010; Yeh et al., 2011). 

Another  research line is targeted to the identification of new microalgae strains which 

are intrinsically characterized by high growth rates and high lipid content (de la Vega et 

al., 2011). A futher attractive scientific challenge to face this problem is the genetic 

manipulation of existing strains in order to increase their photosynthetic efficiency 

and/or to regulate their metabolism in order to achieve an abundant production of lipids 

coupled with high biomass accumulation (León-Bañares et al., 2004). Finally the 

identification of novel techniques to improve lipid extraction from microalgae is one of 

the main target to be achieved in order to make the technology economically 

sustainable. 

Along these lines the present PhD activity has been focused on two different lines of 

research which share the common target of identifying suitable strategies to increase 

the lipid productivity of the current microalgal technology. Specifically, in the first line 

of activity, a novel cell disruption technique for the enhancement of lipid extraction 

yields from C. Vulgaris is proposed. In the second line of activity the exploitation of 

iron-based strategies  to increase lipid synthesis in C. Vulgaris, is investigated. 
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2.1 Microalgae 

 

Microalgae are microorganisms living in sea or fresh water that convert sunlight, 

water, carbon dioxide and inorganic salts to algal biomass through photosynthesis. 

Several microalgae are exceedingly rich in oil, which can be extracted and subsequently 

converted to biodiesel using existing technologies (Chisti, 2008). When compared to 

crops used for first generation biofuels, microalgae display superior biomass growth 

rates. Moreover, the corresponding oil content is higher than the one of terrestrial crops 

since it can exceed 80% of the dry weight of  biomass. For these reasons the oil 

productivity of microalgae exceeds that one of terrestrial crops even 10 -100 times 

(Chisti, 2008). Microalgae, differently from crops, are cultured in aquatic environments. 

For these reasons, cultivation of microalgae can be carried out in less extended and 

lower-quality lands, thus avoiding the exploitation of arable ones. In addition, 

cultivation of microalgae might be coupled with the direct bio-capture of CO2 emitted 

by industrial activities. Therefore, the potential use of microalgae as renewable 

feedstock for the massive production of liquid biofuels is receiving a rising interest 

mostly driven by the global concerns related to the depletion of fossil fuels supplies and 

the increase of CO2 levels in the atmosphere. From a conceptual point of view the 

process shown in Figure 1.1 can be carried out for producing biofuels and capturing 

CO2 through microalgae.  

 

 
Figure 1.1 Conceptual scheme for the production of biofuels  and CO2 capture through microalgae. 

 

Despite the apparent simplicity of the process, its implementation to the industrial scale 

is still not widespread since it is characterized by technical and economic constraints 

that might hinder its full scale-up. Moreover, the complexity of the biological 

phenomena involved during the algal growth further complicates the optimization of the 
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process through the classical process engineering techniques. In what follows the 

biochemical phenomena involved during microalgae growth and lipid accumulation are 

briefly discussed. 

 

2.2 Photosynthesis and lipid production in microalgae 

The process exploited by microalgae for converting sunlight energy and inorganic 

compounds into the energy-rich molecules constituting the microalgal biomass is called 

photosynthesis. A simplified scheme of the photosynthetic phenomena occurring in 

vegetal cells is shown in Figure 1.2. 

Basically, the photosynthetic process can be divided into two sets of reactions: the light-

dependent (light) reactions and the light-independent (dark) reactions. The first ones, 

which convert the energy of light into chemical energy, take place within the thylakoid 

membranes of the chloroplasts, whereas the dark reactions, which use the produced 

chemical energy to fix CO2 into organic molecules, occur in the stroma of the 

chloroplast. During the light reactions, the energy transported by incident photons is 

captured by specific pigments and then used to "split water" into molecular oxygen, two 

H+ ions  and into one pair of electrons, respectively. The energy of light is thus 

transferred to these electrons and is, finally, used to generate adenosine triphosphate 

(ATP) and the electron carrier nicotinamide adenine dinucleotide phosphate (NADPH). 

These two compounds carry the energy and the electrons generated during the light 

reactions to the stroma, where they are used by the enzymatic dark reactions related to 

the Calvin cycle to synthesize sugars from CO2. The main sugar synthesized during the 

Calvin cycle is glyceraldehyde 3-phosphate (G3P). Therefore the net result of the 

photosynthesis is the conversion of light, water and CO2 into G3P and molecular 

oxygen.  

The synthesized G3P finally passes into the cytosol where it will be involved as 

intermediate in the central metabolic pathways of the cell that lead to the production of 

several macromolecules among which starch, proteins and sugars. In the chloroplast 

also free fatty acids are synthesized starting from G3P. Fatty acids, along with G3P, are 

then transferred to the endoplasmatic reticulum where they are further converted into 

nonpolar storage lipids, such as triacylglycerides (TAGs), through a number of 

enzymatic reactions. Finally, TAGs are packaged into oil bodies that bud off into the 

cytosol (Sakthivel  et al., 2011). 



 16 

 

Figure 1.2 Simplified scheme of photosynthesis in microalgae and lipid production metabolic 

pathways (adapted from Yonghua, 2012). 

 

These oil bodies have a fatty acid composition comparable to vegetable oils and thus 

can be extracted from the microalgae cell and subsequently converted to useful biofuels 

(Klok et al., 2013). Specifically, oils from algae can yield biodiesel through 

transesterification, and gasoline (petrol) or jet fuels through distillation and cracking, 

respectively (Georgianna and Mayfield, 2012). When compared with first generation 

biomass feedstocks, microalgae have been found to contain higher concentrations of 

lipids. The average lipid content varies between 1 and 70% while under specific 

operating conditions certain species can reach 90% of oil weight by weight of dry 

biomass (Mata et al., 2010). Depending on the specific strain considered, microalgae 

can be characterized by high biomass growth rates which, coupled with the intrinsic 

high lipid content, can lead to very high oil productivity. Table 1.1 shows lipid content 

as well as lipid and biomass productivities of different microalgae species.  

From Table 1.1 it can be observed that volumetric lipid productivity of microalgae is 

extremely variable  depending upon the specific strain considered, and goes from 0.01 

to 3,67 goil L-1 day-1. However, it is worth noting that lipid productivity can be 

strongly affected by the specific culturing conditions adopted, i.e. growth medium 

composition, light regime, photobioreactor configuration and operation mode etc. 
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Consequently, it can be argued that, by suitably choosing the best performing strains, 

very high volumetric productivities of lipids can be achieved by using algae. 

 
Table 1.1 Biomass productivities, lipid content and lipid productivities of different microalgae species 

Strain Biomass 

productivity 

(g/L/day) 

Lipid content 

(% biomass) 

Lipid 

productivity 

(mg/L/day) 

Reference 

Botryococcus braunii 0,35 17,9 61,8 (Orpez et al., 2009) 

Botryococcus braunii 0,29 17,9 51,4 (Orpez et al., 2009) 

Botryococcus braunii 0,03 36,1 12,3 (Sydney et al., 2011) 

Botryococcus braunii* 0,02 50,0 10,0 (Mata et al., 2010) 

Botryococcus braunii 0,04 22,0 9,5 (Dayananda et al., 2007) 

Chaetoceros calcitrans  0,04 39,8 17,6 (Rodolfi et al., 2009) 

Chaetoceros muelleri  0,07 33,6 21,8 (Rodolfi et al., 2009) 

Chaetoceros muelleri* 0,07 33,6 21,8 (Mata et al., 2010) 

Chlamydomonas reinhardtii 2,00 25,3 505,0 (Kong et al., 2010) 

Chlorella* 0,00 37,5 18,7 (Mata et al., 2010) 

Chlorella emersonii* 0,04 44,0 30,2 (Mata et al., 2010) 

Chlorella protothecoides 7,30 50,3 3671,9 (Xiong et al., 2008) 

Chlorella protothecoides 4,10 43,0 1763,0 (Cheng et al., 2009) 

Chlorella protothecoides 4,85 36,2 1214,0 (Mata et al., 2010) 

Chlorella protothecoides 2,02 55,2 1115,0 (Xu et al., 2006) 

Chlorella pyrenoidosa* 3,27 2,0 65,4 (Mata et al., 2010) 

Chlorella sorokiniana IAM-212   0,23 19,3 44,7 (Rodolfi et al., 2009) 

Chlorella sp. 0,00 32,6 110,0 (Hsieh and Wu, 2009) 

Chlorella sp. 0,08 66,1 51,0 (Hsieh and Wu, 2009) 

Chlorella sp.* 1,26 29,0 42,1 (Mata et al., 2010) 

Chlorella vulgaris 0,35 42,0 147,0 (Feng et al., 2011) 

Chlorella vulgaris 0,35 42,0 147,0 (Feng et al., 2011) 

Chlorella vulgaris  0,20 18,4 36,9 (Rodolfi et al., 2009) 

Chlorella vulgaris 0,15 23,0 35,0 (Liang et al., 2009) 

Chlorella vulgaris  0,17 19,2 32,6 (Rodolfi et al., 2009) 

Chlorella vulgaris 0,09 34,0 31,0 (Liang et al., 2009) 

Chlorella vulgaris* 0,11 31,5 25,6 (Mata et al., 2010) 

Chlorella vulgaris 0,10 22,0 22,0 (Liang et al., 2009) 

Chlorococcum sp.  0,28 19,3 53,7 (Rodolfi et al., 2009) 

Chlorococcum sp.* 0,28 19,3 53,7 (Mata et al., 2010) 

Crypthecodinium cohnii* 10,00 35,6 3555,0 (Mata et al., 2010) 

Dunaliella primolecta* 0,09 23,1 20,8 (Mata et al., 2010) 

Dunaliella salina* 0,28 15,5 116,0 (Mata et al., 2010) 

Dunaliella sp.* 0,00 42,3 33,5 (Mata et al., 2010) 

Dunaliella tertiolecta* 0,12 43,9 52,6 (Mata et al., 2010) 

Ellipsoidion sp.  0,17 27,4 47,3 (Rodolfi et al., 2009) 

Euglena gracilis* 7,70 17,0 1309,0 (Mata et al., 2010) 

Haematococcus pluvialis* 0,06 25,0 13,8 (Mata et al., 2010) 

Isochrysis galbana* 0,96 23,5 225,6 (Mata et al., 2010) 

Isochrysis galbana  0,17 22,3 38,0 (Su et al., 2007) 
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Isochrysis galbana  0,12 14,3 17,2 (Su et al., 2007) 

Isochrysis sp.  0,14 27,4 37,8 (Rodolfi et al., 2009) 

Isochrysis sp.* 0,13 20,1 37,8 (Mata et al., 2010) 

Isochrysis sp.  0,17 22,4 37,7 (Rodolfi et al., 2009) 

Monallanthus salina* 0,08 21,0 16,8 (Mata et al., 2010) 

Monodus subterraneus  0,19 16,1 30,4 (Liang et al., 2009) 

Monodus subterraneus* 0,19 16,0 30,4 (Mata et al., 2010) 

Nannochloris sp.* 0,34 38,0 68,7 (Mata et al., 2010) 

Nannochloropsis  0,17 29,2 49,7 (Rodolfi et al., 2009) 

Nannochloropsis sp.  0,21 29,6 61,0 (Rodolfi et al., 2009) 

Nannochloropsis sp.  0,20 24,4 48,2 (Rodolfi et al., 2009) 

Nannochloropsis sp.  0,17 21,6 37,6 (Rodolfi et al., 2009) 

Neochloris oleabundans 0,31 40,0 125,0 (Li et al., 2008) 

Neochloris oleabundans 0,63 15,0 98,0 (Li et al., 2008) 

Neochloris oleabundans 0,15 28,0 37,8 (Gouveia et al., 2009) 

Neochloris oleabundans 0,03 52,0 14,4 (Gouveia et al., 2009) 

Neochloris oleoabundans* 0,00 47,0 112,0 (Mata et al., 2010) 

Pavlova lutheri  0,14 35,5 50,2 (Rodolfi et al., 2009) 

Pavlova salina  0,16 30,9 49,4 (Rodolfi et al., 2009) 

Phaeodactylum tricornutum  0,24 18,7 44,8 (Rodolfi et al., 2009) 

Porphyridium cruentum    0,37 9,5 34,8 (Rodolfi et al., 2009) 

Scenedesmus obliquus* 0,37 33,0 122,8 (Mata et al., 2010) 

Scenedesmus quadricauda    0,19 18,4 35,1 (Rodolfi et al., 2009) 

Scenedesmus sp.  0,26 21,1 53,9 (Rodolfi et al., 2009) 

Scenedesmus sp.* 0,15 20,4 47,4 (Mata et al., 2010) 

Scenedesmus sp.  0,21 19,6 40,8 (Rodolfi et al., 2009) 

Skeletonema costatum  0,08 21,1 17,4 (Rodolfi et al., 2009) 

Skeletonema sp.  0,09 31,8 27,3 (Rodolfi et al., 2009) 

Skeletonema sp.* 0,09 22,6 27,3 (Mata et al., 2010) 

Spirulina maxima* 0,23 6,5 15,0 (Mata et al., 2010) 

Spirulina platensis* 2,18 10,3 224,5 (Mata et al., 2010) 

Tetraselmis sp.* 0,30 13,7 43,4 (Mata et al., 2010) 

Tetraselmis suecica  0,28 12,9 36,4 (Rodolfi et al., 2009) 

Tetraselmis suecica* 0,22 15,8 31,7 (Mata et al., 2010) 

Tetraselmis suecica  0,32 8,5 27,0 (Rodolfi et al., 2009) 

Thalassiosira pseudonana  0,08 20,6 17,4 (Rodolfi et al., 2009) 

* average values are reported     

 

In particular, from Figure 1.3 it can be observed that oil yields per area (areal 

productivity) of microalgae could greatly exceed the one of the best oilseed crops. 

This aspect clearly determines up to 20 times smaller land areas to produce the same 

amount of biofuels (for example biodiesel) through microalgae.  
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Figure 1.3 Comparison of microalgae with oil crops in terms of biodiesel productivity and land’s 

area needs (adapted from Mata et al., 2010). 

 

Furthermore, since the cultivation of microalgae is carried out in open ponds and 

photobioreactors which can be located in marginal lands that are unsuitable for 

conventional agriculture, the competition with arable ones is drastically reduced. In 

addition, microalgae are not directly involved in the human food supply chain, thus 

eliminating the food versus fuel dispute that represents the main drawback related to 

first generation biofuels (Ahmad et al., 2011). Further advantages of microalgae over 

higher plants as feedstock for biofuel production are summarized as follows:  

 microalgae are able to double their biomass in very short times (4 – 24 h) thus 

allowing harvesting cycles of 1-10 days which are much shorter as compared 

with those ones of crop plants, i.e. only once or twice for each year (Schenk et 

al., 2008; Ahmad et al., 2011); 

 microalgae grow in aquatic media, while less water is needed with respect to 

terrestrial crops (Rodolfi et al., 2009); 

 microalgae display larger light capture and conversion efficiency than crop 

plants which leads to reduce fertilizer and nutrient inputs thus resulting in less 

waste and pollution (Schenk et al., 2008). Moreover, fertilizers suitable for 
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microalgae cultivation (especially nitrogen and phosphorus) can be obtained 

from wastewaters (Concas and Cao, 2011; Rodolfi et al., 2009); 

 cultivation of microalgae might be coupled with the direct bio-capture of CO2 

emitted by industrial activities that use fossil fuels for energy generation 

(Concas et al., 2012); 

 microalgae can be used for producing valuable co-products or by-products such 

as biopolymers, proteins, carbohydrates, vitamins, antioxidants, PUFAs etc. 

(Ahmad et al., 2011);  

 cultivation of microalgae does not require the use of herbicides or pesticides 

(Rodolfi et al., 2009);  

 oil content of microalgae can be further increased by adopting specific operating 

conditions during their growth (i.e. nitrogen starvation, etc.) 

Ultimately, when compared to first and second generation biofuels, microalgae are 

characterized by a more sound environmental sustainability and economic viability 

(Quinn et al., 2011). For these reasons, the potential exploitation of microalgae as 

renewable resource for the production of liquid biofuels is receiving a rising interest 

(Olguin, 2003; Mulbry et al., 2008).  

 

2.3 Parameters affecting microalgae growth 
 

It is well known that algae growth in batch cultures proceeds according to the five 

main phases depicted in Figure 1.4 and described in what follows (Jalalizadeh, 2012): 

 A lag phase, where a growth delay takes place when cultivation starts due to 

physiological adjustments of the inoculum to changes in nutrient concentration, 

light intensity and other culture conditions; 

 An exponential phase, where cells grow and replicate exponentially with time, as 

long as all the conditions affecting algae growth are optimized, i.e. nutrients and 

light availability, optimal temperature and pH, etc. 

 A linear growth phase, where biomass concentration grows linearly as a function of 

time; 

 A stationary growth phase, where the biomass concentration remains constant as a 

result of the reduced availability of nutrients and light that lead the death rate to 

equal the growth one; 
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 A decline or death phase, where the decrease in the concentration of nutrients and/or 

the accumulation of toxic waste products lead the death rate to overcome the growth 

one.  

Such a growth behavior can be well described by the mass balance for microalgae 

biomass reported in what follows: 

 d

dX
k X

dt
 

 where X is the microalgal biomass concentration (mass/volume),  is the specific 

growth rate (1/time) and kd is the specific mass loss rate (1/time) which accounts for all 

the phenomena that are responsible of biomass depletion, i.e. cell catabolism, apoptosis, 

lysis, etc. The term ( kd) is the net growth rate. 
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Figure 1.4 Schematic representation of biomass growth in a batch culture (adapted from Jalalizadeh, 

2012). 

 

While kd is usually considered to be constant, the growth rate  depends upon several 

factors which can affect microalgae growth. Among them, light, nutrient concentration, 

pH and temperature (T) are quite important. From a mathematical point of view the 

influence of each parameter on the growth rate  can be expressed as follows:  

       max av
g I h S f pH T        

where max is the maximum growth rate which can be achieved under optimal growth 

conditions for the specific strain considered, Iav is the light intensity available during 

cultivation and S the generic substrate concentration. The functions expressing the 
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influence of each parameter on the specific growth rate will equal to 1 when the 

parameter value is optimal for microalgae growth. In what follows the effects of each 

operating parameter is analyzed and discussed. 

 

2.3.1 Effect of light 

Light is essential for the phototropic growth of microalgae. Spectrum, intensity and 

photoperiod of light influence microalgae growth. Photosynthetically active radiation 

(PAR) designates the spectral range (wave band) of solar radiation from 400 to 700 nm 

that microalgae are able to use during the process of photosynthesis. It should be noted 

that photons at shorter wavelengths (<400 nm) carry a very high energy content that can 

damage microalgal cells, while at longer wavelengths (> 700 nm) the energy carried 

does not allow photosynthesis to take place. Therefore, if we denote by I  

( molphotons m-3 s-1 or E m-3 s-1) the intensity of light at the generic wavelength  

(m), the total intensity I exploitable by algae for phototrophic growth can be calculated 

as follows: 

 
 

 

 

700  nm

400  nm

,I t I t d


  
 

When light penetrates in an optically dense medium such as a microalgal culture it 

experiences attenuation phenomena due to absorption by the medium as well by the 

pigments of microalagal cells. Such effect is usually represented by Lambert-Beer’s 

law: 

     , 0, exp
a

I r t I t k r X    
 

where r is the path length traveled by the light ray within the culture, ka is the extinction 

coefficient  and X is the biomass concentration. Thus, the light intensity reaching a 

microalgal cell depends upon its position with respect to the light direction.  While it can 

be difficult to identify the light intensity reaching each single cell in a culture, it is 

simpler to evaluate the average light irradiance in the culture vessel. For this reason the 

light dependent kinetics of microalgae growth are usually expressed with reference to the 

averaged light intensity  which can be calculated as follows (Sevilla and Grima, 1997): 

 
 ,

V

av

I r t dV
I t

V





 

where V is the culture volume. The effect of average light intensity on microalgae growth 

and photosynthesis has been extensively studied in the literature. Typically, the 
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concentration of microalgae in solution increases with the intensity of light up to a certain 

level (saturation intensity), beyond which a further increase of light intensity does not 

provoke the increase of algal growth rate that remains almost constant (cf. Figure 1.5a). 
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Figure 1.5 Effect of light intensity on growth rate without (a) and (b) with photo-inhibition (adapted 

from Chisti, 2007) 

 

Such a behavior is quantitatively well described by the classical saturation kinetics:  

 

 max max

av

av

K av

I
g I

I I
     


 

 

where IK represents the half saturation constant for light intensity. On the other hand, 

when light intensities overcome a certain threshold, a damage of the microalgae 

photosystem can take place, which ultimately results in a decrease of the growth rate as 

shown in Figure 1.5b (Grima et al., 1999). In Table 1.2 a list of suitable equations for 

the specific growth rate as a function of light intensity which are also able to 

quantitatively describe photo – inhibition phenomenon, is reported. 

 
Table 1.2 Specific growth rate expressions available in the literature as a function of light intensity 

(cf. Sevilla and Grima, 1997) 

Kinetic model 
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Such expressions have been successfully used to simulate experimental data obtained 

either in batch or turbidostat mode with optically thin cultures (Sevilla and Grima, 

1997). 

 

2.3.2 Effect of nutrients 

The medium where microalgae grow basically consists of water enriched by macro 

(C, N, P, S) and micro (Mg, Zn, Fe, K, Na etc.) nutrients as well as by the CO2 

transferred from the gas phase (i.e flue gas or air). Besides CO2, whose role in 

photosynthesis has been already discussed in paragraph 1.3.1, nitrogen and phosphorous 

are key elements for algae metabolism. Their suitable balancing in the growth medium 

is thus critical for an effective process design (Mandalam and Palsson, 1998).  

Ammonia, urea and nitrate are often selected as nitrogen source for the mass cultivation 

of microalgae. Although ammonia and urea are often used in mass cultivation owing to 

their relatively low-cost, selecting proper nitrogen source for each algal species is 

important in improving biomass and oil productivity (Li et al., 2008). Urea and nitrate 

were found to be better nutrients than ammonia for the growth and lipid accumulation 

when considering Chlorella sp., Chlorella vulgaris, Neochloris oleoabundans and 

Scenedesmus rubescens (Li et al., 2008; Hsieh and Wu, 2009). On the contrary, for 

different strains, the use of ammonia has been demonstrated to provoke higher biomass 

and lipid content than urea and nitrate (Xu et al., 2001).   

It should be noted that the optimal concentration of nitrogen to be assured in the growth 

medium depends upon two counteracting effects. Specifically, while a high availability 

of nitrogen typically leads to a high biomass productivity, a decrease of nitrogen 

concentration in the cultivation broth typically results in higher lipid contents 

counteracted by lower growth rates. Such behavior depends upon the fact that, under 

starvation conditions, nitrogen concentration is not enough for activating the metabolic 

pathways leading to protein synthesis required by growth so that the excess of carbon 

coming from photosynthesis is channeled into storage molecules such as 

triacylglycerides or starch (Scott et al., 2010).  
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This inverse relationship between biomass productivity and lipid content makes the 

choice of the suitable nitrogen concentration not straightforward since a trade-off value 

should be assured in order to maximize lipid productivity (Concas et al., 2013).  When 

considering phosphorus, microalgae are capable of metabolizing it mainly in 

polyphosphate form. Orthophosphate is generally considered the main limiting nutrient 

for freshwater strains but also in this case its optimal concentration depends upon 

contrasting effects. In fact, phosphorus starvation can result in higher lipid productivity, 

as reported for Monodus subterraneus, while may provoke changes in fatty acids 

composition for Phaeodactylum tricornutum and Dunialella tertiolecta (Liu et al., 2007).  

For all these reasons the preparation of the culture broth is a critical step for the entire 

process of biofuels production through microalgae. Moreover, the need of a continuous 

replenishment of macronutrients during algal cultivation is one of the most impacting 

cost item of the entire process. In fact, as rule of thumb, about 1.8 kg of CO2, 0.33 kg of 

nitrogen and 0.71 kg of phosphate are consumed to produce 1 kg of microalgal biomass. 

Since large scale cultivation of microalgae implies the consumption of huge amounts of 

such macronutrients, the economic feasibility of the entire process could be seriously 

affected by the erroneous evaluation of their depletion kinetics. Therefore, in view of 

industrial scaling-up, the effect of nutrients concentration in the medium on biomass 

composition and productivity should be quantitative evaluated (Concas et al., 2013). 

Since nutrients concentration and supplies are among the most controllable factors in 

microalgae cultivation, at least the main macronutrients uptake rates need to be 

quantitatively evaluated for the microalgae strains candidate to industrial exploitation. 

In this way, macronutrients concentrations might be properly controlled during 

cultivation. Hence, biomass production can be optimized with respect to the required 

process end-products by means of suitable growth kinetics and broth composition. 

Monod equation is the most common kinetic model used for describing the relationship 

between the microalgae growth rate and the concentration of the limiting nutrient: 
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where Ks (g/L) is the half saturation constant and [S] (g/L) the substrate concentration. 

When multiple nutrients limitation take place, the Monod model can be written as 

follows:  
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On the other hand, the use of the Monod model is limited to the case where no luxury 

uptake of nutrients and nutrient storage phenomena take place. However, the last ones 

are common phenomena in microalgae and lead to a temporal uncoupling between 

growth rate and dissolved nutrient concentrations (Jalalizadeh 2012). Therefore, when 

intracellular storage of nutrients takes place, the cell quota of the limiting nutrient, 

expressed as the total amount of nutrient contained within the cell per cell weight, better 

describes the nutritional status than does the concentration in solution. Ultimately, the 

growth rate of algae is more dependent on the internal cellular concentrations than on 

the external ones (Richmond, 2008). Under such conditions the Droop model (Droop, 

1983), which is capable to relate growth rate to the internal cell quota, may properly 

simulate microalgae growth kinetics. The Droop model can be written as: 

min

max
1

q

q
 

 
   

 

 

where q is the internal cell quota of the limiting nutrient (gnutrient/gcell) while qmin is 

the minimal internal cell quota below which algae growth does not take place.  

 
2.3.3 Effects of pH  

 

The time evolution of medium's pH during algal growth is a significant indicator of 

how well are evolving photosynthetic processes. In fact, as algae grow, dissolved CO2 

is consumed by photosynthesis and, consequently, pH increases. However, pH variation 

not only represent a fundamental indicator of the evolution of photosynthetic activity 

but can also, in turn, strongly affects the growth kinetics of microalgae influencing the 

distribution of carbon dioxide species and carbon availability causing direct 

physiological effects (Cornet et al., 1995; Chen and Durbin, 1994). Moreover, in 

microalgal cultures, the hydrogen ion is recognized to be a non-competitive inhibitor 

near neutral conditions, while it can limit photosynthetic growth and substrate 

utilization rates at very low or very high pH levels  (Mayo, 1997). Furthermore, pH can 

affect the enzymatic activity of intra and extra-cellular carbonic anhydrase, thus 

influencing the carbon capture mechanism of some microalgal strains (Concas et al., 

2012). In order to evaluate the dependence of growth rate upon pH the following 

expression has been proposed by Mayo (1997):  
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which states that [H+] can be considered as a non-competitive substrate when the 

medium pH is high, while displays an inhibition effect when the pH of the medium is 
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low (Mayo, 1997). The resulting dependence of growth rate from pH is depicted in 

Figure 1.6. 

 

.  
Figure 1.6 Effect of pH on the growth of Chlorella vulgaris at 30°C  (adapted from Mayo, 1997). 

 

As it can be observed from Figure 1.6, the kinetic model proposed by Mayo (1997) well 

describes the fact that each strain of microalgae has a relatively narrow optimal range of 

pH and most microalgal species are favoured by neutral pH. 

 

2.3.4 Effect of temperature 

 
Temperature is one of the main factors which regulate cellular, morphological and 

physiological responses of microalgae (Mayo, 1997; Durmaz et al., 2007). High 

temperatures generally accelerate the metabolic rates of microalgae, whereas low ones 

lead to inhibition of microalgal growth (Munoz and Guieysse, 2006). Under optimal 

temperature condition, the enzymes of microalgal cells show the highest activity. The 

optimal temperature range for microalgal growth depends on the specific strain 

considered but in general, it typically goes from a minimum of 5°C to a maximum of 

35°C (Abu-Rezq et al., 1999).  

As far as the kinetic dependence of growth rate from temperature is concerned, different 

relationships have been proposed in the literature. One of the most used equation, 

according to an Arrhenius type dependence, is reported as follows (Mayo, 1997): 
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where A and K are pre-exponential factors (-), E1 and E2 are the activation energies 

(J/mole), R is universal gas constant and T is the absolute temperature (K). This 

equation well interprets experimental data such as those ones reported as an example in 

Figure 1.7.  

 

 
Figure 1.7 Temperature dependency of the growth rate for Chlorella vulgaris  (adapted from Mayo, 

1997). 

 

The control of temperature is a key factor for cultivating microalgae outdoors. Actually, 

temperature can vary depending upon the geographic region of cultivation. Seasonal and 

even daily fluctuations in temperature can interfere with algae production. The internal 

temperature in photobioreactors can reach values that are 30°C higher than ambient one 

if suitable temperature control equipment is not used. To overcome this problem 

evaporation, cooling or shading techniques are successfully employed.  

 

2.4 Production of biodiesel from microalgae 

Microalgae cultivation systems are very different from those ones typically used for 

producing biomass feedstock for first and second generation biofuels. This is mainly 

due to the fact that, while biomass used for first and second generation biofuels consists 

mainly of terrestrial crops, the life of the microalgae and their proliferation occurs in 

liquid environments. Therefore, when compared to terrestrial crops, the production of 

microalgae requires specific cultivation, harvesting and processing techniques which 

should be correctly implemented to the aim of viably produce biodiesel (Mata et al., 

2010). 
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Basically, the current processes for biodiesel production from microalgae involve 

distinct operating steps where cells are grown, separated from the growing media, dried 

(or disrupted)  and finally undergone to lipid extraction processes. Once extracted, 

microalgal lipids are processed through technologies similar to the existing ones for the 

production of biodiesel or other biofuels starting from first generation biomass 

feedstocks. While different biofuels can be produced from microalgae in this work we 

will focus on the production of biodiesel. Figure 1.8 shows a schematic representation 

of the process for the CO2 capture and biodiesel production through microalgae. As it 

can be seen, the process starts with the CO2 capture and its conveying in the cultivation 

system where microalgae grow exploiting the sunlight and the nutrients suitably 

provided. Then, it follows the biomass harvesting, downstream processing and oil 

extraction to supply the biodiesel production unit. 

 

 

Figure 1.8 Schematic representation of the "algae to biodiesel" process. 

 

As reported in Figure 1.8, cultivation of microalgae can be performed in open systems 

(ponds, raceways, lakes) or in closed ones, i.e. photobioreactors. Whatever the system 

being used, a suitable source of CO2 must be supplied to microalgae.  To this aim, 

atmospheric air (0.03 %v/v of CO2), flue gas (9-15% of CO2) or pure concentrated CO2 

(100%v/v) can be used. Atmospheric air as CO2 source, significantly simplifies the lay-
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out and the operation of the plant while, because of the lower CO2 concentration in air, 

high volumes of air are required in order to sustain microalgae growth at an acceptable 

rate. This can result in very large cultivation systems that require a high land 

availability. On the contrary, when flue gases are used as carbon source, lower flow 

rates of gases should be pumped into the cultivation system for supplying the necessary 

amounts of carbon to sustain microalgae growth. Moreover, the use of costless 

feedstocks such as flue gases as source of CO2 might greatly improve the economic 

feasibility of the microalgae-based technology while, simultaneously, producing a 

positive impact on significant environmental concerns such as air pollution and climate 

changes. For this reason the potential exploitation of CO2 from flue gases is one of the 

main targets of scientists and technicians operating in this field (Concas and Cao, 2011; 

Francisco et al., 2010). However, the use of flue gas as carbon source might raise 

specific concerns related to the toxicity of some of its constituents with respect to algae. 

For this reason the flue gas should be pre-treated before feeding it in the cultivation 

system. A further challenge in the carbon capture through microalgae is the use of pure 

concentrated CO2 (100 %v/v) obtained from flue gas.  In this case in fact, beside the 

lesser volumes of photobioreactors that are needed, the potential poisoning effects 

provoked by other compounds in flue gas (NOx, SOx etc.) could be reduced thus 

increasing the net growth rate of microalgae.  

Besides CO2, several micro and macro nutrients must be supplied to the culture in order 

to sustain microalgal growth. While the importance of the nutrients has been already 

discussed in paragraph 2.2, it is noteworthy to underline that the exploitation of costless 

feedstocks such as wastewaters as sources of macronutrients, might greatly improve the 

economic feasibility of the microalgae-based technology while simultaneously 

producing a positive impact on important environmental concerns such as water 

pollution. In fact , wastewaters, even if pre-treated, may contain residual concentration 

of nitrogen and phosphorus which are capable to sustain microalgal growth (Concas and 

Cao, 2011). In particular, industrial and agricultural wastewater and secondary sewage 

treated effluent can be used as source of nitrogen and phosphorus (Devi et al., 2012). 

For this reason the operation step of medium preparation can involve a pre-mixing with 

wastewater.  

Finally, in order to suitably cultivate microalgae, large amounts of water must be 

available. Depending upon the specific microalgal strain to be cultivated, freshwater or 

seawater can be used for preparing the growth medium. The use of marine strains would 
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be convenient since seawater can contain suitable concentrations of micronutrients 

whose purchase could be so avoided. Moreover, seawater would be available in large 

amounts without affecting water resources to be exploited for other uses. Since water 

consumption might be significant, the recycling of the exhaust growth medium at the 

outlet of the cultivation systems should be always considered in an optimized flow-

sheet.  

Finally water and nutrients are dosed and mixed within a suitable pre-mixing unit. The 

obtained mixture is then filtered, sterilized and finally pumped into the cultivation 

systems. 

 

2.5 Cultivation of Algae in open ponds 

 
Different designs have been proposed for open ponds, natural or artificial ones, 

operating at large scale. Typical examples are the unstirred ponds (lakes and natural 

ponds), the inclined ones, central pivot and the raceway ponds. Among the others, the 

most widespread typology of open pond is the so called “raceway pond”. It basically 

consists of open channels where a paddlewheel is used to drive the flow, while algae are 

kept suspended in water around a racetrack. Baffles in the channels guide the flow in 

order to minimize space. Raceways are typically made by concrete but can also simply 

dug into the soil and waterproofed with a plastic liner to prevent the liquid filtration 

through the ground. These systems are usually operated in a continuous mode, where 

the fresh medium (containing macro and micro nutrients) is fed in front of the 

paddlewheel and algal broth is harvested behind it after being  circulated through the 

loop  (Singh and Sharma, 2012). The raceways (cf. Figure 1.9) are characterized by low 

water depths of about 15-20 cm in order to assure a suitable light penetration along the 

hydraulic section thus avoiding dark zones where microalgae can’t grow. At such 

depths biomass concentrations of 1 g L-1 can be achieved and productivities ranging 

from 15 to 25 g m-2 day-1 are possible (Schenk et al., 2008).  
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Figure 1.9 Scheme of a single raceway pond and photography of raceway pond farm (adapted from 

Rapier 2012). 

 

In general, these cultivation systems are less expensive to build and simpler to operate 

than closed ones. For this reason they are currently considered as the most cost effective 

way for the massive production of microalgae at a large scale. However, open ponds 

display several limitations. In particular, when compared to close systems, open 

raceways are characterized by a lower productivity that is the result of a number of 

factors. Evaporative losses can lead to changes in the ionic composition of the growth 

medium thus potentially provoking negative effects on culture growth such as iper-

salinity, nutrient's precipitation etc. Changes in temperature, photoperiod deriving from 

seasonal variation cannot be suitably controlled in open ponds (Rawat et al., 2012). 

These systems are more susceptible to contaminations by competing organisms such as 

mushrooms, bacteria and protozoa. Furthermore, since atmospheric carbon dioxide is 

used as carbon source, its transfer rate is very low and consequently carbon starvation 

phenomena could take place. Finally, sunlight is available only at the surface of the 

pond and hence, in the deeper strata of the liquid bulk, light limitation phenomena can 

arise. Improved mixing and bubbling the air at the bottom of the ponds by means of 

suitable spargers can minimize impacts of both CO2 and light limitation but in general 

the productiviy of these systems is very low whereby large areas of land may be 

required to meet the desired output of cultivation (Rawat et al., 2012).  

To overcome limitations related to open system and in the meantime keeping their low 

operating cost, the potential use of closed raceway ponds are currently under study. 

These systems consist essentially of an open pond covered by a transparent or 

translucent barrier which turns it into a greenhouse (Singh and Sharma, 2012).  This 

configuration prevents the microalgae to be contaminated by competing bacteria and 

allows a better control of crucial operating parameters such as temperature, evaporation 
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etc. Moreover, by using closed raceways the amount of CO2 provided can be increased 

since the gas bubbled at the bottom cannot escape to the atmosphere. 

 

2.6 Closed systems (photobioreactors) 

Photobioreactors (PBR) are closed systems having no direct exchange of gases and 

contaminants with the environment where culture broth and microalgae are exposed to a 

photonic energy flux which triggers photosynthetic phenomena hence allowing biomass 

growth. Since they are closed reactors the crucial operating parameters such as 

temperature, pH, nutrient concentration, light intensity distribution, mixing, gas mass 

transfer rate can be suitably controlled and optimized. As a result photobioreactors 

typically have higher biomass productivities than open ponds. On the contrary, 

photobioreactors are more expensive and complicated to operate than open ponds. A 

qualitative comparison between photobioreactors and open ponds is summarized in 

Table 1.3.  

Ideally, a photobioreactor for production of biomass should catch all sunlight available, 

dilute and distribute it uniformly in the growth medium where algae are suspended in 

such a way that all the caught light energy can be suitably exploited by algae for 

biomass formation. For this reason a critical design parameter of photobioreactors is the 

illumination surface area per unit volume. Typically, a high illuminated surface area to 

volume ratio (SVR) results in a higher light availability in the liquid bulk and 

consequently in higher volumetric productivities of the systems 

The surface to footprint ratio (SFR) is another critical design parameter. Higher values 

of SFR correspond to a larger areal productivity of the photobioreactor and 

consequently the lesser is the land’s area needed for producing the required output of 

microalgal biomass. Different types of photobioreactors are currently under study and 

development with the aim of reaching the more suitable configuration where SVR and 

SFR are maximized. 
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Table 1.3 Comparison between open ponds and photobioreactors (adapted from Lutzu, 2012) 

Parameter Open systems Photobioreactors 

Contamination risk High Low 

Sterility None Achievable 

Species control Difficult Easy 

Area/Volume ratio Low High 

Water losses High Low 

CO2 losses High 
Depends on pH, 

alkalinity 

O2 inhibition Low Problematic 

Mixing Very poor Uniform 

Light utilization 

efficiency 
Poor High 

Temperature control Difficult Less difficult 

Evaporation of growth 

medium 
High Low 

Hydrodynamic stress on 

algae 
Very low Low-High 

Process control Complicated Less complicated 

Maintenance Easy Difficult 

Yield Low High 

Population (algal cell) 

density 
Low High 

Biomass concentration 1 g L
-1

 3- 5 g L
-1

 

Constructions costs Low High 

Weather dependence High Low 

Overheating problems Low High 

Dissolved oxygen 

concentration 
Low High 

Scale-up Difficult Difficult 

Surface to volume ratio, 

SVR (m
2
/m

3
) 

< 4 <100 

Surface to footprint ratio, 

SFR (m
2
/m

2
) 

1 <10 

 

 

2.6.1 Vertical tubular photobioreactors 

The classical configuration of vertical tubular photobioreactor is the bubble 

column. It is basically a cylinder with radius of up to 0.2 m and height of up to 4 m. The 

height to diameter ratio is typically kept greater than 2 in order to maximize the SVR 

ratio. The CO2 is provided to the algae by bubbling the gas from the bottom upwards 

through suitable spargers. While allowing a better CO2 mass transfer, the bubbles flow 

provides also the suitable mixing degree without provoking significant shear stresses on 

microalgae. Moreover, the gas flow enables the effective removal of photosynthetic O2 

produced by algae which, if accumulated in the liquid, can inhibit the growth.  The 

height constrain of these columns (< 4m) depend upon the gas transfer limitations and 
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the strength of the transparent materials used to construct the columns. Since CO2 

supply and O2 removal is optimized, in such type of reactors algal growth is often 

limited by other parameters such as light (Wang et al., 2012). A schematic 

representation of different types of vertical tubular photobioreactors is shown in Figure 

1.10.  

 

    

 

(a) (b) (c) 

 

Figure 1.10 Schematic representation of bubble column (a) and airlifit (b) photobioreactors and 

picture (c) of an industrial bubble column photobioreactor (adapted from Krichnavaruk et al., 2005). 

 

A specific configuration of vertical tubular photobioreactors is the so called airlift 

reactor. It consists of a vessel with two interconnecting zones (i.e. the riser and the 

downcomer). The gas flow is introduced at the bottom of the riser and carries the liquid 

upward. At the top of the column liquid/gas separation takes place in the freeboard 

regime thus allowing the removal of accumulated photosynthetic oxygen. Subsequently, 

the degassed liquid falls downward in the downcomer. Mixing is therefore guaranteed 

by aeration and liquid circulation. This system allows a better exposure of microalgal 

cells to light radiation than classical bubble columns as well as an effective mixing and 

degassing of the liquid. Airlift PBR configurations may include an internal loop airlift, 

split column airlift and external loop airlift.  

 

2.6.2  Flat panel photobioreactors 

 
Flat panels (cf. Figure 1.11) are parallelepiped shaped photobioreactors having a 

minimal light path and a large illumination surface area (SVR) which can reach values 

of up to 40 m-1 (Singh and Sharma, 2012). The thickness of plate is the crucial 

parameter in the design of flat panels because it determines the surface area/volume 

ratio and the length of light path (Wang et al., 2012).  They can be made from 

transparent materials like glass, plexiglass, polycarbonate etc. The CO2 is provided by 
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bubbling the gas from one side of the panel through suitable perforated tubes. Mixing of 

the liquid is assured by the gas flow or by rotating the photobioreactor through a motor 

(Singh and Sharma, 2012).  

 

 

 

Figure 1.11 Schematic representations and picture of flat panel photobioreactors (adapted from 

Carter, 2012 and Zijffers et al., 2010). 

 

Major limitations of conventional flat panels are the difficulties of controlling the liquid 

flow and the relatively high construction costs. To overcome these problems vertical 

alveolar panels, made in plexiglass, were proposed (Tredici and Materassi, 1992). These 

systems allows to obtain a high surface-to-volume ratio of about 80 m-1.  A good 

biomass productivity can be  achieved by using these alveolar panels as well as a good 

mixing degree and suitable mass transfer rates. Moreover, the manufacturing costs of 

these reactors are quite low. However, critical operating parameters such as temperature 

and light penetration should still be optimized in such a PBR (Wang et al., 2012). 

 

 
2.6.3 Horizontal tubular photobioreactors 

 
Horizontal tubular reactors typically consist of arrays of transparent thin tubes built 

in different patterns (i.e. straights, loop or serpentine shaped etc). The arrays of tubes 

can be arranged in parallel or in series and then placed horizontally on the ground. 

Horizontal placement of these tubes results in a better angle for incident light compared 

to vertical tubular reactors, allowing for more efficient light harvesting (Wang et al., 

2012). Moreover, the tubes are preferably oriented towards the sunlight in order to 
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maximize the light capture and the ground under the tubes can be covered with white 

plastic sheets in order to increase the albedo. In fact, a high albedo results an increase of 

the total light received by the tubes. Typically, these tubes are less than 0.1 m in 

diameter since otherwise the light does not suitably penetrate in the less exposed zones 

of dense cultures. However, larger diameters may be used when suitable regimes of 

turbulence of the fluid are employed in order to assure the movement of algae from the 

illuminated part of the tube to the dark one and vice-versa. Prolonged exposure to light 

in the illuminated part of the tube can trigger photo-inhibition phenomena while a long 

time exposure to darkness can inhibit photosynthesis. Furthermore, the tubes should not 

be longer than 80 m in order to avoid the accumulation of photosynthetic oxygen in the 

culture and a too high increase of pH as algae grow (Concas and Cao, 2011). Besides 

the tubes, which act as solar collectors, the horizontal photobioreactors include the 

following components: the harvesting unit to separate algae from the suspension, a 

degassing column for gas exchange and cooling (or heating) and a circulation pump 

(Wang et al., 2012). In Figure 1.12, a specific configuration of horizontal 

photobioreactors is shown. 

 

 
 

Figure 1.12 Schematic representations of horizontal (serpentine type) photobioreactors (adapted 

from Carter, 2012).  

 

 

In the degassing device air or CO2 enriched air is injected in order to strip dissolved 

oxygen and at the same time provide the CO2 to algae culture. In the degasser also the 

feeding of fresh medium can be carried out. Typically horizontal photobioreactors are 

capable to capture light better than other photobioreactor thus potentially assuring 

higher productivities. On the other hand, just this characteristic can cause the onset of 

photo-inhibition phenomena as well as the accumulation of high amounts of heat. Thus, 
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expensive temperature control systems such as heat-exchangers are often required 

during large scale cultivation of algae. Furthermore, long tubular PBRs are 

characterized by gradients of oxygen, CO2 and pH along the tubes. The increase in pH 

of the cultures would also lead to frequent re-carbonation of the cultures, which would 

consequently increase the cost of algal production. Finally, it should be noted that 

adherence of the cells to the walls of the tubes is common. This results in a progressive 

fouling of the tubes and a consequent worsening of light penetration in the culture. 

 

2.6.4 Advantages and drawbacks of different types of photobioreactors 

 
Each photobioreactor configuration described above is characterized by specific 

advantages and drawbacks that should be considered when designing the cultivation 

system. A summary of the main features of these three configurations is shown in Table 

1.4. 

 

Table 1.4  Prospects and limitations of different photobioreactors (adapted from Lutzu, 2012) 

Culture systems Advantages Disadvantages 

Horizontal Tubular 

PBRs 

Large illumination surface area, 

suitable for outdoor cultures, 

fairly good biomass 

productivities, relatively cheap 

Gradients of pH, dissolved 

oxygen and CO2 along the tubes, 

fouling, some degree of wall 

growth, require large land space 

Vertical-column 

PBRs 

High mass transfer, good mixing 

with low shear stress, low energy 

consumption, high potentials for 

scalability, easy to sterilize, 

readily tempered, good for 

immobilization of algae, reduced 

photoinhibition and photo-

oxidation 

Small illumination surface area, 

their construction require 

sophisticated materials, shear 

stress to algal cultures, decrease 

of illumination surface area upon 

scale-up 

Flat-plate 

PBRs 

Large illumination surface area, 

suitable for outdoor cultures, good 

for immobilization of algae, good 

light path, good biomass 

productivities, relatively cheap, 

easy to clean up, readily 

tempered, low oxygen build-up 

Scale-up requires many 

compartments and support 

materials, difficulty in controlling 

culture temperature, some degree 

of wall growth, possibility of 

hydrodynamic stress to some 

algal strains 
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2.7 Harvesting of microalgae 

At the outlet of the photobioreactor, the bulk culture medium is characterized by a 

water content ranging from 99.5% to 99.9% and thus the harvesting of microalgal 

biomass is basically carried out through a dewatering/concentrating phase. Such 

operating phase is usually accomplished through a two-step process (Pragya et al., 

2013). The first step, where biomass is concentrated to 2%–7% dry weight, is called 

bulk harvesting. In the second one, called thickening, the algal slurry is further 

concentrated to about 15-25 % in order to obtain better manageable slurry in the 

subsequent operations of lipid extraction (Pragya et al., 2013). Thickening is more 

energy intensive than bulk harvesting (Chen et al., 2011). Either bulk harvesting or 

thickening can be performed by means of different techniques which will be briefly 

summarized in what follows.  

 

2.7.1 Gravity sedimentation and fllucculation 

This technique is typically used for the bulk harvesting of microalgae and refers to 

a process by which microalgal cells settle to the bottom of a liquid under the action of 

gravity and subsequently form a sediment which can be easily harvested. Sedimentation 

is performed through thickeners and clarifiers that are similar to those ones used in 

standard wastewater treatment plants. It is an energy efficient method while the 

separation yield depends upon several factors such as microalge cells size as well their 

tendency to aggregate. Since the relatively small diameter of cells (5-50 m) and the 

colloidal character of microalgal suspensions, gravity settling is typically a very slow 

process (settling rates of 0.1-2.6 cm h-1) which requires large tanks in order to give an 

effective solid/liquid separation. Fortunately, sedimentation rate can be enhanced by the 

addition of flocculants to the system. The latter ones are chemicals which improve the 

rate of sedimentation of the microalgae by aggregating the dispersed microalgal cells 

into larger colonies which can settle down faster. Common inorganic flocculants are 

aluminum- and iron-based metal salts. However, metallic salts are quite expensive and 

require an acidic pH as well as a high dosage to provide an adequate result. On the other 

hand, cell apoptosis can be induced by the addition of aluminum salts. Residual metal 

salts after harvesting may negatively affect both the medium recycling and the quality 

of the desired products. For this reason organic flocculants or polyelectrolytes which are 

cationic polymers that physically link cells together are generally preferred. Such 

flocculants are better tolerated by algae, require a lower dosage and do not affect 
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medium recycling. Among the different types of organic flocculants available on the 

market, the most used are chitosan and grafted starch (Kim et al., 2013). After 

flocculation the microalgae settle down faster and can be harvested from the bottom of 

the settler. Another technique for increasing the settling rate of algae is the auto-

flocculation. In this case chemicals such as carbonates and hydroxides (NaOH) are 

added to induce physiochemical reaction between algae and promote auto-flocculation 

due to carbonates precipitation when pH rises as a result of the photosynthetic 

phenomena.  

A further technique is the bio-flocculation which consists in culturing microalgae with 

another microorganism that promotes sedimentation. Example is the use microbial 

flocculants for harvesting mass culture of Chlorella vulgaris from Paenibacillys sp. 

AM49 (Richmond, 2008; Chen et al., 2011). 

 

2.7.2 Centrifugation 
 

Centrifugation is a process that involves the use of the centrifugal force for the 

stratification of algal culture into regions with different solid concentration that are 

subsequently separated by draining the less concentrated phase (supernatant).  

Centrifugation can also be followed by sedimentation to separate the supernatant. This 

technique allows an effective separation of microalgae in a relatively short time. 

According to Pragya et al. (2013) about 80%–90% microalgae can be recovered within 

2–5 min. For these reasons centrifugation is one of the most preferred methods for 

harvesting of algal biomass. On the other hand, this method is high energy consuming 

thus potentially being able to negatively affect the CO2 balance of the process.  Energy 

requirement consumption for various types of centrifuge is estimated to range from 0.3 

– 8 kWh m-3 (Alabi et al., 2009). Some authors claimed that centrifugation process 

needs about 48.8% of the total energy consumption during algal biofuel production. For 

all these limitations alternative methods for algae harvesting are currently under study 

and development.  
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2.7.3  Filtration 

Filtration can be used to concentrate microalgal cells. The technique is based on the 

use of specific filters such as screens, micro-strainers or membranes through which the 

algal suspension is passed. Microalgae or microalgae colonies are retained by the filter 

depending on the difference between the cell size and mesh dimension of the filter. The 

conventional filtration processes are suitable for the harvesting of microalgae having a 

relatively large (>70µm) cell size such as Spirulina. It cannot be used for microalgae 

specie having diameters lower than 30 µm such as Scenedesmus, Dunaliella and 

Chlorella. Different filtration techniques can be used. Micro-strainers are rotating filters 

with fine mesh screens. They are simple to operate, require low investment and have 

high filtration ratios. Other methods of filtration include dead-end filtration, vacuum or 

pressure filtration and cross-flow filtration.  

In dead end filtration the fluid flows perpendicularly to the filter and the trapped 

particles start to build up a "filter cake" on the surface of the membrane which reduces 

the efficiency of the filtration process until the filter cake is washed away in back 

flushing. Dead-end filtration of large amounts of algal broth can only be accomplished 

using packed bed filters (made from sand) and its application is limited to the removal 

of algae culture having low solid concentration due to the rheological properties of 

microalgae which produce compressible cakes and hence clog the filters.  

To overcome such limitation dead hand filtration vacuum filters can be used. They are 

able to recover large amounts of microalgae, although they are less effective when 

applied to organisms approaching bacterial dimensions. A recovery of 80% to 90% of 

freshwater algae is achievable with vacuum tangential flow filtration. Tangential-flow 

filtration is widely used to decrease filter or membrane fouling and performs more 

efficiently than does dead-end filtration. In cross-flow filtration, backwashing and 

ventilation of the algae medium can help control the fouling and recover flux (Pragya et 

al., 2013).  

Ultrafiltration is another technique that is capable to concentrate an algal suspension up 

to 150-fold (from 1 to 154.85 g/L) under conditions of pulsated air scouring combined 

with backwashing (Kim et al., 2013). Filtrations are basically simple but potentially 

very expensive depending on specific operating parameters such as filter pore size, 

algae aggregation rate, microalgae specie, filter materials etc (Greenwell et al., 2010). 

Energy consumptions range from 0.2-0.88 kWh m-3 to 0.1-5.9 kWh m-3 for vacuum or 

pressure filtration, respectively (Alabi et al., 2009). 
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2.7.4 Flotation 

 

Laboratory experiments have shown that also flotation is suitable for harvesting 

small, unicellular algae. The separation of suspended microalgae from the liquid bulk 

phase is achieved through the use of air or gas bubbles which flow upwards within a 

flotation tank or basin. The small bubbles adhere to the suspended microalgae and then 

carry them to the liquid surface where they may be removed by a skimming device 

(Pragya et al., 2013).  Microalgal cells with a diameter from 10–30 μm to 500 μm are 

preferred for effective flotation. Typically, the flotation efficiency depends on the size 

of the bubbles: nanobubbles (< 1 μm), microbubbles (1–999 μm), and fine bubbles (1–2 

mm). As a rule of thumb, the smaller is the bubble size the longer is their longevity and 

the larger is their carrying capacity due to the increased surface area-to-volume ratio. 

Moreover, small bubbles rise slowly and thus can more easily adhere to microalgal cells 

and more stably transport them to the water surface than large bubbles (Kim et al., 

2013). Depending on the bubble size, flotation can be carried out through dissolved air, 

dispersed air or electrophoresis. In dissolved air flotation the water stream is pre-

saturated with pressurized air. The pressurized air is then released at atmospheric 

pressure in a flotation tank or basin. The released air forms tiny bubbles of 10–100 µm 

in size. On the contrary, dispersed air floatation is achieved by injecting air bubbles into 

the water through an air injection system and a high speed mechanical agitator. In this 

way bubbles having diameter ranging from 700 to 1500 µm can be produced. In both 

dissolved and dispersed air flotation, flocculants can be added to increase the 

microalgae separation yield. Electrophoresis techniques exploit the hydrogen bubbles 

generated by electrolysis of water for transporting microalgal flocs to the water surface. 

Moreover, since microalgal cells have a negatively charged surface, the application of 

an electric field can cause algae to migrate towards the positively charged anode where 

they can be harvested (Pragya et al., 2013). The major benefit of approaches based on 

electrophoresis is that no chemical addition is required, however, the high power 

requirements and electrode costs do not make for an appealing harvesting method, 

especially for large-scale applications (Christenson and Sims, 2011) 

 

2.7.5 Final consideration about harvesting microalgae 

It is worth noting that, according to some authors, harvesting alone, is one of the most 

expensive steps of the overall process of microalgae production since it accounts for 
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20%–30% of the total production cost (Rawat et al., 2011). Therefore, in order to assure 

the economic sustainability of the process, efficient and inexpensive harvesting methods 

should be developed and subsequently adopted at the industrial scale. Moreover, the 

correct choice of the technique for dewatering the microalgal culture is critical in order 

to reduce water consumption. In fact, the exhaust liquid growth media separated during 

this operating phase should be recycled for preparing the fresh growth medium. In Table 

1.5 a comparison made by Christenson and Sims (2011) between the advantages and 

limitations of the main techniques for microalgae harvesting is reported.  

Finally, it is worth noting that also suitable combinations of the methods described 

above can be exploited in order to increase harvesting efficiency. In figure 1.13 two 

possible combinations of different harvesting techniques proposed by Rios et al. (2013) 

are shown. 

 

Table 1.5 Comparison of mechanical harvesting methods for algae (adapted from Christenson and 

Sims,  2011) 

Method 

Solids 
concentration 

 after 

harvesting 

Recovery  

yields Major benefits Major limitations 

Centrifugation 12-22% > 90% Reliable, high solids conc. 

Energy intensive, high 

cost 

Tangential filtration 5-27% 70-90% Reliable, high solids conc. 
Membrane fouling, high 
cost 

Gravity sedimentation 0.5-3% 10-90% Low cost Slow, unreliable 

Dissolved air flotation 3-6% 50-90% Proven at large scale 

Flocculants usually 

required 

     

      

 
Figure 1.13 Diagrams of two possible concentration paths: from photobioreactor to (I) final 

concentrated biomass passing through dynamic microfiltration followed by centrifugation and to (II) 

final concentrated biomass passing through pH induce flocculation sedimentation and dynamic 

microfiltration (adapted from Rios et al., 2013). 
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2.8 Downstream processing 

 

The harvested biomass slurry is characterized by a solid content ranging from 5 to 

15 % dry weight. Lipid extraction can be performed both from wet and dry biomass. 

Depending upon the specific lipid extraction route adopted, specific pre-treatments 

should be carried out. In particular, if lipid extraction will be carried out from dry 

biomass, a drying/dehydration pre-treatment will be necessary, while, if the wet route is 

chosen, microalgae must be undergone to a specific pre-treatment aimed to break their 

cell wall (cf. Figure 1.14).  

Since, after harvesting microalgal biomass is perishable, it must be processed rapidly. In 

what follows the main techniques for performing drying and cell disruption will be 

summarized.  

 

 
Figure 1.14 Comparison of dry and wet route of lipid extraction (adapted from Kim et al., 2013). 

 

2.8.1  Drying methods 

 

The target of the drying process is to extend the viability of the desired product and 

prevent the degradation of the harvested biomass slurry. It can be performed basically 

by sun drying, spray drying, solar drying, drum drying, fluidized bed drying, freeze 

drying and refractive window technology (Brennan and Owende, 2010). Other 

techniques include flash drying, and rotary dryers. The selection of the drying process 

depends on the scale of operation and the use for which the product is intended. Sun 

drying is a method based on natural evaporation of water. It is a slow drying technique 

which depends on weather conditions and requires large evaporation basins. On the 
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other hand, it is the cheapest way for drying microalgae since it consumes low energy. 

Spray drying is a technique of producing a dry biomass from slurry by rapidly drying it 

with a hot gas. All spray dryers use some type of atomizer or spray nozzle to disperse 

the liquid or slurry into a controlled drop size spray. This method is quite expensive but 

can be used for the extraction of higher value products from microalgae (Brennan and 

Owende, 2010). Freeze-drying, also known as lyophilization, is a dehydration process 

which works by freezing the algal biomass at -20°C and then reducing the surrounding 

pressure to allow the frozen water in the material to sublimate directly from the solid to 

the gas phase. While allowing good oil extraction yields, freeze drying is relatively 

expensive and thus is rarely used for large scale operations (Brennan and Owende, 

2010). In drum drying the wet biomass is applied as a thin film to the surface of a 

heated drum, and the dried biomass solids are then scraped off with a knife. Drum 

drying is fast and efficient but is both cost and energy intensive.  

Since it involves high energy consumptions, drying is one of the main costs of the 

whole process of oil production from algae. It can represent 70-75% of the processing 

cost. Thus, while allowing subsequent good extraction yields, drying as a pre-treatment 

process is not an economical process. For this reason drying is often skipped and the 

wet route is generally preferred. An improvement of the economic sustainability of the 

drying step can be achieved by suitably exploiting the energy of flue gas at the outlet of 

the emission source for heating the wet biomass (Concas and Cao, 2011).  

 

 

2.8.2  Cell disruption methods   

  

Cell disruption is an essential pretreatment when lipid extraction is carried out 

directly from wet biomass. In fact, lipid extraction from wet biomass is characterized by 

low yields due to the immiscibility of water with organic solvents typically used for 

dissolving lipids from algae. Therefore, when solvent extraction is applied to a wet 

biomass, the microalgal cells tend to remain in the water phase due to their surface 

charges and thus they cannot contact the organic solvent phase which is able to extract 

lipids (Kim et al., 2013). On the other hand, this phenomenon can be prevented by 

suitably breaking the cell wall of microalgae and thus facilitating the release of 

intracellular lipids from the microalgal cellular matrix. Once released from the algal 

cell, lipids pass to the organic phase from which they can be extracted by evaporating 

the solvent. The cell disruption is therefore a method for breaking the cell wall of algae. 
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Since microalgae have a cell wall, which is a thick and rigid layer composed of complex 

carbohydrates and glycoproteins with high mechanical strength and chemical resistance, 

this operating step can require high energy inputs. Cell disruption techniques can be 

conceptually divided into physical or mechanical methods and non-physical methods.  

 

 

2.8.3  Physical mechanical methods 

The physical or mechanical methods include high pressure homogenization, ball 

milling, microwaving,  ultra-sonication and cavitation. The process of high pressure 

homogenization is a mechanical method which consists in pumping the cell suspension 

to a high pressure through a narrow opening of a valve before the cell suspension is 

released into a chamber of a lower pressure (Halim et al., 2012). High pressure 

homogenizers can greatly enhance the availability and the extraction of pigments from 

the cells.  

On the other hand, it can cause high energy consumptions which can be up to 750 

kWh/dry ton for 4-7 wt% solids.  Ball milling is a very simple cell disruption technique 

that breaks cells by means of spheres made of quartz or metal that are shaken within a 

closed container filled with the target cells. The cells are disrupted by collision or 

friction with the spheres. This method is very simple and rapid but is hard to scale up 

and requires extensive cooling systems for preventing thermal degradation of lipids 

(Kim et al., 2013).  

Microwaves break cells using the shocks generated by high-frequency electromagnetic 

waves (about 2500 MHz). This method has been successfully applied for disrupting 

vegetal cell walls and subsequently extracting lipids. The main limitation deriving from 

using microwaves at large scale is the high energy consumption (about 70 KW). Ultra 

sonication exploits the cavitation phenomena induced by ultrasounds (18-50 kHz) in a 

liquid. Cavitation leads to the formation and the immediate implosion of cavities 

(microbubbles) in the liquid.  Such implosions result in the production of shockwaves 

which can disrupt the cell wall of microalgae thus allowing the release of intracellular 

lipids. The main advantage of this method is the high yields of cell disruption. On the 

other hand, the main limitations are the high energy consumptions which ranges from 

60 to 120 MJ/kgwet biomass and the low scalability deriving from the fact that 

cavitation occurs only in small regions near the ultrasonic probes (Kim et al., 2013). 

Finally, a relatively new technique for cell disruption is the electroporation.  
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The latter one consists in the increase of the electrical permeability of cells by applying 

a pulsed electromagnetic field. It is usually applied in molecular biology for introducing 

specific substance into a cell, such as drugs or piece of DNA as well as for extracting 

intracellular compounds. No permanent effects are detected in the cells. However, if a 

very strong intensity of the electric field is applied cell wall can be destroyed thus 

allowing the subsequent extraction of lipids. Electroporation is very simple and low 

energy consuming since in the few studies carried out on microalgae an energetic input 

of about 36 kWh/m3 was sufficient for disrupting algal cells  (Lee et al., 2012). 

 

 

2.8.4 Non mechanical methods 

 

The main non-mechanical methods for microagal cell disruption are osmotic 

shocks, enzymatic hydrolysis and physico-chemical methods. Osmotic shock is caused 

by a sudden change in the solute concentration which provokes a rapid change in the 

movement of water across the cell wall.  

This results in the creation of a pressure gradient between the inner and the outside of 

the cells which can disrupt the cell envelopment. Both hyper-osmotic shocks and hypo-

osmotic shocks can be used for breaking the cell wall. When the salt concentration is 

higher in the exterior, the cells suffer hyper-osmotic stress. As a result, the cells shrink 

since the inner cell fluids diffuse outwards, and a damage is caused to the cell walls. On 

the contrary, hypo-osmotic stress takes place when the salt concentration within the cell 

is lower than the exterior one. In this case water permeates into the cells which 

consequently swell or burst if the stress is too high. Osmotic shock is a relatively cheap 

and simple method for disrupting algal cell walls. On the other hand it produces high 

amounts of saline wastewater which must be treated (Kim et al., 2013). Enzymatic 

hydrolysis exploits specific enzymes to lyse algal cell walls. Specific enzymes such as 

papaine, pectinase, snailase, neutrase, lipase and alcalase can react with the cellulose 

and phospholipids of the cell wall converting them into glucose, fatty acids and glycerol 

respectively (Young et al., 2011). This way enzymatic reactions can break the cell wall, 

thus facilitating the subsequent phase of lipid extraction. Even though the enzymatic 

hydrolysis can lead to high yields of cell disruption, the cell lysing enzymes are still 

cost prohibitive and thus unsuitable for massive production.  

Physicochemical methods include alkaline and acid hydrolysis through NaOH, HCl, and 

H2SO4. They are typically carried out within autoclaves at a temperature of about 90 °C 

(Sathish and Sims, 2012). Among the others, chemicals such as lysine acetone, 
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methanol, dimethyl sulfoxide (DMSO) and organic acids can be used for lysing the cell 

wall of algae. Despite the chemical methods have high cell-disruption performances, 

they show some significant limitations. The chemicals must be continuously supplied 

and this aspect greatly affects the economic sustainability of the method when large 

scale production is considered. Furthermore acids and alkalis  can corrode the surface of 

reactors and attack target products (i.e. lipids) of the microalgal cell. Therefore, physic-

chemical methods must be coupled with a mechanical pre-treatment aimed to reduce the 

chemical usage (Kim et al., 2013). 

 

 
2.8.5  Comparison between main techniques for cell disruption 

 

A comparison between the different techniques can be performed in term of 

disruption efficiency. The following parameter defined by Halim et al. (2012) as 

average disruption yield L can be used for comparing different techniques:  
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where C/C0 is the average ratio between the number of intact (not disrupted cells) cells 

before and after disruption procedure. By comparing the main techniques summarized 

above in terms of such parameter, the result shown in Figure 1.15 was obtained:  

 

 
Figure 1.15 Comparison of the different cell disruption methods. Average disruption (± standard 

deviation) of each method is reported. Average disruption is expressed as % of initial intact cells. 

A: ultrasonication. B: high-pressure homogenization. C: bead beating. D: sulfuric acid treatment 

(adapted from Halim et al., 2012). 
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2.9  Lpid extraction 

 

The feasibility of biofuel production from algae cultivation depends basically on 

their content of lipids (Jones et al., 2012).  Amounts and typology of lipids in 

microalgae vary from strain to strain. However, the lipid categories are basically divided 

into neutral lipids (e.g., triglycerides, cholesterol, polyunsaturated fatty acids) and polar 

lipids (e.g. phospholipids, galactolipids). Triacylglycerols (TAGs) as neutral lipids are 

the most useful precursors for the production of biodiesel (Kirrolia et al., 2013). 

However, as shown in Figure 1.16, TAGs are contained within the microalgae cells, 

surrounded by a rigid cell wall, and thus extraction is needed for being suitably 

exploited. To this aim, dewatered biomass is processed in a pre-treatment step aimed to 

dry the biomass or alternatively to break the cell wall of microalgae to facilitate the 

subsequent step of lipid extraction. Therefore, depending on the specific pre-treatment 

adopted, microalgal biomass to undergone lipid extraction can assume one of the 

following physical states:  disrupted concentrate or dried powder. Several methods for 

lipid extraction from microalgae are currently under investigation at the laboratory scale 

but only solvent extraction appears to be the viable way for an effective lipid extraction 

at the industrial scale. Typically, solvent extraction is carried out by contacting 

microalgal biomass with an eluting solvent which extracts TAGs and fatty acids out of 

the cells (Halim et al., 2011). The most suitable solvents for extracting lipids from 

microalgae are the organic ones and supercritical carbon dioxide. In what follows we 

will focus on these two techniques.  

 

 

2.9.1 Organic solvent extraction 

 

This technique is based upon the fact that when a microalgal cell is contacted with a 

non-polar organic solvent, such as hexane or chloroform, a static film of solvent 

surrounding the algal cell is formed as a result of the interactions between solvent 

molecules and the cell wall constituents (cf. Figure 1.16). The film thickness depends 

also upon hydrodynamics parameters such as stirring speed, solvent flow rate and cell 

diameter. Subsequently, the organic solvent diffuses through the cell membrane into the 

cytoplasm and interacts, through van der Waals type bindings, with the neutral lipids by 

forming organic solvent-lipids complexes. The latter ones, driven by a concentration 

gradient, counter-diffuses across the cell wall towards the static organic solvent film 

surrounding the cell and then towards the bulk organic solvent. As a result, the neutral 
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lipids are extracted out of the cells and remain dissolved in the non-polar organic 

solvent.  

This method permits the extraction of free standing lipid globules that float in the 

cytoplasm. However, some lipids bodies are linked via hydrogen bonds to the proteins 

of the cell membrane. The van der Waals interactions promoted by non-polar organic 

solvents are not strong enough to break the above bonds which anchor lipid bodies to 

the cell membrane. On the contrary, polar solvents such as methanol ethanol or 

isopropanol, are capable of breaking such bonds. For this reason organic polar solvents 

are often used in synergy with non-polar ones for extracting lipids from microalgae. 

Once the lipid bodies are undocked from the membrane, they form complexes with the 

organic solvents and counter-diffuse towards the solvent bulk outside the cell driven by 

concentration gradients (Halim et al., 2012).  

 
Figure 1.16 Simplified scheme of the main phenomena involved in lipid extraction through organic 

solvents (adapted from Halim et al., 2012). 

 

Therefore for an effective extraction of lipids, mixtures of polar and non-polar solvent 

are often used.  Useful combinations of non-polar/polar solvents are 

hexane/isopropanol, chloroform/methanol, hexane/ethanol etc. As shown in Figure 1.17 

the two kinds of solvents are typically added simultaneously with a volumetric ratio 

which is established by means of specific experimental trials. If extraction is performed 

on wet biomass, the cell debris should be removed by means of a suitable liquid solid 

separation such as centrifugation. Once cell debris is removed, biphasic separation is 

induced by further adding suitable amounts of polar solvent and water. 
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Figure 1.17 Scheme of a classical solvent extraction process. 

 

After biphasic separation, neutral and polar lipids are concentrated in the organic phase 

which is a mixture of non-polar (e.g. hexane) and polar (e.g. ethanol) solvents and the 

aqueous/alcoholic phase which is a mixture of water and polar organic solvent (for 

example ethanol) where other cellular molecules such as chlorophylls, proteins and 

carbohydrates have been transferred. Therefore, biphasic separation allows not only the 

removal of residual water but also non-lipid contaminants from the mixture of organic 

solvents and lipids. The organic phase is then decanted and evaporated to yield purified 

crude lipids, which can be then fractionated and transesterified to produce biodiesel. 

Since the evaporation phase could be energy consuming, volatile solvents are typically 

preferred in order to reduce time and cost of the evaporation step. Moreover, specific 

solvents such as for example chloroform are effective but highly toxic and their use 

should be avoided. For this reason the most suitable combination of non-polar/polar 

solvents appear to be a mixture of hexane and ethanol (Fajardo et al., 2007).  

The main operating parameter affecting the extraction yield is the contact time t (h). In 

particular, according to Halim et al. (2011), the lipid extraction process is observed to 

follow a first order kinetics which results in the following relationship between the 

cumulative amount of lipid extracted in the organic solvent me (glipid/gdried 

microalgae) and time t: 
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where ms,0 is the amount of lipid originally present in the cells (glipid/gdried microalgae) and k 

is the lipid mass transfer coefficient from the cells into the organic solvent (min
− 1

). 

Such kind of relation indicates that the cumulative mass of extracted lipids increases 

with time until a plateau is reached. Typically, extraction time depends on the specific 

algal strain. Extracting 90% of lipids may need up to 12 hours depending upon the value 

of the mass transfer coefficient k. The latter one is found to be a function of other 

operating parameters such as temperature T (°C), solvent/biomass ratio s/b 

(mLsolvent/gbiomass) and stirring speed  (rpm). The higher is the value of these 

parameters the higher is the value of k. However, usual values of T range from 25 to 60 

°C, stirring speed  can vary from 500 to 800 rpm while the solvent/biomass ratio can 

vary from 5  to 250 (mLsolvent/gbiomass) (Fajardo et al., 2007; Lee et al., 1998). 

The main limitations of the solvent extraction techniques are the need of a continuous 

supply of expensive solvents since not all of the organic ones can be recycled. 

Moreover, the high toxicity of solvents arises environmental and safety concerns. 

 

2.9.2 Supercritical CO2 extraction   

 

Supercritical Fluid Extraction (SFE) is the process of separating one component 

(for example lipids) from another (for example microalgae) using supercritical fluids as 

extracting solvent. A supercritical fluid is any substance at a temperature and pressure 

above its critical point (Tc, Pc), where distinct liquid and gas phases do not exist. Under 

such thermo-baric conditions supercriticial fluids behave like solvents thus becoming a 

suitable substitute of organic solvents in a range of industrial and laboratory processes. 

The capability of behaving like a solvent depends on the fact that supercritical fluids 

have density similar to the one of liquids while their viscosity and diffusivity are closer 

to the ones of gases. For this reason the solubility approaches that of the liquid phase 

while penetration and diffusion into a solid matrix is facilitated by the gas-like transport 

properties. As a consequence, the rates of extraction and phase separation can be 

significantly faster than that one for conventional extraction processes.  

Among the various fluids, supercritical carbon dioxide (SCCO2) is becoming an 

important solvent due to its low toxicity, its low flammability and its lack of reactivity 

which result in a low environmental impact. Moreover, its relatively low critical 

pressure (7.39 MPa) results in low compression cost, while its modest critical 

temperature (31.1 °C) permits a successful extraction of thermally sensitive lipid 
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fractions without degradation. The principle through which lipids can be extracted from 

microalgae through SCCO2 is similar to the one schematically shown in Figure 1.16 for 

the extraction with  organic solvent. First, SCCO2 rapidly diffuses into the algal cell and 

then lipid bodies dissolve in the supercritical fluid by forming lipid-CO2 complexes 

through van der Waals interactions. Subsequently, the so formed complexes counter-

diffuse from the inner of the cell towards the static film and then towards the bulk 

driven by concentration gradients. While the phenomena on the base of lipid extraction 

are very similar to the ones involved in the organic solvent extraction, by using 

supercritical fluids the extraction rate can be up to ten times faster. Nevertheless, the 

properties of SCCO2 can be altered by suitably tuning pressure and temperature for 

performing a selective extraction. Since SCCO2 is unable to interact with either polar 

lipids or neutral lipids a polar modifier, often referred to as co-solvent, is added to CO2. 

The target is to improve the affinity of the resulting fluid for polar lipids and lipid 

complexes. Common polar modifiers are methanol ethanol, toluene and methanol–water 

mixture. A simplified scheme of the SCCO2 extraction process is shown in Figure 1.18. 

It involves the use of a source of pure CO2 which, in the case where algae are cultivated 

near a coal-fired power station, can be conveniently obtained from the scrubbed flue gas 

of the station. The microalgal biomass, in the form of disrupted concentrate or dried 

powder, is placed in a packed bed previously filled with suitable packing elements. The 

CO2 along with the co-solvent is heated through heat exchangers and compressed 

through compressors until the desired supercritical conditions of temperature and 

pressure are achieved. 

 
Figure 1.18 Scheme of the SCCO2 extraction of microalgal lipids. 
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The SCCO2 is then pumped into the column from the bottom and flows upwards 

through the packed bed thus contacting microalgae and desorbing lipids according to 

the mechanisms depicted above. Therefore lipids enter in the bulk SCCO2 flow which 

subsequently leaves the packed column to enter in the so called ‘blow down vessel’. 

Here the pressure is reduced until CO2 returns to the gaseous state. The lipids then 

precipitate down in a collection vessel while the gaseous CO2 flows upwards. The CO2 

is then collected for being recirculated. As such, SFE-derived crude lipids are free from 

any extraction solvent and do not need to undergo an extraction solvent removal step 

(Halim et al., 2012).  

Also for the case of supercritical lipid extraction, the process is observed to follow a 

first order kinetics.  The time evolution of the cumulative amount of extracted  lipids 

during the process can be described by mathematical relationship similar to the one 

reported for organic solvent extraction. However, in this case the mass transfer 

coefficient is a function of different operating parameters (Halim et al., 2012) such as 

the extraction pressure, the temperature, the concentration of co-solvent and the SCCO2 

flow rate. Typical range of operating pressure for extracting lipids from algae is from 

200 to 450 bar. The extraction temperatures can vary from 40 to 60°C and the SCCO2 

flowrate range is 0.4 - 500 l/min (Andrich et al., 2005; Cheung, 1999; Mendes et al., 

2003; Sajilata et al., 2008). The SCCO2 extraction technique is a very promising 

method for extracting lipids from microalgae since it can assure high extraction yields 

in relatively short times. Moreover, no concerns related to solvent toxicity can arise. 

Unfortunately, the main limitations of this method are the high energy consumption 

related to the operating phases of fluid heating and compression as well as the 

potentially high costs of investment. 

2.9.3 Conversion of microalgal lipids for the production of biodiesel 

Once extracted the algal crude oil must be further processed to be used as fuel. 

Depending on the specific post-processing technology, different kind of biofuels can be 

produced. However, in this work we will focus only on the production of biodiesel 

which can be obtained through the well-known process of trans-esterification. The need 

of further processing the oil depends on the fact that its viscosity is too high for its 

exploitation in internal combustion engines. Hence, to produce a useful biodiesel, the 

viscosity of microagal oil must be reduced. The most common method to produce 

biodiesl from vegetal oil is just the transesterification alcoholysis. It consists in the 

reaction between triglycerides of the oil with methanol. Such reaction leads to the 
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formation of methyl esters of fatty acids (FAMEs) that are biodiesel and glycerol (cf 

.Figure 1.19).  

 
Figure 1.19 Scheme of the trans-esterification process.  

 

The reaction can be catalyzed by acids, alkalis and lipase enzymes but usually alkalis 

such as sodium and potassium hydroxide are used since they are able to speed up the 

reaction about 4000 times than acids. Alkali-catalyzed trans-esterification is carried out 

at approximately 60 °C under atmospheric pressure. Under these conditions, reaction 

takes about 90 min to complete (Chisti, 2007). When trans-esterification reaction is 

completed, the two phases (glycerine and esters) are separated by gravimetric methods 

such as decanting and centrifuging. It has been reported that the achievable conversion 

of algal triglycerides to biodiesel is about 98% (Amin, 2009) and the produced biodiesel 

can be compatible with conventional petroleum derived diesel (cf. Table 1.6). 

 

Table 1.6 Comparison of properties of biodiesel, diesel fuel and ASTM standard (adapted from 

Amin, 2009) 

Properties Biodiesel from 

microalgae 

Diesel fuel  ASTM 

standard 

Density (kg L
-1

) 0.864 0.838 0.86-0.90 

Kinematic viscosity at 40°C (mm
2
 s

-1
)  5.2 1.9-4.1 3.5-5.0 

Flash point (
O
C) 115 75 Min 100 

Solidifying point (
O
C) -12 -50-10 - 

Cold filter plugging point (
O
C) -11 -3.0 (max. -6.70) Summer max 

0; Winter max 

-15; Max 0.5 

Acid value (mg KOH g
-1

) 0.374 Max 0.5 - 

Heating value (MJ kg
-1

) 1.81 1.81 - 

 

The bio-diesel produced can thus be used in the internal combustion engines.  
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2.10 Concluding remarks  

The production of biofuels from renewable feedstocks is recognized to be critical to 

fulfill a sustainable economy and face global climate changes. When compared to first 

and second generation biofuel feedstocks, microalgae are characterized by higher 

growth rates and lipid content which result in larger bio-oil productivities. Moreover, 

cultivation of microalgae can be carried out in less- and lower-quality lands, thus 

avoiding the exploitation of arable ones. In addition, cultivation of microalgae might be 

coupled with the direct bio-capture of CO2 emitted by industrial activities that use fossil 

fuels for energy generation. Ultimately, when compared to first and second generation 

biofuels, microalgae are characterized by a greater environmental sustainability and 

economic viability. For these reasons, the potential exploitation of microalgae as 

renewable resource for the production of liquid biofuels is receiving a rising interest 

mostly driven by the global concerns related to the depletion of fossil fuels supplies and 

the increase of CO2 levels in the atmosphere. The high potential of algae based biofuels 

is confirmed by the number of recent papers available in the literature on the subject. In 

spite of such interest, the existing microalgae-based technology for CO2 sequestration 

and biofuels production is still not widespread since it is affected by economic and 

technical constraints that might limit the development of industrial scale production 

systems. In particular, the main obstacles are related to the extensive land's areas needed 

as well as the estimated high costs of the operating phases of microalgae cultivation, 

harvesting and lipid extraction. Therefore, in view of industrial scaling-up, the current 

technology should be optimized in terms of selected algal strains as well as 

design/operating parameters. The latter target may be accomplished by exploiting 

suitable process engineering techniques. Along these lines significant efforts are 

currently in progress around the world. In the light of what above, the present chapter 

has been aimed to present the recent achievements related to th engineering aspects 

connected with the use of microalgae for biofuels production and CO2 capture from flue 

gases. It has been shown that, cultivation of microalgae can be performed in closed 

ones, i.e. photobioreactors, or in open systems. The first ones can be bubble columns, 

airlift, flat panel and horizontal tubular photobioreactors. While photobioreactors are 

characterized by high biomass productivity, a better process control and lower 

contamination risks, if used for producing low value products, such as biofuels, they 

have still not attained economic levels of production. Significant efforts are currently 

being performed to decrease the operating and capital costs linked to the construction 
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and the operation of photobioreactors for producing biofuels. The major achievements 

in this direction are those related to the use of very low cost materials for the 

construction of photobioreactors, the use of flue gases and wastewaters as source of 

macronutrients and finally the use of engineered algae that are characterized by 

extremely high oil productivity, thus allowing the compensation of high operating costs 

with potentially large incomes. Also the valorization of microalgal compounds 

separated by lipids, such as chlorophylls, pigments and proteins might improve the 

economical sustainability of photobioreactors-based processes. On the other hand, open 

raceways, which are less expensive, show several drawbacks such as low oil 

productivity,  high risks of contamination, high losses of water due to evaporation, 

scarce process control and high susceptibility to different weather conditions.  To 

overcome limitations related to open system and in the meantime keeping their low 

operating cost, the potential use of closed raceway ponds are currently under study. 

These systems essentially consist of an open pond covered by a transparent or 

translucent barrier which turns it into a greenhouse. This configuration prevents the 

microalgae to be contaminated by competing bacteria and allows a better control of 

crucial operating parameters such as temperature, evaporation, etc. 

Another bottleneck of the process is related to the harvesting step of microalgae. 

Essentially, harvesting can be performed by centrifugation, filtration, flotation and 

flocculation. It is worth noting that harvesting alone, can be the most expensive step of 

the overall process of microalgae production. Therefore, in order to assure the economic 

sustainability of the process, efficient and inexpensive harvesting methods should be 

developed and subsequently adopted at the industrial scale. In this regard the most 

promising processes for microalgae harvesting are those ones which combine different 

technologies such as for example microfiltration followed by centrifugation or pH-

induced flocculation sedimentation and dynamic microfiltration. Also auto-flocculation 

and bio-flocculation are promising techniques. However they are still in embryonic 

phase and their potential use at the industrial scale for harvesting large amounts of 

microalgae still need to be investigated. 

Since biomass drying after harvesting and before the lipid extraction, is very expensive, 

the direct extraction from wet biomass seems to be the only economically feasible way 

to recover lipids from microalgae. Therefore the downstream process of cell disruption 

represents an essential pretreatment when lipid extraction is carried out directly from 

wet biomass. Among the techniques which can be realistically applied at the industrial 
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scale, the most efficient ones for cell disruption are high-pressure homogenization, bead 

beating, and sulfuric acid treatment.  

Lipid extraction is typically carried out by contacting microalgal biomass with an 

eluting solvent which extracts triacylglycerols and fatty acids out of the cells. The most 

suitable solvents for extracting lipids from microalgae are the organic ones and 

supercritical carbon dioxide (SCCO2). The main limitation related to the use of organic 

solvents is their high cost and the need of their continuous supply since not all of them 

can be suitably recycled. Moreover, the toxicity of organic solvents arises 

environmental and safety concerns. On the other hand the extraction technique based on 

the use of SCCO2 is a very promising method for extracting lipids from microalgae 

since it can assure high extraction yields in relatively short times. Moreover, no 

concerns related to solvent toxicity can arise. Unfortunately, the main limitations of this 

method are the high energy consumption related to the operating phases of CO2 heating 

and compression as well as the potentially high costs of investment.  
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3.1 Introduction 

The current microalgae-based technology for CO2 sequestration and biofuels 

production, albeit extremely promising, is still affected by economic and technical 

constraints that limit the development of industrial scale production systems. In 

particular, one of the main bottlenecks of the process is represented by the estimated 

high costs and low yields of the operating phases wherein lipids are extracted from 

microalgae cells (Concas et al., 2010; Concas et al., 2012; Concas et al., 2014). In fact, 

algal triacylglycerols, which are the most useful precursors for the production of 

biodiesel, are typically contained as lipid droplets within the microalgae cytoplasm 

surrounded by a rigid cell wall and thus have to be extracted in order to be suitably 

exploited for producing biofuels (Kirrolia et al., 2013). Several methods for lipid 

extraction from microalgae are currently under investigation at the laboratory scale but 

solvent extraction appears to be, so far, the only viable way for performing lipid 

extraction at the industrial scale (Chisti, 2007). Typically, solvent extraction is carried 

out by contacting microalgal biomass with an organic eluting solvent which diffuses 

through the cell wall/membrane into the cytoplasm and interacts, through van der Waals 

type bindings, with the neutral lipids by forming organic solvent-lipids complexes. The 

latter ones, driven by a concentration gradient, counter-diffuses across the cell wall 

towards the bulk solvent from which they can be collected to be further processed 

(Halim et al., 2011; Halim et al., 2012). Solvent extraction of algal lipids can be 

performed starting from both wet and dry microalgal biomass and, depending upon 

which option is chosen, specific pre-treatments should be carried out. In particular, if 

lipid extraction is carried out from dry biomass, a drying/dehydration pre-treatment is 

necessary. On the other hand, the drying step is typically characterized by high energy 

requirements and therefore the wet extraction is usually preferred in order to assure 

process feasibility and viability (Xu et al., 2011; Chen et al., 2012).  However, a pre-

treatment aimed to break the cell walls of microalgae is mandatory when lipid 

extraction is carried out directly from wet biomass. In fact, lipid extraction from 

untreated wet biomass is characterized by low yields due to the immiscibility of water 

with the organic solvents. Therefore, when solvent extraction is applied to wet biomass, 

the microalgal cells tend to remain in the water phase due to their surface charges and 

thus they cannot contact the organic solvent phase which is able to extract lipids (Kim et 

al., 2013). Fortunately, this phenomenon can be prevented by breaking the cell wall of 

microalgae to provoke the release of intracellular lipids into the extracting mixture, thus 
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facilitating the access of solvent to lipids. Therefore, once released from the algal cell, 

lipids are able to pass to the solvent phase from which they can be collected after 

evaporation of the solvent. Cell disruption is then considered a method for breaking the 

cell wall of algae. Since microalgae are characterized by a cell wall, which is a thick and 

rigid layer composed of complex carbohydrates and glycoproteins with high mechanical 

strength and chemical resistance, this operating step might require high energy inputs. 

The main cell disruption techniques can be conceptually categorized into physical and 

chemical methods. The formers include high pressure homogenization, ball milling, 

microwaving, ultra-sonication, electrocoagulation and hydrodynamic cavitation 

(Florentino de Souza Silva et al., 2014; Grimi et al., 2014; Keris-Sen et al., 2014; Wang 

et al., 2014). Recently, also thermolysis, osmotic shocks, laser treatments and 

electroporation have been proposed as viable physical methods for disrupting algal cells 

with the aim of lipids extraction (Kim et al., 2013; McMillian et al., 2013; Lee et al., 

2012). Most of the physical disruption methods are very difficult to scale up (Wang et 

al., 2014) and might involve high energy consumption since they are based on the 

continuous supply of thermal, electrical or mechanical energy inputs until the cell wall 

is broken. In particular, energy consumptions ranging from 33 MJ kg-1 for 

hydrodynamic cavitation to 529 MJ kg-1 for high pressure homogenizers have been 

reported in the literature (Lee at al., 2013). If one considers that the average energy 

obtainable through combustion of microalgae is estimated to be about 29 MJ kg-1, it is 

apparent that the adoption of physical disruption methods would lead to an energetic 

imbalance which in turn might strongly undermine the economic sustainability of the 

microalgae based technology for producing biofuels (Lee et al., 2013). On the other 

hand, chemical methods for cell disruption rely on selective interaction of a chemical 

with the components of cell wall and are basically represented by enzymatic hydrolysis 

(Young et al., 2011) and chemical lyses. The latter ones include alkaline and acid 

hydrolysis through NaOH, HCl, and H2SO4 but also organic chemicals such as lysine 

acetone, methanol and dimethyl sulfoxide (DMSO) can be used to lyse the cell wall of 

algae (Sathish and Sims, 2012). When compared with physical methods, the chemical 

methods are less energy consuming while often showing higher yields of cell-disruption 

and furthermore, are simpler to scale-up. However, even these methods still show some 

significant limitations. In particular, chemicals must be continuously supplied and this 

aspect might greatly affect the economic sustainability of the technology when large 

scale production systems are considered. Moreover, exhaust disrupting solution should 
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be treated before being disposed as liquid waste. Furthermore acids and alkalis might 

corrode the equipment surface and attack the valuable products (i.e. lipids) of the 

microalgal cell, thus vanishing the whole process (Kim et al., 2013).  

For these reasons, novel techniques are needed to perform cell disruption by means of 

physic-chemical methods. These techniques should be characterized by low energy 

consumptions, high disruption yields and should use low cost and safe disruption 

reactants. Moreover, operating parameters such as reactant concentration, contact time, 

operating temperature etc., should be suitably tuned so that disruption yields can be 

maximized while degradation of target products, costs of reagents and production of 

liquid wastes could be minimized. Along these lines, a simple and low energy 

consuming technique for cell disruption, based on the use of low toxicity and cheap 

reactants such as H2O2 and FeSO4, is proposed and investigated in this work. The 

effect of reactants concentration and contact time on the amount and the quality of 

extracted lipids is also investigated. This way, the optimal set of operating conditions 

which allow maximizing lipid extraction yields while minimizing lipid degradation and 

costs for reactant purchase has been identifie 

 

3.2 Materials and methods 

3.2.1 Microorganism  

The fresh water algal strain Chlorella vulgaris (Centro per lo Studio dei 

Microorganismi Autotrofi di Firenze, Italy) was investigated in this work. Stock 

cultures were propagated and maintained in Erlenmeyer flasks with a Kolkwitz 

Triple Modified (KTM-A) medium under incubation conditions of 25°C, a photon 

flux density of 98 mol m-2 s-1 provided by four 15 W white fluorescent tubes, and 

a light/dark photoperiod of 12 h. Flasks were continuously shaken at 100 rpm 

(Universal Table Shaker 709).  

 

3.2.2 Culture medium 

C. vulgaris was cultured in a modified Kolkwitz growth medium (KTM-A) 

containing 2.5 g L
-1

 of KNO3, 0.5 g L
-1

 of KH2PO4, 0.27 g L
-1 

of MgSO4·7H2O, 0.04 g 

L
-1 

of CaCl2·2H2O, 1 g L
-1

 of NaHCO3 and 1 ml of EDTA-Na2-Fe solution as well as 1 

ml of micronutrients solution. The latter one contained 2.86 g L-1 of H3BO3, 1.81 g 

L-1 of MnCl2·7H2O, 0.222 g L-1 of ZnSO4·7H2O, 0.035 g L-1 of CoCl2·6H2O, 0.080 g L-1 
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of CuSO4·5H2O, and 0.230 g L-1 of Na2MoO4·2H2O. As far as the EDTA.Na2-Fe 

solution is concerned, it contained 29.754 g L-1 of EDTA.-Na2 and 24.9 g L-1 of 

FeSO4·7H2O. 

 

3.2.3 Culture condition 

Growth of C. vulgaris was carried out under high CO2 concentrations in a 6 L 

helical tubular photobioreactor coupled with a degasser system, as described in the 

literature (Concas et al., 2010). Briefly, the light collector of the photobioreactor 

consisted of 66 m transparent polyurethane tubing arranged around a circular metal 

frame. It was internally illuminated by three 60W white fluorescent lamps providing a 

light intensity of 100 µE m
-2

 s
-1

 for a light-dark photoperiod of 12 h. Liquid circulation 

in the light collector was assured by a peristaltic pump. The degasser unit was a 1 L 

bubble column which allowed to remove photosynthetic oxygen by exposing the broth 

to atmosphere. Pure CO2 (100% v/v) was continuously bubbled in the growth medium 

by means of a flowmeter (Rotameter FL-3207C, OMEGA Eng. Ltd.) at a flow rate of 

30 ml min
-1

. Once the culture reached the stationary growth phase the photobioreactor 

was operated in fed-batch mode. The withdrawals made during the operation in fed-

batch mode as shown in Figure 3.1 were used for the cell disruption experiments.  
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Figure 3.1 Growth of the microalgal culture in helical tubular photobioreactor  
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3.2.4 Biomass and pH measurements 

The growth of microalgae was monitored through spectrophotometric 

measurements (Genesys 20 spectrophotometer, Thermo Fisher Scientific Inc. Waltham) 

of the culture media optical density (OD) at 560 nm wavelenght (D560) with 1 cm light 

path. The biomass concentration Cb (gdw L
-1

) was calculated from OD measurements 

using a suitable Cb vs. OD calibration curve which was obtained by gravimetrically 

evaluating the biomass concentration of known culture medium volumes that were 

previously centrifuged at 4000 rpm for 15 min and dried at 105°C for 24 h. The pH was 

daily measured by pH-meter (KNICK 913).  

 

3.2.5 Cell disruption 

Once the culture in the photobioreactor reached the stationary growth phase, 

microalgae were first harvested and then centrifuged to obtain a concentrated pellet of 

wet biomass characterized by a water content of about 90 %wt/wt. The exact weight of 

dry biomass contained in the wet pellets was evaluated by means of the suitable 

calibration line shown in Figure 3.2, which was obtained by gravimetrically evaluating 

the wet weight of biomass obtained after centrifugation at 4000 rpm for 15 min and its 

corresponding dry weight after drying at 105°C for 24 h.  
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Figure 3.2 Calibration line showing the correlation between wet weight of biomass pellet subjected 

to disruption and the corresponding dry weight content  
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Thus, wet pellets containing known amounts of dry biomass were subjected to the cell 

disruption procedure which consisted of contacting them with known volumes of a 

disrupting solution within a falcon flask that was then sealed and continuously shaken at 

300 rpm for suitable times at room temperature. The amounts of wet biomass and 

disrupting solution that were contacted were suitably chosen in order to assure a fixed 

weight ratio equal to 8 gsol/gdwt between disrupting solution and biomass dry weight. 

Two different disrupting solutions were tested. The first one consisted of an aqueous 

solution of H2O2, while in the second one the disruption agent was the Fenton's 

reactant, i.e. an aqueous solution of H2O2 and FeSO4. In both cases, during the 

experiments, different disruption agent concentrations and contact times were tested in 

order to identify the corresponding values which were able to maximize the lipids 

extracted in the subsequent operating steps. Specifically, when only H2O2 was 

considered as disruption agent, the corresponding concentrations ranges from 0 to 1.5 

mol L-1 and contact times ranging from 0 to 5 min were investigated. On the other 

hand, when the Fenton’s reactant was investigated, the concentration of FeSO4 in the 

disruption solution was kept constant at 0.025 mol L-1 while the H2O2 concentration 

was varied in the range between zero to 6 mol L-1. In this last case, contact times 

ranging from 0 to 5 min were evaluated. The operating conditions adopted are 

summarized in Table 3.1.  

 

Disruption  
reactant 

Contact time  
range (min) 

H2O2 
concentration 
range  
 (mol L-1) 

[FeSO4] 
concentration  
 (mol L-1) 

H2O2 0 – 5.5 0 – 1.5 0 

H2O2+FeSO4 0 – 5 0 – 6 0.025 

 
Table 3.1 Operating conditions investigated during the cell disruption experiments 

 

It should be noted that, once the desired contact time is elapsed, the disruption reaction 

was suddenly stopped by diluting 1/10 the reacting mixture with ethanol so that the 

concentration of disruption reactants, and thus the reaction rate, were dramatically 

lowered up to values very close to zero. In fact, according to Wu et al. (2010) the cell 

disruption reaction rate is proportional to the product of the concentrations of hydroxyl 

radicals generated by H2O2 and the concentration of organic compounds constituting 
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the cell wall (glycanes, pectine etc.). Therefore, when the concentrations of hydroxyl 

radicals and microalgae cells, were reduced ten times through dilution, the related 

reaction rate was correspondingly decreased of about 100 times, and therefore the 

reaction can be actually stopped. 

 

3.2.6 Lipid extraction 

Neutral lipid extraction was performed directly on the wet disrupted biomass 

according to a method that represents a slight modification of the one proposed by 

Fajardo et al. (2007). The method consists firstly of diluting 1/10 the mixture of wet-

disrupted biomass and disruption solution with ethanol (96% v/v) while assuring the 

contact for 18 hours under continuous stirring. As mentioned above, this step allowed 

also stopping the disruption reaction. The resulting hydro-alcoholic solution was then 

subjected to centrifugation at 4000 rpm for 10 min in order to separate solid residuals 

(i.e. pieces of broken cells, organelles, etc.) from the supernatant liquid where lipids 

were transferred. The lipid-rich supernatant was then suitably stored while the residual 

solid was further contacted with ethanol for 1 h under stirring in order to extract residual 

lipids remained in the solid phase. After centrifugation, the supernatant resulting from 

this step was separated and then mixed with the supernatant obtained from the first 

centrifugation step to obtain the so called “extracted crude oil” solution. Subsequently, a 

biphasic system was formed by adding 0.67 mL  of de-ionized water and 0.6 mL of n- 

hexane to each mL of the extracted crude oil solution. This way, the purified lipids were 

transferred to the hexane phase while most impurities, such as for example carotenoids, 

chlorophylls, proteins etc., remained in the aqueous phase. The two phases were then 

separated and lipids were recovered from the hexane phase through evaporation. The 

percent weight of lipids extracted from the dry biomass was obtained as the ratio 

between the weight of lipid obtained and the original dry weight of microalgae which 

was subjected to the extraction process. 

 

3.2.7 Fatty acid methyl esters analysis. 

 The fatty acid methyl esters (FAMEs) composition of extracted lipids was 

determined according to the European regulation/commission regulation EEC n° 2568 

(1991) after transesterification with methanol-acetyl chloride is performed. To this aim 

gas chromatographic analysis was carried using a flame ionization detector (FID) 
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(Thermo Trace Ultra, GC-14B) and a RTX-WAX column T (fused silca, 0.25 mm x 60 

m x 0.25 µm) maintained at 180  °C. Helium was used as carrier gas at a flow rate of 1 

ml min-1. 

3.3  Results and discussion 

The evolution of microalgae concentration during cultivation of C. Vulgaris in the 

BIOCOIL photo bioreactor fed with pure CO2 is shown in Fig.1. It can be observed 

that, such strain is capable to grow effectively despite the high concentration of 

dissolved CO2. In fact , after a prolonged exponential growth of 15 days, the culture 

reached the stationary phase when the biomass concentration was about 2 g L-1.  Once 

the steady state was attained, the photobioreactor was operated in fed-batch mode. In 

fact, starting from the 40th day of culture, suitable amounts of culture were periodically 

withdrawn and then replaced by an equal volume of fresh medium. As shown in Fig. 1, 

after each withdrawal, the biomass concentration decreased and then started to increase 

as a result of the higher nutrient availability and the diminished concentration of toxic 

catabolites. The wet biomass harvested during each withdrawal cycle was centrifuged 

and then subjected to the different disruption experiments. Subsequently, the wet 

biomass was subjected to the lipid extraction procedure in order to verify the effects of 

the disruption treatment on the amount of lipids which could be extracted from algae. 

As mentioned above, the contact time and the concentration of disrupting reactant were 

suitably varied in order to identify their corresponding values which allowed 

maximizing the extracted lipids. In Figure 3.3a, the effect of contact time variation on 

the amounts of lipids extracted from C. Vulgaris when cell disruption was performed 

through a disruption solution containing 0.29 mol L-1 of H2O2, is shown. It can be 

observed that when no disruption treatment was performed, i.e. the contact time was 

zero, extracted lipids were about the 7 %wt/wt by dry weight of biomass. However, 

when the cell disruption treatment was carried out for one minute, the extracted lipids 

have shown to increase to about 7.9 %wt/wt. Moreover, when the contact time was 

further augmented, the amount of lipids extracted was correspondingly increased until a 

maximum value of 9.2 %wt/wt was achieved for a 4 min prolonged disruption 

treatment. Ultimately, the more prolonged was the contact time the higher the extent of 

"disruption reaction" until it was stopped by means of dilution with ethanol. In other 

words, by augmenting the contact time, a growing number of cells was disrupted thus 

leading to an higher amount of lipids released in solution. However, when the contact 

time was prolonged over 4 min, a decrease of the extracted lipids was observed. Such 
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phenomenon was probably due to the fact that, over 4 min, the residual H2O2 in 

solution started to attack and degrade the lipids transferred in the bulk of the disrupting 

mixture, thus leading to a reduction of the corresponding amounts which were collected 

in the subsequent step of solvent extraction.  

A similar behavior could be observed when cell disruption was performed under 

growing concentrations of H2O2 while keeping fixed the contact time at the value of 4 

min (cf. Figure 3.3b). Specifically, by increasing the concentration of H2O2 from zero 

to 0.29 mol L-1, the extracted lipids correspondingly augmented due to a more effective 

cell disruption. However, when the concentration of H2O2 was further augmented, a 

reduction in the extracted lipids was observed (cf. Figure 3.3b).  

Such a behavior was probably the result of two conflicting phenomena triggered by the 

high concentrations of H2O2. In fact from one side, the high concentration of H2O2, 

probably led to an higher rate of the disruption reaction which in turn resulted in higher 

amounts of lipids available in shorter times. On the other hand, once the intracellular 

material was released in the bulk solution, the residual concentration of H2O2 was 

probably still high and thus capable to attack and degrade lipids before the reaction 

could be suitably interrupted by dilution with ethanol. 

It is then apparent that, if the two operating parameters investigated, i.e. contact time 

and concentration of disruption reactant, are tuned at correspondingly low values, the 

cell wall disruption cannot be effectively completed while, if their values are at the high 

side, the extracted lipids can be degraded, thus thwarting the disruption procedure. 
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Figure 3.3 Lipid extracted from wet biomass subjected to cell disruption treatments performed 

with (a) an aqueous solution containing 0.5 mol L-1 of H2O2 and 0.024 mol L-1 of FeSO4 by 

varying the contact time up to 5 min, and (b) aqueous solutions containing concentrations of FeSO4 

kept fixed to 0.024 mol L-1 and H2O2 concentrations up to 6 mol L-1 while maintaining the contact 

time at 3 min.   

 

Therefore, such parameters should be suitably set to values that maximize extraction 

while simultaneously minimizing the lipid degradation phenomena. For the case so far 

illustrated, i.e. when only H2O2 is considered as disruption reactant, the ideal contact 

time and concentration of disruption reactant appear to be equal to 4 min and 0.29 mol 

L-1, respectively. 
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 As far as the specific reactive mechanisms involved during the cell wall disruption 

process, only some assumptions may be formulated. Among them, the most realistic one 

is that H2O2 might generate the Fenton's reaction shown in Figure 3.4a with the Fe2+ 

ions which are present in the liquid solution. In fact FeSO4 was used to prepare the 

growth medium which constitutes the liquid phase of the wet biomass subjected to 

disruption. According to Wu et al. (2010), the reaction between H2O2 and Fe2+ ions 

can produce hydroxyl radicals (•OH) which in turn may attack and degrade the organic 

compounds constituting the cell wall according to the simplified mechanism shown in 

Figure 3.4a and 4b. Probably, such a reaction occurs preferentially in specific zones of 

the cell wall constituted by organic compounds that are easily oxidized by •OH radicals. 

In fact, as confirmed by the microscopic analysis shown in Figure 3.4b, rupture takes 

place in certain areas of the cell wall and leads to the release of the intracellular 

material, including lipids, in the liquid bulk of the disrupting solution. Once transferred 

in the liquid bulk, even lipids might be attacked by hydroxyl radicals, as schematically 

shown in Figure 3.4c, thus generating degradation products such as for example lipid 

peroxides (González et al., 2012). The extent to which such undesired reaction proceeds 

depends upon the residual concentrations of H2O2 and Fe2+ as well as upon the time 

elapsed before ethanol is added in order to stop it (cf. Figure 3.4d). For this reason both 

H2O2 concentration and contact time should be suitably tuned. In fact, if such 

parameters are set to correspondingly low or high values, disruption cannot be 

completed or lipids might be degraded according to the mechanisms described above, 

respectively. In both cases the final result consists in the lowering of the amounts of 

lipids which can be collected in the solvent extraction step (cf. Figure 3.4e).  

Further experiments, where the disruption was carried using the Fenton’s reactant, i.e. a 

mixture of FeSO4 and H2O2, were performed. The goal of these experiments was to 

drive forward the Fenton’s reaction shown in Figure 3.4a, thus by increasing “ad hoc” 

the Fe2+ concentration in solution.  
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Figure 3.4. Scheme of the mechanism assumed to influence cell disruption and lipid extraction 

yields. 

 

The effect of the contact time variation on the amount of extracted lipids when using a 

disruption solution containing 0.5 mol L-1 of H2O2 and 0.024 mol L-1 of FeSO4 is 

shown in Figure 3.5a. A similar behavior to the one already observed during the 

corresponding experiments performed with only H2O2 was found. Specifically, the 

amount of extracted lipids was increased as the contact time was augmented up to a 

certain value and then started decreasing after an optimum was reached. The 

mechanisms underlying such behavior are probably the same ones proposed to explain 

the results obtained when using only H2O2. However, in this case the amount of lipids 

extracted under the optimal contact time was dramatically increased, i.e more than 

doubled, with respect to the case when no disruption was performed (i.e. absence of 

contact time). In fact, a maximum value of extracted lipids of 17.34 %wt/wt was 

achieved when the contact time equal to 3 min was assured. In Figure 3.5b the effects 

resulting from the use of growing concentrations of H2O2 on the extracted lipids are 

displayed. In such experiments the concentration of FeSO4 was kept fixed at 0.024 mol 

L-1 while the concentration of H2O2 was varied within the range between zero and 6 

mol L-1 corresponding to the range of [H2O2]/[FeSO4] molar ratios between zero and 
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250 . The contact time was instead kept fixed at the value of 3 min. 

From Figure 3.5b it can be observed that when H2O2 concentration was increased up to 

0.5 mol L-1, the extracted lipids were correspondingly increased.  

However, when the H2O2 concentration was further augmented, a reduction of the 

extracted lipids was observed. This behavior is probably due to the mechanisms already 

depicted in Figure 3.4c namely, when disruption is carried out under higher 

concentrations of H2O2, cell wall disruption is achieved in a very short time and thus 

the lipids transferred in solution can be quickly oxidized by the hydroxyl radicals 

produced as a result of the high residual concentration of Fenton’s reactants still present 

in solution. 

While the latter phenomenon can lead to a pronounced lipid degradation for H2O2 

concentrations greater than 1.2 mol L-1, on the other hand, when disruption is 

performed under the optimal H2O2 concentration of 0.5 mol L-1, i.e. using a 

[H2O2]/[FeSO4] molar ratio of 21 , the amount of extracted lipids is 

dramatically higher (17.34 %wt/wt) than the corresponding one obtained without 

disruption (7 %wt/wt).  
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Figure 3.5 Lipid extracted from wet biomass undergone to cell disruption treatments performed (a) 

with an aqueous solution containing 0.5 mol L-1 of H2O2 and 0.024 mol L-1 of FeSO4  by varying 

the contact time between 0 and 5 min, and (b) aqueous solutions containing concentrations of 

FeSO4 kept fixed to 0.024 mol L-1 and  H2O2 concentrations  ranging from 0 to about 6 mol L-1 

while keeping fixed the contact time at 3min.  

 

In the synoptic chart reported in Figure 3.6 results obtained under optimal operating 

conditions in terms of weight percentage of lipid extracted for unit weight of dry 

biomass depending upon the different disruption techniques are summarized. It can be 

observed that the use of H2O2 resulted in the increase of extracted lipids from 6.9 to 9.2 

%wt/wt with respect to the case when no disruption was preformed.  

 

 

 

 

 

 

 

 



 74 

No disruption H
2
O

2
H

2
O

2
 + FeSO

4

0

2

4

6

8

10

12

14

16

18

 

 

E
x
c
tr

a
c
te

d
 l
ip

id
s
, 
(w

t%
)

Cell disruption reactant
 

Figure 3.6 Comparison between the weight percentages of lipids extracted from microalgae 

subjected to the investigated disruption techniques under optimal operating conditions 

 

Moreover, when Fenton reactant was used as disruption agent, the extracted lipids were 

more than doubled with respect to the case when no disruption was carried out. In fact 

the percentage of extracted lipids increased from 6.9 to 17.34 %wt/wt.  

In order to verify whether the disruption treatments might have affected the quality of 

the extracted lipids, the content of fatty acid methyl esters (FAMEs) obtained after 

transesterification of lipids was analyzed. Such investigation was aimed also to verify 

the potential exploitability of the extracted lipids for producing biodiesel. About 95 

%wt/wt of FAMEs obtained from lipid extracted from undisrupted biomass was 

identified, while 88 %wt/wt and 90%wt of the FAMEs obtained from biomass disrupted 

through H2O2 and H2O2 +FeSO4, respectively were identified. The comparison among 

FAMEs profiles is reported in Table 3.2 in terms of weight percentage of each fatty acid 

with respect to the total amount of FAMEs identified.  
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Carbon  
number 

Fatty acid  
name 

No disruption 
( %wt) 

Disruption 
with H2O2 

(%wt) 

Disruption 
with H2O2 + 
FeSO4 
(%wt) 

C14:0 Myristic 0.6 ± 0.23 1.28 ± 0.01 0.59 ± 0.1 

C16:0 Palmitic 9.1 ± 0.1 30.45 ± 1.35 29.88 ± 0.59 

C16:1 Palmitoleic 2.07 ± 0.02 8.52 ± 0.31 18.37 ± 0.07 

C17:0 Heptadecanoic 6.26 ± 0.73 10.83 ± 0.27 1.38 ± 0.14 

C17:1 Heptadecenoic  0.33 ± 0.07 ND 1.02 ± 0.09 

C18:0 Stearic 1.35 ± 0.27 2.94 ± 0.05 2.89 ± 2.07 

C18:1 Oleic 4.99 ± 0.21 14.12 ± 2.74 13.48 ± 0.11 

C18:2 Linoleic 8.38 ± 0.88 15.51 ± 0.65 8.51 ± 0.31 

C18:3 Linolenic 42.32 ± 0.45 15.72 ± 1.29 16.32 ± 1.53 

C20:0 Arachidic 2.05 ± 0.33 0.63 ± 0.07 2.82 ± 2.57 

C22:0 Behenic 1.19 ± 1.19 ND ND 

- Other polyunsat.  21.37 ± 1.12 ND 4.75 ± 0.02 
 

Table 3.2 Fatty acid methyl esters profile of lipids extracted after using the different cell disruption 

techniques investigated. 

 

It can be observed that FAMEs obtained from not-disrupted biomass displayed an high 

content of linolenic acid (C18:3) of about 42 %wt and other polyunsaturated acids 

having more than 2 double bonds of about 21 %wt. On the contrary, a low content of 

total saturated (20 %wt/wt), monounsaturated (7.4 %wt/wt) and linoleic (8.4 % wt/wt) 

acids, which are the most useful fatty acids for producing biodiesel, was observed. The 

above characteristics make the lipids extracted from undisrupted biomass not-suitable 

for biodiesel production since the high degree of unsaturation of FAMEs leads to a high 

tendency of biodiesel to oxidize and degrade due to the action of air, light, heat, trace 

metals, etc. (Islam et al., 2013; Kaur et al., 2012; Chisti, 2007). On the contrary, when 

the cell disruption pre-treatment was performed, whatever the reactant used, such 

drawbacks were significantly reduced. In fact, linolenic acid content was more than 

halved when disruption was carried out either by means of H2O2 (15,7 %wt/wt) or 

H2O2 + FeSO4 (16.3 %wt/wt), respectively. As far as the other polyunsaturated acids 

are concerned, their relative content was dramatically reduced to 4.75 %wt/wt when 

disruption was carried out using H2O2 + FeSO4 while it was even below the instrument 

detection limits when adding H2O2 only. Furthermore, the cumulative weight 

percentage of saturated acids was 46 %wt/wt for disruption with H2O2 and 37 %wt 
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when H2O2+FeSO4 was used, thus significantly higher with respect to the 

corresponding ones measured when no disruption was performed. Also the cumulative 

percentage of monounsaturated acids was higher when disruption was taken into 

account, i.e. 22.64 %wt/wt for the H2O2-disrupted microalgae and 32.88 %wt/wt for 

the case when H2O2+FeSO4 was used, respectively. Moreover, linoleic acid, which is 

useful for producing biodiesel, was increased after disruption since a weight percentage 

of 22.64 %wt/wt was found in the FAMEs from H2O2-disrupted microalgae while a 

percentage of 32.88 %wt/wt was obtained using H2O2+FeSO4. In summary, when 

dividing the fatty acids in the two macrocateogories shown in Figure 3.7, it can be 

observed that the adoption of the disruption pretreatment leads to the increase of desired 

fatty acids and a simultaneous decrease of the undesired ones.  
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Figure 3.7 Comparison between the cumulative weight percentages of macrocategories of FAMEs 

related to their usefulness for producing biodiesel and obtained from microalgae subjected to the 

investigated disruption techniques. 

 

Ultimately, in addition to the achievement of higher lipid extraction yields, the cell 

disruption pretreatment, whatever the reactant used, leads to the improvement of the 

final biodiesel quality (cf. Figure 3.7). While the chemical mechanisms underlying such 

results have to be still investigated, one possible explanation is that free radicals 
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produced by disrupting reactants might have oxidized double-bonded compounds into 

oxygenated functional groups like ketones and aldheydes, thus leading to a net decrease 

of the amount of polyunsaturated fatty acids. A similar mechanism was proposed by 

Komolafe et al. (2014) to explain the net reduction of polyunsaturated fatty acids 

deriving from the use of ozone as disrupting agent. However, all the hypotheses above 

need to be confirmed through specific experiments and analyses. Work is on the way 

along these lines.  

Ultimately, it can be stated that, given the experimental results so far obtained as well as 

considering the extreme simplicity, the low cost of employed reactants and the modest 

energy consumption related to proposed technique, the investigated technique is very 

promising in view of its industrial transposition. Moreover, to the latter purpose, process 

scale-up might be quite simple since the disruption reactions could be carried out in the 

same reactor where lipid extraction is performed and thus specific equipments might not 

be required.   
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Chapter 4. 

Investigation of the iron on the growth rate and lipid 

accumulation of Chlorella vulgaris in batch 

photobioreactors 
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4.1 Introduction 

The potential exploitation of microalgae as renewable resource for the production 

of biofuels is receiving a rising interest mostly driven by the global concerns related to 

the depletion of fossil fuels supplies and the increase of CO2 levels in the atmosphere. 

In spite of such interest, the existing microalgae-based technology for CO2 

sequestration and biofuels production is still not widespread since it is affected by 

economic and technical constraints that might have limited the development of 

industrial scale production systems (Jacob-Lopes and Franco, 2013).  

Therefore, in view of industrial scaling-up, the current technology should be optimized 

in terms of lipid productivities as well as design/operating parameters. The 

identification of the optimal design and operating parameters that allow the existing 

strains to increase their lipid content while maintaining an higher growth rate, may be 

accomplished by exploiting suitable process engineering techniques (Concas et al., 

2010; Concas et al., 2012). Among them, the most widespread one consists of the 

induction of nitrogen starvation phenomena in the culture (Sharma et al., 2012;). In fact, 

under starvation conditions, nitrogen concentration is not enough for activating the 

metabolic pathways leading to protein synthesis required by algal growth so that the 

excess of carbon due to photosynthesis is channeled into storage molecules such as 

triacylglycerides or starch (Scott et al., 2010). While from on hand, such phenomenon 

can lead to increase the lipid content, on the other one it results in lower growth rates of 

microalgae since fundamental proteins cannot be synthesized. Beside nitrogen 

starvation, several methods are currently being investigated for the induction of lipid 

biosynthesis in microalgae. Specifically these techniques are based on cultivating algae 

under extreme pH and temperature conditions, high radiation, osmotic stress, and high 

heavy metals concentration (Sharma et al., 2012). All these methods have in common 

process conditions that lead the microalgal cells to use the carbon assimilated through 

photosynthesis for synthesizing lipids rather than proteins or other structural molecules. 

In fact, lipids in the form of triacylglycerides provide a storage function that enables 

microalgae to endure adverse environmental conditions (Sharma et al., 2012). However, 

the side effect of all the techniques above is the lowering of microalgae growth rate. 

Therefore, similarly to what happen with nitrogen starvation, while from one side the 

lipid content of microalgae is increased, on the other hand the growth rate is 

correspondingly reduced and thus the global lipid productivity achieved is similar to the 

one which might be obtained by cultivating algae under normal conditions. For this 
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reason the identification of suitable operating conditions that allow to increase at the 

same time both lipid content and biomass growth rate is one of the main challenges in 

the field of biofuels production through microalgae.   

Among the micronutrients which can improve microalgae growth rate, iron is well 

known to be one of the most important. In fact, a large number of studies confirmed that 

iron is one of the main limiting factors for microalgae cultivation. Such component is 

vital for microalgae metabolism, since it represents a constituent of the cytochrome b6-f 

complex which is an enzyme found in the thylakoid membrane of chloroplasts of green 

algae that mediates the transfer of electrons from Photosystem II to Photosystem I. 

Moreover, iron limitation affects the synthesis of phycocyanin and chlorophyll. Finally, 

the redox properties of iron are critical for nitrogen assimilation and fixation, 

photosynthesis, respiration and DNA synthesis. Ultimately, iron limitation can result in 

the reduction of the rate of CO2 fixation and inorganic nitrogen assimilation of 

phytoplankton by limiting the light reactions of photosynthesis (Buitenhuis and Geider, 

2010). 

Liu et al. (2008) have shown that an increasing of bio-available iron concentration in the 

growth medium can lead to a simultaneous increase of both lipid content and growth 

rate of a marine strain of Chlorella. Specifically when the initial iron concentration in 

the growth medium is increased from 0 to 1.2· 10-5 mol L-1, a corresponding increase 

in the lipid content from 7.8 to 57% by weight of dry biomass could be observed. 

While such results have not been so far quantitatively confirmed in the literature, from a 

qualitative point of view a similar behavior has been observed by Ruangsomboon 

(2012) when considering Botryococcus braunii. Specifically, it was observed that, while 

biomass growth rate was not significantly affected by initial iron concentration, the 

corresponding lipid content markedly increased from 22% to 35% by dry weight when 

the initial iron concentration is correspondingly augmented from 9 to 27 mg L-1.  

Similar results were obtained by Ruangsomboon et al. (2013) when considering the 

green alga Scenedesmus dimorphus whose lipid content greatly increased when the 

initial iron concentration was augmented from 9 to 47 mg L-1. Specifically, a maximum 

lipid content of about 24.7 % was observed for Scenedesmus dimorphus when it was 

cultivated under the maximum initial concentration of iron considered (i.e. 47 mg L-1). 

Baky et al. (2012) reported that the accumulation of total lipids shows an increasing 

trend when Fe3+ concentrations in solution was augmented up to 20 mg L-1.  Recently, 

Mata et al. (2013) demonstrated that by increasing the Fe concentration in the culture 
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medium 10 times with respect to the base case, the maximum lipid productivity of 

Dunaliella tertiolecta increased to almost the double, correspondingly. Finally, Yeesang 

and Cheirsilp (2011) reported that high level of iron improved lipid accumulation in 

four different strains of microalgae.  Ultimately, the experimental results summarized 

above seem to confirm that when the initial iron concentration is increased within a 

specific range, a simultaneous augmentation of growth rate and lipid content can be 

observed for specific strains. While these results are promising in the light of the 

microalgae technology optimization, on the other hand, to the best of our knowledge, no 

exhaustive explanation on how iron can influence the lipid biosynthesis in microalgae 

has been so far provided. Moreover, such a lack of understanding seems to have limited 

the development of iron based strategies to improve bio-oil yields, and hence their 

potential application at the industrial scale for the production of biofuels through 

microalgae. For these reasons further and deeper investigations about the effect of iron 

on lipid accumulation in microalgae are required. In this regard, while the identification 

of the phenomena involved needs an extremely accurate experimental research, the 

optimization of design and operating parameters for the application of the iron-based 

strategy to the industrial scale, may be accomplished by exploiting suitable process 

engineering techniques. Consequently, the goal of the present work is to propose an 

experimental investigation on the growth of microalgae and their lipid accumulation as 

a function of iron concentration in solution. Therefore, specific experiments were 

performed with a strain of C. vulgaris, where the iron concentration in solution was 

suitably changed. It is worth noting in passing that, to the best of our knowledge, such 

experimental investigation deals for the first time with a freshwater strain of C. 

Vulgaris. 
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4.2 Materials and methods 

4.2.1 Microorganism, culture conditions and culture medium 

The fresh water algal strain Chlorella vulgaris (Centro per lo Studio dei 

Microorganismi Autotrofi, CNR, Florence, Italy) was considered in this work. Unialgal 

stock cultures were propagated and maintained in Erlenmeyer flasks with a Kolkwitz 

Triple Modified (KTM-A) medium under incubation conditions of 25°C, a photon flux 

-2 s-1 provided by four 15 W white fluorescent tubes, and a 

light/dark photoperiod of 12 h. Flasks were continuously shaken at 100 rpm (Universal 

Table Shaker 709).  

Growth experiments were performed in Erlenmeyer flasks and Pyrex bottles under 

axenic conditions. The culture media volumes were 250 mL and 1 L for flasks and 

bottles, respectively, which were agitated by a magnetic stirrer at 300 rpm using 

magnetic PFTE stir bars (6 mm diameter and 30 mm length). Flasks, bottles, and 

magnetic stir bars, as well as culture media were sterilized in autoclave at 121°C for 20 

min prior to microalgae inoculation. Either flasks or bottles were stoppered by means of 

cotton plugs wrapped in cotton gauze during cultivation in order to prevent external 

contamination while at the same time assuring atmospheric CO2 diffusion within the 

culture. Algae were cultured at room temperature and under a photon flux density of 

100 µE m-2 s-1 provided by six 11 W white fluorescent tubes and a light/dark 

photoperiod of 12 h. The initial cell concentration in each experiment varies from 0.065 

to 0.088 g L
-1

. 

The culture medium consist of a modified Kolkwitz medium (KTM-A) containing 2.5 g 

L
-1

 of KNO3, 0.5 g L
-1

 of KH2PO4, 0.27 g L
-1 

of MgSO4·7H2O, 0.04 g L
-1 

of 

CaCl2·2H2O, 1 g L
-1

 of NaHCO3 and 1 mL of micronutrients solution The latter one 

contained 2.86 g L
-1

 of H3BO3, 1.81 g L
-1

 of MnCl2·7H2O, 0.222 g L
-1

 of ZnSO4·7H2O, 

0.035 g L
-1

 of CoCl2·6H2O, 0.080 g L
-1

 of CuSO4·5H2O, and 0.230 g L
-1

 of 

Na2MoO4·2H2O. Iron was supplied in chelated form by adding to the culture medium 

suitable volumes from a solution containing 29.75 g L
-1

 of Na2EDTA·2H2O and 24.90 g 

L
-1

 of FeSO4·7H2O, respctively. Specifically, C. vulgaris was cultivated in the above 

specified medium supplemented with FeSO4·7H2O at the iron concentration levels 

equal to 0.0, 1.8·10
-1

, 4.5·10
-1

 and 1.8 mol m
-3

 or 0.0, 10.0, 25.0 and 100 g m
-3 

corresponding to Na2EDTA·2H2O concentrations of 0.0, 1.6·10
-1

, 4.0·10
-1

 and  1.6 mol 

m
-3

, respectively.  
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4.2.2 Biomass and pH measurement 

The growth of microalgae was monitored through spectrophotometric 

measurements (Genesys 20 spectrophotometer, Thermo Fisher Scientific Inc. Waltham) 

of the culture media optical density (OD) at 560 nm wavelenght (D560) with 1 cm light 

path. The biomass concentration Cb (gdw L
-1

) was calculated from OD measurements 

using a suitable Cb vs. OD calibration curve which was obtained by gravimetrically 

evaluating the biomass concentration of known culture medium volumes that were 

previously centrifuged at 4000 rpm for 15 min and dried at 105°C for 24 h. The pH was 

daily measured by pH-meter (KNICK 913). For the sake of reproducibility, each 

experimental condition was repeated at least twice. The average and standard errors 

values of the experimental results were calculated by taking advantage of OriginPro 8 

software. 

 

4.2.3 Lipid extraction 

In order to evaluate the lipid content of C. vulgaris, the microalgae were first 

harvested and then centrifuged to obtain a wet biomass pellet characterized by a 

humidity of about 90 %wt/wt.  Lipid extraction was performed directly on wet biomass. 

The method proposed by Molina Grima et al. (1994) was adopted for extracting lipids 

from microalgae through direct saponification. Briefly it consists in contacting suitable 

amounts of wet micro-algal biomass with an extraction/saponification solution prepared 

by dissolving 2.16 g of KOH in 100 mL of ethanol (96% purity).  Specifically, 1 g of 

wet biomass was contacted for 8 hours with 6 mL of the solution above in a stirred flask 

at room temperature. Unsaponifiables were then separated by five extractions with 2 mL 

of hexane. In order to shift the equilibrium distribution of unsaponifiables to the hexane 

phase, 1 mL of water was added.  The hydroalcoholic phase containing soaps, was then 

acidified by adding HCl in a 1:1 volumetric ratio in order to obtain a pH of about 1. The 

lipids obtained were then recovered through eight extractions with 2 mL hexane and 

subsequently weighted. By dividing the weight of lipids obtained and the initial dry 

weight of the biomass which underwent the extraction procedure, the lipid content of 

microalgae, qℓ was evaluated. It is worth noting here that when microalgae were 

cultivated in absence of dissolved iron, their lipid content at the start of the 

cultivation was equal to the corresponding one measured at the end, .  
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4.3 Results and discussion 

The effect of iron concentration on the growth kinetics of C. vulgaris and its lipid 

content was investigated in this work. Specific experiments were carried out by 

cultivating C. vulgaris in batch stirred flasks where the initial concentration of dissolved 

iron was suitably changed. In particular, the growth and lipid accumulation kinetics in 

absence of iron was first investigated. Subsequently, further experiments were carried 

out to evaluate the effect of the initial concentration of dissolved inorganic iron on the 

growth of C. vulgaris by varying the initial concentration of FeSO4·7H2O and 

Na2EDTA·2H2O, while keeping fixed their molar ratio (i.e. [FeSO4.7H2O]/[ 

Na2EDTA·2H2O]). In Figure 4.1 the time evolution of total biomass concentration 

obtained when cultivating C. vulgaris in absence of dissolved iron is shown.   

 

 

Figure 4.1 Comparison between model results (fitting) and experimental data in terms of total 

biomass concentration, which accounts for both non lipidic and lipidic fraction, as a function of 

time when the initial concentration of iron in solution is equal to zero and 25 g m-3. 

 

In particular, it can be observed that the culture starts growing without showing a 

significant lag phase despite the absence of iron in solution. Probably, microalgae can 

grow also when iron concentration in solution is zero by exploiting the intracellular 

reservoir of iron, namely the initial iron cell quota. Therefore, the initial intracellular 

content of iron was high enough to permit Chlorella cells to grow and duplicate for a 

specific time interval, as shown in Figure 4.1. In fact, it can be observed that culture 
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grows until about 10 days, while after 20 days of cultivation it reaches a sort of 

“plateau” when the biomass concentration is about 320 g m-3. 

 According to the model propsed by Concas et al. (2014), it can be observed from 

Figure 4.2-a, such stationary phase is reached due to the consumption of the available 

intracellular iron. In particular, since the uptake of iron  is zero because no iron is added 

to the solution, the iron cell quota  correspondingly decreases. Therefore, when the iron 

cell quota reaches the minimum value that allows microalgae growth, the culture stops 

growing (cf. Figure 4.2-a).  
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Figure 4.2 Time evolution of iron cell quota (a) and average light intensity (b) for the cases where 

and , as simulated by the proposed model (adapted from Concas et 

al., 2014). 
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It is worth noting that the experiment carried out in absence of dissolved iron permits to 

suitably evaluate the initial cell quota of iron. In fact, since no iron was present in 

solution and growth ends when the cell quota is equal to , from a simple material 

balance related on iron it follows that , where  and  are the 

initial and the final concentrations of the non lipidic biomass concentration, 

respectively. The obtained value of the initial iron cell quota where and 

. 

In order to evaluate the effect of iron on microalgae growth rate and lipid accumulation 

further experiments were performed by setting the initial concentration of FeSO4·7H2O 

equal to 4.5·10
-1

 mol m
-3 

and the initial concentration of Na2EDTA·2H2O to 4.0·10
-1

 

mol m
-3

, thus assuring a molar ratio between iron and EDTA equal to 1.12:1. The 

corresponding initial concentration of total iron in solution, i.e. , was thus 25 gFe 

m-3. From the analysis of experimental data shown in Figure 4.1 it can be observed that 

under such operating conditions the culture keeps growing during the whole 

investigated time interval. Consequently, the biomass concentration at the end of the 

experiment is almost doubled with respect to the corresponding one observed in the case 

of absence of iron. Such a behavior is due to the fact that microalgae can prevent the 

decrease of their iron cell quota by taking advantage of iron available in solution. In 

fact, according to the model propsed by Concas et al. (2014), the cell quota remains thus 

always greater than the minimum value  as a result of the uptake of iron from 

solution (cf. Figure 4.2-a). In Figure 4.1, the comparison the experimental data related 

to the case where  is equal to 25 gFe m-3,  are shown.  

According to Concas et al (2014), the change of the slope of the growth curve shown in 

Figure 4.1,  is probably due to the fact that, under iron-replete conditions, at the start of 

the experiment, nitrogen becomes the main limiting nutrient and thus the value of the 

growth rate is dictated by nitrogen cell quota (cf. equation 14). Such inferences are 

confirmed by the model propsed by Concas et al. (2014) where it demonstrated that, as 

the culture grows, its optical density increases and consequently, as shown in Figure 

4.2-b, the light intensity that is available for microalgae, decreases. As a result the 

carbon specific photosynthetic rate decreases in such a way that when very low values 

are reached, the culture becomes light-limited instead of nitrogen-limited and 

consequently the variation law of the growth rate changes. This phenomenon provokes 
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the change in the slope of the growth curve related to the experiment with 

observed in Figure 4.1 after 15 days of cultivation.  

From Figure 4.3 it can be seen that also the final lipid content is well fitted by the 

proposed model when total initial iron concentration in solution is equal to 25 gFe m
-3

.  
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Figure 4.20 Comparison between model results (fitting/prediction) and experimental data in terms 

of final lipid content of microalgae as a function of the total initial iron concentration in solution. 

 

Moreover, the experimental data confirm that total lipid content increases when the iron 

concentration in solution is augmented. Specifically, the lipid content increased from 

9.6% to 10.6% by dry weight when the total initial iron concentration in solution was 

increased from 0 to 25 gFe m
-3

, respectively. These results are qualitatively consistent 

with the ones obtained by Liu et al. (2008) with a marine strain of chlorella vulgaris. In 

fact also in this case a simultaneous increase of growth rate and lipid content was 

observed when iron concentration in solution was augmented. However, from a 

quantitative point of view, a less pronounced increase of lipid content is observed in our 

work with respect to the corresponding one obtained by Liu et al. (2008), where the 

lipid content increased from 0 to about 57% when the initial iron concentration was 

augmented from 0 to 6·10
-1

 g m
-3

, respectively. The differences with the present results 

are probably due to several reasons. First, all data published by Liu et al. (2008) refer to 
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a marine strain of C. vulgaris, while in the present work we took advantage of a 

freshwater strain. Moreover, different growth media were used and different 

illumination conditions were adopted. In particular, it is worth noting that, in the work 

by Liu et al. (2008), FeCl3 was used as source of iron instead of FeSO4. Thus, the iron 

addition is coupled to the presence of chloride species which is well known to provoke 

oxidative stress that is, in turn, capable to trigger lipid accumulation phenomena in 

microalgae. Therefore, the effect on lipid accumulation due to the presence of chloride 

species was probably superimposed to the one related to iron when considering the 

experiments performed by Liu et al. (2008).  

Figure 4.5 shows the evolution of iron-related species as simulated by Concas et al. 

(2014) when is set equal to 25 g m-3. In this figure, log scale is adopted for the 

time axis to allow the reader to better appreciate the dynamics of iron speciation 

phenomena taking place during the first 0.3 days of the experiments. In fact since 

speciation reactions of iron in presence of EDTA (Figure 4.4) are characterized by high 

rates they are almost completed within about 0.3 days.  

 

 

Figure 4.4 Schematic representation of Fe complexation, oxidation, chelation and algal uptake 

phenomena occurring in solution, adapted from Hudson et al. 1990 and  Shaked et al. 2005. 

 

 

As it can be observed, after this period of time, the most of iron in solution is bonded to 

EDTA which serves as a buffering agent. At the same time, the useful form of iron for 

algae, i.e. Fe(III) reaches a concentration equal to about 0.06 mol m-3 and subsequently 

does not vary significantly. This is due to the fact that Fe(III) concentration is much 

higher than the minimum needed by algae to grow. Consequently the uptake of iron by 

algae does not result in a lowering of Fe(III) concentration which might be appreciated 
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at the scale adopted. However, when zooming on a more detailed scale (cf. grey box in 

Figure 4.5), the reduction of Fe(III) concentration due to iron uptake by algae, can be 

appreciated. It is worth mentioning here that such high iron concentrations have been 

adopted in order to trigger lipid accumulation.  
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Figure 4.5. Time evolution of different iron species in solution as simulated by the proposed model 

for the case where   (adapted from Concas et al., 2014). 

 

In fact while the iron starvation phenomena can be avoided by using much lower 

concentrations of iron, in order to provoke the oxidative phenomena that are on the base 

of lipid accumulation very high concentrations of iron are needed. 

To confirm the results so far obtained, further experiments were performed using total 

iron concentration equal to 10 gFe m-3 and 100 gFe m-3, respectively. The 

corresponding initial EDTA concentrations were set in order to assure always the same 

initial molar ratio between iron and EDTA.  The obtained experimental data are shown 

in Figure 4.3 for the case of final lipid content and in Figure 4.6 in terms of biomass 

concentrations as a function of time.  
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Figure 4.6 Comparison between model results (prediction) and experimental data in terms of total 

biomass concentration, which accounts for both non lipidic and lipidic fraction, as a function of 

time when the initial concentration of total dissolved iron in solution is equal to 10 and 100 g m-3, 

respectively. 

 

As it can be seen, such experiments well confirm the ones obtained under iron 

cocnetrations of 0 and 25 g m-3 respectively both in terms of biomass concentration and 

final lipid content. In particular from Figure 4.6 one can observe that, under such 

operating conditions, microalgae grow in a similar way. In fact the biomass 

concentration achieved at the end of the experiment carried out when using an iron 

concentration of 100 g m-3 was clearly higher than the corresponding one obtained 

when using lower iron concentrations. Ultimately, when the iron concentration is 

augmented beyond 10 g m
-3

, a slight increase in the total biomass growth rate is also 

observed. Such a behavior is consistent with the data reported in the literature (Liu et 

al., 2008; Yeesang and Cheirsilp, 2011; Mata et al., 2013; Ruangsomboon et al., 2013), 

where it is shown that when iron is added beyond a certain value a slight increase in the 

growth rate can be detected while, on the contrary, the lipid content results to be clearly 

augmented. 

While the proposed model well captures such experimental behavior, the phenomena 

involved in the iron-induced lipid accumulation in chlorella are still unclear. On the 

basis of the literature data, only some hypotheses can be formulated about the 

mechanism that underlies the increased lipid accumulation deriving from the 

augmentation of iron concentration in solution. A first hypothesis is based on the fact 

that, under illumination, iron can promote the generation of hydroxyl and superoxide 
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radicals that may subject the cells to a significant oxidative stress (Fujii et al., 2010). 

Nevertheless, several micro algae have the ability to produce relatively high amounts of 

storage lipids as a response to oxidative stress (Sakthivel et al., 2011). In particular it 

has been recently demonstrated that specific intracellular content of lipids of chlorella 

vulgaris is positively correlated to the intracellular concentration of free radicals in a 

power law fashion (Menon et al., 2013). Thus the increased concentration of iron in 

solution might have led to an increased production of free radicals, both outside and 

inside the cell, which, in turn, might have stimulated the microalgal cells to synthesize 

more lipids. In addition, as discussed for soybeans seeds by Plank et al. (2001), iron can 

play an important role in activating the enzyme Acetyl-CoA carboxylase (ACCase) 

which may, in turn, catalyze the rate-limiting step in the bio-synthesis of fatty acids. 

While specific experiments should be performed to confirm such effects of iron on 

microalgae, a similar mechanism might be assumed to occur in Chlorella vulgaris. 

Moreover, the two mechanisms discussed above are probably acting simultaneously. In 

addition, according to Menon et al. (2013), also the high concentration of radicals, 

which is somehow related to the presence of iron, is capable to enhance the activity of 

ACCase in C. vulgaris by accelerating the irreversible carboxylation of acetyl-CoA to 

malonyl-CoA. However, all the hypotheses above need to be confirmed through specific 

experiments. Work is on the way along these lines.  
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The existing microalgae-based technology for CO2 sequestration and biofuels 

production still not widespread since it is affected by economic and technical 

constraints that might have limited the development of industrial scale 

production systems. Therefore, in order to be viable scaled, the current 

technology should be optimized in terms of lipid productivities of existing 

strains. Such a target can be achieved either by stimulating the lipid synthesis 

of microalgae or, by increasing the yields of the lipid extractive step of the 

process. Along these lines the present PhD activity has been focused on two 

different lines of research which share the common target of identifying 

suitable strategies to increase the lipid productivity of the current microalgal 

technology. Specifically, in the first line of activity a novel cell disruption 

techniques for the enhancement of lipid extraction yields from C. Vulgaris 

have been investigated. In the second line of activity, the possibility to exploit 

iron-based strategy to increase lipid synthesis in C. Vulgaris was investigated.  

The identification of the optimal design and operating parameters that allow 

microalgae to increase their lipid content while maintaining an higher growth 

rate, may be accomplished by exploiting suitable process engineering 

techniques. Among them, the most widespread one consists of the induction 

of nitrogen starvation phenomena in the culture. Beside nitrogen starvation, 

several methods are currently being investigated for the induction of lipid 

biosynthesis in microalgae. These techniques are based on cultivating algae 

under extreme pH and temperature conditions, high radiation, osmotic stress, 

and high heavy metals concentration. However, the side effect of all the 

techniques above is the lowering of microalgae growth rate. For this reason 

the identification of suitable operating conditions that allow to increase at the 

same time both lipid content and biomass growth rate is one of the main 

challenges in the field of biofuels production through microalgae. Among the 

micronutrients which can improve microalgae growth rate, iron is well known 

to be one of the most important. In fact, iron limitation can result in the 

reduction of the rate of CO2 fixation and nitrogen assimilation of microalgae 

by limiting the light reactions of photosynthesis. Moreover, recent results 

reported in the literature seem to confirm that when the initial iron 

concentration is increased within a specific range, a simultaneous 

augmentation of growth rate and lipid content can be observed for specific 
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strains. While these results are promising in the light of the microalgae 

technology optimization, to the best of our knowledge, no comprehensive 

explanations accounting simultaneously for all the phenomena taking place 

during lipid accumulation in microalgae when varying iron concentration, 

have been so far proposed in the literature. For this reason further 

experimental activity has been carried out in this work in order to clarify 

mechanisms underlying the iron-induced lipid accumulation in C. vulgaris. 

The obtained results will be exploited to develop an iron-based strategy for 

the production of biofuels through microalgae. 

Another method to increase the bio-oil production trough microalgae is based 

on the optimization of lipid extraction yields by taking advantage of cell 

disruption pre-treatments. From a close examination of the technologies 

currently available to increase lipid extraction yields form microalgae, a 

special attention should be paid to the cell disruption pre-treatments which are 

aimed to break the algal cell wall and facilitate the extraction of lipids 

contained within the cell.  Among  the technologies for cell disruption so far  

investigated at the laboratory-scale, the most relevant and worth of 

mentioning are: mechanical methods (French press, lyophilization, bead-

beating grinding), physical methods (microwaves, gasification, 

ultrasonication, osmotic shock, supercritic CO2), and chemical methods 

(soxhlet, fermentation, solvents)  methods. However, the above mentioned 

techniques require high energy inputs and thus potentially affect the 

economic feasibility of the entire biofuels production process when applied at 

the industrial scale. For this reasons novel techniques for cell disruption, 

which are characterized by low energy requirements as well as high 

disruption yields, are needed. 

The goal of the first line of activity of the present work is the development of 

a novel cell disruption techniques for the improvement of lipid extraction 

from microalgae, an innovative low energy consuming technique for cell 

disruption, based on the use of low toxicity reactants, has been investigated.  

A brief summary of the research activity is reported in what follows. C. 

vulgaris was cultivated in photobioreactors operated in semi-batch mode in 

BIOICOIL photobioreactor. Once the culture reached the stationary growth 

phase, microalgae were harvested and centrifuged. The obtained biomass, 
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characterized by a water content of about 90%, was then subjected to cell 

disruption. To this aim, suitable amounts of water solutions containing 

different concentrations of H2O2 or Fenton reactant were contacted for 

different times with known amounts of wet biomass. Subsequently, disrupted 

cells were subjected to the lipid extraction procedure proposed in the 

literature, which allowed to evaluate the weight percentage of extracted lipids 

per unit weight of biomass on a dry basis. In the cell disruption experiments, 

both disruption agent concentration and contact time were suitably varied in 

order to identify the corresponding values which were able to maximize the 

extracted lipids. Experimental results have shown that the use of H2O2 

resulted in the increase of extracted lipids from 6.9 to 9.2 %g/gdw with 

respect to the case where no disruption was previously preformed. Moreover 

when Fenton was used as disruption agent the extracted lipids were more than 

doubled with respect to the case where no disruption was carried out. In fact 

the percentage of extracted lipids increased from 6.9 to 17.4 %g/gdw. Thus 

the use of Fenton reactant as disruption agent might double lipid productivity 

of C. Vulgaris. The goal of the second line of activity regarding the 

development of an iron base strategy to improve lipid productivity of C. 

Vulgaris in batch photobioreactors. To this aim, specific experiments were 

performed with C. Vulgaris, where iron concentration in solution was suitably 

changed. The obtained experimental results confirm the positive effect of 

growing iron concentrations on lipid productivity of C. Vulgaris. In fact when 

iron concentration in the growth medium was augmented within a suitable 

range, a simultaneous increase of  growth rate, fatty acid content and final 

biomass concentration could be observed. Thus, the proposed protocol for 

cultivating C. Vulgaris under high iron concentrations, might represent a 

useful tool to optimize iron-based strategies to improve the lipid productivity 

of microalgal cultures.  

As far the techniques based on the use of iron to improve lipid accumulation 

in microalgae the future activities will be focused on:  testing the proposed 

cultivation method on other microalgae strains; taking advantage of suitable 

experimental design tools in order to identify the optimal set of operating 

parameters. As far the novel cell disruption technique is concerned, future 
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activities will be aimed to further optimize the operating parameters; testing 

of new solvents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References     

 

 

 

 

 

 

 

 

 

 

 

 



 98 

Abu-Rezq, T. S., Al-Musallam, L., Al-Shimmari, J., Dias, P.: Optimum production conditions for 

different high-quality marine algae. Hydrobiologia. 403, 97-107 (1999) 

Acien Fernandez, F., Garcia Camacho, F., Chisti, Y.: Photobioreactors: light regime, mass transfer, 

and scaleup. Progress in Industrial Microbiology. 35, 231-247 (1999) 

Ahmad, A., Yasin, N., Derek, C., Lim, J.: Microalgae as a sustainable energy source for biodiesel 

production: a review. Renewable and Sustainable Energy Reviews. 15 (1), 584-593 (2011) 

Alabi, A. O., Bibeau, E., Tampier, M., Council, B. C. I.: Microalgae Technologies and Processes 

for Biofuels-bioenergy Production in British Columbia: Current Technology, Suitability and 

Barriers to Implementation: Final Report, British Columbia Innovation Council, (2009) 

Amin, S.: Review on biofuel oil and gas production processes from microalgae. Energy Conversion 

and Management. 50 (7), 1834-1840 (2009) 

Andrich, G., Nesti, U., Venturi, F., Zinnai, A., Fiorentini, R.: Supercritical fluid extraction of 

bioactive lipids from the microalga Nannochloropsis sp. European Journal of Lipid Science and 

Technology. 107 (6), 381-386 (2005) 

Baba, M., Shiraiwa, Y.: High-CO2 Response Mechanisms in Microalgae. Advances in 

Photosynthesis-Fundamental Aspects. In Tech, 12-435, New York (2012) 

Baker, M., Mayfield, C., Inniss, W., Wong, P.: Toxicity of pH, heavy metals and bisulfite to a 

freshwater green alga. Chemosphere. 12 (1), 35-44 (1983) 

Baky, H.H.A.E., El-Baroty, G.S., Bouaid, A., Martinez, M. and Aracil, J., 2012. Enhancement of 

lipid accumulation in Scenedesmus obliquus by Optimizing CO2 and Fe
3+

 levels for biodiesel 

production. Bioresource Technol. 119,  429-432. 

 



 99 

Berenguel, M., Rodriguez, F., Acien, F., Garcia, J.: Model predictive control of pH in tubular 

photobioreactors. Journal of Process Control. 14 (4), 377-387 (2004) 

Bernard, O., 2011. Hurdles and challenges for modelling and control of microalgae for CO2 

mitigation and biofuel production. J. Process Contr.  21,  1378-1389 

Brennan, L., Owende, P.: Biofuels from microalgae: a review of technologies for production, 

processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy 

Reviews. 14 (2), 557-577 (2010) 

Boyd, P.W., Watson, A.J., Law, C.S., Abraham, E.R., Trull, T., Murdoch, R., Bakker, D.C., Bowie, 

A.R., Buesseler, K., Chang, H. and others, 2000. A mesoscale phytoplankton bloom in the polar 

Southern Ocean stimulated by iron fertilization. Nature,  407,  695-702. 

Brown, L. M.: Uptake of carbon dioxide from flue gas by microalgae. Energy Conversion and 

Management. 37 (6), 1363-1367 (1996) 

Buitenhuis, E. T. and Geider, R. J., 2010. A model of phytoplankton acclimation to iron–light 

colimitation. Limnol. Oceanogr.  55, p. 714–724. 

Cao, G., Concas, A.: Process for bio-oil production involving the use of CO2. Patent 2371940, 

(2011) 

Cappa, F., Rutqvist, J.: Impact of CO2 geological sequestration on the nucleation of earthquakes. 

Geophysical Research Letters. 38 (17) (2011). http://dx.doi.org/DOI: 10.1029/2011GL048487 

Carriquiry, M. A., Du, X., Timilsina, G. R.: Second generation biofuels: Economics and policies. 

Energy Policy. 39 (7), 4222-4234 (2011) 

Carter, N. A.: Environmental and economic assessment of microalgae-derived jet fuel, Ph.D. 

dissertation, Massachusetts Institute of Technology, (2012). 



 100 

Chae, S., Hwang, E., Shin, H.: Single cell protein production of Euglena gracilis and carbon dioxide 

fixation in an innovative photo-bioreactor. Bioresource Technology. 97 (2), 322-329 (2006) 

Cheize, M., Sarthou, G., Croot, P.L., Bucciarelli, E., Baudoux, A.-C. and Baker, A.R., 2012. Iron 

organic speciation determination in rainwater using cathodic stripping voltammetry. Anal. Chim. 

Acta.  736,  45-54. 

Chen, C., Durbin, E. G.: Effects of pH on the growth and carbon uptake of marine phytoplankton. 

Marine Ecology-Progress Series. 109, 83-83 (1994) 

Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., Chang, J.-S.: Cultivation, photobioreactor design 

and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology. 

102 (1), 71-81, Special Issue: Biofuels - II: Algal Biofuels and Microbial Fuel Cells (2011) 

Chen, L., Liu, T., Zhang, W., Chen, X., Wang, J. 2012. Biodiesel production from algae oil high in 

free fatty acids by two-step catalytic conversion. Bioresource Technol. 111, 208-214. 

Cheng, J. J., Timilsina, G. R.: Status and barriers of advanced biofuel technologies: A review. 

Renewable Energy. 36 (12), 3541-3549 (2011) 

Cheng, L., Zhang, L., Chen, H., Gao, C. Carbon dioxide removal from air by microalgae cultured in 

a membrane-photobioreactor. Separation and purification technology. 50 (3), 324-329 (2006) 

Cheng, Y., Zhou, W., Gao, C., Lan, K., Gao, Y., Wu, Q.: Biodiesel production from Jerusalem 

artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. 

Journal of Chemical Technology and Biotechnology. 84 (5), 777-781 (2009) 

Cherif, M. and Loreau, M., 2010. Towards a more biologically realistic use of Droop’s equations. 

Oikos 119, 897–907. 

Cheung, P. C.: Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 



 101 

fatty acids from red seaweed. Food chemistry. 65 (3), 399-403 (1999) 

Chiang, C.-L., Lee, C.-M., Chen, P.-C.: Utilization of the cyanobacteria Anabaena sp. CH1 in 

biological carbon dioxide mitigation processes. Bioresource technology. 102 (9), 5400-5405 (2011) 

Chisti, Y.: Biodiesel from microalgae beats bioethanol. Trends in biotechnology. 26 (3), 126-131 

(2008) 

Chisti, Y.: Biodiesel from microalgae. Biotechnology Advances. 25 (3), 294-306 (2007) 

Chiu, S.-Y., Kao, C.-Y., Chen, C.-H., Kuan, T.-C., Ong, S.-C., Lin, C.-S.: Reduction of CO2 by a 

high-density culture of Chlorella sp in a semicontinuous photobioreactor. Bioresource technology. 

99 (9), 3389-3396 (2008) 

Chiu, S.-Y., Tsai, M.-T., Kao, C.-Y., Ong, S.-C., Lin, C.-S.: The air-lift photobioreactors with flow 

patterning for high-density cultures of microalgae and carbon dioxide removal. Engineering in life 

sciences. 9 (3), 254-260 (2009) 

Christenson, L., Sims, R.: Production and harvesting of microalgae for wastewater treatment, 

biofuels, and bioproducts. Biotechnology Advances. 29 (6), 686-702 (2011) 

Concas, A., Pisu, M., Cao, G.: Novel simulation model of the solar collector of BIOCOIL 

photobioreactors for CO2 sequestration with microalgae. Chemical Engineering Journal. 157 (2), 

297-303 (2010) 

Concas, A., Lutzu, G. A., Pisu, M., Cao, G.: Experimental analysis and novel modeling of semi-

batch photobioreactors operated with Chlorella vulgaris and fed with 100%(v/v) CO2. Chemical 

Engineering Journal. 213, 203-213 (2012) 

Concas, A., Lutzu, G. A., Locci, A. M., Cao, G.: Nannochloris eucaryotum growth in batch 

photobioreactors: kinetic analysis and use of 100% (v/v) CO2. Advances in Environmental 



 102 

Research. 2 (1), 19-33 (2013) 

Concas, A., Steriti, A., Pisu, M. and Cao, G., 2014. Comprehensive modeling and investigation of 

the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in 

batch photobioreactors. Bioresource Technol. ,153, 340-350. Published. 

Cornet, J.-F., Dussap, C. G., Gros, J.-B., Binois, C., Lasseur, C.: A simplified monodimensional 

approach for modeling coupling between radiant light transfer and growth kinetics in 

photobioreactors. Chemical Engineering Science. 50 (9), 1489-1500 (1995) 

Dayananda, C., Sarada, R., Kumar, V., Ravishankar, G. A.: Isolation and characterization of 

hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies. Electronic 

Journal of Biotechnology. 10 (1), 78-91 (2007) 

Demirbas, A.: Use of algae as biofuel sources. Energy Conversion and Management. 51 (12), 2738-

2749 (2010) 

Devi, M. P., Subhash, G. V., Mohan, S. V.: Heterotrophic cultivation of mixed microalgae for lipid 

accumulation and wastewater treatment during sequential growth and starvation phases: effect of 

nutrient supplementation. Renewable Energy. 43, 276-283 (2012) 

Doucha, J., Straka, F., Livansky, K.: Utilization of flue gas for cultivation of microalgae Chlorella 

sp.) in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology. 17 (5), 403-412 

(2005) 

Droop, M.: 25 Years of Algal Growth Kinetics A Personal View. Botanica marina. 26 (3), 99-112 

(1983) 

Durmaz, Y., Monteiro, M., Bandarra, N., G, I.: The effect of low temperature on fatty acid 

composition and tocopherols of the red microalga, Porphyridium cruentum. Journal of Applied 



 103 

Phycology. 19 (3), 223-227 (2007) 

Ebenezer, V., Nancharaiah, Y. V., Venugopalan, V.: Chlorination-induced cellular damage and 

recovery in marine microalga, Chlorella salina. Chemosphere. 89 (9), 1042–1047 (2012) 

EEC 2568/91. 1991. Characteristics of olive and olive pomance oils and their analytical 

methods. Official Journal of the European Communities, L248, 1–82. 

Fajardo, A. R., Cerdan, L. E., Medina, A. R., Fernandez, F. G. A., Moreno, P. A. G., Grima, E. M.: 

Lipid extraction from the microalga Phaeodactylum tricornutum. European Journal of Lipid Science 

and Technology. 109 (2), 120-126 (2007) 

Fajardo, A.M., Cerdàn, L.E.,  Medina, A.R.,  Acien Fernandez, F.G., Gonzàlez Moreno, P.A., Molina 

Grima, E. 2007. Eur. J. Lipid. Technol., 109, 120-126. 

Fan, L.-H., Zhang, Y.-T., Cheng, L.-H., Zhang, L., Tang, D.-S., Chen, H.-L.: Optimization of 

Carbon Dioxide Fixation by Chlorella vulgaris Cultivated in a Membrane-Photobioreactor. 

Chemical engineering and technology. 30 (8), 1094-1099 (2007) 

Fan, L.-H., Zhang, Y.-T., Zhang, L., Chen, H.-L.: Evaluation of a membrane-sparged helical tubular 

photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. Journal of Membrane Science. 

325 (1), 336-345 (2008) 

Farrelly, D. J., Everard, C. D., Fagan, C. C., McDonnell, K. P.: Carbon sequestration and the role of 

biological carbon mitigation: A review. Renewable and Sustainable Energy Reviews. 21, 712-727 

(2013) 

Feng, Y., Li, C., Zhang, D.: Lipid production of  Chlorella vulgaris cultured in artificial wastewater 

medium. Bioresource technology. 102 (1), 101-105 (2011) 

 



 104 

Fernandez, F. G. A., Gonzalez-Lopez, C., Sevilla, J. F., Grima, E. M.: Conversion of CO2 into 

biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Applied 

microbiology and biotechnology. 96 (3), 577-586 (2012) 

Florentino de Souza Silva, A.P., Costa, M.C., Colzi Lopes, A., Fares Abdala Neto, E., Carrhá 

Leitão, R., Mota, C.R., Bezerra dos Santos, A. 2014. Comparison of pretreatment methods for 

total lipids extraction from mixed microalgae. Renew. Energ. 63, 762-766. 

Francisco, E. C., Neves, D. B., Jacob-Lopes, E., Franco, T. T.: Microalgae as feedstock for 

biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. Journal of 

Chemical Technology and Biotechnology. 85 (3), 395-403 (2010) 

Fujii, M., Rose, A. L., Omura, T. and  Waite, T. D., 2010. Effect of Fe (II) and Fe (III) 

transformation kinetics on iron acquisition by a toxic strain of Microcystis aeruginosa. Environ. Sci. 

Technol. 44,  1980-1986 

Georgianna, D. R., Mayfield, S. P.: Exploiting diversity and synthetic biology for the production of 

algal biofuels. Nature. 488 (7411), 329-335 (2012) 

Gerringa, L., De Baar, H. and Timmermans, K., 2000. A comparison of iron limitation of 

phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Mar. Chem. 

68,  335-346. 

Goldman, J. C., Graham, S. J.: Inorganic carbon limitation and chemical composition of two 

freshwater green microalgae. Applied and environmental microbiology. 41 (1), 60-70 (1981) 

Gonzalez Lopez, C., Acien Fernandez, F., Fernandez Sevilla, J., Sanchez Fernandez, J., Ceron 

Garcia, M., Molina Grima, E.: Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 

removal processes. Bioresource technology. 100 (23), 5904-5910 (2009) 

 



 105 

González, P.M., Piloni, N.E.,  and Puntarulo, S. 2012. Iron Overload and Lipid Peroxidation in 

Biological Systems. Lipid Peroxidation, Dr. Angel Catala (Ed.), ISBN: 978-953-51-0716-3,  

Gouveia, L., Marques, A. E., da Silva, T. L., Reis, A.: Neochloris oleabundans UTEX 1185: a 

suitable renewable lipid source for biofuel production. Journal of industrial microbiology and 

biotechnology. 36 (6), 821-826 (2009) 

Grima Molina, E., Fernandez, J., Acien, F., Chisti, Y.: Tubular photobioreactor design for algal 

cultures. Journal of Biotechnology. 92 (2), 113-131 (2001) 

Grima, E. M., Fernandez, F. G. A., Camacho, F. G., Chisti, Y. Photobioreactors: light regime, mass 

transfer, and scaleup. Journal of Biotechnology. 70 (1-3), 231-247, (1999). Biotechnological 

Aspects of Marine Sponges.  

Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N.I., Vorobiev, E. 2014. Selective 

extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. 

Bioresource Technol. 153, 254–259. 

Gupta, E.: Oil vulnerability index of oil-importing countries. Energy Policy. 36 (3), 1195-1211 

(2008) 

Halim, R., Danquah, M. K., Webley, P. A.: Extraction of oil from microalgae for biodiesel 

production: a review. Biotechnology advances. 30 (3), 709-732 (2012) 

Halim, R., Gladman, B., Danquah, M. K., Webley, P. A.: Oil extraction from microalgae for 

biodiesel production. Bioresource technology. 102 (1), 178-185 (2011) 

Ho, S. H., Chen, W.-M., Chang, J.-S.: Scenedesmus obliquus CNW-N as a potential candidate for 

CO2 mitigation and biodiesel production. Bioresource technology. 101 (22), 8725-8730 (2010) 

Hsieh, C.-H., Wu, W.-T.: Cultivation of microalgae for oil production with a cultivation strategy of 



 106 

urea limitation. Bioresource technology. 100 (17), 3921-3926 (2009) 

Hudson, R. J., Morel, F. M. and Morel, F., 1990. Iron transport in marine phytoplankton: Kinetics 

of cellular and medium coordination reactions. Limnol. Oceanogr, 35,  1002-1020. 

Huntley, M. E., Redalje, D. G.: CO2 mitigation and renewable oil from photosynthetic microbes: a 

new appraisal. Mitigation and adaptation strategies for global change. 12 (4), 573-608 (2007) 

InTech, DOI: 10.5772/46181. Available from: http://www.intechopen.com/books/lipid-

peroxidation/iron-overload-and-lipid-peroxidation-in-biological-systems 

Islam, M.A., Magnusson, M., Brown, R.J., Ayoko, G.A., Nabi, M.N., Heimann, K. 2013. Microalgal 

species selection for biodiesel production based on fuel properties derived from fatty acid 

profiles. Energies.  6, 5676-5702. 

Jacob-Lopes, E., Gimenes, C. H., Queiroz, M. I., Franco, T. T.: Biotransformations of carbon 

dioxide in photobioreactors. Energy Conversion and Management. 51 (5), 894-900 (2010) 

Jalalizadeh, M.: Development of an Integrated Process Model for Algae Growth in a 

Photobioreactor, Ph.D. dissertation, University of South Florida, (2012) 

Jeffryes, C., Rosenberger, J. and Rorrer, G. L., 2013. Fed-batch cultivation and bioprocess 

modeling of Cyclotella sp. for enhanced fatty acid production by controlled silicon limitation. Algal 

Research, 2,  16-27. 

Jiang, L., Luo, S., Fan, X., Yang, Z., Guo, R.: Biomass and lipid production of marine microalgae 

using municipal wastewater and high concentration of CO 2. Applied energy. 88 (10), 3336-3341 

(2011) 

Jin, H.-F., Lim, B.-R., Lee, K.: Influence of nitrate feeding on carbon dioxide fixation by 

microalgae. Journal of Environmental Science and Health Part A. 41 (12), 2813-2824 (2006) 



 107 

Jones, J., Manning, S., Montoy.a, M., Keller, K., Poenie, M.: Extraction of algal lipids and their 

analysis by HPLC and mass spectrometry. Journal of the American Oil Chemists' Society. 89 (8), 

1371-1381 (2012) 

Kaur, S., Sarkar, M., Srivastava, R.B., Gogoi, H.K., Kalita, M.C. 2012. Fatty acid profiling and 

molecular characterization of some freshwater microalgae from India with potential for 

biodiesel production. New Biotech. 29,  332-344. 

Keris-Sen, U.D., Sen, U., Soydemir, G., Gurol, M.D. 2014. An investigation of ultrasound effect on 

microalgal cell integrity and lipid extraction efficiency.  Bioresource Technol.  152, 407–413 

Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C. W., Park, M. S., Yang, J.-W.: Methods of 

downstream processing for the production of biodiesel from microalgae. Biotechnology advances. 

(2013) http://dx.doi.org/10.1016/j.biotechadv.2013.04.006 

Kirrolia, A., Bishnoi, N. R., Singh, R., 2013. Microalgae as a boon for sustainable energy 

production and its future research and development aspects. Renew Sust Energ Rev. 20, 642-

656.  

Klok, A. J., Martens, D. E., Wijffels, R. H., Lamers, P. P. Simultaneous growth and neutral lipid 

accumulation in microalgae. Bioresource Technology. 134, 233–243 (2013) 

Komolafe, O., Velasquez Orta, S.B., Monje-Ramirez, I., Noguez, I.Y., Harvey, A.P., Orta Ledesma, 

M.T. 2014. Biodiesel production from indigenous microalgae grown in wastewater. 

Bioresource Technol.  154, 297-304. 

Kong, Q.-x., Li, L., Martinez, B., Chen, P., Ruan, R.: Culture of microalgae Chlamydomonas 

reinhardtii in wastewater for biomass feedstock production. Applied biochemistry and 

Biotechnology. 160 (1), 9-18 (2010) 



 108 

Krichnavaruk, S., Loataweesup, W., Powtongsook, S., Pavasant, P.: Optimal growth conditions and 

the cultivation of Chaetoceros calcitrans in airlift photobioreactor. Chemical Engineering Journal. 

105 (3), 91-98 (2005) 

Kumar, A., Yuan, X., Sahu, A. K., Dewulf, J., Ergas, S. J., Van Langenhove, H.: A hollow fiber 

membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater 

treatment: a process engineering approach. Journal of Chemical Technology and Biotechnology. 85 

(3), 387-394 (2010) 

Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H., Miyachi, S.: Fixation and 

utilization of carbon dioxide by microalgal photosynthesis. Energy conversion and management. 36 

(6), 689-692 (1995) 

Lam, M. K., Lee, K. T., Mohamed, A. R.: Current status and challenges on microalgae-based 

carbon capture. International Journal of Greenhouse Gas Control. 10, 456-469 (2012) 

Lee, A. K., Lewis, D. M., Ashman, P. J.: Disruption of microalgal cells for the extraction of lipids 

for biofuels: Processes and specific energy requirements. Biomass and Bioenergy. 46, 89–101 

(2012) 

Lee, A.K., Lewis, D.M., Ashman, P.J., 2013. Force and energy requirement for  microalgal cell 

disruption: an atomic force microscope evaluation. Bioresour. Technol. 128, 199–206.  

Lee, J.-S., Kim, D.-K., Lee, J.-P., Park, S.-C., Koh, J.-H., Cho, H.-S., Kim, S.-W.: Effects of SO2 

and NO on growth of Chlorella sp. KR-1. Bioresource technology. 82 (1), 1-4 (2002) 

Lee, S. J., Yoon, B.-D., Oh, H.-M.: Rapid method for the determination of lipid from the green alga 

Botryococcus braunii. Biotechnology Techniques. 12 (7), 553-556 (1998). 

Li, F.-F., Yang, Z.-H., Zeng, R., Yang, G., Chang, X., Yan, J.-B., Hou, Y.-L.: Microalgae capture 



 109 

of CO2 from actual flue gas discharged from a combustion chamber. Industrial and Engineering 

Chemistry Research. 50 (10), 6496-6502 (2011) 

Li, G., Xiao, P., Webley, P., Zhang, J., Singh, R., Marshall, M. Capture of CO2 from high humidity 

flue gas by vacuum swing adsorption with zeolite 13X. Adsorption. 14 (2-3), 415-422 (2008) 

Li, Y., Horsman, M., Wang, B., Wu, N., Lan, C. Q.: Effects of nitrogen sources on cell growth and 

lipid accumulation of green alga Neochloris oleoabundans. Applied microbiology and 

biotechnology. 81 (4), 629-636 (2008) 

Liang, Y., Sarkany, N., Cui, Y.: Biomass and lipid productivities of Chlorella vulgaris under 

autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology letters. 31 (7), 1043-

1049 (2009) 

Liu, J., Huang, J., Chen, F.: Microalgae as Feedstocks for Biodiesel Production. Biodiesel-

Feedstocks and Processing, InTech. 133-160 (2007) 

Liu, Z-Y, Wang, G-C and Zhou, B-C, 2008. Effect of iron on growth and lipid accumulation in 

Chlorella vulgaris. Bioresource. Technol. 99,  4717-4722. 

Lutzu, G. A.: Analysis of the growth of microalgae in batch and semi-batch photobioreactors, Ph.D. 

dissertation, Universita'degli Studi di Cagliari, (2012) 

Lv, Y. X., Yan, G. H., Xu, C. Q., Xu, M., Sun, L.: Review on Membrane Technologies for Carbon 

Dioxide Capture from Power Plant Flue Gas. Advanced Materials Research. 602, 1140-1144 (2013) 

Maeda, K., Owada, M., Kimura, N., Omata, K., Karube, I.: CO2 fixation from the flue gas on coal-

fired thermal power plant by microalgae. Energy Conversion and Management. 36 (6), 717-720 

(1995) 

 



 110 

Mandalam, R. K., Palsson, B.: Elemental balancing of biomass and medium composition enhances 

growth capacity in high-density Chlorella vulgaris cultures. Biotechnology and Bioengineering, 59 

(5), 605-611 (1998) 

Martinez, L., Redondas, V., Garcia, A.-I., Moran, A.: Optimization of growth operational 

conditions for CO2 biofixation by native Synechocystis sp. Journal of Chemical Technology and 

Biotechnology. 86 (5), 681-690 (2011) 

Mata, T. M., Martins, A. A., Caetano, N.: Microalgae for biodiesel production and other 

applications: a review. Renewable and Sustainable Energy Reviews. 14 (1), 217-232 (2010) 

Mayo, A. W.: Effects of temperature and pH on the kinetic growth of unialga Chlorella vulgaris 

cultures containing bacteria. Water Environment Research. 69 (1), 64-72 (1997) 

Mazzoldi, A., Rinaldi, A. P., Borgia, A., Rutqvist, J.: Induced seismicity within geological carbon 

sequestration projects: Maximum earthquake magnitude and leakage potential from undetected 

faults. International Journal of Greenhouse Gas Control. 10, 434-442 (2012) 

McMillan, J. R., Watson, I. A., Ali, M., Jaafar, W. 2013. Evaluation and comparison of algal cell 

disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Appl. 

Energ. 103, 128-134. 

Mendes, R. L., Nobre, B. P., Cardoso, M. T., Pereira, A. P., Palavra, A. F.: Supercritical carbon 

dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica 

Chimica Acta. 356, 328-334 (2003) 

Menon, K. R., Balan, R. and Suraishkumar, G., 2013. Stress induced lipid production in Chlorella 

vulgaris: Relationship with specific intracellular reactive species levels. Biotechnol Bioeng. 110, 

1627-36 

 



 111 

Millero, F. J., Yao, W. and Aicher, J., 1995. The speciation of Fe (II) and Fe (III) in natural waters. 

Mar. Chem., 50,  21-39. 

Molina Grima, E., Robles Medina, A., Giménez Giménez, A., Sánchez Pérez, J.A., Garcia 

Camacho, F. and García Sánchez, J.L., 1994. Comparison between extraction of lipids and fatty 

acids from microalgal biomass. J. Am. Oil Chem. Soc. 71,  955-959. 

Morgan, B. and Lahav, O., 2007. The effect of pH on the kinetics of spontaneous Fe (II) oxidation 

by O2 in aqueous solution--basic principles and a simple heuristic description. Chemosphere, 68,  

2080-2084. 

Mulbry, W., Kondrad, S., Pizarro, C., Kebede-Westhead, E.: Treatment of dairy manure effluent 

using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal 

turf scrubbers. Bioresource Technology. 99 (17), 8137-8142 (2008) 

Munoz, R., Guieysse, B.: Algal--bacterial processes for the treatment of hazardous contaminants: a 

review. Water research. 40 (15), 2799-2815 (2006) 

Nagase, H., Yoshihara, K.-I., Eguchi, K., Yokota, Y., Matsui, R., Hirata, K., Miyamoto, K.: 

Characteristics of biological removal from flue gas in a Dunaliella tertiolecta culture system. 

Journal of Fermentation and Bioengineering, 83(5), 461-465 (1997) 

Naik, S., Goud, V. V., Rout, P. K., Dalai, A. K.: Production of first and second generation biofuels: 

a comprehensive review. Renewable and Sustainable Energy Reviews. 14 (2), 578-597 (2010) 

Olguin, E. J.: Phycoremediation: key issues for cost-effective nutrient removal processes. 

Biotechnology Advances. 22 (1-2), 81-91, VI International Symposium on Environmental 

Biotechnology. (2003) 

O'Neill, J. The carbon debate   http://forums.canadiancontent.net/news/83028-carbon-capture-

storage.html . 



 112 

Orpez, R., MartInez, M. E., Hodaifa, G., El Yousfi, F., Jbari, N., Sanchez, S.: Growth of the 

microalga< i> Botryococcus braunii in secondarily treated sewage. Desalination. 246 (1), 625-630 

(2009) 

Packer, A., Li, Y., Andersen, T., Hu, Q., Kuang, Y. and Sommerfeld, M., 2011. Growth and neutral 

lipid synthesis in green microalgae: A mathematical model. Bioresource Technol. 102,  111-117. 

Piorreck, M., Baasch, K-H. and Pohl, P., 1984. Biomass production, total protein, chlorophylls, 

lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. 

Phytochemistry, 23,  207-216. 

Pires, J., Alvim-Ferraz, M., Martins, F., Simoes, M.: Carbon dioxide capture from flue gases using 

microalgae: Engineering aspects and biorefinery concept. Renewable and Sustainable Energy 

Reviews. 16 (5), 3043-3053 (2012) 

Plank, D. W., Gengenbach, B. G. and Gronwald, J. W., 2001. Effect of iron on activity of soybean 

multi-subunit acetyl-coenzyme A carboxylase. Physiol. plantarum, 112,  183-194. 

Pragya, N., Pandey, K. K., Sahoo, P.: A review on harvesting, oil extraction and biofuels production 

technologies from microalgae. Renewable and Sustainable Energy Reviews. 24, 159-171 (2013) 

Pruvost, J., Cornet, J.-F., Legrand, J.: Hydrodynamics influence on light conversion in 

photobioreactors: An energetically consistent analysis. Chemical Engineering Science. 63 (14), 

3679-3694 (2008) 

Pulz, O.: Photobioreactors: production systems for phototrophic microorganisms. Applied 

Microbiology and Biotechnology. 57 (3), 287-293 (2001) 

Quinn, J., de Winter, L., Bradley, T.: Microalgae bulk growth model with application to industrial 

scale systems. Bioresource Technology. 102 (8), 5083-5092 (2011) 

Radakovits, R., Jinkerson, R. E., Fuerstenberg, S. I., Tae, H., Settlage, R. E., Boore, J. L., Posewitz, 



 113 

M. C.: Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis 

gaditana. Nature Communications. 3, 686 (2012) 

Radmann, E. M., Costa, J. A. V.: Conteúdo lipídico e composição de ácidos graxos de microalgas 

expostas aos gases CO2, SO2 e NO. Quim. Nova. 31 (7), 1609-1612 (2008) 

Rapier, R.: Current and projected costs for biofuels from algae and pyrolysis. 

http://www.energytrendsinsider.com/2012/05/07/current-and-projected-costs-for-biofuels-from-

algae-and-pyrolysis/ (2012). Accessed 10 June 2013. 

Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F.: Biodiesel from microalgae: A critical 

evaluation from laboratory to large scale production. Applied Energy. 103, 444-467 (2013). 

Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F.: Dual role of microalgae: phycoremediation of 

domestic wastewater and biomass production for sustainable biofuels production. Applied Energy. 

88 (10), 3411-3424 (2011) 

Richmond, A.: Handbook of microalgal culture: biotechnology and applied phycology, Wiley-

Blackwell, (2008) 

Rios, S. D., Castaneda, J., Torras, C., Farriol, X., Salvado, J.: Lipid extraction methods from 

microalgal biomass harvested by two different paths: Screening studies toward biodiesel 

production. Bioresource Technology. 133 (0), 378-388 (2013) 

Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M. R.: 

Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a 

low-cost photobioreactor. Biotechnology and bioengineering. 102 (1), 100-112 (2009) 

Ruangsomboon, S., 2012. Effect of light, nutrient, cultivation time and salinity on lipid production 

of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresource 



 114 

Technol. 109,  261-265. 

Ruangsomboon, S., Ganmanee, M. and Choochote, S., 2013. Effects of different nitrogen, 

phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the 

tropical green microalga, Scenedesmus dimorphus KMITL. J. Appl. Phycol. 25,  867-874. 

Rubio, F. C., Fernandez, F. G. A., Perez, J. A. S., Camacho, F. G., Grima, E. M.: Prediction of 

dissolved oxygen and carb Stephanopoulos on dioxide concentration profiles in tubular 

photobioreactors for microalgal culture. Biotechnology and Bioengineering. 62 (1), 71-86 (1999) 

Ryu, H. J., Oh, K. K., Kim, Y. S.: Optimization of the influential factors for the improvement of 

CO2 utilization efficiency and CO2 mass transfer rate. Journal of Industrial and engineering 

chemistry. 15 (4), 471-475. (2009) 

-linolenic acid (GLA) 

from Spirulina platensis ARM 740 using response surface methodology. Journal of Food 

Engineering. 84 (2), 321-326 (2008) 

Sakthivel, R.: Microalgae lipid research, past, present: a critical review for biodiesel production, in 

the future. Journal of Experimental Sciences. 2 (10), 29-49 (2011) 

Santiago, D. E., Jin, H.-F., Lee, K.: The influence of ferrous-complexed EDTA as a solubilization 

agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga< 

i> Scenedesmus sp. Process Biochemistry. 45 (12), 1949-1953 (2010) 

Sathish, A., Sims, R. C.: Biodiesel from mixed culture algae via a wet lipid extraction procedure. 

Bioresource Technology. 118, 643–647 (2012) 

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, 

O., Hankamer, B.: Second generation biofuels: high-efficiency microalgae for biodiesel production. 



 115 

Bioenergy Research. 1 (1), 20-43 (2008) 

Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., Smith, A. G.: 

Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology. 21 (3), 277-286 

(2010) 

Sevilla, J. F., Grima, E. M.: A model for light distribution and average solar irradiance inside 

outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and 

bioengineering. 55 (5), 701 (1997) 

Shaked, Y., Kustka, A. B. and  Morel, F. M., 2005. A general kinetic model for iron acquisition by 

eukaryotic phytoplankton. Limnol. Oceanogr, 50,  872-882. 

Sharma, K. K., Schuhmann, H. and Schenk, P. M., 2012. High lipid induction in microalgae for 

biodiesel production. Energies, 5,  1532-1553. 

Sims, R. E., Mabee, W., Saddler, J. N., Taylor, M.: An overview of second generation biofuel 

technologies. Bioresource Technology. 101 (6), 1570 (2010) 

Singh, R., Sharma, S.: Development of suitable photobioreactor for algae production--A review. 

Renewable and Sustainable Energy Reviews. 16 (4), 2347-2353 (2012) 

Steriti, A., Rossi, R., Concas, A., Cao, G.: A novel cell disruption technique to enhance lipid 

extraction from microalgae (2014). In press. 

Strzepek, R.F., Hunter, K.A., Frew, R.D., Harrison, P.J. and Boyd, P.W., 2012. Iron-light 

interactions differ in Southern Ocean phytoplankton. Limnol. Oceanogr. 57, 1182-1200. 

Su, C.-H., Chien, L.-J., Gomes, J., Lin, Y.-S., Yu, Y.-K., Liou, J.-S., Syu, R.-J.: Factors affecting 

lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of 

Applied Phycology. 23 (5), 903-908 (2011) 



 116 

Su, C.-H., Giridhar, R., Chen, C.-W., Wu, W.-T. A novel approach for medium formulation for 

growth of a microalga using motile intensity. Bioresource technology. 98 (16), 3012-3016 (2007) 

Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A., Soccol, 

C. R.: Potential carbon dioxide fixation by industrially important microalgae. Bioresource 

technology. 101 (15), 5892-5896 (2010) 

Sydney, E., Da Silva, T., Tokarski, A., Novak, A., De Carvalho, J., Woiciecohwski, A., Larroche, 

C., Soccol, C.: Screening of microalgae with potential for biodiesel production and nutrient removal 

from treated domestic sewage. Applied Energy. 88 (10), 3291-3294 (2011) 

Takano, H., Takeyama, H., Nakamura, N., Sode, K., Burgess, J. G., Manabe, E., Hirano, M., 

Matsunaga, T.: CO2 removal by high-density culture of a marine cyanobacterium Synechococcus 

sp. using an improved photobioreactor employing light-diffusing optical fibers. Applied 

biochemistry and biotechnology. 34 (1), 449-458 (1992) 

Tang, D., Han, W., Li, P., Miao, X., Zhong, J.: CO2 biofixation and fatty acid composition of< i> 

Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource 

Technology. 102 (3), 3071-3076 (2011) 

Timilsina, G. R., Du, X., Carriquiry, M. A. Second-Generation Biofuels . Policy Research Working 

Paper 5406, (2010) Doi: 10.1596/1813-9450-5406. 

Tredici, M. R., Materassi, R.: From open ponds to vertical alveolar panels: the Italian experience in 

the development of reactors for the mass cultivation of phototrophic microorganisms. Journal of 

Applied Phycology. 4 (3), 221-231 (1992) 

Tuinier, M., van Sint Annaland, M., Kramer, G., Kuipers, J.: Cryogenic CO2 capture using 

dynamically operated packed beds. Chemical Engineering Science. 65 (1), 114-119 (2010) 

Usui, N., Ikenouchi, M.: The biological CO2 fixation and utilization project by RITE (1) ”Highly-



 117 

effective photobioreactor system”. Energy conversion and management. 38, S487--S492 (1997) 

Van Den Hende, S., Vervaeren, H., Boon, N.: Flue gas compounds and microalgae:(Bio-)chemical 

interactions leading to biotechnological opportunities. Biotechnology advances. 30 (6), 1405–1424 

(2012) 

Van Den Hende, S., Vervaeren, H., Desmet, S., Boon, N.: Bioflocculation of microalgae and 

bacteria combined with flue gas to improve sewage treatment. New Biotechnology. 29 (1), 23-31 

(2011) 

Wang, B., Lan, C. Q., Horsman, M.: Closed photobioreactors for production of microalgal 

biomasses. Biotechnology advances. 30 (4), 904-912 (2012) 

Wang, M.,  Yuan, W., Jiang, X., Jing, Y., Wang, Z. 2014. Disruption of microalgal cells using high-

frequency focused ultrasound. Bioresource Technol. 153, 315–321. 

Ward, B. A., Dutkiewicz, S., Jahn, O. and Follows, M. J., 2012. A size-structured food-web model 

for the global ocean: Web Appendix:Ecosystem model structure. Limnol. Oceanogr. 57, 1877–

1891. 

Westerhoff, P., Hu, Q., Esparza-Soto, M., Vermaas, W.: Growth parameters of microalgae tolerant 

to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environmental 

technology. 31 (5), 523-532 (2010) 

Wilkin, R. T., DiGiulio, D. C.: Geochemical impacts to groundwater from geologic carbon 

sequestration: controls on pH and inorganic carbon concentrations from reaction path and kinetic 

modeling. Environmental science and technology. 44 (12), 4821-4827 (2010) 

Wu, Y., Zhou, S., Qin, F., Zhenga, K., Yea, X. 2010. Modeling the oxidation kinetics of Fenton's 

process on the degradation of humic acid. J. Hazard. Mater. 179, 533-539 



 118 

Xiong, W., Li, X., Xiang, J., Wu, Q.: High-density fermentation of microalga Chlorella 

protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and 

Biotechnology. 78 (1), 29-36 (2008) 

Xu, H., Miao, X., Wu, Q.: High quality biodiesel production from a microalga Chlorella 

protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology. 126 (4), 499-507 

(2006) 

Xu, L., Brilman, D.W.F., Withag, J.A.M., Brem, G., Kersten, S., 2011. Assessment of a dry and a 

wet route for the production of biofuels from microalgae: energy balance analysis. 

Bioresource Technol. 102, 5113–5122. 

Xu, N., Zhang, X., Fan, X., Han, L., Zeng, C.: Effects of nitrogen source and concentration on 

growth rate and fatty acid composition of Ellipsoidion sp.(Eustigmatophyta). Journal of applied 

phycology. 13 (6), 463-469 (2001) 

Yamada, N., Tsurushima, N., Suzumura, M.: Effects of seawater acidification by ocean CO2 

sequestration on bathypelagic prokaryote activities. Journal of oceanography. 66 (4), 571-580 

(2010) 

Yang, S., Wang, J., Cong, W., Cai, Z., Ouyang, F.: Effects of bisulfite and sulfite on the microalga< 

i> Botryococcus braunii. Enzyme and microbial technology. 35 (1), 46-50 (2004) 

Yeesang, C. and Cheirsilp, B., 2011. Effect of nitrogen, salt, and iron content in the growth medium 

and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. 

Bioresource Technol. 102,  3034-3040. 

Yeh, K.-L., Chang, J.-S.: Nitrogen starvation strategies and photobioreactor design for enhancing 

lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: 

Implications for biofuels. Biotechnology Journal. 6 (11), 1358-1366 (2011) 



 119 

Yonghua, L.-B. Triacylglycerol biosynthesis in eukaryotic microalgae.   

http://lipidlibrary.aocs.org/plantbio/tag_algae/index.htm . 

Yoo, C., Jun, S.-Y., Lee, J.-Y., Ahn, C.-Y., Oh, H.-M. Selection of microalgae for lipid production 

under high levels carbon dioxide. Bioresource technology. 101 (1), S71--S74 (2010) 

Young, G., Nippen, F., Titterbrandt, S., Cooney, M. J. Direct transesterification of biomass using an 

ionic liquid co-solvent system. Biofuels. 2 (3), 261-266 (2011) 

Yue, L., Chen, W.: Isolation and determination of cultural characteristics of a new highly CO2 

tolerant fresh water microalgae. energy conversion and Management. 46 (11), 1868-1876 (2005) 

Zhang, Y., Sahinidis, N. V.: Uncertainty Quantification in CO2 Sequestration Using Surrogate 

Models from Polynomial Chaos Expansion. Industrial and Engineering Chemistry Research. 52 (9), 

3121-3132 (2012) 

Zhao, B., Zhang, Y., Xiong, K., Zhang, Z., Hao, X., Liu, T.: Effect of cultivation mode on 

microalgal growth and CO2 fixation. Chemical Engineering Research and Design.  89 (9), 1758-

1762 (2011) 

Zijffers, J.-W., Schippers, K., Zheng, K., Janssen, M., Tramper, J., Wijffels, R.: Maximum 

Photosynthetic Yield of Green Microalgae in Photobioreactors. Marine Biotechnology. 12 (6), 708-

718 (2010) 

 


	Ph.D candidate:  Alberto Steriti
	Advisors:  Prof. Ing. Giacomo Cao, Prof. Roberto Orru,                                     Ing. Alessandro Concas
	Università degli Studi di Cagliari
	Academic Year 2012 – 2013
	2.9.3 Conversion of microalgal lipids for the production of biodiesel

