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Abstract

We investigate various aspects of gravity with the aim to shed light on the deep re-
lation between the infrared and ultraviolet regimes of gravitational interaction. We
focus on black holes, holography, the emergent properties of spacetime and gravity
itself and its relation to the behaviour of gravity at galactic scales. In the first part of
the thesis, we study geometrical, thermodynamical and holographic properties of two
dimensional and higher dimensional black holes in Anti-de Sitter spacetime in the
context of the AdS/CFT correspondence. We discuss two different applications of the
AdS/CFT correspondence: the shear viscosity to entropy density ratio for five dimen-
sional charged Reinssner-Nordström and Gauss-Bonnet black branes and black holes
and quantum holographic properties of two dimensional dilaton gravity. For black
branes we find an universal thermodynamical behaviour and a monotonic flow from
the UV to the IR of the shear viscosity to entropy density ratio as a function of the
temperature. In the black hole case we find an interesting connection between phase
transitions in the bulk and a hysteretical behaviour of the shear viscosity to entropy
density ratio in the dual quantum field theory. For two dimensional dilaton gravity
we show that the pattern of conformal symmetry breaking is crucial to understand the
microscopic properties of two dimensional dilaton black holes. In the second part of
the thesis we describe the emergent laws of gravity in a corpuscolar picture and derive
the implications of our emergent gravity scenario at galactic scales. We first describe
spacetime as a Bose-Einstein condensate of gravitons, then we demonstrate that, with-
out assuming the existence of exotic matter, the phenomenology commonly attributed
to dark matter at galactic scales (the flattening of rotational curves) can be described
as a reaction of the cosmological condensate to the presence of localized baryonic
matter. We show how this corpuscolar picture of gravity allows for an effective de-
scription in terms of general relativity sourced by an anisotropic fluid. Finally, using
a more conservative approach, we derive an exact, analytic, static, spherically symmet-
ric, four-dimensional solution of minimally coupled Einstein-scalar gravity, sourced
by a scalar field which could be considered as a possible dark matter candidate.
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Introduction

General relativity is a classical theory of gravity [1–4]. Its success ranges over many
scales, from the millimeter scale, to the Solar system (precession of planetary orbits,
bending of light, gravitational redshift) and the cosmological ones [5]. Not least, the
very recent discoveries of gravitational waves due to the coalescence of two binary
black holes [6, 7] and neutron stars [8] has marked an important step towards the
confirmation of Einstein’s predictions about the dynamics of black holes and stars in
the universe, leading to the new multi-messenger era of astronomy [9]. Nevertheless,
a century after its discovery, Einstein’s theory still remains a challenging topic in
physics. Despite its great success a lack of theoretical explanation of all the gravi-
tational phenomena at galactic and very large scales, as well as at Planck scales is
evident. Moreover, the theory seems to be incompatible with quantum mechanics.

For what concerns gravity at large scales, a tension between theoretical predictions
of general relativity and the observations appears. Indeed, the latter can be explained
in the framework of general relativity, only assuming the presence of exotic form of
matter (dark matter and dark energy) whose true nature still remains a mistery. As far
as we know, in order to explain galactic dynamics and the expansion of the universe,
the ΛCDM model [10] is the most reliable and conservative approach, but particles out
of the standard model [11, 12] to include dark matter and the existence of a dark fluid
permeating spacetime, i.e. the dark energy, are needed. Another possibility is to extend
general relativity trying to include higher dimensions and new curvature effects [13]
or new (gravitating) fields as, for example, scalar fields [14, 15]. However, none of
these approaches seem to cover all the phenomenology cited above. On the contrary,
the ultraviolet (UV) regime of gravity is even more mysterious and black holes seem
to be the most promising laboratory to test general relativity in this case. Indeed the
semi-classical (quantum) properties of black holes are well known since the seventies
of the last century, when Bekenstein [16, 17] and Hawking [18, 19] discovered that
black holes carry a certain quantity of entropy proportional to their area 1

SBH =
Ahor
4`2p

, (0.0.1)

where `p is the Plack length. The equation above shows the quantum properties
of black holes and suggests that, at the Planck scale, spacetime behaves as a pure
quantum object. Unfortunately, from a pure theoretical point of view a complete and
satisfactory quantum theory of gravity is still missing. There are many attempts trying
to quantize gravity, from the Wheeler-DeWitt equation [20], to string theory [21] and
loop quantum gravity [22] or group field theory [23], however none of these approaches

1We shall use units with c = 1 but display explicitly the Planck constant ~ = `pmp and Newton
constant GN = `p/mp.
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is still able to describe the quantum aspects of spacetime, yet. Moreover, their are not
able to reproduce all the aspects of classical and quantum gravitational physics as,
for example in the case of black holes, the information loss paradox [24, 25] and the
microscopic origin of black holes entropy [26, 27]. The real difficult for all the theories
cited above is the possibility to match their predictions with direct or even indirect
real experiments. In particular, quantum gravity effects are expected to be relevant at
the Planck scale lP = 10−35m or in terms of the Planck energy, EP = 1019GeV . Thus,
compared to the typical energies we currently reach in our laboratories (even in the
case of astrophysical observations involving very extreme gravitational phenomena),
we are very far from being able to directly or indirectly test these phenomena [28].

The Bekenstein-Hawking formula above, not only shows that black holes are in-
trinsically quantum objects, but also that their thermodynamical properties are in some
sense unexpected: contrarily to what we know from statistical mechanics of conven-
tional field theories, black holes entropy scales as an area, not as a volume. This sug-
gests, that, from a quantum point of view, the gravitational interaction seems to have
holographic properties. Holography, at least in theoretical high energy physics, means
that the properties of any (D+ 2)−dimensional region (of spacetime) can be described
by degrees of freedom living in its (D + 1)−boundary [29, 30]. The deep relationship
between holography and gravity is a widely studied subject in theoretical physics. In
particular, holography finds a natural realization in the case of the so-called Anti-
de Sitter/Conformal field theory (AdS/CFT) correspondence. It is a conjecture which
states that string theory or a gravity theory in AdS spacetime in (D+ 2)−dimensions
is equivalent to a conformal quantum field theory in (D+1)−dimensions. It was firstly
formulated by Maldacena [31] at the end of nineties of the last century. It has been
extended to several contexts and it has gained a lot of interest in all the comunity,
especially for its results in describing black hole physics, in quantum gravity [32–35]
and in condensed matter physics [36–65]. The AdS/CFT correspondence can be also
thought as a weak/strong duality, i.e. weakly interacting gravity theories correspond
to strong coupled quantum field theories and viceversa. This helps to circumvent the
difficulties in studying the strong coupling limit in gauge theory by focusing on the
weak field regime of gravitational interaction.

For many years, physicists have tried to face up with problems related to the IR
and UV regimes of gravity separetely. In fact, due to the different phenomenology
and physical description (e.g. dark matter, dark energy and a metric theory of gravity
based on a smooth classical spacetime in the IR, black hole physics, the information
paradox, quantum gravity presumibly based on some quantum spacetime geometry in
the UV) it seems, at least at first sight, that the gravitational physics at large and
small scales are completely decoupled one from each other. However, there are many
indications showing that this is not completely true. These indications have been
triggered by recent advances in the understanding of gravity and they come from two
different corners of gravitational physics: the first is black hole physics, the second
the behaviour of gravity at galactic and cosmological scales.

Due to their peculiar features, black holes are a good example of the deep inter-
play between IR and UV regimes of gravity. Let us consider for instance black holes
thermodynamics and hydrodynamics. All these aspects can be described both from
a classical and quantum point of view, involving infrared and ultraviolet features of
the system, respectively. This is particularly evident in the case of AdS/CFT corre-
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spondence where properties of classical black holes at IR scale can be translated in
properties of the dual quantum fields at UV scale and viceversa. Since black holes are
thermal objects we can treat the dual quantum field theory as a CFT at finite temper-
ature. The presence of this (thermal) scale opens the possibility to study black holes
in particular regimes as, for example, the hydrodynamical one. Depending on the
actual content of the gravity theory, i.e. matter fields and couplings, the bulk gravity
theory may allow in the asymptotic and near-horizon regimes for different solutions
characterized by their symmetries, which correspond to UV and IR fixed points in the
dual QFT. It is therefore crucial to understand how the transport coefficients in the
dual QFTs are affected by the flow from the UV to the IR. A quantity, which plays
a distinguished role in the hydrodynamic regime of thermal QFTs with gravitational
duals is the shear viscosity to entropy density ratio η/s. It has been shown that η/s
attains an universal value 1/4π for all gauge theories with Einstein gravity duals [66–
73]. This fact motivated the formulation of a fundamental bound η/s > 1/4π, known
as Kovton, Son and Starinets bound [74, 75], which also found support from energy-
time uncertainty principle arguments in the weakly coupled regime [75] and known
experimental data for quark-gluon plasma [75, 76]. However, it was soon realized that
in higher curvature gravity theories [77], the presence of particular fields that break
the translational invariance of the background [78–81], or curved backgrounds [82]
may generically violate the bound. In general, η/s is a function of the temperature
and although the breaking of translation symmetry prevents a purely hydrodynamic
interpretation of η, there are strongly indication that bounds on η/s are completely
determined by IR physics and insensitive to the UV regime of the theory. This is
an interesting point because even if the microscopic interpretation of η assumes the
existence of the UV regime of the theory, its value depends only on its IR behaviour.
Another important point in the holographic context is the possibility of using the in-
formation about transport coefficients in the dual QFTs to understand the behaviour of
black holes as thermodynamical system, e.g. their phase transitions. Although this is
not the usual approach pursued by the AdS/CFT community, it seems a very promising
one.

Another example of non trivial flow from the ultraviolet to the infrared regime of
gravity is given by two dimensional dilaton gravity [83, 84]. These models are very
usefull to study quantum gravity in a very simplified context. Also in the 2D case, the
symmetries of the bulk geometries in the asymptotic and near-horizon regimes and the
thermodinamical behaviour during the flow from the UV to the IR play a crucial role
for understanding many features of gravity such as the microscopic interpretation of
black hole entropy.

Moving to a cosmological context, let us now consider the case of dark energy:
from a macroscopic point of view, the present accelerated expansion of the universe
is driven by an unknown perfect fluid that permeates spacetime which is called dark
energy. However, from a quantum point of view dark energy can be seen as the
vacuum energy of spacetime whose nature is purely quantum. In this case, the infrared
and ultraviolet scale are deeply related being two side of the same coin.

The infrared and ultraviolet description of gravity seems to be deeply linked in the
instrinsic structure of spacetime itself. In fact, one of the major ideas triggering recent
theoretical progress about the gravitational interaction is that of emergent gravity: the
classical spacetime structure and gravity emerge together from an underlying micro-
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scopic quantum theory [85–87]. In particular, the power of this emergent paradigm is
that it must depend loosely on the details of the underlying microscopic theory and it
is essentially determined by its fundamental quantum nature.

The notion of emergent gravity is quite general and it has been used in several
different contexts [85, 86, 88–94]. Two main realisations of this idea, which have
recently attracted a lot of attention, involve the entanglement entropy and the idea of
corpuscolar gravity. The first one uses the entanglement of microscopic quantum states
as the origin of space-time geometry. This route historically starts from the discovery
of the Bekenstein-Hawking (BH) entropy area law for black holes [17], goes through
the development of the AdS/CFT correspondence [31] and the Ryu-Takayanagi formula,
where it clearly appears that the BH formula is related to the quantum entanglement
of the vacuum [32]. Subsequently, it was also realized that quantum entanglement
could explain the connectivity of classical space-time [95], and that the linearized
Einstein’s equations can be derived from quantum information principles [96]. The
second main realization of the idea that gravity is emergent uses the notions of
quantum compositeness and classicalization [90, 91]. Gravitational systems, such as
black holes and cosmological spaces, can be described as a composite quantum system
of a large number NG of soft gravitons. It has been shown that these gravitational
systems exhibit properties of a Bose-Einstein condensate (BEC) at the quantum critical
point. Moreover, the usual classical space-time structure emerges in the limit NG → ∞
of this picture [90, 91]. This corpuscular realization of the paradigm of emergent
gravity has been also successfully used to describe Hawking radiation [97, 98] and
inflation [91, 99, 100].

As already pointed out, an intrinsic feature of gravitational interaction that mani-
fests also in both the above realizations of emergent gravity is that of holography. The
intrinsic holographic nature of the quantum entanglement approach is evident in the
Ryu-Takayanagi derivation of the entanglement entropy and, more in general, in the
quantum information picture of black holes and cosmological horizons [32, 87]. The
same holographic nature is at the heart of the corpuscular approach, which is based
on the fact that the number NG of soft gravitons in a BEC at the critical point scales,
in terms of the size r of the system, as,

NG ∼
r2

`2p
. (0.0.2)

The holographic character of this description is also very important for understanding
the quantum information counted by the BH entropy (see the complementary, firewall
and ER=EPR discussion [101, 102]) and for the description of black holes as BEC of
gravitons at the critical point [90, 91].

A striking feature of this approach is that the emergent gravity scenario provides
a connection between the microscopic ultraviolet (UV) scale `p and the infrared (IR)
cosmological scale L = H−1 of gravity (here H is the Hubble parameter and L the
Hubble scale). Indeed, in the quantum entanglement setup, the entropy associated
to the de Sitter (dS) spacetime can be explained, similarly to the BH entropy, as a
long range entanglement connecting bulk excitations with the dS horizon [87]. In
the corpuscular setup, both black holes and our observable universe are “maximally
classical” systems, i.e. BEC at the critical point satisfying the relation (0.0.2) with
r = RH (the Schwarzschild radius) and r = L, respectively.

4



In general, the theoretical aparatus of emergent gravity is very usefull to study
gravity at cosmological and black hole scales, separetely. However, the success of
emergent gravity in describing the holographic regimes of gravity shown in Eq. (0.0.2),
gives a strong motivation to use it also at intermediate scales, i.e. at galactic scales.
This corresponds exactly to the scales where dark matter phenomena appears and
where classical predictions of Einstein’s gravity fail. It is evident that from a quantum
point of view, the behaviour of the gravitational interaction at these scales cannot be
simply described by the maximally packing condition (0.0.2). On the other hand,
explaining the phenomenology of gravity at galactic scales has been one of the main
motivations for introducing dark matter [103–105] and the ΛCDM model [106–109].
One is therefore led to expect that the application of the emergent gravity scenario at
galactic scales may hold the key for understanding the dark matter mystery.

In a fully emergent gravity scenario, in which matter and spacetime are intimately
related, the existence of a form of matter different from the baryonic one is concep-
tually weird. Moreover, despite the extensive agreement with large scale structure
and cosmic microwave background observations, the ΛCDM model is not completely
satisfactory, not only from a conceptual point of view, but also because there is some
tension at the level of the phenomenology of galaxies and galaxy clusters. Concerning
the Milky way galaxy, for example, three problems arise: the missing satellite prob-
lem [110, 111] (N−body simulations predict too many dwarf galaxies within the Milky
Way virial radius), the cusp-core problem [112] (too much dark matter in the inner-
most regions of galaxies w.r.t. observations) and the too-big-to-fail problem [113, 114]
(the dynamical properties of the most massive satellites in the Milky way are not
correctly predicted by simulations). In particular, these problems become more and
more evident when one tries to study galaxy rotation curves. Typically, the rotational
velocity in galaxies approaches a non-zero asymptotic value with increasing distance
from a galaxy’s centre. This asymptotic value satisfies an empirical relationship with
the galaxy’s total luminosity known as the Tully-Fisher relation [115]. Rephrased as
a relation between the asymptotic velocity v and the total baryonic mass mB, it takes
the form mB ∼ v4 (baryonic Tully-Fisher relation) [116, 117]. With adjusted units, it is
equivalent to

v2 ≈
√
a0GNmB, (0.0.3)

where a0 denotes an empirically determined factor with dimensions of an acceleration.
The surprising fact is that the value of a0 appears to be a0 ≈ H/(2π) ≈ H/6, where
H is the current value of the Hubble constant. This coincidence begs for a deeper
physical explanation and points to a deep connection between the dark matter and
dark energy (DE) phenomena.

To explain the Tully-Fisher relation within a ΛCDM model, one must assume that
the dark matter halos of all galaxies contain just the right amount of dark matter,
which is obviously not a physically motivated assumption. For this reason, the Tully-
Fisher relation has been used to argue in support of modified theories of gravity,
where the standard description of the gravitational interaction given by Einstein’s
general relativity is modified at large scales. As mentioned before, the departure
from general relativity in such alternative approaches may involve modifications of
the Einstein-Hilbert action, like in f(R) theories [13, 118], string inspired brane-world
scenarios [119], or a change of the paradigm that describes gravity by means of a metric
and covariant theory. To this last class of approaches belongs Milgrom’s Modified
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Newtonian dynamics (MOND) [120, 121]. In the MOND framework, in which the
acceleration a0 is promoted to a fundamental constant, the gravitational acceleration
is modified with respect to its Newtonian form. At distances outside a galaxy’s inner
core, it reads

aMOND(r) =
√
a0 aB(r) , (0.0.4)

where aB(r) = GNmB(r)/r
2 is the Newtonian radial acceleration that would be caused

by the baryonic mass mB(r) inside the radius r. Phenomenologically, the sim-
ple formula (0.0.4) turns out to explain the rotation curves of galaxies surprisingly
well [117, 122], although it cannot explain the mass deficit in galaxy clusters [123]. More
recently, Verlinde [87] has given a controversial [124, 125] derivation of the MOND
formula (0.0.4). In his work, it was shown that, when applied at galactic scales,
the laws of emergent gravity contain an additional dark gravitational force, which
may explain the phenomenology commonly attributed to dark matter and reproduce
the MOND acceleration (0.0.4). Following Verlinde [87], the long range entanglement
connecting bulk excitations with the dS horizon (i.e. the positive dark energy) gener-
ates a (thermal) volume contribution to the entanglement entropy and a subsequent
competition between area and volume laws. This can be seen as an elastic response of
the dark energy medium to the presence of baryonic matter which, in turn, implies an
additional dark gravitational force correctly reproducing the MOND acceleration [87].

However one common problem of these approaches is the difficulty of performing
a “metric-covariant uplifting” of the theory [125, 126]. In fact, such theories are
usually formulated in the weak-field regime, whereas we know that gravity must
allow for the metric-covariant description given by general relativity, at least at solar
system scales. Fluid space-time models may provide a simple way to perform such
an uplifting. For example, it is well known that de Sitter space is equivalent to the
space-time of an isotropic fluid with constant energy density and equation of state
p = −ε. Phenomenologically, galaxy rotation curves and gravitational lensing have
been described using two-fluids [127, 128] and anisotropic fluid models [129–131]. It is
also possible to extend such models to contain DE [132], although the physical nature
of these fluid models has yet to be established.

This thesis represents a step towards the understanding of holographic and emer-
gent properties of gravity underlined above. Our main goal is to study and clarify the
deep relation between the infrared and ultraviolet regime of gravity. The holographic
properties of the gravitational interaction will play a central role in the investigation
of all these aspects. In particular, we will focus on black holes in the context of
AdS/CFT correspondence and on the emergent properties of gravity at galactic scales
in a corpuscolar picture, facing up with the dark matter problem.

The work has been organized in two different parts. In the first part we will
explore various black holes and black branes solutions and their geometrical and
thermodynamical properties in AdS spacetime. We will focus on the holographic
principle and, in particular, on the AdS/CFT correspondence and its applications in
black holes physics. We will compute the shear viscosity to entropy ratio for five
dimensional charged Reinssner-Nordström and Gauss-Bonnet black branes and black
holes. In particular we will investigate the behaviour of transport coefficients in the
hydrodynamical limit of the dual QFTs when one goes from the IR to the UV regime of
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the theory. Finally, we will study the quantum properties of two dimensional dilaton
gravity, the role of symmetries and of temperature in quantum phase transitions.

In Chapter 1 we will study black holes and black branes in four and higher dimen-
sions in presence of an electrocmagnetic field. We will focus on Lovelock gravity, a
higher curvature gravity theory with second order field equations for the metric and
on five-dimensional Gauss Bonnet gravity. We will also investigate gravity in two
dimensions by means of scalar fields, i.e. dilaton gravity. Moreover, we will discuss
the thermodynamics of these solutions with the aim to set the general framework to
study their quantum properties through the AdS/CFT correspondence.

In Chapter 2 we review the AdS/CFT correspondence and, in particular, we focus
on hydrodynamics. We will discuss about the definition of a hydrodynamical limit for
quantum fields with gravity duals both in Minkowski and curved spacetime by means
of the shear viscosity. We will define the shear viscosity in both spacetimes by means
of Kubo formula by giving particular attention to the case of curved spacetime. In the
final part of the Chapter we investigate the holographic principle and its applications
in two dimensional dilaton gravity. We will focus on the definition of the microscopic
features of the model and their possible consequences for quantum gravity at Planck
scales.

In Chapter 3 we will discuss about AdS/CFT applications in two different cases.
Firstly we will compute the shear viscosity to entropy ratio for five dimensional
charged Reinssner-Nordström and Gauss-Bonnet black branes and black holes. In
particular we will focus on the behaviour of transport coefficients in the hydrody-
namical limit of the dual QFTs when one goes from the IR to the UV regime of the
theory. Particular attention will be given to the interplay between thermodynamics
and hydrodynamics in the case of spherical black holes. Finally we will discuss in
detail about quantum properties of two dimensional dilaton gravity.

The second part of the thesis is devoted to the investigation of the emergent gravity
scenario in the context of corpuscolar gravity and its applications at galactic scales.
In particular, we will consider the gravitational galactic dynamics and we will present
a theoretical explanation of its phenomenology in the corpuscol picture of emergent
gravity without adding exotic matter. Finally we will study a possible dark matter
candidate in the case of Einstein’s gravity coupled to a real scalar field.

In Chapter 4 we will review both the emergent gravity paradigm presented in [87]
and the corpuscolar description of gravity of Dvali et al [90, 91, 97, 133–137].

In Chapter 5 we shall begin with a critical discussion of various regimes of gravity
in the corpuscular scenario. We will start by arguing that, describing dark energy as
a critical BEC of soft gravitons (the DEC) implies not only the presence of a non-
extensive regime of gravity satisfying Eq. (0.0.2), but also of an extensive regime in
which NG ∼ r3/(L `2p). The local gravitational interaction with baryonic matter can then
be naturally described in terms of gravitons pulled out from the DEC. We will first
consider baryonic matter in the diluted approximation, when the local reaction of the
condensate to the presence of baryonic matter can be (ideally) neglected. We will then
proceed by describing what happens when we go beyond the diluted approximation
and baryonic matter begins to clump. We will show that, in this regime, the reaction
of the DEC to the presence of baryonic matter is also associated to gravitons pulled
out from the DEC. They generate an additional gravitational dark force on baryonic
probe sources, which correctly reproduces the MOND acceleration. In Chapter 6 we
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will show how this description allows for an effective description in terms of general
relativity sourced by an anisotropic fluid.

Finally, in Chapter 7 we will derive an exact, analytic, static, spherically symmetric,
four-dimensional solution of minimally coupled Einstein-scalar gravity, sourced by a
scalar field which could be a possible dark matter candidate.
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Part I

Black Holes and Holography





Chapter 1

Black holes in Anti-de Sitter
Spacetime

The interest in studying black holes extends from general relativity and astrophysics
to quantum physics. On one side, the fact that black holes are characterized only by
their asymptotic charges (mass, charge, angular momentum) and the fact that they
behave as a thermodynamical ensamble makes these objects an interesting laboratory
to test the limits of general relativity. On the other side, the very famous formula
about black hole entropy upsets what we generically expects from thermodynamics.
Moreover, it suggests the existence of a deep interplay between quantum physics and
black hole thermodynamics. For example, this has led to the formulation of the so-
called holographic principle and to AdS/CFT correspondence.

For these reasons, the first part of this thesis is devoted to the investigation of
general features of black holes in Anti-de Sitter spacetime both from a geometric and
a quantum perspective.

In the first Chapter, we study charged black branes (i.e. black holes with planar
topology) and black holes in higher dimensions and, in the final part, two dimensions
dilaton gravity by giving a detailed description of their geometrical and thermodynam-
ical properties. The Chapter is mainly based on:

� M. Cadoni, A. M. Frassino and M. T., “On the universality of thermodynamics
and η/s ratio for the charged Lovelock black branes”, JHEP 1605 (2016) 101,
arXiv:1602.05593.

� Mariano Cadoni, Edgardo Franzin and M. T., “Van der Waals-like Behaviour of
Charged Black Holes and Hysteresis in the Dual QFTs”, Phys.Lett. B768 (2017)
393-396, arXiv:1702.08341.

� Mariano Cadoni, Edgardo Franzin and M. T. “Hysteresis in η/s for QFTs dual to
spherical black holes”, Eur.Phys.J. C77 (2017) no.12, 900, arXiv:1703.05162.

� Mariano Cadoni, Matteo Ciulu and M. T., “Symmetries, Holography and Quantum
Phase Transition in Two-dimensional Dilaton AdS Gravity”, Phys.Rev. D97
(2018) no.10, 103527, arXiv:1711.02459.

Note: we set the speed of light as c = 1.
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1.1 Black holes: general features

Black holes are the final state of the gravitational collapse of sufficiently massive stars
(M > 3M�). From a pure gravitational point of view they are regions of spacetime
where gravity is so strong that even light cannot escape from there. At the beginning,
black holes were thought to be non-physical, viz. just a mathematical solution of
Einstein’s equations of motion, but nowadays we have a lot of (indirect) astrophysical
evidences of their existence [138].

Moreover, from a pure theoretical point of view, their existence and fate give rise
to two of the most deep puzzles of contemporary fundamental physics: the information
problem in the black hole evaporation process [139] and the microscopic interpretation
of Bekenstein-Hawking black hole entropy [16–19].

For these reasons they are studied in many branches of physics as, for example,
astrophysics [140], gravitational waves [6] or quantum gravity [141].

In general relativity (GR) and in four dimensions, the simplest black hole can be
described by the Schwarzschild metric [142],

ds2 = −

(
1− 2GM

r

)
dt2 +

dr2

1− 2GM
r

+ r2
(
dθ2 + sin2 θdφ2

)
, (1.1.1)

where M is the mass of the black hole. The surface r = 2GM defines the so-called
event horizon. Eq. (1.1.1) represents a spherical black hole and, for r > 2GM, the
geometry of any object with the same mass M. A similar solution is represented by
black holes with planar topology, i.e. black branes, where the 2−plane, dΣ2 = dx2+dy2

replaces the 2−sphere in Eq. (1.1.1). Notice that the existence of planar black brane
solution is not generic, but requires peculiar form of the sources. As we will seen
later, black branes are an important class of solutions with many applications from
gravity to quantum gravity, in particular for holography. A more involved solution of
Einstein’s equations is the Kerr metric [143] which, in Boyer-Lindquist coordinates,
can be written as

ds2 =−

(
1− 2GMr

Σ

)
dt2 −

4GMra
Σ

dtdφ+
Σ

∆
dr2 + Σdθ2

+

(
2GMra2 sin2 θ

Σ
+ r2 + a2

)
sin2 θdφ2,

(1.1.2)

where a = J/M is the total angular momentum per unit mass, ∆ = r2 − 2GMr + a2
and Σ = r2 + a2 cos2 θ. This metric describes the spacetime outside a spinning black
hole. A generalization of these two metrics to the charged case has been given in
the past [144–146] even though one expects that astrophysical black holes are rotating
uncharged objects. Moreover, it seems that during the collapse, once matter reaches
the Schwarzschild radius all its details disappear leaving an object characterized only
by its mass, its angular momentum and its charge. This important feature of black
holes has led to the formulation of the so-called no-hair theorems [147, 148].

Another important and still fascinating feature of black holes is that the laws of
black hole mechanics are very similar to the laws of thermodynamics. In particular,
Bekenstein [16, 17] and Hawking [18, 19] discovered in the seventies of the last century
that black holes are thermal objects with a characteristic temperature and entropy,

TBH =
}κ

2πkB
SBH =

Ahor
4}G

, (1.1.3)
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where κ is the surface gravity, kB the Boltzmann constant and Ahor the area of the
horizon. These quantities appear to be inherently quantum gravitational, in the sense
that they depend on both Planck’s constant } and Newton’s constant G. Classical
black holes should be perfect absorbers that is they should not posses any tempera-
ture nor entropy. The result expressed in Eq. (1.1.3) suggests that when one goes to
semi-classical gravity, the quantum corrections cannot be ignored. In ordinary ther-
modynamic systems, thermal properties reflect the statistical mechanics of underlying
microstates. In particular, entropy is a mesure of the number of microstates of the
system. However, black hole entropy is atypical: for an ordinary non-gravitational
system, entropy is extensive, scaling as volume. In the case of black holes, on the
contrary, it is “holographic” since it scales as an area. If the Bekenstein-Hawking
entropy really counts black hole microstates, this holographic scaling suggests that a
black hole has far fewer degrees of freedom than we might (classically) expect [149].
This aspect together with another puzzling topic in black hole physics, i.e. the “infor-
mation loss paradox” [24, 25], are currently very active field of research. However, in
this thesis we will not deal with these issues.

There are many solutions of Einstein’s equations regarding black hole physics in
literature. These solutions are obtained considering different sources for the gravita-
tional field, different spacetime topologies and different spacetime asymptotics. How-
ever, in the last decades, a lot of interest has been devoted to a particular class of
black holes, e.g. black holes in anti-de Sitter (AdS) spacetime and in higher dimen-
sions [150]. In particular, this has been motivated by string theory, which requires
gravity in higher dimensions and the discovery in the late nineties of the AdS/CFT
correspondence. Under particular assumptions (see the next Chapter for discussions),
the AdS/CFT correspondence gives a mathematical correspondence between a gravity
theory in AdS spacetime in (D+ 2)− dimensions and a dual quantum field theory in
(D+ 1)−dimensions (see Ref. [151] and Chapter 2 for details). Anti-de Sitter spacetime
is a maximally symmetric solution of Einstein’s equation of motion with a negative
cosmological constant, Λ. This means that it is a solution of Einstein’s equations
following from the minimization of the Hilbert-Einstein action,

S[g] =
1

16πGD+2

∫
dD+2x

√
−g

(
R+

D(D+ 1)
L2

)
, (1.1.4)

where GD+2 is the (D+ 2)−Newton constant, R is the Ricci scalar and L is the (anti-
)de Sitter radius, related to the cosmological constant by Λ = D(D+ 1)/L2 . The AdS
spacetime is described by the following metric

ds2 = −

(
1+ r2

L2

)
dt2 +

dr2

1+ r2

L2

+ r2dΩ2
D, (1.1.5)

where dΩD is the D−dimensional sphere (plane). We will discuss in detail the impor-
tance of this metric in the AdS/CFT correspondence perspective in the next Chapter.

Up to now, general relativity continues to be an extremely successful and well-
accepted theory for gravitational phenomena. However several issues and shortcom-
ings appeared in the theory in the last decades (e.g. the origin of dark matter and dark
energy, strong gravity and so on) leading to the conclusion that Einstein’s general rel-
ativity is not the final theory of gravitational interaction. This has produced several
proposal for extended theories of gravity [13]. These are basically higher curvature



14 CHAPTER 1. BLACK HOLES IN ANTI-DE SITTER SPACETIME

theories, i.e. theories where the Hilbert-Einstein action is generalized by introducing
functions of the various curvature invariants. Among the various extended theories
of gravity one can formulate, Lovelock gravity [152] has been a fruitful and widely
explored subject [153–156]. The peculiarity of the theory is to be a higher curvature
gravity theory with second-order field equations for the metric as four dimensional
Einstein’s gravity. This nice feature not only allows to avoid some of the shortcom-
ings of generic higher-derivative theories (such as ghosts in the linearized excitation
spectrum and ill-posed Cauchy problem) but also enables us to derive exact black hole
(and black brane) solutions of the theory. As a consequence, the thermodynamics of
Lovelock black holes is well known and has several interesting, nontrivial features.
One of these features is that the thermal entropy [157, 158] and the holographic en-
tanglement entropy [159] of a black hole depend on the higher-curvature gravitational
couplings. It is also well understood that there are in these theories new types of
phase transitions that also depend on the value of the gravitational couplings [160–
163]. Among the Lovelock gravity theories, one of the most investigated cases, that
will also be the main subject of this Chapter, is the five-dimensional (5D) Gauss-
Bonnet (GB) theory. Specifically, GB gravity is the 2nd-order Lovelock gravity, i.e. it
includes only quadratic curvature corrections in the Einstein-Hilbert action. The main
reason to study 5D GB in the AdS/CFT framework is that the dual QFT lives in four
spacetime dimensions. As we will see in the next two Chapters, Lovelock and GB
gravity are interesting also from the holographic point of view.

From a quite different perspective, gravity in less than four dimensions has gained
a lot of interest in the last decades [164–166]. Even if gravity becomes topological
for D < 4, when particular fields such as scalar fields are coupled to it, non trivial
solutions appears. This important feature opens the possibility to investigate difficult
issues of quantum gravity, the AdS/CFT correspondence and black hole physics in
a simplified mathematical context. Moreover lower dimensional gravity seems to be
deeply related with quantum properties of spacetime at Planck scales [167, 168]. Also in
the 2D case, gravitational solutions with AdS asymptotic behaviour play a prominent
role. This is due to several reasons. First, the AdS/CFT correspondence in 2D and
3D has rather peculiar features, whose understanding would shed light on the whole
subject [169, 170]. Secondly, black sole solutions (in particular charged ones) behaves
in the extremal, near horizon limit, as two-dimensional AdS black holes.

In the next sections, we discuss and analyze features of AdS black branes and
black holes holes both in higher dimensions and in two dimensions.

1.2 Black brane solutions of Lovelock gravity

Let us consider black branes (BB) that are solutions of Lovelock higher curvature
gravity in (D + 2)−dimensional spacetime coupled to the electric field. The theory is
described by the following action

Stot =
1

16πGD+2

∫
dxD+2√−g

kmax∑
k=0

αkLk −
1
4

∫
dD+2√−gFabFab (1.2.6)

where GN is the (D+ 2)-dimensional Newton’s constant, αk are the rescaled Lovelock
coupling constants and Lk denotes the Lovelock Lagrangian,

Lk = 2−kδa1b1...akbkc1d1...ckdk
Rc1d1a1b1

· · ·Rckdkakbk
, (1.2.7)
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being Rc1d1a1b1
· · ·Rckdkakbk

the Riemann tensors. The tensor Fab denotes the usual electro-
magnetic tensor. For the purposes of this thesis we will only consider electrically
charged black branes (no magnetic components in Fab will be taken into account).
Using the rescaled Lovelock coupling constants,

L−2 = α0 =
α̂(0)

D (D+ 1)
, α1 = α̂(1) , αk = α̂(k)

2k∏
n=3

(D+ 2− n) for k > 2 , (1.2.8)

the field equations read

kmax∑
k=0

α̂(k)G
(k)
ab = 8πGN

(
FacFb

c −
1
4
gabFcdF

cd
)
. (1.2.9)

Each of the Einstein-like tensors G(k)ab defined by

G(k)ab = −
1

2(k+1) δ
a c1d1...ckdk
b e1f1...ekfk

R e1f1
c1d1

. . . R ekfk
ckdk

, (1.2.10)

independently satisfies a conservation law ∇aG(k)ab = 0. The higher-curvature terms
contribute to the equations of motion only for D > 2k− 2. For D = 2k− 2 the higher-
curvature corrections are topological, and they vanish identically in lower dimensions.
Setting α̂(k) = 0 for k > 2, one can recover the standard form of general relativity.

To describe the static, electrically charged, radially symmetric AdS Lovelock BB,
we use the following line element and electromagnetic (EM) field

ds2 = −f (r)N2dt2 + f (r)−1 dr2 +
r2

L2
dΣ2

D , F =
Q

rD
dt∧ dr , (1.2.11)

where dΣ2
D denotes the D−dimensional space with zero curvature and planar topology,

whereas L is related to the cosmological constant α̂(0) by L−2 = α̂(0)/D(D+ 1).
Notice that the metric in Eq. (1.2.11) differs from that in the usual Schwarzschild

gauge by a (constant) rescaling t→ Nt of the time coordinate t. As we will see later,
this rescaling is necessary in order to have a unit speed of light in the dual CFT.

In the notation (1.2.8), the field equations (1.2.9) reduce to the requirement that
f (r) solves the following polynomial equation of degree kmax =

[
D+1
2
]
(see e.g., [153–

156, 171–173])

P (f) =

kmax∑
k=0

αk

(
κ− f

r2

)k
=
ωdMADM

NrD+1 −
8πGNQ2

D(D− 1)
1
r2D

. (1.2.12)

Here MADM is the ADM mass of the black brane and ωd is

ωD+2 =
16πGN
D

LD

VD
(1.2.13)

where VD is the volume of the D-dimensional space with curvature κ = 0. The electric
charge Q of the brane is

Q =
LD

2VD

∫
∗F . (1.2.14)
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Universality of black brane thermodynamics in Lovelock gravity

In order to find the thermodynamic quantities characterizing the Lovelock black brane,
let us firstly introduce the effective mass M and temperature T related to the usual
ADM mass MADM and Hawking temperature TH by the relations

M =
MADM

N
, T =

TH
N
. (1.2.15)

Let r+ denotes the radius of the event horizon, determined as the largest root of
f (r) = 0. The black brane mass M, the temperature T , the entropy S, and the gauge
potential Φ are given by [153, 174–176]

M =
1

ωdL2
rD+1
+ +

VD
2(D− 1)LD

Q2

rD+1
+

, (1.2.16)

T =
1

2πN
1
√
grr

d
√
−gtt
dr

∣∣∣
r=r+

=
1

4πr+

[
(D+ 1)

(r+
L

)2
−

8πGNQ2

Dr
2(D−1)
+

]
, (1.2.17)

S =
VD

4GN

(r+
L

)D
, Φ =

VD
(D− 1)LD

Q

rD−1
+

. (1.2.18)

The rescaling of the physical parameters (1.2.15) of the Lovelock BB having the dimen-
sions of energy is essentially due to the presence of the constant N2 in the metric. The
two time coordinates t and Nt correspond to using two different units to measure the
energy. However, when we deal with Einstein-Hilbert branes the rescaling of the time
coordinate is not necessary and we will simply set M = MADM and T = TH. Notice
that the area-law for the entropy S always hold for the generic Lovelock black brane.

A striking feature of these thermodynamic expressions is that they do not depend
on the Lovelock coupling constants αk for k > 2 but only on α0 and α1, i.e., they
depend only on the cosmological constant and on Newton constant. This means
that the thermodynamic behavior of the BB in Lovelock theory is universal, in the
sense that it does not depend on the higher order curvature terms but only on the
Einstein-Hilbert term, the cosmological constant and the matter fields content (in
our case the EM field). This implies, in turn, that as thermodynamic system the
charged BBs of Lovelock gravity are indistinguishable from the Reissner-Nordström
BBs of Einstein-Hilbert gravity. Notice that this feature is not shared by the black
hole solutions of the theory, i.e., solutions with spherical or hyperbolic horizons. In
fact, in the Lovelock thermodynamic expressions (see Refs. [153, 175]) the dependence
on the Lovelock coupling constants αk>2 is introduced by the dependence on the
curvature κ of the D−dimensional spatial sections (see next sections for discussion).
This dependence drops out when κ = 0.

We remark, however, that the universal thermodynamic behavior of charged Love-
lock black branes is strictly true only when we choose N = 1 in the metric (1.2.11). As
we will see later, the parameter N has to be fixed in terms of the Lovelock coupling
constants αk>2. Hence, the ADM mass and the Hawking temperature of the Lovelock
BB will depend on αk>2. The universality of the Lovelock BB thermodynamics is
recovered simply by rescaling the units we use to measure the energy, i.e., by using in
Eqs. (1.2.16) and (1.2.17) the effective parameters M and T instead of MADM and TH.
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In the following, we provide a detailed calculation for the case kmax = 2, i.e. GB
gravity in five spacetime dimensions, which is also the most interesting case from
the AdS/CFT point of view. However, we expect that most of our considerations
can be easily generalized to every charged BB solution of Lovelock gravity in generic
dimensions.

1.3 5D Reissner-Nordström black brane solution

Let us preliminary review some known facts about the RN BB solutions of Einstein-
Maxwell gravity. This will be necessary in order to stress differences and similarities
with the BB solutions of the GB theory. Setting αk = 0 for k > 2 and D = 5 in
Eq (1.2.10), we have standard GR equations sourced by an electromagnetic field. For
this choice of the parameters, Eq. (1.2.12) is a linear equation in f that gives the
following solution:

f = α0r
2 −

ω5M

r2
+

4π
3
GNQ

2

r4
, (1.3.19)

where ω5 is given by Eq. (1.2.13) and GN is the five dimensional Newton’s constant.
Performing the asymptotic limit r → ∞, the function (1.3.19) reduces to f = r2/L2,
i.e. AdS5 with AdS length L2 = α−1

0 .
Setting r2 = Y in Eq. (1.3.19), the RN BB horizons are determined by the cubic

equation

Y3 −ω5ML
2Y +

4π
3
GNL

2Q2 = 0. (1.3.20)

This equation has two positive roots for

M3 > 12π2
G2
NQ

4

ω3
5L

2 , (1.3.21)

which gives the extremal (BPS [177, 178]) bound for the RN black brane in 5D. In
general, we will have an inner and outer horizon, when the bound is saturated the
two horizons merge at r0 and the RN BB becomes extremal. In the extremal case,
Eq. (1.3.20) has a double root at Y0 =

√
ω5ML2/3 and f (r) can be factorized in the

following way

f(r) =
1
L2r4

(
r2 + r20

)
(r− r0)

2 (r+ r0)
2 , r0 =

(
ω5ML

2

3

)1/4

. (1.3.22)

The extremal near-horizon geometry can be determined expanding the metric near r0
and keeping only the leading term in the metric

f(r) =
12
L2

(r− r0)
2. (1.3.23)

A simple translation of the radial coordinate r→ r+ r0 gives the AdS2 × R3 extremal
near-horizon geometry with AdS2 lenght l

ds2 = −
(r
l

)2
dt2 +

(
l

r

)2
dr2 +

(r0
L

)2
dΣ2

3, l2 =
L2

12
. (1.3.24)

The extremal solution given in Eq. (1.3.22) is a soliton interpolating between the asymp-
totic AdS5 geometry in the UV and the AdS2 × R3 geometry (1.3.24) in the IR.
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1.4 Gauss-Bonnet black brane solution

To derive the Gauss-Bonnet black brane solution, we use the form (1.2.11) with coupling
constant (1.2.8). For k = 2 and generic curvature κ, Eq. (1.2.12) reduces to a quadratic
equation

α2
(κ− f)2

r4
+

(κ− f)

r2
+ α0 −

ωdM

rd−1 +
8πGNQ2

(d− 2)(d− 3)r2d−4 = 0 , (1.4.25)

from which one obtains two possible solutions, f±. In the following, we will refer to the
solution f− as the ‘Einstein branch’ because it approaches the Einstein case when the
Gauss–Bonnet coupling α2 goes to zero and to f+ as the ‘Gauss–Bonnet branch’ [161].
The quadratic Eq. (1.4.25) gives the following necessary condition requirement for the
existence of f± for large r:

1− 4α0α2 > 0 . (1.4.26)

When this inequality is violated, the space becomes compact because of the strong
nonlinear curvature [161]. Therefore, there is no asymptotic ‘AdS region’ and conse-
quently no proper black hole with standard asymptotics.

5D GB black brane

In this subsection, we discuss the special case of 5D GB BB (κ = 0). Moreover, from
now on we set α1 = 1 in order to recover the usual Newtonian limit. It is easy to
check that for D = 5 and κ = 0, then Eq. (1.4.25) reduces to the following equation

α2
f2

r4
−
f

r2
+ α0 −

ω5M

r4
+

4πQ2

3r6
= 0 (1.4.27)

and the two branches are respectively

f± =
r2

2α2

[
1±

√
1− 4α0α2

√
1+ 4Mα2ω5

(1− 4α0α2)

1
r4

−
16πGN

3
Q2α2

1− 4α0α2

1
r6

]
. (1.4.28)

In case of positive GB coupling α2 > 0 that satisfy the condition (1.4.26), the two
branches describe two asymptotically AdS5 spacetimes, however, from Eq. (1.4.28) one
can see that f+ has no zeroes, hence the f+-branch does not describe a BB but a
solution with no event horizon. Thus, only the f−-branch describes a BB solution.
Let us now study the asymptotic geometry of the GB BB. At leading order for r→ ∞
the metric coefficient gtt = N2f (r) in Eq. (1.2.11) becomes

gtt → N2 r
2

2α2

(
1±

√
1− 4α0α2

)
. (1.4.29)

In order to have the boundary of the asymptotic AdSD+2 conformal to (D+ 1)-
Minkowski space with speed of light equal to 1, ds2 ≈ α0r

2(−dt2 + dΣ2
3), the constant

N2 has to be chosen as
N2 =

1
2

(
1∓

√
1− 4α0α2

)
, (1.4.30)

where we have the + sign for the f− branch, the BB solution, while the − sign has to
be used when we consider the f+ branch.

For α2 < 0, only the f− branch is asymptotically AdS. Conversely, the f+ branch
describes a spacetime which is asymptotically de Sitter (dS) and can be therefore
relevant as a cosmological solution.
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Singularities

To determine the position of the singularities of the spacetime we calculate the scalar
curvature for both the f± branches:

R(±) =∓ βr
2(20r10 + 30σr6 − 31ρr4 + 6σ2r2 − 9ρσ)

2α2r3(r6 + σr2 − ρ)3/2

± 20r3(r6 + r2σ− ρ)3/2 + 2βρ2

2α2r3(r6 + σr2 − ρ)3/2
,

(1.4.31)

where the ± sign refers respectively to the f± branches. To simplify expressions we
used (here and after) the following notation

β =
√

1− 4α0α2, σ =
4α2ω5M

β2 ,

ρ =
16πGNα2Q

2

3β2 , e =
1
β2 − 1 = 4α0α2

β2 , Y = r2.

(1.4.32)

There are curvature singularities at r = 0 and at the zeroes of the argument of the
square root in Eq. (1.4.31) (branch-point singularities). The position of the physical
singularities of the spacetime is therefore determined by the pattern of zeroes of the
function g(Y), with

g(Y) = Y3 + σY − ρ. (1.4.33)

The singularity will be located at the biggest positive zero Y1 of g(Y) or at r = 0
when g(Y) has no zeroes for positive Y. The singularity at Y = Y1 is a branch point
singularity. The pattern of zeroes of g(Y) is determined by the signs of the coefficients
ρ, σ and the discriminant ∆ =

(
ρ
2
)2

+
(
σ
3
)3.

� For σ > 0, the function g(Y) is a monotonic increasing function of Y with a
single zero which, depending on the sign of ρ, will be positive Y = Y1 (ρ > 0) or
negative (ρ < 0). The physical spacetime singularity will be therefore located at
r =
√
Y1 for ρ, σ > 0 and at r = 0 for ρ < 0, σ > 0.

� For σ < 0, the function g(Y) is an oscillating function with a maximum at
negative Y and a minimum at positive Y, it may therefore have one, two or three
zeros. For σ < 0, ρ > 0, g(Y) has at least a positive zero. For σ < 0, ρ < 0 we
have a positive zero for ∆ 6 0 and no positive zeros for ∆ > 0. For ∆ = 0 we
have a double zero of g(Y) so that Y1 is not anymore a branch point singularity.
In this latter case the singularity is at r = 0.

Summarizing, the physical singularity is always located at r =
√
Y1 unless σ > 0, ρ < 0

or σ < 0, ρ < 0, ∆ > 0 in which case the singularity is at r = 0.

f−-branch

In this subsection, we study in detail the horizons of the f−-branch, solution of
Eq. (1.4.28), describing the GB black brane. In general the BB will have an inner
(r = r−) and outer (r = r+) event horizon. The BB becomes extremal when r+ = r−.
Using the notation (1.4.32), (1.4.33), one finds that the necessary condition for the
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existence of the BB is the positivity of the argument in the square root in Eq. (1.4.28),
i.e., g(Y) > 0. The position of the event horizon(s) is determined by the positive roots
of the cubic equation

h(Y) = eY3 − σY + ρ = 0. (1.4.34)

We will first consider the case α2 > 0, which corresponds to σ, ρ, e > 0 (since also
α0 > 0). The condition for the existence of real roots of the function h(Y) can be
easily found: the function h(Y) has a maximum (minimum) for, respectively

Y = YM,m = ±
√
σ

3e
= ±

√
ω5ML2

3
(1.4.35)

also, h(Y = 0) = ρ > 0, hence the cubic equation (1.4.34) always has a negative root.
The existence of other roots is determined by the sign of h(Ym). We will have two
(one) positive roots hence a BB with two (one) event horizons for h(Ym) 6 0, i.e., for

ρ 6
2
3
σ

√
σ

3e
. (1.4.36)

Using Eq. (1.4.32), the previous inequality can be written in terms of the charge Q
and the effective mass M and gives the same Bogomol’nyi-Prasad-Sommerfield (BPS)
bound (1.3.21) found in the RN case. However, the BPS bound is modified when we
instead express it in terms of the ADM mass:

M3
ADM > 12N3π2

G2
NQ

4

ω3
5L

2 . (1.4.37)

When the bound is saturated, the inner and outer horizon merge at r− = r+, the BB
becomes extremal, and the solution describes a soliton. The striking feature of the
BPS bound (1.4.36) is that the BPS bound of 5D Gauss-Bonnet BB does not depend on
the Lovelock coupling constant, and it is exactly the same one gets for GR (α2 = 0), i.e.,
for the 5D Reissner-Nordström BB. When M does not satisfy the inequality (1.4.36),
the spacetime describes a naked singularity. For α2 > 0, the condition M > 0 implies
σ, ρ > 0 and the function g(Y) is a monotonic increasing function which cuts the Y-
axis at the point Y1, and, in view of the previous discussion, it also gives the position
of the singularity. Since, the position of the event horizon Yh is determined by the
equation

β
√
g(Yh) = Y

√
Yh , (1.4.38)

from which follow that g(Yh) > 0 hence Yh > Y1, this checks that in the region
where the bound (1.4.36) holds the condition g(Y) > 0 is always satisfied and that
the physical singularity is always shielded by two (one in the extremal case) event
horizons.

The behavior of the metric function f− for α2,M > 0 and selected values of
the other parameters is shown in Fig. 1.1. The solid red, green and brown lines
describe respectively a naked singularity, extremal and two-horizon BB geometry. The
solid blue line represents a zero-charge, BB solution with single horizon. The case
α2 < 0,M > 0 gives exactly the same BPS bound. Now, we have σ, ρ, e < 0. The
function h(Y) in Eq. (1.4.34) always has a negative root and a minimum (maximum)
for

Y = Ym,M = ±
√
σ

3e
= ±

√
ω5ML2

3
. (1.4.39)
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f± (σ = 1, ρ = 1)

f± BPS (ρ = 1)

f± (σ = 3.6, ρ = 1)

f± (σ = 3.6, ρ = 0)

Parameters: {α2=0.1,β=0.5}
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Figure 1.1: Behavior of the metric functions f± for α2,M > 0 and selected values of
the other parameters. The dashed (solid) lines describe the f+ branch (f−-branch). The
red, green, brown and blue solid lines describe respectively a naked singularity, an
extremal, two-horizon and vanishing charge BB geometry. The corresponding dashed
lines describe spacetimes with a naked singularity.

The conditions for the existence of two positive roots become |ρ| 6 2
3 |σ|
√

σ
3e leading

to the same BPS bound (1.4.36). However, there is a crucial difference from the
α2 > 0 case. When α2 < 0, the condition M > 0 implies σ, ρ < 0. Taking into
account that |e| < 1 owing to (1.4.26), we see that the condition ∆ < 0 implies the
BPS bound (1.4.36). This means that the two horizons are separated by a region in
which the solution does not exist. The spacetime breaks into two disconnected parts.
The physical part, having an asymptotic AdS region, describes a BB with singularity
shielded by a single event horizon. The behavior of the metric function f− for α2 < 0
and selected values of the other parameters is shown in Fig. 1.2. The solid red, green
and brown lines describe respectively a naked singularity, extremal and single-horizon
BB geometry. The solid blue line represents a zero-charge, BB solution with horizon.

Near horizon extremal solution

When the bound (1.4.36) is saturated, the BB becomes extremal and the metric func-
tion (1.4.28) has a double zero at

Yh = Ym =

√
σ

3e
=

√
ω5ML2

3
, (1.4.40)



22 CHAPTER 1. BLACK HOLES IN ANTI-DE SITTER SPACETIME

f± (σ = -1, ρ = -2)

f± BPS (ρ = -2)

f± (σ = -3.6, ρ = -2)

f± (σ = -3.6, ρ = 0)

Parameters: {α2=-0.1,β=1.5}
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Figure 1.2: Behavior of the metric functions f± for α2 < 0,M > 0 and selected
values of the parameters. The dashed (solid) lines describe the f+ branch (f− branch).
The red, green, brown, blue solid lines describe respectively a naked singularity, an
extremal, single-horizon, vanishing charge BB geometry. The corresponding dashed
lines describe cosmological solutions with a singularity which approach asymptotically
to the dS spacetime.

thus, the solution f− can be factorized as

f
(ex)
− (Y) =

eβ2

2α2

(Y + 2Ym)(Y − Ym)
2

Y2 + β
√
Y4 + σY2 − ρY

. (1.4.41)

This solution represents the extremal GB soliton.
Let us now consider the near-horizon geometry. In this regime, the solution (1.4.41)

can be expanded around r = r0 =
(
σ
3e
)1/4. At the leading order the Einstein branch

reads

f
(ex)
− (r) = 12α0(r− r0)

2. (1.4.42)

Translating the radial coordinate r → r + r0 and rescaling the time coordinate as
t→ t/N we get the extremal, near-horizon geometry:

ds2 = −
(r
l

)2
dt2 +

(
l

r

)2
dr2 +

(r0
L

)2
dΣ2

3, l2 =
1

12α0
. (1.4.43)

i.e., AdS2 × R3 with the AdS2 length l being determined uniquely by α0. Thus, the
extremal near-horizon geometry does not depend on α2 and fully coincides with the
extremal near-horizon geometry (1.3.24) one gets in the RN case.
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Near horizon metric as exact solution of equations of motion

In this Section, we will show that the near-horizon solution given in Eq. (1.4.43) is an
exact solution of the equations of motion (EOM). For the GB case, Eqs. (1.2.9) read

Rab −
1
2
Rgab =

6
L2
gab + 8πGN

(
FacFb

c −
1
4
gabFcdF

cd

)
+
α2
2
gab

(
RcdefR

cdef − 4RcdRcd + R2
)

+ α2

(
−2RRab + 4RacRcb + 4RcdRc da b − 2RacdeR cde

b

)
.

(1.4.44)

We note that, since the Eq. (1.4.43) describes a spacetime with AdS2×R3 geometry, the
contribution to the curvature tensors coming from the planar geometry R3 vanishes.
Thus, the EOM includes only the contribution of the AdS2 part of the metric which is
a two dimensional maximally symmetric space.

For a generic n-dimensional maximally symmetric space with R = Λ the two terms
in Eqs. (1.4.44), that are quadratic in the curvature tensors, are given respectively by

α2Λ
2 (n− 2)(n− 3)

2n(n− 1)
, −2α2Λ

2 (n− 2)(n− 3)
n2(n− 1)

. (1.4.45)

These relations are consequence of the fact that the GB term in the action is topolog-
ical for D = 4 and identically vanishes for D = 2 and D = 3. The previous equations
imply that in the case of the AdS2 × R3 geometry, the contributions given by the GB
terms to the EOM vanish; therefore, the near horizon metric (1.4.43) is an exact so-
lution of both Einstein and GB EOM. In particular, the latter reduces to the usual
Einstein-Maxwell equations in 5D.

Summarizing, we have seen that the AdS2×R3 geometry is not only a near horizon
approximation but it is an exact solution of the field equations of GB-Maxwell grav-
ity. The presence of two exact extremal solutions (the extremal soliton interpolating
through a throat region the AdS2×R3 geometry with the asymptotic AdS geometry and
the AdS2 × R3 geometry itself) is a typical feature of extreme black branes describing
BPS states (see e.g. Refs. [179, 180]). The two solutions correspond to two different
extremal limits. As we will see in Sect. 1.5, the presence of two different extremal,
exact, solutions give rise to a non-trivial extremal thermodynamic behavior.

f+ branch

This branch does not describe a BB but a spacetime with a singularity for every value
of the parameters Q 6= 0,M 6= 0. Depending on the value of the parameter α2 we
have either a spacetime with a naked singularity (for α2 > 0) or a cosmological,
asymptotically de Sitter (dS) solution with a singularity (for α2 < 0.) This follows
from the above discussion of the singularities of the scalar curvature (1.4.31). In the
f+ branch the spacetime always has a singularity, which can be located at r = 0 or
r =
√
Y1 depending on the values of the parameters. This is consistent with the results

of Ref. [171], according to which the f+ branch is unstable and contains ghosts1.
1In principle, one could have hoped to have a regular spacetime when the function g(Y) has a double

zero at positive Y. In fact in this case the branch point singularity is removed and if the spacetime in
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For M,α2 > 0, the metric functions for the f+ branch are the dashed lines shown
in Figs. 1.1. An interesting, peculiar feature is that in this case, all the solutions of
the f− branch are continuously connected with the solution of the f+-branch passing
through the singularity. This feature has a simple analytic explanation. In the cases
under consideration the singularities are the zeros of the function g(Y) and when
g(Y) = 0 then f+ = f−. This fact can have interesting holographic implications: we
have two CFTs with different central charges connected through the same singularity.

For M > 0 and α2 < 0, the f+ branch describes a cosmological solution with a
singularity. The corresponding metric functions are shown (dashed lines) in Fig. 1.2.
Also in this case the solutions of the f− branch with an horizon are continuously
connected with the solution of the f+-branch passing through the singularity. We
have now an asymptotically AdS solution continuously connected through a cosmo-
logical singularity to a late de Sitter geometry. On the other hand, the solutions of
the f− branch describing a naked singularity are disconnected from the cosmological
solutions.

For α2,M < 0, the f+ branch describes a cosmological solution with a singularity
with late de Sitter behavior, whereas the f− branch describes an asymptotically AdS
spacetime with a naked singularity. However, here the two branches are disconnected.
The metric functions for this case are shown in Fig. 1.3.

It should be stressed that in the Q = 0 case, the f+ branch has ghosts in the
spectrum [171]. We naturally expect this to extend to the charged case and is consistent
with the intrinsic instability of these branch of solutions connected with the presence
of naked singularities.

1.5 Charged GB black brane thermodynamics

In this Section, we will study the thermodynamics of the GB BB solutions, i.e. so-
lutions in the f− branch and make a comparison with the Reissner-Nordström black
branes.
The effective thermodynamic potentials M = MADM/N, S,Φ and the temperature
T = TH/N can be written as functions of the horizon radius r+ and the charge Q
by specializing Eqs. (1.2.16), (1.2.17), (1.2.18) to D = 5. We obtain the following equa-
tions

M =
r4+
ω5L2

(
1+ 4π

3
GNQ

2L2

r6+

)
, (1.5.46)

T =
1
πL2

(
r+ −

2πGNQ2L2

3r5+

)
,

S =
V3
4GN

(r+
L

)3
, Φ =

V3
2L3

Q

r2+
, (1.5.47)

that satisfy the first principle dM = TdS+ΦdQ. As pointed out in Sect. 1.2, because of
the universality of the thermodynamic behavior, the thermodynamic relations (1.5.46)
hold for both for the charged GB and the RN BB. The only difference is that for the

the region Y1 6 Y < ∞ is geodesically complete we have regular, solitonic geometry. The function g(Y)
has a double zero at positive Y for σ, ρ < 0, ∆ = 0, but unfortunately the spacetime cut at Y = Y1 thus it
is not geodesically complete.
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f± (σ = 1, ρ = -2)
f± (σ = 3.6, ρ = -2)
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Parameters: {α2=-0.1,β=1.5}
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Figure 1.3: Behavior of the metric functions f± for α2,M < 0 and selected values
of the other parameters. The dashed (solid) lines describe the f+ branch (f−branch).
The solid lines describe spacetimes with naked singularities, whereas the dashed lines
describe cosmological, asymptotically dS solutions with a singularity.

GB brane, with metric function (1.4.28), M and T are the effective parameters whereas
in the RN case M =MADM and T = TH.

In order to have a clear and complete description of the GB BB thermodynam-
ics, one should eliminate r+ from the Eqs. (1.5.46) and write M(T,Q), S(T,Q). This
parametrization cannot be done in analytic form because we have to solve a 6th grade
equation in r+. Thus, we will derive the explicit scaling behavior of M and S as a
function of the temperature in the large and small T limit. These relations will shed
light on the holographic interpretation of the solutions. The functions M(T,Q) and
S(T,Q) can be obtained in implicit form by using the second equation in (1.5.46) as
an implicit definition of the function r+(T,Q), and they read

M(T,Q) =
r3+
ω5L2

(
3r+ − 2πL2T

)
, S(T,Q) =

V3
4GN

(r+
L

)3
. (1.5.48)

Let us now consider separately the two limits of interest: T → ∞ and T → 0.

Large temperature

The limit T → ∞ corresponds to large radius BB, i.e., r+ → ∞. In this regime, the
temperature scales linearly with r+

T ' r+

πL2
(1.5.49)
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and, at the leading order, we get for M and S

M =
3V3L

3

16πGN
(πT)4 , S =

V3L
3

4GN
(πT)3 . (1.5.50)

This is exactly the scaling behavior one expects for a UV fixed point described by a
CFT4.

Because of the universality of the thermodynamic behavior, the relations (1.5.50)
hold for both the RN and the GB BB. In the former case, Eqs. (1.5.50) hold when
M = MADM, T = TH, in the latter when M,T are given by the effective values in
Eq. (1.2.15). Thus, for the GB BB, mass and entropy acquire a 1/N3 factor.

Finally, let us focus on an interesting quantity, whose meaning will be more clear
in the next Chapter, i.e. the so called central charge, c. It is of particular interest
in the case of AdS/CFT correspondence and quantum field theory, since the central
charge of the dual CFT is determined by the AdS length. The CFTs dual to GB gravity
in both branches (f±) have central charge different from the RN case. Only in the
α2 → 0 limit the central charge of the f−-branch coincides with that of the CFT dual
to the RN theory. However, a naive computation of the central charge in terms of the
AdS length does not work in this case because of the rescaling of the time coordinate.
One way to compute c is to use the scaling law of the mass and entropy as a function
of the temperature. In fact, the central charge c of the associated CFT is determined
by the proportionality factor and can be easily calculated. In the case of the RN BB,
when M =MADM and T = TH in Eq. (1.5.46), we have c ∝ L3/GN. On the other hand,
in the GB BB case, we have seen that the same thermodynamic relations (1.5.46) hold
for M,T given by the effective values in Eq. (1.2.15) and we will get from Eqs. (1.5.50)

c ∝ L3

N3GN
. (1.5.51)

Small temperature

The T → 0 thermodynamic behavior corresponds to extremal BBs in which the BPS
bound (1.4.37) is saturated. This is achieved at non vanishing, constant value of the
BB radius

r+ =

(
2πGNL2Q2

3

)1/6

≡ r0 (1.5.52)

that corresponds, as expected for BPS states, to the extremal brane T = 0 state with
non vanishing mass and entropy given by

Mext =
3r40

2ω5L2
, Sext =

V3
4GN

(r0
L

)3
. (1.5.53)

We can now expand in Taylor series the temperature near r0 to obtain

T ' 3
πL2

[
2(r+ − r0) −

5
r0

(r+ − r0)
2
]
, (1.5.54)

and the behavior of M and S near T = 0 is of the form

M−Mext =
2r20
3ω5

(πLT)2 +O(T4), S− Sext =
πr20V3
8GNL

T +O(T2) . (1.5.55)
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Again, universality of the thermodynamic behavior implies that the relations in Eq. (1.5.55)
hold both for the RN and for the GB BB. For the RN case, the relations take the same
form with M = MADM and T = TH. For the GB case, when we express the rela-
tions (1.5.55) in terms of ADM mass and Hawking temperature we get

MADM = NMext +
2r20

3Nω5
(πLTH)

2 +O(T4)

S = Sext +
πr20V3
8NGNL

TH +O(T2).
(1.5.56)

Excitations near extremality and near-horizon limit

An important feature of the RN BB, which in view of the previous results extends to
the charged GB BB, is that the semi-classical analysis of its thermodynamic behavior
breaks down near extremality [179, 180]. In fact, the energy of an Hawking radiation
mode is of order TH and the semi-classical description breaks down when this energy
is comparable with the energy above extremality M−Mext given by Eq. (1.5.55). This
results in an energy gap for excitations above extremality [179], which in the case
under consideration is Egap ∼ (Nω5)/L

2r20. The fact that the extremal limit is singular
can be also understood in geometrical terms. It has been observed that at extremality
the geometry splits into two spacetimes: an extremal black hole and a disconnected
AdS space [181].

The presence of this energy gap has important consequences for what concerns the
spectrum of BB excitations near extremality. In particular, whereas in the extremal
case the near-horizon geometry is given, as shown in Sect. 1.4, by AdS2 × R3, finite
energy excitations of AdS2×R3 are suppressed. Analogously to the RN case in 4D [179],
one can consider near-horizon limits not restricted to zero temperature and excitation
energy. These limits are obtained by letting the 5D Planck length LP go to zero,
holding fixed some of the other physical parameters of the BB (energy, charge and
temperature).

1.6 Black holes solutions in five dimensions

In the previous Sections we have considered charged black brane solutions in both
the Maxwell-Einstein theory and the GB theory. In this Section we will extend our
considerations to black holes in the same theories, i.e. to solutions with horizons with
spherical topology.

In particular, differently from the BB case, the thermodynamics and the BPS bound
depend on the GB coupling constant, i.e. they are not anymore universal. As we will
see later this has important consequences on the phase portrait of charged Black holes
both in the Einstein and GB theory.

Geometrical features of 5D GB black holes

Let us consider the field equations of five-dimensional Einstein-Gauss-Bonnet gravity
in (1.2.9) in the following form

G(1)
b
a + α2G(2)

b
a = 8πG5 T(M)

b
a , (1.6.57)
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where G(1)
b
a ≡ Rba − 1

2Rδ
b
a is the Einstein tensor, α2 is the GB coupling constant, G5 is

the five-dimensional Newton constant and T(M)
b
a is the stress-energy tensor [153, 157,

163]. The tensor G(2)
b
a is the GB contribution already seen in Eq. (1.4.44),

G(2)
b
a ≡ RcadeRdecb − 2RcdRcadb − 2RcaRbc + RRba −

1
4
δba

(
Rcd

efRef
cd − 4RdcRcd + R2

)
.

(1.6.58)

For later convenience we define λ ≡ α2/L
2, being L the AdS length. In the case

under study, the source term contains only a negative cosmological constant and an
electromagnetic field. In particular, we consider static BH solutions to (1.6.57) i.e.
solutions with spherical horizons in the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2 dΩ2

3 . (1.6.59)

For the AdS-RN BHs of GR the metric function is

fRN(r) = 1+ r2

L2
−

8G5M

3πr2
+

4πG5Q
2

3r4
, (1.6.60)

while, in the branch that allows for BH solutions, the metric function for GB gravity
is

fGB(r) =1+ r2

2`L2

[
1−

√
1− 4`L2

(
1
L2

−
8G5M

3πr4
+

4πG5Q2

3r6

)]
. (1.6.61)

In Eqs. (1.6.60) and (1.6.61), M and Q are, respectively, the BH mass and charge.

Black holes in Gauss-Bonnet gravity

As in the black brane case, asymptotically AdS BH solutions of GB gravity exist
only for λ < 1/4. Moreover, it is known that the unitarity bounds for the dual QFT
constrain the value of λ [77, 175, 182], so that we will take λ in the following range
0 < λ 6 9/100.

The BH horizons are determined by the positive zeroes of the function

h(Y) =
Y3

L2
+ Y2 − σY + ρ , (1.6.62)

where Y = r2, σ = 8G5M/3π − λL2, ρ = 4πG5Q
2/3. The BH becomes extremal when

h ′(Y) = 0.
Asymptotically AdS BH solutions with inner (r−) and outer (r+) horizons exist for

M >
3π
8G5

[
λL2 +

L2

3

(
z20 + 2z0

)]
, (1.6.63)

where z0 is the real, positive solution of the cubic equation 2z3+3z2−27ρ/L4 = 0. This
is the BPS bound for GB BHs, which is analogue to that obtained for GB black branes
(see Eq. Eq. (1.4.37)). It is important to stress that, diffrently from the BB case, the
bound Eq. (1.6.63) depends on the GB coupling constant. As already remarked this is
a quite generic feature of the BH solutions of GB gravity opposed to the BB solutions
of the same theory, which as we will see later is also shared by the thermodynamics.
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When the inequality is saturated, the inner and outer horizons merge, i.e. the BH
becomes extremal and in the near-horizon regime the solution factorizes as AdS2× S3

ds2 = −
r2

l2
dt2 +

l2dr2

r2
+ r20 dΩ

2
3 , (1.6.64)

where r0 is BH radius at extremality, determined by the solution Y0 = r20 of the cubic
equation

hext(Y) =
2Y3

L2
+ Y2 − ρ = 0 , (1.6.65)

and l is the AdS2 length

l−2 =
2h ′′(r0)
r20 + 2λL2

=
2(6r20 + 2L2)
L2(r20 + 2λL2)

. (1.6.66)

For the moment, let us concentrate on the extremal GB black hole in Eq. (1.6.64). As
already seen in the previous Sections, in the BB case we have found the remarkable
property that the extremal, near-horizon solution of the charged GB black brane is
exactly the same as the RN black brane. One can easily show that this is not the
case for the extreme, near-horizon GB black hole. In the RN case the extremal, near-
horizon, solution, which actually is an exact solution of the field equation is the AdS2×
S3 geometry (S3 is the three sphere), i.e. the direct product of two maximally symmetric
spaces, respectively with negative curvature R(2) = −2/l2 and positive curvature R(3) =
12/L2, where l and Λ can be written in terms of the 5D cosmological constant and
the U(1) charge Q.

Using Eqs. (1.4.45) one can show that the individual contributions of the AdS2 and
S3 spaces to the two terms in Eq. (1.4.44) that are quadratic in the curvature tensors
vanish. Nevertheless there are still some cross-product contributions arising from the
mixing of AdS2 and S3 terms. Splitting the 5D indices (a, b) into µ, ν = 0, 1 (running
on AdS2) and i, j = 1, 2, 3 (running on S3) it easy to show that the contribution to the
µ, ν components and to the i, j one of the field equations are different.

We see that the AdS2 × S3 solution of the RN field equations cannot be also
solution of the GB field equations. Obviously, this not prevents the existence of a
different AdS2 × S3 solution, i.e. a solution with different curvatures for AdS2 and
S3. However, from the structure of the field equations and from Eqs. (1.4.45) one can
infer that these solutions, if existing, imply a dependence of l and/or L not only from
the 5D cosmological contant and from the black hole charge Q but also from the GB
coupling constant α2.

The BH thermodynamical parameters temperature T , mass M and entropy S can
be expressed in terms of the horizon radius r+ as [153]

T(r+) =

4r4+
L2

+ 2r2+ − 8πG5Q
2

3r2+
4πr+(r2+ + 2λL2)

, (1.6.67)

M(r+) =
3πr4+
8G5

(
1
L2

+
1
r2+

+
λL2

r4+
+

4πG5Q
2

3r6+

)
, (1.6.68)

S(r+) =
π2r3+
2G5

(
1+ 6λL2

r2+

)
. (1.6.69)
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The spherical geometry of the horizon introduces another scale in the system,
i.e. the radius of the sphere, which couples in a non-trivial way to the higher-curvature
terms in the equations of motion (1.6.57). This scale introduces dependence on the GB
coupling in the mass bound (1.6.63) and in the thermodynamical expression (1.6.67)
to (1.6.69). As a result, the thermodynamical and near-horizon behaviors of the GB
BHs are completely different from their brane counterparts. Indeed, for charged GB
black branes, such behaviors are universal, i.e. do not depend on λ, and are essentially
the same of the RN black branes of GR [183]. Instead, in the case of GB black holes,
their thermodynamics is different from the one of RN black holes2 due to the presence
of the coupling constant λ.

Notice that although the extremal radius r0 is determined only by the BH charge
and the cosmological constant, the AdS2 length l and hence the extremal geome-
try (1.6.64) depend on the GB coupling constant. Notice also that the expression in
the parenthesis in Eq. (1.6.67) is proportional to hext(Y+) meaning that the extremal
geometry is obtained at zero temperature.

The thermodynamical parameters (1.6.67) to (1.6.69) near-extremality are

T(r+) =
2
πL2

3r20 + L2

r20 + 2λL2
(r+ − r0) +O

(
(r+ − r0)

2
)
, (1.6.70)

M(T) =
3π
8G5

(
3r40
L2

+ 2r20 + λL2
)

+
3π3

8G5

L2(r20 + 2λL2)2

L2 + 3r20
T2 +O

(
T3
)
, (1.6.71)

S(T) =
π2r30
2G5

(
1+ 6λL2

r20

)
+

3π3

4G5

L2(r20 + 2λL2)2

L2 + 3r20
T +O

(
T2
)
. (1.6.72)

The first terms in expressions (1.6.71) and (1.6.72) represent, respectively, the BH mass
and entropy at extremality.

Phase structure of AdS-Reissner-Nordström black holes

Although the metric function fGB in Eq. (1.6.61) is singular for λ = 0, the thermody-
namical behavior of the charged AdS-RN solution can be simply obtained by putting
λ = 0 in Eqs. (1.6.63) and (1.6.67) to (1.6.69).

To characterize the phase structure of these BHs, one can distinguish between
two cases: fixed electric potential or fixed electric charge [184, 185]. In this thesis
we only discuss the canonical ensemble, i.e. we work at fixed charge. We will not
consider the grand canonical ensemble, i.e. the case of fixed chemical potential. As
the charge of BH decreases to a critical value Qc = L2/6

√
5π, the system undergoes

a second-order phase transition. Below the critical charge, there are three possible
branches of solutions that depend on the radius and therefore on the temperature of
the system. For small temperatures, a small BH is the only locally stable solution; as
the temperature increases, we have a meta-stable configuration describing intermediate
BHs; for sufficiently high temperatures, large BHs are globally preferred — see Fig. 1.4.

2To obtain the thermodynamics of RN black holes is sufficient to put λ = 0 in Eqs. (1.6.67) to (1.6.69).
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The evolution from small to large BHs through the meta-stable region corresponds to
a first-order phase transition. Above the critical charge, the BH solution is always
globally preferred. This behavior can be understood by analyzing the temperature as
a function of the BH radius given by Eq. (1.6.67) with λ = 0. For Q > Qc it is
a monotonic function, whereas it develops local extrema for 0 < Q < Qc and an
inflection point for Q = Qc. Notice that the case Q = 0 is not included in the
range of existence of the first order phase transition. In fact, Q = 0 corresponds to
the AdS-Schwarzschild BH. The phase portrait of the AdS-RN BHs is very similar
to a liquid/gas Van der Waals phase transition where the BH temperature plays the
role of the pressure, the BH radius that of the volume and the BH charge that of
the temperature [184, 185]. This portrait has been extended by Kubizňák et al. in
Refs. [186, 187] and to topological AdS BHs in massive gravity [188].

Let us conclude with a brief comment on the zero-charge limit. For Q = 0,
the metric (1.6.60) reduces to that of an AdS-Schwarzschild BH. However, from the
thermodynamical point of view, this limit is singular. We have a discontinuity at
Q = 0, we cannot obtain the phase diagram of an AdS-Schwarzschild BH as the
Q → 0 limit of the AdS-RN one. In fact, the BH temperature as a function of the
radius, Eq. (1.6.67), when Q = 0 becomes a monotonic function and shows no Van
der Waals-like behaviour as in the RN case [189].
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Figure 1.4: Plot of the function T(r+) for selected values of Q above, at and below the
critical charge Qc. Inset: Zoom in the region where the function has local extrema.
The dots and squares mark the critical temperatures. A and B denote, respectively, the
small and large black hole stable regions. Notice that the minima of the Q = L2/1000
and Q = L2/100 curves almost coincide.

Phase structure of neutral Gauss-Bonnet black holes

Neutral GB BH solutions and their thermodynamical parameters are obtained by
putting Q = 0 in Eqs. (1.6.61) and (1.6.67) to (1.6.69). These BHs are characterized
by the absence of a regular, zero temperature extremal limit which, in turns, means
the absence of an IR fixed point for the dual QFT in the holographic description. For
positive λ, the T = 0 extremal limit is a state with r+ = 0, zero entropy and positive
non-vanishing mass. Therefore, the small temperature thermodynamical behavior is
always singular.

Neutral GB BHs exhibit an interesting phase structure. Differently from Einstein
gravity, where small BHs are not stable and a thermal AdS state is energetically pre-



32 CHAPTER 1. BLACK HOLES IN ANTI-DE SITTER SPACETIME

ferred [151, 190], in GB gravity there exists a stable small BH.3 It starts with a small
positive free energy, becomes unstable and evolves to a thermal AdS phase. Addition-
ally, we also have the usual stable BH phase for large radii [192]. By inspecting the
behavior of the specific heat and the free energy, one finds that the phase structure of
neutral GB BHs strictly depends on the values of the GB coupling constant and the BH
radius [163]. For values of the GB coupling constant below the critical one, λc = 1/36,
there are three different branches of solutions that correspond to small, intermediate
and large BHs. The specific heat is positive in the first and third branch, whereas it is
negative in the second branch. This behavior is a consequence of the fact that T(r+)
given by Eq. (1.6.67) with Q = 0 is monotonically increasing for λ > λc, whereas it
develops local extrema for λ < λc [163]. For λ > λc the second branch disappears and
BHs are always locally stable but not necessarily globally preferred. Computing the
free energy one finds that the BH solution is globally stable and energetically preferred
with respect to thermal AdS in the parameter region λ1(r+) 6 λ 6 λ2(r+), where λ1(r+)
and λ2(r+) are some functions of the horizon radius [163]. Outside this region we have
a Hawking-Page phase transition, BHs become globally unstable and thermal AdS is
energetically preferred. Therefore, in the parameter region where BHs are energetically
preferred with respect to thermal AdS, the phase diagram of uncharged GB BHs has
the same Van der Waals form described in the previous section for AdS-RN BHs and
shown in Fig. 1.4, with the GB parameter λ playing the role of the BH charge Q.

Analogously to the Q → 0 limit, also the limit λ → 0 is singular from the ther-
modynamical point of view. In fact for λ → 0 one cannot recover the phase diagram
of an AdS-Schwarzschild BH. First, the metric (1.6.61) becomes singular. Second,
similarly to what we have seen for charged BHs in GR, the temperature as a function
of the horizon radius exhibits a a discontinuous behavior in the λ → 0 limit. The
limits Q→ 0 and λ→ 0 have a similar singular behavior also in the case of charged
GB BHs.

Phase structure of charged Gauss-Bonnet black holes

The thermodynamical description of charged GB BHs is determined by the GB cou-
pling constant λ and the charge Q. There are critical values of these parameters
such that these BHs can exhibit the typical Van der Waals gas behavior in the T -S
plane [193, 194].4 Thus, charged GB BHs possesses both the Hawking-Page phase tran-
sition [190, 195] and a second-order one [194]. The former represents the transition
from a stable AdS thermal state to a stable BH spacetime. Let Tc be the r+-dependent
critical value of the temperature and r2c = 6λL2. Then, for T > Tc and r+ > rc (or T < Tc
and r+ < rc) AdS is preferred with respect to the BH, whereas for T < Tc and r+ > rc
(or T > Tc and r+ < rc), the BH is preferred with respect to AdS. It is remarkable that
due to presence of λ and Q, the standard critical point becomes a critical line in the
T -r+ phase diagram [195].

Again, the phase portrait has the Van der Waals-like form described in the previous
two subsections if one considers only the parameter region where the BH phase is
globally preferred with respect to the thermal AdS phase and if one holds either Q or
λ fixed. In the former (latter) case, at the critical value λc (Qc) the system undergoes

3Small BHs can be gravitationally unstable for values of λ larger than those considered here [191].
4This is analogous to consider the cosmological constant as a pressure term in the BH equation of

state [161].
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a second-order phase transition. For λ < λc (Q < Qc), varying the temperature we
have again a stable small BH phase and a stable large BH phase connected by a meta-
stable phase. Moreover, the function T(r+) has always the typical behavior described
in Sects. 1.6 and 1.6.

1.7 2D dilaton gravity

The previous Sections have been devoted to the investigation of charged black brane
and black hole solutions of general relativity and GB theory in D > 5. We have
seen that quite generically in the near-horizon and near extremal regime the black
hole (black brane) solutions are described by an AdS2 × S3 (AdS2 × R3) geometry.
This is not only true for higher dimensional solutions which are asymptotically AdS,
thus asymptotically flat solutions. In these particular regimes the spacetime therefore
allows for an effective 2D description that, in most of the cases, can be modelled by a
2D dilaton gravity theory. This will be the subject of this Section.

Two-dimensional (2D) dilaton gravity models have a long history (see Refs. [164–
166] for a review). They have been first proposed for studying quantum gravity in
a simplified context [167]. Later, they have been developed along several different
directions as an arena to understand gravity in a simplified setting, as effective de-
scription of the radial modes (the S-wave sector) of black holes [196] and as toy
models for black hole evaporation and related information puzzles [197]. 2D dila-
ton gravity models have been also used to explore the AdS/CFT correspondence in
two dimensions [27, 169, 170, 198] and to investigate the microscopic origin of the
Bekenstein-Hawking black hole entropy [27].

The most interesting fact is that from a pure gravitational perspective, 2D gravity is
topological, in the sense that Einstein’s gravity does not exist in a line: the Einstein’s
tensor vanishes identically and the Einstein-Hilbert action is purely a surface term
and it does not lead to any field equation. For this reason one should invent a model
in (1 + 1) dimensions which contains a non-trivial gravitational dynamics. This can
be done by introducing an additional gravitational variable, a world scalar Lagrange
multiplier field µ, with which, together with the Riemann scalar, one can construct
non-trivial actions, e.g.

L =
√
−gµ(R− λ) (1.7.73)

where λ is a cosmological constant. This model is called the Jackiw-Tetelboim model
(JT). However, this model was discarded very quickly since it was soon realized that
similar theories arise in a limit of string theory [164]. Another particularly popular
model is given by the Callan-Giddings-Harvey-Strominger Lagrange density [197],

L =
√
−g(µR− λ). (1.7.74)

where the scalar field µ was actually called “dilaton”. A generalization of this model
was recently proposed by Almheiri and Polchinksi (AP). This model has been inves-
tigated in the past in diffrent contexts and with different purposes. However, the
main motivation behind this proposal was to understand the infrared (IR) behavior
of higher-dimensional black holes, which flow in the IR to an AdS2 × SD spacetime.
Among many others, this is for instance the case of charged Reissner-Nordström black
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holes in general relativity. The IR behavior of these black holes is problematic for sev-
eral reasons. In fact, the T = 0 extremal black hole is a zero temperature vacuum
state with non vanishing entropy and the backreaction is so strong that there are no
finite energy excitations above the vacuum [179, 199, 200].

The AP dilaton gravity model coupled to a matter field, f, is described by the
action [83] (we set the dimensionless Newton constant to G2 = 1/8π)

S =

∫
d2x

[
1
2
√
−g (µR− V(µ)) + Lm

]
+

∫
dtLb, (1.7.75)

where µ is a scalar field (the dilaton). The matter and boundary Lagrangian Lm, Lb
are given by

Lm = −
1
8
√
−g(∇f)2, Lb =

√
|h|µK, (1.7.76)

where hij is the induced metric on the boundary and K is the trace of the second
fundamental form. The potential for the dilaton is

V(µ) = 2λ2(α2 − µ). (1.7.77)

Notice that the potential contains a dimensionless parameter α2 and a parameter λ
with dimensions [L]−1.

The AP model extends the well-known Jackiw-Teitelboim (JT) model [167], charac-
terized by a simple homogeneous potential, by including the constant term 2λ2α2.

The most important feature of the AP model is that it allows for two kinds of
vacuum AdS solutions. One with constant dilaton, pure AdS2, to which we will refer
as constant dilaton vacuum (CDV). The other one is a solution with a non-constant,
linearly varying, dilaton which we will call linear dilaton vacuum (LDV). When up-
lifted to (D + 2)−dimensions, these vacuum solutions produce different spacetimes.
The CDV produces a spacetime of the form AdS2 × RD, i.e. an intrinsically 2D space-
time. On the other hand, the uplifting of the LDV leads to a hyperscaling violating
geometry HD+2 [48], which describes the warping of AdS2 with RD. In this case, the
dilaton plays the role of the radius of RD.

The JT model has been widely used as a 2D toy model for higher-dimensional black
holes, to give a microscopic interpretation of black entropy [27] and to understand the
AdS/CFT correspondence in 2D in terms of asymptotic symmetries [169, 170, 201].
Conversely, the extended AP model has been recently used as a description of ex-
tremal black holes in 2D (in particular to investigate the breakdown of semi-classical
thermodynamics and the flow from LDV to CDV). Moreover it has also been used to
describe the backreaction on holographic correlators [83, 199] and to investigate its
relation with the conformal symmetry breaking [202].

In this Section and in the next two Chapters we present a revisitation of the AP
model from a 2D bulk perspective. Particular attention will be given to the quantum
features of the solution from the AdS/CFT perspective [84] in the next two Chapters.

Solutions and vacua

In Schwarzschild coordinates and in absence of matter (f = 0), owing to 2D Birkhoff
theorem, the most general solution of the model (1.7.76) is a two-parameter family of
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solutions,

ds2 = −(λ2x2 − a2)dt2 + (λ2x2 − a2)−1dx2,

µ = α2 + µ0λx. (1.7.78)

where a2 and µ0 are dimensionless integration constants. Being our solution asymp-
totically AdS, we can use the standard ADM procedure to assign a mass to it [203].
The mass defined in this way, i.e. the ADM mass, has the physical meaning of the
energy of the gravitational configuration measured with respect to the reference AdS
background solution [203].

The ADM mass of the solution depends on both µ0 and a and on the parameter
λ [83]

MADM =
µ0λa

2

2
. (1.7.79)

It is important to stress that the ADM mass does not depend on the parameter α2

appearing in the AP potential (1.7.77) for the dilaton.
An important feature of the AP model is that it allows for two different vacuum

solutions, i.e. solutions with MADM = 0. In fact, for µ0 = 0 and α2 6= 0 we have
the constant dilaton vacuum. It describes the AdS2 spacetime with a constant dilaton.
It is already well known that at classical level this vacuum does not allow for finite
energy excitations [83, 179, 199]. This is immediately evident from Eq. (1.7.79): for
µ0 = 0, MADM identically vanishes, independently from the value of a. Conversely,
for µ0 6= 0 we have the linear dilaton vacuum, which is AdS2 endowed with a linear
dilaton. Differently from the CDV, this vacuum allows for continuous excitations with
a2 > 0.

It is important to stress that we have two different LDV depending on the value
of the parameters (µ0, a) and α. For α2 = 0 the AP model reduces to the JT model
and the solution for the dilaton is linear and homogeneous. Notice that this is not an
exact solution of the AP model (i.e. the model with α2 6= 0) but appears only as an
asymptotic solution for x→ ∞. On the other hand, for µ0 6= 0 and α2 6= 0, the LDV
is an exact solution of the AP model and interpolates between the CDV at small x and
a linear, homogeneous dilaton at large x. Whenever the distinction between these two
LDV will be necessary, we will call the LDV with α2 6= 0 interpolating linear dilaton
vacuum (ILDV).

If one uses MADM as the mass of the solution the three vacuua become completely
degenerate. They all have MADM = 0, as it is evident from Eq. (1.7.79), because
the CDV is characterized by µ0 = 0, whereas the LDV and the ILDV have a = 0.
Actually, in view of the physical meaning of the ADM mass, the three vacua are
degenerate by definition. This means that they represent three different sectors of the
theory, which strictly speaking cannot be compared.

The finite, MADM > 0, excitations of the LDV and ILDV can be interpreted as 2D
black holes with horizon radius x = a/λ and temperature and entropy given by

T =
λa

2π
, S = 2πµh = 2πα2 + 2πµ0a, (1.7.80)

MADM =
2π2µ0
λ

T2. (1.7.81)

Notice that the interpretation of the a2 > 0 solutions as 2D black holes is not
completely straightforward. In fact, it is well known that the metric (1.7.78) can
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be brought by a coordinate transformation in the maximally extended form ds2 =

− cosh2 ρdτ2 + dρ2

λ2
, −∞ < τ, ρ < +∞, which describes full, geodesically complete

AdS2 (see e.g. Ref. [204]). This is not anymore true if one takes into account the fact
that points where the dilaton vanishes have to be considered spacetime singularities.
This makes solutions with different a2 as globally inequivalent and allows for the
interpretation of the a2 > 0 solution as a 2D black hole [205].

The previous argument forbids the existence of 2D black hole solutions with con-
stant dilaton, in agreement with the absence of finite energy excitations of the CDV.
On the other hand, we can formally consider zero mass thermal excitation of the CDV
of the form

ds2 = −(λ2x2 −
4π2T2

λ2
)dt2 + (λ2x2 −

4π2T2

λ2
)−1dx2,

µ = α2. (1.7.82)

This solution can be obtained from the CDV by a coordinate transformation, which
generates a horizon with related temperature T . Because in the CDV there is no
space-time singularity, there is no obstruction to extend (1.7.82) beyond the horizon, to
cover the whole CDV spacetime. Thus, the solution (1.7.82) is geometrically equivalent
to the CDV, but can be formally used to describe zero mass thermal excitation of the
CDV.

The discussion of the spacetime singularities is much simpler using light-cone
coordinates x±. Using the SL(2, R) isometric transformations, the solution (1.7.78)
becomes

ds2 = −
4

λ2(x+ − x−)2
dx+dx−,

µ = α2 +
2µ0λ −MADMx

+x−

x+ − x−
. (1.7.83)

The µ = 0 singularity is located at(
x+ +

α2

MADM

)(
x− −

α2

MADM

)
=

2µ0
λ MADM − α4

M2
ADM

, (1.7.84)

whereas the time-like asymptotic boundary of AdS2 is located at x+ = x− = t =

±
√

2µ0
λMADM

. The nature of the singularity depends on the value of MADM. For
MADM > λα4/(2µ0) the singularity is space-like whereas for MADM < λα4/(2µ0) it is
time-like.

For planar spatial topology the ILDV gives a nice, effective, 2D description of the
flow from an AdS2×RD 5 geometry in the IR to a hyperscaling violating geometry [48]
in (D+ 2)−dimension in the UV, of which AdSD+2 is a particular case. From the 2D
perspective this flow is a simple consequence of both the relation R ∝ µp between the
dilaton and the radius R of RD and of the constant/linear behavior of the dilaton at
small/large x. We briefly discuss the uplifting of the AP model to a (D+2)-dimensional
theory with hyperscaling violation in the Chapter 3.

From the thermodynamical point of view, the CDV gives the typical T = 0, ex-
tremal, state with non vanishing entropy of a large class of (D + 2)−dimensional

5AdS2 × SD in the case of spherical spacial topology.
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extremal black holes, like e.g. charged Reissner-Nordström black holes in four dimen-
sions. Near extremality, the mass-temperature relation for the excitations, MADM ∝ T2
in Eq. (1.7.81), implies the breakdown of the thermodynamical semi-classical descrip-
tion and the appearance of a mass gap [199, 200]

Mgap =
λ

2π2µ0
. (1.7.85)

The generation of the mass gap is the quantum counterpart of the absence of finite
energy excitations of the CDV [179], which in turns is related to the strong backreac-
tion on AdS2. From the AdS/CFT correspondence point of view, the appearance of the
mass gap (1.7.85) can be also explained in terms of the pattern of breakdown of the
conformal symmetry which generates, in the IR, a mass scale of order λ [83, 199, 202].

Despite the successes of the AP model described above, two aspects are still not
completely clear. The first is the characterization of the energy of the solution trough
the ADM mass (1.7.79). This mass does not distinguish between the different vacua of
the theory, in fact it is independent from α. Due to the different features of the two
vacua, the ADM-mass degeneracy between the CDV and LDV becomes particularly
ambiguous. Moreover, MADM does not keep informations about the presence of the
mass gap. Last but not least, it also does not seem a suitable physical parameter to
characterize the singularity. Indeed, the transition between space-like and time-like
singularities occurs not when MADM changes sign, as expected, but rather at strictly
positive values.

The second aspect is the characterization of the pattern of conformal symmetry
breaking. This pattern has been described using correlation functions in the dual
conformal field theory. However, in the spirit of the AdS/CFT correspondence one
should be able to characterize completely this pattern also using only the 2D gravity
theory. In what follows, we will show how the peculiarities of dilaton gravity in 2D
spacetime can help us to clarify the picture presented above.

Covariant mass

The first peculiarity of 2D dilaton gravity is that the metric always admits the existence
of a Killing vector whose explicit form depends on the dilaton [201, 206, 207]

χµ = F0ε
µν∂νµ, (1.7.86)

where F0 is a normalization factor. The second is the existence of a covariant, con-
served mass [206, 208]

M = −
F0
2

[∫µ
V(s)ds+ (∇µ)2

]
. (1.7.87)

In this thesis we will use the normalization prescription of Refs. [206, 207], i.e. F0 =

(λµ0)
−1.

The covariant mass M gives a definition of the energy of the solution, which
is invariant under Weyl transformation of the metric [207]. It may differ from the
standard ADM mass only by a constant (temperature independent) term. For this
reason it is particularly appropriate to quantify the energy of the different vacua of
the AP model.
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Computing the covariant mass for the general solution (1.7.78) of our model we
get,

M =
a2µ0λ

2
−
α4λ

2µ0
=MADM −

α4λ

2µ0
. (1.7.88)

There are several reasons indicating that the covariant mass M and not the ADM
mass MADM has to be considered as the physical mass of the solutions. For α = 0
we have M = MADM. By using M instead of MADM we remove the degeneracy
between the CDV and the LDV and keep also track about the non-existence of finite
energy excitations of the CDV. The ILDV has negative energy M = −α4λ

2µ0 , whereas
for the CDV we have M → −∞. Moreover, the r.h.s. of Eq. (1.7.84) can be written
as 2µ0M/M2

ADM. Thus, the spacetime singularity is space-like for M > 0, whereas it
becomes time-like for M < 0.

1.8 Summary and conclusions

In this Chapter, we have discussed in detail geometrical and thermodynamical proper-
ties of charged 5D GB black branes, black holes and two dimensional dilaton gravity.

In the case of spherical black holes, we have reviewed their geometrical and ther-
modynamical properties in 5D RN and GB gravity with particular attention to phase
transitions.

For what concerns black branes, although our discussion has been mainly confined
to the GB case, we expect that most of our results can be generalized to Lovelock
gravity theories in any spacetime dimensions. This is the case, for instance, of black
brane thermodynamics which, when expressed in terms of effective parameters, does
not depend on Lovelock coupling constants. In particular, we have shown that the
combination of GB higher curvature terms added to the Einstein gravity action have
three main effects:

� They introduce a new branch of brane solutions, which are however not black
branes but describe naked singularities. The global structure of the RN geometry
of Einstein gravity is preserved only for α2 > 0. For α2 < 0 the spacetime splits
into two disconnected regions (an inner and outer region), with the external
region having a single event horizon also in the non-extremal case. An inter-
esting feature is that the solutions of the two branches may be, in some cases,
continuously connected one with the other through the singularity. When this
is the case, they describe transitions of the kind: AdS5 → singularity → AdS5,
AdS5-black brane → singularity → AdS5 or AdS5-black brane → singularity →
dS5. Although, it is known that one of the two branches of the solution (f+)
is unstable [171] one expects that the first two of these transitions have a holo-
graphic interpretation as the flow between two CFTs of different central charge
through a singularity.

� The thermodynamic behavior of charged GB black brane is universal, i.e. when
expressed in terms of effective mass and temperature is indistinguishable from
that of the RN black brane.

� Higher curvature terms modify the asymptotics (the AdS length) of the 5D AdS-
RN gravity leaving unchanged the AdS2×R3, extremal near-horizon geometry of
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the RN black brane. At thermodynamic level, when expressed in terms of MADM

and TH a dependence on the normalization factor N of the metric is introduced
but not for the extremal, near-horizon geometry AdS2× R3. In terms of the dual
CFTs, this property can be described as a deformation of the CFT which changes
the UV behavior but leaves unchanged the IR. This behavior is very similar to
the attractor mechanism found in supergravity theories [209–212], where the
AdS2 × RD (or AdS2 × SD) geometry is always the same irrespectively from the
asymptotic values of the scalar fields.

Finally, we have also revisited the AP dilaton gravity model focusing mainly on
its bulk features. In particular, we have seen that the model admits two different kind
of vacua characterized, respectively, by a constant and linear varying dilaton. When
uplifted to (D+ 2)−dimensions, these vacuum solutions produce different spacetimes.
Indeed, the CDV produces a spacetime of the form AdS2 × RD, i.e. an intrinsically
2D spacetime. On the other hand, the uplifting of the LDV leads to a hyperscaling
violating geometry HD+2 [48], which describes the warping of AdS2 with RD. In
this case, the dilaton plays the role of the radius of RD. Moreover, we have shown
that it is always possible to use a covariant definition of the mass by means of bulk
Killing vectors. It is useful to define the energy of the solution, since it appears to
be invariant under Weyl transformation of the metric [207]. It may differ from the
standard ADM mass only by a constant (temperature independent) term. For this
reason it is particularly appropriate to quantify the energy of the different vacua of
the AP model.





Chapter 2

Holography and AdS/CFT
correspondence

We review the AdS/CFT correspondence with particular attention to its application
in relativistic hydrodynamics and to 2D dilaton gravity theories. In particular, we
focus on the shear viscosity for QFTs dual to planar geometries. We then proceed
by discussing the shear viscosity for QFTs dual to spherical black holes. Even if the
usual hydrodynamical limit of a quantum field theory it is not well understood in a
curved spacetime, we also propose a definition of the (analogue) shear viscosity for
QFTs which live in a sphere. This is of particular interest to study black hole thermo-
dynamics (e.g. phase-transitions - see next Chapter) from the quantum perspective of
AdS/CFT.

In the final part of this Chapter we investigate the holographic principle and its
applications to two dimensional gravity, focusing in particular to the microscopic in-
terpretation of the black hole entropy, symmetries, phase transitions and their possible
consequences for quantum gravity at Planck scales.

This Chapter is mainly based on:

� Mariano Cadoni, Edgardo Franzin and M. T. “Hysteresis in η/s for QFTs dual to
spherical black holes”, Eur.Phys.J. C77 (2017) no.12, 900, arXiv:1703.05162.

� Mariano Cadoni, Matteo Ciulu and M. T., “Symmetries, Holography and Quantum
Phase Transition in Two-dimensional Dilaton AdS Gravity”, Phys.Rev. D97
(2018) no.10, 103527, arXiv:1711.02459.

Note: we set the speed of light as c = 1.

2.1 AdS/CFT correspondence

The Anti-de Sitter/Conformal field theory correspondence [31, 213, 214] is a useful tool
to study strongly coupled field theories. It is a conjecture and it states that a gravity
theory in AdS spacetime in (D+2)−dimensions is equivalent to a conformal quantum
field theory in (D + 1)−dimensions. In its original formulation [31], the gravitational
theory is an AdS spacetime and means type IIB string theory with AdS5×S5 boundary
conditions, whereas CFT is a N = 4 supersymmetric Yang-Mills quantum field theory
(SYM).

41
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The type IIB string theory contains a finite number of massless fields, including
the graviton, the dilaton, some other fields (forms) and their fermionic superpartners,
and an infinite number of massive string excitations. It can be characterized by
three parameters: the string length ls, the string coupling gs and the radius R of the
AdS space. The N = 4 SYM theory is a gauge theory with a gauge field, four Weyl
fermions, and six real scalars, all in the adjoint representation of the color group [215].
Moreover it is a conformal field theory. The parameters characterizing the group are
the rank of the gauge group N and the Yang-Mills coupling constant, gYM, which is
more naturally expressed in terms of the ’t Hooft coupling [216] λtH = g2YMN when
the number of colors is large. We can map the parameters of a theory into the other
in the following way

g2YM = 4πgs, g2YMN =
R4

l4s
. (2.1.1)

If one wants to keep string theory weakly interacting, then the gauge coupling in field
theory must be small. More interestingly, we can see that a large ’t Hooft coupling
limit in field theory corresponds to the limit when the curvature radius of space-time is
much larger than the string length ls. In this limit, one can reliably decouple the mas-
sive string modes and reduce string theory to supergravity [215]. The practical utility
of the AdS/CFT correspondence comes, in large part, from its ability to deal with the
strong coupling limit in gauge theory. In fact, AdS/CFT correspondence can be also
thought as a weak/strong duality, i.e. weakly interacting gravity theories correspond
to strong coupled quantum field theories and viceversa. However the latter are difficult
to study since all perturbative techniques fail, hence we can study it using the duality.
This has been the most utilized aspect of the correspondence [216]. Let us note that
the gauge theory dual to AdS5 × S5 is at zero temperature. A non-zero temperature
would introduce an energy scale in the system responsible of the conformal symmetry
breaking and makes more difficult the calculations. However, the holographic dual
to a thermal conformal field theory is a black hole (brane) in the bulk with a given
Hawking temperature. In other words, a black hole is analogous (dual) to a hot gas of
fermions and gauge bosons. This fact has carried to the possibility to study many open
problems in condensed matter physics with the help of AdS/CFT correspondence [36],
e.g. superconductors [37–40], holographic phase transitions [41, 42], quantum critical-
ity [43–45], hyperscaling violation in critical systems [46–63], hydrodynamic regime
of strongly coupled quantum field theories [64, 65] and entanglement entropy [32–35].
In particular, scalar fields (charged or neutral) play a crucial role in many applications
of the AdS/CFT correspondence. In fact they act as order parameters in the dual QFT,
triggering symmetry breaking and/or phase transtions. We will come back to this point
in the 2D gravity context, when we will investigate the breaking of symmetries and
the phase transition generated by a non-trivial dilaton in the bulk.

A way to implement this duality is to put in correspondence bulk fields “φ” in
(super)gravity with operators O of a field theory. This can be mathematically translated
into the following expression

Zd[J] = e
iS[φcl]. (2.1.2)

On the left side it appears the partition function of a field theory, where the source J
is considered coupled to the operator O,

Zd[J] =

∫
Dφexp

(
iS+ i

∫
dd+1xJO

)
. (2.1.3)
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On the right, the classical action of the classical solution φcl to the field equations
with suitable boundary conditions [215]. Differentiating (2.1.2) with respect to J, one
can find the correlation functions of O. For example, the two-point Green’s function
of O is obtained by differentiating Scl[φ] twice with respect to the boundary value of
φ,

G(x− y) = −i〈TO(x)O(y)〉 = δ2S[φcl]

δJ(x)δJ(y)


φ(z=0)=J

. (2.1.4)

The AdS/CFT correspondence thus maps the problem of finding quantum correlation
functions in field theory to a problem in classical gravity. For this reason, starting
from Einstein equations one can immediately see that the background metric gab
corresponds to the stress-energy tensor Tab. The classical field gab will be a solution
of Einstein equations which, in general, is asymptotically a conformal metric in AdS
space. The quantum fields are represented by the stress-energy tensor. As we will see in
the next Section, this will play a fundamental role in the context of the hydrodynamic
limit of a quantum field theory.

To make the correspondence more precise, we need bulk fields and an action for the
bulk theory. The classical gravitational action in (D + 2)−dimensions will determine
the dual (D+ 1)−dimensional large N field theory. We start from the (simplest) case
in which only a gravitational field is present in the bulk. We can then introduce other
fields (e.g. electromagnetic) which will act as sources of operators in the dual QFT.
Because we need an asymptotically AdS background, the simplest choice is given by
the action in Eq. (1.1.4). As a solution of Einstein’s equations we can consider the
asymptotic behavior of Eq. (1.1.5), i.e.

ds2 =
r2

L2

(
−dt2 + dr2 + L2dxidxi

)
(2.1.5)

which represents the AdS spacetime in the so-called Poincare patch. The coordinates
{t, xi} parametrize the space on which the dual field theory lives, while r is the extra
radial coordinate running from r = 0 (the “boundary”) to r = ∞. The full isom-
etry of the metric is SO(D + 1, 2), which is isomorphic to the conformal group in
(D + 1)−dimensions. This means that the symmetries of the bulk action act on the
“boundary” QFT as conformal transformations [213, 214]. In particular, the scaling
symmetry of the QFT acts on the spacetime as {t, xi, r} → {λt, λxi, λr}, which leaves the
metric invariant.

The length scale L is more precisely the radius of the AdS spacetime. In order to
classical gravity to be a valid description, the AdS radius should be large in Planck
units, i.e.

c ∼
LD

16πGD+2
� 1. (2.1.6)

This limit ensures that quantum corrections to Einstein’s equations are negligible
(or absent). Let us note that (2.1.6) is the area enclosing a spatial volume of AdS in
Planck units. The holographic principle suggests that this quantity should be associated
with the number of degrees of freedom of the dual field theory. In particular, c is
proportional to the central charge of the CFT living on the boundary of the AdS
spacetime [217–219]. The central charge c can be defined as the coefficient of the large
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temperature expansion of the free energy (see Sect. 1.5). In most of the established
examples of the AdS/CFT correspondence c ∝ N and, for example, in 3+1 dimensions,
c ∼ N 2 where N is the rank of the gauge group. It is easy to understand that (2.1.6)
refers to the large N limit discussed above and in a certain sense, the central charge
counts the number of degrees of freedom per Planck unit [220].

Finally, as already mentioned in the introduction, AdS/CFT is one of the most
famous (and likely the only explicit) realization of the holographic principle [221].
Indeed, the CFT lives on the boundary of the bulk AdS space and thus has one lower
dimension than the full bulk spacetime. For this reason, it is holographic in the sense
of the proposal of ’t Hooft [29] and, later, Susskind [30]. According to ’t Hooft, at
Planckian scales our universe is not 3+ 1 dimensional, rather it is better described by
a two-dimensional lattice evolving with time. This suggested the idea that at those
scales, the quantum information contained in a spacetime region is encoded in its
boudary. This ideas are also enforced by recent developments in the field of emergent
gravity, see for example [84, 88, 89, 168, 222].

2.2 Holographic hydrodynamics

We are interested in the transport properties, mainly the shear viscosity, of QFTs
which have a holographic dual. Our interest is twofolds: on the one hand, using
the AdS/CFT correspondence, we want to obtain information about transport features
of strongly coupled QFTs by investigating the properties of a classical gravitational
background like a black hole. On the other hand, this paradigm can be reversed and
the properties of the dual QFT can be used to infer about the behaviour of bulk gravity
solutions as black holes, for instance.

The natural framework to do this is relativistic hydrodynamics. In this Section we
will first describe holographic hydrodynamics in flat space then, we will extend our
considerations to curved spaces.

Relativistic hydrodynamics in flat spacetime

Relativistic hydrodynamics is an effective long-distance description for a classical or
quantum many-body system at non-zero temperature. In particular, it can be used to
describe the non-equilibrium real-time macroscopic slow evolution of the system, both
in space and time, with respect to a certain microscopic scale.

In the holographic framework of the AdS/CFT correspondence, the QFT lives in
the boundary of a certain gravitational bulk region. In some cases, the QFT can be
described by kinetic theory and the microscopic scale is determined by the mean free
path of particles lmfp and the typical momentum scale of the process k. When the
kinetic theory is absent or unknown, it is possible to give a thermal description and
interpret the inverse temperature as the microscopic scale [223, 224]. Thus, the hy-
drodynamic limit of a QFT corresponds to large relaxation time, i.e. small frequencies,
and large scales compared to the typical one of the system, i.e. λ̃� 1/T ∼ lmfp, where
λ̃ is the wavelength of the excitations of the system.

In general, the existence of a hydrodynamic description is essentially due to the
presence of conserved quantities, i.e. to the isometries of the system, whose densities
can evolve (oscillate or relax to equilibrium) at arbitrarily long times provided the
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fluctuations are of large spatial size. Correspondingly, the expectation values of such
densities are the hydrodynamic fields.

Relativistic hydrodynamics for a fluid in any spacetime can be formulated starting
from the following definition of the stress-energy tensor [223, 225–227]

Tab = εuaub + Tab⊥ , (2.2.7)

where ε is the energy density and the fluid velocity ua (commonly evaluated in the
frame in which the fluid is at rest) is time-like. The tensor Tab⊥ is the spatial part of
the stress-energy tensor and it is made by time-independent functions of the hydrody-
namic variables ε, ua and their derivatives. The dependence of Tab on the velocity (as
well as on the temperature T(x)) is a consequence of local thermal equilibrium: if per-
turbations of the system have long wavelengths, in every point at given time the state
of the system can be determined by the temperature and the local fluid velocity [215].
In the simplest case, the hydrodynamic equations (also known as constitutive equa-
tions) are obtained by requiring the stress-energy tensor to be covariantly conserved,
i.e. ∇aTab = 0. Particular attention should be done to generic curved backgrounds,
where it is not always possible to define globally conserved currents associated with
symmetries of the system (see below for discussion). In general, the hydrodynamic
modes are infinitely slower than all other modes and the latter can be integrated out.
Thus, all quantities appearing in the hydrodynamic equations are averaged over these
fast modes and are functions of the slow-varying hydrodynamic variables.

Following the standard procedure of effective field theories, Equation (2.2.7) can
be expanded in powers of derivatives of the velocity and, at second order, the most
general expansion is given by

Tab = (ε+ P)uaub + Pgab + Πab , (2.2.8)

where P = P(ε) is a scalar function and it can be interpreted as the thermodynam-
ical pressure. The tensor Πab contains the derivatives of the fluid velocities, i.e. the
dissipative contributions to Tab. Its explicit form is given by [223, 225]

Πab =− ησab − ητΠ

[
〈Dσab〉 + 1

D
σab(∇cuc)

]
+ χ

[
R〈ab〉 − (D− 1)ucRc〈ab〉dud

]
+ . . . (2.2.9)

where for a rank-2 tensor, 〈Aab〉 = A〈ab〉 ≡ 1
2∆

ca∆db (Aab +Aba) −
1
D∆

ab∆cdAcd. ∆ab
is a symmetric and transverse tensor given by ∆ab = gab + uaub. In the local rest
frame, it is the projector tensor on the spatial subspace. The dots represent the non-
linear terms in the fluid velocity and η, τΠ, χ are transport coefficients. The symbol
D represents the derivative with respect to the velocity direction, i.e. D = ua∇a. The
tensor σab is a symmetric, transverse uaσab = 0 and traceless gabσab = 0 tensor
constructed with the first derivative in the fluid velocity given by σab = 2〈∇aub〉. The
parameter η = η(ε) is the shear viscosity and τΠ is the relaxation time.

We conclude with some remarks about the conservation of the stress-energy tensor.
For translation-invariant backgrounds, the conservation of the stress-energy tensor
leads to the conservation of global currents

∇aJa = 0. (2.2.10)
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As a consequence, the constitutive equation contains two terms:

Ja = ρua − C∆ab∇bα, (2.2.11)

where ρ is the charge density in the fluid rest frame and C is some constant. The
first term corresponds to convection, the second one to diffusion. In the fluid rest
frame, we can define the so-called Fick’s law of diffusion, j = −C∇ρ being C the
diffusion constant [215]. More generally, from the projection of ∇aTab along the
fluid velocity ub, one can relate second-order hydrodynamics with the second law of
thermodynamics [223]. At linear order by using Eqs. (2.2.8) and (2.2.9) one finds that
the entropy is conserved, i.e. ∇a(sua) = 0, where s is the entropy density. Thus to
have entropy production, one needs to go to the next order in derivative expansion.
In particular, at second order one finds that

∂ts =
η

2T
σijσ

ij. (2.2.12)

Equation (2.2.12) represents the rate of entropy production in a fluid due to a slowly
varying strain and it can be also used to define the shear viscosity [78] (see later for
discussion).

Kubo’s formula and the shear viscosity

Hydrodynamics is a useful tool to study the dynamics of a system at large lengths
and time scales. In particular, holographic hydrodynamics can help us to extract
information about the low-momentum behavior of Green’s function on the quantum
field theory side.

The two-point correlation functions can be extracted as follow. We start from
the action in Eq. (2.1.3) where the source Ja(x) and the (bosonic) operators Oa(x) are
coupled, i.e.

S = S0 +

∫
x

Ja(x)Oa(x). (2.2.13)

The source will introduce a perturbation of the system and the average values of
Oa will be different from the equilibrium ones, which we assume to be zero. If the
perturbations are small, we can consider linear perturbation theory and mesure the
perturbations as

〈Oa(x)〉 = −

∫
y

GRab(x− y)Jb(y), (2.2.14)

where GRab is the retarded Green’s function defined as

GRab(x− y) = −iθ(x0 − y0)〈[Oa(x),Ob(y)]〉. (2.2.15)

In case of gravity, to determine the correlation functions of Tab we need to couple
a source to the stress-energy tensor. This is not difficult to find, since the source of
Tab is the metric gab. Once included, we can use hydrodynamics theory to find the
correlators at low momenta.

Thus we consider small metric perturbations around the boundary background
metric, i.e. gab → gab + hab, where gab is the boundary metric. In general we can
consider three different types of perturbations: shear, sound and transverse (scalar)
modes. The behavior of these modes will be encoded in three different correlators
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G1,2,3(ω,k). When the system preserve all the symmetries, especially the translational
invariance (also when translation invariance is broken by external matter fields) at
k = 0 these three functions are equal, owing to rotational symmetry [77]. By contrast,
when translational invariance is broken, as for example in the spherical case we
will consider later, the momentum k cannot be taken to zero by construction and
the correlators will be different. Thus, in general, any definition of the two point
functions based on linear response to small disturbances will be channel-dependent.
In this thesis we will focus on the transverse perturbations. The computations for the
sound and shear channel are left for future investigations.

For the moment, let us consider a QFT parametrized by the stress-energy tensor
in (2.2.8) living on the boundary of AdSD+2 whose spatial sections have planar topology
(see (1.1.5) and make the limit r→ ∞). The particular case of spherical topology where
the translational symmetry is not preserved will be discussed later. Without loss
of generality, we can choose transverse and traceless perturbations with hab = 0 if
(a, b) 6= (i, j), hij = hij(t,x) in Eq. (2.2.8). Thus, by considering the fluid at rest, i.e.
ua = (1,0), we obtain

Tij = −Phij − η∂thij + ητΠ∂
2
thij −

χ

2

[
(D− 2)∂2thij + L2∇xhij

]
, (2.2.16)

where i = x, j = y, T ij are the spatial components of the stress-energy tensor. By
comparison with the expectation from the linear response theory, we can extract the
value of the retarded Green’s function at zero spatial momentum in the low-frequency
limit. By choosing a harmonic time dependence for the perturbation, hij(t,x) =

e−iωt hij(x), we obtain

GRij,ij(ω,0) =
∫
dtdxeiωtθ(t)〈[Tij(t,x), Tij(0,0)]〉 = −iηω+O(ω2) (2.2.17)

modulo contact terms and ω and k are the frequency and wave vector of the pertur-
bation, respectively. This expression define the Kubo’s formula relating thermal corre-
lators to kinetic coefficients such as dissipative ones, in this case the shear viscosity.
For a relativistic QFT in flat spacetime, the Kubo formula gives a general definition
of the shear viscosity in terms of the retarded Green function for the stress-energy
tensor [75, 78, 228]

η = − lim
ω→0

1
ω

ImGRT ijT ij(ω,k→ 0) . (2.2.18)

When translational invariance is preserved and a hydrodynamic limit exists, Eq. (2.2.18)
becomes the Kubo’s formula for the transverse momentum. In this case, η defined
by Eq. (2.2.18) coincides with the usual hydrodynamical definition in terms of con-
served quantities obtained from the Einstein relation C = η/sT , where C is the diffu-
sion constant appearing in the Fick law [78].

Relativistic hydrodynamics in curved spacetime

As mentioned before, we should take particular attention to the case in which the
system does not preserve the translational symmetry. In fact, the usual hydrodynamic
description of a system using the conserved charges falls. However, we can circum-
vent these difficulties by means of the definition of the stress-energy tensor and the
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hydrodynamic equations written in terms of expansion in derivatives of hydrodynamic
fields (as the fluid velocity) [223]. In holographic hydrodynamics this approach is use-
ful to formulate the hydrodynamic description of a fluid in a spherical background
holographically dual to AdS spherical BHs [82].

In fact, on the sphere, due to its intrinsic geometry, the translational invariance
is broken. As a consequence, the momentum is not conserved and it is not possi-
ble to define an associated conserved current. At first sight, this should prevent us
from studying transport coefficients as the shear viscosity η which is, by definition, a
measure of the momentum diffusivity due to a strain in a fluid. Hence, in principle,
without translational symmetry it is not possible to define a conserved current, from
which one can derive the Fick’s law of diffusion [215]. Nevertheless, as we will see
below, we can circumvent these difficulties and give a rigorous definition of η for the
hydrodynamic limit of a QFT in a spatial background without translational isometries.

The analogue shear viscosity

Let us consider a QFT living on the boundary of AdSD+2 whose spatial sections have
spherical topology. Although bulk BHs allow for dual QFTs living on a sphere [192,
213, 214, 229], we are not interested in the explicit form of the holographically dual
QFT. However, we can study its hydrodynamic limit in the sense described above.
The boundary metric is conformal to �× SD

ds2 =
r2

L2

(
−dt2 + L2 dΩ2

D

)
, (2.2.19)

where dΩ2
D = gij dx

idxj is the metric of a D-sphere. In this case, due to the spherical
shape of the boundary, the metric perturbations used to describe the non-equilibrium
real-time macroscopic slow evolution of the system are characterized by two param-
eters, the relaxation time or the frequency ω and L/` which “measures” angular
distances on the sphere. The integer number ` parametrizes the eigenvalue of the
Lichnerowicz operator on the sphere (see Eq. (2.2.21) below) and is analogous to the
momentum scale k for a flat topology. In the spacetime (2.2.19), we define the hydro-
dynamic limit of the holographic QFT as the limit in which the metric perturbations
have slow relaxation time and are much larger than the typical scale of the system,
i.e. ω→ 0 and L/`� 1/T . Since we are dealing with a D-sphere, the number ` cannot
be arbitrarily small, i.e. there is a minimum value `0 [230–232] which corresponds to
a maximum spatial scale, and to a maximum size for the global modes propagating
on the sphere. On the contrary, in flat space, there is no constraint on the values of
k, so one can set k→ 0 which, in turns, corresponds to fluctuations of very large (in
principle infinite) wavelength.

In order to extend the Kubo formula (2.2.18) to spherical backgrounds, we first
consider the stress-energy tensor (2.2.8). Then we consider small metric perturbations
around the boundary background metric (2.2.19), i.e. gab → gab+hab. As in the planar
case, choosing transverse and traceless perturbations and considering the fluid at rest,
the stress-energy tensor (2.2.8) takes the following form

T ij = −Phij − η∂thij + ητΠ∂
2
thij −

χ

2

[
(D− 2)∂2thij + L24Lhij

]
, (2.2.20)

where 4L = ∇k∇k is the Lichnerowicz operator and it corresponds to a generalization
of the Laplacian for the D-sphere, with D > 3. Equation (2.2.20) is analogous to the
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one obtained in Ref. [223] for planar topology. As requested by linear response theory,
we compute the retarded Green function for the tensor channel: by choosing a har-
monic time dependence for the perturbation, hij(t,x) = e−iωt hij(x) and by expanding
in hyper-spherical harmonics [233–235], we can extract the retarded Green function
from Eq. (2.2.20),

GRT ijT ij(ω, `) = −P − iωη−ω2ητΠ −
χ

2

[
(D− 2)ω2 + L2γ

]
, (2.2.21)

where γ = `(` + D − 1) − 2 are the eigenvalues of the Lichnerowicz operator and
` = 1, 2, 3, . . . is an integer associated with the hyper-spherical harmonic expansion.
The eigenvalues γ are positive and form a discrete set [230–232, 235]. Given the
retarded Green function above we can extract the dissipative coefficients η and τΠ. In
particular, we are led to define the analogue of shear viscosity in the hydrodynamic
limit for a QFT in a spatial spherical background in the transverse channel as,

η̃ ≡ − lim
ω→0

1
ω

ImGRT ijT ij(ω, `→ `0) , (2.2.22)

where `0 is the minimum value of `. Notice that the shear viscosity η̃ in Eq. (2.2.22) is
defined as the `→ `0 limit of the retarded Green function in analogy with Eq. (2.2.18),
see [82]. In planar hydrodynamics, the k → 0 limit describes long wavelength modes
and probes large scales on the plane. In the spherical case, the ` → `0 modes probe
large angles on the sphere.

It is also important to stress that, with respect to the planar case, the expression
in square brackets in Eq. (2.2.20) has an additional contribution to the stress-energy
tensor ruled by the transport coefficient κ. However this contribution drops out in the
Kubo formula (2.2.22), when we take the imaginary part of the Green function.

Let us note that, since the translational invariance is broken, the definition of the
(analogue) shear viscosity in terms of the Kubo formula (2.2.22) is channel dependent.
In fact, as already noted, the momentum k cannot be taken to zero by construction and
correlators corresponding to different kind of perturbations (shear, sound or scalar)
will be different. Thus, in general, any definition of the two point functions based
on linear response to small disturbances will be channel-dependent. We stress the
fact that for translation-invariant backgrounds, the conservation of the stress-energy
tensor leads to the conservation of global currents and to the Fick law [215]. In our
case with the background metric (2.2.19) we can only consider local conservation since
the translational invariance is broken and the Fick law is not satisfied but, even if it
is channel dependent, Eq. (2.2.12) still holds.

2.3 Shear viscosity to density entropy ratio

An important result of the gauge/gravity results is the calculation of the ratio between
the shear viscosity and the density entropy of holographic plasmas. It assumes a very
easy value for all the theories with Einstein gravity duals,

η

s
=

}
4πkB

. (2.3.23)

The interesting fact is that it appears to be universal in the sense that it does not
depend on the fine details of the underlying microscopic theory. This result has led to
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conjecture the existence of a fundamental lower bound

η

s
>

}
4πkB

(2.3.24)

called the Kovtun-Son-Starinets (KSS) bound [75] which is also supported both by
energy-time uncertainty principle arguments and by quark-gluon plasma experimental
data [74–76]. First found for the hydrodynamic regime of the QFT dual to black branes
and black holes of the Einstein-Hilbert theory [66, 74, 75], the KSS bound1 has been
extended to a variety of cases. These include Einstein-Hilbert gravity with all possible
matter terms in the action, hence, among others the QFT dual to Reissner-Nordström
5D gravity [74, 75] and the important case of the quark-gluon plasma (see e.g. [236]).
It has been also conjectured that the KSS bound holds for any fluid in nature. For
a detailed discussion on the shear viscosity to entropy ratio see Refs. [66, 74, 75, 77,
182, 236–240].

By now, it is well-known that the KSS bound can be violated by two main different
kinds of effects: higher-curvature terms in the Einstein-Hilbert action [77, 175, 183,
236, 237, 239, 241–246] and breaking of the translational or rotational symmetry of
the black brane background [78–81, 183, 247–251]. In the case of higher curvature
theories, the KSS bound depends on the coupling constant for the higher curvature
terms [77, 237]. For example, in 5D Gauss-Bonnet gravity, the shear viscosity to
entropy ratio is [77, 237]

η

s
=

1
4π

(1− 4λ) . (2.3.25)

The KSS bound still holds if λ 6 0 but is violated for 0 < λ 6 1/4 (the upper bound
follows from Eq. (1.4.26)). The dependence of the bound from the coupling constant
λ makes the bound not anymore universal as in the Einstein-Hilbert theory. In terms
of the dual gauge theory, the curvature corrections to the Einstein-Hilbert action
correspond to finite N and λtH effects. It has been argued that the universality of the
KSS bound strictly holds in the limit N → ∞ whereas, in general, finite N effects will
give lower bounds for η/s [70].

A crucial issue is that the relation (2.3.25) seems to allow for arbitrary violations
of the KSS bound. However, consistency of the QFT dual to bulk GB gravity as a
relativistic field theory constrains the allowed values of λ. For instance, in [77, 237,
252, 253] it was found that causality and positivity of the energy for the dual QFT
describing the Gauss-Bonnet plasma require −7/36 < λ < 9/100 implying 4πη/s >
16/25, a bound lower then the KSS bound. On the other hand, the hydrodynamic
description of the dual GB plasma is valid in the IR regime, i.e. for ω,k << T ,
whereas causality is determined by the propagation of modes in the ω,k > T , UV
regime. Thus, the existence of lower bounds for η/s implies a higher non-trivial
relationship between the transport properties in the IR and causality requirements in
the UV regime of the QFT dual to GB gravity. A direct link between the properties of
the theory in the two regimes is possible if the same phase of the theory extend over the
entire range of energy scales. In other words, there must not be any phase transitions
in the system. For this reason the temperature, playing the role of both microscopic
and macroscopic scale of the system, assumes an important role in controlling the
behavior of the theory from the infrared to the ultraviolet regime [236].

1From now on, we will set } and kB equal to one
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On the other hand, the violation of the KSS bound due to the breaking of trans-
lational symmetry has a more fundamental nature. In this case, the shear viscosity
does not have the usual hydrodynamic meaning but might be interpreted as the rate of
entropy production due to a strain [78–81, 225, 249]. In this framework, the behavior
of η/s as a function of the temperature T is non-trivial [254, 255] and carries informa-
tion about the infrared (IR) and ultraviolet (UV) behaviour of the QFT, the existence
of global diffusive modes of the system and the nature of the effect responsible for the
breaking of translational invariance. For instance, when this breaking is generated
by the presence of a non-homogeneous scalar field in the bulk, the behavior of η/s at
small T is determined by the flow of the QFT in the IR. If the translational invariance
is restored in the IR then η/s goes to a constant as T → 0, signalizing the presence
of an IR collective diffusive mode. Conversely, if the translational invariance is not
restored, η/s scales as T2ν for T → 0 and the IR geometry in (D + 2)−dimensions
is typically AdS2 × �D [78, 256, 257]. The charged GB BB represents a nice example
of this behavior, particularly in view of the universality of the IR AdS2 × R3 fixed
point [183]. In the next Chapter we will also discuss the general validity of this
behavior for spherical BH backgrounds. In this case, the translational symmetry is
intrinsically broken and cannot be restored in the IR, but holds only in the UV, where
the spherical horizon can be approximated by a plane. Although for these backgrounds
the breaking of translational invariance prevents an hydrodynamical interpretation of
the viscosity, this behavior of η/s is clearly related to the emergence of extremely
interesting physics in the far IR.

2.4 Holography in two dimensions

Holography and AdS/CFT in two dimensions is an interesting and puzzling sub-
ject [258]. Analogously to the higher dimensional cases, gravitational structures
(e.g. black holes) can be still investigated using conformal field theory techniques.
One interesting feature of AdS2 spacetime is that it appears as near-horizon geometry
of a variety of higher dimensional black holes not only in string theory but also in the
general relativity context (the Reissner-Nordstrom solution) even if, from the gravity
side, it appears as a complete topological solution [169, 179, 198, 259–262]. Full AdS
spacetime in D = 2 has cylindrical topology, so that its boundary is not connected,
making difficult the identification of the boundary CFT that should be dual to the grav-
ity theory. Moreover, it is not completely clear if the CFT is 1D or 2D. Owing to this
difficulties it is almost impossible to discuss the correspondence in general. However
the AdS2/CFT1 duality can be used to test general ideas about the correspondence in
particular and the holographic principle in general. Of particular conceptual relevance
is the fact that it should provide a correspondence between a field theory (2D gravity)
and conformal mechanics.

Hints from several different models of quantum gravity suggest that at Planckian
scales, spacetime becomes effectively two-dimensional [168, 263]. In this section we
will see how this “spontaneous dimensional reduction” can be realized in the case of
dilaton gravity. In order to do so, we will use the bulk perspective presented in Chap-
ter 1 by comparing energetically two kind of vacua, the CDV and LDV vacuum. We
will show that whereas at non-vanishing temperature the LDV is always energetically
preferred, at T = 0 the situation is reversed and the CDV is favourite. This signals a
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T = 0 quantum phase transition which, from an higher-dimensional perspective, can
be thought as a spontaneous dimensional reduction from a D+2 to D = 2 dimensions
spacetime, whose possible role in quantum gravity has been emphasized in Ref. [168].

Quantum phase transition and spontaneous dimensional reduction

The AP model allows for two different class of solutions, namely the 2D black
hole (1.7.78) and the zero mass thermal excitations of the CDV (1.7.82). One important
question is to determine which of these two solutions is, from the thermodynamic
point of view, globally favourite. Using the 2D Hamiltonian formalism [198], this can
be done by computing the difference ∆F between the free energy, F, of the two solu-
tions [84]. In the case under consideration this computation is not straightforward
because ∆F is usually computed for solutions having the same asymptotical behavior.

The presence of the dilaton makes the asymptotics of the two classes of solutions
of the AP model (linear and constant dilaton, respectively) different, thus preventing
the standard computation of ∆F. This problem can be circumvented by defining the
free energy of the solution with respect to its own vacuum [47]. This method has
been applied, for example, in Ref. [47] to calculate ∆F for two classes of 4D solutions
approaching asymptotically to AdS and to a solution with hyperscaling violation,
respectively.

Using this prescription for the free energy F in the Euclidean action formalism, for
the case under consideration we get:

FBH = −
2π2µ0
λ

T2 − 2πα2T,

FT = −κµCh = −2πα2T, (2.4.26)

∆F = FBH − FT = −
2π2µ0
λ

T2,

where FBH is the free energy of the 2D black hole (1.7.78) obtained by subtracting the
contribution of the ILDV, whereas FT is the free energy of the thermal excitation of the
CDV obtained by subtracting the contribution of its own vacuum. From Eq. (2.4.26)
follows immediately that for any T 6= 0, ∆F < 0 and the 2D dilatonic black hole is
energetically preferred.

By construction, Eq. (2.4.26) does not give any information about the behavior at
T = 0, being F defined with reference to the respective vacua at T = 0. Formally, at
T = 0 the two vacua are degenerate, consistently with the degeneracy of the CDV and
ILDV when the ADM mass is used to characterize the two solutions.

Moreover, the semi-classical approximation, on which the Euclidean action for-
malism is based, breaks down at T ∼ Mgap, so that Eq. (2.4.26) cannot be trusted at
T = 0.

At T = 0 there is no thermal contribution to the free energy and ∆F is given by
the mass difference between the two vacua, ∆FT=0 = ∆M =MILDV −MCDV .

We have already argued that we should use the covariant mass (1.7.88) as the
physical mass instead of the ADM mass. Using this mass in the computation we
find ∆FT=0 → ∞ > 0. This means that the CDV is energetically preferred and that
at T = 0 the 2D dilatonic black hole undergoes a quantum phase transition to the
CDV. Let us note that, here, we are referring to the usual thermodynamical meaning
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of phase transitions. In fact, we are considering a thermodynamical system, which
can exist in two different configurations, the black hole given by Eq. (1.7.78) and the
thermal excitations of the CDV given by (1.7.82). Comparing the free energy of the
two configurations at the same temperature we discover that at T = 0 the free energy
of the black hole is bigger than that of the CDV. This means that at zero temperature
the black hole undergoes a phase transition to the CDV. We call this phase transition
"quantum" because it happens at zero temperature and can be fully understood only
at full quantum level. The free energy of the CDV diverges. In fact, in the limit
µ→ 0 the covariant mass (1.7.88) blows up and, classically, we can describe the phase
transition as an instability of the ILDV in which the CDV expands to take over the
spacetime. This description changes at quantum level, where the divergence of the
covariant mass is cured by the presence of the mass gap. However, there is no reason
to expect in this quantum description a change of sign of ∆FT=0.

From a four-dimensional perspective this quantum phase transition can be inter-
preted as a spontaneous dimensional reduction. In fact, the (D + 2)−dimensional
uplifting of the ILDV is a scale covariant geometry HD+2 with hyperscaling violation
in (D+2)−dimensions, whereas the uplifting of the CDV is AdS2×RD, i.e. a geometry
which is intrinsically two-dimensional, being the radius of RD not dynamical. In terms
of the uplifted geometries we have the T = 0 phase transition HD+2 → AdS2 × RD.
However, we will study the uplifting procedure in the next Chapter to which the reader
is recommended to refer for details.

This phase transition supports the suggestion of Ref. [168] about the existence of
a spontaneous dimensional reduction of the spacetime to two dimensions near the
Planck scale.

Let us conclude with some remarks about one loop corrections to the free en-
ergy (2.4.26). Our calculation is based on the semi-classical approximation. One loop
corrections to F have been shown in Ref. [83, 202] to have the typical log T behavior,
which gives a dangerous divergent term in the IR. However, this term does not con-
tribute to the entropy of the CDV [202], we therefore expect our result to extend also
beyond the semi-classical approximation.

2.5 Summary and conclusions

In this Chapter we have reviewed the AdS/CFT correspondence and discussed its
applications in holographic relativistic hydrodynamics both in flat and curved space-
times. Moreover we have also investigated holography, quantum phase transition and
spontaneous dimensional reduction in two dimensions by means of dilaton gravity.

At first, we have shown how to define diffusion coefficients starting from a generic
QFT parametrized by a stress-energy tensor expressed in terms of the fluid velocity
and its derivatives. In particular, we focused on the shear viscosity. By means of the
Kubo formula, we have defined the shear viscosity, η, for QFTs living in a Minkowski
spacetime. Then we have proposed a definition of η for QFTs living in a sphere,
called the analogous shear viscosity, η̃. This procedure is not as straightforward
as in the case of flat spacetime, since the hydrodynamic limit of a quantum field
theory in a curved spacetime is not well defined. In fact, in general, the definition
of a transport coefficient such as the shear viscosity is associated to the translational
invariance of the system, i.e. the conservation of the momentum. As a consequence,
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from the associated conserved current one can derive the Fick’s law of diffusion. For
systems that break translational invariance, the hydrodynamic interpretation in terms
of conserved quantities fails but hydrodynamics can be still defined as an expansion
in the derivatives of the hydrodynamic fields. However, it is possible to define the
shear viscosity through a Kubo formula also for QFTs on a spherical background, see
Eq. (2.2.22), where the stress-energy tensor is only covariantly conserved. In addition,
one can understand η̃ as the rate of entropy production due to a strain, which is
the typical interpretation when the homogeneity is broken by external matter fields.
From this point of view, QFTs dual to spherical BHs are very similar to QFTs dual to
black branes where the translational symmetry is broken by non-homogeneous external
fields, e.g. scalars [78, 249, 250].

The definition of the hydrodynamic limit of a QFT on the sphere is plagued by an
issue related to the compactness of the space. In fact, in a compact space, the usual
hydrodynamic limit as an effective theory describing the long-wavelength modes of
the QFT has not a straightforward interpretation. Our proposal is that for QFTs dual
to bulk spherical BHs, the hydrodynamical, long wavelength modes can be described
by the ` → `0 modes that probe large angles on the sphere. This is in analogy with
the k→ 0 modes for QFTs dual to bulk black branes which probe large scales on the
plane.

There is still a crucial difference between the two cases. When the breaking of
translational symmetry is generated by external fields, the symmetry may be restored
or not when the system flows to the IR [78]. In the BH case instead, because the
breaking has a geometric and topological origin, translational symmetry cannot be
restored in the IR.

Finally, we have discussed the features of holography and AdS/CFT in two dimen-
sions. In particular, we focus on the case of dilaton gravity. By using the definition of
the covariant mass as measure of the energy of the solutions as done in Chapter 1, we
have compared energetically the two different vacua (CDV and LDV) of the theory.
Then we have showed the existence of a zero temperature phase transition in which
the vacuum with constant dilaton is energetically preferred. We have also speculated
that this quantum phase transition could be related to the spontaneous dimensional
reduction of the spacetime to two dimensions near the Planck scale described in
Ref. [168].



Chapter 3

AdS/CFT applications

AdS/CFT applications in two different cases are discussed.
At first we compute the shear viscosity to entropy density ratio for the QFTs dual

to planar and spherical AdS black holes both in Einstein and Gauss-Bonnet gravity
in five spacetime dimensions. In particular we focus on the deep interplay between
thermodynamics and phase transitions for black holes and the behaviour of transport
coefficients in the hydrodinamical limit of the dual QFT when one goes from the IR
to the UV regime of the theory.

Secondly, we recall the revisitation of the AP model already seen in the previous
Chapter with the aim to explain some quantum features of the model. In particular we
discuss the conformal symmetry breaking, its relation with the microscopic derivation
of the 2D black hole entropy and the uplifting of the model to (D + 2)−dimensional
theories.

This Chapter is based on the following papers:

� M. Cadoni, A. M. Frassino and M. T., “On the universality of thermodynamics
and η/s ratio for the charged Lovelock black branes”, JHEP 1605 (2016) 101,
arXiv:1602.05593.

� M. Cadoni, E. Franzin and M. T., “Van der Waals-like Behaviour of Charged
Black Holes and Hysteresis in the Dual QFTs”, Phys.Lett. B768 (2017) 393-
396, arXiv:1702.08341.

� M. Cadoni, E. Franzin and M. T., “Hysteresis in η/s for QFTs dual to spherical
black holes”, Eur.Phys.J. C77 (2017) no.12, 900, arxiv:1703.05162.

� Mariano Cadoni, Matteo Ciulu and M. T., “Symmetries, Holography and Quantum
Phase Transition in Two-dimensional Dilaton AdS Gravity”, Phys.Rev. D97
(2018) no.10, 103527, arXiv:1711.02459.

Note: the units are c = } = kb = 1.

3.1 η/s for the charged GB black brane

As mentioned in the previous Chapter, a standard way to calculate the shear viscosity
for a QFT is by using the Kubo formula (2.2.18) for the transverse momentum con-
ductivity. In this section we will compute the retarded Green’s function of the dual
QFT using the gravity side of the correspondence.

55
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At first, let us rewrite the GB BB solution (1.4.28),

f− =
r2

2λL2

[
1−

√
1− 4λ

(
1− ω5ML2

r4
+

4π
3
GNQ2L2

r6

)]
, (3.1.1)

where α0α2 = α2/L
2 = λ. We know from the literature that the application of the

usual AdS/CFT procedure for the computation of correlators gives, for the U(1)-charged
Gauss-Bonnet black brane in five dimensions [182, 238],

η =
s

4π

[
1− 4λ

(
1− a

2

)]
(3.1.2)

where a = 4π
3
GNQ

2L2

r6+
, and s is the entropy density S/V following from (1.5.46).

However, a drawback of the usual computation of the shear viscosity is that it does
not work in the extremal T = 0 case because the metric function has a double zero at
the horizon. For this reason, η in the case of extremal BB cannot be simply computed
by taking the TH = 0 limit in Eq. (3.1.2). Building on [264], a method of dealing with
this problem has been developed in [67]. Recently, a very simple and elegant formula
for computing correlators of the form (2.2.18) in QFTs dual to a gravitational bulk
theory has been proposed in [265] (see also [78, 79]). This method also works in the
extremal case; thus, in the following, we will use it to compute η for the charged GB
BB [183].

Considering perturbations gab = g
(0)
ab + hab of the background (3.1.1), at the linear

level the field equations (1.4.44) give for the hyx(t, r) = ψ(r)e−iωt component of the
perturbation

∂r

[√
γ(r)f−(r)F(r)∂rψ

]
+ω2

√
γ(r)F(r)

N2f−(r)
ψ = 0, (3.1.3)

where γ(r) = (r/L)3 is the determinant of the spatial metric, f−(r) is given by Eq. (3.1.1)
and F = N

(
1− λL2

r ∂rf−(r)
)
. Notice that in the background (3.1.1), the component hyx

decouples from the other perturbation modes.
Let us first consider the non extremal black brane. The extremal case will be

discussed at the end of this Section. Following Ref. [265] we now denote with ψ0(r)

the time independent solution of (3.1.3) which is regular on the horizon r = r+ and
such that ψ0 → 1 as r→ ∞. The other linearly independent solution ψ1(r) of Eq. (3.1.3)
behaves as 1/r4 for r = ∞ and can be computed using the Wronskian method,

ψ1 = ψ0

∫∞
r

dr

ψ2
0
√
γFf−

. (3.1.4)

Expanding near the horizon r = r+ we get at leading order

ψ(r) = −
1

ψ0(r+)

ln(r− r+)
4πTH

√
γ(r+)

[
1− 4λ(1− a

2 )
] , (3.1.5)

where TH is the Hawking temperature of the BB and a is defined as in Eq. (3.1.2).
Solving now Eq. (3.1.3) near the horizon with infalling boundary conditions and for
small ω, one gets at leading order in ω

ψ(r) = ψ0(r+)

(
1− iω

4πTH
ln(r− r+)

)
. (3.1.6)
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Comparing Eq. (3.1.5) with Eq. (3.1.6) and expanding near the r → ∞ boundary of
AdS, one gets

ψ(r) = 1+ iωψ2
0(r+)

√
γ(r+)

[
1− 4λ

(
1− a

2

)] 1
r4
. (3.1.7)

The usual AdS/CFT rules for computing boundary correlators tell us that the retarded
Green function is 1/(16πGN) the ratio between normalizable and non-normalizable
modes so that, using (2.2.18), we have

η =
s

4π
ψ0(r+)

2
[
1− 4λ

(
1− a

2

)]
. (3.1.8)

Because ψ0(r) goes to 1 as r → ∞ and must be regular on the horizon, we have
ψ0(r+) = 1 and Eq. (3.1.8) reproduces correctly the previous result (3.1.2).

Now, the second Eq. (1.5.46) can be used to define, implicitly, the horizon radius
as a function of the BB Hawking temperature and the electric charge, thus allowing
us to write also the shear viscosity (3.1.2) as a function of TH and Q

η(TH, Q) =
1

16πGN

(
r+(TH, Q)

L

)3 [
1− 4λ πL2TH

Nr+(TH, Q)

]
. (3.1.9)

In the same way, the entropy density in Eq. (1.5.46) can be written as a mere function
of TH and Q, so that we can write the shear viscosity to entropy ratio in the form

η

s
=

1
4π

[
1− 4λ πL2

Nr+(TH, Q)
TH

]
. (3.1.10)

It is also of interest to write explicitly the dependence of η/s from the normalization
constant N:

η

s
=

1
4π

[
1− 4NπL2(1−N2)

TH
r+

]
. (3.1.11)

When the electric charge is set to zero, the ratio TH/r+ in Eq. (3.1.10) is N/(πL2)
and η/s reaches the value in Eq. (2.3.25), as one expects. On the other hand, the
dependence of η/s on TH and N in the generic case is rather puzzling.

In view of the universality of the thermodynamic behavior of GB BB described
in the previous sections one would naively expect also the shear viscosity to entropy
ratio to be universal, i.e. that Eq. (3.1.11) becomes the same as in the RN case just by
using the effective temperature T = TH/N instead of TH. This is not the case. Only
for N = 1, which corresponds to α2 = 0, i.e. exactly the RN case, η/s assumes the
universal value 1/4π, while for N generic we have a quite complicated dependence
on N and TH. This indicates strongly that the transport features of the dual QFT in
the hydrodynamic regime contain more information about the underlying microscopic
theory than that contained in the thermodynamic description. An investigation on
the behavior of η/s at large and small TH can shed light on this issue. In fact, as
we have seen in Chapter 1, in these limits the BB allows for a simple thermodynamic
description. We, therefore, expect this to be true also for the shear viscosity to entropy
ratio.

η/s in the large and small TH regime

The behavior of the shear viscosity (3.1.9) for large and small temperatures can be
investigated in a way similar to that used for the BB thermodynamics.
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Large TH

For large TH, the Hawking temperature is given by Eq. (1.5.49), thus leading to the
following expression for the shear viscosity in Eq. (3.1.9),

η =
1

16πGN

(
πLTH
N

)3
(1− 4λ) . (3.1.12)

The shear viscosity at large TH scales as T3H. In this limit, the entropy density also
depends on the temperature as T3H (see Eq. (1.5.50)), the shear viscosity to entropy
density ratio approaches Eq. (2.3.25) and reduces to the universal value 1/4π when
λ → 0. This is rather expected, because at large TH the contribution of the electric
charge can be neglected.

Small TH

To investigate the small TH behavior we invert Eq. (1.5.54) and we write the horizon
radius as

r+ − r0 '
πL2

6N
TH , (3.1.13)

where r0 is defined by Eq. (1.5.52). At small temperature the subleading term in the
shear viscosity scales linearly in TH

η ' 1
16πGN

(r0
L

)3 [
1+

(
1
2
− 4λ

)
πL2TH
Nr0

]
. (3.1.14)

The behavior of the entropy density in the small TH regime is given by the second
equation in (1.5.55). Hence, in this limit, also the subleading term of the shear
viscosity to entropy density ratio scales linearly

η

s
' 1

4π

[
1− 4λπL

2TH
Nr0

]
. (3.1.15)

The result η/s = 1/4π for TH = 0 has been already found and discussed in the
literature in the case of the RN solution [67, 264]. It has been argued that at small
temperatures, the dual QFT behaves as a "strange RN metal". The optical conductivity
exhibits the generic perfect-metal behavior, but although we have a non-vanishing
ground-state entropy, for the strange metal hydrodynamics continues to apply and
energy and momentum can diffuse.

In the limit TH = 0, the ratio becomes η/s = 1/4π attaining the universal value one
expects from the KSS bound. This result is what one naturally expects in view of the
fact that at TH = 0 the near-horizon solution of the GB brane gives exactly the same
AdS2×R3 geometry of the RN solution. However, extra care is needed when one takes
the TH → 0 limit in Eq. (3.1.10). Taking TH → 0 directly in Eq. (3.1.10) is not safe for
several reasons. First, as discussed in Sect. 1.5 the semi-classical description for the
BB breaks down at small temperature when the energy gap above extremality prevents
excitations with finite energy. Second, as noted by Cai [238], although the TH → 0
limit is well defined, the usual computation of the shear viscosity to entropy ratio
fails in the extremal case because the metric function as a double zero at the horizon.
Third, also the computations shown at the beginning of this Section do not hold for
TH = 0 because the expressions (3.1.5) and (3.1.6) are ill defined for TH = 0. However,
the general method based on [265] for calculating η still works also for extremal BB.
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η/s in the extremal case

Let us now extend the calculations of η described before to the case of the extremal
brane. In the extremal case the function f− given by Eq. (3.1.1) and its first derivative
vanish when evaluated on the horizon. We have therefore at leading order near the
horizon

f−(r+) = f
′
−(r+) = 0, F(r+) = N, f−(r) ' k(r− r+)2, (3.1.16)

where k is some non zero constant. Using the previous expression in (3.1.4) one gets

ψ1(r) =
1

kNψ0(r+)
√
γ(r+)

1
(r− r+)

. (3.1.17)

On the other hand the near-horizon, small ω expansion gives now

ψ(r) = ψ0(r+)

[
1+ iω

kN(r− r+)

]
. (3.1.18)

Comparing Eqs. (3.1.17) and (3.1.18), near the r → ∞ boundary of AdS5 we find the
expansion

ψ(r) = 1+ iωψ2
0(r+)

√
γ(r+)

(
1
r4

)
, (3.1.19)

from which follows the shear viscosity

η =
s

4π
ψ0(r+)

2. (3.1.20)

Using the same argument previously used to infer that ψ0(r+) = 1, we get for the
shear viscosity to entropy ratio of the extremal GB black brane the universal value

η

s
=

1
4π
. (3.1.21)

It is interesting to notice that the universality of η/s for the extremal GB BB is a direct
consequence of the universality of the AdS2×R3, extremal, near-horizon geometry. In
fact the extremal, near-horizon metric background (1.4.43) does not depend on λ. The
other source for a λ- or Q-dependence of η is the function F in Eq. (3.1.3). However,
this contribution, hence the dependence of η from λ and Q, is removed by the condition
f ′(r+) = 0, which implies that near the horizon the two-dimensional sections of the
metric behave as AdS2.

To conclude, let us now discuss the global behavior of η/s as a function of the
temperature in order to gain some insight about the η/s bounds. Taking into account
that r+(TH) is a monotonically increasing function, one easily finds that also the
function P(TH) = πL2TH/(Nr+) = 1−2πGNQ2L2/(3r6+) in Eq. (3.1.10) is a monotonically
increasing function of TH, with P(0) = 0 and P(∞) = 1. The global behavior of η/s
in Eq. (3.1.10) therefore is ruled by the sign of λ. For λ < 0, η/s is a monotonically
increasing function of TH, which raises from its minimum value 1/4π at TH = 0 to its
maximum value (1+ 4|λ|)/4π for TH = ∞, in full agreement with the KSS bound. On
the other hand, for 0 < λ < 1/4, η/s is a monotonically decreasing function of TH,
which drops from its maximum value 1/4π at TH = 0 to its minimum value (1−4λ)/4π
for TH = ∞, violating the KSS bound.
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3.2 The shear viscosity to entropy density ratio for black
holes

In the previous Section, we have computed the shear viscosity to entropy ratio for
QFTs dual to charged black branes solutions in the GB theory. The main motivation
for this calculation was to better understand the dependence of η on the temperature,
the UV/IR flow and the universality of the KSS bound and its violations in QFT duals
of higher curvature theories.

In this Section, following the method proposed in Refs. [78, 265], we extend our
computation to the shear viscosity to entropy ratio for the QFTs dual to the BH
solutions discussed in Sect. 1.6. By extending our calculation to QFTs dual to spherical
black holes, we are not motivated by any issues of the dual QFT itself. Rather we
want to gather information about the complicated thermodynamical phase portrait of
charged spherical black holes in GR and GB gravity. In order to do so, we investigate
transport coefficients in the dual QFT represents drawing our attention on the shear
viscosity.

Linear perturbations in Einstein-Gauss-Bonnet gravity

We start by studying linearized Einstein’s equations (1.6.57) which will be a fundamen-
tal issue in order to procede with the holographic computation of the shear viscosity.

Let us consider linear tensorial perturbations about the background (1.6.59) in
Einstein-Gauss-Bonnet gravity, i.e. gab → gab+hab. After suitable manipulations, the
linearized equation of motion (1.6.57) are

δR
j
i + λL

2 δG(2)
j
i + 8πG5

(
T(M)

k
i h
j
k −

δT(M)ij

hij
h
j
i

)
= 0 , (3.2.22)

where δT(M)ij =
(
δT(M)ij

hij

)
hij and the explicit form of the tensors δRji and δG(2)

j
i can be

found in Refs. [266, 267]. In the transverse and traceless gauge we can write

hij(r, t,x) = r2φ(r, t)hij(x) , (3.2.23)

where x is the direction of the sphere along which the perturbation propagates and hij
is the eigentensor of the Lichnerowicz operator built on the background 3-sphere

(4L + γ)hij = 0 , γ = `(`+ 2) − 2 . (3.2.24)

The perturbations hij are both gauge-invariant and decouple [230–232, 266, 267]. This
decoupling is a consequence of the spherical symmetry of the background and oc-
curs for every value of ` and not only in the hydrodynamic limit ` = `0. Further-
more, assuming a harmonic time-dependence of the perturbation, hji = φ(r, t)h

j
i(x) =

ψ(r) e−iωt hji(x), the perturbation hji(x) factorizes leading to a set of equations which
depend only on t and r [266, 267]. Thus Eq. (3.2.22) reduces to a massive scalar
equation

1
r3
d

dr

[
r3f(r)F(r)

dψ

dr

]
+ω2 F(r)

f(r)
ψ−m2(r)ψ = 0 , (3.2.25)
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where F(r) ≡ 1− λL2f ′(r)/r and the mass term is

m2(r) =
2− γ
r2

[
1− λL2f ′′(r)

]
+ T(M)

i
i −

δT(M)ij

δgij
. (3.2.26)

Notice that the mass term depends on the angular part of the perturbation through the
eigenvalue γ of the Lichnerowicz operator (3.2.24) and on higher-curvature corrections
through the GB constant λ. In the black brane case, if translational invariance is
preserved, the mass term is identically zero [75]. We stress that, although Eq. (3.2.25)
holds for any `, since we are interested in computing the shear viscosity (2.2.22), in
the following we will take ` equal to its minimum value `0 = 1 implying γ = 1.

There are no general exact analytical solutions of Eq. (3.2.25), but we can find
approximate analytical solutions for r → ∞ and in the near-horizon limit. In the
generic case, one can compute the solutions only numerically.

The asymptotic solutions of Eq. (3.2.25) with ω = 0 are given in terms of the
modified Bessel functions of first and second kind. For r→ ∞, the non-normalizable
mode ψ0 and the normalizable mode ψ1 behave as

ψ0 = 1− λL2

2
(
1−
√
1− 4λ

)
r2

+O
(
log r/r4

)
, (3.2.27)

ψ1 =
1
r4

+O
(
1/r6

)
. (3.2.28)

In Eq. (3.2.27) we have chosen the integration constant such that the non-normalizable
mode ψ0 goes to 1 as r→ ∞.

The near-horizon behavior of ψ0(r) is different for non-extremal and extremal BHs.
In the case of non-extremal BHs at temperature T and extremal T = 0 BHs we write
the metric function, respectively

f(r) = 4πT (r− r+) +
f ′′(r+)

2
(r− r+)

2 +O
(
(r− r+)

3
)
, (3.2.29)

f(r) =
(r− r0)

2

l2
+O

(
(r− r+)

3
)
, (3.2.30)

where the extremal BH radius r0 is defined in Eq. (1.6.65) and the AdS2 length l is
given by Eq. (1.6.66). In the non-extremal case, we write ψ0(r) using a power-series
expansion, and we solve Eq. (3.2.25) order by order. At leading order we find:

ψ0(r) = ψ0(r+)

[
1+ 1− λL2f ′′(r+)

4πTr2+ − λL2r+(4πT)2
(r− r+)

]
+O

(
(r− r+)

2
)
. (3.2.31)

For the extremal case, the leading quadratic behavior of f(r) implies ψ0(r+) = 0. The
behavior of ψ0(r) in the near-horizon region is

ψ0(r) = (r− r0)
ν, ν =

1
2

(
−1+

√
1+ 4l2 − 8λL2

r20

)
. (3.2.32)
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η̃/s computation

For Einstein gravity coupled to matter, η̃/s of the dual QFT is determined by means
of the retarded Green function in Eq. (2.2.22) and it is given by the non-normalizable
mode ψ0 of the perturbation evaluated at the horizon,

η̃

s
=

1
4π
ψ0(r+)

2 . (3.2.33)

This method can be generalized to include higher-curvature contributions [82, 183,
189]. As already shown in the case of GB BB, the computation uses a Wronskian
method to determine the relation between the normalizable mode ψ1 and the non-
normalizable mode ψ0. Since this relation does not depend on the mass term m2(r)

in Eq. (3.2.25), the formula of Ref. [78] also holds for BHs in GB gravity:

η̃

s
=

1
4π
ψ0(r+)

2
[
1− 4λ

(
1− 2πG5Q

2L2

3r6+

)](
1+ 6λL2

r2+

)−1

, (3.2.34)

where ψ0(r) is the non-normalizable solution of Eq. (3.2.25) with ω = 0.
For background solutions which do not break translational invariance, e.g. branes,

the mass term m2(r) is identically zero and the zero-frequency solution is ψ0(r) = 1
everywhere [78, 183]. On the contrary, in BH backgrounds, the translational invariance
is broken, the mass term m2(r) is non-vanishing, the ω = 0 solution for ψ0(r) is not
constant and ψ0(r+) must be calculated by integrating Eq. (3.2.25) with ω = 0.

Large radius BHs r+ � L, correspond to the large temperature regime T � 1/L. In
this approximation we can invert T(r+) in Eq. (1.6.67) to get r+(T) = πL2T + O (1/T).
Then, using Eqs. (3.2.27) and (3.2.34) we get

η̃

s
=

1− 4λ
4π

[
1−

λL2
(
7− 6

√
1− 4λ

)
π2
(
1−
√
1− 4λ

)
L4T2

+O
(
1/T4

)]
. (3.2.35)

As expected, in the large T regime, η̃/s does not depend on the charge. For GR BHs,
Eq. (3.2.35) is a decreasing function of the temperature, thus the KSS bound is violated
and the universal value 1/4π is attained only for T → ∞. For GB BHs, the behavior
is qualitatively similar but as T → ∞ the value of η̃/s tends to (1− 4λ)/4π.

In the extremal case, the metric function and its first derivative vanish when
evaluated on the horizon and following Ref. [78] the shear viscosity to entropy ratio
is given by

η̃

s
=

1
4π
ψ0(r+)

2
(
1+ 6λL2

r20

)−1

. (3.2.36)

Equation (3.2.32) tells us that ψ0(r+) = 0, which substituted in Eq. (3.2.36) means that
η̃/s goes to zero in the T = 0 extremal limit. The scaling at low temperatures of η̃/s
follows from simple matching argument [78] between scaling of the Green function
and the near-horizon scaling (3.2.32)

η̃

s
∼ T2ν , (3.2.37)

where ν is given by (3.2.32). The scaling exponent satisfies ν 6 1 for

λ >
l4

L2r20
+
l2

2L2
. (3.2.38)
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The global behavior of η̃/s as a function of T is obtained by numerically inte-
grating Eq. (3.2.25) supplied with a power-series boundary condition for ψ0(r). In
the following, we choose units G5 = L = 1. For each value of the charge and the
GB parameter, there exists a minimum mass (and hence a minimum radius) given
by Eq. (1.6.63). We then integrate Eq. (3.2.25) outwards from the horizon to infinity.
Next, we use a shooting method to determine ψ0(r+) by requiring that ψ0(∞) = 1.
Finally, the temperature and η̃/s for each solution are computed with Eqs. (1.6.67)
and (3.2.34).

AdS-Reissner-Nordström black holes

The plots of η̃/s resulting from our numerical calculations for GR are shown in Fig. 3.1
for electrically neutral (left panel) and charged (right panel) BHs.
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Figure 3.1: Global behavior of η̃/s as a function of the temperature for GR BHs. Left
panel: neutral AdS BHs. The solid line is the region above the critical radius, while
the dotted line represents (part of) the region below the critical radius, where the BH
is unstable and a thermal AdS solution is preferred; the dot marks the critical radius
at T =

√
2/π. Right panel: AdS-RN BHs. We plot η̃/s for three selected values of the

BH charge: above, at and below the critical value Qc = 1/6
√
5π, at which the system

undergoes the second-order phase transition. The dots (square) mark the maximum
(minimum) of the temperature as a function of the BH radius.

The KSS bound is always violated for small and intermediate values of temper-
ature, whereas it is saturated from below for large temperatures. In this section we
extend the discussion of Ref. [189]. For neutral AdS BHs, η̃/s starts at the universal
value 1/4π at large temperatures and decreases monotonically as T decreases, reaching
a minimum non-zero value for the non-vanishing minimum temperature T =

√
2/π.

Such a temperature corresponds to the minimum value of the BH radius, r0 = 1/
√
2.

At r = r0 there is the Hawking-Page transition and for r+ 6 r0 there are no stable
BH solutions [151] and thermal AdS is energetically preferred with respect to the BH.
The dotted line in the left panel of Fig. 3.1 gives η̃/s for BHs with radii less than r0,
whose behavior is a consequence of the growing of T for r+ 6 r0.

For AdS-RN BHs, η̃/s decreases from 1/4π at large temperatures (independently
from the charge), but the behavior for small and intermediate temperatures depends
on the charge. As explained in Sect. 1.6, there exists a critical value of the charge
Qc = 1/6

√
5π under which the system undergoes a phase transition. On the right

panel of Fig. 3.1, we plot our numerical results for η̃/s for the critical charge and
for representative values of the charge above, at and below the critical value. The
dots (squares) in the curves with Q 6 Qc mark the critical temperature Tmax (Tmin)
corresponding, to the two local extrema of the function T(r+) of Eq. (1.6.67). At these
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critical temperatures, the specific heat changes sign according to the discussion in
Sect. 1.6. For Q = Qc we have Tmin = Tmax and the function T(r+) has an inflection
point. For Q > Qc the function T(r+) is monotonically increasing and BHs are always
stable. The numerical values Tmin and Tmax are listed in Table 3.2 for a representative
value of the charge below and at Qc.

Interestingly, η̃/s develops hysteresis for 0 < Q < Qc. This is evident for the
Q = 1/100 solid black curve in the right panel of Fig. 3.1. We have also checked
that curves with Q < Qc have a similar hysteretic behavior, whereas those with
Q > Qc (as the Q = 1/10 orange dashed line) do not show this feature. Notice
that the limit Q → 0 in the plot of l.h.s of Fig. 3.1 is singular. As explained in
Sect. 1.6, for Q → 0 we have a discontinuity, i.e. we have no phase transition at
Q = 0. Because the existence of the phase transition is a necessary condition for
having hysteresis in η̃/s, this means that also η̃/s as a function of the temperature
is discontinuous at Q = 0: we have a more pronounced hysteretical behavior for
Q → 0, but hysteresis disappears completely at Q = 0. This hysteretic behavior is a
direct consequence of the Van der Waals-like behavior of the AdS-RN BHs discussed
in Sect. 1.6. It is related to the presence of two local extrema in the function T(r+)
in Eq. (1.6.67) or equivalently, to the presence of two stable states (small and large
BHs) connected by a meta-stable region (intermediate BHs). This phase portrait has
been considered as a general explanation of hysteretic behavior for some variable of
the system [268]. In particular, when the system evolves from high (low) to lower
(higher) temperatures, a potential barrier prevents the evolution of the system from
occurring as an equilibrium path between the two stable states [269]. Equilibrium
will be reached passing through a meta-stable region and a path-dependence of η̃/s
is generated. In particular, starting from high temperatures, the system will reach
low temperatures going directly from the minimum and vice-versa. The presence of
these local extrema determines the patterns of signs of the BH specific heat and free
energy, hence the local thermodynamical stability [163, 184]. Thus, hysteresis in η̃/s
and thermodynamical phase transition have the same origin and pattern. In fact, as
already noted in Sect. 1.6, the phase diagram of AdS-RN BHs is very similar to that
of a Van der Waals liquid/gas transition.

This is a very interesting result: η̃/s for the dual QFT carries direct information
about the thermodynamic phase transitions of the system. In the holographic context,
a hysteretic behavior in the shear viscosity has been already observed in Ref. [247,
248] for AdS BHs with broken rotational symmetry and with a p-wave holographic
superfluid dual. Moreover, it is known that nanofluids may exhibit hysteresis in the
η-T plane [270].

Notice that, even though solutions with Q > Qc describe stable BHs in the overall
range of T , our numerical computation does not hold in the small T regime as it uses
a power-series near-horizon expansion. However, η̃/s → 0 as T → 0 with analytical
scaling law (3.2.37) and scaling exponent ν given by Eq. (3.2.32) with λ = 0.

Neutral Gauss-Bonnet black holes

Our numerical results for η̃/s as a function of T for neutral GB BHs are shown in
Fig. 3.2 for selected values of the GB parameter λ in the range 0 < λ 6 5/100.

For large temperatures, the KSS bound is always violated due to the GB contribu-
tion and 4πη̃/s → 1 − 4λ. At intermediate temperatures, the behavior is qualitatively
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Figure 3.2: Global behavior of η̃/s as a function of the temperature for GB BHs with
Q = 0 for selected values of the GB coupling constant above, at and below the critical
value. Dots (squares) mark the maximum (minimum) of the temperature as a function
of the BH radius.

similar to that of RN BHs, with the GB parameter λ playing the role of the charge
Q. As discussed in Sect. 1.6, there exists a critical value λc under which GB BHs can
undergo a phase transition: by numerical investigation this value is λc = 1/36, in good
agreement with Refs. [163, 194]. Curves with 0 < λ < λc (black solid and red dotted
lines) show a hysteretic behavior of η̃/s as a function of the temperature, whereas
those with λ > λc do not. For a given value λ < λc, we have two critical temperatures
Tmax, Tmin, which are marked respectively by dots and squares in the curves of Fig. 3.2.
Their numerical values for selected values of λ are listed in Table 3.1. Notice that
similarly to the Q → 0 case, the limit λ = 0 in the plots of Fig. 3.2 is singular. As
explained in Sect. 1.6, for λ = 0 we have a discontinuity. This implies that also η̃/s as
a function of the temperature is discontinuous at λ = 0. We have a more pronounced
hysteretical behavior for smaller and smaller values of λ, but hysteresis disappears
completely at λ = 0.

The physical interpretation of the appearance of hysteresis in η̃/s for the QFT
dual to the neutral GB BH is completely analogue to that discussed for the AdS-RN
BH. When λ reaches the critical value, the system undergoes a second-order Van der
Waals-like phase transition and exhibits the hysteretic behavior in η̃/s.

Q 0 1/100

λ 1/1000 1/100 λc 1/1000 5/1000 λc

Tmin 0.448 0.431 0.390 0.448 0.440 0.397
Tmax 1.787 0.587 0.390 0.638 0.559 0.397

Table 3.1: Critical temperatures for fixed values of Q and selected values of λ below
and at the critical values. For the neutral GB BH the critical value of the coupling is
λc = 1/36. For GB BHs with fixed charge Q = 1/100 the critical value of the coupling
is λc ≈ 1/4.

Charged Gauss-Bonnet black holes

The presence of both a non-vanishing charge and GB coupling constant makes the
case of charged GB BHs more involved. However, as discussed in Sect. 1.6, the phase
portrait becomes much simpler and has a Van der Waals-like form if we restrict our
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considerations to the region where BHs are globally stable and holds either Q or λ
fixed. In this situation we expect the qualitative behavior of η̃/s as a function of
T to be quite similar to that found for the AdS-RN and the neutral GB BHs. The
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Figure 3.3: Global behavior of η̃/s as a function of the temperature for charged GB
BHs. Left panel: GB BHs with fixed charge Q = 1/100, and selected values of GB
constant λ = 1/1000, 5/1000, ∼ 0.25, 5/100. The value of η̃/s is rescaled by a
factor 1 − 4λ; in this way the large T behavior of 4πη̃/s, which for GB gravity is
λ-dependent, has been normalized to 1. Right panel: GB BHs with fixed value of GB
constant λ = 1/100, and selected values of charge Q = 1/100, 2/100, ∼ 3/100, 4/100.
Inset: zoom of the hysteresis region. Dots (squares) mark the local maximum Tmax
(local minimum Tmin) of the temperature.

numerical results for η̃/s as a function of T , confirm our expectation and are shown
in Fig. 3.3 for Q fixed and selected values of the GB parameter λ (left panel) and for
λ fixed and selected values of the charge Q (right panel). In both cases, the numerical
results corroborate the analytical ones. For large temperatures, the KSS bound is
always violated as 4πη̃/s→ 1− 4λ. At intermediate temperatures, the behavior of η̃/s
depends crucially on the values of the parameters Q and λ. For large values of Q (or
for values of λ near to the unitarity bound λ . 9/100), large BHs are always stable,
η̃/s decreases monotonically with T and there is no hysteresis.

Notice that the limits λ → 0, respectively Q → 0, are singular in the plot on the
left, respectively on the right, of Fig. 3.3. We have here a discontinuous behavior of
η̃/s similar to that found in the Q→ 0 limit for charged BHs in GR and to the λ→ 0
for the uncharged BHs of GB gravity.

The situation changes drastically for Q (or λ) of order 3/100 and smaller: the
system may undergo a Van der Waals-like phase transition. The function T(r+)

develops two local extrema Tmin and Tmax, signalizing the presence of two different
stable thermodynamical phase (small and large BHs) connected by a meta-stable one,
correspondingly, the η̃/s curve as a function of T develops hysteresis. Two typical
examples of this hysteretic behavior are shown in Fig. 3.3. On the left panel, for
fixed Q = 1/100, we see the onset of hysteresis, corresponding to the thermodynamical
phase transition, when λ . 0.025. On the right panel, for fixed λ = 1/100, we see
the onset of hysteresis and the thermodynamical phase transition when Q . 3/100.
The corresponding values of the critical temperatures are marked by the dots (Tmax)
and squares (Tmin) in Fig. 3.3 and their numerical values are listed in Table 3.1 and
Table 3.2 for selected values of the parameters Q and λ.

Analogous results can be found by choosing different Q and λ. Notice that, for
stable BH solutions with values of λ and Q above the critical values, our numerical
computation cannot reach T ∼ 0, because it uses a power-series near-horizon expansion
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λ 0 1/100

Q 1/100 Qc 1/100 2/100 Qc

Tmin 0.449 0.441 0.431 0.429 0.425
Tmax 0.664 0.441 0.494 0.445 0.425

Table 3.2: Critical temperatures for fixed values of λ and selected values Q below and
at the critical values. For the AdS-RN BH the critical charge is Qc = 1/6

√
5π. For

GB BHs with fixed coupling constant λ = 1/100 the critical charge is Qc ≈ 3/100.

which does not hold in the extremal case. However, from Eqs. (3.2.32) and (3.2.37),
which describe analytically the near-extremal behavior we conclude that η̃/s → 0
smoothly as T → 0.

3.3 AdS/CFT applications in 2D gravity

In this Section we recall the revisitation of the AP model already seen in Chapter 1
from a quantum perspective [84]. The goal of our reconsideration is twofolds. On
the one hand, we want to describe the symmetries of the model and the pattern of
conformal symmetry breaking. We will explain its dynamical consequences (generation
of an IR scale and the appearance of Goldstone modes) focusing mainly on bulk
gravitational features of the solutions. On the other hand, we would like to connect
and translate the formulation of the boundary theory in terms of the Schwarzian
action of Ref. [202] in the language of Refs. [169, 170, 201], i.e. in the language of
canonical realization of the asymptotic symmetry group of AdS2.

We will show that the pattern of conformal symmetry breaking and its dynamical
consequences can be simply described using bulk Killing vectors, the covariant (bulk)
mass definition of Refs. [206–208] and the flow between a “symmetry-respecting” vac-
uum and a “symmetry-violating” vacuum. In this way we can easily understand, from
a purely 2D bulk gravitational perspective, the generation of an IR scale (the mass
gap/scale of conformal symmetry breaking in the conformal correlators) and the ap-
pearance of local Goldstone modes. We will also relate the microscopic counting of
the degrees of freedom responsible for the thermodynamical entropy of the black hole
to the breaking of the conformal symmetry and to the associated (quasi) Goldstone
modes

Finally, we will show how the solution (1.7.78) can be uplifted to a (D+2)−dimensional
geometry describing the flow from a AdS2 × RD geometry in the IR to a (D +

2)−dimensional geometry with hyperscaling violation in the UV.

Symmetries and symmetry breaking

Let us discuss the symmetries of the different vacua of the AP model. The isometry
group of AdS2 is the SL(2, R) ∼ SO(1, 2) group generated by three Killing vectors.
In Schwarzschild coordinates (1.7.78) they represent time translations T , dilatations
and special conformal transformations. However, the SL(2, R) symmetry is only a
symmetry of the metric. The whole solution contains also the dilaton which, under
isometric transformations generated by the Killing vector χ, transforms as δµ = Lχµ =



68 CHAPTER 3. ADS/CFT APPLICATIONS

χµ∂µµ [201]. Notice that a constant dilaton will preserve the SL(2, R) symmetries of
the metric, whereas a non constant dilaton will necessarily break explicitly the SL(2, R)
symmetry. On the other hand, the 2D metric allows for the killing vector (1.7.86), which
is also always a symmetry of the dilaton (δµ = 0). Thus, a non constant dilaton breaks
explicitly the full SL(2, R) symmetry group of AdS2 down to its subgroup H generated
by the Killing vector (1.7.86).

In the case of the static solutions (1.7.78) the residual symmetry is the time trans-
lations T and the symmetry breaking pattern is SL(2, R) → T [201]. As a consequence,
the CDV of the AP model preserves the full SL(2, R) symmetries of AdS2, whereas the
LDV breaks SL(2, R) → T . In this way we can describe the IR/UV flow CDV→LDV
as a symmetry breaking of the full SL(2, R) group down to time translations.

The parameter controlling the symmetry breaking is ∂xµ = µ0λ. Any µ0 6= 0 value
breaks the SL(2, R) symmetry to T and generates a mass-scale in the IR, set by λ,
which is of the same order of magnitude of the mass gap (1.7.85).

Thus, the presence of a non constant dilaton breaks the conformal symmetry of the
AdS2 background and generates in the quantum regime a mass gap through µ0 6= 0.
Further, it also affects the asymptotic symmetries of AdS2 [201] and the dynamics of
the boundary theory. In particular, the latter can be constructed using boundary curves
t(u), where u is the time coordinate in the one-dimensional regularized boundary of
AdS2 [202].

Actually, the two descriptions, that of Refs. [169, 201], which uses canonical real-
ization of the asymptotic symmetry group (ASG) of AdS2 and that of Ref. [202] give
similar results but using different languages and a different coordinate system.

The ASG of AdS2 [170, 201] is given by reparametrizations of the type ξt =

ε(t), ξx = xε ′(t) and is generated by a single copy of the Virasoro algebra. This
transformations map the boundary curves t(u) into curves t(u) = u + ε(u). On the
other hand, they act on the asymptotic expansion of the metric [27, 169, 201]

gtt = −λ2x2 + γtt(t) + o(x
−2), (3.3.39)

gtx =
γtx(t)

λ3x3
+ o(x−5), (3.3.40)

gxx =
1

λ2x2
+
γxx(t)

λ4x4
+ o(x−6), (3.3.41)

by transforming the values of the boundary fields γ.
In the case of the CDV (which is called “pure AdS2” in Ref. [202]), the dilaton is

constant, µ0 = 0, and we do not have the explicit breaking of the SL(2, R) conformal
symmetry. The full Virasoro ASG is spontaneously broken by the AdS2 bulk geometry
down to the SL(2, R) group of isometries. The zero modes can be characterized either
by the boundary curves t(u) (in the language of Ref. [202]) or by the boundary defor-
mations γ (in the language of Ref. [170, 201]). These zero modes can be viewed as the
Goldstone modes associated to the spontaneous breaking of the ASG [202]. However,
these modes are not local, there is no local action one can write for them and this is
related to the fact that the central charge c in the Virasoro algebra is zero.

In the case of the LDV (which is called "nearly AdS2" in Ref. [202]), as discussed
above, the non constant value of the dilaton breaks explicitly SL(2R) → T . This gives,
in the language of Ref. [202] a new dimensional coupling constant, the renormalized
boundary value of the dilaton φr(u), which can be used to constrain the shape of t(u)
and to produce a local, Schwarzian action for the pseudo-Goldstone bosons t(u).
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Conversely, in the language of Refs. [170, 201], the explicit breaking of the confor-
mal symmetry is described by the asymptotic expansion for the dilaton µ = µ0ρ(t)x+

+o(x2) with the boundary field ρ(t) transforming as δρ = ερ̇+ ε̇ρ under the action of
the ASG [170, 201].

The two boundary fields can be identified: φr(u) = µ0ρ(t(u)). In both descriptions
the physical effect of the explicit symmetry breaking is to make the Goldstone modes
local and to generate a non vanishing central charge in the Virasoro algebra,

c = 12µ0, (3.3.42)

through the anomalous transformation of the boundary stress energy tensor Ttt under
the action of the ASG. In fact, we have T (1)tt = φr{t(u), u} for the boundary theory of
Ref. [202], whereas T (2)tt = −2µ0/λρ̈ for the boundary theory of Refs. [170, 201]. The
central charge c takes the form given by Eq. (3.3.42) if we choose ρ = 1. We can always
make this choice by fixing the u-reparametrization in the boundary which corresponds,
in the language of Refs. [170, 201], to consider deformations of the dilaton near the
on-shell solution (see [170, 201] for details).

The stress energy tensor T (2)tt can be brought in the form T
(1)
tt . In fact, by considering

finite transformations associated with the infinitesimal ones characterized by ε = u,
by using the transformation of the boundary field ρ and by setting ρ = 1 one finds
T
(2)
tt = (c/12){t(u), u}. The link between the origin of Schwarzian action and the

presence of a non constant dilaton was emphasized also in Ref. [271], where it was
shown that in a holographic framework the effective action of the AP model can be
put in a Schwarzian form using the anomalous trace Ward identity. In particular, the
anomaly turns out to be proportional to the source of the scalar operator dual to the
dilaton, which is the analogue of our function ρ(t).

Summarizing, the explicit breaking of the conformal symmetry, SL(2, R) → T gen-
erated by a non-constant dilaton has two effects. First, it generates at the quantum
level an IR scale in the form of mass gap, Mgap ∼ λ, separating the CDV from the
LDV.

Second, it transforms the global Goldstone modes of the CDV associated with the
spontaneous breaking of the ASG into local pseudo-Goldstone modes, producing a
central charge c = 12µ0 in the Virasoro algebra associated to the ASG. This central
charge therefore counts the number of pseudo-Goldstone modes. From this perspective
we can identify the degrees of freedom responsible for the entropy of the 2D dilatonic
black hole as these pseudo-Goldstone modes. The microscopic derivation of the entropy
of the 2D dilatonic black hole given in Ref. [169] can be seen as counting the states
of these modes. In fact, following Ref. [169] we can write the thermodynamical black
hole entropy ∆S = S − Sext in terms of the cental charge c and the eigevalue of the
L0 Virasoro operator, ∆S = 2π

√
cL0/6. Using Eq. (3.3.42) and the expression of L0 in

terms of the black hole mass we can easily recover Eq. (1.7.80). It is also interesting
to notice that the mass gap in the chiral 2D CFT can be also understood as finite size
effect generated by a plane/cylinder transformation of the vacuum of a CFT with non
vanishing central charge c = 12µ0 [272, 273].

Up-lifting to (D+2)-dimensions

In this Section we show as the up-lifting to D + 2)-dimensions of our 2D solution
generates an hyperscalin violating geometry.
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In (D+ 2)−dimensions the model is described by the action

S =

∫
dD+2x

√
−g(D+2)R(D+2) + LM, (3.3.43)

where LM is the Lagrangian for matter fields, which may also contains explicit cou-
pling of matter fields to the dilaton.

For simplicity we assume that after dimensional reduction to two spacetime di-
mensions, the term LM either reproduce exactly the potential (1.7.77) or a potential,
which can be approximated by (1.7.77). We look for brane solutions of the model, i.e.
solutions for which the D-dimensional spatial sections have planar topology RD and
the dilaton, µ, plays the role of the radius: ds2(D+2) = ds2(2) + µ

2/Ddxidx
i. In general,

the dimensional reduction of the action (3.3.43) on this background produces kinetic
terms for the dilaton µ in the 2D dilaton gravity action. This terms can be put to
zero by a Weyl rescaling of the 2D metric [207]. This corresponds to use, instead, the
dimensional reduction

ds2(D+2) = µ
1−D
D ds2(2) + µ

2
Ddxidx

i. (3.3.44)

One can check that the dimensional reduction now produces the AP action (1.7.75).
Using Eq. (3.3.44) and the form of the 2D solution given by Eq. (1.7.78), one can easily
realize that the (D + 2)−dimensional solution interpolates between an hyperscaling
violating geometry at large x and an AdS2 × RD geometry at small x. In fact, for
x→ ∞ the term proportional to x in the dilaton dominates, and the change of radial
coordinate, x ∝ r−2D/(D+1), brings the metric in the scale covariant form given in
Ref. [48]

ds2(D+2) = r
−2D−θ

D

(
−r−2(z−1)dt2 + dr2 + dxidx

i
)
. (3.3.45)

The hyperscaling violating parameter θ and the dynamical exponent z are:

θ =
D(D− 1)
D+ 1

, z =
2D
D+ 1

. (3.3.46)

Conversely, in the near horizon limit the term proportional to x in the dilaton, can be
neglected with respect to the constant term and the metric (3.3.44) gives an AdS2×RD
geometry. This can be also considered as the limiting case θ = 0, z = ∞ of the
hyperscaling violating geometry (3.3.45).

3.4 Summary and conclusions

In this Chapter we have computed the shear viscosity to density entropy ratio for
5D charged black branes and black holes both in general relativity and GB theories.
Moreover, we have discussed some important applications of AdS/CFT from a bulk
point of view and the consequences of the conformal symmetry breaking we have in the
case of two dimensions dilaton gravity. In the case of black branes, we have computed
the shear viscosity to entropy density ratio both for the non-extremal and the extremal
case. We have found that consistently with the geometrical and thermodynamic
picture presented in Chapter 1, universality of η/s is lost in the UV but is restored
in the IR. The ratio η/s has a non-universal temperature-dependent behavior for
non-extremal black branes but attains the universal 1/4π value at extremality. This
result implies that η/s is completely determined by the IR behavior and is completely
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insensitive to the UV regime of the dual QFT. This is largely expected because transport
features in the hydrodynamic regime should be determined by IR physics. On the
other hand, it is not entirely clear if this result has a general meaning or it is a just
a consequence of the peculiarities of the charged GB black brane (higher curvature
corrections vanish on the AdS2 × R3 background).

We have found that η/s is a smooth monotonic function of the temperature. Going
to small temperatures, it always flows to the universal value 1/4π but this value is
a minimum for λ < 0 and maximum for λ > 0. Thus, the QFT dual to GB-Maxwell
gravity with λ < 0 gives a nice example of temperature-flow of η/s always bounded
from below by 1/4π. On the other hand, the KSS-bound-violating flow we obtain in
the theory for 0 < λ < 1/4 remains open to further investigations.

For what concerns 5D charged black holes, the computation of the shear viscosity
to density entropy ratio has given interesting results. As expected, the large T behavior
of η̃/s, corresponding to the flow to the UV fixed point, reproduces the universal value
1/4π or (1 − 4λ)/4π in the GB case. When the bulk BH solution has a regular and
stable extremal limit (like e.g. charged BHs) and remains stable at small T , η̃/s → 0
as T → 0 with a T2ν scaling law. In this latter case, the system flows in the IR to the
AdS2 × S3 geometry.

Our most important result is the behavior of η̃/s at intermediate temperatures. A
second-order, Van der Waals-like, phase transition occurs when the control parame-
ters go below their critical values [184, 185]. In this situation BHs may also undergo
a first order phase transition controlled by the temperature. This corresponds to the
transition from small to large BHs connected through a meta-stable intermediate re-
gion. As a consequence, η̃/s as a function of T always develops hysteresis and it
becomes multi-valued as expected for a first order phase transition [247]. Notice that
in our case the first and second-order phase transitions are both necessary in order
to have the hysteretic behavior in η/s. Even though, similarly to the case discussed
in Ref. [247] the multi-valuedness of η/s is directly related only to the first order one.
The role of the second-order phase transition is to allow for the existence of the first
order one.

The mechanism that generates hysteresis in η̃/s is the same that is responsible
for the phase transition and can be traced back to non-equilibrium thermodynamics.
When a control parameter, i.e. the charge Q or the GB coupling constant `, is below
its critical value, the function T(r+) develops both a local maximum and minimum.
The regions below the maximum and above the minimum correspond to two stable
solutions, i.e. small and large BHs, respectively. The region between these two is
represented by an unstable (meta-stable) region of intermediate BHs. When the system
evolves from large (small) BHs to small (large) BHs, a potential barrier prevents the
evolution of the system from occurring as an equilibrium path between the two stable
states [269]. Equilibrium will be reached passing through a meta-stable region [268],
and a path-dependence of η̃/s is generated. The presence of these local extrema
determines the patterns of signs of the BH specific heat and free energy, hence the
local thermodynamical stability [163, 184]. This interesting result represents the first
attempt to infer about BH thermodynamics through a detailed analysis of a transport
coefficient as the shear viscosity.

Let us stress the fact that the definition of η̃ for spherical backgrounds is channel-
dependent. In general we have three different determinations of η̃ for shear, sound
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and transverse (scalar) perturbations. In this thesis we have focused on transverse
perturbations. It would be of interest to check whether the behavior of the viscosity
found for the transverse channel also extends to the sound and shear channels. The
computation of our analogue η̃ in these other two channels is rather involved and we
have left it for future investigations.

Finally, in the case of 2D dilaton gravity, starting from the revisitation of the
AP model presented in Chapter 1, we focused mainly on bulk features of the model.
We have given a description of the pattern of conformal symmetry breaking, which is
complementary to that emerging in the dual CFT [202].

This pattern is quite similar to that pertinent to hyperscaling-violating geometries
in higher dimensions, to which we show the AP model can be uplifted. In fact, as a
result of the flow between a “symmetry-violating” vacuum and a “symmetry-respecting”
vacuum at the quantum level an IR scale is generated in the form of a mass gap. The
other effect of the conformal symmetry breaking is to make local the Goldstone modes
associated with the asymptotic symmetries of the 2D spacetime. This generates a non-
vanishing central charge in the dual conformal theory, which explains at microscopic
level the entropy of the 2D black hole [169].

We have also shown that several features of the boundary theory described in
Ref. [202] can be easily translated in our language, which is based on bulk quantities
and on the asymptotic symmetries of the spacetime.



Part II

The Dark Universe





Chapter 4

Gravity as an emergent
phenomenon

Despite its great success in describing various phenomena in nature, for example
black holes and gravitational waves, the debate about the validity of general relativity
(GR) at every energy scale still goes on in the gravitational physics community. The
predictions of GR are in good agreement with observations at Solar system scales, but
at cosmological and galactic ones we need to add new exotic components of matter in
order to fit the data. In particular, from cosmological observations we know that the
baryonic content of matter in the universe is about 5%, whereas the remaining 95%
is made of some dark and unknown components which interact only gravitationally
and extremely weak coupled with baryonic matter. These are called dark matter (25%
of the universe) and dark energy (70% of the universe) and their true nature is still
mysterious. For this reason, a new theoretical framework is necessary to explain all
these phenomena.

The most conservative approach (the ΛCDM model) assumes the existence of the
two dark components. However, to date there is still no direct evidence of the existence
of dark matter and dark energy. It is therefore natural to consider large scales (IR)
modifications of GR as a viable alternative to the existence of dark matter. In the last
thirty years, the number of theories developed to extend general relativity both in the
IR and in the UV is rather wide. Among the others, the attempt to find a quantum
theory of gravity has triggered the idea that gravity can emerge from some underlying
microscopic quantum theory [85, 86, 88–94]. In particular, the works of Verlinde [87]
and Dvali et al [90, 91, 97, 133–137] have gained a lot of interest in the community.

The main motivations behind these formulations are the understanding of (quan-
tum) spacetime structure at short distances and the puzzles of black hole physics. On
the other hand, it has become increasingly evident that a crucial requirement for these
theories is the explanation of the dark side of our universe. In the second part of
this thesis, we will address these kind of problems by focusing on the galactic regime
of gravity both from a classical and quantum perspective. This will be done in the
framework of Verlinde’s emergent gravity together with the microscopic description of
spacetime of Dvali et al. In particular, we will focus on the phenomenology usually
attributed to explain it can emerge from the quantum nature of spacetime [274, 275].
The interesting fact is that, in this approach, no particles out of the standard model
are needed. In the last Chapter of the thesis, we will adopt a conservative approach
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to the problem and we will propose a new (classical) solution of general relativity, a
sine-Gordon solitonic scalar star, that can account for a possible dark matter candi-
date [276] in our universe.

In this Chapter, we will first review both the emergent gravity paradigm of Verlinde
and the corpuscolar description of gravity of Dvali et al.

Note: we set the speed of light as c = 1.

4.1 Emergent gravity

The idea that the classical spacetime structure and gravity could emerge together
from some underlying microscopic quantum theory is an old one [85]. The power of
this emergent paradigm is that it must depend loosely on the details of the underlying
microscopic theory and it is essentially determined by its fundamental quantum nature.
In particular, even if we do not properly know the nature of the quantum constituents
of spacetime, recent theoretical progresses in the field suggest that the fundamental
features of the quantum theory such as entanglement can play an important role in
formation of geometric structure as spacetime [95]. In this theoretical framework
the spacetime geometry is viewed as representing the entanglement structure of the
microscopic quantum state. Gravity emerges from this quantum information theoretic
viewpoint as describing the change in entanglement caused by matter [87]. These ideas
are well understood in the case of AdS/CFT correspondence, whereas when one tries
to extend these concepts to a more realistic representation of our universe, i.e. de
Sitter universe, some problems arise due to the presence of a cosmological horizon.
However, a better investigations of quantum entanglement in this kind of background
has led Verlinde to formulate his proposal about emergent gravity [87].

In this Section we will review his approach to this topic with the aim to put the
basis for the next Chapters of the thesis.

Entanglement properties of de Sitter spacetime

The role of entanglement is fundamental in the definition of the emerging properties
of spacetime. In general, one can think that the presence of an horizon in de Sitter
(dS) spacetime (no timelike boundaries at infinity such as in the case of Anti-de
Sitter spacetime) can prevent the existence of a quantum description in terms of a
holographic correspondence, namely (A)dS/CFT. Instead, this peculiar feature of dS
suggests that the properties of the (presently unknown) quantum degrees of freedom
at very large scales are completely different from the ones at small scales.

As an horizon, also the dS horizon carries a certain amount of entropy and, cor-
respondingly, it has a temperature, accordingly to Bekenstein-Hawking formulas. The
horizon entropy scales as an area, as expected. The existence of a horizon entropy
and temperature signalize that, microscopically, de Sitter space can be considered as
a thermal state filled of some internal degrees of freedom in which part of them are
being “thermalized”. Differently from a static black hole, in the dS case we have
slow thermalization with time scale of order Hubble time, resulting from the acceler-
ated expansion of the universe. Interactions and connections between the microscopic
constituents of spacetime are provided by quantum entanglement. In de Sitter space-
time, one should consider two different regimes of quantum entanglement: on the
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one hand, we have the long range entanglement connecting bulk excitations with the
horizon ones. On the other one, we have the short range entanglement characterizing
the interactions between horizon internal degrees of freedom and satisfying an area
law. The latter is true for cosmological or black holes horizons.

The novel idea is that these quantum states associated with the horizon entropy
are considered as maximally entangled with bulk excitations carrying a typical energy
set by the temperature. In this picture, the thermal excitations responsible for the de
Sitter entropy constitute the positive dark energy, which, together with the accelerated
expansion of the universe, are caused by the slow thermalization of the emergent
spacetime. From a quantum perspective, de Sitter space corresponds to an ensemble of
metastable quantum states that together carry the Bekenstein-Hawking entropy asso-
ciated with the cosmological horizon. The metastability has purely an entropic origin:
the high degeneracy together with the ultra-slow dynamics prevent the microscopic
system to relax to the true ground state. At long timescales the microscopic de Sitter
states contain a thermal volume law contribution to the entanglement entropy. This
behavior is typical of glassy systems, where two different dynamics lead to differ-
ent physical configurations, even if the microscopic constituents are always the same
[277–279].

In this perspective, one can derive the effective macroscopic dynamics charaterizing
the “short” scale dynamics of gravity given by Einstein’s equations from a minimiza-
tion of an area law for the entanglement entropy. For example, a similar procedure
has been done in condensed matter physics, where a strict area law arises almost
exclusively in ground states of gapped systems with strong short range correlations.
In the case of de Sitter space, due to the long range interactions and to thermalization
a non-zero volume law entropy arises. Its contribution is subleading with respect to
the area contribution at short distances but it cannot be neglected at large distances
where it will be the dominant part of the entropy of the system. This phenomenon can
be considered as responsible for the presence of a cosmological horizon in de Sitter
universe.

Hints from quantum gravity: the dark matter problem

The emergent gravity scenario described above must have also important consequences
for the behaviour of gravity at galactic scales. This is a crucial point because galactic
scales are those pertinent to the dark matter phenomenology. One is therefore lead to
look to this emergent scenario for solving the dark matter puzzle.

As already mentioned, the cosmological observations indicates that the 95% of
the universe is represented by a mysterious form of matter and energy, the dark
matter (25%) and the dark energy (70%). In the emergent gravity paradigm, where
everything is emerging from some underlying microscopic quantum theory, no exotic
matter should be needed to fit the data. Rather, one should think to dark matter and
dark energy as well, as emerging from quantum properties of spacetime.

One way to tackle the problem is to consider galactic dynamics and, in particular,
galaxies rotational curves. At galactic scales, we know that the flattening of rotational
curves is controlled by the Hubble acceleration, a0 = H0 = 1/L, where L is the de
Sitter radius 1 [120, 121]. In particular, the dark matter effects in galactic dynam-

1The cosmological constant is related to the de Sitter radius by Λ = 6/L.
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ics arise when the Newtonian acceleration becomes comparable to the cosmological
acceleration. This leads to the definition of a critical radius, r0, at which the dark
matter effects take places. In a detailed mathematical and physical picture, this can
be translated in a competition between the two kind of entanglement described above:
on the one hand, the short range entanglement is responsible for the emerging of
Einstein gravity and, in the weak field regime, for the Newtonian dynamics. This
dictates how matter should behave at Solar system scales and at galactic ones in the
core of the galaxy, i.e. for r 6 r0. As a consequence, this baryonic matter carries a
certain amount of entropy which is proportional to the area of the region in which
it is stored. On the other one, the long range entanglement is responsible for the ac-
celerated expansion of the universe, thus leading to the cosmic acceleration a0 = 1/L.
This pure quantum effect contributes with a (thermal) volume contribution to the total
entropy of spacetime in a galactic region and it is important for r > r0.

In the emergent gravity perspective we are dealing with, the dark matter effects
can be understood as a reaction of spacetime (which in the efective description can be
thought as a the dark energy fluid) to the presence of baryonic matter. The quantum
properties of spacetime turns the effective description of the universe into an effective
fluid description or, depending of the specific realization, an elastic theory of quantum
degrees of freedom. When one takes into account the presence of baryonic matter in
the weak field regime of the interaction, spacetime reacts as an elastic medium, thus
generating an elastic force from which it is possible to derive the acceleration of stars
in galaxies, i.e.

aMOND(r) =
√
ã0 aB(r) , (4.1.1)

where ã0 = a0/6 and aB(r) = GmB(r)/r
2. This formula exactly matches the MOND

acceleration [120, 121]. This relation can be also written as

v2 ≈
√
a0GNmB, (4.1.2)

which exactly matches the Tully-Fisher relation at these scales [115]. Both the formulas
perfectly fit the data about the rotational curves of stars in galaxies and describe
galactic dynamics. We skip the derivation of these results and we refer the reader to
the lecture of Verlinde’s paper [87] for the details. Eqs. (4.1.1) and (4.1.2) show that we
do not need particles out of the standard model to understand the physics at galactic
scales, rather, we should better investigate the quantum properties of spacetime. We
conclude noticing that the Verlinde’s results are valid only for static spacetime and,
in their derivation, de Sitter spacetime is taken as a pre-existing background. A more
involved formulation of the theory is necessary to include the real nature of this
quantum degrees of freedom and dynamical spacetime too.

In the next Chapter we will show how it is possible to formulate the emergent
gravity paradigm presented here in the quantum perspective of corpuscolar gravity
of Dvali et al, e.g. [91, 275], with the aim to better understand the quantum origin
of Eqs. (4.1.1) and (4.1.2).

4.2 Corpuscolar gravity

In the previous Section we have seen how entanglement plays a fundamental role in
the emerging of dS universe and of a dark force at galactic scales. From Verlinde’s
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point of view, the nature of the elementary microscopic quantum degrees of freedom
is not specified and their dynamics defines the macroscopic properties of spacetime.
Among the various attempts to give a detailed description of the nature of these
degrees of freedom, a series of papers of Dvali and collaborators have suggested the
possibility to understand gravity as emerging from a Bose-Einstein condensate of
gravitons [90, 91, 97, 133–137]. In this Section we will summarize the content of these
papers and report the basic ingredients of this approach with the aim to put the basis
for the next Chapters, where the notion of corpuscolar gravity will be fundamental.

Gravity as a Bose-Einstein condensate

Einstein’s theory is a classical theory of gravity. Viewed as a quantum theory, GR is a
theory that propagates a unique weakly-coupled quantum particle with zero mass and
spin-2. At low energies a consistent definition of the quantum self-coupling constant
of the theory can be a dimensionless parameter given by

αGR =
L2P
λ2
, (4.2.3)

where LP is the Planck length, LP =
√
}GN and λ is the typical Compton wavelength

of the particle. When λ� LP the theory becomes strongly coupled. This fact indicates
that GR can be seen as a quantum theory only in the weak coupling regime. In order
to not violate unitarity in the trans-Planckian regime some mechanism able to prevent
such a problem should exist. This shall enable us to compute gravitational amplitudes
at arbitrarily short distances.

A possibility to avoid this hypothesis is to consider Einstein gravity as a self-
complete quantum field theory (in a non-Wilsonian way). This concept can be ex-
plained as follows: when gravitons are in a regime such that their energy is approach-
ing values greater than the Planck energy, the system is induced to produce particles
with a very large wavelength λ� LP and a large occupation number NG. In this way,
unitarity is restored being the probability to produce particles with momentum greater
than }/LP very low and exponentially suppressed. When the number of produced
particles NG sufficiently grows, the system undergoes the so-called classicalization
process. From a quantum perspective classicalization or classicality means that any
classical object is understood as a quantum bound-state of high occupation number
NG � 1. Conversely, given a quantum system, when the number of particles increases
such that NG � 1, the system become classical. For this reason we can talk about
corpuscolar gravity. Among the variety of macroscopic and classical objects one can
take into account, black holes (and solitons as well) seems to be the simplest ones.
They can be described by a single quantum characteristic, NG. For this purpose this
number serves as the main measure of classicality.

The occupation number of gravitons is a universal quantity irrespective of the
particular nature of the source. In particular black holes maximizes the number NG,
i.e. NG reaches its maximum value for wavelength of the order of the Schwarzschild
radius of the object. From this perspective, black holes are the most classical object
among all possible objects of a given characteristic wavelength. Universality of NG
leads us to a quantum-mechanical picture of a black hole which does not introduce
any classical geometric feature of the system. Instead it is fully characterized by the
single parameter NG.
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Black holes in corpuscolar gravity

The starting point of the corpuscolar picture of gravity is that black holes can be
seen as a self-sustained Bose-Einstein condensate (BEC) made of NG gravitons at
the point of maximal packing. The maximal packing condition means that the size
of the system, λ, depends on the occupation number NG in such a way that it is
impossible to further increase NG without increasing λ. This ensure that once the
maximal packing condition is reached, the system can be always described as a Bose-
Einstein condensate of gravitons and the number of particles, NG, become the only
characteristic of the system. By using this picture it is possible to explain all the
fascinating and puzzling properties of black holes such as the Hawking radiation, the
black holes negative specific heat and entropy and, finally, holography.

The interesting fact is that, in this picture, black holes represent Bose-Einstein
condensates of gravitons at the critical point of a quantum phase transitions. This
can be explained as a consequence of the gravitational collapse of matter. Indeed, the
condition for a formation of a black hole, i.e. that matter reaches the Schwarzschild
radius r = 2Gm, allows the system to reach the critical point at which it becomes
self-sustained (or maximally packed from a quantum point of view) condensate of NG
particles. This is due to the self-similarity of the quantum depletion: every times the
system changes its size, the occupation number NG changes correspondingly in such
a way the system always stays at the critical point of the quantum phase transition.
In this way, for example, it is possible to explain the Hawking radiation: if the
wavelength of the gravitons at the fundamental state decreases, the system shrinks.
Then in order to satisfy the maximal packing condition, the system is forced to emit
a certain number of particles. This shows how the occupation number NG plays an
important role also in defining the size of the system.

A way to calculate the number NG and evaluate the graviton wavelength in the
BEC, i.e. the energy of the gravitons is as follows. As mentioned before, the graviton-
graviton coupling constant can be defined by using the dimensionless constant α
given in Eq. (4.2.3). The graviton-graviton coupling constant can be understood as the
relativistic generalization of the Newtonian interaction between gravitons. In terms of
α, the latter can be written as

V(r)Newton = −}
α

r
. (4.2.4)

In case of massive particles, r represents the De Broglie wavelength of the particle.
Since gravitons are massless particles, we have to use the Compton wavelength.

It is easy to see from Eq. (4.2.3) that the interaction among gravitons is extremely
weak. However, since gravitons are bosons they can self-condensate and their occu-
pation number can become extremely large. In this condition, the effects of the mutual
interaction become important and each graviton can feel a stronger and stronger bind-
ing potential, thus leading to a critical occupation number,

NG = Nc =
1
α
. (4.2.5)

At the critical point the condensate become self-sustained and this exactly represents a
black hole state. The condition of self-sustainability can be also obtained by equating
the kinetic energies of individual quanta, Ek, with the collective binding potential, V ,

Ek + V = (1− αNG)
}
λ
= 0, (4.2.6)
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which is satisfied for the critical occupation number in Eq. (4.2.5). As mentioned
before, the critical point also corresponds to the point of maximal packing of the
condensate. This means that the system is so densely packed that the occupation
number NG becomes its only defining characteristic. In particular, by using Eqs. (4.2.3)
and (4.2.5) we obtain

λ =
√
NGLP, α =

1
NG

. (4.2.7)

In case of black holes, we can also relate the gravitons’ occupation number to their
mass. In fact, for a black hole λ is given by λ = 2Gm, which in turn determines the
condition to obtain a black hole from the gravitational collapse of matter, the equation
above con be also written as

m =
√
NGmP, (4.2.8)

where mP is the Planck mass. Formulae (4.2.7) and (4.2.8) will play a key role in the
development we present in the next Chapters.

Let us note that the critical point in Eq. (4.2.7) can be achieved for arbitrary NG
but, in general, λ cannot arbitrarily decrease beyond

√
NGLP. In fact, the decrease

of gravitons’ wavelength is always balanced by a decrease of NG due to quantum
depletion and leakage of the condensate. In this way the condensate can collapse but
it looses particles at the same rate and the system always stay at the critical point.
For example, this mechanism can explain the Hawking radiation.

For what concerns this thesis, we will not report the explanation of other fascinat-
ing and puzzling topics in black hole physics due to the corpuscolar picture of gravity.
We refer the reader to the papers [90, 91, 97, 133–137]. Let us conclude by noticing
that the corpuscolar gravity picture is able to describe not only black hole physics but
also the de Sitter and inflationary universe [91, 99, 280, 281]. As we will see in the
next Chapter, the de Sitter universe can be described as a Bose-Einstein condensate
of gravitons with typical wavelength of the order of the Hubble radius, L. In this case
the occupation number of gravitons is

NdS =
L2

L2P
. (4.2.9)

In this picture, the de Sitter universe behaves as a black hole, with the Hubble radius
replacing the Schwarzschild radius. The typical energy of gravitons in this regime is of
the order of EdS = }/L. Indeed, following [91, 280] it is also possible to calculate the
Hubble temperature. We argue that in the case of de Sitter universe, the equivalent of
Hawking radiation, i.e. the depletion of the condensate and the leakage of particles,
can be understood at macroscopic level as the enhancing of a dark energy fluid. This is
a consequence of the condition of maximal packing (or maximally entangled quantum
degrees of freedom in the language of Verlinde’s emergent gravity, see Sect. 4.1) in the
case of a cosmological condensate. Indeed when the energy of gravitons increase, Eg >
EdS, for example due to quantum fluctuations, the cosmological gravitons’ wavelength
decrease correspondingly, λg < L, and gravitons can feel a stronger and stronger
binding potential, V ∝ }/λg > VdS ∝ }/L. In order to the system to not collapse
and stay always in the condensate phase, it must increase the number of particles
in the condensate (DE particles in the effective fluid description). As a consequence,
the BEC increase its size, i.e. it expands, according to Eq. (4.2.9). This, in turns,
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satisfies also the third principle of thermodynamics which implies entropy of a system
cannot decrease, i.e. the occupation number of a system can never decrease. In this
sense, this idea can be seen as a translation, in the corpuscolar gravity dictionary,
of a recent proposal about the origin of de Sitter spacetime from the maximization
of entanglement entropy in a Freedman-Robertson-Walker-Lamaître universe [282].
However, the detailed study of cosmological BECs and the origin of dark energy will
not be addressed in this thesis but and is left for future investigations.



Chapter 5

Emergent gravity in a corpuscular
picture

The possibility that the gravitational interaction could emerge together with the space-
time structure from some underlying microscopic quantum theory is not only a fasci-
nating topic in theoretical physics. It represents also a concrete route to follow to find
the signature of quantum gravitational effects at macroscopic scales. Indeed, follow-
ing [87], in the next two Chapters, we will show how some aspects of the gravitational
physics at galactic scales, which are generally attributed to the phenomenology of dark
matter, can be explained in a corpuscolar picture of emergent gravity.

In particular, in this Chapter, we study and investigate the emergent laws of
gravity when dark energy and the de Sitter spacetime are modelled as a critical Bose-
Einstein condensate of a large number of soft gravitons NG. We argue that this
scenario requires the presence of various regimes of gravity in which NG scales in
different ways. This is similar to the different entanglement entropies scenarios we
have introduced in the previous Chapter describing Verlinde’s emergent gravity [87].
Moreover, the local gravitational interaction affecting baryonic matter can be naturally
described in terms of gravitons pulled out from this Dark Energy condensate (DEC).
For what concerns the galactic dynamics, we then explain the additional component of
the acceleration at galactic scales, commonly attributed to dark matter, as the reaction
of the DEC to the presence of baryonic matter. This additional dark force is also
associated to gravitons pulled out from the DEC and correctly reproduces the MOND
acceleration. We finally calculate the mass ratio between the contribution of the
apparent dark matter and the baryonic matter in a region of size r at galactic scales
and show that it is consistent with the ΛCDM predictions. The Chapter is based on:

� M. Cadoni, R. Casadio, A. Giusti and M. T., “Emergence of a Dark Force in
Corpuscular Gravity”, Phys.Rev. D97 (2018) no.4, 044047, arXiv:1801.10374.

� M. Cadoni, R. Casadio, A. Giusti, W. Mück and M. T. “Effective Fluid Description
of the Dark Universe”, Phys.Lett. B776 (2018) 242-248, arXiv:1707.09945.

Note: we use units with c = 1, while the Newton and Planck constants are ex-
pressed in terms of the Planck length and mass as GN = `p/mp and ~ = `pmp,
respectively.
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5.1 Quantum compositeness and the scaling of graviton
number

In a pure emergent gravity approach, the true quantum nature of gravity cannot be
fully neglected in our present universe, even at astrophysical and cosmological scales.
As a consequence, the geometric description given by Einstein gravity (or modifica-
tions thereof) should only emerge in suitable regimes and for specific observables. In
particular, as mentioned in Chapter 4, it has been conjectured that the quantum state
of our universe could be thought of as a BEC [91] containing a certain number NG
of (very soft and virtual) gravitons with typical energy εG, very much like the grav-
itational field of a black hole [90]. The presence of baryonic matter must affect the
quantum state of this BEC of gravitons and, at least in some crude approximation,
one can then expect an energy balance, akin to the Hamiltonian constraint of GR,
holds in the form

HB +HG = 0, (5.1.1)

where HB is the matter energy and HG the analogue quantity for the graviton state.
It is now crucial that our present universe appears to be mostly driven by dark

energy, and as such it is characterised by the Hubble radius,

L = H−1, (5.1.2)

of the visible portion. Furthermore, the presence of baryonic matter (stars and planets)
defines a typical size RB, around which gravity is well approximated by Newtonian
physics. These two length scales satisfy the hierarchy

RH � RB � L, (5.1.3)

where RH = 2GNmB is the Schwarzschild radius of a source of baryonic mass mB.
The quantum state of gravity should entail such scales. In particular, we expect to
identify different regimes of gravity for each scale from the way both the number of
gravitons NG and their typical energy εG scale with the mass m = m(r) and the size
r of the region we are considering.

In the corpuscular description, one is mainly concerned with self-gravitating sys-
tems, i.e. compact sources of typical size RB. To this class belong both marginally
bound systems, which are described by BEC at the critical point (black holes) and
non-marginally bound systems (compact stars, horizonless objects) which are described
by BEC away from the critical point. In terms of the graviton coupling α ' `2p/r2 the
two regimes respectively correspond to α = 1/NG and α < 1/NG [90].

In terms of the Hamiltonian constraint (5.1.1) the marginally bound condition corre-
sponds to systems for which the mass is equal to the graviton interaction energy [283].
This is the case, for istance, of very compact (collapsing) stars or black holes. Indeed,
if we consider these objects as made of N interacting identical components and, for
simplicity, we also neglect any emission of radiation, the total energy is conserved and
always equals the ADM mass M of the system. Moreover, we know that in general
relativity the energy conservation is given by the Hamiltonian constraint associated
to the freedom of time reparametrization. Thus (5.1.1) becomes HG + HB = M, where
HG and HB are the gravitational and matter Hamiltonian obtained by varying the
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action with respect to the lapse function and M emerges from boundary terms. At
small scales, i.e. for r of the order of the size of compact sources, the number of
gravitons NG affected by the presence of matter sources can be obtained by describing
the Newtonian (and first post-Newtonian [283, 284]) potential by means of a quantum
coherent state, for which one generically finds a quadratic scaling of NG with the
mass [90],

NG ∼
m2

B
m2

p
, (5.1.4)

where mB is the mass of the localised baryonic source. Since the (negative) Newtonian
energy is given by

UN ' NG εG ' −
GNm

2
B

r
, (5.1.5)

the typical energy of the individual (virtual) quanta is again given by the Compton
relation

εG ' −
`pmp
r
, (5.1.6)

and, using the mass/radius relation for black holes, mB ' r = RH, Eq. (5.1.5) implies
an holographic scaling with r, namely

NG ∼
r2

`2p
∼ −

1
ρH
, (5.1.7)

where ρH is the (negative) graviton energy density around a black hole.
Notice that, for non-marginally bound gravitational systems, the scaling rela-

tion (5.1.4) still holds [283, 284], but the holographic (5.1.7) does in general not. The
corpuscular description can be generalized to cosmological spacetimes [91] in absence
of baryonic matter. In this framework, the dS universe of size L, sourced by a con-
stant dark energy density ρΛ, can be described, similarly to a black hole, as a critical
BEC [280]. In fact, the main feature of the dark energy sourcing the dS space-time,
namely that it satisfies the vacuum equation of state p = −ρΛ, is naturally realised in
a BEC, as was shown in Refs. [285–288].

An ideal universe of size L solely containing self-coupled gravitons as a description
of vacuum (dark) energy should behave like the de Sitter spacetime. In GR, one then
needs a cosmological constant term, or constant vacuum energy density ρΛ, so that
the Friedman equation reads

H2 ≡
(
ȧ

a

)2
' GN ρΛ. (5.1.8)

Upon integrating on the volume inside the Hubble radius (5.1.2), we obtain

L ' GN L
3 ρΛ ' GNmΛ. (5.1.9)

This relation looks like the expression of the horizon radius for a black hole of ADM
mass mΛ, which has led to conjecture that the dS spacetime could likewise be described
as a condensate of gravitons [91, 280]. One can in fact introduce a corpuscular
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description on assuming that the (soft virtual) graviton self-interaction gives rise to
a condensate of NΛ gravitons of typical Compton length equal to L [91], so that the
total (positive dark) energy

mΛ ' NΛ εΛ ' NΛ
`pmp
L

, (5.1.10)

and, from Eq. (5.1.9), it follows immediately that

NΛ ∼
m2
Λ

m2
p
=
L2

`2p
, (5.1.11)

which shows that one needs a huge NΛ � 1 for a macroscopic universe. Note also
that we have

ρΛ ∼
mΛ

L3
∼

1
NΛ

, (5.1.12)

so that the number of gravitons in the vacuum increases for smaller vacuum energy,
and

L ∼ mΛ ∼
1
√
ρΛ
. (5.1.13)

It seems sufficiently clear that in the corpuscolar gravity picture, geometric quantities
as black hole area or radius are encoded in the notion of gravitons occupation number,
NG. For instance, this can help us to encode a physical concept as black hole entropy
in a simple and intuitive way. Indeed, in what follows we will explain how translate
the key point of Verlinde’s emergent gravity, i.e. the different entanglement scaling in
dS spacetime (see Chapter 4) in the corpuscolar gravity picture we are dealing with.

Holographic regimes of gravity

We have shown that black holes and the dS universe can be described by a critical
BEC of gravitons we dubbed DEC. We have also seen that criticality for the BEC
implies the holographic scalings (5.1.7) and (5.1.11) for NG. Being all the gravitons
packed in the ground state, the entropy of the DEC is given by NG, implying that
Eqs. (5.1.7) and (5.1.11) are equivalent to the BH area law 1.

Eqs. (5.1.4) and (5.1.11) define the holographic regimes of gravity: for volumes of
both cosmological (in absence of baryonic matter) and Newtonian size, one can argue
that the relevant number of gravitons scales holographically, that is

NAG(r) ∼
m2(r)

m2
p

∼
r2

`2p
, for r ' L and r ' RB, (5.1.14)

where m = m(r) is an appropriate mass function inside the volume. More precisely,
NG(L) can be viewed as the total number of gravitons inside the visible universe,
whereas NG(RB) is the number of gravitons that respond locally to the presence of the
baryonic sources of mass mB, by changing their energy from εG(L) to some εG(RB) <
εG(L) in order to enforce the Newtonian dynamics. The holographic scaling (5.1.14)
therefore applies to two very different, albeit equally non-extensive, regimes of gravity.

1Factors of order one will be usually neglected unless necessary.
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The holographic scaling relations (5.1.7) and (5.1.4) were first found for black
holes [91], and only Eq. (5.1.4) was then shown to hold for general compact sources in
Refs. [283, 284]. From Eqs. (5.1.4), it follows that we get the BH area law (5.1.14) in
the regime where the relevant mass m = m(r) of the condensate scales linearly with
the size r of the source.

The holographic regime of gravity holds for sure in the case of black holes and the
de Sitter space, and we assume that Eq. (5.1.14) also remains a very good approxima-
tion at all typical scales r for which gravity is well described by GR. This assumption
is based on the fact that the holographic nature of gravity is a generic consequence of
the Einstein-Hilbert action. Note, however, the change in sign of the graviton energy
from the positive cosmological mass (5.1.10) to the negative Newtonian energy (5.1.5):
this is a clear signal that the two holographic regimes, at small and very large scales,
respectively, are indeed different, which suggests that at intermediate scales the be-
haviour of gravity deviates from the holographic description, as we will see in the
next section.

Before we proceed, a word of caution is in order: since the gravitons in the
condensate are considered as virtual (non-propagating) modes, their number NG is
not directly observable, nor is their individual energy εG. In fact, one can think of
these quantities as convenient intermediate variables which will not appear in our final
expression for the matter dynamics. These gravitons could however become observable
if they are scattered off the coherent state, for instance by their self-interaction, which
leads to the depletion of the DEC. This effect produces the Hawking radiation around
black holes [90] and primordial perturbations during inflation [91, 289], but will be
totally neglected in this thesis.

Extensive regime of gravity

There are several reasons, coming both from the microscopic and from the emergent
space-time description, for arguing that the holographic regime (5.1.14) of gravity can
not hold throughout the whole range of scales (5.1.3). In particular, this implies the
existence of a new infrared scale RH < r0 < L, where the behaviour of gravity deviates
from the holographic description.

The first indication comes from the fact that the two holographic regimes at small
and very large scales, although satisfying the same scaling relation (5.1.14), are indeed
different. We recalled above that the graviton energy changes in sign going from
the positive cosmological mass (5.1.10) to the negative Newtonian energy (5.1.5). This
implies the two holographic regimes must be connected by a mesoscopic phase, in
which gravity may deviate from the holographic behaviour (5.1.14).

The second indication comes from Verlinde’s argument about the pattern of en-
tanglement entropy in dS space [87]. As pointed out in Chapter 4, unlike black holes,
the dS spacetime must contain a thermal volume contribution to the entanglement
entropy, coming from very low energy modes. In our description of the dS spacetime,
this implies an extensive term for the graviton number associated with the DEC.

The third and strongest indication comes from the fact that, locally, without bary-
onic matter, the DEC of the dS space-time has a constant energy density characterized
by an extensive behaviour. In fact, at galactic scales, we cannot consider the cosmic
condensate as a whole, but just as a medium with (positive) constant energy density
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ρG equal to the cosmological value (5.1.12), that is

ρG ' ρΛ ∼
mp
L2 `p

. (5.1.15)

The total graviton energy inside a region of size r is therefore given by

mG(r) '
4π
3
ρΛ r

3 ∼
mp r

3

L2 `p
= NG(r) εΛ. (5.1.16)

The number of gravitons contained in this spherical region is therefore an extensive
quantity, scaling as the volume,

NG '
r3

L `2p
∼
mG(r)

mp
(5.1.17)

where we again assumed the Compton relation εΛ ∼ `pmp/L from Eq. (5.1.10). A crucial
check for the validity of the scaling relation (5.1.17) is that it correctly reproduces the
cosmological relation (5.1.11) precisely for r = L.

We are therefore lead to assume that, if baryonic matter is totally neglected, at
the intermediate scales RB � r � L, the graviton state is approximately described by
the extensive regime (5.1.17), i.e. it is ruled by the extensive regime of gravity:

NVG(r) ∼
m

mp
∼
r3

L `2p
, for RB � r� L. (5.1.18)

This behaviour will be argued to interpolate somehow between the two (different)
holographic regimes (5.1.14) at r ' L and r ' RB. One of the main results we will
present here is that it is the tension between the two scalings (5.1.14) and (5.1.18)
that leads to deviations from the local Newtonian dynamics [87]: the response of the
graviton condensate to the presence of baryonic matter makes both the holographic
and the extensive regimes important at galactic scales.

The physical picture behind this corpuscular description is again similar to Ver-
linde’s [87]. For compact sources of size RB ' RH and at cosmological scales L, gravity
allows for a corpuscular description in which it is described by a critical BEC of
gravitons. The effective theory in these two regimes is GR 2, whose peculiar non-
extensive, holographic character is encoded by the relations (5.1.7) and (5.1.11). Notice
that these two regimes corresponds to length scales differing by several orders of mag-
nitude (about 60 if we take r = `p and r = L), and the same holds for the graviton
wavelengths in the two regimes.

A specific merit of the corpuscular picture we started to build is however that these
two holographic regimes are truly different, as the relation (5.1.14) refers to the total
number of gravitons in the cosmological condensate for r ' L, whereas it only counts
the number of gravitons affected by the local matter sources for r ' RB & RH. We
recall once more the difference is clearly signalled by the opposite signs of εΛ > 0 and
εB < 0.

At intermediate scales the condensate has the intrinsic extensive behaviour (5.1.17),
which is a peculiar feature of thermalization processes (corresponding to the slow

2Since the universe is expanding, one might argue that the cosmological description is in fact closer
to a modified f(R) ' R2 theory of gravity [284].
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dynamics of glassy systems in Verlinde’s description). Strictly speaking the graviton
number NVG inside a spherical region is not physically measurable. In fact NVG is not
conserved and, for a small region, it is expected to have large relative fluctuations.
For regions of galactic or cosmological size, the relative fluctuations are small but we
can hardly conceive a physical process apt to measure NVG. On the other hand, our
final results are independent from NVG and we do not need to be concerned about its
measurability.

In principle, there could be concerns about the impact that an extensive, volume-
scaling, term for NG can have on the cosmological evolution, in particular for late-time
cosmology. At late times, the cosmological dynamics is described by the holographic
regime characteristic of the dS space-time as discussed above. Actually, it has been
recently shown by Carroll et al [282] that this is a quite general result. Assuming the
validity of a generalized second law of thermodynamics and that the entropy increases
up to a finite maximum value, any Robertson-Walker space-time must approach a dS
space-time in the future, independently of the gravitational dynamics and matter
content of the universe. In their argument, Carroll et al assume the presence of a
constant density term in the generalized entropy, which has the same form of our
extensive term (5.1.17). However, they show that at late times, i.e. for large values of
the scale factor, this term is subleading with respect to the holographic one, the latter
approaching a constant value and scaling like the area of the dS horizon. Translated
in our corpuscular description, this means that our extensive term (5.1.17) plays a role
at intermediate galactic scales, but becomes completely irrelevant for the late-time
cosmological evolution.

Baryonic matter and the emergence of a dark force

So far we have considered the cosmological condensate without baryonic matter. One
could just consider baryonic matter always existed inside the DEC, initially in a very
diluted form, so that its effect on the gravitons of the cosmological BEC was initially
negligible. In time, the baryonic matter clumped and started affecting the DEC locally,
which is the situation we find in the universe today. In particular, the presence of
local baryonic sources pulls out gravitons from the DEC, which give rise to the local
gravitational forces. Alternatively, the simplest way to introduce baryonic matter in
our scenario is to assume that it arises as bound states in the DEC, i.e. to consider it
as produced by gravitons pulled out from the cosmological condensate at the typical
matter scales Rµ, where µ denotes the mass of single point-like matter sources. This
may occur owing to density perturbations in the BEC. An uniform, spherically sym-
metric over-density region of the BEC is isotropically compressed, because pressure
gradients act only on the surface of the sphere, generating a compact source of bary-
onic matter, which can itself be described by a non-critical BEC or by critical BEC if
the critical density is reached and a black hole is formed.

In the next Sections, we will first discuss the behaviour of the condensate with
baryonic matter in the diluted approximation, when we can neglect the local reaction
of the condensate. When we go beyond this approximation, we have to take into
account the reaction of the cosmic condensate to the presence of the baryonic matter.
We will see that this can be described as a dark force, mediated by gravitons pulled
out from the cosmic BEC at galactic scales, which can explain the phenomenology at
galactic scales commonly attributed to dark matter.



90 CHAPTER 5. EMERGENT GRAVITY IN A CORPUSCULAR PICTURE

An important point to be stressed is that the dark force is a local effect. The
cosmological BEC at horizon scales L remains largely unaffected. This means that
deviations from Eq. (5.1.11) for the cosmological BEC remain negligible at present,
albeit they are crucial in order to describe the local dynamics properly, as we are
going to start showing next. Our description is consistent as long as we are only
concerned with the gravitational dynamics at galactic scales and we do not use our
model to describe the whole cosmological history of our universe. In order to do this,
it is likely that more input is needed.

5.2 Baryonic Matter in the diluted approximation

We now want to see in more details what happens when very diluted baryonic matter
is formed on top of the condensate of gravitons. In this approximation, matter can
be considered as being made of, say Nµ almost point-like sources of mass µ, at rest
and equally distanced very far apart. We can therefore neglect the local reaction of
the condensate to their presence, which also means that the gravitational interactions
among matter sources are negligible. Since sources are homogeneously distributed, our
results should also be a good approximation for baryonic matter with homogeneous
density. We will see that the leading-order effect of baryonic matter is to subtract
gravitons from the condensate.

Diluted matter in the de Sitter universe

Let us first see what happens when we introduce baryonic matter into the de Sitter
universe, whose metric takes the form

ds2 = −f(r) dt2 + f−1(r) dr2 + r2 dΩ2. (5.2.1)

Since in the diluted approximation the cumulative effect of many sources is just the
sum of the single contributions, we start by considering the case of a single point-like
source of mass µ. In the weak field regime, the metric function in Eq. (5.2.1) is given
by the Schwarzschild-dS form

f(r) = 1− r2

L2
+ 2φ(r), (5.2.2)

where

φ(r) = −
GN µ

r
(5.2.3)

is the Newtonian potential generated by the source of mass µ. The size LH of the cos-
mological horizon can be found by solving the condition f(r) = 0 for small departures
from L (i.e. for |φ|� 1), which yields

LH = L [1+ φ(L)] + o(φ2) ∼ L− `p µ/mp. (5.2.4)

Adding Nµ similar matter sources would reduce the Hubble radius to

LH ∼ L−
1
2
Nµ RH, (5.2.5)
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where here RH = 2GN µ is the typical gravitational radius of each source. The effect of
the presence of diluted matter is thus to reduce the size of the cosmological horizon,
which in turn implies a number of gravitons in the cosmological condensate NG <

NΛ according to Eq. (5.1.11). Let us note, however, that such a change is relatively
minuscule because of the hierarchy (5.1.3), and the fact that baryonic matter accounts
for at most 5% of the total energy in the universe. We can therefore safely neglect
the difference between LH and L in the following.

Diluted matter in the corpuscular model

Before we introduce the diluted baryonic matter in the DEC, let us refine the cor-
puscular description of the dS universe. In Refs. [283, 284], it was shown that the
maximal packing condition which yields the scaling relations (5.1.14) for a black hole
actually follow from the energy balance (5.1.1) when matter becomes totally negligible.
In the present case, matter is absent a priori and HB = 0, so that one is left with

H
(0)
G = U

(0)
N +U

(0)
PN = 0, (5.2.6)

with the negative Newtonian energy

U
(0)
N ' NΛ εΛ = −NΛ

`pmp
L

, (5.2.7)

and the positive “post-Newtonian” contribution

U
(0)
PN = NΛ

√
NΛ `

2
pmp

L2
. (5.2.8)

One therefore recovers the scaling relation (5.1.11) from Eq. (5.2.6) with no extra “vac-
uum energy” [284].

The same result (5.2.5) can now be obtained using the Hamiltonian constraint (5.1.1)
in which we include the contribution of Nµ diluted baryonic sources of mass µ,

H
(1)
B = Nµ µ. (5.2.9)

Since matter is very diluted and cold, µ again just equals the proper mass, and local
gravitational energy is negligible. We can therefore write

H
(1)
G = U

(1)
N +U

(1)
PN, (5.2.10)

where the Newtonian and post-Newtonian terms have the forms given in Eqs. (5.2.7)
and (5.2.8). The energy balance (5.1.1) then tells us that the condensate must respond
to the presence of this homogeneous matter by changing the graviton number NΛ, that
is

NΛ
`pmp
L
' Nµ µ+N

3/2
Λ

`2pmp

L2
, (5.2.11)

which yields

L =
`pmpNΛ
2Nµ µ

(
1−

√
1− 4Nµ µ√

NΛmp

)
'
√
NΛ `p +Nµ `p µ/mp +O(N−1

Λ ), (5.2.12)
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where we used Nµ µ � NΛmp for our dark energy dominated universe. Using now
the scaling (5.1.11), i.e. NΛ ∼ L2H/`

2
p, one easily recovers Eq. (5.2.5).

The fact that the two estimates (respectively based on the form of the Schwarzschild-
dS metric and on the corpuscular model) give the same result for the change of the
Hubble horizon due to presence of baryonic matter is a highly non trivial check of the
validity of our BEC description of the dS universe, and in particular of the validity
of the energy balance (5.2.10) and of the form of the post-Newtonian term UPN.

Diluted matter and scalings of the graviton number

The change in the dS horizon size (5.2.5) induced by the baryonic matter will result
in a reduction of the number of gravitons NΛ with energy εΛ according to Eq. (5.1.11),
that is

δNΛ ' −
2µL
mp `p

, (5.2.13)

where NΛ is given in (5.1.11)). The same result holds also for a black hole of mass
µ, with L replaced with the black hole radius RH [87]. Actually, this result is a quite
generic consequence of the holographic scaling (5.1.14) for the graviton number. In
fact, let us take a sphere of radius r � L, for which the number of gravitons in
the condensate inside this sphere is given by Eq. (5.1.14), and compare the change
of the graviton number as a function of the radial distance from the centre of the
sphere with and without matter. Without the mass, the radial distance s is equal to
r, whereas a baryonic point-like mass µ at the center of the sphere changes the radial
distance of a quantity equal to ds ' [1 − φ(r)] dr, according to the weak field limit of
the Schwarzschild metric. Thus, the number of gravitons in Eq. (5.1.14) changes due
to the presence of matter according to

d(δNΛ)
ds

=
d
ds

(
NΛ|µ6=0 − NΛ|µ=0

)
' φ(r) dNΛ

dr
' −

2µ
mp `p

. (5.2.14)

On the other hand, in the diluted approximation |φ(r)|� 1 and dr ' ds. We can thus
write the previous equation as

d(δNΛ)
dr

' −
2µ
mp `p

. (5.2.15)

For future convenience, we will define NB = −δNΛ as the number of gravitons sub-
tracted from the cosmological condensate (the DEC) inside a sphere of radius r by the
presence of the baryonic source of mass µ. By integrating the above equation, one
finds

NB ' −
2µ r
mp `p

. (5.2.16)

Extending the validity of Eq. (5.2.5) from the cosmological horizon to a region of
radius r as given in Eq. (5.2.14) is a quite strong and highly non trivial assumption.
In the corpuscular description of gravity, this implies that we are assuming not only
the whole dS space filled with dark energy can be considered as a graviton condensate
with Compton length L, but that this description also holds for regions of any size
r, and for those gravitons with Compton length of order r. The rational behind
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this assumption is the fact that at solar system scales we know that gravity is well
described by GR, whose action is directly related with the holographic scaling (5.1.14).
It should be stressed that this holds only in the holographic regime of gravity (5.1.14)
but not in the extensive regime (5.1.18). This means that our universe looks like
a critical graviton condensate at small (solar system) scales and very large (Hubble
radius) scales, whereas at intermediate (galactic) scales we see an extensive behaviour.
In order to give a precise meaning for the transition from cosmological to intermediate
scales, we can use arguments similar to those used by Verlinde in Ref. [87].

We suppose that, as shown in [87], the “dark matter” effects arise from the com-
petition between the “area-law” (5.1.14) and volume behaviour (5.1.18) for the graviton
number. This implies the existence of two regimes: the baryonic matter dominated
regime in which NB(r) > N

V
G(r) and a dark energy dominated regime NB(r) < N

V
G(r).

In particular, we expect the dark force effects to be negligible for NB(r)� NVG(r). Let
us now look for the transition between these two regimes, when the corresponding
graviton numbers become comparable, that is |NB(r)| ' NVG(r), or

2µ r
mp `p

' r3

`2p L
. (5.2.17)

When this equality holds, most of the dark energy gravitons in the cosmological
condensate contained inside the volume of size r are affected by the presence of the
source of mass µ, and we obtain

r ≡ r0 '

√
2µ
mp

L `p =
√
RH L, (5.2.18)

where r0 is the mesoscopic scale introduced in Section 5.1. For a given (spherical)
region with a certain amount of mass µ localised about its center, r0 sets the scale at
which dark matter phenomena are not negligible. Using for µ the value for the mass
of a galaxy in Eq. (5.2.17), one finds the observationally correct order of magnitude
for deviations from the Newtonian dynamics. For instance, for a typical spiral galaxy
with mB = 1011 solar masses, we have r0 = 6 kpc, whereas for a typical dwarf galaxy
with mB = 107 solar masses, we have r0 = 80 pc.

To describe the transition between the holographic and the extensive regimes, it is
convenient to introduce the local (size-dependent) parameter

γ =
NB

NVG
. (5.2.19)

For γ > 1, we are in the area-scaling regime (5.1.14), where baryonic matter dominates,
gravity is well described by GR, and most of the gravitons in the fluid belong to the
condensate. Conversely, for γ < 1, we are in volume-scaling regime (5.1.14) and dark
energy dominates. In this regime, the effects of the dark energy gravitons on baryonic
matter are not negligible and give rise to the dark matter phenomena.

Let us conclude with some comments about the physical meaning of the diluted
approximation and on the meaning of Eq. (5.2.19). Within this approximation, baryonic
matter has no local gravitational interactions with the condensate. On the other hand,
it also has no effects at cosmological scales. Rephrased in terms of the graviton
number, the diluted regime applies in the region where γ > 1, i.e. when most gravitons
inside a sphere of radius r belong to the local condensate (i.e. we are considering the
sphere of radius r as a condensate of gravitons of Compton length r).
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5.3 Clumped matter and emergence of the dark force

Let us now describe what happens when we go beyond the diluted approximation and
baryonic matter begins to clump. The Nµ point-like sources of mass µ form clusters
of baryonic matter with typical mass mB(r) = Nµ µ. For simplicity, we consider a
mass distribution with spherical symmetry. Now the DEC will react to the presence
of matter, and we will interpret this reaction as a dark force responsible for the
phenomenology commonly attributed to dark matter which reproduces correctly the
MOND acceleration.

We first assume that only a fraction of the gravitons in the DEC are affected by
the local matter, so that the condensate reacts not at the full cosmological scale L, but
at a local scale of size r. In particular, since we are considering spherically symmetric
sources, the baryonic matter of mass mB will pull the gravitons out of the DEC from
inside the sphere of radius r with a dark energy mass given by M =M(r). Therefore
we now have three scales in our problem: the typical size of the matter lumps RB, the
range of the condensate reaction r and L, which satisfy the hierarchy

RH � RB . r� L. (5.3.1)

In the following we will consider the dynamics of test particles at distances r� RB,
so that the baryonic source of mass mB(r) can be well approximated by a point-like
source. Physically, this means that we are considering the dynamics of galaxies at
distances far away from the galactic core. We will first briefly review the results of
Ref. [274] based on a balance between the number of gravitons, we will then give the
description based on the Hamiltonian constraint, finally we will proceed by using the
competition between the area and volume regimes to derive the “dark acceleration”.

Matter clumping and graviton number balance

The starting point of our analysis is that in a corpuscular description of gravity, the
gravitational acceleration felt by a test particle is the macroscopic manifestation of
the self-interaction of gravitons in the condensate.

Moreover, as already mentioned, the basis of the corpuscular picture of gravity [90,
91] is that the classical gravitational field of an (isolated) object of mass m is in fact
a quantum coherent state of gravitons with occupation number [283, 284, 290]

N ∼
m2

m2
p
. (5.3.2)

These gravitons are closely bound to the source and interact with other objects nearby,
e.g. a test particle. If r is the distance between the test particle and the massive object,
the effective interaction energy for each graviton is ε(r) = ~/r. Therefore, we can
express the Newtonian gravitational acceleration felt by the test particle as in terms
of ε and N as

a(r) =
GNm

r2
∼
ε2(r)

m2
p `p

√
N. (5.3.3)

The argument generalises straightforwardly to a spherically symmetric distribution
of mass. In this case, however, not all gravitons can contribute to the acceleration
of the test particle, but only those that are bound to the mass inside the radius r.
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Henceforth, let us denote by Neff(r) the effective number of gravitons which contribute
to the acceleration of a test particle at radius r.3 Thus, in the case at hand, it is
Neff(r) = m2(r)/m2

p, and (5.3.3) can be expressed in terms of the Compton energy ε
and specific number Neff of gravitons involved in the process as

a(r) =
GNm(r)

r2
∼
ε2(r)

m2
p `p

√
Neff(r). (5.3.4)

In the above argument it is important that the gravitons are in the normal (non-
condensed) phase, for which we can use the effective law ε(r) = ~/r.

We shall call corpuscular acceleration the quantity

a(r) ∼
ε2(r)

m2
p `p

√
Neff(r). (5.3.5)

Although we have derived this formula for the non-condensed gravitons, which gen-
erate the Newtonian acceleration, it turns out to hold also for the acceleration caused
by the condensed gravitons, as we will verify in the following. Therefore, every
population of gravitons, with an effective number of contributing gravitons Neff(r)

and a mean interaction energy ω(r), will contribute an acceleration a(r) given by
(5.3.3) to the total acceleration of a test particle. As an example, it is easy to show
that Eq. (5.3.5) correctly reproduces the de Sitter acceleration for an accelerating ex-
panding universe [274]. Consider now the reaction of the cosmological BEC of to-
tal mass mΛ to the presence of the baryonic matter source of mass mB(r). Since
mB � mΛ, most of the gravitons will remain in the condensed phase and their num-
ber is given, according to Eq. (5.1.14), by

NDE ∼
(mΛ −mB)

2

m2
p

. (5.3.6)

On the other hand, the total number of gravitons in the system is given by NΛ ∼

m2
Λ/m

2
p. This implies that there are NΛ−NDE gravitons which are not in the condensed

phase and, therefore, behave differently from the condensate. Since the number of
gravitons which give rise to the local gravitational potential generated by the baryonic
mass is NB = m2

B/m
2
p and, from Eqs. (5.3.6), we have

NΛ −NDE ∼
LmB
`pmp

−
m2
B

m2
p
, (5.3.7)

it follows that there are NDF ∼ LmB/`pmp gravitons which mediate the interaction
between the baryonic matter and the DEC. What we have just shown is that the quan-
tum field of gravitons that arises when baryonic matter is placed within a DE fluid
comprises three types of gravitons: first, those in the condensed phase forming the
cosmological DE fluid, second, the non-condensed gravitons closely bound to the bary-
onic matter responsible for the Newtonian acceleration and, third, the non-condensed
gravitons permeating space-time, which have been “pulled out” of the condensate by the
baryonic mass. Each of these graviton populations contributes an acceleration (5.3.5)

3The number Neff(r) is not a good classical observable and must not be confused with the number of
gravitons inside the radius r. Such a number does not exist, because, relativistically, there is no notion
of a local number density.
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to the total acceleration of the test particle, which correspond precisely to the three
contributions to the acceleration in Eq. (6.1.13).

The effective number of non-condensed gravitons NDF(r) that contribute to the
acceleration of a test particle at the radius r can be guessed by requiring that its
overall scaling is again holographic and must depend on the baryonic mass mB. This
yields

NDF(r) ∼
r2mB(r)

`pmp L
. (5.3.8)

From Eqs. (5.3.5) and (5.3.8) with Neff = NDF(r), we obtain

|aDF(r)| ∼

√
GNmB(r)

L r2
∼

√
aB(r)

L
, (5.3.9)

which is the MOND acceleration (4.1.1) up to a numerical factor. Therefore, the
corpuscular picture naturally explains the presence of a dark force and the approximate
coincidence of the MOND acceleration a0 with the Hubble constant H ≈ 1/L.

Let us conclude with a few remarks. First, the previous arguments give order-of-
magnitude estimates only, without precise numerical factors and without information
on the directions of the various contributions to the acceleration. Second, all expres-
sions must receive higher order corrections in GNmB/L, as can be seen, e.g., from the
different signs of the two terms in Eq. (5.3.7). Presumably, these corrections will be
responsible for the cross-over between the Newtonian and the MOND regimes as well
as between the MOND and the de Sitter regimes.

Matter clumping and energy balance

In the previous discussion we have shown that it is possible to define the MOND
acceleration by counting the gravitons’ number in a BEC. Alternatively the MOND
acceleration (4.1.1) can be obtained the Hamiltonian constraint (5.1.1). In the following
we will focus only on this second approach.

Once the regular matter starts clumping, the matter energy changes to

HB = mB + EB, (5.3.10)

where mB ' Nµ µ and EB accounts for the total kinetic energy of matter and non-
gravitational interactions. Some gravitons will acquire a new Compton length in
response to the local lumps of matter, and the gravitational Hamiltonian in the con-
straint Eq. (5.1.1) takes the form

HG = HΛ +HBG +HDF, (5.3.11)

where HΛ is the energy of the DEC, whose specific form is not essential for the present
derivation; HBG is the Newtonian gravitational energy of the localised matter sources,

HBG = −
GNm

2
B

RB
= −NB

`pmp
RB

, (5.3.12)

with NB the number of soft gravitons whose Compton length equals the typical size RB
of matter lumps 4; finally, the “dark force” term is given by the gravitational interaction

4There would also be a (positive) post-Newtonian energy but we shall neglect that as it is much
smaller than HBG for compact sources far from becoming black holes.
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energy between baryonic matter and dark energy of mass M(r) inside the sphere of
radius r, that is

HDF = −
GNmBM(r)

r
. (5.3.13)

We can rewrite HDF in terms of an effective dark force mass mDF as

GNmBM(r)

r
'
GNm

2
DF

r
, (5.3.14)

which implies the simple relation between masses

m2
DF = mBM(r). (5.3.15)

Because the dark matter term arises from the interaction of the baryonic source with
the gravitons in the DEC inside the volume of size r, the energy of the gravitons will
change to ε ' mp `p/r. From the extensive scaling (5.1.18), it follows that

M(r) '
mp r

2

`p L
. (5.3.16)

We can now evaluate the gravitational acceleration associated to the dark force
component (5.3.14) of the condensate. Using the estimate (5.3.16) in Eq. (5.3.15), we
obtain the dark acceleration

aDF ∼
GNmDM
r2

'
√

1
L

GNmB
r2

=

√
aB(r)

L
, (5.3.17)

where aB(r) is the Newtonian baryonic acceleration, aB = −GNmB(r)/r
2 a distances

r. Again, this result indeed matches the MOND formula (4.1.1) up to a factor of 1/6.
We can further show that the above derivation, based on the energy balance (5.3.11),

is perfectly compatible and consistent with the derivation in Section 5.3, which is in-
stead based on the graviton numbers. In fact, we can associate to the dark energy mass
M(r) interacting with the baryonic mass a number of gravitons equal to the number
of gravitons NDF(r) pulled out from the DEC. This number scales holographically as

NDF(r) =
m2

DF
m2
p

. (5.3.18)

By combining Eqs. (5.3.15) and (5.3.18), we find

M(r) = NDF(r)
m2

p
mB

, (5.3.19)

and Eq. (5.3.16) finally yields the total number of gravitons associated to the dark
force

NDF(r) =
mB r

2

`pmp L
, (5.3.20)

which exactly matches Eq. (5.3.8) obtained in Section 5.3.
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We further note the dark acceleration can also be written as a function of the
number of dark gravitons, thus obtaining the same expression (5.3.5) found in in
Section 5.3. In fact, by combining Eqs. (5.3.19) and (5.3.15), we find

aDF =
GNmDF
r2

=
`p
r2

√
NDF(r), (5.3.21)

or, equivalently, using the Compton energy of the dark gravitons ε = mp `p/r,

aDF =
ε2(r)

m2
p `p

√
NDF(r), (5.3.22)

which is exactly the corpuscular acceleration (5.3.5) introduced before and in Ref. [274]
for Neff = NDF(r).

Area/volume competition and heuristic derivation of MOND

Here we present a heuristic derivation of the MOND acceleration (4.1.1), which uses
the Hamiltonian constraint (5.3.11) and the competition between the holographic and
extensive regimes described in Section 5.1. The novelty is that we will be able to
reproduce correctly also the numerical factors of Eq. (4.1.1) in this scenario. The
key observation is that, owing to the fact that the DEC responds only locally to the
presence of baryonic matter, we can simply write the contribution HDF in Eq. (5.3.11)
in terms of the energy subtracted from dark energy gravitons to generate the local
Newtonian gravity.

For simplicity, we consider baryonic matter in the form of a single point-like source
of mass mB, but the results can be easily generalised to the case of an extended but
localised source inside a volume of size RB. By analogy with the electromagnetic force,
the energy density ρG associated with a gravitational (acceleration) field, that is

aB = −
GNmB
r2

, (5.3.23)

inside a sphere of radius r, and volume V(r) = 4π r3/3, is given by

ρG =
a2B

8πGN
, (5.3.24)

where mB is the source of the gravitational field. It is easy to find that the energy
subtracted from dark energy gravitons in order to clump the amount of matter mB
inside the spherical region is, therefore,

EG = −ρG V = −
GNm

2
B

6 r
, (5.3.25)

where mB now denotes the baryonic mass contained inside V(r).
Consistently with Eq. (5.3.15), we can view this energy as due to the existence of

a “dark force”, whose effective source is a “dark mass” mDF, which does work on the
system. In analogy to what happens at cosmological scales, we can think that the
effect of the mass mB centered inside a spherical region of volume V(r), is to deform
the sphere by an amount given by Eq. (5.2.5) with L replaced by r. The deformation is
therefore,

u(r) = φB(r)L, (5.3.26)
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where φB is the gravitational potential generated by the mass mB and L is still the dS
radius. The work done by the “dark force” on the system will be given by

W = FDF u(r) =
G2

Nm
2
DFmB
r3

L. (5.3.27)

It should be stressed that this contribution is of holographic nature: it is the work
done by the dark force to deforme the surface of the sphere. For energy conservation,
it must equal the energy EG contained in the volume V(r). By equating Eqs. (5.3.25)
and (5.3.27), we easily obtain

GNm
2
DF

r2
= −

mB
6L
. (5.3.28)

If we now use the form for the “dark gravitational acceleration” used in (5.3.17),

aDF = −
GNmDF
r2

(5.3.29)

and the Newtonian acceleration (5.3.23), Eq. (5.3.28) can be written as

aDF(r) =

√
aB
6L
, (5.3.30)

which exactly matches the MOND acceleration (4.1.1). Let us stress that Eq. (4.1.1) is
precisely obtained by identifying the volume (extensive) subtraction (5.3.25) from the
condensate with the dark area (holographic) contribution (5.3.27).

Cosmic balance

If one puts together the argument based on the graviton number of Section 5.3 and
the energy balance of Section 5.3, the ratio between an apparent dark matter mass
distribution and baryonic matter can be estimated and shown to be consistent with
the predictions of the ΛCDM model.

Let us denote with UDF the energy associated with the dark gravitons. This energy
can be written in terms of the number NDF of “dark force” gravitons inside a sphere
of radius r and their Compton energy ε = −mp `p/r as

UDF = NDF ε = −NDF
mp `p
r
. (5.3.31)

In the ΛCDM description, UDF must be seen as originating from the interaction of
an apparent dark matter mass MDM with the baryonic matter of mass mB and its
self-interaction, that is

UDF = −
GNmDMmB

r
−
GNm

2
DM

r
. (5.3.32)

Equating the above two expressions for UDF, we get

NDF =
m2

DM
m2

p
+
mDMmB
m2

p
. (5.3.33)

Let us stress that the apparent dark matter mass mDM must not be confused with the
effective dark force mass mDF of Eq. (5.3.15). In fact, consistency of Eq. (5.3.33) with
Eq. (5.3.18) requires m2

DF = m2
DM +mDMmB.
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On using Eq. (5.3.6), NDF ∼ NΛ − NDE, and recalling that NΛ ∼ L2/`2p and mΛ =

mp L/`p, we obtain

mDMmB +m2
DM = 2mΛmB −m2

B, (5.3.34)

which can be written as

x2 + x+ 1 = 2mΛ

mB
, (5.3.35)

where we defined the ratio x = mDM/mB. In particular, the latter equation is solved
by

mDM
mB

=

√
8 (mΛ/mB) − 3− 1

2
. (5.3.36)

If we now recall that observations yield mB ' 0.05mΛ, we finally obtain

mDM
mB

' 5.77, (5.3.37)

which is in the right ballpark of the ΛCDM prediction for the present relative abun-
dance of dark and baryonic matter.

5.4 Summary and conclusions

Starting from the corpuscolar description of gravity given in [90, 91], in this Chapter
we have investigated the emergent laws of gravity distinguishing different scaling
regimes and deriving the implications of our emergent gravity scenario at galactic
scales. First, we have shown how to model our dark energy dominated universe as
a critical BEC with a large number NG of soft gravitons. Then we have shown that
the local behaviour of this DEC requires, besides the usual holographic regime, an
extensive regime of gravity in which the graviton number scales with the volume of
space. Baryonic matter and local (Newtonian) gravitational forces fits naturally in
this description as gravitons pulled out from the DEC. For what concerns the galactic
regime of gravity, in this framework, the galaxy rotation curves far away from the
galactic center [i.e. the MOND formula (4.1.1)] can likewise be derived from the reaction
of the DEC to the presence of baryonic matter, without assuming the existence of any
sort of dark matter. We have also evaluated the mass ratio of the apparent dark
matter and baryonic component and found it in agreement with the prediction of the
ΛCDM model.

We would like to conclude by remarking that two important points have not yet
been addressed, but deserve further investigation. The first one concerns the micro-
scopic origin of the cosmological evolution. Our model applies solely to the present
dark energy dominated universe. We did not tackle the problem of giving a description
of the history of the universe using a critical BEC of soft gravitons. Although this is
a quite involved problem, there are several indications that it may indeed be possible.
The results of Refs. [91, 99, 289] about the description of inflation and general cos-
mological space-times [280] represent promising steps along this direction. Moreover,
the results of Ref. [282] not only assert that the dS space-time necessarily appears at
late times in any cosmological evolution consistent with the generalized second law
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of thermodynamics, but also imply that the presence of an extensive, volume-scaling,
term for the graviton number is perfectly consistent with this late time cosmological
evolution. Last but not least, the fact that our model predicts the correct present
relative abundance of the various forms of matter gives us a further hint that we are
going in the right direction.

The second point concerns the microscopic origin of horizons. Most of the sce-
narios for emergent gravity assume in an explicit or implicit way the presence of
event, cosmological or acceleration, horizons (see, e.g. Ref. [291]). Horizons are a
key ingredient for explaining the holographic regimes of gravity and play, therefore,
a crucial role also in our BEC description of black holes an the dS space-time. At
the level of the BEC, one may easily generate acoustic horizons [292]. However, it is
not clear if acoustic horizons in a BEC can be directly linked to space-time horizons
in the emergent gravity scenario. In fact, acoustic horizons in BEC are mainly of
kinematic origin, whereas in an emergent gravity theory containing black holes and
the dS space-time, their origin should be dynamical.





Chapter 6

Effective description of gravity at
galactic scales

A key issue for every model of emergent gravity is the existence of an effective descrip-
tion reproducing Einstein’s general relativity or at least a metric theory of gravity. One
must envisage the way in which the metric space-time structure of gravity encoded in
GR emerges out of the microscopic description. This is a quite stringent requirement
and it is not enough to predict an infrared modification of the laws of gravity, such as
the MOND relation (4.1.1). This relation must be embedded in the framework of GR
or, at least, in a metric theory of gravity describing a modification thereof. This is for
instance a drawback of Verlinde’s original proposal [87]. The proposed modification
of the laws of gravity at galactic scales reproduces the MOND relation (4.1.1), but a
metric covariant description of the model has not been proposed yet (see, however,
Refs. [126, 293, 294]).

This Chapter is devoted to the derivation of an effective metric theory of gravity
at cosmological and galactic scales. We start by considering the emergent gravity
description based on a BEC of gravitons discussed in the previous Chapter. Because
we know that GR holds true at least at Solar system scales, we generically expect
our effective theory to represent an IR modification of the Einstein’s theory. As a
guideline for constructing this effective, IR modified gravity theory, we will use a
simple well-known fact: in the cosmological regime, at late times, our universe is a
dark energy dominated universe and it can be described in a metric framework as
GR sourced by a perfect fluid with constant energy density ρ and equation of state
p = −ρ [130]. If one takes into account the corpuscolar gravity picture described in the
previous Chapter, the dark energy dominated universe can be seen as a Bose-Einstein
condensate of gravitons (DEC). In this picture, we will show that using quite general
assumptions, as the generation of baryonic matter and the consequently reaction of
the condensate, the DEC allows for an effective covariant metric description in which
the fluid becomes anisotropic [130, 274]. In this description, the additional component
of the galaxy acceleration, commonly attributed to dark matter, is explained as a
radial pressure generated by the reaction of the dark energy fluid to the presence of
baryonic matter. In particular, we will find the static, spherically symmetric solution
for the metric in terms of the Misner-Sharp mass function and the fluid pressure. At
galactic scales, we correctly reproduce the leading MOND-like log(r) and subleading
(1/r) log(r) terms in the weak-field expansion of the potential. Our description also
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predicts a tiny (of order 10−6 for a typical spiral galaxy) Machian modification of
the Newtonian potential at galactic scales, which is controlled by the cosmological
acceleration.

The Chapter is entirely based on:

� M. Cadoni, R. Casadio, A. Giusti, W. Mück and M. T. “Effective Fluid Description
of the Dark Universe”, Phys.Lett. B776 (2018) 242-248, arXiv:1707.09945.

Note: we use units with c = 1, while the Newton and Planck constants are ex-
pressed in terms of the Planck length and mass as GN = `p/mp and ~ = `pmp,
respectively.

6.1 Anisotropic fluid space-time

We start by considering a static, spherically symmetric system, for which one can
employ the Schwarzschild-like metric

ds2 = −f(r) eγ(r) dt2 + dr2

f(r)
+ r2dΩ2. (6.1.1)

It is known that this metric is, in all generality, a solution to Einstein’s equations
with the energy-momentum tensor of an anisotropic fluid [295, 296],

Tµν = (ε+ p⊥)u
µuν + p⊥g

µν −
(
p⊥ − p‖

)
vµvν, (6.1.2)

where the vectors uµ and vµ satisfy uµ uµ = −1, vµ vµ = 1, and uµ vµ = 0. Explicitly,
the fluid velocity is uµ =

(
f−1/2 e−γ/2,0,0,0

)
and vµ =

(
0, f1/2,0,0

)
points radially

outwards. The energy density is given by ε, and p⊥ and p‖ denote the pressures
perpendicular and parallel to the space-like vector vµ, respectively. Energy-momentum
conservation is equivalent to the hydrostatic equilibrium condition, and imposes con-
straints on these quantities.

The Einstein equations with the energy-momentum tensor (6.1.2) are solved by

f(r) = 1− 2GNm(r)

r
, (6.1.3a)

γ ′(r) =
8πGN r

f(r)

(
ε+ p‖

)
, (6.1.3b)

where primes denote differentiation with respect to r, and

m(r) = 4π
∫ r
0
dr̃ r̃2 ε(r̃) (6.1.3c)

is the Misner-Sharp mass function representing the total energy inside a sphere of
radius r. Finally, the tangential pressure follows from energy-momentum conservation,

p⊥ = p‖ +
r

2

[
p‖
′ +

1
2
(
ε+ p‖

)(f ′
f
+ γ ′

)]
. (6.1.4)

Let us then consider a test particle comoving with the fluid, so that its four-
velocity is uµ. The four-acceleration necessary to keep it at a fixed coordinate radius
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r is given by aµ = uν∇νuµ. In the frame of Eq. (6.1.1), only the radial component of
this acceleration does not vanish and is given by

ar ≡ a =
1
2
(
f γ ′ + f ′

)
=
GNm(r)

r2
+ 4πGN r p‖(r). (6.1.5)

In Newtonian language, the first term has the obvious interpretation as the acceleration
that counters the gravitational pull of the central mass. The second term may be
interpreted as the acceleration caused by the radial pressure. The same result can
be obtained by considering the geodesic motion along a circular orbit of radius r,
with θ = π/2 and constant angular velocity Ω = dφ/dt. Of course, this is the
physically relevant situation for the motion of stars within a galaxy. Starting with the
four-velocity uµ = C(r) (1,0,0,Ω), with C(r) such that uµuµ = −1, and solving the
geodesic equation at fixed r and θ = π/2, one obtains Ω2 = eγ a/r, with a again given
by Eq. (6.1.5).

The above equations can describe a variety of physical situations. De Sitter space is
equivalent to an isotropic DE fluid with the constant energy density εDE and pressure
p‖DE = p⊥DE = pDE satisfying

εDE = −pDE =
3

8πGN L2
. (6.1.6)

This yields

f(r) = 1− r2

L2
, (6.1.7)

with γ = 0, and
aDE(r) = −

r

L2
. (6.1.8)

Being maximally symmetric, de Sitter space does not allow for circular geodesics,
which is confirmed by the fact that aDE is negative. This acceleration describes
the accelerating cosmological expansion of the universe. Notice that, because of its
vacuum equation of state (6.1.6), the DE fluid component does not contribute to γ but
enters only in f via the de Sitter term.

Pressureless baryonic matter can be easily added to de Sitter space,

ε = εB + εDE, (6.1.9)

where εDE is again given in Eq. (6.1.6). The Misner-Sharp mass function will split
correspondingly,

m(r) = mB(r) +mDE(r) = mB(r) +
r3

2GN L2
(6.1.10)

and the metric function f turns out to be

f(r) = 1− 2GNmB(r)

r
−
r2

L2
. (6.1.11)

This leads to a Newtonian acceleration term

aB(r) =
GNmB(r)

r2
, (6.1.12)
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in addition to (6.1.8). If the baryonic matter is localized within a radius RB then, for
r > RB, the space-time is identical to the Schwarzschild-de Sitter solution.

The observed galaxy rotation curves imply that, in addition to aDE (which, in this
context, is actually negligible) and aB, there is an acceleration caused by a dark force,

a = aB + aDE + aDF. (6.1.13)

Let us stress the fact that we are thinking to dark matter not as an independent
form of matter (we are not supposing the existence of any form of matter a part
from the baryonic one), but rather that the phenomena usually attributed to it are a
consequence of the interaction between the baryonic matter and the DE fluid. We
therefore assume the energy density and the Misner-Sharp in the cosmos are given
respectively by Eqs. (6.1.9) and (6.1.10). Taking the baryonic matter as approximately
pressureless, we write

p‖ = p‖DE + p‖DF, (6.1.14)

where p‖DF is the pressure that generates the dark force. In the next Section, we
will derive p‖DF from the point of view of a corpuscular interpretation of gravity in
general, and of the de Sitter space in particular.

At galactic scales, we can neglect the DE terms pDE and εDE. Splitting the to-
tal radial gravitational acceleration into the baryonic acceleration aB and the dark
acceleration aDF, Eq. (6.1.5) now gives

aB + aDF '
GNmB(r)

r2
+ 4πGN r p‖DF(r). (6.1.15)

The first term on the right hand side is exactly aB, thus the dark acceleration is
completely due to the pressure of the anisotropic fluid. Eq. (6.1.15) is valid as long as
Eq. (6.1.2) holds, i.e. if we choose an effective descriprion of gravity sourced by an
anisotropic fluid. This is an important point, because it implies that the modifications
to GR at galactic scales commonly attributed to dark matter can be generated by the
pressure p‖ in our effective fluid description. Since this pressure term can be thought
of as a reaction of the DE fluid to the presence of baryonic matter, it is conceptually
very similar to Verlinde’s description of dark forces as the elastic response of the DE
medium to the presence of baryonic sources [87]. Note also that p‖DF will necessarily
give rise to an anisotropic component p⊥DF according to the conservation Eq. (6.1.4).

6.2 Metric at galactic scales

In the previous Chapter we have seen that the corpuscolar description of gravity
allows us to define the number of non-condensed gravitons NDF that contribute to
the acceleration of a test particle at galactic scales. Consequently, we can define the
dark acceleration aDF which, up to numerical factors, matches the MOND formula.
However, from Eq. (6.1.15) we can see that it is possible to relate the dark acceleration
to the dark pressure that generates the dark force experienced by baryonic matter in
galaxies. Putting together Eq. (6.1.15) and Eq. (5.3.9) the pressure necessary to sustain
the dark force takes the following form

p‖DF ∼
1

4π r2

√
mB(r)

GN L
. (6.2.16)
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Thus starting from Eqs. (6.1.9), (6.1.14) and (6.2.16), we will now evaluate the metric
of the anisotropic fluid space-time. For any given distribution of baryonic matter
εB = εB(r), Eqs. (6.1.3a)-(6.1.3c) determine the metric function f = f(r) and

γ ′ =
2

r f(r)

[
GNm

′
B(r) +

√
GNmB(r)

L

]
. (6.2.17)

We examine for simplicity the case of baryonic matter localised inside a sphere of
radius RB � r0, so that the baryonic mass has a constant profile mB(r) = mB, for
r > RB. This approximation is good when we consider a galaxy at distances much
bigger than its bulk. Since we are now interested in scales r ∼ r0 � L, we again neglect
the DE terms, and the metric functions can be easily obtained from Eqs. (6.2.17) and
(6.1.3a)–(6.1.3c),

f(r) = 1− 2GNmB
r

γDF = 2K
[
ln
(
r

r0

)
+ ln

(
1− 2GNmB

r

)]
,

(6.2.18)

where K =
√
GNmB/L and the integration constant was set in terms of the infrared

scale r0, which now represents the typical radius at which the “dark force” effects take
place.

The non-vanishing function γDF represents the metric effects in our fluid descrip-
tion of the dark force. Since our effective fluid description holds only for r0 . r� L,
we neglect γDF for r . r0 and r ∼ L. Most of the physical information about the
rotation curves of the galaxies is contained in the weak-field approximation of the
metric component g00 = −f eγ. At galactic scales, this corresponds to the regime
GNmB � r ∼ r0 � L, which also implies γDF ∼ 0. Keeping only terms up to log2(r/r0)
and 1/r2, we have

−g00 ' 1− (1+ 2K) 2GNmB
r

+ 2K ln
(
r

r0

)
− K (1+ 2K) 4GNmB

r
ln
(
r

r0

)
, (6.2.19)

where we exactly find the logarithmic corrections to the gravitational potential one
expects at galactic scales, as MOND (or the Tully-Fisher relation) suggests [116, 120,
297]. Moreover, it contains the subleading (1/r) log(r/r0) corrections, which have also
been observed in galactic rotation curves [298, 299]. A third feature of the above metric
element is the presence of a small correction to the Newtonian potential, which can be
seen as a modification of GNmB, and depends on L in K. This correction is therefore
of Machian character, but is tiny because K is of order 10−6 for a spiral galaxy with
mB ∼ 1011m�, and of order 10−9 for a dwarf galaxy with mB ∼ 107m�. This effect is
hence not detectable presently, owing to the uncertainties in the determination of the
baryonic mass of the galaxies.

Because of the competition between log(r/r0) and 1/r terms (and also the dS term
r2/L2 if one goes to distances comparable with the cosmological horizon) in the weak-
field expansion, it is useful to introduce, beside r0, the scales r1 and r2 representing
the distances at which the MOND acceleration term equals respectively the Newtonian
and the dS term. Hence, our effective fluid description holds for r0 < r < r2. The IR
scale r0 is the typical distance at which the rotation curves of galaxies deviate from the
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Newtonian prediction, r0 ∼
√
GNmB L. In Verlinde’s model of Ref. [87], the IR scale r0

is determined by the competition between area and volume terms in the entropy, and
is given by r0 =

√
2GNmB L. In our case, we have r1 =

√
3 r0 and r2 =

√
r0 L/(2

√
3).

Notice that, as expected, r1 ∼ r0. The window in which the Newtonian contribution
to the potential is not obscured by the logarithmic term is therefore very narrow. As
specific examples, let us take the typical spiral and dwarf galaxies discussed above.
For the spiral galaxy, we have r0 ' 6 kpc, r1 ' 10 kpc, r2 ' 103 kpc. For the dwarf
galaxy we have instead r0 ' 80 pc, r1 ' 130 pc, r2 ' 300 pc.

We have considered here only the case of a constant profile for the baryonic mass
function outside a sphere of radius R� r0. However, Eqs. (6.2.17) and (6.1.3a)-(6.1.3c)
in principle allow for the determination of the metric for every given distribution of
baryonic matter mB = mB(r). For instance, one can consider Jaffe’s profile [300] for
the baryonic energy density εB = Ã/r4, which corresponds to mB(r) = m0 −A/r. We
have checked that this profile reproduces the results for the case of a constant baryonic
mass at large distances, as expected.

6.3 Summary and conclusions

We have constructed an infrared-modified theory of gravity which gives the effective
fluid description of our emergent gravity theory based on BEC of gravitons. Using
quite general assumptions and a microscopic description of the fluid in terms of a
Bose-Einstein condensate of gravitons discussed in the previous Chapter, we have
found the static, spherically symmetric solution for the metric in terms of the Misner-
Sharp mass function of baryonic matter and the fluid pressure. In particular, we have
shown that the additional component of the acceleration at galactic scales can be
completely attributed to the radial pressure of the fluid, whose interpretation in the
corpuscular model is that this is part of the reaction of the condensate of gravitons
to the presence of baryonic matter. Moreover, we have shown that it is possible
to correctly reproduce the leading MOND log(r) and subleading (1/r) log(r) terms at
galactic scales in the weak-field expansion of the potential. Our model also predicts a
tiny modification of the Newtonian potential at galactic scales which is controlled by
the cosmological acceleration.



Chapter 7

Solitonic stars as dark matter
candidates

In the previous Chapters we have seen how it is possible to describe dark matter
phenomenology in galaxies without assuming the existence of any (extra) exotic form
of matter. In this Chapter we will start from a more conservative point of view and
assume that dark matter can exist as particular gravitational configurations [301–304]
or as particles which are not part of the standard model [305–309].

In the literature several candidates for dark matter, like WIMPS or axions, have
been proposed. Here we focus on scalar fields as possible dark matter candidates.
Scalar fields plays an important role in different contexts of gravitational physics like
e.g. cosmology, holography and many others. For instance, in the first part of this
thesis we have discussed their relevance in 2D gravity models. For this reason, in this
Chapter we present an exact, analytic, static, spherically symmetric, four-dimensional
solution of minimally coupled Einstein-scalar gravity, sourced by a scalar field which
can be considered as a possible dark matter candidate. Its profile has the form of
the sine-Gordon soliton and it is a horizonless, everywhere regular and positive-mass
solution — it can be therefore considered as a solitonic star. The scalar potential
behaves as a constant near the origin and vanishes at infinity. In particular, the
solitonic scalar star interpolates between an anti-de Sitter and an asympototically flat
spacetime. Unfortunately, due to numerical issue, we were not able to determine with
confidence whether or not the star-like background solution is stable.

This chapter is based on:

� E. Franzin, M. Cadoni and M. T. “Sine-Gordon solitonic scalar stars and black
holes”, Phys.Rev. D97 (2018) no.12, 124018, arXiv:1805.08976.

Throughout the Chapter we adopt c = 16πG = 1 units.

7.1 Scalar fields and their role in astrophysics

To date, it is well-known that visible baryonic matter accounts for only a small part
of the total mass of the universe. The most reliable and conservative approach to
dark matter is the ΛCDM model [10], but several alternatives have been introduced to
take into account some problems present in the model — from modifications of general
relativity [120], to particle dark matter [12] and emergent gravity approaches [87, 274,
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275]. However, as dark matter is most likely non-baryonic, it is interesting to consider
asymptotically flat self-gravitating objects made up of massive fundamental (pseudo)
scalar fields.

In the first part of the thesis we have investigated the role of scalar fields in 2D
dilaton gravity and holography. Here we want to study the properties of (real) scalar
fields and their astrophysical consequences [14].

Boson stars [310, 311] are the most famous example: they are non-topological soli-
tonic configurations of massive complex scalar fields non-linearly coupled to them-
selves through a self-interacting scalar potential and to gravity. Stable and compact
configurations have also been proposed as alternatives to astrophysical and primor-
dial black holes [312, 313]. In fact, gravitational collapse could stop before the object
reaches its Schwarzschild radius to produce a horizonless object that mimics some ob-
servational features of black holes [314–316], but that may still be distinguished from
signatures in the gravitational-wave waveform [317–321].

In boson stars, the constituent complex scalar fields are globally invariant under
U(1) symmetry and, as a consequence, there exists a conserved Noether current. For
real massive scalar fields there is no such a current and the situation is very different:
there are no static solutions. However there exist oscillatons [322], for which both
the metric and the scalar field are periodically oscillating in time. For completeness,
there are other examples of (non minimally coupled) real scalar field configurations
that give rise to compact objects, i.e. [323, 324].

The key observation is that boson stars and oscillatons are found by fixing the
scalar potential. Then, the metric functions and the scalar profile are determined
by solving the Einstein-Klein-Gordon equations. In the case we will study in the
following, on the contrary, we fix the scalar profile, we determine the scalar potential
dynamically and we show that static regular self-gravitating solutions made up of real
scalar fields are allowed.

We study exact, analytic, static, spherically symmetric, four-dimensional solutions
of minimally coupled Einstein-scalar gravity. We derive a horizonless, everywhere
regular, positive-mass solution. The solutions is sourced by a scalar field whose
profile is identical to that of the sine-Gordon soliton [325]. These solitons have a wide
range of applications in several areas of non-linear physics, e.g. non-linear molecular
and DNA dynamics, the Josephson effect, ferromagnetic waves, non-linear optics,
superconductivity and many others [326–328]. In two-dimensional gravity, there exists
a relationship between the sine-Gordon dynamics and the black-hole metric degrees of
freedom [329, 330], while a sine-Gordon star is known in Brans-Dicke gravity [331].
Thus, it is remarkable that a sine-Gordon soliton may also act as a gravitational scalar
source in general relativity.

The energy density of the horizonless solution is negative close to the origin but
it is balanced by a positive energy density in the asymptotic region to produce a
positive total gravitational mass. Plus, this self-gravitating configuration sourced by
a sine-Gordon scalar profile has compactness of O(0.1). For these reasons, we call
it a sine-Gordon solitonic scalar star. To derive the solution we utilize a slightly
different version of the solution-generating method proposed in Ref. [332] which has
been successfully used to obtain a large number of exact, static, asymptotically flat or
anti-de Sitter (AdS) black-hole and black-brane solutions [46, 47, 333–335].

Let us note that, even if black-hole solutions sourced by scalar fields in asymptot-
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ically flat spacetimes are generically forbidden by no-hair theorems1, yet black holes
solutions sourced by sine-Gordon soliton are allowed [276]. However, we will not
discuss this type of solutions in this thesis.

7.2 Solitonic solutions

We consider four-dimensional Einstein gravity minimally coupled to a self-interacting
real scalar field φ,

S =

∫
d4x
√
−g

(
R−

1
2
∂µφ∂

µφ− V(φ)

)
, (7.2.1)

and we look for asymptotically flat, static, spherically symmetric solutions ds2 =

−U(r)dt2 + U(r)−1dr2 + R2(r)dΩ2
2 sourced by a scalar which inherits the spacetime

symmetries [343, 344] and whose stress-energy tensor is

Tµν = ∂µφ∂νφ− gµν

(
1
2
∂µφ∂

µφ+ V(φ)

)
. (7.2.2)

Introducing an auxiliary dimensionless coordinate x ≡ r0/r, with r0 arbitrary length
scale — which we will see proportional to the gravitational mass of the solution and
inverse proportional to the square root of the amplitude of the scalar potential — the
solution of the field equations can be entirely parametrized by a single function P(x)
and can be recast in the form,

R(x) =
r0P

x
, φ(x) = 2

∫
dx

√
−
1
P

d2P

dx2
, (7.2.3)

U(x) =
r20P

2

x2

(
c2 +

2
r20

∫
xdx

P4
+
c1

r30

∫
x2 dx

P4

)
, (7.2.4)

V [φ(x)] =
x2

2r20P2

[
2− x2 d

dx

(
x2
d

dx

UP2

x2

)]
, (7.2.5)

where c1 and c2 are integration constants, whose value can be determined by the
boundary conditions of the spacetime.

The r-asymptotic region corresponds to x = 0, while the r-origin corresponds either
to x = ∞ when P(x) has no zeros at finite values, or to x = x0 when P(x0) = 0. Because
of its relation with the radius R of the 2-sphere, P(x) must be a positive, analytic and
monotonically decreasing function. Moreover, the condition of asymptotic flatness
requires P(0) = 1 and reality of the scalar field implies d2P/dx2 6 0. When P(x) has
a zero at a finite value x0, U(x0) becomes singular and in view of its integral form
(7.2.4), quite generically the spacetime will develop a curvature singularity. The only
way to avoid such a curvature singularity, but still have non-trivial solutions, is to
impose an asymptotically constant scalar field profile and an exponential decreasing
of d2P/dx2. In fact, from the field equations it turns out that the scalar curvature is
given by

R = 2V −
x4U

r20P

d2P

dx2
,

1No-hair theorems relate the existence of hairy black holes to the non-convexity of the potential [336–
338] and to the violation of the positive energy theorem [339, 340] with some notable exceptions [341,
342].



112 CHAPTER 7. SOLITONIC STARS AS DARK MATTER CANDIDATES

hence, the exponential behaviour of d2P/dx2 is needed to kill the power-law diver-
gences in R. The simplest choice for a function P satisfying all the conditions above
is

P(x) = 2− e−x . (7.2.6)

For the rest of the Chapter we switch back to the radial coordinate r. From
Eq. (7.2.3), the metric function R is

R(r) = r
(
2− e−r0/r

)
, (7.2.7)

and surprisingly enough, the scalar field profile turns out to be identical to that of the
solitons (kinks) of the sine-Gordon theory [325],

φ(r) = π− 4 arcsin e
−r0/2r
√
2

. (7.2.8)

The scalar field stays always finite, goes to zero asymptotically as φ ∼ r0/r, whereas
it behaves exponentially near the origin, i.e. (φ− π) ∼ e−r0/2r as r→ 0.

For non-zero values of the integration constant c1, the metric function U in
Eq. (7.2.4) has a curvature singularity in r = 0, it describes either a black hole
(c1/r0 < 0) or a naked singularity (c1/r0 > 0). However, for c1 = 0 it describes
a horizonless and perfectly regular solution with no curvature singularities. In this
case, fixing c2 in order to have an asymptotically flat solution, i.e. U(r) → 1 as r→ ∞,
we get,

U(r) =
r2

96r20

[
− 4P

(
6r0
r

+ 5
)
−

32r0
rP

− 8
(
3r0
r

+ 1
)

+ P2
(
a2 − 12Li2

(
1− P

2

)
+ 2

(
6r0
r

+ 11
)
log P

2

+ 2
(r0
r
+ 3
)(3r0

r
+ 2
))]

, (7.2.9)

where a2 = 96r20c2 = 16+ 22 log 2+ π2 − 6 log2 2. Near the origin the metric functions
behave as R(r) = r and U(r) = r2/L2 + 1, i.e. it describes an AdS spacetime with AdS
length L2 = 6r20/a2. Let us note that the star-like branch cannot be considered as the
c1 → 0 limit of the black-hole branch as such a limit is singular.

The gravitational mass M of the solution can be easily inferred from the 1/r term
in the asymptotic expansion of the metric function U(r); it is positive and given by
M = 16πr0/3. As the scalar field is spread all over the radial direction, this solution
does not have a hard surface. Yet we could define an effective radius reff within which
99% of the mass is contained. It turns out to be, roughly, reff/r0 ≈ 98, almost three
times larger than its Schwarzschild radius. This also means that the compactness of
this solution is about 0.17, a value compatible with other boson and fluid stars but not
black holes — see e.g. Fig. 4 of Ref. [345].

Our solution represents an extremely non-trivial gravitational configuration, which
we call a sine-Gordon solitonic scalar star. The solution itself has a solitonic nature
because it has a positive mass, it is completely free of spacetime singularities and
it interpolates between two maximally symmetric spacetimes — an asymptotically flat
spacetime at r = ∞ and an AdS spacetime at r = 0.
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The expression for the potential (7.2.5) can be computed analytically but is cum-
bersome. We give in Fig. 7.1 its plot both as a function of r and φ. As expected the
potential goes to zero asymptotically (r → ∞, i.e. φ → 0) as a quintic power φ5 and
has a minimum there. Near the origin (r → 0 i.e. φ → π), it approaches a negative
constant V = −3/2L2 = −a2/4r20 consistently with its AdS behaviour. It is interesting
to notice that the potential is positive for large values of r (see the inset in Fig. 7.1),
reaches a maximum at around r/r0 ≈ 5.01 then crosses the axis for r/r0 ≈ 4.08 and
goes down to negative values to approach exponentially the constant negative AdS
value.

Equation of state

Despite the fact that in general a scalar field does not obey an equation of state [346],
the stress-energy tensor of the scalar field (7.2.2) can also be interpreted as produced
by a non-perfect, anisotropic fluid with both radial and perpendicular pressure,

−T00 = ρ =
1
2
Uφ ′2 + V = T + V , (7.2.10)

T 11 = prad =
1
2
Uφ ′2 − V , T22 = ptan = −ρ . (7.2.11)

In Fig. 7.2 on the left we plot the energy density ρ, its kinetic contribution T , and
the radial pressure prad as functions of r, while on the right we plot the position-
dependent equation of state prad = prad(ρ).

Although the energy density is negative for small values of r, the gravitational
mass is positive. The existence of this positive mass solution results from the peculiar
highly non-linear interaction of the scalar field producing a negative energy density in
the inner region balanced by the positive energy density in the asymptotic region. In
order to see if this balance may produce a stable configuration, we have to investigate
the stability of our solution.

7.3 Stability analysis

To discuss the stability of our solution we consider s-wave radial perturbations (they
are generically expected to be the least stable) about the background, i.e. U(r)+δU(t, r),
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Figure 7.1: Plot of the scalar potential as a function of r and φ. Inset: Zoom on the
maximum.
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R(r) + δR(t, r) and φ(r) + δφ(t, r).
By expanding the field equations up to linear order in the perturbation fields and

by making use of the background equations, the perturbation equations reduce to two
constraints and a dynamic equation for δφ [347].

Furthermore, assuming harmonic time dependence for the scalar perturbation

δφ(t, r) ≡ e−iωtR(r)ψ(r) ,

the master equation for radial perturbations reads

d2ψ

dr2∗
+
(
ω2 − Veff

)
ψ = 0 , (7.3.12)

where r∗ is a “tortoise” coordinate dr∗/dr = 1/U(r) and

Veff
U

=
1−UR ′2

R2
+

(
VR2 − 2

)
φ ′2

4R ′2
+
VφRφ

′

R ′
−
V

2
+ Vφφ , (7.3.13)

where Vφ = dV/dφ and Vφφ = d2V/dφ2. Veff can be given in a complicated yet
analytical form that we do not report here.

The asymptotic behaviour of the effective potential is Veff ∼ 2r0/r3 as r→ ∞ while
near the origin it diverges as Veff ∼ r20/64r4 as r → 0. For 0.14 . r/r0 & 5.87 it is
negative while for r & 5.87 it is positive and has a local maximum for r/r0 ≈ 8.11. Its
plot is shown in Fig. 7.3.

To show that the background solution is linearly stable, we need to show that there
are no solutions to Eq. (7.3.12) with ω2 < 0 satisfying appropriate boundary conditions.
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Figure 7.2: Left: The energy density ρ, its kinetic contribution T and the radial
pressure prad as functions of the radial coordinate r. Right: Equation of state.

��� � ��

-�

�

�

��

� /��

�
�
��
� ��

� �� �� ��
-��-�

�

��-�

Figure 7.3: Plot of the effective potential (7.3.13) as a function of r. Zeros for r/r0 ≈
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the local maximum.
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At spatial infinity we can use purely outgoing, free-wave, boundary conditions, i.e.
ψ∞ ∼ eiωr∗ . Boundary conditions near the origin are more complicated, due to the
behaviour of Veff near r = 0. More technically, r = 0 is a non-Fuchsian point and as
a consequence, the solution ψ0 near the origin is not a polynomial. Equation (7.3.12)
cannot be solved in terms of simple functions in this limit for any ω2, nevertheless,
for marginally stable solutions (ω2 = 0) the solution behaves as ψ0(ω

2 = 0) ∼ e−r0/r/r.
For this reason we expect that ψ0 must also be exponentially suppressed for ω2 6= 0.

Because of the very steep barrier at the origin, neither the Simon’s criterion [348]
based on the area of Veff, nor an S-deformation method [349] are applicable.

In addition, both the barrier at the origin and the lack of more precise boundary
conditions near the origin make the numerical integration of Eq. (7.3.12) very challeng-
ing. For some values of the parameters it is possible to find solutions to Eq. (7.3.12)
for negative and positive values of ω2, but such results are highly dependent on the
initial parameters. More importantly, we had difficulty in keeping control on the nu-
merical error which (generically) grows of several orders of magnitude at r ≈ rmin.
For these reasons, we cannot state whether or not the background solution is stable
against linear perturbations.

To conclude, it is possible to show that also the black hole branch (we are not
discussing here) is unstable against linear perturbations [276]. Although the limit
c1/r0 → 0 of the black-hole branch is singular, the instability of the black-hole back-
ground solution suggests instability also for the star-like branch. Yet, the instability
time scale could be extremely large (even larger than the Hubble time) and the sine-
Gordon solitonic scalar star may still have astrophysical interest as a possible dark
matter candidate.

7.4 Summary and conclusions

In this Chapter we have derived and studied an exact, analytic, static, spherically sym-
metric, four-dimensional solution of minimally coupled Einstein-scalar gravity sourced
by configuration of the scalar field which has the form of a sine-Gordon soliton. Our
solution can be considered as a possible candidate of dark matter. Depending on the
value of the parameter c1/r0, it describes either a black hole or a star-like solution
that we called sine-Gordon solitonic scalar star. The scalar potential is not given a
priori but it is determined by the field equations.

The sine-Gordon solitonic scalar star is a horizonless, everywhere regular, asymp-
totically flat spacetime with positive mass and compactness of O(0.1). The scalar
potential behaves as a negative constant near the origin and goes to zero as φ5 at
spatial infinity. Likewise, the energy density of the solution is negative and finite near
the origin, becomes positive at a certain radius and vanishes in the asymptotic region.
In that sense, this solution interpolates from the AdS spacetime near the origin and
the Schwarzschild spacetime at spatial infinity. The negative energy density near the
origin is overcompensated by the positive energy density in the asymptotic region, so
that the total mass of the star is positive.

This peculiar behaviour resembles that of gravastars [350]. These exotic compact
objects have been proposed as alternatives to black holes [351] and they are objects
whose interior is described by a patch of de Sitter space (characterized by negative
pressure) smoothly connected to the Schwarzschild exterior through an intermediate
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region filled with some (exotic) matter. In analogy with the gravastar picture, our
solution can be regarded as an anti-gravastar or the string-inspired AdS bubbles [352].
The advantage with respect to these models is that our solution does not require
junction conditions with the drawback of a very complicated scalar potential. Notice,
however, that our solution is not as compact as a typical gravastar.

The solution-generating method introduced and the result discussed bode well
for a possible analytical interpolating solution between de Sitter and Schwarzschild
spacetimes, but its search is left for future work.

Unfortunately, we were not able to determine with confidence whether or not the
background solution is stable against linear perturbations. Because of the form of the
effective potential, the study of linear perturbations is indeed very complicated both
analytically and numerically. This kind of solutions are often plagued by instabili-
ties [353, 354] and probably a full numerical simulation is required. Results on the
black-hole branch may suggest linear instability also in the star-like branch. However,
the number of unstable modes in the black-hole branch is finite and the instability
time scale could be sufficiently large to let the sine-Gordon solitonic scalar star still
have some astrophysical interest as a possible dark matter candidate.

Another interesting point that we have not investigated here is the formation
mechanism of such a solution. While the solitonic nature of the scalar profile is
comprehensible, the origin of the scalar potential is more mysterious. Again, a full
numerical study of gravitational collapse of scalar matter should be necessary to
completely answer this question.



Conclusions

In this thesis we have investigated various aspects of gravitational physics with the
aim to shed light on the deep relation between the infrared and ultraviolet regimes of
gravity. In doing so, we have focused on very challenging topics, black holes, holog-
raphy, the emergent properties of spacetime and gravity itself and their consequences
for the gravitational dynamics at galactictic scales.

Throughout this thesis, holography and the holographic principle have been used
as a guiding principle in the understanding of quantum properties of the gravitational
interaction. Due to their peculiar features, black holes represent the ideal laboratory
to test gravity from the quantum to the classical regime. This become very clear in the
AdS/CFT correspondence, where classical properties of black holes can be translated in
quantum properties of dual quantum fields and viceversa. Black hole hydrodynamics
and the computation of the shear viscosity to density entropy ratio are an explicit
realization of these ideas.

Another important issue we have focused on in this thesis is about the true quan-
tum nature of spacetime and its implications at large scales. Recent investigations
have shown that classical spacetime and Einstein’s gravity can be understood as
emerging from some underlying microscopic quantum theory. We have seen that
a natural manifestation of the emergent gravity paradigm appears in the corpuscolar
picture of gravity, where black holes and de Sitter spacetime can be considered as a
Bose-Einstein condensates of NG gravitons. From this quantum perspective, classi-
cal gravity emerges in the limit NG � 1. An interesting fact is that when one tries
to describe the gravitational interaction at all scales (from the Solar system to the
cosmological ones, passing through the galactic scales) into a corpuscolar picture of
gravity, one realizes that at galactic ones, no exotic matter is needed to describe the
phenomenology commonly attributed to dark matter. Indeed, the latter can be con-
sidered as a result of the interaction between cosmological gravitons and baryonic
matter. However, in a more conservative approach, real scalar fields can account for
a possible dark matter candidate. Scalar fields cover a wide range of applications in
physics (e.g. the Higgs boson in particle physics). In gravity, for example, they are very
useful to study quantum gravity in a simplified context.

Here we present a summary of the most important results obtained in this thesis
and prospects for future investigations.

In the first part of the thesis we have investigated geometrical, thermodynamical
and holographic properties of two dimensional and higher dimensional black holes in
AdS spacetime in the context of the AdS/CFT correspondence. The deep interplay be-
tween the infrared and ultraviolet regimes of gravity manifests in black holes (branes)
hydrodynamics. The computation of the shear viscosity to density entropy ratio clearly
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shows how the system flows between the two regimes ot the theory. Moreover we have
showed that, contrarily to what is generally done in AdS/CFT, e.g. to use the holo-
graphic dualities to learn about transport coefficients in the hydrodynamic limit of
strongly coupled QFTs by investigating bulk gravity configurations, the computation
of η/s has been also usefull to gain information about the non trivial thermodynami-
cal behaviour of black holes, like e.g. phase transitions. This is true also in the case
of dilaton gravity, where a detailed analysis of the gravitational solutions, their dual
CFT description and their symmetries can be used to gain information about quantum
phase transition from the IR (classical) to the UV (quantum) regimes of gravity in 2D.

In Chapter 1 we have solved Einstein’s equations in higher dimensions to find
black branes and black holes solutions in Lovelock, Einstein and Gauss-Bonnet (GB)
gravity in presence of an electromagnetic field. We have investigated their geometrical
and thermodynamical properties in five dimensional Reissner-Nordström (RN) and GB
gravity. In the case of black branes we have focused mainly on GB gravity, even if we
think the results can be extended to Lovelock gravity, too. We have showed that, when
expressed in terms of effective physical parameters, the thermodynamic behaviour of
charged GB black branes is completely indistinguishable from that of charged Einstein
black branes. Moreover, the extremal, near-horizon limit of the two classes of branes
is exactly the same as they allow for the same AdS2×R3, near-horizon, exact solution.
This implies that, although in the UV the associated dual QFTs are different, they flow
in the IR to the same fixed point. In the case of two dimensional dilaton gravity we
have firstly revised the Almeiri-Polchinksi model and its properties. In particular,
we have found that the model admits two kind of different vacua, we have called
constant dilaton vacuum (CDV) and linear dilaton vacuum (LDV). Then we have
proposed a covariant definition of the black holes mass that it can be useful to define
the energy of the solution, since it appears to be invariant under Weyl transformation
of the metric. Finally, we have shown that when up-lifted to (D+ 2)−dimensions, the
vacuum solutions produce different spacetimes, an intrinsically 2D spacetime for the
CDV and hyperscaling violating geometry for the LDV, whose forms are AdS2×RD
and HD+2, respectively.

In Chapter 2 we have reviewed the AdS/CFT correspondence and discussed its
applications in holographic relativistic hydrodynamics both in flat and curved space-
times. For what concerns holographic hydrodynamics, we have focused on the shear
viscosity. Following the standard rules of AdS/CFT correspondence, we have first de-
fined the shear viscosity for quantum field theories (QFTs) dual to AdS black branes
in flat spacetime by means of the Kubo formula. Then we have focused on curved
spacetime and defined hydrodynamics and the shear viscosity for the QFTs dual to
AdS spherical black holes by means of an anlogous Kubo formula. Even if the spher-
ical background intrinsically breaks the translational symmetry, thus preventing the
standard definition of the shear viscosity in terms of conserved quantities, it can be
interpreted as the rate of entropy production due to a particular perturbation of the
background. Finally, in the case of 2D dilaton gravity, we have compared energeti-
cally the two different vacua (CDV and LDV) of the theory. Then we have showed the
existence of a zero temperature phase transition in which the vacuum with constant
dilaton is energetically preferred. We have also speculated that this quantum phase
transition could be related to the spontaneous dimensional reduction of the spacetime
to two dimensions near the Planck scale.
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In Chapter 3 we have computed the shear viscosity to density entropy ratio, η/s,
for five dimensional charged black branes and black holes both in general relativity
and GB theories. For what concerns branes, we have found that η/s is a mono-
tonic function of the temperature and the universality of η/s is lost in the UV but
is restored in the IR. We expected this result because transport features in the hy-
drodynamic regime should be determined by IR physics. On the other hand, it is not
entirely clear if this result has a general meaning or it is a just a consequence of
the peculiarities of the charged GB black brane. Indeed, the dual QFT to GB gravity
shows an interesting temperature-dependent flow of η/s depending on the value of
the GB coupling constant. This problem remains open to future investigations. In
the case of spherical black holes, the computation of the analogous shear viscosity to
density entropy ratio, η̃/s, has shown interesting results, especially for what concerns
the IR and UV regimes of gravity. At large and small temperatures, we have found
that η̃/s is a monotonic increasing function of the temperature. In particular, at large
temperatures it approaches a constant value, whereas, at small temperatures, when
the black hole has a regular, stable extremal limit, η̃/s goes to zero with scaling law
behaviour. Whenever the phase diagram of the black hole has a Van der Waals-like
behaviour, i.e. it is characterised by the presence of two stable states (small and large
black holes) connected by a meta-stable region (intermediate black holes), the system
evolution must occur through the meta-stable region and temperature-dependent hys-
teresis of η̃/s is generated by non-equilibrium thermodynamics. In the case of two
dimensional dilaton gravity, we have showed that the effect of the symmetry breaking
is both the generation of an infrared scale (a mass gap) and to make local the Gold-
stone modes associated with the asymptotic symmetries of the 2D spacetime. In this
way a non vanishing central charge is generated in the dual conformal field theory,
which accounts for the microscopic entropy of the 2D black hole.

In the second part of the thesis we have investigated the emergent gravity scenario
in the context of corpuscolar gravity and its applications at galactic scales. What is
clear from the results we have obtained in this part of the thesis is that, in order to
describe gravity at galactic scales, an infrared modification of the theory is needed.
This kind of modifications are driven by the microscopic (UV) nature of gravity which
can be described in terms of a Bose-Einstein condensate of gravitons.

In Chapter 4 we have reviewed both the Verlinde’s emergent gravity paradigm [87]
and the corpuscolar gravity picture of Dvali et al [91].

In Chapter 5 we have investigated the emergent laws of gravity distinguishing
different scaling regimes and deriving the implications of our emergent gravity scenario
at galactic scales. We have firstly described the de Sitter universe in a corpuscolar
picture of gravity as a Bose-Einstein condensate of NG cosmological gravitons (the
DEC). Moreover we have demonstrated that the local behaviour of this condensate
requires, besides the usual holographic regime at the scales of clumped (baryonic)
matter where number of gravitons and entropy scale as an area, an extensive regime
of gravity in which the graviton number scales with the volume of the space. In
this picture, we have shown that baryonic matter and local (Newtonian) gravitational
forces fits naturally in this description as gravitons pulled out from the DEC. For
what concerns the galactic scales, we have demonstrated that the galaxy rotational
curves can be described without assuming the existence of exotic matter. Indeed,
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the phenomenology commonly attributed to dark matter (the flattening of rotational
curves) can be described as a reaction of the DEC to the presence of localized baryonic
matter. In this way we have been able to correctly reproduce the famous MOND
formula for the velocity of stars in galaxies. Finally, we have calculated the mass
ratio between the contribution of the apparent dark matter and the baryonic matter in
a region of size r at galactic scales and showed that it is consistent with the ΛCDM
predictions. In particular, we have noticed how the application of the corpuscolar
picture of gravity to de Sitter universe lead to the possibility to give a quantum
description of the origin of dark energy. However, we have left the investigation of this
interesting point for the future. Another argument we leave for future investigations
is about the origin of horizons. They play a key role in the corpuscolar picture of
emergent gravity. Indeed the holographic properties of spacetime refer to the existence
of cosmological (or black holes) horizon whose origin is still mysterious.

In Chapter 6 we have shown how the corpuscolar picture of gravity shown in Chap-
ter 5 allows for an effective description in terms of general relativity (GR) sourced by
an anisotropic fluid. We have constructed an infrared-modified theory of gravity
which gives the effective fluid description of our emergent gravity theory based on
BEC of gravitons. In this picture, the additional component of the acceleration of
stars at galactic scales can be completely attributed to the radial pressure of the fluid,
whose interpretation in the corpuscular model is that this is part of the reaction of
the condensate of gravitons to the presence of baryonic matter. We have also shown
that it is possible to correctly reproduce the leading MOND log(r) and subleading
(1/r) log(r) terms at galactic scales in the weak-field expansion of the potential. Our
model also predicts a tiny modification of the Newtonian potential at galactic scales
which is controlled by the cosmological acceleration.

Finally, in Chapter 7 we have adopted a more conservative approach to the dark
matter problem. We have derived an exact, analytic, static, spherically symmetric,
four-dimensional solution of minimally coupled Einstein-scalar gravity, sourced by a
scalar field which, for instance, can account for a possible dark matter candidate. We
have studied its geometrical and thermodynamical properties. The importance of this
results is represented by the solution-generating method: contrarily to the standard
procedure, we have formulated a general one to solve Einstein’s equations starting
from the profile of the real scalar field and not from the explicit expression of the
potential. As a result, the scalar field profile takes the form of a sine-Gordon soliton.
The solution is horizonless, everywhere regular, asymptotically flat spacetime with
positive mass and compactness of O(0.1). We have called it a sine-Gordon solitonic
scalar star. We have also studied the stability of the solution: unfortunately, due
to numerical issues, we have not been able to infer with great confidence if the star
is stable or not against linear perturbations. Results on the black-hole branch of
solutions may suggest linear instability also in the star-like branch. However, the
instability time scale could be sufficiently large to let the sine-Gordon solitonic scalar
star still have some astrophysical interest as a possible dark matter candidate.
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