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0
Terminology and Notation

We use the letters M , N and E to denote Cr manifolds. In particular M will
always denote a m-dimensional manifold. We denote by F πF−→ E a Cr fibration
πF : F → E while by G πG−→ E we always denote a vector bundle.

The tangent and cotangent bundle of a manifold M are denoted respectively

by TM
τM−→ M and T ∗M

τ∗M−→ M . The total spaces of tensor bundles over M
with h contravariant and k covariant indices are denoted by

ThkM
def= TM ⊗ · · · ⊗ TM︸ ︷︷ ︸

h times

⊗T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
k times

.

The letter H always denotes a vector subbundle of TM and we use the symbols
Hhk to denote the tensor products

Hhk
def= H⊗ · · · ⊗ H︸ ︷︷ ︸

h times

⊗H∗ ⊗ · · · ⊗ H∗︸ ︷︷ ︸
k times

.

Particularly important for us are the vector subbundles S0
kM ⊂ T 0

kM and
SH0

k ⊂ H0
k of totally symmetric tensors.

We denote by Cr(M,N) the space of all Cr maps M → N and by ΓrF and
ΓrG the spaces of all Cr sections of the corresponding fibrations. In particular
we use the symbols X(M) and Ω1(M) for, respectively, Γ∞(TM) and Γ∞(T ∗M).
For every s ≥ r the maps

irs(M,N) : Cs(M,N) −→ Cr(M,N) , irs(F ) : Γs(F ) −→ Γr(F )

denote the canonical inclusions. Finally, we denote by Cr+(M) the set of all
strictly positive Cr functions M → R.

We endow all these functional spaces with the Whitney strong topology,
defined as follows. We recall its definition in the case of ΓrF , which is the
most general. Let Φ = {(Ui, ψi, Vi, φi)}i∈Λ a set of locally finite fibered charts
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of F π−→ E, i.e. (Ui, ψi) is a locally finite cover of E and (Ui × Vi, (ψi, φi))
is a locally finite cover of F , K = {Ki}i∈Λ a set of compact subsets of E s.t.
Ki ⊂ Ui for all i ∈ Λ and ε = {εi}i∈Λ a family of positive numbers. If f ∈ ΓrF
is such that f(Ki) ⊂ Ki × Vi, then the set

Ur(f,Ψ,K, ε) = {f ′ : ‖Dk(ψif ′φ−1
i )−Dk(ψifφ−1

i )‖ < εi}

is a basic set for the strong Cr topology on F
π−→ E. We recall that for

compact spaces this reduces to the usual compact-open topology. The reason
for our choice is that many subsets of Cr(M,N) important for our thesis are
open in this topology. In particular the subset of immersions, embeddings, free
maps and, in general, sets defined via an open differential relation are open in
Cr(M,N) with the Whitney topology.

We use the following conventions for charts and indices:

1. α, β and γ run from 1 to m;

2. i and j run from 1 to q;

3. a and b run from 1 to q′;

4. A and B are used as multindices;

5. a is also used sometimes as index, its range is always declared explicitly.

Manifolds M and E have always dimension m; coordinates on them are
denoted by (xα). The fibers of F πF−→ E have dimension q; fibered coordinates
on F are denoted by (xα, f i). The fibers of G πG−→ E have dimension q′; fibered
coordinates on G are denoted by (xα, ga).

We use upper indices for vector (contravariant) components and lower indices
for covector (covariant) components; correspondingly, a tensor t ∈ Γr(ThkM)
over a point (xα) is represented in coordinates by a set of components (tα1...αh

β1...βk
).

Throughout the thesis we use the Einstein convention of summation over re-
peated indices, namely the notation xαλα always represents the sum

∑m
α=1 x

αλα
and similarly for all other indices.

Finally, the following abbreviations are used throughout the paper:

ODE(s) Ordinary Differental Equation(s)
PDO(s) Partial Differental Operator(s)
PDE(s) Partial Differental Equation(s)
rhs right hand side
sm

m(m+1)
2

eq Euclidean metric on Rq
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Introduction

The following natural construction is central for the present thesis: once it
is given a Cr map f : M → N between a pair of differential Cr manifolds
M and N , its pull-back f∗ defines a map1 from the set of smooth sections
η ∈ Γr(T 0

kN) of all covariant tensor bundles T 0
kN on N to the corresponding

sections f∗η ∈ Γr(T 0
kM) on M . In other words, there exist natural maps

Ψk : Cr(M,N)× Γ(T 0
kN)→ Γ(T 0

kM)

defined by Ψk(f, η) = f∗η. For every k this map is a PDO of order 1 on the
first argument and a linear operator on the second and, after we endow all three
functional spaces with the Cr Whitney strong topology, it is continuous in both
arguments. The bundle S0

2M of symmetric tensors with two covariant (and no
contravariant) indices is of great importance in geometry because (pseudo–)Rie-
mannian metrics live in it. Now consider the particular (but fundamental) case
N = Rq and the isometric operator PDO

DM,q : Cr(M,Rq)→ Γ(S0
2M)

defined by DM,q(f) = Ψ2(f, eq), where eq is the Euclidean metric in Rq. Since
we endowed both the source and the target spaces with the Whitney strong
topology, the map DM,q is continuous. Note that the image of the restriction of
DM,q to the (open) subset Immr(M,Rq) ⊂ Cr(M,Rq) of immersions of M into
Rq is contained inside the set of Riemannian metrics on M .

Two natural questions about DM,q are the following:

1. Is DM,q surjective?

2. Is DM,q (or its restriction to some non-empty open set) an open map?

In geometrical language we can reformulate these questions as follows:
1Note that this does not hold for the push-forward f∗, which is well-defined only when f

is a diffeomorphism.
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1. Let g be a Riemannian metric on M . Can we realize g via an immersion
of M into Rq?

2. Let f0 be an immersion of M into Rq and g0 the metric induced on M
via f0. If g is a metric Cr-“close enough” to g0, is there an immersion f ,
Cr-close to f0, which induces g on M?

From the analytical point of view, these properties amount to the following:

1. Does the PDE DM,q(f) = g (see Eq.(2.1) for an expression of this PDE in
local coordinates) have smooth solutions for every positive-definite rhs?

2. If g0 = DM,q(f0), does the parametric PDE DM,q(fλ) = gλ, λ ∈ [0, ε),
have smooth solutions for small enough λ for every continuous curve gλ
in Γ(S0

2M)?

In both the geometrical and the analytical case, it is also interesting to ask
whether the property of being open is true at least for the restriction of DM,q

to some open subset of C∞(M,Rq).
This thesis is dedicated to the study, in different but related contexts, of

these two properties for some particular case of isometric operators and other
PDOs closely related to them.

1.1 Structure and results of the thesis

The thesis is structured as follows.
In the first three sections of Chapter 2 we review the definitions and main

properties of jets, PDOs and free maps in the language used by Gromov in [1].
In Section 2.4 we expose in detail and in our language Gromov’s theory of
linear undetermined PDOs, which shows that these operator are generically
surjective. Finally, in Section 2.5, we move forward towards the proof of a
Gromov conjecture by showing that the operators DRm,q are open over a non-
empty open set even for q = n+ sn− 1, when no free map can arise. The result
of this section have been published in [2].

In Chapter 3 we define the concepts of H-immersions and H-free maps,
where H is a subbundle of TM , in such a way that usual immersions and free
maps correspond to the subcase H = TM . Then, in Section 3.1, we introduce
new PDOs DH,q and provide conditions under which they are open over a dense
open set. Finally, in Section 3.2, we show how to build H-free maps in critical
dimension in three geometrically significant types of distributions H. The result
of this section have been obtained jointly with G. D’Ambra and A. Loi and have
been published in [3].

In Chapter 4 we study the Lie-derivative operators Lξ when ξ is a vector
fields on the plane with no zeros. In particular, in Section 4.1, we prove that,
for a generic vector field ξ, the cokernel of Lξ is infinite-dimensional and, in
Section 4.2, that the inequality Lξf > 0 admits a smooth solution for all vector
fields of finite type. Finally, in Section 4.3 we provide a characterization of
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the set Lξ(C∞(M)) and in Section 4.4 we study the behaviour of the functions
in Lξ(C∞(M)) close to a pair of separatrices. The result of this section are
contained in [4].

In Chapter 5 we study the action on functional spaces of a particular case
of polynomial Lie-derivative operators on the plane. In Sections 5.1 and 5.2
we study explicitly the behaviour of solutions close to the separatrices. Finally,
in Section 5.3 we study in detail the action of the inverses of these operators.
The result of this section have been obtained jointly with T. Gramchev and
A. Kirilov and are contained in [5].

In the following two sections we briefly illustrate the most relevant results
which are at the base of the present thesis.

1.2 The Nash embedding theorem
and the Newton-Nash-Moser-Gromov IFT

The isometric embedding problem is the natural generalization, to the field of
Riemannian Geometry, of the classic Whitney embedding theorem:

Theorem 1.2.1 (Whitney, 1944). Every m-dimensional manifold M admits an
embedding into R2m and an immersion into R2m−1.

A fundamental consequence of Whitney’s theorem is that the concept of
(real) smooth manifold is not more general than the concept of submanifold
of the euclidean space. This fact is not trivial since a similar statement would
be false, for example, in the complex case, where no compact manifold can be
biholomorphically embedded into any Cq by Liouville’s theorem. It is hence
natural asking whether also every Riemannian manifold is a Riemannian sub-
manifold of some euclidean space.

The first publication about this topic goes back to 1873, when Schlaefli [6]
conjectured that, for the existence of a local isometrical immersion f : M → Rq,
it is enough that q ≥ sn, where sn = n(n+ 1)/2 is the number of unknowns of
the equation D(f) = g (see Section 2.3 for an expression of this PDE in coordi-
nates). This conjecture was proved in 1926 for Cω-immersions by Janet [7] in
the 2-dimensional case and then, a year later, in the general case by Cartan [8]
as an application of his theory of exterior differential systems. It was a striking
and unexpected discovery, made by Nash [9] in 1954 and refined the next year
by Kuiper [10], that the properties of isometric immersion, even locally, depend
strongly on their regularity. The surprise that these results caused in the scien-
tific community is well expressed by the following sentence of Gromov extracted
from a recent interview [11]:

At first, I looked at one of Nash’s papers and thought it was just nonsense.
But Professor Rokhlin said: No, no. You must read it. I still thought it was
nonsense; it could not be true. But then I read it, and it was incredible. It could
not be true but it was true. There were three papers; the two more difficult ones,
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on embeddings, they looked nonsensical. Then you look at the way it is done, and
you also think that it looks nonsensical. After understanding the idea you try to
do it better; many people tried to do it in a better way. But when you look at
how they were doing it, and also what I tried, and then come back to Nash, you
have to admit that he had done it in a better way. He had a tremendous analytic
power combined with geometric intuition. This was a fantastic discovery for me:
how the world may be different from what you think!

From the global (see below) result of Nash it can be extracted the following
local corollary (see [12], Section 1.2.6):

Theorem 1.2.2 (Nash, 1954; Kuiper, 1955). Let M be an m-dimensional C1-
manifold. Then every point of M has a neighbourhood which admits an isometric
C1-immersion into Rm+1.

Clearly the regularity cannot be improved since the curvature of the metric
is an invariant for C2 maps. Indeed, two years later, Nash [13] found a much
higher upper bound for the dimension of the target space in case of more regular
immersions, namely:

Theorem 1.2.3 (Nash, 1956). Let M be a m-dimensional Cr-manifold, r ≥ 3.
Then every point of M has a neighbourhood which admits an isometric Cr-
immersion into R4m+sm .

In this case the dimension of the target space is not sharp and was improved
by Gromov (see below) to m2 + 10m+ 3 for r = 3 and to (m+ 2)(m+ 3)/2 for
r ≥ 4. Note that the case r = 2, not covered by the two theorems above, is still
an open problem.

Obstructions to the global extension of local isometric immersions come
sometimes from the topology and sometimes from the (Riemannian) geometry.
An example of the first case comes from the fact that, clearly, no compact m-
dimensional manifold M can be immersed into Rm and so a fortiori no isometric
immersion M → Rm can exist. The first example of the second case goes back
to Hilbert [14], that showed that the the Lobachevskii plane (i.e. the plane
endowed with a metric of constant negative curvature) cannot be isometrically
C2-embedded into R3; this result was much later generalized by Efimov [15],
which proved that no metric on the plane with curvature bounded above by a
negative number can be induced via a C2-immersion into R3. An example of
Gromov (see [12], Appendix 3) shows that the disk admits a C2-open set of met-
rics which cannot be C2-immersed into R3, proving that such behaviour are not
limited to open manifolds. Obstructions might also come from both sources: for
example the elliptic plane (i.e. the projective plane with the canonical metric)
does not admit any C2-immersion into R3 for it is non-orientable while every
surface of positive curvature immersed in R3 must be orientable.

Before Nash, the only significative result on the global existence of isomet-
ric immersions was due to a problem posed by Weyl [16] about whether every
analytic positive-curvature metric on the sphere comes from some analytic im-
mersion of S2 into R3. The problem was attacked and solved by Alexandrov
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and Pogorelov from a geometric point of view and by Lewy and Niremberg from
an analytic point of view (see Refs. in [13]). It is then easily imaginable the
enormous impact on this field of the following global results of Nash:

Theorem 1.2.4 (Nash, 1954; Kuiper, 1955). Let M be an m-dimensional C1-
manifold. If M admits a strictly short2 immersion (resp. embedding) into Rq
and q ≥ m+ 1 then it also admits a C1 isometric immersion (resp. embedding)
into Rq. Moreveor, strictly short immersions (resp. embeddings) M → Rq
always exist for q ≥ 2m (resp. q ≥ 2m+ 1).

This theorem was first proved by Nash for q ≥ m + 2 and, a year later,
extended to the case q ≥ m + 1 by Kuiper. As a corollary, we get that every
m-dimensional manifold can be C1 isometrically embedded into R2m+1 and
C1 immersed into R2m. Moreover in the compact case the dimensions of the
target space can be reduces by 1 for both the embeddings and the immersions.
For example, this implies the astonishing fact that every surface can be C1

isometrically immersed into R3.
Two years later Nash proved the following theorem about more regular im-

mersions:

Theorem 1.2.5 (Nash, 1956). Every m-dimensional closed (resp. open) Rie-
mannian Cr-manifold, r ≥ 3, admits an isometric Cr-immersion into Rq for
q = 4m+ 3sm (resp. q = (4m+ 3sm)(m+ 1)).

These bounds were then improved by Gromov to q = m2 + 10m + 3 (e.g.
see [1], Sec. 3.1.1). In terms of the isometric operator, we can restate these
results of Nash in the following way:

Theorem 1.2.6 (Nash,Kuiper,Gromov). If M is a C1-manifold, the isometric
operator DM,q : C1(M,Rq) → Γ(S0

2M) is surjective for q ≥ 2m. If M is a
Cr-manifold, with r ≥ 3, then DM,q : Cr(M,Rq) → Γ(S0

2M) is surjective for
q ≥ m2 + 10m+ 3.

The relevance of these results for the present thesis lies even more in their
proof than in their content. Indeed, in order to prove them, Nash introduced a
clever infinite-dimensional implicit function theorem, improved later by Moser
and other authors and that was used since then in several contexts related to
PDEs, including the celebrated KAM theorem.

In his book “Partial Differential Relations” [1], Gromov widely generalized
the method of Nash to any PDO. For the purposes of the present thesis, the
version of this Newton-Nash-Moser-Gromov Implicit Function Theorem can be
stated (see also Section 2.2) as follows:

Theorem 1.2.7 (Newton-Nash-Moser-Gromov IFT). Let D be a smooth PDO
which is infinitesimally invertible over some open subset U . Then the restriction
of D to U is an open map.

2A strictly short immersion (resp. embedding) f : (M, g)→ (Rq , eq) is an immersion (resp.
embedding) s.t. g − f∗eq is a metric on M .
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Loosely speaking, an operator D is infinitesimally invertible if its lineariza-
tion is invertible (for a formal definition of infinitesimal invertibility see Sec-
tion 2.2).

In case of isometries, free maps play an important role. We recall that a
map f : M → Rq is free if the vectors of its first and second partial derivatives
are all linearly independent (see Section 2.3). It is easy to verify that the
isometric operator DM,q is infinitesimally invertible over the set of free maps
(see Section 2.3). Hence Newton-Nash-Moser-Gromov IFT leads immediately
to the following famous theorem of Nash:

Theorem 1.2.8 (Nash 1956). Let M be a Cr manifold, with r ≥ 3. The
isometric operator DM,q is open over the set of free maps from M to Rq.

1.3 The Cohomological Equation
for regular vector fields in R2

In Chapter 3 we show that, given a C1 map f : M → R and a vector field
ξ ∈ X(M) without zeros, on the foliation Fξ of integral trajectories of ξ it is
induced a symmetric tensor with two covariant indices Dξ(f) = (Lξf)2θ2 for
some 1-form θ ∈ Ω1(M) such that θ(ξ) = 1. This quadratic form is a metric
iff Lξf > 0, so Dξ is surjective iff Lξ is surjective on the subspace of positive
functions. Similarly, if g0 = Dξ(f0) is a metric on Fξ and gε = g0 +εδg is a small
perturbation of g0 then the linearized version of gε = Dξ(fε) is Lξδf = δg/2, so
Dξ is an open map close to f0 iff Lξ is surjective.

More generally, the problem of the solvability of the so-called cohomological
equation

Lξf = g (1.1)

in dependence of the topology of the foliation of its integral trajectories is rel-
evant in the context of dynamical systems and was recently studied from two
complementary points of view:

1. The time-change in the flow induced by the multiplication of ξ by a strictly
positive smooth function λ is trivial (i.e. ξ and λξ belong to the same
smooth conjugacy class) iff λ − 1 ∈ Lξ(C∞(M)) (see [17, 18] for more
details).

2. In a series of papers (see [19] and the works cited therein) S.P. Novikov
introduced exotic cohomological theories related to dynamical systems on
manifolds and showed that some cohomology groups associated to the co-
homological equation are related with the equivariant homology obtained
by considering the set of the invariant differential forms considered as
forms on the leaves space.

Note that the question of the solvability of the cohomological equation is
of purely global nature: it is well known indeed that, for every point p ∈ M
with ξp 6= 0, there is a neighbourhood Up s.t. Lξ(C∞(Up)) = C∞(Up), so that
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the cohomological equation is always solvable. All solutions to (1.1) are given
explicitly by

f(p) = F (pl) +
∫ λp

0

[
φλξ (pl)

]∗
g dλ

where φλξ is the flow of ξ, λp the time to reach p from the point pl lying on a
fixed local transversal line l and F any smooth function defined on l.

The most general result known on this subject is perhaps the following the-
orem [20]:

Theorem 1.3.1 (Hormander and Duistermaat, 1972). Let Mm be an open
connected manifold and ξ a vector field without zeros on it. Then the following
are equivalent:

1. Lξ(C∞(M)) = C∞(M);

2. (Lξ + a)(C∞(M)) = C∞(M) for any a ∈ C∞(M);

3. ξ admits a global transversal, i.e. a codimension-1 embedded surface N ⊂
M which is transversal to ξ at every point and cuts every of its integral
curves exactly once.

It is a classical observation, going back to Siegel [21] and related to the small
divisors problems that led ultimately to the KAM theory (e.g. see [22] and [23]),
that the Lie derivative operators can be easily non-surjective. Consider indeed
the vector field ξ = ∂x + α∂y on T2. It is well-known that, for a generic α ∈ R,
the only solvability condition for Lξf = g is the obvious

∫
T2 g dµ = 0, where dµ

is the Haar measure on T2. Indeed, by developing f and g in Fourier series, the
cohomological equation writes

2πi(m+ αn)fm,n = gm,n .

The corresponding solution

f(x, y) =
1

2πi

∑
(m,n) 6=(0,0)

gm,n
m+ αn

exp{2πi(mx+ ny)}

does converge to a C∞ function on T2 if α is generic, so that m+ αn does not
grow too fast. Then in this case dim cokerLξ = 1. If instead α is a Liouville
number, i.e. a number such that for every n ∈ N there exist two integers p and
q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1
qn

,

then the denominators in the Fourier coefficients of f grow too fast and we have
dim cokerLξ =∞.

Recently there was a renewed interest in the cohomological equation on
(compact) surfaces. In Nineties Forni [18] generalized this classical results to
orientable surfaces M of any genus for the action of the Lie derivatives Lξ acting
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as a weak derivative on the Sobolev spaces Hk(M), namely the spaces of L2

functions on M whose weak derivatives, up to order k, also belong to L2(M).
In particular he proved the following results:

Theorem 1.3.2 (Forni, 1995). Let ω be a symplectic form on a compact surface
M of genus g ≥ 2. Then for a generic Hamiltonian vector field ξ with set of
zeros Σ there exists a k > 0 s.t. if g is compactly supported in M \ Σ and∫
M
g ω = 0 then the cohomological equation Lξf = g on Hk(M) admits has a

solution f ∈ L2
loc(M \ Σ).

Theorem 1.3.3 (Forni, 1995). Let ω be a symplectic form on a compact surface
M of genus g ≥ 2. Then for a generic Hamiltonian vector field ξ with set
of zeros Σ and for any s > 2g − 2 there is a finite number of distributions
d1, . . . dns ∈ H−sloc (M \ Σ) such that the cohomological equation Lξf = g on
Hs(M) has a solution f ∈ Hs−2g−2(M) if g satisfies the following compatibility
conditions: ∫

M

g ω = 0 , d1(g) = 0 , . . . , dns(g) = 0

In 2007 Novikov [19], in a general work where he introduced exotic cohomol-
ogy groups associated to Hamiltonian dynamical systems, showed that in the
smooth setting the situation is rather similar to the case of Liouvillian constant
vector fields in the 2-torus:

Theorem 1.3.4 (Novikov, 2007). Let ξ be a generic Hamiltonian vector field
on a symplectic compact surface M of genus g ≥ 2 and Lξ : C∞(M)→ C∞(M)
the corresponding Lie derivative operator. Then dim cokerLξ =∞.



2
Free Maps and Infinitesimal Invertibility

of the Isometric Operator

The proof of the celebrated theorem of Nash of isometric embeddings of a man-
ifold M into the Euclidean space Rq (see Theorem 1.2.6) is proved in two steps.
The first step is algebraic and consists in the construction of an inverse to the
linearization of the isometric operator DM,q, leading to the definition of free
maps. The second step, much harder, is analytic and consists in an infinite-
dimensional Implicit Function Theorem (IFT) (see Theorem 2.2.8) that shows
how it is possible to overcome the loss of derivatives in going from solutions of
linearized problem to solutions of the original problem.

In this chapter, following the point of view of Gromov in [1], we first in-
troduce our notations for Jet Spaces in Section 2.1. Then, in Section 2.2, we
define PDOs and the notion of infinitesimal invertibility in order to state the
Newton-Nash-Moser-Gromov IFT. Next we define Free maps and illustrate the
Nash embedding theorem for Cr maps, r ≥ 3 (Section 2.3). All definitions
and theorems presented in the two previous sections are extracted from [1],
Section 2.3.2.

In Section 2.4 we illustrate in detail Gromov’s theory of linear under-determi-
ned PDOs, leading ultimately to Theorem 2.4.17, claiming that in the generic
case such PDOs are surjective. Finally, in Section 2.5 we answer positively, in
a particular case, to a question posed by Gromov in [1] using the Theorem of
Duistermaat and Hormander 1.3.1 (these results have been published in [2]) and
then we make some step towards the general case using arguments similar to
those illustrated in the previous section.

2.1 Jet Spaces

Jet spaces of order k = 0, 1, 2, . . . , are a finite-dimensional approximation of
the functional spaces of C∞ functions and constitute the natural geometrical
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setting for PDEs in the same way the tangent bundles constitute the natural
geometrical setting for ODEs.

Consider first the set C∞(Rm,Rq) and denote by tk the operator which
associates to any function ψ ∈ C∞(Rm,Rq) its value and the value of all of its
derivatives up to order k at 0, i.e.

tk(ψ) =
(
ψ(0), Dψ(0), . . . , Dkψ(0)

)
,

where
Dψ(0) : T0Rm → Tψ(0)Rq

is represented in coordinates by the Jacobian matrix (∂αψi(0)) of ψ at 0 and,
more generally, the multilinear maps

D`ψ(0) : (T0Rm)` → Tψ(0)Rq

are represented by the matrices of all derivatives of order ` of the components
of ψ evaluated at 0, i.e.

D`ψ(0) = (∂α1...αlψ
i(0)) .

We call tk(ψ) the jet of ψ of order k at 0. The relation ∼k defined by
ψ1 ∼k ψ2 iff tk(ψ1) = tk(ψ2) is clearly an equivalence relation and the quotient

Jk0 (Rm,Rq) def= C∞(Rm,Rq)/ ∼k

is the space of all such jets. Any coordinates system (yi) on Rq induces coordi-
nates (yi, yiα, . . . , y

i
α1...αk

) on Jk0 (Rm,Rq) such that

yi(ψ) = ψ(0) , yiα(ψ) = ∂αψ(0) , . . . , yiα1...αk
(ψ) = ∂α1...αkψ(0)

Clearly, since derivatives commute with each other, part of these coordinates
are actually redundant; in order to have a true coordinate system we keep
only those such that the lower indices α1 . . . αh are in non-decreasing order, i.e.
α1 ≤ · · · ≤ αh for all h = 1, . . . , k. In general we have that

Jk0 (Rm,Rq) ' Rq ⊕
[
Rq ⊗

(
⊕k`=1S

0
` Rm

)]
,

where the S0
` Rm are the vector bundles of the symmetric tensor products of `

copies of T ∗Rm. In particular

dim Jk0 (Rm,Rq) = q

(
1 +

(
m

1

)
+
(
m+ 1

2

)
+ · · ·+

(
m+ k − 1

k

))
= q

(
m+ k

k

)
,

where
(
a
b

)
= a!

b!(a−b)! is the binomial coefficient. For every h ≤ k we have natural
projections

πhk : Jk0 (Rm,Rq)→ Jh0 (Rm,Rq)
which define in general affine bundles. There are two kinds of projections par-
ticularly important. The first is

πkk+1 : Jk+1
0 (Rm,Rq)→ Jk0 (Rm,Rq) ,
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which defines, for every k, an affine bundle such that

dimJk0 (Rm,Rq) J
k+1
0 (Rm,Rq) = q

(
m+ k

k + 1

)
,

where by dimE F we denote the dimension of the fiber of a fibration of F over
E (it will be clear from the context to which fibration we refer to).

The second is
π0
k : Jk0 (Rm,Rq)→ Rq ,

whose fiber π0
k(y) is the set of the k-jets of all functions s.t. ψ(0) = y and is

denoted by Jk0 (Rm,Rq)y.
The space of all jets from Rm to Rq is defined as

Jk(Rm,Rq) def=
⋃

x∈Rm,y∈Rq
Jkx (Rm,Rq)y ' Rm ⊕ Rq ⊕

[
Rq ⊗

(
⊕k`=1S

0
` Rq

)]
To every map f ∈ Ck(Rm,Rq) it is naturally induced a map jk(f), called

prolongation of f , defined as

jk(f) : Rm→Jk(Rm,Rq)
(xα)7→(xα, f i(xα), ∂α1f

i(xα), . . . , ∂α1...αkf
i(xα))

Once a map F ∈ Ck(Rq,Rp) is given, we can send jets jk(f) : Rm → Jk(Rm,Rq)
to new jets

jk(F ◦ f) : Rm → Jk(Rm,Rp) ;

similarly, given a G ∈ Ck(Rm,Rn) we can move jets jk(f) : Rn → Jk(Rn,Rq)
to

jk(f ◦G) : Rm → Jk(Rm,Rq) .

This induces jet bundle morphisms

Jk(Rm, F ) : Jk(Rm,Rq)→ Jk(Rm,Rp) ,

Jk(G,Rq) : Jk(Rn,Rq)→ Jk(Rm,Rq) .

Example 2.1.1. The space of 1-jets at 0 of applications R→ Rq is exactly the
tangent bundle of Rq:

J1
0 (R,Rq) ' TRq .

Under this identification, the map J1
0 (R, F ) : J1

0 (R,Rq)→ J1
0 (R,Rp) associated

to any C1 map F : Rq → Rp coincides with the tangent map TF : TRq → TRp.
Similarly, the space of 1-jets to 0 of applications Rm → R is exactly the

cotangent bundle of Rm:

J1(Rm,R)0 = T ∗Rm .

The map J1(F,R)0 : J1(Rm,R)0 → J1(Rn,R)0 coincides with the cotangent
map T ∗F .
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A very important case is given by the projection of the trivial bundle

π1 : Rm × Rq → Rm ,

so that
Jk(Rm, π1) : Jk(Rm,Rm × Rq)→ Jk(Rm,Rm) .

We denote by Γr(π1) the set of Cr sections of this bundle, i.e. of those Cr maps
f : Rm → Rm × Rq such that π1 ◦ f = idRm . Then, in coordinates,

jk(f)(xα) = (xα, xα, yi, δαβ , ∂βy
i, 0, ∂β1β2y

i, . . . , 0, ∂β1...βky
i) ,

so that

Jk(Rm, π1)(jk(f)) = jk(π1 ◦ f) = jk(idRm) = (xα, xα, δαβ , 0, . . . , 0)

and, viceversa, every map whose jet is sent into jk(idRm) by Jk(Rm, π1) is a
section of Rm × Rq π1−→ Rm. We denote by Jk(π1) the (closed) submanifold

Jk(π1) def= Jk(Rp, π1)−1(jk(idRp)) ⊂ Jk(Rp,Rp × Rm) ,

which contains the k-jets of all sections of the bundle.
Now consider two Ck-manifolds M and N . Since each of them is locally eu-

clidean and the construction of jet spaces is natural, the spaces of jets Jkx (M,N)y,
with x ∈M and y ∈ N , built via any pair of coordinate systems do not depend
on the arbitrary choice of them and so the spaces

Jk(M,N) def=
⋃

x∈M,y∈N
Jkx (M,N)y

are intrinsically well defined and similarly are well defined the projections

πhk : Jk(M,N)→ Jh(M,N)

for every h ≤ k. In particular all the Jk(M,N) fiber naturally over J0(M,N) '
M ×N .

Example 2.1.2. The isomorphisms in Example 2.1.1 still hold after replacing
Rm with a manifold M and Rq with a manifold N . Other noteworthy particular
cases are the space of 1-jets of maps M → N ,

J1(M,N) ' T ∗M ⊗ TN ,

whose sections are the linear homomorphisms between TM and TN , and the
space of 1-jets of diffeomorphisms at 0 between Rm and a manifold M of same
dimension, G1

0(Rm,M), which is isomorphic to the principal bundle L(M) of
the m-frames over M .



2.2 PDOs 15

Finally, let F π−→ E a C∞ fibration of a manifold F , with dimF = m + q,
over a manifold E, with dimE = m. Then each fiber of the fibration is q-
dimensional and, similarly to what we did above in case of the trivial bundle,
we can define the bundle of k-jets of sections of F π−→ E as the set

JkF
def= Jk(E, π)−1

(
jk(idE)

)
,

with

dim JkF = q

(
m+ k

k

)
, dimJkF J

k+1F = q

(
m+ k

k + 1

)
.

Occasionally, depending on the opportunity, the bundle JkF will be also denoted
by Jkπ. Correspondingly, the spaces of Cr sections of F π−→ E will be denoted
sometimes by ΓrF and sometimes by Γrπ.

The jet space of sections of a bundle is general enough to include also the
spaces of jets between two manifolds M and N . Indeed every map f : M → N
can be seen a section f̃ of the trivial bundle πM : M × N → M defined by
f̃(x) = (x, f(x)), so that

JkπM ' Jk(M,N) , ΓrπM ' Cr(M,N) .

From this moment on then we will follow Gromov’s approach and consider just
the case of jets of sections of a fibration.

2.2 PDOs, infinitesimal invertibility and the
Newton-Nash-Moser-Gromov theorem

Let F πF−→ E be a C∞-fibration and G
πG−→ E a vector bundle over the same

manifold E.

Definition 2.2.1. A Ck PDO over F of order r with values in G is a map

Lr : ΓrF → Γ0G

whose coefficients, written in any coordinate system, are all of class Ck and
whose value on a section f ∈ ΓrF at a point x ∈ E depends only on jrxf .

Denote by (xα) the coordinates on E and by (xα, f i) and (xα, ga) fibered
coordinates respectively on F and G. Then the induced coordinates on JrF are
(xα, f i, f iα, . . . , f

i
α1...αr ) and Lr writes as

Lr(f)(xα) = (Λar(xα, f i(xα), ∂αf i(xα), . . . , ∂α1...αrf
i(xα)) .

where Λr = (Λar) : JrF → G is some Ck map.
The equation

Lr(f) = φ
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then is represented by the PDE system

Λar(xα, f i(xα), ∂f iα(xα), . . . , ∂f iα1...αr (x
α)) = φa

of q′ equations (since a = 1, . . . , q′) in q unknowns (the functions f1, . . . , fq).
This suggests a new equivalent definition for PDOs over F :

Definition 2.2.2. A Ck PDO over F of order r is a Ck map

Λr : JrF → G

Observe that, when the fibration F πF−→ E is trivial (namely when F = E×Q
for some manifold Q and πF is the projection on the first factor), the space of
Cr sections of F is naturally isomorphic to the space of Cr functions from E to
Q, i.e. Γr(F ) ' Cr(E,Q), and, equivalently, JrF ' Jr(E,Q).

Example 2.2.3. The simplest Ck PDO over a manifold M is represented by
a vector field ξ ∈ Γs(τM ), i.e. a Ck section of the tangent bundle TM τM−→ M .
We denote the corresponding first-order linear homogeneous PDO by Lξ (Lie
derivative in the ξ direction). Lξ is a map from C1(M) to C(M), i.e. here
E = M and F = G = M ×R. In coordinates Lξ = ξα∂α and the corresponding
map Λξ : J1(M,R)→M × R is defined as

Λξ(xβ , f, fβ) = ξα(xβ)fα .

The corresponding PDE
(j1f)∗Λξ = φ

is called cohomological equation and will be studied in detail in Chapter 3 and
Chapter 4 for M = R2 in case of vector fields with no zeros.

Example 2.2.4. The most important PDO for this thesis is the isometric oper-
ator, namely the C∞ quadratic first-order operator defined by DM,q(f) = f∗eq,
where f ∈ C1(M,Rq) and eq is the euclidean metric on Rq. Here E = M ,
F = M × Rq and G = S0

2M (since DM,q(f) is a symmetric tensor with two
contravariant indices), so that

DM,q : C1(M,Rq)→ Γ0(S0
2M) .

In coordinates
DM,q(f) = δij∂αf

i∂βf
j ,

so that the corresponding map ΛM,q : J1(M,Rq)→ S0
2M is defined as

ΛM,q(xα, f, fα) = δijf
i
αf

j
β .

Now recall that a vector v ∈ TpF , p ∈ F , of the fibered manifold F
πF−→ E

is called vertical if TpπF (v) = 0 and consider the vector bundle of all vertical

vectors V F def= kerTπF ⊂ TF . For every section f ∈ ΓrF we can build the
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pull-back bundle f∗(V F )
f∗πF−→ E, namely the vector bundle over E having over

every point x ∈ E the vector space Vf(x)F .

The space Γrf
def= Γr(f∗(V F )) of the Cr sections of this new bundle can

be thought as the tangent space at f of the (infinite dimensional) space ΓrF .
Indeed consider a 1-parameter family ft of sections which is C1 with respect
to the parameter t and such that f0 = f . For any x0 ∈ E we get a curve
ft(x0) ⊂ F whose tangent vector ηf (x0) = dft(x0)/dt|t=0 lies by construction
over the point f(x0) and is clearly vertical since

Tx0πF (ηf (x0)) = Tx0πF

(
dft(x0)
dt

∣∣∣∣
t=0

)
=
d(πF ◦ ft)(x0)

dt

∣∣∣∣
t=0

=
dx0

dt

∣∣∣∣
t=0

= 0 .

Hence the way the section ηf ∈ Γrf is defined out of f is completely analogous
to the one used to define tangent vectors to a manifold over some point in the
finite-dimensional setting. Finally, observe that every pair (f, ηf ) ∈ ΓrF ×Γf is

a section of V F V π−→ E, where V π = πF ◦ τF |V F , and viceversa. Thus the space
of sections Γr(V F ) can be considered as the full tangent bundle of ΓrF .

Now consider a Ck PDO Lr and a section η ∈ Γrf and let ft a 1-parameter
smooth family of sections ft of F defined as above so that

f0 = f ,
df

dt

∣∣∣
t=0

= η .

Definition 2.2.5. The linearization of Lr at f is the linear PDO

`r,f : Γrf → Γ0G

defined by

`r,f (η) =
d

dt
Lr(ft)

∣∣∣∣
t=0

The PDO
`r : Γr(V F )→ Γ0G .,

defined as `r(f, η) = `r,f (η), is the tangent map (or differential) of Lr.

A direct elementary calculation shows that this definition does not depend
on the particular family ft and therefore is well-posed. Often in this thesis we
will use in calculations the notation δf , where δ stands for d/dt|t=0, used often
in mechanics and in the theory of calculus of variations, rather than ηf .

Example 2.2.6. The Lie derivative Lξ is linear and so it is to be expected that
its differential `ξ is identical to it. Indeed

`ξ(f, δf) = δLξ(f) = δ(ξα∂αf) = ξα∂αδf

The isometric operator DM,q instead is quadratic and its differential `M,q is

`M,q(f, δf) = δDM,q(f) = δ(δij∂αf i∂βf j) = 2δij∂αf i∂βδf j
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Now that we have defined the linearization of a PDO we can define its
infinitesimal invertibility:

Definition 2.2.7. We say that Lr is infinitesimally invertible over some subset
A ⊂ ΓrF if there exist a family of linear PDOs mf : ΓsG → Γ0

f of some order
s, with f ∈ A, satisfying the following properties:

1. A ⊂ ΓdF for some d ≥ r called defect of the infinitesimal inversion and A
is equal to the set of sections f whose s-jets jsf are such that jsf(E) ⊂ A
for some open subset A ⊂ JdF ;

2. the map m : A × ΓsG → Γ0(V F ) is a PDO which is non-linear of order
d in the first argument. Its corresponding jet spaces homomorphism is a
map A× JsG→ V F ;

3. `r(m(f, g)) = g for every f ∈ Γr+dF and g ∈ Γr+sG.

The most important example of infinitesimally invertible PDOs are the iso-
metric operators, which were also the starting point of this whole theory. They
will be discussed in next section. In the rest of the present section we state
the Newton-Nash-Moser-Gromov Implicit Function Theorem, whose proof is a
wide generalization of the original Nash proof of the inversion of the isometric
operators.

Theorem 2.2.8. Let Lr be a Ck PDO admitting an infinitesimal inverse of
order s and defect d over some subset A ⊂ ΓrF and set ŝ = max(d, 2r+s)+s+1.
Then, for every f0 ∈ A ∩ Γ∞F , there is a neighbourhood U ⊂ ΓŝG of 0 such
that, for every g ∈ U ∩ Γs

′
with s′ ≥ ŝ, the equation Lr(f) = Lr(f0) + g has a

Cs
′−s solution.

The following corollary is the version of the IFT most important for us:

Corollary 2.2.9. Let Lr a PDO infinitesimally invertible over A ⊂ ΓrF . Then
the restriction of Lr to A ∩ Γ∞F is an open map.

2.3 Free Maps and the Nash Theorem

As we already pointed out in Example 2.2.6, the linearization of the isometric
operator

DM,q : C1(M,Rq)−→ J0(S0
2M)

(f i) 7→ δij∂αf
i∂βf

j dxα ⊗ dxβ

is equal to
`M,q(f, δf) = 2δij∂αf i∂βδf j dxα ⊗ dxβ .

Given a section δgαβ ∈ Γ∞(S0
2M), in order to use Gromov’s IFT we must

find some open set A of Cd functions from M to Rq over which the linear PDE
system

2δij∂αf i∂βδf j = δgαβ (2.1)
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is solvable.
Following Nash, we take f ∈ C2(M,Rq) and use the Leibniz rule to transform

(2.1) in
2δij

[
∂β
(
∂αf

iδf j
)
− ∂2

αβf
iδf j

]
= δgαβ (2.2)

and observe that, under the assumption

δij∂αf
iδf j = 0 ,

the system (2.2) is equivalent to (2.1). Hence for the solvability of (2.1) it is a
sufficient condition the solvability of the larger system{

δij∂αf
iδf j = 0

δij∂
2
αβf

iδf j = −δgαβ/2
(2.3)

This justifies the following definition:

Definition 2.3.1. A map f ∈ C2(M,Rq) is said free if its first and second
derivatives are linearly independent at each point, namely if, in coordinates, the
(m+ sm)× q matrix

D2f =



∂1f
1 · · · ∂1f

q

...
...

...
∂mf

1 · · · ∂mf
q

∂11f
1 · · · ∂11f

q

∂12f
1 · · · ∂12f

q

...
...

...
∂mmf

1 · · · ∂mmf
q


has rank m + sm at every point. The set of all Cr free maps is denoted by
F r(M,Rq).

Clearly, since we endowed all functional spaces with the Whitney strong
topology, the set F r(M,Rq) is open in Cr(M,Rq) for it is defined by an open
condition. Let F2(M,Rq) be the open subbundle of J2(M,Rq) π−→ M × Rq
whose fibers over each point (xα, yi) are the matrices (yiα, y

i
αβ) of rank m+ sm.

Then the free maps f ∈ F r(M,Rq) are the functions f ∈ Cr(M,Rq) whose 2-jet
satisfies the property j2f(M) ⊂ F2(M,Rq).

System (2.3) is clearly always solvable over F 2(M,Rq), leading to the fol-
lowing theorem:

Theorem 2.3.2 (Nash, 1956). The isometric operator DM,q admits an infinites-
imal inverse of defect 2 and order 0 over the space of free maps F 2(M,Rq).

Proof. System (2.3) is linear and therefore gives us δf as an affine function of
δg. The space of its solutions over every point f therefore is an affine subspace
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of the fiber of codimension q− sm−m. Let δff,δg be the solution closest to the
origin with respect to the canonical euclidean metric on the fiber and observe
that this solution is uniquely determined and depends smoothly on f because
the coefficients of this affine subspace are regular if f is free.

Define now the operator m(f, δg) = δff,δg. This m is an infinitesimal inverse
for DM,q or order 0 and defect 2. Indeed by definition lM,q(m(f, δg)) = δg, since
m(f, δg) is a solution of lM,q(f, δf) = δg. Clearly m is order 0 with respect to
δg since system (2.3) is purely algebraic. The defect of m is 2 because in or-
der to solve (2.3) we must ask f ∈ C2(M,Rq) since we need the matrix D2f
to be continuous. Finally, as we already pointed out, free maps are character-
ized as sections of an open subbundle of J2(M,Rq), so that all properties in
Definition 2.3.1 are satisfied.

Theorems 2.3.2 and 2.2.8 immediately lead to the celebrated Nash theorem
on Ck isometries with k ≥ 3:

Theorem 2.3.3 (Nash, 1956). If g0 = DM,q(f0) with f0 ∈ F∞(M,Rq), then
the Cs metric g0 + g, s ≥ 3, can be realized by a Cs immersion f (namely
DM,q(f) = g0 + g) for every C3-small enough g.

It is clear from the theorems above why free maps are a central concept in
the theory of isometric immersions and embeddings. In the rest of the section
we recall the main facts about these maps.

Proposition 2.3.4. The set F r(M,Rq) is empty for q < m + sm and dense
(and in particular non-empty) for q ≥ 2m+ sm.

Proof. A map f : M → Rq is free when the image of the map

D2f : M →Msm,q(R)

is contained in the set of matrices of maximal rank. In particular a map is
not free when the image of D2f intersects the set Nsm,q of matrices of non-
maximal rank, whose codimension is q− sm + 1 [24]. For a generic f the image
D2f(M) and Nsm,q are transversal and therefore they do not have points in
common when dimD2f(M) < codim Nsm,q. Hence a generic map f is free for
q ≥ m+ sm.

Following Gromov, we call “extra-dimension” the cases with q ≥ m + sm
and “critical dimension” the case q = m+ sm.

Theorem 2.3.5 (h-principle for free maps). Free maps M → Rq satisfy the
h-principle in the extra dimension case and, if M is open (i.e. has no compact
component), in the critical dimension case.

We recall that this means simply that Cr free maps arise between M and Rq
iff the bundle F2(M,Rq) π−→ M × Rq admits a Cr section. In particular then
if M is parallelizable then F r(M,Rq), r ≥ 2, is non-empty for all q ≥ m+ sm if
M is open and for all q ≥ m+ sm + 1 if M has a compact component.
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Example 2.3.6. The sets F r(Rm,Rq) are non-empty for all q ≥ m + sm The
simplest free maps in the critical dimensions between euclidean spaces are

f(xα) = (x1, . . . , xm, (x1)2, x1x2, . . . , (xm)2)

and its compositions with the permutations of m+ sm variables.
It is interesting to notice that, out of this map, one can extract the free

embedding V : RPm → Rq, again in the critical dimension q = m + sm and
introduced first by Veronese, given by

V ([x1 : · · · : xm+1]) = [(x1)2 : x1x2 : · · · : (xm+1)2] ,

which embeds RPm in some affine q-plane inside RPq. The lift of this map
to Sm provides a free map in critical dimension for all spheres. These are the
only compact manifolds for which it is known there exist free maps in critical
dimension.

Example 2.3.7. The sets F r(Tm,Rq) are non-empty at least for all q ≥ m +
sm + 1. For example, the map f : T2 → R6 defined by

f(x, y) = (cosx, sinx, cos y, sin y, cos(x+ y), sin(x+ y))

belongs to F∞(T2,R6).

2.4 Algebraic Solution
of under-determined linear PDEs

In this section we illustrate in detail some results of Gromov on under-determined
linear PDE systems by translating most of Chapter 2, Section 3, Subsection 8
of [1] in our notations and using a style less compact than the original.

We assume throughout the section that F πF−→ E is a vector bundle, so
that its fibers over any point e0 ∈ E are (non-canonically) isomorphic to Rq.
Recall that also G πG−→ E is a vector bundle whose fibers are (non-canonically)
isomorphic to Rq′ . A linear PDO of order r is a linear map Lr : ΓrF → Γ0G.
The corresponding map Λr : JrF → J0G is a homomorphism of vector bundles.

Definition 2.4.1. We say that Lr is under-determined if q < q′.

If Lr is under-determined then the linear PDE Lrf = g has more unknowns
than equations. The goal of this section is to present in detail Gromov’s argu-
ment that shows that a generic under-determined PDE is solvable.

Before going to the general case we illustrate a few elementary cases.

2.4.1 Operators with constant coefficients

Consider the case M = Rm and an operator Lr : Cr(Rm,Rq) → C0(Rm,Rq′)
with constant coefficients, namely

Lr(f) =

∑
|A|≤r

ΛaAi ∂Af
i

 =
(
Λai f

i + Λaαi ∂αf
i + · · ·+ Λaα1...αr

i ∂α1...αrf
i
)
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for some constant matrices ΛaAi . In this particular case we can define PDOs in
a further equivalent way:

Definition 2.4.2. A Ck PDO of order r between Cr(Rm,Rq) and Cr(Rm,Rq′)
is a q × q′ matrix Lr = (Lai ) whose elements Lai = ΛaAi ∂A are Ck PDOs of
Cr(Rm) in itself.

A right inverse for Lr is an operatorMs : Cr+s(Rm,Rq′)→ Cr(Rm,Rq) such
that Lr ◦ Ms = ir+s0 , where ir+s0 is the canonical injection Cr+s(Rm,Rq′) →
C0(Rm,Rq′).

Assume first that q′ = 1 and that Ms =
∑
|B|≤sM

iB∂B has also constant
coefficients. Then to each matrix ΛAi and M iB we can associate polynomials of
degrees respectively r and s in Cm defined by

Λ̂i(w1, . . . , wm) = Λi + Λαi wα + · · ·+ Λα1...αr
i wα1 · · ·wαr

M̂ i(w1, . . . , wm) = M i +M iαwα + · · ·+M iα1...αswα1 · · ·wαs
The relation Lr ◦Ms =

∑
|A|≤r

∑
|B|≤s ΛaAi M iB∂AB = ir+s0 translates in

Λ̂iM̂ i = 1 (2.4)

namely the ideal generated by the Λ̂i is the whole ring C[w1, . . . , wm] of complex
polynomials in m variables. Clearly (2.4) holds iff the system

Λ̂1(w1, . . . , wm) = 0
...
Λ̂q(w1, . . . , wm) = 0

(2.5)

admits no solution and this, for a set of q generic polynomials, can happen iff
q > m. Thus Lr, with q′ = 1, is generically invertible for q ≥ m+ 1.

For q′ > 1, to the operator Lr we can associate a m × q′ matrix (Λ̂ai ) of
polynomials and similarly for Ms and the invertibility condition writes

Λ̂ai M̂
i
b = δab .

This can happen iff rank(Λ̂ai ) = q′, which is represented by q′+m−1 equations.
Hence such a generic Lr is invertible iff q ≥ q′ +m.

2.4.2 Lie Equations

Consider a finite set Xq = {ξ1, . . . , ξq} of vector fields ξi ∈ X(M) and the
differential operator DXq : C∞(M,Rq)→ C∞(M) defined by

DXq (f1, . . . , fq) =
(
Lξ1 . . . Lξq

)f1

...
fq

 = Lξif
i



2.4 Algebraic Solution of linear PDO 23

Definition 2.4.3. We say that Xq is large if there exist q smooth functions λi

such that λiξi = 0 and ξi(λi) = µ ∈ C∞+ (M).

Large collections of vector fields are interesting because the corresponding
PDE DXq (f1, . . . , fq) = g, restricted to a suitable subspace, becomes algebraic:

Proposition 2.4.4. If Xq is large then the restriction of the PDE

DXq (f1, . . . , fq) = g

to the subspace Aq = {h(λ1, . . . , λq) |h ∈ C∞(M)} ⊂ C∞(M,Rq) is purely
algebraic.

Proof. Set f i = hλi. Then

DXq (f1, . . . , fq) = Lξi(hλ
i) = hLξiλ

i + λiLξih = hµ+ Lλiξih = hµ ,

namely the equation DXq (fλ1, . . . , fλq) = g is equivalent to the algebraic equa-
tion µh = g.

Theorem 2.4.5. If Xq is large then DXq is surjective.

Proof. This is just due to the fact that every µ ∈ C∞+ (M) has a smooth inverse.
Hence the restriction of D to Aq is surjective by Proposition 2.4.4 and a solution
to DXq (f1, . . . , fq) = g is given, for every g ∈ C∞(M), by f i = λi g/µ.

Theorem 2.4.6. A generic Xq is large for q ≥ 2m+ 1.

Proof. In order forXq to be large we must be able to solve the algebro-differential
system {

λiξαi = 0
ξαi ∂αλ

i = g
(2.6)

of m + 1 equations in q unknowns. The second (differential) set of equations
transforms into algebraic ones by observing that

ξαi ∂αλ
i = ∂α(λiξαi )− λi∂αξαi ,

so that system (2.6) is equivalent to the linear system

(λ1 · · · λq )

ξ
1
1 · · · ξm1 ∂αξ

α
1

...
...

...
...

ξ1
q · · · ξmq ∂αξ

α
q

 = (

m︷ ︸︸ ︷
0 · · · 0 −g ) . (2.7)

If Xq is generic then the matrix

DXq =

ξ
1
1 · · · ξm1 ∂αξ

α
1

...
...

...
...

ξ1
q · · · ξmq ∂αξ

α
q


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can be considered a generic application DXq : M →M(m+1)×q(R). The space
of real (m + 1) × q matrices of non-full rank have codimension q − m (e.g.
see [24]) and therefore the map DXq does not intersect it if m < q + n, namely
if q > 2m.

As the following example shows, the condition q ≥ 2m + 1 is not at all
necessary for the existence of large collections of vector fields:

Example 2.4.7. The set Xm+1 = {∂1, . . . , ∂n, x
α∂α} is large. Indeed for this

case we can set λα = xα, α = 1, . . . ,m, λm+1 = −1.

Definition 2.4.8. A Lie subalgebra of X(M) is large if it contains a large
collection of vector fields. We say that Xq ⊂ X(M) is weakly large if the Lie
algebra 〈Xq〉 ⊂ X(M) generated by it is large.

Theorem 2.4.9. If Xq is weakly large then DXq is surjective.

Proof. Let Yp = {η1, . . . , ηp} a large subset of the Lie algebra generated by
Xq. By definition, every operator Lηk is equal to a sum Lξi Ξik, where Ξik is
some PDO of finite order; for example, L[ξ1,ξ2] = Lξ1 Ξ1 + Lξ2 Ξ2 for Ξ1 = Lξ2
and Ξ2 = Lξ1 . Therefore for every g ∈ C∞(M), by hypothesis, we can find
p functions F k s.t. LηkF

k = g, namely Lξi Ξik F
k = g, so that the functions

f i = Ξik F
k solve Lξif

i = g, i.e. DXq is surjective.

Example 2.4.10. The set X2 = {∂x, (x+ y)∂y} ⊂ X(R2) is not large but it is
weakly large. Indeed [∂x, (x+ y)∂y] = ∂y and

X3 = {ξ1 = ∂x, ξ2 = ∂y, ξ3 = (x+ y)∂y} ⊂ 〈X2〉

is already large. For example we can take λ1 = 0, λ2 = x+ y and λ3 = −1, so
that

λiξ
i = 0∂x + (x+ y)∂y − (x+ y)∂y = 0

and
ξi(λi) = ∂x0 + ∂y(x+ y)− (x+ y)∂y(−1) = 1 .

Proposition 2.4.11. Any two vector fields ξ1, ξ2 ∈ X(M) in generic position
are weakly large.

Proof. If ξ1 and ξ2 are a pair of generic vector fields then no linear relation
occurs between them and their commutators. Consider the set Y2m+1 of any
2m + 1 of them. The elements of the matrix DY2m+1 then can be considered
independent and therefore Y2m+1 is large.

Corollary 2.4.12. If ξ1, ξ2 ∈ X(M) are generic, the PDO

(
Lξ1 Lξ2 0 . . . 0

)f1

...
fq

 = Lξ1f
1 + Lξ1f

2

is surjective.
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2.4.3 The general case

Consider finally a general linear PDO Lr : ΓrF → Γ0G of order r. In this case

Lr(f) =

∑
|A|≤r

ΛaAi ∂Af
i

 =
(
Λai f

i + Λaαi ∂αf
i + · · ·+ Λaα1...αr

i ∂α1...αrf
i
)

for some linear homomorphisms Λr : JrF → G. This suggests the following
equivalent definition for a linear PDO:

Definition 2.4.13. A linear Ck PDO over F of order r is a Ck section Λr of
the bundle Hom(JrF,G) → E of all linear homomorphisms between JrF and
some vector bundle G.

In every trivialization of F andG, Λr can be represented by a PDO matrix Lr
as in case of the linear PDOs with constant coefficients but this representation
is not global in general.

To every Lr we can associate the adjoint operator L∗r : ΓrG→ Γ0F defined
by

L∗rg =

∑
|A|≤r

(−1)|A|∂A
(

Λ
iA

a g
a
) ,

where Λ
iA

a = ΛaAi is the transpose matrix and Λ∗r = (Λ
iA

a ) : JrG→ F . Note that
the higher order terms of an operator and its adjoint are exactly the transposed
of each other, while the terms of lower order are mixed in a more complicated
way.

Example 2.4.14. Consider the case of a first-order operator L1 : Γ1F → Γ0G,
so that

L1(f) =
(
Λai f

i + Λaαi ∂αf
i
)
.

Its adjoint L∗1 : Γ1G→ Γ0F is the operator

L∗1(g) =
(

Λ
i

ag
a − ∂α(Λ

iα

a g
a)
)

=
(

(Λ
i

a − ∂αΛ
iα

a )ga − Λ
iα

a ∂αg
a
)
.

Example 2.4.15. The operator Lξ (see Example 2.2.3) is linear. The m + 1
coefficients of the homomorphisms Λξ are

(Λξ)1
1 = 0 , (Λξ)1α

1 = ξα .

A direct calculation shows that, as expected, L∗ξ = −Lξ.

Example 2.4.16. The homomorphism ΛM,q : J1(M,Rq) → J0(S0
2M) cor-

responding to the differential `M,q of the isometric operator DM,q (see Exam-
ple 2.2.6) writes

`M,q(f, δf) = (ΛM,q)
γ
(αβ)i(f) ∂γδf i dxα ⊗ dxβ ,
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where by (αβ) we denote the coordinates of a section δgαβ of S0
2M , to distinguish

them from the index γ which also run from 1 to m but is instead contracted with
the derivative ∂γ . Its coefficients are given by{

(ΛM,q)(αβ)i = 0

(ΛM,q)
γ
(αβ)i = δij

[
δγα∂βf

j + δγβ∂αf
j
] . (2.8)

The coefficients of the adjoint homomorphism Λ∗M,q : J0(S0
2M) → J1(M,Rq)

associated to `∗M,q are{
(Λ∗M,q)

(αβ)i = 2 ∂αβf i

(Λ∗M,q)
(αβ)iγ = −δγα ∂βf i + δγβ ∂αf

i
, (2.9)

so that

`∗M,q(f, δg) =
(

(Λ∗M,q)
(αβ)i(f) δgαβ + (ΛM,q)(αβ)iγ(f) ∂γδgαβ

)
=
(

2 ∂αβf i δgαβ − δγα ∂βf i + δγβ ∂αf
i δgαβ

)
.

A direct calculation shows that the adjoint operation satisfies the expected
properties

1. (L∗r)∗ = Lr;

2. (LrMs)∗ =M∗sL∗r .

For dimensional reasons there cannot be a left inverse for Lr but there can
be a right inverse, i.e. a linear PDO

Ms : ΓsG→ Γ0F

such that
LrMs = i0s+r(G) ,

namely
LrMs : Γr+sG→ Γ0G and LrMs(g) = g .

In principle this fact could be useless since the equation LrMs = i0s+r(G) is a
rather complex PDE of order r in the elements of Ms having for coefficients
linear functions of the components of Lr. The reason why it is instead of
fundamental importance is that, on the contrary, the equivalent equation

M∗sL∗r = i0s+r(G)

is linear in the elements of Ms and the coefficients of this linear system of
equations depend on the elements of Lr and on their derivatives up to order s.

In terms of jets, to the PDO Ms correspond a vector bundle morphism
Ms : JsG→ F which is the inverse of Λr in the sense that

jr(Msg)∗Λr = g , ∀g ∈ Γs+r(G)



2.4 Algebraic Solution of linear PDO 27

The adjoint version of this equation reads

js(Λ∗rg)∗M∗s = g , ∀g ∈ Γs+r(G)

which in local coordinates writes

M
aA

i ∂A

[
Λ
iB

b ∂B

]
= δab

or, more explicitly and after dropping the bar over the elements of M∗s and Λ∗r
to make notation lighter,

∑
|A|≤s

MaA
i ∂AΛib = δab

∑
|A|≤s

MaA
i ∂AΛiβ1

b +
∑

|A|≤s−1

Maβ1A
i ∂AΛib = 0

∑
|A|≤s

MaA
i ∂AΛiβ1β2

b +
∑

|A|≤s−1

Maβ1A
i ∂AΛiβ2

b +
∑

|A|≤s−2

Maβ1β2A
i ∂AΛib = 0

...∑
|A|≤1

M
aβ1...βs−1A
i ∂AΛiβs...βs+r−1

b +Maβ1...βs
i Λiβs+1...βs+r−1

b = 0

Maβ1...βs
i Λiβs+1...βs+r

b = 0
(2.10)

This huge linear system in the qq′
(
m+ s

s

)
unknowns MaA

i consists of (q′)2

equations at the order 0 (i.e. containing the terms of M∗sL∗r of order 0),
(q′)2m equations at order 1 and so on up to the order s + r, consisting of

(q′)2

(
m+ r + s− 1

r + s

)
equations, for a total of (q′)2

(
m+ r + s

r + s

)
equations.

In particular the unknowns are more than the equations when

q
(m+ s)!

s!
> q′

(m+ r + s)!
(r + s)!

namely

q

q′
>

(m+ r + s)!
(m+ s)!

s!
(r + s)!

=
m+ s+ r

s+ r
· · · m+ s+ 1

s+ 1
=

r∏
i=1

(1 +
m

s+ i
)

For example this surely happens when

q

q′
>
(

1 +
m

s

)r
, (2.11)

from which it is clear that, as long as q > q′, it is always possible to chooseMs

of order s so high to satisfy the inequality. We are going to show below that
this condition is actually sufficient for the (formal) solvability of the system.
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As a first step toward solving (2.10) we observe that it naturally splits q′

independent systems, each of them obtained by keeping only those equations
containing the unknowns Ma0A

i for some fixed a0, since in no equation appear
at the same time unknowns with two different values for that index. Each of

these systems has q′
(
m+ r + s

r + s

)
equations and within each of them only one

equation, precisely ∑
|A|≤s

Ma0A
i ∂AΛia0

= 1 , (2.12)

has a rhs different from 0.
Observe now that, since F is a vector bundle and Λr is a linear morphism

of bundles, Λr and Λ∗r can be seen respectively as sections of the bundles
Hom(JrF,G) → E and Hom(JrG,F ) → E of all such morphisms. Since the
elements ΛiAa of Λ∗r are functions of the elements ΛaAi of Λr and of their deriva-
tives up to order r, the coefficients of system (2.10) are functions of the ΛaAi
and their derivatives up to order r + s. It is more convenient though for us
to consider the elements of the adjoint as independent variables, in particular
as coordinates on the fibers of Js Hom(JrG,F ) → E. The dimension of these
fiber is qq′

(
m+r
r

)(
m+s
s

)
. In Js Hom(JrG,F ) we denote by ΛiBbA, with |A| ≤ s and

|B| ≤ r, the coordinates corresponding to the partial derivatives ∂AΛiBb , so that
system (2.10), with a = a0, writes as

∑
|A|≤s

Ma0A
i ΛibA = δab

∑
|A|≤s

Ma0A
i Λiβ1

bA +
∑

|A|≤s−1

Ma0β1A
i ΛibA = 0

∑
|A|≤s

Ma0A
i Λiβ1β2

bA +
∑

|A|≤s−1

Ma0β1A
i Λiβ2

bA +
∑

|A|≤s−2

Ma0β1β2A
i ΛibA = 0

...∑
|A|≤1

M
a0β1...βs−1A
i Λiβs...βs+r−1

bA +Ma0β1...βs
i Λiβs+1...βs+r−1

b = 0

Ma0β1...βs
i Λiβs+1...βs+r

b = 0
(2.13)

whose only non-homogeneous row is∑
|A|≤s

Ma0A
i Λia0A = 1 . (2.14)

Clearly the only obstruction to the existence of a formal solution of system
(2.13) is that the non-homogeneous row (2.14) be a linear combination of the
remaining rows with coefficients λk, k = 1, . . . , q′

(
m+s+r
s+r

)
− 1, in the field R

of rational functions in the fiber coordinates ΛiBaA. Let us assume, by absurd,
that such a linear combination exists and observe that the system (2.13) is
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somehow “triangular”, in the sense that the variable Λia0A
does not appear on

the left or on the same column with respect to the column where it appears
in the non-homogeneous row (2.14). Then we can do the following: starting
with the leftmost coefficients Λia0

we write them as linear combinations of the
coefficients lying in the same column and then substitute this expression in all
columns at their right, so that in the rest of the system the Λia0

will not appear
anymore. We do this recursively for each Λia0A

so that, in the end, we are left
with relations

Λia0A = Φia0A(λ1, . . . , λk,ΛiBaA) , (2.15)

where the Φia0A
are linear functions of the ΛiBaA and polynomial functions of the

coefficients λk and satisfy ∂Λia0A
Φi
′

a0A′
= 0 for all A, A′, i and i′ (i.e. no Λia0A

appears explicitly in the rhs of (2.15)). Since the q
(
m+s
s

)
variables Λia0A

, as coor-
dinates on the fibers of Js Hom(JrG,F ), are clearly independent, their number
cannot be larger than the number q′

(
m+s+r
s+r

)
− 1 of homogeneous rows. Indeed,

as no Λia0A
appears explicitly in the functions Φi

′

a0A′
, in order for the relations

(2.15) to hold they must be contained inside the coefficients λk and so the λk
must be at least as many as the Λia0A

. This shows that a necessary condition
for the non-homogeneous row to be a linear combination of the homogeneous
ones is that

q′
(
m+ s+ r

s+ r

)
> q

(
m+ s

s

)
.

Hence it is enough to ask the opposite inequality to ensure the solvability of
(2.13). In particular, for the system to be (formally) solvable it is enough (see
(2.11)) taking

s >
n(

q

q′

) 1
r

− 1

.

We assume from now on that s is chosen big enough to grant the existence
solutions of (2.10). Such solutions will express the elements MaA

i as rational
functions of the ∂AΛiBa . Let M∗s be one of these solutions and let p be the
polynomial in ΛiBaA obtained as the product of all denominators of its coefficients
MaA
i . Then the PDO P∗s = pM∗s is polynomial in the ∂AΛiBa and satisfies

P∗sL∗r = p i0r+s(G) .

Clearly M∗s is not regular in the zero set Zp of p. Let N∗s be a second distinct
solution, N ∗s the corresponding PDO, q the corresponding polynomial product
of all denominators of its coefficients and Zq its zero set. Out ofMs and Ns we
can build a new, more regular, left inverse for L∗r . Indeed let λp, λq be a pair
of non-negative functions such that λp + λq = 1, λp|Zp = 0 and λq|Zq = 0. The
operator λpMs + λqNs is clearly a left inverse of L∗r of order at most s and it
is regular everywhere except on Zp ∩ Zq. Note that, if p and q have common
factors, then the codimension of Zp ∩ Zq remains 1 rather than dropping to 2.
We say thatMs and Ns are functionally dependent or independent according to
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whether the corresponding polynomials are, so that when they are functionally
independent the codimension of Zp ∩ Zq amounts to 2.

We can repeat these considerations for every solution of (2.10) so that, in
the end, we can build a left inverse of L∗r of order s which is regular at every
point except at those belonging to the zero set Σs of the ideal Ps of all poly-
nomials p such that P∗sL∗r = p i0r+s(G) for some operator Ps with polynomial
coefficients in the componentns of jsΛ∗r , namely the ∂AΛiBa . The codimension
of Σs, i.e. the codimension of its irreducible component of higher codimension,
is given therefore by the smallest number of functionally independent left in-
verses of L∗r . Finally observe that if p ∈ Σs, so that P∗sL∗r = p i0s+r(G) for
some polynomial operator P∗s , then also p ∈ Σs′ for every s′ ≥ s since, trivially,
P∗s′L∗r = p i0s′+r(G), where P∗s′ has all coefficients of order up to s equal to those
of P∗s and all others equal to 0. In particular this means that πss′(Σs′) = Σs for
the canonical projection πss′ : Js

′
Hom(JrG,F )→ Js Hom(JrG,F ).

Hence, in order to determine whether generic PDOs Lr admit a left inverse
we must evaluate the number of its functionally independent left inverses. The
following clever argument of Gromov settles the problem by showing how to
build, as long as the codimension k of Σs is not larger than m, a new left inverse
of some order s′ > s out of the ones of order s and functionally independent
on them, so that Σs′ has codimension at least k + 1; of course this ultimately
implies that codim Σs > m for s big enough and therefore that generic linear
PDOs are in fact left-invertible (and therefore surjective on their target space)
for q > q′.

Consider an irreducible component Σ0 of Σs of codimension k, let x0 be any
regular point of Σ0 and let p1, . . . , pk : Js Hom(JrG,F ) → R be polynomials
vanishing on Σ0 and functionally independent at x0. Since m is much smaller
than the dimension of the fibers of Js Hom(JrG,F ), a generic section Λ∗r : E →
Hom(JrG,F ) is such that jsΛ∗r(E) cuts Σ0 in a set of dimension m − k and
the jacobian of jsΛ∗r has rank m. In particular we can always pick a Λr passing
through x0 and slightly perturb it so that:

1. it cuts Σ0 at jsΛ∗r(e0) close to x0 for some e0 ∈ E;

2. its tangent map is injective on the tangent of Σ0, i.e. the k functions
(jsΛ∗r)

∗pi : E → R are functionally independent at e0;

3. it has no characteristic submanifold of positive codimension1.

By point 2, the zero set Z of the (jsΛ∗r)
∗pi is non-singular close to e0 and, by

point 3, there is at least a hyperplane in Te0E (actually, almost all of them)
containing Te0Z to which Λr is transversal. Equivalently, there is a linear com-
bination λi(jsΛ∗r)

∗pi = (jsΛ∗r)
∗(λipi) such that jsΛ∗r is transversal to pλ = λipi

at e0. By Hilbert’s Nullstellensatz, since pλ clearly vanishes on Σ0, there exist
an integer exponent K such that pKλ ∈ Ps and, correspondingly, an operator
λM∗s, polynomial in jsΛ∗r , such that λM∗sL∗r = pKλ i

0
s+r(G).

1See Appendix B about the transversality of PDOs.



2.5 Non-free maps and the Gromov Conjecture 31

Next, we use Lemma A.0.5 to find operators AK and BK of some order s′

such that
LrAK + pKλ BK = i0r+s′(G)

and finally define s′′ = s+ s′ and

Ms′′ = AK +λMsBK .

This Ms′′ is a right inverse for Lr since

LrMs′′g = Lr(AK +λMsBK)g = g − pKλ BKg + Lr λMsBKg = g

for every g ∈ Γr+s
′′
G. By Lemma A.0.5 the coefficients of Ms′′ are rational

functions of js
′′
Λ∗r which are regular at e0. Then the polynomial q, defined as

the product of all denominators of the coefficients of Ms′′ , does not vanish at
js
′′
Λ∗r(e0). On the other end qM∗s′′L∗r = q i0s′′+r and qM∗s′′ is polynomial in

jsΛ∗r , so q ∈ Ps′′ . This q is functionally independent on all polynomials in Ps,
or (js

′′
Λ∗r)
∗q would also vanish on e0, so Σs′′ has at least codimension k + 1.

It is true then that, given any set of k ≤ m functionally independent right
inverses of Lr, we can build a new one functioanlly independent on them, so
that codim Σs ≥ m+ 1. In particualr this means that the image jsΛr(E) of the
s-jet of a generic linear under-determined PDO of order r does not intersects
Σs, namely it admits a right inverse.

We can summarize all these results in the following statement:

Theorem 2.4.17 (Gromov, 1986). Let F and G be vector bundles on E with
dimE = m, dimE F = q and dimE G = q′. Then, if q > q′, for every r there
exists a finite s = s(q, q′, n, r) such that a generic linear PDO

Lr : Γr+sF → ΓsG

is surjective. In particular, for every m, r and q > q′, we have that

Lr(Γ∞F ) = Γ∞G .

for a generic Lr.

2.5 Non-free maps and the Gromov Conjecture

In Section 2.3.8(E’) of [1] Gromov discusses the properties of isometric operators
DM,q in the cases q < 2m + sm, when free maps are not dense, and sm < q <
2m + sm, when free maps cannot arise. In particular he poses the following
question:

Question 2.5.1 (Gromov, 1986). Are the operators DM,q infinitesimally in-
vertible over an open non-empty set for every q > sm?

Afterwards he conjectures that the theory of under-determined PDOs can
be used to prove that the isometric operators DM,q be infinitesimally invertible
over a dense open set even when q is such that the set of free maps is not dense
anymore and even when no free maps can arise:
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Conjecture 2.5.2 (Gromov, 1986). The operators DM,q are infinitesimally
invertible over a dense set for q ≥ m+ sm −

√
m/2.

In first subsection we show how Theorem 1.3.1 implies directly that the
answer to question 2.5.1 is positive in the particular case q = m + sm − 1,
M = Rm. In the second subsection we use the argument of Section 2.4 to make
some step towards the proof of the general case.

2.5.1 DRm,q is an open map over a non-empty open set
for q > m+ sm − 1

Denote by Dm,q the operator DRm,q acting on C∞(Rm,Rq). It is well-known
that F (Rm,Rq) is non-empty for q ≥ qm (see Theorem 2.3.5 and Example 2.3.6)
so that, in particular, it turns out that there is a non-empty open set A on which
the restriction of Dm,q is an open map for every q ≥ qm.

In a recent work by G. D’Ambra and A. Loi [25] steps were taken towards
the proof of Conjecture 2.5.2 by showing, through an explicit construction that
made use of the Lie equations after Gromov’s idea in [1], p. 152, that D2,4 is
open over a non-empty open set ADL2,4 . In this section we improve this result by
extending it from D2,4 to all the Dm,q such that q = qm− 1; as a byproduct, we
also exhibit a larger set A2,4 ⊂ C∞(R2,R4) over which D2,4 is open.

Our argument is essentially based on Theorem 1.3.1 by Duistermaat and
Hormander [20]. Let q = qm − 1. Our aim is finding an open set Am,q ⊂
C∞(Rm,Rq) such that, if f0 ∈ Am,q and g0 = Dm,q(f0), the equation

Dm,q(f) = g (2.16)

has solutions for every g close enough to g0.
Recall that, by the Newton-Nash-Moser-Gromov IFT (Theorem 2.2.8), the

existence of solutions of (2.16) is granted by the existence of solutions of its
linearized version

2δij∂αf i∂βδf j = δgαβ

Following Gromov (see [1], Section 2.3.8 (E’)) we set

δij∂αf
iδf j = hα

so that we get the following equivalent fully algebraic system:{
δij ∂αf

iδf j = hα

δij ∂αβf
i δf j = (∂αhβ + ∂βhα − δgαβ)/2

(2.17)

where the hα are m auxiliary arbitrary functions. Hence it is enough for our
purposes to show that, for some non-empty open set of smooth functions, we
can always choose the hα so that system (2.17) has a solution.

Theorem 2.5.3. If q ≥ qm− 1 there exist non empty open sets Am,q such that
the maps Dm,q

∣∣
Am,q

are open.
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Proof. When q ≥ qm the statement is trivially true because it is enough to
choose Am,q = F (Rm,Rq). We will assume therefore in the remainder of the
proof that q = qm − 1, i.e. that the number of equations is exactly one more
than the number of unknowns δf i.

Since the coefficients of the system (2.17) are exactly the components of
the qm vector fields {∂αf, ∂αβf}, then clearly there exist non-identically zero
functions λα and λαβ = λβα such that, identically,

λα∂αf + λαβ∂αβf = 0.

This reflects in the following compatibility condition for system (2.17):

2λαhα + λαβ(∂αhβ + ∂βhα − δgαβ) = 0 .

It is convenient to rewrite this as the cohomological equation

Xαhα = φ , (2.18)

where φ = λαβδgαβ , Xα is the first-order non-homogeneous differential operator
Xα = Lξα + 2λα , Lξα is the Lie derivative with respect to the vector field
ξα = λαβ∂β and the smooth functions λα must be thought as multiplication
operators.

Now, let Am,q ⊂ C∞(Rm,Rq) be the open set of immersions f satisfying the
following two open properties: 1. the qm× (qm−1) matrix D2f has full-rank at
every point; 2. there is an index α0 such that the functions λα0β are never all
zero at the same time. Then, after setting hβ = λα0βh, β = 1, . . . ,m, for some
unknown function h, equation (2.18) becomes

Y h = φ′

where Y = Lζ+λ′ for some vector field ζ and function λ′. A direct computation
shows that the component α0 of ζ is equal to (λα01)2 + · · · + (λα0m)2 and
therefore it is never zero by hypothesis. In particular this means that every
surface xα0 = const is a global transversal for ζ and therefore, by Theorem DH,
Y is a surjective first-order partial differential operator. Hence for every function
belonging to Am,q it is always possible to choose the hα in function of the δgαβ
so that the compatibility condition (2.18) is satisfied. Examples 1 and 2 show
that these sets are non-empty.

Example 2.5.4. Consider any pair (g, h) of free maps from R to R2. Then the
function fgh : R2 → R4 defined by fgh(x, y) = (g(x), h(y)) belongs to A2,4 ⊂
C∞(R2,R4). Indeed in this case ∂xyfgh = 0, so that we can choose

λx = λy = λxx = λyy = 0 , λxy = λyx = 1

and therefore the compatibility condition becomes simply

∂xhy + ∂yhx = δgxy
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which is trivially solvable. E.g. the function f(x, y) = (x, ex, y, ey) belongs to
A2,4. Note that, while one can easily check that every function of ADL2,4 also
belongs to A2,4, the function f does not belong to ADL2,4 , i.e. A2,4 is strictly
larger of the set introduced in [25].

Remark 2.5.5. Let Dq be the metric-inducing operator acting on C∞(T2,Rq).
As mentioned in the introduction, the cases q ≥ 7 and q < 4 are trivial. Only
for q = 4, among the non-trivial cases, free maps cannot arise but Example 1
can be used to show that D4 is, nevertheless, open over a non-empty open set.
Indeed the set A2,4 contains functions periodic in both x and y, e.g. f(x, y) =
(cosx, sinx, cos y, sin y). The subset of all of them, considered as functions on
T2, is open in C∞(T2,R4) and D4 is clearly an open map over it.

Example 2.5.6. Let f ∈ F (Rm,Rqm) be the canonical free map given by

f(x1, . . . , xm) = (x1, . . . , xm, (x1)2, x1x2, · · · , (xm)2)

and π any projection π : Rqm → Rqm−1 which “forgets” any one of the last
(m + 1)/2 components. Then the composition fπ = π ◦ f belongs to Am,qm−1.
Indeed the matrix D2fπ has full rank and one of the second derivatives of fπ
(say ∂x1x2fπ) is identically zero, so we can choose the corresponding factor
(λx

1x2
in this case) identically equal to 1 and all others equal to zero. For

example, in the (m, q) = (2, 4) case we get the functions f1(x, y) = (x, y, xy, y2),
f2(x, y) = (x, y, x2, y2) and f3(x, y) = (x, y, x2, xy).

Note that, exactly like in [25], the set of qm×(qm−1) matrices not satisfying
the conditions that define the open sets Am,q has just codimension 1 in the
fibers of the bundle J2(Rm,Rq) → J0(Rm,Rq) while we would need at least
codimension 3 in order to apply the transversality theorems. In particular the
sets Am,q are not dense in C∞(Rm,Rq).

2.5.2 Infinitesimal invertibility of DM,q

on non-free isometric immersions for q > sm

Now consider the general case and recall (see Example 2.2.6 and Example 2.4.16)
that the linearization of DM,q is given by

`M,q(f, δf) = 2δij∂αf i∂βδf j dxα ⊗ dxβ

whose adjoint is

`∗M,q(f, δg) = 2 ∂αβf i δgαβ ∂i − (δγα ∂βf i + δγβ ∂αf i)∂γδgαβ ∂i

where we set ∂α = δαα
′
∂α′ and similarly for the second derivatives in order to

use the Einstein summation convention.
In order to make notations as easy to read as possible, we denote the coor-

dinates in the fibers of S0
sM , i.e. a choice of independent components of δαβ ,
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by pairs (αβ), α ≤ β. Then the homomorphism Λ∗M,q : J1(S0
2M)→ J0(M,Rq)

has components {
Λi(αβ) = 2 ∂αβf i

Λiγ(αβ) = −(δγα ∂βf
i + δγβ ∂αf

i) .

With these notations system (2.13), whose coefficients are the fibers coordi-
nates on Js Hom(J1(S0

2M), J0(M,Rq)), writes as

∑
|A|≤s

M
(α0β0)A
i Λi(αβ)A = δ

(α0β0)
(αβ)

∑
|A|≤s

M
(α0β0)A
i Λiβ1

(αβ)A +
∑

|A|≤s−1

M
(α0β0)β1A
i Λi(αβ)A = 0

∑
|A|≤s−1

M
(α0β0)β1A
i Λiβ2

(αβ)A +
∑

|A|≤s−2

M
(α0β0)β1β2A
i Λi(αβ)A = 0

...∑
|A|≤1

M
(α0β0)β1...βs−1A
i Λiβs(αβ)A +M

(α0β0)β1...βs
i Λi(αβ) = 0

M
(α0β0)β1...βs
i Λiβs+1

(αβ) = 0

(2.19)

Note that `M,q is quite far from being generic, since only mq of its mqsm com-
ponents (ΛM,q)

γ
(αβ)i are independent. Thus, we cannot apply Theorem 2.4.17

to it. Nevertheless observe that, in the non-homogeneous row, only the s-jets of
the zero-order components Λi(α0β0) = 2f iα0β0

appear and the f iα0β0
are, on the

contrary, all independent.
Below we follow closely Gromov’s argument used in the proof of Theo-

rem 2.4.17. System (2.19) admits a solution iff the non-homogeneous row

2
∑
|A|≤s

M
(α0β0)A
i f iα0β0A = 1

is not a linear combination, with coefficients λk ∈ R, of the remaining (homo-
geneous) rows, where R is the ring of rational functions in the coordinates of
the fibers of Js Hom(J1(S0

2M), J0(M,Rq)).
Assume that such combination exists. We have to treat differently the case

when α0 and β0 are equal and the one when they are different.
Case 1, α0 = β0. We take, for the argument’s sake, (α0β0) = (1, 1). First of

all we observe that the column of the unknown M (11)
i has f i11 as coefficient in the

non-homogeneous row and the f iα and f iαβ , with (αβ) 6= (1, 1), in all other rows.
Since none of these appear elsewhere in the non-homogeneous row, we express
f i11 as linear combination of these functions and substitute this expression in
the rest of the system.

Next, we look at the columns corresponding to the unknowns M (11)α1
i . Con-

sider first the terms with α1 6= 1. Their coefficient is f i11α1
. In the same col-

umn appear all other coefficients f iαβα1
, with (αβ) 6= (1, 1), and the coefficients
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Λiβ1
(αβ)α1

, which contain only second derivatives of the f i. Hence we express all
the f i11α1

, α1 6= 1, in terms of all other third order derivatives of f i not having
two indices equal to 1 and lower order derivatives and substitute this expression
in the rest of the system.

Now consider the column of M (11)1
i , whose coefficient is f i111. Besides terms

of lower order, this column contains all other terms of the kind f iαβ1, with
(αβ) 6= (1, 1). Among these terms there are all the f i11α1

, α1, which we already
expressed in terms of the other third derivatives of the f i, so that also f i111 ends
up expressed in terms of the same coefficients of the f i11α1

, α1.
Finally let us discuss the general case of the columns corresponding to the

unknowns M (11)α1...αk
i . Following what we just done, we start from the ones

such that αi 6= 1, i = 1, . . . ,m. No other coefficient Λi(αβ)α1...αk
, with (αβ) 6=

(1, 1), (i.e. a derivative of f i of order k + 2) in the column of M (11)α1...αk
i

appears as coefficient in other positions in the non-homogeneous row, since
these coefficients have at most one lower index 1 (either α or β) while those in
the non-homogeneous row have at least two of them. Hence we can write all the
coefficients f(11)α1...αk in terms of coefficients of the same order not appearing in
the non-homogeneous row and coefficients of lower order. We replace all these
expressions in the rest of the system and now consider the case when α1 = 1 and
αi 6= 1, i = 2, . . . ,m. The only coefficients belonging to the non-homogeneous
row that could appear in the same columns corresponding to these terms are
the ones with αi 6= 1, i = 1, . . . ,m, which we just replaced, since each of such
terms will have at most two lower indices equal to 1. Hence also these terms
are now expressed in terms of derivatives of f i which do not appear in the
non-homogeneous row. Operating recursively we end up expressing all terms of
order k as functions of the λk and of derivatives of f i up to order k none of
which appears in the non-homogeneous row.

By a standard induction argument it is then clear that, assuming that the
non-homogeneous row is a linear combination of the homogeneous ones, we can
express all coordinates f i11A, |A| ≤ s, in terms of the remaining coordinates (up
to order s+ 2) and of the coefficients λk.

Case 2, α0 6= β0. We take, for the argument’s sake, (α0β0) = (12). As
in case 1, in the homogeneous rows of the column of M (12)

i appear all f i(αβ),
{α, β} 6= {1, 2}, none of which appears in the non-homogeneous row. Hence
we can express f i(12) through those coefficients and substitute its expression
anywhere else in the system.

Let us consider now the column of M (12)α1
i . If α1 6∈ {1, 2} then no coefficient

f iαβα1
in the same column appears in the non-homogeneous row since they lack

either a 1 or a 2 among their lower index. All other coefficients appearing
in the same columns are of lower order, so these f iαβα1

can be expressed in
terms of coefficients not appearing anywhere in the non-homogeneous row. As
usual, we substitute their expression anywhere else in the system. When instead
α1 ∈ {1, 2}, then it is easy to realize that f i121 appears in the same column of
f i122 and viceversa, while all other coefficients do not appear anywhere in the
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non-homogeneous row. In this case we have then the following situation:

f i121 = µf i122 +
∑h

µ
(αβ)A
i f iαβA , f

i
122 = νf i121 +

∑h
ν

(αβ)A
i f iαβA

where the coefficients µ, µ(αβ)A
i , ν, ν

(αβ)A
i are polynomials in R and the sum

∑h

is extended only to the coefficients that do not appear in the non-homogeneous
row. Then

f i122 = νµf i122 +
∑h

(ν′)(αβ)A
i f iαβA

so that either νµ = 1 or

f i122 = (1− νµ)−1

(∑h
(ν′)(αβ)A

i f iαβA

)
.

If νµ = 1 we cannot say anything on f i122, so that we must decrease by 1 the
count of the coefficients f i12A, but we found out that there is a relation between
the coefficients λk, so we must decrease by one also the number of (independent)
coefficients λk. Hence, for the sake of the argument, we can safely assume that
νµ 6= 1. In this case, f i122 can be written as linear combination of coefficients
f i12A of equal or lower order that do not appear in the non-homogeneous row.
The coefficients of this linear combination are rational functions of the original
λk, so they still belong to R. Finally we substitute back this expression in the
one for f i122 so that are able to express all coefficients f i12α1

, α1 = 1, . . . ,m, as
linear combinations, with coefficients in R, of coefficients f iαβA of equal or lower
order which do not appear in the non-homogeneous row.

Now consider the general case of terms of order n starting from M
(12)α1...αn
i

with {α1, . . . , αn} ∩ {1, 2} = ∅, whose coefficient is Λi(12)α1...αn
= f i(12)α1...αn

.
Clearly in the column of such term no other same-order coefficient f i(αβ)α1...αn

,
with {α, β} 6= {1, 2}, appears in the non-homogeneous one since they all lack
either a 1 or a 2 among the lower index. As usual, we substitute the expressions
of the M (12)α1...αn in the system and then consider the case of the columns
M (12)α1...αn where either α1 = 1 or α1 = 2 and {α2, . . . , αn} ∩ {1, 2} = ∅. The
very same considerations made above for the case of M (12)α1

i take care of this
case. Now consider the case of the columns of M (12)α1...αn with either α1 = 1
or α1 = 2 and either α2 = 1 or α2 = 2. In this case we are in the following
situation:

f i1211α3...αn = µf i2211α3...αn +
∑h

µ
(αβ)A
i f i(αβ)A

f i1212α3...αn = νf i1211α3...αn + ν′f i2212α3...αn +
∑h

ν
(αβ)A
i f i(αβ)A

f i1222α3...αn = φf i1122α3...αn +
∑h

φ
(αβ)A
i f i(αβ)A ,

where, as above, all functions denoted with greek letters are polynomials in R
and

∑h is extended only to terms which do not appear in the non-homogeneous
row. We substitute the expressions of f i1211α3...αn and f i1222α3...αn in f i1212α3...αn
and repeat the argument above: if νµ + ν′φ = 1 then we cannot say anything



38 Free Maps

on f i1212α3...αn but we have a relation among the λk so the balance between the
number of coefficients in the non-homogeneous row and the number of λk does
not change. Hence we assume, for the argument’s sake, that νµ+ ν′φ 6= 1 and
replace its expression, now as function only of coefficients which do not appear
anywhere in the non-homogeneous row, back in f i1211α3...αn and f i1222α3...αn .
Thus all coefficients f i12α1...αn with either α1 = 1 or α1 = 2 and either α2 = 1
or α2 = 2 can be expressed as linear combinations of similar terms of the same
or lower order that do not appear in the homogeneous rows. We replace all of
them elsewhere in the system and continue.

When we consider the case when more αi can be equal to 1 or 2 the situation
does not change qualitatively. We have some finite number of f i(12)A with the
following property: two of them (the “first” and the “last” contain in their
column another term appearing in the non-homogeneous row (the “second” and
the “next-to-last”); the “second” has to of them, the “first” and the “third” and
so on until the “next-to-last” and the “last”. Following the steps above we can
express each one of them as a linear combination of coefficients f i(12)A of same or
lower order which do not appear in the non-homogeneous row. The coefficients
of this linear combination are all rational functions of the λk and therefore also
belong to R.

It is clear then that it is possible to repeat this procedure until all of the
f i(12)A in the non-homogeneous row are expressed as linear combination of the
f i(12)A not appearing in the non-homogeneous row.

The arguments above shows that in the system corresponding to the index
(α0β0), whether we are in case 1 or case 2, the number of the (independent)
f i(αβ)A in the non-homogeneous row is q

(
m+s
s

)
. The number of homogeneous

rows of system (2.19) is sm
(
m+s+1
s+1

)
. Clearly, if a linear combination of the

homogeneous rows is equal to the non-homogeneous row, the f i(αβ)A must be
contained in the λk and so there cannot be fewer rows than coefficients f i(αβ)A.
As discussed in the proof of Theorem 2.4.17, if q ≥ sm and

s >
msm
q − sm

then there are more f i(αβ)A than rows and therefore l∗M,q admits a formal left
inverse.

This inverse is regular outside of the set of zeros of the coefficients of the
inverse. The set of partial differential inequalities obtained by setting all de-
nominators different from zero defines an open subset Aq of C∞(M,Rq). In
order to solve the problem of Gromov now it is needed to study when Aq is
non-empty.
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H-Free Maps and infinitesimal invertibility

of the H-isometric operator

In this chapter we extend the theory of isometric embeddings of a manifold
M into Rq by considering maps M → Rq which are injective on some fixed
distribution H ⊂ TM .

In Section 3.1 we define the concept of H-free map, which reduces to the
one of free map for H = TM , and of the H-isometric operator DH. In this
setting we prove Theorem 3.1.11 about the existence and density of H-free
maps, which is the analog of Theorem 2.3.2 and Proposition 2.3.4 for free maps,
and Theorem 3.1.13, which is the analog of Nash’s Theorem 2.3.3, showing that
DH is an open map over the set of H-free maps.

After showing several concrete examples of H-free maps for distributions of
dimension or codimension equal to 1 (Section 3.1.1), in Section 3.2 we prove
the existence of H-free maps in critical dimension in the following cases: one-
dimensional distributions of finite-type on R2; Lagrangian distributions of Com-
plete Integrable Systems; Hamiltonian distributions of Riemann-Poisson brack-
ets.

The contents of this chapter have been published, as a joint work with
G. D’Ambra and A. Loi, in [3].

3.1 H-free maps and the linearization of the op-
erator DH

Let H be a k-dimensional distribution on M , i.e. a vector subbundle of TM .
Fix local coordinates (xα) on some chart U ⊂ M , α = 1, · · · ,m, and let {ξa},
a = 1, · · · , k, be a local trivialization forH in U , so thatH|U = span{ξ1, . . . , ξk}.
Let {θa, ωA}, A = 1, · · · ,m − k, be a dual base for the whole T ∗M such that
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iξbθ
a = δab and iξbω

A = 0. Then

H|U =
m−k⋂
A=1

kerωA.

and the gradient of the components of a Cr map f = (f1, . . . , fq) : M → Rq
writes

df i = uiAω
A ⊕ viaθa , i = 1, · · · , q

where via = iξadf
i = Lξaf

i (the uiA play no role in what follows). Then, in local
terms, the restriction to H ⊂ TM of f∗eq = δijdf

i ⊗ df j is given by

f∗eq|H = δijLξaf
iLξbf

j θa ⊗ θb ∈ Γ0(S0
2H) (3.1)

and the equation DH(f) = g writes locally as

δijLξaf
iLξbf

j = gab, (3.2)

where gab = g(ξa, ξb), a, b = 1, . . . , k.

Definition 3.1.1. Let H be a distribution on M . We say that f ∈ C1(M,Rq)
is an H-immersion if the restriction of Tf to H is injective.

Example 3.1.2. Take M = A×B, where A and B are smooth manifolds. Con-
sider the two natural projections πA and πB on A and B and the corresponding
two canonical distributions HA = kerTπB = TA ⊕ {0} and HB = kerTπA =
{0} ⊕ TB. A map f ∈ C∞(M,Rq) is a HA-immersion iff f(·, b) : A → Rq is
an immersion for every b ∈ B. Similarly for HB.

Example 3.1.3. For any fiber bundle (M,N, π, F ) it is defined the canonical
distribution of vertical vectors V = kerTπ ⊂ TM . A smooth map f : M → Rq
is a V -immersion iff on every trivialization U×F of M the map f(u, ·) : F → Rq
is an immersion for every u ∈ U . Let now A be a linear connection on M and
let H be the horizontal distribution with respect to A; then a map f : M → Rq
is a H-immersion iff the covariant derivatives {∇µf i} are linearly independent
on every point of M .

Proposition 3.1.4. Let f ∈ Cr(M,Rq). The quadratic form DH(f) ∈ Γ0(S0
2H)

is positive-definite iff f is a H-immersion.

Proof. Let {ξa} be a local trivialization for H. Then

Tf(ξa) = ∂αf
i∂i ⊗ dxα(ξβa∂β) = ξαa ∂αf

i∂i = (Lξaf
i)∂i

and the proposition follows.

Proposition 3.1.5. Let H ⊂ TM be a k-dimensional distribution. If q ≥ m+k
the set of H-immersions is open and dense in C1(M,Rq).
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Proof. A map f : M → Rq is a H-immersion iff the k × q matrix D = (Lξaf
i) :

M →Mk,q(R) has rank k at every point. The set of non maximal rank matrices
has codimension q − k + 1 in Mk,q(R) [24] so the image D(M) do not intersect
it if m < q − k + 1.

Let us consider now a smooth 1-parameter deformation g
ε

of the metric g
on M such that g0 = g and assume that there exists a corresponding smooth
1-parameter deformation fε such that f0 = f . It follows by (3.2) that

δijLξafε
iLξbfε

j = gε,ab ,

where gε,ab = gε(ξa, ξb). Differentiate with respect to ε and set

δf i =
df i
ε

dε

∣∣∣∣
ε=0

, δgab =
dgε,ab
dε

∣∣∣∣
ε=0

thus obtaining the system of k(k + 1)/2 PDEs:

δij
(
Lξaf

i(x)δ[Lξbf
j(x)] + δ[Lξaf

i(x)]Lξbf
j(x)

)
= δgab(x).

Following Nash we observe that

Lξaf
iδ[Lξbf

j ] = Lξb [Lξaf
iδf j ]− LξbLξaf iδf j

so that, by defining ψa(x) = δijLξaf
i(x)δf j(x), we get the following equivalent

algebraic system in the q unknown δf j :{
δij Lξaf

iδf j = ψa

δij (LξaLξbf
i + LξbLξaf

i)δf j = Lξaψb + Lξbψa − δgab
(3.3)

where the ψa are arbitrary functions.
A sufficient condition for this system to be solvable is that the matrix

Dξ1,··· ,ξk,f =



Lξ1f
1 · · · Lξ1f

q

...
...

...
Lξkf

1 · · · Lξkf
q

L2
ξ1
f1 · · · L2

ξ1
fq

Lξ1Lξ2f
1 + Lξ2Lξ1f

1 · · · Lξ1Lξ2f
q + Lξ2Lξ1f

q

...
...

...
L2
ξk
f1 · · · L2

ξk
fq


(3.4)

has maximal rank, i.e. that the vectors

Lξaf
i, {Lξa , Lξb}f = LξaLξbf

i + LξbLξaf
i

be linearly independent. Note that matrix (3.4) has always at least 2 rows so
we must assume q ≥ 2.
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Definition 3.1.6. Let H ⊂ TM be a k-dimensional distribution on a smooth
manifold M . We say that a C2 H-immersion f : M → Rq is H-free if, for every
x ∈M , there exists a trivialization {ξa} of H in some neighbourhood of x such
that

rankDξ1,··· ,ξk,f = k + sk, sk =
k(k + 1)

2
.

The set of Cr H-free maps M → Rq is denoted by F rH(M,Rq).

Remark 3.1.7. H-free maps where defined first in [26] but used there for dif-
ferent purposes.

Clearly H-free maps can exist only for q ≥ k+sk. Note also that, while every
immersion is a H-immersion, it is not necessarily H-free, e.g. for dimensional
reasons. Next proposition shows that the above definition is well posed.

Proposition 3.1.8. The rank of the matrix Dξ1,··· ,ξk,f does not depend on the
particular choice of the trivialization of H.

Proof. Take another trivialization {ζa} of H in the same neighbourhood of x.
Then ζa(x) = λba(x)ξb(x) for some local section λba(x) of the frame bundle over
H and

Lζaf = λbaLξbf , LζaLζbf = λcaLξcλ
d
bLξdf + λcaλ

d
bLξcLξdf .

Clearly rank(Lζaf
i) = rank(Lξaf

i). Hence

rank
(

Lζaf
{Lζa , Lζb}f

)
= rank

(
Lξaf

(λcaLξcλ
d
b + λcbLξcλ

d
z)Lξdf + λcaλ

d
b{Lξa , Lξb}f

)

= rank
(

Lξaf
λcaλ

d
b{Lξa , Lξb}f

)
= rank

(
Lξaf

{Lξa , Lξb}f

)

Example 3.1.9. In [27] Kaplan showed that every one-dimensional distribution
H on the plane R2 is orientable and then it is the kernel of a regular 1 1-form
ω. The metric induced on H = kerω by a map f : R2 → R2, f(x, y) =
(α(x, y), β(x, y)), is, by Eq. (3.2),

DH(f) = [(Lξα)2 + (Lξβ)2](∗ω)2

where ∗ is the Euclidean Hodge operator. Then f is a H-immersion iff Lξα and
Lξβ do not vanish simultaneously at any point. Here the matrix Dξ,f is given
by the 2× 2 matrix

Dξ,f =

(
Lξα Lξβ

L2
ξα L2

ξβ

)
.

1Throughout this paper we call a vector field or a k-form regular if they are different from
zero at every point of M .
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Therefore f is H-free iff there is a regular section ξ of H such that

Lξα L
2
ξβ − Lξβ L2

ξα > 0

on the whole plane R2.

The following proposition, analogue of Theorem A in Appendix 6 of [12],
characterizes H-free maps:

Proposition 3.1.10. Let H be a distribution on a smooth manifold M , let
S = S0

2H be the set of its symmetric (0, 2) tensors on H and N = (Tf(H))⊥

the normal bundle to Tf(H) in Rq with respect to eq. Then a H-immersion
f : M → Rq is H-free iff the “Wintergarten map” ν : N → S defined by

νx(nx) = {Lξa , Lξb}f i(x)δijnjx θ
a ⊗ θb

is surjective.

Proof. Assume first that f is H-free. Then ker ν cannot be bigger than the
zero-section of N because the existence of a non-zero vector nx ∈ Nx such
that νx(nx) = 0 is equivalent to the existence of a non-trivial linear relation
between the vectors la,b = ({Lξa , Lξb}f i), which are linearly independent by
the H-freedom of f .

Viceversa assume that ν is surjective. Note that the matrix representing ν
as a linear operator is exactly the sk×q matrix Dξ1,··· ,ξk,f = ({Lξa , Lξb}f i) and
sk is also the dimension of the fibers of S. Hence the surjectivity of ν requires
that Dξ1,··· ,ξk,f be a full-rank matrix, namely that the sk vectors la,b are linearly
independent among themselves. Since N is, by definition, orthogonal to Tf(H)
then the la,b are also linearly independent from the la = (Lξaf

i); finally, the
la are also all independent among themselves because f is, by hypothesis, a
H-immersion. Then the k + sk vectors (la, la,b) are linearly independent, i.e. f
is H-free.

Theorem 3.1.11. Let H ⊂ TM be a k-distribution on M , dimM = m. The
operator DH is infinitesimally invertible on the set of H-free maps f : M → Rq.
Moreover, if q ≥ m+ k + sk, a generic map M → Rq is H-free.

Proof. The infinitesimally invertibility of DH follows directly from the definition
of H-freedom. Observe that a map f : M → Rq is H-free when the image of
the map

Dξ1,··· ,ξk,f : M →Msk,q(R)

is contained in the set of matrices of maximal rank. In particular a map is not
H-free when the image of Dξ1,··· ,ξk,f intersects the set Nsk,q of matrices of non-
maximal rank, whose codimension is q + 1− sk [24]. For a generic f the image
Dξ1,··· ,ξk,f (M) and Nsk,q are transversal and therefore they do not have points
in common when dimDξ1,··· ,ξk,f (M) < codim Nsk,q. Hence a generic map f is
H-free for q > m− 1 + sk.



44 H-Free Maps

Remark 3.1.12. All concepts, statements and proofs of this section can be
described naturally in the language of jet bundles, which we decided to avoid in
order to keep our formalism as light as possible. We briefly point out below to
the reader the definitions of H-immersions and H-free maps in this language.

In analogy with the well known isomorphisms J1(M,N) ' T ∗M ⊗ TN and
J2(M,N) ' (T ∗M ⊕ S0

2M)⊗ TN one can define the bundles

J1(M,N ;H) := H∗ ⊗ TN

and

J2(M,N ;H) := (H∗ ⊕ S0
2H∗)⊗ TN .

Then the H-1-jet j1
Hf of a map f : M → Rq is the section of the jet bundle

J1(M,Rq;H)→ J0(M,Rq;H) := M × Rq →M

(whose fiber at the point (m, y) is H∗m ⊗ TyRq, i.e. matrices k × q) given by

j1
Hf(xα) = (xα, f i(x), Lξaf

i) .

A map f then is an H-immersion iff j1
Hf(M) is contained in the set of maximal

rank tensors. Similarly, the H-2-jet j2
Hf is the section of

J2(M,Rq;H)→ J0(M,Rq;H)→M

(whose fiber at the point (m, y) is (H∗m ⊕ S0
2H∗m) ⊗ TyRq, i.e. (k + sk) × q

matrices) given by

j2
Hf(xα) = (xα, f i(x), Lξaf

i, {Lξa , Lξb}f i) .

A map f then is H-free iff j2
Hf(M) is contained in the set of maximal rank

tensors of the bundle.

By combining Theorem 3.1.11 and the Newton-Nash-Moser-Gromov IFT
(Theorem 2.2.8) we get as a corollary:

Theorem 3.1.13. The restriction of DH : Cr(M,Rq)→ Γ0(S0
2H) to F rH(M,Rq)

is an open map for every r ≥ 3.

3.1.1 Examples of H-free maps in the critical dimension
for distribution of dimension 1 and codimension 1

We show below a few concrete examples of H-free maps f : M → Rq for
q = k + sk and either dimH = 1 or codim H = 1.
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One-dimensional distributions

Let H be a 1-dimensional distribution, so that locally (and globally if H is
orientable) H1 = span{ξ}. Then, if ω is any 1-form such that iξω = 1,

f∗eq|H = δij Lξf
i Lξf

j ω2

and

Dξ,f =

(
Lξf

1 · · · Lξf
q

L2
ξf

1 · · · L2
ξf
q

)
The condition for the existence of free maps reduces in this case to q ≥ 2.

Example 3.1.14. Take a regular vector field ξ ∈ X(Rm) and H = span{ξ}.
Assume that ξ has a component always different from zero, e.g. ξ1 = 1. Then
Lξx

1 = 1 and a direct calculation shows that the function F (x) = ψ(x1) is H-
free for every free map ψ : R→ R2. For example, one can take ψ(t) = (t, et) or
ψ(t) = (sin t, cos t).

Example 3.1.15. Consider the “constant slope” distribution on T2 = R2/Z2

H = span{ξx∂x + ξy∂y} ⊂ TT2

If ξx and ξy are rationally dependent then we can transform ξ in, say, the
constant vertical vector field with a global diffeomorphism and everything is
trivial. Hence we assume that dimQ{ξx, ξy} = 2, put θ = ξx/ξy and consider
H as the span of ξ′ = ∂x + θ∂y. Then every function F (x, y) = ψ(x) and
G(x, y) = ψ(y) is H-free for every ψ ∈ F (S1,R2) since Lξ′x = 1 6= 0 and
Lξ′y = θ 6= 0 (i.e. we use the same technique used in Theorem 3.2.3). For
example the function F (x, y) = (sinx, cosx) is H-free.

Example 3.1.16. Consider a regular vector field ξ on a Riemannian manifold
(M, g) and assume that the 1-form ξ[, “musical dual” of ξ, is exact. Then ξ is
the gradient of some regular function f and Lξf = ‖ξ‖2 > 0 so that, as in the
previous examples, F (x) = ψ(f(x)) is H-free (for H = span{ξ}) for every free
map ψ : R→ R2.

Example 3.1.17. Consider the regular vector field ξ = (y2 − z2 − 1, 2y, 2z) ∈
X(R3) inducing the distribution H = span{ξ}. This is the normal field to the
level sets of f(x, y, z) = ex(y2 + z2 − 1) and therefore Lξf > 0 so that, again,
every F : R3 → R2 defined by F = ψ(f) is H-free for every ψ ∈ F (R3,R2).

Let us provide now an example of H-free map to R3, i.e. when the ma-
trix Dξ,f is rectangular (notice that H1-free maps from R3 are generic starting
with q = 5). Be α an unknown function from R3 to R, define F (x, y, z) =
(x, ex, α(x, y, z)) and set g = y2 + z2 to shorten formulas: then

rankDξ,F = rank

(
g2 − 1 ex(g2 − 1) Lξα

g2 − 1 + 4g2 ex[(g2 − 1)(g2 − 1 + 4g2)] L2
ξα

)
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The leftmost minor is invertible for g 6= 1 while for g = 1 the matrix reduces to(
0 0 Lξα

4 4ex L2
ξα

)
so it is enough to determine α so that Lξα|g=1 > 0. Such a function is easily
found by trial and error; an example is given by α(x, y, z) = y2 + z2 since
Lξα = 2g. Hence the map F (x, y, z) = (x, ex, y2 + z2) is H-free.

Codimension-1 distributions

Consider now a codimension-1 distribution Hm−1 ⊂ TMm, so that locally it
can be seen as the kernel of a regular 1-form ω or, equivalently, as the span of
m− 1 linearly independent vector fields {ξa}, a = 1, · · · ,m− 1. In this case the
metric induced by a map f : M → Rq on H is given by

f∗eq|H = δijLξaf
iLξbf

j θa ⊗ θb

where {ω, θa} is a base for Ω1(M) such that iξaω = 0, iξaθ
b = δba.

The condition for the existence of free maps in this case reduces to q ≥ (m−1)(m+2)
2 ;

in particular, for m = 3, H-free maps are generic for q ≥ 5.

Example 3.1.18. Take the two commuting vector fields ξ1 = (cos y,− sin y, 0)
and ξ2 = (0, 0, 1) and consider the (integrable) distribution H = span{ξ1, ξ2} ⊂
TR3. The leaves of this H are the direct product of the level sets f(x, y) =
ex sin(y) with the z axis and, the space of leaves being not Hausdorff, this folia-
tion is not topologically equivalent to the trivial one of R3. A direct computation
gives that Lξ1(ex cos y) = e2x > 0 and Lξ2z = 1 > 0 so that the map f : R3 → R5

defined by
f(x, y, z) = (ψ(ex cos y), ϕ(z), zex cos y))

is H-free for every pair of free maps ψ,ϕ : R→ R2.

Example 3.1.19. Consider the (non-integrable) distribution H2 ⊂ TR3 rep-
resented by the kernel of the canonical contact structure ω = y dx − dz or,
equivalently, generated by the (non-commuting) vector fields ξ1 = (0, 1, 0) and
ξ2 = (1, 0,−y) and take the function f : R3 → R5 defined by

f(x, y, z) = (y, x, ey, ex, z)

Here the matrix (3.4) writes:

Dξ1,ξ2,f =



1 0 ey 0 0

0 1 0 ex −y

0 0 ey 0 0

0 0 0 0 −1

0 0 0 ex 0


whose determinant is ex+y > 0, so that f is H-free. Notice that here f is an
immersion but it is not a free map since fzz is identically zero.
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3.2 Construction of H-free maps for q = k + sk

In this section we build free maps in critical dimension for three types of dis-
tributions. All three cases are inspired to the following result obtained by
J.L. Weiner [28]:

Lemma 3.2.1 (Weiner). Let h be a smooth function on R2 without critical
points and let H = ker dh ⊂ TR2. Then there exists a smooth function f :
R2 → R whose level sets are transverse to H at every point.

3.2.1 One-dimensional distributions on R2

In our first generalization of Lemma W we weaken the hypothesis H = ker dh,
i.e. we do not assume anymore that H is a Hamiltonian foliation and get the
following:

Lemma 3.2.2. Let H be any 1-dimensional distribution on R2 of finite type.
The following three (equivalent) properties hold true:

1. there exists a smooth function f : R2 → R whose level sets are transverse
to H at every point;

2. for any regular 1-form ω such that H = kerω there exists a smooth func-
tion f : R2 → R such that ∗(ω ∧ df) > 0;

3. for any regular section ξ of H there exists a smooth function f : R2 → R
such that Lξf > 0.

Since this result involves regular vector fields on the plane, which will be
thoroughly studied in next chapter, we postpone to it the relative definitions
and proof of the Lemma (see Definition 4.0.17 and Propositions 4.2.1 and 4.2.3).

With this we are in condition to easily prove the following:

Theorem 3.2.3. Let H ⊂ TR2 be a one-dimensional distribution of finite type
on R2. Then there exists a smooth function f ∈ C∞(R2,R) such that ψ ◦ f ∈
F rH(R2,R2) for all ψ ∈ F r(R,R2).

Proof. Let ξ be a regular section of the distribution H ⊂ TR2, H = kerω such
that iξ(∗ω) = 1 and let U = L−1

ξ

(
C∞+ (R2)

)
denote the set of all smooth real

valued maps f on R2 such that Lξf > 0 (this set is non-empty by the previous
lemma). We want to show that, for every free map ψ : R→ R2, the map

F (x, y) = ψ(f(x, y))

is H-free. Take ψ(t) = (a(t), b(t)). We must verify that the matrix(
Lξ[a(f)] Lξ[b(f)]

L2
ξ [a(f)] L2

ξ [b(f)]

)
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has rank 2 (cfr. Example 3.1.9). A direct computation shows that

detDξ,F =

∣∣∣∣∣ Lξ[a(f)] Lξ[b(f)]

L2
ξ [a(f)] L2

ξ [b(f)]

∣∣∣∣∣ =

=

∣∣∣∣∣ a′(f)Lξf b′(f)Lξf

a′(f)L2
ξf + a′′(f)[Lξf ]2 b′(f)L2

ξf + b′′(f)[Lξf ]2

∣∣∣∣∣ =

= [a′(f)b′′(f)− b′(f)a′′(f)][Lξf ]3 6= 0

which, by hypothesis, is never zero. In fact we assumed Lξf > 0 and the first
factor cannot vanish since ψ is free.

Example 3.2.4. Consider the distribution H ⊂ R2 defined by

H = span{ξ = 2y∂x + (1− y2)∂y} .

This H is of finite type since it has only a pair of separatrices, the straight
lines y = ±1 (see Definition 4.0.17). Indeed H is the tangent space to the
(Hamiltonian) foliation F of the level sets of f(x, y) = (y2 − 1)ex (a direct
computation shows that Lξ((y2 − 1)ex) = 0).

Moreover, Lξ(yex) = (1 + y2)ex > 0, i.e. the foliation of the level sets of the
function g(x, y) = (1 + y2)ex is transverse to F at every point (cfr. Fig. 4.1).
Then, by Theorem 3.2.3, F (x, y) = ψ(g(x, y)) is H-free for every free map
ψ : R→ R2. For example, F (x, y) = (yex, eye

x

) is H-free (cfr. Example 3.1.14).

3.2.2 The case of completely integrable systems

In our second generalization of Lemma W we reinterpret it in terms of com-
pletely integrable systems.

Let (M2n,Ω) be a connected symplectic manifold. Since the symplectic 2-
form is non-degenerate it sets up a linear isomorphism between vector fields ξ
and 1-forms ω on M through the relation iξΩ = ω. Moreover, every real valued
function f : M → R determines a unique vector field ξf called Hamiltonian
vector field with the Hamiltonian f by requiring that for every vector field
η on M the identity df(η) = ω(ξf , ξη) must hold. To the given symplectic
structure Ω we can associate, in a natural way, the Poisson bracket via the
formula {f, g} = Ω(ξf , ξη) which turns the algebra C∞(M) of smooth functions
on M into a Poisson algebra. Assume that (M2n,Ω) admits a regular completely
integrable system. This means that there exists a maximal set of functionally
independent Poisson commuting functions {Ii}, i.e., such that dI1 ∧ · · · ∧ dIn 6=
0 at every point of M and that the Poisson subalgebra generated by the Ii
in C∞(M) is abelian. Consider the distribution H = ker dI1 ∩ · · · ∩ ker dIn
and the corresponding Lagrangian foliation F (so that H = TF). Then the
following theorem, classically known as Arnold–Liouville theorem holds true
(see [29] or [30] for details).
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Theorem 3.2.5 (Arnold–Liouville). Let F the Lagrangian foliation defined
above. If every Hamiltonian vector field ξIi is complete then every leaf of F is
diffeomorphic to Tr × Rn−r and has a saturated neighbourhood U (with respect
to the projection onto the space of leaves F) symplectomorphic to the product
manifold D× (Tr×Rn−r), where D ⊂ Rn is open, endowed with the coordinates
(Ii, ϕj) and with the canonical symplectic form Ω0 = dIi ∧ dϕi.

This statement means, in particular, that the commutation relations between
the special coordinates (Ii, ϕj) are given by the well-known

{Ii, Ij} = 0 , {ϕi, ϕj} = 0 , {Ii, ϕj} = δji .

The (Ii, ϕj) are usually called “action-angle” coordinates.
When M = R2 every Hamiltonian system (represented by a single Hamilto-

nian) is, trivially, a completely integrable system. In particular, Lemma W can
be restated as follows:

Lemma 3.2.6 (Weiner). Let {I} be a regular completely integrable system on
the symplectic manifold (R2,Ω0 = dx∧dy). Then there exists a smooth function
f : R2 → R such that Ω0(ξI , ξf ) > 0 for all points of R2.

In the following Lemma we extend Weiner’s one to higher dimensional inte-
grable systems:

Lemma 3.2.7. Let {I1, · · · , In} be a regular completely integrable system on
(M2n,Ω) and suppose that all the Hamiltonian vector fields ξIi are complete.
Then there exist n smooth functions {f1, · · · , fn} (possibly multi-valued) such
that

{Ii, f i} > 0 , {Ii, f j} = 0 , j 6= i (3.5)

on the whole manifold M2n.

Proof. We follow closely the original argument in [28]. By Arnold-Liouville
Theorem, every leaf l ∈ F has a saturated neighbourhood Ul ' Rn×Rk×Tn−k
with coordinates (Ii, ϕ

j
l ) such that Ul is defined by the inequalities αli ≤ Ii ≤ βli

and
{Ii, ϕjl } = δji .

We renormalize the action coordinates Ii (which, by hypothesis, are global)
by J li = µli(Ii − νli) so that Ul is characterized as the connected component of
|J li | < 2 containing l. Now, let b : R → R be any bump function with support
equal to (−1, 1) and let l : R→ R be any smooth non-decreasing function which
is equal to 0 on (−∞,−1], to 1 on [1,∞) and strictly increasing between 0 and
1 on (−1, 1).

The functions defined on Ul as

f jl = b(J l1) · · · b(J ln)l(ϕjl )
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can be trivially extended to the whole M by setting f jl = 0 outside Ul. Note
that their differentials

df il =
∞∑
i=1

µlib
′(J li )dIi +

∞∑
i=1

b(J ln)l′(ϕil)dϕ
i
l

have (modulo the span of the dIi) compact support

Vl = {p ∈ Ul| |J li (p)| < 1 , |ϕjl (p)| < 1} .

Moreover, we have that

{Ii, f il } = b(J l1) · · · b(J ln)l′(ϕil) > 0 , {Ii, f jl } = 0 , j 6= i

inside Vl while all Poisson brackets are identically zero outside Vl.
We extract from the covering {Ul} a countable subcovering {Ulk}. and show

that, by a convenient choice of the coefficients ak, the series

f i =
∑
k∈N

akf
i
lk

can be made convergent. In fact the f ilk are uniformly bounded so that, by
taking ak = 2−k, the series can be made uniformly convergent. Next, let us
fix any n-dimensional distribution H′ transverse to F and consider on M the
Riemannian metric g =

∑n
i=1(dIi)2 + g′ (where g′ is any metric on H′). Denote

by ‖D(j)f ilk‖ the norm (associated to the metric g) of the derivatives of order j
of f ilk . This is seen as a map with domain M and range the symmetric product
bundle (of order j) SjM based on M . We thus get that, for every value of k,
there is some finite constant M ′k such that, outside Vlk , ‖D(j)f ilk‖ ≤ M ′k,i for
1 ≤ j ≤ k. Since Vlk has compact closure, there exists another constant M ′′k,i
such that ‖D(j)f ilk‖ ≤ M ′k,i within Vlk . This means that ‖M−1

k,iD
(j)f ilk‖ ≤ 1

for Mk,i = min{1,M ′k,i,M ′′k,i}. Therefore, if we take ak = 2−kM−1
k,i , the series∑

k∈N akD
(j)f ilk uniformly converges for each j ∈ N.

Then the f i are smooth and one has

{Ii, f i} > 0 , {Ii, f j} = 0 , j 6= i.

Finally, Arnold–Liouville’s Theorem tells that the neighbourhoods Ul are all
symplectomorphic to Rn × (Tr × Rn−r) for some r between 0 and n and, for
r > 0 the leaves have compact components. Observe that, on these components,
the df j are well-defined closed 1-forms. Nevertheless, these forms may be non-
exact, due to the non-triviality of the first cohomology group of the leaves.
Consequently, in this case the functions f j may be multivalued, namely well-
defined only on some covering of M .

Theorem 3.2.8. Let (M2n,Ω) be a symplectic manifold admitting a completely
integrable system {I1, · · · , In}, H ⊂ TM the n-dimensional Lagrangian distri-
bution H = ∩ni=1 ker dIi and F the corresponding Lagrangian foliation. Assume
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that the Hamiltonian vector fields associated to the Ii are all complete and that
every leaf of F has no compact component. Then it is possible to find n smooth
real valued functions f i, i = 1, . . . , n, on M such that the map F : M → Rn+sn ,
sn = n(n+1)

2 defined by

F (x) = (ψ1(f1(x)), · · · , ψn(fn(x)), f1(x)f2(x), · · · , fn−1(x)fn(x))

is H-free for any choice of n free maps ψi : R→ R2.

Proof. By Lemma 3.2.7 there exist n smooth functions f i satisfying (3.5) which,
since the leaves of the foliation F have no compact component, are all single-
valued. We consider n free maps {ψ1, · · · , ψn} from R to R2 and prove that the
map F : M → Rn+sn defined as

F (x) = (ψ1(f1(x)), · · · , ψn(fn(x)), f1(x)f2(x), · · · , fn−1(x)fn(x))

is H-free.
Let ψi(t) = (ai(t), bi(t)) and set Dψi = a′ib

′′
i − a′′i b

′
i. The square matrix

Dξ1,··· ,ξn,F (see (3.4) above) is given, up to a permutation of its rows, by

A1 ∗ ∗ ∗ ∗ ∗

0
. . . ∗ ∗ ∗ ∗

0 0 An ∗ ∗ ∗
0 0 0 2g1g2 ∗ ∗

0 0 0 0
. . . ∗

0 0 0 0 0 2gn−1gn


where gi = LξIi f

i,

Ai =

(
a′i(f

i)gi b′i(f
i)gi

a′i(f
i)L2

ξIi
f i + a′′i (f i)g2

i b′i(f
i)L2

ξIi
f i + b′′i (f i)g2

i

)

and the stars represent terms which do not contribute to the determinant.
Since detAi = g3

iDψi and the blocks below the diagonal are identically zero,
the determinant of Dξ1,··· ,ξn,F equals

2snΠn
k=1(gn+2

i Dψk)

which differs from zero at every point because, by construction, gi > 0 and, by
hypothesis, Dψi 6= 0. Hence F is a H-free map.

Remark 3.2.9. Clearly the map F defined in the proof above is modeled after
the canonical free map G : Rn → Rn+sn given by

G(x1, . . . , xn) = (x1, . . . , xn, (x1)2, x1x2, · · · , (xn)2) .

So far it is not known (see [1], p.9, and Section ?? of this thesis) whether,
for n ≥ 3, there exist free maps from Tn to Rn+sn . It is for this reason that



52 H-Free Maps

in Theorem 3.2.8 we require that the leaves of the foliation F have no compact
component. On the other hand, it is an easy matter to check that the map
G : Tn → Rn+sn+sn−1 defined by

G(θ1, . . . , θn) = (cs(θ1), . . . , cs(θn), cs(θ1 + θ2), . . . , cs(θn−1 + θn)) ,

where cs θ = (cos θ, sin θ), is free. When the leaves of F are compact (and
therefore diffeomorphic to Tn), the map F : M → Rn+sn+sn−1 defined by F (x) =
G(f1(x), . . . , fn(x)) is H-free. Unlike the case of Theorem 3.2.8, the dimension
of the target space of F is not the smallest possible for a H-free map (except
for n = 1). Nevertheless the existence of such an F is a non-trivial fact since
Theorem 3.1.11 grants the existence of H-free maps from M to Rq only for
q ≥ 3n+ sn and, for n ≤ 4, we have that n+ sn + sn−1 < 3n+ sn.

3.2.3 The case of Poisson systems

In our last generalization we reinterpret Weiner’s Lemma in terms of Poisson
geometry.

Poisson structures are a generalization of symplectic structures having the
nice property of existing even in odd-dimensional manifolds. Recall that a
Poisson manifold is a pair (M, {, }) where {, } : C∞(M)×C∞(M)→ C∞(M) is
a R-bilinear skew-symmetric derivation satisfying the Jacobi identity. To every
smooth function f ∈ C∞(M) it is associated canonically a Hamiltonian vector
field ξf defined by ξf (g) def= {f, g}.

In particular, when M = R2, the canonical symplectic form Ω0 = dx ∧ dy
induces on M a Poisson Bracket {f, g} = Ω0(ξf , ξg) which can also be obtained
via the Euclidean metric as

{f, g} = ∗[df ∧ dg]

where ∗ is the Euclidean Hodge operator. Observe that this Poisson bracket
does not need a symplectic structure to be defined but rather an orientable
Riemannian structure. Furthermore, it can be defined in any dimension n as
follows. Let M be an oriented Riemannian manifold of dimension n ≥ 2, ∗ its
Hodge operator and H = {h1, · · · , hn−2} a set of n − 2 smooth functions. We
set

{f, g}H
def= ∗[dh1 ∧ · · · ∧ dhn−2 ∧ df ∧ dg]

and call it Riemann-Poisson bracket with respect to H. In particular, the folia-
tion corresponding to a Hamiltonian vector field ξh, with h ∈ C∞(M), is given
by the intersections of the level sets of the hi with the level sets of h.

Remark 3.2.10. Each function hi in H is a Casimir for {, }H . In particu-
lar, the foliation corresponding to a Hamiltonian vector field ξh is given by the
intersections of the level sets of the hi with the level sets of h.

Example 3.2.11. Let M = R3 with the Euclidean metric and coordinates
(x, y, z) and let H = {x}. Then the Riemann-Poisson bracket is given by
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{f, g}H = ∂yf ∂zg − ∂yg ∂zf . In particular ξy = ∂z and ξz = −∂y and the
coordinate x is a Casimir.

Example 3.2.12. Let M = T3 with angular coordinates (θ1, θ2, θ3) and H =
{h(θi) = Biθ

i}, i = 1, 2, 3, for some constant 1-form B = Bidθ
i. Note that h is

a multi-valued function; this is allowed because in the definition of the bracket
appear only the derivatives of h rather than h itself. Then the Riemann-Poisson
bracket is given by

{f, g}H = εijk∂if ∂ig Bk ,

where εijk is the totally antisymmetric Levi–Civita tensor.
This bracket was introduced by S.P. Novikov as an application of his gen-

eralization of Morse theory to multivalued functions [31]. An example of the
rich topological structure hidden in this Riemann-Poisson bracket can be found
in [32].

Placed in this setting Weiner’s Lemma reads as follows:

Lemma 3.2.13. Consider the Euclidean plane R2 endowed with the Riemann-
Poisson bracket {, } and let h ∈ C∞(R2) be a regular Hamiltonian. Then there
exists f ∈ C∞(R2) such that {h, f} > 0 on the whole R2.

The next lemma allows, under a non-degeneracy condition, to extend Weiner’s
result in the latter formulation to Riemann-Poisson brackets in higher dimen-
sion. The proof of this Lemma goes along the same lines of the original Weiner’s
proof.

Lemma 3.2.14. Let M be an oriented Riemannian manifold of dimension n ≥
2 and let H = {h1, · · · , hn−2} be a set of n−2 functions functionally independent
at every point (i.e. such that dh1 ∧ · · · ∧ dhn−2 never vanishes). Then, for
any h ∈ C∞(M) functionally independent from the hi, there exists a smooth
function (possibly multivalued) f : M → R such that the Riemann–Poisson
bracket {h, f}H is strictly positive at every point.

Proof. Set hn−1 = h. Let F the 1-dimensional Hamiltonian foliation associated
to h, namely the one defined by dh1 = · · · = dhn−1 = 0, and let π : M → F
be the canonical associated projection. At every point p ∈ M there exists a
saturated (with respect to π) neighbourhood Up ' D×X, where D ' Rn−1 and
X is either R or S1, defined as the connected component of the set Wp = {ai <
hi < bi, i = 1, . . . , n−1} which contains p. We renormalize these coordinates by
using new ones ĥi = µi(hi−νi) so that Wp is defined by |ĥi| < 2, i = 1, . . . , n−1.

Let now Ap be the subset of Up defined by |ĥi| < 1, i = 1, . . . , n−1 and take
two functions b and l like in the proof of Lemma 3.2.7.

The real-valued function

fp(h1, . . . , hn−1, ϕ) = l(ϕ)×
∏

i=1,...,n−1

b(hi)
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is well-defined and smooth in Ap and it can be extended to a smooth function
on the whole M by setting it equal to zero outside Ap. Clearly

dfp = ωn−1 ⊕Πn−1
i=1 b(h

i)l′(ϕ)dϕ

where ωn−1 ∈ span{dh1, · · · , dhn−1}. Then {h, fp}H everywhere vanishes ex-
cept within Bp = {p′ ∈ Ap| |ϕ(p′)| < 1}, where we have

{h, fp}H= ∗[dh1 ∧ · · · ∧ dhn−1 ∧ dfp]
= ∗[dh1 ∧ · · · ∧ dhn−1 ∧Πn−1

i=1 b(hi)l
′(ϕ)dϕ]

= ∗[dh1 ∧ · · · ∧ dhn−1 ∧ dϕ]
∏n−1
i=1 b(hi)l

′(ϕ) > 0 ,

the function ∗[dh1 ∧ · · · ∧ dhn−1 ∧ dϕ] being positive for all points q ∈ Up and
every p ∈M since M is oriented.

Now extract a countable subcovering {Apk}k∈N from {Ap} and let fk = fpk
be the corresponding function on every Ak := Apk . As in Lemma 3.2.7, the
series

∑
k akfk can be made convergent to a smooth function f by choosing a

convenient sequence ak. Then {h, f}H > 0 on the whole M since every point p
is covered by at least one Ak, so that {h, f}H ≥ {h, fk}H > 0.

Theorem 3.2.15. Let M be an n-dimensional oriented Riemannian manifold,
H = {h1, · · · , hn−2} a set of n− 2 functions functionally independent at every
point and {·, ·}H the corresponding Riemann-Poisson bracket. If h ∈ C∞(M) is
functionally independent from all the hi and H is the corresponding Hamiltonian
1-dimensional distribution, then there exists a (possibly multivalued) smooth
function f : M → R such the smooth map F : M → R2 given by F (x) = ψ(f(x))
is H-free for every free map ψ : A → R2 where A = R if f is single-valued or
A = S1 if f is multivalued.

Proof. Let ξh be the Hamiltonian vector field associated to h through {, }H .
Then, by Lemma 3.2.14, there exists a function f (possibly multi-valued) such
that Lξf > 0. Hence, as seen in Theorem 3.2.3, the smooth map F : M →
R2 given by F (x) = ψ(f(x)) is H-free (H = span{ξh}), where ψ : R → R2

(respectively ψ : S1 → R2) is free if f is single-valued (respectively multi-
valued).



4
Cohomological equation in the plane

The study of planar vector fields has a long history. The first to address the
problem of the qualitative study of global solutions of ODEs in R2 was Poincaré,
in a series of papers published between 1880 and 1882 (see [33]). These papers
represent the beginning of the whole renown qualitative theory of dynamical
systems, which was initiated by Poincaré as part of his program of solving the
three body-problem. (see [34] and [35] for more details and bibliography on this
topic). In 1900 Hilbert [36] pointed out the high non-triviality of the problem
of the classification of plane vector fields by proposing as his sixteenth problem,
still unsolved, the evaluation of the number of limit cycles of a polynomial plane
vector fields. In Thirties Whitney realized that the subset of regular planar vec-
tor fields, i.e. those without zeros, is much more treatable and started studying
them [37, 38, 39]. A complete classification of regular vector fields on the plane
was done by his pupil Kaplan [27, 40] using an ad-hoc topological tool (chordal
systems). In this thesis we rather use the more general concept of insepara-
ble leaves and separatrices, introduced by L. Markus [41] while working at the
extension of Kaplan’s results to the more general problem of the topological
classification of all planar vector fields.

We recall a few standard basic concepts and definitions that will be used in
this chapter. We denote by Xr(R2) the set of all smooth regular vector fields in
the plane, by Fξ the foliation of the integral trajectories of ξ ∈ Xr(R2) and by
πξ : R2 → Fξ the canonical projection that sends every point in the leaf1 passing
through it. We endow Fξ with the canonical quotient topology. It was shown by
Haefliger and Reeb [42] that Fξ admits the structure of a 1-dimensional simply
connected second countable non (necessarily) Hausdorff smooth manifold; the
smooth structure is characterized by the property that the restriction of πξ
to every transversal line ` is a diffeomorphism onto its image. Two integral
trajectories si, i = 1, 2, of ξ are said inseparable when their projections πξ(si)

1Throughout the thesis we refer to the points of Fξ as integral trajectories or leaves de-
pending on the aspect of them we want to emphasize.
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cannot be separated in the topology of Fξ (e.g. see Fig. 4.1). We denote by
IFξ,s the set of all leaves distinct from s inseparable from it (note that IFξ,s
is empty for all but countably many leaves) and by SFξ the (countable) set of
leaves for which IFξ,s is not empty. A leaf s is called a separatrix when the
boundary of every neighbourhood of πξ(s) contains more than two points. The
set of all separatrices is the closure of SFξ [41]. In the present thesis we will
rather use the term separatrix to indicate just the elements of SFξ since their
limit points play no role in our work. Every plane foliation is orientable and,
correspondingly, to each set IFξ,s can be given a natural order; we say that
two separatrices are adjacent if they are next to each other with respect to this
order.

We introduce now a few specific definition we will need throughout the chap-
ter.

Definition 4.0.16. Two vector fields ξ and ξ′ are strongly proportional if they
are proportional through a non-zero smooth function. A vector field ξ is intrin-
sically Hamiltonian if it is strongly proportional to a Hamiltonian vector field
and is transversally Hamiltonian if it is transversal to a Hamiltonian foliation
G, i.e. to the level sets of a regular smooth function G (we say that G is a
Hamiltonian for G).

It is easily seen that a regular vector field is intrinsically Hamiltonian iff the
PDE Lξf = 0 admits a regular smooth solution and is transversally Hamiltonian
iff is is solvable the differential inequality Lξf > 0.

Definition 4.0.17. A foliation Fξ (or simply the vector field ξ) is of finite
type if SFξ is closed and every set IFξ,s is finite.

In this case the complement of the set of separatrices is the disjoint union of
countably many unbounded open sets named by Markus [41] canonical regions
and the boundary of each canonical region has a finite number of connected
components. We recall that examples of smooth or even analytic foliations
of the plane with a dense set of separatrices are known in literature (see [43]
and [44]). While there are reasons to believe that such foliations are generic in
some “combinatorial” sense, the set of foliations of finite type is nevertheless
of great importance since important natural categories of regular vector fields
leads to them. For example every polynomial vector field is of finite type: finite
bounds for the number of the inseparable leaves of a polynomial vector field were
find first by Markus [45] and later improved independently by M.P. Muller [46]
and S. Schecter and M.F. Singer [47]. It is easy to verify that are of finite
type also all regular vector fields strongly proportional to those of the kind
ξ(x, y) = (a(y), b(y)), where (a, b) is a generic pair of Morse functions of one
variable (so that a2 + b2 is strictly positive).

Definition 4.0.18. A complete set of transversals (CST) for Fξ is a set of
lines Tξ = {`i}, one for each separatrix of Fξ, such that every `i is transversal
to Fξ and cuts the corresponding separatrix si and the set {πξ(`i)} covers Fξ.
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We call gap of g ∈ C∞(R2) between two adjacent separatrices s1 and s2 with
respect to the CST Tξ the limit (if it exists)

gap
Tξ

(g; s1, s2) = lim
p→p1

∫ Tp

0

g
(
Φtξ(p)

)
dt ,

where the point p ∈ `1 tends to p1 = `1 ∩ s1, Φtξ is the flux of ξ and Tp is the

unique number s.t. ΦTpξ (p) ∈ `22

Finally we set a few notations on spaces of germs we are going to use in the
last section. Let a ∈ R. We denote by Hr

a the ring of left germs at a of functions
in Cr(−∞, a), i.e. the equivalence classes determined by the equivalence relation
h ' h′ if h and h′ coincide in some interval of the form (a− ε, a) for some ε > 0,
and by Gra the subring of the left germs in Hr

a which can be extended to a
continuous function at a together with their derivatives up to order r. Similarly,
let I = {a}× [b1, b2] and set LI = (−∞, a]×R \ I. We denote by Hr

I the ring of
left germs at I of functions of Cr(LI), i.e. h ' h′ if h and h′ coincide in some
set (U ∩ LI) \ I, where U is a neighbourhood of I, and by GrI the subring of
germs of functions of Hr

I which can be extended to Cr functions on the whole
LI .

Definition 4.0.19. We call singular left germs at a ∈ R the elements of the
quotient ring SGra = Hr

a/G
r
a and singular left germs at I = {a} × [b1, b2] the

elements of the quotient ring SGrI = Hr
I /G

r
I .

Note that in this chapter we are interested only to the action of ξ on smooth
functions; concerning the global solvability in other functional spaces, e.g. of en-
tire functions or Gevrey-type functions in the realm of global Cauchy-Kowalevs-
kaya theorem see [48, 49] and the references therein. Besides look next chapter
for a study of the type of singularities that can arise at separatrices when we
weaken the regularity conditions on the rhs.

The results presented in this chapter will be published in [4].

4.1 cokerLξ

As pointed out above in Theorem 1.3.1, if Fξ admits a global transversal
the method of characteristics provides a global solution to the cohomological
equation (1.1) for every g ∈ C∞(R2), so that Lξ(C∞(R2)) = C∞(R2) and
cokerLξ = {0}. The obstruction to the existence of global transversals is the
presence of separatrices since no smooth line ` can, at the same time, be transver-
sal to Fξ and intersect any pair leaves inseparable from each other.

In absence of global transversals, one can try to solve Lξf = g recursively in
the following way. Let s be a separatrix for ξ and denote by ` any transversal
through it and by U` = π−1

ξ (`) ⊂ R2 the saturated open set containing `.

2Such number exists for s1 and s2 are inseparable and is unique for every transversal cuts
each leaf at most once.
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Since U` is a proper subset of R2, its boundary is non-empty and equal to the
union of the sets IFξ,s̃ corresponding to all leaves s̃ cut by `. By construction
ξ, once restricted to U`, admits a global transversal (the line `) and therefore
Lξ(C∞(U`)) = C∞(U`). Let now g` be any solution, in U`, to Lξf = g. We
can try to extend g` beyond U` by selecting any boundary component s′ of
∂U` and any transversal `′ passing through it. The function g` restricts on
`′ ∩ U` to a smooth function ĝ`′ ; if we can extend ĝ`′ to a smooth function g`′

defined on the whole `′ then, via the method of characteristics applied to the set
U`′ = π−1

ξ (`′) and using g`′ as initial condition on `′, we can smoothly extend g`
to U`′ . Assuming that one can always extend a local solution across transversals
as described above, proceeding recursively until no separatrices are left we end
up with a global solution to (1.1).

We are going to use the gap to provide a quantitative criterion for the exis-
tence of continuous solutions. While the gap of a function clearly depends on
the CST chosen, whether it exists and is bounded does not:

Proposition 4.1.1. If the gap of g ∈ C∞(R2) between two adjacent separatrices
s1 and s2 with respect to a CST Tξ exists and it is finite, then it exists and it is
finite also with respect to every other CST T ′ξ .

Proof. Let `′1, `
′
2 ∈ T ′ξ be the two transversal to s1 and s2 in the second CST.

Then
gap
T ′ξ

(g; s1, s2) = gap
Tξ

(g; s1, s2) +A1 +A2

for

A1 =
∫ p1

p′1

g
(
Φtξ(p

′
1)
)
dt , A2 =

∫ p′2

p2

g
(
Φtξ(p2)

)
dt

where the integral defining Ai, i = 1, 2, is evaluated along si. Recall that, due
to the method of characteristics, the values on a leaf of a local solution to the
cohomological equation are completely determined by the value of the solution
in any point of the leaf and they are finite on the whole leaf iff they are finite
at a single point. Hence, if the gap of g between s1 and s2 with respect to Tξ,
both Ai are finite since they are given by integrals of bounded functions over
compact sets.

It is already implicit in the previous proof that the existence and bounded-
ness of the gap of a function g is related to the extendability of local solutions
of the cohomological equation having g as rhs. Below we prove this fact and
then use it to prove the main result of the section.

Proposition 4.1.2. A global continuous solution to Lξf = g exists iff g has
finite gap between every pair of adjacent separatrices of Fξ.

Proof. We point out first that a continuous solution to Lξf = g, g ∈ C∞(R2),
is much more regular than it sounds since all such solutions are, by definition,
smooth in the ξ direction. In particular the integral of df along the integral



4.2 Lξf > 0 59

trajectories of ξ is well-defined even for continuous solutions of (1.1) since the
restriction of df on these integral trajectories depends only on Lξf .

The condition in the hypothesis of the theorem is clearly necessary for, if a
continuous solution f exists, then for a given Tξ we have

gap
Tξ

(g; s1, s2) = lim
p→p1

∫ Tp

0

df = f(p2)− f(p1) .

Note that the gap of g between s1 and s2 depends only on the intersection of
the two separatrices with the relative transversals in Tξ.

Now assume that a solution f1 is defined in U1 = π−1(`1) and that the
gap of g between s1 and s2 is finite. Then the restriction of f1 on `2 can be
continued to a continuous function on the whole `2 and therefore, via the the
method of characteristics, to the whole U2 = π−1(`2). The new function f2

defined on U1 ∪U2 coincides, by construction, with f1 in U1 ∩U2, is continuous
in U1 ∪ U2 and clearly does not dependent on the choice of the particular CST
used in the extension. By proceeding recursively until all separatrices are taken
into account we end up with a global continuous solution to (1.1).

We are now in condition to prove the main theorem of the section:

Theorem 4.1.3. If ξ has at least a pair of separatrices then dim cokerLξ =∞.

Proof. We can assume without loss of generality that ξ is complete3. Under
this assumption the gap of every non-zero constant function is infinite for it is
proportional to Tp, which clearly diverges for p→ p1. Then the gap diverges also
on every function which is minored by a non-zero constant, e.g. the polynomials
pn,m(x, y) = 1+x2n+y2m, so that the image of Lξ misses infinitely many linearly
independent functions, i.e. dim cokerLξ =∞.

Remark 4.1.4. Observe that, in particular, Theorem 4.1.3 shows that there
there is a qualitative difference between the case of a single PDO Lξ acting
on C∞(M) and the case of an n-ple L1 = (Lξ1 , . . . , Lξq ), q ≥ 2, acting on
(C∞(M))q. Indeed in the latter case, as shown in Section 2.4.2, for a generic
choice of the ξi the operator L1 is always surjective.

4.2 Lξf > 0

Finding criteria to characterize functions belonging to the image of Lξ is hard
and in the case of a generic regular vector field we cannot state much more than
the fact that a necessary condition (but far from being sufficient) to belong to it
is to have finite gap between all pairs of adjacent separatrices. More can be said
for the vector fields which are transversally Hamiltonian, which makes crucial
studying the solvability of the differential inequality Lξf > 0.

3This is true for any smooth vector field on a manifold, e.g. see [34], Proposition 1.19; in
this case, since ξ is regular, we could simply assume that it has unitary Euclidean length.
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Proposition 4.2.1. Let ξ ∈ Xr(R2), Ω0 = dx ∧ dy and ωξ = iξΩ0. The
following conditions are equivalent:

1. Fξ is transversally Hamiltonian;

2. the inequality Lξf > 0 has a smooth solution;

3. ωξ ∧ df is a volume form for some f ∈ C∞(R2).

Proof. Let G be a Hamiltonian foliation transversal to Fξ and G a Hamiltonian
for G. Since TG = ker dG we must have dG(ξ) 6= 0 at every point, so that
either LξG > 0 or Lξ(−G) > 0 and viceversa. Part 3 is due to the fact that
ωξ ∧ dG = iξdGΩ0 = LξGΩ0.

Now we generalize, as mentioned in Section 3.2.1, Weiner’s Lemma 3.2.1 to
all finite type vector fields. We start with a preparatory Lemma:

Lemma 4.2.2. Let ξ be a regular vector field of finite type. Then Fξ admits
a CST with the following property: for each separatrix s ∈ S, the saturated
open set π−1

ξ (πξ(`)) of all leaves cutting the corresponding transversal ` ∈ T
is equal to the union of s with the two canonical regions having s as boundary
component.

Proof. Let s be a separatrix, U one of the two canonical regions having s as
boundary, ` the corresponding transversal in T and `U the connected component
of ` \ s which intersects U . Since U admits a global transversal, there is a
natural diffeomorphism ψ of U into R sending the leaves of Fξ into vertical
lines. If π−1

ξ (πξ(`U )) 6= U there is no geometrical obstruction to make ψ(`U )
either shorter or longer in the horizontal direction while keeping it transversal
to the vertical direction and without modifying it close to s so that the first
projection of ψ(`) on the first factor is surjective. After we do the same on
the second canonical region V we are left with a new transversal `′ such that
π−1
ξ (πξ(`′)) = U ∪ V ∪ s.

Theorem 4.2.3. Every regular vector field of finite type is transversally Hamil-
tonian.

Proof. We can assume without loss of generality that ξ is complete and de-
note by Tξ any CST having the property described in the Lemma above. The
collection of open subsets Vs,i defined by

Vs,i = {Φtξ(`s) | t ∈ (i, i+ 1)} , s ∈ Sξ , i ∈ Z ,

where Φξ is the flow of ξ and `s the transversal associated to s in Tξ, is a locally
finite open cover of R2. Indeed by hypothesis the union of the πξ(`i) covers Fξ
and therefore under the flow Φξ the `i cover the whole plane. Moreover, since
the boundary of every canonical region has only finitely many components, only
finitely many of the Vs,i cover any given point.

Inside each Vs,i every point p can be written as Φtξ(q) for some q ∈ `s
so that we can define a smooth function fs,i(Φtξ(q)) = φ(t), where φ is any
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smooth function strictly monotonic for t ∈ (0, 1) and such that φ|(−∞,0) ≡ 0
and φ|(1,∞) ≡ 1. Since each Vs,i divides the plane in two connected components,
each fs,i can be extended to a smooth function on the whole plane by setting
it identically to 1 in the component containing Φ1

ξ(`s) and identically 0 in the
other. A direct calculation shows that Lξfs,i(p) = φ′(t) > 0 within each Vs,i
while Lξfs,i is identically zero outside of it. Now recall that the set Sξ × Z is
countable and let ns,i be any bijection of it with N. The series

f =
∑

s∈Sξ,i∈Z
2−ns,ifs,i

converges to a continuous function (because the fs,i are uniformly bounded)
which is actually smooth because the derivatives of all positive orders of the
fs,i have compact support. By construction Lξf ≥ 0 but the inequality is
strict because for every x0 there exists at least one index (s0, i0) such that
Lξfs0,i0 > 0.

Note that the inequality Lξf > ε, with ε > 0, requires stricter conditions to
be solvable no matter how small ε is. E.g. it admits no smooth solutions if ξ is
complete for in that case, as pointed out in the previous section, all gaps of the
constant function ε (and, a fortiori, all gaps of every function not smaller than
it) would be infinite.

4.3 Lξ(C
∞(R2))

From this point on we will assume that ξ is transversally Hamiltonian and we
will denote by F ∈ C∞(R2) a generator of kerLξ, so that kerLξ = F ∗ (C∞(R)),
by G the Hamiltonian foliation transversal to Fξ and by G any Hamiltonian of
G.

A fundamental tool in our analysis will be the map Φ
FG

: R2 → R2 defined
by x′ = F (x, y), y′ = G(x, y). Assume first that ξ is intrinsically Hamiltonian,
so that F is regular. In this case Φ

FG
is an immersion, since also G is regular

and the level sets of F and G are everywhere transversal by hypothesis, so that
it induces on the source space the following metric and symplectic structures:

g
FG

= Φ∗
FG

((dx′)2 +(dy′)2) = (dF )2 +(dG)2 , Ω
FG

= Φ∗
FG

(dx′∧dy′) = dF ∧dG .

In particular Φ
FG

induces on the source space complex structure J
FG

, whose real
and imaginary spaces are TFξ and TG, and a Poisson structure {, }

FG
. Via Ω

FG

we can build a pair of commuting regular vector fields respectively tangent to Fξ
and G. Recall that the Hamiltonian vector field η associated to a Hamiltonian
H with respect to a symplectic form Ω is defined by the relation iηΩ = dH; in
this case we write, with a slight abuse of notation, that η = Ω−1(dH).

Proposition 4.3.1. Let ξ′
F

= −Ω−1
FG

(dF ), ξ
F

= −Ω−1
0 (dF ), ξ′

G
= Ω−1

FG
(dG)

and ξ
G

= Ω−1
0 (dG). The following relations hold:
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1. Ω
FG

= (Lξ
F
G) Ω0.

2. ξ′
F

= 1
Lξ
F
GξF , ξ′

G
= 1

Lξ
F
GξG .

3. Lξ′
F
F = 0 , Lξ′

F
G = 1 , Lξ′

G
F = 1 , Lξ′

G
G = 0 .

4. (Φ
FG

)∗(ξ′F ) = ∂y′ and (Φ
FG

)∗(ξ′G) = ∂x′ within Φ
FG

(R2).

5. {F,G}
FG

= Lξ
F
G = 1.

6. [ξ′
F
, ξ′
G

] = 0.

7. The pair (ξ′
F
, ξ′
G

) is an orthonormal base for g
FG

.

8. Lξ′gFG = Lη′gFG = 0.

9. Lξ′ΩFG
= Lη′ΩFG

= 0.

10. J
FG
ξ′
F

= ξ′
G
, J

FG
ξ′
G

= −ξ′
F

.

Proof. 1. A direct calculation show that ξ
F

= −∂yF∂x + ∂xF∂y, so that
dF ∧ dG = (∂xF∂yG− ∂yF∂xG)dx ∧ dy = (Lξ

F
G)Ω0.

2. It is a direct consequence of the definition of ξ′
F

and ξ′
G

and (1).

3. It is a direct consequence of (2).

4. Since Φ
FG

is not an injection, the push-forward of a vector field (Φ
FG

)∗(ζ) =
TΦ

FG
◦ ζ ◦ Φ−1

FG
is not well-defined unless TΦ

FG
(ζ) takes the same value

on all points of Φ−1
FG

(p) for every p ∈ Φ
FG

(R2). This is the case for ξ′
F

and
ξ′
G

since we get in both cases a constant vector field:

((Φ
FG

)∗(ξ′F ))(x′) = ξ′
F

(Φ∗
FG

(x′)) = ξ′
F

(F ) = 0

((Φ
FG

)∗(ξ′F ))(y′) = ξ′
F

(Φ∗
FG

(y′)) = ξ′
F

(G) = 1

and similarly for ξ′
G

.

5. {F,G}
FG

= {Φ∗
FG
x′,Φ∗

FG
y′}

FG
= Φ∗

FG
{x′, y′}0 = Φ∗

FG
1 = 1.

6. [ξ′
F
, ξ′
G

] = [−Ω−1
FG

(dF ),Ω−1
FG

(dG)] = Ω−1
FG

({F,G}
FG

) = Ω−1
FG

(1) = 0.

7. g
FG

(ξ′
F
, ξ′
F

) =
(
dF (ξ′

F
)
)2 +

(
dG(ξ′

F
)
)2 = (Lξ′

F
F )2 + (Lξ′

F
G)2 = 0 + 1 and

similarly for the other combinations.

8. It is a direct consequence of the previous item.

9. This just restates that ξ′
F

and ξ′
G

are Hamiltonian with respect to Ω
FG

.

10. It is due to the fact that both g
FG

and Ω
FG

are in canonical form with
respect to ξ′

F
and ξ′

G
.
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When ξ is not intrinsically Hamiltonian but is of finite type then F is not
globally regular but nevertheless its differential goes to zero only on some of the
separatrices, so that the restriction of Φ

FG
to each of the canonical regions of

ξ is still an immersion. Correspondingly, the pair of commuting regular vector
fields ξ′

F
and ξ′

G
is well defined within the canonical regions but, while ξ′

F
is

globally well-defined, ξ′
G

diverges on the separatrices where dF is zero. Note
that there is no way to find a global substitute for ξ′

G
:

Proposition 4.3.2. Let F be a plane foliation of finite type. Then a pair of
commuting regular linearly independent vector fields (ξ, η), with ξ tangent to F ,
exists iff F is Hamiltonian.

Proof. We showed in previous proposition that such pair always exists if F is
Hamiltonian. Assume then that it is not. In this case we can always find a
smooth function F with no maxima or minima whose differential vanishes on
some of the separatrices and whose level sets are the leaves of F and a second
function G, this one regular on the whole plane, whose level sets are always
transversal to F . Correspondingly we can always find two vector fields ξ and η
s.t.

LξF = 0 , LξG = 1 , LηG = 0 , LηF ≥ 0 .

Let now α e β the two smooth functions s.t. [ξ, η] = αξ + βη. Then

α = αLξG+ βLηG = L[ξ,η]G = Lξ(LηG)− Lη(LξG) = 0

while

βLηF = αLξF + βLηF = L[ξ,η]F = Lξ(LηF )− Lη(LξF ) = Lξ(LηF )

namely β = Lξ[logLηF ]. Since [ξ, η] has only the η component, the only thing
we can do to make the commutator vanish is multiplying η by some non-zero
factor µ since any other change would just introduce a ξ component. On the
other side

[ξ, µ η] = Lξµ η + µ[ξ, η] = Lξµ η + µβ η

leading to µ = 1/LηF ; this function though is not smooth because the differen-
tial of F vanishes on some of the separatrices.

Let us turn now to the study of the image of Lξ. This is clearly equivalent
to studying the image of Lξ′

F
but the latter is more convenient for the following

two propositions:

Proposition 4.3.3. The cohomological equation Lξ′
F
f(x, y) = g(x, y), restricted

to the subalgebra Φ∗
FG

(
C∞(R2)

)
= {Φ∗

FG
f̂ | f̂ ∈ C∞(R2)}, writes, in the image

of Φ
FG

, as
∂

∂y′
f̂(x′, y′) = ĝ(x′, y′) (4.1)

where f̂ = (Φ
FG

)∗f and ĝ = (Φ
FG

)∗g.
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Proof. In general Φ
FG

is not injective so that, while the pull-back of func-
tion Φ∗

FG
f̂ := f̂ ◦ Φ

FG
is well-defined on the whole C∞(R2), the push forward

(Φ
FG

)∗f := f ◦Φ−1
FG

leads to a well-defined function only within the subalgebra
Φ∗
FG

(
C∞(R2)

)
. Then from point (3) of Proposition 4.3.1 follows that

(Φ
FG

)∗
(
Lξ′

F

(
Φ∗
FG
f̂
))

= L(Φ
FG

)∗ξ′
F

(
(Φ

FG
)∗Φ∗FG f̂

)
=
∂

∂y′
f̂

Theorem 4.3.4. A function g ∈ C∞(R2) belongs to Lξ′
F

(C∞(R2)) iff all func-
tions Lkξ′

G

g, k ∈ N, have finite gap for all pairs of adjacent separatrices of ξ′
F

.

Proof. As we already pointed out, every continuous solution to Lξ′
F
f = g is

automatically smooth in the ξ′
F

direction, i.e. Lkξ′
F

f is continuous for every
k ∈ N.

Assume first that ξ′
F

is intrinsically Hamiltonian. Since ξ′
F

and ξ′
G

commute
and are globally well-defined, the first derivative in the ξ′

G
direction satisfies the

cohomological equation Lξ′
F

(
Lξ′

G
f
)

= Lξ′
G
g and analogously the k-th deriva-

tive in the ξ′
G

direction satisfies Lξ′
F

(
Lkξ′

G

f
)

= Lkξ′
G

g. Now we can use the claim

of Lemma 4.1.2 to conclude that each Lkξ′
G

f is globally continuous iff Lkξ′
G

g has
finite gap between every pair of adjacent separatrices.

Assume now that ξ′
F

is of finite type, so that ξ′
G

is only well-defined within
the canonical regions of ξ′

F
. By repeating the same kind of arguments used in

Lemma 4.1.2 it is clear that we can extend a smooth solution within a saturated
open set to the whole plane iff the gap of Lkξ′

G

g has finite gap between every pair
of adjacent separatrices. Note indeed that in the definition of gap the values of
ξ′
G

on the separatrices are never used so the fact that ξ′
G

diverges on some of
them does not hinder the evaluation of the gap.

From Proposition 4.3.3 and the surjectivity of ∂y′ we get a large explicit
subalgebra of the image of Lξ′

F
:

Proposition 4.3.5. Φ∗
FG

(
C∞(R2)

)
⊂ Lξ′

F
(C∞(R2))

This fact corresponds to two elementary observations: one, algebraic, that

Lξ′
F
f̂(F,G) = Lξ′

F
F ∂x′ f̂(F,G) + Lξ′

F
G∂y′ f̂(F,G) = ∂y′ f̂(F,G) ;

the other, geometric, that the constant vertical vector field ∂y′ on Φ
FG

(R2) can
always be extended to the whole plane, where it is surjective on C∞(R2).
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4.4 Local behaviour of functions of Lξ(C
∞(R2))

close to a pair of adjacent separatrices

Proposition 4.3.3 shows that locally, in the image of the map Φ
FG

, the cohomo-
logical equations relative to vector fields ξ′

F
look all the same, independently on

the topology of their leaf spaces; the qualitative difference between them resides
rather in the global geometry of the map Φ

FG
. It is easy to verify that, as soon

as ξ′
F

has at least two pairs of separatrices, Φ
FG

cannot be injective, which is
not optimal for several reasons. We bypass this problem by considering the map
Φ̂
FG

: R2 → R4 defined by Φ̂
FG

(x, y) = (x, y, F (x, y), G(x, y)). By construction
Φ̂
FG

is a diffeomorphism between R2 and Γ
FG

= Φ̂
FG

(R2) ⊂ R4, the graph of
Φ
FG

. The symplectic, metric and almost complex structures determined on R2

by F and G, as pointed out at the beginning of the previous section, induce the
same structures on Γ

FG
via the push-forward (Φ̂

FG
)∗. We use on R4 = R2×R2

coordinates (x, y, x′, y′) and denote by π1 and π2 the projections on the first and
second factor. By definition π1◦Φ̂FG

= idR2 and π2◦Φ̂FG
= Φ

FG
, so Γ

FG
admits

(x, y) as global coordinates and (F,G) as local coordinates at every point. A
direct calculation shows that

(Φ̂
FG

)∗(ξ′F ) = ξ′
F
⊕ ∂y′ , (Φ̂

FG
)∗(ξ′G) = ξ′

G
⊕ ∂x′ .

In particular the projection on the second factor of the image of the leaves of
Fξ and G are, respectively, vertical and horizontal straight lines in the plane
(x′, y′). All leaves which are inseparable one from the other are mapped to
disjoint open intervals of the same line, so that the images in the graph of any
pair of adjacent separatrices of ξ′

F
are separated by a vertical closed bounded

interval I.

Proposition 4.4.1. For every pair of separatrices s1 and s2 of ξ′
F

, with a =
F |s1∪s2 , there exists a saturated open neighbourhood U of s1 and s2 on which
Φ
FG

is injective and Φ
FG

(U ∩ Φ−1
FG

((a1, a2)× (c1, c2))) = (a1, a2)× (c1, c2) \R,
where R = [a, a2)× [b1, b2] or R = (a1, a]× [b1, b2], both ai and ci can be infinite
and c1 < b1 ≤ b2 < c2.

Proof. Let pi ∈ si, i = 1, 2, be any two points on the two separatrices, set
ci = G(pi) and denote by `i be the two leaves of G passing through the pi. The
two numbers c1 and c2 cannot be equal since the restriction of G to any leaf of
Fξ′

F
is strictly monotonic and, because of the inseparability of s1 and s2, there

are leaves of Fξ′
F

cutting both `1 and `2; in particular G(s1)∩G(s2) = ∅. Assume
that c1 < c2 (otherwise switch the names of the points), set Ui = π−1

ξ (`i),
i = 1, 2 and denote by V and Λ respectively the union and intersection of U1

and U2.
Assume first that Λ is contained in F < a. We claim that the restriction of

Φ
FG

to V is injective. Indeed let Ai = Ui \Λ, i = 1, 2, so that V = ΛtA1 tA2.
Clearly Φ

FG
|Λ is injective since Λ fibers on `1∩Λ, each fiber being a leaf of cFξ,

with G strictly monotonic on each fiber and F strictly monotonic on the base.
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Moreover, F (Λ) ⊂ (−∞, a) by assumption. Similarly, each Ai fibers on `i ∩ Ai
so that Φ|Ai is injective too; this time though F (Ai) ⊂ [a,∞) and, moreover,
G(Ai) = G(si). Consider now the set V ′ = V ∩ G−1((c1, c2)) and let s be
any leaf of Fξ inside Λ. The sets of leaves of G|V ′ intersecting, respectively,
s1 and s2 cut s in two disjoint open intervals (c1, b1) and (b2, c2); in particular
all leaves of G|V ′ corresponding to the values in the closed interval [b1, b2] do
not intersect neither s1 nor s2 and are such that s1 and s2 lie on different
components with respect to each of them. Finally, let F (`1) = (a1, a

′
2) and

F (`2) = (a1, a
′′
2). Then Φ

FG
(Λ ∩ G−1((c1, c2))) = (a1, a) × (c1, c2), Φ

FG
(A1 ∩

G−1((c1, c2))) = [a, a′2)×(c1, b1) and Φ
FG

(A2∩G−1((c1, c2))) = [a, a′′2)×(b2, c2)
so that Φ

FG
(V ∩F−1((a1, a2))∩G−1((c1, c2))) = (a1, a2)× (c1, c2) \R for a2 =

min{a′2, a′′2}.
In case V is contained in F > a, we use the chart Φ̃

FG
= (−F,G) and repeat

the argument above.

We call the chart (U ∩Φ−1
FG

((a1, a2)× (c1, c2)),Φ
FG

) 4 a normal chart for s1

and s2. By Proposition 4.3.4 there are countably many conditions that must be
satisfied for each one of the intervals between pairs of adjacent separatrices so
that equation (4.1) admits a smooth solution. Since in Γ

FG
there is a natural

family of transversals for Fξ these conditions can be restated more properly for
this setting in the following way. Let I = {a} × [b1, b2] the vertical interval
separating a pair of adjacent separatrices s1 and s2 in a normal chart. Every
such interval determines a rings homomorphism θ

(r)
I : SGrI → SGra defined as

follows. Given g ∈ SGrI , let ĝ ∈ g and δ = min{c2 − b2, b1 − c1}, choose an
arbitrary ε ∈ (0, δ) and set hI(x′) =

∫ b2+ε

b1−ε ĝ(x′, y′)dy′ for x′ ∈ (a1, a); we define

θ
(r)
I (g) = [hI ]SGra .

Proposition 4.4.2. The left singular germ of hI , modulo germs of smooth
functions, does not depend on the particular choice of ε ∈ (0, δ) and ĝ ∈ g.

Proof. Let h′I(x
′) =

∫ b2+ε′

b1−ε′ ĝ
′(x′, y′)dy′ for ε′ ∈ (0, δ) and ĝ′ ∈ g. Then the

function

h′I(x
′)− hI(x′) =

∫ b2−ε

b1−ε′
(ĝ′(x′, y′)− ĝ(x′, y′)) dy′+

+
∫ b2+ε′

b2+ε

ĝ(x′, y′)dy′ +
∫ b1−ε′

b1−ε′
ĝ(x′, y′)dy′

is smooth in (a1, a] since the integrands are all smooth in RI , the last two
because g is smooth in RI \ I and the integral intervals lie inside that set for
every x ∈ (a1, a] and the first because by hypothesis ĝ′ − ĝ is identically zero in
some left neighbourhood of I. Adding to g and ĝ any function smooth in the
whole RI changes the rhs just by a smooth function.

4Replace ΦFG with Φ̃FG if, in the terminology of Proposition 4.4.1, V is contained in
F > a.
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The maps θ(r)
I then are well-defined. It is clear from the definition of hI

that θ(r)
I is a Crx(R)-module homomorphism, where Crx(R) is the algebra of Cr

functions depending on x′ only, since∫ b2+ε

b1−ε
f(x′)ĝ(x′, y′)dy′ = f(x′)

∫ b2+ε

b1−ε
ĝ(x′, y′)dy′ ,

and commutes with the derivatives with respect to x′, i.e. θ(r)
I (∂kx′ ĝ) = ∂kx′θ

(r)
I (ĝ).

Next proposition shows that the maps θ(r)
I determine the solvability of the

cohomological equation.

Theorem 4.4.3. Let {Ij} be the set of all (vertical, closed) intervals between
adjacent separatrices in Γ

FG
and θ

(r)
Ij

the corresponding ring homomorphisms.

Then g ∈ Lξ′
F

(Cr(R2)) iff [(Φ̂
FG

)∗g]SGrIj ∈ ker θ(r)
Ij

for all θ(r)
Ij

.

Proof. Let I = {a}×[b1, b2] be the vertical interval which separates two adjacent
separatrices of ξ′

F
in a normal chart for the corresponding adjacent separatrices

s1 and s2 and set ĝ = (Φ
FG

)∗g within that chart. Then

lim
x′→a−

∫ b2+ε

b1−ε
∂kx′ ĝ(x′, y′)dy′

is exactly the gap of Φ∗
FG
g between s1 and s2 with respect to the pair of transver-

sals which are the counterimages of y′ = b1 − ε and y′ = b2 + ε and the gap
exists and is finite if and only if those functions can all be extended to con-
tinuous functions for all k < r, which in turn means that the (germ of the)
function

∫ b2+ε

b1−ε ∂
k
x′ ĝ(x′, y′)dy′ can be extended to a smooth map up to x′ = a,

i.e. [(Φ̂
FG

)∗g]SGrI ∈ ker θ(r)
I . Now the claim follows immediately from Theo-

rem 4.3.4.

The Cr(R)-modules Θr
Ij

= ker θ(r)
Ij

contain therefore the (left singular) germs
of all functions for which the cohomological equation is solvable in the neigh-
bourhood of a pair of adjacent separatrices. Modulo isomorphisms there are
only two such spaces: the one relative to J = {0} × [−1, 1] and the one relative
to O = {(0, 0)}; moreover Θr

O ⊂ Θr
J .

Proposition 4.4.4. The spaces Θr
O satisfy the following properties:

1. Θr
O contains the singular left germs of all y′-odd5 Cr functions;

2. Θr
O contains the singular left germs of some but not all y′-even Cr func-

tions;

3. Θr+1
O is strictly contained in Θr

O.

5We say that f(x, y) is y-odd if f(x,−y) = −f(x, y) and y-even if f(x,−y) = f(x, y).
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Proof. 1. If ĝ is y′-odd then also every ∂kx′ ĝ is so for every k ≤ r; then∫ ε
−ε ∂

k
x′ ĝ(x′, y′)dy′ is identically zero for every k ≤ r and therefore it can be

extended smoothly to a Cr function up to x′ = 0.
2. Consider ĝ(x′, y′) = e−(y′)2/(x′)2/

√
−πx′ ∈ C∞(R2 \ (0, 0)), so that

lim
x→0−

g(x′, y′) = 0 , y′ 6= 0 ; lim
x→0−

g(x′, 0) =∞ ;
∫ ∞
−∞

g(x′, y′)dy′ = 1 , ∀x′ ∈ R .

By reparametrizing the y′ coordinate we can find a ĝ′ with the same limits with
respect to x′ → 0 but such that

∫ ε
−ε ĝ

′(x′, y′)dy′ = 1. Since the θ(r)
O are homo-

morphisms of Crx(R)-modules we can get in this way every Cr function f(x′)
just by multiplying g′(x′, y′) by f(x′). On the other side, germs of functions
diverging too fast, e.g. as ĝ(x′, y′) = (x′)−2 + (y′)−2, do not belong to any Θr

O.

3. Consider ĝ(x′, y′) =
x′√

(x′)2 + (y′)2
∈ C∞(R2 \ (0, 0)). The germ of the

corresponding hO(x′) = 2x′ log
[
2
(
y′ +

√
(x′)2 + (y′)2

)]ε
y′=0

can be extended

at 0 to a C0 (but not C1) function. By integrating r times ĝ with respect to
x′ one can get concrete examples of functions smooth in R2 \ (0, 0) whose germ
belongs to Θr

O but not to Θr+1
O .

An immediate consequence of point (3) of the proposition above is the fol-
lowing:

Corollary 4.4.5. Let ξ ∈ Xr(R2), L(r)
ξ the restriction of Lξ to Cr(R2) and let

Crξ (R2) be the set of all functions f ∈ Cr(R2) such that f + g is at most Cr for

all g ∈ kerL(r)
ξ . The inclusions

L
(r+1)
ξ

(
Cr+1
ξ (R2)

)
∩ C∞(R2) ⊂ L(r)

ξ

(
Crξ (R2)

)
∩ C∞(R2)

are strict for every r ∈ N.

Proof. The fact that L(r+1)
ξ

(
Cr+1(R2)

)
∩ C∞(R2) ⊂ L

(r)
ξ

(
Cr(R2)

)
∩ C∞(R2)

is trivially true because L
(r)
ξ (f + g) ∈ C∞(R2) for each f ∈ C∞(R2), g ∈

kerL(r)
ξ . Our claim is that the inclusion is true even when we restrict Lξ to

the space of functions which are “strongly Cr” with respect to ξ, i.e. those
that cannot be made smoother by adding to them an element of the kernel of
L

(r)
ξ . Consider indeed the concrete case used in point (3) of Proposition 4.4.4:

in a normal chart, where the two separatrices are given by x′ = 0, y′ > a
and x′ = 0, y′ < a, the (local) primitive of ĝ(x′, y′) = x′/

√
(x′)2 + (y′)2 is

f(x′, y′) = x′ log
[
2
(
y′ +

√
(x′)2 + (y′)2

)]
, which is C0 but not C1 because

the first derivative with respect to x′ diverges on the second separatrix. Since
the divergence takes place only on one of the separatrices, there is no way to
eliminate it by adding a function belonging to the kernel of Lξ.

In the following subsections we work out in detail two model examples.
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Figure 4.1: Level sets of F (x, y) = (y2 − 1)ex (left) and G(x, y) = yex (right). The
first foliation has separatrices y = ±1, the second has none.

4.4.1 ξn = (1− n+ (1 + n)y) ∂x + (1− y2) ∂y

The ξn, n ∈ N, are all of finite type since they are polynomial. In particular
they all have exactly two separatrices, the straight lines y = ±1, which bound
the canonical region R × (−1, 1). The function Fn(x, y) = (1 + y)n(1 − y)ex is
a functional generator for kerLξn so the only intrinsically Hamiltonian among
them is ξ1 = 2y ∂x + (1 − y2) ∂y. All of them are transversal to the same
Hamiltonian foliation G of the level sets of G(x, y) = yex, which is topologically
conjugate with the trivial foliation in parallel straight lines. The 2-form

Ω
FG

= 2(1 + y)n−1(1− (n− 1)y + ny2)e2x Ω0

is degenerate on the separatrix y = −1 except in the n = 1 case, when is globally
non-degenerate. Via Ω

FG
we get

ξ′
Fn

=
1

2ex(1− (n− 1)y + ny2)
ξn , ξ

′
Gn

=
1

2ex(1 + y)n−1(1− (n− 1)y + ny2)
η ,

where η = 2∂x − 2y∂y. Due to the degeneracy of Ω
FG

, ξ′
Gn

diverges on the
separatrix y = −1 for n 6= 1.

The image of every Φ
FnG

is R2
0 = R2 \ {0} × [0,∞) and Φ

F1G
is an almost

complex map between (R2, J
FG

) and (R2
0, i) for

J
FG

= y ∂x ⊗ dx+ 2 ∂x ⊗ dy − (1 + y2)/2 ∂y ⊗ dx− y ∂y ⊗ dy .

The leaves of F
Fn

within the canonical region are sent to the vertical lines of
the half plane x < 0 and the separatrices y = −1 and y = +1 to the half lines
{0}×(−∞, 0) and {0}×(0,+∞) respectively. The leaves lying in the half-plane
y > 1 fill in the vertical half-lines the first quadrant and the ones lying in y < 1
the fourth quadrant. In this case the maps Φ

FnG
are all globally injective. The

cohomological equation Lξ
Fn
f = g maps to

∂y′ f̂(x′, y′) = ĝ(x′, y′) , ĝ ∈ C∞(R2
0) . (4.2)
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When ĝ is smooth on the whole plane clearly (4.2) is always solvable. E.g. all
smooth solutions to

Lξ′
Fn
f(x, y) = Fn(x, y)G(x, y) = 2(y2 − 1)(y + 1)n−1ye2x

are given by

f(x, y) =
Fn(x, y)G2(x, y)

2
+h (Fn(x, y)) = 2(y2−1)(y+1)n−1y2e3x+h (Fn(x, y)) ,

where h ∈ C∞(R).
In the following we assume n = 1 since expressions are much simpler in this

case. Consider first the y′-odd function

ĝ(x′, y′) =
y′√

(x′)2 + (y′)2
∈ C∞(R0) , Φ∗

FG
ĝ(x, y) =

2y
1 + y2

∈ C∞(R2) .

By Proposition 4.4.4 the singular left germ of ĝ belongs to Θ∞O and therefore
g ∈ Lξ(C∞(R2)). Indeed (4.2) in this case is solved by

f̂(x′, y′) =
√

(x′)2 + (y′)2 ,

whose pull-back
Φ∗
FG
f(x, y) = (1 + y2)ex

is globally smooth. Similarly, y ∈ Lξ′
F

(C∞(R2)) since y = Φ∗
FG
ĝ(x, y) for the

y′-odd singular function ĝ(x′, y′) = (
√

(x′)2 + (y′)2 + x′)/y′.
On the contrary, in case of

ĝ(x′, y′) =
x′√

(x′)2 + (y′)2
, g(x, y) = Φ∗

FG
ĝ(x, y) =

1− y2

1 + y2
,

as discussed in Proposition 4.4.4 we have that the germ of ĝ belongs to Θ0
O but

not to Θ1
O; correspondingly all solutions will be C0 but not C1. E.g. an explicit

solution is given by

f(x, y) = Φ∗
FG

(
x′ log

[
2
(
y +

√
(x′)2 + (y′)2

)])
= (1−y2)ex (x+ 2 log |1 + y|) .

Note that Lie derivatives of f are, as expected, smooth with respect to ξ′
F1

direction but singular (on the horizontal straight line y = −1) with respect to η.
In particular, g belongs to Lξ′

F
(L1

loc(R2)) (where the derivative is intended in the
weak sense) but does not belong to any Lξ′

F1
(Ck(R2)), k > 1. The same happens

in case of x = Φ∗
FG
ĝ(x, y), where ĝ(x′, y′) = log(

√
(x′)2 + (y′)2 + x′)/2). For

a thorough discussion about locally integrable solutions of regular polynomial
vector fields in the plane depending only on one variable see [5].
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Figure 4.2: Level sets of F (x, y) = ex sin y (left) and G(x, y) = ex cos y (right). The
separatrices of the first foliation are the straight lines sk = {y = kπ}, k ∈ Z, the
ones of the second are the straight lines s′k = {y = π/2 + kπ}, k ∈ Z. Note that
Isn = {sn−1, sn+1}, i.e. sn is inseparable only from sn−1 and sn+1 (this is possible
because the relation of inseparability is not transitive). The same holds for the s′k.

4.4.2 ξn = (cos y + (n− 1) cos2(y/2)) ∂x − sin y ∂y

The ξn, n ∈ N, are all of finite type for their components are Morse func-
tions depending only on one variable; in this case indeed only the vertical
lines can be separatrices and they do not accumulate within any compact set.
For every ξn the set of separatrices is S = {y = kπ , k ∈ Z}. The func-
tion Fn(x, y) = − sinn−1(y/2) sin y ex is a functional generator for kerLξn so
that the only intrinsically Hamiltonian among them is ξ1 = cos y ∂x − sin y ∂y.
A Hamiltonian transversal foliation Gn for ξn is given by the level sets of
Gn(x, y) = cos y ex/n. The 2-form

Ω
FG

= [(n− 1)(2 cos y − cos(2y)) + 3n+ 1] sinn−1(y/2)e(n+1)x/n Ω0/4n

is degenerate on the separatrices y = 2kπ, except of course in the n = 1 case
when is globally non-degenerate. Via Ω

FG
we get

ξ′
Fn

=
2ne−x/n

n+ 1 + (n− 1)(sin2 y − cos y)
ξn, ξ

′
Gn

=
−2 sin1−n(y/2)e−x

n+ 1 + (n− 1)(sin2 y − cos y)
η ,

where η = n sin y ∂x + cos y ∂y. Due to the degeneracy of Ω
FG

, ξ′
Gn

diverges on
the separatrices y = 2kπ, k ∈ Z, for n 6= 1.

The image of every Φ
FnG

is R2 \ {(0, 0)}. Note that Φ
F1G1

is an almost
complex map with respect to the almost complex structure

J
F1G1

= ∂y ⊗ dx− ∂x ⊗ dy ,

so that Φ
F1G1

is actually a holomorphic map; in fact, in complex coordinates,
Φ
F1G1

(z) = ez+iπ/4 and its graph is the Riemann surface of the complex loga-
rithm. The graphs of all other Φ

FnGn
are diffeomorphic to it.
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Consider just the case of the coordinate functions x and y. The first is y′-even
since 2x = Φ∗

FG
ĝ(x, y) for ĝ(x′, y′) = log

[
(x′)2 + (y′)2

]
. A direct calculation

shows that

[θn(ĝ)] (x′) = 2
∫ ε

0

log
(
(x′)2 + (y′)2

)
dy′ = 4x tan−1(ε/x) + 2ε(log(ε2 + x2)− 2)

which can be continued to a smooth function up to x′ = 0. Hence ĝ ∈ Θ∞n for
all n and, correspondingly, x ∈ Lξ′

F
(C∞(R2)). An explicit solution is given by

f(x, y) = Φ∗
FG

[2x′ tan−1 y
′

x′
+log[(x′)2+(y′)2]−2y′] = 2 [(x− 1) cos y − y sin y] ex .

The second is y′-odd since y = Φ∗
FG
ĝ(x, y) for ĝ(x′, y′) = tan−1(x′/y′). Hence

even in this case ĝ ∈ Θ∞n for all n, i.e. y ∈ Lξ′
F

(C∞(R2)). An explicit solution
is given by

f(x, y) = Φ∗
FG

[y′ tan−1 x
′

y′
+

1
2

log[(x′)2 + (y′)2]] = − [y cos y + x sin y] ex .



5
Weak solutions

of the cohomological equation in the plane

In this final chapter we extend our results of the previous chapter by studying
the existence of weak solutions to the cohomological equation in the plane for
some class of smooth regular vector fields. We also investigate the stability of
the global solvability for the cohomological equation in weighted Sobolev spaces
under perturbation with zero order pseudodifferential operators.

We consider the smooth non-singular real vector field in the plane

Lu = p(t)∂tu+ q(t)∂xu = f(t, x), (5.1)

i.e., p and q are real-valued smooth functions which have no common zeros.
One assumes that there is an integer N ≥ 2 and t1 < . . . < tN such that

p(t) = 0⇐⇒ t = tj , j = 1, 2, . . . , N (5.2)

with
p′(tj) 6= 0, j = 1, 2, . . . , N (5.3)

and q admits at most one zero in (tj , tj+1) for j = 1, 2, . . . , N − 1.
Note that the lines {t = tj}, j = 1, . . . , N , are characteristics for L. We

also suppose that p and q are polynomials. Our results are true under weaker
restrictions on p and q, but we prefer to exhibit the main novelties avoiding
highly technical arguments and capturing particular cases of L of interest in
geometry and dynamical systems (see [50] for foliations and the previous chapter
for its action on C∞(R2)). For example,

L0u = (1− t2)∂tu− 2t∂xu

and, more generally,
Lλ,ku = (1− t2)∂tu+ λtk∂xu (5.4)
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for λ 6= 0, k ∈ N.

The first main goal of the chapter is to show that the existence of separatrix
type phenomena for (5.1) is the only obstruction for the surjectivity in C∞(R2)
of L. Moreover, we exhibit functional spaces associated to the separatrix strips
where we can solve globally this cohomological equation in R2 and investigate
the stability of this global solvability under perturbations of L with zero order
pseudodifferential operators in x.

Definition 5.0.6. A strip Sj = {(t, x) : t ∈ (tj , tj+1), x ∈ R}, with j ∈
{1, . . . , N − 1}, is a separatrix for the vector field L above if all characteristic
curves x = x(t; τ, y), starting at a point (τ, y) ∈ Sj satisfy either

lim
t→t+j

x(t; τ, y) = lim
t→t−j+1

x(t; τ, y) = +∞

or
lim
t→t+j

x(t; τ, y) = lim
t→t−j+1

x(t; τ, y) = −∞

We state the first new result of the chapter:

Theorem 5.0.7. The following assertions are equivalent:

i) the vector field L is not surjective in C∞(R2);

ii) the vector field L admits a separatrix Sj , for some j ∈ {1, . . . , N − 1};

iii) there exists j ∈ {1, . . . , N − 1} and θj ∈ (tj , tj+1) such that q(θj) = 0 and
q has opposite signs in (tj , θj) and (θj , tj+1).

In particular, the operators Lλ,k are not surjective in C∞(R2) if and only if k
is odd.

To illustrate the non-surjectivity for simple example we point out that nonzero
constants do not belong to L0(C∞(R2)). Direct calculations implies that

L0u = c

has a weak solution

u(t, x) =
c

2
ln
∣∣∣∣1 + t

1− t

∣∣∣∣ .
We show for more general classes of rhs f ∈ C∞(R2) that every solution has
singularity either at t = 1 or t = −1 (see Section 5.4 for more details).

This example shows that in order to solve globally Lu = f one should
allow some (weak) singularities of the type L1

loc near the adjacent characteristics
forming the separatrix strips.

The second main novelty we present is that, in order to find a global weak
solution, in general the rhs f(t, x) should grow at most like O(eε|x|), for |x| → ∞
uniformly in the separatrix strips Sj .
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Finally, we derive sharp estimates on the singularities of the global solutions
u(t, x) of (5.1) near tj , j ∈ IL for large classes of smooth rhs f , where

IL = {tj : Sj or Sj−1 is separatrix, j = 1, . . . , N}.

We point out that the part ii) of Theorem 5.0.7 implies that L is not surjec-
tive in C∞(R2) if and only if IL is not empty.

In order to state the main result on the global solvability of (5.1) we introduce
the subspace of the functions of infra-exponential growth in the x variable (e.g.
see [51] where such growth plays an important role in theory of Fourier transform
for hyperfunctions).

C∞(R : Expsl(R)) def=

{f ∈ C∞(R2) : ∀T > 0,∀ε > 0,∀α ∈ Z2
+,∃C > 0 s.t. |∂αt,xf(t, x)| ≤ Ceε|x|, |t| ≤ T, x ∈ R}

We recall also the weighted Sobolev spaces Hs1,s2(Rn) in Rn (e.g. see [52]).

Hs1,s2(Rn) def= {f ∈ S ′(Rn) : ‖f‖s1,s2 = ‖〈x〉s2〈D〉s1f‖L2 < +∞}

which measure the global regularity and the behaviour on ∞ in Rn, where
〈x〉 =

√
1 + ‖x‖2.

Theorem 5.0.8. Let L defined above be non-surjective in C∞(R2). Then we
can find a right inverse L−1 of L acting continuously

L−1 : C∞(R : Expsl(R)) −→ L1
loc(R : Expsl(R))

⋂
C∞(R \ IL : Expsl(R))

and

L−1 : C(R : Hs1,s2(R)) −→ L1
loc(R : Hs1,s2(R))

⋂
C(R \ IL : Hs1,s2(R)), (5.5)

with s1, s2 ∈ R.
Moreover, for any ε > 0 we have

sup
t∈[−θ,θ]

 N∏
j=1

|t− tj |ε‖L−1
j f(t, ·)‖Hs1,s2 (R)

 ≤ Cε,s1,s2,θ‖f‖C( Ij :Hs1,s2 (R))

Next, if f is a polynomial function with respect to x, i.e.,

f(t, x) =
k∑
`=0

f`(t)x` ,

then

L−1f(t, x) =
k∑
`=0

g`(t)x`
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with

gk(t) = O(lnk+1 |t− tj |) near t = tj, if Sj or Sj−1 is a separatrix

g`(t) = o(lnk+1 |t− tj |) near t = tj, if Sj or Sj−1 is a separatrix,

for ` = 0, . . . , k − 1.

Finally, given a zero order PDO b(t, x,D) in x smoothly depending on t, and
s1, s2 ∈ R we can find ε0 = ε0(L, s1, s2) > 0 such that if

max
|α|≤[s1]+2
|β|≤[s2]+2

sup
t∈[tj ,tj+1]

(x,ξ)∈R2

〈x〉−α〈ξ〉−β |∂αx ∂
β
ξ b(t, x, ξ)| < ε0

then L+ b(t, x,D) admits a right inverse which satisfies (5.5).

The results of this chapter will be published, jointly with T. Gramchev and
A. Kirilov, in [5].

5.1 Separatrix Strips and Non-surjectivity

In this section we prove Theorem 5.0.7. We start by calculating the global
“singular” characteristics of L after dividing by p(t), namely, rewriting formally
Lu+ bu = f to

L̃u+
1
p(t)

b(t, x,D)u =
f(t, x)
p(t)

with

L̃u = ∂tu+
q(t)
p(t)

∂xu

The characteristics of L̃, different from t = tj , j = 1, . . . , N , are defined by

ẋ(t) =
q(t)
p(t)

, x|t=τ = y

for some τ 6= tj , j = 1, . . . , N .

We have

Lemma 5.1.1. The function q(t)/p(t) has a global primitive g(t) such that

g(t) =
N∑
j=1

κjq(tj) ln |t− tj |+ g̃(t) (5.6)
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where each κj ∈ R \ {0}, with j = 1, . . . , N , depends only on p(t) and g̃ ∈
C∞(R).
Moreover, for each j ∈ {1, . . . , N − 1} fixed, we have

κjκj+1q(tj)q(tj+1) > 0 ⇔ q admits a zero in ]tj , tj+1[ of odd order
κjκj+1q(tj)q(tj+1) < 0 ⇔ q does not admit zero of odd order

Proof. By the hypotheses (5.2), (5.3) on p and the decomposition of rational
functions, there are nonzero real numbers κ1, . . . ,κN and r1 ∈ C∞(R) such that

1
p(t)

=
N∑
j=1

κj
t− tj

+ r1(t)

which yields

q(t)
p(t)

=
N∑
j=1

κjq(tj)
t− tj

+ r2(t)

for some r2 ∈ C∞(R). The expression (5.6) follows by integration.
We note that the hypothesis (5.2) implies q(tj) 6= 0, and hence

cj
def= κjq(tj) 6= 0, j = 1, . . . , N

Next, we present an important auxiliary result.

Lemma 5.1.2. Let x(t, y) be defined by

ẋ =
λ(t− θ)k

(θ+ − t)(t− θ−)
+ q̃(t), x(θ) = y, θ ∈]θ−, θ+[, (5.7)

with q̃ ∈ C∞([θ−, θ+]).
Then one can find r ∈ C∞([θ−, θ+]) such that

x(t, y) = y + c+ ln |t− θ+|+ c− ln |t− θ−|+ r(t),

where

c± = ∓λ(θ± − θ)k

θ+ − θ−

In particular, we observe that

i) c+c− > 0 ⇔ k is odd ⇔ c+ and c− have the same signal and λ > 0;

ii) c+c− < 0 ⇔ k is even ⇔ c+ and c− have different signals and λ < 0.
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Proof. The proof follows from the decomposition

λ(t− θ)k

(θ+ − t)(t− θ−)
=

λ(θ+ − θ)k

(θ+ − θ−)(θ+ − t)
+

λ(θ± − θ)k

(θ+ − θ−)(t− θ+)
+ q̃1(t),

where q̃1 = 0 if k = 0, 1, and q̃1 is polynomial of degree k − 2, if k ≥ 2, and
integration (from θ to t) of the rhs of (5.7).

Now we present the main steps of the proof of Theorem 5.0.7. First, assume
that Sj is a separatrix, for some j ∈ {1, . . . , N − 1}. In view of Lemmas 5.1.1
and 5.1.2, the characteristic curves of L, in Sj , can be written in the form:

x(t, y) = y + cj ln |t− tj |+ cj+1 ln |t− tj+1|+Rj(t). (5.8)

with Rj ∈ C∞([tj , tj+1]) and cjcj+1 > 0. We observe that cjcj+1 > 0 leads to

lim
t→t+j

x(t, y) = lim
t→t−j+1

x(t, y) = sign(cj)∞, y ∈ R. (5.9)

Clearly (5.9) implies that every smooth curve with endpoints on t = tj and
t = tj+1 is hit at least twice by the characteristic curve (5.8) provided y � 1
(respectively, −y � 1) if cj > 0 (respectively, cj < 0), and therefore, the
condition of Duistermaat-Hörmander for the surjectivity fails.

Suppose now that there are no separatrix strips. Hence, p(t) and q(t) do not
change sign in [tj , tj+1], j = 0, 1, . . . , N , t0 = −∞, tN+1

def= +∞ and fixing j, we
note that the line segment x+ νt = C, t ∈ [tj , tj+1] is transversal to L provided
ν 6= 0 has the same sign as p(t)q(t) for some t ∈]tj , tj+1[. So we have global
piecewise smooth global transversal. Smoothing by mollifiers ε−1ϕ(ε−1t) near
t = tj makes the curve smooth and still globally transversal provided 0 < ε� 1.
The proof of Theorem 1.1 is complete.

Example 5.1.3. We focus on the vector fields Lλ,k defined in (5.4) and exhibit
some geometric features. The integral trajectories of Lλ,k are given by the
curves

x(t) = λ

[
(−1)k

1
2

log |1 + t| − 1
2

log |1− t| −
∑
i<k

ti

i

]
where

∑
extends only to odd numbers when k is even and only to even numbers

when k is odd.
The vector fields Lλ,k are intrinsically Hamiltonian vector fields, i.e. they are

tangent to the level sets of a regular smooth function on the plane – equivalently,
the kernel of each operator Lλ,k contains regular smooth functions.

For example, the following smooth function fλ,k ∈ ker(Lλ,k):

fλ,2k+1(x, t) = (1− t2) exp

[
2

(
x

λ
+

∑
i<2k+1

ti

i

)]
, and

fλ,2k(x, t) = tan−1

{
1− t
1 + t

exp

[
2

(
x

λ
+
∑
i<2k

ti

i

)]}
.
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Figure 5.1: Integral curves of L1,1 = (1 − t2)∂t + t∂x and L1,2 = (1 − t2)∂t +
t2∂x, respectively. Clearly no global transversal exists for L1,1 while L1,2 is
topologically equivalent to a constant vector field.

Remark 5.1.4. We can generalize Theorem 1.2 for smooth non-singular vector
fields assuming that p and q are in general position with respect to each other,
i.e., each zero of p and q has finite multiplicity. Choosing t1 and t2 to be two
successive zeros of p(t), then t1 and t2 form a separatrix if and only if the sum
of degrees of all the roots of q between t1 and t2 is odd.

5.2 Estimates on the right inverse

The aim of this section is to prove the Theorem 5.0.8. First we will construct
a right inverse as follows:

Let j ∈ {1, . . . , N − 1}. If the strip Sj is a separatrix, we use Lemma 5.1.1
to obtain

L−1
j f =

t∫
θj

f(τ, x+ g(τ)− g(t))
p(τ)

dτ

=

t∫
θj

f(τ, cj ln |τ−tj ||t−tj | + cj+1 ln |τ−tj+1|
|t−tj+1| +Rj(τ)−Rj(t))

p(τ)
dτ

If Sj is not separatrix, we construct L−1
j as the Green function for the Cauchy

problem in Sj

L−1
j f(t, x) = Gνj f(t, x),
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where ν 6= 0 is fixed by the requirement Cj : x + νt = 0, t ∈ [tj , tj+1] is
non-characteristic for L in Sj and uj(t, x) = Gνj f(t, x) is defined by

Luj = f, (t, x) ∈ Sj , u|Cj = 0.

The global transversality of Cj in Sj implies that uj ∈ C∞(Sj) (we are in a
particular case of [20]).

The next assertion plays a crucial role in the proof of the global solvability
for L in the presence of the separatrix strip.

Proposition 5.2.1. Suppose that Sj is a separatrix and set Ij
def= (tj , tj+1),

then L−1
j has the following properties:

i) If C∞( Ij : Eεgr(R)) (respectively, C∞( Ij : Eεdec(R))) is the subspace of
C∞(Ij × R) consisting of all infinitely differentiable functions that satisfy
the following growth (respectively, decay) condition

∀α ∈ Z2
+,∃C > 0 such that |∂αt,xf(t, x)| ≤ Ceε|x|, t ∈ Ij , x ∈ R

(respectively,

∀α ∈ Z2
+,∃C > 0 such that |∂αt,xf(t, x)| ≤ Ce−ε|x|, t ∈ Ij , x ∈ R)

then

L−1
j : C∞( Ij : Eεgr(R)) −→ L1(Ij : Eεgr(R))

⋂
C∞(Ij : Eεgr(R)) (5.10)

(respectively,

L−1
j : C∞( Ij : Eεdec(R)) −→ L1(Ij : Eεdec(R))

⋂
C∞(Ij : Eεdec(R)))

if
0 < ε < min{|cj |−1, |cj+1|−1}

ii) For s1, s2 ∈ R,

L−1
j : C( Ij : Hs1,s2(R)) −→ L1(Ij : Hs1,s2(R))

⋂
C(Ij : Hs1,s2(R))

(5.11)
Moreover, for any ε > 0 we have

sup
t∈[tj ,tj+1]

(
|t− tj |ε|t− tj+1|ε‖L−1

j f(t, ·)‖Hs1,s2 (R)

)
≤ Cε,s1,s2‖f‖C( Ij :Hs1,s2 (R))

(5.12)

iii) If f(t, x) =
∑k
`=0 f`(t)x

`, then

L−1
j f(t, x) =

k∑
`=0

g`(t)x`

with{
gk(t) = gk(tµ)γµ lnk+1 1

|t−tµ| (1 + o(1)) near t = tµ, γµ 6= 0, µ = j, j + 1,

g`(t) = o(lnk+1 1
|t−tµ| ) near t = tµ, µ = j, j + 1, ` = 0, 1, . . . , k − 1.
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iv) Given a zero order PDO b(t, x,D) in x, smoothly depending on t, and
s1, s2 ∈ R, we can find ε0 = ε0(L, s1, s2) > 0 such that if

max
|α|≤[s1]+2
|β|≤[s2]+2

sup
t∈[tj ,tj+1]

(x,ξ)∈R2

〈x〉−α〈ξ〉−β |∂αx ∂
β
ξ b(t, x, ξ)| < ε0

then L+ b(t, x,D) admits a right inverse which satisfies (5.11).

Proof. We observe that for t close to tj we can write

L−1
j f(t, x) =

t∫
θj

f(τ, cj ln
|τ − tj |
|t− tj |

+Mj(t, τ))
fj(τ)
τ − tj

dτ (5.13)

with fj ∈ C∞([tj , θj ]), Mj ∈ C∞(∆j), ∆j = {tj ≤ τ ≤ t ≤ θj}. Therefore,

|∂αxL−1
j f(t, x)| ≤

θj∫
t

|∂αx f(τ, x+ cj ln
|τ − tj |
|t− tj |

+Mj(t, τ))
fj(τ)
τ − tj

| dτ

≤ Ceε|x|

θj∫
t

e
ε|cj | ln

τ−tj
t−tj

1
τ − tj

dτ

= Ceε|x|
1

(t− tj)ε|cj |

θj∫
t

1
(τ − tj)1−ε|cj |

dτ

= Ceε|x|
1

ε|cj |(t− tj)ε|cj |
((θj − tj)ε|cj | − (t− tj)ε|cj |)

= Ceε|x|
(θj − tj)ε|cj |

ε|cj |(t− tj)ε|cj |
(1 +O((t− tj)ε|cj |)) (5.14)

Similarly, we derive that near tj+1 we have

|∂αxL−1
j f(t, x)| ≤ Ceε|x| (tj+1 − θj)ε|cj+1|

ε|cj+1|(tj+1 − t)ε|cj+1|
(1 +O((tj+1 − t)ε|cj+1|)) (5.15)

Clearly, (5.13), (5.14), (5.15) imply (5.10) provided 0 < ε < min{ 1
|cj | ,

1
|cj+1|}.

As it concerns to item ii), taking into account the inequality

sup
x∈R,|λ|≥1

|λ|−|s2|〈x〉s2〈x+ λ〉−s2 < +∞
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we observe that for α ∈ Z+ and s2 ∈ R we have for t near tj

‖〈·〉s2∂αxL−1
j f(t, ·)‖L2 ≤ C

θj∫
t

sup
x∈R

(
〈x〉s2〈x+ cj ln

|τ−tj |
|t−tj | 〉

−s2
)

1
|τ−tj | dτ

× sup
t∈[tj ,tj+1]

‖〈·〉s2∂αf(t, ·)‖L2

≤ C̃

t∫
θj

ln|s2|
(
τ−tj
t−tj

)
1

τ−tj dτ sup
t∈[tj ,tj+1]

‖〈·〉s2∂αf(t, ·)‖L2

=
C̃

|s2|
ln|s2|+1 1

t− tj
sup

t∈[tj ,tj+1]

‖〈·〉s2∂αf(t, ·)‖L2 (5.16)

Therefore we obtained (5.11) for s1 ∈ Z+ (summation in (5.16) over |α|). We
conclude the general case for s1 by interpolation and duality arguments.

Since the logarithmic singularity is weaker then any polynomial one, (5.16)
yields (5.12).

Next, we show a gluing lemma, which will imply that

L−1f(t, x) = L−1
j f(t, x), (t, x) ∈ Sj , j = 0, 1, . . . , N

is a right inverse satisfying the properties stated in Theorem 1.2. This gluing
auxiliary assertion seems to be also a novelty “per se” and might be of an
independent interest.

Let Ω be an open domain in Rn and let δ > 0. Set Iδ = (−δ, δ), I+
δ =]0, δ[,

I−δ =]− δ, 0[, and

Ω±δ = I±δ × Ω = {(t, x) : 0 < ±t < δ, x ∈ Ω},
Ωδ = Iδ × Ω = {(t, x) : |t| < δ, x ∈ Ω}.

Consider the smooth vector field

X = a(t, x)∂t +
n∑
j=1

aj(t, x)∂xj ,

having t = 0 as a characteristic, i.e.,

a0(0, x) = 0, x ∈ Ω

Let
b = b(t, x) ∈ C∞(Ωδ)

or, in the case Ω = Rn, we allow b to be a zero order PDO in x (see [52])
depending smoothly on t ∈]− δ, δ[.

We have:
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Lemma 5.2.2. Let f ∈ C∞(Ωδ) (respectively, f ∈ C( (−δ, δ) : Hs1,s2(Rn)) for
some s1, s2 ∈ R if Ω = Rn). Suppose that

u± ∈ C∞(Ω±δ )

(respectively,

u± ∈ C(I±δ : Hs1,s2(Rn))

for some s1, s2 ∈ R) satisfies

Xu± + bu± = f in Ω±δ

Then

u(t, x) =
{
u+(t, x) if (t, x) ∈ Ω+

δ

u−(t, x) if (t, x) ∈ Ω−δ

is a well defined L1
loc(Ω) (respectively, L1(Iδ : Hs1,s2(Rn)) distributional solution

of Xu = f in Ωδ provided

u± ∈ L1(I±δ ×K), K ⊂⊂ Ω (5.17)

(respectively,

u± ∈ L1(I±δ : Hs1,s2(Rn)), (5.18)

if Ω = Rn)) and

lim
t→0±

∫
Rn

a(t, x)u±(t, x)ϕ(t, x)dx = 0, ϕ ∈ C∞0 (Ωδ) (5.19)

Proof. Let ϕ(t, x) ∈ C∞0 (Ωδ). We have to prove that

〈u,X∗ϕ+ b∗ϕ〉 = 〈f, ϕ〉 (5.20)

where X∗ (respectively, b∗) stands for the adjoint of X (respectively, b).
Taking into account (5.17), (5.18) and Lebesgue’s dominated convergence

theorem we have

〈u,X∗ϕ+ b∗ϕ〉 = lim
ε→0

(J+
ε (u+, ϕ) + J−ε (u−, ϕ)),

where

J±ε (u±, ϕ) = ±
±δ∫
±ε

∫
Ω

u±(t, x)(X∗ϕ(t, x) + b∗(t, x,D)ϕ(t, x))dx

 dt.
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Integration by parts, duality arguments, the Fubini theorem and (5.17) imply
that

J±ε (u±, ϕ) = ±
±δ∫
±ε

∫
Ω

(Xu±(t, x) + b(t, x,D)u±(t, x))ϕ(t, x)dxdt

+
∫
Ω

a(±ε, x)u±(±ε, x)ϕ(±ε, x)dx

=
∫

Ω±δ \Ω
±
ε

f(t, x)ϕ(t, x)

+
∫
Ω

a(±ε, x)u±(±ε, x)ϕ(±ε, x)dx

Next, using the hypothesis (5.19), we deduce that

lim
ε→0

J±ε (u±, ϕ) =
∫

Ω±δ

f(t, x)ϕ(t, x)dtdx

and, plugging into the rhs of (5.20), we obtain,

〈u, L∗ϕ+ b∗ϕ〉 =
∫

Ω+
δ

f(t, x)ϕ(t, x)dtdx+
∫

Ω−δ

f(t, x)ϕ(t, x)dtdx

=
∫
Ωδ

f(t, x)ϕ(t, x)dtdx

This completes the proof of the lemma.

Combining Proposition 3.1 and Lemma 3.2 we derive the assertions for L−1.
As it concerns the perturbation with b(t, x,D), we reduce the equation in

R2 to Lu+ b(t, x,Dx)u = f on Sj , j = 0, 1, . . . , N . We are reduced to the study
of the global solvability of

u+ L−1b(t, x,D)u = L−1f, (t, x) ∈ Sj , j = 0, 1, . . . , N.

We apply the Picard type scheme

uk = −L−1b(t, x,D)uk−1 + L−1f, k ∈ N, u0 = 0 (5.21)

If j = 1, . . . , N , we use the results for Hs1,s2 estimates of PDO in Rn
(see [52]) and choose ε0 so small that

‖b(t, x,D)L−1‖L1([t1,tN ]:Hs1,s2 )→L1([t1,tN ]:Hs1,s2 ) < 1
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Using continuity arguments we can find δ > 0 (small enough) such that

‖L−1b(t, x,D)L−1‖L1([t−δ,tN+δ]:Hs1,s2 )→L1([t1−δ,tN+δ]:Hs1,s2 ) < 1

Since p(t) has no zeroes for t > tN + δ and t ≤ t1 − δ we have the following
estimates: there exist a C = Cδ > 0 such that

‖L−1bu(t, ·)‖Hs1,s2 ≤ Cδ

t∫
θj

‖u(τ, ·)‖Hs1,s2dτ,

for j = 0, t ≤ t1 − δ, j = N , t ≥ tN + δ. Combination of contraction and
Gronwall inequalities (see [49]) imply the convergence of (5.21) and the existence
of (L+ b)−1 satisfying the last part of Theorem 1.2.

Remark 5.2.3. We point out that the estimates for f ∈ C∞( Ij : Eεdec(R))
allows to extend solvability for L and L + b in Gelfand-Shilov spaces Sµµ(R) in
x, provided µ > 1 (see [53] for global solvability and regularity results for some
degenerate PDO under similar sub-exponential decay conditions). We can show
that, if the decay is super-exponential the solution u loses this decay, unlike
the solvability in Gelfand-Shilov spaces Sµµ , 1/2 ≤ µ ≤ 1, (see [54, 55] and the
references therein).

5.3 The sharpness of the estimates for L0

We consider the model equation L0u = f . Using the method of the character-
istics, for t 6= ±1, one can write formally a right inverse of L0 in the following
way

L−1
0 f

def=

t∫
0

f(τ, x+ ln
∣∣∣∣1− τ2

1− t2

∣∣∣∣) 1
1− τ2

dτ = G+f +G−f, (5.22)

where

G±f(t, x) def=
1
2

t∫
0

f(τ, x+ ln
∣∣∣∣1− τ1− t

∣∣∣∣+ ln
∣∣∣∣1 + τ

1 + t

∣∣∣∣) 1
1± τ

dτ (5.23)

We define in a natural way C∞(R : Eεgr(R)) as the inductive limit

C∞(R : Eεgr(R)) = lim
T↗+∞

C∞( [T, T ] : Eεgr(R))

Observe that C∞(R : Eεgr(R)) is a vector subspace of C∞(R2) and, given
f1, f2 ∈ C∞(R : Eεgr(R)), we have f1 ·f2 ∈ C∞(R : Eεgr(R)). In particular, the
projections π1(t, x) = t and π2(t, x) = x belong to this space and consequently,
any polynomial function p belongs to C∞(R : Eεgr(R)).
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We introduce a topology on C∞(R : Eεgr(R)) by the following family of
seminorms

g εj,k,T (f) def= sup{ |e−ε|x|∂α1
t ∂α2

x f(t, x)|; |α1| ≤ j, |α2| ≤ k, |t| ≤ T, x ∈ R, }

where T > 0 and j, k ∈ Z+.

Lemma 5.3.1. If a ∈ C1(R) and p ∈ N then, when t→ 1, we have

t∫
0

a(s) lnp
∣∣∣∣1− s1− t

∣∣∣∣ 1
1− s

ds =
a(1)
p+ 1

lnp+1

∣∣∣∣1− s1− t

∣∣∣∣ (1 + o(1))

Proof.

t∫
0

a(s) lnp
∣∣∣∣1− s1− t

∣∣∣∣ 1
1− s

ds = a(1)

t∫
0

lnp
∣∣∣ 1−s1−t

∣∣∣ 1
1−s ds+

t∫
0

a1(s) lnp
∣∣∣ 1−s1−t

∣∣∣ds
=

a(1)
p+ 1

lnp+1
∣∣∣ 1−s1−t

∣∣∣+ o
(

lnp 1
|1−t|

)
=

a(1)
p+ 1

lnp+1
∣∣∣ 1

1−t

∣∣∣(1 + o(1))

Lemma 5.3.2. If f is a monomial function with respect to x, i.e., f(t, x) =
fj(t)xj , with fj ∈ C1(R) and j ∈ Z+, then

L−1
0 f(t, x) =

j∑
`=0

gj`(t)x`

with {
gj0(t) = f0(±1)

2 ln
∣∣∣ 1

1∓t

∣∣∣ (1 + o(1)), t→ ±1

gj`(t) = O( lnj+1−` 1
|1∓t| ), t→ ±1.

Proof. From (5.22) and (5.23) we obtain

G±f(t, x) =
1
2

t∫
0

fj(τ)
(
x+ ln

∣∣∣∣1− τ1− t

∣∣∣∣+ ln
∣∣∣∣1 + τ

1 + t

∣∣∣∣)j 1
1± τ

dτ

=
j∑
`=0

1
2

(
j

`

) t∫
0

fj(τ)
(

ln
∣∣∣∣1− τ1− t

∣∣∣∣+ ln
∣∣∣∣1 + τ

1 + t

∣∣∣∣)j−` 1
1± τ

dτ

x`
=

j∑
`=0

gj`±(t)x`
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where

gj`±(t) =
1
2

(
j

`

) t∫
0

fj(τ)
(

ln
∣∣∣∣1− τ1− t

∣∣∣∣+ ln
∣∣∣∣1 + τ

1 + t

∣∣∣∣)j−` 1
1± τ

dτ

=
1
2

(
j

`

) j−∑̀
m=0

(
j − `
m

) t∫
0

fj(τ) lnm
∣∣∣∣1− τ1− t

∣∣∣∣ lnj−`−m ∣∣∣∣1 + τ

1 + t

∣∣∣∣ 1
1± τ

dτ

Now, it follows from Lemma 5.3.1 that, near t = 1, we have

gj`−(t) =
1
2

(
j

`

) ∑̀
m=0

(
j − `
m

) t∫
0

fj(τ) lnm
∣∣∣∣1− τ1− t

∣∣∣∣ lnj−`−m ∣∣∣∣1 + τ

1 + t

∣∣∣∣ 1
1− τ

dτ

=
1
2

(
j

`

) j−∑̀
m=0

(
j − `
m

)fj(1) lnj−`−m
∣∣∣ 2

1+t

∣∣∣
m+ 1

lnm+1

∣∣∣∣ 1
1− t

∣∣∣∣ (1 + o(1))

= O

(
lnj+1−`

∣∣∣∣ 1
1− t

∣∣∣∣ )
Analogously, near t = −1, we have

gj`+(t) =
1
2

(
j

`

) j−∑̀
m=0

(
j − `
m

) t∫
0

fj(τ) lnm
∣∣∣∣1− τ1− t

∣∣∣∣ lnj−`−m ∣∣∣∣1 + τ

1 + t

∣∣∣∣ 1
1 + τ

dτ

=
1
2

(
j

`

) j−∑̀
m=0

(
l

m

)
fj(1) lnm | 2

1−t |
j − `−m+ 1

lnj−`−m+1

∣∣∣∣ 1
1 + t

∣∣∣∣ (1 + o(1))

= O

(
lnj+1−`

∣∣∣∣ 1
1 + t

∣∣∣∣ )
In particular, for ` = 0, we have

gj0±(t) =
1
2

t∫
0

fj(τ)
1

1± τ
dτ =

fj(±1)
2

ln
∣∣∣∣ 1
1∓ t

∣∣∣∣ (1 + o(1)).

The next assertion shows that we have sharp estimates on the singularities.

Proposition 5.3.3. The following properties hold: there exists ε0 > 0 such that
for all ε ∈ (0, ε0)

i) Given T > 0 and k ∈ Z+, we have

sup
x∈R
|α|≤k

|(1− t2)εL−1
0 f(t, ·)| ≤ Cε0T gε00,k,T (f)
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ii) If f(t, x) =
∑k
j=0 fj(t)x

j, then

L−1
0 f(t, x) =

k∑
j=0

gj(t)xj

with {
g0(t) = fk(±1)

2(k+1) lnk+1 |1± t|(1 + o(1)), t→ ±1,

gj(t) = O(lnk+1−j |1± t|), t→ ±1

iii) u = L−1
0 f is a weak solution of Lu = f for all f ∈ C∞(R : Eε(R)) such

that ∀α ∈ Z+, K ⊂⊂ R, there exist M > 0 such that

|∂αx u(t, x)| ≤M |1± t|−ε, 0 < |1± t| � 1, x ∈ K

Proof. To prove i) we start by defining, for each T > 0, k ∈ Z+ and u ∈ C∞(R :
Eε(R)) the following function:

P ε0k,T (u) def=

T∫
−T

sup
x∈R
|α|≤k

∣∣∣e−ε0|x|∂αx u(t, x)
∣∣∣ dt

Thus, for any f ∈ C∞(R : Eε(R)), with 0 < ε < ε0 and t > 0 we have

P ε0k,T (G−f) =

T∫
−T

sup
x∈R,
|α|≤k

∣∣∣e−ε0|x|∂αxG−f(t, x)
∣∣∣ dt

=

T∫
−T

sup
x∈R,
|α|≤k

∣∣∣∣∣∣e−ε0|x|∂αx
1

2

t∫
0

f(τ, x+ ln | 1−τ1−t |+ ln | 1+τ
1+t |)

1
1− τ

dτ

∣∣∣∣∣∣ dt
≤ 1

2

T∫
−T

t∫
0

sup
x∈R,
|α|≤k

∣∣∣∣e−ε0|x|∂αx f(τ, x+ ln | 1−τ1−t |+ ln | 1+τ
1+t |)

1
1− τ

dτ

∣∣∣∣ dt
≤ 1

2
gε0,k,T (f)

T∫
−T

t∫
0

sup
x∈R,
|α|≤k

∣∣∣∣e−ε0|x| exp(ε(|x|+ ln | 1−τ1−t | − ln | 1+τ
1+t | ))

1
1− τ

∣∣∣∣ dτdt
≤ 1

2
eε−ε0gε0,k,T (f)

T∫
−T

t∫
0

∣∣∣∣1 + τ

1 + t

∣∣∣∣−ε ∣∣∣∣1− τ1− t

∣∣∣∣ε 1
|1− τ |

dτdt

≤ 1
2
Cε0T gε00,k,T (f)(1− t)−ε

By using the same arguments, when t < 0, we obtain an analogous estimate
to G+f, and consequently

P ε0k,T (L−1
0 f(t, x)) ≤ Cε0T g

ε0
0,k,T (f)(1− t2)−ε



5.3 The sharpness of the estimates for L0 89

To prove ii), we use the results in the lemmas 5.3.1 and 5.3.2 below to obtain

L−1
0 f(t, x) =

k∑
`=0

L−1
0 (fj(t)xj) =

k∑
`=0

(
j∑
`=0

gj`(t)x`
)

=
k∑
`=0

 k∑
`=j

g`j(t)

x` =
k∑
`=0

gj(t)x`

where

gj(t)
def=

k∑
`=j

g`j(t) =
k∑
`=j

O

(
ln`+1−j 1

|1∓ t|

)
= O

(
lnk+1−j 1

|1∓ t|

)
, when t→ ±1

To prove the statement iii), first, for 0 < t < 1, we have

|∂αx (G−f(t, x))| ≤ 1
2

t∫
0

∣∣∣∣∂αx f(τ, x+ ln | 1−τ1−t |+ ln | 1+τ
1+t |)

1
1− τ

∣∣∣∣ dτ
≤ 1

2
gε0,α,T (f) eε|x|

t∫
0

|1− τ
1− t

|ε|1 + τ

1 + t
|−ε 1
|1− τ |

dτ

≤ 1
2
gε0,α,T (f) eε|x|ε−1|1− t|−ε

By using the same arguments, when −1 < t < 0, we obtain the same estimate
to G+f. Therefore

|∂αx (G+f(t, x))| ≤ 1
2
gε0,α,T (f) eε|x|ε−1|1 + t|−ε

Therefore, given f ∈ C∞(R : Eε(R)), α ∈ Z+ and K ⊂⊂ R, we set

M = ε−1 gε0,α,T (f) sup
x∈K

eε|x|.

Thus, it follows from (5.22) and (5.23) that

|∂αx (L−1
0 f(t, x))| ≤M |1± t|−ε, 0 < |1± t| � 1, x ∈ K

Remark 5.3.4. Since the general solution of L0u = f in [−1, 1] × R is given
by

u = ϕ(x+ ln(1− t2)) + L−1
0 f(t, x),

with ϕ being a function (or distribution) of one variable, we observe that we
have always singularity at t = −1 or t = +1.
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In view of the separatrix phenomena, we have not compensate both singular-
ities in the general case, while we can “cancel” the singularity either at t = −1
or t = +1.

If f ≡ c 6= 0, we exhibit, apart from u = c
2 ln | 1+t

1−t |, two particular solutions:

u±(t, x) = ∓ c
2
x± c ln |1∓ t|

5.4 Perturbation with non-degenerate PDOs

The aim of this section is to show that if we perturb L0 with constants PDOs,
or more generally, a Fourier multiplier satisfying suitable non-degeneracy condi-
tions, we can obtain L∞loc estimates in t for the (L0 + b)−1 without the smallness
requirement on b.

More precisely, we consider

Lbu = (1− t2)∂tu− 2t∂xu+ b(D)u = f(t, x)

where

b(ξ) ∈ C(R) is real-valued and bounded away from zero for ξ ∈ R. (5.24)

Clearly (5.24) implies that one can find 0 < δ0 < δ1 such that

either δ0 ≤ b(ξ) ≤ δ1 or −δ1 ≤ b(ξ) ≤ −δ0, for ξ ∈ R. (5.25)

Set û(t, ξ) = Fx→ξu(t, ·) to be the partial Fourier transform in x, i.e.,

ŵ(ξ) =
∫
R

e−ixξw(x)dx.

Setting (formally)

û(t, ξ) = exp(−b(ξ)
2

ln
∣∣∣∣1− t1 + t

∣∣∣∣) =
(∣∣∣∣1− t1 + t

∣∣∣∣)b(ξ)/2 v̂(t, ξ)

we obtain that

L̂0v̂(t, ξ) =
(∣∣∣∣1− t1 + t

∣∣∣∣)−b(ξ)/2 f̂(t, ξ).

In view of the non-degeneracy condition (5.25) can write a right inverse of
Lb which is L∞loc in t (a better regularity than L1

loc for L−1). Indeed, set

L̂b
−1
f̂ =

(∣∣∣∣1− t1 + t

∣∣∣∣)b(ξ)/2
t∫

−sign(b)

f̂(s, ξ)ei ln
|1−t2|
|1−τ2|

(1− τ)|1− τ |b(ξ)/2(1 + s)|1 + s|−b(ξ)/2
ds
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Proposition 5.4.1. The operator L−1
b acts continuously as L−1

0 in the spaces
with sub-exponential decay. Furthermore, it acts continuously

L−1
b : C(R : Hs(R)) 7−→ L∞loc(R : Hs(R))

and for every K > 0, s > 0, one can find C = CK > 0 such that

‖L−1
b f‖L∞([−K,K]:Hs(R)) ≤ C

δ0
‖f‖C([−K,K]:Hs(R)),

for all f ∈ C(R : Hs(R)) and δ0 > 0.

Proof. We have the crucial step is based on the estimates near t = ±1:

‖ ˆL−1
b f̂(t, ·)‖L2 ≤ C0‖f‖C([−K,K]:L2(R)) sup

ξ∈R
(|1 + sign(b)t|)±b(ξ)/2

× |
t∫

−sign(b)

1

|1− s|1+sign(b)/2|1 + s|1−sign(b)/2
ds|

≤ C

|b|
‖f‖C([−K,K]:L2(R))

where

C0 = sup
ξ∈R

∣∣∣∣1− t1 + t

∣∣∣∣b(ξ)/2
t∫

−sign(b)

1
(1− τ)|1− τ |b(ξ)/2(1 + s)|1 + s|−b(ξ)/2

ds

 ≤ 2
δ0

5.5 Final Remarks

First we observe that our results remain valid for vector fields of the type

L = p(t)∂t + q(t, x)∂x

provided q(t, x) is bounded for x, when x → ∞. The approach follows the
same ideas, but the arguments of the proofs become more involved in view
of the use of theorems on global behaviour of solutions of ODEs. If q is not
bounded, for x→∞, we have more restrictive conditions on the growth of the
rhs f . For example, if q(t, x) grows linearly in x (like SG first order hyperbolic
pseudodifferential operators (see [52]), we have to require that the rhs f(t, x)
grows less than every |x|γ , for every γ > 0. Next, we point out that if the rhs f
decays to zero for x→∞, the right inverses Lj .

Next, as to possible multidimensional generalizations of the vector fields
studied in the present work, we are also able to propose similar results for some
classes of vector fields having smooth symmetries. E.g. consider the regular
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plane vector field L = (t2− 15)(t2 + 15)∂x− (t2− 25)(t2− 9)t∂t . One can easily
check that the rotations of L around the x axis in R3 with coordinates (t, x, y)
gives rise to a regular vector field M having as separatrices the two cylinders
y2 + t2 = 9 and y2 + t2 = 25. The cohomological equation Mu = v hence
is not solvable for every smooth function v ∈ C∞(R3) because of the theorem
of Duistermaat and Hormander but our techniques can be used to find weak
solutions.

Finally, we point out to a natural problem related to the reduction of a
perturbation L+ b(t, x,D) to L by means of global conjugation formally J(t) ◦
(L + b) ◦ J−1(t) = L, with J being a global PDO or Fourier integral operator
in x ∈ Rn depending smoothly on t ∈ R \ IL, with singularities near t = tj , Sj
or Sj+1 being separatrix strips. The example in Section 5.4 suggests that one
should aim on estimates of J(t) in L1

loc(R : B(Rn)), where B(Rn) stands for
some weighted Sobolev type space (see [56], [57], [58] and the references therein
for global estimates in Rn for Fourier integral operators).



A
Transversality of linear PDOs

Linear homogeneous Ck PDOs Lξ : C1(M) → C0(M) are clearly in 1-1 corre-
spondence with vector fields ξ ∈ Xk(M). It is natural therefore to define their
transversality to a hypersurface N as the transversality to N of the correspond-
ing vector field, namely Lξ is transversal to N at n ∈ N if

span{ξn}+ TnN = TnM .

Let f ∈ C∞(M) be any function regular at n such that N is the zero set of
f in some neighbourhood of n. Then the condition span{ξn} + TnN = TnM
translates in the fact that

Lξf(n) 6= 0 .

In case of general linear PDOs Lr : ΓrF → Γ0G of higher order, one can
extend the definition thanks to the following observation: if ν ∈ C∞(E) is such
that ν(e0) = 0, then

Lr(νrf)
∣∣∣∣
e0,f0

= Lr,νf

∣∣∣∣
e0,f0

where Lr,ν : Γ0F → Γ0G is the following linear zero-order operator:

(Lr,ν)ai = r!Λaα1...αr
i ∂α1ν · · · ∂αrν .

Indeed all terms of Lr of order lower than r applied to νrf will leave at least one
ν term which will vanish when evaluated at e0, so the only surviving terms come
from order r and only from those which act entirely on νr. We call Lr,ν the
principal part of Lr with respect to ν. This justifies the following definitions:

Definition A.0.1 (Gromov, 1986). Given a 1-form λ = (λ1, . . . , λm) ∈ Te0E,
we call the linear zero-order operator

(Lr,λ)ai = r!Λaα1...αr
i λα1 · · ·λαr
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the principal part of Lr at e0 with respect to λ. We say that Lr is transversal
to the hyperplane kerλ ⊂ Te0E if its principal part at e0 with respect to λ
is surjective. Given a higher-codimension plane π = ∩li=1kerλi ⊂ Te0E, we
say that Lr is transversal to π if it is transversal to every hyperplane of Te0E
containing π. If Lr is not transversal to a plane π then it is said tangential to
it.

If N ⊂ E is a submanifold of E, we say that Lr is transversal to N at e0 if
it is transversal to Te0N . Finally, we say that N is characteristic for Lr if Lr
is tangential to N at every point.

Remark A.0.2. From what said above it follows that Lr is transversal to a
hypersurface N at e0 iff its principal part with respect to ν at e0, i.e. Lr,dν(e0),
is surjective.

Note that this definition agrees with the one given above for linear homoge-
neous first-order PDOs.

Example A.0.3. Linear first-order PDOs Lξ have always a characteristic man-
ifold of dimension 1 given by the integral trajectories of the corresponding vector
field ξ.

Example A.0.4. Consider the case of the Laplacian L2 = ∆g = gαβ∂α∂β on
a (pseudo)-Riemannian manifold M . The principal part of ∆g with respect to
a function ν ∈ C∞(M) is

Dg,ν = gαβ∂αν∂βν

Hence if g is Riemannian and ν0 is a regular value for ν, ∆g is transversal
to ν−1(ν0) at every point and moreover ∆g has no characteristic hypersurfaces
since Dg,ν = 0 on every point of some hypersurface N would imply that ν is
constant in some tubular nbhd of N . On the contrary, ∆g can have characteristic
hypersurfaces if M is pseudo-Riemannian: e.g. if M = R2 and g = (dx)2−(dy)2

then the “light-cones”, i.e. the straight lines d(x− y) = 0 and d(x+ y) = 0, are
characteristics for ∆g.

The following two lemmata are crucial for the proof of Theorem 2.4.17.

Lemma A.0.5 (Gromov, 1986). Let ν ∈ C∞(E) be regular at e0 ∈ E, let
N = F−1(F (e0)), so that N is a regular hypersurface close to e0, and suppose
that Lr : ΓrF → Γ0G is transversal to N at e0. Then for every k ∈ N there
exist a s ∈ N and two operators Ak : Γr+sG → ΓrF and Bk : ΓsG → Γ0G,
whose coefficients are rational functions of ν and its derivative up to order s
and are regular at e0, such that

LrAk + νkBk = i0r+s(G) .

Moreover this identity holds for small perturbations of ν and Lr.
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Proof. We prove the statement by induction. Clearly the theorem holds for
k = 0 with s = 0 by putting A0 = 0 and B0 = i00(G).

Now assume that there exist Ak and Bk of order s′ such that

LrAk + νkBk = i0r+s′(G)

and observe that

Lr(νr+kf) = νkLrk,dν(e0)(f) + νk+1Rk,ν(f) ,

where Lrk,dν(e0) = (r + k)!/r!Lr,dν(e0) is invertible by hypothesis and Rk,ν is
some linear PDO of order r.

Now define the PDOs of order s = r + s′ as

Ak+1 = Ak + νr+kL−1
rk,dν(e0)Bk, Bk+1 = −Rk,νL−1

rk,dν(e0)Bk .

Then
(LrAk+1 + νk+1Bk+1)g

= Lr(Ak + νr+kL−1
rk,dν(e0)Bk)g + νk(−Rk,νL−1

rk,dν(e0)Bk)g

= g − νkBkg + Lr(νr+kL−1
rk,dν(e0)Bkg)− νkRk,νL−1

rk,dν(e0)Bkg

= g − νkBkg + νkBkg + νk+1Rk,νL
−1
rk,dν(e0)Bkg − ν

kRk,νL
−1
rk,dν(e0)Bkg

= g ,

namely
LrAk+1 + νk+1Bk+1 = i0r+s(G) .

Lemma A.0.6 (Gromov, 1986). Let F πF−→ E and G
πF−→ E be vector bundles

with dimE = m, dimF = m+q and dimG = m+q′. If q > q′, a generic linear
PDO

Lr : ΓrF → Γ0G

has no characteristic submanifolds of positive codimension.

Proof. We must prove that the number of (closed) scalar conditions that a
section Λr : E → Hom(JrF,G) must satisfy so that the corresponding PDO Lr
has a characteristic manifold of positive codimension is larger than m.

Let e0 ∈ E be any point and consider the set Nk of all codimension-k
submanifolds N passing through e0 having, in coordinates, the form

xa = νa(xk+1, . . . , xm) , a = 1, . . . , k ,

for some smooth map ν : Rk → Rm−k. If Lr is tangential to N at e0 then the
k matrices

Λa = Λaα1...αr
i ∂α1ν

a . . . ∂αrν
a

must all be of non-maximal rank, i.e. rank Λa < q′.
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Each of these open conditions corresponds to q−q′+1 equations, for a total of
c(k) = k(q−q′+1) scalar closed conditions. Moreover there are d(k) = k(m−k)
linearly independent elements in the 1-jet of ν, so that the total dimension of
the space of sections Λr being tangential to all codimension-k submanifolds of
the type we are considering is[

dim Hom(JkF,G)− k(q − q′ + 1)
]

+ k(m− k)

and, correspondingly, its codimension is k(q− q′+ 1)−k(m−k). Unfortunately
this estimate proves our claim only for q − q′ > m− k − 1− n/k, which can be
as large as we please for m large and m close to m/2.

In order to sharpen our estimate we use the fact that, for every s ∈ N, the
derivatives of order s of the c(k) conditions above with respect to the (m − k)
coordinates provide extra conditions to be satisfied identically by the s-jets of
all Λr which are tangential at e0 to all submanifolds in Nk. The number of
conditions coming out from each relation rank Λa < q′ is now

c(k, s) = k(q − q′ + 1)
(
m− k + s

s

)
while the dimension of the space of (s + 1)-jets1 of ν (minus the 0-jet, which
does not appear anywhere) is

d(k, s) = k

(
m− k + s+ 1

s+ 1

)
− k .

Hence, if Λr is tangential to all submanifolds in N at e0, its s-jet must satisfy
a number of conditions equal to

c(k, s)− d(k, s) = k

(
m− k + s

s

)[
q − q′ − m− k

s+ 1
+

1(
m−k+s

s

)]

and clearly, since q > q′, this number can be easily made bigger than m for s
big enough.

1Recall that within Λa appear the first derivatives of ν, so that in the s-jet of the relations
rank Λa < q′ will appear the derivatives of ν up to the s+ 1-th order.
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