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Terminology and Notation

We use the letters M, N and E to denote C” manifolds. In particular M will
always denote a m-dimensional manifold. We denote by F =% E a C” fibration
7r : F — E while by G =% E we always denote a vector bundle.

The tangent and cotangent bundle of a manifold M are denoted respectively

by TM 24 M and T*M 5 M. The total spaces of tensor bundles over M
with h contravariant and k covariant indices are denoted by

MY TM® 9 TMT* M@ - @ T*M .

h times k times

The letter H always denotes a vector subbundle of T'M and we use the symbols
H2 to denote the tensor products
def

HPEHO - QHOH @ @ H" .

h times k times

Particularly important for us are the vector subbundles SYM C TPM and
SHY C HY of totally symmetric tensors.

We denote by C"(M, N) the space of all C" maps M — N and by I'"F and
I'"G the spaces of all C" sections of the corresponding fibrations. In particular
we use the symbols X(M) and Q! (M) for, respectively, I'°°(T M) and I'>°(T* M).
For every s > r the maps

i"(M,N):C*(M,N) — C"(M,N), i’(F) : T*(F) — " (F)

denote the canonical inclusions. Finally, we denote by C7 (M) the set of all
strictly positive C" functions M — R.

We endow all these functional spaces with the Whitney strong topology,
defined as follows. We recall its definition in the case of I'"F, which is the
most general. Let ® = {(U;, v, Vi, i) biea a set of locally finite fibered charts
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of F - E, ie. (U;,4;) is a locally finite cover of E and (U; x Vi, (¥s, ¢))
is a locally finite cover of F, K = {K;}ica a set of compact subsets of F s.t.
K; Cc U, for all i € A and € = {¢;};ea a family of positive numbers. If f € T"F
is such that f(K;) C K; x V;, then the set

U(f, 0, K €)= {f": |ID*(if'¢; ") — D*(ifo; M) < e}

is a basic set for the strong C” topology on F - E. We recall that for
compact spaces this reduces to the usual compact-open topology. The reason
for our choice is that many subsets of C"(M, N) important for our thesis are
open in this topology. In particular the subset of immersions, embeddings, free
maps and, in general, sets defined via an open differential relation are open in
C" (M, N) with the Whitney topology.

We use the following conventions for charts and indices:

1. «, 6 and 7 run from 1 to m;

2. i and j run from 1 to g;

3. a and b run from 1 to ¢’;

4. A and B are used as multindices;

5. a is also used sometimes as index, its range is always declared explicitly.

Manifolds M and F have always dimension m; coordinates on them are
denoted by (z®). The fibers of F' % E have dimension ¢; fibered coordinates
on F are denoted by (z®, f%). The fibers of G =% E have dimension ¢’; fibered
coordinates on G are denoted by (%, g%).

We use upper indices for vector (contravariant) components and lower indices
for covector (covariant) components; correspondingly, a tensor ¢ € I (T}*M)
over a point (z%) is represented in coordinates by a set of components (¢3! ""5").
Throughout the thesis we use the Einstein convention of summation over re-
peated indices, namely the notation x®\, always represents the sum Z;nzl AP W
and similarly for all other indices.

Finally, the following abbreviations are used throughout the paper:

ODE(s) Ordinary Differental Equation(s)
PDO(s) Partial Differental Operator(s)
PDE(s) Partial Differental Equation(s)

rhs right hand side

S m(m+1)

2
€q Fuclidean metric on R?



Introduction

The following natural construction is central for the present thesis: once it
is given a C" map f : M — N between a pair of differential C” manifolds
M and N, its pull-back f* defines a mapﬂ from the set of smooth sections
n € I'"(TYN) of all covariant tensor bundles TP N on N to the corresponding
sections f*n € I"’(TISM) on M. In other words, there exist natural maps

U, : C"(M,N) x T(T{)N) — T(TY M)

defined by Ux(f,n) = f*n. For every k this map is a PDO of order 1 on the
first argument and a linear operator on the second and, after we endow all three
functional spaces with the C” Whitney strong topology, it is continuous in both
arguments. The bundle S§M of symmetric tensors with two covariant (and no
contravariant) indices is of great importance in geometry because (pseudo—)Rie-
mannian metrics live in it. Now consider the particular (but fundamental) case
N = R? and the isometric operator PDO

Darg: C"(M,RY) — T(SyM)

defined by D (f) = Pa(f, eq), where e, is the Euclidean metric in R?. Since
we endowed both the source and the target spaces with the Whitney strong
topology, the map Djy 4 is continuous. Note that the image of the restriction of
Dasq to the (open) subset Imm" (M, R9) C C"(M,R?) of immersions of M into
R is contained inside the set of Riemannian metrics on M.

Two natural questions about D, , are the following:

1. Is D4 surjective?
2. Is D q (or its restriction to some non-empty open set) an open map?

In geometrical language we can reformulate these questions as follows:

INote that this does not hold for the push-forward f., which is well-defined only when f
is a diffeomorphism.
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1. Let g be a Riemannian metric on M. Can we realize g via an immersion
of M into R97?

2. Let fo be an immersion of M into R? and gg the metric induced on M
via fo. If g is a metric C"-“close enough” to gg, is there an immersion f,
C"-close to fo, which induces g on M?

From the analytical point of view, these properties amount to the following:

1. Does the PDE Dy 4(f) = g (see Eq.(2.1) for an expression of this PDE in
local coordinates) have smooth solutions for every positive-definite rhs?

2. If go = D 4(fo), does the parametric PDE Dy 4(fx) = g, A € [0,¢€),
have smooth solutions for small enough A for every continuous curve gy

in T'(SYM)?

In both the geometrical and the analytical case, it is also interesting to ask
whether the property of being open is true at least for the restriction of Dy 4
to some open subset of C*>°(M,RY).

This thesis is dedicated to the study, in different but related contexts, of
these two properties for some particular case of isometric operators and other
PDOs closely related to them.

1.1 Structure and results of the thesis

The thesis is structured as follows.

In the first three sections of Chapter 2 we review the definitions and main
properties of jets, PDOs and free maps in the language used by Gromov in [I].
In Section 2.4 we expose in detail and in our language Gromov’s theory of
linear undetermined PDOs, which shows that these operator are generically
surjective. Finally, in Section 2.5, we move forward towards the proof of a
Gromov conjecture by showing that the operators Drm 4 are open over a non-
empty open set even for ¢ = n+ s, — 1, when no free map can arise. The result
of this section have been published in [2].

In Chapter 3 we define the concepts of H-immersions and H-free maps,
where H is a subbundle of TM, in such a way that usual immersions and free
maps correspond to the subcase H = T'M. Then, in Section 3.1, we introduce
new PDOs Dy 4 and provide conditions under which they are open over a dense
open set. Finally, in Section 3.2, we show how to build H-free maps in critical
dimension in three geometrically significant types of distributions H. The result
of this section have been obtained jointly with G. D’Ambra and A. Loi and have
been published in [3].

In Chapter 4 we study the Lie-derivative operators L¢ when & is a vector
fields on the plane with no zeros. In particular, in Section 4.1, we prove that,
for a generic vector field £, the cokernel of L¢ is infinite-dimensional and, in
Section 4.2, that the inequality L¢ f > 0 admits a smooth solution for all vector
fields of finite type. Finally, in Section 4.3 we provide a characterization of
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the set L¢(C°°(M)) and in Section 4.4 we study the behaviour of the functions
in L¢(C*°(M)) close to a pair of separatrices. The result of this section are
contained in [4].

In Chapter 5 we study the action on functional spaces of a particular case
of polynomial Lie-derivative operators on the plane. In Sections 5.1 and 5.2
we study explicitly the behaviour of solutions close to the separatrices. Finally,
in Section 5.3 we study in detail the action of the inverses of these operators.
The result of this section have been obtained jointly with T. Gramchev and
A. Kirilov and are contained in [5].

In the following two sections we briefly illustrate the most relevant results
which are at the base of the present thesis.

1.2 The Nash embedding theorem
and the Newton-Nash-Moser-Gromov IFT

The isometric embedding problem is the natural generalization, to the field of
Riemannian Geometry, of the classic Whitney embedding theorem:

Theorem 1.2.1 (Whitney, 1944). Every m-dimensional manifold M admits an
embedding into R>™ and an immersion into R?™~1,

A fundamental consequence of Whitney’s theorem is that the concept of
(real) smooth manifold is not more general than the concept of submanifold
of the euclidean space. This fact is not trivial since a similar statement would
be false, for example, in the complex case, where no compact manifold can be
biholomorphically embedded into any C? by Liouville’s theorem. It is hence
natural asking whether also every Riemannian manifold is a Riemannian sub-
manifold of some euclidean space.

The first publication about this topic goes back to 1873, when Schlaefli [6]
conjectured that, for the existence of a local isometrical immersion f : M — R,
it is enough that ¢ > s,,, where s, = n(n + 1)/2 is the number of unknowns of
the equation D(f) = g (see Section for an expression of this PDE in coordi-
nates). This conjecture was proved in 1926 for C¥-immersions by Janet [7] in
the 2-dimensional case and then, a year later, in the general case by Cartan [g]
as an application of his theory of exterior differential systems. It was a striking
and unexpected discovery, made by Nash [9] in 1954 and refined the next year
by Kuiper [I0], that the properties of isometric immersion, even locally, depend
strongly on their regularity. The surprise that these results caused in the scien-
tific community is well expressed by the following sentence of Gromov extracted
from a recent interview [I1]:

At first, I looked at one of Nash’s papers and thought it was just nonsense.
But Professor Rokhlin said: No, no. You must read it. I still thought it was
nonsense; it could not be true. But then I read it, and it was incredible. It could
not be true but it was true. There were three papers; the two more difficult ones,
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on embeddings, they looked nonsensical. Then you look at the way it is done, and
you also think that it looks nonsensical. After understanding the idea you try to
do it better; many people tried to do it in a better way. But when you look at
how they were doing it, and also what I tried, and then come back to Nash, you
have to admit that he had done it in a better way. He had a tremendous analytic
power combined with geometric intuition. This was a fantastic discovery for me:
how the world may be different from what you think!

From the global (see below) result of Nash it can be extracted the following
local corollary (see [12], Section 1.2.6):

Theorem 1.2.2 (Nash, 1954; Kuiper, 1955). Let M be an m-dimensional C*-
manifold. Then every point of M has a neighbourhood which admits an isometric
Cl-immersion into R™+1,

Clearly the regularity cannot be improved since the curvature of the metric
is an invariant for C? maps. Indeed, two years later, Nash [I3] found a much
higher upper bound for the dimension of the target space in case of more regular
immersions, namely:

Theorem 1.2.3 (Nash, 1956). Let M be a m-dimensional C"-manifold, r > 3.
Then every point of M has a neighbourhood which admits an isometric C”-
immersion into RAm+sm,

In this case the dimension of the target space is not sharp and was improved
by Gromov (see below) to m? 4+ 10m + 3 for r = 3 and to (m + 2)(m + 3)/2 for
r > 4. Note that the case r = 2, not covered by the two theorems above, is still
an open problem.

Obstructions to the global extension of local isometric immersions come
sometimes from the topology and sometimes from the (Riemannian) geometry.
An example of the first case comes from the fact that, clearly, no compact m-
dimensional manifold M can be immersed into R and so a fortiori no isometric
immersion M — R™ can exist. The first example of the second case goes back
to Hilbert [14], that showed that the the Lobachevskii plane (i.e. the plane
endowed with a metric of constant negative curvature) cannot be isometrically
C?-embedded into R?; this result was much later generalized by Efimov [I5],
which proved that no metric on the plane with curvature bounded above by a
negative number can be induced via a CZ?-immersion into R3. An example of
Gromov (see [12], Appendix 3) shows that the disk admits a C%-open set of met-
rics which cannot be C2-immersed into R?, proving that such behaviour are not
limited to open manifolds. Obstructions might also come from both sources: for
example the elliptic plane (i.e. the projective plane with the canonical metric)
does not admit any C?-immersion into R?® for it is non-orientable while every
surface of positive curvature immersed in R3 must be orientable.

Before Nash, the only significative result on the global existence of isomet-
ric immersions was due to a problem posed by Weyl [16] about whether every
analytic positive-curvature metric on the sphere comes from some analytic im-
mersion of S? into R3. The problem was attacked and solved by Alexandrov
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and Pogorelov from a geometric point of view and by Lewy and Niremberg from
an analytic point of view (see Refs. in [I3]). It is then easily imaginable the
enormous impact on this field of the following global results of Nash:

Theorem 1.2.4 (Nash, 1954; Kuiper, 1955). Let M be an m-dimensional C*-
manifold. If M admits a strictly shorﬂ immersion (resp. embedding) into R?
and ¢ > m+1 then it also admits a C' isometric immersion (resp. embedding)
into RY.  Moreveor, strictly short immersions (resp. embeddings) M — R?
always exist for ¢ > 2m (resp. ¢ > 2m +1).

This theorem was first proved by Nash for ¢ > m + 2 and, a year later,
extended to the case ¢ > m + 1 by Kuiper. As a corollary, we get that every
m-dimensional manifold can be C! isometrically embedded into R?™*! and
C'! immersed into R?™. Moreover in the compact case the dimensions of the
target space can be reduces by 1 for both the embeddings and the immersions.
For example, this implies the astonishing fact that every surface can be C!
isometrically immersed into R3.

Two years later Nash proved the following theorem about more regular im-
mersions:

Theorem 1.2.5 (Nash, 1956). Every m-dimensional closed (resp. open) Rie-
mannian C"-manifold, > 3, admits an isometric C"-immersion into R? for
q=4m+ 3s,, (resp. g = (4dm + 3s,,)(m+1)).

These bounds were then improved by Gromov to ¢ = m? + 10m + 3 (e.g.
see [I], Sec. 3.1.1). In terms of the isometric operator, we can restate these
results of Nash in the following way:

Theorem 1.2.6 (Nash,Kuiper,Gromov). If M is a C'-manifold, the isometric
operator Dyrq @ CH(M,RY) — T(SIM) is surjective for ¢ > 2m. If M is a
C"-manifold, with v > 3, then Dy, : C"(M,RY) — T(SYM) is surjective for
q>m?+10m + 3.

The relevance of these results for the present thesis lies even more in their
proof than in their content. Indeed, in order to prove them, Nash introduced a
clever infinite-dimensional implicit function theorem, improved later by Moser
and other authors and that was used since then in several contexts related to
PDEs, including the celebrated KAM theorem.

In his book “Partial Differential Relations” [I], Gromov widely generalized
the method of Nash to any PDO. For the purposes of the present thesis, the
version of this Newton-Nash-Moser-Gromov Implicit Function Theorem can be
stated (see also Section as follows:

Theorem 1.2.7 (Newton-Nash-Moser-Gromov IFT). Let D be a smooth PDO
which is infinitesimally invertible over some open subset U. Then the restriction
of D to U is an open map.

2A strictly short immersion (resp. embedding) f : (M, g) — (RY,eq) is an immersion (resp.
embedding) s.t. g — f*eq is a metric on M.
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Loosely speaking, an operator D is infinitesimally invertible if its lineariza-
tion is invertible (for a formal definition of infinitesimal invertibility see Sec-
tion .

In case of isometries, free maps play an important role. We recall that a
map f: M — RY is free if the vectors of its first and second partial derivatives
are all linearly independent (see Section [2.3). It is easy to verify that the
isometric operator Dy 4 is infinitesimally invertible over the set of free maps
(see Section [2.3). Hence Newton-Nash-Moser-Gromov IFT leads immediately
to the following famous theorem of Nash:

Theorem 1.2.8 (Nash 1956). Let M be a C" manifold, with r > 3. The
isometric operator Dy q is open over the set of free maps from M to RY.

1.3 The Cohomological Equation
for regular vector fields in R?

In Chapter 3 we show that, given a C! map f : M — R and a vector field
& € X(M) without zeros, on the foliation F¢ of integral trajectories of ¢ it is
induced a symmetric tensor with two covariant indices De(f) = (L¢f)?6? for
some 1-form § € QY(M) such that 6(¢) = 1. This quadratic form is a metric
iff Lef > 0, so D¢ is surjective iff L¢ is surjective on the subspace of positive
functions. Similarly, if go = D¢(fo) is a metric on F¢ and g = go+€dg is a small
perturbation of gy then the linearized version of g = D¢(fe) is Led f = 0g/2, so
D¢ is an open map close to fo iff L is surjective.
More generally, the problem of the solvability of the so-called cohomological
equation
Lef=g (1.1)

in dependence of the topology of the foliation of its integral trajectories is rel-
evant in the context of dynamical systems and was recently studied from two
complementary points of view:

1. The time-change in the flow induced by the multiplication of £ by a strictly
positive smooth function A is trivial (i.e. & and A belong to the same
smooth conjugacy class) iff A —1 € Le(C™(M)) (see [17, 18] for more
details).

2. In a series of papers (see [19] and the works cited therein) S.P. Novikov
introduced exotic cohomological theories related to dynamical systems on
manifolds and showed that some cohomology groups associated to the co-
homological equation are related with the equivariant homology obtained
by considering the set of the invariant differential forms considered as
forms on the leaves space.

Note that the question of the solvability of the cohomological equation is
of purely global nature: it is well known indeed that, for every point p € M
with &, # 0, there is a neighbourhood U, s.t. L¢(C*(Up)) = C*(U,), so that
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the cohomological equation is always solvable. All solutions to (1.1]) are given
explicitly by

Ap i
f(p) = F(m) + /O [62(p)] g dA

where gﬁg‘ is the flow of £, A, the time to reach p from the point p; lying on a
fixed local transversal line [ and F' any smooth function defined on .

The most general result known on this subject is perhaps the following the-
orem [20]:

Theorem 1.3.1 (Hormander and Duistermaat, 1972). Let M™ be an open
connected manifold and & a vector field without zeros on it. Then the following
are equivalent:

1. Le(C°(M)) = C°(M);
2. (Lg 4+ a)(C®(M)) = C>®(M) for any a € C*(M);

3. € admits a global transversal, i.e. a codimension-1 embedded surface N C
M which is transversal to & at every point and cuts every of its integral
curves exactly once.

It is a classical observation, going back to Siegel [21] and related to the small
divisors problems that led ultimately to the KAM theory (e.g. see [22] and [23]),
that the Lie derivative operators can be easily non-surjective. Consider indeed
the vector field £ = 9, + ad, on T2 It is well-known that, for a generic o € R,
the only solvability condition for L¢ f = ¢ is the obvious fTQ gdu =0, where du
is the Haar measure on T2. Indeed, by developing f and g in Fourier series, the
cohomological equation writes

27Ti(m + an)fm,n =9mmn -

The corresponding solution

1 9m,n .
- _Immn 9
f(z,y) 57 ( %&:(0 o exp{2mi(mz + ny)}

does converge to a C™ function on T? if « is generic, so that m + an does not
grow too fast. Then in this case dimcoker L = 1. If instead o is a Liouville
number, i.e. a number such that for every n € N there exist two integers p and
q such that

a— p‘ < i )
q qr
then the denominators in the Fourier coefficients of f grow too fast and we have
dim coker L¢ = oo.
Recently there was a renewed interest in the cohomological equation on
(compact) surfaces. In Nineties Forni [I8] generalized this classical results to
orientable surfaces M of any genus for the action of the Lie derivatives L¢ acting
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as a weak derivative on the Sobolev spaces H*(M), namely the spaces of L?
functions on M whose weak derivatives, up to order k, also belong to L?(M).
In particular he proved the following results:

Theorem 1.3.2 (Forni, 1995). Let w be a symplectic form on a compact surface
M of genus g > 2. Then for a generic Hamiltonian vector field & with set of
zeros Y. there exists a k > 0 s.t. if g is compactly supported in M \ ¥ and
fMgw = 0 then the cohomological equation L¢f = g on HF(M) admits has a
solution f € L} (M \ ).

Theorem 1.3.3 (Forni, 1995). Let w be a symplectic form on a compact surface
M of genus g > 2. Then for a generic Hamiltonian vector field & with set
of zeros ¥ and for any s > 2g — 2 there is a finite number of distributions
di,...dn, € H,2(M\ X) such that the cohomological equation L¢f = g on
H*(M) has a solution f € H*=2972(M) if g satisfies the following compatibility
conditions:

/gw:oadl(g):0a7dns(g)20
M

In 2007 Novikov [19], in a general work where he introduced exotic cohomol-
ogy groups associated to Hamiltonian dynamical systems, showed that in the
smooth setting the situation is rather similar to the case of Liouvillian constant
vector fields in the 2-torus:

Theorem 1.3.4 (Novikov, 2007). Let & be a generic Hamiltonian vector field
on a symplectic compact surface M of genus g > 2 and L¢ : C°(M) — C*(M)
the corresponding Lie derivative operator. Then dim coker L¢ = oo.



Free Maps and Infinitesimal Invertibility
of the Isometric Operator

The proof of the celebrated theorem of Nash of isometric embeddings of a man-
ifold M into the Euclidean space R? (see Theorem is proved in two steps.
The first step is algebraic and consists in the construction of an inverse to the
linearization of the isometric operator Dys 4, leading to the definition of free
maps. The second step, much harder, is analytic and consists in an infinite-
dimensional Implicit Function Theorem (IFT) (see Theorem that shows
how it is possible to overcome the loss of derivatives in going from solutions of
linearized problem to solutions of the original problem.

In this chapter, following the point of view of Gromov in [I], we first in-
troduce our notations for Jet Spaces in Section Then, in Section we
define PDOs and the notion of infinitesimal invertibility in order to state the
Newton-Nash-Moser-Gromov IFT. Next we define Free maps and illustrate the
Nash embedding theorem for C™ maps, r > 3 (Section . All definitions
and theorems presented in the two previous sections are extracted from [I],
Section 2.3.2.

In Section [2.4] we illustrate in detail Gromov’s theory of linear under-determi-
ned PDOs, leading ultimately to Theorem [2.4.17] claiming that in the generic
case such PDOs are surjective. Finally, in Section [2.5| we answer positively, in
a particular case, to a question posed by Gromov in [I] using the Theorem of
Duistermaat and Hormander (these results have been published in [2]) and
then we make some step towards the general case using arguments similar to
those illustrated in the previous section.

2.1 Jet Spaces

Jet spaces of order £k = 0,1,2,..., are a finite-dimensional approximation of
the functional spaces of C*° functions and constitute the natural geometrical
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setting for PDEs in the same way the tangent bundles constitute the natural
geometrical setting for ODEs.

Consider first the set C*°(R™,R?) and denote by t* the operator which
associates to any function ¢ € C*°(R™, R?) its value and the value of all of its
derivatives up to order k at 0, i.e.

t* (1) = (¥(0), D(0), ..., D*(0))
where
D’(/)(O) : TORm — Tw(o)Rq
is represented in coordinates by the Jacobian matrix (9,%°(0)) of 1 at 0 and,
more generally, the multilinear maps

D (0) : (ToR™)* — Ty R?

are represented by the matrices of all derivatives of order ¢ of the components
of ¢ evaluated at 0, i.e.

D (0) = (ay..0r¥"(0))-
We call t*(¢)) the jet of ¢ of order k at 0. The relation ~j, defined by
Py ~p g iff tF(1) = t*(1y) is clearly an equivalence relation and the quotient

JER™ RY) L C°(R™ RY)/ ~y
is the space of all such jets. Any coordinates system (y') on R? induces coordi-
nates (4, yh, -, Yh, o) 00 JE(R™,RY) such that

yl('(/)) = '(/)(O) ) yfx(w) = 8aw(0) [ yzixl...ak (w) = 8041‘..ak'¢)(0)

Clearly, since derivatives commute with each other, part of these coordinates
are actually redundant; in order to have a true coordinate system we keep
only those such that the lower indices «; ...y are in non-decreasing order, i.e.
ap << qpforall h=1,... k. In general we have that

JER™RY) ~R? & [R!® (@), S R™)] ,

where the Sf R™ are the vector bundles of the symmetric tensor products of £
copies of T*R™. In particular

1 k-1 k
dimJ(]f(Rm,Rq):q(l-&-(T)—i—(m; )+--~+<m+k )):q(m,—: )

where (7) = ﬁlb), is the binomial coefficient. For every h < k we have natural
projections

e Jy (R™,RT) — Jg(R™,RY)
which define in general affine bundles. There are two kinds of projections par-
ticularly important. The first is

g s JETHR™ RY) — JE(R™,RY),
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which defines, for every k, an affine bundle such that

. m+k
dim i gm ga) JEFLR™ RY) = q(k N 1) ,

where by dimg F' we denote the dimension of the fiber of a fibration of F' over
E (it will be clear from the context to which fibration we refer to).
The second is
79 JER™ R?) — R,

whose fiber 79(y) is the set of the k-jets of all functions s.t. ¥(0) = y and is
denoted by J§(R™,R?),.
The space of all jets from R™ to R? is defined as

JFRMRY)E ) JER™RY), ~R™ 0GR @ [R? @ (65,5 RY)]

zeR™, yeRY

To every map f € CF(R™,RY) it is naturally induced a map j*(f), called
prolongation of f, defined as
7*(f) (R = JH(R™, RY)
(@)= (@, f1(2%), 0o, [*(2%), -, Oy [ (27)
Once a map F € C*(RY, RP) is given, we can send jets j*(f) : R™ — J*(R™ R?)

to new jets
FH(F o f) i R™ — JHR™, RP);

similarly, given a G € C¥(R™ R") we can move jets j*(f) : R® — J¥(R" RY)
to
*(fo @) : R™ — J¥R™,RY).

This induces jet bundle morphisms
JER™, F) - JER™ RY) — JF(R™,RP),
J*(G,RY) : JH(R™, RY) — J*(R™,R?).
Example 2.1.1. The space of 1-jets at 0 of applications R — R? s exactly the

tangent bundle of RY:
JH(R,RY) ~ TRY.

Under this identification, the map J3 (R, F) : J3(R,RY) — J}(R,RP) associated
to any C' map F : R — RP coincides with the tangent map TF : TRY — TRP.

Similarly, the space of 1-jets to 0 of applications R™ — R is exactly the
cotangent bundle of R™:

J'R™ R)g = T*R™.

The map JY(F,R)y : JHR™, R)y — JYR™,R)q coincides with the cotangent
map T*F.
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A very important case is given by the projection of the trivial bundle
m : R™ x RY — R™

so that
JER™ )« JFR™, R™ x RY) — J*(R™,R™).

We denote by I'" (1) the set of C" sections of this bundle, i.e. of those C" maps
f:R™ — R™ x RY? such that 71 o f = idgm. Then, in coordinates,

]k(f)(xa) = (‘ravxavyiv 5,%7 aﬁyiaovaﬁlﬁzyiv cee 707 a[hﬁkyl) )

so that
‘]k(Rm77r1)(Jk(f)) :jk(ﬂl Of) :jk(idRm) = (maaxavégvoa e 30)

and, viceversa, every map whose jet is sent into j*(idg=) by J*¥(R™, m) is a
section of R™ x R? =% R™. We denote by J*(71) the (closed) submanifold
JH(m1) TR RP, 1)1 (5* (ide ) € JF(RP,R? x R™),
which contains the k-jets of all sections of the bundle.
Now consider two C*-manifolds M and N. Since each of them is locally eu-
clidean and the construction of jet spaces is natural, the spaces of jets J*(M, N )y

with x € M and y € N, built via any pair of coordinate systems do not depend
on the arbitrary choice of them and so the spaces

JHMN)E ) TR N),
zeM,ye N

are intrinsically well defined and similarly are well defined the projections
7 JE(M,N) — J"(M, N)

for every h < k. In particular all the J*(M, N) fiber naturally over J°(M, N) ~
M x N.

Example 2.1.2. The isomorphisms in Ezample[2.1.]] still hold after replacing
R™ with a manifold M and R? with a manifold N. Other noteworthy particular
cases are the space of 1-jets of maps M — N,

JYM,N)~T*M TN,

whose sections are the linear homomorphisms between TM and TN, and the
space of 1-jets of diffeomorphisms at 0 between R™ and a manifold M of same
dimension, G§(R™, M), which is isomorphic to the principal bundle L(M) of
the m-frames over M.
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Finally, let F " E a C* fibration of a manifold F, with dim F = m + q,
over a manifold F, with dim E = m. Then each fiber of the fibration is ¢-
dimensional and, similarly to what we did above in case of the trivial bundle,
we can define the bundle of k-jets of sections of F —— E as the set

JEFR Y JR B ) (5 (dp))

with
. m+k . m—+k
dnanF:q< k ), dlkaFJk+1F:q<k+1>.

Occasionally, depending on the opportunity, the bundle J* F will be also denoted
by J¥7. Correspondingly, the spaces of C" sections of F —— E will be denoted
sometimes by I'"F' and sometimes by I'" .

The jet space of sections of a bundle is general enough to include also the
spaces of jets between two manifolds M and N. Indeed every map f: M — N
can be seen a section f of the trivial bundle 7y : M x N — M defined by
f(@) = (, f(x)), so that

JErar ~ J5(M,N), T"my ~ C"(M,N).

From this moment on then we will follow Gromov’s approach and consider just
the case of jets of sections of a fibration.

2.2 PDQOs, infinitesimal invertibility and the
Newton-Nash-Moser-Gromov theorem

Let FF 5 E be a C°°-fibration and G =% E a vector bundle over the same
manifold E.

Definition 2.2.1. A C* PDO over F of order r with values in G is a map
L, :T"F - T°G

whose coefficients, written in any coordinate system, are all of class C* and
whose value on a section f € I'"F at a point x € E depends only on j.f.

Denote by (z%) the coordinates on E and by (z?, f*) and (2%, g%) fibered
coordinates respectively on F' and G. Then the induced coordinates on J" F' are
(x, f fL, .. fi o) and L, writes as

Lo(f)(@) = (A, [1(2%), 0af' (%), -, Oay.ca, [ (27)) -

where A, = (A%) : J'F — G is some C* map.
The equation

L (f)=¢
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then is represented by the PDE system

Ag(za’ fi(xa)v 8fé(:17a), EEEE) af{il...aT (Ia)) = ¢a

of ¢’ equations (since a = 1,...,q’) in ¢ unknowns (the functions f1,..., f9).
This suggests a new equivalent definition for PDOs over F':

Definition 2.2.2. A C* PDO over F of order r is a C* map
A JF—G

Observe that, when the fibration F =5 F is trivial (namely when F = ExQ
for some manifold @ and g is the projection on the first factor), the space of

C" sections of F' is naturally isomorphic to the space of C" functions from E to
Q,ie I'"(F)~C"(E,Q), and, equivalently, JF ~ J"(E, Q).

Example 2.2.3. The simplest C* PDO over a manifold M is represented by
a vector field € € T°(1pr), i.e. a CF section of the tangent bundle TM 2% M.
We denote the corresponding first-order linear homogeneous PDO by L¢ (Lie
derivative in the & direction). L¢ is a map from CY(M) to C(M), i.e. here
E=M and F =G =M x R. In coordinates L¢ = {0, and the corresponding
map A¢ : JH(M,R) — M x R is defined as

Ae(a?, £, f5) = €% (@) fa -
The corresponding PDE
(') Ae =9
is called cohomological equation and will be studied in detail in Chapter 3 and

Chapter 4 for M = R? in case of vector fields with no zeros.

Example 2.2.4. The most important PDO for this thesis is the isometric oper-
ator, namely the C*° quadratic first-order operator defined by Dy o(f) = f*ey,
where f € CY*(M,R?) and e, is the euclidean metric on RY. Here E = M,
F =M xR? and G = SYM (since D q(f) is a symmetric tensor with two
contravariant indices), so that

Diarg: CH(M,RY) — TO(SIM).

In coordinates . ‘
Drg(f) = 0ij0af'0s 7,
so that the corresponding map Ay g 2 JH(M,R?) — SIM s defined as

Apig(z®, f, fa) = 5@3]0&]% .

Now recall that a vector v € T, F, p € F, of the fibered manifold F R )
is called wertical if Tymp(v) = 0 and consider the vector bundle of all vertical

vectors VF % ker Trrp C TF. For every section f € I'"F we can build the
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frrr

pull-back bundle f*(VF) — E, namely the vector bundle over E having over
every point x € E the vector space Vi F.

The space I' e I'"(f*(VF)) of the C" sections of this new bundle can
be thought as the tangent space at f of the (infinite dimensional) space I'"F.
Indeed consider a 1-parameter family f, of sections which is C! with respect
to the parameter ¢ and such that fo = f. For any zyp € FE we get a curve
fi(xo) C F whose tangent vector ny(xo) = dfi(zo)/dt|i=o lies by construction
over the point f(xo) and is clearly vertical since

dfi (o) > _ d(mr o fi)(x0)
=0

d(to
Toomr(nf(z0)) = Toymr (dt dt =

=0 dt

t=0

Hence the way the section n; € I is defined out of f is completely analogous
to the one used to define tangent vectors to a manifold over some point in the
finite-dimensional setting. Finally, observe that every pair (f,ny) € I"F xT's is

a section of V F Y, E, where Vr = mp o 7|y F, and viceversa. Thus the space
of sections I'"(V' F') can be considered as the full tangent bundle of I'"F.

Now consider a C* PDO £, and a section 7 € I} and let f; a 1-parameter
smooth family of sections f; of F' defined as above so that

_s Y
fO_fa dtt:O_n.

Definition 2.2.5. The linearization of L, at f is the linear PDO
bry T — r'ae
defined by
brg(n) = L)

t=0
The PDO
(. :T"(VF) - T°G .,

defined as £,(f,n) = £, r(n), is the tangent map (or differential) of L,.

A direct elementary calculation shows that this definition does not depend
on the particular family f; and therefore is well-posed. Often in this thesis we
will use in calculations the notation ¢ f, where § stands for d/dt|:—g, used often
in mechanics and in the theory of calculus of variations, rather than 7.

Example 2.2.6. The Lie derivative L¢ is linear and so it is to be expected that
its differential {¢ is identical to it. Indeed

Ce(f,0f) = 0Le(f) = 0(§%0af) = €70ad f
The isometric operator Dy 4 instead is quadratic and its differential £y q s

Orr,g(f,0f) = 6Dnrg(f) = 8(8ij0a f'pf’) = 26100 f'Opo f
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Now that we have defined the linearization of a PDO we can define its
infinitesimal invertibility:

Definition 2.2.7. We say that L, is infinitesimally invertible over some subset
A CTI"F if there exist a family of linear PDOs my : I'°G — F(} of some order
s, with f € A, satisfying the following properties:

1. ACTYF for somed > r called defect of the infinitesimal inversion and A
is equal to the set of sections f whose s-jets j° f are such that j° f(F) C A
for some open subset A C JUF;

2. the map m : A x T°G — I'%(VF) is a PDO which is non-linear of order
d in the first argument. Its corresponding jet spaces homomorphism is a
map A x J°G — VF;

3. L.(m(f,g)) =g for every f € T"TF and g € T"T*@.

The most important example of infinitesimally invertible PDOs are the iso-
metric operators, which were also the starting point of this whole theory. They
will be discussed in next section. In the rest of the present section we state
the Newton-Nash-Moser-Gromov Implicit Function Theorem, whose proof is a
wide generalization of the original Nash proof of the inversion of the isometric
operators.

Theorem 2.2.8. Let L, be a C* PDO admitting an infinitesimal inverse of
order s and defect d over some subset A C I'"F and set § = max(d, 2r+s)+s+1.
Then, for every fo € ANT®F, there is a neighbourhood U C TG of 0 such
that, for every g € UNTS with s' > 3, the equation L,(f) = L.(fo) + g has a
C*'=* solution.

The following corollary is the version of the IFT most important for us:

Corollary 2.2.9. Let L, a PDO infinitesimally invertible over A C I'"F. Then
the restriction of L, to ANT>F is an open map.

2.3 Free Maps and the Nash Theorem

As we already pointed out in Example the linearization of the isometric
operator
Dip,g : CHM,R?) — JO(SIM)
(f) = 6ij0afi0sf! dz® @ daP
is equal to ' 4
EM’Q(fa 5f) = 25ijaafza,86fj dl’a ® dlﬂ .

Given a section dgas € I°°(SIM), in order to use Gromov’s IFT we must
find some open set A of C¢ functions from M to R? over which the linear PDE
system

25,»j8afi856fj = 0gas (2.1)
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is solvable.
Following Nash, we take f € C?(M,R?) and use the Leibniz rule to transform
i
265 (08 (Baf'6f7) — (ﬁﬁf’éf]] = 0gap (2.2)

and observe that, under the assumption
8ij0af'6f7 =0,

the system ([2.2)) is equivalent to (2.1]). Hence for the solvability of (2.1)) it is a
sufficient condition the solvability of the larger system

{&jaafiéfj =0 (2.3)

0ij025f"0f7 = —0gap/2
This justifies the following definition:

Definition 2.3.1. A map f € C?(M,R?) is said free if its first and second
derivatives are linearly independent at each point, namely if, in coordinates, the
(m+ sm) X ¢ matriz

aft - o
8m'f1 3m'fq
DQf = a11f1 s Onfe
Oaft - O1aft

has rank m + s,, at every point. The set of all C" free maps is denoted by
Fr(M,R9).

Clearly, since we endowed all functional spaces with the Whitney strong
topology, the set F"(M,RY) is open in C"(M,R?) for it is defined by an open
condition. Let F2(M,RY) be the open subbundle of J2(M,R?) —~ M x R?
whose fibers over each point (z®,%%) are the matrices (y¢,, yfw) of rank m + s,.
Then the free maps f € F"(M,R?) are the functions f € C"(M,R?) whose 2-jet
satisfies the property j2f(M) C F2(M,R9).

System is clearly always solvable over F?(M,R?), leading to the fol-
lowing theorem:

Theorem 2.3.2 (Nash, 1956). The isometric operator Dys 4 admits an infinites-
imal inverse of defect 2 and order 0 over the space of free maps F?(M,R?).

Proof. System ([2.3) is linear and therefore gives us df as an affine function of
dg. The space of its solutions over every point f therefore is an affine subspace
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of the fiber of codimension ¢ — s, —m. Let 0 fr 54 be the solution closest to the
origin with respect to the canonical euclidean metric on the fiber and observe
that this solution is uniquely determined and depends smoothly on f because
the coefficients of this affine subspace are regular if f is free.

Define now the operator m(f,dg) = dfss4. This m is an infinitesimal inverse
for Dy q or order 0 and defect 2. Indeed by definition l5r,4(m(f,dg)) = dg, since
m(f,dg) is a solution of Iy 4(f,df) = dg. Clearly m is order 0 with respect to
dg since system is purely algebraic. The defect of m is 2 because in or-
der to solve we must ask f € C?(M,R?) since we need the matrix D?f
to be continuous. Finally, as we already pointed out, free maps are character-
ized as sections of an open subbundle of J2(M,RY), so that all properties in
Definition B3] are satisfied. O

Theorems and immediately lead to the celebrated Nash theorem
on C* isometries with k& > 3:

Theorem 2.3.3 (Nash, 1956). If go = Darq(fo) with fo € F>(M,R?), then
the C* metric go + g, s > 3, can be realized by a C* immersion f (namely
Dutq(f) = go + g) for every C3-small enough g.

It is clear from the theorems above why free maps are a central concept in
the theory of isometric immersions and embeddings. In the rest of the section
we recall the main facts about these maps.

Proposition 2.3.4. The set F"(M,R?) is empty for ¢ < m + s, and dense
(and in particular non-empty) for ¢ > 2m + sp,.

Proof. A map f: M — RY is free when the image of the map
D%*f: M — M,,, ,(R)

is contained in the set of matrices of maximal rank. In particular a map is
not free when the image of D?f intersects the set N, , of matrices of non-
maximal rank, whose codimension is ¢ — s, + 1 [24]. For a generic f the image
D?f(M) and N, , are transversal and therefore they do not have points in
common when dim D? f(M) < codim N, ,. Hence a generic map f is free for
q>m-+ Sp,. O

Following Gromov, we call “extra-dimension” the cases with ¢ > m + s,
and “critical dimension” the case ¢ = m + s;,.

Theorem 2.3.5 (h-principle for free maps). Free maps M — R? satisfy the
h-principle in the extra dimension case and, if M is open (i.e. has no compact
component), in the critical dimension case.

We recall that this means simply that C" free maps arise between M and RY
iff the bundle F2(M,RY) ~ M x R? admits a C” section. In particular then
if M is parallelizable then F"(M,R?), > 2, is non-empty for all ¢ > m + s,, if
M is open and for all ¢ > m + s, + 1 if M has a compact component.
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Example 2.3.6. The sets F"(R™,RY) are non-empty for all ¢ > m + s, The
simplest free maps in the critical dimensions between euclidean spaces are

fz®) = (2. . 2™, (b2, 2t 2?, . (™))
and its compositions with the permutations of m + s,, variables.

It is interesting to notice that, out of this map, one can extract the free
embedding V : RP™ — RY, again in the critical dimension ¢ = m + S,, and
introduced first by Veronese, given by

V([xl C merl]) _ [(xl)Q cplpZ el (3;7”4’1)2]7

which embeds RP™ in some affine g-plane inside RPY. The lift of this map
to S™ provides a free map in critical dimension for all spheres. These are the
only compact manifolds for which it is known there exist free maps in critical
dimension.

Example 2.3.7. The sets F"(T™,R?) are non-empty at least for all ¢ > m +
Sm + 1. For example, the map f : T? — RS defined by

f(z,y) = (cosx,sinx, cosy, siny, cos(z + y), sin(x + y))
belongs to F>°(T?,R®).

2.4 Algebraic Solution
of under-determined linear PDEs

In this section we illustrate in detail some results of Gromov on under-determined
linear PDE systems by translating most of Chapter 2, Section 3, Subsection 8
of [I] in our notations and using a style less compact than the original.

We assume throughout the section that F =% F is a vector bundle, so
that its fibers over any point ey € F are (non-canonically) isomorphic to R?.
Recall that also G =< E is a vector bundle whose fibers are (non-canonically)
isomorphic to RY". A linear PDO of order r is a linear map L, : I"F — I'°G.
The corresponding map A, : J"F — J°G is a homomorphism of vector bundles.

Definition 2.4.1. We say that L, is under-determined if g < ¢'.

If £, is under-determined then the linear PDE £, f = g has more unknowns
than equations. The goal of this section is to present in detail Gromov’s argu-
ment that shows that a generic under-determined PDE is solvable.

Before going to the general case we illustrate a few elementary cases.

2.4.1 Operators with constant coefficients

Consider the case M = R™ and an operator £, : C"(R™,R%) — CO(R™,RY)
with constant coefficients, namely

»C'r‘(f) _ Z A?AaAfi _ (A(zlfl + A?aaafi + -+ A;lal.“araoélmarfi)

[Al<r
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for some constant matrices A%4. In this particular case we can define PDOs in
a further equivalent way:

Definition 2.4.2. A C* PDO of order r between C"(R™,RY) and C"(R™,RY)
is a ¢ x ¢ matriz £, = (£) whose elements £¢ = A0, are C* PDOs of
C™(R™) in itself.

A right inverse for £, is an operator M, : C"T5(R™ R?) — C"(R™,RY) such
that £, o M, = if™*, where if™ is the canonical injection C™+5(R™ R%) —
CO(R™,RY).

Assume first that ¢’ = 1 and that M, = ZIBISS M*B@g has also constant

coefficients. Then to each matrix A and M5 we can associate polynomials of
degrees respectively r and s in C™ defined by

Ai(wl, ceonw™)y =N+ Adwy -+ A?L”arwal T Wa

Mi(wh, ..., w™) = M+ M ®wq 4 - 4+ M@ % wy - w,,

The relation £, 0 Ms =37 4<, 22 pj<s AAMBY,p =il ® translates in
AT =1 (2.4)

namely the ideal generated by the A, is the whole ring Clwy, . .., wy,] of complex
polynomials in m variables. Clearly (2.4) holds iff the system

(2.5)

admits no solution and this, for a set of ¢ generic polynomials, can happen iff
q > m. Thus L,, with ¢’ = 1, is generically invertible for ¢ > m + 1.

For ¢’ > 1, to the operator £, we can associate a m x ¢’ matrix (A?) of
polynomials and similarly for M, and the invertibility condition writes

AN = 67

This can happen iff rank(]\;’) = ¢’, which is represented by ¢’ +m — 1 equations.
Hence such a generic £, is invertible iff ¢ > ¢’ + m.

2.4.2 Lie Equations

Consider a finite set X, = {&,...,&,} of vector fields & € X(M) and the
differential operator Dx, : C°°(M,R?) — C°°(M) defined by

h

Dx,(f'. . f) = (Le, o Le) | ¢ | =Le s
fq
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Definition 2.4.3. We say that X, is large if there exist ¢ smooth functions pY
such that X'&; = 0 and & (X)) = p € C(M).

Large collections of vector fields are interesting because the corresponding
PDE Dy, (f',..., f?) = g, restricted to a suitable subspace, becomes algebraic:

Proposition 2.4.4. If X, is large then the restriction of the PDE

DXq(fla"-7fq>:g

to the subspace A, = {h(A\',..., X)) |h € C>®(M)} C C®(M,RY) is purely
algebraic.

Proof. Set f* = hA*. Then
Dx,(f', ..., f9) = Le; (hN') = hLg, X' + XN'Le,h = hpo+ Lyig,h = by,

namely the equation Dx_(f AL ..., fA9) = g is equivalent to the algebraic equa-
tion ph = g. O

Theorem 2.4.5. If X, is large then Dx, is surjective.

Proof. This is just due to the fact that every u € C'°(M) has a smooth inverse.
Hence the restriction of D to A, is surjective by Proposition and a solution
to qu(fl7 ..., f9) = g is given, for every g € C®°(M), by f*' = N g/u. O

Theorem 2.4.6. A generic X, is large for ¢ > 2m + 1.
Proof. In order for X, to be large we must be able to solve the algebro-differential
System
NEX =0
&' = (2.6)
§F0aN =g

of m 4+ 1 equations in ¢ unknowns. The second (differential) set of equations
transforms into algebraic ones by observing that

giaaa)\i = aa()\zgft) - )‘iaozgz‘a ’
so that system (2.6) is equivalent to the linear system
o & 9alh m
Ao s =00 —g). (2.7)
loEm duge
If X, is generic then the matrix
o & 0adt
Dx,=|: © i
§ o & 0kl
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can be considered a generic application Dx,  : M — M, 41)xq(R). The space
of real (m + 1) x ¢ matrices of non-full rank have codimension ¢ — m (e.g.
see [24]) and therefore the map Dx, does not intersect it if m < ¢ + n, namely
if ¢ > 2m. U

As the following example shows, the condition ¢ > 2m + 1 is not at all
necessary for the existence of large collections of vector fields:

Example 2.4.7. The set X,p1 = {01,...,00,2%04} is large. Indeed for this
case we can set \* = %, a=1,...,m, Nl = —1.

Definition 2.4.8. A Lie subalgebra of X(M) is large if it contains a large
collection of vector fields. We say that X, C X(M) is weakly large if the Lie
algebra (X,) C X(M) generated by it is large.

Theorem 2.4.9. If X, is weakly large then Dx, is surjective.

Proof. Let Y, = {m,...,np} a large subset of the Lie algebra generated by
X,. By definition, every operator L, is equal to a sum Lg, E;« where E}C is
some PDO of finite order; for example, Li¢, ¢,] = Le, E! + L, B2 for 2! = L,
and E% = L¢,. Therefore for every g € C*(M), by hypothesis, we can find
p functions F* s.t. Lnk_Fk = g, namely Lg, E}C F* = g, so that the functions
fi=z F* solve Le, fi =g, ie. Dx, is surjective. O

Example 2.4.10. The set Xo = {0, (x +y)0,} C X(R?) is not large but it is
weakly large. Indeed [0y, (x + y)0y] = 0y and
X3 =161 =0:,6=0y,& = (v +y)0y} C (X2)

is already large. For example we can take \' =0, A2 =z +y and X\ = —1, so
that ‘

X&' =00, +(x+y)0y — (x+y)0y, =0
and

€(Ni) = 0.0+ 0y(z+y) — (. +y)dy(—-1) = 1.

Proposition 2.4.11. Any two vector fields &1,& € X(M) in generic position
are weakly large.

Proof. If &1 and & are a pair of generic vector fields then no linear relation
occurs between them and their commutators. Consider the set Y311 of any
2m + 1 of them. The elements of the matrix Dy,, , then can be considered
independent and therefore Ya,,+1 is large. O

Corollary 2.4.12. If&,& € X(M) are generic, the PDO
fi
(L§1 L& 0 ... 0) = Lglfl + L£1 f2
fa

18 surjective.
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2.4.3 The general case
Consider finally a general linear PDO L, : I"F — I'’G of order r. In this case

Lo(f)= | D AAOAf | = (AL + A Oaf + -+ AL 0y, o, )

|Al<r

for some linear homomorphisms A, : J"F — G. This suggests the following
equivalent definition for a linear PDO:

Definition 2.4.13. A linear C* PDO over F of order r is a C* section A, of
the bundle Hom(J"F,G) — E of all linear homomorphisms between J"F and
some vector bundle G.

In every trivialization of F' and G, A, can be represented by a PDO matrix £,
as in case of the linear PDOs with constant coefficients but this representation
is not global in general.

To every L, we can associate the adjoint operator L : I'"G — I'°F defined
by

* A —iA 4
Lrg= [ > (=nMaa (89°) | .
lAl<r
where K;A = A%4 is the transpose matrix and A} = (KQA) : J"G — F. Note that
the higher order terms of an operator and its adjoint are exactly the transposed
of each other, while the terms of lower order are mixed in a more complicated
way.

Example 2.4.14. Consider the case of a first-order operator £ : T'F — T'°G,
so that _ ‘
Li(f) = (A7 "+ A%0af') .

Its adjoint L% : TG — T°F is the operator
£i(9) = (Rog” = 0By’ 9") = (K, = 0y )g" = By 0ag”) -

Example 2.4.15. The operator L¢ (see Example m s linear. The m + 1
coefficients of the homomorphisms A¢ are

(A1 =0, ()™ =&,
A direct calculation shows that, as expected, Li=—Le.

Example 2.4.16. The homomorphism Ay, : JY(M,RY) — J°(SSM) cor-
responding to the differential {rr 4 of the isometric operator Dysq (see Exam-
ple(2.2.6) writes

Cag(f6f) = (AJV[,q)’(YaB)i(f) D6 f" dz®™ @ da? |
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where by (o) we denote the coordinates of a section §ga3 of SYM, to distinguish
them from the index v which also run from 1 to m but is instead contracted with
the derivative 0,. Its coefficients are given by

{ (AM,q)(aﬁ)i =0

, 1. 2.8
(Arta)lagy = 0ij [5laﬁf] + 5}%]”] 28)

The coefficients of the adjoint homomorphism Ay, : JO(S§M) — J*(M,R?)
associated to U}, . are

{(A& y 29

(Aip ) @D = 63051 + 8} 0af
so that

ina(F:09) = (N30 P (1) g0 + (Mara) P (1) 0,090

= (20a0f" 0905 — 63 0af" + 80 6903 ) -
A direct calculation shows that the adjoint operation satisfies the expected
properties
Lo (L7)" = Ly
2. (LM = MELE.

For dimensional reasons there cannot be a left inverse for £, but there can
be a right inverse, i.e. a linear PDO

M, :T°G - TF
such that
ET‘MS = Zg+r(G) )
namely
LM, : TG - TG and L, M,(g) =g.

In principle this fact could be useless since the equation £, M, =i}, (G) is a
rather complex PDE of order r in the elements of My having for coefficients
linear functions of the components of £,.. The reason why it is instead of
fundamental importance is that, on the contrary, the equivalent equation

MLy =i,,(G)

is linear in the elements of M, and the coefficients of this linear system of
equations depend on the elements of £, and on their derivatives up to order s.

In terms of jets, to the PDO M, correspond a vector bundle morphism
M, : J°G — F which is the inverse of A, in the sense that

J"(Msg)™Ay = g, Vg € T°77(Q)
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The adjoint version of this equation reads
J°(ATg)" M =g, Vg € T°T7(G)
which in local coordinates writes
Mo, [Kj;BaB} = op

or, more explicitly and after dropping the bar over the elements of M} and A}
to make notation lighter,

> MMouN, =6

|A|<s
Do MM+ >0 M R0a8 =0

|A|<s |A|<s—1

SO MfAGLNTTE L N M RN+ DT MIPRA9uN =0
jAl<s jAl<s—1 |Al<s—2

Z M,L'G/Bl."6871A8AAZBS.“BS+T71 + MiaﬁlnlﬁsAZBS+1”.BS+T71 _ O
|A]<1

afi...0s A Bst1---Bstr _
M A} +1 )
(2.10)
i 1 1 (M +s aA . "2
This huge linear system in the qq unknowns Mg consists of (¢’)
s

equations at the order 0 (i.e. containing the terms of ML of order 0),

(¢')*m equations at order 1 and so on up to the order s + r, consisting of

(¢)? m+r+s—1 ofm+r+s
r+s r+s

In particular the unknowns are more than the equations when

) equations, for a total of (¢’) ) equations.

q(m—i—s)! N J(m 41+ s)!

s! (r+s)!
namely
m+r+s)! sl m+s+r m+s+1 . m
q (m+s)! (r+s)! s+r s+1 paley s+1
For example this surely happens when
;> ()
s (1+2) 2.11
4> (142 (211)

from which it is clear that, as long as ¢ > ¢/, it is always possible to choose M
of order s so high to satisfy the inequality. We are going to show below that
this condition is actually sufficient for the (formal) solvability of the system.
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As a first step toward solving we observe that it naturally splits ¢
independent systems, each of them obtained by keeping only those equations
containing the unknowns Mia“A for some fixed ag, since in no equation appear
at the same time unknowns with two different values for that index. Each of

m4r+s
these systems has ¢’ ++ * equations and within each of them only one
r+s
equation, precisely
Y Mo =1, (2.12)
[Al<s

has a rhs different from 0.

Observe now that, since F' is a vector bundle and A, is a linear morphism
of bundles, A, and A’ can be seen respectively as sections of the bundles
Hom(J"F,G) — E and Hom(J"G, F) — E of all such morphisms. Since the
elements A4 of A* are functions of the elements A?* of A, and of their deriva-
tives up to order 7, the coefficients of system (2.10)) are functions of the A%4
and their derivatives up to order r + s. It is more convenient though for us
to consider the elements of the adjoint as independent variables, in particular
as coordinates on the fibers of J* Hom(J"G, F) — E. The dimension of these
fiber is qq’(m:'T) (m:S). In J* Hom(J"G, F) we denote by AiZ | with |A| < s and

|B| < r, the coordinates corresponding to the partial derivatives 3AA§;B , so that
system (2.10), with a = ag, writes as

> g, =

[A|<s

S Y M o

[A|<s |[A|<s—1

Z M?DAAZ%BZ_‘_ Z Mf051AAz%+ Z Mz‘a05152AAli7A:O
[A|<s [Al<s—1 [A]<s—2

Z Miaoﬂl~~ﬂs—1AAZ€345---ﬂs+r—1 _|_Miaoﬁl...55A25s+1---,@s+r—1 =0
[Al<1

Miaoﬁl~»-ﬁsAll;ﬁs+1-.ﬂs+r —0
(2.13)

whose only non-homogeneous row is

> MPANL L =1 (2.14)
lAI<s

Clearly the only obstruction to the existence of a formal solution of system

(2.13) is that the non-homogeneous row (2.14) be a linear combination of the

remaining rows with coefficients g, k = 1,...,¢ (m:j:’r) — 1, in the field R

of rational functions in the fiber coordinates Aflg. Let us assume, by absurd,
that such a linear combination exists and observe that the system (2.13) is
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somehow “triangular”, in the sense that the variable AfLO 4 does not appear on
the left or on the same column with respect to the column where it appears
in the non-homogeneous row . Then we can do the following: starting
with the leftmost coefficients A}, we write them as linear combinations of the
coefficients lying in the same column and then substitute this expression in all
columns at their right, so that in the rest of phe system the A% , will not appear
anymore. We do this recursively for each A; 4 so that, in the end, we are left
with relations

?loA = fzoA(/\lw"?/\lﬁAzgl)v (215)

where the @, , are linear functions of the A%} and polynomial functions of the
coefficients A, and satisfy aAioAég’oA, =0 for all A, A, i and i’ (i.e. no AL ,

appears explicitly in the rhs of 1' ). Since the q(mjs) variables Aflg 4> AS COOT-

dinates on the fibers of J* Hom(J" G, F), are clearly independent, their number
m-+s+r
s+r

as no AZO 4 appears explicitly in the functions @go 4+, in order for the relations
to hold they must be contained inside the coefficients A; and so the Ag
must be at least as many as the Aflo 4- This shows that a necessary condition
for the non-homogeneous row to be a linear combination of the homogeneous

ones is that
,(m+s+r m+s
q >q .
sS+r s

Hence it is enough to ask the opposite inequality to ensure the solvability of
2.13). In particular, for the system to be (formally) solvable it is enough (see
2.11))) taking

cannot be larger than the number ¢’ ( ) — 1 of homogeneous rows. Indeed,

S>7L‘
q T
(q,) !

We assume from now on that s is chosen big enough to grant the existence
solutions of . Such solutions will express the elements M as rational
functions of the d4AE. Let M} be one of these solutions and let p be the
polynomial in Aiﬁ obtained as the product of all denominators of its coefficients
Mg4. Then the PDO PF = pM* is polynomial in the 94 AP and satisfies

PiLy=piy(G).

Clearly M is not regular in the zero set Z, of p. Let N be a second distinct
solution, N the corresponding PDO, q the corresponding polynomial product
of all denominators of its coefficients and Z, its zero set. Out of M, and N we
can build a new, more regular, left inverse for £;. Indeed let A,, Aq be a pair
of non-negative functions such that A\, +Aq = 1, A\y|z, = 0 and \q|z, = 0. The
operator Ay M + AN is clearly a left inverse of £} of order at most s and it
is regular everywhere except on Z, N Z;. Note that, if p and q have common
factors, then the codimension of Z, N Z; remains 1 rather than dropping to 2.
We say that M, and N are functionally dependent or independent according to
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whether the corresponding polynomials are, so that when they are functionally
independent the codimension of Z, N Z; amounts to 2.

We can repeat these considerations for every solution of so that, in
the end, we can build a left inverse of £} of order s which is regular at every
point except at those belonging to the zero set ¥4 of the ideal 3, of all poly-
nomials p such that P;L: = pid  (G) for some operator P, with polynomial
coefficients in the componentns of j*A*, namely the 94A'Z. The codimension
of X, i.e. the codimension of its irreducible component of higher codimension,
is given therefore by the smallest number of functionally independent left in-
verses of L. Finally observe that if p € X, so that P;L: = pid, (G) for
some polynomial operator P, then also p € Xy for every s’ > s since, trivially,
Pi Ly =il (G), where PZ has all coefficients of order up to s equal to those
of P and all others equal to 0. In particular this means that 7% (X)) = £, for
the canonical projection 7%, : J* Hom(J"G, F) — J* Hom(J"G, F).

Hence, in order to determine whether generic PDOs £, admit a left inverse
we must evaluate the number of its functionally independent left inverses. The
following clever argument of Gromov settles the problem by showing how to
build, as long as the codimension k of X, is not larger than m, a new left inverse
of some order s’ > s out of the ones of order s and functionally independent
on them, so that X, has codimension at least k + 1; of course this ultimately
implies that codim ¥4 > m for s big enough and therefore that generic linear
PDOs are in fact left-invertible (and therefore surjective on their target space)
for ¢ > ¢'.

Consider an irreducible component ¥ of ¥, of codimension k, let zg be any
regular point of ¥ and let p1,...,px : J*Hom(J"G, F) — R be polynomials
vanishing on ¥, and functionally independent at zy. Since m is much smaller
than the dimension of the fibers of J* Hom(J"G, F), a generic section A% : E —
Hom(J"G, F) is such that j°A%(E) cuts ¥g in a set of dimension m — k and
the jacobian of j°A’ has rank m. In particular we can always pick a A, passing
through xy and slightly perturb it so that:

1. it cuts ¥g at j°A%(eg) close to xg for some ey € F;

2. its tangent map is injective on the tangent of Xy, i.e. the k functions
(7°AX)*p; : E — R are functionally independent at eq;

3. it has no characteristic submanifold of positive codimensiorﬂ

By point 2, the zero set Z of the (j°AX)*p; is non-singular close to ey and, by
point 3, there is at least a hyperplane in T, E (actually, almost all of them)
containing T, Z to which A, is transversal. Equivalently, there is a linear com-
bination A (55A%)*p; = (§5AZ)*(\'p;) such that j¥AZ is transversal to py = Aip;
at eg. By Hilbert’s Nullstellensatz, since py clearly vanishes on ¥, there exist
an integer exponent K such that pﬁ{ € B and, correspondingly, an operator
A M, polynomial in j°A%, such that \M:L: = piid, (G).

1See Appendix B about the transversality of PDOs.



2.5 Non-free maps and the Gromov Conjecture 31

Next, we use Lemma to find operators Ay and By of some order s’
such that
ET'AK + pf\(BK = i2+5/(G)

and finally define s” = s + s’ and
Mg = Ak +3 M Bg .
This Mg is a right inverse for L, since
L, Mg = Lo (Ax +x MoBk)g = g — p\ Bkg+ L xMBxg =g

for every g € I"+s"G. By Lemma the coefficients of Mg, are rational
functions of jS"A;ﬁ which are regular at ey. Then the polynomial g, defined as
the product of all denominators of the coefficients of M, does not vanish at
js/lAj(eo). On the other end qgM}, L} = qig,urr and qM?, is polynomial in
J°Ay, so q € Py This q is functionally independent on all polynomials in Ps,
or (75" A*)*q would also vanish on ey, so ¥ has at least codimension k + 1.
It is true then that, given any set of k < m functionally independent right
inverses of L,, we can build a new one functioanlly independent on them, so
that codim ¥4 > m+ 1. In particualr this means that the image j*A,(E) of the
s-jet of a generic linear under-determined PDO of order r does not intersects
Ys, namely it admits a right inverse.
We can summarize all these results in the following statement:

Theorem 2.4.17 (Gromov, 1986). Let F' and G be vector bundles on E with
dim E = m, dimg F' = q and dimg G = ¢'. Then, if ¢ > ¢, for every r there
exists a finite s = s(q,q’,n,r) such that a generic linear PDO

L, :T"F 5 TG
is surjective. In particular, for every m, r and q > q', we have that
L. (T®F)=T"G.

for a generic L,.

2.5 Non-free maps and the Gromov Conjecture

In Section 2.3.8(E’) of [I] Gromov discusses the properties of isometric operators
Dir,q in the cases ¢ < 2m + s,,, when free maps are not dense, and s,, < g <
2m + S.,, when free maps cannot arise. In particular he poses the following
question:

Question 2.5.1 (Gromov, 1986). Are the operators Dy 4 infinitesimally in-
vertible over an open non-empty set for every q > S$p, ?

Afterwards he conjectures that the theory of under-determined PDOs can
be used to prove that the isometric operators Dy 4 be infinitesimally invertible
over a dense open set even when ¢ is such that the set of free maps is not dense
anymore and even when no free maps can arise:
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Conjecture 2.5.2 (Gromov, 1986). The operators Dy q are infinitesimally
invertible over a dense set for ¢ > m + s, — \/m/2.

In first subsection we show how Theorem implies directly that the
answer to question is positive in the particular case ¢ = m + s, — 1,
M =R™. In the second subsection we use the argument of Section [2.4] to make
some step towards the proof of the general case.

2.5.1 Dgm, is an open map over a non-empty open set
for g >m—+s,, —1

Denote by D, the operator Dgm , acting on C*°(R™,RY). It is well-known
that F(R™,RY) is non-empty for ¢ > ¢, (see Theoremand Example
so that, in particular, it turns out that there is a non-empty open set A on which
the restriction of Dy, 4 is an open map for every q > gp,.

In a recent work by G. D’Ambra and A. Loi [25] steps were taken towards
the proof of Conjecture by showing, through an explicit construction that
made use of the Lie equations after Gromov’s idea in [I], p. 152, that Dq 4 is
open over a non-empty open set AE, . In this section we improve this result by
extending it from Dj 4 to all the D,, 4 such that ¢ = ¢, —1; as a byproduct, we
also exhibit a larger set Ay 4 C C°°(R? R*) over which Ds 4 is open.

Our argument is essentially based on Theorem by Duistermaat and
Hormander [20]. Let ¢ = ¢, — 1. Our aim is finding an open set A, , C
C*(R™,R?) such that, if fy € Ay, 4 and go = Dy, 4(f0), the equation

Dmglf)=y9 (2.16)

has solutions for every g close enough to go.

Recall that, by the Newton-Nash-Moser-Gromov IFT (Theorem , the
existence of solutions of is granted by the existence of solutions of its
linearized version

25ijaafiaﬁ6fj = 6gaﬁ

Following Gromov (see [I], Section 2.3.8 (E’)) we set
6ij0a f'0f) = ha
so that we get the following equivalent fully algebraic system:

{&j 0o fi6fi = hq

e (2.17)
51 Oapfiof7 = (Oahp + Opha — 0gap)/2

where the h, are m auxiliary arbitrary functions. Hence it is enough for our
purposes to show that, for some non-empty open set of smooth functions, we
can always choose the h, so that system (2.17)) has a solution.

Theorem 2.5.3. If ¢ > q,, — 1 there exist non empty open sets A, 4 such that

the maps qu‘A are open.
m,q
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Proof. When q > g, the statement is trivially true because it is enough to
choose A,,, = F(R™,R?). We will assume therefore in the remainder of the
proof that ¢ = ¢, — 1, i.e. that the number of equations is exactly one more
than the number of unknowns §f°.

Since the coefficients of the system are exactly the components of
the g, vector fields {0qf,0apf}, then clearly there exist non-identically zero
functions A* and A*? = M\ such that, identically,

ANOuf + AP0 f = 0.
This reflects in the following compatibility condition for system :
20%hg + AP (0ahp + Ogha — 6gas) = 0.
It is convenient to rewrite this as the cohomological equation
X%y =0, (2.18)

where ¢ = \*%§ JaB, X is the first-order non-homogeneous differential operator
X% = L¢, +2XY, L¢, is the Lie derivative with respect to the vector field
o = )\‘1'385 and the smooth functions A* must be thought as multiplication
operators.

Now, let A, o C C°(R™,RY) be the open set of immersions f satisfying the
following two open properties: 1. the ¢, x (¢, — 1) matrix D?f has full-rank at
every point; 2. there is an index o such that the functions A*? are never all
zero at the same time. Then, after setting hg = APh 3 =1,...,m, for some
unknown function h, equation becomes

Yh=¢

where Y = L¢+ ) for some vector field ¢ and function X'. A direct computation
shows that the component ag of ¢ is equal to (A®°1)2 + ... 4 (A*™)2 and
therefore it is never zero by hypothesis. In particular this means that every
surface x®° = const is a global transversal for ( and therefore, by Theorem DH,
Y is a surjective first-order partial differential operator. Hence for every function
belonging to A,, 4 it is always possible to choose the h, in function of the dgq,z
so that the compatibility condition is satisfied. Examples 1 and 2 show
that these sets are non-empty. O

Example 2.5.4. Consider any pair (g, h) of free maps from R to R%2. Then the

function fg : R? — R* defined by fon(x,y) = (9(z),h(y)) belongs to Az s C

C>=(R%,R*Y). Indeed in this case Oy fyn =0, so that we can choose
A=AV =) T = QAW =0, "W =)"=1

and therefore the compatibility condition becomes simply

Ouhy + Oyhy = 0gay
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which is trivially solvable. E.g. the function f(z,y) = (x,e,y,e¥) belongs to
Az 4. Note that, while one can easily check that every function of Agf also
belongs to As 4, the function f does not belong to AQD,f, i.e. Aga is strictly
larger of the set introduced in [25].

Remark 2.5.5. Let D, be the metric-inducing operator acting on C°°(T? R).
As mentioned in the introduction, the cases ¢ > 7 and q < 4 are trivial. Only
for g = 4, among the non-trivial cases, free maps cannot arise but Example 1
can be used to show that Dy is, nevertheless, open over a mon-empty open set.
Indeed the set As 4 contains functions periodic in both x and y, e.g. f(x,y) =
(cosz,sinz, cosy,siny). The subset of all of them, considered as functions on
T2, is open in C(T2,R*) and Dy is clearly an open map over it.

Example 2.5.6. Let f € F(R™,R%) be the canonical free map given by

and m any projection m : RIm — RIm~1 which “forgets” any one of the last
(m+1)/2 components. Then the composition fr = mo f belongs to Ay, 4., —1-
Indeed the matriz D?f, has full rank and one of the second derivatives of fr
(say Opiz2 fr) is identically zero, so we can choose the corresponding factor
()\xlxz in this case) identically equal to 1 and all others equal to zero. For
example, in the (m,q) = (2,4) case we get the functions fi(x,y) = (z,y, vy, y?),
falz,y) = (z,y,2%,9%) and fs(z,y) = (z,y, 2%, zy).

Note that, exactly like in [25], the set of ¢, X (¢ — 1) matrices not satisfying
the conditions that define the open sets A, , has just codimension 1 in the
fibers of the bundle J*(R™,R?) — J9(R™,R?) while we would need at least

codimension 3 in order to apply the transversality theorems. In particular the
sets A, 4 are not dense in C*°(R™,R?).

2.5.2 Infinitesimal invertibility of D,
on non-free isometric immersions for ¢ > s,,

Now consider the general case and recall (see Example and Example|2.4.16))
that the linearization of D 4 is given by

Unrg(fo0f) = 26,00 f 056 7 dz* ® da®
whose adjoint is
g (F:09) =200 f1 0903 0; — (57 07 f' + 677 0 1) 01090 0;

where we set 8% = §°*' 9, and similarly for the second derivatives in order to
use the Einstein summation convention.

In order to make notations as easy to read as possible, we denote the coor-
dinates in the fibers of SM, i.e. a choice of independent components of d,4,
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by pairs (), o < . Then the homomorphism A}, , JYSIM) — JO(M,RRY)

has components
{Afam =20

ATy = (6105 + 6% 0af).
With these notations system (2.13]), whose coefficients are the fibers coordi-

nates on J* Hom(Jl(SSM), JY(M,R?)), writes as

S M =gl

|A]<s

D MEPIAT A DD M Ny =0

[Al<s |A|<s—1

|A|SZS—1 . QOﬁO)ﬁlAAZBZﬁ)A ' A<Z€ 2M aOﬁO)ﬁlﬁ2AAz - (2.19)
:Z Mi(aoﬁo) B 1AA%ﬁb A+M(Ofoﬁo) (aﬁ) -0

|Al<1

MBI B piBes

Note that £y 4 is quite far from being generic, since only mgq of its mgs,, com-
ponents (A M’Q)’(Ya g); are independent. Thus, we cannot apply Theorem
to it. Nevertheless observe that, in the non-homogeneous row, only the s-jets o
the zero-order components Afaoﬁo) = 2f(§050 appear and the ffioﬁo are, on the
contrary, all independent.

Below we follow closely Gromov’s argument used in the proof of Theo-
rem System admits a solution iff the non-homogeneous row

(c0B0)A
2 Z M o OéoﬁoA =1
[A|<s

is not a linear combination, with coefficients A\, € R, of the remaining (homo-
geneous) rows, where R is the ring of rational functions in the coordinates of
the fibers of J* Hom(J'(S9M), JO(M,R?)).

Assume that such combination exists. We have to treat differently the case
when o and [y are equal and the one when they are different.

Case 1, ag = fy. We take, for the argument’s sake, (ag8p) = (1,1). First of
all we observe that the column of the unknown Mi(n) has f%, as coefficient in the
non-homogeneous row and the £ and féﬁ, with (af) # (1,1), in all other rows.
Since none of these appear elsewhere in the non-homogeneous row, we express
fi, as linear combination of these functions and substitute this expression in
the rest of the system.

Next, we look at the columns corresponding to the unknowns M, (e - Con-
sider first the terms with oy # 1. Their coefficient is f{,, . In the same col-
umn appear all other coefficients féﬁal, with (af) # (1,1), and the coefficients
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AE’Z 1[3)041’ which contain only second derivatives of the f*. Hence we express all
the fi,, ,» @1 # 1, in terms of all other third order derivatives of f? not having
two indices equal to 1 and lower order derivatives and substitute this expression
in the rest of the system.

+ 7", whose coefficient is f{;,. Besides terms
of lower order, this column contains all other terms of the kind f;4,, with

Now consider the column of M. (ant

(B) # (1,1). Among these terms there are all the f{,, , a1, which we already
expressed in terms of the other third derivatives of the f*, so that also f{;; ends
up expressed in terms of the same coeflicients of the fflal, Q.

Finally let us discuss the general case of the columns corresponding to the

unknowns Mi(n)al“'ak. Following what we just done, we start from the ones

such that a; # 1, ¢ = 1,...,m. No other coefficient Afaﬁ)al__ak, with (af) #

(1,1), (i.e. a derivative of f* of order k + 2) in the column of Mi(n)al“'a"'
appears as coefficient in other positions in the non-homogeneous row, since
these coefficients have at most one lower index 1 (either a or 3) while those in
the non-homogeneous row have at least two of them. Hence we can write all the
coefficients f(11)a;...q,, in terms of coefficients of the same order not appearing in
the non-homogeneous row and coefficients of lower order. We replace all these
expressions in the rest of the system and now consider the case when oy = 1 and
a; #1,1=2,...,m. The only coefficients belonging to the non-homogeneous
row that could appear in the same columns corresponding to these terms are
the ones with a; # 1, ¢ = 1,...,m, which we just replaced, since each of such
terms will have at most two lower indices equal to 1. Hence also these terms
are now expressed in terms of derivatives of f* which do not appear in the
non-homogeneous row. Operating recursively we end up expressing all terms of
order k as functions of the )\, and of derivatives of f* up to order k none of
which appears in the non-homogeneous row.

By a standard induction argument it is then clear that, assuming that the
non-homogeneous row is a linear combination of the homogeneous ones, we can
express all coordinates fi, 4, |A| < s, in terms of the remaining coordinates (up
to order s+ 2) and of the coefficients A.

Case 2, oy # [p. We take, for the argument’s sake, (apfy) = (12). As
in case 1, in the homogeneous rows of the column of M; 12 appear all f(iaﬁ),
{a, 8} # {1,2}, none of which appears in the non-homogeneous row. Hence
we can express f('ilQ) through those coefficients and substitute its expression
anywhere else in the system.

Let us consider now the column of Mi(u)al. If a; & {1,2} then no coefficient
fi Ba, I the same column appears in the non-homogeneous row since they lack
either a 1 or a 2 among their lower index. All other coefficients appearing
in the same columns are of lower order, so these féﬁal can be expressed in
terms of coeficients not appearing anywhere in the non-homogeneous row. As
usual, we substitute their expression anywhere else in the system. When instead
ay € {1,2}, then it is easy to realize that f{,; appears in the same column of

fiso and viceversa, while all other coefficients do not appear anywhere in the
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non-homogeneous row. In this case we have then the following situation:

, . h . , . h :
B)A B)A
fio1 = pfize + Z Mz(-a ) afA s J122 = V12 +Z Vi(a ) aBA
where the coefficients p, uEaﬁ)A, v, l/i(aﬂ)A are polynomials in R and the sum Zh
is extended only to the coefficients that do not appear in the non-homogeneous
row. Then

i i h aB)A pi
fla2 = Viufizs + Z (V/)E ? fapa

so that either vy =1 or

fn =1 =) (3

If vu = 1 we cannot say anything on fi,,, so that we must decrease by 1 the
count of the coefficients fi, ,, but we found out that there is a relation between
the coefficients \i, so we must decrease by one also the number of (independent)
coefficients A\;. Hence, for the sake of the argument, we can safely assume that
vu # 1. In this case, fiy, can be written as linear combination of coefficients
fiy4 of equal or lower order that do mot appear in the non-homogeneous row.
The coefficients of this linear combination are rational functions of the original
Ak, so they still belong to R. Finally we substitute back this expression in the
one for fiyy so that are able to express all coefficients fio, , 1 = 1,...,m, as
linear combinations, with coefficients in R, of coefficients f, 5, of equal or lower
order which do not appear in the non-homogeneous row.

h

(V/)Eaﬂ)AfiﬁA> .

Now consider the general case of terms of order n starting from Mi(m)al”'o‘“
with {aq,...,a,} N {1,2} = 0, whose coefficient is Aém)alm% = f(ilQ)al...an'
Clearly in the column of such term no other same-order coefficient f(la Bar...an?
with {a, 8} # {1,2}, appears in the non-homogeneous one since they all lack
either a 1 or a 2 among the lower index. As usual, we substitute the expressions
of the M(2a1-—an in the system and then consider the case of the columns
M2 where either a; = 1 or g = 2 and {ag,...,a,} N {1,2} = 0. The
very same considerations made above for the case of Mi(m)a1 take care of this
case. Now consider the case of the columns of M(12a1-—an with either oy = 1
or a; = 2 and either as = 1 or as = 2. In this case we are in the following
situation:

fiot1a5.an = Pf221100. 00, T 22 Nz(‘a : flapya oy

; ) , ; ,
Flo1205..0n = Vfi2110s.0n TV 321205 00 T 22 Vi' flap)a
f{222a3...an = ¢f{122a3...an + Z (Z)ga ) f(laB)A )

where, as above, all functions denoted with greek letters are polynomials in R
and Zh is extended only to terms which do not appear in the non-homogeneous
row. We substitute the expressions of f{y110,. o, a0d flo99a,. o, I flo120s. a,
and repeat the argument above: if vu + /¢ = 1 then we cannot say anything
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on fli212a3...o¢n but we have a relation among the Ay so the balance between the
number of coefficients in the non-homogeneous row and the number of A\; does
not change. Hence we assume, for the argument’s sake, that vy + v'¢ # 1 and
replace its expression, now as function only of coefficients which do not appear
anywhere in the non-homogeneous row, back in fio10, o, a0d fiosoa,. a, -
Thus all coefficients fi,,, .. with either a; =1 or a; = 2 and either ap = 1
or ap = 2 can be expressed as linear combinations of similar terms of the same
or lower order that do not appear in the homogeneous rows. We replace all of
them elsewhere in the system and continue.

When we consider the case when more «; can be equal to 1 or 2 the situation
does not change qualitatively. We have some finite number of f(ilz) 4 with the
following property: two of them (the “first” and the “last” contain in their
column another term appearing in the non-homogeneous row (the “second” and
the “next-to-last”); the “second” has to of them, the “first” and the “third” and
so on until the “next-to-last” and the “last”. Following the steps above we can
express each one of them as a linear combination of coefficients f(iu) 4 of same or
lower order which do not appear in the non-homogeneous row. The coefficients
of this linear combination are all rational functions of the A\ and therefore also
belong to R.

It is clear then that it is possible to repeat this procedure until all of the
f(ilg) 4 in the non-homogeneous row are expressed as linear combination of the

f(im) 4 ot appearing in the non-homogeneous row.

The arguments above shows that in the system corresponding to the index
(a0fp), whether we are in case 1 or case 2, the number of the (independent)

f(ia 8)A in the non-homogeneous row is q(mjs). The number of homogeneous
rows of system 1) is S, (m;ffr 1). Clearly, if a linear combipation of the
homogeneous rows is equal to the non-homogeneous row, the f(’a )4 must be

contained in the A\ and so there cannot be fewer rows than coefficients f(iaﬁ) A
As discussed in the proof of Theorem [2.4.17] if ¢ > s,,, and

MSm

q— 5Sm

s >

then there are more f(ia 5)A than rows and therefore I3, . admits a formal left
inverse.

This inverse is regular outside of the set of zeros of the coefficients of the
inverse. The set of partial differential inequalities obtained by setting all de-
nominators different from zero defines an open subset A, of C*°(M,R?). In
order to solve the problem of Gromov now it is needed to study when A, is
non-empty.



H-Free Maps and infinitesimal invertibility
of the H-isometric operator

In this chapter we extend the theory of isometric embeddings of a manifold
M into R? by considering maps M — R? which are injective on some fixed
distribution H C T'M.

In Section [3.1] we define the concept of H-free map, which reduces to the
one of free map for H = T M, and of the H-isometric operator Dy;. In this
setting we prove Theorem about the existence and density of H-free
maps, which is the analog of Theorem and Proposition for free maps,
and Theorem [3.1.13] which is the analog of Nash’s Theorem showing that
Dy is an open map over the set of H-free maps.

After showing several concrete examples of H-free maps for distributions of
dimension or codimension equal to 1 (Section , in Section we prove
the existence of H-free maps in critical dimension in the following cases: one-
dimensional distributions of finite-type on R?; Lagrangian distributions of Com-
plete Integrable Systems; Hamiltonian distributions of Riemann-Poisson brack-
ets.

The contents of this chapter have been published, as a joint work with
G. D’Ambra and A. Loi, in [3].

3.1 'H-free maps and the linearization of the op-
erator Dy

Let ‘H be a k-dimensional distribution on M, i.e. a vector subbundle of T'M.
Fix local coordinates (z“) on some chart U C M, o = 1,--- ,m, and let {,},
a=1,---,k, bealocal trivialization for H in U, so that H|y = span{{y,..., &}
Let {#%,wA}, A=1,--- ,m —k, be a dual base for the whole T*M such that
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ig,0% = 6 and ig,w” = 0. Then

m—k
Hly = m ker w?.
A=1

and the gradient of the components of a C” map f = (f!,...,f9) : M — R¢
writes
dft =uhwt ®vie, i=1,--- q

where v = i¢, df' = L¢, f* (the u¥ play no role in what follows). Then, in local
terms, the restriction to H C TM of f*e, = d;;df* ® df’ is given by
freqln = 0ijLe, f'Le, 7 0° © 6" € T°(S3H) (3.1)
and the equation Dy(f) = g writes locally as
SijLe, f'Le, f7 = gav, (3.2)
where gup = 9(€a, &), a,b=1,... k.

Definition 3.1.1. Let H be a distribution on M. We say that f € C*(M,RY)
18 an H-immersion if the restriction of T'f to H is injective.

Example 3.1.2. Take M = Ax B, where A and B are smooth manifolds. Con-
sider the two natural projections w4 and mg on A and B and the corresponding
two canonical distributions Ha = kerTng = TA ® {0} and Hp = kerTra =
{0} @ TB. A map f € C°(M,R?) is a Ha-immersion iff f(-,b) : A — R? is

an immersion for every b € B. Similarly for Hp.

Example 3.1.3. For any fiber bundle (M, N,w, F) it is defined the canonical
distribution of vertical vectors V. =kerT'm C TM. A smooth map f: M — RY
is a V-immersion iff on every trivialization U X F' of M the map f(u,-) : F — R?
is an immersion for every u € U. Let now A be a linear connection on M and
let H be the horizontal distribution with respect to A; then a map f: M — RY
is a H-immersion iff the covariant derivatives {V,f'} are linearly independent
on every point of M.

Proposition 3.1.4. Let f € C"(M,RY). The quadratic form Dy(f) € TO(SYH)
is positive-definite iff f is a H-immersion.

Proof. Let {£,} be a local trivialization for H. Then
Tf(£a) = 0af'0; ® dz”(§705) = €300 [0 = (Le, f);
and the proposition follows. O

Proposition 3.1.5. Let H C T'M be a k-dimensional distribution. If ¢ > m+k
the set of H-immersions is open and dense in C1(M,RY).
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Proof. A map f: M — R? is a H-immersion iff the k x ¢ matrix D = (L¢, f?) :
M — Mj, 4(R) has rank k at every point. The set of non maximal rank matrices
has codimension g — k + 1 in My, ,(R) [24] so the image D(M) do not intersect
itifm<qg—k+1. O

Let us consider now a smooth 1-parameter deformation ¢, of the metric ¢
on M such that g, = g and assume that there exists a corresponding smooth
1-parameter deformation f. such that f, = f. It follows by (3.2) that

57'JL§G fGZLgbfsj = gé,ab 9
where ge op = ge(€a,&p)- Differentiate with respect to € and set

_df!
T de

dge,ab

of de

) 6gab =

e=0 e=0

thus obtaining the system of k(k + 1)/2 PDEs:
0ij (Le, f'()8[Le, f7 ()] + 0[Le, f' ()] Le,  (2)) = bgap(@).
Following Nash we observe that
Le, ['0[Le, /] = Le,[Le, f'6 7] — Le, Le, f'0 1

so that, by defining ¢, (x) = 0;;Le, f*(x)d f7(x), we get the following equivalent
algebraic system in the ¢ unknown & 7:

dij Le, f10f7 = Ya (33)
0ij (Le,Le, f' + Le, Le, f))0 /7 = Le, b + Leyha — 6gan '
where the 1), are arbitrary functions.
A sufficient condition for this system to be solvable is that the matrix
L51 fl T Lfl A
Lgkfl ... Le, f?
De, . g1 = LE 1! LE, 11 (3.4)
L Le, f' + L, Le, f' -+ Ley L f7 + L, Le, f*
2 41 ' 2:
L&kf e Lfk f4

has maximal rank, i.e. that the vectors
Le, f', {Le,, Le, }f = Le,Le, f' + Le, Le, f

be linearly independent. Note that matrix (3.4) has always at least 2 rows so
we must assume q > 2.
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Definition 3.1.6. Let H C T M be a k-dimensional distribution on a smooth
manifold M. We say that a C? H-immersion f : M — RY is H-free if, for every
x € M, there exists a trivialization {£,} of H in some neighbourhood of x such
that
k(k+1)

3 .
The set of C" H-free maps M — RY is denoted by Fj,(M,R?).

rank De, ... ¢ f =k + sk, sp =

Remark 3.1.7. H-free maps where defined first in [26] but used there for dif-
ferent purposes.

Clearly H-free maps can exist only for ¢ > k+s,. Note also that, while every
immersion is a H-immersion, it is not necessarily H-free, e.g. for dimensional
reasons. Next proposition shows that the above definition is well posed.

Proposition 3.1.8. The rank of the matriz Dg, ... ¢, 5 does not depend on the
particular choice of the trivialization of H.

Proof. Take another trivialization {(,} of H in the same neighbourhood of z.
Then (,(x) = A\2(x)&(x) for some local section \2(z) of the frame bundle over
‘H and

Lo, f=MLe,fy Le,Leyf = NoLe M Ley f + NN Le Le, f -

Clearly rank(L¢, f*) = rank(Lg, f*). Hence

rank ( Le f > = rank < Le.f )
{Leos Loy b f NoLe Af + A Le A Ley f + MM { Le, s Le, } f

_ Le, f _ Le, f )
rank <)‘g)‘g{L§a7L§b}f> rank ({Lﬁa’ Lfb}f
O

Example 3.1.9. In [27] Kaplan showed that every one-dimensional distribution
H on the plane R? is orientable and then it is the kernel of a regularlﬂ 1-form
w. The metric induced on H = kerw by a map f : R?> — R2, f(x,y) =

(alz,y), B(x,y)), is, by Eq. (3.9),
Dy (f) = [(Lea)® + (Lef)?] (xw)?

where * is the Euclidean Hodge operator. Then f is a H-immersion iff Leaw and
L¢B do not vanish simultaneously at any point. Here the matriz De y is given
by the 2 x 2 matriz

IThroughout this paper we call a vector field or a k-form regular if they are different from
zero at every point of M.
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Therefore f is H-free iff there is a reqular section & of H such that
Lea LB — Lef3 Lia > 0
on the whole plane R?.

The following proposition, analogue of Theorem A in Appendix 6 of [12],
characterizes H-free maps:

Proposition 3.1.10. Let H be a distribution on a smooth manifold M, let
S = SYH be the set of its symmetric (0,2) tensors on H and N = (Tf(H))*
the normal bundle to T f(H) in R? with respect to eq. Then a H-immersion
f M — R? is H-free iff the “Wintergarten map” v : N — S defined by

ve(ng) = {Le,, Le, } [ ()6i5n3 0% © 6°
18 surjective.

Proof. Assume first that f is H-free. Then kerv cannot be bigger than the
zero-section of N because the existence of a non-zero vector n, € N, such
that v;(n;) = 0 is equivalent to the existence of a non-trivial linear relation
between the vectors l,, = ({Le,, Lg, }f*), which are linearly independent by
the H-freedom of f.

Viceversa assume that v is surjective. Note that the matrix representing v
as a linear operator is exactly the sj, x ¢ matrix Dg, ... ¢, f = ({L¢,, L¢, }f*) and
sk is also the dimension of the fibers of S. Hence the surjectivity of v requires
that Dy, ... ¢, .5 be a full-rank matrix, namely that the sj vectors [, ; are linearly
independent among themselves. Since N is, by definition, orthogonal to T'f(H)
then the [, are also linearly independent from the I, = (L, f*); finally, the
l, are also all independent among themselves because f is, by hypothesis, a
‘H-immersion. Then the k + si vectors (Iq,1,,) are linearly independent, i.e. f
is ‘H-free. O

Theorem 3.1.11. Let H C T M be a k-distribution on M, dim M = m. The
operator Dy is infinitesimally invertible on the set of H-free maps f : M — RY.
Moreover, if ¢ > m + k + sg, a generic map M — R? is H-free.

Proof. The infinitesimally invertibility of Dy follows directly from the definition
of H-freedom. Observe that a map f : M — RY is H-free when the image of
the map

Dgla"' &ieo f : M - Msk’q(R)

is contained in the set of matrices of maximal rank. In particular a map is not
H-free when the image of D, ... ¢, s intersects the set N, 4 of matrices of non-
maximal rank, whose codimension is g + 1 — si [24]. For a generic f the image
De, ... ¢,.;(M) and N, 4 are transversal and therefore they do not have points
in common when dim D, ... ¢, (M) < codim N, ,. Hence a generic map f is
‘H-free for ¢ > m — 1 + sy. O



44 ‘H-Free Maps

Remark 3.1.12. All concepts, statements and proofs of this section can be
described naturally in the language of jet bundles, which we decided to avoid in
order to keep our formalism as light as possible. We briefly point out below to
the reader the definitions of H-immersions and H-free maps in this language.

In analogy with the well known isomorphisms J'(M,N) ~ T*M @ TN and
J2(M,N) ~ (T*M & SYM) @ TN one can define the bundles

JYM,N:;H) .= H* ® TN

and
J*(M,N;H) := (H*® SYH*) @ TN .

Then the H-1-jet j3,f of a map f: M — R? is the section of the jet bundle
JYUM,RGH) — JO(M,RYH) = M x R — M
(whose fiber at the point (m,y) is H}, ® TyRY, i.e. matrices k x q) given by
i f(@®) = (%, f'(2), Le, f*) -

A map f then is an H-immersion iff j3,f (M) is contained in the set of mazimal
rank tensors. Similarly, the H-2-jet j3,f is the section of

JA(M,REGH) — JO(M,RGH) — M

(whose fiber at the point (m,y) is (Hi, & SYH;,) ® TyRY, ie. (k+ sg) X ¢
matrices) given by

]’%—{f(‘ra) = (xa’ fi(x)JLSafiv {LﬁwLﬁb}fi) :

A map f then is H-free iff ]%f(M) is contained in the set of mazimal rank
tensors of the bundle.

By combining Theorem [3.1.11] and the Newton-Nash-Moser-Gromov IFT
(Theorem [2.2.8)) we get as a corollary:

Theorem 3.1.13. The restriction of Dy : C"(M,R?) — T°(SIH) to Fy,(M,R?)
is an open map for every r > 3.

3.1.1 Examples of H-free maps in the critical dimension
for distribution of dimension 1 and codimension 1

We show below a few concrete examples of H-free maps f : M — RY for
q = k + s; and either dimH = 1 or codim H = 1.
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One-dimensional distributions

Let H be a 1-dimensional distribution, so that locally (and globally if H is
orientable) H' = span{¢}. Then, if w is any 1-form such that icw = 1,

freqln = 6ij Lef' Le f7 w?

(Lgfl qu)
D¢y =
Lgfl Lgfq

The condition for the existence of free maps reduces in this case to ¢ > 2.

and

Example 3.1.14. Take a regular vector field ¢ € X(R™) and H = span{¢}.
Assume that € has a component always different from zero, e.g. €' = 1. Then
Lex' =1 and a direct calculation shows that the function F(x) = (x') is H-
free for every free map ¢ : R — R2. For example, one can take ¥(t) = (t,et) or
Y(t) = (sint, cost).

Example 3.1.15. Consider the “constant slope” distribution on T? = R2/Z?
H = span{¢“0, + £Y0,} C TT?

If €% and &Y are rationally dependent then we can transform ¢ in, say, the
constant vertical vector field with a global diffeomorphism and everything is
trivial. Hence we assume that dimg{&*,£Y} = 2, put 6 = £7/¢Y and consider
H as the span of ¢ = 0, + 00,. Then every function F(z,y) = ¢(z) and
G(z,y) = ¢(y) is H-free for every ¢ € F(S',R?) since Lgxz = 1 # 0 and
Ley = 60 # 0 (i.e. we use the same technique used in Theorem . For
example the function F(z,y) = (sinz,cosz) is H-free.

Example 3.1.16. Consider a regular vector field £ on a Riemannian manifold
(M, g) and assume that the 1-form €, “musical dual” of £, is exact. Then & is
the gradient of some reqular function f and L¢f = ||€||* > 0 so that, as in the
previous examples, F(x) = o (f(x)) is H-free (for H = span{&}) for every free
map ¢ : R — R2.

Example 3.1.17. Consider the regular vector field € = (y*> — 22 — 1,2y,2z2) €
X(R3) inducing the distribution H = span{¢}. This is the normal field to the
level sets of f(x,y,z) = €*(y*> + 22 — 1) and therefore L¢f > 0 so that, again,
every F : R3 — R? defined by F = (f) is H-free for every ¢ € F(R? R?).

Let us provide now an example of H-free map to R3, i.e. when the ma-
triz De ¢ is rectangular (notice that H'-free maps from R are generic starting
with ¢ = 5). Be a an unknown function from R? to R, define F(z,y,z) =
(2, e, a(z,y, 2)) and set g = y* + 22 to shorten formulas: then

g1 e*(g?> —1) Lg@)

rank D¢ rank( ) ) ) ) ) )
9°—1+4g° e*[(g° —1)(9° —1+4g°)] Lo
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The leftmost minor is invertible for g # 1 while for g = 1 the matriz reduces to

0 0 Lea
4  4e* Lga

so0 it is enough to determine o so that Lea|g=1 > 0. Such a function is easily
found by trial and error; an example is given by a(x,y,z) = y? + 2% since
Lea = 2g. Hence the map F(z,y,z) = (z,e%,y? + 22) is H-free.

Codimension-1 distributions

Consider now a codimension-1 distribution H™~! C TM™, so that locally it
can be seen as the kernel of a regular 1-form w or, equivalently, as the span of
m — 1 linearly independent vector fields {£,}, a = 1,--- ,m — 1. In this case the
metric induced by a map f : M — R? on H is given by

freqln = 0ijLe, f'Le, f1 07 @ 6°
where {w, 0} is a base for Q'(M) such that i¢,w = 0, i¢, 6° = 62,

The condition for the existence of free maps in this case reduces to g >
in particular, for m = 3, H-free maps are generic for ¢ > 5.

(m—1)(m+2) ,
2 )

Example 3.1.18. Take the two commuting vector fields & = (cosy, —siny, 0)
and & = (0,0,1) and consider the (integrable) distribution H = span{&y,&a} C
TR3. The leaves of this H are the direct product of the level sets f(x,y) =
e” sin(y) with the z axis and, the space of leaves being not Hausdorff, this folia-
tion is not topologically equivalent to the trivial one of R3. A direct computation
gives that Le, (e” cosy) = €** > 0 and Le,z = 1 > 0 so that the map f : R® — R®
defined by

f(@,y,2) = (¥(e” cosy), p(z), ze" cos y))
is H-free for every pair of free maps 1, ¢ : R — R2.
Example 3.1.19. Consider the (non-integrable) distribution H?> C TR3 rep-
resented by the kernel of the canonical contact structure w = ydx — dz or,
equivalently, generated by the (non-commuting) vector fields & = (0,1,0) and
& = (1,0, —y) and take the function f:R> — RS defined by

f@,y,2) = (y,m,¢€”,e", 2)

Here the matrix writes:

1 0 e 0 0
01 0 € —y
De e,y =10 0 e 0 0
00 0 0 -1
00 0 e 0

whose determinant is e*TY > 0, so that f is H-free. Notice that here f is an
immersion but it is not a free map since f,, is identically zero.
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3.2 Construction of H-free maps for ¢ = k + s,

In this section we build free maps in critical dimension for three types of dis-
tributions. All three cases are inspired to the following result obtained by
J.L. Weiner [28]:

Lemma 3.2.1 (Weiner). Let h be a smooth function on R? without critical
points and let H = kerdh C TR2. Then there exists a smooth function f :
R2 — R whose level sets are transverse to H at every point.

3.2.1 One-dimensional distributions on R?

In our first generalization of Lemma W we weaken the hypothesis H = ker dh,
i.e. we do not assume anymore that H is a Hamiltonian foliation and get the
following:

Lemma 3.2.2. Let H be any 1-dimensional distribution on R? of finite type.
The following three (equivalent) properties hold true:

1. there exists a smooth function f : R? — R whose level sets are transverse
to H at every point;

2. for any reqular 1-form w such that H = kerw there exists a smooth func-

tion f : R? — R such that *(w A df) > 0;

3. for any regular section & of H there exists a smooth function f :R? — R
such that Le f > 0.

Since this result involves regular vector fields on the plane, which will be
thoroughly studied in next chapter, we postpone to it the relative definitions

and proof of the Lemma (see Definition 4.0.17|and Propositions and4.2.3).

With this we are in condition to easily prove the following:

Theorem 3.2.3. Let H C TR? be a one-dimensional distribution of finite type
on R2. Then there exists a smooth function f € C>(R?,R) such that o f €
F7(R%,R?) for allyp € F"(R,R?).

Proof. Let € be a regular section of the distribution H C TR?, H = ker w such
that i¢(*w) = 1 and let U = Lgl (C°(R?)) denote the set of all smooth real

valued maps f on R? such that L¢ f > 0 (this set is non-empty by the previous
lemma). We want to show that, for every free map ¢ : R — R2, the map

F(z,y) = ¢(f(z,9))

is H-free. Take ¥ (t) = (a(t),b(t)). We must verify that the matrix
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has rank 2 (cfr. Example[3.1.9). A direct computation shows that

dot Dy p - | EEIT LD ‘:
L2la(h)] L2B(S)
a'(f)Lef V'(f)Lef

a (FLES +a"(FLef? V(LS +0"(F)Lef]
= [a' (N (f) =V (Na"(N][LefP #0

which, by hypothesis, is never zero. In fact we assumed L¢f > 0 and the first
factor cannot vanish since v is free. O

Example 3.2.4. Consider the distribution H C R? defined by
H = span{¢ = 2y0, + (1 — y*)9,} .

This H s of finite type since it has only a pair of separatrices, the straight
lines y = 1 (see Definition . Indeed H is the tangent space to the
(Hamiltonian) foliation F of the level sets of f(x,y) = (y*> — 1)e® (a direct
computation shows that L¢((y? — 1)e®) = 0).

Moreover, Lg(ye®) = (1+y%)e® > 0, i.e. the foliation of the level sets of the
function g(x,y) = (1 + y?)e® is transverse to F at every point (cfr. Fig. .
Then, by Theorem F(x,y) = ¥(g(z,y)) is H-free for every free map
Y : R — R2. For example, F(z,y) = (ye®,e?") is H-free (cfr. Example.

3.2.2 The case of completely integrable systems

In our second generalization of Lemma W we reinterpret it in terms of com-
pletely integrable systems.

Let (M?",§) be a connected symplectic manifold. Since the symplectic 2-
form is non-degenerate it sets up a linear isomorphism between vector fields &
and 1-forms w on M through the relation i¢{2 = w. Moreover, every real valued
function f : M — R determines a unique vector field &; called Hamiltonian
vector field with the Hamiltonian f by requiring that for every vector field
n on M the identity df(n) = w(f,&,;) must hold. To the given symplectic
structure ) we can associate, in a natural way, the Poisson bracket via the
formula {f, g} = Q(§y, &,;) which turns the algebra C>°(M) of smooth functions
on M into a Poisson algebra. Assume that (M?2", Q) admits a regular completely
integrable system. This means that there exists a maximal set of functionally
independent Poisson commuting functions {I;}, i.e., such that dI; A--- AdI, #
0 at every point of M and that the Poisson subalgebra generated by the I;
in C*°(M) is abelian. Consider the distribution H = kerdl; N --- N kerdI,
and the corresponding Lagrangian foliation F (so that H = T'F). Then the
following theorem, classically known as Arnold—Liouville theorem holds true
(see [29] or [30] for details).



3.2 Construction of H-free maps for ¢ = k + s, 49

Theorem 3.2.5 (Arnold—Liouville). Let F the Lagrangian foliation defined
above. If every Hamiltonian vector field &1, is complete then every leaf of F is
diffeomorphic to T" x R"™" and has a saturated neighbourhood U (with respect
to the projection onto the space of leaves F) symplectomorphic to the product
manifold D x (T" x R"™"), where D C R™ is open, endowed with the coordinates
(I;,¢7) and with the canonical symplectic form Qo = dI; A dp'.

This statement means, in particular, that the commutation relations between
the special coordinates (I;, ¢7) are given by the well-known

{Iivlj} =0, {Qoia<)0j} =0, {Iiv@j} = 55

The (I;,¢?) are usually called “action-angle” coordinates.

When M = R? every Hamiltonian system (represented by a single Hamilto-
nian) is, trivially, a completely integrable system. In particular, Lemma W can
be restated as follows:

Lemma 3.2.6 (Weiner). Let {I} be a reqular completely integrable system on
the symplectic manifold (R?, Qo = dw Ady). Then there exists a smooth function
f:R? = R such that Qy(&r, &) > 0 for all points of R2.

In the following Lemma we extend Weiner’s one to higher dimensional inte-
grable systems:

Lemma 3.2.7. Let {I,---,I,} be a reqular completely integrable system on
(M?",Q) and suppose that all the Hamiltonian vector fields &5, are complete.
Then there exist n smooth functions {f*,---, f"} (possibly multi-valued) such
that

on the whole manifold M?>".

Proof. We follow closely the original argument in [28]. By Arnold-Liouville
Theorem, every leaf | € F has a saturated neighbourhood U; ~ R™ x RF x Tn—F
with coordinates (I;, ) such that U; is defined by the inequalities aé <I; < ﬂf
and

We renormalize the action coordinates I; (which, by hypothesis, are global)
by J! = ul(I; — v}) so that U; is characterized as the connected component of
|Jf| < 2 containing . Now, let b : R — R be any bump function with support
equal to (—=1,1) and let I : R — R be any smooth non-decreasing function which
is equal to 0 on (—oo,—1], to 1 on [1,00) and strictly increasing between 0 and
lon (—1,1).

The functions defined on U; as

F=0(J1) - b(TL)I(e])



50 ‘H-Free Maps

can be trivially extended to the whole M by setting flJ = 0 outside U;. Note
that their differentials

dfi = 3 ub (I + 3 (I ()
= i=1

have (modulo the span of the dI;) compact support
Vi={peUllJip)| <1, l¢(p)] <1}.

Moreover, we have that
{Li, Ji} = b(1) - b (1) > 0, {11, f]} =0, j#i

inside V; while all Poisson brackets are identically zero outside V;.
We extract from the covering {U;} a countable subcovering {U;, }. and show
that, by a convenient choice of the coefficients ay, the series

fr= Zakflik

keN

can be made convergent. In fact the flik are uniformly bounded so that, by
taking a; = 27%, the series can be made uniformly convergent. Next, let us
fix any n-dimensional distribution H’ transverse to F and consider on M the
Riemannian metric g = Y7, (dI;)? 4+ ¢’ (where ¢’ is any metric on H’). Denote
by || D@ fi || the norm (associated to the metric g) of the derivatives of order j
of ffk. This is seen as a map with domain M and range the symmetric product
bundle (of order j) S7M based on M. We thus get that, for every value of k,
there is some finite constant Mj, such that, outside V, , ||D(j)flik|| < Mj,; for
1 <j < k. Since Vj, has compact closure, there exists another constant M}/,
such that |[DWf] || < My, ; within V;,. This means that HM,;}D(J)fl’kH <1
for My, ; = min{1, My ;, M/ ;}. Therefore, if we take aj = Q_kMk_’il7 the series
> wen axDW fi uniformly converges for each j € N.
Then the f* are smooth and one has

(L. f} >0, {L,f7}=0, j#i.

Finally, Arnold—Liouville’s Theorem tells that the neighbourhoods U; are all
symplectomorphic to R™ x (T" x R"~") for some r between 0 and n and, for
r > 0 the leaves have compact components. Observe that, on these components,
the df’ are well-defined closed 1-forms. Nevertheless, these forms may be non-
exact, due to the non-triviality of the first cohomology group of the leaves.
Consequently, in this case the functions f/ may be multivalued, namely well-
defined only on some covering of M. O

Theorem 3.2.8. Let (M?",Q) be a symplectic manifold admitting a completely
integrable system {Iy,--- ,I,}, H C TM the n-dimensional Lagrangian distri-
bution H = N_; ker dI; and F the corresponding Lagrangian foliation. Assume
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that the Hamiltonian vector fields associated to the I; are all complete and that
every leaf of F has no compact component. Then it is possible to find n smooth
real valued functions f*, i =1,...,n, on M such that the map F : M — R"tsn,

Sp = % defined by
F(z) = W (fH (@), n(f (@), fH (@) f2 (), [P (@) [ (@)

is H-free for any choice of n free maps 1; : R — R?.

Proof. By Lemmathere exist n smooth functions f? satisfying which,
since the leaves of the foliation F have no compact component, are all single-
valued. We consider n free maps {11, - , 1, } from R to R? and prove that the
map F : M — R""$» defined as

F(z) = (W1(f' (@), a(f" (@), fH (@) f2 (@), 77 (@) [ (2)

is ‘H-free.
Let 9;(t) = (a;(t),b;(t)) and set Dy; = alby — al/b;. The square matrix
Dy, ... ¢, (see (3.4) above) is given, up to a permutation of its rows, by

Ay * * * * *
0 * * * *
0 0 A, * * *
0 0 0 29192 * *
0 0 0 0 *
0 0 0 0 0 20n—19n

where g; = Le, f*,

a;(f*)gi bi(f*)gi
Ai = POFVIZ Fi o (FVa2  BLFOVL2 Fi b ( Fi)a2
a;(f*) & [ T (fg; Yi(f) @ T i (f1)g;
and the stars represent terms which do not contribute to the determinant.

Since det A; = g7 D; and the blocks below the diagonal are identically zero,
the determinant of D, ... ¢, r equals

2711 (97" D)

7

which differs from zero at every point because, by construction, g; > 0 and, by
hypothesis, Di; # 0. Hence F' is a H-free map. O

Remark 3.2.9. Clearly the map F defined in the proof above is modeled after
the canonical free map G : R* — RT3 given by

Gz, 2™ = (2. 2™, (o1 2ta? - (2™)?) .

So far it is not known (see [1], p.9, and Section 77 of this thesis) whether,
for n > 3, there exist free maps from T™ to R"T3. It is for this reason that
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in Theorem we require that the leaves of the foliation F have no compact
component. On the other hand, it is an easy matter to check that the map
G :T" — R*Tsntsn-1 defined by

G0, ...,0™) = (cs(0"),...,cs(0™),cs(0" +62),...,cs(0" 1 +6™)),

where cs = (cosf,sinf), is free. When the leaves of F are compact (and
therefore diffeomorphic to T"), the map F : M — R""sntsn—1 defined by F(z) =
G(f' (@), ..., f™(x)) is H-free. Unlike the case of Theorem[3.2.8, the dimension
of the target space of F is not the smallest possible for a H-free map (except
for n = 1). Nevertheless the existence of such an F is a non-trivial fact since
Theorem |3.1.11] grants the existence of H-free maps from M to R? only for
q > 3n+ s, and, for n < 4, we have that n + s, + Sp—1 < 3n + sy,.

3.2.3 The case of Poisson systems

In our last generalization we reinterpret Weiner’s Lemma in terms of Poisson
geometry.

Poisson structures are a generalization of symplectic structures having the
nice property of existing even in odd-dimensional manifolds. Recall that a
Poisson manifold is a pair (M, {, }) where {, } : C®°(M) x C®(M) — C>®(M) is
a R-bilinear skew-symmetric derivation satisfying the Jacobi identity. To every
smooth function f € C°°(M) it is associated canonically a Hamiltonian vector

field & defined by &5(9) < {f, g}.
In particular, when M = R2, the canonical symplectic form Qo = dz A dy

induces on M a Poisson Bracket {f, g} = Qo(&y,&y) which can also be obtained
via the Euclidean metric as

{f9} = *[df A dg]

where * is the Euclidean Hodge operator. Observe that this Poisson bracket
does not need a symplectic structure to be defined but rather an orientable
Riemannian structure. Furthermore, it can be defined in any dimension n as
follows. Let M be an oriented Riemannian manifold of dimension n > 2, * its
Hodge operator and H = {hy, -+ ,h,—2} a set of n — 2 smooth functions. We
set

(f.0ver % «[dhi A+ A dhy_s Adf A dg]

and call it Riemann-Poisson bracket with respect to H. In particular, the folia-
tion corresponding to a Hamiltonian vector field &, with h € C*°(M), is given
by the intersections of the level sets of the h; with the level sets of h.

Remark 3.2.10. FEach function h; in H is a Casimir for {,}g. In particu-
lar, the foliation corresponding to a Hamiltonian vector field &, is given by the
intersections of the level sets of the h; with the level sets of h.

Example 3.2.11. Let M = R3? with the Euclidean metric and coordinates
(x,y,2) and let H = {x}. Then the Riemann-Poisson bracket is given by
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{f.9}a = 0yf 0.9 — 0y90.f. In particular & = 0, and . = —0, and the
coordinate x is a Casimir.

Example 3.2.12. Let M = T3 with angular coordinates (0',62%,0%) and H =
{h(0%) = B;0'}, i = 1,2,3, for some constant 1-form B = B;df*. Note that h is
a multi-valued function; this is allowed because in the definition of the bracket
appear only the derivatives of h rather than h itself. Then the Riemann-Poisson
bracket is given by

{fag}H = ewkalfalg Bk )

where €9% is the totally antisymmetric Levi-Civita tensor.

This bracket was introduced by S.P. Novikov as an application of his gen-
eralization of Morse theory to multivalued functions [31]. An example of the
rich topological structure hidden in this Riemann-Poisson bracket can be found
in [32].

Placed in this setting Weiner’s Lemma reads as follows:

Lemma 3.2.13. Consider the FEuclidean plane R? endowed with the Riemann-
Poisson bracket {,} and let h € C*°(R?) be a reqular Hamiltonian. Then there
exists f € C°°(R?) such that {h, f} > 0 on the whole R?.

The next lemma allows, under a non-degeneracy condition, to extend Weiner’s
result in the latter formulation to Riemann-Poisson brackets in higher dimen-
sion. The proof of this Lemma goes along the same lines of the original Weiner’s
proof.

Lemma 3.2.14. Let M be an oriented Riemannian manifold of dimension n >
2 andlet H=1{hy, - ,hn_2} be a set of n—2 functions functionally independent
at every point (i.e. such that dhy A -+ A dhp_o never vanishes). Then, for
any h € C®°(M) functionally independent from the h;, there exists a smooth
function (possibly multivalued) f : M — R such that the Riemann—Poisson
bracket {h, f}u is strictly positive at every point.

Proof. Set h,_1 = h. Let F the 1-dimensional Hamiltonian foliation associated
to h, namely the one defined by dhy = -+ = dhp,—1 =0, and let 7 : M — F
be the canonical associated projection. At every point p € M there exists a
saturated (with respect to 7) neighbourhood U, ~ D x X, where D ~ R"~! and
X is either R or S, defined as the connected component of the set W, = {a; <
hi < b;,i =1,...,n—1} which contains p. We renormalize these coordinates by
using new ones h; = i (h; —v;) so that W), is defined by \izz| <2i=1,...,n—1.

Let now A, be the subset of U, defined by |iLZ| <1l,i=1,...,n—1 and take
two functions b and [ like in the proof of Lemma [3.2.

The real-valued function

Folhs ooy 9) = 1) IT o)
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is well-defined and smooth in A, and it can be extended to a smooth function
on the whole M by setting it equal to zero outside A,. Clearly

dfp = wn—1 T (RO (0)dep

where w,—1 € span{dhi,---,dhn—1}. Then {h, fp}r everywhere vanishes ex-
cept within B, = {p’ € A4,||e(p’)| < 1}, where we have

{h, fp}H: *[dhl JANCERIVAN dhn,1 A dfp]
= *[dhy A - A dhp_y ANTIPZ0(R)U (@) dg)
= x[dhy A -~ Adhy,_1 Ad] T2 b(ha)l'(¢) > 0,

the function *[dhy A -+ A dh,,—1 A dy] being positive for all points ¢ € U, and
every p € M since M is oriented.

Now extract a countable subcovering {4, }ren from {A,} and let fi = fp,
be the corresponding function on every Aj; := A,,. As in Lemma the
series ), aj fr can be made convergent to a smooth function f by choosing a
convenient sequence ay. Then {h, f}g > 0 on the whole M since every point p
is covered by at least one Ay, so that {h, f}g > {h, fx}u > 0. O

Theorem 3.2.15. Let M be an n-dimensional oriented Riemannian manifold,
H ={h1, -+ ,hn_2} a set of n — 2 functions functionally independent at every
point and {-, -} g the corresponding Riemann-Poisson bracket. If h € C®(M) is
functionally independent from all the h; and H is the corresponding Hamiltonian
1-dimensional distribution, then there exists a (possibly multivalued) smooth
function f : M — R such the smooth map F : M — R? given by F(x) = ¢(f(x))
is H-free for every free map v : A — R? where A = R if f is single-valued or
A =S'if f is multivalued.

Proof. Let &, be the Hamiltonian vector field associated to h through {, } .
Then, by Lemma there exists a function f (possibly multi-valued) such
that L¢f > 0. Hence, as seen in Theorem the smooth map F' : M —
R? given by F(z) = ¢(f(x)) is H-free (H = span{¢,}), where ¢ : R — R2
(respectively ¢ : S' — R?) is free if f is single-valued (respectively multi-
valued). O



Cohomological equation in the plane

The study of planar vector fields has a long history. The first to address the
problem of the qualitative study of global solutions of ODEs in R? was Poincaré,
in a series of papers published between 1880 and 1882 (see [33]). These papers
represent the beginning of the whole renown qualitative theory of dynamical
systems, which was initiated by Poincaré as part of his program of solving the
three body-problem. (see [34] and [35] for more details and bibliography on this
topic). In 1900 Hilbert [36] pointed out the high non-triviality of the problem
of the classification of plane vector fields by proposing as his sixteenth problem,
still unsolved, the evaluation of the number of limit cycles of a polynomial plane
vector fields. In Thirties Whitney realized that the subset of regular planar vec-
tor fields, i.e. those without zeros, is much more treatable and started studying
them [37, 38, B9]. A complete classification of regular vector fields on the plane
was done by his pupil Kaplan [27] [40] using an ad-hoc topological tool (chordal
systems). In this thesis we rather use the more general concept of insepara-
ble leaves and separatrices, introduced by L. Markus [4I] while working at the
extension of Kaplan’s results to the more general problem of the topological
classification of all planar vector fields.

We recall a few standard basic concepts and definitions that will be used in
this chapter. We denote by X,.(R?) the set of all smooth regular vector fields in
the plane, by F¢ the foliation of the integral trajectories of £ € X,.(R?) and by
me : R? — F¢ the canonical projection that sends every point in the leaiﬂ passing
through it. We endow F¢ with the canonical quotient topology. It was shown by
Haefliger and Reeb [42] that F¢ admits the structure of a 1-dimensional simply
connected second countable non (necessarily) Hausdorff smooth manifold; the
smooth structure is characterized by the property that the restriction of ¢
to every transversal line ¢ is a diffeomorphism onto its image. Two integral
trajectories s;, ¢ = 1,2, of £ are said inseparable when their projections m¢(s;)

I Throughout the thesis we refer to the points of Fe as integral trajectories or leaves de-
pending on the aspect of them we want to emphasize.
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cannot be separated in the topology of F¢ (e.g. see Fig. . We denote by
Tr, s the set of all leaves distinct from s inseparable from it (note that Tz, ,
is empty for all but countably many leaves) and by Sz, the (countable) set of
leaves for which T,  is not empty. A leaf s is called a separatriz when the
boundary of every neighbourhood of m¢(s) contains more than two points. The
set of all separatrices is the closure of Sz, [41]. In the present thesis we will
rather use the term separatrix to indicate just the elements of Sz, since their
limit points play no role in our work. Every plane foliation is orientable and,
correspondingly, to each set Zx, s can be given a natural order; we say that
two separatrices are adjacent if they are next to each other with respect to this
order.

We introduce now a few specific definition we will need throughout the chap-
ter.

Definition 4.0.16. Two vector fields & and &' are strongly proportional if they
are proportional through a non-zero smooth function. A vector field £ is intrin-
sically Hamiltonian if it is strongly proportional to a Hamiltonian vector field
and is transversally Hamiltonian if it is transversal to a Hamiltonian foliation
G, i.e. to the level sets of a regular smooth function G (we say that G is a
Hamiltonian for G).

It is easily seen that a regular vector field is intrinsically Hamiltonian iff the
PDE L¢ f = 0 admits a regular smooth solution and is transversally Hamiltonian
iff is is solvable the differential inequality L¢f > 0.

Definition 4.0.17. A foliation F¢ (or simply the vector field £) is of finite
type if Sz, is closed and every set I, s is finite.

In this case the complement of the set of separatrices is the disjoint union of
countably many unbounded open sets named by Markus [41] canonical regions
and the boundary of each canonical region has a finite number of connected
components. We recall that examples of smooth or even analytic foliations
of the plane with a dense set of separatrices are known in literature (see [43]
and [44]). While there are reasons to believe that such foliations are generic in
some “combinatorial” sense, the set of foliations of finite type is nevertheless
of great importance since important natural categories of regular vector fields
leads to them. For example every polynomial vector field is of finite type: finite
bounds for the number of the inseparable leaves of a polynomial vector field were
find first by Markus [45] and later improved independently by M.P. Muller [46]
and S. Schecter and M.F. Singer [47]. It is easy to verify that are of finite
type also all regular vector fields strongly proportional to those of the kind
&(z,y) = (aly),b(y)), where (a,b) is a generic pair of Morse functions of one
variable (so that a® + b? is strictly positive).

Definition 4.0.18. A complete set of transversals (CST) for F¢ is a set of
lines Te = {4;}, one for each separatriz of Fe¢, such that every {; is transversal
to F¢ and cuts the corresponding separatriz s; and the set {m¢({;)} covers Fe.
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We call gap of g € C*°(R?) between two adjacent separatrices s and so with
respect to the CST T¢ the limit (if it exists)

Tp

gap(g; s1, 82) = lim g (@2(}9)) dt
Te pP—p1 Jo

where the point p € {1 tends to py = €1 N s1, (I>’f§- is the flux of & and T, is the
unique number s.t. @Zp (p) € E

Finally we set a few notations on spaces of germs we are going to use in the
last section. Let a € R. We denote by H] the ring of left germs at a of functions
in C"(—00,a), i.e. the equivalence classes determined by the equivalence relation
h ~ h' if h and k' coincide in some interval of the form (a — €, a) for some € > 0,
and by G7 the subring of the left germs in H] which can be extended to a
continuous function at a together with their derivatives up to order r. Similarly,
let I = {a} x [b1,b2] and set L} = (—o0, a] x R\ I. We denote by H7 the ring of
left germs at I of functions of C"(Ly), i.e. h ~ h' if h and b’ coincide in some
set (UN L)\ I, where U is a neighbourhood of I, and by G7 the subring of
germs of functions of H} which can be extended to C" functions on the whole
Ly.

Definition 4.0.19. We call singular left germs at a € R the elements of the
quotient ring SG,, = H!/G" and singular left germs at I = {a} x [b1,bq] the
elements of the quotient ring SGT = H} /G7.

Note that in this chapter we are interested only to the action of £ on smooth
functions; concerning the global solvability in other functional spaces, e.g. of en-
tire functions or Gevrey-type functions in the realm of global Cauchy-Kowalevs-
kaya theorem see [48], [49] and the references therein. Besides look next chapter
for a study of the type of singularities that can arise at separatrices when we
weaken the regularity conditions on the rhs.

The results presented in this chapter will be published in [4].

4.1 coker Lg¢

As pointed out above in Theorem if ¢ admits a global transversal
the method of characteristics provides a global solution to the cohomological
equation for every g € C*™(R?), so that L¢(C>(R?)) = C*(R?) and
coker Le = {0}. The obstruction to the existence of global transversals is the
presence of separatrices since no smooth line £ can, at the same time, be transver-
sal to F¢ and intersect any pair leaves inseparable from each other.

In absence of global transversals, one can try to solve L¢ f = g recursively in
the following way. Let s be a separatrix for £ and denote by ¢ any transversal
through it and by U, = ng(ﬁ) C R? the saturated open set containing /.

2Such number exists for s; and so are inseparable and is unique for every transversal cuts
each leaf at most once.
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Since Uy is a proper subset of R?, its boundary is non-empty and equal to the
union of the sets Zr, 5 corresponding to all leaves § cut by £. By construction
&, once restricted to Uy, admits a global transversal (the line £) and therefore
Le(C**(Uy)) = C*°(Uy). Let now g be any solution, in Uy, to Lef = g. We
can try to extend gy beyond U, by selecting any boundary component s’ of
OU, and any transversal ¢ passing through it. The function g, restricts on
¢ NUp, to a smooth function g ; if we can extend g, to a smooth function gy
defined on the whole ¢’ then, via the method of characteristics applied to the set
Up = ng(é’) and using g, as initial condition on ¢, we can smoothly extend gy
to Up. Assuming that one can always extend a local solution across transversals
as described above, proceeding recursively until no separatrices are left we end
up with a global solution to .

We are going to use the gap to provide a quantitative criterion for the exis-
tence of continuous solutions. While the gap of a function clearly depends on
the CST chosen, whether it exists and is bounded does not:

Proposition 4.1.1. If the gap of g € C*°(R?) between two adjacent separatrices
s1 and sy with respect to a CST T¢ exists and it is finite, then it exists and it is
finite also with respect to every other CST ’T&'.

Proof. Let £,05 € T/ be the two transversal to s; and sy in the second CST.
Then

gap(g; s1, s2) = gap(g; s1,52) + A1 + Ao
7! 7.

for

Ar = /plg(cbé(p'l))df, Az = /ng(‘bi(l’?)) dt

/
1 D2

where the integral defining A;, ¢ = 1,2, is evaluated along s;. Recall that, due
to the method of characteristics, the values on a leaf of a local solution to the
cohomological equation are completely determined by the value of the solution
in any point of the leaf and they are finite on the whole leaf iff they are finite
at a single point. Hence, if the gap of g between s; and sy with respect to 7¢,
both A; are finite since they are given by integrals of bounded functions over
compact sets. O

It is already implicit in the previous proof that the existence and bounded-
ness of the gap of a function g is related to the extendability of local solutions
of the cohomological equation having g as rhs. Below we prove this fact and
then use it to prove the main result of the section.

Proposition 4.1.2. A global continuous solution to L¢f = g exists iff g has
finite gap between every pair of adjacent separatrices of Fe.

Proof. We point out first that a continuous solution to L¢ f = g, g € C(R?),
is much more regular than it sounds since all such solutions are, by definition,
smooth in the £ direction. In particular the integral of df along the integral
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trajectories of £ is well-defined even for continuous solutions of since the
restriction of df on these integral trajectories depends only on Lg f.

The condition in the hypothesis of the theorem is clearly necessary for, if a
continuous solution f exists, then for a given 7¢ we have

TP
gap(g; s1,s2) = lim df = f(p2) — f(p1).
Te p—p1 Jo

Note that the gap of g between s; and s, depends only on the intersection of
the two separatrices with the relative transversals in 7.

Now assume that a solution f; is defined in U; = 7~ !(f;) and that the
gap of g between s; and ss is finite. Then the restriction of f; on £y can be
continued to a continuous function on the whole ¢5 and therefore, via the the
method of characteristics, to the whole Uy = 7~ 1(f3). The new function fo
defined on Uy U U, coincides, by construction, with f; in Uy N Us, is continuous
in Uy U Us and clearly does not dependent on the choice of the particular CST
used in the extension. By proceeding recursively until all separatrices are taken
into account we end up with a global continuous solution to . O

We are now in condition to prove the main theorem of the section:
Theorem 4.1.3. If £ has at least a pair of separatrices then dim coker L¢ = oo.

Proof. We can assume without loss of generality that £ is completeﬂ Under
this assumption the gap of every non-zero constant function is infinite for it is
proportional to T},, which clearly diverges for p — p;. Then the gap diverges also
on every function which is minored by a non-zero constant, e.g. the polynomials
Pnm(2,y) = 1422 +3?™ so that the image of L¢ misses infinitely many linearly
independent functions, i.e. dim coker L¢ = oco. O

Remark 4.1.4. Observe that, in particular, Theorem shows that there
there is a qualitative difference between the case of a single PDO L¢ acting
on C*°(M) and the case of an n-ple Ly = (Lg,,...,L¢,), ¢ > 2, acting on
(C°(M))?. Indeed in the latter case, as shown in Section for a generic
choice of the & the operator Ly is always surjective.

4.2 Lgf > 0

Finding criteria to characterize functions belonging to the image of L¢ is hard
and in the case of a generic regular vector field we cannot state much more than
the fact that a necessary condition (but far from being sufficient) to belong to it
is to have finite gap between all pairs of adjacent separatrices. More can be said
for the vector fields which are transversally Hamiltonian, which makes crucial
studying the solvability of the differential inequality L¢ f > 0.

3This is true for any smooth vector field on a manifold, e.g. see [34], Proposition 1.19; in
this case, since & is regular, we could simply assume that it has unitary Euclidean length.
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Proposition 4.2.1. Let £ € X,(R?), Qy = dx Ady and we = i¢Qo. The
following conditions are equivalent:

1. F¢ is transversally Hamiltonian;
2. the inequality Lef > 0 has a smooth solution;
3. we Ndf is a volume form for some f € C*°(R?).

Proof. Let G be a Hamiltonian foliation transversal to F; and G a Hamiltonian
for G. Since TG = ker dG we must have dG(§) # 0 at every point, so that
either L¢G > 0 or Lg(—G) > 0 and viceversa. Part 3 is due to the fact that
wg/\dG:igdGQ() = LgGQ(). O

Now we generalize, as mentioned in Section Weiner’s Lemma to
all finite type vector fields. We start with a preparatory Lemma:

Lemma 4.2.2. Let £ be a regular vector field of finite type. Then F¢ admits
a CST with the following property: for each separatriz s € S, the saturated
open set 71'5_1(775(6)) of all leaves cutting the corresponding transversal £ € T
is equal to the union of s with the two canonical regions having s as boundary
component.

Proof. Let s be a separatrix, U one of the two canonical regions having s as
boundary, £ the corresponding transversal in 7 and £y the connected component
of ¢\ s which intersects U. Since U admits a global transversal, there is a
natural diffeomorphism ¢ of U into R sending the leaves of F; into vertical
lines. If m Y(me(€y)) # U there is no geometrical obstruction to make 1 (¢r)
either shorter or longer in the horizontal direction while keeping it transversal
to the vertical direction and without modifying it close to s so that the first
projection of t(¢) on the first factor is surjective. After we do the same on
the second canonical region V' we are left with a new transversal ¢’ such that
ﬂ'gl(ﬂ'g(ﬁ’)):UUVUs. O

Theorem 4.2.3. Every reqular vector field of finite type is transversally Hamil-
tonian.

Proof. We can assume without loss of generality that £ is complete and de-
note by 7¢ any CST having the property described in the Lemma above. The
collection of open subsets V;; defined by

Voi = {®L(L) |t € (ii+ 1)}, s € Se, i € Z,

where ®¢ is the flow of { and ¢, the transversal associated to s in 7¢, is a locally
finite open cover of R%. Indeed by hypothesis the union of the 7¢(¢;) covers F¢
and therefore under the flow ®¢ the ¢; cover the whole plane. Moreover, since
the boundary of every canonical region has only finitely many components, only
finitely many of the V; ; cover any given point.

Inside each V,; every point p can be written as ®

¢
g(q
so that we can define a smooth function f;;(®¢(q)) = &(

) for some q € £,
t), where ¢ is any
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smooth function strictly monotonic for ¢ € (0,1) and such that ¢|(_s,0) = 0
and ¢|(1 o) = 1. Since each V; ; divides the plane in two connected components,
each fs; can be extended to a smooth function on the whole plane by setting
it identically to 1 in the component containing ®¢ (/) and identically 0 in the
other. A direct calculation shows that L¢fs;(p) = ¢/(t) > 0 within each Vj;
while L¢ fs ; is identically zero outside of it. Now recall that the set S¢ x Z is
countable and let n;s; be any bijection of it with N. The series

f= Y 27y

SESE AEZ

converges to a continuous function (because the f;; are uniformly bounded)
which is actually smooth because the derivatives of all positive orders of the
fs,i have compact support. By construction L¢gf > 0 but the inequality is
strict because for every z( there exists at least one index (sgp,ip) such that
LEfS()J;o > 0. O]

Note that the inequality L¢f > €, with € > 0, requires stricter conditions to
be solvable no matter how small € is. E.g. it admits no smooth solutions if £ is
complete for in that case, as pointed out in the previous section, all gaps of the
constant function e (and, a fortiori, all gaps of every function not smaller than
it) would be infinite.

4.3 L (C™(R?))

From this point on we will assume that £ is transversally Hamiltonian and we
will denote by F' € C*(IR?) a generator of ker L¢, so that ker L = F* (C*°(R)),
by G the Hamiltonian foliation transversal to F¢ and by G any Hamiltonian of
g.

A fundamental tool in our analysis will be the map @, : R? — R? defined
by @' = F(x,y), ¥ = G(z,y). Assume first that £ is intrinsically Hamiltonian,
so that F' is regular. In this case @, is an immersion, since also G is regular
and the level sets of F' and G are everywhere transversal by hypothesis, so that
it induces on the source space the following metric and symplectic structures:

Gre = ®1 ((da*+(dy)?) = (AF)*+(dG)?, Q,, = ¥ (da Ady') = dF NG .

In particular @, induces on the source space complex structure J,.,, whose real
and imaginary spaces are T F¢ and T'G, and a Poisson structure {, } ... Via Q,.
we can build a pair of commuting regular vector fields respectively tangent to F
and G. Recall that the Hamiltonian vector field 7 associated to a Hamiltonian
H with respect to a symplectic form 2 is defined by the relation ¢,Q = dH; in
this case we write, with a slight abuse of notation, that n = Q=1 (dH).

Proposition 4.3.1. Let &, = —Q_L(dF), ¢, = —Qy'(dF), &, = Q;1(dG)
and &, = Qy*(dG). The following relations hold:
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1. Qg = (Le,G) Qo

2. €, = tigt,. €, = it

F F

3. Ly F=0, Ly G=1, Lg F=1, Le G=0.

4- (¢FG)*(€;) = 0y and ((bFG)*(é-;) = Oy within (RQ)'

5. {F.G}yo = Le, G = 1.

A

7. The pair (,,,&.,) is an orthonormal base for g, .

8. LE’gFG = Lﬂ/gFG =0.

9. LE’QFC == Ln/QFG == 0.

10. J..8 =86, Jeoél, =&
Proof. 1. A direct calculation show that {, = —0,F0, + 0,F0,, so that
dF NdG = (0, F0yG — 0y F0,G)dx N dy = (L¢, G)S.

2. Tt is a direct consequence of the definition of £/ and &/, and (1).

3. It is a direct consequence of (2).

4. Since @, is not an injection, the push-forward of a vector field (®,..,).(¢) =
T®,., 0¢o®_! is not well-defined unless T®,,(¢) takes the same value
on all points of @1 (p) for every p € @, (R?). This is the case for £/ and
&/, since we get in both cases a constant vector field:

(Prg)«(E))(@) = €. (P}, () = EL.(F) =0
(Prc) (W) = &2, (¥) = €.(G) =1
and similarly for £/..
5 {F,G}pe ={PL 2", @ ¥} e = 0L {2 ¥ }o =05 1= 1.
6. [¢)..80] = [ 5 (dF), Q. (dG)] = QL ({F,G} ) = Q.5 (1) = 0.
2 2

7. 906 (€,8) = (dF(EL))" + (dG(£L))” = (L’E}F)Q + (LgF G)?=0+1 and
similarly for the other combinations.

8. It is a direct consequence of the previous item.

9. This just restates that £’ and ¢/, are Hamiltonian with respect to €2,..

10. It is due to the fact that both g, and Q.. are in canonical form with

respect to &' and £/..
O
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When ¢ is not intrinsically Hamiltonian but is of finite type then F' is not
globally regular but nevertheless its differential goes to zero only on some of the
separatrices, so that the restriction of ®,, to each of the canonical regions of
¢ is still an immersion. Correspondingly, the pair of commuting regular vector
fields ¢ and ¢, is well defined within the canonical regions but, while £/ is
globally well-defined, f/c diverges on the separatrices where dF' is zero. Note
that there is no way to find a global substitute for £/ :

Proposition 4.3.2. Let F be a plane foliation of finite type. Then a pair of
commuting regqular linearly independent vector fields (£,n), with £ tangent to F,
exists iff F is Hamiltonian.

Proof. We showed in previous proposition that such pair always exists if F is
Hamiltonian. Assume then that it is not. In this case we can always find a
smooth function F' with no maxima or minima whose differential vanishes on
some of the separatrices and whose level sets are the leaves of F and a second
function G, this one regular on the whole plane, whose level sets are always
transversal to F. Correspondingly we can always find two vector fields £ and 7
s.t.
LeF =0, LeG=1, L,G=0, L,FF>0.

Let now « e (8 the two smooth functions s.t. [£,7] = «& 4+ 1. Then
a=al¢G+ LG = Li¢ G = Le(LyG) — Ly(LeG) =0
while
BL,F = aL¢F + BL,F = Lig ) F = Le(LyF) — Ly(LeF) = Le(Ly F)

namely 3 = L¢[log L, F]. Since [£, 7] has only the n component, the only thing
we can do to make the commutator vanish is multiplying n by some non-zero
factor p since any other change would just introduce a & component. On the
other side

[ un) = Lepn + pl§,n] = Lepn +p B

leading to u = 1/L, F'; this function though is not smooth because the differen-
tial of F' vanishes on some of the separatrices. O

Let us turn now to the study of the image of L¢. This is clearly equivalent
to studying the image of LE; but the latter is more convenient for the following
two propositions:

Proposition 4.3.3. The cohomological equation Lg% flz,y) = g(x,y), restricted

to the subalgebra ®* . (C=(R?)) = {@;Gﬂf € C>®(R?)}, writes, in the image
of @, as

0

oy’
where f: (@FG)*]E and g = ((I)FG)*g‘

f@' ) =g y) (4.1)
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Proof. In general ®,., is not injective so that, while the pull-back of func-
tion ®* _f := fo®,, is well-defined on the whole C°°(R?), the push forward
(@u)efi=fo @;é leads to a well-defined function only within the subalgebra
@ _ (C°°(R?)). Then from point (3) of Proposition follows that

(Prc ) (Ls'F (q’icf» =L@,).g ((‘bpc)*‘l’icf) = %f

F

Theorem 4.3.4. A function g € C*°(R?) belongs to Ler (C>=(R?)) iff all func-
tions ng, g, k € N, have finite gap for all pairs of adjacent separatrices of &', .
G

Proof. As we already pointed out, every continuous solution to Lg; f=gis
automatically smooth in the &' direction, i.e. L’g;ﬁ f is continuous for every
keN.

Assume first that £/ is intrinsically Hamiltonian. Since £/, and &/, commute
and are globally well-defined, the first derivative in the &/, direction satisfies the

cohomological equation Lg} (LE/G f) = L%g and analogously the k-th deriva-

tive in the &/, direction satisfies L% (L’g, f) = L’g/ g. Now we can use the claim
G G

of Lemma to conclude that each L’g,G f is globally continuous iff L’g‘,s g has
finite gap between every pair of adjacent separatrices.

Assume now that £’ is of finite type, so that &, is only well-defined within
the canonical regions of £/ . By repeating the same kind of arguments used in
Lemma 1.2]it is clear that we can extend a smooth solution within a saturated
open set to the whole plane iff the gap of L% ¢ has finite gap between every pair

of adjacent separatrices. Note indeed that in the definition of gap the values of
&/, on the separatrices are never used so the fact that £, diverges on some of
them does not hinder the evaluation of the gap. O

From Proposition and the surjectivity of 9,y we get a large explicit
subalgebra of the image of Lg%:

Proposition 4.3.5. &%  (C>(R?)) C L (C>(R?))
This fact corresponds to two elementary observations: one, algebraic, that
Le, f(F,G) = Le, F 0, f(F,G) + Le, G0y f(F,G) = 9, f(F, G);

the other, geometric, that the constant vertical vector field 9, on @, (R?) can
always be extended to the whole plane, where it is surjective on C°°(IR?).
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4.4 Local behaviour of functions of L¢(C™(R?))
close to a pair of adjacent separatrices

Proposition shows that locally, in the image of the map ®,.,, the cohomo-
logical equations relative to vector fields £/, look all the same, independently on
the topology of their leaf spaces; the qualitative difference between them resides
rather in the global geometry of the map @, .. It is easy to verify that, as soon
as £ has at least two pairs of separatrices, ® .., cannot be injective, which is
not optimal for several reasons. We bypass this problem by considering the map
$_ . : R2 — R* defined by &, . (z,y) = (x,y, F(z,y),G(z,y)). By construction
® ., is a diffeomorphism between R? and ', = ®,,(R?) C R?, the graph of
® .. The symplectic, metric and almost complex structures determined on R?
by F' and G, as pointed out at the beginning of the previous section, induce the
same structures on I, via the push-forward (®,.).. We use on R* = R? x R?2
coordinates (x,y, z',y') and denote by w1 and 75 the projections on the first and
second factor. By definition 7 0®,, = idge and mp0® ., = @, s0 ', admits
(z,y) as global coordinates and (F,G) as local coordinates at every point. A
direct calculation shows that

(@) e(E) = €L DDy, (Br)slEl) = EL @ Dy .

In particular the projection on the second factor of the image of the leaves of
Fe and G are, respectively, vertical and horizontal straight lines in the plane
(«',y’). All leaves which are inseparable one from the other are mapped to
disjoint open intervals of the same line, so that the images in the graph of any
pair of adjacent separatrices of £’ are separated by a vertical closed bounded
interval I.

Proposition 4.4.1. For every pair of separatrices sy and sy of £, with a =
F|s,us,, there exists a saturated open neighbourhood U of s1 and sz on which
P, is injective and ©,,(UN D L((a1,az) X (c1,¢2))) = (a1,a2) X (c1,¢2) \ R,
where R = [a,az) X [b1,ba] or R = (a1, a] X [b1,bs], both a; and ¢; can be infinite
and cp < by < by < co.

Proof. Let p; € s;, i = 1,2, be any two points on the two separatrices, set
¢; = G(p;) and denote by ¢; be the two leaves of G passing through the p;. The
two numbers ¢; and c; cannot be equal since the restriction of G to any leaf of
‘7:5} is strictly monotonic and, because of the inseparability of s; and s, there

are leaves of Fe:cutting both {1 and f; in particular G(s1)NG(s2) = (). Assume

that ¢; < ¢y (otherwise switch the names of the points), set U; = wgl(&),
i = 1,2 and denote by V and A respectively the union and intersection of Uy
and Us.

Assume first that A is contained in F' < a. We claim that the restriction of
®,.. to V is injective. Indeed let A; = U;\ A, i =1,2,s0 that V =AU A; U As.
Clearly @, |a is injective since A fibers on £ N A, each fiber being a leaf of cF,
with G strictly monotonic on each fiber and F' strictly monotonic on the base.
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Moreover, F(A) C (—o0,a) by assumption. Similarly, each A; fibers on ¢; N A;
so that ®|,4, is injective too; this time though F(A;) C [a,00) and, moreover,
G(A;) = G(s;). Consider now the set V' = V N G~((c1,c2)) and let s be
any leaf of F¢ inside A. The sets of leaves of G|y intersecting, respectively,
s1 and sy cut s in two disjoint open intervals (c1,b1) and (be, ¢2); in particular
all leaves of G|y corresponding to the values in the closed interval [b1,bs] do
not intersect neither s; nor s, and are such that s; and sy lie on different
components with respect to each of them. Finally, let F(¢1) = (a1,ab) and
F(l3) = (a1,ay). Then @, (ANG ((c1,¢2))) = (a1,a) x (c1,¢2), ®ppu(A1 N
G ((e1,¢2))) = [a,a}) x (c1,b1) and @, (A2NG~H((c1, ¢2))) = [a, af) x (b2, c2)
so that ® ., (VN F~((a1,a2)) NG ((c1,c2))) = (a1,a2) X (c1,c2) \ R for az =
min{ab, af}.

In case V' is contained in F' > a, we use the chart i)FG = (—F,G) and repeat
the argument above. O

We call the chart (UN® ! ((a1,a2) x (c1,¢2)), @) Ha normal chart for sq
and ss. By Proposition there are countably many conditions that must be
satisfied for each one of the intervals between pairs of adjacent separatrices so
that equation admits a smooth solution. Since in I',,, there is a natural
family of transversals for F; these conditions can be restated more properly for
this setting in the following way. Let I = {a} x [b1,bs] the vertical interval
separating a pair of adjacent separatrices s; and s, in a normal chart. Every
such interval determines a rings homomorphism 9§T) : SG} — SGY, defined as
follows. Given g € SG7, let g € g and ¢ = min{ecy — bg, b1 — 1}, choose an

arbitrary € € (0,9) and set hy(z') = bbfj': g2,y )dy' for ' € (a1, a); we define

6" (g) = [hr)scy-

Proposition 4.4.2. The left singular germ of hy, modulo germs of smooth
functions, does not depend on the particular choice of € € (0,9) and g € g.

Proof. Let hy(z') = ["*7< §/(«/,y')dy’ for ¢ € (0,6) and § € g. Then the

. b1 —e’
function
b2 —€

MW%WMﬁ=/ @@ ) — 3y dy +

bl—E/

bo+e€’ by —¢€
+/ ﬁ(x’7y’)dy’+/ 9@ y")dy'
ba+e by —€’
is smooth in (a1, a] since the integrands are all smooth in Ry, the last two
because ¢ is smooth in Ry \ I and the integral intervals lie inside that set for
every x € (a1,a] and the first because by hypothesis ¢’ — § is identically zero in
some left neighbourhood of I. Adding to g and g any function smooth in the
whole R; changes the rhs just by a smooth function. O

4Replace &, with CiDFG if, in the terminology of Proposition [4.4.1] V is contained in
F > a.
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The maps HY) then are well-defined. It is clear from the definition of hj
that GET) is a C7(R)-module homomorphism, where C7(R) is the algebra of C"
functions depending on z’ only, since

ba+e ba+e
/ F@)(@, )y = f() / i)y
b b

1—€ 1—€

and commutes with the derivatives with respect to 2/, i.e. 857 (8%,§) = 05,6\ (§).

Next proposition shows that the maps Gy) determine the solvability of the
cohomological equation.

Theorem 4.4.3. Let {I;} be the set of all (vertical, closed) intervals between
adjacent separatrices in I' ., and Gg) the corresponding ring homomorphisms.

Then g € Le:, (CT(R?)) iff [(Cf)FG)*g]Sg;j € ker GZ) for all 0&:),

Proof. Let I = {a} x [b1, b2] be the vertical interval which separates two adjacent
separatrices of £/ in a normal chart for the corresponding adjacent separatrices
s1 and s and set § = (P, ).g within that chart. Then

ba+e
lim 0% g2y )dy'
z'—=a” Jp —e
is exactly the gap of ®7 g between s and sy with respect to the pair of transver-
sals which are the counterimages of yy' = b; — ¢ and 4y’ = by + € and the gap
exists and is finite if and only if those functions can all be extended to con-
tinuous functions for all k¥ < r, which in turn means that the (germ of the)
ba+e 8k

function fb ¥,g(2’,y')dy’ can be extended to a smooth map up to ' = a,

ie. [(@FG)*g]sg;- € ker Ggr). Now the claim follows immediately from Theo-
rem 3.4 O

The C"(R)-modules ©7 = ker 9( ") contain therefore the (left singular) germs
of all functions for which the cohomologlcal equation is solvable in the neigh-
bourhood of a pair of adjacent separatrices. Modulo isomorphisms there are
only two such spaces: the one relative to J = {0} x [—1, 1] and the one relative
to O = {(0,0)}; moreover OF, C O7.

Proposition 4.4.4. The spaces O, satisfy the following properties:
1. ©F, contains the singular left germs of all y'-odcﬂ C" functions;

2. ©F contains the singular left germs of some but not all y'-even C” func-
tions;

3. O4tt is strictly contained in OF,.

5We say that f(z,y) is y-odd if f(z, —y) = —f(x,y) and y-even if f(z,—y) = f(x,y).
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Proof 1. If § is y/-odd then also every 9% is so for every k < r; then
f , g(2',y")dy’ is identically zero for every k < r and therefore it can be
extended smoothly to a C" functlon up to x’ = 0.

2. Consider §(a’,y') = e~/ )\/ a7 € C*°(R2\ (0,0)), so that

r—0~

lim g(a’,y') =0, " #0; lim g(a',0) = oo; / g(@',y")dy' =1, va' € R.
z—0~ — 00

By reparametrizing the 3y’ coordinate we can find a §’ with the same limits with

respect to ' — 0 but such that f; §'(«',y")dy’ = 1. Since the H(OT) are homo-

morphisms of C7(R)-modules we can get in this way every C” function f(z')

just by multiplying ¢'(z’,y") by f(z’). On the other side, germs of functions

diverging too fast, e.g. as §(z',y') = (z/) 72 4 (y') 72, do not belong to any OF,.
/

x

3. Consider §(z',y') = ——x——— € C°(R?\ (0,0)). The germ of the
(1) = s € OV (0,0)

corresponding ho(z') = 22/ log [2 (y’ + (@) + (y’)Q)} , can be extended
y'=

at 0 to a CY (but not C*') function. By integrating r times § with respect to

2’ one can get concrete examples of functions smooth in R?\ (0,0) whose germ
belongs to ©F but not to @6+1. O

An immediate consequence of point (3) of the proposition above is the fol-
lowing:
Corollary 4.4.5. Let ¢ € X,.(R?), Lg) the restriction of L¢ to C™(R?) and let
Cg(Rz) be the set of all functions f € C"(R2) such that f + g is at most C" for

all g € ker Lér). The inclusions
r4+1 r 00 T 7 o0
£y (Cf“(RQ)) NC=([®R?) c I (CE(R?)) N C®(R?)
are strict for every r € N.

Proof. The fact that L") (CT“(RQ)) nC=(R?) c LY (CT(R?)) N COO(RQ)
is trivially true because L J(f + g) € C®(R?) for each f € C®(R2?), g
ker L( ). Our claim is that the inclusion is true even when we restrict L¢ to

the space of functions which are “strongly C"” with respect to &, i.e. those
that cannot be made smoother by adding to them an element of the kernel of

Lér). Consider indeed the concrete case used in point (3) of Proposition
in a normal chart, where the two separatrices are given by 2’ = 0, ¥ > a

and 2’ = 0, ¥’ < a, the (local) primitive of g(z',vy") = z'/+/(2")? + (v/)? is
f(x',y") = 2'log [2 (y’—I— V(@) + (y’)2)}, which is C° but not C' because
the first derivative with respect to z’ diverges on the second separatrix. Since

the divergence takes place only on one of the separatrices, there is no way to
eliminate it by adding a function belonging to the kernel of L. O

In the following subsections we work out in detail two model examples.
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L L L L h L L L L L L L
-2 -1 0 1 2 -6 -4 -2 a0 2 4 &

Figure 4.1: Level sets of F(z,y) = (y*> — 1)e® (left) and G(z,y) = ye® (right). The
first foliation has separatrices y = 41, the second has none.

441 &=0-n+Q+n)y)d.+(1—1%)09,

The &,, n € N, are all of finite type since they are polynomial. In particular
they all have exactly two separatrices, the straight lines y = 41, which bound
the canonical region R x (—1,1). The function F,(z,y) = (1 + y)"(1 — y)e” is
a functional generator for ker L¢,, so the only intrinsically Hamiltonian among
them is & = 2y 9, + (1 — y?)9,. All of them are transversal to the same
Hamiltonian foliation G of the level sets of G(x,y) = ye®, which is topologically
conjugate with the trivial foliation in parallel straight lines. The 2-form

Qe =2(1+9)" 11 = (n = 1)y + ny?)e* Qo

is degenerate on the separatrix y = —1 except in the n = 1 case, when is globally
non-degenerate. Via {2, we get
1 1
g; = 2 Eﬂv é'/G = -1 2 n?
m 2e7(1—(n— Dy +ny?) n2et(14y)n (1 = (n = Dy +ny?)

where n = 20, — 2y0y. Due to the degeneracy of €2, f’cn diverges on the
separatrix y = —1 for n # 1.

The image of every @, . is R?; = R?\ {0} x [0,00) and ®
complex map between (R?, J,..) and (R?,4) for

rc 18 an almost

Joo =y0p @dr +20, @dy — (14 4%)/20, @ dx —yd, @ dy .

The leaves of F,, within the canonical region are sent to the vertical lines of
the half plane z < 0 and the separatrices y = —1 and y = +1 to the half lines
{0} x (—00,0) and {0} x (0, +00) respectively. The leaves lying in the half-plane
y > 1 fill in the vertical half-lines the first quadrant and the ones lying in y < 1
the fourth quadrant. In this case the maps ® are all globally injective. The
cohomological equation Lan f = g maps to

FnG

8y'f(x/’y/) = g(l‘/, y/) , g€ Cm(Rzo) . (42)
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When ¢ is smooth on the whole plane clearly (4.2) is always solvable. E.g. all
smooth solutions to

Le  f(z,y) = Fulz,y)G(z,y) = 2(y> — D(y + 1)" 'ye™

Fpn

are given by

Fo(z,y)G*(x,y)

5 +h (Fu(z,y)) = 2(°—1) (y+1)" "y +h (Fu(z,y))

f(x7y) =
where h € C*(R).

In the following we assume n = 1 since expressions are much simpler in this
case. Consider first the 3’-odd function

y/ o0 * 5 — 2y 0o 2
WEC (Ro)a‘l’mg(x,y)—@ec* (R)

By Proposition the singular left germ of § belongs to ©% and therefore
g € Le(C*(R?)). Indeed (4.2)) in this case is solved by

gz’ y') =

@ y) = V@) + ()2,
whose pull-back
* 2\ x
L flry)=(1+y)e
is globally smooth. Similarly, y € Lg% (C*°(R?)) since y = * g(x,y) for the

y'-odd singular function g(z’,vy') = (v/ ()2 + (¥')2 + 2')/y'.

On the contrary, in case of

/

gz y') =

as discussed in Proposition we have that the germ of § belongs to ©2 but
not to ©%; correspondingly all solutions will be C° but not C'. E.g. an explicit
solution is given by

f(@,y) =05, (¢10g [2 (y+ V@7 + (P)]) = 0=y?)e” (@ + 2108 1 + 1) -

Note that Lie derivatives of f are, as expected, smooth with respect to §’Fl
direction but singular (on the horizontal straight line y = —1) with respect to 7.
In particular, g belongs to Le/ (Li,.(R?)) (where the derivative is intended in the
weak sense) but does not belong to any Les, (Ck(R?)), k > 1. The same happens
1

in case of z = ®*_g(z,y), where §(z',y') = log(\/(2')? + (y')? + 2)/2). For
a thorough discussion about locally integrable solutions of regular polynomial
vector fields in the plane depending only on one variable see [5].
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Figure 4.2: Level sets of F(z,y) = e¢®siny (left) and G(z,y) = €® cosy (right). The
separatrices of the first foliation are the straight lines s, = {y = kn}, k € Z, the
ones of the second are the straight lines s, = {y = 7/2 + kr}, k € Z. Note that
Zs,, = {Sn—1,8n+1}, l.e. sy is inseparable only from s,—; and s,41 (this is possible

because the relation of inseparability is not transitive). The same holds for the sj,.

4.4.2 &, = (cosy—+ (n—1)cos?(y/2)) 0, —siny 9,

The &,, n € N, are all of finite type for their components are Morse func-
tions depending only on one variable; in this case indeed only the vertical
lines can be separatrices and they do not accumulate within any compact set.
For every &, the set of separatrices is S = {y = kw, k € Z}. The func-
tion F,(z,y) = —sin" '(y/2)sinye® is a functional generator for ker L¢, so
that the only intrinsically Hamiltonian among them is £&; = cosy 0, — siny d,.
A Hamiltonian transversal foliation G, for &, is given by the level sets of
Gp(z,y) = cosye®/™. The 2-form

Qe = [(n—1)(2cosy — cos(2y)) + 3n + 1] sin™*(y/2)e" D=/ Qy /an

FG

is degenerate on the separatrices y = 2kmw, except of course in the n = 1 case
when is globally non-degenerate. Via Q, ., we get

2ne=*/m , —2sin' 7" (y/2)e "

/ = =
S n—&—l—!—(n—l)(sinzy—cosy)gm 2 n—l—l—l—(n—1)(sir12y—cosy)777

where 1 = nsiny 9, + cosy dy. Due to the degeneracy of
the separatrices y = 2km, k € Z, for n # 1.

The image of every @, . is R?\ {(0,0)}. Note that ®
complex map with respect to the almost complex structure

P
ros fcn diverges on

rc, 18 an almost

J

F1Gy

=0, ®dr — 0, ®dy,

so that @, . is actually a holomorphic map; in fact, in complex coordinates,

6, (2) = e*t17/4 and its graph is the Riemann surface of the complex loga-
rithm. The graphs of all other ®,, . are diffeomorphic to it.
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Consider just the case of the coordinate functions x and y. The first is y'-even
since 2z = ®* _g(z,y) for g(«’,y’) = log [(«/)? + (v')?]. A direct calculation
shows that

[0,(9)] (z") = 2/06 log ((z)* + (v)?) dy’ = 4z tan™ " (¢/x) + 2¢(log(e* + z%) — 2)

which can be continued to a smooth function up to ' = 0. Hence § € O2° for
all n and, correspondingly, z € Lg, (C*°(R?)). An explicit solution is given by

. Y Lo
fla,y) = @} 20" tan™" 2 4log[(2)*+(y)?] =2y = 2[(z — 1) cosy — ysiny] "
The second is y’-odd since y = ®% _g(x,y) for g(a',y') = tan—!(2'/y’). Hence
even in this case g € ©;° for all n, i.e. y € Lg/ (C*°(R?)). An explicit solution
is given by

/

« 1 X 1 . x
flz,y) = @} [y tan™" 72 log[(2')* + (y')]] = — [y cosy + wsiny]e”.

/



Weak solutions
of the cohomological equation in the plane

In this final chapter we extend our results of the previous chapter by studying
the existence of weak solutions to the cohomological equation in the plane for
some class of smooth regular vector fields. We also investigate the stability of
the global solvability for the cohomological equation in weighted Sobolev spaces
under perturbation with zero order pseudodifferential operators.

We consider the smooth non-singular real vector field in the plane

Lu = p(t)0pu + q(t)0,u = f(t,x), (5.1)

i.e., p and ¢ are real-valued smooth functions which have no common zeros.
One assumes that there is an integer N > 2 and ¢; < ... < t) such that

pt)=0et=t;, j=1,2,...,N (5.2)
with
pt)#£0, j=12..N (5.3)
and ¢ admits at most one zero in (¢;,t;41) for j=1,2,...,N — 1.

Note that the lines {t = ¢;}, j = 1,..., N, are characteristics for L. We
also suppose that p and ¢ are polynomials. Our results are true under weaker
restrictions on p and ¢, but we prefer to exhibit the main novelties avoiding
highly technical arguments and capturing particular cases of L of interest in
geometry and dynamical systems (see [50] for foliations and the previous chapter
for its action on C*°(R?)). For example,

LQU = (1 - t2)8tu - 2t8Lu

and, more generally,
Ly gu = (1 —12)0u + M"0,u (5.4)
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for A#0, ke N.

The first main goal of the chapter is to show that the existence of separatrix
type phenomena for is the only obstruction for the surjectivity in C°°(R?)
of L. Moreover, we exhibit functional spaces associated to the separatrix strips
where we can solve globally this cohomological equation in R? and investigate
the stability of this global solvability under perturbations of L with zero order
pseudodifferential operators in x.

Definition 5.0.6. A strip S; = {(t,z) : t € (tj,tj41),x € R}, with j €
{1,...,N — 1}, is a separatriz for the vector field L above if all characteristic
curves x = x(t;T,y), starting at a point (1,y) € S; satisfy either

lim+ z(t;7,y) = lim x(t;7,y) = +oo

t—>tj t—>tj+1

or

We state the first new result of the chapter:
Theorem 5.0.7. The following assertions are equivalent:
i) the vector field L is not surjective in C>°(R?);
ii) the vector field L admits a separatriz S;j, for some j € {1,...,N —1};

iii) there exists j € {1,...,N — 1} and 0; € (t;,t;41) such that g(6;) =0 and
q has opposite signs in (t;,0;) and (0;,tj+1).

In particular, the operators Ly ;. are not surjective in C'™ (R?) if and only if k
is odd.

To illustrate the non-surjectivity for simple example we point out that nonzero
constants do not belong to Lo(C°(R?)). Direct calculations implies that

Lou= c
has a weak solution
c 1+t
t =—In|—]|.
u(t,) 2“'1t

We show for more general classes of ths f € C°°(R?) that every solution has
singularity either at ¢ =1 or t = —1 (see Section for more details).

This example shows that in order to solve globally Lu = f one should
allow some (weak) singularities of the type L, near the adjacent characteristics
forming the separatrix strips.

The second main novelty we present is that, in order to find a global weak
solution, in general the rhs f(t,z) should grow at most like O(e°®!), for |z| — oo
uniformly in the separatrix strips S;.



75

Finally, we derive sharp estimates on the singularities of the global solutions
u(t, z) of (5.1) near t;, j € Ir, for large classes of smooth rhs f, where

I, ={t;: Sjor S;j_q is separatrix,j = 1,...,N}.

We point out that the part ii) of Theorem implies that L is not surjec-
tive in C°°(R?) if and only if I, is not empty.

In order to state the main result on the global solvability of (5.1]) we introduce
the subspace of the functions of infra-exponential growth in the x variable (e.g.
see [5I] where such growth plays an important role in theory of Fourier transform

for hyperfunctions).

C®(R: Expa(R)) <

{f € C®(R?): VT > 0,Ve > 0,Va € Z3 ,3C > 0 s.t. [0, f(t,x)| < Cefl®l |t] < T,z € R}
We recall also the weighted Sobolev spaces H**°2(R™) in R" (e.g. see [52]).

H 2 (RY) E{f € 8'(R™) : |fllor,0 = [(2)*2(D)" 12 < +00}

which measure the global regularity and the behaviour on oo in R™, where
() = 1+ llz>
Theorem 5.0.8. Let L defined above be non-surjective in C*°(R?). Then we
can find a right inverse L™ of L acting continuously
L™ C®(R: Ezpy(R)) — L}, (R : Ezpgy(R)) N C®(R\ I, : Expg(R))
and
L' C(R: H*2(R)) — L}, (R: H*"*2(R))C(R\ I, : H****(R)), (5.5)

with s1, 85 € R.
Moreover, for any € > 0 we have

N

sup | Tt 51L; £ M monvamy | < Cesrmmol Flloet, menes o)
te[—0,0] j=1

Next, if f is a polynomial function with respect to x, i.e.,

f(t,.%‘) =

~
||M?r'
o

=

—

=

g
~

then
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with

gr(t) =0 |t 1))
ge(t)

near t = t;, if S; or S;_1 is a separatriz
o(In* |t — ;)  neart=t;, if S; or S;_1 is a separatriz,
for£=0,....k—1.

Finally, given a zero order PDO b(t,z, D) in x smoothly depending on t, and
s1, 82 € R we can find eg = eo(L, s1,82) > 0 such that if

max sup
la|<[s1]+2 tE[t; tq1]
|B<[s2]+2 (w.€)ER2

(@) *(€) P02 b(t, 2, €)| < eo

then L + b(t,z, D) admits a right inverse which satisfies (5.9)

The results of this chapter will be published, jointly with T. Gramchev and
A. Kirilov, in [5].

5.1 Separatrix Strips and Non-surjectivity

In this section we prove Theorem We start by calculating the global
“singular” characteristics of L after dividing by p(t), namely, rewriting formally
Lu+bu= f to

. 1
Lu+ —=b(t,x,D)u
oy b= D) R0

with

The characteristics of L, different from ¢ = tj, j=1,...,N, are defined by

. q(t)

l't 5 €T :T:y
) p(t) ;

for some 7 #t;,j=1,...,N.

We have
Lemma 5.1.1. The function q(t)/p(t) has a global primitive g(t) such that

N
g(t) = Z%M(tj)ln\t—tjl +9(t) (5.6)
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where each »; € R\ {0}, with j = 1,...,N, depends only on p(t) and § €
C>*(R).
Moreover, for each j € {1,...,N — 1} fized, we have

s;7i11q(t)q(tj+1) >0 & ¢ admits a zero in |t;,tj1] of odd order
25 41q(t)q(tj+1) <0 & g does not admit zero of odd order

Proof. By the hypotheses (5.2)), (5.3) on p and the decomposition of rational
functions, there are nonzero real numbers s, ..., >y and 1 € C*°(R) such that

1 N »”;
— = E J t
g T

which yields

+7"2 )

q(t) al
i

for some 75 € C*(R). The expression ) follows by integration.
We note that the hypothesis (5 1mphes q(t;) # 0, and hence

def .
¢; = #q(t;) #0, j=1,...,N
O
Next, we present an important auxiliary result.
Lemma 5.1.2. Let z(t,y) be defined by
At —0)F _
= t 0) = 0€lo_.0 5.7

with G € C*([0_,04]).
Then one can find r € C>([0_,604]) such that

2(ty) = y+ci It — 04 +c_Int — 0| + (D),
where

M= 0)F

T e

In particular, we observe that
i) cxc- >0 & kis odd & cy and c— have the same signal and X > 0;

i) cye— <0 & kis even & cy and c— have different signals and \ < 0.
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Proof. The proof follows from the decomposition

At —0)F MOy — 0)F MOy — 0)F
( ) — ( + ) + ( =+ ) —‘r(jl(t),
O =)t —0-) (04 —0-)(0+—1) (64 —0-)(t—04)
where §; = 0 if £k = 0,1, and §; is polynomial of degree k — 2, if £ > 2, and
integration (from 6 to t) of the rhs of (5.7). O

Now we present the main steps of the proof of Theorem [5.0.7] First, assume
that S; is a separatrix, for some j € {1,..., N —1}. In view of Lemmas
and the characteristic curves of L, in S, can be written in the form:

o(ty) =y+cjInft —tj] + ¢ Inft — ] + R;(t). (5.8)
with R; € C*([t;,t;41]) and ¢;jcj11 > 0. We observe that ¢;jcj11 > 0 leads to
lim+ z(t,y) = lim x(t,y) = sign(c;)o0, y €R. (5.9)
t—t =t

Clearly implies that every smooth curve with endpoints on ¢ = ¢; and
t = tj41 is hit at least twice by the characteristic curve provided y > 1
(respectively, —y > 1) if ¢; > 0 (respectively, ¢; < 0), and therefore, the
condition of Duistermaat-Hérmander for the surjectivity fails.

Suppose now that there are no separatrix strips. Hence, p(t) and ¢(t) do not
change sign in [t;,¢;11], j =0,1,..., N, tg = —00, tn41 4f | 5 and fixing j, we
note that the line segment x +vt = C, t € [t;,t;41] is transversal to L provided
v # 0 has the same sign as p(t)q(t) for some t €]t;,t;11[. So we have global
piecewise smooth global transversal. Smoothing by mollifiers e =1 (e ~!t) near
t = t; makes the curve smooth and still globally transversal provided 0 < ¢ < 1.
The proof of Theorem 1.1 is complete.

Example 5.1.3. We focus on the vector fields L ;, defined in and exhibit
some geometric features. The integral trajectories of Ly ) are given by the
curves

x(t) = A [(—1)]“1 log |1 +t| — 1log [1—t] — i tl]

2 2 ‘g
i<k

where i extends only to odd numbers when k is even and only to even numbers
when £k is odd.

The vector fields L j, are intrinsically Hamiltonian vector fields, i.e. they are
tangent to the level sets of a regular smooth function on the plane — equivalently,
the kernel of each operator Ly j contains regular smooth functions.

For example, the following smooth function fy x € ker(Ly x):

froe(z,t) = (1 —t*)exp [2 (f\ + i t;)] , and

1<2k+1

frow(z,t) = tan™! { 1;iexp l2 <§ + i t;)} }

<2k
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Figure 5.1: Integral curves of Ly 1 = (1 — t3)9; + t0, and L1 o = (1 — t3)0; +
t20,,, respectively. Clearly no global transversal exists for Ly while Ly 5 is
topologically equivalent to a constant vector field.

Remark 5.1.4. We can generalize Theorem 1.2 for smooth non-singular vector
fields assuming that p and ¢ are in general position with respect to each other,
i.e., each zero of p and ¢ has finite multiplicity. Choosing ¢; and t2 to be two
successive zeros of p(t), then ¢; and to form a separatrix if and only if the sum
of degrees of all the roots of ¢ between ¢; and t- is odd.

5.2 Estimates on the right inverse

The aim of this section is to prove the Theorem[5.0.8] First we will construct
a right inverse as follows:

Let j € {1,...,N — 1}. If the strip S} is a separatrix, we use Lemma
to obtain

Ly [fmete) - e)
Ll o= / p(7) !

J

[t—tjy1]
G "

/ ey In b= + e In =2 4 Ry(r) — Ry(1)
0;

If S} is not separatrix, we construct Lj_1 as the Green function for the Cauchy
problem in S

Lj_lf(tvx) = G;f(t,.’l,‘),
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where v # 0 is fixed by the requirement C; : z + vt = 0, t € [tj,t;11] is
non-characteristic for L in S; and w;(t,z) = G% f(t,z) is defined by

Luj = f, (t,x)€S;, ulc; =0.

The global transversality of C; in S; implies that u; € C°°(S;) (we are in a
particular case of [20]).

The next assertion plays a crucial role in the proof of the global solvability
for L in the presence of the separatrix strip.

Proposition 5.2.1. Suppose that S; is a separatriz and set I; Lt (tj,ti41),
then L;l has the following properties:

i) If C=(1; : E5,.(R)) (respectively, C*(1; : Ej..(R))) is the subspace of

C*(I; x R) consisting of all infinitely differentiable functions that satisfy
the following growth (respectively, decay) condition

Vo € Z7,3C > 0 such that |07, f(t,z)| < Ccel”l teljzeR

(respectively,

Vo € Z7,3C > 0 such that |07, f(t,z)| < Ceel7l t e I,z € R)
then

Lyt (T, Bp(®) — LML+ gy (R) (VOX(L B, (R)) (5.10)

(respectively,

L7 O (T, Bea(R) — LM Buo(R) 1O (1) : Eio(R)))
if

0 < e <minflej| ™, feja ]
1) For s1,s2 € R,

Lj_1 :C(T; : H2(R)) — L'(I; : H¥*2(R)) N C(I; : H**2(R))
(5.11)
Moreover, for any € > 0 we have

sup ([t = t[°t =ty [FIILT F (8 ) v ce @) < Cosrsall Fll o7, mrer02 (my)
e[t tj41] :
(5.12)

iii) If f(t,x) = b, fo(t)z’, then

with
{gm) = gi(t)y " A (L4 0(1)) near t =ty 7, #0, p=j,j + 1,

ge(t) :o(lnk‘H ‘t_lm) neart=1t,, p=7,7+1, £=0,1,...,k—1.
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iv) Given a zero order PDO b(t,x,D) in x, smoothly depending on t, and
s1,82 € R, we can find eg = e9(L, 51, 52) > 0 such that if

max  sup (z) (&) P0207b(t, 2, €)| < €0

lel<[s1]+2 tepe. b, q]
i+l
[BI<[s2]4+2 (2.6)ER2

then L 4 b(t,x, D) admits a right inverse which satisfies (5.11]).

Proof. We observe that for ¢ close to t; we can write

|T—t
it —t

il agym)) fﬂft) dr  (5.13)

J | J

t
Lj_lf(t,as) = f(r,¢jln
/

with fj € Ooo([tj70j]), Mj € OOO(AJ), Aj = {tj <7<t< 0_7} Therefore,

0;
! |t =] Tt
t
0;
< Oee‘m‘/ee\cﬂln t_t; 1 dr
T*tj
t
0,
1 1
- C elz| / d
C ) oY
t
1
= Ceflml = (9. — )l — (¢ — ¢.)elel
€ 5‘cj|(t_tj)e|c]~\(( J ]) ( J) )
Q. — t.)elel ‘
_ el O =) (14 O((t — t;)le1)) (5.14)

elej| (¢ — t)eles!

Similarly, we derive that near t;1; we have

B t. 79.)E|Cj+1| _
QLY f(t, x)| < Cefl®! (b1 =6, 14+ O((tjp1 — t)Ele+l)) (515
| 7 ( )l €|Cj+1|(tj+1 o t)slcj+1‘ ( (( J+1 ) )) ( )

Clearly, (5.13)), (5.14), (5.15) imply (5.10]) provided 0 < ¢ < min{|c—1_|, ﬁ}

As it concerns to item i), taking into account the inequality

sup |)\|7‘52|<x)52<x+)\)*‘92 < 4o
TER,|A|>1
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we observe that for o € Z and s € R we have for ¢ near t;

()28 L (e < C / zng 2@+ ol =) 77 ) ey dr
sup ()20 f(t, )] 2
te[t b+l
= C/ hel (552 ) pdr sup (10920 f (1)l

tE[t;,t;41]

C S 1 S (63
Wl sup ()20 f(t, ) |2 (5.16)

‘52| t— tj tE[t),t;41]

Therefore we obtained for sy € Z4 (summation in over |af). We
conclude the general case for sy by interpolation and duality arguments.

Since the logarithmic singularity is weaker then any polynomial one,
yields (5.12)). O

Next, we show a gluing lemma, which will imply that
L7 f(t,z) = Ly'f(t,=), (t,z) € Sj,j=0,1,...,N

is a right inverse satisfying the properties stated in Theorem 1.2. This gluing
auxiliary assertion seems to be also a novelty “per se” and might be of an
independent interest.

Let 2 be an open domain in R™ and let § > 0. Set I = (=4,6), I} =]0,4],
Iy =] —4,0[, and

QF =If xQ={(t,2): 0< £t <8,z €Q},
Qs =L x Q={(t,x): |t| <0,z € Q}.
Consider the smooth vector field
n
X =a(t,z)0 + Z a;j(t, )0y,
j=1
having ¢t = 0 as a characteristic, i.e.,
ap(0,2) =0, z€Q

Let
b=0b(t,x) € C>(Qy)

or, in the case 2 = R", we allow b to be a zero order PDO in z (see [52])
depending smoothly on ¢ €] — 4, 4.
We have:
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Lemma 5.2.2. Let f € C*®(8s) (respectively, f € C((—0,9) : H*%2(R™)) for
some s1,s2 € R if Q =R"™). Suppose that

ut e C(QF)
(respectively,
ut € C(Iy : H™(RY))
for some s1, 59 € R) satisfies
XuF +but=f in Qgt
Then

[ ut(t) if (L) eQf
u(t,z) = { u(t,z) if (t,z)e€ Qi‘

is a well defined L} (Q) (respectively, L*(Is : H%*2(R™)) distributional solution

loc

of Xu = f in Qs provided

wt e LYIFxK), KccQ (5.17)
(respectively,
uwt e LMIE: H%2(RM)), (5.18)
if @ =1R")) and
111(1)1i a(t, z)u™(t,z)o(t, z)dz = 0, v € C5° () (5.19)
t—
Rn

Proof. Let o(t,x) € C§°(Qs). We have to prove that

(u, X*p +b"p) = (f, ) (5.20)

where X* (respectively, b*) stands for the adjoint of X (respectively, b).
Taking into account (5.17), (5.18) and Lebesgue’s dominated convergence
theorem we have

(u, X" +bp) = I (J7 (u™, ) + I (u™, 9)),

where

+45

JE(u*, p) =+ ut (t, ) (X" o(t, ) + b*(t,z, D)p(t, z))dx | dt.
I
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Integration by parts, duality arguments, the Fubini theorem and ([5.17)) imply
that

+46

JE@wr, ) = + (Xu®(t,z) + b(t, z, D)u™(t, x))p(t, x)dxdt
/]

—|—/a(ie,x)ui(ie,x)w(ie,x)dx

Q
/ f(t,2)o(t, z)
of\oF

+ [ a(ze, z)uT (£e, x)p(+e, z)dx
/

Next, using the hypothesis (5.19)), we deduce that

hIl’(l)Js:(ui,gD) = /f(t,x)go(t,x)dtdx
Qi

and, plugging into the rhs of (5.20]), we obtain,

(0, Lo+ bg) = / F(t 2)p(t, 2)dtda + / £t 2)olt, 2)dtde
of Q5

/ f(t, x)p(t, x)dtds
Qs

This completes the proof of the lemma. O

Combining Proposition 3.1 and Lemma 3.2 we derive the assertions for L~1.

As it concerns the perturbation with b(¢,z, D), we reduce the equation in
R? to Lu+b(t,z, Dy)u = fon S;, j =0,1,...,N. We are reduced to the study
of the global solvability of

w+ L7(t,z, D)u = L7 f, (t,r) € S;,j =0,1,...,N.
We apply the Picard type scheme
up = =L b(t, 2, D)up_1 + L7 f, EeN,u =0 (5.21)

If 7 = 1,...,N, we use the results for H®"%2 estimates of PDO in R"
(see [52]) and choose ¢y so small that

16(t, 2, D)L | (e, ta]: Ho1 52 ) L1 ([t ] Ho1o2) < 1
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Using continuity arguments we can find 6 > 0 (small enough) such that

L™ 0(t, @, D)L | La (e 6,0n 48] Ho 152 ) L1 ([t — 6, 6]: F1002) < 1

Since p(t) has no zeroes for ¢t > tny + 6 and ¢ < t; — § we have the following
estimates: there exist a C' = Cs > 0 such that

t
L7 bt Yo < G [ futr, ) esdr,
0;

for j =0,t <t —9,5=N,t >ty + 9. Combination of contraction and
Gronwall inequalities (see [49]) imply the convergence of (5.21]) and the existence
of (L + b)~1 satisfying the last part of Theorem 1.2.

Remark 5.2.3. We point out that the estimates for f € C>*(1; : E5,.(R))
allows to extend solvability for L and L + b in Gelfand-Shilov spaces Sﬁ(R) n
x, provided p > 1 (see [53] for global solvability and regularity results for some
degenerate PDO under similar sub-exponential decay conditions). We can show
that, if the decay is super-exponential the solution u loses this decay, unlike
the solvability in Gelfand-Shilov spaces Slj,1/2 < p < 1, (see [54, [55] and the
references therein).

5.3 The sharpness of the estimates for L

We consider the model equation Lou = f. Using the method of the character-
istics, for t # 41, one can write formally a right inverse of Ly in the following
way

t
—1 p def ].—’7'2 1 .
Ly f = /f(T,erln 12 )1_77_2dT7G+f+G_f, (5.22)
where
¢ 1 / 1 1
def -7 + 7
o ! In| T 2
Gif(t,x) 2/f7'a:+n —t+n’1+t)1:|:7d7— (5.23)
0

We define in a natural way C>°(R : Ef,(R)) as the inductive limit

O (R < By, (R) = T C¥([T,T]: B, (R))

Observe that C=(R : ES (R)) is a vector subspace of C*°(R?) and, given
fi, f2 € C®°([R : E;(R)), we have f1-fo € C°(R : Eg,(R)). In particular, the
projections 7 (t,2) =t and 7 (¢, 2) = = belong to this space and consequently,
any polynomial function p belongs to C*°(R : Ef . (R)).
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We introduce a topology on C*°(R : E¢ (R)) by the following family of
seminorms

g def —&|T {63 (63 N
95k (f) = sup{ [e o022 f (1, )i [an| < i lao| < k.|t < T,z € R, }
where 7' > 0 and j,k € Z,..

Lemma 5.3.1. Ifa € C*(R) and p € N then, when t — 1, we have

t
1—s| 1 a(l) 1-—
In? ds = InP*! 1
/a(s)n T—t|1-s" 7 pr1 1—t 7| (L o(1)
0
Proof.
¢ t t
g Ed S CH Y G M In? |1=2|d
a(s) In T T = a(l) [ In?|3=5 ai(s)In” | 3=7|ds
0 0 0
_ o a(l) p+1|1-—s p_1
= o ‘ =] o (0" ity )
a() 1
- 7 |1+ o(1
oL (1+ o(1)
U
Lemma 5.3.2. If f is a monomial function with respect to x, i.e., f(t,x) =
fi(®)a?, with f; € C1(R) and j € Z, then
Lyt f(t,x) = Zg]g
with
{gjo(t) - il)l‘ ‘1—|—0 Nt — +1
gie(t) =0(In?t' ‘1‘)tazt1
Proof. From and (| we obtain
Gaf(t,) /f 41 T+11+Tj1d
= n n
£HE A —1 1+t|) 1277
NN 1— 1+7[\/7° 1
= = 1 In ¢
2 2()/ ()(n l—t * ‘1+t> e
=0 A

Z gjex(t) z*
=0
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where

gjex(t) = ;(i)jfj(T) (ln
0

1+7
14+t

1—71
1-—t

j—t
1
dr
1+7

+ln‘

iy ¢
L7\ = (-1 1—7| em|l+7] 1
= — i 1 m |- 1 J m |- T
2(%)2}(771)/]3(7)“ 1—¢t| 1+t|1+7
m= 0
Now, it follows from Lemma that, near ¢t = 1, we have
LN < =0\ [ 1-7 1+7] 1
o (t) = = () In™ | ——— | In ™ d
9se-() 2(&)%( m )/fﬂmn '1—1& " ’1+t 11—+
m= 0
N it . .1)1nj—€—m 2
1/7 e =4 fi( ‘1+t | 1
- = I | —— | (1 +o(1
2([)7;)(771) m+ 1 nt | (o)
= O lanrl*ZL
1—1
Analogously, near ¢t = —1, we have
an = O /f»()lml_ﬂﬂml” 1
et = a\e) =\ m AR e T+t|1+7
m= 0
- 2 Ji l —fj(l)lnml%Hnj—f—m“ . (1+0(1))
o2\ = \m) j—l-m+1 1+t
= 0 hljJrlffi
1+1¢
In particular, for ¢ = 0, we have
1 | £ |1
or®) == [ f; dr = 2= 1n |——| (1 + o(1)).
oslt) = [ 550 ar = 25| o)
0 [

The next assertion shows that we have sharp estimates on the singularities.

Proposition 5.3.3. The following properties hold: there exists g > 0 such that
for all e € (0,¢0)

i) GivenT >0 and k € Z4, we have

sup [(1—)°Lg ' f(t, )| < CF 5% +(f)

x ER
lal<k
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ii) If f(t,2) = S2h_o fi(t)ad , then

with

2(k+1)

go(t) = LEIFFL I 4 4(1+ 0(1)),t — 1,
gi(t) =O0* I 1 +¢)),t — +1

iii) w = Ly f is a weak solution of Lu = f for all f € C°(R : E*(R)) such
that Va € Z, K CC R, there exist M > 0 such that

[Ofu(t,z)| < M1xt]™°, O0<[1tt<l,zeK

Proof. To prove i) we start by defining, for each T'> 0,k € Z4 and u € C*(R
E*¢(R)) the following function:

T
Pon(u) déf/ sup eigo‘xlagu(t,z)‘dt
T \z\ESRk
Thus, for any f € C°(R: E5(R)), with 0 < & < g9 and ¢ > 0 we have
T
P (G- f) = / sup |e==ol7lgoG_ f(t,x)’dt
-T \Z\GE,I@
T
1
_ . —eo|z| Ho 147
/ sup. | 05 /fo+ln| 7+ 1n 1+t‘)1 TdT dt
21 lal<k
T
1 1
< 5//3215 ecollge £ (7, z+In|[=2| +1n 11'E|)1_7_d7' dt
S0 lal<k
T t
1 e —eolz| 1+7 1
< 2inrlh) [ [ sup |emeol exple(fel + In 25| - n 4 ) | dra
10 lal<k
T ¢ . .
1 1+7 1—7 1
< . pE—€0 4 d dt
= 2° 90»”“)//‘1“ 1—¢| -
“T0

< 3 CEO Joue,r (S —=1)7°

By using the same arguments, when ¢ < 0, we obtain an analogous estimate
to G4 f, and consequently

Pop(Lgt f(t,x)) < O g5% p(F) (1 —£2)7°
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To prove i), we use the results in the lemmas and below to obtain

; Lyt (fi(H)a) ;; (Z gjelt >
>

k
0
k
Z 9e5(t ot = Z 95 ()"
=0 £=0

Lalf(ta 33) =

Y4

where

k k
1 o1
t) déf Zgzj(t) = ZO (h’le-‘rl_‘7 |1:Ft|) = O <h’lk—"_1_'7 |1:Ft|) 5 when ¢t — +1
l=j l=j

To prove the statement i), first, for 0 < ¢ < 1, we have

t
a 1 |
OG-t < 5 [ |orsre 4 A+ In B ) | dr
0
1 / 1 1
+ 7
< g a|x\ € d
< 5%arlf) /‘ = -
0

1
< S Ghar(D el -

By using the same arguments, when —1 < ¢ < 0, we obtain the same estimate
to G4 f. Therefore

2GS < 5

Therefore, given f € C°(R: F°(R)),a € Z, and K CC R, we set

M =& g5 o 7 (f) sup el
zeK

Thus, it follows from (5.22)) and (5.23 - ) that
0X(Lyt f(t,x)| <M+t 0<l+t<l,zeK

oo (f) e le 1487

Remark 5.3.4. Since the general solution of Lou = f in [—1,1] X R is given
by

u=p(z+In(l—1%)) + Ly" f(t, ),
with ¢ being a function (or distribution) of one variable, we observe that we
have always singularity at t = —1 ort = +1.
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In view of the separatriz phenomena, we have not compensate both singular-
ities in the general case, while we can “cancel” the singularity either att = —1
ort=+1.

If f = c# 0, we exhibit, apart from u = 5 In H—J_“ﬂ, two particular solutions:

ug(t,x) = :ng teln|l F¢

5.4 Perturbation with non-degenerate PDOs

The aim of this section is to show that if we perturb Ly with constants PDOs,
or more generally, a Fourier multiplier satisfying suitable non-degeneracy condi-
tions, we can obtain Lf°, estimates in ¢ for the (Lo +b)~! without the smallness
requirement on b.

More precisely, we consider

Lyu = (1 — t*)0pu — 2t0,u + b(D)u = f(t,z)
where
b(&) € C(R) is real-valued and bounded away from zero for £ € R.  (5.24)
Clearly implies that one can find 0 < §p < d; such that
either 8y < b(€) < 8 or —d&; < b(€) < —dy, for € € R. (5.25)
Set u(t, &) = Fr—eu(t,-) to be the partial Fourier transform in z, i.e.,
w(€) = /e‘imgw(x)da:.

R

Setting (formally)

_ _ b(§)/2
g =en-"Puli )= (7)) oo

we obtain that

G
) fee

Lo (t, &) = (

In view of the non-degeneracy condition (5.25)) can write a right inverse of
Ly, which is L in ¢ (a better regularity than L] for L™1). Indeed, set

loc

[1-t2]
72

27 = () fs. 5 ;
v o= 1+t / (1 — 7)1 —7]PE/2(1 + 8)[1 + s|~b(&)/2 °

—sign(b)
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Proposition 5.4.1. The operator L;l acts continuously as Lal in the spaces
with sub-exponential decay. Furthermore, it acts continuously

Lyt ¢ CR:H*R))— L. (R: H*(R))
and for every K >0, s > 0, one can find C' = Cx > 0 such that

_ C
Ly, 1fHL°°([7K,K]:HS(R)) < %”JCHC([—K,K]:HS(R)M

for all f € C(R: H*(R)) and 6o > 0.

Proof. We have the crucial step is based on the estimates near t = £1:

1Ly e < Collflloqox,x)r2)) sup (|1 + sign(b)t])*"©/?
€
. 1
x| / . . ds|
11— S|1+Slgn(b)/2|1 + 8|17S1gn(b)/2
—sign(b)
C
< m”f”C([fK,K]:LZ(]R))
where
t
‘ 1—¢|"®7? / 1 il <2
= su P — S -~
L ) | (1 — 7)1 — 7P@72(1 + s)|1 + 5] 2©72 | =5
—sign(b)
O

5.5 Final Remarks

First we observe that our results remain valid for vector fields of the type
L =p(t)0; + q(t, )0,

provided ¢(t,z) is bounded for x, when z — oo. The approach follows the
same ideas, but the arguments of the proofs become more involved in view
of the use of theorems on global behaviour of solutions of ODEs. If ¢ is not
bounded, for x — oo, we have more restrictive conditions on the growth of the
rhs f. For example, if ¢(t, z) grows linearly in z (like SG first order hyperbolic
pseudodifferential operators (see [62]), we have to require that the rhs f(¢,x)
grows less than every |z|7, for every v > 0. Next, we point out that if the rhs f
decays to zero for x — oo, the right inverses L;.

Next, as to possible multidimensional generalizations of the vector fields
studied in the present work, we are also able to propose similar results for some
classes of vector fields having smooth symmetries. E.g. consider the regular
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plane vector field L = (¢2 — 15)(t* + 15)0, — (t* — 25)(t* — 9)t9; . One can easily
check that the rotations of L around the z axis in R? with coordinates (¢, x,y)
gives rise to a regular vector field M having as separatrices the two cylinders
y? + 12 = 9 and y? 4+ t> = 25. The cohomological equation Mu = v hence
is not solvable for every smooth function v € C°°(R?) because of the theorem
of Duistermaat and Hormander but our techniques can be used to find weak
solutions.

Finally, we point out to a natural problem related to the reduction of a
perturbation L + b(t,x, D) to L by means of global conjugation formally J(¢) o
(L +0b)oJY(t) = L, with J being a global PDO or Fourier integral operator
in z € R™ depending smoothly on ¢t € R\ Iy, with singularities near ¢ = ¢;, S;
or Sjy1 being separatrix strips. The example in Section suggests that one
should aim on estimates of J(¢) in L}, (R : B(R")), where B(R") stands for
some weighted Sobolev type space (see [56], [57], [58] and the references therein
for global estimates in R™ for Fourier integral operators).



Transversality of linear PDOs

Linear homogeneous C* PDOs L¢ : C*(M) — C°(M) are clearly in 1-1 corre-
spondence with vector fields &€ € X¥(M). Tt is natural therefore to define their
transversality to a hypersurface IV as the transversality to N of the correspond-
ing vector field, namely L is transversal to N at n € N if

span{&,} + T,N =T, M .

Let f € C°°(M) be any function regular at n such that N is the zero set of
f in some neighbourhood of n. Then the condition span{¢,} + T,N = T,,M
translates in the fact that

Lef(n) #0.

In case of general linear PDOs L, : I"F — T'°G of higher order, one can
extend the definition thanks to the following observation: if v € C*°(E) is such
that v(eg) = 0, then

['r(l/rf) = Lr,uf

€0, fo eo,fo

where L, , : T°F — I'’G is the following linear zero-order operator:
(Lyy)f =rIA] % 0g v+ O, 1

Indeed all terms of L, of order lower than r applied to v" f will leave at least one
v term which will vanish when evaluated at eg, so the only surviving terms come
from order r and only from those which act entirely on v". We call L, , the
principal part of £, with respect to v. This justifies the following definitions:

Definition A.0.1 (Gromov, 1986). Given a I-form X = (A1,...,Apm) € Te, F,
we call the linear zero-order operator

r

(Lra)i = PIAFS % Ay o Aa
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the principal part of L, at eq with respect to \. We say that L, is transversal
to the hyperplane ker A\ C T, E if its principal part at eq with respect to A
is surjective. Given a higher-codimension plane © = Ni_jker \; C T, E, we
say that L, is transversal to m if it is transversal to every hyperplane of Te, E
containing w. If L, is not transversal to a plane m then it is said tangential to
it.

If N C E is a submanifold of E, we say that L, is transversal to N at eq if
it is transversal to Te,N. Finally, we say that N is characteristic for £, if L,
is tangential to N at every point.

Remark A.0.2. From what said above it follows that L, is transversal to a
hypersurface N at eq iff its principal part with respect to v at eg, i.e. Ly qy(ey);
18 surjective.

Note that this definition agrees with the one given above for linear homoge-
neous first-order PDOs.

Example A.0.3. Linear first-order PDOs L¢ have always a characteristic man-
ifold of dimension 1 given by the integral trajectories of the corresponding vector

field €.

Example A.0.4. Consider the case of the Laplacian Lo = Ay = 980,05 on
a (pseudo)-Riemannian manifold M. The principal part of Ay with respect to
a function v € C*°(M) is

Dy, = g“ﬂa&uaﬁu

Hence if g is Riemannian and vy is a regular value for v, A, is transversal
to v~ (vp) at every point and moreover Ay has no characteristic hypersurfaces
since Dy, = 0 on every point of some hypersurface N would imply that v is
constant in some tubular nbhd of N. On the contrary, A, can have characteristic
hypersurfaces if M is pseudo-Riemannian: e.g. if M = R? and g = (dz)?—(dy)?
then the “light-cones”, i.e. the straight lines d(x —y) = 0 and d(z +y) =0, are
characteristics for Ag.

The following two lemmata are crucial for the proof of Theorem 2.4.17]

Lemma A.0.5 (Gromov, 1986). Let v € C*(E) be regular at ey € E, let
N = F~Y(F(ep)), so that N is a reqular hypersurface close to eg, and suppose
that L, : T"F — T°G is transversal to N at eg. Then for every k € N there
exist a s € N and two operators Ay, : I"7*G — I"F and By, : T°G — I'°G,
whose coefficients are rational functions of v and its derivative up to order s
and are regular at eg, such that

LAy + V7B, =40, (G).

Moreover this identity holds for small perturbations of v and L,..
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Proof. We prove the statement by induction. Clearly the theorem holds for
k = 0 with s = 0 by putting 4g = 0 and By = i(G).
Now assume that there exist A;, and By, of order s’ such that

LA+ VB, =40, (G)
and observe that
ET(VT+kf) = Vker,dv(eg)(f) + Vk+1Rk,V(f) )

where L,y gu(eq) = (7 + E)!/7! Ly gy (cy) is invertible by hypothesis and Ry, is
some linear PDO of order r.
Now define the PDOs of order s = r + s’ as

Apyr = A+t By, Biy1 = _Rk,VL;kl,du(eo)Bk'

rk,dv(eo)
Then
(LrApt1+ Vk+lBk+1)9
=L, (A + VT+kLr_k1,du(eo)Bk)g + Vk(_RkWLr_kl,du(eo)Bk)g
=g—V"Brg+ ’CT(VTJrkL;kl,du(eo)Bkg) - VkRk"’L;kl,du(EU)Bkg
=gV Brg + v Brg + V"M Ry Lo oy Brg — VU R L 40 Brg
=9,

namely

»CrAk+1 + I/kJrlBkJrl = Z?+S(G) .
O

Lemma A.0.6 (Gromov, 1986). Let F ™% E and G ™% E be vector bundles
with dim E =m, dimF =m+q and dimG =m+¢'. If g > ¢, a generic linear
PDO

L, :T"F - T°G
has no characteristic submanifolds of positive codimension.
Proof. We must prove that the number of (closed) scalar conditions that a
section A, : E — Hom(J"F, G) must satisfy so that the corresponding PDO L,
has a characteristic manifold of positive codimension is larger than m.

Let eg € E be any point and consider the set N} of all codimension-k
submanifolds N passing through eg having, in coordinates, the form

a __ _a/ k+1 m _
2= 2™, a=1,.. .k,

for some smooth map v : R¥ — R™~*_If £, is tangential to N at ey then the
k matrices
A = AT 00 VR L D, VY

must all be of non-maximal rank, i.e. rank A* < ¢'.
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Each of these open conditions corresponds to ¢—¢’+1 equations, for a total of
c(k) = k(g—q' +1) scalar closed conditions. Moreover there are d(k) = k(m—k)
linearly independent elements in the 1-jet of v, so that the total dimension of
the space of sections A, being tangential to all codimension-k submanifolds of
the type we are considering is

[dim Hom(J*F, G) — k(g — ¢’ + 1)] + k(m — k)

and, correspondingly, its codimension is k(¢ — ¢’ +1) — k(m — k). Unfortunately
this estimate proves our claim only for ¢ — ¢’ > m — k — 1 — n/k, which can be
as large as we please for m large and m close to m/2.

In order to sharpen our estimate we use the fact that, for every s € N, the
derivatives of order s of the ¢(k) conditions above with respect to the (m — k)
coordinates provide extra conditions to be satisfied identically by the s-jets of
all A, which are tangential at ey to all submanifolds in A. The number of
conditions coming out from each relation rank A* < ¢’ is now

m—k—i—s)

S

(ky ) = k(g — ¢ + 1)(

while the dimension of the space of (s + 1)—jet:£| of v (minus the 0-jet, which
does not appear anywhere) is

Hence, if A, is tangential to all submanifolds in A at eq, its s-jet must satisfy
a number of conditions equal to

c(k, s) — d(k, s) :k(m—skﬂ)

_,_m—k+ 1
SRS

and clearly, since ¢ > ¢/, this number can be easily made bigger than m for s
big enough. O

IRecall that within A® appear the first derivatives of v, so that in the s-jet of the relations
rank A* < ¢’ will appear the derivatives of v up to the s 4+ 1-th order.
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