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Chapter 1

Introduction

1.1 General Remarks

Pure photonic crystals are periodic nano-structures in which light cannot
travel at certain frequency intervals (photonic band gaps), but does travel
and is scattered at other frequencies. This phenomenon is due to the periodic
variation of the crystal’s electric permittivity ε(r) or, equivalently, to the
periodic variation of the refraction index1 n(r) [1, 2].

Photonic crystals are said to be one-dimensional (1D) if the electric per-
mittivity varies and is periodic in only one spatial variable, z, and does not
depend on x and y. They are said to be two-dimensional (2D) if the elec-
tric permittivity depends on two spatial variables, x and y, and not on the
third, z, and does not change upon translation by integer linear combinations
of two linearly independent vectors in the xy−plane. They are said to be
three-dimensional (3D), if the electric permittivity does not upon translation
by integer linear combinations of three linearly indipendent vectors. These
periodic structures can also be seen in nature like in the frustules of some
unicellular algae [3] or on the surface of butterfly wings [4].

One of the most important properties of such crystals is the emergence
of localized defect modes in the band gap frequency region, when a disorder
(impurity) is introduced to their periodic dielectric structure. Introducing a
different material or changing the crystal period in a bounded region allows
us to insert a monochromatic frequency into the photonic band gaps.

A fundamental problem in this field is the design of a photonic crystal

1Refraction index and electric permittivity are related by n(r) =
√

ε(r)µ(r)/ε0µ0,

where µ is the magnetic permeability of the medium, whereas ε0 and µ0 are the electric

permittivity and magnetic permeability of vacuum, respectively.

1
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Figure 1.1: Band gap structure of a one-dimensional photonic crystal. In

the horizontal axis we have the propagation vector k(ν), while in the vertical

axis we consider (2πν/c)2 where ν is the wave frequency and c is the light

speed. In this picture we have plotted the relation between energy (for e.m.

waves Energy ∼ ν2) and propagation vector k. Band gaps are plotted in

light grey while black dots represent allowed energy levels introduced by an

impurity. The axis units are arbitrary (a.u. = arbitrary unit).

with specified properties. Photonic crystal design formally is a type of math-
ematical inverse problem: given the allowed frequencies and the photonic
path at each allowed frequency we want to identify is the corresponding re-
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fractive index as a function of the location in the crystal. A successful design
method for photonic crystals will have a big impact in computer circuitry
as well in the photonic devices for optical fibers [5]. The replacement of the
electric current with a photonic flow will enable us to build future optical
integrated circuits that are much faster, use much less energy, and dissipate
much less heat. Photonic crystal design is an excellent tool in the develop-
ment of algorithms for the optimization of boundaries and edges in the Level
Set Method [6, 7].

1.2 Physical properties and applications

The main aspect of a photonic crystal is the periodic variation of its refractive
index. Such a periodic structure affects the motion of photons in a similar
way as a periodic potential affects the motion of electrons in a semiconductor
crystal.

The frequency intervals in which electromagnetic wave propagation is
forbidden are called Photonic band-gaps or in short PBGs. This physical
phenomenon is based on constructively and destructively interfering diffrac-
tion2 of electromagnetic waves. At each interface where the refractive index
changes, light is reflected and transmitted. If all scattered waves interfere
destructively, we have a photonic band-gap.

Since the basic phenomenon of the band gap structure is diffraction, the
periodicity of the refractive index n(r) has to have the same length-scale as
half the wavelength. For a photonic crystal operating in the visible spec-
trum,3 it means that the period p will be in the interval from 200nm to
350nm, (1nm = 10−9m).

Replacing the material in a bounded region by a different material or
changing the size of a single period while keeping the same material, we can
“create” a (discrete) energy level or equivalently an allowed frequency into a

2From Joannopoulos et al. 2006 [1]: “Diffraction is a confusing word because it refers

to phenomena in two very different limits. In the limit where the wavelength λ is small

relative to the structure, it refers to deviations from geometric optics due to the fact that

λ > 0 [...]. In the context of scattering from periodic structures, on the other hand, it

refers to unusual reflected/refracted waves that arise because λ < ∞, and especially in

the case where λ/2 is comparable to or smaller than the periodicity. Here, we are using it

in the latter sense, specifically for the phenomenon of multiple reflected/refracted waves

[...],” also called Bragg-diffraction [8].
3The wavelength of visible light is greater the 400 nm (violet) and less then 700 nm

(red).
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band gap (black dots in figure 1.1). In general we call impurity or defect this
deviation from a perfect periodic lattice. A stationary wave is associated with
the state introduced. This wave is constrained within the impurity region
and cannot propagate in the rest of the material.

The band structure is also the reason of some unusual properties as
diffractive reflection and refraction, supercollimation4 and the superprism
effect [1].

When an incident plane wave strikes an interface of a homogeneous ma-
terial, both a reflected and a refracted plane wave are generated and their
directions are determined by Snell’s law. In a photonic crystal the wavelength
λ is comparable to the lattice period and we may have a finite number of
additional reflected and/or refracted waves (Bragg-diffraction). Then we can
have not only a specularly reflected wave but, depending on the frequency,
several reflected waves with different angles. Refracted waves might be mul-
tiple too and their directions may depend on the dispersion curve of the band
structure. In some cases the rays will be refracted on the same side of the
normal upon entering the material, contrary to what is usually observed.
This particular phenomenon is called negative refraction and is typical of
left-handed materials5.

Supercollimation and superprism effects are two different aspects of the
same phenomenon. Supercollimation consists of a luminous cone collimating
inside photonic crystals, unlike what occurs in a homogeneous medium, while
the superprism effect induces an enormous change in refracted angle at a
small change in the incident frequency. A prism made up of a photonic
crystal would have a dispersion capability that is about 500 times stronger
than that of a prism made of a conventional material [10]. Both of these
phenomena are generated by the complex dispersion relation between the
propagation vector k and the angular frequency ω.

So far we have considered properties of the crystal that are independent
of the electric field amplitude. If the intensity of the wave is not so small,
several non linear phenomena may occur. The most interesting are: second
and third harmonics generation (SHG [11] and THG [12]), optical parametric
amplification (OPA), optical rectification, white-light supercontinuum gen-
eration (WLSCG), and the Kerr effect.

4Supercollimation is also called negative diffraction. In this case, the term diffraction

refers to deviations from geometric optics. To avoid misunderstanding we use the word

supercollimation to refer to this effect.
5A left-handed material is a material whose permeability and permittivity are simulta-

neously negative. Left-handed materials have a negative refractive index, so Snell’s Law is

still valid but it is reversed. The term “left-handed material” was coined by a prediction

of Russian theorist V.G.Veselago in 1968 [9].
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Let us consider them in more detail. Illuminating a crystal, e.g. Potas-
sium Dihydrogen Phosphate (KDP), by light of frequency ν we are able
to generate light with double or triple frequency (SHG [11] or THG [12]),
whereas using a Beta Barium Borate crystal (BBO) the signal input is am-
plified in the presence of a higher-frequency wave (OPA).

An important property, commonly used for spectroscopic purposes, is
white-light supercontinuum generation. A quasi-static electric field or an
optical spectrum which covers all of the visible range are produced using
narrow light pulses (a few tenths of a nanometer or less). Finally, the Kerr
effect is a change in the refractive index of a material in response to an electric
field (n = n(|E|)). It was discovered by John Kerr in 1877 [13].

Considering the band gap structure, it allows us to design resonant cav-
ities [5, 14, 15], waveguides [5, 14, 15] and optical fibers [16]. Introducing
impurities we can either confine light (resonant cavity) or create preferred
pathways in order to guide it (waveguide).

Photonic crystals can also be used to design next generation optical fibers.
Standard optical fibers rely on light being guided by the physical law known
as total internal reflection (TIR) or index guiding. In order to achieve TIR in
these fibers, which consist of two different dielectric materials, it is required
that the refractive index of the core exceeds that of the surrounding media or
cladding. In photonic crystal fibers light is constrained to propagate along
PBGs, while the core can be a different medium with a smaller refractive
index. These fibers have properties that differ from those of standard fibers:
they allow bending by larger angles and light dissipation is negligible. Either
advance is very important to telecommunication, because of the reduced need
of using amplifiers.

Two other important applications are multiplexing, de-multiplexing and
switching. Using negative refraction, supercollimation and the superprism
effect, an optical de-multiplexer has been designed by a research group at
the Georgia Institute of Technology [17], while the Kerr effect permits to
design basic components of integrated optics like optical transistors [18].

The narrow size of these crystals makes the fabrication cumbersome and
complex. For this purpose many different methods have been introduced.
The most important are: micro-machining and growth using semiconductor
processing techniques and holographic exposure of photoresist [5].

1.3 Physical and mathematical model

In order to study the propagation of light in a photonic crystal, we must turn
to Maxwell’s equations, since we are dealing with a nanostructure where the
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refractive index is a periodic function whose period p has the same order of
magnitude of the wavelength of the incident electromagnetic radiation.

Let us now state Maxwell’s equations [19] in the form

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t), (1.3.1)

∇×E(r, t) = −∂B(r, t)

∂t
, (1.3.2)

∇ · (D(r, t)) = ρ(r, t), (1.3.3)

∇ · (B(r, t)) = 0, (1.3.4)

where:

• E(r, t) e H(r, t) are the electric and magnetic fields, respectively;

• D(r, t) e B(r, t) are the displacement and magnetic induction fields,
respectively;

• ρ(r, t) e J(r, t) are the electric density and current, respectively.

Certain assumptions should be taken into account to cast Maxwell’s equa-
tions into the photonic crystal framework:

1) constitutive relations:6

P (r, t) = f1(E(r, t)) and M(r, t) = f2(B(r, t));

2) photonic crystals are linear and isotropic materials1:

D(r, t) = ε0ε(r)E(r, t), B(r, t) = µ0µ(r)H(r, t); (1.3.5)

3) photonic crystals are magnetically homogeneous: µ(r) = µ ≃ 1;

4) losses can be neglected: ε(r) : R3 → R, i.e., ε(r) is real-valued;

5) photonic crystals are mixed dielectric media without free charges and
current densities: ρ(r, t) = 0, J(r, t) = 0;

6) we look for harmonic modes:

H(r, t) = H(r)eiωt, E(r, t) = E(r)eiωt. (1.3.6)

6 P (r, t) and M(r, t) are the electric and magnetic polarization vectors, respectively.
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Consequently, Maxwell’s equations given in (1.3.1)-(1.3.4) become:

∇×H(r) = −iωε0ε(r)E(r), (1.3.7)

∇×E(r) = iωµ0H(r), (1.3.8)

∇ · (ε(r)E(r)) = 0, (1.3.9)

∇ · (H(r)) = 0, (1.3.10)

which can be decoupled into two equivalent selfadjoint eigenvalue prob-
lems: 




∇×

(
1
ε(r)

∇×H(r)
)

= ηH(r)

∇ ·
[
H(r)

]
= 0

, (1.3.11)





∇×

(
∇×E(r)

)
= ηε(r)E(r)

∇ ·
[
ε(r)E(r)

]
= 0

, (1.3.12)

where
η

def
= ω2/c2 = ω2ε0µ0

is the spectral parameter.
The subject of this PhD thesis is the mathematical and numerical study

of one-dimensional and two-dimensional pure photonic crystals (PC), i.e.,
crystals without impurities. In Chapter 2 we will study one-dimensional
photonic crystals in an analytical way based on the Hill discriminant formal-
ism. In Chapter 3 we will still be dealing with one-dimensional PC, trying
to solve an inversion problem useful in the PC design. Basically we will try
to find how a 1D PC looks like if its band spectrum is given. After try-
ing to extend the Hill discriminant formalism to 2D photonic crystals with
rectangular lattices, we will focus on the numerical study of 2D PC spectra
in Chapter 4, proposing two numerical methods. The first one proposed is
a finite element scheme based on the choice of periodic test functions and
the second one is a finite difference scheme, where the periodicity conditions
are incorporated in formulating a linear system of minimal order. Numerical
results will be given in Chapter 5.
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Chapter 2

One-Dimensional Photonic

Crystals

In this chapter, we focus on a one-dimensional photonic crystal and consider
TEM modes, i.e., polarized light propagating along the periodic direction
(Fig. 2.1). Then it is straightforward to see that the electric eigenvalue
problem (1.3.12) is described by the Helmholtz equation1

− ψ′′(η, x) = ηn2(x)ψ(η, x), (2.0.1)

where x ∈ R, η
def
= ω2/c2 is the spectral parameter, the prime denotes differ-

entiation with respect to x, the refractive index n(x) =
√
ε(x) is a periodic

function with period p > 0 , i.e., n(x + p) = n(x), x ∈ R, and ψ(η, x) is
the polarized component of the electric field. Indeed, the electric field points
along the z axis and depends only on the x-variable (direction of propaga-
tion):

E(r) =




0
0

Ez(x)



 .

As a result,
[
∇×

(
∇×E(r)

)]
s
= ǫslm∂lǫmhk∂hEk = (δshδlk − δskδlh)∂l∂hEk

= ∂k∂sEk − ∂h∂hEs,

where ǫslm are the components of the Levi-Civita tensor which satisfy the
relation ǫslmǫmhk = δshδlk − δskδlh. Since we are dealing with TEM modes,

1In the above configuration the divergence condition turns out to be automatically

satisfied.

9
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we have

∇×
(
∇×E(r)

)
=




0
0

−E ′′
z (x)


 .

Thus the eigenvalue problem for TEM modes in a 1D periodic medium

Figure 2.1: In a pure 1D photonic crystal the dielectric medium is periodic

only in one direction (x-axis). Polarized light propagates along the x-axis,

while the magnetic field H and the electric field E are directed along the y-

and z-axes, respectively, and depend only on the x-variable (TEM modes).

reduces to the differential equation (2.1.1) with suitable boundary conditions.
In Sections 2.1 and 2.2 we adapt the Floquet theory usually developed

for Schrödinger equations with periodic potentials [20, 21, 22] to the Helm-
holtz equation (2.1.1) with periodic refractive index. In particular, we prove
the existence of band spectrum and indicate an algorithm to determine it.
In Section 2.3 we introduce the conformal mapping k = k(η) from η to the
quasimomentum variable k to facilitate the derivation of analiticity proper-
ties. We then go on, in Sections 2.5 and 2.6, to allow the refractive index to
have impurities. As for the periodicity plus impurity Schrõdinger equations
[23, 24], we introduce Jost solutions and scattering coefficients and derive
their continuity and analiticity properties in the quasimomentum variable k.
For impurities confined to finitely many periods, we develop a method to
compute the period map of these periods from appropriate scattering data.
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2.1 Floquet’s Theorem

Let us give the theoretical background needed to derive Floquet’s theorem
([22, Ch. XXI] and [21, 20]). Consider the Helmholtz equation

− ψ′′(η, x) = ηn(x)2ψ(η, x), (2.1.1)

where x ∈ R, the prime denotes differentiation with respect to x, η ∈ C is a
spectral parameter representing squared energy when real, and n(x + p) =
n(x), x ∈ R. Here n is assumed to be piecewise continuous and positive.

There exist unique linearly independent solutions θ(η, x) and ϕ(η, x) of
Eq. (2.1.1) satisfying the initial conditions

θ(η, 0) = 1, θ′(η, 0) = 0, (2.1.2a)

ϕ(η, 0) = 0, ϕ′(η, 0) = 1. (2.1.2b)

Now assume ψ(η, x) 6≡ 0 is a solution of Eq. (2.1.1) satisfying

ψ(η, p) = τψ(η, 0), (2.1.3a)

ψ′(η, p) = τψ′(η, 0), (2.1.3b)

for some constant 0 6= τ ∈ C. Then a nontrivial linear combination

c1θ(η, x) + c2ϕ(η, x)

satisfies the boundary conditions (2.1.3) if and only if the linear system
(
τ − θ(η, p) −ϕ(η, p)
−θ′(η, p) τ − ϕ′(η, p)

)(
c1
c2

)
=

(
0
0

)

has a nontrivial solution. This is the case if and only if the system determi-
nant

τ 2 − [θ(η, p) + ϕ′(η, p)]τ + 1 (2.1.4)

vanishes. Here we have used the x-independence of the Wronskian, which
equals 1 for x = 0 and hence for any x ∈ R. Introducing the Hill discriminant

∆(η) = θ(η, p) + ϕ′(η, p), (2.1.5)

this is the case if and only if

∆(η) = τ + τ−1. (2.1.6)

Solutions of Eq. (2.1.1) under the boundary conditions (2.1.3) can be
extended in a natural way to C1-solutions of Eq. (2.1.1) on the whole real
axis. These extended solutions satisfy

ψ(x+ p) = τψ(x), x ∈ R.
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When nontrivial, such solutions are unbounded as x → +∞ if |τ | > 1 and as
x → −∞ if |τ | < 1. Thus boundedness of such nontrivial solutions requires
that |τ | = 1. Then it is easily verified that for |τ | = 1

∫ p

0

|ψ′(η, x)|2dx = η

∫ p

0

n(x)2|ψ(η, x)|2 dx. (2.1.7)

Let us now introduce the travel time variable

y(x) =

∫ x

0

n(x̂) dx̂, q =

∫ p

0

n(x̂) dx̂, (2.1.8)

which yields a 1, 1-correspondence x 7→ y from R onto itself which converts
periodic functions of x of period p into periodic functions of y of period q.
Let α ∈ C be a constant such that eiαq = τ . Then the natural extension of
a solution of Eq. (2.1.1) to the real axis has the Bloch representation

ψ(η, x) = eiαy(x)φ(η, x),

where φ(η, x) is periodic with period p. This is easily verified by checking
the periodicity of e−iαy(x)ψ(η, x).

Theorem 2.1.1 (Floquet) If the roots τ1 and τ2 of the quadratic polyno-

mial (2.1.4) are distinct, then Eq. (2.1.1) has two linearly independent solu-

tions of the type

eiαy(x)χ1(x) and e−iαy(x)χ2(x),

where χ1(x) and χ2(x) are periodic with periodic p. If τ1 = τ2, then Eq.

(2.1.1) has a nontrivial periodic solution (τ1 = τ2 = 1) or a nontrivial an-

tiperiodic solution (τ1 = τ2 = −1). Let χ(x) denote such a solution and let

φ(x) be another solution linearly independent of χ(x). Then there exists a

constant ϑ such that φ(x + p) = τ1φ(x) + ϑχ(x), while ϑ = 0 occurs if and

only if

θ(η, p) = ϕ′(η, p) = ±1 and ϕ(η, p) = θ′(η, p) = 0.

Further, the solutions of Eq. (2.1.1) are all bounded if and only if

(a) either θ(η, p) + ϕ′(η, p) belongs to (−2, 2),

(b) or θ(η, p) = ϕ′(η, p) = ±1 and ϕ(η, p) = θ′(η, p) = 0.
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Proof. If τ1 = τ2 = ±1, there is a nontrivial solution φ∗
1(x) such that

φ∗
1(x + p) = τ1φ

∗
1(x). Then, obviously, φ∗

1(x) is periodic if τ1 = τ2 = 1 and
antiperiodic if τ1 = τ2 = −1. If ϕ(η, p) 6= 0, we choose

φ∗
1(x) = ϕ(η, p)θ(η, x) + [τ1 − θ(η, p)]ϕ(η, x),

φ∗
2(x) = ϕ(η, x).

Then θ(η, p) + ϕ′(η, p) = 2τ1 implies φ∗
2(x + p) = τ1φ

∗
2(x) + φ∗

1(x). If
ϕ(η, p) = 0, we take φ∗

1(x) = ϕ(η, x) and φ∗
2(x) = θ(η, x). Then the Wron-

skian relation and ϕ(η, p) = 0 imply θ(η, p) = ϕ′(η, p) = τ1, leading to
φ∗

1(x+p) = ϕ′(η, p)ϕ(η, x) = τ1ϕ(η, x) and φ∗
2(x+p) = τ1φ

∗
2(x)+θ

′(η, p)φ∗
1(x).

2.2 Green’s Function Analysis

Let us now solve Eq. (2.1.1) by Green’s function analysis, where n(x) is a
positive piecewise continuous function with period p. For τ ∈ C with |τ | = 1
we consider the selfadjoint boundary conditions (2.1.3). Let us assume that
η is not an eigenvalue of the differential equation (2.1.1) with boundary
conditions (2.1.3). Let φ1(η, x) and φ2(η, x) stand for nontrivial solutions of
(2.1.3) such that

φ1(η, p) = τφ1(η, 0), φ′
2(η, p) = τφ′

2(η, 0).

Then their (constant) Wronskian w is nonzero. We choose φ1(η, x) and
φ2(η, x) as real functions under periodic (τ = 1) and antiperiodic (τ = −1)
boundary conditions.

Let us solve the differential equation

− ψ′′(η, x) = ηn(x)2ψ(η, x) + n(x)2f(x) (2.2.1)

under the boundary conditions (2.1.3). Here f(x) is an arbitrary continuos
function. Following the method of variation of parameters, we write

ψ(η, x) = c1(x)φ1(η, x) + c2(x)φ2(η, x)

and arrive at the linear system
(
φ1(η, x) φ2(η, x)
φ′

1(η, x) φ′
2(η, x)

)(
c′1(x)
c′2(x)

)
=

(
0

−n(x)2f(x)

)
,

where the system determinant equals w. Then
(
c′1(x)
c′2(x)

)
=

1

w

(
φ′

2(η, x) −φ2(η, x)
−φ′

1(η, x) φ1(η, x)

)(
0

−n(x)2f(x)

)

=
n(x)2f(x)

w

(
φ2(η, x)
−φ1(η, x)

)
.
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Thus there exist constants c1 and c2 such that

ψ(η, x) = c1φ1(η, x) + c2φ2(η, x)

+
φ1(η, x)

w

∫ x

0

φ2(η, y)n(y)2f(y) dy − φ2(η, x)

w

∫ x

0

φ1(η, y)n(y)2f(y) dy.

(2.2.2)

Differentiating (2.2.2) with respect to x we get

ψ′(η, x) = c1φ
′
1(η, x) + c2φ

′
2(η, x)

+
φ′

1(η, x)

w

∫ x

0

φ2(η, y)n(y)2f(y) dy − φ′
2(η, x)

w

∫ x

0

φ1(η, y)n(y)2f(y) dy.

(2.2.3)

Substituting (2.1.3a) and using φ1(η, p) = τφ1(η, 0) in (2.2.2) we obtain

τc2φ2(η, 0) = c2φ2(η, p) +
φ1(η, p)

w

∫ p

0

φ2(η, y)n(y)2f(y) dy

− φ2(η, p)

w

∫ p

0

φ1(η, y)n(y)2f(y) dy.

Substituting (2.1.3b) and using φ′
2(η, p) = τφ′

2(η, 0) in (2.2.3) we get

τc1φ
′
1(η, 0) = c1φ

′
1(η, p) +

φ′
1(η, p)

w

∫ p

0

φ2(η, y)n(y)2f(y) dy

− φ′
2(η, p)

w

∫ p

0

φ1(η, y)n(y)2f(y) dy.

We now compute the constants c1 and c2 and substitute the resulting expres-
sions in (2.2.2). We finally obtain

ψ(η, x) =

∫ p

0

G(x, y; η)n(y)2f(y) dy, (2.2.4)

where

G(x, y; η) =
φ′

1(η, p)φ1(η, x)φ2(η, y) − φ′
2(η, p)φ1(η, x)φ1(η, y)

w[τφ′
1(η, 0) − φ′

1(η, p)]

+
φ1(η, p)φ2(η, x)φ2(η, y) − φ2(η, p)φ2(η, x)φ1(η, y)

w[τφ2(η, 0) − φ2(η, p)]
(2.2.5a)

for 0 ≤ x ≤ y ≤ p and

G(x, y; η) =
τφ′

1(η, 0)φ1(η, x)φ2(η, y)− φ′
2(η, p)φ1(η, x)φ1(η, y)

w[τφ′
1(η, 0) − φ′

1(η, p)]

+
φ1(η, p)φ2(η, x)φ2(η, y) − τφ2(η, 0)φ2(η, x)φ1(η, y)

w[τφ2(η, 0) − φ2(η, p)]
. (2.2.5b)
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for 0 ≤ y ≤ x ≤ p.
Since G(x, y; η)n(y)2 is the hermitian integral kernel of an integral opera-

tor that is the inverse of a selfadjoint operator on L2[(0, p);n(x)2dx], we have
[25, 26]

G(x, y; η) = G(y, x; η). (2.2.6)

The Green’s function is real-valued if τ = ±1.
Let us now differentiate G(x, y; η) with respect to x. We get

∂G
∂x

=
φ′

1(η, p)φ
′
1(η, x)φ2(η, y) − φ′

2(η, p)φ
′
1(η, x)φ1(η, y)

w[τφ′
1(η, 0) − φ′

1(η, p)]

+
φ1(η, p)φ

′
2(η, x)φ2(η, y) − φ2(η, p)φ

′
2(η, x)φ1(η, y)

w[τφ2(η, 0) − φ2(η, p)]
(2.2.7a)

for 0 ≤ x < y ≤ p and

∂G
∂x

=
τφ′

1(η, 0)φ′
1(η, x)φ2(η, y)− φ′

2(η, p)φ
′
1(η, x)φ1(η, y)

w[τφ′
1(η, 0) − φ′

1(η, p)]

+
φ1(η, p)φ

′
2(η, x)φ2(η, y) − τφ2(η, 0)φ′

2(η, x)φ1(η, y)

w[τφ2(η, 0) − φ2(η, p)]
. (2.2.7b)

for 0 ≤ y < x ≤ p. Then

∂G
∂x

(x, x+; η) − ∂G
∂x

(x, x−; η) =
φ1(η, x)φ

′
2(η, x) − φ′

1(η, x)φ2(η, x)

w
= 1.

(2.2.8)

Theorem 2.2.1 The eigenvalues of Eq. (2.1.1) under the boundary condi-

tions (2.1.2) form a sequence of real numbers which tends to +∞. For τ 6= ±1

these eigenvalues are simple, while for τ = ±1 they have multiplicity one or

two. The zero eigenvalue can only occur if the corresponding eigenfunction

is constant and the boundary conditions are periodic.

Proof. For a noneigenvalue η0 ∈ R we write Eq. (2.1.1) with boundary
conditions (2.1.3) as the equivalent integral equation

ψ(η, x)− (η− η0)

∫ p

0

G(x, y; η0)n(y)2ψ(η, y) dy =

∫ p

0

G(x, y; η0)n(y)2f(y) dy.

(2.2.9)
Then the integral kernel G(x, y; η) has the form

G(x, y; η) =
∑

j

ϕj(x)ϕj(y)

η(j) − η
,
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where {ϕj} is an orthonormal basis of L2((0, p);n(x)2dx) consisting of eigen-
functions corresponding to the (real) eigenvalues {η(j)}. The summation is
finite for degenerate kernels and infinite for nondegenerate kernels. Since
G(x, y; η) cannot be C1 in (x, y) [because this would contradict (2.2.8)], the
summation and hence the number of eigenvalues must be infinite. Further,
from (2.1.7) it follows that the eigenvalues η(j) are nonnegative and can only
coincide with zero if the eigenfunction is constant and hence the boundary
conditions are periodic. Thus there exist two infinite sequences, one of eigen-
values

0 ≤ η0 ≤ η1 ≤ η2 ≤ η3 ≤ · · · , ηn → +∞,

under periodic boundary conditions and the other of eigenvalues

0 < µ1 ≤ µ2 ≤ µ3 ≤ . . . , µn → +∞,

under antiperiodic boundary conditions. For τ 6= ±1 there also exists an
infinite sequence of eigenvalues

0 < η
(τ)
1 ≤ η

(τ)
2 ≤ η

(τ)
3 ≤ . . . , η(τ)

n → +∞,

under the boundary conditions (2.1.3). The multiplicity of an eigenvalue is
at most 2, because the differential equation (2.1.1) has order 2. For τ 6= ±1
the multiplicity is always one, because the eigenvalues η follow from (2.1.6)
and the differential equation (2.1.1) has both a τ -periodic and a τ−1-periodic
solution.

It is clear from (2.1.6) that

∆(ηn) = 2, ∆(µn) = −2, ∆(η(τ)
n ) = τ + τ−1,

which completes the proof.

2.3 Analysis of the Hill Discriminant

In this section we analyze the entire function ∆(η) defined by (2.1.5). We
prove it to be entire of order 1

2
and prove Theorem 2.2.1 in a different way. We

derive some additional properties of the eigenvalues which lead to the band
structure. Our arguments are inspired by those presented by Titchmarsh [22]
and Eastham [20] for Hill’s equation.

Let us first compile some definitions involving entire functions [27]. An
entire function f(z) is said to be of finite order if there exist positive constants
a, r0 such that

|f(z)| ≤ e|z|
a

, |z| ≥ r0.



2.3. ANALYSIS OF THE HILL DISCRIMINANT 17

Then the infimum of all such positive constants a is called the order, ρ(f),
of f(z). In fact,

ρ(f) = lim
r→+∞

sup
log log max|z|=r |f(z)|

log r
.

The entire functions of order zero are exactly the polynomials. It is well
known ([28], Lemma 1.4.1) that entire functions of noninteger order have
infinitely many zeros and that the order ρ is the infimum of all positive
numbers σ for which the series

∞∑

j=1

1

|aj |σ

converges. Here {aj}∞j=1 are the zeros of f(z), multiplicities taken into ac-
count. Moreover, entire functions of order ρ ∈ (0, 1) satisfy the Hadamard
factorization theorem

f(z) =
1

m!
f (m)(0)zm

∞∏

j=1

(
1 − z

aj

)
,

where m is the order of zero as a zero of f(z). Applying the Hadamard
factorization theorem to the entire functions cos(

√
z) amd sin(

√
z)/

√
z of

order 1/2, we get the well known infinite product representations of the
cosine and sine functions [27].

Put ω =
√
η. Let C(ω, x, x0) and S(ω, x, x0) be the solutions of the

differential equation

− ψ′′(η, x) = ηn(x)2ψ(η, x) (2.3.1)

under the initial conditions

C(ω, x0, x0) = 1, C ′(ω, x0, x0) = 0,

S(ω, x0, x0) = 0, S ′(ω, x0, x0) = 1.

Then the functions C(ω, x, x0) and S(ω, x, x0) satisfy the integral equations

C(ω, x, x0) = 1 − ω2

∫ x

x0

(x− x̂)n(x̂)2C(ω, x̂, x0) dx̂, (2.3.2a)

S(ω, x, x0) = x− x0 − ω2

∫ x

x0

(x− x̂)n(x̂)2S(ω, x̂, x0) dx̂. (2.3.2b)

Letting n+ be the maximum of n(x), we easily see that

|C(ω, x, x0)| ≤ cosh(n+|ω|(x− x0)), |S(ω, x, x0)| ≤
sinh(n+|ω(x− x0)|)

n+|ω|
,

(2.3.3)
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because, for x ≥ x0, |C(ω, x, x0)| and |S(ω, x, x0)| are dominated by the
solutions of the respective integral equations:

C(|ω|, x, x0) = 1 + |ω|2
∫ x

x0

(x− x̂)n2
+C(|ω|, x̂, x0)dx̂, (2.3.4a)

S(|ω|, x, x0) = x− x0 + |ω|2
∫ x

x0

(x− x̂)n2
+S(|ω|x̂, x0)dx̂. (2.3.4b)

On the imaginary ω-axis (for ω = iφ) we get the more precise estimates

cosh(φn−(x− x0)) ≤ C(ω, x, x0) ≤ cosh(φn+(x− x0)), (2.3.5a)

sinh(φn−(x− x0))

φn−

≤ S(ω, x, x0) ≤
sinh(φn+(x− x0))

φn+

, (2.3.5b)

where n− is the positive minimum of n(x) and the second inequality holds
only for φ(x−x0) ≥ 0 (and for φ(x−x0) ≤ 0 with its direction reversed). Since
the iteration of Eqs. (2.3.2) leads to a series of functions that are continuous
in (x, x0) ∈ R2 and analytic in ω ∈ C and converge uniformly in (x, x0, ω)
on bounded subsets of R

2 × C, their sums C(ω, x, x0) and S(ω, x, x0) are
continuous in (x, x0) ∈ R2 and analytic in ω ∈ C. Thus for each (x, x0) ∈ R2

the functions C(ω, x, x0) and S(ω, x, x0) are entire functions of ω of exact
order 1 and therefore entire functions of η of exact order 1

2
. Thus C(ω, x, x0)

and S(ω, x, x0) have infinitely many zeros η (cf. [28, Sec. I.10]).
Let us now estimate the x-derivatives of C(ω, x, x0) and S(ω, x, x0). In

analogy with (2.3.2) we derive by differentiation

∂C(ω, x, x0)

∂x
= −ω2

∫ x

x0

n(x̂)2C(ω, x̂, x0) dx̂, (2.3.6a)

∂S(ω, x, x0)

∂x
= 1 − ω2

∫ x

x0

n(x̂)2S(ω, x̂, x0) dx̂. (2.3.6b)

Using (2.3.4) we thus get
∣∣∣∣
∂C(ω, x, x0)

∂x

∣∣∣∣ ≤ n+|ω| sinh(n+|ω|(x− x0)), (2.3.7a)

∣∣∣∣
∂S(ω, x, x0)

∂x

∣∣∣∣ ≤ cosh(n+|ω|(x− x0)|). (2.3.7b)

On the imaginary ω-axis (for ω = iφ) we get the more precise estimates

n−φ sinh(φn−(x− x0)) ≤
∂C(ω, x, x0)

∂x
≤ n+φ sinh(φn+(x− x0)), (2.3.8a)

cosh(φn−(x− x0)) ≤
∂S(ω, x, x0)

∂x
≤ cosh(φn+(x− x0)), (2.3.8b)
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where n− is the positive minimum of n(x) and the first inequality holds only
for φ(x− x0) ≥ 0 (and for φ(x− x0) ≤ 0 with its direction reversed).

From the above it is clear that

θ(η, x) = C(ω, x, 0), ϕ(η, x) = S(ω, x, 0),

where ω =
√
η. Hence θ(η, x), ϕ(η, x), θ′(η, x) and ϕ′(η, x) are entire func-

tions in η of exact order 1/2 for each x ∈ R. Thus

∆(η) = θ(η, p) + ϕ′(η, p)

is an entire function in η of order ≤ 1/2.

To prove that ∆(η) is an entire function of η of exact order 1
2
, we need

to show the existence of a positive constant M such that |∆(η)|e−M
√

|η| is

bounded for η ∈ C and |∆(η)|e−m
√

|η| → +∞ as η → −∞ for any m ∈
(0,M). Indeed, put

η# = min
x∈R

−1

n(x)2
.

Then Eq. (2.1.1) is converted into the equation

− ψ′′(η, x) +
[
−η#n(x)2

]
ψ(η, x) = (η − η#)n(x)2ψ(η, x), (2.3.9)

where Q#(x) = −η#n(x)2 ≥ 1 for each x ∈ R and Q#(x) is periodic with
period p. Then it’s straightforward to see that

θ(η, x) = C(ω#, x, 0) +

∫ x

0

S(ω#, x, x̂)Q#(x̂)θ(η, x̂) dx̂, (2.3.10a)

ϕ(η, x) = S(ω#, x, 0) +

∫ x

0

S(ω#, x, x̂)Q#(x̂)ϕ(η, x̂) dx̂, (2.3.10b)

where [ω#]2 = η − η#. For η < η# we write ω# = iφ# with φ# ∈ R. Then
we have the lower bounds

θ(η, x) ≥ cosh
(
x
√

1 + [φ#n−]2
)
,

ϕ(η, x) ≥
sinh

(
x
√

1 + [φ#n−]2
)

√
1 + [φ#n−]2

.

We thus easily see that ∆(η) is an entire function of η of order at least (and
hence equal to) 1

2
. As a result, 2 + ∆(η) and 2 − ∆(η) both have infinitely

many zeros (cf. [28, Sec. I.10]).



20 CHAPTER 2. ONE-DIMENSIONAL PHOTONIC CRYSTALS

Theorem 2.3.1 (Oscillation theorem) There exist two monotonically in-

creasing infinite sequences of real numbers {ηn}∞n=0 and {µn}∞n=1 such that Eq.

(2.1.1) has a solution of period p if and only if η = ηn (n = 0, 1, 2, . . .) and a

solution of primitive period 2p if and only if η = µn (n = 1, 2, 3, . . .). These

sequences satisfy the inequalities

η0 < µ1 ≤ µ2 < η1 ≤ η2 < µ3 ≤ µ4 < η3 ≤ η4 < . . . (2.3.11)

and the relations

lim
n→∞

ηn = +∞, lim
n→∞

µn = +∞. (2.3.12)

The solutions are all bounded for η in the intervals

(η0, µ1), (µ2, η1), (η2, µ3), (µ4, η3), . . . . (2.3.13)

For η at the endpoints of these intervals (and always for η = η0) there exist

unbounded solutions. The solutions are all bounded for η = η2n+1 or η =

η2n+2 if and only if η2n+1 = η2n+2 and they are all bounded for η = µ2n+1

or η = µ2n+2 if and only if µ2n+1 = µ2n+2. The numbers ηn are the zeros of

∆(η) = 2 and the numbers µn are the zeros of ∆(η) = −2.

We call ηn the characteristic values of the first kind and µn the charac-
teristic values of the second kind. The intervals in (2.3.13) are called energy
bands. We consider an endpoint as belonging to a band if for that value of
η all solutions of Eq. (2.1.1) are bounded. The gaps between the energy
bands are called band gaps, one of which is the zero-th band gap (−∞, 0].
The bands are numbered consecutively 1, 2, 3, . . . and may line up. The band
gaps are numbered consecutively 0, 1, 2, . . . and may be empty.

Proof. 1. If (2.1.1) has a nontrivial bounded solution, then η ∈ R.
Indeed, if η ∈ C\R, then all nontrivial solutions of Eq. (2.1.1) are unbounded.
Indeed, let η = µ + iν with µ, ν ∈ R and ν 6= 0 and let φ = u + iv be a
solution of Eq. (2.1.1) of the type

φ(x) = eiαy(x)χ(x) = u+ iv,

where u, v are real functions, α ∈ R and q(x) is periodic with period p. Then

−u′′ +Q(x)u = n(x)2[µu− νv],

−v′′ +Q(x)v = n(x)2[νu+ µv].
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Multiplying the second equation by u and the first by v and subtracting we
get

u′′v − uv′′ = νn(x)2(u2 + v2).

Upon integrating we get

u′v − uv′ = ν

∫ x

0

n(t)2[u(t)2 + v(t)2] dt+ const.

Since χ(x) is C1, the left-hand side is bounded. Thus

+∞ >

∫ ∞

0

n(t)2[u(t)2 + v(t)2] dt = lim
m→∞

∫ mp

0

n(t)2|χ(t)|2 dt,

which is a contradiction due to the periodicity of n(x)χ(x). Thus if η is not
real, then all nontrivial solutions of Eq. (2.1.1) are unbounded.

2. We have ∆(0) = 2. Moreover, θ(η, x) → +∞ as x → +∞ whenever
η < 0. Indeed, for η = 0, Eq. (2.1.1) has the constant solution which
obviously is periodic with period p. Thus

∆(0) = 2. (2.3.14)

We will now show that θ(η, x) → +∞ as x → +∞ whenever η < 0. Indeed,
writing Eq. (2.1.1) in the form

θ′′(η, x) = (Q(x) − ηn(x)2)θ(η, x),

we see that θ(η, x) > 0 for small positive x, because of θ(η, 0) = 1, θ′(η, 0)
and θ′′(η, 0) > 0. Using that θ′(η, 0) = 0, for each ε > 0 we have

θ′(η, ε)2 = 2

∫ ε

0

[Q(x) − ηn(x)2]θ(η, x)θ′(η, x) dx. (2.3.15)

Thus if ε > 0 is the smallest positive zero of θ′(η, x), then (2.3.15) leads to
a contradiction. Therefore, θ′(η, x) > 0 for each x > 0. The positivity of the
second derivative for x > 0 then implies that θ(η, x) → +∞ as x → +∞, as
claimed.

3. We have ∆′(η) 6= 0 whenever ∆(η) ∈ (−2, 2). Indeed, put

z1(η, x) =
∂

∂η
θ(η, x), z2(η, x) =

∂

∂η
ϕ(η, x),

z′1(η, x) =
∂

∂η
θ′(η, x), z′2(η, x)=

∂

∂η
ϕ′(η, x).

Let us differentiate Eq. (2.1.1) with respect to η. We get

−z′′1 (η, x) +Q(x)z1(η, x) = n(x)2[ηz1(η, x) + θ(η, x)],

−z′′2 (η, x) +Q(x)z2(η, x) = n(x)2[ηz2(η, x) + ϕ(η, x)].
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Using the method of variation of parameters we obtain

z1(η, x) = θ(η, x)

∫ x

0

n(t)2ϕ(η, t)θ(η, t)dt− ϕ(η, x)

∫ x

0

n(t)2θ(η, t)2dt,

(2.3.16a)

z′1(η, x) = θ′(η, x)

∫ x

0

n(t)2ϕ(η, t)θ(η, t)dt− ϕ′(η, x)

∫ x

0

n(t)2θ(η, t)2dt,

(2.3.16b)

z2(η, x) = θ(η, x)

∫ x

0

n(t)2ϕ(η, t)2dt− ϕ(η, x)

∫ x

0

n(t)2θ(η, t)ϕ(η, t)dt,

(2.3.16c)

z′2(η, x) = θ′(η, x)

∫ x

0

n(t)2ϕ(η, t)2dt− ϕ′(η, x)

∫ x

0

n(t)2θ(η, t)ϕ(η, t)dt.

(2.3.16d)

Thus (2.3.16) imply

∆′(η) = z1(η, p) + z′2(η, p)

= [θ(η, p) − ϕ′(η, p)]

∫ p

0

n(t)2θ(η, t)ϕ(η, t) dt

− ϕ(η, p)

∫ p

0

n(t)2θ(η, t)2 dt+ θ′(η, p)

∫ p

0

n(t)2ϕ(η, t)2 dt. (2.3.17)

Multiplying (2.3.17) by 4ϕ(η, p) and rearranging terms we get

4ϕ(η, p)∆′(η) = −
∫ p

0

n(t)2 {[θ(η, p) − ϕ′(η, p)]ϕ(η, t) − 2ϕ(η, p)θ(η, t)}2
dt

= −[4 − ∆(η)2]

∫ p

0

n(t)2ϕ(η, t)2 dt, (2.3.18)

where we have used that

∆(η)2 − 4 = [θ(η, p) + ϕ′(η, p)]2 − 4[θ(η, p)ϕ′(η, p) − θ′(η, p)ϕ(η, p)]

= [θ(η, p) − ϕ′(η, p)]2 + 4θ′(η, p)ϕ(η, p).

Now suppose that ∆(η) ∈ (−2, 2). Then (2.3.18) implies ϕ(η, p)∆′(η) < 0,
in particular ∆′(η) 6= 0.

4. ∆′(η) = 0 at the endpoints of the energy bands if and only if θ′(η, p) =
ϕ(η, p) = 0. Indeed, if θ′(η, p) = ϕ(η, p) = 0, then, by Floquet’s theorem,
θ(η, p) = ϕ′(η, p). By (2.3.17) we then get ∆′(η) = 0. Conversely, if ∆′(η) = 0
and ∆(η) = ±2, then the first integrand in (2.3.18) vanishes identically.
The linear independence of θ(η, x) and ϕ(η, x) implies θ(η, p) = ϕ′(η, p) and
ϕ(η, p) = 0. By (2.3.17), we get θ′(η, p) = 0.
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5. If ∆(η) = ±2 and ∆′(η) = 0, then [±∆′′(η)] < 0. Indeed, let ∆(η) = 2
and ∆′(η) = 0. Differentiating (2.3.17) with respect to η we get

∆′′(η) = [z1(η, p) − z′2(η, p)]

∫ p

0

n(x)2θ(η, x)ϕ′(η, x)

− z2(η, p)

∫ p

0

n(x)2θ(η, x)2 dx+ z′1(η, p)

∫ p

0

n(x)2ϕ(η, x)2 dx,

where we have used part 4 of the proof to cancel out the terms proportional to
the vanishing quantities θ(η, p) − ϕ′(η, p), ϕ(η, p), and θ′(η, p). Substituting
(2.3.16) we get in abbreviated form

∆′′(η) = (θβ − ϕα− θ′γ + ϕ′β)β − (θγ − ϕβ)α+ (θ′β − ϕ′α)γ

= −(θ + ϕ′)β2 = −∆(αγ − β2),

where α =
∫ p
0
n2θ2, β =

∫ p
0
n2θϕ, γ =

∫ p
0
n2ϕ2, and the arguments (η, p) have

not been written in θ, θ′, ϕ, and ϕ′. Hence,

∆′′(η) = 2

[∫ p

0

n2θϕ

]2

− 2

[∫ p

0

n2θ2

] [∫ p

0

n2ϕ2

]
< 0,

where the equality sign cannot occur because of the linear independence of
θ(η, x) and ϕ(η, x). If ∆(η) = −2 and ∆′(η) = 0, then a similar argument
gives ∆′′(η) > 0.

6. We have ∆′(0) < 0. Indeed, ∆(0) = 2 and ∆(η) > 2 for η < 0. By
the above, we cannot have ∆′(0) = 0, because it would imply ∆′′(0) < 0 and
hence a local maximum in η = 0, which is not the case. Hence, ∆′(0) 6=
0. Since the mean value theorem implies the existence of negative η where
∆′(η) < 0 (because ∆(η) → +∞ as η → −∞), we must have ∆′(0) < 0.

7. The infinitude of the number of periodic and antiperiodic eigenvalues
follows directly from the fact that ∆(η)−2 and ∆(η)+2 are entire functions
of order 1

2
.

In Appendix B we have proved that ∆(η) has only one extreme value in
each nonempty band gap. At each empty band gap the Hill discriminant
has either a maximum (if ∆(η) = 2) or a minimum (if ∆(η) = −2). For the
Schrödinger equation with periodic potential this result was proved before
by Kramers [29]. In Appendix B we have applied his methods to generalize
the result to the periodic Helmholtz-Schrödinger equation.

According to the Hadamard Factorization Theorem [28, Theorem I.3]
valid for entire functions of order 1

2
, we have the representation

2 − ∆(η) = −∆′(0)η
∞∏

j=1

(
1 − η

ηj

)
, (2.3.19)
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2 + ∆(η) = 4

∞∏

j=1

(
1 − η

µj

)
, (2.3.20)

where we have used (2.3.14) and ∆′(0) < 0. According to [28, Theorem I.3]
we have

∞∑

j=1

(
1

|ηj |s
+

1

|µj|s
)
<∞, s >

1

2
,

which implies the absolute convergence of the infinite products in (2.3.19)
and (2.3.20). It is easily verified that the unknown constant ∆′(0) can be
evaluated from the infinite product (2.3.20) as follows:

∆′(0) = −4

∞∑

j=1

1

µj
.

Example 2.3.2 Let us consider the example n(x) ≡ 1. Then

θ(η, x) = cos(x
√
η), ϕ(η, x) =

sin(x
√
η)

√
η

,

so that

∆(η) = 2 cos(p
√
η). (2.3.21)

Then the zeros {ηn}∞n=0 of ∆(η) = 2 and {µn}∞n=1 of ∆(η) = −2 are given by

ηn =






(
nπ

p

)2

, n even,
(

(n + 1)π

p

)2

, n odd,

µn =






(
(n− 1)π

p

)2

, n even,
(
nπ

p

)2

, n odd.

Thus (the interiors of) the bands are

([
(k − 1)π

p

]2

,

[
kπ

p

]2
)
, k = 1, 2, 3, . . . ,

while the band gaps are empty. Moreover

2 − ∆(η) = 4 sin2(
1

2
np

√
η) = (np)2η

∞∏

j=1

(
1 − (np)2η

4j2π2

)2

,

2 + ∆(η) = 4 cos2(
1

2
np

√
η) =

∞∏

j=1

(
1 − (np)2η

(2j − 1)2π2

)2

.
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This is in perfect agreement with the periodic eigenvalues

µ1 = 0, µ2k = µ2k+1 =

(
2kπ

np

)2

,

where k = 1, 2, 3, . . ., and with the antiperiodic eigenvalues

µk =

(
(2k − 1)π

np

)2

, k = 1, 2, 3, . . . .

Also,

∆′(0) = −8
∞∑

k=1

(
np

(2k − 1)π

)2

= −8(np)2

π2

∞∑

k=1

1

(2k − 1)2

= −8(np)2

π2

π2

8
= −(np)2 =

[
∂

∂η
2 cos(np

√
η)

]

η=0

.

Example 2.3.3 Now consider the more general example where n(x) = nj

for bj−1 < x < bj (0 = b0 < b1 < . . . < bn = p and aj = bj − bj−1 for

j = 1, . . . , m). Then any solution ψ(η, x) of (2.1.1) on (bj−1, bj) satisfies

ψ(η, x) = c1j cos(nj
√
η (x− bj−1)) + c2j

sin(nj
√
η (x− bj−1))

nj
√
η

, (2.3.22a)

ψ′(η, x) = −nj
√
η c1j sin(nj

√
η (x− bj−1)) + c2j cos(nj

√
η (x− bj−1)),

(2.3.22b)

where j = 1, . . . , m. The requirement that ψ(η, x) is C1 at the points b1, . . . ,

bm−1 leads to the identities

(
c1j

c2j

)
= Aj−1(η)

(
c1,j−1

c2,j−1

)
,

where

Aj−1(η) =




cos(nj−1aj−1
√
η)

sin(nj−1aj−1
√
η)

nj−1
√
η

−nj−1
√
η sin(nj−1aj−1

√
η) cos(nj−1aj−1

√
η)


 .

Thus (
c1m

c2m

)
= Am−1(η) . . .A2(η)A1(η)

(
c11

c21

)
.
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On the other hand,

(
ψ(η, p)

ψ′(η, p)

)
= Am(η)

(
c1m

c2m

)
.

Consequently, we have derived an expression for the period map M(η) as

follows:

(
ψ(η, p)

ψ′(η, p)

)
= Am(η)Am−1(η) . . .A2(η)A1(η)︸ ︷︷ ︸

def
=M(η)

(
ψ(η, 0)

ψ′(η, 0)

)
,

implying that

(
θ(η, p) ϕ(η, p)

θ′(η, p) ϕ′(η, p)

)
= M(η)

(
θ(η, 0) ϕ(η, 0)

θ′(η, 0) ϕ′(η, 0)

)
= M(η). (2.3.23)

Hence

∆(η) = θ(η, p) + ϕ′(η, p) = TrM(η), (2.3.24)

where Tr stands for the matrix trace. For m = 2 we get (see left-hand side

of Fig. 2.2)

∆(η) = 2 [cos(n2a2
√
η) cos(n1a1

√
η)

− 1

2

(
n1

n2

+
n2

n1

)
sin(n2a2

√
η) sin(n1a1

√
η)

]
. (2.3.25)

For m = 3 we get (see right-hand side of Fig. 2.2)

∆(η) = 2 [cos(n3a3
√
η) cos(n2a2

√
η) cos(n1a1

√
η)

− 1

2

(
n1

n2

+
n2

n1

)
cos(n3a3

√
η) sin(n2a2

√
η) sin(n1a1

√
η)

− 1

2

(
n1

n3
+
n3

n1

)
sin(n3a3

√
η) cos(n2a2

√
η) sin(n1a1

√
η)

− 1

2

(
n2

n3
+
n3

n2

)
sin(n3a3

√
η) sin(n2a2

√
η) cos(n1a1

√
η)

]
.
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Figure 2.2: Graphs of ∆(η) as a function of η for the example with m = 2,

n1 = 3, n2 = 1, a1 = 2, a2 = 1 (left hand-side of the figure) and for the

example with m = 3, n1 = 2, n2 = 1, n3 = 1.8, a1 = 1, a2 = 1.5 and a3 = 0.5

(right hand-side of the figure).

For m = 4 we get (see Fig. 2.3)

∆(η) = 2 [cos(n4a4
√
η) cos(n3a3

√
η) cos(n2a2

√
η) cos(n1a1

√
η)

− 1

2

(
n1

n2
+
n2

n1

)
cos(n4a4

√
η) cos(n3a3

√
η) sin(n2a2

√
η) sin(n1a1

√
η)

− 1

2

(
n1

n3
+
n3

n1

)
cos(n4a4

√
η) sin(n3a3

√
η) cos(n2a2

√
η) sin(n1a1

√
η)

− 1

2

(
n2

n3

+
n3

n2

)
cos(n4a4

√
η) sin(n3a3

√
η) sin(n2a2

√
η) cos(n1a1

√
η)

− 1

2

(
n3

n4
+
n4

n3

)
sin(n4a4

√
η) sin(n3a3

√
η) cos(n2a2

√
η) cos(n1a1

√
η)

− 1

2

(
n2

n4
+
n4

n2

)
sin(n4a4

√
η) cos(n3a3

√
η) sin(n2a2

√
η) cos(n1a1

√
η)

− 1

2

(
n1

n4

+
n4

n1

)
sin(n4a4

√
η) cos(n3a3

√
η) cos(n2a2

√
η) sin(n1a1

√
η)

+
1

2

(
n1n3

n2n4
+
n2n4

n1n3

)
sin(n4a4

√
η) sin(n3a3

√
η) sin(n2a2

√
η) sin(n1a1

√
η)

]
.
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Figure 2.3: Graph of ∆(η) as a function of η for the example with m = 4,

n1 = 0.8, n2 = 0.5, n3 = 1.5, n4 = 2, a1 = 0.5, a2 = 1.2, a3 = 1 and a4 = 1.5.

2.4 Conversion to Quasimomentum

In the usual scattering theory of the Schrödinger equation on the line [30, 31]

−ψ′′(k, x) +Q(x)ψ(k, x) = k2ψ(k, x),

the continuous spectrum of the Hamiltonian H = −(d2/dx2) + Q coincides
with η = k2 ∈ [0,∞) if Q is a real function such that (1 + |x|)Q(x) belongs
to L1(R), where it is customary to convert from the energy variable η (in the
complex plane cut along [0,∞)) to the wavenumber k, where η = k2. Two
Riemann surfaces can be introduced, one in the energy variable η and the
other in the wavenumber k. The Riemann surface Λ in the energy variable
consists of two copies of the complex plane cut along [0,∞), one being the
physical sheet, corresponding to the upper half complex k-plane, and the
other the unphysical sheet, corresponding to the lower half complex k-plane,
glued together by attaching the upper side of the cut in the physical sheet
to the lower side of the cut in the unphysical sheet and the lower side of the
cut in the physical sheet to the upper side of the cut in the unphysical sheet.
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We then define the wavenumber2

k(η) = ±i√−η

in such a way that the physical η-sheet corresponds to the upper half k-
plane and the unphysical η-sheet to the lower half k-plane. The Riemann
surface K in the k-variable then is the complex k-plane cut along the real
line. Obviously, the Riemann surfaces Λ and K are in 1, 1-correspondence.

Let us first summarize what we have proved regarding the behavior of
the Hill discriminant ∆(η):

(a) It decreases monotonically from +∞ to +2 as η increases from −∞ to
η0.

(b) It decreases monotonically from +2 to −2 as η increases from η2k to
µ2k+1 (k = 0, 1, . . .) along the odd numbered bands.

(c) It increases monotonically from −2 to +2 as η increases from η2k−1 to
µ2k (k = 1, 2, . . .) along the even numbered bands.

In the band gaps the behavior of ∆(η) is as follows:

(a) It decreases monotonically from +∞ to +2 as η increases from −∞ to
η0 (zero-th band gap).

(b) It has a single extreme value η = ζl in each nonempty band gap.

(c) The coalescence points of two bands with empty intermediate band gap
are extreme values.

Then ∆(η) is real whenever η ∈ R or η belongs to any of the curves Γl which
intersect the real line at ζl at a right angle, has {η ∈ C : Re η = π2l2} as
its vertical asymptotes, are mirror symmetric with respect to the real line,
and do not intersect each other, where l = 1, 2, 3, . . .. Put Γ±

l = Γl ∩ {η ∈
C : (±Re η) ≥ 0}. The real lines and the curves Γl divide the physical
and physical sheets of Λ in sections on which the transformation η 7→ k to
quasimomentum will be performed separately as indicated in Table 2.4.

In general [32, 33], define the quasimomentum k(η) in such a way that

∆(η) = 2 cos(qk(η)),
√

∆(η)2 − 4 = −2i sin(qk(η)),
dk

dη
= − ∆′(η)

2q sin(qk)
.

2Thus if η = ρeiθ with 0 ≤ θ < 2π, then k(η) =
√

ρ eiθ/2 on the physical sheet and

k(η) =
√

ρ ei(θ−2π)/2 on the unphysical sheet.



30 CHAPTER 2. ONE-DIMENSIONAL PHOTONIC CRYSTALS

Table 2.1: Closed regions Ω+
j in the physical η-sheet along with their bound-

aries, followed by their images in the upper half k-plane. The left column

contains the regions and the right column their boundaries. The upper part

of each entry regards the η-plane and the lower part the k-plane. Here

εj = 1
q
arcsinh(1

2

√
∆(ζj)2 − 4), where j = 1, 2, 3, . . ..

Ω1+ (−∞, η0] ∪ s+
1 ∪ [µ1, ζ1] ∪ Γ+

1

[0, π] × iR+ (i∞, i0] ∪ [0, π] ∪ [π, π + iε1]

∪ [π + iε1, π + i∞)

Ω2+ Γ+
1 ∪ [ζ1, µ2] ∪ s+

2 ∪ [η1, ζ2] ∪ Γ+
2

[π, 2π] × iR+ (π + i∞, π + iε1] ∪ [π + iε1, π]

∪ [π, 2π] ∪ [2π, 2π + iε2]

∪ [2π + iε2, 2π + i∞)

Ω2k,+ Γ+
2k−1 ∪ [ζ2k−1, µ2k] ∪ s+

2k ∪ [η2k−1, ζ2k] ∪ Γ+
2k

[(2k−1)π, 2kπ]×iR+ ((2k − 1)π + i∞, (2k − 1)π + iε2k−1]

∪ [(2k − 1)π + iε2k−1, (2k − 1)π]

∪ [(2k − 1)π, 2kπ] ∪ [2kπ, 2kπ + iε2k]

∪ [2kπ + iε2k, 2kπ + i∞)

Ω2k+1,+ Γ+
2k ∪ [ζ2k, η2k] ∪ s+

2k+1 ∪ [µ2k+1, ζ2k+1] ∪ Γ+
2k+1

[2kπ, (2k+1)π]×iR+ (2kπ + i∞, 2kπ + iε2k] ∪ [2kπ + iε2k, 2kπ]

∪ [2kπ, (2k + 1)π]

∪ [(2k + 1)π, (2k + 1)π + iε2k+1]

∪ [(2k + 1)π + iε2k+1, (2k + 1)π + i∞)
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Figure 2.4: This figure shows in red the zones where ∆(η) is real in the

Λ-plane. The stability intervals are depicted in blue.

Moreover, define the eigenvalues

τ1,2(η) =

{
e±iqk(η), physical sheet,

e∓iqk(η), unphysical sheet,
(2.4.1)

where |τ1| < 1 and |τ2| > 1 whenever ∆(η) /∈ [−2, 2]. Since different points
in the complex plane have the same sines, cosines, and squares, some care is
needed when defining k(η). Let us denote the upper side of the k-th band by
s+
k and the lower side of the k-th band by s−k , where k = 1, 2, 3, . . .. Let us

subdivide the complex η-plane cut along the bands as follows, performing the
subdivision separately for the physical η-sheet and the nonphysical η-sheet.
Then we define3 for η ∈ (−∞, η0)

k(η) =

{
i
q
arcsinh(1

2

√
∆(η)2 − 4), physical sheet,

−i
q

arcsinh(1
2

√
∆(η)2 − 4), unphysical sheet,

where the square root is positive. We now engage in successive analytic
continuations of k(η) in the physical η-sheet to Ω+

1 , then to Ω+
2 , then to Ω+

3 ,

3If sinh(z) = w, then z = arcsinh(w) = log(w +
√

w2 + 1). We define either function

as a 1, 1-correspondence between R and itself.
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Table 2.2: Conversion from the energy variable η to the quasimomentum

variable k.

physical sheet unphysical sheet

upper

half-plane
first quadrant third quadrant

lower

half-plane
second quadrant fourth quadrant

etc., thus mapping the intersection of the physical η-sheet and the upper half
η-plane onto the first k-quadrant in a 1, 1 manner. Similarly, the intersection
of the physical η-sheet and the lower half η-plane is mapped onto the second
k-quadrant in a 1, 1 manner. Next, the intersection of the unphysical η-sheet
and the upper half η-plane is mapped onto the third k-quadrant in a 1, 1
manner and the intersection of the unphysical η-sheet and the lower half η-
plane onto the fourth k-quadrant in a 1, 1 manner. As a result, we obtain
the symmetry relation

k(η)unphysical = k(η)physical.

Let us work out the introduction of the k-variable for n(x) ≡ 1. Then
∆(η) is given by (2.3.21). As a result, q = p and

∆′(η) =
−p sin(p

√
η)

2
√
η

, implying ζk =

(
kπ

p

)2

, k = 1, 2, 3, . . . .

Then ∆(η) is real-valued if and only if Re η = ηk for some k = 1, 2, 3, . . ..4

For η ∈ (−∞, 0) (where η0 = 0) we now have

k(η) =

{
+i

√−η, physical sheet,

−i√−η, unphysical sheet,

where the square root is positive. The net result is k(η) as for the usual
Schrödinger equation on the line.

For later use we let τ1(η) and τ2(η) be the roots of the quadratic Hill
polynomial equation (2.1.4) such that |τ1(η)| < 1 and |τ2(η)| > 1 whenever

4This follows from (2.3.21) using the equality cos(σ + iτ) = cosσ cosh τ − i sin σ sinh τ .
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∆(η) /∈ [−2, 2]. We then have

τ1(η) =

{
1
2
[∆(η) −

√
∆(η)2 − 4], ∆(η) > 2,

1
2
[∆(η) +

√
∆(η)2 − 4], ∆(η) < −2,

(2.4.2a)

τ2(η) =

{
1
2
[∆(η) +

√
∆(η)2 − 4], ∆(η) > 2,

1
2
[∆(η) −

√
∆(η)2 − 4], ∆(η) < −2,

(2.4.2b)

where the square root is positive. For ∆(η) /∈ [−2, 2], τ1(η) and τ2(η) are
defined by analytic continuation. For ∆(η) ∈ (−2, 2) we distinguish between
limiting values as η approaches the band from above and from below. For
∆(η) /∈ [−2, 2] and η /∈ R, τ1(η) and η have imaginary parts of opposite sign
and τ2(η) and η have imaginary parts of the same sign, where τ1(η) and τ2(η)
have product 1 and sum ∆(η).

2.5 Direct Scattering Theory

In this section we study the direct scattering theory of (2.1.1), where n(x) has
a periodic component and a component describing the effect of impurities.

2.5.1 Direct Scattering for the Periodic Problem

Equation (2.1.1) has one linearly independent solution ψ1(η, x) in L2(R+)
and one linearly independent solution ψ2(η, x) in L2(R−). These solutions
are called Floquet solutions. Thus for each η ∈ C there exist unique Weyl
coefficients m1(η) and m2(η) such that

ψ1(η, x) = θ(η, x) +m1(η)ϕ(η, x), (2.5.1a)

ψ2(η, x) = θ(η, x) +m2(η)ϕ(η, x). (2.5.1b)

If ∆(η) /∈ [−2, 2], then (2.1.4) has a solution τ1 with |τ1| < 1 and a
solution τ2 with |τ2| > 1. Therefore,

(
τ1,2(η) − θ(η, p) −ϕ(η, p)

−θ′(η, p) τ1,2(η) − ϕ′(η, p)

)(
1

m1,2(η)

)
=

(
0
0

)
. (2.5.2)

Thus the Weyl coefficients satisfy

m1,2(η) =
τ1,2(η) − θ(η, p)

ϕ(η, p)
. (2.5.3)

The Floquet solutions have the Bloch representation

ψ1,2(k, x) = e±iky(x)χ1,2(k, x), (2.5.4)
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Figure 2.5: This figure shows the correspondence between the physical

plane Λ and the halfplane K with Imk > 0.

where χ1,2(k, x + p) ≡ χ1,2(k, x) are periodic. Because the quasimomenta
±k ∈ R correspond to η in the limit to a band from above and below, we
have the symmetry relations

ψ1,2(k, x) =

{
ψ1,2(−k, x),
ψ2,1(−k, x), k ∈ R.

(2.5.5)
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We also get for the Wronskian

w(k)
def
= W [ψ1(k, ·), ψ2(k, ·)] = W [θ(η, ·)+m1(η)ϕ(η, ·), θ(k, ·)+m2(η)ϕ(k, ·)]

= {m2(η) −m1(η)}W [θ(η, ·), ϕ(η, ·)]

= m2(η) −m1(η) =
−2i sin(qk)

ϕ(η, p)
.

With the help of the inversion and conjugation symmetries (2.5.5) we get

w(k) = W [ψ1(k, ·), ψ2(k, ·)] =

{
W [ψ2(−k, ·), ψ1(−k, ·)] = −w(−k), k ∈ R,

W [ψ1(−k, ·), ψ2(−k, ·)] = w(−k).
(2.5.6)

The Wronskian w(k) can only be zero for those k ∈ R that correspond to the
endpoints of the bands, i.e., for k = mπ for some m ∈ Z. Following the praxis
of the scattering theory of the Schrödinger equation on the line [30, 31, 34],
we say that the generic case occurs in k = mπ if w(mπ) 6= 0, and that the
exceptional case occurs in k = mπ if w(mπ) = 0. In the generic case the two
Floquet solutions are linearly independent, whereas in the exceptional case
they are linearly dependent. For n(x) ≡ 1 we have ψ1,2(k, x) = e±ikx and
w(k) = −2ik; hence the generic case occurs in k = mπ for 0 6= m ∈ Z and
the exceptional case occurs in k = 0.

Since the (simple) zeros of ϕ(p, η) can only occur at points of the bands,
the Weyl coefficients m1,2(η) are analytic in η outside the bands. As a result,5

ψ1,2(k, x) are continuous functions in k in the closed upper half-plane and
analytic functions in k in the open upper half-plane.

2.5.2 Jost Solutions and Scattering Coefficients

We now add impurities by studying the generalized Helmholtz equation
(2.1.1), where

n(x)2 = n0(x)
2[1 + ε(x)],

n0(x) is a real piecewise continuous periodic function of period p, ε(x)
is piecewise continuous, vanishes as x → ±∞, and has the lower bound
inf{ε(x) : x ∈ R} > −1, and

∫∞

−∞
(1 + |x|)|ε(x)| < ∞. We introduce the

Hill discriminant ∆(η) and the quasimomentum k(η) as pertaining to the
corresponding periodic problem

−ψ′′(η, x) = ηn0(x)
2ψ(η, x).

5From now on, we take η in the physical sheet and hence k in the upper half-plane.



36 CHAPTER 2. ONE-DIMENSIONAL PHOTONIC CRYSTALS

We now define the Jost solutions of Eq. (2.1.1) as those solutions that satisfy
the asymptotic relations

f1(k, x) = ψ1(k, x)[1 + o(1)], x→ +∞, (2.5.7a)

f2(k, x) = ψ2(k, x)[1 + o(1)], x→ −∞. (2.5.7b)

Figure 2.6: Example of a periodic structure with period p having a localized

impurity due to the presence of materials with different refractive index. The

impurity generates scattering phenomena (Jost functions). The refractive

index profile along the x-direction is drawn.

Using the method of variation of parameters (or by direct substitution in
the differential equation) we easily prove the following

Lemma 2.5.1 Let g(x) be a bounded measurable function. Then the unique

solutions of the inhomogeneous differential equation

− ψ′′(η, x) = ηn0(x)
2ψ(η, x) + g(x) (2.5.8)

satisfying ψ(k, x) = ψ1,2(k, x)[1 + o(1)] as x→ ±∞ is given by

ψ(η, x) = ψ1(k, x) +

∫ ∞

x

ψ2(k, x)ψ1(k, t) − ψ1(k, x)ψ2(k, t)

w(k)
g(t) dt, (2.5.9a)

ψ(η, x) = ψ2(k, x) −
∫ x

−∞

ψ2(k, x)ψ1(k, t) − ψ1(k, x)ψ2(k, t)

w(k)
g(t) dt, (2.5.9b)

respectively. Here w(k) = W [ψ1(k, ·);ψ2(k, ·)].
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Proof. Let us write the solution in the form

ψ(k, x) = c1(x)ψ1(k, x) + c2(x)ψ2(k, x),

where (
ψ1(k, x) ψ2(k, x)
ψ′

1(k, x) ψ′
2(k, x)

)(
c′1(x)
c′2(x)

)
=

(
0

−g(x)

)
.

Then

c1(x) = c1 +
1

w(k)

∫ x

−∞

ψ2(k, t)g(t) dt,

c2(x) = c2 +
1

w(k)

∫ ∞

x

ψ1(k, t)g(t) dt.

Therefore,

ψ(k, x) =

[
c1 +

1

w(k)

∫ x

−∞

ψ2(k, t)g(t) dt

]
ψ1(k, x)

+

[
c2 +

1

w(k)

∫ ∞

x

ψ1(k, t)g(t) dt

]
ψ2(k, x).

To obtain the solution asymptotically equivalent to ψ1(k, x) as x→ +∞, we
take c2 = 0 to cancel out any contribution proportional to ψ2(k, x) and get


c1 +

1

w(k)

∫ ∞

−∞

ψ2(k, t)g(t) dt

︸ ︷︷ ︸
=1


ψ1(k, x)

− 1

w(k)

∫ ∞

x

ψ2(k, t)g(t) dt ψ1(k, x) +
1

w(k)

∫ ∞

x

ψ1(k, t)g(t) dt ψ2(k, x),

yielding (2.5.9a). Analogously, to obtain the solution asymptotically equiv-
alent to ψ2(k, x) as x → −∞, we take c1 = 0 to cancel out any contrbution
proportional to ψ1(k, x) and get


c2 +

1

w(k)

∫ ∞

−∞

ψ1(k, t)g(t) dt

︸ ︷︷ ︸
=1


ψ2(k, x)

+
1

w(k)

∫ x

−∞

ψ2(k, t)g(t) dt ψ1(k, x) −
1

w(k)

∫ x

−∞

ψ1(k, t)g(t) dt ψ2(k, x),

yielding (2.5.9b).
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Applying Lemma 2.5.1 for g = ηn2
0εf1,2(k, ·) we get

f1(k, x) = ψ1(k, x) +

∫ ∞

x

A(k; x, t)
[
ηn0(t)

2ε(t)
]
f1(k, t) dt, (2.5.10a)

f2(k, x) = ψ2(k, x) −
∫ x

−∞

A(k; x, t)
[
ηn0(t)

2ε(t)
]
f2(k, t) dt, (2.5.10b)

where

A(k; x, t) =
ψ2(k, x)ψ1(k, t) − ψ1(k, x)ψ2(k, t)

w(k)
. (2.5.11)

As a result of the symmetry relations of the Floquet solutions, we have the
inversion and conjugation symmetries

f1,2(k, x) =

{
f1,2(−k, x)
f2,1(−k, x), k ∈ R.

(2.5.12)

We also have the asymptotic relations

f1(k, x) = a1(k)ψ1(k, x) + b1(k)ψ2(k, x) + o(1), x→ −∞, (2.5.13a)

f2(k, x) = b2(k)ψ1(k, x) + a2(k)ψ2(k, x) + o(1), x→ +∞, (2.5.13b)

where

a1(k) = 1 − w(k)−1I21(k), b1(k) = w(k)−1I11(k),

b2(k) = w(k)−1I22(k), a2(k) = 1 − w(k)−1I12(k),

and

Ijl(k) =

∫ ∞

−∞

[
ηn0(t)

2ε(t)
]
ψj(k, t)fl(k, t) dt.

For the Wronskians we find with the help of the inversion symmetry
(2.5.5)

W [f1(k, ·), f2(k, ·)] = W [ψ1, b2ψ1 + a2ψ2] = a2(k)w(k),

= W [a1ψ1 + b1ψ2, ψ2] = a1(k)w(k),

so that

a(k)
def
= a1(k) = a2(k), k ∈ C \ R,

where the relation extends to its boundary value as k approaches the real line
from above and below. Using the conjugation symmetry (2.5.5) we obtain

w(−k)a(−k) = W [f1(−k, ·), f2(−k, ·)] = W [f1(k, ·), f2(k, ·)] = w(k)a(k),
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so that
a(−k) = a(k), k ∈ C \ R, (2.5.14)

where the relation extends to its boundary value as k approaches the real
line from above and below. Observe that w(k)a(k) is continuous in k ∈ C+.
As yet, we do not get relations involving b1(k) and b2(k) for nonreal k.

Let us now look for relations for k ∈ R. For k ∈ R we have

W [f1(k, ·), f1(−k, ·)]

=





W [ψ1(k, ·), ψ1(−k, ·)] = W [ψ1(k, ·), ψ2(k, ·)] = w(k),

W [a1(k)ψ1(k, ·) + b1(k)ψ2(k, ·), a1(−k)ψ1(−k, ·) + b1(−k)ψ2(−k, ·)]
= W [a1(k)ψ1(k, ·) + b1(k)ψ2(k, ·), a1(−k)ψ2(k, ·) + b1(−k)ψ1(k, ·)]
= {a1(k)a1(−k) − b1(k)b1(−k)}w(k),

so that
a1(k)a1(−k) − b1(k)b1(−k) = 1, k ∈ R.

Similarly, for k ∈ R we have

W [f2(k, ·), f2(−k, ·)]

=






W [ψ2(k, ·), ψ2(−k, ·)] = W [ψ2(k, ·), ψ1(k, ·)] = −w(k),

W [a2(k)ψ2(k, ·) + b2(k)ψ1(k, ·), a2(−k)ψ2(−k, ·) + b2(−k)ψ1(−k, ·)]
= W [a2(k)ψ2(k, ·) + b2(k)ψ1(k, ·), a2(−k)ψ1(k, ·) + b2(−k)ψ2(k, ·)]
= −{a2(k)a2(−k) − b2(k)b2(−k)}w(k),

so that
a2(k)a2(−k) − b2(k)b2(−k) = 1, k ∈ R.

Analogously, for k ∈ R we have

W [f1(k, ·), f2(−k, ·)]

=






W [ψ1(k, ·), a2(−k)ψ2(−k, ·) + b2(−k)ψ1(−k, ·)]
W [ψ1(k, ·), a2(−k)ψ1(k, ·) + b2(−k)ψ2(k, ·)] = b2(−k)w(k),

W [a1(k)ψ1(k, ·) + b1(k)ψ2(k, ·), ψ2(−k, ·)]
= W [a1(k)ψ1(k, ·) + b1(k)ψ2(k, ·), ψ1(k, ·)] = −b1(k)w(k),

so that
b2(−k) = −b1(k), k ∈ R.

For k ∈ R we now write b(k)
def
= b1(k) = −b2(−k). We do not define b(k) off

the real line. Using (2.5.12) and (2.5.6) for k ∈ R we get for k ∈ R

b(−k)w(−k) = −W [f1(−k, x), f2(−k, x)] = b(−k)w(−k),
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which yields
b(−k) = b(k), k ∈ R. (2.5.15)

Observe that w(k)b(k) is continuous in k ∈ R.6

Let us consider coefficients dij(k) (i, j = 1, 2) such that

f1(−k, x) = d11(k)f1(k, x) + d12(k)f2(k, x), (2.5.16a)

f2(−k, x) = d21(k)f1(k, x) + d22(k)f2(k, x). (2.5.16b)

Writing asymptotic expressions x → ±∞ we get

ψ1(−k, x) = d11(k)ψ1(k, x) + d12(k)[−b(−k)ψ1(k, x) + a(k)ψ2(k, x)],

a(−k)ψ1(−k, x) + b(−k)ψ2(−k, x) = d11(k)[a(k)ψ1(k, x) + b(k)ψ2(k, x)]

+ d12(k)ψ2(k, x),

−b(k)ψ1(−k, x) + a(−k)ψ2(−k, x) = d21(k)ψ1(k, x)

+ d22(k)[−b(−k)ψ1(k, x) + a(k)ψ2(k, x)],

ψ2(−k, x) = d21(k)[a(k)ψ1(k, x) + b(k)ψ2(k, x)] + d22(k)ψ2(k, x).

Using that ψ1,2(−k, x) = ψ2,1(k, x) and using the linear independence of the
Floquet solutions to equate coefficients of ψ1(k, x) and ψ2(k, x) we get

0 = d11(k) − d12(k)b(−k), 1 = d12(k)a(k),

b(−k) = d11(k)a(k), a(−k) = d11(k)b(k) + d12(k),

a(−k) = d21(k) − d22(k)b(−k), −b(k) = d22(k)a(k),

1 = d21(k)a(k), 0 = d21(k)b(k) + d22(k).

Therefore,
(
d11(k) d12(k)
d21(k) d22(k)

)
=

1

a(k)

(
b(−k) 1

1 −b(k)

)
, k ∈ R.

We now define the transmission coefficient T (k), the reflection coefficient
from the right R(k), and the reflection coefficient from the left L(k) by





T (k) = d12(k) = d21(k) =
1

a(k)
,

R(k) = −d11(k) = −b(−k)
a(k)

, L(k) = −d22(k) =
b(k)

a(k)
,

(2.5.17)

where k ∈ R. Then (2.5.14) and (2.5.15) imply that the scattering matrix

S(k) =

(
T (k) R(k)
L(k) T (k)

)
, k ∈ R, (2.5.18)

6Since w(k) may vanish at certain k = mπ, we cannot be sure if a(k) and b(k) are

continuous in k at these points in C+.



2.5. DIRECT SCATTERING THEORY 41

is unitary. Obviously, the scattering matrix is continuous in k ∈ R \ {lπ : l ∈
Z}.7 All of this leads to the Riemann-Hilbert problem

(
f1(−k, x)
f2(−k, x)

)
= JS(k)J

(
f2(k, x)
f1(k, x)

)
, k ∈ R, (2.5.19)

where J = diag(1,−1). From (2.5.14), (2.5.15), and (2.5.17) we get for k ∈ R

T (−k) = T (k), R(−k) = R(k), L(−k) = L(k). (2.5.20)

We also get for k ∈ R

(
f1(−k, x)
f2(−k, x)

)
= JS(k)J

(
f2(k, x)
f1(k, x)

)
= JS(k)J

(
0 1
1 0

)(
f1(k, x)
f2(k, x)

)

= JS(k)J

(
0 1
1 0

)
JS(−k)J

(
f2(−k, x)
f1(−k, x)

)

= JS(k)J

(
0 1
1 0

)
JS(−k)J

(
0 1
1 0

)(
f1(−k, x)
f2(−k, x)

)
,

so that

S(k)−1 = J

(
0 1
1 0

)
JS(−k)J

(
0 1
1 0

)
J

=

(
T (−k) L(−k)
R(−k) T (−k)

)
=

(
T (k) L(k)

R(k) T (k)

)
= S(k)†,

where the dagger denotes the conjugate transpose and J = diag(1,−1). Con-
sequently, S(k) is a unitary matrix for k ∈ R. In combination with (2.5.17)
we get for k ∈ R the crucial relation

|a(k)|2 − |b(k)|2 = 1, k ∈ R, (2.5.21)

which implies that a(k) 6= 0 for k ∈ R. This crucial relation (2.5.21) also
implies that f1(k, x) and f2(k, x) are linearly independent whenever ψ1(k, x)
and ψ2(k, x) are linearly independent, i.e., whenever k is not an integer mul-
tiple mπ of π (i.e., whenever η is not the endpoint of a band) and whenever
the generic case occurs at mπ. The linear independence of the two Floquet
solutions is described by Floquet’s Theorem 2.1.1 in an alternative way.

In the case of the Schrödinger equation on the line it is well-known how to
recover S(k) [and hence a(k) and b(k)] uniquely from one reflection coefficient
and the finitely many, necessarily positive imaginary and simple, poles of the
transmission coefficient [31]. This procedure can in principle be generalized

7S(k) is continuous in k = mπ if the generic case occurs in k = mπ.
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using a result by Firsova [35] on the asymptotics of the poles of T (k) in the
band gaps (derived if n(x) ≡ 1). If n(x) ≡ 1, ε(x) ≡ 0, we have infinitely
many such poles (unless there are only finitely many band gaps).

Let us now compute the relevant scattering data in an elementary case.

Example 2.5.2 Let the periodic part of the Helmholtz equation be as in

Example 2.3.2 (i.e., n(x) ≡ 1) and let n(x) = 1 + ε for x ∈ (0, p), where

ε > −1 is a nonzero constant. Working in the k-image of the physical sheet

(i.e., taking Im k ≥ 0 with η = k2), the Floquet solutions are given by

ψ1(k, x) = eikx, ψ2(k, x) = e−ikx,

while m1(η) = ik, m2(η) = −ik, and w(k) = −2ik. Then the general solution

for x ∈ (0, p) is given by

ψ(k, x) = d1 cos(kx
√

1 + ε) + d2
sin(kx

√
1 + ε)

k
√

1 + ε
.

In order to allow ψ(k, x) to coincide with either Jost solution f1,2(k, x), we

have the contingency relations

f1(k, p) = ψ1(k, p), f ′
2(k, p) = ψ′

1(k, p),

f2(k, 0) = ψ2(k, 0), f ′
1(k, 0) = ψ′

2(k, 0).

Then for j = 1, 2 we have

fj(k, x) = d
(j)
1 cos(kx

√
1 + ε) + d

(j)
2

sin(kx
√

1 + ε)

k
√

1 + ε
,

where d
(2)
1 = ψ2(k, 0) = 1, d

(2)
2 = ψ′

2(k, 0) = −ik, and



cos(kp
√

1 + ε)
sin(kp

√
1 + ε)

k
√

1 + ε

−k
√

1 + ε sin(kp
√

1 + ε) cos(kp
√

1 + ε)




(
d

(1)
1

d
(1)
2

)
= eikp

(
1

ik

)
.

Therefore, for x ∈ (0, p) we have the Jost solutions

f1(k, x) = eikp
[
cos(k(p− x)

√
1 + ε) − i

sin(k(p− x)
√

1 + ε)√
1 + ε

]
,

f2(k, x) = cos(kx
√

1 + ε) − i
sin(kx

√
1 + ε)√

1 + ε
.
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Now (2.5.13) yields for k ∈ R

(
f1(k, 0)

f ′
1(k, 0)

)
=

(
ψ1(k, 0) ψ2(k, 0)

ψ′
1(k, 0) ψ′

2(k, 0)

)(
a(k)

b(k)

)
,

(
f2(k, p)

f ′
2(k, p)

)
=

(
ψ1(k, p) ψ2(k, p)

ψ′
1(k, p) ψ′

2(k, p)

)(
−b(k)
a(k)

)
.

Consequently,

a(k) = eikp
[
cos(kp

√
1 + ε) − iζ+(ε) sin(kp

√
1 + ε)

]
,

b(k) = eikp
[
iζ−(ε) sin(kp

√
1 + ε)

]
,

where

ζ±(ε) =
1

2

[√
1 + ε± 1√

1 + ε

]
.

2.6 Evaluation of the Impurity Period Map

In this section we indicate how the period map of the periodic plus impurity
problem can be recovered from the scattering coefficients a(k) and b(k). We
shall work it out for the piecewise constant case of Example 2.3.3, but the
reduction can be applied in general.

Let the impurity be concentrated in the period (0, p] and let us refer to
the rest of the crystal by the term bulk. Assuming the period (0, p] and the
bulk to be piecewise constant, we define

n(x)
√

[1 + ε(x)] =

{
ñj , b̃j−1 < x ≤ b̃j , j = 1, . . . , l,

n(x), x /∈ [0, p],

where 0 = b̃0 < b̃1 < . . . < b̃l = p and n(x) is as in the Example 2.3.3.
Now let us define Mi(η) as the matrix M(η) of Example 2.3.3, but with

nj replaced by ñj (j = 1, . . . , l).8 Then outside the interval [0, p] the Jost
solutions can be expressed in the Floquet solutions as follows [cf. (2.5.13)]:

f1(k, x) =

{
ψ1(k, x), x ≥ p,

a(k)ψ1(k, x) + b(k)ψ2(k, x), x ≤ 0,

f2(k, x) =

{
−b(k)ψ1(k, x) + a(k)ψ2(k, x), x ≥ p,

ψ2(k, x), x ≤ 0.

8We could just consider any periodic and periodic-plus-impurity problem, because we

only need to work with the period maps M(η) and Mi(η).
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Putting

W (k, x)
def
=

(
ψ1(k, x) ψ2(k, x)
ψ′

1(k, x) ψ′
2(k, x)

)
, (2.6.1)

we obtain

W (k, 0)

(
a(k)
b(k)

)
=

(
f1(k, 0)
f ′

1(k, 0)

)
= Mi(η)

−1

(
f1(k, p)
f ′

1(k, p)

)

= Mi(η)
−1

(
ψ1(k, p)
ψ′

1(k, p)

)
= Mi(η)

−1M(η)

(
ψ1(k, 0)
ψ′

1(k, 0)

)

and

W (k, 0)

(
−b(k)
a(k)

)
= M(η)−1W (k, p)

(
−b(k)
a(k)

)
= M(η)−1

(
f2(k, p)
f ′

2(k, p)

)

= M(η)−1Mi(η)

(
f2(k, 0)
f ′

2(k, 0)

)
= M(η)−1Mi(η)

(
ψ2(k, 0)
ψ′

2(k, 0)

)
.

As a result of w(k) = m2(η) − m1(η), ψ1(k, 0) = ψ2(k, 0) = 1, ψ′
1(k, 0) =

m1(η), and ψ′
2(k, 0) = m2(η) we get

(
a(k)
b(k)

)
=

1

w(k)

(
m2(η) −1

−m1(η) 1

)
Mi(η)

−1M(η)

(
1

m1(η)

)
, (2.6.2a)

(
−b(k)
a(k)

)
=

1

w(k)

(
m2(η) −1

−m1(η) 1

)
Mi(η)M(η)−1

(
1

m2(η)

)
. (2.6.2b)

Equations (2.6.2) allow one to compute the period map Mi(η) of the peri-
odic plus impurity problem if the impurity is concentrated in one period,
the periodic data are known, and a(k) and b(k) are known. The latter scat-
tering data can easily be compute from one reflection coefficient and the
transmission coefficient by using (2.5.17) and (2.5.21).

More generally, let the impurity be concentrated in [−Mp,Np], where M
is a nonnegative integer and N a positive integer. Then f1(k, x) = ψ1(k, x)
for x ≥ Np and f2(k, x) = ψ2(k, x) for x ≤ −Mp. Now let Mi+(η) be the
period map of the periodic plus impurity problem for computing solutions
at x = Np from those at x = 0, and let Mi−(η) be the period map of the
periodic plus impurity problem to compute solutions at x = 0 from those at
x = −Mp. Then

W (k, 0)

(
a(k)
b(k)

)
=

(
f1(k, 0)
f ′

1(k, 0)

)
= Mi+(η)−1

(
f1(k,Np)
f ′

1(k,Np)

)

= Mi+(η)−1

(
ψ1(k,Np)
ψ′

1(k,Np)

)
= Mi+(η)−1M(η)N

(
ψ1(k, 0)
ψ′

1(k, 0)

)
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and

W (k, 0)

(
−b(k)
a(k)

)
= M(η)−NW (k,Np)

(
−b(k)
a(k)

)
= M(η)−N

(
f2(k,Np)
f ′

2(k,Np)

)

= M(η)−NMi+(η)Mi−(η)

(
f2(k,−Mp)
f ′

2(k,−Mp)

)

= M(η)−NMi+(η)Mi−(η)

(
ψ2(k,−Mp)
ψ′

2(k,−Mp)

)

= M(η)−NMi+(η)Mi−(η)M(η)−M
(
ψ2(k, 0)
ψ′

2(k, 0)

)
.

Instead of (2.6.2) we now get
(
a(k)
b(k)

)
=

1

w(k)

(
m2(η) −1

−m1(η) 1

)
Mi+(η)−1M(η)N

(
1

m1(η)

)
, (2.6.3a)

(
−b(k)
a(k)

)
=

1

w(k)

(
m2(η) −1

−m1(η) 1

)
M(η)−NMi+(η)Mi−(η)M(η)−M

(
1

m2(η)

)
.

(2.6.3b)

Equations (2.6.3) allow one to compute the period maps Mi+(η) and Mi−(η)
of the periodic plus impurity problem if the impurity is concentrated in
finitely many (known) periods, the periodic data are known, and a(k) and
b(k) are known. The latter scattering data can easily be compute from one
reflection coefficient and the transmission coefficient by using (2.5.17) and
(2.5.21).

Let us write N(η) = Mi(η)
−1M(η) as in (2.6.2a). Then

a(η) =
1

w(η)

(
[m2(η) +m1(η)]

1

2
[N11(η) −N22(η)] −N21(η)

+ m2(η)m1(η)N12(η) + [m2(η) −m1(η)]
1

2
[N11(η) +N22(η)]

)
. (2.6.4)

Now for ∆(η) /∈ [−2, 2] we have

w(η) = m2(η) −m1(η) =
τ2(η) − τ1(η)

ϕ(η, p)
,

m2(η) +m1(η) =
∆(η) − 2θ(η, p)

ϕ(η, p)
=
ϕ′(η, p) − θ(η, p)

ϕ(η, p)
,

m2(η)m1(η) =
τ2(η)τ1(η) − [τ2(η) + τ1(η)]θ(η, p) + θ(η, p)2

ϕ(η, p)2

=
1 − [θ(η, p) + ϕ′(η, p)]θ(η, p) + θ(η, p)2

ϕ(η, p)2
= −θ

′(η, p)

ϕ(η, p)
.



46 CHAPTER 2. ONE-DIMENSIONAL PHOTONIC CRYSTALS

Figure 2.7: In this figure the function ∆(η) is drawn in blue, whereas

a(η)w(η)ϕ(η, p) is in green. The system considered is a two-layer photonic

crystal with n1 = 1, n2 = 2, a1 = 2, a2 = 2 and ∆(η) has been computed

using Eq. (2.3.25). The impurity is thought concentrated in one period of

length p = 4 whose optical properties are parametrized by nimp1 = 2, nimp2 =

1, aimp1 = 3 and aimp2 = 0.9, while a(η)w(η)ϕ(η, p) has been calculated by

making use of Eq. (2.6.5).

Consequently,

a(η)w(η)ϕ(η, p) =
1

2
[N11(η) +N22(η)]w(η)ϕ(η, p)−N21(η)ϕ(η, p)

+
1

2
[N11(η) −N22(η)][ϕ

′(η, p) − θ(η, p)] −N12(η)θ
′(η, p),

(2.6.5)

where w(η)ϕ(η, p)] = τ2(η)−τ1(η) has the bands as branch cuts and all other
terms on the right-hand side are analytic in η ∈ C. Letting η → ℓ ± i0 for
∆(ℓ) ∈ (−2, 2) we get the quasimomentum limit k(η) → ±κ(ℓ) with κ(ℓ) > 0
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and hence

lim
η→ℓ±i0

a(η) =
1

2
[N11(ℓ) +N22(ℓ)] ±

i

2 sin(qκ(ℓ))
×

×
(

1

2
[N11(ℓ) −N22(ℓ)][ϕ

′(ℓ, p) − θ(ℓ, p)] −N21(ℓ)ϕ(ℓ, p) −N12(ℓ)θ
′(ℓ, p)

)
.

(2.6.6)

In the same way, writing Ñ(η) = Mi(η)M(η)−1 and using that this matrix
is the cofactor matrix of N(η), we get (2.6.4) from (2.6.3b).
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Chapter 3

Inverse Problem for 1D

Photonic Crystals

In this chapter we discuss the inverse problem of recovering the refractive
index of a 1D photonic crystal from its period map. The solution of this
problem allows one to compute the index of refraction n(x) in the Helmholtz
equation

− ψ′′(η, x) = ηn(x)2ψ(η, x) (3.0.1)

from the period map of one period. For photonic crystals where the impurity
in confined to finitely many periods, the solution of this problem allowes one
to compute a refractive index of the form

n(x) = n0(x)
√

1 + ε(x), (3.0.2)

where n0(x) is a positive and piecewise continuos function of period p and ε(x)
is a piecewise continuos function of compact support satisfying ε(x) > −1,
from the period map of an interval containing the impurities.

Inversion based on the period map is a difficult problem which does not
always have a (unique) solution n(x). We present an incomplete solution to
this problem which may nevertheless be of practical value. In Subsection
3.1 we indicate how to extract various type of spectral information from
the period map. In Subsection 3.2 we convert, for sufficiently smooth n(x),
the Helmholtz equation 3.0.1 in the position variable x in the Schrödinger
equation in the travel time parameter y(x) =

∫ x
0
dzn(z) and compare the two

period maps. In subsection 3.3 we discuss various aspects of computing the
refractive index from the period map using the travel time parameter. In the
final subsection 3.4 we determine n(x) from the period map in the special
case of a piecewise constant refractive index.

49
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3.1 Reviewing various inverse problems

The prototypical inverse problem is to compute a periodic refractive index
n(x) from the period map

M(η) =

(
θ(η, p) ϕ(η, p)
θ′(η, x) ϕ′(η, p)

)
. (3.1.1)

This is an inversion problem for the Helmholtz equation on the finite interval
[0, p]. Its solution can be used alternatively to compute a periodic refractive
index n0(x) from the period map or a refractive index n(x) as in (3.0.2) from
the period map on an interval containing an integer number of periods which
contains the impurities (i.e., from the period map on an interval J of length
an integer multiple of p such that ε = 0 for x /∈ J). In Section 2.6 we have
explained how to compute the second type of period map from the scattering
matrix of an impure 1-D photonic crystal if the impurities are concentrated
in a finite number of periods.

The period map (3.1.1) contains a wealth of spectral data on the Helm-
holtz equation (2.1.1). For instance, letting α and β be real constants, the
zeros η of the scalar function

(
cosβ sin β

)
M(η)

(
sinα
cosα

)
= 0 (3.1.2)

yield the eigenvalues of the Helmholtz equation (3.0.1) under the mixed
boundary conditions

(cosα)ψ(η, 0) − (sinα)ψ′(η, 0) = 0, (3.1.3a)

(cosβ)ψ(η, p) + (sin β)ψ′(η, p) = 0. (3.1.3b)

This is easily understood by considering the Helmholtz solution

ψ(η, x) = (sinα)θ(η, x) + (cosα)ϕ(η, x),

which satisfies ψ(η, 0) = sinα and ψ′(η, 0) = cosα. Then ψ(η, x) obviously
satisfies (3.1.3a), while

(cosβ)ψ(η, p) + (sin β)ψ′(η, p) =
(
cosβ sin β

)
M(η)

(
sinα
cosα

)
.

Consequently, η is a Helmholtz eigenvalue under the mixed boundary con-
ditions (3.1.3) if and only if (3.1.2) is true. We now get as corrollaries the
following statements:

a. The Dirichlet eigenvalues (α = β = 0) are the zeros of the equation
ϕ(η, p) = 0.
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b. The Neumann eigenvalues (α = β = (π/2)) are the zeros of the equa-
tion θ′(η, p) = 0.

c. The Dirichlet-Neumann eigenvalues, i.e., the eigenvalues under the
boundary conditions (α = 0, β = (π/2))

ψ(η, 0) = 0, ψ′(η, p) = 0,

are the zeros of the equation ϕ′(η, p) = 0.

d. The Neumann-Dirichlet eigenvalues, i.e., the eigenvalues under the
boundary conditions (α = (π/2), β = 0)

ψ′(η, 0) = 0, ψ(η, p) = 0,

are the zeros of the equation θ(η, p) = 0.

Apart from the eigenvalues under any pair of mixed boundary conditions,
the period map also yields the eigenvalues under the τ -periodic boundary
conditions

ψ(η, p) = τψ(η, 0), ψ′(η, p) = τψ′(η, 0), (3.1.4)

where τ is a complex constant of modulus 1. In fact, introducing the Hill
discriminant

∆(η) = θ(η, p) + ϕ′(η, p),

the eigenvalues under the τ -periodic boundary conditions (3.1.4) are the zeros
of the equation

∆(η) = τ + τ−1.

In particular, the eigenvalues under periodic boundary conditions are the
zeros of the equation ∆(η) = 2, while the eigenvalues under antiperiodic
boundary conditions are the zeros of the equation ∆(η) = −2. Allowing τ
to vary over the unit circle, the eigenvalues under the τ -periodic conditions
(3.1.4) together make up the (allowed) energy bands.

In spite of the wealth of spectral information that we can extract from
the period map, the inverse problem of computing the refractive index from
the period map does not have a straightforward solution. The situation is
drastically different for Hill’s equation

− ψ′′(η, x) +Q(x)ψ(η, x) = ηψ(η, x), 0 ≤ x ≤ p, (3.1.5)

where Q(x) is a real function in L2
loc

(0, p). As early as 1929, Ambarzumian
[36] has proved that Q(x) ≡ 0 and p = π/

√
c whenever the Neumann eigen-

values of (3.1.6) are given by ηn = c n2 (n = 0, 1, 2, . . .). Borg [37, 38]
proved that it is possible to find a unique real potential Q(x) and unique
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mixed boundary conditions from the eigenvalues under two sets of boundary
conditions, provided the boundary conditions in one endpoint are the same.
Unfortunately, Borg did not provide an algorithm for computing Q(x). Such
an algorithm has been given by Marchenko [39] and, in simplified form, by
Trubowitz [40]. Marchenko and Ostrovski [33] have given an algorithm to
compute the periodic Schrödinger potential from the energy bands plus ei-
ther the Dirichlet or the Neumann spectrum. None of these results can be
derived in a similar way for the Helmholtz equation (2.1.1).

Let us now indicate how to retrieve the period p from the period map.
The fundamental matrix

Φ(η, x) =

(
θ(η, x) ϕ(η, x)
θ′(η, x) ϕ′(η, x)

)

is the unique 2 × 2 matrix solution of the linear system

Φ′(η, x) =

(
0 1

−ηn(x)2 0

)
Φ(η, x), Φ(η, 0) = I2, (3.1.6)

where the period map is given by

M(η) = Φ(η, p). (3.1.7)

Since the fundamental matrix Φ(η, x) is an entire matrix function in η, we
can expand it into an absolutely convergent power series as follows:

Φ(η, x) =
∞∑

j=0

ηjΦj(x), (3.1.8)

where for j = 1, 2, 3, . . .

Φ′
0(x) =

(
0 1
0 0

)
, Φ0(0) = I2, (3.1.9a)

Φ′
j(x) =

(
0 1
0 0

)
Φj(x) − n(x)2

(
0 0
1 0

)
Φj−1(x), Φj(0) = 02×2. (3.1.9b)

Then

Φ0(x) =

(
1 x
0 1

)
, (3.1.10a)

Φj(x) = −
∫ x

0

n(x̂)2

(
1 x− x̂
0 1

)(
0 0
1 0

)
Φj−1(x̂) dx̂

= −
∫ x

0

n(x̂)2

(
x− x̂ 0

1 0

)
Φj−1(x̂) dx̂, (3.1.10b)
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where j = 1, 2, 3, . . .. Consequently,

M(η) =

(
1 p
0 1

)
+O(η), η → 0,

and hence

p =

[
d

dη
M12(η)

]

η=0

. (3.1.11)

Equation (3.1.11) allows us to obtain the period p from the period map.

3.2 Conversion to Travel Time

Consider the differential equation (2.1.1)

−ψ′′(η, x) = ηn(x)2ψ(η, x),

where n(x) > 0 is a real piecewise continuous periodic function of period p
and bounded away from zero. We now define the travel time parameter y by

y(x) =

∫ x

0

n(x̂) dx̂, q =

∫ p

0

n(x̂) dx̂, (3.2.1)

so that any period function in x of period p can be written as a periodic
function of y of period q. Let prime denote differentiation with respect to x
and overdot differentiation with respect to y. Then

dφ

dx
= n(x(y))

dφ

dy

outside the finitely many (per period) jump discontinuities of n(x). There-
fore, outside the jump discontinuities we have

d2φ

dx2
= n(x(y))

d

dy

(
n(x(y))

dφ

dy

)
= n(x(y))2d

2φ

dy2
+ n(x(y))ṅ(x(y))︸ ︷︷ ︸

dn/dx

dφ

dy
,

provided n(x) is a C1-function on each closed interval between consecutive
jump discontinuities. From (2.1.1) we now get

− ψ̈(η, y)− ṅ(x(y))

n(x(y))
ψ̇(η, y) = ηψ(η, y), (3.2.2)

where overdot denotes differentiation with respect to y.
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For some parameter α ∈ R we put

ψ(η, y) = n(x(y))αΨ(η, y).

Then

ψ̇ = nαΨ̇ + αnα−1ṅΨ,

ψ̈ = nαΨ̈ + 2αnα−1ṅΨ̇ +
[
α(α− 1)nα−2(ṅ)2 + αnα−1n̈

]
Ψ.

Thus if n(x) is a C2-function on each closed interval between consecutive
jump discontinuities, we obtain

−Ψ̈ − (2α + 1)Ψ̇ +

[
−α2

(
ṅ

n

)2

− α
n̈

n

]
Ψ = ηΨ.

Taking α = −1
2

we finally arrive at the periodic (with period q) Schrödinger
equation

− Ψ̈(η, y) +


−

(
ṅ(x(y))

2n(x(y))

)2

+
n̈(x(y))

2n(x(y))︸ ︷︷ ︸
Q(y)


Ψ(η, y) = ηΨ(η, y), (3.2.3)

where Q(y + q) ≡ Q(y).
If there are no jump discontinuities in n(x), then the Hill discriminant

∆(η) of Eq. (2.1.1) and the Hill discriminant ∆(η) of Eq. (3.2.3) coincide
and hence these equations have the same band spectrum. Indeed, under this
assumption C1 solutions of (2.1.1) in x are transformed into C1 solutions of
(3.2.3) in y. Now put

β(η, y) = n(x(y))1/2ϕ(η, x(y)), γ(η, y) = n(x(y))1/2θ(η, x(y)).

Then

β̇(η, y) = n(x(y))1/2ϕ̇(η, x(y)) +
1

2
n(x(y))−1/2ṅϕ(η, x(y))

= n(x)−1/2ϕ′(η, x) +
1

2
n(x)−3/2n′(x)ϕ(η, x),

γ̇(η, y) = n(x(y))1/2θ̇(η, x(y)) +
1

2
n(x(y))−1/2ṅθ(η, x(y))

= n(x)−1/2θ′(η, x) +
1

2
n(x)−3/2n′(x)θ(η, x).
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Hence,

β(η, 0) = 0, β̇(η, 0) =
1√
n(0)

,

γ(η, 0) =
√
n(0), γ̇(η, 0) =

n′(0)

2n(0)
√
n(0)

.

As a result,

θ(η, y) = − n′(0)

2n(0)
√
n(0)

β(η, y) +
1√
n(0)

γ(η, y),

ϕ(η, y) =
√
n(0)β(η, y).

Consequently,

∆(η) = θ(η, q) + ϕ̇(η, q)

= − n′(0)

2n(0)
√
n(0)

β(η, q) +
1√
n(0)

γ(η, q) +
√
n(0) β̇(η, q)

= − n′(0)
√
n(p)

2n(0)
√
n(0)

ϕ(η, q) +

√
n(p)√
n(0)

θ(η, q)

+

√
n(0)

n(p)
ϕ′(η, p) +

√
n(0)

n(p)

n′(p)

2n(p)
ϕ(η, p)

= θ(η, p) + ϕ′(η, p)

= ∆(η),

as claimed. Note that we have used that n(0) = n(p) and n′(0) = n′(p).
Let us now compute the transformed period map. We get

M11(η) = θ(η, q) = − n′(0)

2n(0)3/2
β(η, q) +

1√
n(0)

γ(η, q)

= θ(η, p) − n′(0)

2n(0)
ϕ(η, p),

M12(η) = ϕ(η, q) =
√
n(0)β(η, q) = n(0)ϕ(η, p),

M21(η) = − n′(0)

2n(0)3/2

[
1√
n(p)

ϕ′(η, p) +
n′(p)

2n(p)3/2
ϕ(η, p)

]

+
1√
n(0)

[
1√
n(p)

θ′(η, p) +
n′(p)

2n(p)3/2
θ(η, p)

]



56 CHAPTER 3. INVERSE PROBLEM FOR 1D PHOTONIC CRYSTALS

=
n′(0)

2n(0)2
[θ(η, p) − ϕ′(η, p)] − n′(0)2

4n(0)3
ϕ(η, p) +

1

n(0)
θ′(η, p),

M22(η) = ϕ̇(η, q) =
√
n(0) β̇(η, q) = ϕ′(η, p) +

n′(0)

2n(0)
ϕ(η, p),

where we have used that n(0) = n(p) and n′(0) = n′(p). In other words,

M(η) =




1 0
n′(0)

2n(0)2

1

n(0)


M(η)




1 0

− n′(0)

2n(0)
n(0)


 , (3.2.4)

which means that M(η) follows from M(η) by a similarity transformation.
As a result, their traces, i.e., the Hill discriminants, coincide. Moreover, since
M12(η) andM12(η) have the same zeros in the complex η-plane, the Dirichlet
spectra of the Helmholtz equation in x ∈ [0, p] and the Schrödinger equation
in y ∈ [0, q] coincide.

The Floquet solutions of Eq. (3.2.3) can be expressed in those of Eq.
(2.1.1) as follows:

ψ1,2(k, y) = n(x(y))1/2ψ1,2(k, x(y)).

This is clear by checking their square integrability as y → ±∞, using that
dy = n(x)dx and n(x) is bounded and bounded away from zero. We thus
have

ψ1,2(k, y) = e±ikyχ1,2(k, y),

where χ1,2(k, y) = n(x(y))1/2χ1,2(k, x(y)) is periodic in y of period q. As a
result, we have for their Wronskian

w(k)
def
= W [ψ1(k, ·),ψ2(k, ·)]

= n1/2ψ1

{
n−1/2ψ′

2 +
1

2
n−3/2n′ψ2

}
− n1/2ψ2

{
n−1/2ψ′

1 +
1

2
n−3/2n′ψ1

}

= ψ1ψ
′
2 − ψ2ψ

′
1 = W [ψ1(k, ·), ψ2(k, ·)] = w(k).

In the same way we see that the Wronskians of ψj(k, x) and ψl(−k, x) (j, l =
1, 2) do not change on conversion to travel time coordinates. Finally, from

A(k; x, t) =
ψ2(k, x)ψ1(k, t) − ψ1(k, x)ψ2(k, t)

w(k)

we get

A(k; y, s)
def
=
ψ2(k, y)ψ1(k, s) −ψ1(k, y)ψ2(k, s)

w(k)

= n(x(y))
ψ1(k, x(y))ψ2(k, x(s)) − ψ2(k, x(y))ψ1(k, x(s))

w(k)

= n(x(y))A(k; x(y), x(s)). (3.2.5)
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The Liouville transformation is easily extended to the case in which n(x)
is positive, periodic with period p, and piecewise C2. In other words, there
exist points

0 = b0 < b1 < . . . < bm−1 < bm = p

such that, for j = 1, . . . , bm, n(x) is positive and C2 on [bj−1, bj]. In each
jump the function n(x) and its first two derivatives may have different left
and right limits. Nevertheless nothing stops us from defining the travel time
parameter y and the y-period q by (3.2.1). Putting dj = y(bj) we then get
the jump points

0 = d0 < d1 < . . . < dm−1 < dm = q

in the y-variable. The fundamental solution Φ(η, x) of Equation (2.1.1) is the
unique solution of the integral equation

Φ(η, x) =

(
1 0
0 1

)
+

∫ x

0

dx̂

(
0 1

−ηn(x̂)2 0

)
Φ(η, x̂). (3.2.6)

Then we define ϕ(η, x) and ϕ(η, x) and the period map M(η) by

Φ(η, x) =

(
θ(η, x) ϕ(η, x)
θ′(η, x) ϕ′(η, x)

)
(3.2.7)

and

M(η) = Φ(η, p). (3.2.8)

If n(x) has discontinuities, the fundamental matrix Φ(η, x) remains contin-
uous in x ∈ R, but the derivatives in the second row of (3.2.7) do not exist
outside the jump points. We obviously get

M(η) = Mm(η)Mm−1(p) . . .M1(η),

where Mj(η) is the matrix mapping the solution vector (function value plus
x-derivative) at x = bj−1 into that at x = bj .

Unfortunately, the period map before and after Liouville trasformation
are not easily related if n(x) has jump discontinuities.

3.3 Reconstructing the refractive index

Let us now discuss the various steps involved when recovering n(x) from
M(η). We shall go through these steps backward.
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1. From n(y) to n(x). Let us assume that n(y) is a positive continuous
function in y ∈ R that is periodic with period q. Then the travel time
conversion (3.2.1) can be written alternatively in differential form as follows:

y′(x) = n(y), y(0) = 0, (3.3.1)

which is a separable differential equation. Letting H(y) be chosen as the C1-
function such that H(0) = 0 and Ḣ(y) = (1/n(y)), we can integrate (3.3.1)
to get

H(y) = x. (3.3.2)

Since H : [0,+∞) → [0,+∞) is monotonically increasing, we can invert
(3.3.2) to express y into x as the following C1-function:

y(x) = H−1(x). (3.3.3)

We then compute the continuous function n(x) by differentiation with respect
to x. Then n(x) is periodic with period p = H−1(q).

Example 3.3.1 Consider n(y) = 2 + sin(y). Then for 0 ≤ y ≤ π we have

H(y) =

∫ y

0

dŷ

2 + sin(ŷ)
=

∫ tan(y/2)

0

2 dz

1 + z2

1

2 +
2z

1 + z2

=

∫ tan(y/2)

0

dz

z2 + z + 1
=

[
2√
3

arctan

(
2√
3

[
z +

1

2

])]tan(y/2)

z=0

=
2√
3

{
arctan

(
2√
3

[
1

2
+ tan(

y

2
)

])
− π

6

}
,

so that

H(π) =

∫ ∞

0

dz

z2 + z + 1
=

2π

3
√

3
.

By inverting x = H(y) for 0 ≤ y ≤ π we get

x
√

3

2
+
π

6
= arctan

(
2√
3

[
1

2
+ tan(

y

2
)

])
.

Thus for 0 ≤ x < (2π/3
√

3) we get

y(x) = 2 arctan

[
−1

2
+

√
3

2
tan

(
x
√

3

2
+
π

6

)]
,
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which tends to π from below as x→ (2π/3
√

3)−. By differentiation we get

n(x)=
3/2

cos2

(
x
√

3

2
+
π

6

)
+

[
−1

2
cos

(
x
√

3

2
+
π

6

)
+

√
3

2
sin

(
x
√

3

2
+
π

6

)]2 ,

where the denominator cannot vanish without producing an angle whose sine

and cosine vanish.

For π ≤ y ≤ 2π we have

H(y) =
2π

3
√

3
+

∫ y

π

dŷ

2 + sin(ŷ)
=

2π

3
√

3
+

∫ y−π

0

dŷ

2 − sin(ŷ)

=
2π

3
√

3
+

∫ tan( y−π
2

)

0

2 dz

1 + z2

1

2 − 2z

1 + z2

=
2π

3
√

3
+

∫ tan( y−π
2

)

0

dz

z2 − z + 1

=
2π

3
√

3
+

[
2√
3

arctan

(
2√
3

[
z − 1

2

])]tan( y−π
2

)

z=0

=
π√
3

+
2√
3

arctan

(
2√
3

[
−1

2
+ tan(

y − π

2
)

])
.

By inverting x = H(y) for π ≤ y ≤ 2π we get

x
√

3

2
− π

2
= arctan

(
2√
3

[
−1

2
+ tan(

y − π

2
)

])
.

Thus for (2π/3
√

3) < x ≤ (2π/
√

3) we get

y(x) = π + 2 arctan

[
1

2
+

√
3

2
tan

(
x
√

3

2
− π

2

)]
,

which tends to π from below as x→ (2π/3
√

3)+. As a result,

n(x)=
3/2

cos2

(
x
√

3

2
− π

2

)
+

[
1

2
cos

(
x
√

3

2
− π

2

)
+

√
3

2
sin

(
x
√

3

2
− π

2

)]2 ,

where the denominator cannot vanish without producing an angle whose

sine and cosine vanish. Further, n(x) is a periodic function with period
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p = (2π/
√

3). As a function of y the period is q = 2π. We easily obtain

[3.2.3]

Q(y) = − cos2(y)

4[2 + sin(y)]2
− sin(y)

2[2 + sin(y)]
.

2. From Q(y) and q to n(y), apart from a constant factor. Starting
fromQ(y), find a periodic function w(y) with period q (as forQ(y)) satisfying
the Riccati equation

1

2
ẇ(y) +

1

4
w(y)2 = Q(y). (3.3.4)

Given one solution w0 of (3.3.4) (periodic or not), any other solution w of
(3.3.4) (periodic or not) is given by w = w0 + (1/z), where

ż − w0z =
1

2
. (3.3.5)

Suppose that the Riccati equation (3.3.4) has a solution w0 that is periodic
in y with period q and satisfies

∫ q
0
dŷ w0(ŷ) = 0. Put W0(y) =

∫ y
0
dŷ w0(ŷ).

Then (3.3.5) can be written in the form

d

dy

(
e−W0(y)z(y)

)
=

1

2
e−W0(y),

whereW0 is periodic in y with period q. Periodicity of z would imply periodic-
ity of an antiderivative of e−W0 , which is impossible because

∫ q
0
dŷ e−W0(ŷ) 6= 0.

In other words, for each value of the real parameter η, w0 is the only periodic
solution of the Riccati equation (3.3.4).

The Ricatti equation (3.3.4) can also be written in the form

∂2

∂y2

{
n(y)1/2

}
= Q(y)n(y)1/2. (3.3.6)

The existence of a unique periodic solution n(y) (apart from a constant fac-
tor) is equivalent to the Hill discriminant condition ∆(0) = 2 plus the con-
dition that η = 0 is not a Dirichlet eigenvalue. Since η = 0 is indeed not a
Dirichlet eigenvalue of (2.1.1) and at the same time the left endpoint of the
first band, there exists a unique solution n(y) (up to a constant factor) such
that n(y + q) ≡ n(y). This solution cannot have any zeros and hence can
be chosen to be positive, as a result of existing oscillation theorems. This
implies the existence and uniqueness of w0(y).

If Q(y) is a continuous function of y ∈ R, then n(y)1/2, and hence also
n(y), are C2-functions. On the other hand, if Q(y) is merely locally L2,
the function n(y) will be C1 with absolutely continuous derivative, but not
necessarily C2. In [33] we can find necessary and sufficient conditions on
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the two spectra determining Q(y) in order that Q(y) belongs to a certain
Sobolev space.

3. Find n(x) using p and q if n(y) is known up to a constant
factor. Suppose n(y) is known up to a constant factor, i.e., n(y; c) = cn0(y),
where n0(y) is just one of the possible refractive index functions and c is a
positive constant. Then we need to solve the Cauchy problem

Ḣ(y; c) =
1

cn0(y)
, H(0; c) = 0,

which leads to H(y; c) = H0(y)/c, where H0(y) =
∫ y
0
(dŷ/n0(ŷ)). Solving the

equation x = H(y; c) = (H0(y)/c) we get

y(x; c) = y0(cx),

where x = H0(y0(x)). Differentiating with respect to x we get

n(x; c) = cn0(cx).

Using that the period p in x is known, we get the following equation:

y0(cp) = q, (3.3.7)

which allows us to determine the positive constant c uniquely.

4. Find Q(y) and q from the original period map M(η). We can
certainly construct Q(y) uniquely from the transformed period map M(η),
because this matrix contains two spectra (the Dirichlet spectrum and one of
the Dirichlet-Neumann and Neumann-Dirichlet spectra). This inverse prob-
lem has in principle been solved [37, 38, 33].Thus the problem is to determine
the period q and two spectra of (3.2.3) from the original period map M(η).

One spectrum of (3.2.3) is easily obtained, namely the Dirichlet spec-
trum, because it consists of the zeros of M12(η) and hence coincides with the
Dirichlet spectrum of (2.1.1). By a well-known result [39], we have for the
Dirichlet eigenvalues1

ηn =

(
nπ

q

)2

+O(1/n2), n→ +∞, (3.3.8)

so that q = limn→∞(nπ/
√
ηn). In other words, the Dirichlet spectrum yields

the travel time period q.

1Equation (3.3.8) is exact if Q(y) ≡ 0.



62 CHAPTER 3. INVERSE PROBLEM FOR 1D PHOTONIC CRYSTALS

Suppose we know
ι

def
= [n′(0)/2n(0)]. (3.3.9)

Then we can compute the functions

M11(η) = θ(η, p) − ηϕ(η, p),

M22(η) = ϕ′(η, p) + ηϕ(η, p),

Moreover, the zeros of M22(η) (i.e., the Dirichlet-Neumann spectrum of
(3.2.3)) coincide with the zeros of ϕ′(η, p)+ ηϕ(η, p) (i.e., with the Dirichlet-
η-mixed spectrum of (2.1.1)), whereas the zeros of M11(η) coincide with the
zeros of θ(η, p) − ηϕ(η, p). Using ι as a (real) parameter, we then go on
to compute the Schrödinger potential Q(y; ι) by well-known methods [41],
especially since the period q is known. We are thus able to compute Q(y; ι)
uniquely from the parameter ι ∈ R. At the end of the day we have to single
out those values of ι for which

n′(0; ι)

n(0; ι)
= 2ι. (3.3.10)

Equation (3.3.10) leads to the proper choice of ι, but it is not clear if ι is
found from (3.3.10) uniquely or even exists.

Example 3.3.2 Consider the trivial example n(x) ≡ 1 with period p. Then

the period map is given by

M(η) =




cos(p
√
η)

sin(p
√
η)

√
η

−√
η sin(p

√
η) cos(p

√
η)


 .

Let us now pretend not to know n(x). Then we have the following information

on M(η):

M(η) =




cos(p
√
η) − η

sin(p
√
η)

√
η

const.
sin(p

√
η)

√
η

θ̇(η, p) cos(p
√
η) + η

sin(p
√
η)

√
η


 ,

where the constant [= n(0)] is positive, η is a real parameter, and θ̇(η, p) is in

principle unknown. The Dirichlet spectrum ηn = (nπ/p)2 for n = 1, 2, 3, . . .

yields q = p. We now see that the Dirichlet-Neumann spectrum {ζn(ι)}∞n=1

of Q(y; ι) is given by the zeros of the function

M22(η; ι) = cos(p
√
η) + ι

sin(p
√
η)

√
η

,
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i.e., by the positive roots of the equation2

tan(p
√
η) = −

√
ι

ι
.

Using that detM(η) = 1, we get

cos2(p
√
η) − ι2

sin2(p
√
η)

η
− const.θ̇(η, p)

sin(p
√
η)

√
η

= 1,

which implies

(
1 +

ι2

η

)
sin2(p

√
η) = −const.θ̇(η, p)

sin(p
√
η)

√
η

.

As a result,

θ̇(η, p) = −η + ι2

const.

sin(p
√
η)

√
η

.

Thus, the Neumann spectrum of Q(y) is {(nπ/p)2}∞n=1 for ι 6= 0 and

{([n − 1]π/p)2}∞n=1 for ι = 0. The former case is excluded, since the n-

th Dirichlet eigenvalue must strictly exceed the n-th Neumann eigenvalue.

Thus necessarily ι = 0, which leads to the unique solution n(x) ≡ 1.

Example 3.3.2 suggests proceeding in the same way in general. Using
that detM(η) = detM(η) = 1, we obtain

θ(η, p)ϕ′(η, p) − θ′(η, p)ϕ(η, p) = [θ(η, p) − ηϕ(η, p)][ϕ′(η, p) + ηϕ(η, p)]

− const.θ̇(η, p)ϕ(η, p),

and therefore

θ̇(η, p) =
θ′(η, p) + η{θ(η, p) − ϕ′(η, p)} − η2ϕ(η, p)

const.
. (3.3.11)

The zeros of the function in (3.3.11) yield the Neumann spectrum of Q(y; η)
and hence determine Q(y; η) uniquely [36, 26].

2The case ι = 0 leads to Q(y) ≡ 0 and, following the subsequent steps, to n(x) ≡ 1.

We may therefore restrict ourselves to ι ∈ R \ {0}.
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3.4 Recovery of a piecewise constant media

In this subsection we propose a method to determine the refractive indices nj
and the layer amplitudes aj from the period map M(η) when the refractive
index is piecewise constant (Example 2.3.3). The piecewise constant case
perfectly fits the description of a one-dimensional photonic crystal, i.e. regu-
lar arrays of different dielectric materials layered along one spatial direction
as displayed in Fig. 3.1. This kind of heterostructure generally consists of

Figure 3.1: Example of a periodic structure with period p in the case of a

piecewise constant refractive index. The figure illustrates a 1-D three layer

photonic crystal with different layer amplitudes.

no more than three layers per period [5, 42] .

From Example 2.3.3 we know that the period map in the piecewise con-
stant case takes the following form:

M(η) =
∏

j=m,m−1,...,1


 cos(njaj

√
η)

sin(njaj
√
η)

nj
√
η

−nj
√
η sin(njaj

√
η) cos(njaj

√
η)


 ,

and we easily see that:

(√
η 0

0 1

)
M(η)




1√
η

0

0 1


 =

∏

j=m,m−1,...,1


 cos(njaj

√
η)

sin(njaj
√
η)

nj
−nj sin(njaj

√
η) cos(njaj

√
η)


 ,

(3.4.1)
where the right-hand side is called modified period map, has determinant
1 and whose entries are almost periodic polynomials in

√
η. The diagonal
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entries are real even functions of
√
η and the off-diagonal entries are real odd

functions of
√
η vanishing at

√
η = 0.

Let us write

µj = njaj > 0, z =
√
η, M(z) =

(
z 0
0 1

)
M(η)

(
z−1 0
0 1

)
,

where M(z) is the modified period map. Let us write the entries of M(z) in
the following form:

M11(z) = +
∑

c11σ2,...,σm
cos((µ1 + σ2µ2 + . . .+ σmµm)z), (3.4.2a)

M12(z) = +
∑

c12σ2,...,σm
sin((µ1 + σ2µ2 + . . .+ σmµm)z), (3.4.2b)

M21(z) = −
∑

c21σ2,...,σm
sin((µ1 + σ2µ2 + . . .+ σmµm)z), (3.4.2c)

M22(z) = +
∑

c22σ2,...,σm
cos((µ1 + σ2µ2 + . . .+ σmµm)z), (3.4.2d)

where we sum over all sign patterns (σ2, . . . , σm) in the 2m−1 element set
{−1,+1}m−1. Then the Fourier spectrum of the entries of the modified
period map M(z) is given by

{
m∑

j=1

σjnjaj : σj = ±1

}
.

Therefore it has at most 2m points and its maximum is µ1 + . . .+µm. Using
the addition formulas of trigonometry, we get the recurrence relations

c11σ2,...,σm−1,±1 =
1

2
c11σ2,...,σm−1

± 1

2nm
c21σ2,...,σm−1

,

c22σ2,...,σm−1,±1 =
1

2
c22σ2,...,σm−1

± 1

2
nmc

12
σ2,...,σm−1

,

c12σ2,...,σm−1,±1 =
1

2
c12σ2,...,σm−1

± 1

2nm
c22σ2,...,σm−1

,

c21σ2,...,σm−1,±1 =
1

2
c21σ2,...,σm−1

± 1

2
nmc

11
σ2,...,σm−1

.

We thus easily recover the expression

c1,...,1
def
=

(
c111,...,1 c121,...,1
c211,...,1 c221,...,1

)
=

1

2m−1

(
1 1/nm
nm 1

)
. . .

(
1 1/n1

n1 1

)
, (3.4.3)

where the subscript 1, . . . , 1 have m− 1 entries and the product matrix has
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positive entries but zero determinant. More generally,

cσ2,...,σm

def
=

(
c11σ2,...,σm

c12σ2,...,σm

c21σ2,...,σm
c22σ2,...,σm

)

=
1

2m−1

(
1

σm
nm

σmnm 1

)
. . .

(
1

σ2

n2

σ2n2 1

)
 1

1

n1

n1 1


 . (3.4.4)

By induction on the number of factors we thus easily prove that

∣∣∣∣
c11σ2,...,σm

c12σ2,...,σm

∣∣∣∣ =

∣∣∣∣
c21σ2,...,σm

c22σ2,...,σm

∣∣∣∣ = n1,
c21σ2,...,σm

c11σ2,...,σm

=
c22σ2,...,σm

c12σ2,...,σm

= σmnm. (3.4.5)

3.4.1 Two-Layer photonic crystal

Let us consider a crystal where in each period there are two different media
with refractive indices n1 and n2 , respectively, where n1 6= n2 (Fig. 3.2).

Figure 3.2: Example of a heterostructure made of two semiconductor

crystals InAs-AlSb with different refractive indices.

• We start from the modified period map M(z) and focus on its Fourier
spectrum. For a two-layer photonic crystal its Fourier spectrum will
be the 22 element set

{±(µ1 + µ2),±(µ1 − µ2)} = {µ̃1, µ̃2, µ̃3, µ̃4} .



3.4. RECOVERY OF A PIECEWISE CONSTANT MEDIA 67

• We then consider the maximum of the Fourier spectrum:

µ̃i = n1a1 + n2a2 = µ1 + µ2 , (3.4.6)

for some i ∈ {1, 2, 3, 4}.

• Let c+ be the corresponding coefficient matrix. We evaluate n1 and n2

from Eqs. (3.4.5):

∣∣∣∣
c11+
c12+

∣∣∣∣ =

∣∣∣∣
c21+
c22+

∣∣∣∣ = n1,

∣∣∣∣
c21+
c11+

∣∣∣∣ =

∣∣∣∣
c22+
c12+

∣∣∣∣ = n2. (3.4.7)

• We consider the following system

{
µ1 + µ2 = µ̃i
µ1 − µ2 = µ̃j

for any j ∈ {1, 2, 3, 4} different from i, so that we get

µ
(j)
2 =

µ̃i − µ̃j
2

j 6= i . (3.4.8)

• For any computed µ
(j)
2 (for a two-layer photonic crystal there are three

of them), we calculate the reduced modified period map M
(j)
1 (z) corre-

sponding to the virtual one-layer photonic crystal

M
(j)
1 (z) =


 cos(µ

(j)
2 z) −sin(µ

(j)
2 z)

n2

n2 sin(µ
(j)
2 z) cos(µ

(j)
2 z)


M2(z) . (3.4.9)

• We select the period map which has a corresponding two-element
Fourier spectrum (which is consistent with the one-layer virtual pho-
tonic crystal) and whose corresponding coefficient matrix satisfies the
following relations:

∣∣∣∣
c11

c12

∣∣∣∣ =

∣∣∣∣
c21

c22

∣∣∣∣ = n1,

∣∣∣∣
c21

c11

∣∣∣∣ =

∣∣∣∣
c22

c12

∣∣∣∣ . (3.4.10)

Such a period map turns out to be unique and consequently we find
the correct q

def
= µ

(j)
2 , which corresponds to the uniquely found M

(j)
1 (z).

• We compute a2 = q/n2 and finally we get the value of a1 from Eq.
(3.4.6).



68 CHAPTER 3. INVERSE PROBLEM FOR 1D PHOTONIC CRYSTALS

Alternatively one can compute a2 using the crystal period knowledge (see
Eq. (3.1.11) ) and realizing that a1 + a2 = p.

Example 3.4.1 Consider

n1 = 1, n2 = 0.5, a1 = 1, a2 = 3.

Then µ1 = 1, µ2 = 1.5 and using Eqs. (3.4.2) and (3.4.4), it is straightforward

to build the corresponding modified period map:

M11(z) = +
1

2
[3 cos(2.5z) − cos(0.5z)],

M12(z) = +
1

2
[3 sin(2.5z) + sin(0.5z)],

M21(z) = −1

2
[1.5 sin(2.5z) − 0.5 sin(0.5z)],

M22(z) = +
1

2
[1.5 cos(2.5z) + 0.5 cos(0.5z)].

The coefficient matrices correspond to the Fourier spectrum as follows:

+2.5 7→ 1

2

(
3 3

1.5 1.5

)
, − 2.5 7→ 1

2

(
3 −3

−1.5 1.5

)
,

+0.5 7→ 1

2

(
−1 1

−0.5 0.5

)
, − 0.5 7→ 1

2

(
−1 −1

0.5 0.5

)
,

where (µ1 + σ2µ2) 7→ cσ2
. We now perform the inversion:

• find the Fourier spectrum: {0.5,−0.5, 2.5,−2.5} ;

• focus on its maximum: µ̃2 = 2.5 ;

• evaluate

n1 =

∣∣∣∣
c11+
c12+

∣∣∣∣ =

∣∣∣∣
c21+
c22+

∣∣∣∣ = 1 , n2 =

∣∣∣∣
c21+
c11+

∣∣∣∣ =

∣∣∣∣
c22+
c21+

∣∣∣∣ = 0.5 ;

• compute µ̃j2 for j = 1, 2, 4:

µ̃1
2 = 1 , µ̃2

2 = 1.5 , µ̃4
2 = 2.5 ;
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• we calculate M
(j)
1 (z) for j = 1, 2, 4:

[M
(j)
1 ]11(z) = 6 cos[(µ̃j2 − 2.5)z] − 2 cos[(µ̃j2 − 0.5)z],

[M
(j)
1 ]12(z) = −6 sin[(µ̃j2 − 2.5)z] − 2 sin[(µ̃j2 − 0.5)z],

[M
(j)
1 ]21(z) = 3 sin[(µ̃j2 − 2.5)z] − sin[(µ̃j2 − 0.5)z],

[M
(j)
1 ]22(z) = 3 cos[(µ̃j2 − 2.5)z] + cos[(µ̃j2 − 0.5)z],

and it is easy to show that only for j = 2 one gets a one-layer modified

period map with a two-point Fourier spectrum and for which relations

(3.4.10) are satisfied:

M
(j=2)
1 (z) = 4

(
cos z sin z

− sin z cos z

)
;

• get a2 = µ̃2
2/n2 = q/n2 = 1.5/0.5 = 3 and from M

(j=2)
1 (z) realize that

µ1 = 1;

• finally, obtain a1 either from µ1 + q = µ̃2 or from a1 + a2 =

limz→0M
12(z) = p (see Eq. (3.1.11)) and find a1 = 1. Alternatively

one gets a1 straight from µ1 using the known n1 value.

3.4.2 General case

The inversion procedure used for the two-layer photonic crystal in Subsection
3.4.1 can easily be generalized to a photonic crystal made of m layers. In
fact, we present the following algorithm [43].

1. Consider the 2m-element Fourier spectrum corresponding to the modi-
fied period map Mm(z),

{
m∑

j=1

σjµj : σj = ±1

}
= {µ̃1, µ̃2, . . . , µ̃2m} ,

where µj = njaj , and find its maximum

µ̃i = µ1 + µ2 + . . .+ µm ,

where i ∈ {1, 2, . . . , 2m}.
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2. Evaluate n1 and nm from Eqs. (3.4.5):
∣∣∣∣
c11+,...,+
c12+,...,+

∣∣∣∣ =

∣∣∣∣
c21+,...+
c22+,...+

∣∣∣∣ = n1,

∣∣∣∣
c21+,...,+
c11+,...,+

∣∣∣∣ =

∣∣∣∣
c22+,...,+
c12+,...,+

∣∣∣∣ = nm. (3.4.11)

3. Consider the following system
{
µ1 + . . .+ µm−1 + µm = µ̃i
µ1 + . . .+ µm−1 − µm = µ̃j

for any j ∈ {1, 2, . . . i− 1, i+ 1, . . . , 2m} so that

µ̃(j)
m =

µ̃i − µ̃j
2

, j 6= i . (3.4.12)

4. For any computed µ̃
(j)
m , calculate the reduced modified period map

M
(j)
m−1(z):

M
(j)
m−1(z) =



 cos(µ̃
(j)
m z) −sin(µ̃

(j)
m z)

nm
nm sin(µ̃

(j)
m z) cos(µ̃

(j)
m z)



M(z). (3.4.13)

5. Select the reduced period map whose corresponding spectrum has 2m−1

elements and whose coefficient matrix satisfies the following conditions:
∣∣∣∣
c11m−1

c12m−1

∣∣∣∣ =

∣∣∣∣
c21m−1

c22m−1

∣∣∣∣ = n1,

∣∣∣∣
c21m−1

c11m−1

∣∣∣∣ =

∣∣∣∣
c22m−1

c12m−1

∣∣∣∣ . (3.4.14)

6. This modified period map turns out to be unique and consequently

am =
qm
nm

,

where qm is the frequency µ̃
(j)
m corresponding to the unique M

(j)
m−1(z)

computed at step 5.

7. Repeat the same procedure for Mm−1(z) until the original modified
period map has been factorized completely.

After step 3 one can reduce the number of µ
(j)
m by noticing that

c(1,...,1,1) + c(1,...,1,−1) = Cm−1, (3.4.15a)

c(1,...,1,1) − c(1,...,1,−1) =



 0
1

nm
nm 0



Cm−1, (3.4.15b)

where Cm−1 is the leading coefficient matrix [i.e., c(1,...,1)] in the modified

period map M
(j)
m−1(z) for the first m− 1 intervals. Eqs. (3.4.15) thus reduce

the number of available µ
(j)
m so that step 4 is more easily performed.
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Example 3.4.2 Consider

n1 = 1/2, n2 = 2, n3 = 10, a1 = 3/2, a2 = 2, a3 = 2/5.

Then µ1 = 0.75, µ2 = 4, µ3 = 4, and using Eqs. (3.4.2) and (3.4.4), it is

straightforward to build the corresponding modified period map:

M11 =
1

4

[3
2

cos(8.75z) + cos(0.75z) +
3

5
cos(0.75z) +

9

10
cos(7.25z)

]
,

M12 =
1

4

[
3 sin(8.75z) + 2 sin(0.75z) +

6

5
sin(0.75z) − 9

5
sin(7.25z)

]
,

M21 =
1

4

[
15 sin(8.75z) − 10 sin(0.75z) + 6 sin(0.75z) + 9 sin(7.25z)

]
,

M22 =
1

4

[
30 cos(8.75z) − 20 cos(0.75z) + 12 cos(0.75z) − 18 cos(7.25z)

]
.

The coefficient matrices correspond to the Fourier spectrum as follows:

+8.75 7→ 1

4

(
3/2 3

15 30

)
, − 8.75 7→ 1

4

(
3/2 −3

−15 30

)
,

+0.75 7→ 1

4

(
1 2

−10 20

)
, − 0.75 7→ 1

4

(
1 −2

10 20

)
,

+0.75 7→ 1

4

(
3/5 6/5

6 12

)
, − 0.75 7→ 1

4

(
3/5 −6/5

−6 12

)
,

+7.25 7→ 1

4

(
9/10 −9/5

9 −18

)
, − 7.25 7→ 1

4

(
9/10 9/5

−9 −18

)
,

where (µ1 + σ2µ2 + σ3µ3) 7→ cσ3,σ2
.

We now perform the inversion:

• find the Fourier spectrum3: {±8.75,±0.75,±0.75,±7.25};

• focus on its maximum: µ̃3 = 8.75;

• evaluate

n1 =

∣∣∣∣
c11+
c12+

∣∣∣∣ =
∣∣∣∣
c21+
c22+

∣∣∣∣ =
1

2
, n3 =

∣∣∣∣
c21+
c11+

∣∣∣∣ =

∣∣∣∣
c22+
c21+

∣∣∣∣ = 10 ;

3In this example the Fourier spectrum is degenerate.
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• compute µ̃j3 for j = 2, 3, 4, 5, 6, 7, 8:

µ̃2
3 = 8.75, µ̃3

3 = 4, µ̃4
3 = 4.75, µ̃5

3 = 4, µ̃6
3 = 4.75, µ̃7

3 = 0.75, µ̃8
3 = 8;

• we calculate M
(j)
2 (z) for j = 2, 3, 4, 5, 6, 7, 8:

[M
(j)
2 ]11(z) =

1

8

{
3 cos[(µ̃j3 − 8.75)z] + 2 cos[(µ̃j3 + 0.75)z]

+
6

5
cos[(µ̃j3 − 0.75)z] +

9

5
cos[(µ̃j3 − 7.25)z]

}
,

[M
(j)
2 ]11(z) =

1

8

{
− 6 sin[(µ̃j3 − 8.75)z] + 4 sin[(µ̃j3 + 0.75)z]

− 12

5
sin[(µ̃j3 − 0.75)z] +

18

5
sin[(µ̃j3 − 7.25)z]

}
,

[M
(j)
2 ]21(z) =

1

8

{
− 30 sin[(µ̃j3 − 8.75)z] − 20 sin[(µ̃j3 + 0.75)z]

− 12 sin[(µ̃j3 − 0.75)z] − 18 sin[(µ̃j3 − 7.25)z]
}
,

[M
(j)
2 ]22(z) =

1

8

{
60 cos[(µ̃j3 − 8.75)z] − 40 cos[(µ̃j3 + 0.75)z]

+ 24 cos[(µ̃j3 − 0.75)z] − 36 cos[(µ̃j3 − 7.25)z]
}

;

• it is easy to show that for j = 3, 5 (i.e. µ̃j3 = 4) one gets a two-layer

modified period map with a four-point Fourier spectrum and for which

relations (3.4.10) are satisfied:

[M
(j=3,5)
2 ]11(z) = +

1

2

[5
4

cos(4.75z) +
3

4
cos(3.25z)

]
,

[M
(j=3,5)
2 ]12(z) = +

1

2

[5
2

sin(4.75z) − 3

2
sin(3.25z)

]
,

[M
(j=3,5)
2 ]21(z) = +

1

2

[5
2

sin(4.75z) +
3

2
sin(3.25z)

]
,

[M
(j=3,5)
2 ]22(z) = +

1

2

[
5 cos(4.75z) − 3 cos(3.25z)

]
;

• get a3 = µ̃3,4
3 /n3 = 2/5;

• find the Fourier spectrum of M2(z): {4.75,−4.75, 3.25,−3.25};



3.4. RECOVERY OF A PIECEWISE CONSTANT MEDIA 73

• focus on its maximum: µ̃2 = 4.75;

• evaluate

n1 =

∣∣∣∣
c11+
c12+

∣∣∣∣ =

∣∣∣∣
c21+
c22+

∣∣∣∣ =
1

2
, n2 =

∣∣∣∣
c21+
c11+

∣∣∣∣ =

∣∣∣∣
c22+
c21+

∣∣∣∣ = 2 ;

• compute µ̃j2 for j = 2, 3, 4:

µ̃2
2 = 4.75 , µ̃3

2 = 0.75 , µ̃4
2 = 4 ;

• we calculate M
(j)
1 (z) for j = 2, 3, 4:

[M
(j)
1 ]11(z) =

1

4

{5

2
cos[(µ̃j2 − 4.75)z] +

3

2
cos[(µ̃j2 − 3.25)z]

}
,

[M
(j)
1 ]12(z) =

1

4

{
− 5 sin[(µ̃j2 − 4.75)z] + 3 sin[(µ̃j2 − 3.25)z]

}
,

[M
(j)
1 ]21(z) =

1

4

{
− 5 sin[(µ̃j2 − 4.75)z] − 3 sin[(µ̃j2 − 3.25)z]

}
,

[M
(j)
1 ]22(z) =

1

4

{
10 cos[(µ̃j2 − 4.75)z] − 6 cos[(µ̃j2 − 3.25)z]

}
,

and it is easy to show that only for j = 4 one gets a one-layer modified

period map with a two-point Fourier spectrum and for which relations

(3.4.10) are satisfied:

M
(j=2)
1 (z) =

(
cos(0.75z) 2 sin(0.75z)

1/2 sin(0.75z) cos(0.75z)

)
;

• get a2 = µ̃4
2/n2 = q/n2 = 4/2 = 2 and from M

(j=4)
1 (z) realize that

µ1 = 0.75;

• finally, obtain a1 either from µ1 + q = µ̃2 or from a1 + a2 =

limz→0M
12(z) = p (see Eq. (3.1.11)) and find a1 = 1. Alternatively

one gets a1 straight from µ1 using the known n1 value.

3.4.3 Recovery from the Hill discriminant

As we saw in the previous Sections, it is possible to implement an inversion
procedure for a monodimensional photonic crystal starting from the period
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map. It is also well known that a necessary and sufficient condition to get the
band structure is to impose that the trace of the period map (Hill discrimi-
nant) belongs to the interval [−2, 2]. But it can be useful trying to answer the
following question: what happens if we don’t want to start from the period
map but from its trace which gives the band structure in a more immediate
way? If we start from the period map trace, we are using less information
than we’d do if we used the whole period map, and consequently we have to
reduce the number of free parameters that characterize the system. Let us
then see how to proceed. In the piecewise constant case the Hill discriminant
is given by:

∆(z) =TrM(z) = M11(z) +M22(z) =
∑

( c11σ2,...,σm
+ c22σ2,...,σm

) cos((µ1 + σ2µ2 + . . .+ σmµm)z) ,

where

cσ2,...,σm

def
=

(
c11σ2,...,σm

c12σ2,...,σm

c21σ2,...,σm
c22σ2,...,σm

)

=
1

2m−1

(
1

σm
nm

σmnm 1

)
. . .

(
1

σ2

n2

σ2n2 1

)
 1

1

n1

n1 1


 .

If we start from the Hill discriminant, we need to fix another parameter as
n1 (or nm) in order to get the period map and then do the inversion. In fact
the knowledge of n1 makes us get the non-diagonal entries of matrix c via
the well known formulae:

c11σ2,...,σm

c12σ2,...,σm

=
c21σ2,...,σm

c22σ2,...,σm

= n1 ,

from which one gets:

c12σ2,...,σm
=
c11σ2,...,σm

n1
, c21σ2,...,σm

= n1c
22
σ2,...,σm

. (3.4.16)

Let us see two examples to understand how things work.

Example 3.4.3 In this example we focus on a three layer photonic crystal.
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In this case the Hill discriminant has the following form:

∆(z) =
∑

σ3,σ2=±1

{
1

22

(
1 +

n1

σ2n2
+
n1 + σ2n2

σ3n3

)
+

1

22

[
1 +

σ2n2

n1
+ σ3n3

(
1

n1
+

1

σ2n2

)]}

× cos[(n1a1 + σ2n2a2 + σ3n3a3)z] =

{
1

22

(
1 +

n1

n2
+
n1 + n2

n3

)

+
1

22

[
1 +

n2

n1

+ n3

(
1

n1

+
1

n2

)]}
cos[(n1a1 + n2a2 + n3a3)z]+

{
1

22

(
1 − n1

n2

+
n1 − n2

n3

)
+

1

22

[
1 − n2

n1

+ n3

(
1

n1

− 1

n2

)]}

× cos[(n1a1 − n2a2 + n3a3)z] +

{
1

22

(
1 +

n1

n2

− n1 + n2

n3

)

+
1

22

[
1 +

n2

n1

− n3

(
1

n1

+
1

n2

)]}
cos[(n1a1 + n2a2 − n3a3)z]+

{
1

22

(
1 − n1

n2
− n1 − n2

n3

)
+

1

22

[
1 − n2

n1
− n3

(
1

n1
− 1

n2

)]}

× cos[(n1a1 − n2a2 − n3a3)z] ,

which can be written as follows:

∆(z) = (α1+β1) cos(γ1z)+(α2+β2) cos(γ2z)+(α3+β3) cos(γ3z)+(α4+β4) cos(γ4z) ,

and it is very easy to get the associated period map as long as either n1 or

n3 is known. For instance, let’s consider the case where we want to find a

three layer photonic crystal geometrical characteristics (except of n1 = 1.5)

and which has the following band structure (see figure 3.3):

∆(z) =
1

4
[(3.75 + 5) cos(5.1z) + (1.25 − 1.667) cos(1.9z)

+ (−0.25 − 0.333) cos(1.1z) + (−0.75 + 1) cos(−2.1z)] . (3.4.17)
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Figure 3.3: Band structure of a photonic crystal whose Hill discriminant

is given by Eq. 3.4.17.

Thus one builds the period map using the given n1 value:

M11
3 (z) =

1

4
[3.75 cos(5.1z) + 1.25 cos(1.9z) − 0.25 cos(1.1z) − 0.75 cos(2.1z)] ,

M12
3 (z) =

1

4
[2.5 sin(5.1z) + 0.8333 sin(1.9z) − 0.1667 sin(1.1z) + 0.5 sin(2.1z)] ,

M21
3 (z) = −1

4
[7.5 sin(5.1z) − 2.5 sin(1.9z) − 0.5 sin(1.1z) − 1.5 sin(2.1z)] ,

M22
3 (z) =

1

4
[5 cos(5.1z) − 1.667 cos(1.9z) − 0.333 cos(1.1z) − 1.0 cos(2.1z)] ,

and from here the inversion procedure is well known (see Sec. 3.4) and it

gives n2 = 1, n3 = 2, a1 = 1, a2 = 2 and a3 = 0.8. We also know that

p = lim
z→0

M12(z) , (3.4.18)

in fact we have (n1 = 1.5):

3.75

n1

5.1 +
1.25

n1

1.9 − 0.25

n1

1.1 +
0.75

n1

2.1 = 3.8 = a1 + a2 + a3 = p .

Consequently this fact gives us the way to use give the period p as indipen-
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dent paremeter instead of n1
4. We in fact realize that from the given Hill

discriminant, one has:

α1

n1
γ1 +

α2

n1
γ2 +

α3

n1
γ3 +

α4

n1
γ4 = p ,

from which

n1 = (α1γ1 + α2γ2 + α3γ3 + α3γ3)/p . (3.4.19)

The generalization of this to an m-layer photonic crystal is straightforward.

Figure 3.4: Band structure of a photonic crystal whose Hill discriminant

is given by Eq. 3.4.20.

Example 3.4.4 We want to find the geometrical features of a four-layer

photonic crystal, knowing its band structure ∆(z) and its period p. Then we

4The corresponding case where one wants to give nm is very similar.
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have the photonic band structure

∆(z) =
1

8
[(15.925 + 5.3083) cos(8.2z) + (−3.675 + 1.225) cos(6z)

+ (1.575 + 0.525) cos(3.4z) + (−0.975 − 0.325) cos(1.8z)

+ (−6.825 + 2.275) cos(1.2z) + (0.225 − 0.075) cos(−0.4z)

+ (−0.525 − 0.175) cos(−3z) + (2.275 − 0.7583) cos(−5.2z)] ,

(3.4.20)

which is depicted in Fig. 3.4 and we know that the period crystal is p = 7.8.

So we can get n1 = (αiγi)/p = 1.5 and then we can compute the period

map exactly as we did in the previous example. From there the inversion is

straightforward and it gives n2 = 2, n3 = 0.8, n4 = 0.5, a1 = 1, a2 = 1.6,

a3 = 3 and a4 = 2.2.



Chapter 4

Two-Dimensional Photonic

Crystals

In this chapter we discuss several existing numerical methods to compute the
band spectrum of a periodic 2D photonic crystal and develop two, closely
related, numerical methods. In the 2D case the harmonic modes can be
decomposed into two independent polarizations, the TE mode and the TM
mode. Numerical methods will be discussed and developed for either mode.
Prior to discussing a method, we shall often dwell on the corresponding 1D
problem first.

In a 2D photonic crystal there exists a preferred direction, which we take
to be the z-direction, such that its optical properties do not depend on z ∈ R

and hence only depend on (x, y) ∈ R2. In particular, the dielectric constant
only depends on (x, y) ∈ R2, i.e., ε = ε(x, y), so that the refractive index only
depends on (x, y) ∈ R2, i.e., n = n(x, y) (see Fig. 4.1). If we then restrict
ourselves to a physical situation in which one of the electric or magnetic fields
has x and y components only depending on (x, y) and a zero z-component
and the other field has a z-component only depending on (x, y) and zero x
and y components, we obtain the TE and TM modes, depending on which
field has a zero z-component.

The photonic band spectrum can be computed numerically by a method
belonging to one of two basic families of methods. A time domain method
consists of the numerical solution of a wave equation and an a posteriori
Fourier analysis to extract the band spectrum. In this chapter we shall
briefly discuss this type of method but avoid using it. On the other hand, a
frequency domain method consists of the numerical solution of the Helmholtz
equation for a selection of fixed wavevectors k to extract the band spectrum.
This will be the type of method adopted in this chapter. We adopt two

79
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Figure 4.1: A two-dimensional photonic crystal of air columns in a dielec-

tric substrate (which we imagine to extend indefinitely in the z direction).

The columns have radius r and dielectric constant ε = 1, whereas the sub-

strate has dielectric constant ε > 1.

methods within this family, a finite difference method and a finite element
method. We also discuss two other frequency domain methods briefly.

The finite difference and the finite element methods have both been used
to compute the photonic band spectrum before. In this chapter we present
these methods in such a way that the resulting algebraic systems can be
solved numerically by so-called structured matrix codes. This means that we
will examine the structure of the matrices resulting from their implementa-
tion and exploit it to reduce the computational complexity of our methods.

When discretizing the 2D photonic crystal in such a way that points
differing by an integer linear combination of the periodic basis vectors are
identified, the resulting linear system is of the type

(A− ηB)ψ = 0,

where A is a two-index circulant matrix (i.e., a circulant matrix whose entries
are themselves circulant matrices) and B is a positive two-index diagonal
matrix for the TM mode and a positive two-index circulant matrix for the TE
mode. The wavevector dependence is limited to A. In these cases structured
matrix codes can be used with a computational complexity of the order of
O(n log(n)), where n is the order of the matrices A and B (or the number of
discretization points per period parallellogram).

In Sec. 4.1 we present the basic formalism of nD photonic crystals and
define the Brillouin zones. This means using the Bloch representation of the
Helmholtz solutions to reduce the relevant wavevectors k to as small a set



4.1. ND CRYSTALS AND BRILLOUIN ZONES 81

as possible. In Sec. 4.2 we discuss the TM and TE modes. It will turn
out to be advantageous to solve the electric eigenvalue problem for the TM
mode and the magnetic eigenvalue problem for the TE mode. In Sec. 4.3 we
explore solving the Helmholtz equation, for a rectangular crystal, by separa-
tion of variables, a method which will turn out to be riddled with technical
problems. In Sections 4.4 and 4.5 a variety of numerical methods will be
discussed: two time domain methods, namely the finite difference time do-
main (FDTD) method and plane wave expansion (PWE) method, and four
frequency domain methods, namely the multiple scattering (MS), Fourier ex-
pansion (FE), finite difference frequency domain (FDFD), and finite element
frequency domain (FEFD) methods. Two new frequency domain methods
are also introduced in this thesis, that is, the periodic finite difference (PFD)
method and the periodic finite element (PFE) method. In both cases the
periodicity conditions are automatically satisfied in the algebraic problem
obtained by discretizing the spectral problem or by using a finite element
technique.

4.1 nD crystals and Brillouin zones

Mathematically, an nD periodic crystal can be described as an integer lattice
that remains invariant upon translation of a spatial variable x ∈ Rn by
integer linear combinations of the n linearly independent vectors a1, . . . ,an.
These vectors generate the so-called period parallelogram

A = {t1~a1 + . . .+ tn~an : t1, . . . , tn ∈ [0, 1)} ,

also called the fundamental cell of the crystal.
To deal with periodicity of the (modified) Helmholtz equation we need to

introduce the so-called reciprocal lattice which is invariant under translation
of the wave vector k ∈ Rn by integer linear combinations of the linearly
independent vectors b1, . . . , bn such that

aj · bl = 2πδj,l, j, l = 1, . . . , n. (4.1.1)

These vectors generate the reciprocal period parallelogram

B = {t1b1 + . . .+ tnbn : t1, . . . , tn ∈ Z}.

From (4.1.1) it is clear that the matrix B composed of the n column vectors
b1, . . . , bn is given by

B
def
= col(b1, . . . , bn) = 2π

[
col(a1, . . . ,an)

T
]−1 def

= 2π(AT )−1, (4.1.2)
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where A
def
= col(a1, . . . ,an). In other words, b1, . . . , bn are the columns of an

n × n matrix B that is 2π times the inverse transpose of the n × n matrix
A having a1, . . . ,an as its columns. As a result, for arbitrary real numbers
t1, . . . , tn, we have

‖t1b1 + . . .+ tnbn‖2 =
(
t1 . . . tn

)
BTB



t1
...
tn




= 4π2
(
t1 . . . tn

)
(ATA)−1



t1
...
tn


 ,

where ATA is the Gram matrix of the vectors a1, . . . ,an and BTB is the
Gram matrix of the vectors b1, . . . , bn. The nD volumes of A and B are
given by m(A)

def
= | detA| and m(B)

def
= | detB|, respectively, and hence

m(A)m(B) = |(detA)(detB)| =
∣∣det(ATB)

∣∣ = |det(2πIn)| = (2π)n,

i.e., the product of the nD volumes of the period parallelogram and the
reciprocal period parallelogram equals (2π)n.

Consider the Helmholtz equation

−∇2ψ(x) = ηn(x)2ψ(x), (4.1.3)

where ψ(x) is a function satisfying the τ -periodic boundary conditions ψ(x+
aj) = τjψ(x), n(x) is a positive function satisfying n(x + aj) = n(x) (j =
1, . . . , n), and η is a spectral parameter. Then the spectrum of (4.1.3), defined
as the set of those η for which (4.1.3) has a nontrivial bounded solution ψ(x),
is known to be the union of the spectra of (4.1.3) under all conceivable τ -
periodic boundary conditions

ψ(x+ aj) = τjψ(x), j = 1, . . . , n,

where |τ1| = . . . = |τn| = 1 and τ = (τ1, . . . , τn). The proof of this result can
be given as for the nD Schrödinger equation [20].

Let us write

τj = eik·aj , j = 1, . . . , n, (4.1.4)

for a suitable wavevector k for which (4.1.4) is true. Then any two wavevec-
tors k yielding the same τj differ by an integer linear combination of the re-
ciprocal basis vectors b1, . . . , bn. As a result, to describe the band spectrum
as the union of the spectra of the Helmholtz equations under all conceivable
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τ -periodic boundary conditions, we can limit ourselves to those vectors k
which belong to the Brillouin zone

Z =

{
x ∈ R

n : ‖x‖ ≤
∥∥∥∥∥x−

n∑

j=1

mjbj

∥∥∥∥∥ for every (m1, . . . , mn) ∈ Z
n

}
,

(4.1.5)
introduced for the first time in [44]. For each wavevector k ∈ Rn there exists
a wavenumber k′ ∈ Z such that k−k′ is an integer linear combination of the
reciprocal basis vectors and therefore k and k′ generate the same τ -values:
τj = eik·aj = eik

′·aj (j = 1, . . . , n).
When computing the band spectrum of the Helmholtz equation, one can

often restrict oneself to wavevectors k belonging to a proper subset of Z,
because in some cases different wavevectors in Z lead to the same Helmholtz
eigenvalues. For instance, by replacing k = t1b1 + . . . + tnbn by σ1t1b1 +
. . . + σntnbn for any choice of signs σj = ±1, we replace the (τ1, . . . , τn)-
periodic boundary conditions, with τj = e2πitj , by (τσ1

1 , . . . , τσn
n )-periodic

boundary conditions. If we then also replace the corresponding Helmholtz
solution ψ(x) by ψ(σ1x1, . . . , σnxn), we see that the eigenvalues remain the
same, provided n(σ1x1, . . . , σnxn) = n(x). Thus for constant refractive index,
among the various σ1t1b1 + . . . + σntnbn in the Brillouin zone Z, we may
restrict ourselves to just one choice of sign σ1, . . . , σn.

More generally, consider an arbitrary isometry J in Rn which maps the
reciprocal lattice onto itself. Then J is an affine transformation in the sense
that

J(x) = UJx+m1b1 + . . .+mnbn, x ∈ R
n,

where UJ is an orthogonal n × n matrix and m1, . . . , mn are suitable inte-
gers which are uniquely determined by J . In fact, there are unique integers
m1, . . . , mn such that a translation of J(B) by m1b1 + . . .+mnbn yields B.
When defining

J̃(x) = J(x) −m1b1 − . . .−mnbn, x ∈ R
n,

each reciprocal lattice invariant isometry J generates a unique isometry J̃
which leaves invariant the Brillouin zone Z. These isometries J̃ form a
finite group which is completely determined by Z and which has at least 2n

elements. We now single out a restricted Brillouin zone Z0 as such a subset
of Z that

Z =
⋃

J̃

J̃ [Z0].

Then for constant refractive index we may restrict ourselves to studying the
Helmholtz spectra for the wavenumbers k ∈ Z0.
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If, in the TM case, the refractive index is a periodic function varying
with position, we need to take into account the change in its values when
transforming the lattice. In this case we need to restrict ourselves to those
isometries J satisfying

n(UJx) = n(x), x ∈ R
n,

when determining a restricted Brillouin zone Z. When changing the Helm-
holtz eigenfunctions ψ(x) by ψ(UJx), we obtain Helmholtz eigenfunctions
for exactly the same eigenvalues and hence the Helmholtz spectra do not
change. In the TE case, we need to restrict ourselves to those isometries J
such that the dielectric constants ε(x) satisfy

ε(UJx) = ε(x), x ∈ R
n.

Figure 4.2: A two-dimensional photonic crystal made of a square lattice

of columns consisting of a material with a different dielectric constant, with

radius r and dielectric constant ε(x, y). The material does not change its

physical properties along the z direction, and periodic along the x and y

directions.

Example 4.1.1 If we consider the photonic crystal shown in Fig. 4.2, we

realize that its period parallelogram (fundamental cell) is a square. As a
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result, the linearly independent vectors a1 and a2 are:

a1 = a

(
1

0

)
, a2 = a

(
0

1

)
,

where a2 is the area of the square. Since A is the matrix having the vectors

a1 and a2 as its columns, we can easily compute the matrix B using (4.1.2):

B = 2π(AT )−1 = 2π

(
a 0

0 a

)−1

=
2π

a

(
1 0

0 1

)
,

and therefore the reciprocal basis vectors are

b1 =
2π

a

(
1

0

)
, b2 =

2π

a

(
0

1

)
.

In general, if the period parallelogram is spanned by orthogonal basis vectors,

the reciprocal period parallelogram is spanned by orthogonal basis vectors

too (Fig. 4.3). Indeed, if ATA = D = diag(D1, . . . , Dn) is a diagonal matrix,

then B = 2πAD−1 and hence bj = (2π/Dj)aj (j = 1, . . . , n). The Brillouin

zone Z defined by (4.1.5) can be constructed as follows (see Fig. 4.3). Take

its center point as the origin and draw the perpendicular bisectors (blue) of

all segments connecting the origin to any other lattice point (red). Then

the bisectors divide the euclidean plane into polygons. The Brillouin zone

Z (yellow) then coincides with the polygon having the origin as its interior

points. In the case of a square lattice with constant refractive index, the

restricted Brillouin zone Z0 is given by one eighth of the Brillouin zone and

therefore is given by the blue triangle shown in Fig. 4.3.

Example 4.1.2 If we consider the photonic crystal shown in Fig. 4.4, we

realize that its period parallelogram (fundamental cell) has four edges of the

same length a and two 60o angles. In this case the linearly independent

vectors a1 and a2 are as follows:

a1 =
a

2

(
1√
3

)
, a2 =

a

2

(
1

−
√

3

)
,
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Figure 4.3: The top half of the figure shows a square lattice. On the left

the lattice points of the period parallelogram are depicted while the lattice

points of the reciprocal period parallelogram are depicted on the right. The

bottom half of the figure shows its Brillouin zone and (in blue) the restricted

Brillouin zone Z0 to be considered when computing the spectrum.
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Using (4.1.2) we have

B

2π
= (AT )−1 =

[
a

2

(
1

√
3

1 −
√

3

)]−1

=
1

a

(
1 1

1/
√

3 −1/
√

3

)
,

and therefore the reciprocal vectors are (Fig. 4.4)

b1 =
2π

a

(
1

1/
√

3

)
, b2 =

2π

a

(
1

−1/
√

3

)
.

Considering (4.1.5), the construction of the Brillouin zone is the same as for

the previous example (see Fig. 4.4), and in this case the restricted Brillouin

zone Z0 to be considered to get the photonic crystal spectrum for a constant

refractive index, is given by one twelfth of the Brillouin zone and therefore

is given by the blue triangle highlighted in Fig. 4.4.

4.2 TM and TE eigenvalue problems

In 2D photonic crystals we can choose the cartesian coordinates in such a
way that its dielectric properties only depend on (x, y) ∈ R2 and not on
z ∈ R. In this case the electric and magnetic fields can be decomposed in a
natural way into two distinct polarizations (see Fig. 4.5):

• transverse electric (TE) modes where H = (0, 0, H(x, y))T and
E = (E1(x, y), E2(x, y), 0)T ,

• transverse magnetic (TM) modes where E = (0, 0, E(x, y))Tand
H = (H1(x, y), H2(x, y), 0)T .

Let’s start discussing the eigenvalue problem for the magnetic field
(1.3.11): 




∇×

(
1

ε(r)
∇×H(r)

)
= ηH(r),

∇ ·
[
H(r)

]
= 0,

(4.2.1)

where ε(r) depends only on (x, y) ∈ R2. Writing the components of the
left-hand side of the eigenvalue equation, we get:

ǫijk∂j

(
1

ε(x, y)
ǫklm∂lHm(x, y)

)
= ǫijkǫklm∂j

(
∂lHm(x, y)

ε(x, y)

)
=



88 CHAPTER 4. TWO-DIMENSIONAL PHOTONIC CRYSTALS

Figure 4.4: The top half of figure shows a parallelogram lattice. On the left

the lattice points of the period parallelogram are depicted while the lattice

points of the reciprocal period parallelogram are depicted on the right. In this

case the reciprocal vectors b1 and b2 are a rotated version of the vectors a1

and a2.The bottom half of figure shows its Brillouin zone, which is given by

a hexagon centered around the origin, and (in blue) the restricted Brillouin

zone Z0 to be considered for computing the spectrum.
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Figure 4.5: In the TM mode the magnetic field is confined to the xy plane

and the electric field is aligned along the z-axis, whereas in the TE mode

the electric field is confined to the xy plane and the magnetic field is aligned

along the z-axis.

(δilδjm − δimδjl)∂j

(
∂lHm(x, y)

ε(x, y)

)
= ∂j

(
∂iHj(x, y)

ε(x, y)

)
− ∂j

(
∂jHi(x, y)

ε(x, y)

)
,

where ǫijk is the Levi-Civita tensor. In the transverse electric configuration
we have i = 3 and it’s straightforward to see that the eigenvalue problem
(1.3.11) takes the following form:





−∂j
(

1
ε(x,y)

∂jH3(x, y)
)

= ηH3(x, y) , j = 1, 2,

∂3

[
H3(x, y)

]
= 0,

(4.2.2)

where the divergence condition is automatically satisfied. On the other hand,
in the transverse magnetic configuration we have i = 1, 2 and it’s easy to
see that the eigenvalue problem (1.3.11) becomes:






 ∂2

(
1

ε(x,y)
[∂1H2(x, y) − ∂2H1(x, y)]

)

∂1

(
1

ε(x,y)
[∂2H1(x, y) − ∂1H2(x, y)]

)

 = η

(
H1(x, y)
H2(x, y)

)
,

∂1

[
H1(x, y)

]
+ ∂2

[
H2(x, y)

]
= 0,

(4.2.3)

Let’s now consider the electric eigenvalue problem (1.3.12):





∇×

(
∇×E(r)

)
= ηε(r)E(r),

∇ ·
[
ε(r)E(r)

]
= 0,

(4.2.4)
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where ε(r) depends on (x, y) ∈ R2. Equation (4.2.4) reads in components:





(
∂j∂iEj(x, y) − ∂j∂jEi(x, y)

)
= ηε(x, y)Ei(x, y),

∂i

(
ε(x, y)Ei(x, y)

)
= 0.

(4.2.5)

In the transverse electric configuration we have i = 1, 2 so that the
eigenvalue problem takes the following form:





(
[∂2∂1E2(x, y) − ∂2

2E1(x, y)]
[∂1∂2E1(x, y) − ∂2

1E2(x, y)]

)
= ηε(x, y)

(
E1(x, y)
E2(x, y)

)
,

∂1

[
ε(x, y)E1(x, y)

]
+ ∂2

[
ε(x, y)E2(x, y)

]
= 0.

(4.2.6)

In the transverse magnetic configuration we have i = 3 and consequently
the eigenvalue problem takes the following form:

{
−
(
∂2

1 + ∂2
2

)
E3(x, y) = −△E3(x, y) = ηε(x, y)E3(x, y),

∂3

(
ε(x, y)E3(x, y)

)
= 0,

(4.2.7)

where the divergence condition is automatically satisfied.
It is clear from (4.2.2) and (4.2.7) that it is more convenient to solve

the electric eigenvalue problem for TM modes and the magnetic eigenvalue
problem for TE modes, especially because we only need to solve one of the
electric or magnetic eigenvalue problems to compute the energy bands. Hence
from now on we solve the Helmholtz equation

−
(
∂2ψ

∂2x
+
∂2ψ

∂2y

)
= ηn2(x, y)ψ (4.2.8)

in the TM mode (where as usual in this context ε = n2) and the Helmholtz
equation

−∇ ·
(

1

ε(x, y)
∇ψ
)

= ηψ (4.2.9)

in the TE mode. In (4.2.8) the electric field is given by (0, 0, ψ(x, y))T ,
whereas in (4.2.9) the magnetic field is given by (0, 0, ψ(x, y))T .

4.3 Separation of variable method

In this section we’ll be dealing with the case of TM modes where the refrac-
tive index function is piecewise constant, applying the separation of variable
method to the two-dimensional Helmholtz equation (4.2.8). Such a separa-
tion exists only if the photonic crystal is rectangular.
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We assume that n = 2,1 a1 = (a, 0) with a > 0, a2 = (0, b) with b > 0,
and

ε(x, y) = εpq, Ap−1 < x < Ap , Bq−1 < y < Bq .

Here
{

0 = A0 < A1 < A2 < . . . < Am = a , Ap = a1 + . . .+ ap ,
0 = B0 < B1 < B2 < . . . < Bl = b , Bq = b1 + . . .+ bq .

Separation of variables under τ -periodic boundary conditions, where τ =
(τ1, τ2) with |τ1| = |τ2| = 1, amounts to substituting

Ez(x, y) = Xp(x)Yq(y)

into (4.2.8) for p = 1, . . . , m and q = 1, . . . , l under the following conditions:

Xp(A
−
p ) = Xp+1(A

+
p ), X ′

p(A
−
p ) = X ′

p+1(A
+
p ), p = 1, . . . , m− 1, (4.3.1a)

Yq(B
−
q ) = Yq+1(B

+
q ), Y ′

q (B
−
q ) = Y ′

q+1(B
+
q ), q = 1, . . . , l − 1, (4.3.1b)

Xm(a−) = τ1X1(0
+), X ′

m(a−) = τ1X
′
1(0

+), (4.3.1c)

Ym(b−) = τ2Y1(0
+), Y ′

m(b−) = τ2Y
′
1(0

+). (4.3.1d)

The one-variable functions Xp(x) and Yq(y) satisfy the partial differential
equation

X ′′
p (x)

Xp(x)
+
Y ′′
q (y)

Yq(y)
+ ηεpq = 0, (4.3.2)

where p = 1, . . . , m and q = 1, . . . , l.
It is clear that the two fractions in the left-hand side of (4.3.2) are con-

stants adding up to −ηεpq. Let us therefore define αp and βq (p = 1, . . . , m
and q = 1, . . . , l) such that

X ′′
p (x)

Xp(x)
= −(αp)

2,
Y ′′
q (y)

Yq(y)
= −(βq)

2, (4.3.3)

where

η =
(αp)

2 + (βq)
2

εpq
. (4.3.4)

1The generalization to the case n ≥ 3 with orthogonal vectors a1, . . . ,an is straight-

forward.
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From the physics of photonic crystals we know that the eigenvalue η is the
squared frequency of light propagating in the crystal: η = ω2/c2 = k2/n2 =
k2/ε for linear media. Therefore in the piecewise constant case

η =
α2
p + β2

q

εpq
=

(kxp )
2 + (kyq )

2

εpq
, (4.3.5)

and from Eq. (4.3.4) we see the physical meaning of α2
p and β2

q : they represent
the x and y components of the wavevector in each subcell, respectively.

α1 → kx1 , β1 → ky1 ,
α2 → kx2 , β2 → ky2 .

(4.3.6)

As a result, η is the squared frequency of light propagating in the (p, q) cell
(Fig. 4.6):

η(p,q) =
α2
p + β2

q

εpq
=

(kxp )
2 + (kyq )

2

εpq
. (4.3.7)

Figure 4.6: Example of a two-dimensional photonic crystal in the case of

a piecewise constant dielectric constant.

It is helpful to depict these wavevector components for a photonic crystal
composed of four different materials as shown in Fig. 4.7. Since we are
dealing with lossless photonic crystals, the wavevector is always real. Solving
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Figure 4.7: Example of a two-dimensional photonic crystal composed of

four different media in the case of a piecewise constant dielectric constant.

the differential equations (4.3.3) under the coupling condition (4.3.1) implies
that

Xp(x) = cp1 cos(kxp(x−Ap−1)) + cp2
sin(kxp (x−Ap−1))

kxp
, Ap−1<x<Ap,

(4.3.8a)

Yq(y) = dq1 cos(kyq (y−Bq−1)) + dq2
sin(kyq (y−Bq−1))

kyq
, Bq−1<y<Bq,

(4.3.8b)

(
cp+1,1

cp+1,2

)
= M(kxp ; ap)

(
cp1
cp2

)
, p = 1, . . . , m− 1, (4.3.8c)

(
dq+1,1

dq+1,2

)
= M(kyp ; bq)

(
dq1
dq2

)
, q = 1, . . . , l − 1, (4.3.8d)

(
cm1

cm2

)
= τ1

(
c11
c12

)
, (4.3.8e)

(
dl1
dl2

)
= τ2

(
d11

d12

)
, (4.3.8f)

where

M(kxp ; ap) =


 cos(kxpap)

sin(kxpap)

kxp
−kxp sin(kxpap) cos(kxpap)


 , (4.3.9a)
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M(kyp ; bq) =



 cos(kyq bq)
sin(kyq bq)

kyq
−kyq sin(kyq bq) cos(kyq bq)



 . (4.3.9b)

Equations (4.3.8) imply that

M(kxm; am) . . .M(kx2 ; a2)M(kx1 ; a1)︸ ︷︷ ︸
def
=M(kx

m;am|...|kx
2 ;a2|kx

1 ;a1)

(
c11
c12

)
= τ1

(
c11
c12

)
, (4.3.10a)

M(kyl ; bl) . . .M(ky2 ; b2)M(ky1 ; b1)︸ ︷︷ ︸
def
=M(ky

l ;bl|...|k
y
2 ;b2|k

y
1 ;b1)

(
d11

d12

)
= τ2

(
d11

d12

)
. (4.3.10b)

We get nontrivial solutions provided:

{
det (M(kxm; am| . . . |kx2 ; a2|kxm; a1) − τ1I2) = 0,

det (M(kyl ; bl| . . . |k
y
2 ; b2|ky1 ; b1) − τ2I2) = 0,

(4.3.11)

where τj = exp(iφj) = exp(2πiϕj) for ϕj ∈ [0, 1) (j = 1, 2). If we let τ run
through T2 and hence (ϕ1, ϕ2) run through [0, 1)2, in principle the system
(4.3.11) allows us to find kxp and kyq (p = 1, . . . , m, q = 1, . . . , l) which in turn
allows to get the band structure of the crystal (see condition (4.3.7)).

It’s straightforward to see that the conservation of the tangential com-
ponent of k is fulfilled as Fig. 4.8 shows. In the case of a 2 × 2 grid as

Figure 4.8: Wavevector components in a two-dimensional photonic crystal

composed of four different media in the case of a piecewise constant dielectric

constant. As one can see, the conservation of k|| parallel to the interface is

preserved.
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that one shown in Fig. 4.7, the eigenvalue formula (4.3.7) gives the following
expressions (see Fig. 4.9):

η(1,1) =
(k1
x)

2 + (k1
y)

2

ε11
, η(2,1)=

(k2
x)

2 + (k1
y)

2

ε21
, (4.3.12)

η(1,2) =
(k1
x)

2 + (k2
y)

2

ε12

, η(2,2)=
(k2
x)

2 + (k2
y)

2

ε11

. (4.3.13)

Figure 4.9: Eigenvalues for each subcell of a two-dimensional photonic

crystal composed of four different media in the case of a piecewise constant

dielectric constant.

Example 4.3.1 We consider a 2 × 2 grid where a1 = 2, a2 = 1, b1 = 0.5,

b2 = 1.5, and the dielectric constant is given by

ε11 = 6, ε12 = 1,

ε21 = 7, ε22 = 2.

Using (4.3.11) we get:





det (M(kx2 ; a2|kx1 ; a1) − τ1I2) = 0,

det (M(ky2 ; b2|ky1 ; b1) − τ2I2) = 0,
(4.3.14)
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where τj = exp(iφj) = exp(2πiϕj) for ϕj ∈ [0, 1) (j = 1, 2) and

M(kx2 ; a2|kx1 ; a1) =



 cos(kx2a2)
sin(kx2a2)

kx2
−kx2 sin(kx2a2) cos(kx2a2)







 cos(kx1a1)
sin(kx1a1)

kx1
−kx1 sin(kx1a1) cos(kx1a1)



 ,

(4.3.15)

M(ky2 ; b2|ky1 ; b1) =



 cos(ky2b2)
sin(ky2b2)

ky2
−ky2 sin(ky2b2) cos(ky2b2)







 cos(ky1b1)
sin(ky1b1)

ky1
−ky1 sin(ky1b1) cos(ky1b1)



 .

(4.3.16)

From condition (4.3.14) it’s easy to see the following:






∣∣∣∣∣

(
m11(kx2 ; a2|kx1 ; a1) m12(kx2 ; a2|kx1 ; a1)

m21(kx2 ; a2|kx1 ; a1) m22(kx2 ; a2|kx1 ; a1)

)
− τ1

(
1 0

0 1

)∣∣∣∣∣ = 0

∣∣∣∣∣

(
m11(ky2 ; b2|ky1 ; b1) m12(ky2 ; b2|ky1 ; b1)
m21(ky2 ; b2|ky1 ; b1) m22(ky2 ; b2|ky1 ; b1)

)
− τ2

(
1 0

0 1

)∣∣∣∣∣ = 0





∣∣∣∣∣
m11(kx2 ; a2|kx1 ; a1) − τ1 m12(kx2 ; a2|kx1 ; a1)

m21(kx2 ; a2|kx1 ; a1) m22(kx2 ; a2|kx1 ; a1) − τ1

∣∣∣∣∣ = 0

∣∣∣∣∣
m11(ky2 ; b2|ky1 ; b1) − τ2 m12(ky2 ; b2|ky1 ; b1)
m21(ky2 ; b2|ky1 ; b1) m22(ky2 ; b2|ky1 ; b1) − τ2

∣∣∣∣∣ = 0






(
m11
α − τ1

)(
m22
α − τ1

)
−m12

α m
21
α = 0,

(
m11
β − τ2

)(
m22
β − τ2

)
−m12

β m
21
β = 0,

where mij
α = mij(kx2 ; a2|kx1 ; a1) and mij

β = mij(ky2 ; b2|ky1 ; b1) for i, j = 1, 2.

After some algebra we get






τ 2
1 −

(
m11
α +m22

α

)
τ1 +m11

α m
22
α −m12

α m
21
α = 0,

τ 2
2 −

(
m11
β +m22

β

)
τ2 +m11

β m
22
β −m12

β m
21
β = 0,

but

m11
α m

22
α −m12

α m
21
α = det

[
M(α2; a2|α1; a1)

]
= 1,

m11
β m

22
β −m12

β m
21
β = det

[
M(β2; b2|β1; b1)

]
= 1,
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and therefore




τ 2
1 − Tr

[
M(kx2 ; a2|kx1 ; a1)

]
τ1 = −1,

τ 2
2 − Tr

[
M(ky2 ; b2|ky1 ; b1)

]
τ2 = −1,





Tr
[
M(kx2 ; a2|kx1 ; a1)

]
= τ1 + τ−1

1 ,

Tr
[
M(ky2 ; b2|ky1 ; b1)

]
= τ2 + τ−1

2 .

Using the fact that τj = exp(iφj) = exp(2πiϕj) for ϕj ∈ [0, 1) (j = 1, 2), we

get 



Tr
[
M(kx2 ; a2|kx1 ; a1)

]
= 2 cos(2πϕ1) ∈ [−2, 2],

Tr
[
M(ky2 ; b2|ky1 ; b1)

]
= 2 cos(2πϕ2) ∈ [−2, 2].

Therefore we get the points (kx1 , k
x
2 ) and (ky1 , k

y
2) from imposing the surfaces

Tr
[
M(kx2 ; a2|kx1 ; a1)

]
and Tr

[
M(ky2 ; b2|ky1 ; b1)

]
to stay between the planes z =

2 and z = −2 (Figs. 4.10- 4.13). Some calculations show that

Tr
[
M(kx2 ; a2|kx1 ; a1)

]
= 2 cos(a1k

x
1 ) cos(a2k

x
2 ) − (kx1 )2 + (kx2 )2

kx1k
x
2

sin(a1k
x
1 ) sin(a2k

x
2 ),

Tr
[
M(ky2 ; b2|ky1 ; b1)

]
= 2 cos(b1k

y
1) cos(b2k

y
2) −

(ky1)
2 + (ky2)

2

ky1k
y
2

sin(b1k
y
1) sin(b2k

y
2).

In order to get the spectrum, we compute the values of (kx1 , k
x
2 ) and (ky1 , k

y
2)

such that Tr
[
M(kx2 ; a2|kx1 ; a1)

]
∈ [−2, 2] and Tr

[
M(ky2 ; b2|ky1 ; b1)

]
∈ [−2, 2],

respectively. Therefore we depict the level set of surfaces Tr
[
M(kx2 ; a2|kx1 ; a1)

]

and Tr
[
M(ky2 ; b2|ky1 ; b1)

]
at z = ±2 (Figs. 4.14 and 4.15). As we can see

from Figs. 4.14 and 4.15 the level sets show a symmetry which implies that

the eigenvalues don’t change when inverting the sign of the wavevector k:

η(p,q)(kxp , k
y
q ; εp,q) = η(p,q)(−kxp , kyq ; εp,q) = η(p,q)(kxp ,−kyq ; εp,q)

= η(p,q)(−kxp ,−kyq ; εp,q), p, q = 1, 2,

and therefore one can focus only on points in the first quadrant both in

Figs. 4.14 and 4.15 . Since it’s a bit complicated checking all (kx1 , k
x
2 ) and

(ky1 , k
y
2) for which |Tr

[
M(kx2 ; a2|kx1 ; a1)|

]
< 2 and |Tr

[
M(ky2 ; b2|ky1 ; b1)

]
| < 2,



98 CHAPTER 4. TWO-DIMENSIONAL PHOTONIC CRYSTALS

Figure 4.10: The figure displays the surface Tr
[
M(kx2 ; a2|kx1 ; a1)

]
with

respect to kx1 and kx2 .

Figure 4.11: The figure displays the surface Tr
[
M(ky2 ; b2|ky1 ; b1)

]
with re-

spect to ky1 and ky2 .

we considered the easier situation when kx2 = (a1/a2)k
x
1 and ky2 = (b1/b2)k

y
1 ,

as Fig 4.16 shows.

Roughly speaking, we only pay attention to the light which propagates
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Figure 4.12: The figure displays the surface Tr
[
M(kx2 ; a2|kx1 ; a1)

]
and the

planes z = ±2. The values of (kx1 , k
x
2) for which the surface lies between

the two planes (Tr
[
M(kx2 ; a2|kx1 ; a1)

]
∈ [−2, 2]) are necessary to compute the

spectrum.

with correlated normal wavevector components at the interface. For instance,

if the light coming from the subcell filled with ε11 medium, is directed to-

wards the subcell filled with ε21 medium, its normal wavevector component

changes by a constant (a1/a2), while its parallel component remains the

same. As a result, we have to examine the (kx1 , k
x
2 ) and (ky1 , k

y
2) values on

the oblique line in Figs. 4.14 and 4.15, respectively. Those values for which

|Tr
[
M(kx2 ; a2|kx1 ; a1)

]
| < 2 and |Tr

[
M(ky2 ; b2|ky1 ; b1)

]
| < 2 have to be used

to build up the allowed frequencies. Let σkx
1 ,k

x
2

be the set of (kx1 , k
x
2 ) such

that |Tr
[
M(kx2 ; a2|kx1 ; a1)

]
| < 2 and σky

1 ,k
y
2

be the set of (ky1 , k
y
2) such that

|Tr
[
M(ky2 ; b2|ky1 ; b1)

]
| < 2. From Fig. 4.14 we find:

σkx
1 ,k

x
2

=

{
kx1 ∈ [0, 0.6008] : kx2 =

a1

a2
α1

}
∪
{
kx1 ∈ [0.9627, 2.1788] : kx2 =

a1

a2
kx1

}

∪
{
kx1 ∈ [2.5118, 2π/a1] : kx2 =

a1

a2
kx1

}
, (4.3.17)
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Figure 4.13: The figure displays the surface Tr
[
M(ky2 ; b2|ky1 ; b1)

]
and the

planes z = ±2. The values of (ky1 , k
y
2) for which the surface lies between

the two planes (Tr
[
M(ky2 ; b2|ky1 ; b1)

]
∈ [−2, 2]) are necessary to compute the

spectrum.

and from Fig. 4.15 we read:

σky
1 ,k

y
2

=

{
ky1 ∈ [0, 2.0558] : ky2 =

b1
b2
ky1

}
∪
{
ky1 ∈ [4.1405, 8.3100] : ky2 =

b1
b2
ky1

}

∪
{
ky1 ∈ [10.4527, 2π/b1] : ky2 =

b1
b2
ky1

}
. (4.3.18)

From the sets σkx
1 ,k

x
2

and σky
1 ,k

y
2

we are able to compute the allowed frequencies

in each subcell making use of the relation

η(p,q) =
(kpx)

2 + (kqy)
2

εpq
=

(kxp )
2 + (kyq )

2

εpq
, p, q = 1, 2.

First Allowed Band We have:

η(1,1) =
(kx1 )2 + (ky1)

2

ε11
=

(kx1)
2 + (ky1)

2

ε11
,

η(2,1) =
(kx2 )2 + (ky1)

2

ε21
=

(kx2)
2 + (ky1)

2

ε21
=

[(a1/a2)k
x
1 ]2 + (ky1)

2

ε21
,

η(1,2) =
(kx1 )2 + (ky2)

2

ε12
=

(kx1)
2 + (ky2)

2

ε12
=

(kx1 )2 + [(b1/b2)k
y
1 ]

2

ε12
,

η(2,2) =
(kx2 )2 + (ky2)

2

ε22

=
(kx2)

2 + (ky2)
2

ε22

=
[(a1/a2)k

x
1 ]2 + [(b1/b2)k

y
1 ]

2

ε22

,
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Figure 4.14: The figure displays the set level of surface Tr
[
M(kx2 ; a2|kx1 ; a1)

]

at z = ±2. The values of (kx1 , k
x
2) necessary to compute the spec-

trum lie inside the piecewise regular curves given by the intersection of

Tr
[
M(kx2 ; a2|kx1 ; a1)

]
and the planes z = ±2. Since it’s a bit tricky get-

ting these (kx1 , k
x
2) values altogether, we calculated the band structure for the

particular case when kx2 = (a1/a2)k
x
1 .

where kx1 ∈ [0, 0.6008] and ky1 ∈ [0, 2.0558]. Therefore in the subcell (1, 1)

light is allowed to travel, provided its squared frequency η(1,1) ∈ {0, 0.7645},
whereas in the subcell (2, 1) light is allowed to travel, provided its squared

frequency η(2,1) ∈ {0, 0.8100}. Since the frequency is preserved when it passes

through the interface between the ε11 medium and the ε21 medium, we un-

derstand that light with a squared frequency of up to 0.7645 can propagate

from subcell (1, 1) to subcell (2, 1), and that light coming from subcell (2, 1)

with squared frequency of 0.8100 will not enter subcell (1, 1).

In subcells (1, 2) and (2, 2) light can propagate with squared frequencies

η(1,2) ∈ {0, 0.8306} and η(2,2) ∈ {0, 0.9567}, respectively. The above consid-

erations lead us to conclude that the first allowed band is for η ∈ [0, 0.7645],
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Figure 4.15: The figure displays the set level of surface Tr
[
M(ky2 ; b2|ky1 ; b1)

]

at z = ±2. The values of (ky1 , k
y
2) necessary to compute the spectrum lie inside

the piecewise regular curves given by the intersection of Tr
[
M(ky2 ; b2|ky1 ; b1)

]

and the planes z = ±2. Since it’s a bit tricky getting these (ky1 , k
y
2) values

altogether, we calculated the band structure for the particular case when

ky2 = (b1/b2)k
y
1 .

where

0.7645 = min
p,q=1,2

η(p,q)
max .

Second Allowed Band We have:

η(1,1) =
(kx1 )2 + (ky1)

2

ε11

=
(kx1)

2 + (ky1)
2

ε11

,

η(2,1) =
(kx2 )2 + (ky1)

2

ε21

=
(kx2)

2 + (ky1)
2

ε21

=
[(a1/a2)k

x
1 ]2 + (ky1)

2

ε21

,

η(1,2) =
(kx1 )2 + (ky2)

2

ε12
=

(kx1)
2 + (ky2)

2

ε12
=

(kx1 )2 + [(b1/b2)k
y
1 ]

2

ε12
,

η(2,2) =
(kx2 )2 + (ky2)

2

ε22
=

(kx2)
2 + (ky2)

2

ε22
=

[(a1/a2)k
x
1 ]2 + [(b1/b2)k

y
1 ]

2

ε22
,

where this time kx1 ∈ [0.9627, 2.1788] and ky1 ∈ [4.1405, 8.3100]. As before,

we have:
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Figure 4.16: Wavevector components in a two-dimensional photonic crystal

made of four different media in the case of a piecewise constant dielectric

constant. For the sake of numerical complexity, we focus on the case where

the normal components of the wavevector at the interface are related by a

constant factor.

subcell squared frequency range

(1, 1) η(1,1) ∈ [3.0118, 12.3005]

(2, 1) η(2,1) ∈ [2.9787, 12.5778]

(1, 2) η(1,2) ∈ [2.8317, 12.4201]

(2, 2) η(2,2) ∈ [2.8060, 13.3308]

and therefore we expect the second allowed band to be

η ∈ [ max
p,q=1,2

η
(p,q)
min , min

p,q=1,2
η(p,q)

max ],

where in this case maxp,q=1,2 η
(p,q)
min = 3.0118 and minp,q=1,2 η

(p,q)
max ] = 12.3005.

As a result we get the first two allowed bands and band gaps (Fig. 4.17).

Example 4.3.1 was an effort to extend the Hill discriminant formalism to
two dimensions and it shows how tricky it can be finding the photonic crystal
spectrum by using the separation of variables method applied to Eq. (4.2.8)
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Figure 4.17: The figure depicts the band structure for a two-dimensional

photonic crystal made of a 2 × 2 grid in the piecewise constant case when

the wavevector components are all real (TM Harmonic Modes). The spec-

trum concerns the light that at the interface changes its normal wavevector

component by a constant factor (kx2 = (a1/a2)k
x
1 , k

y
2 = (b1/b2)k

y
1). In blue

the allowed bands are displayed, while in white the band gaps are displayed.

(TM modes) for square lattices. Therefore this technique has been discarded
in favor of the numerical approaches of the subsequent sections.



4.4. PREVAILING NUMERICAL METHODS 105

4.4 Prevailing Numerical Methods

Several numerical methods have been proposed for the solution of Maxwell’s
equations for the case of 1D, 2D and 3D periodic dielectric media. Depending
on the problem, algorithms working either in the time or frequency domain
or algorithms working in real or reciprocal space can be employed.

4.4.1 Time Domain Methods

A time domain method consists of two steps: the numerical solution of the
wave equation generated by Maxwell equations in a periodic medium with
position dependent dielectric properties and an a posteriori Fourier analysis
of the discretized solution obtained to extract the photonic band spectrum.
It is widely disseminated, in spite of its high computational complexity and
memory requirements pertaining to the additional variable (time t) in the
PDE that must be solved.

a) Plane wave expansion (PWE) method

One way to solve the Maxwell equations is to expand the electric and/or
magnetic fields into plane waves. This comparatively simple method has
been applied to 3D photonic crystals composed of a face centered cubic
(FCC) [45, 46, 47] and a diamond [47] array of spheres and a periodic array
of Gaussian spheres [48] having a dielectric constant differing from that of
the background material. It has also been applied to 2D photonic crystals
composed of parallel rods immersed in a background material with centers
forming a triangular [49] array and to a 2D photonic crystal composed of an
hexagonal array of airholes imbedded in a nonvacuum background material
[50]. Even though the first two bands can be computed, the convergence
problems inherent in applying a plane wave expansion in a medium with
interfaces may lead to considerable inaccuracies.

b) Finite difference time domain (FDTD) method

In the (FDTD) method space and time are both divided into a proper uni-
form grid of discrete points and the derivatives of the Maxwell equations are
approximated by finite differences. When propagating in time the so called
leap-frog scheme [51] is used which means that the electric fields at time t
are computed from the electric fields at time t−∆t along with the magnetic
fields at time t − ∆t/2, and one has the opposite computing the magnetic
fields at time t+∆t/2, i.e., the magnetic fields at time t+∆t/2 are computed
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from the magnetic fields at time t − ∆t/2 along with the electric fields at
time t− ∆t (Fig. 4.18).

Figure 4.18: Finite Difference Time Domain (FDTD) algorithm. (a)

Schematic of the Yee cell. (b) Illustration of the leap-frog method.

In the case of two-dimensional photonic crystals, one can separate the
field components and obtain two groups (TM and TE modes) of equations
that describe the evolution of the electrical and magnetic fields, respectively:





Hx|τ+1
l,m = Hx|τ+1/2

l,m − ∆t
2∆y

(Ez|τ+1/2
l,m+1/2 −Ez|τ+1/2

l,m−1/2)

Hy|τ+1
l,m = Hy|τ+1/2

l,m + ∆t
2∆x

(Ez|τ+1/2
l+1/2,m −Ez|τ+1/2

l−1/2,m)

Ez|τ+1
l,m = Ez|τ+1/2

l,m + ∆t
εl,m

[
Hy |

τ+1/2

l+1/2,m
−Hy|τl−1/2,m

2∆x
− Hx|

τ+1/2

l,m+1/2
−Hx|

τ+1/2

l,m−1/2

2∆y

]
,





Ex|τ+1
l,m = Ex|τ+1/2

l,m − 1
εl,m

∆t
2∆y

(Hz|τ+1/2
l,m+1/2 −Hz|τ+1/2

l,m−1/2)

Ey|τ+1
l,m = Ey|τ+1/2

l,m + 1
εl,m

∆t
2∆x

(Hz|τ+1/2
l+1/2,m −Hz|τ+1/2

l−1/2,m)

Hz|τ+1
l,m = Hz|τ+1/2

l,m +

[
Ey|

τ+1/2

l+1/2,m
−Ey |τl−1/2,m

2∆x
− Ex|

τ+1/2

l,m+1/2
−Ex|

τ+1/2

l,m−1/2

2∆y

]
,

where H|τl,m = H(l∆x,m∆y, τ∆t) and E|τl,m = E(l∆x,m∆y, τ∆t) with

τ = 0, 1, . . . , T + 1,

l = 0, 1, . . . , L+ 1,

m = 0, 1, . . . ,M + 1.
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To compute the band structure one has to take the Fourier transform of
the computed fields. The position of the peaks obtained in the frequency
domain gives the eigenvalues. In fact, if ω0 is an eigenvalue, then the fields
can be written as

E(r, t) = Ẽ(r)e−iω0t, H(r, t) = H̃(r)e−iω0t,

and therefore the Fourier transform of a field is a Delta function:
∫ +∞

−∞

E(r, t)e−iωtdt = 2πẼ(r)δ(ω − ω0),

∫ +∞

−∞

H(r, t)e−iωtdt = 2πH̃(r)δ(ω − ω0).

Finite difference time domain (FDTD) methods have been introduced to
determine photonic band spectra by Chan et al. [52], the so-called order-N
method. Further results were obtained for 2D diamond [53, 54] and triangu-
lar [55, 56] photonic lattices, and 2D lattices of square rods in a background
material [57, 55, 58].

4.4.2 Frequency Domain Methods

A frequency domain method consists of the numerical solution of the eigenva-
lue problem for the Helmholtz equation in a periodic medium whose dielectric
properties vary with respect to the solution.

a) Finite difference frequency domain (FDFD) method

The FDFD method has been used to compute TM and TE photonic band
spectra for 2D crystals with various geometric configurations. Some nu-
merical results concerning the effectiveness of this method can be found in
Hermann et al. [59, 60, 61]. In Sec. 4.5 we shall implement this method in a
novel way, aimed at greatly reducing the computational complexity and also
at obtaining linear systems with structured matrices.

b) Multiple scattering (MS) method

In the MS method the Green’s function corresponding to the Helmholtz equa-
tion with ε = 1, is used to convert the Helmholtz equation into a Fredholm
integral equation of the second kind which can be solved by various numerical
methods, one of which is iteration (see [62, 63] for the formalism). Several
variants of the so-called Korringa-Kohn-Rostoker (KKR) code for electronic
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band calculations by the MS method have been used to compute photonic
band spectra, namely for 2D honeycomb dielectric structures [45], 3D HCP
and FCC spheres in a vacuum background [64], and 2D triangular lattices
of parallel rods in a vacuum background [65, 66].

c) Fourier expansion (FE) method

Let’s see how this method works for the case of TM modes in two-dimensional
photonic crystals. Generalizations to higher dimensions and the extension to
TE modes are straightforward.

For TM modes one has to study the 2D Helmholtz equation (see (4.2.8))

−∇2ψ(x) = ηn(x)2ψ(x), x ∈ R
2, (4.4.1)

where η is a spectral parameter and the refractive index n(x) is a continuous
positive function satisfying the periodicity conditions

n(x+m1a1 +m2a2) = n(x), x ∈ R
2, m1, m2 ∈ Z. (4.4.2)

We seek nontrivial bounded solutions ψ of the Helmholtz equation (4.4.1)
whose distributional Laplacian ∇2ψ is also bounded in R2. Such solutions
have the Bloch representation

ψ(x) = eik·xφ(x), (4.4.3)

where φ satisfies the periodicity condition

φ(x+m1a1 +m2a2) = φ(x), x ∈ R
2, m1, m2 ∈ Z,

and the vector k = t1b1 + t2b2 for certain integers t1, t2, b1 and b2 being the
reciprocal vectors basis. Substituting (4.4.3) into (4.4.1) we get

−∇2φ(x) − 2ik · ∇φ(x) + ‖k‖2φ(x) = ηn(x)2φ(x). (4.4.4)

Let us now construct an orthonormal basis of the complex Hilbert space
H consisting of those functions in L2(A) that satisfy the above periodicity
condition. Writing B = {t1b1 + t2b2 : (t1, t2) ∈ Z2}, we get the orthonormal
basis {

m(A)−1/2ϕt : t ∈ Z
2
}
,

where

ϕt(x) = ei(t1b1+t2b2)·x, t = (t1, t2) ∈ Z
2, m(A) = detA.

Note that each basis function satisfies the periodicity condition

ϕt(x+m1a1 +m2a2) = ϕt(x), (m1, m2) ∈ Z
2, t ∈ Z

2,
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as well as the conjugation symmetry

ϕt(x) = ϕ−t(x), t ∈ Z
2.

The expansion coefficients φt in

φ(x) =
∑

t∈Z2

φtϕt(x)

are computed as follows:

φt = m(A)−1

∫

A

dx φ(x)ϕt(x) = m(A)−1

∫

A

dx φ(x)ϕ−t(x). (4.4.5)

Observe that

−∇2ϕt(x) = ‖t1b1 + t2b2‖2ϕt(x) = 4π2tT (ATA)−1tϕt(x),

where t is the column vector with integer elements t1, t2. Expanding the
squared refractive index n(x) and an arbitrary φ in H as follows

n(x)2 =
∑

t∈Z2

ntϕt(x), φ(x) =
∑

t∈Z2

φtϕt(x),

where
∫

A

dxn(x)4 = m(A)
∑

t∈Z2

|nt|2,
∫

A

dx |φ(x)|2 = m(A)
∑

t∈Z2

|φt|2,

(4.4.6)
we get, by using ϕt(x)ϕs(x) = ϕt+s(x) for t, s ∈ Zn while considering Z2 to
be an additive group,

n(x)2φ(x) =
∑

t∈Z2

(
∑

s∈Z2

nt−sφs

)
ϕt(x).

As a result, the Helmholtz equation (4.4.1) with ψ(x) = eik·xφ(x) for some
given k = τ1b1 + τ2b2 ∈ B (with τ = (τ1, τ2) ∈ Z2) can be written as the
linear system

4π2tT (ATA)−1tφt−τ = ‖t1b1 + t2b2‖2φt−τ = λ
∑

s∈R2

nt−sφs, (4.4.7)

where t ∈ Z2. Equation (4.4.7) has to be solved for {φt}t∈Z2 in the complex
Hilbert space ℓ2(Z2). This system can also be written in the form

4π2(t+ τ )T (ATA)−1(t+ τ )φt = ‖(t1 + τ1)b1 + (t2 + τ2)bn‖2φt

= λ
∑

s∈R2

nt+τ−sφs, (4.4.8)
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where t ∈ Z2 and τ is the column vector with entries τ1, τ2. Equation (4.4.8)
has the abstract form

(M − ηT )φ = 0, (4.4.9)

where M = 4π2diag([t + τ ]T (ATA)−1[t + τ ])t∈Z2 is an unbounded diagonal
matrix with nonnegative entries and T is a multiindex Toeplitz matrix whose
spectrum is given by {n(x)2 : x ∈ A}, a compact subset of (0,+∞), provided
n(x) is a continuous function of x ∈ A.

Fourier expansion methods have a major drawback. Since the speed of
convergence of a Fourier series of a function on the unit circle is intimately
connected to its smoothness, the convergence of Fourier series is exceedingly
slow if we expand piecewise continuous functions. Since piecewise constant
refractive indices constitute our major application, the Fourier expansion
method will invariably lead to slow convergence of Fourier series and high
demands on computer time and speed. Nevertheless, the FE method has been
used by Sakoda [67, 68] to determine the specular and Bragg reflectivity and
the optical transmittance of a slab of a 2D photonic crystal composed of tri-
angular array of cylindrical rods and among the others, by the Joannopolous
et al group at the MIT in Boston [1], where they studied photonic crystals
extensively. In this group the refractive index function is regularized to speed
up the convergence of the Fourier series.

d) Finite element frequency domain (FEFD) method

Let’s first discuss how one can set the variational formulation of Eq. (4.2.8)
(TM modes) in two variables under τ -periodic boundary conditions, where
τ = (τ1, τ2) is pair of complex numbers of modulus 1. The extension of the
procedure to higher dimensions is straightforward.

Letting k be a wavevector satisfying

eik·aj = τj, j = 1, 2, (4.4.10)

we substitute (4.4.3) into (4.4.1) and arrive at the modified Helmholtz equa-
tion (4.4.4). Obviously, there is a unique vector k ∈ B satisfying (4.4.10).

Using complex scalar products in L2(A) and choosing an appropriate test
function v(x), we take the scalar product of (4.4.4) with v and apply Green’s
identity to simplify the resulting equation. Suppressing the x-variable under
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the integral signs, we get

0 =

∫

A

dx
{
∇2ψ + 2ik · ∇ψ − ‖k‖2ψ + ηn2φ

}
v∗

=

∫

A

dx
{
∇ · (v∗∇ψ) −∇ψ · ∇v∗ + 2i[k · ∇ψ]v∗ − ‖k‖2ψv∗ + ηn2ψv∗

}

=

∫

∂A

dσ(x)
∂ψ

∂n
v∗−

∫

A

dx
{
∇ψ · ∇v∗ − 2i[k · ∇ψ]v∗ + ‖k‖2ψv∗ − ηn2ψv∗

}
.

Obviously, we wish to choose the test functions in such a way that the integral
over the boundary ∂A vanishes and the integral over A can be written as
the sum of six scalar products in L2(A).

In order to do so, we choose both ψ(x) and v(x) in the Sobolev space
H1(A) of those functions in L2(A) whose first weak partial derivatives belong
to L2(A) as well. Since n2 is a bounded function, the multiplication by n2 is
a bounded linear operator on L2(A). As a result, the integral over A is the
sum of six (complex) scalar products in L2(A). Next, we observe that the
trace map ψ 7→ (∂ψ/∂n) maps the Sobolev space H1(A) into the Sobolev
space H1/2(∂A) and that the latter Sobolev space consists of functions that
are continuous on the closure A of A. This trace map is the restriction of
functions defined on A to the boundary ∂A if these functions are in C1(A).
Defining H1

per
(A) as the closed linear subspace of H1(A) consisting of those

φ ∈ H1(A) whose trace is periodic in the sense that

ψ

(
∑

j 6=r

tjaj + ar

)
= ψ

(
∑

j 6=r

tjaj

)
, 0 ≤ tj < 1, r = 1, . . . , n,

(4.4.11)
we get for ψ, v ∈ H1

per
(A)

∫

A

dx
{
∇ψ · ∇v∗ − 2i[k · ∇ψ]v∗ + ‖k‖2ψv∗

}
= η

∫

A

dxn2ψv∗. (4.4.12)

In terms of two sesquilinear forms a(u, v) and b(u, v) on H1
per

(A) we get the
following weak formulation:

Find ψ ∈ H1
per

(A) such that a(ψ, v) = η b(ψ, v) for all v ∈ H1
per

(A).

(4.4.13)
Here the sesquilinear forms are defined by

a(u, v) =

∫

A

dx
{
∇u · ∇v∗ − 2i[k · ∇u]v∗ + ‖k‖2uv∗

}
, (4.4.14a)

b(u, v) =

∫

A

dxn2uv∗. (4.4.14b)
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Thanks to the periodicity condition (4.4.11) we get

∫

A

dx [k · ∇u]v∗ =

∫

∂A

dσ(x)uv∗k ·n
︸ ︷︷ ︸

=0

−
∫

A

dx u[k · ∇v]∗,

so that

a(u, v) =

∫

A

dx
{
∇u · ∇v∗ − i[k · ∇u]v∗ + iu[k · ∇v]∗ + ‖k‖2uv∗

}
.

(4.4.15)
Consequently, a(u, v) and b(u, v) are hermitian sesquilinear forms.

The variational formulation of Eq. (4.2.8) for TE modes is as follows.
Consider

−∇ ·
(

1

ε
∇ψ
)

= ηψ,

where relation (4.4.10) holds. As before we apply Bloch’s Theorem putting

ψ(x) = eik·xψ̃(x).

We now consider an arbitrary test function u(x) with sufficient smoothness
which satisfies

u(x+ aj) = τju(x), x ∈ R
2, j = 1, 2.

Let us now assume

u(x) = eik·xv(x),

where v(x) is periodic. Then ψ is a solution to the τ -periodic TE Helmholtz
equation if for every eligible test function u(x) we have

∫∫

A

{
−∇ ·

(
1

ε
∇ψ
)
− ηψ

}
u∗ dx = 0.

Here A = {t1a1 + t2a2 : t1, t2 ∈ [0, 1]}.
Let us now transform the integral in the definition of a TE solution. We

get ∫∫

A

{
−∇ ·

(
u∗

ε
∇ψ
)

+
1

ε
∇ψ · ∇u∗ − ηψu∗

}
dx = 0,

or:

−
∮

∂A

u∗

ε

∂ψ

∂n
dσ +

∫∫

A

{
1

ε
∇ψ · ∇u∗ − ηψu∗

}
dx = 0.
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Let us now consider each term of the integrand separately. We have

u∗

ε

∂ψ

∂n
=
e−ik·xv∗

ε
eik·x

[
∂ψ̃

∂n
+ ik · n̂

]
=
v∗

ε

[
∂ψ̃

∂n
+ ik · n̂

]
,

1

ε
∇ψ · ∇u∗ =

1

ε
eik·x

[
∇ψ̃ + iψ̃k

]
· e−ik·x [∇v∗ − iv∗k]

=
1

ε

[
∇ψ̃ + iψ̃k

]
· [∇v∗ − iv∗k] ,

ηψu∗ = ηeik·xψ̃e−ik·xv∗ = ηψ̃v∗,

all three of them being periodic. In other words, ψ̃ ∈ H1
per

(A) is a TE
solution with τ -periodic boundary conditions if for every suitable periodic
test function v∗ ∈ H1

per
(A) we have

∫∫

A

{
1

ε

[
∇ψ̃ + iψ̃k

]
· [∇v∗ − iv∗k] − ηψ̃v∗

}
dx = 0. (4.4.16)

Using the FEFD method, photonic band spectra have been computed
for 2D circular cylinders embedded in a vacuum background [69, 70], 2D
photonic crystals consisting of cylindrical air holes embedded in a nonvacuum
background material [71], and 2D photonic crystals consisting of cylindrical
[72, 73, 74, 75, 76] or square [72, 73, 74] rods imbedded in a background
material. In [77] a variational approach using convenient basis functions has
been given to compute the eigenvalues of a 2D photonic crystal in the TM
case. In [77] upper and lower estimates for the eigenvalues were derived.

4.5 Periodic Finite Element Method

In this section we present a periodic finite element (PFE) method, whose
name is due the fact that the finite elements are periodic functions, as well
as the test functions considered. Let us now explain this method in more
detail [78]. Taking, in the 1D case,

ϕ(x) =

{
1 − |x|, −1 ≤ x ≤ 1,
0, x ≤ −1 or x ≥ 1,

(4.5.1)

with n discretization points per period p = nh (h being the step size), we
define, for j ∈ Z, xj = jh = (j/n)p, the translates

φj(x) = ϕ

(
x− xns+j

h

)
, s ∈ Z, (4.5.2)
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that we extend periodically to x ∈ R. We then expand ψ̃(x) in (4.4.16) as
follows:

ψ̃(x) =
n−1∑

j=0

ψjφj(x),

and take v = φl for some l ∈ {0, 1, . . . , n− 1}. As a result we get the linear
system

n−1∑

j=0

ψj < φ′
j − ikφj, φ

′
l + ikφl >= η

n−1∑

j=0

ψj

∫ p

0

dxn2(x)φj(x)φl(x), (4.5.3)

where the angular brackets stand for the complex scalar product in L2(0, p).
In the 2D rectangular case we introduce the bivariate functions

φj1,j2(x, y) = ϕ

(
x− xns+j1

h1

)
ϕ

(
y − ymt+j2

h2

)
, (s, t) ∈ Z

2,

extended periodically to (x, y) ∈ R
2. Here, for (j, l) ∈ Z

2, we have xj =
j1h1 = (j1/n)a1 and yl = j2h2 = (j2/m)a2. As before, we expand ψ(x, y) in
(4.4.16) as follows:

ψ(x, y) =

n−1∑

j1=0

m−1∑

j2=0

ψj1,j2φj1,j2(x, y)

and take v = φl1,l2 for every l1 ∈ {0, 1, . . . , n− 1} and l2 ∈ {0, 1, . . . , m− 1}.
In the TM case, from Eq. (4.4.12), we get

n−1∑

j1=0

m−1∑

j2=0

ψj1,j2

∫ a1

0

∫ a2

0

dxdy {(∇φj1,j2 − iφj1,j2k) · (∇φl1,l2 + iφl1,l2k)}

= η

n−1∑

j1=0

m−1∑

j2=0

ψj1,j2

∫ a1

0

∫ a2

0

dxdyn2(x, y)φj1,j2φl1,l2.

In the TE case we get

n−1∑

j1=0

m−1∑

j2=0

ψj1,j2

∫ a1

0

∫ a2

0

dxdy

ε(x, y)
{(∇φj1,j2 − iφj1,j2k) · (∇φl1,l2 + iφl1,l2k)}

= η
n−1∑

j1=0

m−1∑

j2=0

ψj1,j2

∫ a1

0

∫ a2

0

dxdyφj1,j2φl1,l2 .

In the nonrectangular 2D case we use the basis vectors a1 and a2 to
convert the Helmholtz equation to cartesian coordinates (as we’ll show in
Subsec. 4.6.4 ) before applying the PFE method.
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4.5.1 1D Case

Let us now write the linear system we obtained by applying the 1D PFE
method. From relations (4.5.1) and (4.5.2) consider

φj(x) = 1 − |x− xj |
h

,

with support [xj−1, xj+1]. Then

φ′
j(x) = sign(x− xj)

1

h
,

where

sign(x− xj) =

{
1 if x > xj ,
−1 if x < xj .

Let us now write the linear system (4.5.3) as

n−1∑

j=0

ψja(φj, φl) = η

n−1∑

j=0

ψjb(φj, φl), (4.5.4)

where

a(φj , φl) =

∫ p

0

dx
[
φ′
j(x) − ikφj(x)

][
φ′
l(x) + ikφl(x)

]
, (4.5.5)

and

b(φj , φl) =

∫ p

0

dxφj(x)φl(x), (4.5.6)

In order to get the algebraic form of the linear system (4.5.4), we have to
compute some scalar products of functions in L2(0, p) for n(x) = 1 (homoge-
neous medium).

< φj, φj >=

∫ p

0

dxφj(x)
2 =

∫ xj+1

xj−1

dx

(
1 − |x− xj |

h

)2

=
2

3
h,

< φj, φj+1 >=
∫ p

0

dxφj(x)φj+1(x) =

∫ xj+1

xj

dx

(
1 − x− xj

h

)(
1 +

x− xj+1

h

)
=

1

6
h,

< φ′
j, φ

′
j >=

∫ p

0

dxφ′
j(x)

2 =
2

h
,

< φ′
j, φ

′
j+1 >=

∫ p

0

dxφ′
j(x)φ

′
j+1(x) = −1

h
,
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Further,

< φj , φ
′
j >=

1

2

∫ xj+1

xj−1

d

dx

(
φj(x)

2
)
dx = 0;

< φj , φ
′
j+1 > + < φ′

j, φj+1 >=

∫ xj+1

xj

d

dx
(φj(x)φj+1(x)) dx = 0;

< φj , φ
′
j+1 >= − < φ′

j, φj+1 >= −
∫ xj+1

xj

dx

(
−1

h

)(
1 − x− xj

h

)
=
h

2
.

As a result we get the following circulant matrices:

b(φj , φl) =
h

3




2 1/2 0 0 0 0 0 0 0 1/2
1/2 2 1/2 0 0 0 0 0 0 0
0 1/2 2 1/2 0 0 0 0 0 0
0 0 1/2 2 1/2 0 0 0 0 0
0 0 0 1/2 2 1/2 0 0 0 0
0 0 0 0 1/2 2 1/2 0 0 0
0 0 0 0 0 1/2 2 1/2 0 0
0 0 0 0 0 0 1/2 2 1/2 0
0 0 0 0 0 0 0 1/2 2 1/2

1/2 0 0 0 0 0 0 0 1/2 2




,

Re
{
a(φj, φl)

}
=

1

h




2 −1 0 0 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 −1
−1 0 0 0 0 0 0 0 −1 2




+k2h

3




2 1/2 0 0 0 0 0 0 1/2
1/2 2 1/2 0 0 0 0 0 0
0 1/2 2 1/2 0 0 0 0 0
0 0 1/2 2 1/2 0 0 0 0
0 0 0 1/2 2 1/2 0 0 0
0 0 0 0 1/2 2 1/2 0 0
0 0 0 0 0 1/2 2 1/2 0
0 0 0 0 0 0 1/2 2 1/2

1/2 0 0 0 0 0 0 1/2 2




,
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Im
{
a(φj , φl)

}
= k




0 1 0 0 0 0 0 0 0 −1
−1 0 1 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0
0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 −1 0 1
1 0 0 0 0 0 0 0 −1 0




.

Therefore2

a(φj, φl) = circ

(
2

h
+

2

3
hk2,−1

h
+
h

6
k2 + ik, 0, . . . , 0,−1

h
+
h

6
k2 − ik

)
,

b(φj, φl) = circ

(
2

3
h,

1

6
h, 0, . . . , 0,

1

6
h

)
.

It is immediate that b(φj, φl) is a diagonally strictly dominant symmetric
matrix and hence is positive symmetric.

Putting θj = (2πj/n), the eigenvalues of a(φj , φl)b
−1(φj, φl) are given by

ĉ(z; k) =

2

h
+

2

3
hk2 +

(
−1

h
+
h

6
k2 + ik

)
eiθj +

(
−1

h
+
h

6
k2 − ik

)
e−iθj

2

3
h+

h

3
cos θj

=

6

h2
+ 2k2 +

[
− 6

h2
+ k2

]
cos θj − 6

k

h
sin θj

2 + cos θj
,

where j = 0, 1, . . . , n− 1. Since

ĉ(eiθj ; k) =

6

h2
+ 2k2 +

[
− 6

h2
+ k2

]
cos θj − 6

k

h
sin θj

2 + cos θj

n→+∞≃ k2 +
2n2

a2

1

2

(
2πj

n

)2

+
2kn

a

2πj

n
=

(
k +

2πj

a

)2

,

we see that, as n→ +∞, the eigenvalues of the circulant matrix C converge

2We write circ(q0, q1, . . . , qn−1) for the circulant matrix having
(
q0 q1 . . . qn−1

)
as

its first row.
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to the eigenvalues of the boundary value problem






−ψ′′(x) − 2ikψ′(x) + k2ψ(x) = ηψ(x),

ψ(0) = ψ(a),

ψ′(0) = ψ′(a).

In other words, the eigenvalues of the discretized model converge to those of
the continuous model as the step length goes to zero whenever the refractive
index n(x) is constant. Further, the absolute error (as n → +∞) equals
O(1/n2). In fact, using that h = a/n, we get

Eabs =

6

h2
+ 2k2 +

[
− 6

h2
+ k2

]
cos θj − 6

k

h
sin θj

2 + cos θj
−
(
k +

2πj

a

)2

= −
[

2n2

a2

1

24

(
2πj

n

)4

+
2kn

a

1

6

(
2πj

n

)3
]{

1 +O

((
1

n

)2
)}

= −1

3

(
πj

n

)2
[(

2πj

a
+ k

)2

− k2

]{
1 +O

((
1

n

)2
)}

, (4.5.7)

where we have used that as x→ 0

1 − cos(x) =
1

2
x2 − 1

24
x4 +O(x6), sin(x) = x− 1

3
x3 +O(x5).

Thus for j = 0, 1, 2, . . . the relative error is bounded above by

Erel = −1

3

(
πj

n

)2
{

1 +O

((
1

n

)2
)}

, (4.5.8)

where the expression is exact for k = 0. Here n→ +∞ for fixed j.

4.6 Periodic Finite Difference Method

In this section we propose a new frequency domain method based on a finite
difference scheme applied to Eqs. (4.2.8) and (4.2.9) in order to get the band
structure of both one-dimensional and two-dimensional photonic crystals for
the TM and TE modes, and to compare them to the literature results. We
called this method periodic finite difference (PFD) method since the lin-
ear system generated by the finite difference scheme includes the periodicity
conditions.
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4.6.1 1D Case

Consider the one-dimensional Helmholtz equation

− E ′′
z (x) = ηn2(x)Ez(x). (4.6.1)

Recalling that a photonic crystal is a periodic structure, we apply Bloch’s
Theorem writing

Ez(x) = eikxψ(x), (4.6.2)

where ψ(x+ p) = ψ(x), p being the crystal period. Substituting (4.6.2) into
(4.6.1) we get the modified Helmholtz equation

− ψ′′(x) − 2ikψ′(x) + k2ψ(x) = ηn(x)2ψ(x), (4.6.3)

under the periodic boundary conditions

ψ(0) = ψ(p), ψ′(0) = ψ′(p). (4.6.4)

Let us now introduce the division points

xj =
jp

n
, j = −1, 0, 1, . . . , n, n+ 1.

Finite differencing (4.6.3) yields, for h = p/n,

−ψj+1 − 2ψj + ψj−1

h2
− 2ik

ψj+1 − ψj−1

2h
+ k2ψj = ηN2

j ψj ,

where ψj = ψ(xj), Nj = n(xj), and j = 0, 1, . . . , n. The periodic boundary
conditions take the form

ψ−1 = ψn−1, ψ0 = ψn, ψ1 = ψn+1, ψ1 − ψ−1 = ψn+1 − ψn−1.

We assume that n(x) is periodic in the sense that n(0) = n(a), so that
N−1 = Nn−1, N0 = Nn, and N1 = Nn+1. To remove redundancies in the
above formulation, we use the periodic boundary conditions to find a linear
system in the variables ψ0, ψ1, . . . , ψn−1. We then get the circulant-diagonal
system (see Appendix B)

(C − ηD)Ψ = 0, (4.6.5)

where Ψ is the column vector with entries ψ0, ψ1, . . . , ψn−1, D is the diagonal
matrix with diagonal entries N2

0 , N
2
1 , . . . , N

2
n−1, and C is the circulant matrix

with entries

Cj′,j = cj′−j =






2
h2 + k2, j = j′,

− 1
h2 − ik

h
, j′ − j = 1,

− 1
h2 − ik

h
, j′ − j = 1 − n,

− 1
h2 + ik

h
, j′ − j = −1,

− 1
h2 + ik

h
, j′ − j = n− 1,

0, otherwise.
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Using another notation, the circulant matrix C has the following form:

C =




c c+ 0 0 0 0 0 0 0 0 0 c−

c− c c+ 0 0 0 0 0 0 0 0 0
0 c− c c+ 0 0 0 0 0 0 0 0
0 0 c− c c+ 0 0 0 0 0 0 0
0 0 0 c− c c+ 0 0 0 0 0 0
0 0 0 0 c− c c+ 0 0 0 0 0
0 0 0 0 0 c− c c+ 0 0 0 0
0 0 0 0 0 0 c− c c+ 0 0 0
0 0 0 0 0 0 0 c− c c+ 0 0
0 0 0 0 0 0 0 0 c− c c+ 0
0 0 0 0 0 0 0 0 0 c− c c+

c+ 0 0 0 0 0 0 0 0 0 c− c




,

where c =
(

1
h2 + k2

)
, c+ =

(
− 1
h2 + ik

h

)
and c− =

(
− 1
h2 − ik

h

)
. For each fixed

k-value, the eigenvalues of C are the values of the function

ĉ(z; k) =
2

h2
+ k2 +

(
− 1

h2
− ik

h

)
z +

(
− 1

h2
+
ik

h

)
z−1,

where zn = 1 (see Appendix B). The corresponding eigenvectors are
(1, z, z2, . . . , zn−1)T , where zn = 1. Writing z = eiθj with θj = 2πj

n
for

j = 0, 1, . . . , n− 1, we get for the eigenvalues, corresponding to k,

ĉ(eiθj ; k) = k2 +
2

h2
(1 − cos θj) +

2k

h
sin θj.

Putting tanα = hk(1 + h2k2)−1/2 we can write the eigenvalues as follows:

ĉ(eiθj ; k) = k2 +
2

h2
− 2

h2

√
1 + k2h2 cos(θj + α),

which is nonnegative (and equals zero iff k = 0 and j = 0). Thus k2 is a
simple eigenvalue (j = 0), while

ĉ(eiθn−j ; k) = ĉ(eiθj ;−k).

For even n (and j = n
2
), the number k2 +[4/h2] is another simple eigenvalue.

For k = 0 the remaining eigenvalues are between zero and 4/h2 and have
multiplicity two. As in Subsec. 4.5.1

ĉ(eiθj ; k) = k2 +
2n2

a2

(
1 − cos

2πj

n

)
+

2kn

a
sin

2πj

n

n→+∞≃ k2 +
2n2

a2

1

2

(
2πj

n

)2

+
2kn

a

2πj

n
=

(
k +

2πj

a

)2

,
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we see that, as n→ +∞, the eigenvalues of the circulant matrix C converge
to the eigenvalues of the boundary value problem





−ψ′′(x) − 2ikψ′(x) + k2ψ(x) = ηψ(x),

ψ(0) = ψ(a),

ψ′(0) = ψ′(a).

We get the same formula (4.5.7) and (4.5.8) for the the absolute and relative
errors, respectively.

When studying the system (4.6.5) for two choices of the refractive index,
n(1)(x) and n(2)(x), where n(1)(x) ≥ n(2)(x), the corrisponding diagonal
matrices, D(1) and D(2), satisfy

[D(1)]jj ≥ [D(2)]jj, j = 1, . . . , n;

whereas the circulant matrix C remains invariant. The corresponding eigen-
values η are those of the nonnegative hermitian matrices [D(1)]−1/2C[D(1)]−1/2

and [D(2)]−1/2C[D(2)]−1/2. These matrices satisfy

[D(1)]−1/2C[D(1)]−1/2h · h ≤ [D(2)]−1/2C[D(2)]−1/2h · h,

for each h ∈ Rn. According to [79, Thm. 1 of Sec. 8.7], the eigenva-

lues η
(1)
1 ≤ . . . ≤ η

(1)
n of [D(1)]−1/2C[D(1)]−1/2 and η

(2)
1 ≤ . . . ≤ η

(2)
n of

[D(2)]−1/2C[D(2)]−1/2 satisfy

η
(1)
j ≤ η

(2)
j , j = 1, . . . , n. (4.6.6)

The monotonicity condition (4.6.6) can be used to obtain error estimates
for the eigenvalues η computed. Suppose we know the eigenvalues η of the
system (4.6.5) with refractive indices n(d)(x) and n(e)(x) such that

n(d)(x) ≤ n(x) ≤ n(e)(x),

while we want to compute the eigenvalues of (4.6.5) with refractive index
n(x), knowing the eigenvalues η(e) and η(d) associated to the defect and excess
refractive indices n(e) and n(d). As a result, the corresponding eigenvalues
satisfy the following monotonicity relation

η
(e)
j ≤ ηj ≤ η

(d)
j , j = 1, . . . , n.

Hence, the error in computing ηj is bounded above by η
(e)
j − η

(d)
j .
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4.6.2 2D Case: TM Modes

In this subsection we discuss the application of the PFD scheme to the study
of two-dimensional photonic crystals for TM modes. We therefore consider a
periodic rectangular 2D crystal, where the primitive cell is [0, a] × [0, b]. To
study Transverse Magnetic light propagation in a two-dimensional photonic
crystal, one has to consider the two-dimensional Helmholtz equation

−∇2Ez(x, y) = ηn2(x, y)Ez(x, y). (4.6.7)

Applying Bloch’s Theorem Ez(x, y) = eik·xψ(x, y) to (4.6.7) one gets the
two-dimensional modified Helmholtz equation:

−∇2ψ(x, y) − 2ik · ∇ψ(x) + ‖k‖2ψ(x) = ηn(x, y)2ψ(x, y), (4.6.8)

under the periodicity conditions

ψ(x, 0) = ψ(x, b),

ψ(0, y) = ψ(a, y),

∂ψ

∂y
(x, 0) =

∂ψ

∂y
(x, b),

∂ψ

∂x
(0, y) =

∂ψ

∂x
(a, y),

where x ∈ R
2.

Let us now introduce the division points

xj,l =

(
ja

n
,
lb

m

)
,

where j = −1, 0, 1, . . . , n, n + 1 and l = −1, 0, 1, . . . , m,m+ 1. Finite differ-
encing yields, for hx = a/n and hy = b/m,

− ψj+1,l − 2ψj,l + ψj−1,l

h2
x

− ψj,l+1 − 2ψj,l + ψj,l−1

h2
y

+ 2ikx
ψj+1,l − ψj−1,l

2hx
+ 2iky

ψj,l+1 − ψj,l−1

2hy
+ [k2

x + k2
y ]ψj,l

= ηN2
j,lψj,l,

where ψj,l = ψ(xj,l) and Nj,l = n(xj,l). The subscripts j, l range over j =
0, 1, . . . , n and l = 0, 1, . . . , m. The periodic boundary conditions take the
form

ψj,−1 = ψj,m−1, ψj,0 = ψj,m,

ψj,1 = ψj,m+1, ψ−1,l = ψn−1,l,

ψ0,l = ψn,l, ψ1,l = ψn+1,l,

ψj,1 − ψj,−1 = ψj,m+1 − ψj,m−1, ψ1,l − ψ−1,l = ψn+1,l − ψn−1,l.
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The above formulation of the finite differencing scheme for the (modified)
Helmholtz equation contains many redundancies. These are caused by the
fact that it is sufficient to compute ψj,l for the following (j, l):






(j, l), j = 1, . . . , n− 1, l = 1, . . . , m− 1,

(0, l), l = 1, . . . , m− 1,

(j, 0), j = 1, . . . , n− 1,

(0, 0),

a total of (n − 1)(m − 1) + (m − 1) + (n − 1) + 1 = nm values. Moreover,
ψj,l and ψj′,l′ are to coincide whenever j − j′ is a multiple of n and l − l′

is a multiple of m. Further, Nj,l = Nj′,l′ whenever j − j′ is a multiple of n
and l− l′ is a multiple of m. We can therefore restrict ourselves to these nm
values of ψ and restate the finite differencing scheme as an nm×nm systems
in the variable ψj,l with (j, l) as above.

We now get the following circulant-diagonal system:

(C − ηD)Ψ = 0, (4.6.9)

where Ψ is the column vector with entries ψj,l, η is the spectral parameter,
and C is, for G = Z[n] × Z[m], the G-circulant matrix with entries

C(j′,l′),(j,l) = cj′−j,l′−l =






2
h2

x
+ 2

h2
y

+ k2
x + k2

y, j = j′, l = l′,

− 1
h2

x
− ihx

kx
, j′ − j = 1, l = l′,

− 1
h2

x
− ihx

kx
, j′ − j = 1 − n, l = l′,

− 1
h2

y
− ihy

ky
, j′ = j, l′ − l = 1,

− 1
h2

y
− ihy

ky
, j′ = j, l′ − l = 1 −m,

− 1
h2

x
+ ihx

kx
, j′ − j = −1, l = l′,

− 1
h2

x
+ ihx

kx
, j′ − j = −1 + n, l = l′,

− 1
h2

y
+ ihy

ky
, j′ = j, l′ − l = −1,

− 1
h2

y
+ ihy

ky
, j′ = j, l′ − l = −1 +m,

0, otherwise.

Thus the entry cj,l only depends on the remainders of j and l on dividing by
n and m, respectively. Using another notation, the circulant matrix C takes
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the form of a circulant matrix where each entry is itself a circulant matrix:

C =




α β 0 β̄ γ 0 0 0 0 0 0 0 γ̄ 0 0 0
β̄ α β 0 0 γ 0 0 0 0 0 0 0 γ̄ 0 0
0 β̄ α β 0 0 γ 0 0 0 0 0 0 0 γ̄ 0
β 0 β̄ α 0 0 0 γ 0 0 0 0 0 0 0 γ̄
γ̄ 0 0 0 α β 0 β̄ γ 0 0 0 0 0 0 0
0 γ̄ 0 0 β̄ α β 0 0 γ 0 0 0 0 0 0
0 0 γ̄ 0 0 β̄ α β 0 0 γ 0 0 0 0 0
0 0 0 γ̄ β 0 β̄ α 0 0 0 γ 0 0 0 0
0 0 0 0 γ̄ 0 0 0 α β 0 β̄ γ 0 0 0
0 0 0 0 0 γ̄ 0 0 β̄ α β 0 0 γ 0 0
0 0 0 0 0 0 γ̄ 0 0 β̄ α β 0 0 γ 0
0 0 0 0 0 0 0 γ̄ β 0 β̄ α 0 0 0 γ
γ 0 0 0 0 0 0 0 γ̄ 0 0 0 α β 0 β̄
0 γ 0 0 0 0 0 0 0 γ̄ 0 0 β̄ α β 0
0 0 γ 0 0 0 0 0 0 0 γ̄ 0 0 β̄ α β
0 0 0 γ 0 0 0 0 0 0 0 γ̄ β 0 β̄ α




,

where

α =

(
2

h2
x

+
2

h2
y

+ k2

)
,

β =

(
− 1

h2
x

+ i
kx
hx

)
, β̄ =

(
− 1

h2
x

− i
kx
hx

)
,

γ =

(
− 1

h2
y

+ i
ky
hy

)
, γ̄ =

(
− 1

h2
y

− i
ky
hy

)
.

The eigenvalues of C are the numbers

ĉ(z, w;k) =
2

h2
x

+ k2
x + k2

y +

(
− 1

h2
x

+
ikx
hx

)
z +

(
− 1

h2
x

− ikx
hx

)
z−1

+
2

h2
y

+

(
− 1

h2
+
iky
hy

)
w +

(
− 1

h2
y

− iky
hy

)
w−1,

where zn = 1 and wm = 1. Writing z = eiθj with θj = 2πj
n

and w = eiϕl with
ϕl = 2πl

m
, we can write the eigenvalues in the form

ĉ(z, w;k) = k2
x+k2

y+
2

h2
x

(1 − cos θj)−
2kx
hx

sin θj+
2

h2
y

(1 − cosϕl)−
2ky
hy

sinϕl,

where j = 0, 1, . . . , n − 1 and l = 0, 1, . . . , m − 1. Further, all eigenvalues
are nonnegative (and equal to zero iff k = 0 and j = l = 0). To estimate
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the error in computing the eigenvalue ĉ(z, w;k) in orders of magnitude of
j/n and l/m in the 2D case, we have to add two almost copies of the same
absolute error formula (4.5.7), which results in

Eabs = − 1

3

(
πj

n

)2
[(

2πj

a
+ kx

)2

− k2
x

]{
1 +O

((
1

n

)2
)}

− 1

3

(
πl

m

)2
[(

2πl

b
+ ky

)2

− k2
y

]{
1 +O

((
1

m

)2
)}

,

while the exact expression for the (j, l)-th eigenvalue is as follows:

η(j,l)(k) =

(
2πj

a
+ kx

)2

+

(
2πl

b
+ ky

)2

,

and for the relative error we then get the following upper bound:

Erel = −max

[
1

3

(
πj

n

)2{
1 +O

((1

n

)2
)}

,
1

3

(
πl

m

)2{
1 +O

(( 1

m

)2
)}]

,

where n and m go to +∞ for fixed j and l. Hence, for each fixed j-value,
both the absolute and the relative errors go to zero as 1

n2 + 1
m2 .

For the monotonicity of the eigenvalues of the system (4.6.9) in terms of
the refractive index, the same considerations hold as in the 1D case: the j-
th eigenvalue of the system (4.6.9) decreases monotonically as the refractive
index increases. As said before, this monotonicity property can be used to
get error estimates for the eigenvalues.

4.6.3 1D and 2D Cases: TE Modes

Now consider the TE Helmholtz equation (4.2.2)

−∇ ·
(

1

ε
∇Ez(x, y)

)
= ηEz(x, y),

where ε has periodicity properties and φ has τ -periodic boundary conditions.
Write

Ez(x, y) = eik·xψ,

where ψ is periodic. Then

−∇ · (1
ε
∇ψ) − ik · ∇(

1

ε
ψ) − ik · 1

ε
∇ψ + |k|2ψ = ηψ (4.6.10)
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under periodic boundary conditions. Assuming a rectangular crystal with
step sizes hx in the x-direction and hy in the y-direction, we get

−
1

εj+1,l

ψj+2,l−ψj,l

2hx
− 1

εj−1,l

ψj,l−ψj−2,l

2hx

2hx
−

1
εj,l+1

ψj,l+2−ψj,l

2hy
− 1

εj,l−1

ψj,l−ψj,l−2

2hy

2hy

− ikx

1
εj+2,l

ψj+2,l − 1
εj−2,l

ψj−2,l

4hx
− iky

1
εj,l+2

ψj,l+2 − 1
εj,l−2

ψj,l−2

4hy

− ikx

1
εj,l
ψj+2,l − 1

εj,l
ψj−2,l

4hx
− iky

1
εj,l
ψj,l+2 − 1

εj,l
ψj,l−2

4hy
+ k2ψj,l = ηψj,l,

where j = 0, 1, . . . , n and l = 0, 1, . . . , m and the grid is turned into a grid
on the torus T2 by identifying ψj1,l1 and ψj2,l2 if j1 − j2 is divisible by n and
l1 − l2 is divisible by m. Written in this way, we have only used “even” grid
points and interpolation values of 1/ε. We can therefore cut the number of
grid points in half and write the finite difference scheme as follows:

−
1
2

(
1

εj+1,l
+ 1

εj,l

)
ψj+1,l−ψj,l

hx
− 1

2

(
1
εj,l

+ 1
εj−1,l

)
ψj,l−ψj−1,l

hx

hx

−
1
2

(
1

εj,l+1
+ 1

εj,l

)
ψj,l+1−ψj,l

hy
− 1

2

(
1
εj,l

+ 1
εj,l−1

)
ψj,l−ψj,l−1

hy

hy

− ikx

1
εj+1,l

ψj+1,l − 1
εj−1,l

ψj−1,l

2hx
− iky

1
εj,l+1

ψj,l+1 − 1
εj,l−1

ψj,l−1

2hy

− ikx

1
εj,l
ψj+1,l − 1

εj,l
ψj−1,l

2hx
− iky

1
εj,l
ψj,l+1 − 1

εj,l
ψj,l−1

2hy
+ k2ψj,l = ηψj,l,

where j = 0, 1, . . . , n and l = 0, 1, . . . , m. The latter difference scheme can
be written as follows:

1
2

(
1

εj+1,l
+

1

εj,l

)[
− 1

h2
x

− ikx
hx

]
ψj+1,l +

1
2

(
1

εj−1,l
+

1

εj,l

)[
− 1

h2
x

+
ikx
hx

]
ψj−1,l

+ 1
2

(
1

εj,l+1
+

1

εj,l

)[
− 1

h2
y

− iky
hy

]
ψj,l+1 + 1

2

(
1

εj,l−1
+

1

εj,l

)[
− 1

h2
y

+
iky
hy

]
ψj,l−1

+

[
1
2

(
1

εj+1,l

+
1

εj−1,l

+
2

εj,l

)
1

h2
x

+ 1
2

(
1

εj,l+1

+
1

εj,l−1

+
2

εj,l

)
1

h2
y

+k2

]
ψj,l

= ηψj,l,

where j = 0, 1, . . . , n−1 and l = 0, 1, . . . , m−1. Here ψj,l and εj,l only depend
on the remainders that j and l have on division by n and m, respectively.
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Let us consider the corresponding 1D system

1
2

(
1

εj+1
+

1

εj

)[
− 1

h2
− ik

h

]
ψj+1 + 1

2

(
1

εj−1
+

1

εj

)[
− 1

h2
+
ik

h

]
ψj−1

+

[
1
2

(
1

εj+1

+
1

εj−1

+
2

εj

)
1

h2
+ k2

]
ψj = ηψj ,

where j = 0, 1, . . . , n− 1. Here ψj and εj only depend on the remainder that
j has on division by n. Then

ηh2
∑

j

|ψj|2 =
∑

j

1
2

(
1

εj+1

+
1

εj

)
[−1 − ihk]ψj+1ψj

+
∑

j

1
2

(
1

εj−1

+
1

εj

)
[−1 + ihk]ψj−1ψj

+
∑

j

[
1
2

(
1

εj+1
+

1

εj−1
+

2

εj

)
+ h2k2

]
|ψj |2,

which is supposed to be nonnegative. Using that

∑

j

1
2

(
1

εj−1
+

1

εj

)
[1 − ihk]ψj−1ψj =

∑

j

1
2

(
1

εj
+

1

εj+1

)
[1 − ihk]ψjψj+1;

∑

j

1
2

(
1

εj−1
+

1

εj

)
|ψj |2 =

∑

j

1
2

(
1

εj
+

1

εj+1

)
|ψj+1|2,

we can write this identity in the form

ηh2
∑

j

|ψj|2 =
∑

j

1
2

(
1

εj+1

+
1

εj

)
[−1 − ihk]ψj+1ψj

+
∑

j

1
2

(
1

εj
+

1

εj+1

)
[−1 + ihk]ψjψj+1

+ 1
2

∑

j

[(
1

εj+1
+

1

εj

)
+ h2k2

] (
|ψj|2 + |ψj+1|2

)

= 1
2

∑

j

(
1

εj
+

1

εj+1

)
|(1 − ihk)ψj − ψj+1|2 ≥ 0.

In the 2D case we write k2 = k2
x + k2

y and derive the nonnegativity by a dual
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application of the 1D result. More precisely,

η
∑

j,l

|ψj,l|2 =
1

2h2
x

∑

j,l

(
1

εj+1,l

+
1

εj,l

)
[−1 − ihxkx]ψj+1,lψj,l

+
1

2h2
x

∑

j,l

(
1

εj,l
+

1

εj+1,l

)
[−1 + ihxkx]ψj,lψj+1,l

+
1

2h2
x

∑

j,l

[(
1

εj+1,l

+
1

εj,l

)
+ h2

xk
2
x

] (
|ψj,l|2 + |ψj+1,l|2

)

+
1

2h2
y

∑

j,l

(
1

εj,l+1

+
1

εj,l

)
[−1 − ihyky]ψj,l+1ψj,l

+
1

2h2
y

∑

j,l

(
1

εj,l
+

1

εj,l+1

)
[−1 + ihyky]ψj,lψj,l+1

+
1

2h2
y

∑

j,l

[(
1

εj,l+1
+

1

εj,l

)
+ h2

yk
2
y

] (
|ψj,l|2 + |ψj,l+1|2

)

=
1

2h2
x

∑

j,l

(
1

εj,l
+

1

εj+1,l

)
|(1 − ihxkx)ψj,l − ψj+1,l|2

+
1

2h2
y

∑

j,l

(
1

εj,l
+

1

εj,l+1

)
|(1 − ihyky)ψj,l − ψj,l+1|2 ≥ 0.

Consequently, the matrix at the basis of the finite difference scheme is non-
negative. The zero eigenvalue only occurs if ~k = 0 and ψj,l does not depend
on (j, l). Using the same arguments as in Subsection 4.5.1, we can also prove
that the s-th eigenvalue η (from) below increases as ε(x, y) decreases.

We have generated a finite difference scheme in which 1/ε has been re-
placed by the arithmetic means of two of its values at neighboring division
points. Instead a different averaging scheme for the values of 1/ε could be
obtained, provided the average is periodic in (j, l), which also leads to a lin-
ear system with a nonnegative hermitian matrix. One alternative way to do
so is to interpolate the 1/ε by a surface and to take the interpolating value
at the intermediate points (j + 1

2
, l) and (j, l + 1

2
).

4.6.4 Nonrectangular lattices

In this subsection we’ll see how the PFD technique works when one deals
with nonrectangular lattices as a triangular lattice, which are very common
in photonic crystal structures. The description of the method for both the
TM and the TE modes is provided below.
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TM modes

Consider the 2D modified Helmholtz equation (4.6.8)

−∇2ψ(x, y) − 2ik · ∇ψ(x) + ‖k‖2ψ(x) = ηn(x, y)2ψ(x, y),

under the boundary conditions

ψ(x+m1a1 +m2a2) = ψ(x), x ∈ R
2, m1, m2 ∈ Z,

where we assume a1 and a2 to be two linearly independent vectors in R2.
We also assume that

n(x+m1a1 +m2a2) = n(x), x ∈ R
2, m1, m2 ∈ Z.

Let us now write

x = Aξ, OR

(
x
y

)
=

(
a11 a21

a12 a22

)(
ξ
ζ

)
,

where A is the nonsingular 2 × 2 matrix with columns a1 and a2 and ξ and
ζ are the orthogonal coordinates corresponding to x and y. Letting b1 and
b2 be the column vectors spanning the reciprocal lattice (so that the matrix
B having b1 and b2 as its columns equals 2π(AT )−1), we get

(
ξ
ζ

)
=

1

2π
BTx =

1

2π

(
b11 b12
b21 b22

)(
x
y

)
.

Using that

∂ψ

∂x
=

1

2π

(
b11
∂ψ

∂ξ
+ b21

∂ψ

∂ζ

)
,

∂ψ

∂y
=

1

2π

(
b12
∂ψ

∂ξ
+ b22

∂ψ

∂ζ

)
, (4.6.11)

we obtain

k · ∇ψ =
1

2π
(BT~k) · ∇ξψ; (4.6.12)

∇2ψ =
1

4π2

(
‖b1‖2∂

2ψ

∂ξ2
+ ‖b2‖2∂

2ψ

∂ζ2
+ 2b1 · b2

∂2ψ

∂ξ∂ζ

)
.

Putting
ψ̃(ξ) = ψ(A−1x)

we get for the 2D Helmholtz equation

− 1

4π2

(
‖b1‖2∂

2ψ̃

∂ξ2
+ ‖b2‖2∂

2ψ̃

∂ζ2
+ 2b1 · b2

∂2ψ̃

∂ξ∂ζ

)

− i

π
(BTk) · ∇ξψ̃ + k2ψ̃(ξ) = ηn(A−1ξ)2ψ̃
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with the periodic boundary conditions

ψ̃(ξ +m1, ζ +m2) = ψ̃(ξ, ζ), m1, m2 ∈ Z,

where ξ = (ξ, ζ).
Let us now discretize as before, using the step sizes hξ = (1/n) and

hζ = (1/m). We get

− 1

4π2

(
‖b1‖2ψj+1,l − 2ψj,l + ψj−1,l

h2
ξ

+ ‖b2‖2ψj,l+1 − 2ψj,l + ψj,l−1

h2
ζ

+ 2 b1 · b2
ψj+1,l+1 + ψj−1,l−1 − ψj+1,l−1 − ψj−1,l+1

4hξhζ

)
(4.6.13)

− i

π

(
[BTk]1

ψj+1,l − ψj−1,l

2hξ
+ [BTk]2

ψj,l+1 − ψj,l−1

2hζ

)
+ ‖k‖2ψj,l = ηN2

j,lψj,l,

where the subscripts range over j = 0, 1, . . . , n and l = 0, 1, . . . , m and peri-
odic boundary conditions in discretized form are imposed. Let us implement
the previous reduction to a biindex circulant-diagonal system. The eigenva-
lues of the biindex circulant matrix now are the numbers

ĉ(z, w) = − 1

4π2

(
‖b1‖2 z − 2 + z−1

h2
ξ

+ ‖b2‖2w − 2 + w−1

h2
ζ

+ 2 b1 · b2
(z − z−1) (w − w−1)

4hξhζ

)

− i

π

(
[BTk]1

z − z−1

2hξ
+ [BTk]2

w − w−1

2hζ

)
+ ‖k‖2,

where zn = 1 and wm = 1. Writing z = eiθj with θj = 2πj
n

and w = eiϕl with
ϕl = 2πl

m
, we can write the eigenvalues in the form

ĉ(z, w;k) =
1

2π2

(
‖b1‖2

h2
ξ

(1 − cos θj) +
‖b2‖2

h2
ζ

(1 − cosϕl) +
b1 · b2

hξhζ
sin θj sinϕl

)

+
1

π

(
b1 · k
hξ

sin θj +
b2 · ~k
hζ

sinϕl

)
+ ‖k‖2,

where j = 0, 1, . . . , n − 1 and l = 0, 1, . . . , m − 1. These eigenvalues are all
nonnegative, because

ĉ(z, w;k) =

∥∥∥∥k +
sin θj
2πhξ

b1 +
sinϕl
2πhζ

b2

∥∥∥∥
2

+
1

π2

(
‖b1‖2

h2
ξ

sin4(1
2
θj) +

‖b2‖2

h2
ζ

sin4(1
2
ϕl)

)
.
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The zero eigenvalue only occurs if k = 0, j = 0, and l = 0. As n,m → +∞,
we obtain as a limit

‖k + jb1 + lb2‖2 ,

where the relative error is of the order of O( 1
n2 ) +O( 1

m2 ).

TE modes

Consider the 2D Helmholtz-like equation (4.6.10)

−∇ · (1
ε
∇ψ) − ik · ∇(

1

ε
ψ) − ik · 1

ε
∇ψ + |k|2ψ = ηψ

under the boundary conditions

ψ(x+m1a1 + a2) = ψ(x), x ∈ R
2, m1, m2 ∈ Z,

and a1 and a2 are linearly independent vectors in R2.
Using (4.6.11) and (4.6.12), we obtain

k · ∇xψ =
1

2π
(BT~k) · ∇ξψ;

∇x ·
(

1

ε
∇xψ

)
=

1

4π2

[
‖b1‖2 ∂

∂ξ

(
1

ε

∂ψ

∂ξ

)
+ ‖b2‖2 ∂

∂ζ

(
1

ε

∂ψ

∂ζ

)

+ b1 · b2
∂

∂ζ

(
1

ε

∂ψ

∂ξ

)
+ b1 · b2

∂

∂ξ

(
1

ε

∂ψ

∂ζ

)]
.

Putting
ψ̃(ξ) = ψ(A−1x), ε̃(ξ) = ε(A−1x)

we get for the 2D Helmholtz-like equation

− 1

4π2

[
‖b1‖2 ∂

∂ξ

(
1

ε̃

∂ψ̃

∂ξ

)
+ ‖b2‖2 ∂

∂ζ

(
1

ε̃

∂ψ̃

∂ζ

)

+ b1 · b2
∂

∂ζ

(
1

ε̃

∂ψ̃

∂ξ

)
+ b1 · b2

∂

∂ξ

(
1

ε̃

∂ψ̃

∂ζ

)]

+
1

2πi
(BTk) · ∇ξ

(
1

ε̃
ψ̃

)
+

1

2πi

1

ε̃
(BTk) · ∇ξψ̃ + |k|2ψ̃(ξ) = ηψ̃(ξ)

with the periodic boundary conditions

ψ̃(ξ +m1, ζ +m2) = ψ̃(ξ, ζ), m1, m2 ∈ Z,

where ξ = (ξ, ζ).
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Let us now discretize as before, using the step sizes hξ = (1/n) and
hζ = (1/m). We get

1
2

[
1

ε̃j+1,l
+

1

ε̃j,l

][
−‖b1‖2

4π2h2
ξ

+
[BTk]1
2πihξ

]
ψ̃j+1,l+

1
2

[
1

ε̃j,l
+

1

ε̃j−1,l

][
−‖b1‖2

4π2h2
ξ

− [BTk]1
2πihξ

]
ψ̃j−1,l

+ 1
2

[
1

ε̃j,l+1
+

1

ε̃j,l

][
−‖b2‖2

4π2h2
ζ

+
[BTk]2
2πihζ

]
ψ̃j,l+1+

1
2

[
1

ε̃j,l−1
+

1

ε̃j,l

][
−‖b2‖2

4π2h2
ζ

− [BTk]2
2πihζ

]
ψ̃j,l−1

− b1 · b2

16π2hξhζ

[(
1

ε̃j,l+1
+

1

ε̃j+1,l

)
ψ̃j+1,l+1+

(
1

ε̃j,l−1
+

1

ε̃j−1,l

)
ψ̃j−1,l−1

−
(

1

ε̃j,l+1
+

1

ε̃j−1,l

)
ψ̃j−1,l+1−

(
1

ε̃j,l−1
+

1

ε̃j+1,l

)
ψ̃j+1,l−1

]

+

[
1
2

[
1

ε̃j+1,l
+

1

ε̃j−1,l
+

2

ε̃j,l

] ‖b1‖2

4π2h2
ξ

+ 1
2

[
1

ε̃j,l+1
+

1

ε̃j,l−1
+

2

ε̃j,l

] ‖b2‖2

4π2h2
ζ

+k2

]
ψ̃j,l

= ηψ̃j,l,

where j = 0, 1, . . . , n−1 and l = 0, 1, . . . , m−1. Here ψ̃j,l and ε̃j,l only depend
on the remainders that j and l have on division by n and m, respectively.



Chapter 5

Numerical Results

In this Chapter we present some numerical results of band structure calcula-
tions using the PFE and PFD methods for one-dimensional photonic crystals
and the PFD method for two-dimensional photonic crystals and compare the
results to those found in the literature. In the 2D case, the photonic crystal
configurations considered in this section are those depicted in Fig. 5.3 in the
case of a rectangular lattice and in Fig. 5.12 in the case of a nonrectangular
lattice. In these case the band structure for both the TM and the TE modes
will be given.

All numerical results in this Ph.D. thesis have been obtained using Mat-
Lab (version 7.4.0) on a MacBook equipped with an Intel Core 2 Duo pro-
cessor with a speed of 2.2 GHz.

Figure 5.1: Example of a periodic structure with period p in the case of

a piecewise constant refractive index. The figure illustrates a 1D three layer

photonic crystal with different layer amplitudes.

133
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Table 5.1: The first two columns show the periodic (k = 0) and antiperiodic

(k = π/p) eigenvalues for a two-layer photonic crystal (a1 = 1, n1 = 1,

a2 = 3, n2 = 2), whereas the last two columns show that the periodic (k = 0)

and antiperiodic (k = π/p) eigenvalues for a three-layer photonic crystal

(a1 = 1, n1 = 1.5, a2 = 3, n2 = 1, a3 = 0.8, n3 = 2).

k = 0 k = π/p k = 0 k = π/p

0.0000 0.1570 0.0000 0.2555

0.2330 0.6574 0.5226 1.3462

0.9258 1.5593 1.7318 3.2200

2.0541 2.9132 3.6086 5.5404

3.5775 4.7380 6.6503 9.1831

5.4212 7.0470 9.8367 13.0079

7.5175 9.8207 14.2923 17.8273

9.8275 12.4493 19.2987 23.4142

13.0583 15.4995 25.0186 29.5911

16.7057 19.0993 31.6193 37.1683

5.1 1D spectrum

In the case of one-dimensional photonic crystals (Fig. 5.1) we considered both
a two-layer and a three-layer crystal and compared our numerical results to
the analytical counterpart given by the Hill discriminant formalism. In fact,
from the Oscillation Theorem 2.3.1, to get the 1D spectrum it is sufficient
to find the zeros of ∆(η) = 2 (periodic eigenvalues) and the zeros of ∆(η) =
−2 (antiperiodic eigenvalues). Therefore, by using the 1D PFE and PFD
techniques one finds the periodic and antiperiodic eigenvalues by putting
the wavenumber in the circulant systems (4.5.4) and (4.6.5), equal to zero
(k = 0) and to π/p (k = π/p), respectively. From Subsecs. 4.5.1 and 4.6.1
we know that both the absolute and relative errors in the homogeneous case
(constant refractive index) are of the order of 1/n2, n being the number of
grid points. We therefore tested the code numerically by considering 1000
grid points and checked that the error for a constant index of refraction was
of the order of 10−6, as expected. This gives us a good indication of the
accuracy of the PFE and PFD techniques, also when the refractive index
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Figure 5.2: The left hand-side of the figure shows the Hill discriminant

of both a two-layer (a1 = 1, n1 = 1, a2 = 3, n2 = 2) and a three-layer

(a1 = 1, n1 = 1.5, a2 = 3, n2 = 1, a3 = 0.8, n3 = 2) photonic crystal. On the

right hand-side the allowed bands are depicted in blu and the band gaps in

white. The PFD algorithm finds the zeros of ∆(η) = 2 (periodic eigenvalues)

and of ∆(η) = −2 (antiperiodic eigenvalues), respectively. The accuracy of

the algorithm depends on the number of grid points as shown in Subsecs.

4.5.1 and 4.6.1.

varies with respect to the x variable, as it happens in 1D photonic crystals.
In fact, Fig. 5.2 shows that the numerical results of both the PFE and the
PFD band structure calculations are in good agreement with the analytical
results given by the Hill discriminant formalism (see Sec. 2.3). Tables 5.1
show the numerical results obtained, i.e., the zeros of ∆(η) = 2 (periodic
eigenvalues) and the zeros of ∆(η) = −2 (antiperiodic eigenvalues), which
are in perfect accordance with those derived from Hill’s discriminant.
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5.2 TM spectrum in rectangular lattices

Figure 5.3: The top half of the figure shows a photonic crystal composed of

a square distribution of dielectric rods embedded in air and the corresponding

Brillouin zone. The Γ-point corresponds to kx = ky = 0, the X-point to kx =

π/a and ky = 0 and finally at the M-point one has kx = ky = π/a, a being

either period. The bottom of the figure shows a photonic crystal composed of

a square distribution of dielectric veins in air and the corresponding Brillouin

zone.

When dealing with TM modes in rectangular lattices, we first consider
the case where the photonic crystal is composed of a square distribution
of dielectric rods embedded in air (Fig. 5.3) and then the case where the
photonic crystal is composed of a rectangular distribution of dielectric veins
in air (Fig. 5.3). In either case the dielectric constant has the value of 8.9
and the rods have radius r = 0.2a and the thickness of the veins is 0.165a, a
being the side of the period parallelogram (a square in these cases).

By the PFD technique we computed the spectrum solving the circulant-
diagonal eigenvalue problem (4.6.9) for fixed k values. Since we are dealing
with square lattices where n(x) is invariant under the group of automor-
phisms of the square, it is sufficient to consider one eighth of the Brillouin
zone (Fig. 5.3) as explained in Sec. 4.1. Therefore we solved the circulant-
diagonal system each time for different wavevector values varying, as specified
below, on the boundary of the blue region shown in Fig. 5.3:
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1. kx ∈ [0, π/a], ky = 0,

2. kx = π/a, ky ∈ [0, π/a],

3. kx ∈ [0, π/a], ky ∈ [0, π/a].

Figure 5.4: The left-hand side of the Figure shows the band structure

corresponding the the defect and excess grid approximation for TM modes.

On the right-hand side the 20 × 20 corresponding grids are shown.

Since the PFD technique uses a regular grid, the dielectric constant ε(x, y)
has been sampled first in a defect approximation where the dielectric values
different from one have been taken when the grid points are only inside the
circles with radius r = 0.2a, and then in an excess approximation where the
dielectric values different from one have been taken for both the inside grid
points and the grid point closest to the circles with radius r = 0.2a. The
right-hand side of Fig. 5.4 shows the dielectric constant distribution on a
20×20 regular grid both in the defect and the excess approximation and the
left-hand side shows the corresponding band structure.

As explained at the end of Secs. 4.6.1 and 4.6.2, taking a finer grid,
the band structure in the excess and defect approximations converge to each
other and yield results ready to be compared with those in the literature. In
our case it has been sufficient to take a 40× 40 grid for this to happen. The
outcome is shown in Fig. 5.5.



138 CHAPTER 5. NUMERICAL RESULTS

Figure 5.5: The left-hand side of the figure shows the result obtained by

the PFD technique and the right-hand side the results compared obtained

by the Joannopoulos et al. group using the Fourier expansion (FE) method.

The PFD results have been achieved using a 40 × 40 grid where the excess

and defect approximation give basically the same band structure figure.

The procedure followed to compute the band structure for the configu-
ration of dielectric veins shown in Fig. 5.3 is the same as the one described
above. Numerical results and comparisons with the literature are shown in
Figs. 5.6 and 5.7.

The considerations for the error shown in Sec. 5.1 are still valid. In fact,
from Subsec. 4.6.2 il follows that the absolute and relative errors behave like
n−2 + m−2 (where n and m are the number of grid points in the x and y
axis, respectively) when the refractive index is constant (homogeneous case),
and therefore we first tested our code in this situation taking a 40 × 40 grid
and obtaining a 10−3 error as expected. In the inhomogeneous case the error
should be of the same order and in fact Figs. 5.5 and 5.7 show that there
is a perfect geometrical matching between our results and those obtained by
Joannopoulos et al. ones [1] using the Fourier expansion (FE) method.

5.3 TE spectrum in rectangular lattices

As we did in Sec. 5.2 for the TM modes, to deal with the TE modes in
rectangular lattices, we first consider the case where the photonic crystal
representation is given in Fig. 5.3 (dielectric rods embedded in air) and then
the case where the photonic crystal representation is depicted in Fig. 5.3
(dielectric veins in air). Once again in either case the dielectric constant has
the value of 8.9, the rods have radius r = 0.2a and the thickness of the veins is
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Figure 5.6: The left-hand side of the Figure shows the band structure

corresponding to the defect and excess grid approximation for TM modes.

On the right-hand side the 40 × 40 corresponding grids are shown.

Figure 5.7: The left-hand side of the figure shows the result obtained by

the PFD technique and the right-hand side the results compared obtained by

the Joannopoulos et al. group [1] using the Fourier expansion (FE) method.

The PFD results have been achieved using a 60 × 60 grid where the excess

and defect approximation give basically the same band structure figure.

0.165a, a being the side of the square lattice. Since the period parallelogram
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Figure 5.8: The left-hand side of the Figure shows the band structure

corresponding the the defect and excess grid approximation for TE modes.

On the right-hand side the 20 × 20 corresponding grids are shown.

is given by a square, the considerations for the choice of the values of the
wavevector k and the procedure to compute the band structure are the same
as in Sec. 5.2. In fact, we computed the photonic band structure with an
excess and a defect approximation of the dielectric constant in a regular grid
(Fig. 5.8 and Fig. 5.9). Therefore we took a finer grid, in order to get a
band structure ready to be compared with the results in the literature. As
before we considered a 40 × 40 grid for the dielectric rods embedded in air
configuration (Fig. 5.3) and a 60×60 grid for the dielectric veins configuration
(Fig. 5.3). The corresponding band structures are shown on the left-hand
side of Fig. 5.10 for the dielectric rods embedded in air, and on the left-hand
side of Fig. 5.11 for the dielectric veins in air. On the right-hand side of
either Figure we displayed the results by Joannopoulos et al. [1]. As we
can see, our band structure calculations don’t fully agree with those given in
[1]. Nevertheless, in the TM case we have perfect agreement (Figs. 5.5 and
5.7). This contrast is caused by the greater difficulty we have encountered in
treating TE modes, especially when using finite differences. In fact, in the TE
case, the Helmholtz equation (4.2.2) contains the dielectric constant inside
the differential operator and therefore the finite difference approximation has
poor accuracy whenever the dielectric constant is a 2D piecewice constant
function, though the error analysis doesn’t differ substantially in the two
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Figure 5.9: The left-hand side of the Figure shows the band structure

corresponding to the defect and excess grid approximation for TE modes.

On the right-hand side the 40 × 40 corresponding grids are shown.

Figure 5.10: The left-hand side of the figure shows the result obtained by

the PFD technique and the right-hand side the results compared obtained by

the Joannopoulos et al. group [1] using the Fourier expansion (FE) method.

The PFD results have been obtained using a 40 × 40 grid where the excess

and defect approximations give basically the same band structure figure.

cases.
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Figure 5.11: The left-hand side of the figure shows the result obtained by

the PFD technique and the right-hand side the results compared obtained by

the Joannopoulos et al. [1] group using the Fourier expansion (FE) method.

The PFD results have been achieved using a 40 × 40 grid where the excess

and defect approximations give basically the same band structure figure.

5.4 Nonrectangular lattice

Figure 5.12: The figure shows a photonic crystal made of a triangular

distribution of rods embedded in a dielectric medium and the corresponding

Brillouin zone. The Γ-point corresponds to kx = ky = 0, the M-point to

kx = 0 and ky = 2π/(
√

(3)a) and finally at the K-point one has kx = 2π/(3a)

and ky = 2π/(
√

(3)a), where the period parallelogram is a rhombus with

sides a.

In this section we study the band strucure of 2D photonic crystals when
its lattice is a parallelogram. In order to make comparisons with the liter-
ature, we choose the configuration depicted in Fig. 5.12 where the crystal
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is composed of a triangular distribution of rods embedded in a dielectric
medium (ε = 13) whose radius is r = 0.48a, a being the identical sides of the
period parallelogram. As before, we give and discuss the band structure for
both TM and TE modes.

5.4.1 TM and TE spectra

By the PFD technique we computed the spectrum solving the circulant-
diagonal eigenvalue problem (4.6.13) for fixed k values. This time we are
dealing with a nonrectangular lattice. From Sec. 4.1 we know that it is
sufficient to consider the restricted Brillouin zone Z0 (Fig. 5.12). Therefore
we solved the circulant-diagonal system each time for different wavevector
values varying them, on the boundary of the blue region shown in Fig. 5.12
as follows:

1. kx = 0, ky ∈ [0, 2π/(
√

3a)],

2. kx ∈ [0, 2π/(3a)], ky = 2π/(
√

3a),

3. kx ∈ [2π/(3a), 0], ky ∈ [2π/(
√

3a), 0].

Figure 5.13: The left-hand side of the figure shows the result obtained by

the PFD technique and the right-hand side the results compared obtained by

the Joannopoulos et al. [1] group using the Fourier expansion (FE) method.

The PFD results have been achieved using a 40 × 40 grid where the excess

and defect approximations give basically the same band structure figure.

As in Secs. 5.2 and 5.3, the dielectric function ε(x, y) has been sampled
first in a defect approximation and then in an excess approximation. More
precisely, in the first case, the dielectric values different from one have been
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taken when the grid points are only inside the circles with radius r = 0.48a,
while in the excess approximation they have been taken for both the inside
grid points and the grid point closest to the circles with radius r = 0.48a.
Then we took a finer grid, in order to get a band structure ready to be
compared with the results in the literature. We considered a 40 × 40 grid.
The corresponding band structures for both the TM and the TE modes are
shown on the left-hand side of Fig. 5.13, while the right-hand side shows the
results by Joannopoulos et al. [1]. As we saw in the preceding Sections the
TM band spectrum matches the results in the literature unlike in the case
of TE band spectrum. The reason is that the Helmholtz equation (4.2.2) for
TE modes contains the dielectric constant inside the differential operator.
Therefore the finite difference approximation has poor accuracy when the
dielectric constant is a 2D piecewice constant function.

5.5 Conclusions

In this PhD thesis we studied the mathematical properties of 1D and 2D
pure photonic crystals with the purpose of finding a satisfactory analytical
or numerical method to get their band spectrum.

In Chapter 2 we focused on the mathematical study of properties of
1D photonic crystals. This part of the thesis relies upon the master the-
sis of Paolo Pintus, who is finishing his PhD thesis at the Scuola Superiore
Sant’Anna in Pisa, Italy. In Chapter 3 we considered 1D photonic crystals
and tried to solve a design problem, i.e., given the allowed frequencies and
the photonic path at each allowed frequency we want to identify the corre-
sponding refractive index as a function of the position in the crystal. We
managed to give a satisfactory answer in the case where the refractive index
is a piecewise constant function, which is the situation that best fits 1D cry-
stals. We published our results in [43], where basically Chapters 2 and 3 of
this thesis are summarized.

The main subject of Chapters 4 and 5 is a numerical approach to find
the band structure of two-dimensional photonic crystals. With this purpose
we first focused on a periodic finite difference (PFD) method which led to a
successful computation of the spectrum for TM modes. When dealing with
TE modes, however, the numerical results did not correspond in a satisfactory
way with those in the literature. In the 1D case we succeeded in obtaining
satisfactory results by using the PFE method.

On the basis of the numerical results obtained by either method, we
consider the periodic finite element (PFE) method more suitable than the
PFD method to compute the band structures in the TE mode case. In fact,
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we are confident that the PFE method will give us satisfactory results in the
2D case, as it did in the 1D case. Research is going on in this direction and
a paper on the subject is in preparation.
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Appendix A

Extreme values of Hill’s

discriminant

In this appendix we prove that, for the Helmholtz-Schrödinger equation hav-
ing a potential and refractive index of period p, Hill’s discriminant ∆(η) has
exactly one extreme value in each nonempty bounded band gap. This result
has been established in the Schrödinger case by Kramers [29]. It is crucial
to constructing the quasimomentum k(η). Here we apply Kramers’ methods
in the Helmholtz-Schrödinger case.

Let us start with two linearly independent real solutions φ1(η, x) and
φ2(η, x) of the Helmholtz-Schrödinger equation

− ψ′′(η, x) +Q(x)ψ(η, x) = ηn(x)2ψ(η, x), (A.0.1)

where Q(x+ p) ≡ Q(x) is real-valued and n(x+ p) ≡ n(x) is positive. Let us
assume that the initial conditions of these two solutions do not depend on η.
In other words, let the matrix

Φ =

(
φ1(η, 0) φ2(η, 0)
φ′

1(η, 0) φ′
2(η, 0)

)

be nonsingular and not depend on η. We write c = det Φ 6= 0 and omit the
argument η in the entries of Φ. It is then clear that

φ1(η, x) = φ1(0)θ(η, x) + φ′
1(0)ϕ(η, x), (A.0.2a)

φ2(η, x) = φ2(0)θ(η, x) + φ′
2(0)ϕ(η, x), (A.0.2b)

where θ(η, x) and ϕ(η, x) are defined by (2.1.3).
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In analogy with the period map we define the real numbers βjl (j, l = 1, 2)
as follows:
(
φ1(η, x+ p) φ2(η, x+ p)
φ′

1(η, x+ p) φ′
2(η, x+ p)

)
=

(
φ1(η, x) φ2(η, x)
φ′

1(η, x) φ′
2(η, x)

)(
β11 β12

β21 β22

)
. (A.0.3)

Substituting x = 0 and using (A.0.2) we get

(
θ(η, p) ϕ(η, p)
θ′(η, p) ϕ′(η, p)

)(
φ1(0) φ2(0)
φ′

1(0) φ′
2(0)

)
=

(
φ1(η, p) φ2(η, p)
φ′

1(η, p) φ′
2(η, p)

)

=

(
φ1(0) φ2(0)
φ′

1(0) φ′
2(0)

)(
β11 β12

β21 β22

)
.

Hence, (
β11 β12

β21 β22

)
= Φ−1

(
θ(η, p) ϕ(η, p)
θ′(η, p) ϕ′(η, p)

)
Φ,

i.e., the β-matrix is similar to the period map. As a result, these two matrices
have the same trace and determinant:

∆(η) = β11 + β22, (A.0.4a)

1 = β11β22 − β12β21. (A.0.4b)

Let us now apply Cramer’s rule to solve the linear system obtained from
(A.0.3) by substituting x = 0 for βjl (j, l = 1, 2). We get

β11 =
1

c

∣∣∣∣
ϕ1(η, p) ϕ2(0)
ϕ′

1(η, p) ϕ′
2(0)

∣∣∣∣ , β12 =
1

c

∣∣∣∣
ϕ2(η, p) ϕ2(0)
ϕ′

2(η, p) ϕ′
2(0)

∣∣∣∣ , (A.0.5a)

β21 =
1

c

∣∣∣∣
ϕ1(0) ϕ1(η, p)
ϕ′

1(0) ϕ′
1(η, p)

∣∣∣∣ , β22 =
1

c

∣∣∣∣
ϕ1(0) ϕ2(η, p)
ϕ′

1(0) ϕ′
2(η, p)

∣∣∣∣ . (A.0.5b)

Let us denote the η-derivative of ψ by ψ̇. Differentiating (A.0.1) by η we
get

−ψ̇(η, x) +Q(x)ψ̇(η, x) = ηn(x)2ψ̇(η, x) + n(x)2ψ(η, x).

By the method of variation of parameters we easily get

ψ̇(η, x) = c1(η, 0)φ1(η, x) + c2(η, 0)φ2(η, x)

+
1

c

∫ x

0

dy n(y)2

∣∣∣∣
φ1(η, x) φ2(η, x)
φ1(η, y) φ2(η, y)

∣∣∣∣ψ(η, y), (A.0.6)

where (
c1(η, 0)
c2(η, 0)

)
= Φ−1

(
ψ̇(η, 0)

ψ̇′(η, 0)

)
.
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By differentiation with respect to x we get

ψ̇′(η, x) = c1(η, 0)φ′
1(η, x) + c2(η, 0)φ′

2(η, x)

+
1

c

∫ x

0

dy n(y)2

∣∣∣∣
φ′

1(η, x) φ′
2(η, x)

φ1(η, y) φ2(η, y)

∣∣∣∣ψ(η, y). (A.0.7)

Thus if the initial conditions ψ(η, 0) and ψ′(η, 0) do not depend on η, (A.0.6)
and (A.0.7) simplify to

ψ̇(η, x) =
1

c

∫ x

0

dy n(y)2

∣∣∣∣
φ1(η, x) φ2(η, x)
φ1(η, y) φ2(η, y)

∣∣∣∣ψ(η, y), (A.0.8a)

ψ̇′(η, x) =
1

c

∫ x

0

dy n(y)2

∣∣∣∣
φ′

1(η, x) φ′
2(η, x)

φ1(η, y) φ2(η, y)

∣∣∣∣ψ(η, y). (A.0.8b)

Putting

Ijl(η) =
1

c

∫ p

0

dy n(y)2φj(η, y)φl(η, y),

we apply (A.0.7) to ψ ∈ {φ1, φ2} and obtain

φ̇1(η, p) = −φ2(η, p)I11(η) + φ1(η, p)I12(η), (A.0.9a)

φ̇′
1(η, p) = −φ′

2(η, p)I11(η) + φ′
1(η, p)I12(η), (A.0.9b)

φ̇2(η, p) = −φ2(η, p)I12(η) + φ1(η, p)I22(η), (A.0.9c)

φ̇′
2(η, p) = −φ′

2(η, p)I12(η) + φ′
1(η, p)I22(η). (A.0.9d)

Differentiating (A.0.5) with respect to η and using (A.0.9) we get

β̇11 = −β12I11(η) + β11I12(η), (A.0.10a)

β̇12 = −β12I12(η) + β11I22(η), (A.0.10b)

β̇21 = −β22I11(η) + β21I12(η), (A.0.10c)

β̇22 = −β22I12(η) + β21I22(η). (A.0.10d)

Equations (A.0.4a), (A.0.10a), and (A.0.10d) imply that

∆̇(η) = −β12I11(η) + β21I22(η) + (β11 − β22)I12(η). (A.0.11)

Differentiating (A.0.11) with respect to η and using (A.0.10) we obtain after
some simplifications

∆̈(η) = −∆(η){I11(η)I22(η) − I12(η)
2}

− β12İ11(η) + β21İ22(η) + (β11 − β22)İ12(η). (A.0.12)
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Now suppose ∆(η) > 2 or ∆(η) < −2, while ∆′(η) = 0. For this particular
value of η, the period map and hence also the β-matrix has two distinct real
eigenvalues with product 1. Hence there exists a matrix Φ of initial conditions
of the solutions φ1 and φ2 which diagonalizes the period map and creates a
diagonal β-matrix. We note that this diagonalization only occurs for this
particular η value, since we need to avoid any η-dependence of Φ. Hence, for
this η we have β12 = β21 = 0. Then for this η

0 < ∆(η)2 − 4 = (β11 + β22)
2 − 4{β11β22 − β12β21}

= (β11 − β22)
2 + 4β12β21 = (β11 − β22)

2,

so that
0 < |β11 − β22| < |∆(η)|. (A.0.13)

For this η we have according to (A.0.11)

0 = ∆̇(η) = (β11 − β22)I12(η),

and hence I12(η) = 0. Using (A.0.12) we then get for this η

∆̈(η) = −∆(η)I11(η)I22(η) + (β11 − β22)İ12(η), (A.0.14)

where I11(η) > 0 and I22(η) > 0. Now

İ12(η) =
1

c

∫ p

0

dy n(y)2{φ1(η, y)φ̇2(η, y) + φ̇1(η, y)φ2(η, y)}

=
1

c2

∫ p

0

dy

∫ y

0

dz n(y)2n(z)2

∣∣∣∣
φ1(η, y) φ2(η, y)
φ1(η, z) φ2(η, z)

∣∣∣∣×

× {φ1(η, y)φ2(η, z) + φ2(η, y)φ1(η, z)}

=
1

c2

∫ p

0

dy

∫ y

0

dz n(y)2n(z)2{φ1(η, y)
2φ2(η, z)

2 − φ2(η, y)
2φ1(η, z)

2}.

A change of variables yields

İ12(η) =
1

c2

∫ p

0

dy

∫ p

y

dz n(y)2n(z)2{φ2(η, y)
2φ1(η, z)

2 − φ1(η, y)
2φ2(η, z)

2}.

Taking half the sum of the two expressions for İ12(η), we get by easy estima-
tion

|İ12(η)| <
1

2c2

∫ p

0

dy

∫ p

0

dz n(y)2n(z)2{φ1(η, y)
2φ2(η, z)

2+φ2(η, y)
2φ1(η, z)

2}

= I11(η)I22(η). (A.0.15)

Consequently, from (A.0.13)-(A.0.15) we see that ∆̈(η) is positive if ∆(η) > 2
and ∆̇(η) = 0, and negative if ∆(η) < −2 and ∆̇(η) = 0. As a net result,
the Hill discriminant has exactly one extreme value in the interior of each
nonempty bounded band gap, as claimed.



Appendix B

Circulant Matrices

Let C = (Cj,l)
n
j,l=1 be a real or complex n × n matrix. Then C is called a

circulant matrix [80] if Cj,l only depends on the remainder of j− l on division
on n. This means that a circulant matrix depends on only n real or complex
parameters c0, c1, . . . , cn−1, where

Cj,l =

{
cl−j, l ≥ j,

cl−j+n, l < j.

In other words,

C =




c0 c1 c2 . . . . . . . . . cn−1

cn−1 c0 c1 . . . . . . . . . cn−2

. . .
. . .

. . .
...

. . .
...

c1 c2 c3 . . . . . . . . . c0




.

It is then easily verified that the column vector (1, z, z2, . . . , zn−1)T is an
eigenvector of C whenever zn = 1. The corresponding eigenvalue is

ĉ(z) = c0 + zc1 + c2z
2 + . . .+ cn−1z

n−1, zn = 1.

Introducing, apart from the factor 1/
√
n, the Vandermonde matrix

U =
1√
n




1 1 . . . 1
z1 z2 . . . zn
z2
1 z2

2 . . . z2
n

...
...

...
zn−1
1 zn−1

2 . . . zn−1
n



,
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where z1, . . . , zn are the distinct n-th roots of unity, we obtain

CU = UD,

where U is a unitary matrix and

D = diag(ĉ(z1), . . . , ĉ(zn))

is a diagonal matrix. Hence circulant matrices allow for an orthonormal
basis of eigenvectors and are hence diagonalizable. The diagonalizing unitary
transformation does not depend on the circular n× n matrix.

Before generalizing the notion of a circulant matrix, we introduce the
additive group Z[n] of remainders of the integers on division by n. In factor,
Z[n] is obtained from the additive group Z of the integers by identifying any
pair of integers which differ by an integer multiple of n. Then a circulant
matrix C is a Toeplitz matrix whose entries are numbered using Z[n]. In
other words, Cj,l = cl−j, where the difference l − j is to be intended in Z[n].

Now let G be an arbitrary finite abelian group. By a G-circulant matrix
[81] we mean a matrix whose entries j, l are indexed by G and only depend
on the difference l − j in G: Cj,l = cl−j . Let us now restrict ourselves to the
case

G = Z[n] × Z[m],

where n,m ≥ 2. Then the entries of the G-circulant matrices C are indexed
by pairs

(j, l) ∈ {1, 2, . . . , n} × {1, 2, . . . , m},
where

C(j1,j2),(l1,l2) =






c(l1−j1,l2−j2), l1 ≥ j1, l2 ≥ j2,

c(l1−j1+n,l2−j2), l1 < j1, l2 ≥ j2,

c(l1−j1,l2−j2+m), l1 ≥ j1, l2 < j2,

c(l1−j1+n,l2−j2+m), l1 < j1, l2 < j2.

So the eigenvectors of C are the column vectors with (j, l)-th entry zj−1wl−1,
where zn = 1 and wm = 1. When aligned as columns of an nm×nm matrix,
we get a matrix which becomes unitary on division by

√
nm. We then get

CU = UD,

where D is the diagonal matrix with (j, l)-th entry

ĉ(zj−1, wl−1) =
n−1∑

r=0

m−1∑

s=0

c(r,s)[z
j−1]r[wl−1]s,

for any (z, w) satisfying zn = 1 and wm = 1. Here, ĉ(ζ, ω) is a bivariate
polynomial of the variables ζ and ω.
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