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Time past and time future

What might have been and what has been

Point to one end, which is always present.

T.S. Elliott
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1
Introduction

This work is dedicated to defend one simple intuitive yet �ercely challenged claim: namely, that

time �ows. Or, better, to show that there is a well-de�ned, algebraically rooted sense in which

it makes sense to say that time possesses objective dynamical features.

The idea that time �ows or passes is undoubtedly part and parcel of our subjective experience:

What we experience in one moment, glides, in the next moment, into the past. There

it remains forever, irretrievable, exempt from further change [...] and yet enshrined

in our memory as something that once �lled out experience as an immediate present

(Reichenbach, 1956, p. 1).

The key philosophical problem concerning the �ow of time is thus whether this perception of

transiency is just a mere shadow of our mind, or else a constitutive feature of the physical world.

This problem is surely one of the most ancient and controversial philosophical puzzles, originating

with the clash between the �xity of Parmenidean ontology and the �uidity of Eraclitean world.

Since the second half of the twentieth century, analytic philosophy brought this problem to new

life, favored by the collapse of the classical world-view brought about by the special and the

general theories of relativity. Strong arguments have been raised against the logical consistency,

the compatibility with scienti�c theories, or simply the usefulness of providing physical time

with a proper motion, so that those defending the objective passage of time, or dynamists, are

now by far a minority.

One of the main purposes of this work is to give new tenability to the dynamist view, picturing

a non-standard but still adequate way of understanding the passage of time. Before tracing the

guiding lines of this project, it will be therefore necessary to point out the essential features any

purported model of time's passage should satisfy in order to be satisfactory.

1
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1.1

The Ingredients of Temporal Becoming

The passage of time, or temporal becoming, is commonly understood as a continuous and in-

escapable shift of the present moment along the time axis � a conception which often goes under

the name of the moving or transient-now ; as such, becoming is essentially a twofold concept: on

the one hand, it requires a distinction among past, present and future tenses while, on the other

hand, it suggests a continuous change in the moment counting as present. To provide temporal

becoming with full objective status, we are thus in need of two distinct objective ingredients:

One is a mind-independent distinction between past and future. The other is a mind-

independent continuous change of the instant of separation, the present. [...] In a

word, the �rst ingredient, which is still static, requires a mind-independent "being

present". [...] To get the idea of passage, typical of becoming, we need the second

ingredient, some sort of mind-independent change (Dorato, 1995, pp. 10-11)'.

The conceptual core of temporal becoming is thus composed of both a static and a dynamic

components, which any minimal account of objective temporal becoming should accordingly

make sense of. In what relations do they stand as of each other?

On the one hand, it seems that the latter component is by hypothesis in need of the former one:

in fact, at each time, it calls for a unique determination of the present moment, whose continuous

change the dynamics of time should consist of. In the course of our discussion, we'll have the

chance to see that this is not necessarily the case, since time can be provided with intrinsic

dynamical features before any objective characterization of tenses is given. Nonetheless, we shall

provisionally stick to common understanding, and take it for granted that the motion of time

consists precisely in the motion of the present moment, so that the objectivity of the dynamic

ingredient of temporal becoming is su�cient reason so that its static component is objective too.

Whether the converse implication is also true is more complex matter. In fact, the existence of

a unique, global yet unchangeable partition of time into past, present and future would hardly

seem to make any sense: if no moment of time was ever allowed to pass from futurity to pastness,

then how could we really speak of past and future times at all?

However, there might exist non-dynamical ways as to how the change in the distribution of

tenses could take place. Zeilicovici (1989) o�ered an example of how tenses might be given

objective meaning without ipso facto demanding a moving-now conception of time. His starting

point was the epistemic disparity between past and future events, on which basis he inferred the

existence of a metaphysical disparity between past and future times: since time is the ordered

set of events as of before and after, `future time can be no less synthetic and no less a priori than

future events; in both case we may predict existence, but may not take it for granted (Zeilicovici,
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1989, p. 509)'. On this basis, he de�ned the present moment as the upper boundary of directly

acknowledged time, whose concrete existence he thought to be certain. By contrast, he gave

to all times later than the present a purely abstract or epistemic status, so that at each time

the present moment should be understood as the separating element between existing time and

merely conjectured time. The result was that, at each moment, the list of existing moments was

substituted by another list, including all moments entering the previous list plus the present

one; and since: `movement is always upon the same [...] time series, while the di�erent moments

to which nowness applies belong to di�erent [...] time series (Zeilicovici, 1989, p. 519)', this may

provide us with an objective, metaphysically rooted distinction between tenses which did not

require any shift or �ow of the transient-now.

Indeed, there may be doubts about the e�cacy of this proposal (Oaklander, 1991, 1992; Faye,

1993); but in any case, it has the merit of showing that we can make sense of the objective asym-

metry of tenses without being committed to the dynamical conception of time. So, even granting

that the dynamical ingredient of becoming is conceptually in need of an exact determination of

past, present and future times, the converse implication seems not to be true.

In addition to the static and the dynamical ingredients, the moving-now interpretation of tem-

poral becoming also provides it with a directional component: the present moment is typically

thought to move irreversibly from past to future, and it is precisely the unique direction of this

motion which objectively distinguishes the future from the past.

Price (2010) listed this directional ingredient, namely `that it is an objective matter which of

two non-simultaneous events is the earlier and which the later ' among the constitutive features

of temporal becoming. However, this hypothesis is controversial, for it seems to be no necessary

condition for making sense of the motion of time to establish whether or not that motion is

unidirectional. Furthermore, no direct logically connection is there between the directionality of

time and the two further components of temporal becoming.

On the one hand, requiring the present moment to be moving is not trivially as much as requiring

its motion to be unidirectional, i.e. both linear and irreversible: �rst, one may be willing to

provide time with non-linear topologies (Newton-Smith, 1980), forcing the present moment to

move along di�erent trajectories; and second, even though such possibility was thought to be too

exotic, there may still be the case that time moved along a closed circle, to which the relations of

before and after would not apply. Conversely, the directional component of time may consist in

a mere structural or topological asymmetry (anisotropy), independent of the internal dynamics

of time (Mehlberg, 1961; Grünbaum, 1973). On the other hand, Dorato (2000a) proved that

the existence of a structural asymmetry of that kind is also independent of the existence of any

objective distinction of tenses, at least as long as such a distinction is made on a metaphysical

basis. For this reason, we shall provisionally regard the directionality of time as a desirable but

not indispensable feature any model of objective temporal becoming should satisfy.
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1.2

Outline of the Work

Despite its perceptual evidence and its philosophical authority, becoming has undergone a �erce

attack both in its static and in its dynamical senses. On the one front, critiques to the static

component of becoming were raised at the boundary between philosophy and physics. Follow-

ing the groundbreaking intuitions of Weyl (1949) and Gödel (1949a,b), philosophers of physics

o�ered several arguments aiming to prove an objectively rooted distinction among tenses to be

incompatible with relativity of simultaneity imposed by the special and the general theories of

relativity. On the other front, analytic philosophers challenged the dynamical component of

becoming on logical grounds: Smart (1949), Williams (1951) and Grünbaum (1967a) laid the

foundations of a still living debate concerning the kinematic implications of expressions such as

"time �ows" or "time goes one way".

The �rst part of this work is dedicated to discuss arguments of both kinds. In Chapter 2, we shall

face the most purely philosophical side of the dispute, namely the ontological one. The problem

of objective temporal becoming is traditionally formulated as the problem whether there exists

any ontological asymmetry among tenses. Our discussion will show that, contrary to some recent

critiques, this problem is a metaphysically sensible one but, at the same time, it is of no use to

settle the problem of objective temporal becoming. In Chapter 3, we shall face the objections

coming from the special theory of relativity. On the one hand, con�rming the results obtained

in Chapter 2, we'll show that the representation of space-time held by the special theory of

relativity does not per se calls for the metaphysical equivalence of tenses. On the other hand we

shall see that, contrary to what is usually taken for granted, the structure of special-relativistic or

temporally-oriented Minkowski space-time can support an objective, though weakened, account

of tenses. Finally, Chapter 4 will face some of the major arguments which have been moved

against the logical consistency of objective temporal becoming. In particular, we shall see those

arguments to be e�ective only provided that the motion of time was understood ingenuously, in

a way similar to that of a moving solid body.

In the second part of this work, we shall outline an algebraically-rooted model for objective

temporal becoming. The basis for constructing our model will be o�ered by a generalized version

of the general theory of dynamical systems, which we shall introduce in Chapter 5. Chapter 6

will be dedicated to study the di�erent ways how a dynamical system might reverse its evolution:

in particular, that study will be useful to make sense of the directionality of time. Finally, in

Chapter 7 we shall provide time with a dynamical system on its own, o�ering a tenable model

of the dynamical component of temporal becoming and, under some minor constraints, also of

its static component. In particular, we shall see that such dynamical systems represent the

motion of time in an entirely satisfactory way just in case their motion is completely irreversible.

This way, the problem of the objectivity of temporal becoming will be reduced to that of the

objectivity of the direction of time.



The Ontology of Becoming 5

Chapter 8 will �nally compare the dynamical interpretation of the directionality of time o�ered

by our model with the structural interpretation given by the received view. The result of our

examination will be a rebuttal of the standard approach, which we'll show to be intimately

circular, in favor of an entire reversal of the problem of the direction of time: rather than

wondering how the standard mathematical representation of time can be directional, we should

wonder whether a less expensive, and obviously directional mathematical model of time could

support our representation of physical phenomena.



2
The Ontology of Becoming

Becoming is usually understood as the coming into being of objects, facts and events: according

to this view, what pushes the present moment towards the future is a continuous receding of the

existent from futurity to pastness or, equivalently, a continuous realization of future moments,

which progressively acquire existence while becoming present, while present moments, turning

past, fade away into nothingness:

What is becoming? [...] The present is the only reality. While it sleeps away, we

enter into a new present, thus again remaining in the eternal Now. (Reichenbach,

1956, p. 2).

Our commonplace use of tenses codi�es our experience that any particular present

is superseded by another whose event-content thereby "comes into being". It is

this occurring of now or coming into being of previously future events and their

subsequent belonging to the past which is called "becoming" (Grünbaum, 1967a, p.

7).

In this view, the motion of time is a product of the ontic voltage (Callender, 2010a) obtaining

between past and future, which accounts for both the static and the dynamical components of

becoming: existence is precisely what objectively distinguishes the present moment, as well as

the unique motor of its change. For this reason, the problem of objective temporal becoming

got intertwined with the old-dated debate between presentism and eternalism, understood as

metaphysical theses respectively asserting and denying the ontological disparity of tenses.

The aim of this chapter is twofold. On the one hand, we shall defend the soundness of the

presentist-eternalist debate from some recent sceptical objections, which might indirectly a�ect

the meaningfulness of objective temporal becoming. On the other hand, we shall examine the

bearings such a debate may have on the problem of �nding an objective, ontological basis for

the present moment.

6
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2.1

Presentism and Eternalism

At the beginning of the twentieth century, J. E. McTaggart tried to show that time is not real

(McTaggart, 1908). His refutation rested on a decomposition of time into what he referred to

as the A-series � namely, the tripartition of events and instants into past, present and future

tenses (A-determinations) � and the B-series � i.e. the linear order of precedence, simultaneity

and succession (B-determinations). McTaggart regarded the A-series as the very essence of

temporality, for time essentially involves change, and change would not be possible without

tenses: at any moment of time, the death of queen Anne will always be the same death of an

English queen, springing from identical causes and leading to identical e�ects; the sole possible

properties an event could lose or acquire, and therefore the sole properties that would account

for a change, are its A-determinations. However, he argued that there seems to be no sensible

way in which A-determinations could be predicated of events. For, whether they were monadic

properties or binary relations, they would be incompatible as of each other, and thus they could

not be predicated of the same events unless they were at di�erent times, which would obviously

require temporality and hence A-determinations, circularly. Nor this circularity could be avoided

by asserting that any present event is present, while it was future and it will be past, because

in this way we would be constructing an A-series of A-determinations, which in its turn would

be in need of its own A-series and so on, inde�nitely. But if A-determinations are essential to

time, and there is no way of predicating A-determinations of real events, then time itself cannot

be anything real1.

One century later, time has regained its reality, but the legacy of McTaggart's refutation still

lives in the philosophical contention between presentism and eternalism (Dyke, 2002). Both

theories are tangled clusters of logic, metaphysics and philosophy of language; nonetheless, we

shall restrict our attention to the sole metaphysical and more fundamental side of their dispute.

Instead of denying the existence of time, eternalists (or B-theorists) moved from McTaggart's

critique of pastness, presentness and futurity for reappraising the role of B-determinations. In

their view, time is nothing but the linear or partial ordering of moments or events according to

the relation of before and after and, therefore, there is no metaphysical disparity among what

is actually past, present or future: `There is nothing special about the present; things at other

times are just as real; no time is metaphysically distinguished (Hinchli�, 1996, p 122)'. Real or

concrete events are given all at once, as in a block-universe, though they distribute di�erently

along the time axis and they present themselves successively to the human mind.

On the opposite hand, presentists (or A-theorists) follow McTaggart in making tenses an in-

dispensable ingredient of temporality, though they provide them with ontological signi�cance.

Presentism is the claim that `the way things are is the way things presently are', so that `only

1See also Broad (1923) and Mellor (1981).
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the present exists (Hinchli�, 1996, p. 123)': at each time, existence (or reality, actuality, or de-

termination) is solely predicable of what is present, so that events progressively be-come or come

into existence while shifting from futurity to presentness, and cease of existing while receding

from presentness to pastness. For this reason, presentism has also been marked as an ontology

of becoming, while eternalism has been labeled as an ontology of being � in which events do not

come into existence: they simply are, since they owe the same ontological status independently

on whether they are past, present or future2.

If presentism was right, it could indeed provide us with a suitable objective criterion to dis-

tinguish the present moment from the past and the future ones, namely existence. In recent

years, both presentist and eternalist metaphysics have nonetheless lost part of their initial ap-

peal. Some philosophers casted doubts on the very existence of a real disagreement between

them, arguing that presentism and eternalism merely consist in di�erent pragmatic attitudes

towards temporality. Now it seems that, if that critique was sound and if objective temporal

becoming could only be grounded on a presentist metaphysics, then the question whether time

�ows would be trivialized in its turn. The �rst part of this chapter is thus dedicated to de-

fend presentism and eternalism against this charge of metaphysical equivalence, discussing two

arguments respectively put forward by Dorato (2006, 2008a) and Savitt (2006).

2.1.1 Triviality and Contradiction

There are principally two ways to talk about existence. One way is generally called tensed, the

other tenseless or detensed. In the former sense existence is a property objects, facts or events

may lose or acquire3, and whose possession accordingly varies with time: objects, facts and

events exist tensedly just in case they exist now, namely just in case they are co-present with

the time at which they are claimed to be existing. In the latter sense, existence is a property

objects, facts and events possess independently of their location in time, and on which tenses

bear no e�ect: objects, facts and events exist tenselessly or detensedly just in case they existed

in the past, they exist now or they will exist in the future, namely just in case they exist at some

time and place.

Following Dorato (2006, 2008a), let us consider the presentist claim that all which exists is

present, and let us compare it with the tensed-detensed dichotomy. In what sense should we

understand "existence" in this case? If the presentist understood existence in the tensed sense,

then it seems that she would be holding the plain triviality that all which exists now is present.

2Philosophers sometimes distinguish between presentism and eternalism on the one hand, understood as
ontological thesis concerning the existence of past, present and future tenses, and three-dimensionalism and four-

dimensionalism (or perdurantism) on the other, understood as analogous theses concerning the existence of things,
facts or events (Sattig, 2006). The relations presentism and eternalism bear to three and four-dimensionalism,
however, is controversial. For the sake of simplicity, I shall therefore treat presentism and eternalism as theses
concerning both the existential status of tenses and that of the things, facts and events they host. This usage,
on the other hand, is consonant with that of the arguments I shall discuss.

3Following Dorato (2000b) we shall consider objects, facts and events as ontologically equivalent though
linguistically alternative descriptions of the very same building-blocks of physical reality; accordingly, we shall
take it for granted that existence may be equivalently predicated of all.
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But conversely, if she understood existence in the tenseless or detensed sense, then it seems that

she would be claiming that all which ever existed (whether in the past, in the present or in the

future) is just what is present, with the absurd consequence that no past or future events ever

did or will take place. Symmetrically, if we took the eternalist claim that past and future events

exist as being asserting that they exist tensedly, then we would reduce it to the contradictory

claim that both past and future events are taking place now; and if we took it as being claiming

that they exist detensedly, we would equate it to the plain truism that past and future events are

either past or present or future. So, it seems that if both presentism and eternalism are con�ned

between contradiction and triviality, then they can possess no metaphysical signi�cance, and

their purported disagreement dissolves4.

Indeed, this argument seems to be striking a very hard blow against the metaphysical side of the

presentist-eternalist contention. Nonetheless, it has a weak point. Presentism and eternalism

do not only concern time. They are ontological theories, for they bear positive content about

existence: they say what facts, objects or events existence should be predicated of. In the former

case, existence is bound to presentness; in the latter case, to temporality. When the presentist

claims that only those events which are present exist, she is actually o�ering a de�nition of

existence which is equivalent to presentness:

Presentism is the doctrine that [...] everything is present; more generally, [...] nec-

essarily, it is always true that everything is (then) present (Sider, 1999, pp. 325,

326)'.

Presentism is the view that only present objects exist. According to presentism, if

we were to make an accurate list of all the things that exist � i.e. a list of all the

things that our most unrestricted quanti�ers range over � there would be not a single

non-present object on the list (Markosian, 2004, p. 47).

Similarly, when the eternalist claims that past and future events exist as well, she is o�ering an

alternative de�nition of existence which is equivalent to taking place in time:

Presentism is the temporal analogue of the modal doctrine of actualism, according

to which everything is actual. The opposite view in the philosophy of modality

is possibilism, according to which nonactual things exist; its temporal analogue is

eternalism, according to which there are such things as merely past and merely future

entities (Sider, 1999, p. 326, my epmhasis).

[E]ternalism [is] the view that our most inclusive domain of quanti�cation includes

past, present, and future entities (Crisp, 2004, p. 19).

In either case, existence is just what presentists and eternalists claim it to be; no additional

quali�cation is needed. But if so, then to recognize presentness a proper (tensed) mode of

4See also Ludlow (2004).
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existence is equivalent to join the presentist's side, while admitting that all tenses are on the

same (detensed) ontological level is simply to choose for the eternalist. In other words, tensed

existence is nothing but a condensed formula for the presentist thesis that existence is bound to

presentness, while tenseless existence is nothing but a place-holder for the eternalist claim that

existence is common to all tenses.

To make this point clearer, let us focus on Dorato's own de�nition of tensed existence. In his

words, `event e "exists" in the tensed sense of existence if and only if it exists now (Dorato,

2008a, p. 256)'. I emphasized the only if -clause to point out that presentness is a necessary

condition to satisfy tensed existence: that is, nothing which is not present could ever exist in

the tensed sense. But allowing for a way of existing which is proper to the sole present objects,

facts or events, is just to discard the eternalist thesis that all tenses are ontologically on a par.

Conversely, Dorato de�nes tenseless (or detensed) existence as follows: `for all present moments,

event e "exists" in a tenseless sense of existence if and only if it has existed, exists in the present

or it will exist (Dorato, 2008a, p. 256)'. This time, I emphasized the if -clause to underline that

it is su�cient for event e to be either present, or past, or future in order to be endowed with

the tenseless or detensed acceptation of existence: in other words, one may think of a way of

"being there" which all past, present and future events share, independently of their location in

time. Indeed, one may think that making room for a detensed acceptation of existence would

not ipso facto rule out presentism, since providing all tenses with a common existential status

does not seem to exclude that a metaphysical disparity may nevertheless hold between them,

over and above the metaphysical level they shared. However, no presentist could ever coherently

subscribe this claim, since for her existence should be an all-or-nothing property: there can be no

di�erent degrees of existence (Smith, 2002), simply because there can be no di�erent degrees of

presentness. One may admit that past, present and future events shared the same metaphysical

status only if she had already given up presentism; speaking of a tenseless or detensed acceptation

of existence could therefore make sense from, and only from, an eternalist point of view5.

In sum, wondering in what sense presentists or eternalists should understand "existence" is

tantamount to questioning presentism or eternalism itself, for each one respectively consists in

understanding existence in either the tensed or detensed acceptation. In this light, putting

tensed existence into presentism, or detensed existence into eternalism, amounts to equating

two identical claims, while putting detensed existence into presentism, or tensed existence into

eternalism, amounts to equating two contradictory statements. If there is any triviality or

contradiction in here, it does not lie on presentism and eternalism themselves.

5One may object that some presentists actually speak of detensed existence. However, that use is purely
rhetorical: when speaking of something existing in the past, or in the present or in the future they are tacitly
referring to the sole present things, since according to presentism there can be nothing concrete which past and
future existence can denote.
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2.1.2 Metaphysical Equivalence, Different Perspectives

Savitt (2006) complained about the lack of clarity in the standard characterizations of presentism

and eternalism, putting the reason of this de�ciency down to `the fact that those engaged in the

debate have typically left out of consideration one term in a relational notion', since `one has to

state what eternalism and presentism are relative to some background spacetime theory (Savitt,

2006, p. 123)'. In accordance to the common-sense view, he restricted his attention to classical

or Galilean space-time, accordingly assuming the following set of hypotheses:

CP1 Space-time is a set of events G having the structure of Galilean space-time.

CP2 In particular, Galilean space-time can be foliated uniquely into hyperplanes of simultaneity,

which are equivalence classes of simultaneous events.

CP3 The present for an event e is the hyperplane of simultaneity that contains e.

CP4 Hyperplanes of simultaneity occur successively.

On this basis, he equated presentism and eternalism respectively to:

CP5 The existence of an event is its occurrence.

CE5 An event e exists if and only if e ∈ G.

Savitt saw no substantial di�erence between CP5 and CE5, coming to the conclusion that presen-

tism and eternalism stand for alternative perspectives toward time, rather than for incompatible

theories about existence:

If the distinction between (classical) presentism and eternalism comes to the di�er-

ence between CP5 and CE5, then the two views are compatible. One should not

hastily conclude, however, that alleged di�erence between these venerable positions

has been shown to be merely verbal. The di�erence between CP5 and CE5 re�ects

a di�erence in perspective as well as a di�erence in language. Presentists adopt a

point of view that is close to temporal experience, confronting the actually occur-

ring, as opposed to merely past or future, events. Eternalists consider the totality of

actual, as opposed to merely possible or otherwise non-historical, events. The latter

perspective seems necessary for physics, for the determination of the geometric struc-

ture of space-time. The former perspective is, as it were, that of those living inside

the structure contemplated by the latter from "outside" (Savitt, 2006, p. 124).

Before moving to an evaluation of Savitt's proposal, some re�nements seem to be in order.

Quite surprisingly, of premises CP1-CP4, none seems to be essential to Savitt's characterization

of presentism, even in its classical sense. CP5 simply equates an event's existence with its
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occurrence; it doesn't make any reference to global space-like foliations or absolute hyperplanes

of simultaneity, nor to any linear ordering of succession to hold among them � indeed, it makes no

reference to presentess at all! Similarly, Savitt's de�nition of eternalism seems to be independent

of tenses, for CE5 does not mention any of premises CP2-CP4. To be true, there is a very simple

explanation for this: Savitt took it for granted that, while reading CP5, "existence" should be

interpreted tensedly and that, while reading CE5, it should be interpreted in the detensed sense.

Since tensed existence is just existence at present time, while detensed existence is existence at

past, present or future times, this may be thought to be su�cient to put back presentness into

presentism, and tenses into eternalism. CP5 and CE5 would then read as follows:

CP5' The existence of an event at present is its occurrence.

CE5' An event e exists in the past, in the present or in the future if and only if e ∈ G.

However, we cannot accept this solution: as we saw, presentism is meant to bind existence to

presentness, not to characterize present existence; and, similarly, the aim of eternalism is to

equate existence with temporality, not to depict what past, present or future existence should

amount to. Therefore, if presentness had to enter the existence = occurrence equation demanded

by CP5, it would have to appear in the occurrence's side: for the presentist understands pre-

sentness as the distinguishing feature of the scope of existence (Crisp, 2004), while Savitt made

it an attribute of existence itself.

Restating CP5 so that it could be a faithful formulation of presentism would accordingly require

to qualify occurrence as occurrence at present time:

CP5* The existence of an event is its occurrence at present.

In its turn, CP5* calls for a reformulation of CP3. In fact, CP3 de�nes presentness only relative

to each event e. However, if presentness had to characterize existence, as the presentist wished, it

had to be de�ned in a non-relational way, for otherwise existence would be a relational property

in its turn. For this reason, in addition to CP3, presentists should also assume the following:

CP3* At each time, exactly one hyperplane of simultaneity quali�es as (absolutely) present.

Once again, CP5* demands that "existence" should be interpreted neither tensedly nor de-

tensedly, for otherwise presentism would be arti�cially trivialized or led into a contradiction.

Presentness is therefore restricted to qualify occurrence; CP1-CP4 and CP3* then play their

part, determining how presentness itself should be understood in the classical context.

Symmetrically in statement CE5 past, present and future should not be predicated of existence,

but of that portion of space-time to which each existing event is supposed to belong. Fortunately

CP1-CP4 and CP3* guarantee that (at each time) the whole of Galilean space-time is uniquely
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partitioned into past, present and future times, so that we don't have to restate CE5 to make

it compatible with eternalism: in this case, we only have to keep ourselves from interpreting

"existence" either tensedly or detensedly, and to understand CE5 itself as a way of characterizing

the detensed mode of existence.

Let us now turn to Savitt's conclusion. His main contention was that presentism and eternalism

are nothing but di�erent ways to look at the same state of a�airs, for CP5 and CE5 carry no

di�erent metaphysical content. Unfortunately, he didn't o�er any detailed explanation for the

last clause; presumably, and reasonably, he regarded an event's occurrence and its belonging to

(Galilean) space-time as being equivalent. So far, so good. But does his conclusion stand even

in the face of our critique of CP5 and CE5?

If I am right, then CE5 should be confronted with CP5*-CP3*; and hence, being part of

(Galilean) space-time should be confronted with lying on that unique space-like hyperplane

of simultaneity which is meant to denote the present moment (Sattig, 2006, p. 62). At a �rst

glance, once may still be willing to subscribe Savitt's conclusion: CP1-CP4 demand that the

whole of space-time is invariantly foliated into linearly ordered hyperplanes of simultaneity, so

that looking at space-time in its entirety and looking at one of such hypersurfaces at a time

would just amount to assuming alternative but compatible perspectives on the very same thing.

However, things are not as simple as they seem. If presentism and eternalism really were equiv-

alent theses, they had to fail in exactly the same cases. That would certainly be possible if the

presentist and eternalist positions were supposed to be respectively expressed by CP5 and CE5:

for there seems to be no sensible way how an event could fail to occur without failing to take

place in space-time, or vice versa. However, this is no longer true while replacing CP5 with

CP5*-CP3*. In fact, events may well fail to be present by occurring at a hyperplane of simul-

taneity which is not the present one, albeit still belonging to space-time; and therefore, as long

CE5 and CP5*-CP3* disagree as whether events on past or future hyperplanes of simultaneity

do exist, they bring metaphysically di�erent content.

2.2

Incommensurability

Nonetheless, there is something problematic in the way presentism and eternalism are usually

contrasted. Let us make one step back, and let us assume that, at any time, there exists an

objective partition of time into past, present and future. To keep this statement neutral with

respect to the presentist and the eternalists metaphysics, let us suppose that partition to be

obtained by means of a non-metaphysically rooted criterion: for example, by holding hypotheses

CP1-CP4 in Savitt's argumentation which, as we saw, are independent of the classical statements

of presentism and eternalism encoded in statements CP5*-CP3* and CE5. On this basis, let us

wonder what the presentist and eternalist theses would respectively add to our assumption.
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On the one hand, presentists would say that all which exists lies in the present; on the other

hand, eternalists would say that all which exists indi�erently lies in the past, or in the present

or in the future. Presentists would assign a distinct metaphysical role to tenses; eternalists

would not. Presentists would agree that tenses are both objectively distinct and metaphysically

unhomogeneous; eternalists would agree that tenses are objectively distinct, insofar as they are

supported by CP1-CP4, but not metaphysically unhomogeneous. That's all �ne: we already

knew that. But, let us go on, and wonder: how could they disprove their opposers?

Let us imagine that a presentist wanted to prove that past and future did not exist: how could

she do that, without assuming them to be there, in such a way that they could be predicated of

non-existence? Of course, she would have the choice open to claim that past and future events

are simply abstract entities: this way she could claim that past and future did not exist, just like

we are capable to say that Santa Claus does not exist, without ever being in need of assuming

its non-abstract existence. To say it with Markosian (2004), Socrates would be in the same boat

as Santa Claus. But in that way, the presentist thesis about what concretely exists would be

turned into a thesis about what is abstract, and the same point would apply as well: how could

the presentist defend her claim that past and future entities are abstract, without circularly

assuming that they are so because they are simply "not there"?

Let us look at the same problem from the eternalist side. The presentist is claiming that past

and future events, objects or facts are merely abstract entities, whose metaphysical status is

the same shared by Santa Claus. In the face of this claim, the eternalist could easily reply

that, `indicating the proper contrast class6 will provide us with enough boats to allow them to

sail separately (Savitt, 2006, p. 118)'. That is to say: if a mode of existence other than the

tensed and the abstract ones was available, then past and future could be put back again among

concretely existent things. But certainly, if it was there, and if its role was that of separating

abstract things from concrete ones (which is precisely the function Dorato (2006, 2008a) assigned

to tenseless existence), then it would also have to include the present. So, how to prove that

such a mode of existence is available, without falling back again into the eternalist thesis that

there is a way of being which is common to past, present and future?

There seems to be no way here to escape circularity. In sum: presentism and eternalism are not

per se trivial, but any attempt to support them against each other would be; and this is the case,

simply because they are incommensurable. In fact, as ontological theses they provide us with

di�erent ontologies and, as such, they are speaking of di�erent things: presentism and eternalism

are not as much di�erent perspectives on the same "thing", as they are di�erent choices of what

should count as such (Sider, 1999). Our metaphysical discourses are bound to lie inside either

one of these two choices (or whatever possible intermediate ontological thesis7), and they just

cease to be signi�cant outside them. For this reason, there is no way to decide in favor of any

of them on purely ontological grounds, for on that level they simply cannot be compared.

6Following Austin (1962), both Savitt and Dorato maintained that the word "existence" has a de�nite meaning
only to the extend that it is used in contrast to a speci�ed class of events, objects or facts.

7See � 3.2.
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Now it seems that, as long as a clear-cut distinction between tenses is granted, no objective

basis to make that choice can be found. However, once that condition is relaxed, the distinction

between presentist and eternalist ontologies becomes clearer. In fact, insofar as it denies the

ontological disparity of tenses, eternalism is perfectly compatible with the denial of any objective

distinction among them. The opposite, of course, is true for presentism. In de�ning existence

via the concept of presentness, presentism clearly demands the latter to be already given clear-

cut objective meaning, or else it would degenerate into a kind of idealism (Gödel, 1949b). But

if so, then presentist metaphysics will never per se provide us with any objective account of

tenses, and this just because being itself in need for such an account: rather than o�ering

a metaphysical criterion to discriminate among past, present and future, it o�ers a temporal

criterion to discriminate among di�erent ontological levels.

This way we are naturally led to abandon the classical version of the presentism-eternalism

debate, along with its Galilean spatio-temporal background, where the existence of an objec-

tive partition of tenses is given ab initio by conditions CP1-CP4. Rather, we shall investigate

whether the existence of an objectively distinguished present moment is allowed by non-classical,

relativistic space-times.



3
Temporal Becoming and Relativity

Newtonian or classical world consists of a unique temporal succession of three-dimensional in-

stantaneous spaces of chronologically simultaneous events, whose relative distance is independent

of any coordinate system or reference frame (Friedman, 1983, pp. 72-73); accordingly, Newto-

nian `[a]bsolute, true, and mathematical time' is commonly understood as a one-dimensional

di�erentiable manifold, topologically di�eomorphic to the real line, which `in and of itself and

of its own nature, without reference to anything external, �ows uniformly and by another name

is called duration (Newton, 2004, p. 64)'.

Since the raise of special relativity theory (Einstein, 1952), temporal duration lost its abso-

luteness, and physical world ceased to be partitionable into a unique, absolute succession of

instantaneous three-spaces of chronologically simultaneous events. For this reason, most scien-

tists and philosophers of science regarded special relativity theory as a de�nitive refutation of

the existence of a unique, objective present moment whose motion constituted the passage of

time.

This chapter is dedicated to discuss some of the most debated objections which have been moved

against temporal becoming on the basis of special relativity theory. In the �rst part, we shall

discuss the relativistic counterpart of the classical ontological debate between presentism and

eternalism, examining whether moving to relativistic space-time might change the result of their

contention. In the second part, we shall instead examine what geometrical features of relativistic

space-time may possibly play the part of the moving objective present moment demanded by

objective temporal becoming.

16
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3.1

Elements of Space-Time Theories

Relativistic space-time 〈M, η,5〉 is a four-dimensional connected manifold M endowed with a

Lorentzian metric tensor η and a�ne connection 5 (Friedman, 1983). Less hermetically, we may

think of it as a mathematical structure with no "holes", which locally resembles the more familiar

three-dimensional Euclidean space and one-dimensional time, and in which points or events are

individuated by means of quadruples of real numbers. Each physical process taking place in

this manifold traces a four-dimensional curve, or world-line, whose instantaneous evolution is

described at any point x by a tangent vector X; the collection of all tangent vectors at a given

point is called the tangent space at that point, which we shall denote by Tx. The metric tensor

η is a bilinear, symmetric and non-degenerate function from pairs of tangent vectors to real

numbers. Finally, 5 is a derivative operator, intuitively determining the relative direction of

any two tangent spaces at nearby points; however, since 5 is uniquely determined by η, it is

often omitted.

For any point x in M, η determines a partition of the tangent space Tx at x into time-like

vectors, null vectors and space-like vectors, for which the quantity η(X,X) is respectively equal,

greater than and less than zero; correspondingly, a curve σ is called null, time-like or space-like

depending on whether its tangent vector �eld is everywhere null, time-like or space-like, while

any two points x and y are light-like, time-like or space-like separated if they are connected by

a null, time-like or space-like curve, respectively. The set of all null vectors at x forms a double

cone with vertex in x, called the null cone or light-cone of x. Intuitively speaking, the light-cone

at a point x is the locus of all points of M which could be reached by a forward or backward

light signal sent from x. Moreover, given the limiting character the speed of light has in special

relativity theory, light-cones also have the role of delimiting the region of space-time containing

all events which can be causally or physically connected to x. To mark the conceptual di�erence

between light-cones and this region, we shall call the latter causal cone.

For any vector X ∈ Tx tangent to a given curve σ passing through x, the hyperplane of simul-

taneity of x relative to σ is a three-dimensional cross-section of M, coinciding with the locus

of all vectors Y ∈ Tx orthogonal to X, i.e. such that η(X,Y ) = 0. In special relativity theory,

the light-cone of any point x is an invariant feature of x while, due to the invariance of the

speed of light, any trajectory σ through x is associated with a distinct hyperplane of simul-

taneity. Consequently, for any point x in special-relativistic space-time, it is possible to make a

non-relative temporal orientation for all time-like curves through x, while observers moving at

di�erent speed would make di�erent judgments as of what events space-like separated from x

are simultaneous with, earlier than, or later than x: in other words, while the temporal order

of time-like separated events is absolute, or invariant, that holding between space-like separated

events is relative to the observer's state of motion. In general relativity theory, instead, since

the shape of general-relativistic space-time is locally determined by the distribution of matter,
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tangent spaces at nearby points do not generally look the same: intuitively speaking, light cones

of nearby points may vary in shape, size and relative orientation.

Figure 3.1: Half light-cone and hyperplanes of

simultaneity in relativistic space-time (Friedman,

1983, p. 161)

Relativistic space-time is called temporally

orientable just in case there exists an every-

where continuous non-vanishing time-like vec-

tor �eld, i.e. if and only if, for any point x

of M, it is possible to select one of the two

halves of the light-cone of x as pointing toward

x's absolute or causal future (equivalently, its

past), in such a way that this selection is in-

variant under any continuous translation in

space-time keeping time-like vectors time-like.

In what follows, we shall concentrate on sole

temporally orientable space-times. First of all,

this choice is consonant with common usage.

Second, assuming space-time to be temporally

orientable seems to be at least a necessary con-

dition1 to speak of tenses in a consistent way

(Earman, 1974; Clifton and Hogarth, 1995).

Third, for any space-time which is not temporally orientable there exists a covering space-time

which is, so that admitting non-temporally orientable space-time might appear a worthlessly

expensive choice (Earman, 1986, p. 171).

However, temporal orientability may not be enough. In fact, general relativity theory allows

for temporally orientable space-time models which are nonetheless everywhere �lled with closed

future-directed time-like curves (Gödel, 1949a): in those cases, it would be even harder to speak

of past and future times, since whatever future-directed non-inertial observer would always

be capable to cross her own past2. For this reason, we shall further restrict our attention to

the space-time of special relativity theory, namely temporally oriented Minkowski space-time

(Minkowski, 1952).

1Whether temporal orientability should also be considered su�cient for endowing (special-)relativistic space-
time with objective temporal becoming is a currently debated question; among those embracing this view we may
recall Dieks (2006a) and Maudlin (2007).

2Gödel regarded these models as a de�nitive refutation of objective temporal becoming. In his view, '[t]he
existence of an objective lapse of time [...] means (or, at least, is equivalent to the fact) that reality consists of
an in�nity of layers of "now" [so that] to assume an objective lapse of time would lose every justi�cation in these
worlds (Gödel, 1949b, pp. 558, 561)', at least if co-presentness is equated with chronological simultaneity (See �
3.3). The greatest di�culty Gödel's argument faces is that of concerning surely possible, but rather improbable,
cosmological models: the universe we live in is, with all evidence, not of a Gödelian kind; so what bearings do
Gödel's argumentation have on the existence of temporal becoming in our world? Philosophers debated at length
on this topic, reaching opposite results (Stein, 1970; Savitt, 1994; Dorato, 2002b).
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3.1.1 Intersubjectivity, Testability, Invariance

There are at least three di�erent ways how one might understand the objectivity of tenses, each

of which entailing the previous one. The �rst, weakest sense, is that of being intersubjective,

or subject-independent : in this sense, anything is objective just in case it can be shared by

di�erent individuals. The second, intermediate sense, is that of being mind-independent, namely

of being independent of the perceptual and cognitive features of human subjects: in this sense,

anything is objective just in case it can be observed or tested by means of arti�cial experimental

devices. In the third and strongest sense, objectivity should be understood as being perspective-

independent : in this sense, anything is objective just in case it is a structural or inherent feature

of things, namely just in case it is independent of the way things are observed or measured.

If tenses were objective in the sole subject-independent sense, temporal becoming would be just

a projection of our physiological and psychological constitution (Weyl, 1949; Grünbaum, 1967a,

1973; Savitt, 2009; Callender, 2010b), or a secondary quality just like colors, tastes and smells

(Menzies and Price, 1993; Price, 1996). Those philosophers who deny the objectivity of becoming

typically provide it with such purely inter-subjective status.

If tenses were mind-independent, but not perspective-independent, then temporal becoming

would be objective both in the sense of being a distinguishing feature of human experiences and

in the sense of being experimentally con�rmed, albeit only under given observational condition.

Incidentally, this is the type of objectivity hyperplanes of simultaneity display in special relativity

theory: in fact, all observers moving along the same world-line should agree as of the set of events

counting as simultaneous to a given time-place, whether they are human beings or purely physical

clocks.

Still, this is not the kind of objectivity philosophers generally require tenses to satisfy in order to

speak of objective temporal becoming. Rather, they typically require tenses to be perspective-

independent, for this would make becoming not only experimentally observable, but it would

also make it a structural or inherent property of the space-time manifold:

[...] trying to establish whether the distinction between past, present and future has

an objective, physical counterpart � and is therefore mind-independent � means try-

ing to establish whether such a distinction is de�nable in terms of invariant structure

of [...] space-time [...]. The requirement of de�nability in terms of invariant relations

ensures that the candidate becoming relation be invariant for all possible observers.

In our context, such invariance su�ces to ensure the intersubjective validity of the

becoming relation, something that should be required by any theory of objective

becoming (Dorato, 2002a, p. 338).

In what follows, we shall follow this trend, so that while speaking of objective tenses or objective

temporal becoming, we shall mean that there exists an invariant structure of temporally oriented

Minkowski space-time to which such notions can be reduced.
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3.2

Hybrid Theories, Relational Becoming

Entering the arena of space-time theories we are often asked to assume that the world, understood

as the totality of the existent, consists of a four-dimensional manifold of time-places. In doing

this we are forced to discard presentism as we previously de�ned it, as the thesis that only those

events lying on the present hyperplane of simultaneity currently exist3, since in this case it would

not be possible to speak of an event not being there without ipso facto ruling it out of the given

manifold (Callender, 2000). This is not a mandatory choice, for one may still try to preserve

presentism by regarding four-dimensional spatio-temporal manifolds as purely abstract models

(Sattig, 2006), but it is by far the most popular. So, in what follows, we shall concentrate on

the metaphysical clash between what Callender (2000) called hybrid theories and the so-called

full view of time (Dorato, 1995).

Properly speaking, both hybrid theories and the full-view subscribe the eternalist ontology, since

they both agree that all physical events display the same kind of existence consisting in being

part of the four-dimensional manifold representing physical reality. However, they disagree about

whether all metaphysical properties, over and above mere physical existence, should be equally

distributed among all physical events entering relativistic space-times: while this position is

endorsed by full view theorists, hybrid theories are closer to presentism insofar as they argue

that there exists some distinguishing metaphysical feature, such as reality, determinateness,

determination or �xity, which at least some future events cannot display.

The main trouble with hybrid theories is that they are exposed to paradoxes of a McTaggartian

type, so that they are forced to understand determinateness, determination etc. in a relational

sense (Callender, 2000, p. S590-S591). In its turn, this choice bears three major consequence on

their understanding of temporal becoming.

The �rst consequence is that hybrid theories are more �exible than presentism as of their meta-

physical characterization of tenses. For this reason, they distribute into three di�erent classes,

which Dorato (1995) respectively labeled the instant view, the empty view of the future and the

half-full view of the future: according to the �rst, present events possess some distinguishing

metaphysical feature that neither past nor future possess; according to the second, past and

present events share some relevant metaphysical feature which future events do not; �nally, ac-

cording to the latter, past and present events share their metaphysical properties with only that

part of the future they are capable to �x or determine according to physical laws. Despite their

di�erences, all these views nonetheless agree on considering the present moment as the temporal

upper bound beyond which events cease to possess full metaphysical status. For these reasons,

we may regard them as equivalent as of their contribution to the issue of objective temporal

becoming.

3See � 2.1.2.
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The second consequence is that hybrid theories, by reducing temporal becoming to the existence

of a relational metaphysical property which is not equally shared by all tenses, are forced to

identify temporal becoming with a binary relation holding between pairs of time-places (Dorato,

2008a).

The third and most important consequence is that the whole debate between full-view theorists

and hybrid theorists reduces to the question whether any two arbitrary space-like separated

events can be assigned the same metaphysical status as of each other (Dorato, 1995, pp. 147-

152). For this reason it seems that, contrary to the presentism-eternalism debate, that between

hybrid theories and the full view of time can be settled before any objective characterization

of tenses is given; and for the very same reason it seems that, contrary to presentism, hybrid

theories could really o�er a metaphysical basis to de�ne relativistic objective presentness: if a

metaphysical asymmetry was proved to hold between any two di�erent regions of the space-time

manifold, then the present moment would be that part of space-time separating metaphysically

asymmetric events.

3.2.1 The RPM Thesis

During the last decades, the philosophical debate on the relativistic counterpart of objective

temporal becoming has been centered on the arguments Rietdijk (1966, 1976), Putnam (1967)

and Maxwell (1985, 1988) gave in support of the full view of time. Though having been motivated

by di�erent metaphysical interests and having being supported by means of slightly di�erent

proofs, their results may nonetheless be collected under what we shall call the RPM thesis:

once any two space-like separated events are assigned the same ontological features, then all

time-places in Minkowski space-time must display the same features too. Rietdjik declined that

claim with respect to determination, Putnam with respect to reality and Maxwell with respect

to ontological �xity or de�niteness. In spite of the di�erent metaphysical content each of these

notions may possibly bear, the importance of the RPM thesis for the problem of becoming stems

from the fact that it denies that any ontological asymmetry may ever hold between di�erent

time-places, with the purported consequence of disproving the existence of any metaphysical

separation of tenses.

3.2.1.1 Rietdijk: Determination and Preemption

Rietdijk's declared aim was that of proving special relativity to be committed with a rigorous

determinism. Unfortunately, he never laid his metaphysical cards on the table, leaving us with

the onus of extracting them from his own argumentation:

Consider an inertial system (X1, O1, T1) with the observer W1 in O1, as well as the

inertial system (X2, O2, T2), observer W2 being in O2. Consider both W1 and W2

at the time T1 = 0. (X2, O2, T2) moves at a constant velocity in the direction of
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O1. X2 intersects T1 in P . Then we �nd that for W1, observer W2 in O2 [= B] is

"now". For W2 in B, however, events B and P occur simultaneously: for W2 event

P is "present" at the same moment T1 = 0 of W1 that W2 is "present" for W1. [...]

This "now" P for W2 � in the "absolute future" of W1 � is as real as, e.g., W2 is for

W1 . Conclusion: P is completely determined at the moment T1 = 0 of observer W1.

[...] With each event P1 in the future of W1, we can now think of an observer W2 for

whom, at the moment of observer W1 that W2 is "now" for W1, P1 is already in the

past. Thus each event is determined: it is already "past" for some one in our "now"

(Rietdijk, 1966, p. 341).

Figure 3.2: Space-time diagram of inertial observers

in Rietdijk's argumentation (Rietdijk, 1966, p. 341).

The key inference of Reitdjik's argumentation

is that leading from `P for W2 [...] is as real

as, e.g., W2 is for W1' to `P is completely

determined at the moment T1 = 0 of ob-

server W1'. The antecedent of such inference

is presumably motivated by the very general

hypothesis that events standing in the same

spatio-temporal relation as of their observers

should also stand in the same ontological sit-

uation with respect to them. So, what aux-

iliary metaphysical assumptions are needed

to support Rietdjik's conclusion? Rietdjik's

key assumption, the one which he presumably

wanted to support that inference, was the fol-

lowing:

We say that an event P is (pre-)

determined if, for any possible ob-

server W1 (that is, for all possible

observers, and even for all other,

e.g., physical, instances), who has

P in his absolute future (that is,

that the future part ofW1's course

through the four dimensional con-

tinuum may eventually pass through P ), we can think of a possible observer W2 (or:

there may exist an observer W2) who can prove, at a certain moment Tp, that W1

could not possibly have in�uenced event P in an arbitrary way (e.g., have prevented

P ) at any moment when P still was future, or was present, for W1 , supposed that

W1 did desire to do so (Rietdijk, 1966, p. 342).

So what we must go in search for, in the end, is the way how (and the time when) W2 could

have shown that W1 was not capable of a�ecting P at O1.
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The structure of Rietdjik's argumentation leads us naturally to suppose that, if W2 was ever

capable of o�ering such a proof, that would have happened at the sole point where his trajectory

intersected T1 = 0: namely, at O2. So, what special properties does W2 display at that point?

Presumably that O2 is the sole point at which one ofW1's hyperplanes of simultaneity intersected

W2's unique hyperplane of simultaneity containing P : in other words, O2 is the sole point such

that W2 is isochronous to W1 according to W1's clock and P is isochronous to O2 according to

W2's clock. Given this, we should wonder: is this su�cient for W2 to prove that W1 was not

capable of a�ecting P at O1? Here the weakness of Rietdjik's argumentation starts to come out.

In fact before any metaphysical signi�cance could even be attached to that situation, in order to

make that kind of judgment, W2 should have been capable of collecting information about the

physical state of both W1 at O1 and P . But how could that be possible? By hypothesis, W2 is

space-like separated from both, and hence uncapable of receiving any of the signals they possibly

emitted (Stein, 1968, p. 16).

Rietdjik himself was probably aware of this �aw, and it is possibly for this reason that he added

the following clause:

It is even possible that W2, on experiencing event B, will reduce his velocity until

he is at rest with respect to W1 during a very short time t, so that during this

time, his coordinate system is inertial system (X ′1, O
′
2, T

′
1) (supposing he knows his

velocity towards W1; however, this is not of fundamental interest). Thereafter, W2

can resume his former velocity. When, after some time, W2 receives the light signal

[coming from P ], he will know that already �during the short time t � when he was at

rest with respect to W1, experiencing the same "present" as did W1 in virtually the

same inertial system, W1 could do nothing at all to prevent event P in his absolute

future (Rietdijk, 1966, p. 342).

The aim of this remark is presumably that of making W2's judgment retroactive, postponing

it at the time-place at which he was �nally able to receive the information coming from O1

and P . However, this makes Rietdjik's argumentation no more e�ective. In the best case, W2's

hyperplane of simultaneity at a small neighborhood of O2 would �rst include P and, soon after,

W1; however, this would not make the least change in the fact that W2 would know �rst about

W1 and then about P . To know that P fell in his hyperplane of simultaneity at O2 before

W1, he should have known when, and how long, he was actually sharing the same hyperplane of

simultaneity asW1. But if so, contrary to what Rietdijk claimed, it is of fundamental importance

that W2 knew his velocity relative to W1; and, once again, this is made impossible by space-like

separation.

Finally, even all of these di�culties could be sidestepped, Rietdjik's argumentation would still

su�er of a serious �aw: namely, his de�nition of determination is not capable to distinguish a

determinate event from a purely stochastic one, since all possible observers would agree that

nobody could ever control it or change it at any time (Stein, 1968, p. 13, note 8).
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3.2.1.2 Putnam: The Transitivity of Reality

Putnam's polemic target was the `man on the street's view on the nature of time', which he

encoded in the statement that `[a]ll (and only) things that exist now are real (Putnam, 1967, p.

240)'. His argumentation was based on the following set of assumptions:

i I-now am real.

ii At least one other observer is real, and it is possible for this other observer to be in motion

relative to me.

iii If it is the case that all and only the things that stand on a certain relation R to me-now

are real, and you-now are also real, then it is also the case that all and only the things

that stand in the relation R to you-now are also real.

In order to play the part they are assigned by Putnam, assumptions (i) and (ii) should be

understood to range solely over inertial observers. They are respectively meant to make reality

(or whatever binary relation R could count as a criterion to determine what is real) a re�exive

and non-trivial relation. The third assumption is referred to by Putnam as `the principle that

There are no Privileged Observers': in brief, it requires that "being real for" is a transitive

relation (Stein, 1968).

Putnam's argumentation then follows in a manner very similar to that of Rietdijk's. Let us

assume that I-now and you-now are at the same place, but moving with di�erent velocities;

hence, if R was identi�ed with the relation of being in one's hyperplane of simultaneity then,

by premise (iii), what is in your present should count as real for me-now, since you are in my

present and therefore real for me. However, there are events in your hyperplane of simultaneity

which are space-like separated from me and which would count as future with respect to my

present coordinate system; by (iii), these events should count as real for me-now, but according

to R they should not. The sole way to avoid this contradiction is, according to Putnam, to make

relative simultaneity with respect to an arbitrary inertial observer a su�cient but not necessary

condition for being real for that observer; however, this would have the side-e�ect of making all

events in my (and anyone's) relative future real as well. Putnam's enthusiastic conclusion was

that `the problem of the reality and the determinateness of the future events is now solved', and

that `there are no any longer any philosophical problems about time (Putnam, 1967, p. 247)'.

Putnam's scenario is quite simpler than the one depicted by Rietdijk: in this case, we are faced

with two inertial observers whose trajectories coincide at a space-time point and who therefore

agree to be simultaneous to each other at that point, as well as of what events should then

count as absolutely present and absolutely future. The major di�erence between Rietdijk's and

Putnam's argumentations is that, in the second case, according to the man on the street's view,

none of the events in the absolute future of the �rst observer would count as real for the second;

and therefore, the sole future events Putnam could prove to be real are at best those which lie
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in the relative future of the former and which are space-like separated from him. So, in any

case, his main conclusion would hold at best partially. This is certainly a minor shortcoming of

Putnam's argument, for the latter could be easily reshaped so as to �t a scenario which is in all

similar to that of Rietdijk (see, for example, Dorato (2008b)). Nonetheless, there is one further

argument which may undermine Putnam's conclusions.

Figure 3.3: Space-time diagram of inertial observers in Putnam's

argumentation (Putnam, 1967, p. 241).

The principle of no privileged ob-

servers plays as crucial a role for

Putnam's argumentation as Riet-

dijk's de�nition of determination

played in the previous case: in

fact, it is the connecting link mak-

ing it possible for di�erent iner-

tial observers to agree as of what

events should count as real. How-

ever, in the end such an assump-

tion is unsupported. On the one

hand, Putnam never motivated it.

On the other hand, the sole plau-

sible reason one may think of to

justify it is that reality should not

be a subjective matter � in other

words, anyone should agree as of

what counts as real: is something

is real for you then it must also be

real for me, granted the very min-

imal condition that you are not

just �ctional. However, if that is the sole reason to support (iii), then the latter becomes

super�uous. In fact, in commenting upon it, Putnam carefully demanded that `R must be re-

stricted to physical relations that are supposed to be independent of the choice of a coordinate

system' and that `it must not depend on anything accidental (Putnam, 1967, p. 241)'; but, as it

was independently complained by (Stein, 1968, pp. 18-20) and (Sklar, 1985, pp. 296-297), this

would su�ce to make R objective in the special-relativistic context. Dismissing (iii) in favor of

the sole requirement that R should be invariant would indeed support the �rst half of Putnam's

argumentation � namely that, in Minkowski space-time, relative chronological simultaneity is no

objective criterion for determining what is real � but it would not support his main conclusion.

Truly, there seem to be strong reasons in favor of the transitivity of reality. Dorato, for example,

contends that `denying transitivity would imply that what exists at a distance depends on a

state of motion' and that `by denying transitivity, two observers zooming past each other would

share the same present without sharing what is real at a distance, and by simply changing

reference frame (getting o� a bus or jumping on an airplane), we would change what counts as
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real for us at a distance (Dorato, 2008b, pp. 58, 60)'. However, none of these objections a�ect

the core of Stein's and Sklar's contention, for all they seem to require is that reality can be

shared by di�erent inertial observers, and this is guaranteed by simply demanding it to be an

invariant. What invariance cannot guarantee is that "being real for", over and above being a

transitive relation, held between space-like separated events. Premise (iii) should be preferred

to invariance if and only if reality had to satisfy both these properties; but it is not at all clear

why, in a relativistic context, one should be committed to the latter4.

3.2.1.3 Maxwell: Determinism and Chronological Simultaneity

The broad lines of Maxwell's argumentation (Maxwell, 1985, 1988) are also shared by Rietdijk

(1976), who reshaped his original argument in response to Landsberg (1972); for this reason,

and despite their opposite theoretical goals, we shall follow them in parallel.

In Maxwell's view, ontological probabilism is the metaphysical doctrine according to which `at

any instant, there is only one past but many possible alternative futures � the fundamental laws

of the universe being probabilistic and not deterministic'. In its turn, this thesis demands that

`there is a physically real di�erence between past and future events � the future alone containing

physically, ontologically real alternative possibilities' and therefore, `that, at any instant, there

be a universal, absolute, unambiguous distinction between one past and many possible futures

(Maxwell, 1985, p. 23)'. Similarly, Rietdijk maintained that `if the indeterminism thesis makes

any sense at all, there is an objective di�erence between "being determined" and "being not

determined"', and hence `from the standpoint of the adherence of the existence of indeterminism

it is necessary to assume the existence, in the four-dimensional continuum, of a (straight or

curved)' hyperplane H consisting of "now" events' which `cannot depend on the velocity of any

observer (Rietdijk, 1976, p. 601)'. On this basis both Maxwell and Rietdjik concluded, in a

very straightforward way, that indeterminism (or ontological probabilism) is incompatible with

the relativization of simultaneity demanded by the special relativity theory; Maxwell argued in

favor of the former, Rietdijk in favor of the latter.

The major premise of both Maxwell and Rietdijk's argumentation is, therefore, that indetermin-

ism is in need of an objective global foliation of space-time into non-intersecting hyperplanes

of simultaneity. However, this contention is made on the basis of a highly questionable un-

derstanding of indeterminism. In fact, if we agree that indeterminism is the opposite thesis

than determinism, then it is indeed possible to make it logically independent of the existence of

objective global hyperplanes of simultaneity.

Perhaps the best account of determinism currently on the market is that o�ered by Earman

(1986). He de�ned Laplacian or classical determinism as the property of any possible world

Wi ∈ W (W being the collection of all physically possible worlds) such that, for any Wj ∈ W, if

Wi andWj agree at a time, then they agree at all times. Indeterminism would accordingly be the

4See � 3.4
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property of a physically possible world Wi such that, for some physically possible world Wj , Wi

and Wj agree at some time, but not at all times. In this view, `by assumption, the world-at-a-

give-time is an invariantly meaningful notion (Earman, 1986, p. 13)'. That is say: if we wanted

that Laplacian determinism held within a given space-time theory, then we should require that

theory to be compatible with an objective partition of space-time into non-intersecting hyper-

planes of simultaneity. So, special relativity theory is as much incompatible with indeterminism

as it is with Laplacian determinism, and therefore Maxwell and Rietdijk's basic dilemma cannot

stand. Rather, we should at best choose between Laplacian determinism or indeterminism on

the one side, and special relativity theory on the other: this would still support Maxwell's option,

but it would rule out Rietdijk's.

Furthermore, classical determinism is just one of a family of related conceptions of determinism,

not all of which require an objective partition of tenses. For example, a possible world Wi ∈
W can be claimed to be (R1, R2)-deterministic exactly in case R1 and R2 are two arbitrary

collections of similar connected regions of space-time, and for any possible world Wj ∈ W, if Wi

and Wj agree on space-time regions of type R1 they also agree on space-time regions of type

R2. Indeterminism would accordingly require that, for such R1, R2 and Wi, there existed a

physically possible world Wj such that Wi and Wj agreed at one region of type R1 but not at

the corresponding region of type R2. In that case, neither determinism nor indeterminism would

call for an objective partition of space-time into space-like hypersurfaces, consequently blocking

Maxwell and Rietdjik's reductio once and for all.

3.2.2 Stein's Theorem

Following Maxwell, Stein (1991) linked metaphysical becoming to the existence of "stages" of

de�niteness, each of which should separate what is already become and settled and what is

already to be determined. However, he understood "being de�nite" or "having become" as a

transitive, re�exive, antisymmetric and non-universal binary relation R on a temporally oriented

space-time manifold M. He proved that, if Rab was true for at least one pair of events a and

b in Minkowski space-time, such that b lied in the absolute past of a, then becoming should be

taken to be coextensive with the relation of past causal connectability (understood in a weak

sense, so as to include identity); and since past causal connectability is an objective property of

Minkowski space-time, then also becoming should be. So it may seem that, if Stein was right,

then Minkowski space-time could be endowed once and for all with an objective metaphysical

acceptation of becoming.

The key statement of Stein's proof is well-known, and it is commonly referred to as Stein's

theorem:

If R is a re�exive, transitive relation on a Minkowski space (of any number of di-

mensions � of course at least two), invariant under automorphisms that preserve the

time orientation, and if Rab holds for some pair of points (a, b) such that ab is a
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past-pointing (time-like or null) non-zero vector, then for any pair of points (x, y),

Rxy holds if and only if xy is a past-pointing vector (Stein, 1991, p. 149).

On the other hand, Stein's conception of becoming and de�niteness (or reality, or determination)

di�ers from those held by Rietdjik, Putnam and Maxwell insofar as it is de�ned independently

on any observer's state of motion: in his view, `the fundamental entity, relative to which the

distinction of the "already de�nite" from the "still unsettled" is to be made is the here and now ;

that is, the space-time point (Stein, 1991, p. 148)'. One may try to sidestep the result of his

theorem by rejecting his account of becoming in favor of a world-line dependent one. Clifton

and Hogarth (1995) ruled out this possibility, by formulating a more general version of Stein's

theorem which could also apply to world-line dependent becoming.

For this purpose, they required world-line dependent becoming to satisfy the properties of world-

line becoming and world-line transitivity, and to be implicitly de�neable5 by time-oriented met-

rical relations. World-line becoming requires that for any two space-time points a and b, if a lies

both along the world-line of b and in its chronological past, then a has become for b. Clifton and

Hogarth motivate this assumption by relying on the psychological sense a conscious observer

would have that those events which he lived through had already become for her. World-line

transitivity requires that for any three space-time points a, b and c and any two (non necessarily

inertial) world-lines λ and λ′, if a has become for b along world-line λ and b has become for

c along world-line λ′ then a has become for c along world-line λ′. Finally, de�neability from

time-oriented metrical relations requires world-line dependent becoming to be preserved under

any automorphism of M preserving the distance between two space-time points or, which is the

same, to be an objective or invariant property of temporally oriented Minkowski space-time.

Given all this, they proved the following statement:

Consider the collection of world-line dependent becoming relations associated with

all world-lines (all possible observers) in time-oriented Minkowski space-time. Sup-

pose this collection satis�es world-line becoming and world-line transitivity, and that

each collection in the relation is (implicitly) de�neable from time-oriented metrical

relations and the relevant world-line for that relation. Then every becoming relation

in the collection must be the relation of past chronological connectability, or they all

must be the relation of past causal connectability, or they all must be the universal

relation (Clifton and Hogarth, 1995, pp. 371-372).

By (future or past) chronological connectability and (future or past) causal connectability, Clifton

and Hogarth meant, respectively, (future or past) time-like separation and (future-directed or

past-directed) causal connection. However, Dorato (2000a) noticed that past chronological con-

nectability � as well as world-line becoming � depends on the traces that past events leave in

5Let α and β1, ..., βn be non-logical symbols of the language L of some theory T such that α is not among
the βi; then `α is implicitly de�neable from the βi in T if any two models of T which have the same domain and
agree in what assign to the βi also agree in to what they assign to α (Boolos et al., 2007, p. 266)'.
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the observer's memories and, through them, on a future-directed causal connection. So, in the

end, all the world-line dependent becoming relations which may obtain in Minkowski space-

time should coincide with that of asymmetric past-directed causal connectability, con�rming the

result of Stein's theorem.

3.2.3 The Metaphysical Neutrality of Minkowski Space-Time

Clearly, in order to be demonstrable, Stein's theorem requires that any relation R meant to play

the part of temporal becoming should also be strictly antisymmetric, for otherwise Rba may hold

for at least one future-pointing non-zero vector ba. Furthermore, as Stein himself showed (Stein,

1991, p. 149), allowing R to hold symmetrically between any two space-time points would su�ce

to make it a universal relation6. In the light of this, his theorem proves to be just a corollary

of the more basic claim that `in Minkowski space-time [...] there are no intrinsic geometrical

partitions into equivalence classes at all, besides the two trivial ones (Stein, 1968, p. 19)'.

Now it seems that, to play the part of temporal becoming, whatever binary relation should at

the very least be re�exive and non-identical. Given these two minimal conditions, the above

claim puts us in the front of the following double choice: (a) taking re�exivity for granted, we

can only choose between (a1) a transitive but universal and (a2) a non-universal but intransitive

invariant becoming relation; (b) assuming transitivity, the we can only choose between (b1) a

symmetric but universal and (b2) a non-universal but antisymmetric one. The former dichotomy

is precisely the one which emerged by our discussion of Putnam's argument; the second one is

that underlying Stein's theorem7. But what is most important to notice is that, in any case,

special relativity theory can lead us no further: whatever of the four options above one may be

willing to choose, there is nothing left in the very structure of Minkowski space-time motivating

that choice. So, once again, it seems that we are left with a matter of pure metaphysical taste.

Dorato (1995, 2000a, 2008a) repeatedly emphasized that Stein's theorem cannot, and does not

want to, prove becoming to be there: at best, it can show that a relational, metaphysically

rooted acceptation of becoming is compatible with the properties of Minkowski space-time. We

may push this claim even further, and assert that Stein's theorem proves Minkowski space-time

to be neutral with respect to the metaphysics of becoming8.

The discussion we made of the presentism-eternalism debate in Chapter 2 led us to conclude

that, insofar a well-de�ned distinction between tenses is supported by the given background

6See also (Callender, 2000).
7More precisely: option (a1) is that held by Putnam (1967), (a2) is that held by Stein (1968) in response to

it; (b2) was also held by Stein (1991), while (b1) was endorsed by Callender (2000) as a purported refutation of
Stein's theorem.

8Dorato (2006, 2008a) also argued in favor of this claim, but from a di�erent perspective. In his view, there
is no metaphysical distinction between an event's happening at a time-place and its coming into being then-and-
there; accordingly, there is no real distinction between a metaphysics of becoming and a metaphysics of being
and, as long as a space-time theory is in need of a non-empty ontology of events, it is also in need of such a
weakened acceptation of becoming, which he calls absolute. In conclusion, if becoming is something demanded
by the very postulates of all space-time theories, then special relativity theory can neither prove it nor disprove
it. On absolute becoming see also Savitt (2002).
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space-time theory, there is no way to choose between presentism and eternalism on purely meta-

physical grounds. Our analysis of Stein's theorem has now shown that neither temporally ori-

entable Minkowski space-time, where a geometrical characterization of tenses is not guaranteed

ex hypothesi, is capable to o�er any metaphysical basis to choose between the weak ontology of

becoming held by hybrid theorists and the radical ontology of being endorsed by the full-view

theorists of time.

This way, we are pushed back from metaphysics to the geometry of space-time: instead of

going in search for a metaphysical account of tenses, we should better examine what structural

properties of Minkowski space-time would possibly play the part of objective past, present and

future times.

3.3

There's No Time Like The Present

Classical space-time is a temporally oriented four-dimensional di�erentiable manifold, topolog-

ically equivalent to R4. Since any point in that manifold is assigned a unique hyperplane of si-

multaneity, classical space-time is foliated into a unique set of three-dimensional cross-sections,

each of which representing the whole of the universe at a time. This way, the classical four-

dimensional manifold M decomposes into the cartesian product R3 × T of three-dimensional

absolute Euclidean space and one-dimensional absolute time: for any two arbitrary events, there

exists a well-de�ned notion of the temporal distance holding between them, independently of

the chosen coordinate system or reference frame (Friedman, 1983, p. 71-78).

In pre-relativistic space-time, hyperplanes of simultaneity o�ered an objective partition of all

events according to their absolute temporal location, as well as a natural choice for de�ning the

objective present of each space-time point. Co-presentness, i.e. the binary relation consisting in

sharing the same present, was accordingly an equivalence relation on M while, at any time, the

present moment was the separating element between past and future times.

Einstein's relativization of chronological simultaneity is commonly considered the major threat

special relativity theory posed to the ordinary, common-sense understanding of tenses: since

di�erent inertial observers would make di�erent judgments as of what events should count as

chronologically co-present, then it seems that in the space-time of special relativity theory there

can be no room for a unique, objective and globally extended "now". However, chronological

simultaneity was not the sole distinguishing feature hyperplanes of simultaneity displayed in

pre-relativistic space-times.

In classical mechanics, physical or causal in�uence was supposed to travel at �nite but arbitrarily

high speed. For this reason, any event x in classical space-time was given a degenerate causal

cone, asymptotically coinciding with its unique hyperplane of simultaneity. Furthermore, since
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the causal cone of any such xmet the corresponding hyperplane of simultaneity only ad in�nitum,

the latter also coincided with the the locus of events which, on the contrary, were not physically

or causally connectible to x.

In sum, the unique hyperplane of simultaneity of each space-time point x coincided with (a) the

locus of events isochronous to x, or chronological present, (b) the topological boundary of the

locus of all events which are physically or causally connectible to x, or limiting present, and (c)

the topological exterior of that locus, or causal present9.

In Minkowski space-time, due to the existence of a �nite upper limit to the speed of causal prop-

agation, the factual coincidence between isochronism and causal separation is lost (Reichenbach,

1956, p. 40): for any time-place x, its chronological present is still conventionally associated to

its hyperplane of simultaneity, while its causal present is extended to cover the whole elsewhere

region (Eddington, 1920, p. 50) lying outside its double light-cone, possibly including x itself.

Furthermore, the limiting character of the speed of light makes the topological boundary of an

event's region of causal dependence coincident with its double light-cone, and hence exterior

to its causal present (Friedman, 1983, pp. 159-165). This way, all the main properties of the

classical notion of presentness are separated, in such a way that no space-time point could ever

satisfy all of them at once, except for the location at which a given moment is supposed to take

place.

On the other hand, in virtue of the very fact of being no longer factually coincident to chrono-

logical simultaneity, causal presentness and limiting presentness may o�er alternative objective

bases to de�ne presentness in the special relativistic context.

3.3.1 Spatio-Temporal Coincidence

Probably the most intuitive yet troublesome choice would be that of identifying the present

moment with the "here-now", namely the space-time point at which a given event takes place.

This option was �rst put forward by Robb (1921) and later endorsed by Stein (1968, 1991),

Dieks (1988) and Hinchli� (1996, 2000). Its major advantage is surely that of identifying the

present moment with the sole region of space-time at which the chronological present, the causal

present and limiting present of any given event intersect each other. Furthermore, reducing co-

presentness to the relation of spatio-temporal coincidence would make it an equivalence relation;

and, �nally, restricting the present moment of any event x to the sole time-place of its occurrence

would have the consequence of making it the separating element between those events lying in

the absolute future of x and those which lie in its absolute past.

9For any subset A of a topological space S, a point x is called an interior point of A if and only if there exists a
neighborhood of x which is a proper subset of A, an exterior point of A if and only if there exists a neighborhood
of x which is a proper subset of the complement of A, and a boundary point of A if and only if all neighborhoods
of x intersect both A and its complement; accordingly, the interior, exterior and boundary of A is, respectively,
the set of all interior points, exterior points and boundary points of A (Isham, 2001, pp. 12, 31).
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Serious philosophical arguments have been moved against this conception of presentness. The

most common one is that no ontological meaning could ever be attached to it without leading to

a kind of metaphysical solipsism: since, according to it, no two distinct events would ever count

as co-present, then no two distinct events could ever share the distinguishing ontological status

accorded to the present time (Savitt, 2000; Saunders, 2002). On the very opposite hand, some

philosophers have argued that endorsing the here-now view of the present with any metaphys-

ical property would instead have the e�ect of distributing it universally among all time-places

(Dorato, 1995; Price, 2010). However, all these arguments are of a metaphysical kind; and as

long as our task is that of examining whether the structure of Minkowski space-time is by itself

capable of supporting the idea of presentness, they seem to be ine�ective. The major trouble

with the here-now conception of the present is, rather, that it trivializes co-presentness inde-

pendently of whatever metaphysical interpretation of tenses: as long as events are understood

as point-like portions of the four-dimensional manifold, reducing the relation of co-presentness

to spatio-temporal coincidence has the obvious consequence of making it coextensive with the

identity relation. For this reason, we shall leave this option behind, and proceed toward less

beaten tracks.

3.3.2 Light-Like Separation

The second possible option is that of identifying the present moment of each space-time point

with its liming present, which is to say, with its double light-cone. Choosing this option would

have the straightforward consequence of guaranteeing the objectivity of presentness by grounding

it on a structural component of space-time. Moreover, it would reduce co-presentness to a

suitable generalization of the classical relation of isochronism, namely that of having zero distance

according to the Lorentzian metric η.

This option was indirectly discussed by Savitt (2000), whose target was the stronger thesis that

the present moment of each event should be located on its past light-cone10. Savitt himself recog-

nized that such proposal would have the double advantage of (a) associating co-presentness with

`bona �de geometric structures in Minkowski space time' and (b) that `in the limit as the speed

of light approaches in�nity, these structures "�atten out" to approach the hyperplanes of simul-

taneity that are naturally the present pre-relativistically (Savitt, 2000, p. S566)'. Nonetheless,

he rejected it because leading to what he thought to be unreasonable consequences.

First, he saw no apparent reason to identify co-presentness with past-directed light-like sepa-

ration with the exclusion of its future counterpart. This objection, which is entirely sound, is

nevertheless not e�ective against the hypothesis currently under discussion.

10This view was discussed by Hinchli� (1996, 2000), who attributed its paternity to Godfrey-Smith (1979).
However, Godfrey-Smith restricted co-presentness to `those events which are related by the signal relation so that
they are perceived together (or would be perceived together by some suitably located observer)', i.e. `those to
which an observer stands in a direct causal relation de�ned by the signal relation (Godfrey-Smith, 1979, p. 236,
p. 240)'. Since he imposed no constraint on the speed of such signals, his idea of relative presentness should
rather be extended so as to include past time-like separation too.
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Second, he complained that, according to this view, events placed in the very earlier stages of

the universe such as the source of the Cosmic Background Radiation would still count as present.

However, this objection fails in the face of the conceptual separation we made between the two

notions of chronological presentness and limiting presentness. Once presentness is reduced to

the latter, nothing unreasonable is left in demanding that we share the same present as the Big

Bang: in this sense, being co-present to a given event is just as much as being the farthest event

which could ever exert any causal in�uence upon it in a given lapse of time, or upon which it

could ever exert any causal in�uence in its turn. This might be counter-intuitive, but it is surely

consistent.

Finally, Savitt maintained that the (past) light-cone of any given event x do not satisfy what he

called a requirement of achronality :

if some set of events S represents the present for event E, then no events in S should

be in each other's absolute past or absolute future (that is, it should not be the case

that all observers at E agree that one of the events is, say, earlier than the other)

(Savitt, 2000, p. S567).

His contention is evidently based on the double assumption that light-like separated events can

be arranged invariantly as of their temporal order, and that they lie in each other's absolute

future (conversely, past). However, these assumptions are not as much incontrovertible as they

might appear. Truly, in the context of temporally orientable space-times we commonly speak of

the future and the past light cones of an arbitrarily chosen time-place x, and this may rise the

impression of an absolute partition of the points lying on x's double light-cone between those

which are objectively earlier than x and those which are objectively later. However, the above

way of speaking may be misleading; in fact, what counts as the absolute future or past of a given

event is, properly speaking, the interior of its future or past light-cones:

If 〈M, η,5〉 is a temporally orientable space-time we can de�ne in a globally con-

sistent manner an equivalence relation S( , ) on the set of time-like tangent vectors

which holds between two such vectors U and V just in case they have the same time

sense. The quotient of the set of time-like vectors by S( , ) has two elements O1 and

O2. The choice of one element as containing the future pointing time-like vectors

is the choice of a temporal orientation or direction of time for 〈M, η,5〉 (Earman,

1974, p 18).

The equivalence relation S( , ) is de�ned on the set of sole time-like vectors: the choice of a

global temporal orientation for space-time, and hence the existence of a univocal distinction

between past and future light-cones, is therefore independent of the temporal orientation of

light-like vectors and on the temporal ordering of light-like separated events. In other words,

it is possible to speak coherently of the absolute past and the absolute future of a given event

without requiring that the events lying on its double light-cone are themselves past or future.
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Indeed, one may well choose to rede�ne S( , ) so as to include light-like vectors too, but that

choice is certainly not mandatory. In sum, there is nothing in the ordinary way of building

temporally oriented Minkowski space-time which prevents light-like separated events from being

achronal.

This discussion has led us to the third and �nal advantage of choosing light-like separation as the

relativistic counterpart of co-presentness. Insofar as the equivalence relation S( , ) is restricted

to the set of sole time-like vectors, the absolute past and future of any given event are themselves

restricted to the sole interior of its past and future light-cones. Leaving the elsewhere region

aside, then it is neither physically nor conceptually possible to move from the absolute past to

the absolute future of any given event without crossing its limiting present � that is to say, for

whatever event x, the limiting present is precisely the region of space-time separating absolute

past from absolute future. Surely, this will not produce a foliation of the whole space-time

manifold, but it is enough to guarantee a consistent, exhaustive and invariant decomposition of

any arbitrary causal cone into past, present and future.

3.3.3 Space-Like Separation

The third possible option is to identify the present moment with the causal present, namely

with the elsewhere region. Since the latter is just the topological exterior of a light-cone, this

choice would provide the present moment with precisely the same kind of invariance as that of

the limiting present. In addition, it would have the advantage of extending the present moment

of any given event so as to span the union of all its possible hyperplanes of simultaneity, o�ering

a plausible generalization of the classical conception of presentness as the locus of all events

isochronous to a given one.

This feature of the causal present was already noticed by Weingard (1972), who endorsed this

view on the basis of the critique Reichenbach (1958) and Grünbaum (1973) made of the standard

de�nition of chronological simultaneity. In introducing the notions of chronological presentness

we incidentally claimed that, in special relativity theory, the locus of events isochronous to a

given time-place is conventionally associated to its hyperplane of simultaneity. Reichenbach

and Grünbaum emphasized the conventionality of this choice, which they took to be based on

the assumption of the continuity of light signals and on the constancy of the speed of light

in all directions. Einstein's operationalist de�nition of simultaneity by means of light clocks

was based on the hypothesis that light took the same time to cover equal spatial distances

in opposite directions; however, given the limiting character of the speed of light, there is no

physical mean to ascertain the truth of that assumption. In the end, any other de�nition

of simultaneity between space-like separated events would work as well, though the standard

choice is motivated by reasons of computational simplicity. On this basis Weingard argued that,

since presentness cannot be taken to be a matter of pure convention11, then the relativistic

conventionality of chronological simultaneity makes it an unsuitable candidate for playing the

11See also Sklar (1985).



Temporal Becoming and Relativity 35

part of co-presentness in the special-relativistic context. Weingard did not acknowledge limiting

presentness, and therefore his choice fell naturally on causal presentness.

The �rst objection one may possibly move against Weingard's argumentation is that whether

chronological simultaneity is a conventional matter has become questionable after Malament's

proof that, for each inertial world-line, standard chronological simultaneity de�nes the sole non-

universal equivalence relation holding between space-like separated events (Malament, 1977;

Dieks, 2006a). However, the key core of Weingard's account can easily be made independent on

that assumption for, as he pointed out:

[...] in terms of actual physical or experimental facts, it is the class of events that can

be considered simultaneous to an event at P [as of whatever de�nition of simultane-

ity], and not the class of events absolutely [i.e. chronologically] simultaneous to the

events at P , that plays the role in special relativity that the class of events simulta-

neous to P plays in Newtonian space-time. In each they are the class of events that

are not causally connectable with P . And while the class of events simultaneous to

an event at P , with respect to some frame of reference, is not a relativistic invariant,

the class of events that can be considered simultaneous to events at P is such an

invariant. It is just the class of events outside of P 's light-cone (Weingard, 1972, p.

120, my emphasis).

In other words, one may simply prefer causal presentness to chronological presentness in virtue

of its more straightforward physical signi�cance.

The second possible objection is that raised by Savitt who, once again, relied on his achronality

requirement: for any time-place x, there exist two distinct events y and z in x's elsewhere

region such that y and z are time-like separated; accordingly, elsewhere regions are not achronal.

However, Savitt's requirement seems here to be out of place. Truly, if compared to chronological

simultaneity, achronality is a perfectly reasonable demand: in fact, no one would be willing

to assign the same time coordinate to a pair of events which, from any possible perspective,

appeared to be separated by a non-zero temporal gap. However, the causal present of event

x was de�ned as the (four-dimensional) surface on which x could not exert (or could not be

exerted by) any causal or physical in�uence. Demanding such region to be achronal would be

as much as demanding that no two events which are physically or causally independent of a

given one should also be physically or causally independent of each other. This was certainly

true in the classical case, where the absence of any limiting speed to causal action produced a

�attening of the causal present: in that case, the relation of causal or physical independence

was given the transitive property as a matter of fact, as a result of having removed any physical

constraint from the way causal and physical action propagated. However, there is nothing in

the very notion of causal independence which would call for such transitivity. So, in the face of

Weingard's proposal, Savitt's demand for achronality appears to be at least questionable.
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Just like limiting presentness, causal presentness is also capable of playing the part of the sep-

arating element between past and future. Contrary to the former, however, it is compatible

with a global decomposition of space-time into past, present and future, with the sole proviso of

extending the absolute future (past) of any event so as to include its future (past) light-cone: as

we saw, this would demand rede�ning temporal orientation so as to include both time-like and

light-like vectors; but, as we saw, this would also be consistent with common speech.

3.3.4 Recollecting the Pieces

Just like the here-now conception of presentness was obtained as the result of intersecting chrono-

logical present, causal present and limiting present, one may similarly wonder whether their

union would give rise to a suitable candidate for the present moment. In that case, the present

of any event x would coincide with the four-dimensional region of space-time including both its

elsewhere region and its light-cone. What properties would such unorthodox conception of the

present satisfy?

First, it would include all three types of presentness, simply by de�nition. Second, being the

union of two invariant structures of Minkowski space-time, it would be invariant in its turn.

Third, it would have classical hyperplanes of simultaneity as a limiting case. Fourth, keeping

the ordinary equivalence relation S( , ) on the set of time-like vectors, it would support a

global decomposition of space-time into absolute past, present and future. Fifth, it would have

a very straightforward interpretation: in fact, it would coincide precisely with that portion of

space-time falling neither in the absolute past nor in the absolute future of a given event.

3.4

Towards a Dynamical Interpretation of Tenses

All the notions of presentness we discussed so far are grounded on invariant, re�exive and

symmetric binary relations: being at the same time-place as, being light-like separated from,

being space-like separated from, and being light-like or space-like separated from. However,

none of them satis�es transitivity, except for the sole relation of spatio-temporal coincidence.

Contrary to the classical case, therefore, none of the notions of co-presentness we proposed is an

equivalence relation.

One may consider this failure of transitivity a very serious de�ciency, since it is a primary

intuitive feature of the ordinary concept of presentness that any two events which are co-present

to a given one should be also co-present to each other: those who regard transitivity a necessary

ingredient of co-presentness would therefore regard all the above acceptations of presentness

highly unsatisfactory. Nonetheless, there are strong reasons to resist this judgment.
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First, as we saw, there are no invariant partitions of the relativistic space-time manifold other

that the two trivial ones; accordingly, no equivalence relation onM could ever play the part of co-

presentness in Minkowski space-time without either relaxing invariance or falling into triviality.

Under this light, transitivity seems to be the lowest price to pay. Giving up invariance would

make the present moment an observer-dependent, non-structural feature of Minkowski space-

time; so it seems that any objective account of co-presentness should retain invariance to the

detriment of re�exivity, symmetry or transitivity. On the other hand, both re�exivity and

symmetry seem to be too basic requirements to be given up: indeed, it would hardly make sense

to speak of a time-place which is not present to itself, nor of two events only one of which is

co-present to the other.

Second, as we already mentioned, transitivity is part and parcel of neither causal independence

nor, by symmetry, of causal dependence. Hence, the sole two sources the classical notion of

co-presentness inherited its transitivity from were (a) absolute chronological simultaneity and

(b) the merely factual coincidence of the causal present and the limiting present with the chrono-

logical present. However, neither of these two sources persist in the relativistic case. On the one

hand, chronological simultaneity lost its classical invariance, with the consequence of no longer

being a reliable basis to de�ne co-presentness. On the other hand, causal present and limiting

present are separated from hyperplanes of simultaneity, so that they are no longer required to

be grounded on transitive binary relations.

Should the failure of transitivity prevent us from providing the above acceptations of presentness

with a satisfactory metaphysical meaning? Maybe. Nonetheless, they have the merit of having

shown temporally oriented Minkowski space-time to possess enough structure to o�er a purely

geometric, yet objective, account of tenses. If there was anything over and above existence,

determination or any other metaphysical property to set the present moment in motion, then

such account would still su�ce to make sense of objective temporal becoming. It is my contention

that such non-metaphysical motor exists, and it lies in the very algebraic properties of the

mathematical structures we normally employ to model physical time. Before turning to that

issue, however, we must face the second family of objections which have been moved against

objective temporal becoming, namely those concerning its dynamical component.



4
Logical Threats

While arguments coming from science typically focus on the static ingredient of becoming,

those which have been moved against its dynamical component are mostly of a logical kind. In

general, they contend that there is something metaphorical, if not inherently incoherent, about

expressions such as "time �ows", "time has a direction" or "time goes one way".

Except for McTaggart's notable antecedent, which was still based on ontological assumptions,

the �rst two examples of purely logical arguments of this kind were �rst o�ered by Smart (1949,

1954), and they were later reproposed by Williams (1951), Black (1959) and Price (1996), just

to cite few. Smart's critique consisted of two main contentions, namely that there's apparently

no sensible way of accounting for the speed of time and, similarly, that there is no meaningful

way to speak of the temporal framework of time's putative passage.

The third logical argument we shall discuss is due to Grünbaum (1967a), who contended that

the dynamical component of becoming possesses no factual or physical meaning. Contrary to

Smart's ones, Grünbaum's argument never reached philosophical fame and it was never at the

center of a vast theoretical polemic, though a later version of it was discussed by Price (1996)

and Maudlin (2002, 2007).

Rejecting arguments of this kind is a mandatory task for anyone who would like to sustain

objective temporal becoming for, as we shall see, they have never been de�nitely defeated by

their opposers.

4.1

The Rate and Reference of Time's Passage

Smart's objections to the passage of time have the form of a double reductio ad absurdum. The

�rst may be referred to as the no-rate argument; in its currently debated formulation, due to

38
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Huw Price, it states that:

[...] if it made sense to say that time �ows then it would make sense to ask how

fast it �ows, which does not seem to be a sensible question. Some people reply

that time �ows at one second per second, but even if we could live with the lack of

other possibilities, this aspect misses the more basic aspect of the objection. A rate

of seconds per second is not a rate at all in physical terms. It is a dimensionless

quantity, rather than a rate of any sort (Price, 1996, p. 13).

Four premises evidently lie at the basis of this argument:

(1) For any xi and any xj , xi passes or �ows with respect to xj only if there exists a de�nite

rate of change of xi with respect to xj .

(2) For any xi, the rate of change of xi with respect to xj is given in units of xi over units of

xj .

(3) For any xi and any xj , the rate of change of xi with respect to xj is not a dimensionless

quantity.

(4) For any xi and any xj , if xi = xj then the ratio between units of xi and units of xj is a

dimensionless quantity.

However, such premises are merely su�cient to establish the following conclusion:

(5) For any xi and any xj , if xi = xj then xi cannot pass with respect to xj

and conversely, if xi passes with respect to xj then xi 6= xj . As a consequence, two hidden

premises must be added in order to make the argument e�ective, namely:

(6) For any xi, if xi passes or �ows then there must exist xj with respect to which the passage

or �ow of xi takes place.

(7) For any xi and any xj , if xi �ows or passes with respect to xj , then xj is time.

Premises (6)-(7) guarantee that

(8) If time �ows or passes, then it �ows or passes with respect to itself.

Premises (1)-(4) then do their own job, leading to the conclusion that

(9) Time does not �ow or pass.
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Smart's second argument relies instead on an in�nite regression. Let us suppose that time did

actually move, or �ow. Since movement is a form of change with respect to time, then there

would exist a second, derivative, time dimension with respect to which time could be claimed

to change. However, in order to properly play the part of time, this additional time dimension

would have to �ow in its turn, so that a third time dimension would be needed in order to

account for its passage � and so on, endlessly. If we want to avoid the regression, we must then

admit that time (the �rst, original, time dimension) does not �ow or pass. The logical structure

of this argument may be reconstructed as follows:

(10) Time �ows.

(6) For any xi, if xi passes or �ows then there must exist xj with respect to which the passage

or �ow of xi takes place.

(11) For any xi and xj , if xi passes with respect to xj then xj �ows or passes.

(5) For any xi and xj , if xi passes with respect to xj then xj 6= xi.

(12) For any ordered sequence (xi)
n
i=1, if for any i = 1, ..., n − 1 it is the case that xi passes

with respect to xi+1 then xn does not pass with respect to any of the xis.

Premise (11) expresses the contention that, if time is supposed to �ow or pass, then anything

which is asked to play the part of time must �ow or pass in its turn. (5) and (12) rule out

the possibility that any time dimension could move with respect to a time dimension of less or

equal degree. (11), (5) and (12) therefore jointly guarantee the in�nite regression. Given these

premises, and taking for granted that

(13) There cannot exist any in�nite ordered sequence (xi)
+∞
i=1 such that, for any i = 1, ...,+∞,

xi passes with respect to xi+1

then at least one of the above premises must be false. Those who deny the passage of time will

therefore choose to abandon (10), thus reaching conclusion (9).

Though apparently unrelated, Smart's arguments are nevertheless multiply logically connected.

On the one hand, they both share premises (5) and (6). On the other hand, (6), (7) and (11)

jointly rule out (5): for if anything could pass only with respect to time, and anything with

respect to which something passes should pass in its turn, then time would be forced to pass

with respect to itself. Since both arguments share hypotheses (6) and (5), then (7) and (11)

cannot stand together, and hence the two arguments behave as the two prongs of a unique

reductio: given that anything which passes must pass with respect to something, if time passed,

then it should have passed either with respect to itself or with respect to something else; the

no-rate argument is meant to rule out the �rst possibility, the argument by in�nite regression

the second one. This point is of a great but underrated importance, because it shows that any

attempt to reject Smart's arguments by denying either the sole (7) or the sole (11) would result

in merely shifting from one horn of his argumentation to the other.
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4.1.1 Objections to the No-Rate Argument

The most recent responses to the no-rate argument have been inspired by Maudlin (2002, 2007),

and they may be found in Phillips (2009), Raven (2010) and Skow (2010). All reject premise (4),

sharing the same contention that the physical magnitudes in the nominator and denominator of

a ratio do not reduce or "cancel out" the way numbers do.

4.1.1.1 Numerical Equality and Identity

Maudlin owes the merit of having raised the debate on time's passage to a new life. His polemic

is especially directed against Price's version of the no-rate argument, which Price used to make

room for his own solution to the problem of the direction of time. The following objection, as

well as those which it inspired, is therefore to be placed in a di�erent context than that in which

Smart's logical arguments were originally formulated � and incidentally, this might have been

the source of a common misunderstanding of their real target1.

What's Price's `more basic' objection? This, I fear, is just a confusion. A rate of one

second per second is no more a dimensionless number that an exchange rate of one

dollar per dollar is free of a speci�ed currency. Price seems to suggest that the units

in a rate `cancel out', like reducing a fraction to simplest terms. Any rate demands

that one speci�es the quantities put in the ratio: without the same quantities, one

no longer has the same ratio. [...] Similarly, π is de�ned as a ratio of a length (of

the circumference of an Euclidean circle) to a length (of the diameter). The ratio is

length to length: length does not `cancel out'. There is, of course, also a real number

(similarly called π, but don't get confused) that stands in the same ratio to unity as

the circumference of an Euclidean circle stands to its diameter. That real number is

dimensionless, but it plays no role in the de�nition of π. [...] And the rate of passage

of time at one second per second is still a rate: it, unlike π, is a measure of how much

something changes per unit time (Maudlin, 2007, pp. 113-14).

Maudlin is evidently subscribing premise (3), admitting that no number is a rate of anything

as long as it consists of the ratio of two dimensionless quantities, so that specifying which

magnitudes enter the nominator and denominator of a ratio is at least a necessary condition for

that ratio to be a rate: `any rate demands that one speci�es the quantities put in the ratio'.

His critique to Price's version of the no-rate argument is therefore that of having confused

numerical equality and identity, thus identifying dimensionless ratios between real numbers and

dimensioned ratios between real-valued magnitudes. The example he proposes to clarify the

alleged distinction between the two cases is that of the number π: one may alternatively conceive

π as the dimensioned ratio between the circumference and the diameter of an Euclidean circle,

1See � 4.1.3.
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both expressed in units of lengths, or as the dimensionless real number which, as a matter of

fact, is numerically equal to that ratio. In his view `the real number is dimensionless, but it

plays no role in the de�nition of π', understood as a geometrical property. Perhaps, for the

sake of clarity, he would better have claimed that the real number π is equal to the rate of the

circumference c to the diameter d of any Euclidean circle. Hence, even if we express the value

of the rate of circumference to diameter by means of a dimensionless number � namely π � the

rate itself � that is c/d � is a dimensioned quantity. And so, in the very same way, one second

per second is a perfectly meaningful rate even if one, thought of as the value of that rate, is not.

This line of argumentation has two main drawbacks. In the �rst place, it would make it di�cult

to make a comparison between intervals of time, or durations. For, to be e�ective, Maudlin's

response to the no-rate argument should not only prove that seconds/second is a meaningful

physical magnitude, but also that its meaning is precisely the one of a rate of passage � a point

which, strangely enough, seems to have been underestimated by the supporters of Maudlin's

thesis. But if so, and if magnitudes did not cancel out, how could we say, for example, that

the time interval taken by an inertial runner to cover one meter is half the time he would take

to cover two meters? If that runner moved at a constant rate of two meters per second, then

he would take one half second to cover one meter and one second to cover two meters; hence

the ratio between the two time intervals would be that of one half seconds/second. How should

we read this, according to Maudlin? If the physical meaning of seconds/second was that of a

speed, then what speed would one half seconds/second stand for? Certainly not that of the

runner, which we know to be two meters/second. Perhaps, that of the runner's proper time?

That would sound odd, for turning the above ratio upside down would su�ce to make the speed

of the runner's proper time increase. So, it seems that Maudlin's thesis would hold water only

insofar as he could o�er an independent criterion to distinguish the meaning seconds/second

would have in the case of time's passage from that it would have in this case. However, there

seems to be no such criterion currently on the market.

In the second place, the assumption that units of measurement in a rate do not cancel out

may lead to paradoxical consequences. For example, length in space may both be measured

by means of rigid rods � whose unit of measurement is meter � or as the product of speed

and duration in the ideal case of a uniform motion � in which case, the unit of measurement

is (meters/seconds)×seconds. If seconds did not cancel out, one would be faced with two con-

ceptually di�erent, though numerically equivalent, metrications of space. In order to put them

back together, she would then have to establish a principle of equivalence between rigid-rods

lengths and speed-duration lengths, much of the sort of that holding between inertial mass and

gravitational mass in general relativity. But the same would hold mutatis mutandis for time,

and so for all fundamental physical quantities, and so for any derivative physical quantity whose

de�nition depend on them, and so on. As a consequence, physical theory would then su�er either

of an inde�nite growth of magnitudes or of an inde�nite growth of correspondence principles.

In conclusion, there is nothing above the very fact that physical magnitudes do actually cancel
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out, which guarantees the equivalence of di�erent operational methods of describing the same

physical reality.

4.1.1.2 Numbers and Relations

One may contend that our last objection is not e�ective against Maudlin's argumentation, for

it involves non homologous magnitudes such as meters/seconds and seconds, instead of a pair

of homologous ones. However, reducing seconds in (meters/seconds)×seconds requires the alge-
braic operations on magnitudes to be associative, so that (meters/seconds)×seconds may equal

meters×(seconds/seconds); and so, what actually cancel out in our example are two homologous

quantities. Fine; but � so she would go on � this would just amount to an algebraic manipulation

with no physical meaning.

This seems to be exactly the point of Phillips's reply to Olson's version of the no-rate argument

(Olson, 2009):

A rate is a ratio of two quantities, a relation one quantity bears to another. One

second divided by one second is one, and one is not a rate of change, just as Olson

says. But one second per second is not one second divided by one second, and it is

not equal to one. One second per second is a ratio of time to unit time, a relation

between two amounts of time, whereas neither one second divided by one second nor

one is a ratio or relation of quantities. It is easy to be misled here. Fractions or

quotients can sometimes be used to express ratios (and rates), at least as long as we

know what it is we are expressing. But ratios are not fractions. A fraction is simply

one number divided by another. Thus, n/n = 1, where n 6= 0. In contrast, a ratio,

n : m, is the relation one quantity bears to another. It does not equal one even if

n = m (Phillips, 2009, p. 503).

Phillips's terminology is very unfortunate, so that some lexical clari�cation will be needed. For

the sake of clarity, and departing from Phillips's terminology, we shall refer to a "ratio" as the

numerical comparison between two quantities, whether it is dimensioned or dimensionless; in

the former case, we shall speak of a "rate" while, in the latter, of a "fraction" or a "quotient".

Hence, by claiming that `a ratio, n : m [...] does not equal one even if n = m', Phillips is claiming

that rates could be numerically equal � they can be "expressed by" � but not identical, to a

given quotient between dimensionless quantities. So far, he's therefore adding nothing new to

what Maudlin already said. However, he would seem to be grounding the theoretical distinction

between rates and quotients not on just whether they hold between dimensioned or dimensionless

quantities, but rather on the di�erence holding between relations and numbers, the latter being

understood as the results of algebraic operations. Rates are dimensioned ratios; as such, they

must hold between dimensioned quantities. Fractions, instead, are dimensionless ratios; and, as

such, they hold between pairs of dimensionless numbers as well as between pairs of dimensioned

quantities.
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To make this point clearer, let us analyze the passage we quoted above in a more detailed

way. Phillips argues that `[a] fraction is simply one number divided by another', which may

indeed raise the suspicion that fractions only obtain as ratios between dimensionless quantities,

or numbers. But at the same time, he also claims that `one second divided by one second is one':

independently of the fact that one second is a dimensioned quantity, once the ratio between one

second and one second is understood as a division, then it becomes identical to a dimensionless

number, and hence to a fraction. Conversely, `one second per second is not one second divided

by one second', for `[o]ne second per second is [...] a relation between two amounts of time,

whereas neither one second divided by one second nor one is a [...] relation of quantities'. The

distinguishing feature between fractions and rates is therefore not whether the quantities entering

their nominators and denominators are dimensionless or not, but whether we understand those

ratios as algebraic operations or, rather, as relations.

However, there seems to be no such clear-cut distinction between relations and fractions or

numbers, as the one Phillips would be in need of. Fractions or quotients are just place-holders for

rational numbers, and rational numbers owe their name precisely from being relations: "rational"

is what can be expressed by a "ratio", which is the Latin word for "relation". Set theory is the

best testimony of the relational character of rationals: in fact, they are axiomatically produced

out of integer numbers by Cartesian multiplication; but in set-theoretical terms, relations are

nothing but subsets of Cartesian products.

So, if fractions or real numbers are relations, how to distinguish between rates and fractions? Or

how to distinguish between those cases in which ratios between homologous quantities are just

the product of algebraic manipulations, and those in which they are genuine physical quantities?

Why should we take second/second to be a meaningful magnitude in Maudlin's case, but not in

ours? Once again, a supporter of Maudlin's thesis would be in need of an independent criterion

to distinguish the meaning seconds/second would have in the two cases. Unless she was able to

provide such a criterion, his objection to the no-rate argument would be unsupported.

4.1.1.3 Dates and Durations

One further counterexample to the no-rate argument, similar to Maudlin's but apparently

stronger, is given by Skow (2010). Let us suppose that a team of sociologists monitored how

the most common birth year in a given population � let us call it MCB � changed in time; we

may suppose that, due to an increase of mortality, while the MCB in 2000 was 1950, in 2001 it

became 1952. Sociologists would reasonably conclude that the rate at which the MCB moved

into the future was of two years per year; but if quantities canceled out, this claim would be

meaningless. The apparent cogency of this example stems from its capability of easily dodging

the arguments we o�ered so far, by picturing a case in which it would be hard to claim that

quantities, or magnitudes, actually canceled out. But a deeper analysis would make it clear that

the reason for which they don't is that they are simply not the same. For those years appearing

the denominator of the MBC/year rate are measures of time intervals, or durations, while those
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years entering the nominator are at best gross-grained place-holders for time locations, i.e. co-

ordinates, or dates: determining the most common birth year at a time is not to determine, so

to say, how long most currently living people born, but when they did. So Skow's example falls

short of o�ering a genuine case of two identical magnitudes not canceling out.

4.1.1.4 Introducing Magnitudes

Finally, Raven (2010) argues that, if homologous rates canceled out, then they could as well be

introduced at pleasure. So the rate of time's passage would not solely be equal to one second

per second but also, say, to one second×meter per second×meter, or even to one second×foot
of �oor tiles per second×foot of liquorice sticks, which would be absurd.

Indeed, it is hard to consider this objection a serious threat to the no-rate argument. If units

did cancel out, then one second per second would not solely be equal, but also identical, to one.

This would be so for all of the above putative rates, and thus there would be no absurdity at all

in equating all of them. The absurdity would rise only insofar as one would like to maintain that

time �ows, even if magnitudes were allowed to reduce: if magnitudes canceled out, then Smart's

premises would do their job, and time would not pass � at least, as of itself; so, why should we

go in search of its speed? In that case, the absurdity would be that of providing time with any

rate of passage, was it one second×foot of �oor tiles per second×foot of liquorice sticks or, more

simply, one second per second.

4.1.2 Common Objections

As we saw, the in�nite multiplication of time-like dimensions in the argument by regression is

made possible by conditions (11), (5) and (12). For this reason, standard responses to that

argument concentrate on (11) or (12), albeit retaining (5). In both cases, however, condition (7)

is tacitly rejected so that, if sound, the same objections would a�ect the no-rate argument too.

4.1.2.1 Static Hypertime

One solution for escaping both the in�nite multiplication of time dimensions and the no-rate

argument is, for example, that of rejecting (7) and (11), and accepting that time could move

with respect to a derivative time dimension � sometimes referred to as supertime or hypertime �

which is not itself in motion. This is the path traced by Schlesinger, and more recently discussed

by Skow:

In order to exhibit the sense in which the "now" moves in [our temporal dimen-

sion] TU1, we do not require a full-blown [derivative time-dimension] TU2. A poorer

temporal universe, in which the only ordering relationship events have to one an-

other is before and after, can provide the required container for TU1. Suppose that
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s0, s1, ..., sn are successive instantaneous states of TU1, and that S0, S1, ..., Sn are

those in TU2. [...] Then although TU2 has no moving "now" of its own, the move-

ment of the "now" in TU1 shows up in it. [...] The rate of this movement at its

various stages is obtained by dividing the magnitude of the interval si − sj by the

corresponding magnitude Si − Sj (Schlesinger, 1969, p. 6).

Two, perhaps obvious, objections may be raised against this proposal. If the motion of TU1 could

be exhaustively described by means of a static time dimension TU2, why should us require TU1

to move in its turn? If motion in time is conceivable without motion of time, then there's no

reason why should we retain such a troublesome assertion as that time �ows. And on the other

hand, even if we could not dismiss this claim and had been forced to accept that TU1 moved,

then TU1 would simply become super�uous. For if it was possible to observe its movement, and

even to compute its velocity with respect to TU2, then TU2 would be epistemically accessible.

So what would prevent us to coordinatize physical processes with respect to the latter, and to

discharge TU1 as being theoretically more expensive?

4.1.2.2 Relative Motion

An alternative family of objections rests on a relational conception of motion and speed (Webb,

1960; Schlesinger, 1969, 1985; Markosian, 1993). Objections of this kind typically reject (7) and

(12), claiming (a) that a measure of the speed of physical processes with respect to time can

symmetrically be turned into a measure of time with respect to those processes and hence (b)

that the movement or passage of time can be meaningfully related to the latter, with no further

need of invoking the existence of additional derivative time dimensions:

[...] if one clock is chosen as a standard, and another faster clock is chosen as an

alternative standard, then we can establish the ratio of the number of units ticked

o� by one clock over the number of units ticked o� by the other, counting from

an arbitrarily chosen simultaneous starting to an arbitrarily chosen simultaneous

stopping, and that this ratio would represent the rate of change of the time of one

clock relative to the time of the other. Thus, the time of one clock could be said to

�ow, and indeed, to �ow with a �nite measurable rate of change. [...] If it possible

to say that a person's heartbeat is fast or slow in terms of seconds, it must equally

be possible to say that seconds are fast or slow in terms of heartbeats (Webb, 1960,

pp. 360-361).

If one's heartbeat is one beat per second, then we can indeed count seconds by counting heart-

beats. This way we can evaluate how much time passed: physical processes may undoubtedly

be used to measure durations, or intervals of time. But intervals are lengths, not rates. So what

is for a physical process to measure the speed of time? In the end, objections of this kind seem

to be based on a misguided conception of speed, for they typically assume that
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There is no literal or factual meaning to the expression "rate of �ow" or "rate of

change" except that which derives from the ratio comprised by the number of re-

peated units of one measurable "thing" over the number of repeated units of another

measurable "thing" (Webb, 1960, p.359).

But even granting that speed could conceptually be reduced to a dimensioned ratio, not any

dimensioned ratio could conversely be turned into a speed: one beat per second is not a measure

of speed, but of frequency � and the inverse of frequency is not speed but, again, duration.

The same misunderstanding lies also at the basis of the following argument:

[...] whenever one gives the rate of some normal change in what is admittedly the

standard way, i.e. in terms of the pure passage of time, then one has likewise given

the rate of the pure passage of time in terms of the �rst change. If I tell you that

Bikila is running at the rate of twelve miles per hour in terms of the pure passage of

time, for example, then I have also told you that the pure passage of time is �owing

at the rate of one hour for every twelve miles run by Bikila (Markosian, 1993, p.

842).

Things are a bit more complicated in this case, for it is hard to say what physical magnitude one

hour per mile would exactly amount to. But even now, what is clear is that one hour per mile

is surely not a measure of speed (Macbeath, 1986). Velocity is a derivative magnitude and, as

such, it can only be de�ned for di�erentiable trajectories. No matter what system is in motion

� a massive point, a �eld, a distribution of purely mathematical variables � what is needed for

the system to have a de�nite velocity at a point is that its motion is di�erentiable at that point.

This means that the states or positions of that system should be at least a function of time �

that is, the minimum requirement for the canonical concept of speed is that at each time the

moving system should occupy exactly one position in physical or con�guration space. By the

same token, if the speed of time was to be computed in hours per mile, then the position of the

moving present in time would have to be a function of space, taken as an independent variable.

But it seems hard to make any sense out of this. How could space vary independently, and how

could time change its position with respect to itself? Even trying to neglect this di�culty, by

simply requiring that time itself had to be a function of space, and measuring intervals of space

through the subsequent positions occupied by a given physical clock, like in Bikila's case, we

would move no further: anytime the physical clock retraced its own steps, or anytime it was at

rest, then di�erent instants of time would be associated to the same location. For time to have a

de�nite speed, the motion of the physical clock would thus not only have to be uniform, but also

irreversible � in the sense of describing a non-intersecting trajectory � and interminable. Time

could not have a de�nite rate with respect to any periodic process, including standard clocks,

but it would have an in�nite speed with respect to all objects at rest.
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In sum, if we take relative motion to be necessarily connected with relative speed, as required

by (1), then the above di�culties in determining the speed of time as of any physical process

�nally result in the impossibility of de�ning its motion in a relational way.

4.1.3 Flow without Kinematic Motion

Of the purported refutations of Smart's arguments we discussed so far, all seem to have ended up

in smoke. So let us make a little experiment, trying to challenge Smart with his own weapons,

and let us concede that time does not pass. If immobility was the sole alternative to passage,

then we would be saying that time stands still; but in doing so, we would be claiming that time

had zero speed � that it was moving at zero seconds per second � or that there was a derivative

time dimension with respect to which time could be observed not to be in motion. In the former

case, all arguments against the physical signi�cance of a rate of seconds per second would apply

as well. In the latter case, we would possibly not be able to get an in�nite regression � since

hypertime might symmetrically be supposed to be at rest with respect to time � but we could

always rely on a principle of theoretical economy for casting doubts on the actual utility of

duplicating the original time dimension. This way, the same arguments Smart directed against

passage would work as well against the very opposite hypothesis of rest.

So, is there anything basically wrong in Smart's argumentation? I believe not. Rather, what is

wrong is our having contrasted �ow with immobility: what our experiment wanted to show is

that what is at stake of the contention is not whether time actually passes, but whether it does

so in a kinematic way. Since both (9) and (10) fall equally into Smart's logical trap, it is clear

that time's passage cannot be its main target. Rather, his reductio should be directed primarily

against his auxiliary hypotheses, whose aim is that of sketching the main features of time's �ow,

and which treat time by the same standards as a moving solid body. So, even if Smart was right

in claiming that time did not pass in the usual sense, we would not be entitled to conclude that

it stands still: what his twofold reductio actually proves is that, if time passed, then its passage

could not be endowed with all those features one would require kinematic motion to possess.

If I am right, those who so far have tried to argue in favor of time's passage by rejecting Smart's

argumentation were doomed to fail precisely because they did not recognize its real signi�cance:

in all cases, they faced it as if it was aimed to refuse passage tout court ; and for this very reason,

they almost invariably attempted to challenge them by providing time's passage with purely

kinematic features, tacitly holding it that there could be no other form of objective passage

than kinematic motion2. So, even if they succeeded in sidestepping Smart's critique, they would

only prove that, if time moved, it would do so kinematically; at most, they would defuse a

potential threat to becoming, but they would not make any step forward in arguing that time

does actually pass.

2Indeed, Maudlin (2007) would presumably not subscribe this claim, for in his view objective temporal be-
coming is just the existence of a mind-dependent distinction between the past and the future directions of time.
Nonetheless, as we pointed out in � 4.1.1.1, his objection to the no-rate argument works just in case one second
per second is proved to be not only a physical magnitude, but also an appropriate measure of speed.
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Markosian (1993) o�ers a very interesting example in this respect. He attempted to dodge the

no-rate argument by denying (1), arguing that, in the case of time, talking about rates of passage

simply makes no sense:

[W]hat is essential about rate talk is that it involves a comparison between some

normal change and the pure passage of time. According to this view, it does not

make sense to ask about the rate of the passage of time, for to do so is to make a

category mistake: the answer would have to involve a comparison between the pure

passage of time and the pure passage of time, but such an answer would not make

sense because the pure passage of time has a unique status among changes �it is the

one to which other, normal changes are to be compared. It is the paradigm, and, as

such, it alone among changes cannot be measured. If I take this line then [...] I will

still be able to maintain that time literally passes (Markosian, 1993).

However, the above discussion has made it clear that, far from raising any di�culty for Smart's

argumentation, this argument would point in the very same direction. Smart's primary interest

was that of warning us against the hypostatization of events as something becoming in time �

rather than simply happening in (or being part of) time � and on the consequent ambiguity in

our use of locutions such as "the passage of time", "the �ow of time" or "the river of time":

Substances exist in space; they are related to one another in a three-dimensional

order. Events are in time; they are related to one another in an order of earlier

and later. Now if we think of events as changing, namely in respect of pastness,

presentness and futurity, we think of them as substances changing in a certain way.

But if we substantialise events, we must, to preserve some resemblance of consistency,

spatialise time. "Earlier than" becomes "lower down the stream". It is easy to see

how there arises the illusion of time as a river down which events �oat. [However]

trouble arises at the boundary between our shifted system and the old one, for

example, when we use "event", with its syntax shifted so as to behave like "substance"

in combination with "time" with its syntax not shifted to behave like "space". We

then get nonsense, such as "how much time1 does it take for events to �oat a given

distance (time2) in the river?" (Smart, 1949, p. 493).

Wondering how much time would a point of time need to get to another point in time is tan-

tamount to wondering how fast (a point of) time �ows. Only at this point, the question about

the speed of time rises. The proper object of contention is thus the semantical shift from time

conceived as the locus of change (and hence of motion) to time as the subject of motion itself.

Charging the no-rate argument of a category mistake is to grossly miss the point, for that mistake

is precisely the true target of Smart's reductio; and, after all, it is hard to see how Markosian

would be able to say that time passes literally, just after having denied that it could do so � or,

what literal meaning of passage is there, other than the kinematic one?
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4.2

The Direction of Time's Passage

If time passed, then one would reasonably be entitled to wonder toward what direction. Those

who defend time's �ow typically hold it that time simply moves toward the future, constantly

receding from the past while continuously crossing a new present. Tenses di�er objectively

precisely because the future is irreversibly selected by time as the inexhaustible destination of

its �ow (Schuster, 1986). Block theorists reject this view as a whole, charging it of misusing a

kinematic concept, exactly as they did for time's rate and reference.

4.2.1 The Theoretical Significance of Becoming

Just like Smart, Grünbaum (1967a) aimed to show the metaphorical character of transiency.

Contrary to the former, however, he didn't charge it of incoherency, but of triviality; what he

needed was in fact to spoil time's passage of any empirical content, so that he could reshape the

problem of time's arrow in purely topological terms.

[T]he claim that the present or now shifts in the direction of the future does invoke

the transient now to single out one of the two time senses and � as we are about to

see � is a mere truism like `All bachelors are males'. For the terms "shift" or "�ow"

are used in their literal kinematic senses in such a way that the spatial direction of

a shift is speci�ed by where the shifting object is at later times. Hence when we

speak metaphorically of the now as "shifting" temporally in a particular temporal

direction, it is then simply a matter of de�nition that the now shifts or advances

in the direction of the future. For this declaration tells us no more than that the

nows corresponding to later times are later than those corresponding to earlier ones,

which is just as uninformative as the truism that the earlier nows precede the later

ones. [...] Being only a tautology, the kinematic metaphor of time �owing in the

direction of the future does not itself render any empirical fact about the time of our

experience (Grünbaum, 1967a, pp. 13-14).

Grünbaum basic premises are that (i) anything which is in motion has a direction, i.e. it occupies

di�erent positions of a given space at increasing instants of a given time, that (ii) the time and

place of time's motion consist of time itself, so that becoming should be understood as present

moment's being located at di�erent times at increasing times and (iii) that time never changes

its direction. This way, the claim that time moves from past to future, i.e. in the unique direction

of increasing time, is translated into the claim that the present moment is located at increasing

times at increasing times. Grünbaum took this claim to be trivial, and rejected it as devoid of

any physical import. However, his conclusion is a non sequitur.
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In the �rst place, time's passage cannot be trivially equated to the claim that `the nows corre-

sponding to later times are later than those corresponding to earlier ones'. This would be true

only insofar as the time and locus of time's passage were necessarily located, by de�nition, in

time itself; however, decades of philosophical debate on Smart's logical arguments have proved

this hypothesis to be questionable. As we saw, defenders of time's passage would easily contend

that time might instead globally move with respect to a static hypertime or, alternatively, that

it might locally possess di�erent velocities, and hence being in motion, with respect to di�erent

physical clocks; in the former case, time would move by occupying di�erent positions in global

time at subsequent hyper-times while, in the latter, it would occupy di�erent positions in local

time as a di�erent local time was allowed to vary. Independently on their actual e�cacy, these

objections undeniably make it clear that whether the time and locus of time's motion coincide

is not a matter of pure de�nition � for `the present or now shifts in the direction of the future'

may claim, for example, that the present would cross subsequent moments of time at subsequent

hyper-times. Hence, the claim that time moves from past to future cannot be logically equated

to the alleged tautology that `the nows corresponding to later times are later than those corre-

sponding to earlier ones', so that the logical truth of the latter cannot be shared by the former,

and Grünbaum's conclusion does not follow.

In the second place, even granting that time could only pass with respect to itself and that

time's passage would conceptually amount to the present moment's being at increasing times

at increasing times, Grünbaum would be wrong in discarding it as a mere truism without any

theoretical or factual import: in fact, this would have relevant consequences for Grünbaum's

own philosophy of time.

4.2.1.1 Becoming and The Anisotropy of Time

One of Grünbaum's leading theses is that time's arrow should be understood topologically, rather

than dynamically. In a few words, he aimed to root the linear ordering of earlier and later in

time's geometrical con�guration, rather than in the alleged irreversibility of its motion. Its

logical argument played a crucial part in this respect (which is also testi�ed by the number of

appearances it made, sometimes word-by-word, in his philosophical production: (Grünbaum,

1967b, 1971, 1973)): by ruling out time's passage as a plain tautology with no physical meaning,

it made it possible for him to recast such an ordering in purely topological terms.

So, what would be for time to be topologically asymmetric or, as he says, anisotropic? Since time

is essentially one-dimensional, this should be understood as a lack of mirror-symmetry around

any of its points or, in other words, as an objective or structural di�erence between the direction

we call past and the one we call future. Grünbaum identi�ed the source of this asymmetry in the

`existence of irreversible kinds of processes (Grünbaum, 1973, p 209)' where, by an irreversible

process, he meant `a process such that no counterprocess is capable of restoring the original kind

of state of the system at another time (Grünbaum, 1967a, p. 11)': in fact, he held that `the

structure of time is not something which is apart from the particular kind of processes obtaining
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in the universe (Grünbaum, 1973, pp. 209, 214)', so that any factual or nomological asymmetry

in the temporal evolution of physical systems should re�ect in a constitutive asymmetry of time

itself. On the other hand, he argued that irreversible processes are only capable to confer time an

asymmetric order, not a direction. That is to say: they establish an objective distinction between

the two possible orientations of the time axis, but they are not capable to single out one of these

orientations as the preferred direction along which physical phenomena would be doomed to take

place. For this reason, he could a�rm that time may be asymmetric without being in motion,

the di�erence between past, present and future being a purely subjective epiphenomenon:

Although the serial relation "later than" itself does have a "direction" in the ob-

vious sense of being asymmetric, the set of states ordered by it does not have a

direction but rather exhibits a special di�erence or anisotropy as between the two

opposite directions. Thus, when we speak of the anisotropy of time, this must not be

construed as equivalent to making assertions about "the" direction of time. [Any]

assertion about "the" direction of time rest on [the] incorrect supposition that there

is a physical basis for becoming in the sense of the shifting of a physically de�ned

"now" along one of the two physically distinguished directions of time. By contrast,

our characterization of physical time as anisotropic involves no reference whatever

to a transient division of time into past and future by a "now" whose purported

unidirectional "advance" would de�ne "the" direction of time (Grünbaum, 1973, p.

217).

One question Grünbaum left unanswered is whether, if time passed, this would really be enough

to make it anisotropic. In general, the irreversible motion of a particle in physical or con�guration

space su�ces to make its trajectory asymmetric with respect to the time axis in this case,

however, we should determine whether time's motion would make the time axis itself asymmetric.

Here is where the contested statement that earlier nows are earlier than later ones starts to

play its part. Our analysis showed that Grünbaum managed to equate that statement with

the claim that time is in motion only by admitting that time coincided with the place and

time of its own passage. Given this premise, we may understand time as a degenerate process

whose trajectory takes place in itself, and whose motion, being irreversible, would consequently

produce an asymmetry in its own structure. More pictorially, the same conclusion could be

reached by noticing that the �rst premise in Grünbaum's argumentation guarantees that, if time

irreversibly �owed toward the future, then no physical process taking place in time could ever

be capable of "going up time's stream", for its direction would by de�nition consist of the states

or positions it would be in at subsequent stages of time's passage; all non-periodic3 processes

would consequently be de facto irreversible, which in Grünbaum's view would su�ce to make

time anisotropic. This way, we reached the �rst two signi�cant theoretical consequences of what

Grünbaum thought to be a plain triviality: given his own premises, (a) the objective passage of

time would establish an objective asymmetry between past and future and (b) Grünbaum would

3This quali�cation is needed because, albeit being forced to evolve necessarily in the direction of time's �ow,
even in this case periodic processes would, as such, enter the same kind of state more than once.
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never had been capable of trivializing time's passage without ipso facto trivializing its anisotropy,

for any logical consequence of a tautological statement must necessarily be tautological in its

turn4.

4.2.2 Time Goes Just Where It Goes

One slightly di�erent version of of Grünbaum's logical argument is reported by Price (1996),

and has been recently discussed by Maudlin (2002, 2007):

If time �owed, then � as with any �ow � it would only make sense to assign that �ow

a direction with respect to a choice as to what is to count as a positive direction of

time. In saying that the sun moves from east to west or that the hands of a clock

move clockwise, we take for granted that the positive time axis lies toward what we

call the future. But in the absence of some objective grounding for this convention,

there isn't an objective fact as to which way the sun or the hands of the clock are

`really' moving. Of course, proponents of the view that there is an objective �ow of

time might see it as an advantage of their view that it does provide such an objective

basis for the usual choice of temporal coordinate. The problem is that until we have

such an objective basis we don't have an objective sense in which time is �owing one

way rather than another (Price, 1996, p. 13).

Price's argument shares its basic premises with Grünbaum's: (i) passage is essentially related

to having a de�nite direction, where the latter stays for being located at di�erent places at

increasing moment of a given time dimension, and (ii) time's passage is unidirectional. But

while Grünbaum modeled his argument by focusing on what time's being at di�erent places

could mean, Price concentrated on the meaning of time's having di�erent locations at subsequent

moments of time, leaving the question of the locus of its motion aside. This way, instead of the

alleged triviality that earlier nows are earlier than later ones, he obtained a vicious circularity.

He proceeded by confronting his premises with the dynamist claim that the constant direction

of increasing time is the one of its �ow. Let us suppose with him that time moved, and that its

motion was unidirectional; then, by premise (i), the direction of its motion would be determined

by its subsequent positions as time increased. Following Price, let us put aside for this moment

the question concerning what those "positions" should consist of, and let us wonder: how to

establish what the direction of increasing time is? Dynamists would answer that it is just the

direction of time's motion. But, if so, then the direction of time's motion would be determined

by its positions at increasing times, which in their turn would be determined by time's motion,

4In addition to the theoretical drawbacks this result would produce for Grünbaum philosophy of time, it is
worth pointing out that, given Grünbaum's premises, there exists a logical connection between the dynamical
and the topological features of time: if time is supposed to pass with respect to itself, and if it goes in a unique
direction, then there is an objective topological distinction between past and future. On this topic, see also ��
7.2, 7.1.3
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and then by its positions at increasing times, ..., without ever reaching an ultimate basis for

establishing whether `time is �owing one way rather than another'. To avoid this circularity, one

should either directly renounce time's passage or discard the hypothesis that future and past are

objectively distinguished by time's motion.

Maudlin tried to avoid this conclusion by turning Price's argument upside down:

[...] �ows only have a direction because the asymmetry inherent in the passage of

time provides temporal direction: from past to future. The natural thing is now

to turn Price's Modus Tollens into a Modus Ponens: since there obviously is a fact

about how the Mississippi �ows (north to south) or how the hands of standard clocks

turn (clockwise) there is equally a real distinction between the future direction in

time and the past direction (Maudlin, 2007, p. 114).

However, what Maudlin actually did was simply to rea�rm the dynamist position, balancing

the logical cogency of Price's argument with the intuitive force of time's asymmetry. This way,

he failed in three di�erent respects. In the �rst place, he misunderstood the logical structure

of Price's argumentation. Price showed the dynamist defense of passage to be logically un-

supported; his denial of passage stemmed from this logical pitfall in the way of a reductio ad

absurdum. Therefore, there is no conclusion in Price's argument whose truth value could be

changed in order to restore its premises, and turning Price's modus tollens into a modus ponens

would demand learning to coexist with a logical circularity. In the second place, Maudlin's

response is not itself free from circularity. Invoking the experienced irreversibility of physical

processes as a decisive evidence of time's passage would require having ruled out any alternative

source of that asymmetry at the outset. However, this would mean having assumed the very

dynamist view which such an evidence were meant to support. Finally, Maudlin's objection fails

exactly because being directed against his opposer. One of Price's leading theses is that the

asymmetries of time and causation are secondary qualities just like colors or smells: according

to this view, the experienced asymmetry of time would not re�ect any property of time itself,

rather than the product of its own structure together with our perspective attitude as agents

participating of the local entropic gradient (Menzies and Price, 1993; Price, 1996). For this rea-

son, Price could easily reply to Maudlin that there is no objective fact as whether the Missisippi

river �ows north to south, for in his view this would only be a symptom of our looking to that

�ow from our own perspective; and, if so, there would be no need for an objective passage of

time to single out any `real distinction' between future and past.

Nonetheless, there is a �aw in Price's argumentation: as we saw, his logical argument was

constructed without imposing any condition on what the locus of time's passage should be;

but, until such a question is answered, Price's conclusion holds vacuously. If there was no

physical or mathematical space in which time could be placed, then time would not be capable

of motion, and hence any statement concerning it, including those referring to its direction,

would be trivially true. Not so bad � Price may say � for if there was no sensible way to speak
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of time's position then there would neither be any sensible way to speak of its motion, exactly

as he wished. However, there is a sense in which time may be given a position, though in a

non-conventional sense, and precisely one which could sidestep his logical snare.

Price's adherence to the no-rate argument suggests that, if he had to �nd a place for time's

motion, he would have chosen time: what he objected to time's passage was that one second per

second is not an acceptable rate because it is a dimensionless quantity; but it is clear that, to hold

this position, he should have taken for granted that, if time was to have a rate, that would be

a measure of time's movement in time. Given this premise, his argument would exactly match

Grunbaum's, with the consequence of making the irreversibility of time's passage a su�cient

condition for establishing its anisotropy, exactly as the dynamists would demand. Therefore,

while implementing the dynamist claim that past and future are objectively distinguished by

time's passage into his own premises, Price was implicitly confronting two equivalent claims;

and hence, the circularity he got consists of nothing more than moving to and fro two identical

statements, trying to establish which is the most fundamental.

4.3

Toward a Non-Kinematic Interpretation of Passage

Our analysis showed the real target of Smart's logical arguments to be a kinematically exhaustive

representation of time's passage � one which would provide time with all the main features of

kinematic motion, such as speed and a proper temporal frame of reference. Our subsequent

discussion has �nally con�rmed that a weakened dynamical interpretation of becoming � one

which, for example, allowed time to pass irreversibly with respect to itself � would possess a

non-zero theoretical import, notably an objective distinction between past and future. So, what

minimal features a non-kinematic account of transiency should satisfy, in order to be theoretically

meaningful? In particular what properties, over and above its topological anisotropy, should time

satisfy so that it could be claimed to �ow in a philosophically interesting way? Before answering

these question, we shall �rst leave the domain of pure philosophy, and enter the details of a

general theory of motion.



5
Dynamical Systems on Monoids

Intuitively speaking, by a deterministic system we mean a device whose �nal states uniquely

depend on the assigned states, together with its speci�c operation. In most cases, systems of

this sort are supposed to be capable of working continuously or undergoing subsequent cycles, so

that �nal states could play the part of initial states in their turn. For this reason, deterministic

systems are exhaustively described by specifying the set of all their states, and the mechanisms

or laws according to which they are eventually transformed into each other.

Arnold (1973) modeled deterministic systems on n-dimensional di�erentiable state spaces and

governed by ordinary di�erential equations, such as those of classical mechanics and classical

electromagnetism, by means of phase �ows or continuous dynamical system, i.e. one-parameter

groups of transformations indexed by the set R of time intervals, satisfying an identity and a

composition requirement. More generally, deterministic systems on arbitrary non-empty state

spaces and with (non-negative) integer or (non-negative) real time sets can be modeled by one-

parameter families of transformations, indexed by Z+, Z, R or R+. Mathematical structures of

this kind usually go under the name of mathematical dynamical systems (Giunti, 1997):

Definition 0 (Mathematical Dynamical System)

A mathematical dynamical system, denoted by DS is an ordered pair

DS = (M, (gt)t∈T ),

where

1. M is a non-empty set,

2. T is either Z,Z+,R,R+,

3. (gt)t∈T is a family of functions on M indexed by T ,

56
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4. for any x ∈M and any t, v ∈ T ,

g0(x) = x (5.1)

gt+v(x) = gt(gv(x)). (5.2)

M is called the phase space or state space of the system, including all its possible states, or

points. T is called the time set of the system, and it models the time dimension through which

the system is supposed to evolve. Finally, any function gt is called a state transition of duration

t ∈ T , or t-advance: to any state x ∈M , gt associates the state gt(x) the system displays t time

after having been in x.

Examples of dynamical systems with discrete time and discrete state space are Turing machines

and cellular automata; with discrete time and continuous state space: systems speci�ed by

di�erence equations (e.g. iterated mappings on R); with continuous time and continuous state

space: systems speci�ed by ordinary di�erential equations.

Example 1 (Mathematical Dynamical System)

Let a1, a2, ..., an, ... be a geometric progression with ratio r. Then, for any n ≥ 1, the n-th element of the

progression is obtained by

an = a1r
n−1 (5.3)

For any ai ∈ {ai}i∈Z+−{0} and for any n ∈ Z+, let

gn(ai) = air
n. (5.4)

Then:

1. M = {ai}i∈Z+−{0} is a non-empty state space;

2. Z+ is a time set;

3. (gn)n∈Z+ is a family of functions from M to M , indexed by Z+:

for any ai ∈M and any n ∈ N:

gn(ai) = air
n = a1r

i−1rn = a1r
i−1+n = ai+n ∈M ; (5.5)

4. for any ai ∈M and any n,m ∈ Z+:

g0(ai) = air
0 = ai (5.6)

gn+m(ai) = air
n+m = air

nrm = gn(gm(ai)). (5.7)

Hence, a1, a2, ..., an, ... is modeled by a mathematical dynamical system.

De�nition 0 captures the intuitive notion of a deterministic system in the following sense. In

the �rst place, condition (3) should be interpreted as telling us the state of the system after an

evolution of an arbitrary duration t ∈ T , provided that the state of the system at the present

time t0 ∈ T is known; in other words, if at instant t0 the system is in state x ∈M , then at instant

t+ t0 the system is in state gt(x). In addition, condition (4) tells us that (a) whatever state the

system is in, the evolution of duration 0 does not modify that state and (b) any evolution of

duration v+ t can always be decomposed in two successive evolutions, the �rst one of duration t,
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and the second one of duration v1. Still, this de�nition does not make clear what mathematical

structure time should at least possess, so that the evolution of a deterministic system can be

exhaustively described. Giunti and Mazzola (2010) identify that structure with a monoid, i.e.

a non-empty set along with a binary associative operation and identity element, accordingly

proposing the following and more general de�nition of a dynamical system:

Definition 1 (Dynamical System on a Monoid)

A dynamical system on a monoid L, denoted by DSL, is an ordered pair

DSL = (M, (gt)t∈T ),

where

1. M is a non-empty set,

2. L = (T,+) is a monoid with identity 0,

3. (gt)t∈T is a family of functions on M indexed by T ,

4. for any x ∈M and any t, v ∈ T ,

g0(x) = x, (5.8)

gt+v(x) = gt(gv(x)). (5.9)

(5.10)

De�nition 1 is exactly analogous to De�nition 5, except for substituting the time sets Z+, Z, R,
R+ with the more abstract concept of a time model L.

Mathematical dynamical systems form a proper subclass of dynamical systems on monoids; for

this reason, all basic notions employed by the theory of mathematical dynamical systems �

such as those of motion, orbit, period, etc. � should be reshaped in order to �t the lighter

mathematical structure of dynamical systems on monoids. In the course of this process, some

of the properties of mathematical dynamical systems will inevitably get lost. This chapter is

dedicated to sketch some of the fundamental features of dynamical systems on monoids, focusing

in particular on how moving from mathematical dynamical systems to dynamical systems on

monoids broadens the range of possible transformations a deterministic system may undergo.

The next chapter will instead be dedicated to show how moving from mathematical dynamical

systems, as they are ordinarily de�ned, to dynamical systems on monoids may change the ways

we can represent reversible deterministic behavior.

1This condition amounts to requiring that the evolution of dynamical systems is insensitive to translations
in time. This makes the time models of dynamical systems homogeneous (Lucas, 1973, 1984; Tung, 1985), i.e.
causally irrelevant for the dynamical behavior of the associated systems (Weyl, 1922; Capek, 1961; Augustynek,
1968). Margenau (1950), Poincaré (1963) and van Fraassen (1989) made the homogeneity of time, expressed by
the time-translational invariance of the laws governing their evolution, a distinguishing property of deterministic
systems, this way con�rming the adequacy of De�nition 0.
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5.1

The Algebra of Time

The notion of a dynamical system on a monoid was shaped assuming that the minimal algebraic

structure on the time set that underpins a materially adequate de�nition of a dynamical system

is that of an arbitrary monoid. To substantiate this tenet we shall focus on the directed graph

that any dynamical system induces on its state space, and on a revealing link between this graph

and category theory. In particular, we shall prove that such a graph can be made into a category

if, and only if, the algebraic structure of the time set is that of a monoid.

5.1.1 General Dynamical Systems Theory

One may deconstruct the time model of dynamical systems on monoids until reducing it to a

non-empty set along with a binary operation, or magma; this way, we get the notion of a possible

dynamical system:

Definition 2 (Possible Dynamical System)

A possible dynamical system on a magma L = (T,+), denoted byD̈SL, is an ordered pair

D̈SL = (M, (gt)t∈T ),

such that

1. M is a non-empty set;

2. (gt)t∈T is a family of functions from M to M , indexed by T .

De�nition 2 is the starting point2 from which a general theory of deterministic systems and

motion could be developed. In what follows, we shall see how de�ning an equivalence relation on

any arbitrary set of possible dynamical systems will make it possible to give a formal statement

to the intuitive notion of a dynamical property and, with it, of an abstract dynamical system

on a monoid. The key concepts involved in this task are those of isomorphic dynamical systems

and ρ-isomorphism:

Definition 3 (ρ-Isomorphism)

Let D̈SL1 = (M1, (g
t1)t1∈T1) be a possible dynamical system on a magma L1 = (T1,+) and let

D̈SL2 = (M2, (g
t2)t2∈T2) be a possible dynamical system on a magma L2 = (T2,⊕); a function f

is a ρ-isomorphism of D̈SL1 in D̈SL2 if and only if

1. ρ : T1 → T2 is an isomorphism of L1 in L2, and

2Headers ¨ and ˙ will be used to stress the increasing complexity of the mathematical structures we shall
encounter hereafter: the higher their complexity, the lower the number of points used to denote them.
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x2

gt2(x2)

f(x2)

f(gt2(x2)) = g  (t2)(f(x2))

M2 M1

t2 (t2)

  

Figure 5.1: ρ-isomorphism between possible dynamical systems.

2. f : M1 →M2 is a bijection from M1 to M2 such that, for any x1 ∈M1 and any t1 ∈ T1

f(gt1(x1)) = gρ(t1)(f(x1)). (5.11)

Definition 4 (Isomorphic Possible Dynamical Systems)

Let D̈SL1 be a possible dynamical system on a magma L1 and let D̈SL2 be a possible dynamical

system on a magma L2. D̈SL2 is isomorphic to D̈SL1 if and only if there exist f and ρ such

that f is a ρ-isomorphism of D̈SL2 in D̈SL1.

Theorem 5.1. Being isomorphic to is an equivalence relation on any given set of possible

dynamical systems.

Proof

Let

◦ D̈SL1 = (M1, (g
t1)t1∈T1) be a possible dynamical system on L1 = (T1,+),

◦ let D̈SL2 = (M2, (g
t2)t2∈T2) be a possible dynamical system on L2 = (T2,⊕), and

◦ let D̈SL3 = (M3, (g
t3)t3∈T3) be a possible dynamical system on L3 = (T3,�).

For any possible dynamical system D̈SL1 , let ρ1,1 : T1 → T1 be the identity map on T1 and let f1,1 : M1 → M1

be the identity map on M1; then f1,1 is a ρ1,1-isomorphism of D̈SL1 in D̈SL1 :

• ρ1,1 is a magma automorphism of L1;

• f1,1 is bijective;

• for any x1 ∈M1 and any t1 ∈ T1

f1,1(gt1(x1)) = f1,1(gρ1,1(t1)(x1)) = gρ1,1(t1)(x1) = gρ1,1(t1)(f1,1(x1)). (5.12)
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Hence, by De�nition 4, D̈SL1 is isomorphic to D̈SL1 .

If D̈SL1 is isomorphic to D̈SL2 then there exist a nagma isomorphism ρ1,2 : T1 → T2 of L1 in L2 and f1,2 : M1 →
M2 such that f1,2 is a ρ1,2-isomorphism of D̈SL1 in D̈SL2 . Moreover, by bijectivity of ρ1,2 and f1,2, there exist

(ρ1,2)−1 : T2 → T1 and (f1,2)−1 : M2 →M1 such that (f1,2)−1 is a (ρ1,2)−1-isomorphism of D̈SL2 in D̈SL1 :

• (ρ1,2)−1 is an isomorphism of L2 in L1, by symmetry of magma isomorphisms;

• (f1,2)−1 is bijective, by bijectivity of f1,2;

• for any x2 ∈M2 and any t2 ∈ T2

g(ρ1,2)
−1(t2)((f1,2)−1(x2)) = (f1,2)−1(f1,2(g(ρ1,2)

−1(t2)((f1,2)−1(x2))))

= (f1,2)−1(gρ1,2((ρ1,2)
−1(t2))(f1,2((f1,2)−1(x2))))

= (f1,2)−1(gt2(x2)) (5.13)

Hence, by De�nition 4, D̈SL2 is isomorphic to D̈SL1 .

If D̈SL1 is isomorphic to D̈SL2 and D̈SL2 is isomorphic to D̈SL3 , then there exist a magma isomorphism

ρ1,2 : T1 → T2 of L1 in L2, a magma isomorphism ρ2,3 : T2 → T3 of L2 in L3, and f1,2 : M1 → M2 and

f2,3 : M2 → M3 such that f1,2 is a ρ1,2-isomorphism of D̈SL1 in D̈SL2 and f2,3 is a ρ2,3-isomorphism of D̈SL2

in D̈SL3 . In that case, there exist (ρ2,3 ◦ ρ1,2) : T1 → T3 and f2,3 ◦ f1,2 : M1 → M3 such that f2,3 ◦ f1,2 is a

(ρ2,3 ◦ ρ1,2)-isomorphism of D̈SL1 in D̈SL3 :

• ρ2,3 ◦ ρ1,2 is an isomorphism of L1 in L3, by transitivity of magma isomorphisms;

• f2,3 ◦ f1,2 is bijective, since function composition preserves bijectivity,

• for any x1 ∈M1 and any t1 ∈ T1

f2,3(f1,2(gt1(x1))) = f2,3(gρ1,2(t1)(f1,2(x1))) = gρ2,3(ρ1,2(t1))(f2,3(f1,2(x1))). (5.14)

Hence, by De�nition 4, D̈SL1 is isomorphic to D̈SL3 .

Accordingly, being isomorphic to is a re�exive, symmetric and transitive binary relation, i.e. an equivalence

relation on any arbitrary set of possible dynamical systems .

Let us say that a binary relation R on a given domain A preserves or is compatible with a n-ary

relation Φ on A, where n ≥ 1, if and only if for any a1, b1, ...an, bn ∈ A, if Φ(a1, ...an) and

R(a1, b1), ...R(an, bn), then Φ(b1, ...bn).

Proposition 5.1. . Let D̈SL1 be a possible dynamical system on a magma L1 and let D̈SL2 be

a possible dynamical system on a magma L2; if D̈SL1 is a dynamical system on L1 and D̈SL1

is isomorphic to D̈SL2, then D̈SL2 is a dynamical system on L2.

Proof

Let D̈SL1 = (M1, (g
t1)t1∈T1) and D̈SL2 = (M2, (g

t2)t2∈T2) be two possible dynamical systems on magmas

L1 = (T1,+) and L2 = (T2,⊕) respectively, and let D̈SL1 be isomorphic to D̈SL2 . Then, by De�nition 4, there

must exist ρ : T1 → T2 and f : M1 → M2 such that f is a ρ-isomorphism of D̈SL1 in D̈SL2 . If D̈SL1 is a

dynamical system on L1, then L1 is a monoid, ρ is a monoid isomorphism, and L2 is a monoid in its turn; in

addition, if 0 ∈ T1 is the identity element of L1 then ρ(0) should be the identity element of L2. Therefore:

1. M2 is a non-empty set: by hypothesis;

2. (gt)t∈T is a family of functions on M , indexed by T : by hypothesis;
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3. for any f(x1) ∈M2 and any ρ(t1), ρ(v1) ∈ T2:

gρ(0)(f(x1)) = f(g0(x1)) = f(x1) (5.15)

gρ(t)⊕ρ(v) = gρ(t+v)(f(x1)) = f(gt+v(x1)) = f(gt(gv(x1))) = gρ(t)(f(gv(x1))) = gρ(t)(gρ(v)(f(x1)); (5.16)

on the other hand, due to the bijectivity of ρ and f , any x2 ∈ M2 is the image of exactly one x1 ∈ M1

with respect to f and any t2 ∈ T2 is the image of exactly one t1 ∈ T1 with respect to ρ, so that the above

equalities hold for any x2 ∈M2 and any t2, v2 ∈ T2.

By De�nition 1, ¨DSL2 is therefore a dynamical system on a monoid.

This allows us to speak of abstract dynamical systems on monoids in exactly the same sense we

talk of abstract groups, �elds, lattices, order structures, etc. We thus de�ne:

Definition 5 (Abstract Dynamical System on a Monoid)

An abstract dynamical system on a monoid is any equivalence class of isomorphic dynamical

systems on monoids.

By the same token, we can speak of dynamical properties as those properties which are proper

to dynamical systems on monoids and are preserved by isomorphism.

Definition 6 (Dynamical Property)

Φ is a dynamical property if and only if, for any two possible dyamical systems ¨DSL1 and ¨DSL2

(on L1 and L2 respectively),

1. If ¨DSL1 has Φ then ¨DSL1 is a dynamical system on a L1;

2. If ¨DSL1 has Φ and ¨DSL1 is isomorphic to ¨DSL2, then
¨DSL2 has Φ.

Dynamical properties can thus be regarded as the speci�c structural properties of dynamical

systems3. It is then easily shown:

Proposition 5.2. Any two dynamical systems on monoids have exactly the same dynamical

properties if and only if they are isomorphic.

Proof

If two dynamical systems on monoids are isomorphic, then by De�nition 6, they have exactly the same dynamical

properties. Conversely, for any two non-isomorphic dynamical systems DSL1 and DSL2 on L1 and L2 respec-

tively, there is a dynamical property they do not share; namely, the property of being isomorphic to DSL1 (or,

symmetrically, to DSL2).

By general dynamical systems theory we mean the mathematical theory whose Suppes' style

axiomatization (Suppes, 1957) is given by De�nition 1. Since general dynamical systems the-

ory is programmatically concerned with the study of dynamical properties, it regards any two

isomorphic dynamical systems on monoids as identical. Under this light, any dynamical system

on a monoid (from now on, simply dynamical system) should be regarded as a model (Giunti,

2007) of that theory.

3For a precise de�nition of a mathematical structure and of a structural property, see Chapter 8
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5.1.2 Oriented Graphs and Dynamical Systems

Following Lambek (1969), we may intuitively think of a graph as a web of arrows, each of which

establishes a relation of functional dependence between the two nodes it connects.

Definition 7 (Oriented Graph)

An oriented graph, denoted by G, is an ordered quadruple

G = (X,A, σ, τ),

where

• G and A are non-empty sets;

• σ and τ are functions from A to X.

Any element of X is called an object, node, point or vertex of the graph, while any member of

A is called an arrow or a directed edge of the graph. For any a ∈ A, σ(a) is called the source

of a and τ(a) is called its target : σ and τ jointly establish a well-de�ned orientation on any

arrow entering a graph; for this reason, we further quali�ed graphs in the sense just speci�ed as

oriented.

There is an interesting link between general dynamical systems theory and graphs, as just

de�ned. Let us �rst of all notice that the family of t-transitions of a possible dynamical system

¨DSL naturally gives rise to a particular graph in the above speci�ed sense. We call this graph

the transition graph of the possible dynamical system:

Definition 8 (Transition Graph of a Possible Dynamical System)

Let D̈SL = (M, (gt)t∈T ) be a possible dynamical system on a magma L = (T,+); the transition

graph of D̈SL, denoted by G̈(D̈SL), is the ordered quadruple

G̈(D̈SL) = (X,A, σ, τ)

such that

1. X = M ,

2. A =
{
a : for some t ∈ T and some x ∈M,a = (x, t, gt(x))

}
3. σ : A → X is the function from A to M such that, for any triple a ∈ A, σ(a) is the �rst

element of a;

4. τ : A → X is the function from A to M such that, for any triple a ∈ A, τ(a) is the last

element of a.

It is easy to see that
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Figure 5.2: Transition graph of a possible dynamical system.

Proposition 5.3. The transition graph of any possible dynamical system is an oriented graph.

Proof

Let G̈( ¨DSL) = (X,A, σ, τ) be the transition graph of a possible dynamical system D̈SL = (M, (gt)t∈T ) on

L = (T,+). By De�nition 2, M is a non-empty set and, for any x ∈ M , there exist y ∈ M and t ∈ T such that

y = gt(x); accordingly, by De�nition 8 X and A are non-empty sets. Moreover, by the same de�nition, σ and τ

are both functions from A to X. As a consequence, by De�nition 7, G̈(D̈SL) is an oriented graph.

The notion of a possible dynamical system was shaped assuming a simple magma as a time model,

and without imposing any requirement on the family of functions indexed by the latter. On the

other hand, magmas can be endowed with an identity element, simply by de�nition. Possible

dynamical systems whose time model is a magma with identity can be required to satisfy an

identity and a composition condition. This way, we get the notion of a quasi-dynamical system:

Definition 9 (Quasi-Dynamical System)

A quasi-dynamical system on a magma L = (T,+) with identity 0, denoted by ḊSL, is an

ordered pair

ḊSL = (M, (gt)t∈T ), (5.17)

where

• M is a non-empty set;

• (gt)t∈T is a family of functions from M to M , indexed by T ;

• for any x ∈M and any t, v ∈ T

g0(x) = x (5.18)

gv+t(x) = gv(gt(x)) (5.19)
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Quasi-dynamical systems di�er from dynamical systems on monoids just for the fact that the

binary operations on their time models not necessarily are associative. However, it is possible

to equip the transition graph G̈(ḊSL) = (X,A, σ, τ) of any quasi-dynamical system ḊSL on L

with a family of x-identity arrows (idx)x∈X and with a composition operation ◦, respectively
corresponding to the conditions of identity and composition on the state transitions of ḊSL:

Definition 10 (Transition Graph (with Identity and Composition) of a Quasi-Dynamical Sys-

tem)

Let ḊSL = (M, (gt)t∈T ) be a quasi-dynamical system on a magma L = (T,+) with identity 0;

the transition graph with identity and composition of ḊSL, denoted by Ġ(ḊSL), is the triple

Ġ(ḊSL) = (G, (idx)x∈X , ◦) (5.20)

such that

1. G = (X,A, σ, τ) = G̈(ḊSL);

2. (idx)x∈M is the family of arrows such that, for any x ∈M ,

(idx) = (x, 0, g0(x)); (5.21)

3. ◦ is the, possibly partial, binary operation such that, for any a, b ∈ A, if a = (x, t, gt(x))

and b = (gt(x), v, gv(gt(x))) for some t, v ∈ T , then

b ◦ a = (x, v + t, gv+t(x))); (5.22)

otherwise, b ◦ a is unde�ned.

To be sure that De�nition 10 is consistent, we still need to show that, for any quasi-dynamical

system ḊSL = (M, (gt)t∈T ) on L = (T,+), the set of arrows A of the corresponding transition

graph Ġ(ḊSL) = (X,A, σ, τ) is closed under the composition operation ◦. So, let a = (x, t, gt(x))

and b = (gt(x), v, gv(gt(x))) be any two arrows in A such that τ(a) = σ(b); their composition

will accordingly be b ◦ a = (x, v + t, gv+t(x))). To see that b ◦ a is an element of A we only have

to notice that, being a magma, L is closed under its rule of composition and that, by de�nition

of a quasi-dynamical system, gv+t is a function on the state space of ḊSL; as a consequence,

x and gv+t belong to X and v + t belongs to T , which is enough to guarantee that b ◦ a is an

element of A.

Transition graphs of quasi-dynamical systems belong to a special subclass of graphs, called

deductive systems.

Definition 11 (Deductive System)

A deductive system, denoted by G, is an ordered triple

G = (G, (idx)x∈X , ◦) (5.23)
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such that

1. G = (X,A, σ, τ) is an oriented graph;

2. (idx)x∈X is a family of arrows on X such that, for any x ∈ X,

σ(idx) = x and τ(idx) = x; (5.24)

3. ◦ is the possibly partial binary operation on A, called arrow composition, such that for any

a, b ∈ A, if τ(a) = σ(b), then b ◦ a is de�ned and

σ(b ◦ a) = σa and τ(b ◦ a) = τ(b). (5.25)

Proposition 5.4. The transition graph (with identity and composition) of any quasi-dynamical

system is a deductive system.

Proof

Let ḊSL = (M, (gt)t∈T ) be a quasi-dynamical system on a magma L = (T,+) with identity 0 and let Ġ(ḊSL) =

(G, (idx)x∈X , ◦) be the transition graph of ḊSL, with G = (X,A, σ, τ). Then,

• by Proposition 5.3, G is an oriented graph;

• by De�nition 10, (idx)x∈M is a family of arrows such that, for any x ∈ X = M

σ(idx) = σ(x, 0, g0(x)) = x, and (5.26)

τ(idx) = τ(x, 0, g0(x)) = g0(x) = x; (5.27)

• according to De�nition 10, ◦ is a binary operation such that for any two arrows a = (x, t, gt(x)) and

b = (gt(x), v, gv(gt(x))) in set A,

σ(b ◦ a) = σ((x, v + t, gv+t(x))) = x = σ(a), (5.28)

τ(b ◦ a) = τ((x, v + t, gv+t(x))) = gv+t(x) = gv(gt(x)) = τ(b), (5.29)

Hence, by De�nition 11, G(ḊSL) is a deductive system.

Finally, categories are deductive systems whose operation of arrow composition is associative:

Definition 12

A deductive system G = (G, (id)x∈X , ◦), where G = (X,A, σ, τ), is a category if and only if, for

any a, b, c ∈ A, if τ(a) = σ(b) and τ(b) = σ(c), then

c ◦ (b ◦ a) = (c ◦ b) ◦ a. (5.30)

Theorem 5.2. The transition graph (with identity and composition) Ġ(ḊSL)of any quasi-

dynamical system ḊSL is a category if and only if L is a monoid.

Proof

Let ḊSL = (M, (gt)t∈T ) be a quasi-dynamical system on a magma L = (T,+) with identity 0 and let Ġ(ḊSL) =

(G, (id)x∈X , ◦) be the transition graph of ḊSL, where G = (X,A, σ, τ). For ease of expression let us agree that,
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we can equivalently express any ordered triple of the form a = (x, t, gt(x)) by means of a labeled arrow a = x
t−→

gt(x), and let a, b, c ∈ A be a triple of arbitrary arrows such that a = x
t−→ gt(x), b = gt(x)

v−→ gv(gt(x)),

c = gv(gt(x))
u−→ gu(gv(gt(x))). Proposition 5.4 guarantees that Ġ(ḊSL) is a deductive system.

If L is a monoid, by the associativity of + we get:

(c ◦ b) ◦ a = [gv(gt(x))
u−→ gu(gv(gt(x))) ◦ gt(x)

v−→ gv(gt(x))] ◦ x t−→ gt(x)

= gt(x)
u+v−→ gu(gv(gt(x))) ◦ x t−→ gt(x)

= x
(u+v)+t−→ gu(gv(gt(x)))

= x
u+(v+t)−→ gu(gv(gt(x)))

= gv(gt(x))
u−→ gu(gv(gt(x))) ◦ x v+t−→ gv(gt(x))

= gv(gt(x))
u−→ gu(gv(gt(x))) ◦ [gt(x)

v−→ gv(gt(x)) ◦ x t−→ gt(x)]

= c ◦ (b ◦ a); (5.31)

and therefore, by De�nition 12, Ġ(ḊSL) is a category.

On the other hand, if L is not a monoid, then there must exist u, v, t ∈ T such that

u+ (v + t) 6= (u+ v) + t (5.32)

and therefore, for any x ∈M

x
u+(v+t)−→ gu+(v+t)(x) 6= x

(u+v)+t−→ g(u+v)+t(x); (5.33)

as a consequence,

c ◦ (b ◦ a) 6= (c ◦ b) ◦ a, (5.34)

so that, according to De�nition 12, Ġ(ḊSL) is not a category. Conversely, if Ġ(ḊSL) is a category, then L is a

monoid.

Theorem 5.2 provides us with a justi�cation for our claim that the minimal structure on the

time set that supports a materially adequate de�nition of a dynamical system is at least that

of a monoid. For, if it is not, the transition graph of the system cannot even be made into a

category.

5.2

Basic Dynamical Concepts

General dynamical systems theory, though based on a time model as simple as a monoid, is

nevertheless su�cient to de�ne a variety of genuine dynamical concepts, as well as to prove

about them signi�cant and sometimes even surprising results. In the �rst part of this section,

we shall give a general de�nition of the basic dynamical concepts of motion and orbit, together

with a brief examination of their fundamental properties. In the second part, we shall de�ne the

future and past sets of an arbitrary state of a dynamical system, which will play a central role

in Chapter 7, where we shall outline a dynamical interpretation of tenses.
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5.2.1 Motions and Orbits

Arnold (1973) originally de�ned phase �ows as one-parameter groups of transformations on a n-

dimensional di�erentiable manifold, indexed by the real numbers. (Giunti, 1997) adopted a more

general de�nition, solely requiring the state space of a mathematical dynamical system to consist

of an arbitrary non-empty set and allowing for discrete time sets. In both cases, the two basic

notions entering the description of the dynamical behavior of a deterministic system are those

of motion, or state evolution, and phase curve, or orbit. These concepts may be generalized in a

very straightforward manner in order to cover the corresponding features of dynamical systems

on monoids.

By the motion of a dynamical system, we mean the function associating any lapse of time t with

the state the system displays t time after having initially been set in a given state x:

Definition 13 (Motion)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+). For any x ∈ M ,

the motion (or state evolution) of DSL with initial state x, denoted by gx, is the function

gx : T →M such that, for any t ∈ T

gx = eval(gt, x), (5.35)

where, for any t ∈ T and any x ∈M ,

eval(gt, x) = gt(x). (5.36)

Definition 14 (Orbit of a Point)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+). The orbit of any point

x ∈M , denoted by orb(x), is the set

orb(x)
def
=
{
y ∈M : ∃t ∈ T (y = gt(x))

}
. (5.37)

The orbit of a point x is the image of the corresponding motion gx. Intuitively speaking, orb(x)

is the set of all and sole states a dynamical system goes through after having been initially set in

state x; as such, it models both its present and its future behavior. Orbits are intrinsic features

of the dynamics of a deterministic system, in the sense that the property of lying in the orbit of

a given point is preserved by ρ-isomorphism:

Proposition 5.5. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+),

let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕) and let f : M1 →

M2 be a ρ-isomorphism of DSL1 in DSL2; then, for any x1, y1 ∈ M1, y1 ∈ orb(x1) if and only

if f(y1) ∈ orb(f(x1)).

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) and DSL2 = (M2, (g

t2)t2∈T2) be dynamical systems on L1 = (T1,+) and L2 =
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(T2,⊕) respectively� let ρ : T1 → T2 be a monoid isomorphism of L1 in L2 and let f : M1 → M2 be a ρ-

isomorphism of DSL1 in DSL2 . Then, for any x1, y1 ∈M1, if y1 ∈ orb(x1) there exists t1 ∈ T1 such that

gt1(x1) = y1

f(gt1(x1)) = f(y1)

gρ(t1)(f(x1)) = f(y1), (5.38)

and therefore, by De�nition 14, f(y1) ∈ orb(f(x1)). Proof in the converse direction is guaranteed by the fact that

f−1 : M2 →M1 is a ρ−1-isomorphism of DSL2 in DSL1 .

Since orbits are the images of motions, ρ-isomorphisms must preserve motions in their turn.

Indeed, one may think of motions and orbits as the fundamental building blocks of which the

dynamics of a system is composed.

Interestingly, for any point in the state space of a dynamical system DSL on a monoid L, it is

possible to de�ne a dynamical system DSxL on L whose state space is the orbit of x and whose

state transitions are the restriction of the state transitions of DSL to the orbit of x.

Proposition 5.6. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); for

any x ∈M , DSxL = (orb(x), (gt|orb(x))t∈T ) is a dynamical system on L.

Proof

Let DS = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x ∈ M be any

point in its state space; then

1. orb(x) is a nonempty set: including at least x,

2. T is shared with DS,

3. (gt|orb(x))t∈T is a family of function on orb(x), indexed by T : by de�nition of orbit, for any y ∈ orb(x)

and any t ∈ T there exists v ∈ T such that

gt|orb(x)(y) = gt|orb(x)(gv(x)) = gt|orb(x)(gv|orb(x)(x)) = gt+v|orb(x)(x) ∈ orb(x); (5.39)

4. for any y ∈ orb(x) and for any t ∈ T

g0|orb(x)(y) = g0(y) = y (5.40)

gt+v|orb(x)(y) = gt+v(y) = gt(gv(y)) = gt|orb(x)(gv|orb(x)(y)) (5.41)

Hence, DSxL = (orb(x), (gt|orb(x))t∈T ) is a dynamical system on L.

This property of orbits will play an important role in Chapter 7, where we shall discuss the

dynamical properties which can be attributed to time models. For the sake of the present

discussion, it will be su�cient to point out that, in virtue of Proposition 5.6, any dynamical

system gives rise to as many dynamical systems as the orbits it owns, and that the study of

each orbit may alternatively be carried out as a study of the corresponding dynamical system.

Finally, together with Proposition 5.7, Proposition 5.6 endows the set of all such dynamical

systems with a partial ordering, which they naturally inherit from the relation of set inclusion

holding among corresponding orbits.
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Proposition 5.7. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); for

any x, y ∈M , y ∈ orb(x) if and only if orb(y) ⊆ orb(x).

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x, y ∈M .

• If y ∈ orb(x), then there exists v ∈ T such that

gv(x) = y; (5.42)

hence, for any t ∈ T and any gt(y) ∈ orb(y)

gt(y) = gt(gv(x)) ∈ orb(x), (5.43)

so that orb(y) ⊆ orb(x).

• Conversely, if orb(y) ⊆ orb(x) then, for any t ∈ T and any gt(y) ∈ orb(y) there exists v ∈ T and

gv(x) ∈ orb(x) such that

gt(y) = gv(x); (5.44)

therefore, assuming t = 0:

gv(x) = g0(y) = y, (5.45)

so that y ∈ orb(x).

One further consequence of Proposition 5.7 is that no two states x and y of a dynamical system

possess crossing orbits; that is to say, whenever the orbits of any two states x and y intersect at

a point, they coincide from there on:

Corollary 5.7.1. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); for

any x, y, z ∈M , if z ∈ orb(x) ∩ orb(y), then orb(z) ⊆ orb(x) and orb(z) ⊆ orb(y).

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and let x, y, z ∈M . If z ∈ orb(x)∩orb(y),

then z ∈ orb(x) and z ∈ orb(y). Hence, by Proposition 5.7, orb(z) ⊆ orb(x) and orb(z) ⊆ orb(y).

Therefore, there are only three di�erent relations orbits may bear to each other: disjunction,

inclusion and merging, respectively holding in case, of any two orbits, they have no points in

common, one is a subset of the other, and they meet at a point. More precisely, we say that any

two orbits are merging in case they satisfy De�nition 16 below:

Definition 15 (Merging Orbit)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); r is a merging orbit if

an only if, for some x, y ∈M , r = orb(x) and

orb(x) * orb(y), (5.46)

orb(y) * orb(x), (5.47)

orb(x) ∩ orb(y) 6= ∅. (5.48)
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Definition 16 (Orbits Merging with Each Other)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and let r and s be

arbitrary orbits; r is merging with s if and only if r and s intersect, but neither one is a subset

of the other.

Disjunction, inclusion and merging are also preserved by ρ-isomorphism. In the �rst two cases,

this is a straightforward consequence of Proposition 5.5. In the case of merging, this is shown

by the following statement:

Proposition 5.8. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+),

let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕) and let f : M1 →

M2 be a ρ-isomorphism of DSL1 in DSL2; for any x1, orb(x) is merging if and only if orb(f(y1))

is.

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) and DSL2 = (M2, (g

t2)t2∈T2) be dynamical systems on L1 = (T1,+) and L2 =

(T2,⊕) respectively,let ρ : T1 → T2 be a monoid isomorphism of L1 in L2 and let f : M1 → M2 be a ρ-

isomorphism of DSL1 in DSL2 . Finally, let x1 ∈ M1. If orb(x1) is merging then, by De�nition 16, for some y1,

orb(x1) * orb(y1), orb(y1) * orb(x1) and orb(x1) ∩ orb(y1) 6= ∅. Hence, by Proposition 5.5,

orb(f(x1)) * orb(f(y1)), (5.49)

orb(f(y1)) * orb(f(x1)) (5.50)

and, for any z1 ∈ orb(x1) ∩ orb(y1)

f(z1) ∈ orb(f(x1)) ∩ orb(f(y1)); (5.51)

accordingly, orb(f(x1)) is merging. Proof in the converse direction is guaranteed by the fact that f−1 : M2 →M1

is a ρ−1-isomorphism of DSL2 in DSL1 .

We shall see in the next chapter that possession of merging orbits is a distinguishing feature of

irreversible dynamical systems4.

5.2.1.1 Periodicity, Eventual Periodicity, Aperiodicity

In addition, orbits may be classi�ed as periodic, eventually periodic or aperiodic.

Definition 17 (Periodic Point)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; for any

x ∈M , x is a periodic point if and only if, for some t ∈ T

t 6= 0, gt(x) = x. (5.52)

Definition 18 (Periodic Orbit)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; r is a

periodic orbit if and only if, for some x ∈M , r = orb(x) and x is a periodic point.

4See Corollary 6.5.1 and Proposition 6.18.
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For ease of expression, we shall occasionally talk about a period of a point x in place of a period

of its orbit, which is de�ned below:

Definition 19 (Period)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; for any

t ∈ T , t is a period of orb(x) if and only if

t 6= 0, (5.53)

gt(x) = x. (5.54)

Clearly, the orbit of a point x is periodic if and only if it has a period. Moreover, periods

are preserved by ρ-isomorphism and, by the same token, possessing a periodic orbit must be

preserved in its turn.

Proposition 5.9. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+),

let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕), let ρ : T1 → T2

be a monoid isomorphism of L1 in L2, let f : M1 → M2 be a ρ-isomorphism of DSL1 in DSL2

and let x1 ∈ M1. Then any t1 ∈ T1 is a period of orb(x1) if and only if ρ(t1) is a period of

orb(f(x1)).

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+) with identity 0, let DSL2 =

(M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕), let ρ : T1 → T2 be a monoid isomorphism of

L1 in L2 and let f : M1 →M2 be a ρ-isomorphism of DSL1 in DSL2 . Finally, let x1 ∈M1. For any t1 ∈ T1, if t1

is a period of orb(x1) then t1 6= 0 and

f(x1) = f(gt1(x1)) = gρt1 (f(x1)), (5.55)

where ρ(t1) is not the identity of T2 since, by hypothesis, ρ maps solely identity elements into idenity elements;

hence, ρ(t1) is a period of orb(f(x1)). Symmetrically, Proof in the converse direction is guaranteed by the fact

that f−1 : M2 →M1 is a ρ−1-isomorphism of DSL2 in DSL1 .

Points whose orbits are not periodic may nevertheless evolve into periodic points. In that case,

we call their orbit eventually periodic:

Definition 20 (Eventually Periodic Orbit)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); r is an eventually

periodic orbit if and only if r is an orbit, r is not periodic and there exists y ∈ r such that orb(y)

is periodic.

Eventual periodicity is also preserved by ρ-isomorphism.

Proposition 5.10. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 =

(T1,+), let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕), let

f : M1 →M2 be a ρ-isomorphism of DSL1 in DSL2; and let x1 ∈M1; then orb(x1) is eventually

periodic if and only if orb(f(x1)) is.
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Proof

Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+) with identity 0, let DSL2 =

(M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕), let ρ : T1 → T2 be a monoid isomorphism of

L1 in L2 and let f : M1 → M2 be a ρ-isomorphism of DSL1 in DSL2 . If orb(x1) is eventually periodic, then for

some y1 ∈ orb(x1) and for any t1 ∈ T1 − {0} and some v1 ∈ T1 − {0}

gt1(x1) 6= x1 (5.56)

gv1(y1) = y1; (5.57)

hence, by Proposition 5.5 and Proposition 5.9, f(y1) ∈ orb(f(x1)) and, for any ρ(t1) ∈ T2 and ρ(v1) ∈ T2,

gρ(t1)(f(x1)) 6= f(x1) (5.58)

gρ(v1)(f(y1)) = f(y1), (5.59)

where ρ(v1) is not the identity of L2. Accordingly, orb(f(x1)) is eventually periodic. Proof in the converse

direction is guaranteed by the fact that f−1 : M2 →M1 is a ρ−1-isomorphism of DSL2 in DSL1 .

Finally, if no point in the orbit of a state x is periodic, then x is called aperiodic.

Definition 21 (Aperiodic Orbit)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); r is an eventually

periodic orbit if and only if r is and orbit and it is neither periodic nor eventually periodic.

Since both periodicity and eventual periodicity are preserved by ρ-isomorphism, so it must be

aperiodicity.

Proposition 5.11. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 =

(T1,+), let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕), let

f : M1 → M2 be a ρ-isomorphism of DSL1 in DSL2 and let x1 ∈ M1; then orb(x1) is aperiodic

if and only if orb(f(x1)) is.

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+) with identity 0, let DSL2 =

(M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕), let ρ : T1 → T2 be a monoid isomorphism of

L1 in L2 and let f : M1 →M2 be a ρ-isomorphism of DSL1 in DSL2 . If orb(x1) is aperiodic, then by Proposition

5.9 and Proposition 5.10, orb(f(x1)) is neither periodic nor eventually periodic; hence orb(f(x1)) is aperiodic.

Proof in the converse direction is guaranteed by the fact that f−1 : M2 → M1 is a ρ−1-isomorphism of DSL2 in

DSL1 .

If the orbit of a point y is eventually periodic, then all points whose orbits y belongs to are

certainly not aperiodic.

Proposition 5.12. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

for any x, y ∈ M such that y ∈ orb(x), if orb(y) is periodic then orb(x) is either periodic or

eventually periodic.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0, let x, y ∈ M such that

y ∈ orb(x) and let orb(y) be periodic. So, if there exists t ∈ T − {0} such that gt(x) = x then, by de�nition of

periodic orbit, orb(x) is periodic. If, on the contrary, there exists no t ∈ T − {0} such that gt(x) = x then, by

de�nition of eventually periodic orbit, orb(x) is eventually periodic.
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On the other hand, if a point is aperiodic then no point along its orbit can be eventually periodic.

Proposition 5.13. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

for any x, y ∈M such that y ∈ orb(x), if orb(x) is aperiodic then orb(y) is aperiodic.

Proof

Let DS = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T ; +) and let x, y ∈M such that y ∈ orb(x). If

orb(y) is either periodic or eventually periodic, then there exists z ∈ orb(y) ⊆ orb(x) such that orb(z) is periodic;

hence, by Proposition 5.12 orb(x) is either periodic or eventually periodic. Conversely, if orb(x) is aperiodic, then

orb(y) is neither periodic nor eventually periodic, i.e. orb(y) is aperiodic.

5.2.2 Future and Past

The orbit of a point x may be understood as a broad representation of both its present and

its whole future history; a �ner description of the evolution of a point is made possible by

the following set of de�nitions, which will also allow for a deeper understanding of reversible

dynamics.

Definition 22 (t-Future of a Point)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; for any

state x ∈M and for any duration t ∈ T −{0}, the t-future of x, denoted by F t(x), is de�ned as

F t(x)
def
=
{
y ∈M : y = gt(x)

}
. (5.60)

In plain words, the t-future of a point x is the image of a state transition of non-zero duration

t with initial state x, i.e. a unique point in the future evolution of x or, more precisely, the

singleton set of that point. On the basis of De�nition 22, the whole future history of a point can

be de�ned as the union of all its t-future histories.

Definition 23 (Future of a Point)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; for any

state x ∈M , the future of x, denoted by F (x), is de�ned as

F (x)
def
=

⋃
t∈T−{0}

F t(x) =
{
y ∈M : for some t ∈ T − {0} , y = gt(x)

}
. (5.61)

The future of an arbitrary point x is openly a subset of its orbit, di�ering from the latter for at

most x itself; as a consequence, F (x) and orb(x) coincide exactly in case x belongs to its own

future, i.e. exactly in case x is periodic5.

Symmetrically, the t-past history and the whole past history of a point are respectively de�ned

as follows:

5See Proposition 5.15 below.
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Definition 24 (t-Past of a Point)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; for any

state x ∈M and for any duration t ∈ T − {0}, the t-past of x, denoted by P t(x), is de�ned as

P t(x)
def
=
{
y ∈M : x = gt(y)

}
. (5.62)

Definition 25 (Past of a Point)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; for any

state x ∈M , the past of x, denoted by P (x), is de�ned as

P (x)
def
=

⋃
t∈T−{0}

P t(x) =
{
y ∈M : for some t ∈ T − {0} , x = gt(y)

}
. (5.63)

Contrary to the case of future, the past history of a point x is generally not a subset of its

orbit. In addition, for any duration t, the t-future of a state x contains exactly one state, while

its t-past may very well contain several distinct states. We shall see in the following chapter

that requiring the past of a point to behave exactly as its future under either of these respects

leads to two distinct kinds of reversible dynamical behavior, namely reversibility6 and logical

reversibility7.

Despite these di�erences, past and future are nevertheless plainly related concept: any t-future

image of a point x is a point whose t-past image is x itself.

Proposition 5.14. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

for any x, y ∈M and for any t ∈ T − {0}, x ∈ P t(y) if and only if y ∈ F t(x)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0, let x, y ∈ M and let

t ∈ T − {0}.

If x ∈ P t(y), then there exists t ∈ T − {x} such that

gt(x) = y; (5.64)

hence, by de�nition of t-future of a point, y ∈ F t(x).

If y ∈ F t(x), then there exists t ∈ T − {x} such that

gt(x) = y; (5.65)

hence, by de�nition of t-past of a point, x ∈ P t(y).

Corollary 5.14.1. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

for any x, y ∈M , x ∈ P (y) if and only if y ∈ F (x)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x, y ∈ M .

6See � 6.2.1
7See � 6.1.
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If x ∈ P (y), then by De�nition 25 there must exists t ∈ T − {0} such that x ∈ P t(y); hence, by Proposition

5.14, y ∈ F t(x) and therefore, by De�nition 23, y ∈ F (x). If y ∈ F (y), then by De�nition 23 there must

exists t ∈ T − {0} such that y ∈ F t(x); hence, by Proposition 5.14, x ∈ P t(y) and therefore, by De�nition 25,

x ∈ P (y).

Concepts such as periodicity, eventual periodicity and aperiodicity of an orbit may be given

further characterization by means of the notions of past and future of a point, as follows.

Proposition 5.15. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

for x ∈M , orb(x) is periodic if and only if x ∈ F (x).

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x ∈M .

If orb(x) is periodic, then there exists t ∈ T − {0} such that

gt(x) = x; (5.66)

hence, by de�nition of t-future of a point, x ∈ F t(x) and, a fortiori, x ∈ F (x). If x ∈ F (x) then

x ∈
⋃

t∈T−{0}

F t(x), (5.67)

so that there must necessarily exist t ∈ T − {0} such that x ∈ F t(x) and, by de�nition of t-future of a point,

gt(x) = x; (5.68)

hence, orb(x) is periodic.

Corollary 5.15.1. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

for any x ∈M , orb(x) is periodic if and only if x ∈ P (x).

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x ∈ M . By

Proposition 5.15, orb(x) is periodic if and only if x ∈ F (x); as a consequence, according to Corollary 5.14.1,

orb(x) is periodic if and only if x ∈ P (x).

Eventually periodic orbits may be accordingly be understood as the orbits of points which do

not belong to their own future (past), and in whose future lies a point which, on the contrary,

does. Finally, aperiodic orbits may be alternatively described as orbits none of whose points

belong to their own future (past).

5.2.2.1 Special Points

The notions of future and past of a point may also be employed in studying the behavior of

special points such as �xed points and gardens of Eden.

Definition 26 (Fixed Point)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); a point x ∈M is �xed

if and only if, for any t ∈ T
gt(x) = x. (5.69)
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Proposition 5.16. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 =

(T1,+), let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕) and let

f : M1 →M2 be a ρ-isomorphism of DSL1 in DSL2; for any x1 ∈M1, x1 is �xed if and only if

f(x1) is.

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+) with identity 0, let DSL2 =

(M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕), let ρ : T1 → T2 be a monoid isomorphism of

L1 in L2 and let f : M1 → M2 be a ρ-isomorphism of DSL1 in DSL2 . For any x1 ∈ M1, ifx1 is �xed, then for

any t1 ∈ T1

gρ(t1)(f(x1)) = f(gt1(x1)) = f(x1), (5.70)

so that, by surjectivity of ρ, f(x1) is �xed in its turn. Proof in the converse direction is guaranteed by the fact

that f−1 : M2 →M1 is a ρ−1-isomorphism of DSL2 in DSL1 .

Fixed points may equivalently be de�ned as those points whose orbits coincide with their sin-

gleton set; as such, all �xed points evidently possess periodic orbits.

Proposition 5.17. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

for any x ∈M , x is �xed if and only if

F (x) = {x} . (5.71)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x ∈M .

If x is �xed, then for any t ∈ T
gt(x) = x (5.72)

and, a fortiori, for any t ∈ T − {0}

F t(x) =
{
y ∈M : gt(x) = y

}
= {x} , (5.73)

so that

F (x) =
⋃

t∈T−{0}

F t(x) = {x} . (5.74)

If F (x) = {x} then, by de�nition

{x} =
⋃

t∈T−{0}

F t(x) =
⋃

t∈T−{0}

{
y ∈M : gt(x) = y

}
, (5.75)

so that necessarily, for any t ∈ T − {0}
gt(x) = x; (5.76)

moreover, by de�nition of a dynamical system

g0(x) = x, (5.77)

so that for any t ∈ T
gt(x) = x; (5.78)

hence, x is �xed.

Corollary 5.17.1. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

for any x ∈M , x is �xed if and only if orb(x) = {x}.
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Proof

Let DS = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x ∈M .

If x is �xed, then by Proposition 5.17,

F (x) = {x} ; (5.79)

hence, by de�nition of orbit of a point and by de�nition of future of a point,

orb(x) =
⋃
t∈T

{
y ∈M : gt(x) = y

}
= F (x) ∪

{
y ∈M : g0(x) = y

}
= {x} ∪ {x} = {x} . (5.80)

If orb(x) = {x} then, by de�nition

{x} =
{
y ∈M : for some t ∈ T, gt(x) = y

}
, (5.81)

so that necessarily, for any t ∈ T
gt(x) = x. (5.82)

Equivalently, �xed points may be understood as static points, or as the common invariants of

all the state transitions of a dynamical system; accordingly, the orbit of a �xed point have as

many periods as the number of durations (other than the identity element) entering the given

time model.

Proposition 5.18. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+)

with identity 0. For any x ∈M , if x is �xed than all t ∈ T − {0} are periods of orb(x).

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x ∈M be �xed.

By De�nition 26, for any t ∈ T − {0}, gt(x) = x and therefore, by de�nition of period of an orbit, t is a period

of orb(x).

Fixed points are those at which the evolution of a deterministic system stops, since after hav-

ing reached a �xed point a dynamical system can undergo no further change. Symmetrically,

gardens of Eden are primitive states, points with an empty past, from which the dynamics of a

deterministic system starts.

Definition 27 (Garden of Eden)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; a point

x ∈M is a garden of Eden if and only if, for any y ∈M and any t ∈ T − {0}

gt(y) 6= x. (5.83)

Proposition 5.19. Let DSL = (M, (gt)t∈T ) be a dynamical system o a monoid L = (T,+); for

any x ∈M , x is a garden of Eden if and only if P (x) = ∅.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system o a monoid L = (T,+) with identity 0 and let x ∈M .

If x is a garden of Eden then, by De�nition 27,

P (x) =
{
y ∈M : for some t ∈ T − {0} , gt(y) = x)

}
= ∅. (5.84)
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Conversely, if P (x) = ∅ then, for any t ∈ T − {0}, for any y ∈M

gt(y) 6= x; (5.85)

and therefore, by De�nition 27 x is a garden of Eden.

In the next chapter, we shall see that, for this reason, possession of Gardens of Eden is strictly

correlated to a special type of non-reversible behavior, which we shall refer to as possession of an

incomplete past. Furthermore, possession of a Garden of Eden is invariant under ρ-isomorphism.

Proposition 5.20. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 =

(T1,+), let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕) and let

f : M1 → M2 be a ρ-isomorphism of DSL1 in DSL2; for any x1 ∈ M1, x1 is a garden of Eden

if and only if f(x1) is.

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+) with identity 0, let DSL2 =

(M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕), let ρ : T1 → T2 be a monoid isomorphism of

L1 in L2 and let f : M1 →M2 be a ρ-isomorphism of DSL1 in DSL2 . For any x1 ∈M1, if x1 is a garden of Eden

then for any t1 ∈ T1 − {0} and any y1 ∈M1

gt1(y1) 6= x1 (5.86)

and therefore, by bijectivity of f , for any f(y1) ∈M2 and any ρ(t1) ∈ T2 − {ρ(0)}

gρ(t1)f(y1) = f(gt1(y1)) 6= f(x1); (5.87)

hence, f(x1) is a garden of Eden. Proof in the converse direction is guaranteed by the fact that f−1 : M2 →M1

is a ρ−1-isomorphism of DSL2 in DSL1 .

5.3

Dynamical Systems on Commutative Monoids

Before moving to an examination of the possible types of reversible behavior a dynamical system

might display, it is important to notice that dynamical systems are extremely sensitive to the

algebraic structure of their time models. Hence, enriching time models results in reducing the

range of possible orbits dynamical systems can display and, as we shall see, the number of ways

how they can reverse their evolution. This is particularly evident in the case of commutative

time models.

Intuitively, one may think that whenever two distinct states y and z both belong to the orbit of a

third, distinct point x, then the orbits of z and y must intersect at a point. However, this is not

guaranteed in the case of dynamical systems on non-commutative monoids. The �rst advantage

of providing a dynamical system with a commutative time model is precisely that of ruling out

this possibility, so that no state may ever possess in its future two distinct points whose orbits

are disjoint.
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Proposition 5.21. Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid

L = (T,+); for any three distinct x, y, z ∈M , if y ∈ orb(x) and z ∈ orb(x), then orb(z)∩orb(y) 6=
∅.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid L = (T,+) and let x, y, z ∈ M be

three distinct states. If y ∈ orb(x) and z ∈ orb(x), then there exist t, v ∈ T such that

gt(x) = y and (5.88)

gv(x) = z; (5.89)

hence, by commutativity

gt(z) = gt(gv(x)) = gt+v(x) = gv+t(x) = gv(gt(x)) = gv(y), (5.90)

so that gt(z) = gv(y) ∈ orb(z) and gt(z) = gv(y) ∈ orb(y), and therefore orb(z) ∩ orb(y) 6= ∅

In addition, though one may expect that all points along a periodic orbit are periodic in their

turn, this is similarly not guaranteed in the case of a dynamical systems on a non-commutative

monoid. However, if the time model is commutative, then any period of a point is distributed

on all the points lying on its trajectory.

Proposition 5.22. Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid

L = (T,+) with identity 0; for any x, y ∈M and any t ∈ T −{0}, if y ∈ orb(x) and t is a period

of x, then t is a period of y.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid L = (T,+) with identity 0 and let

x, y ∈M . If y ∈ orb(x) then there must exist v ∈ T such that

gv(x) = y, (5.91)

while, if t ∈ T − {0} is a period of x,

gt(x) = x; (5.92)

hence,

gt(y) = gt(gv(x)) = gt+v(x) = gv+t(x) = gv(gt(x)) = gv(x) = y, (5.93)

so that t is a period of y.

Corollary 5.22.1. Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid

L = (T,+); for any x, y ∈M , if orb(x) is periodic and y ∈ orb(x), then orb(y) is periodic.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid L = (T,+) with identity 0 and let

x, y ∈ M . If orb(x) is periodic, then there exists t ∈ T − {0} such that t is a period of x; as a consequence, by

Proposition 5.22, t is a period of y. Hence, orb(y) is periodic.

Finally, if durations commute then points are aperiodic if and only if all their future images

are aperiodic; as a further consequence, it follows that if two orbits are merging, then either is

aperiodic if and only if the other is too.
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Proposition 5.23. Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid

L = (T,+); for any x, y ∈M such that y ∈ orb(x), if orb(y) is aperiodic then orb(x) is aperiodic.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid L = (T ; +) and let x, y ∈ M such

that y ∈ orb(x). If orb(y) is aperiodic, then it is neither periodic nor eventually periodic. According to Corollary

5.22.1, orb(x) is not periodic and, therefore, orb(x) is aperiodic if and only if it is not eventually periodic. So

let us suppose, as a reductio, that some z ∈ orb(x) was periodic. By Proposition 5.21, there would have existed

w ∈ orb(z) such that w ∈ orb(y) and, by Corollary 5.22.1, orb(w) was periodic. However, if that was the case,

then orb(y) would have been eventually periodic, contrary to the hypothesis. Hence, orb(x) is aperiodic.

Corollary 5.23.1. Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid

L = (T,+); for any x, y ∈ M such that y ∈ orb(x), orb(x) is aperiodic if and only if orb(y) is

aperiodic.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid L = (T ; +) and let x, y ∈M such that

y ∈ orb(x). By Proposition 5.13, if orb(x) is aperiodic then orb(y) is aperiodic; on the other hand, by Proposition

5.23, if orb(y) is aperiodic then orb(x) is aperiodic.

Corollary 5.23.2. Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid

L = (T,+); for any x, y ∈M whose orbits are merging, orb(x) is aperiodic if and only if orb(y)

is aperiodic.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a commutative monoid L = (T,+) and let x, y ∈M . If orb(x)

and orb(y) are merging, then by De�nition 16 there exists z ∈M such that z ∈ orb(x)∩orb(y); that is, z ∈ orb(x)

and z ∈ orb(y). As a consequence, by Corollary 5.23.1, orb(x) is aperiodic if and only if orb(z) is aperiodic, if

and only if orb(y) is aperiodic.



6
Reversibile Dynamics

Intuitively speaking, a dynamical system is reversible if it is capable of recovering any of its

past states; the way this goal is attained varies from case to case, depending on the logical

properties of its state transitions, on the function which they consist of and, last but not least,

on the algebraic properties of its time model. Therefore, moving from mathematical dynamical

systems on (positive) integer or real time models to dynamical systems on monoids, we are al-

lowed to distinguish among a cluster of di�erent kinds of loosely speaking reversible dynamics

which would otherwise get, at least partially, tangled. In the course of this chapter, we shall list

six di�erent kinds of reversible behavior � namely, logical reversibility, complete past, complete

logical reversibility, reversibility, strict reversibility and time invertibility. For clearness of expo-

sition, we shall subdivide them into two main categories, namely proper and improper types.

These categories should not be thought of as being mutually exhaustive for, as we shall see,

notions belonging to di�erent categories may nevertheless be connected by the relation of logical

consequence; rather, they are meant to underline the common features lying at the basis of each

group of notions. Two further notions of improperly reversible dynamical behavior, namely time

symmetry and space invertibility, will instead be the main focus of Chapter 8.

6.1

Improper Types of Reversibility

Improper types of reversible dynamics include logical reversibility, complete past and complete

logical reversibility, which are de�ned according to the logical properties which the state transi-

tions of a dynamical system might display.

Definition 28

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is logically reversible if and

only if, for any t ∈ T , gt is injective.

82
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Logical reversibility gives formal shape to the epistemic interpretation of reversibility: the past

history of a logically reversible dynamical system is uniquely determined by the set of its state

transitions, in the sense that any t-past set of whatever state is either empty or contains exactly

one element; accordingly, knowledge of the whole past evolution of the system can be obtained

just by knowing its operation, namely the set of all its state transitions, together with the actual

state of the system.

De�nition 28 is a straightforward generalization of Bennett's de�nition of logically reversible

computational systems (Bennett, 1973) and Giunti's de�nition of logically reversible mathemat-

ical dynamical systems (Giunti, 1997, p. 29). Nevertheless, some properties of logically reversible

mathematical dynamical systems might be lost in the course of that generalization: for exam-

ple, those kind of systems typically have neither merging orbits nor eventually periodic orbits

(Giunti, 1997, pp. 33-35), while this is not sure in the case of logically reversible dynamical

systems whose time models are simple monoids.

Definition 29

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) has complete past if and only

if, for any t ∈ T , gt is surjective.

Complete past asserts that it is always possible to set a dynamical system so that it will reach

a given state state in a chosen lapse of time; as a straightforward consequence,

Proposition 6.1. Dynamical systems with complete past have no gardens of Eden.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system with complete past on a monoid L = (T,+) with identity 0. If

DSL had a garden of Eden, then there would exist x ∈M such that, for any t ∈ T − {0} and any y ∈M

gt(y) 6= x, (6.1)

so that no gt would be surjective, contrary to the hypothesis. Therefore, DSL has no gardens of Eden.

Symmetrically, as we already anticipated in the previous chapter, dynamical systems owning

Gardens of Eden must have incomplete past history, in the sense that not all of their states have

a non-empty past set1. However, the converse implication is not true, as it will be shown by

Example 2.

Definition 30

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is completely logically re-

versible if and only if, for any t ∈ T , gt is bijective.

By de�nition, completely logical reversible dynamical systems are both logically reversible and

with complete past; accordingly, complete logical reversibility may be understood as claiming

that for any state y and duration t it is possible to choose a unique state x such that the system

will move from x to y in a chosen lapse of time.

1See � 5.2.2.1
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All improper types of reversibility considered so far are preserved by ρ-isomorphism.

Proposition 6.2. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+),

let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕) and let f : M1 →

M2 be a ρ-isomorphism of DSL1 in DSL2. Then:

6.2.1. DSL1 is logically reversible if and only if DSL2 is;

6.2.2. DSL1 has complete past if and only if DSL2 has;

6.2.3. DSL1 is completely logically reversible if and only if DSL2 is.

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) and DSL2 = (M2, (g

t2)t2∈T2) be dynamical systems on L1 = (T1,+) and L2 =

(T2,⊕) respectively, let ρ : T1 → T2 be a monoid isomorphism of L1 in L2 and let f : M1 → M2 be a ρ-

isomorphism of DSL1 in DSL2 . Hence:

• Let x2, y2 ∈M2 and t2 ∈ T2. By bijectivity of f and ρ, we are guaranteed that, for some x1, y1 ∈M1 and

some t1 ∈ T1, x2 = f(x1), y2 = f(y1) and t2 = ρ(t1); so if DSL1 is logically reversible then

gt2(x2) = gt2(y2)

gρ(t1)(f(x1)) = gρ(t1)(f(y1))

f(gt1(x1)) = f(gt1(y1))

gt1(x1) = gt1(y1)

x1 = y1

f(x1) = f(y1)

x2 = y2, (6.2)

which makes DSL2 logically reversible.

• Let x2 ∈M2 and t2 ∈ T2. By bijectivity of f and ρ, x2 = f(x1) for some x1 ∈M1 and t2 = ρ(t1) for some

t1 ∈ T1. Hence, if DSL1 has complete past, there exists y1 ∈M1 and y2 = f(y1) ∈M2 such that

gt1(y1) = x1 (6.3)

x2 = f(x1) = f(gt1(y1)) = gρ(t1)(f(y1)) = gt2(y2); (6.4)

accordingly, DSL2 has complete past.

• If DSL1 is completely logically reversible, then it is logically reversible and with complete past. Hence,

since both logical reversibility and complete past are preserved by isomorphism, DSL2 is logically reversible

and with complete past in its turn, i.e. DSL2 is completely logically reversible.

In all cases, proof in the converse direction is guaranteed by the fact that f−1 is a ρ−1-isomorphism of DSL2 in

DSL1 .

6.2

Proper Types of Reversibility

The improper types of reversible dynamics we examined so far either express the possibility of

recovering the whole past history of an arbitrary state from knowledge of the state alone, or the
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existence of a history that arbitrarily stretches into the past, or both. Proper types of reversible

dynamical behavior, instead, refer to the capability a dynamical system has to get back to any

of its states dynamically, namely by means of its sole state transitions.

6.2.1 Reversibility

The weakest and basic kind of properly reversible dynamics is reversibility :

Definition 31 (Reversibility)

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is called reversible if and only

if, for any x ∈M and any t ∈ T , there exists r ∈ T such that

gr(gt(x)) = x. (6.5)

It is easy to see that reversibility is a dynamical property, for it is both a speci�c property of

dynamical systems and preserved by ρ-isomorphism:

Proposition 6.3. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+),

let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕) and let f : M1 →

M2 be a ρ-isomorphism of DSL1 in DSL2. Then DSL1 is reversible if and only if DSL2 is.

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) and DSL2 = (M2, (g

t2)t2∈T2) be dynamical systems on L1 = (T1,+) and L2 =

(T2,⊕) respectively, let ρ : T1 → T2 be a monoid isomorphism of L1 in L2 and let f : M1 → M2 be a ρ-

isomorphism of DSL1 in DSL2 . If DSL1 is reversible then for any t1 ∈ T1 and any x1 ∈M1 there exists v1 ∈ T1

such that

gv1(gt1(x1)) = gv1+t1(x1) = x1. (6.6)

Hence, for any x2 ∈M2 and t2 ∈ T2, if

x2 = f(x1) (6.7)

t2 = ρ(t1) (6.8)

there exists v2 = ρ(v1) ∈ T2 such that

f(x1) = f(gv1+t1(x1))

= gρ(v1+t1)(f(x1))

= gρ(v1)⊕ρ(t1)(f(x1))

= gρ(v1)(gρ(t1)(f(x1))). (6.9)

On the other hand, by bijectivity of f and ρ, for any x2 ∈M2 and t2 ∈ T2 there always exist x1 ∈M1 and t1 ∈ T1

such that x2 and t2 respectively satisfy conditions (6.7) and (6.8); accordingly, DSL2 is reversible. Finally, proof

in the converse direction is guaranteed by the fact that f−1 : M2 → M1 is a ρ−1-isomorphism of DSL2 in

DSL1 .

Reversibility, as just de�ned, is a weaker notion than that proposed by Giunti (1997), according to

which reversible dynamical systems are those whose time models consist of the integer, rational or
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real numbers, together with arithmetical addition. In our sense, a dynamical system is reversible

if and only if capable to recover its initial state after having undergone a state transition of

whatever duration; equivalently, we may characterize reversible dynamical systems as those

systems whose transition graphs are invertible, in the sense that for any arrow connecting two

nodes there exists an arrow connecting them in the opposite direction, or as those systems whose

past and future possible histories coincide.

Proposition 6.4. A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is reversible

if and only if, for any x ∈M
P (x) = F (x). (6.10)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and let x ∈M .

If DSL is reversible, then

• For any y ∈ F (x) there exist t ∈ T − {0} and r ∈ T such that

gt(x) = y (6.11)

gr(y) = gr(gt(x)) = x. (6.12)

If r 6= 0, then obviously y ∈ P (x); if r = 0, then y = x, so that gt(y) = x and y ∈ P (x).

• For any y ∈ P (x) there exists t ∈ T − {0} and r ∈ T such that

gt(y) = x (6.13)

y = gr(gt(y)) = gr(x). (6.14)

If r 6= 0, then plainly y ∈ F (x); if r 6= 0, then y = x, so that gt(y) = x and y ∈ F (x).

As a consequence, F (x) ⊆ P (x) and P (x) ⊆ F (y), which is the same as

F (x) = P (x). (6.15)

If F (x) = P (x), then for any t ∈ T − {0} there exist y ∈ P (x) and r ∈ T such that

gt(x) = y (6.16)

x = gr(y) = gr(gt(x)). (6.17)

On the other hand, for t = 0, condition (6.5) holds trivially. As a consequence, DSL is reversible.

Corollary 6.4.1. Reversible dynamical systems have no Gardens of Eden.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and let x ∈ M . If DSL is reversible

then, by Proposition 6.4, P (x) = F (x). On the other hand, by De�nition 23, F (x) is necessarily non-empty, so

that P (x) must be non-empty in its turn; by Proposition 5.19, x is therefore not a Garden of Eden. Finally, since

x was chosen arbitrarily, DSL can have no Gardens of Eden at all.

In the course of the preceding chapter, we had the chance to remark that a strict connection

exists between the types of orbits a dynamical system may possess and the type of reversible

behavior it may possibly display. The following statements con�rm this claim:
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Proposition 6.5. A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is reversible

if and only if, for any x, y ∈M , either orb(x) ∩ orb(y) = ∅ or orb(y) = orb(x).

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+).

If DSL is reversible then, for any y, x ∈M , if y ∈ orb(x) there exist t ∈ T and r ∈ T − {0} such that

gt(x) = y (6.18)

gr(y) = gr(gt(x)) = x, (6.19)

so that x ∈ orb(x); accordingly, by Proposition 5.7, orb(x) ⊆ orb(y) and orb(y) ⊆ orb(x), and therefore orb(x) =

orb(y). As a consequence, for any x, y ∈M , either orb(x)∩orb(y) = ∅ or there exists z ∈M such that z ∈ orb(x),

z ∈ orb(y) and, given the above result, orb(x) = orb(z) = orb(y).

If DSL is not reversible, then there must exist x, y ∈M and t ∈ T such that, for any r ∈ T

gt(x) = y (6.20)

gr(y) = gr(gt(x)) 6= x, (6.21)

so that orb(x) 6= orb(y) and, since y ∈ orb(x), orb(x) ∩ orb(y) 6= ∅,

Points belonging to a reversible dynamical system thus either share their orbits entirely, or they

possess no common past or future image at all; as a consequence, reversible dynamical systems

possess no merging orbits.

Corollary 6.5.1. Reversible dynamical systems have no merging orbits.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+). If DSL is reversible then, by Proposition

6.5, there exist no x, y ∈M such that orb(x) * orb(y), orb(y) * orb(x) and orb(x) ∩ orb(y) 6= ∅; hence, DSL has

no merging orbits.

Reversibility is logically independent of logical reversibility, as well as of complete past. Example

2 shows that reversible dynamical systems exist which are neither logically reversible nor with

complete past; conversely, Example 3 will show that complete logical reversibility does not imply

reversibility.

Example 2 (Reversible but Not Logically Reversible Dynamical System with Incomplete Past on a Non-commu-

tative Monoid2)

Let L = (T,+), where T = {0, 1, 2, 3} and the sum operation + is de�ned by table 6.1:

In addition, let M = {xi}4i=1 and, for any t ∈ T and any xi ∈M , let gt(xi) be de�ned by the following table:

Then:

• L is a non-commutative monoid: + is a non-commutative, associative binary operation on T with identity

0: see Table 6.1;

• DSL = (M, (gt)t∈T ) is a dynamical system on the non-commutative monoid L:

1. M is a non-emtpy set: by hypothesis,

2This example was suggested to me by Prof. Marco Giunti as a personal communication.
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+ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

Table 6.1: The sum operation +. Read column+row, as reading order matters.

g0 g1 g2 g3

x1 x1 x2 x1 x3
x2 x2 x2 x1 x3
x3 x3 x2 x1 x3

Table 6.2: The t-advances family (gt)t∈T .

2. (gt)t∈T is a family of functions on M , indexed by T : see Table 6.2,

3. for any xi ∈M and any t, v ∈ T , conditions (5.8) and 5.9 hold: see Table 6.2

• DSL is reversible: see Table 6.2;

• DSL is not logically reversible: for all t ∈ T − {0}, gt is not injective: see Table 6.2;

• DSL has incomplete past: for all t ∈ T − {0}, gt is not surjective: see Table 6.2.

0,1 

0,2 0,3

2 

3

2 3
1 1

x1 x3

x2

Figure 6.1: Dynamical System Described in Example 2.

The following is an example of a system that is completely logically reversible but not reversible.

Example 3 (Completely Logically Reversible and Not Reversible Dynamical System)

For any integer x ∈ Z and any non-negative integer n ∈ Z+, let gn(x) be the n-th successor of x. Then:

• DSL = (Z, (gn)n∈Z+) is a dynamical system on L = (Z+,+):
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1. Z is a non-empty set;

2. (gn)n∈Z+ is a family of functions on Z, indexed by Z+;

3. for any x ∈ Z and any n,m ∈ Z+

g0(x) = x+ 0 = x (6.22)

gn+m(x) = x+ (n+m) = (x+ n) +m = gm(gn(x)). (6.23)

• DSL is completely logically reversible: for any x ∈ Z, for any n ∈ Z+, x is the n-th successor of one and

only one integer number y ∈ Z+.

• DSL is not reversible: for any x ∈ Z, for any n,m ∈ Z+ − {0}

gm(gn(x)) = gn+m(x) = x+ (n+m) 6= x. (6.24)

6.2.2 Strict Reversibility

Reversibility only demands that, for any state x and any state transition of duration t, a reversed

state transition mapping gt(x) back to x exists; however, in no way reversibility requires the

reversed state transitions to be the same for all x. If that is the case, we say that the system is

strictly reversible.

Definition 32 (Strict Reversibility)

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is strictly reversible if and

only if, for any t ∈ T there exists r ∈ T such that, for any x ∈M

gr(gt(x)) = x. (6.25)

Proposition 6.6. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+),

let DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕) and let f : M1 →

M2 be a ρ-isomorphism of DSL1 in DSL2. Then DSL1 is strictly reversible if and only if DSL2

is.

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) and DSL2 = (M2, (g

t2)t2∈T2) be dynamical systems on L1 = (T1,+) and L2 =

(T2,⊕) respectively, let ρ : T1 → T2 be a monoid isomorphism of L1 in L2 and let f : M1 → M2 be a ρ-

isomorphism of DSL1 in DSL2 . If DSL1 is strictly reversible, then for any t1 ∈ T1 there exists v1 ∈ T1 such that,

for any x1 ∈M1

gv1(gt1(x1)) = gv1+t1(x1) = x1 (6.26)

and

f(x1) = f(gv1+t1(x1))

= gρ(v1+t1)(f(x1))

= gρ(v1)⊕ρ(t1)(f(x1))

= gρ(v1)(gρ(t1)(f(x1))). (6.27)

On the other hand, by bijectivity of ρ and f , for any t2 ∈ T2 and any x2 ∈ M2 there exist t1 ∈ T1 and x1 ∈ M1

such that t2 = ρ(t1) and x2 = f(x1); accordingly, for any t2 ∈ T2 there exists v2 = ρ(v1) ∈ T2 such that, for any

x2 ∈M2,

gv2(gt2(x2)) = gρ(v1)(gρ(t1)(f(x1))) = f(x1) = x2, (6.28)
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which makes DSL2 strictly reversible. Proof in the converse direction is guaranteed by the fact that f−1 : M2 →
M1 is a ρ−1-isomorphism of DSL2 in DSL1 .

Proposition 6.6 shows that strict reversibility, as well as reversiblity, is a dynamical property.

This should be no surprise, because strictly reversible dynamical systems are, by de�nition,

reversible.

Proposition 6.7. All strictly reversible dynamical systems are reversible.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); if DSL is strictly reversible, then for

any t ∈ T there exists r ∈ T satisfying (6.25); as a consequence, by dicto de omni, for any t ∈ T and any x ∈M
there exists r ∈ T satisfying (6.5). Hence, DSL is reversible.

While reversible dynamical systems may fail to be logically reversible, strict reversibility essen-

tially demands logical reversibility. In fact, if a state transition of whatever duration t mapped

di�erent states x and z into a unique image y, then it could not be the case that the same state

transition of duration r could lead y back to both x and z:

Proposition 6.8. All strictly reversible dynamical systems are logically reversible.

Proof

Let DSL = (M, (gt)t∈T ) be a strictly reversible dynamical system o a monoid L = (T,+); for any t ∈ T , if for
some x, y ∈M

gt(x) = gt(y); (6.29)

then, by strict reversibility, there must exist r ∈ T such that

x = gr(gt(x)) = gr(gt(y)) = y; (6.30)

hence, gt must be injective. As a consequence, DSL is logically reversible.

In addition, in virtue of their very logical reversibility, strictly reversible dynamical systems are

also endowed with complete past and, therefore, with complete logical reversibility.

Corollary 6.8.1. All strictly reversible dynamical systems have complete past.

Proof

Let DSL = (M, (gt)t∈T ) be a strictly reversible dynamical system o a monoid L = (T,+) and let us suppose, as

a reductio, that DSL has incomplete past; then, by hypothesis, there must exist t ∈ T and x ∈M such that

x /∈ gt(M), (6.31)

where gt(M) is meant to denote the image set of gt. On the other hand, by strict reversibility, there must exist

r ∈ T such that

gr(gt(M)) = M, (6.32)

while necessarily

gr(x) ∈M. (6.33)

Hence, there must exist y ∈ gt(M) such that

gr(y) = gr(x). (6.34)
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By Proposition 6.8, gr must be injective, so that

x = y (6.35)

and thus

x ∈ gt(M), (6.36)

contrary to the hypothesis. Hence, all state transitions of DSL are surjective, and DSL has complete past.

Corollary 6.8.2. All strictly reversible dynamical systems are completely logically reversible.

Proof

Let DSL be a strictly reversible dynamical system on a monoid L. By Proposition 6.8, DSL is logically reversible,

while by Corollary 6.8.1, it has complete past. As a consequence, DSL is completely logically reversible.

Thanks to complete logical reversibility, all the state transitions of a strictly reversible dynamical

system possess an inverse function. This property supports the following statement:

Lemma 6.1. Let DSL = (M, (gt)t∈T ) be a strictly reversible dynamical system on a monoid

L = (T,+) and let t, r ∈ T . If, for any x ∈M

gr(gt(x)) = x, (6.37)

then

gr = (gt)−1. (6.38)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+). If DSL is strictly reversible then, by

Corollary 6.8.2, it is completely logically reversible. Hence, for any t ∈ T , gt has an inverse function (gt)−1. So

let r, t ∈ T satisfy (6.37) for any x ∈M : if gr 6= (gt)−1 then there would exist x ∈M such that

gr(x) 6= (gt)−1(x); (6.39)

however, since DSL is completely logically reversible, gt must be surjective and therefore, for some y ∈ M such

that y = gt(x),

gr(gt(y)) 6= (gt)−1(gt(y)) = y, (6.40)

against the hypothesis. Hence, if r, t ∈ T satisfy (6.37) for any x ∈M , then gr = (gt)−1.

On the other hand, any the state transition in a strictly reversible dynamical system comes

equipped with an inverse state transition satisfying condition (6.37) for all possible states. For

this reason, strictly reversible dynamical systems may equivalently be characterized as follows:

Proposition 6.9. A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is strictly

reversible if and only if for any t ∈ T there exists r ∈ T such that

gr = (gt)−1. (6.41)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+). By De�nition 32 and Lemma 6.1, DSL

is strictly reversible if and only if for any t ∈ T there exists r ∈ T satisfying (6.37) for any x ∈ M ; on the other

hand, by Lemma 6.1, for any such r it must be gr = (gt)−1.
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Corollary 6.9.1. A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is strictly

reversible if and only if for any t ∈ T there exists r ∈ T such that, for any x ∈M

gt(gr(x)) = x. (6.42)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); by Proposition 6.9, DSL is strictly

reversible if and only if, for any t ∈ T , there exists r ∈ T such that gr = (gt)−1, which obtains if and only if, for

any x ∈M
gt(gr(x)) = gt((gt)−1(x)) = x. (6.43)

6.2.3 Time Invertibility

The strongest type of properly reversible dynamics we shall de�ne is time invertibility.

Definition 33 (Time Invertibility)

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T ; +) is time-invertible if and only

if L is a group.

Time invertibility is the clearest example of how the type of reversibility displayed by a dynamical

system depends on the algebraic features of its time model, for these features explicitly enter

its de�nition. Just like reversibility and strict reversibility, time invertibility is also a dynamical

property.

Lemma 6.2. Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+), let

DSL2 = (M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕) and let f : M1 →M2

be a ρ-isomorphism of DSL1 in DSL2. Then DSL1 is time invertible if and only if DSL2 is.

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) and DSL2 = (M2, (g

t2)t2∈T2) be dynamical systems on L1 = (T1,+) and L2 =

(T2,⊕) respectively, let ρ : T1 → T2 be a monoid isomorphism of L1 in L2 and let f : M1 → M2 be a ρ-

isomorphism of DSL1 in DSL2 . If DSL1 is time-invertible, then ρ is a group isomorphism between L1 and L2 and

therefore L2 is a group in its turn. As a consequence, DSL1 is time-invertible. Proof in the converse direction is

guaranteed by the fact that f−1 : M2 →M1 is a ρ−1-isomorphism of DSL2 in DSL1 .

In the light of De�nition 33, time-invertible dynamical systems may be easily proved to be

strictly reversible and hence reversible and completely logically reversible.

Proposition 6.10. Time-invertible dynamical systems are strictly reversible.

Proof

Let DSL = (M, (gt)t∈T ) be dynamical system on a monoid L = (T,+) with identity 0; if DSL is time invertible,

then for any t ∈ T there exists −t ∈ T such that, for any x ∈M

g−t(gt(x)) = g−t+t(x) = g0(x) = x; (6.44)

hence, DSL is strictly reversible.
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Corollary 6.10.1. Time-invertible dynamical systems are reversible.

Proof

By Proposition 6.10, time-invertible dynamical systems are strictly reversible; as a consequence, by Proposition

6.7, they are also reversible.

Corollary 6.10.2. Let DSL be a dynamical system on a monoid L; if DSL is time-invertible,

then it is completely logically reversible.

Proof

Let DSL be a dynamical system on a monoid L; if DSL is time-invertible then, by Proposition 6.10, it is strictly

reversible. Hence, by Corollary 6.8.2, it is completely logically reversible.

Strict reversibility is nevertheless not logically equivalent to time invertibility, as shown by the

following example.

Example 4 (Strictly Reversible and Not Time-Invertible Dynamical System)

Let M = {xi}2i=1, let L = (Z+,+) be the set of non-negative integers along with arithmetical addition and, for

any n ∈ Z+ and any xi ∈M , let us assume that

if n is even, then gn(xi) = xi, (6.45)

if n is odd, then gn(xi) = xj , (6.46)

taking for granted that, in all cases, i 6= j. Then:

• L = (Z+,+) is a monoid with identity 0;

• DSL = (M, (gn)n∈Z+) is a dynamical system on L: by hypothesis, M is not empty and (gn)n∈Z+ is a

family of functions on M , indexed by Z+. Furthermore, for any xi ∈M ,

g0(xi) = xi (6.47)

and, for any xi ∈M , for any n,m ∈ Z+,

◦ if n is even and m is even, then n+m is even and

gn+m(xi) = xi = gm(xi) = gn(gm(xi)), (6.48)

◦ if n is even and m is odd, then n+m is odd and

gn+m(xi) = xj = gm(xi) = gn(gm(xi)), (6.49)

◦ if n is odd and m is even, then n+m is odd and

gn+m(xi) = xj = gn(xi) = gn(gm(xi)), (6.50)

◦ if n is odd and m is odd, then n+m is even and

gn+m(xi) = xi = gm(xj) = gn(gm(xi)). (6.51)

• DSL is strictly reversible: for any n ∈ Z+ there exists m ∈ Z+ such that, for any xi ∈M

◦ if n is even, m is even, so that then n+m is even and

gm+n(xi) = gm(gn(xi)) = xi (6.52)
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◦ if n is odd, m is odd, so that n+m is even and

gm+n(xi) = gm(gn(xi)) = xi. (6.53)

• DSL is not time-invertible, since Z+ is not a group.

0,2,4,6,8,... 

x1 x2

0,2,4,6,8,... 

1,3,5,7,9,...

1,3,5,7,9,...

Figure 6.2: Dynamical System Described in Example 4.

Nonetheless the following, weaker implication holds:

Proposition 6.11. Let DSL = (M, (gt)t∈T ) be a strictly reversible dynamical system on a

monoid L = (T,+); if the family (gt)t∈T is injective, DSL is time-invertible.

Proof

Let DSL = (M, (gt)t∈T ) be a strictly reversible dynamical system on a monoid L = (T,+) with identity 0 and

let g : T → MM be the indexed family3 (gt)t∈T . By Proposition 6.9 and Corollary 6.9.1, for any t ∈ T there

exists r ∈ T such that

g(0) = g0 = (gt)−1 ◦ gt = gr ◦ gt = gr+t = g(r + t), (6.54)

g(0) = g0 = gt ◦ (gt)−1 = gt ◦ gr = gt+r = g(t+ r); (6.55)

and therefore, if g is injective,

0 = g−1(g(0)) = g−1(g(r + t)) = r + t (6.56)

0 = g−1(g(0)) = g−1(g(t+ r)) = t+ r, (6.57)

so that r is an inverse of t. Since L is a monoid, r is unique; hence, L is a group and, by De�nition 33, DSL is

time-invertible.

On the other hand, it may be the case that the family of state transitions of a time-invertible

dynamical system is not injective. For, otherwise, Proposition 6.10 and Proposition 6.11 would

jointly make time invertibility collapse on strict reversibility, contrary to what Example 4 showed.

Nonetheless, to be sure that the family of a time-invertible dynamical system DSL is injective,

one only needs to examine whether DSL has at least one non-periodic orbit, or else that there

3Let us recall that, in general, by a family (fx)x∈X of elements of a given set Y , indexed by X, we simply
mean a function f : X → Y .
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is no period which is common to all orbits. Given Proposition 6.10, this property obtains as a

direct consequence of the following:

Proposition 6.12. Let DSL = (M, (gt)t∈T ) be a strictly reversible dynamical system on a

monoid L = (T,+); if the family (gt)t∈T is not injective, then all orbits of DSL share a common

period.

Proof

Let DSL = (M, (gt)t∈T ) be a strictly reversible dynamical system on a monoid L = (T,+) with identity 0 and

let g : T →MM be the family (gt)t∈T . If g is not injective, then there must exist t, v ∈ T such that

g(t) = gt = gv = g(v) t 6= v. (6.58)

On the other hand, by Proposition 6.9, for any t, v ∈ T there must exist r, u ∈ T such that

gr = (gt)−1 (6.59)

gu = (gv)−1 (6.60)

so that

gr+t = gr ◦ gt = (gt)−1 ◦ gt = g0

= (gt)−1 ◦ gv = gr ◦ gv = gr+v

= (gv)−1 ◦ gv = gu ◦ gv = gu+v

= (gv)−1 ◦ gt = gu ◦ gt = gu+t

= gt ◦ (gt)−1 = gv ◦ (gt)−1 = gv ◦ gr = gv+r

= gv ◦ (gv)−1 = gv ◦ gu = gv+u

= gt ◦ (gv)−1 = gt ◦ gu = gt+u. (6.61)

Now let i ∈ {t, v} and j ∈ {r, u}: if t, v, r and u where such that all possible sums of the form i+ j or j + i were

equal to 0, then by (6.58) we would get, for example,

t+ (r + v) = t+ 0 = t 6= v = 0 + v = (t+ r) + v, (6.62)

violating the associativity of +. Hence, at least one sum of the form i+ j or j+ i is di�erent from 0. So let s ∈ T
be any such sum. Then, by the previous equalities (6.61), for any x ∈M

gs(x) = g0(x) = x s 6= 0, (6.63)

so that, by De�nition 19, s is a period of all x ∈M .

6.3

Stronger Time Models

Except for those induced by transitivity, all the possible logical relationships which may obtain

among the six di�erent types of (proper and improper) reversible dynamics we de�ned so far are

synthesized by Figure 6.3. Still, we have already remarked4 that dynamical systems are very

4See � 5.3.
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sensitive to the algebraic structure of time models, for enriching the latter results in restricting

the possible types of orbits a dynamical system can display. Since there is a deep connection

between the types of orbits which a dynamical system can have and its kind of loosely speak-

ing reversibility, it is reasonable to expect that richer time models demand stronger forms of

reversible dynamics. Just as before, dynamical systems on commutative monoids are a crystal

clear case in this respect; the �rst part of this section is thus dedicated to show how reversibility

may be a�ected by commutative time models. In the second part, we shall instead focus on

the consequence the algebraic property of regularity may have on strictly reversible dynamical

systems.

TI

LRCP

CLR

R

SR

Figure 6.3: Logical relations among di�erent types of reversible behavior.

6.3.1 Reversible Dynamics and Commutative Time Models

In introducing logical reversibility, we had the chance to notice that logically reversible dynamical

systems may happen to possess eventually periodic orbits5; however, this possibility is ruled out

in case the given time model is commutative.

Proposition 6.13. Let DSL = (M, (gt)t∈T ) be dynamical system on a commutative monoid; if

DSL is logically reversible, it has no eventually periodic orbits.

Proof

Proof of Proposition 6.13 is a straightforward generalization of that given by (Giunti, 1997, p. 33) for dynamical

systems on (positive) real or (positive) integer time models.

Similarly, reversibility per se implies neither logical reversibility nor complete past6; however,

reversible dynamical systems on commutative monoids are always completely logically reversible

too.

Proposition 6.14. Let DSL be a dynamical system on a commutative monoid L = (T,+); if

DSL is reversible, then it is completely logically reversible.

5See � 6.1.
6See Example 2
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Proof

Let DSL = (M, (gt)t∈T ) be a reversible dynamical system on the commutative monoid L = (T,+).

Then, for any t ∈ T , gt is injective: if not, for some x, z ∈M :

gt(x) = gt(z) = y x 6= z. (6.64)

By reversibility, there should exist w, v ∈ T (not necessarily distinct) such that:

gw(y) = x (6.65)

gv(y) = z, (6.66)

which, by substitution, lead to

gw(gt(x)) = gw(gt(z)) = x (6.67)

gv(gt(z)) = gv(gt(x)) = z (6.68)

and, by a further substitution, to

x = gw(gt(z)) = gw(gt(gv(gt(x)))) (6.69)

z = gv(gt(x)) = gv(gt(gw(gt(x)))). (6.70)

However, by hypothesis x 6= z, that is:

gw(gt(gv(gt(x)))) 6= gv(gt(gw(gt(x)))) (6.71)

which implies that the rule of composition between state transitions is not commutative, and with it the operation

+ on T , contrary to the hypothesis.

Moreover, for any t ∈ T , gt is surjective: for any x ∈M , there should be some y ∈M such that

gt(x) = y (6.72)

and, by reversibility, there should be some w ∈ T such that:

gw(y) = x. (6.73)

By substitution, this means that, for any x ∈M and some w ∈ T :

gw(gt(x)) = x (6.74)

which, by commutativity, turns out to be equivalent to

gt(gw(x)) = x, (6.75)

i.e. every x ∈M is the image of at least one z = gw(x) ∈M with respect to gt.

By De�nition 30, DSL is thus completely logically reversible.

On the other hand, commutativity of the time model is not a necessary condition for a reversible

dynamical system to be also completely logically reversible, as the next example shows.

Example 5 (Strictly Reversible and Completely Logically Reversible Dynamical System on a Non-Commutative

Monoid)

Let T be the set of all bijective functions on Z, let 0 be the identity function on M and ◦ be the standard
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operation of function composition; in addition, for any t ∈ T and any integer x ∈ Z, let

gt(x) = t(x). (6.76)

Then:

• L = (T,+) is a non-commutative monoid:

(a) T is closed with respect to ◦,

(b) ◦ is associative,

(c) 0 is the identity element with respect to ◦,

(d) ◦ is not commutative (e.g. the successor of the opposite of an integer is never equal to the opposite

of its successor);

• DSL = (Z, (gt)t∈T ) is a dynamical system on L = (T,+):

1. Z is a non-empty set,

2. (gt)t∈T is a family of functions on Z, indexed by T ,

3. for any x ∈ Z and any t, v ∈ T :

g0(x) = 0(x) = x (6.77)

gt◦v(x) = (t ◦ v)(x) = t(v(x)) = gt(gv(x)); (6.78)

• DSL is strictly reversible: for any t ∈ T , there exists t−1 ∈ T such that, for any x ∈ Z

gt
−1

(gt(x)) = t−1(t(x)) = x, (6.79)

for the inverse of a bijection is a bijection;

• DSL is completely logically reversible: by hypothesis, for all t ∈ T , gt is bijective. Complete logical

reversibility is also guaranteed by Corollary 6.8.2.

The role of commutativity will become crucial in Chapter 8, where it will be proved to induce a

special type of symmetry in the time models of dynamical systems.

6.3.2 Strict Reversibility and Regular Time Models

We saw that strictly reversible dynamical systems are always completely logically reversible,

while the converse is not generally true. It is nonetheless possible to impose a su�cient condition

on the time models of both logically reversible dynamical systems and dynamical systems with

complete past, so that they can be strictly reversible in their turn. We say that an element t of

an arbitrary monoid L = (T,+) is regular if and only if, for some r ∈ T , t+ r+ t = t; similarly,

we call a monoid regular if and only if all of its elements are (Cli�ord and Preston, 1961, pp.

26-27). Then:

Proposition 6.15. Logically reversible dynamical system on regular monoids are strictly re-

versible.
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Proof

Let DSL = (M, (gt)t∈T ) be a logically reversible dynamical system on a monoid L = (T,+). Furthermore, let L

be regular, so that for any t ∈ T there exists r ∈ T such that t+ r+ t = t; as a consequence, for any such t, r ∈ T ,
for any x ∈M

gt(gr(gt(x))) = gt+r+t(x) = gt(x). (6.80)

Let us now suppose, as a reductio, that DSL was not strictly reversible. In that case, there would exist t ∈ T
such that, for any r ∈ T ,

gr(gt(x)) 6= x (6.81)

for some x ∈M . However, by logical reversibility, this would imply

gt(gr(gt(x))) 6= gt(x), (6.82)

which would contradict (6.80). Hence, DSL must be strictly reversible.

Proposition 6.16. Dynamical system on regular monoids having complete past are strictly

reversible.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with complete past. If L is regular, then

for any t ∈ T there exists r ∈ T such that t+ r + t = t; as a consequence, for any such t, r ∈ T , for any x ∈M

gt(gr(gt(x))) = gt+r+t(x) = gt(x). (6.83)

By complete past, for any t ∈ T and any y ∈M there are x ∈M and r ∈ T such that

y = gt(x); (6.84)

thus, by (6.83) and (6.84)

gt(gr(y)) = gt(gr(gt(x))) = gt+r+t(x) = gt(x) = y; (6.85)

accordingly, by Corollary 6.9.1, DSL is strictly reversible.

Proposition 6.17. Let DSL be a dynamical system on a regular monoid L; then, the following

statements are equivalent: (1) DSL is logically reversible; (2) DSL is strictly reversible; (3) DSL

is completely logically reversible; (4) DSL has complete past.

Proof

Let DSL be a dynamical system on a regular monoid L; we shall independently prove the chain of implications

(1)-(2)-(3)-(4) in the two directions. If DSL is logically reversible then, by Proposition 6.15, it is strictly re-

versible; hence, by Corollary 6.8.2, it is completely logically reversible and, by De�nition 30, with complete past.

Conversely, if DSL has complete past then, by Proposition 6.16, it is strictly reversible; hence, by Corollary 6.8.2,

it is completely logically reversible and, by De�nition 30, logically reversible.

6.4

Non-Reversible Dynamical Systems

There are two remarkable ways how a dynamical system might fail to be reversible, which we shall

refer to, respectively, as strong irreversibility (Giunti, 1997, p. 29) and complete irreversibility.
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Definition 34 (Strong Irreversibility)

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is called strongly irreversible

if and only if there exist x, y ∈M and t, r ∈ T such that

gt(x) = gr(y) (6.86)

and, for any v ∈ T
gv(x) 6= y and gv(y) 6= x. (6.87)

In the previous chapter, we anticipated that possession of merging orbits is a distinguishing

feature of irreversible dynamical system. Strong irreversibility is precisely the type of irreversible

behavior which is displayed by a dynamical system with merging orbits.

Proposition 6.18. Dynamical systems are strongly irreversible if and only if they possess merg-

ing orbits7.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and let x, y ∈M . By De�nition 16, for

any x ∈ M , orb(x) is merging if and only if for some y ∈ M (i) orb(x) * orb(y), (ii) orb(y) * orb(x) and (iii)

orb(x) ∩ orb(y) 6= ∅. By Proposition 5.7 (i) obtains if and only if x /∈ orb(y), i.e. if and only if, for any v ∈ T ,
gv(y) 6= x and, similarly, (ii) obtains if and only if, for any v ∈ T , gv(x) 6= y. Finally, (iii) obtains if and only if

there exists z ∈M such that z ∈ orb(x) and z ∈ orb(y), which obtains if and only if there exist t, r ∈ T such that

gt(x) = z = gr(y). By De�nition 34, such conditions obtain if and only if DSL is strongly irreversible.

Corollary 6.18.1. Strongly irreversible dynamical systems are not reversible.

Proof

Let DSL be a dynamical system on a monoid L. If DSL is reversible, then by Corollary 6.5.1, it has no merging

orbits. Hence, according to Proposition 6.18, DSL is not strongly irreversible. Conversely, if DSL is strongly

irreversible then it is not reversible.

Complete irreversibility is the strongest possible form of properly irreversible behavior a deter-

ministic system might display. Intuitively, a system is completely irreversible just in case none

of its states can be ever recovered dynamically, by means of the sole state transitions of the

system:

Definition 35 (Complete Irreversibility)

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) with identity 0 is called

completely irreversible if and only if, for any t ∈ T and any x ∈M , for any r ∈ T − {0}

gr(gt(x)) 6= x. (6.88)

It is worth noticing that allowing for r = 0 in the above de�nition would have the e�ect of making

condition (6.88) contradictory, since in that case, for t = 0, we would get x 6= x. Conversely,

restricting the scope of r so that it could only range over T − {0} has the e�ect of making

complete reversibility logically equivalent to the following:

7Proposition 6.18 generalizes a similar statement included in (Giunti, 1997) to the case of dynamical systems
whose time models are not necessarily commutative.
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Proposition 6.19. A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) with

identity 0 is completely irreversible if and only if, for any x ∈ M and any t ∈ T − {0}, for any

r ∈ T − {0},
gr(gt(x)) 6= x. (6.89)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0. If DSL is completely

irreversible then, by De�nition 35, condition (6.89) must hold (for all r ∈ T −{0}) for any x ∈M and any t ∈ T ;
a fortiori, this must also be true (for all r ∈ T − {0}) for any x ∈ M and any t ∈ T − {0}, proving Proposition

6.19 in one direction. To prove it in the converse direction, let us notice that, if (6.89) held (for all r ∈ T − {0})
for any x ∈ M and for any t ∈ T − {0}, then the sole case in which (6.88) would possibly not hold would be if

t = 0. Thus, suppose for reductio that for t = 0 there were z ∈M and t ∈ T such that

gr(gt(x)) = gr(g0(x)) = gr(x) = x. (6.90)

In that case, by (6.90),

gr(gr(x)) = gr(x) = x, (6.91)

but then, (6.88) would not hold also for t = r ∈ T − {0}, contrary to the hypothesis that (6.89) holds for any

t ∈ T − {0}. Therefore, the converse implication is proved.

Complete irreversibility will play an important part in Chapter 7, where we shall study the

dynamical properties of time models. In particular, we shall exploit the following properties:

Proposition 6.20. Completely irreversible dynamical systems have no periodic orbits.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0. By De�nition 35, if

DSL is completely irreversible then for any x ∈M and any t ∈ T there exist no r ∈ T − {0} such that

gr(gt(x)) = x; (6.92)

as a consequence, if t = 0, for any x ∈M there exist no r ∈ T − {0} such that

gr(g0(x)) = gr(x) = x. (6.93)

Therefore, by De�nition 18, DSL has no periodic orbits.

Corollary 6.20.1. Completely irreversible dynamical systems have no �xed points.

Proof

By Proposition 5.18, �xed points have periodic orbits. On the other hand, by Proposition 6.20, completely

irreversible dynamical system have no periodic orbits and, therefore, the can have no �xed point.

Proposition 6.21. A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is com-

pletely irreversible if and only if, for any x ∈M ,

P (x) ∩ F (x) = ∅. (6.94)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0. By Proposition 6.19,

DSL is not completely irreversible exactly in case there exist x ∈ M , t ∈ T − {0} and v ∈ T − {0} such that

gr(gt(x)) = x. On the other hand, by De�nition 22 and De�nition 24, this happens just in case there exist
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x, y ∈M , t ∈ T − {0} and v ∈ T − {0} such that y ∈ F t(x) and y ∈ P r(x). By De�nition 23 and De�nition 25,

this is equivalent to claiming that for some x, y ∈ M , y ∈ F (x) and y ∈ P (x), i.e. F (x) ∩ P (x) 6= ∅. Conversely,
for any x ∈M , F (x) ∩ P (x) = ∅ if and only if TSL is completely irreversible.

Corollary 6.21.1. Completely irreversible dynamical systems are not reversible.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x ∈M . If DSL

is completely irreversible then, by Proposition 6.21, P (x) ∩ F (x) = ∅ where, by De�nition 23, F (x) cannot be

empty; as a consequence, it must be P (x) 6= F (x) and therefore, by Proposition 6.4, DSL is not reversible.



7
The Dynamics of Time

Having required that time should at least possess the algebraic structure of a monoid bears pro-

found and quite unexpected consequences for our discussion concerning the objective signi�cance

of temporal becoming. This chapter is dedicated to show how time models could be provided

with an internal dynamics, essentially depending on their algebraic properties and described by a

special kind of dynamical systems, called time systems. Studying time systems, their dynamical

properties and their connection with the algebraic properties of monoids will �nally provide us

with a rigorous and consistent characterization of the passage of time, capable to overcome most

of the standard objections to becoming we met in the preceding chapters.

7.1

Time Systems

Since they are non-empty sets, time sets could play the part of state spaces as well: according

to this interpretation, their elements do not model intervals, but points of time, or moments.

Furthermore, any such set can be provided with a family of functions, indexed by the same time

set, via a left monoid action (Cli�ord and Preston, 1961). This way, any time model is uniquely

associated (Mazzola and Giunti, 2010) with a time system:

Definition 36 (Time System of a Monoid)

The time system of a monoid L = (T,+), denoted by TSL, is the ordered pair

TSL = (I, (ιt)t∈T )

such that

I = T (7.1)

and, for any t ∈ T , for any i ∈ I
ιt(i) = t+ i. (7.2)

103



The Dynamics of Time 104

In the speci�c case of time systems, elements of the state space I are called instants or moments,

while state transitions on I are called time transitions. It is easy to see that time systems are

but a special class of dynamical systems:

Proposition 7.1. The time system TSL of a monoid L is a dynamical system on L.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity 0. Then

1. I is a non-empty set;

2. (ιt)t∈T is a family of functions on I, indexed by T ;

3. for any i ∈ I and any t, v ∈ T

ι0(i) = 0 + i = 0 (7.3)

ιt+v(i) = (t+ v) + i = t+ (v + i) = ιt(ιv(i)). (7.4)

Hence, according to De�nition 1, TSL is a dynamical system on L.

Time systems are therefore dynamical systems whose state spaces coincide with their time sets,

and whose state transitions are functional representations of their binary rules of composition.

In other words, time systems are dynamical systems describing the internal dynamics of a time

model L = (T,+). From an intuitive point of view, for any t ∈ T and i ∈ I, the arrow i
t−→ ιt(i)

in the transition graph of a time system is intended to represent the �owing of time from instant

i to the one from which i is separated by duration t; on this interpretation, ιt(i) should be the

instant obtained by adding (composing) duration t to instant i, just as required by (7.2).

In this view, despite their set-theoretic identity, there exists a functional di�erence between

sets T and I, which depends on the di�erent perspectives from which monoids and their time

systems are observed: on the one hand, elements of T are understood algebraically as durations,

or elements of a monoid; on the other hand, the same elements are understood dynamically,

qua elements of set I, as states in a deterministic system. So, while durations can be composed

according to the algebraic rule of composition of monoid L, instants themselves cannot: I is a

set with no algebraic structure, or rather a set which is not required to have one. Moving from

instant to instant is a dynamical operation, rather than an algebraic one: for this reason, it

must be mediated by a function, notably a time transition, and precisely by one emulating the

corresponding rule of composition.

7.1.1 From Algebra to Dynamics

In the course of Chapter 5, we proved isomorphic dynamical systems to be indistinguishable as of

the purposes of general dynamical systems theory, for they describe exactly the same dynamics.

It is then no surprise that time systems whose time models are algebraically isomorphic must

be isomorphic in their turn.
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Proposition 7.2. Let L1 be a monoid with time system TSL1 and let L2 be a monoid with time

system TSL2; then any monoid isomorphism ρ of L2 in L1 is a ρ-isomorphism of TSL2 in TSL1.

Proof

Let L1 = (T1,+) be a monoid with time system TSL1 = (I1, (ι
t1)t1∈T1) and let L2 = (T2,⊕) be a monoid with

time system TSL2 = (I2, (ι
t2)t2∈T2). Let ρ : T2 → T1 be a monoid isomorphism of L2 in L1. Hence, for any

t2 ∈ T2 and any i2 ∈ I2 = T2

ρ(ιt2(i2)) = ρ(t2 ⊕ i2)

= ρ(t2) + ρ(i2)

= ιρ(t2)(ρ(i2)). (7.5)

Hence, according to De�nition 3, ρ is a ρ-isomorphism between time systems.

Corollary 7.2.1. Let L1 be a monoid with time system TSL1 and let L2 be a monoid with time

system TSL2. If L1 and L2 are isomorphic, then TSL1 and TSL2 are isomorphic.

Proof

Let L1 be a monoid with time system TSL1 and let L2 be a monoid with time system TSL2 . If L1 and L2

are isomorphic, then there must exist a monoid isomorphism ρ of TSL2 in TSL1 . By Proposition 7.2, ρ is a

ρ-isomorphism of TSL2 in TSL1 . Therefore, by De�nition 4, TSL2 and TSL1 are isomorphic.

In general, the set of state transitions of whatever dynamical system DSL can be endowed with

an algebraic structure, along with the standard operation of function composition. As we already

mentioned1 , when L is a group (e.g. the real numbers), this algebraic structure is also a group,

which is sometimes called the one parameter group of transformations of the dynamical system

DSL (Arnold, 1973; Tung, 1985). However, in the general case, we refer to this structure as

the transition algebra of DSL. We will see below that, when L is just a monoid, the transition

algebra of DSL is a monoid as well.

Definition 37 (Transition Algebra)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+). The transition algebra

of DSL, denoted by TADSL , is the ordered pair

TADSL = (H, ◦)

where

H =
{
h : h = gt for some t ∈ T

}
(7.6)

and ◦ is the standard operation of function composition.

Proposition 7.3. The transition algebra of a dynamical system DSL = (M, (gt)t∈T ) on a

monoid L = (T,+) with identity 0 is a monoid with identity g0.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let TADSL = (H, ◦)
be the transition algebra of DSL. Then

1See the introductory part of Chapter 5.



The Dynamics of Time 106

• for any gt, gv ∈ H
gt ◦ gv = gt+v ∈ H (7.7)

• for any gt, gv, gw ∈ H

gt ◦ (gv ◦ gw) = gt ◦ gv+w = gt+(v+w) = g(t+v)+w = gt+v ◦ gw = (gt ◦ gv) ◦ gw (7.8)

• g0 ∈ H and, for any arbitrary h = gt ∈ H,

g0 ◦ gt = g0+t = gt = gt+0 = gt ◦ g0. (7.9)

Hence, TADSL satis�es closure with respect to the composition operation ◦, associativity and possession of the

identity element g0. Accordingly, TADSL is a monoid.

In general, the time model L of a dynamical system DSL is homomorphic, but not isomorphic,

to the transition algebra TADSL :

Proposition 7.4. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

then the family (gt)t∈T is a surjective monoid homomorphism from L to the transition algebra

TADSL = (H, ◦) of DSL.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let TADSL = (H, ◦)
be the transition algebra of DSL. Finally, let g : T → H be the family (gt)t∈T . Then

• g maps identity element into identity element:

g(0) = g0; (7.10)

• g is structure-preserving: for any t, v ∈ T

g(t+ v) = gt+v = gt ◦ gv = g(t) ◦ g(v). (7.11)

• g is surjective: by De�nition 37, for any h ∈ H, h = gt for some t; but, by hypothesis,

g(t) = gt; (7.12)

hence surjectivity holds.

Thus, g is a surjective monoid homomorphism of L in TATSL .

In addition, in the special case of time systems, the family (ιt)t∈T of state transitions is necessarily

injective; accordingly,

Corollary 7.4.1. Every monoid L is isomorphic to the transition algebra of its time system.

Proof

Let L = (T,+) be a monoid with identity 0, let TSL = (I, (ιt)t∈T ) be the time system of L and let TATSL = (H, ◦)
be the transition algebra of TSL. Finally, let ι : T → H be the family (ιt)t∈T . Then:

• ι is a surjective monoid homomorphism of L in TATSL : by Proposition 7.4;
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• ι is injective: for any t, v ∈ T

t 6= v

t+ 0 6= v + 0

ιt(0) 6= ιv(0)

ιt 6= ιv

ι(t) 6= ι(v); (7.13)

Hence, ι is a monoid isomorphism of L in TATSL and, accordingly, L is isomorphic to TATSL .

Let us also notice that, in general, a dynamical system DSL is not isomorphic to the time

system TSTADSL of its transition algebra, for isomorphism between dynamical systems requires

their time models to be isomorphic, while Proposition 7.4 only grants surjective homomorphism

between L and TADSL . However, Corollary 7.4.1 guarantees that the time model of a time

system and the one of the time system of its transition algebra are always isomorphic. For this

reason,

Proposition 7.5. Every time system is isomorphic to the time system of its transition algebra.

Proof

Let TSL be the time system of a monoid L, let TATSL be the transition algebra of TSL and let TSTATSL
be

the time system of TATSL . By Corollary 7.4.1, TATSL is isomorphic to L. Hence, by Corollary 7.2.1, TSTATSL

and TSL are isomorphic.

Proposition 7.1 and Corollary 7.4.1 jointly show that any monoid gives rise to a special dynamics,

represented by its time system, that preserves its algebraic properties. Similarly, Proposition

7.3 and Proposition 7.5 show that any time system gives rise to an algebraic structure, namely

its transition algebra, that preserves its dynamical properties. Time systems and monoids are

thus alternative but equivalent ways of representing the same mathematical structure, whose

properties are left unchanged while moving from the latter, algebraic representation, to the

former, dynamical one, and back. For this very reason, the study of the algebraic properties of a

monoid L can also be carried out in the form of a study of the dynamical properties of its time

system TSL, and vice versa2.

7.1.2 The Dynamics of Identity

In the previous chapter, we introduced the study of mathematical dynamical systems as the

study of their orbits and motions. Restricting the scope of such analysis to the proper subclass

of time systems, the fundamental notion of orbit turns out to be identical to a well known

algebraic concept.

Let L = (T,+) be an arbitrary monoid; for any t ∈ T , the principal left ideal of t is de�ned as

the subset of T generated by composing every element of T to the left of t (Green, 1951, p. 164).

2For a discussion on the relation of algebra to the study of time also see Withrow (1980).
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The following statement establishes that the orbit of any instant is identical to its principal left

ideal.

Proposition 7.6. Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+); then for

any i ∈ I = T , orb(i) is the principal left ideal of i.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+); then, by De�nition 36 and the de�nition of

an orbit, for any i ∈ I = T ,

orb(i) =
{
j ∈ I : for some t ∈ T, j = ιt(i)

}
= {j ∈ I : for some t ∈ T, j = t+ i} , (7.14)

which is exactly the principal left ideal of i.

One of the special features of the identity element is that of having a principal left ideal including

all the elements of the monoid it belongs to. The dynamical counterpart of this property is

established by the following:

Proposition 7.7. Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with

identity 0; then orb(0) = I.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity 0. Then, for any t ∈ T

ιt(0) = t+ 0 = t, (7.15)

so that

orb(0) =
{
i ∈ I : for some t ∈ T, ιt(0) = i

}
= T = I. (7.16)

Proposition 5.6 associated the orbit of any point x in the state space of a dynamical system

DSL on a monoid L with a dynamical system DSxL on L, whose state space is equal to orb(x)

and whose state transitions consist of the restriction of the state transitions of DSL to orb(x); a

fortiori, this must also be true for the orbits of instants in an arbitrary time system. Proposition

7.7 is thus asserting that the time system TSL of any monoid L is identical to the dynamical

system DS0L associated to the orbit of its identity element.

Corollary 7.7.1. Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity

0; then TSL = TS0L = (orb(0), (ιt|orb(0))t∈T ).

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity 0. By Proposition 7.7, I =

orb(0); accordingly, for any t ∈ T , ιt|orb(0) = ιt, so that (ιt|orb(0))t∈T = (ιt)t∈T and therefore TSL = TS0L =

(orb(0), (ιt|orb(0))t∈T ).

The most straightforward interpretation of Corollary 7.7.1 is that the whole dynamics of a time

system is just the dynamics of the identity element of its time model. This interpretation is

further supported by the following result, according to which the identity element is the unique

starting point from which the whole dynamics of a time system is generated, if there is one.
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Proposition 7.8. Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with

identity 0. For any i ∈ I, if i is a Garden of Eden, then i = 0.

Proof

Let TS = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity 0. For any i ∈ I, if i 6= 0 then

i = i+ 0 = ιi(0); (7.17)

as a consequence, there exist t = i ∈ T − {0} and j = 0 ∈ I such that ιt(j) = i and, therefore, i is not a Garden

of Eden. Therefore, for any i ∈ I, if i is a Garden of Eden then i = 0.

The question whether or not the identity element is a Garden of Eden, namely whether or not

the identity element has a non-empty past, will reveal to be strictly related to the problem of

providing the dynamics of time with a well-de�ned direction, as well as the one of giving a

satisfactory dynamical account of tenses. In both cases, a fundamental role is played by the

following property:

Proposition 7.9. Let TSL be the time system of a monoid L = (T,+) with identity 0; then for

any i ∈ I, 0 ∈ orb(i) if and only if i has a left inverse element.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T, 0) with identity 0; then, for any i ∈ T ,

0 ∈ orb(i) if and only if, for some t ∈ T ιt(i) = 0

if and only if, for some t ∈ T t+ i = 0, (7.18)

which happens exactly in case t is a left inverse of i.

Corollary 7.9.1. Let TSL be the time system of a monoid L = (T,+) with identity 0; TSL

has a Garden of Eden if and only if no element of L other than the identity has a left inverse

element.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid with identity 0. By Proposition 7.8, TSL has a Garden

of Eden if and only if 0 is, i.e. for any i ∈ I − {0}, for all t ∈ T

ιt(i) 6= 0 (7.19)

or, equivalently,

0 /∈ orb(i) (7.20)

which, by Proposition 7.9, obtains if and only if i has no left inverse element.

One may wonder whether the identity could ever be periodic � at least in those cases in which

the identity itself is not a Garden of Eden � so that the whole dynamics of the given time system

were closed, or cyclic. The following proposition is meant to rule out this possibility.

Proposition 7.10. Let TSL be the time system of a monoid L = (T,+) with identity 0; then 0

is not periodic.
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Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid with identity 0; then, for any t ∈ T − {0},

ιt(0) = t+ 0 = t 6= 0; (7.21)

hence, by De�nition 17, 0 is not periodic.

This property of time systems is also indirectly con�rmed by the following result:

Proposition 7.11. Let TSL be the time system of a monoid L = (T,+) with identity 0; then

for any i ∈ I, i has a left inverse if and only if orb(i) = I.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity 0 and let i ∈ T .

If i has a left inverse, then for some t ∈ T = I

ιt(i) = t+ i = 0 (7.22)

and thus, for any j ∈ I

j = ιj(0) = ιj(t+ i) = j + (t+ i) = (j + t) + i = ιj+t(i) ∈ orb(i); (7.23)

hence, orb(i) = I.

If orb(i) = I, a fortiori

0 ∈ orb(i) (7.24)

and therefore, by Proposition 7.9, i has a left inverse.

Proposition 7.11 establishes a logical equivalence between the property of possessing a left inverse

element and the one of possessing what we may call a maximal orbit, i.e. an orbit covering the

whole state space. Clearly, identity elements own this property by de�nition, and this may be

understood as the conceptual source of Proposition 7.7. Things are di�erent in all other cases,

in which this property is far from being trivial: as we shall see, providing all the elements of a

monoid with a maximal orbit will make its time system reversible.

7.1.3 The Reversibility of Time

Being dynamical systems, time systems may reverse in a variety of di�erent ways depending

on the algebraic structure of their time models. In their special case, however, this dependence

is made even stronger, since that structure invariably a�ects the logical properties of their

state transitions. In particular, we shall observe a substantial strengthening of the notion of

reversibility, on which most forms of reversible dynamics we discussed in the previous chapter

collapse, and a sensible reduction in the range of possible combinations of reversible types of

behavior a time system might display. In the end, both of these distinguishing features of time

systems stem from the following result:

Proposition 7.12. The time system TSL of a monoid L is reversible if only if it is strictly

reversible, if and only if any element of L has a left inverse.
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Proof

Let TS = (I, (ιt)t∈T ) be a time system on a monoid L = (T,+) with identity 0.

If TSL is reversible, then according to De�nition 31, for any i ∈ I and any t ∈ T there must exist r ∈ T satisfyig

condition (6.5), so that

r + (t+ i) = i. (7.25)

In particular, �xing i = 0, for any t ∈ T there must exist r ∈ T such that

r + t = 0, (7.26)

i.e. any t ∈ T = I must possess a left inverse element.

In addition, if all elements of L have a left inverse then, for any t ∈ T , there exists r ∈ T such that

r + t = 0; (7.27)

as a consequence, for any j ∈ I
ιr(ιt(j)) = r + t+ j = 0 + j = j. (7.28)

and therefore, according to De�nition 32, TSL is strictly reversible.

Finally, if TSL is strictly reversible then, by Proposition 6.7, it is also reversible, closing the circle of implications.

In sum: TSL is reversible if and only if it is strictly reversible, if and only if any element of L has a left inverse.

Proposition 7.12 is a clear example of how the dynamical properties of time systems essentially

depend on the algebraic features of their time models: though generally not equivalent, in the

special case of time systems reversibility and strict reversibility coincide because of their being

equivalent to the same algebraic property: namely, that all members of a monoid possess a left

inverse element. This result con�rms what we already anticipated, namely that providing all

the possible states of a time system with a maximal orbit is as much as making it reversible:

Corollary 7.12.1. The time system TSL = (I, (ιt)t∈T ) of a monoid L = (T,+) is reversible if

and only if, for any i ∈ I, orb(i) = I.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity 0. By Proposition 7.12, TSL is

reversible if and only if all i ∈ I = T have a left inverse element. On the other hand, by Proposition 7.11, this

obtains if and only if, for any i ∈ I, orb(i) = I.

In other terms, the orbits of all states are identical and span the entire state space.

This means that reversible time systems describe the dynamics of a unique orbit, coinciding

with that of the identity element: that is to say, all the states of a reversible time system are

dynamically indistinguishable.

Proposition 6.8 showed that a necessary condition for a dynamical system to be strictly reversible

is that all its state transitions be injective. For, if a state transition mapped di�erent states x

and z into a unique image y, then it could not be the case that a unique state transition could

lead y back to both x and z. One further consequence of Proposition 7.12 is therefore that,

contrary to the general case:
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Proposition 7.13. Reversible time systems are logically reversible.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+). If TSL is reversible then, according to

Corollary 7.12, it is also strictly reversible and therefore, by Proposition 6.8, logically reversible.

The converse, however, is still false: a very simple counterexample is represented by the time

system associated with the monoid (Z+,+) consisting of the set of non-negative integers, along

with arithmetical addition.

Proposition 7.12 provided a straightforward algebraic interpretation for the reversibility of time

systems. Furthermore, Proposition 7.13 established a logical connection between their reversibil-

ity and their logical reversibility, though the two concepts are not logically equivalent. So, what

algebraic interpretation should we give of logical reversibility?

In general, we say that a monoid L = (T,+) is left-cancellative if and only if all t ∈ T are left-

cancellable, which happens whenever for any u, v ∈ T , if t+u = t+v then u = v. Symmetrically,

L is right-cancellative if and only all t ∈ T are right cancellable, i.e. for any u, v ∈ T , if

u + t = v + t then u = v. Finally, a monoid is simply cancellative if and only if it is both left

and right cancellative, i.e. if and only if all of its elements are both left- and right-cancellable

(Cli�ord and Preston, 1961, p. 3). In the case of time systems, the dynamical property of logical

reversibility corresponds to the algebraic property of left-cancellability:

Proposition 7.14. The time system TSL of a monoid L is logically reversible if and only if L

is left-cancellative.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+). By De�nition 28, TSL is logically reversible

exactly in case, for any t ∈ T , for any i, j ∈ T = I

ιt(i) = ιt(j) if and only if i = j

t+ i = t+ j if and only if i = j, (7.29)

which obtains if and only if L is left-cancellative.

One may think the natural counterpart of logical reversibility to be complete past, according to

which all state transitions in a dynamical system are surjective. However, at least in the case

of time systems, logical reversibility and complete past do not play analogous roles. Rather,

complete past must be understood as the correlate of reversibility and strict reversibility:

Proposition 7.15. The time system TSL of a monoid L has complete past if and only if any

element of L has a right inverse.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system associated with a monoid L = (T,+) with identity 0.

If TSL has complete past then, according to De�nition 29, for any t ∈ T and any i ∈ I there exists j ∈ I such

that

ιt(j) = t+ j = i; (7.30)
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hence, holding i = 0 �xed, for any t ∈ T there exists j ∈ I = T such that

t+ j = 0. (7.31)

But if so, then any element of L has a right inverse.

Conversely, let us suppose that for any t ∈ T there exists i ∈ I = T such that

t+ i = 0; (7.32)

then for any j ∈ I,
ιt(i+ j) = t+ (i+ j) = (t+ i) + j = 0 + j = j. (7.33)

Hence, by De�nition 29, TSL has complete past.

In the light of Proposition 7.12, Proposition 7.15 shows that complete past plays a role analogous

to that of reversibility and strict reversibility. This analogy can be pushed even further, since

time systems with complete past can be proved to coincide exactly with reversible and strictly

reversible ones:

Proposition 7.16. Time systems are reversible if and only if they have complete past.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity 0.

If TSL is reversible, then by Proposition 7.12 for any i ∈ I there must exist j ∈ T = I such that

j + i = 0 (7.34)

while, by the same token, there must exist k ∈ T = I such that

k + j = 0. (7.35)

Hence, by associativity:

k + (j + i) = (k + j) + i (7.36)

k + 0 = 0 + i (7.37)

k = i. (7.38)

By (7.35) and (7.38), j is a right inverse of i. Hence, by Proposition 7.15, TSL has complete past.

Proof in the converse direction runs similarly, mutatis mutandis (hint: use �rst Proposition 7.15 in place of

Proposition 7.12 and, second, Proposition 7.12 in place of Proposition 7.15).

In virtue of Proposition 7.16 and Proposition 7.13, all reversible time systems display both logical

reversibility and complete past, and hence complete logical reversibility. In addition, contrary

to the general case, reversibility is implied by complete logical reversibility in its turn.

Proposition 7.17. Time systems are reversible if and only if they are completely logically re-

versible.

Proof

By Proposition 7.13 and Proposition 7.16, reversible time systems are logically reversible and with complete

past. Hence, by De�nition 30, they are completely logically reversible. Conversely, completely logical reversible
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time systems always possess complete past, by De�nition 30; hence, by Proposition 7.16, they must be reversible

too.

In Chapter 5, we proved that any time invertible dynamical system is completely logically re-

versible, with complete past, strictly reversible, and reversible, but all four converse implications

are false. By contrast, in the case of time systems, time invertibility is equivalent to reversibility

(see Proposition 7.18 below), and thus to strict reversibility (by Proposition 7.12), complete past

(by Proposition 7.16), and complete logical reversibility (by Proposition 7.17).
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Figure 7.1: Possible types of reversible behavior displayed by time systems.

Proposition 7.18. Time systems are reversible if and only they are time invertible.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity 0. If TSL is time invertible then,

by Corollary 6.10.1, it is reversible. Conversely, if TSL is reversible then, by Proposition 7.12, Proposition 7.16

and Proposition 7.15, for any i ∈ T there exist j, k ∈ T such that

j + i = 0 (7.39)

i+ k = 0 (7.40)

and, by associativity

j = j + 0 = j + (i+ k) = (j + i) + k = 0 + k = k. (7.41)

Accordingly L is a group and, by De�nition 33, TSL is time invertible.

The main implication of Proposition 7.18 is that, in the case of time systems, we are left with just

two distinct concepts of reversible dynamics � namely, time invertibility and logical reversibility,

the latter of which is entailed by the former one3. Symmetrically, there are just two ways time

systems may be irreversible, both of which require a failure of reversibility: in the one case they

might fail to be reversible, while still being logically reversible; in the other case they might fail

to be logically reversible as well.

3See Figure 7.1.



The Dynamics of Time 115

7.2

The Dynamical Interpretation of Tenses

So far, we provided time models with intrinsic dynamical properties, which were proved to

coincide exactly with those of their identity elements. What we got, however, is still not temporal

becoming: to model the passage of time, we don't have just to provide the latter with proper

dynamics, but we also need to make sense of its static ingredient. In other words, we still have

to o�er a satisfactory account of tenses, so that the dynamics we attributed to time on the basis

of its algebraic property could be proved to be precisely that of the unique moving present.

7.2.1 Present States, Present Times

In general, as we already had the chance to point out, there are two distinct ways of functionally

interpreting a time set. On the one hand, we can disregard its algebraic structure, and consider

it as a state space, whose elements are moments or points in time: in this sense, the identity

element is the sole element always generating the whole dynamics of a time system4. On the

other hand, we can take the algebraic structure of time sets into account, and consider them

as time models, i.e. monoids whose elements are durations, or intervals of time. In this sense,

the identity element models the null duration, namely the one after which all states of whatever

dynamical system are mapped into themselves. This interpretation of the identity, as we are

going to see, is naturally associated with a dynamical conception of presentness, understood as

a dynamical property predicable of di�erent moments at di�erent times.

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0. In

Chapter 5, we de�ned the future of state x ∈ M as the set F (x) of all states into which the

system will evolve in a non-zero interval of time, after having been set in state x; symmetrically,

we de�ned the past of x as the set P (x) of states from which the system must have evolved in

order to reach state x in a non-zero lapse of time. It is therefore intuitively straightforward to

associate the present of a state x with the set including all and only those instants the system

is capable of reaching a zero interval of time after having been set in state x:

Definition 38 (Present of a Point)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; for any

state x ∈M , the present of x, denoted by Π(x), is de�ned as

Π(x)
def
=
{
y ∈M : y = g0(x)

}
. (7.42)

4This is a direct consequence of Proposition 7.7, according to which the identity element always has a maximal
orbit, together with the existence of time systems whose sole state having a maximal orbit is precisely the identity
itself (as an example, consider the system associated with the monoid (Z+) consisting of the set of non-negative
integers, together with arihtmetical addition).
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Quite obviously, the dynamical present of any state consists precisely of that state itself:

Proposition 7.19. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

then, for any x ∈M
Π(x) = {x} . (7.43)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x ∈M ; then, by

De�nition 38 and De�nition 1,

Π(x) =
{
y ∈M : y = g0(x)

}
= {x} . (7.44)

In general, the past, present and future of a point x in the state space of a dynamical system

specify what states the system could have displayed in order to reach that point, the state

displayed by the system at that point, and those it will display afterwards. In this sense pastness,

presentness and futurity are thus relational or indexical features of states, rather than of times.

However, in the case of time systems, the past, present and future of each moment i consist of

the sets of moments or instants dynamically preceding, coinciding with, and following i. In this

sense, pastness, presentness and futurity are relational or indexical features of times: for each

instant i, its past, present and future sets specify what are the past, present and future times

at time i. This way, once applied to time systems, the dynamical characterization of pastness,

presentness and futurity given by De�nition 23, De�nition 25 and De�nition 38 must be taken

as de�nitions of past, present and future tenses as such.

How to relate this conception of presentness to the idea of a unique transient present moment,

whose motion spans the whole of time? The conceptual link is o�ered by the following statement:

Corollary 7.19.1. Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with

identity 0; then, for any t ∈ T − {0} = I − {0},

F t(0) = Π(t). (7.45)

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) with identity 0 and let t ∈ T −{0} = I −{0};
then, by De�nition 22, De�nition 38 and Proposition 7.19,

F t(0) =
{
j ∈ I : j = ιt(0)

}
= {j ∈ I : j = t+ 0} = {t} = Π(t). (7.46)

In plain words, Corollary 7.19.1 states that the motion of the identity element and the way

the present moment is determined at each time are in fact identical: at every instant, what

counts as present is the unique stage occupied by the identity element, and it is precisely the

dynamical evolution of the identity which makes the unique present moment vary from time

to time. Under this light, De�nition 38 is just a functionally di�erent, although dynamically

equivalent interpretation of the dynamics of the identity element.
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7.2.2 Separating Tenses

The discussion we made in Chapter 3 showed that any satisfactory account of tenses should at

least be capable to make the present moment a constitutive or invariant property of time, coin-

ciding with the separating element between past and future. Does the dynamical interpretation

of tenses just outlined satisfy these two minimal requirements?

Intuitively, having reduced the idea of the moving present to the purely algebraic concept of the

identity element is per se strong evidence in favor of its mind-independence. Further and even

stronger evidence is nonetheless o�ered by the following:

Proposition 7.20. Let DSL1 = (M1, (g
t1)t1∈T1) and DSL2 = (M2, (g

t2)t2∈T2) be dynamical

systems on L1 = (T1,+) and L2 = (T2,⊕) respectively, and let f : M1 →M2 be a ρ-isomorphism

of DSL1 in DSL2; then, for any x1, y1 ∈M1,

7.20.1. y1 ∈ F (x1) if and only if f(y1) ∈ F (f(x1));

7.20.2. y1 ∈ P (x1) if and only if f(y1) ∈ P (f(x1));

7.20.3. y1 ∈ Π(x1) if and only if f(y1) ∈ Π(f(x1)).

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) be a dynamical system on a monoid L1 = (T1,+) with identity 0, let DSL2 =

(M2, (g
t2)t2∈T2) be a dynamical system on a monoid L2 = (T2,⊕), let ρ : T1 → T2 be a monoid isomorphism of

L1 in L2 and let f : M1 →M2 be a ρ-isomorphism of DSL1 in DSL2 . Then:

• If y1 ∈ F (x1), then by De�nition 23 there exist t1 ∈ T1 − {0} such that

gt1(x1) = y1, (7.47)

and therefore, there exist ρ(t1) ∈ T2 such that

ρ(t1) 6= ρ(0) and (7.48)

f(y1) = f(gt1(x)) = gρ(t1)(f(x1)); (7.49)

as a consequence, by De�nition 23, f(y1) ∈ F (f(x1)).

• If y1 ∈ P (x1) then, by Corollary 5.14.1, x1 ∈ F (y1); then, according to what we have just proved,

f(x1) ∈ F (f(y1)) and again, by Corollary 5.14.1, f(y1) ∈ P (f(x1)).

• if y1 ∈ Π(x1) then, by De�nition 38, x1 = y1 and therefore f(x1) = f(y1), so that f(y1) ∈ P (f(x1)).

In all cases, proof in the converse direction is guaranteed by the fact that f−1 is a ρ−1-isomorphism of DSL2 in

DSL1 .

In the special case of time systems, Proposition 7.20 guarantees that the past, present and future

of each moment are independent of the chosen time models, modulo their algebraic or dynamical

equivalence. In other words, tenses are invariant dynamical properties of time systems. But are

they also well-behaved? That is to say: is the dynamical present, as we de�ned it, the separating

element between past and future?
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In a sense, it is: in fact, De�nition 38 was put forward as the sole possible dynamical de�nition of

presentness which was compatible with those of future and past respectively given by De�nition

23 and De�nition 25. However, there is a stronger sense in which this is not so: that is to say,

De�nition 38, De�nition 23 and De�nition 25 are not su�cient to exclude that, at some time,

past, present and future partially overlap each other.

The �rst condition which we therefore have to impose on time systems so that they can provide

us with a consistent dynamical characterization of tenses is that, at each time, past and future

must possess no non-empty intersection; and we already know that, according to Proposition

6.21, this condition is satis�ed just in case the given time system is completely irreversible.

The second condition we must impose is that, for any possible state of a time system, its present

set is entirely disjoint from both its past and future. In general, this condition is satis�ed

whenever a dynamical system has no periodic orbits.

Proposition 7.21. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+).

For any x ∈M ,

Π(x) ∩ F (x) = ∅ (7.50)

if and only if

P (x) ∩Π(x) = ∅, (7.51)

if and only if orb(x) is not periodic.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let x ∈ M be an

arbitrary instant. By Proposition 5.15, orb(x) is periodic if and only if x ∈ F (x). By De�nition 38, this obtains

if and only if

Π(x) ∩ F (x) 6= ∅. (7.52)

Symmetrically, orb(x) is not periodic if and only if Π(x) ∩ F (x) = ∅. Similarly, by Corollary 5.15.1, orb(x) is

periodic if and only if x ∈ P (x). By De�nition 38, this obtains if and only if

P (x) ∩Π(x) 6= ∅ (7.53)

so that, symmetrically, orb(x) is not periodic if and only if P (x) ∩Π(x) = ∅.

Having already required that past and future are entirely disjoint as of each other, on the other

hand, is per se su�cient to exclude that any present moment could ever intersect its own past

or future. In fact, as we already know by Proposition 6.20, completely irreversible dynamical

systems possess no periodic points.

Proposition 7.22. Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+); then all

i ∈ I satisfy conditions

Π(i) ∩ F (i) = ∅, (7.54)

Π(i) ∩ P (i) = ∅, (7.55)

P (i) ∩ F (i) = ∅ (7.56)
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if and only if TSL is completely irreversible.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+). If all i ∈ I satisfy condition (7.54)-(7.56)

then, by Proposition 6.21, TSL is completely irreversible. Conversely, if TSL is completely irreversible then, by

Proposition 6.21, all i ∈ I satisfy condition (7.56). Furthermore, by Proposition 6.20, TSL must have no periodic

orbits which, by Proposition 7.21, means that all i ∈ I must also satisfy conditions (7.54) and (7.55).

Proposition 7.22 establishes a direct connection between the existence of an anywhere clear-cut

separation of time into past, present and future and the dynamical behavior of the given time

model. In a sense, it provides the theoretical link between the philosophical issue of objective

temporal becoming and that of the objective direction of time: speaking of a well-behaved,

ever changing objective present moment is as much as speaking of the existence of a unique,

irreversible direction in time's motion.

For ease of expression, we may also say that any given moment i ∈ I satisfying conditions (7.54)-
(7.56) generates a local partition of its time set T = I, in the sense that its past, present and

future sets are equivalence classes on a (proper) subset of T . To get a fully satisfactory account

of tenses, one may also be willing to demand any such partition to be global : that is to say, that

the past, present and future of any moment jointly span the whole time set T . This requirement

is trivially met by the identity element, since we know its orbit to range over the entire state

space. However, it is not so in the general case, for which the following condition holds:

Proposition 7.23. Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+); then,

for any i ∈ I,
P (i) ∪Π(i) ∪ F (i) = I (7.57)

if and only if, for all j ∈ I,

orb(j) ⊆ orb(i) or orb(i) ⊆ orb(j). (7.58)

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+) and let i ∈ I. If i satis�es condition (7.57),

then for any j ∈ I, j ∈ P (i) or j ∈ Π(i) or j ∈ F (i). Given Proposition 5.7: in the �rst case, by De�nition 25,

orb(i) ⊆ orb(j); in the second case, by De�nition 38, orb(i) = orb(j), i.e. orb(i) ⊆ orb(j) and orb(j) ⊆ orb(i); in

the third case, by De�nition 23, orb(j) ⊆ orb(i). Conversely if, for any j ∈ I, orb(i) ⊆ orb(j) or orb(j) ⊆ orb(i),

then by Proposition 5.7 i ∈ orb(j) or j ∈ orb(i). By De�nition 14, De�nition 23 and De�nition 38, in the �rst

case it would be i ∈ Π(j) or i ∈ F (j) while, in the second case, j ∈ Π(i) or j ∈ F (i). In sum, j ∈ P (i) or j ∈ Π(i)

or j ∈ F (i) which, being j arbitrary, entails condition (7.57).

The most straightforward consequence of Proposition 7.23 is that, to allow for a global partition

of time into past, present and future, one has to rule out time models whose time systems are

strongly irreversible.

Proposition 7.24. Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+); if i ∈ I
satisfy condition (7.57), then TSL has no merging orbits.
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Proof

Let TSL be the time system of a monoid L. If all i ∈ I satisfy condition (7.57) then, by Proposition 7.23 there

can be no i, j ∈ I such that orb(i) * orb(j) and orb(j) * orb(j) and therefore, by De�nition 15, there can be no

i ∈ I whose orbits is merging.

Corollary 7.24.1. Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+); if all

i ∈ I satisfy condition (7.57), then TSL is not strongly irreversible.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a monoid L = (T,+); if i ∈ I satisfy condition (7.57) then,

by Proposition 7.24, it can have no merging orbits. In that case, by Proposition 6.18, TSL is not strongly

irreversible.

Proposition 7.22, Proposition 6.20 and Proposition 7.23 entail that a globally consistent partition

of time into past present and future tenses is solely possible for a completely reversible, and thus

with no periodic orbits, time system, whose set of orbits is linearly ordered by set inclusion.

7.3

An Unexpected Threat

Proposition 7.22 established a strict connection between the dynamical behavior of a time system

and the existence of a well-behaved, although possibly local, partition of its time model into past,

present and future tenses. Together with Corollary 6.21.1 and Proposition 7.18, it has the further

consequence of making the dynamical interpretation of tenses consistent, namely anywhere well-

de�ned, only in case the assumed time model is not a group, for only in that case the dynamics

of the corresponding time system is completely irreversible.

However, physical time is ordinarily conceived as a one-dimensional di�erentiable manifold (or as

one of the four dimensions of a four-dimensional di�erentiable manifold) which is di�eomorphic

to the real line and, as such, owns the algebraic structure of a group. For this reason, it might

seem that time systems, rather than providing us with a rigorous representation of temporal

becoming, o�er an indirect and unexpected refutation of the objectivity of its static ingredient.

The sole possible way out of this objection is to reject its basic premise, namely to deny that,

all in all, physical time must necessarily be modeled by a group. Under this light, according to

Proposition 7.22 and Proposition 7.12, the existence of objective temporal becoming is essentially

related to the possibility of deconstructing the mathematical representation of physical time so

as to reduce its algebraic structure to that of a monoid none of whose elements has a left inverse:

whether it might be possible to do that, and how, will be discussed in the next chapter.
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Symmetry and Becoming

The discussion we made in Chapter 7 revealed the existence of a logical thread binding the alge-

braic structure of a time model, the dynamical properties of a time system, and the objectivity

of tenses. This way, the problem of objective temporal becoming was reduced to that of the

unidirectionality of time's motion which, in our approach, is deeply intertwined with that of the

algebraic structure one is willing to provide time with.

This entire picture is radically di�erent from the received view concerning the problem of the di-

rection or the arrow of time, according to which the latter should be interpreted non-dynamically,

as a structural or inherent asymmetry of the time manifold, typically consisting of its topolog-

ical mirror-asymmetry, or anisotropy. In this chapter, we shall examine what relation is there

between the received view and the dynamical understanding of the unidirectionality of time. In

doing this, we'll have the chance to discuss the e�cacy of the standard approach, as well as

to face the problem whether the mathematical structures deterministic physical theories are in

need of to model physical time should necessarily give rise to non-directional time systems. Our

discussion will lead us to conclude that the received view can be no basis to decide whether or

nor time is unidirectional, for it tacitly presupposes that time has a symmetric algebraic struc-

ture. So, rather than concentrating on whether or not standard time models are structurally

symmetric, in the second part of this chapter we shall address the converse question whether or

not non-symmetric time model might depict physical time in a satisfactory way.

8.1

Symmetry, Structure and Dynamics

In a sentence, the received view maintains that the direction of time should be interpreted

non-dynamically, as an intrinsic asymmetry of the time manifold, consisting in a failure of the

time-reversal invariance of physical laws. Our �rst task will be that of making sense of this

121
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claim, and to translate it into the language of general dynamical systems theory, so that it will

be possible to compare its content with the results of our inquiry.

The conceptual basis of the standard view was a renewed relational account of time, inspired

by the rise of the special and the general theories of relativity and de�nitively established by

the reductionist approaches of Reichenbach (1956, 1958), Mehlberg (1961, 1980), Gold (1962),

Penrose and Percival (1962), van Fraassen (1970) and Grünbaum (1973). Schematically, we may

synthesize the content of this view by means of the following three tenets:

(a) Time has no dynamical properties.

(b) The direction of time, if there is one, should necessarily be understood as a mirror-

asymmetry of the temporal manifold.

(c) Time has no proper structure.

(d) Speaking of the asymmetry of time, what we are actually referring to is the asymmetry

physical processes display with respect to the two possible orientations of the temporal

manifold they are hosted in.

(e) Physical processes are symmetric with respect to the time manifold just in case the laws

governing their evolution are invariant under a reversal of the time order.

Statements (b) and (d) are corollaries of (a) and (c) respectively, while (e) is logically independent

of both. General dynamical systems theory rejected the �rst four statements as a whole (Mazzola,

2010): as of (c) and (d) we saw that, in order to describe the evolution of deterministic systems,

time models must be endowed with minimal structural properties of an algebraic kind1; as of (a)

and (b), on those very structural properties we succeeded in constructing the internal dynamics

of time systems. In what follows, however, we shall provisionally assume (b), (d) and (e) as

working hypotheses: the idea is that of examining under what conditions the asymmetry in the

temporal evolution of a deterministic system would a�ect the structure of its time model, and

then to verify whether such a structural change in the time model would in its turn produce a

change in the dynamics of its time system. This will make it possible to compare the results of

the classical view with those of general dynamical systems theory.

8.1.1 Time-Reversal Invariance

In Weyl's classical de�nition, symmetry is commonly understood as `invariance of a con�guration

of elements under a group of automorphic transformations (Weyl, 1952, p. i)', which is to say

that `a thing is symmetrical if there is something that you can do to it so that, after you have

�nished doing it, it looks the same as it did before (Feynman, 1965, p. 84)'.

1In this sense, our approach might possibly be ascribed to the "heretic" view initiated by Earman (1972, 1974)
and later endorsed by Maudlin (2007), according to which time is in possession of both structural and directional
properties on its own, over and above those of physical processes.
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To get a more precise de�nition, we must look at the mathematical theory of models, in

whose language symmetries are commonly de�ned. By a model, we mean an ordered pair

S = (D, (Ri)i∈I), where D is a non-empty set of objects, called the domain of S, and, for

any i ∈ {1, ...,m, ...} (m ≥ 1), there is n such that Ri is a n-ary relation (n ≥ 0) among objects

of S; for this reason, it is called the structure of the model S. We say that the indexed family

Ri characterizes the objects in the domain of S. We say that any two models S = (D, (Ri)i∈I)

and S′ = (D′, (R′i)i∈I), are homologous just in case their structures have the same number of

relations and, for any i ∈ I, relations Ri and R′i have the same arity. For any two such mod-

els, we say that a function Φ : D → D′ is a homomorphism of S in S′ if and only if, for any

n-tuple (x1, ..., xn) of objects in the domain of S and any n-ary relation Ri, if Ri(x1, ..., xn)

then R′i(Φ(x1), ...,Φ(xn)). For this reason, we say that homomorphisms preserve the structures

they are applied on, �xing their relations. Bijective homomorphisms whose inverse functions are

themselves homomorphisms are called isomorphisms; an automorphism is any isomorphism of

a model in itself. The automorphisms of any model form a group. In this context, symmetries

of a model are in fact identi�ed with its automorphisms, and any relation that is preserved by

automorphisms is called invariant under that group (Rickles, 2008, pp. 11-12).

The concept of symmetry has gained more and more importance in contemporary philosophy

of science, to the point of threatening the very idea of law (van Fraassen, 1989). One of the

reasons for this success is that studying the symmetries of a model is a way to identify its

essential theoretical components: intuitively, if a relation on the domain of a model is �xed by

automorphism, then all structures on that model di�ering only as of that relation bear the same

theoretical content (Belot, 2003).

Thinking of the direction of physical time as an asymmetry of the time manifold is thus to

consider the temporal order of earlier and later as something which the theoretical representation

of physical time cannot dispense with, in the sense that the theoretical content of our physical

theories would change if the order of earlier and later was reversed. But what should the

structural properties of time consist of, and how to operate a reversal of the time order?

Following the standard, relational approach, time has no intrinsic or structural features, all of its

properties being reducible to those of the physical processes taking place inside it; accordingly,

while speaking of the asymmetry of time one is actually referring to those of physical phenomena.

Reversing the order of time is thus to reverse the order in which phenomena are ordinarily

observed: if after having performed such a reversal things don't look the same as before, in

the sense that di�erent laws would be needed to describe them, then the structure of physical

processes is a�ected by the chosen temporal order, and so must be the emergent properties of

time itself2.

If the laws are not invariant under time reversal, then we could not state them with-

out presupposing a temporal orientation on the space-time manifold � an objective

2For a critique of this approach, see Earman (1967), Sklar (1974) and Tegtmeier (1997).
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distinction between the two temporal directions, indicating in which one things are

allowed to evolve and in which they are not. The laws themselves make reference

to the distinction. If these are the fundamental laws, then we have reason to infer

that the world has the structure needed to support the distinction. If the laws are

symmetric under time reversal, then they do not presuppose a temporal orientation3.

They say the same thing regardless of the direction things evolve in. If these are the

fundamental laws, then we would not infer a temporal orientation (North, 2008, p.

203).

The required reversal in the temporal orientation of physical processes is ordinarily performed by

means of a so-called time-reversal operator. For this reason, whenever the laws of a theory show

to be symmetric with respect to a change in the temporal orientation of physical processesthey

are labeled time-reversal invariant. Making sense of this expression will be our primary task.

The canonical characterization of time-reversal invariance, almost ubiquitous4 in the philosoph-

ical literature, is the following:

[...] a theory is time reversal invariant just in case, for any sequence of instantaneous

states ..., S(t0), S(t1), S(t2), ... allowed by the theory, the reverse sequence of time-

reversed states ..., ST(t2), S
T(t1), S

T(t0), ... is also allowed, where T is the appropriate

time reversal operator (time runs left to right) (North, 2008, pp. 206-207).

This statement, however, is quite incomplete. For what does it mean that a sequence of states

is `allowed' by a theory? Or, what should we mean by an `appropriate' time-reversal operator?

Even though not explicitly stated by North, an appropriate time reversal operator is usually

required to be involutory, that is to say, if applied twice to any given state, it should return

the state itself. Earman (1974), for example, explicitly identi�es time reversal operators with

involutory maps.

3North is apparently assuming the invariance of physical laws under a reversal of time to be both a su�cient
and a necessary condition so that time is isotropic. However, this is a quite simpli�ed representation of the
standard view. While it is general agreed that the existence of non-invariant laws would be a certain proof of the
structural asymmetry of time (and that, conversely, symmetric time would entail the existence of sole invariant
laws), whether or not the converse implication is true is more controversial matter. North's account would surely
be subscribed by Mehlberg, according to which `temporal isotropy in scienti�c contexts is [...] tantamount to
the covariance of the laws of nature under time reversal (Mehlberg, 1961, pp. 107-108, my emphasis)'. On the
contrary, Horwich argues that, even though `time-asymmetric laws of nature are su�cient condition for time to
be anisotropic', `there is no reason to regard this condition as necessary for anisotropy (Horwich, 1987, p. 42),
since time might exhibit some purely contingent directional features which, as such, are not encoded in the laws
of physics. The same contention is also supported by Reichenbach (1956), Bunge (1972) and Grünbaum (1973).
For the sake of simplicity, nonetheless, we shall stick to North's reconstruction; this choice will bear no substantial
implications for our discussion, leaving the major results of this chapter untouched. For a more complete survey
on this topic, see Savitt (1996) and Faye (1997)

4Unhortodox interpretations of time-reversal invariance were given by Horwich (1987) and Albert (2000),
whose principal di�erence with the standard view, however, concerned the speci�c form of the time-reversal
operator. Malament (2004) and North (2008) proposed that the structural (a)symmetry of time should better
be understood as the (non-)invariance of space-time theories under a reversal of the temporal orientation of the
four-dimensional manifold. Similar approaches had also been proposed by Weingard (1977) and discussed by
Sklar (1985) and Earman (2002).
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How to apply this de�nition to dynamical systems? In adherence to the language of general

dynamical systems theory, we shall say that a series of states is allowed by a theory exactly in

case (i) DSL is an abstract dynamical system formally encoding that theory, (ii) all members of

that series are points in the state space of DSL and (iii) each one of those states is mapped into

the subsequent one by means a state transition of DSL.

For the sake of simplicity, but without any loss of generality, we shall concentrate on series of

states which are pairwise separated by equal durations. Series of these kind form what we shall

call t-sequences.

Definition 39 (t-Sequence)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0; for any

t ∈ T , a t-sequence is any ordered n-tuple of states x1, ..., xn, with n > 1, such that, for any xi

xi+1 = gt(xi), (8.1)

where i = 1, ..., n− 1.

Given De�nition 39, we can say that a theory is time-reversal invariant just in case there exists

an involutory time-reversal operator T on the state space of the abstract dynamical system DSL

modeling that theory, such that any ordered n-tuple (x1, ..., xn) of states of DSL is a t-sequence

only if (T(xn), ...,T(x1)) is. In what follows, we shall outline an alternative but equivalent

characterization of time-reversal invariant dynamical systems5, based on the better-known and

more �exible concept of time-symmetry.

8.1.1.1 Time Symmetry

In the course of Chapter 6 we listed, among the possible types of reversible behavior a dynamical

system might possibly display, logical reversibility, complete past and complete logical reversibil-

ity. These forms of reversible dynamics were called improper, because they do not depend on

the factual capability of a system to recover its own states by means of its sole state transitions.

For the same reason, we shall extend the class of improper types of reversibility so as to include

the two concepts of time symmetry and space invertibility. The distinguishing feature of both

concepts is that they essentially rest on the existence of a transformation on the state space of a

dynamical system, which in most cases is not a state transition. For this reason, we shall group

them together, forming a proper subclass of the improper types of reversible behavior which we

shall refer to as dynamical symmetries.

Definition 40 (Time Symmetry)

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is time-symmetric if and only

if DSL is completely logically reversible and there exists a function ∼: M →M , called dynamical

5See Corollary 8.6.1.
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inversion, such that for any x ∈M and for any t ∈ T

∼ (gt(∼ (x))) = (gt)−1(x). (8.2)

Time symmetry is a generalization of the homonymous concept examined by Giunti (1997), and

it amounts to a formal translation in the language of general dynamical system theory of what

is also called time-reversal symmetry (Lamb and Roberts, 1998) or time-reversibility (Hoover,

2001).

Proposition 8.1. Let DSL1 = (M1, (g
t1)t1∈T1) and DSL2 = (M2, (g

t2)t2∈T2) be dynamical sys-

tems on L1 = (T1,+) and L2 = (T2,⊕) respectively and let f : M1 →M2 be a ρ-isomorphism of

DSL1 in DSL2; then DSL1 is time-symmetric if and only if DSL2 is.

Proof

Let DSL1 = (M1, (g
t1)t1∈T1) and DSL2 = (M2, (g

t2)t2∈T2) be dynamical systems on L1 = (T1,+) and L2 =

(T2,⊕) respectively, let ρ : T1 → T2 be a monoid isomorphism of L1 in L2 and let f : M1 →M2 be a ρ-isomorphism

of DSL1 in DSL2 . Finally, let DSL1 be time-symmetric. Since DSL1 is completely logically reversible then, by

Proposition 6.2.3, so is DSL2 . So, let ∼: M1 →M1 be a dynamical inversion function on M1; then, by bijectivity

of f , it is possible to de�ne a function ¬ : M2 →M2 such that, for all x2 ∈M2

¬(f−1(x2)) = f(∼ (f−1(x2))). (8.3)

So, let t2 ∈ T2 and x2 ∈M2 such that, for some t1 ∈ T1 and for some x1 ∈M1,

t2 = ρ(t1), (8.4)

x2 = f(x1); (8.5)

then:

gt2(¬(gt2(¬(x2)))) = gρ(t1)(¬(gρ(t1)(¬(f(x1)))))

= gρ(t1)(¬(gρ(t1)(f(∼ (x1)))))

= gρ(t1)(¬(f(gt1(∼ (x1)))))

= gρ(t1)(f(∼ (gt1(∼ (x1)))))

= f(gt1(∼ (gt1(∼ (x1)))))

= f(x1)

¬(gt2(¬(x2))) = ¬(gρ(t1)(¬(f(x1))))

= (gρ(t1))−1((f(x1))). (8.6)

On the other hand, by bijectivity of ρ and f , for all t2 ∈ T2 and all x2 ∈ M2 there exist t1 ∈ T1 and x1 ∈ M1

satisfying conditions (8.4)-(8.5). This proves ¬ to be a dynamical inversion function on M2 and, by De�nition

40, DSL2 to be time-symmetric. Proof in the converse direction is guaranteed, once again, by bijectivity of ρ and

f .

Time symmetry demands that, for any state x entering the state spaceM of a dynamical system,

a dynamically inverse state ∼ (x) exists in M whose behavior looks exactly like that of x, if

looked backwards. It is easy to verify that any function satisfying condition (8.2) appearing in

De�nition 40 is an involution on the state space.
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Proposition 8.2. Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid

L = (T,+) with identity 0; then any dynamical inversion function ∼: M →M is an involution.

Proof

Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid L = (T,+) and let ∼: M →M be

a dynamical inversion function on M ; then, by condition 8.2, for any x ∈M ,

∼ (∼ (x)) =∼ (g0(∼ (x))) = (g0)−1(x) = x. (8.7)

One may wonder whether it is possible to de�ne a condition analogous to that of time symmetry,

which can nevertheless dispense with the hypothesis of complete logical reversibility. The notion

of space invertibility is expressly shaped for this purpose:

Definition 41

A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is space invertible if and only

if there exists a function ∼̇ : M →M , called space inversion, such that, for any x ∈M and any

t ∈ T
gt(∼̇(gt(∼̇(x)))) = x. (8.8)

Clearly, time symmetry entails space invertibility, for condition (8.2) is easily transformed into

(8.8) by applying gt on both sides. In other words, the existence of a dynamical inversion

function on the state space of a dynamical system makes it ipso facto space invertible. On

the other hand, De�nition 41 does not explicitly require that all state transitions of DSL are

bijective. Is it therefore possible for a dynamical system to be both space invertible and not

completely logically reversible? The answer is no.

Proposition 8.3. Space invertible dynamical systems are completely logically reversible

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and let x ∈ M and t ∈ T ; if DSL is

space invertible then, by De�nition 41, there exists a space inversion function ∼̇ : M → M such that, for any

x ∈M ,

gt(∼̇(gt(∼̇(x)))) = x. (8.9)

Consequently, by applying ∼̇ on both sides,

∼̇(gt(∼̇(gt(∼̇(x))))) = ∼̇(x) (8.10)

and by substituting ∼̇(x) for x in (8.10):

∼̇(gt(∼̇(gt(∼̇(∼̇(x)))))) = ∼̇(∼̇(x)). (8.11)

On the other hand, by setting t = 0 in (8.9),

∼̇(∼̇(x)) = x (8.12)

so that, by (8.12), ∼̇ is an involution on M and, by (8.11) and (8.12), for any t ∈ T , the composed function ∼̇ ◦ gt

is also an involution.
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Hence, for any t ∈ T , gt is accordingly injective: as ∼̇ ◦ gt is injective, for any x, y ∈M such that x 6= y

∼̇(gt(x)) 6= ∼̇(gt(y))

∼̇(∼̇(gt(x))) 6= ∼̇(∼̇(gt(y)))

gt(x) 6= gt(y); (8.13)

Moreover, for any t ∈ T , gt is surjective: as ∼̇ ◦ gt is surjective, for any x ∈M there is some y ∈M such that

∼̇(gt(y)) = x

∼̇(∼̇(gt(y))) = ∼̇(x)

gt(y) = ∼̇(x). (8.14)

But on the other hand, thanks to the surjectivity of ∼̇, for any z ∈M there exists x∗ ∈M such that ∼̇(x∗) = z;

and therefore, by substituting x∗ for x in (8.14), for any z ∈M there exists y ∈M such that:

gt(y) = z. (8.15)

Proposition 8.3 bears two major consequences: on the one hand, it makes the two notions of

time symmetry and space invertibility logically equivalent; on the other hand, and consequently,

it makes space invertibility dependent on complete logical reversibility as well.

Corollary 8.3.1. Dynamical systems are space invertible if and only if they are time-symmetric.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+).

If DSL is time-symmetric, then there exists ∼: M →M such that, for any t ∈ T and any x ∈M

∼ (gt(∼ (x))) = (gt)−1(x)

gt(∼ (gt(∼ (x)))) = gt((gt)−1(x)) = x; (8.16)

hence, by De�nition 41, DSL is space invertible.

If DSL is space invertible, then there exists ∼: M →M such that, for any t ∈ T and any x ∈M

gt(∼ (gt(∼ (x)))) = x. (8.17)

On the other hand, according to Proposition 8.3, DSL is also completely logically reversible, so that for any state

transition gt an inverse function (gt)−1 can be meaningfully de�ned. As a consequence, for any t ∈ T and any

x ∈M
∼ (gt(∼ (x))) = (gt)−1(gt(∼ (gt(∼ (x))))) = (gt)−1(x). (8.18)

Hence, according to De�nition 40, DSL is time-symmetric.

Corollary 8.3.2. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+);

then, any dynamical inversion function on M is a space-inversion function, and vice-versa.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+). If ∼: M →M is a dynamical inversion
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function on M then, by De�nition 40, for any x ∈M and any t ∈ T ,

∼ (gt(∼ (x))) = (gt)−1(x)

gt(∼ (gt(∼ (x)))) = gt((gt)−1(x))

= x; (8.19)

accordingly, by De�nition 41, ∼ is a space inversion functionon M .

On the other hand, if ∼̇ : M →M is a space inversion on M then, by De�nition 41,

x = gt(∼̇(gt(∼̇(x)))). (8.20)

On the other hand, by De�nition 41 and Proposition 8.3, DSL is completely logically reversible, which means

that for any t ∈ T , gt is bijective; accordingly, from (8.20) we get:

(gt)−1(x) = (gt)−1(gt(∼̇(gt(∼̇(x)))))

. = ∼̇(gt(∼̇(x))). (8.21)

Therefore, by De�nition 40, ∼̇ is a dynamical inversion function on M .

Neither logical reversibility nor complete logical reversibility are su�cient for a dynamical sys-

tem to be time-symmetric: in fact, time symmetry essentially depends not only on the logical

properties of the given state transitions, but also on the intrinsic features of the state spaces.

Example 6 below shows that, for this reason, not even the stronger condition of time-invertibility

guarantees the time symmetry of a dynamical system.

Example 6 (Time-Invertible and not Time-Symmetric Dynamical System)

Let L = (T, ◦) be the set of all bijective functions on Z together with the standard operation of function

composition and let ι be the identity function on Z. In addition, for any x ∈ Z, let

gt(x) = t(x). (8.22)

Then

• L = (T, ◦) is a non-commutative group:

1. T is closed with respect to ◦,

2. ◦ is associative,

3. ι is the identity element with respect to ◦,

4. for any t ∈ T , there exists t−1 ∈ T such that

t ◦ t−1 = ι = t−1 ◦ t; (8.23)

5. ◦ is not commutative;

• DSL = (Z, (gt)t∈T ) is a dynamical system on L = (T, ◦):

1. Z is a nonempty set

2. (gt)t∈T is a family of functions on Z, indexed by T ,

3. for any x ∈ Z and any t, w ∈ T :

gι(x) = ι(x) = x (8.24)

gt◦w(x) = (t ◦ w)(x) = t(w(x)) = gt(gw(x)); (8.25)
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• DSL is time-invertible: by hypotesis, T is a group;

• DSL is not time-symmetric: let us suppose as a reductio that, for any x ∈ Z and any t ∈ T a function

∼: Z → Z satisfying condition (8.2) existed; then, by Proposition 8.2, ∼ is an involution and hence a

bijection; accordingly, there should exist w ∈ T such that

∼= w (8.26)

and consequently, for any x ∈M and any t ∈ T :

gw(gt(gw(x))) = (gt)−1(x) by (8.2)

gw(gw(gt(gw(x)))) = gw((gt)−1(x)) applying gw on both sides

gt(gw(x)) = gw((gt)−1(x)) being gw an involution

gt(gw(x)) = (gw)−1((gt)−1(x)) being gw an involution

gt(gw(x)) = (gt ◦ gw)−1(x) for any t, w ∈ T : w−1 ◦ t−1 = (t ◦ w)−1

gt(gw(x)) = gw(gt(gw(gw(x)))) by (8.2)

gt(gw(x)) = gw((gt(x))) being gw an involution

gw(gt(gw(x))) = gw(gw(gt(x))) applying gw on both sides

(gt)−1(x) = gw(gw(gt(x))) by (8.2)

(gt)−1(x) = gt(x) being gw an involution (8.27)

which is plainly false, not all bijections on Z being involutions (e.g. the successor function).

By Corollary 6.10.2, all time-invertible dynamical systems are completely logically reversible

as well. Example 6 has therefore the further consequence of showing that complete logical

reversibility is not a su�cient condition to make a dynamical system time-symmetric, as we

said above. Finally, the following example shows a space-invertible dynamical system which is

nonetheless not reversible.

Example 7 (Completely Irreversible Space-Invertible Dynamical System)

Let L = (Z+,+) be the set of non-negative integers, along with arithmetical addition. Furthermore, for any

n ∈ Z+, let gn : Z→ Z be the function such that, for all x ∈ Z,

gn(x) = n+ x (8.28)

and let ∼̇ : Z→ Z be the function such that, for any x ∈ Z,

∼̇(x) = −x. (8.29)

Then,

• DSL = (Z, (gn)n∈Z+) is a dynamical system on L = (Z+,+):

1. Z is a non-empty set,

2. by hypothesis, (gn)n∈Z+ is a family of functions on Z indexed by Z+,

3. for any n,m ∈ Z+ and any x ∈ Z,

g0(x) = 0 + x = x, (8.30)

gn+m(x) = (n+m) + x = n+ (m+ x) = gn(gm(x)); (8.31)
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• by De�nition 41, DSL is space-invertible: for any x ∈M and any n ∈ Z+,

∼̇(gn(∼̇(gn(x)))) = −(gn(−(gn(x)))) = −(n+ (−(n+ x))) = −(−x) = x; (8.32)

• by De�nition 35, DSL is completely irreversible: for any x ∈ Z and any n ∈ Z+, for any m ∈ Z+ − {0},

gm(gn(x)) = m+ (n+ x) = (m+ n) + x 6= x. (8.33)

The complete list of the possible types of reversible behavior we studied is given in Table 8.1,

while the logical relations holding among them are shown by Figure 8.1.

Properly reversible dynamics Improperly reversible dynamics
Logical types Dynamical symmetries

Time invertibility Complete logical reversibility Time symmetry
Strict reversibility Logical reversibility Space invertibility

Reversibility Complete past

Table 8.1: Types of reversible behavior.

TI

LRCP

CLR

R

SR

TS SI

Figure 8.1: Logical relations among all possible types of reversible behavior.

8.1.1.2 Time-Reversal, Dynamical Inversion

The time-reversal operator entering the standard de�nition of time-reversal invariance is, all in

all, just a dynamical inversion function. To prove this, we �rst need to notice that any two-place

t-sequence between points in the state space of a time-symmetric dynamical system generates a

unique reversed t-sequence between their dynamical inverses.

Proposition 8.4. Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid

L = (T,+) with identity 0 and let ∼: M → M be a dynamical inversion function on M . For

any x, y ∈M and any t ∈ T ,

y = gt(x) if and only if ∼ (x) = gt(∼ (y)). (8.34)
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Proof

Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid L = (T,+) with identity 0, let

∼: M → M be a dynamical inversion function on M , let t ∈ T and let x, y ∈ M . By Proposition 8.2 and by

de�nition of dynamical inversion:

y = gt(x) if and only if ∼ (gt(x)) =∼ (y)

if and only if ∼ (gt(∼ (∼ (x)))) =∼ (y)

if and only if (gt)−1(∼ (x)) =∼ (y)

if and only if ∼ (x) = gt(∼ (y)) (8.35)

To generalize this result to t-sequences of arbitrary length, we need a tool for building t-sequences

out of each others. This tool is provided by the following statement.

Lemma 8.1. Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid

L = (T,+) with identity 0, let t ∈ T and let xi ∈M , with i = 1, ..., j, ..., n; then (x1, ..., xj) and

(xj , ..., xn) are t-sequences if and only if (x1, ..., xj , ..., xn) is a t-sequence.

Proof

Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid L = (T,+) with identity 0; let

t ∈ T and let xi ∈ M , where i = 1, ..., j, ..., n. If (x1, ..., xj) and (xj , ..., xn) are t-sequences then, by De�nition

39, condition (8.1) holds for any i = 1, ..., j − 1 and for any k = j, ..., n − 1 and, therefore, it also does for any

l = 1, ..., j− 1, j, ..., n− 1; accordingly, by De�nition 39, (x1, ..., xn+1) is a t-sequence. Conversely, if (x1, ..., xn+1)

is a t-sequence, then condition (8.1) holds for any i = 1, ..., n − 1 and, a fortiori, for any i = 1, ..., j − 1 and for

any k = j, ..., n− 1; accordingly, by De�nition 39, (x1, ..., xj) and (xj , ..., xn) are a t-sequences.

Thanks to Proposition 8.4 and Lemma 8.1, we are in a position to build the reversed t-sequences

of the dynamical inverses of whatever given t-sequence of states:

Proposition 8.5. Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid

L = (T,+) with identity 0 and let ∼: M → M be a dynamical inversion function on M ; then

for any xi ∈ M , with i = 1, ..., n, and any t ∈ T , (x1, ..., xn) is a t-sequence if and only if

(∼ (xn), ...,∼ (x1)) is a t-sequence.

Proof

Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid L = (T,+) with identity 0, let

∼: M → M be a dynamical inversion function on M , let t ∈ T and let xi ∈ M , where i = 1, ..., n. Proof of

Proposition 8.5 will proceed by induction on n.

n = 2 By Proposition 8.4 and De�nition 39, (x1, x2) is a t-sequence if and only if x2 = gt(x1), if and only if

∼ (x1) = gt(∼ (x2)), if and only if (∼ (x2),∼ (x1)) is a t-sequence.

n = m By inductive hypothesis: (x1, ..., xm) is a t-sequence if and only if (∼ (xm), ...,∼ (x1)) is a t-sequence.

n = m+ 1 Let (x1, ..., xm+1) be a t-sequence. By Lemma 8.1, (x1, ..., xm) and (xm, xm+1) must be t-sequences

too; accordingly (∼ (xm+1),∼ (xm)) is a t-sequence by Proposition 8.4, while (∼ (xm), ...,∼ (x1)) is a

t-sequence by inductive hypothesis. Finally, by Lemma 8.1, (∼ (xm+1), ...,∼ (x1)) is a t-sequence too.

Proof in the converse direction goes similarly, mutatis mutandis.
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In accordance to Proposition 8.5, dynamical inversion functions behave like time-reversal op-

erators on the state spaces of time-symmetric dynamical systems. Conversely, Proposition 8.6

below shows that all time-reversal operators acting on the state spaces of dynamical systems

behave like dynamical inversion functions on those sets. Before laying it down, let us emphasize

that any time-reversal operator, in order to be "appropriate", should be an involutory function.

Proposition 8.6. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and

let ∼: M → M be an involutory function such that, for any xi ∈ M , with i = 1, ..., n, and any

t ∈ T , if (x1, ..., xn) is a t-sequence then (∼ (xn), ...,∼ (x1)) is a t-sequence; then ∼: M →M is

a dynamical inversion function on M .

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0 and let ∼: M → M be

an involutory function such that, for any xi ∈M , where i = 1, ..., n, and any t ∈ T , if (x1, ..., x2) is a t-sequence

then (∼ (xn), ...,∼ (x1)) is a t-sequence. Let x, y ∈M such that (x, y) is an a t-sequence; then, by De�nition 39,

keeping n = 2 �xed, for any x, y ∈M and any t ∈ T ,

y = gt(x). (8.36)

By hypothesis and by (8.36)

∼ (x) = gt(∼ (y)), (8.37)

which, by substitution, leads to the following:

∼ (x) = gt(∼ (gt(x))). (8.38)

By substituting x for ∼ (x) in (8.38):

x =∼ (∼ (x)) = gt(∼ (gt(∼ (x)))), (8.39)

which, by De�nition 41, proves that ∼ is a space inversion function on M and hence, by Corollary 8.3.2, a

dynamical inversion function on that set.

Finally, Proposition 8.5 and Proposition 8.6 jointly support the expected conclusion:

Corollary 8.6.1. A dynamical system DSL = (M, (gt)t∈T ) on a monoid L = (T,+) is time-

symmetric if and only if there exists an involutory function ∼: M →M such that, for any xi ∈
M , with i = 1, ..., n, and any t ∈ T , (x1, ..., xn) is a t-sequence if and only if (∼ (xn), ...,∼ (x1))

is a t-sequence.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (DSL); by Corollary 8.3.1 DSL is time

symmetric if and only if there exists a dynamical inversion function on M . On the other hand, by Proposition

8.2, Proposition 8.5 and Proposition 8.6, a function ∼: M →M is a dynamical inversion on M if and only if it is

an involution and, for any xi ∈M , with i = 1, ..., n, and any t ∈ T , the ordered n-tuple (x1, ..., xn) is a t-sequence

if and only if (∼ (xn), ...,∼ (x1)) is a t-sequence.

The major implication of Corollary 8.6.1 is that demanding a theory to be time-reversal in-

variant is just tantamount to requiring the dynamical systems modeling that theory to be

time-symmetric. By itself, this result might raise no surprise. Nonetheless, it bears deep and

unexpected consequences on the usual understanding of time-reversal invariance.
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8.1.2 Symmetric Dynamics

Models, as we de�ned them, are simply abstract models of a theory whose axiomatization is

given in set-theoretical terms (Suppes, 1957, p. 253). Under this light, dynamical systems may

be understood as models on their own, whose domains consist of their state spaces and whose

structures consist of their families of state transition functions. In general dynamical systems

theory, the ordinary concept of isomorphism is naturally generalized to that of ρ-isomorphism,

according to which any structure-preserving map between state spaces is parameterized to a given

structure-preserving map between time models; accordingly, we can put forward the following

de�nition:

Definition 42 (Automorphism of a Dynamical System)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); a function f : M →M

is an automorphism of DSL if and only if there exists a monoid automorphism ρ : T → T such

that f is a ρ-isomorphism of DSL in DSL.

De�nition 42 will make it possible for us to extend the usual concepts of symmetry and invariance

to general dynamical systems theory. To give further plausibility to this claim, let us notice that

automorphisms of dynamical systems form a group under the standard operation of function

composition.

Proposition 8.7. Let DSL be a dynamical system on a monoid L = (T,+); then the set of all

automorphisms of DSL, along with the standard operation of function composition, is a group.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0, let Γ(DSL) be the set of

all automorphisms of DSL and let ◦ be a suitable restriction of the standard operation of function composition

with domain Γ(DSL); we shall prove that (Γ(DSL), ◦) satis�es closure, associativity, possession of the identity

element and inclusion of the algebraic inverses of all given automorphisms.

Let f1, f2 ∈ Γ(DSL) be two automorphisms of DSL. By De�nition 42, there must exist a monoid automorphism

ρ1 : T → T and a monoid automorphism ρ2 : T → T such that f1 is a ρ1-isomorphism of DSL in DSL and f2 is

a ρ2-isomorphism of DSL in DSL. Hence,

• ρ1 ◦ ρ2 : T → T is a monoid automorphism of L: by the properties of monoid automorphisms;

• for any x ∈M and any t ∈ T

f1 ◦ f2(gt(x)) = f1(f2(gt(x)))

= f1(gρ2(t)(f2(x)))

= gρ1(ρ2(t))(f1(f2(x)))

= gρ1◦ρ2(t)(f1 ◦ f2(x)), (8.40)

so that f1 ◦ f2 is a ρ1 ◦ ρ2-isomorphism of DSL in DSL.

Since the existence of ρ1◦ρ2 is guaranteed by those of ρ1 and ρ2 then, by De�nition 42, f1◦f2 is an automorphism

of DSL; accordingly, f1 ◦ f2 ∈ Γ(DSL), and (Γ(DSL), ◦) satis�es closure.

The algebraic rule of composition ◦ is associative, according to the standard properties of function composition.
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Let φ be the identity function on M and let ε be the identity function on T . Then

• ε is a monoid automorphism, whose existence is guaranteed trivially, and

• φ is a ε-isomorphism of DSL in DSL: for any x ∈M and any t ∈ T

φ(gt(x)) = gt(x) = gε(t)(φ(x)); (8.41)

accordingly, by De�nition 42, φ is an automorphism of DSL, and thus φ ∈ Γ(DSL). In addition, for any

automorphism f of DSL, for any x ∈M and any t ∈ T

f ◦ φ(gt(x)) = f(φ(gt(x))) = f(gt(x)) = φ(f(gt(x))) = φ ◦ f(gt(x)), (8.42)

proving that Γ(DSL) is in possession of the identity element.

Finally, for any automorphism f ∈ Γ(DSL)), let rho be such that f is a ρ-isomorphism of DSL in DSL;

thanks to the bijectivity of ρ-isomorphisms and monoid isomorphisms, the inverse functions f−1 : M → M and

ρ−1 : T → T exist, so that

• f−1 is a ρ−1-isomorphism of DSL in DSL for any x ∈M and any t ∈ T

f−1(gt(x)) = f−1(gρ(ρ
−1(t))(f(f−1(x))))

= f−1(f(gρ
−1(t)(f−1(x))))

= gρ
−1

(f−1(x)) (8.43)

• for any x ∈M and any t ∈ T

f−1 ◦ f(gt(x)) = f−1(gρ(t)(f(x))) = gρ
−1(ρ(t))(f−1(f(x))) =

= e(gt(x)) =

= gρ(ρ
−1(t))(f(f−1(x))) = f(gρ

−1(t)(f−1(x))) = f ◦ f−1(gt(x)); (8.44)

Hence, f−1 is an automorphism of DSL. Together with the above results, this proves that (Γ(DSL), ◦) is a

group.

Proposition 8.7 con�rms the adequacy of the adequacy of De�nition 42. The study of the

internal symmetries of dynamical systems will therefore be brought about as the study of their

automorphisms.

8.1.2.1 Time-Reversal Operators Are Not Symmetries

Following the received view, the existence of a time-reversal operator on the domain of a given

theory induces a mirror symmetry in the laws regulating the evolution of the systems described

by that theory and, as a consequence, should be taken as positive evidence in favor of the

existence of a similar symmetry in its time model. So let us wonder: under what condition

does the existence of a dynamical inversion function establish a symmetry in the dynamics of a

system? Or, equivalently, what further requirements should a time-symmetric dynamical system

satisfy, so that a dynamical inversion function on its state space is an automorphism?
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Proposition 8.8. Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid

L = (T,+) and let g : T → MM be the indexed family (gt)t∈T ; then any dynamical inver-

sion function ∼: M → M is an automorphism of DSL if and only if there exists a monoid

automorphism ρ : T → T such that, for any t ∈ T ,

g(ρ(t)) = (g(t))−1. (8.45)

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+), let g : T →MM be the indexed family

(gt)t∈T and let ∼: M →M be a dynamical inversion function on M .

By De�nition 40, for any x ∈M and any t ∈ T ,

∼ (gt(x)) =∼ (gt(∼ (∼ (x)))) = (gt)−1(∼ (x)). (8.46)

Suppose ∼ is an automorphism of DSL; then, by De�nition 42 and (8.46) there is a monoid automorphism

ρ : T → T such that, for any t ∈ T and any x ∈M ,

∼ (gt(x)) = gρ(t)(∼ (x)) = (gt)−1(∼ (x)). (8.47)

Therefore, since ∼ is an involution, by substituting ∼ (x) for x in (8.47),

gρ(t)(x) = (gt)−1(x), (8.48)

which is just another form for (8.45).

Conversely, suppose that there is a monoid automorphism ρ such that, for any t ∈ T , condition (8.45) holds.

Then, for any t ∈ T and any x ∈ M , (8.48) holds too. By substituting ∼ (x) for x in (8.48), and by (8.46), we

get (equation: time-reversal invariance 2), and so ∼ is an automorphism.

Unfortunately, there seems to be no general criterion to determine whether a monoid authomor-

phism ρ of the sort required exists, for its behavior depends both on the algebraic properties of a

monoid and on the speci�c form of the family of state transitions of a dynamical system having

it as a time model. In fact, the existence of such monoid automorphism is not a trivial matter:

Proposition 8.9. Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid

L = (T,+) and let g : T → MM be the family (gt)t∈T ; if a function ρ : T → T exists such that

all t ∈ T satisfy condition (8.45), then DSL is strictly reversible.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and let g : T → MM be the family

(gt)t∈T . Finally, let us suppose that a function ρ : T → T exists such that, for any t ∈ T , ρ satis�es condition

(8.45). Hence, for any t ∈ T there is r ∈ T such that

r = ρ(t), (8.49)

gr = g(r) = g(ρ(t)) = (g(t))−1 = (gt)−1; (8.50)

hence, by Proposition 6.9, DSL is strictly reversible.

In the light of the logical independence existing between time-symmetry and strict reversibility,

Proposition 8.8 and Proposition 8.9 deal the �rst blow on the received view on time-reversal
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invariance, for they establish once and for all that dynamical inversion functions are not, qua

tales, automorphisms of dynamical systems. That is to say: time-reversal invariance, commonly

understood as the mere existence of a time-reversal operator, is not the same thing as the

invariance of a given theory under such operator.

How was it possible that such a di�erence was never acknowledged before? First of all, let us

notice that all groups are naturally equipped with a function satisfying the condition demanded

by Proposition 8.8:

Lemma 8.2. Let DSL = (M, (gt)t∈T ) be a dynamical system on L = (T,+) and let g : T →MM

be the indexed faimily (gt)t∈T ; if L is a group, then the function mapping any t ∈ T to its algebraic

inverse satis�es (8.45).

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a group L = (T,+), let g : T → MM be the indexed faimily

(gt)t∈T and let ρ : T → T be the function on T such that, for any t ∈ T :

ρ(t) = −t; (8.51)

then, for any t ∈ T ,
g(ρ(t)) = g(−t) = g−t = (gt)−1 = (g(t))−1. (8.52)

Furthermore, being a commutative groups is both a su�cient and necessary condition so that

for any such function to be a group automorphism of its domain:

Lemma 8.3. Let L = (T,+) be a group; the function ρ : T → T mapping any t ∈ T to its

algebraic inverse is an involutory monoid automorphism on L if and only if L is commutative.

Proof

Let L = (T,+) be a group with identity 0 and let ρ : T → T be the function mapping any t ∈ T to its algebraic

inverse element. Then, ρ is an involution: for any t ∈ T ,

ρ(ρ(t)) = −(−t) = t. (8.53)

Furthermore, ρ maps the identity element into itself and it is bijective, while it is structure-preserving if and only

if, for any t, v ∈ T

t+ v = ρ(ρ(t+ v)) = ρ(ρ(t) + ρ(v)) = −(−t+ (−v)) = −(−(v)) + (−(−t)) = v + t, (8.54)

namely if and only if L is commutative; accordingly, ρ is an involutory monoid automorphism on L if and only

if L is commutative.

The joint product of Lemma 8.2 and Lemma 8.3 is thus the following:

Proposition 8.10. Let DSL = (M, (gt)t∈T ) be a dynamical system on L = (T,+) ; if L is

a commutative group, then any dynamical inversion function ∼: M → M , if it exists, is an

automorphism of DSL.
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Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on L = (T,+) and let g : T → MM be the indexed faimily

(gt)t∈T . If L is a commutative group, then by Lemma 8.2 the function ρ : T → T mapping any t ∈ T to its

algebraic inverse satis�es (8.45). In addition, by Lemma 8.3, ρ is a monoid automorphism. Thus, by Proposition

8.8, any dynamical inversion function on M , if it exists, is an automorphism of DSL.

Proposition 8.10 provides us with a plausible explanation for the widespread confusion between

the mere existence of a time-reversal operator and the invariance of a theory under time-reversal.

Philosophical re�ection on time-reversal invariance typically focuses on the topological features

of time models, rather than on their algebraic properties; as a consequence, time is almost

invariably, albeit quite incautiously, supposed to be topologically di�eomorphic to the real line,

this way inheriting at least enough algebraic structure to make it a commutative group (Torretti,

2007, pp. 736-738). Under these circumstances, Proposition 8.10 makes the existence of a monoid

automorphism of the kind speci�ed by Proposition 8.8 trivial, so that the two distinct concepts

of time-reversal invariance and invariance of a theory under the time-reversal operator become,

in the common picture, logically equivalent.

8.1.2.2 The Standard Model of Time

Once the conceptual distinction between the mere existence of a time-reversal operator and the

invariance of a theory under a reversal of the time order has been made clear, the received view

on the problem of the direction of time should better be reformulated as follows: a structural

symmetry in the time model of a given theory exists if and only if there exists a time-reversal

operator on the domain of the theory and such a theory is invariant under that operator. The

exact translation of this statement in the language of general dynamical systems theory is the

following: a structural symmetry in the time model L = (T,+) of a dynamical system DSL =

(M, (gt)t∈T ) exists if and only if DSL is time-symmetric and the dynamical inversion functions

on M are automorphisms of DSL.

Unfortunately, there seems to be no general recipe to determine how the existence of such

automorphisms would a�ect the algebraic properties of a time model, so that it is not possible

to study whether the received view is generally sound. Nonetheless, it is possible to formulate

some additional hypotheses, which could make it easier to examine whether that view stands or

falls in a relatively wide range of cases.

One crucial assumption underlying the received view is that one should be capable to infer the

properties of a time model from those of the state transitions it indexes. The cheapest way to

lay down this assumption is to suppose the existence of a structure-preserving map from the

one-parameter monoid of state transitions of a dynamical system, namely its transition algebra,

to its time model. Since, by Proposition 7.4, any family of state transitions is a surjective monoid

homomorphism from the time model of a dynamical system to the set of functions it indexes,

this amounts to requiring the transition algebra of a dynamical system to be isomorphic to its

time model or, equivalently, to requiring its family of state transitions to be injective.
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This condition might appear to be very restrictive at a �rst glance, but it is not really so.

In the �rst place, as it was shown by Proposition 8.9, dynamical systems which are invariant

under time-reversal are necessarily strictly reversible and, by Proposition 6.12, strictly reversible

dynamical systems whose families of state transitions are not injective all possess at least one

period which is common to all points in their state spaces. Hence, restricting our attention to

those systems whose families of state transitions are injective, we are only ruling out systems

whose entire evolution is periodically reset. If the issue at stake is to determine whether the

fundamental laws of physics call for the existence of any substantial di�erence between past and

future, this seems to be no great loss.

We already know from Proposition 6.11 that all strictly reversible dynamical systems whose

families of state transition are injective must ipso facto be time-invertible, i.e. their time models

must possess the algebraic shape of a group. So, in the �rst place, what further condition should

such time-symmetric, time-invertible dynamical systems satisfy, in order to be invariant under

time-reversal?

Lemma 8.4. Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and let

the indexed family g : T → MM be injective; if a function ρ : T → T satisfying (8.45) exists, it

is unique.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) and let the indexed family g : T →MM

be injective; �nally, let both ρ : T → T and ρ′ : T → T satisfy (8.45). Then, thanks to the injectivity of g, for

any t ∈ T
ρ(t) = g−1(g(ρ(t))) = g−1((g(t))−1) = g−1(g(ρ′(t))) = ρ′(t), (8.55)

so that ρ and ρ′ coincide.

Together with Lemma 8.2, Lemma 8.4 is telling us that, in case the family of state transitions of

a strictly reversible dynamical system is injective, then not only the time model of that system

is a group, but the sole function capable of satisfying the condition stated in Proposition 8.8 is

the one mapping any element of that group to its algebraic inverse. On the other hand, we know

by Lemma 8.3 that such a function is a monoid automorphism if and only if the given group is

commutative. So, along with Proposition 8.10, we get the following:

Proposition 8.11. Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid

L = (T,+); if the indexed family (gt)t∈T is injective, then any dynamical inversion function

∼: M →M is an automorphism of DSL if and only if L is a commutative group.

Proof

Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a monoid L = (T,+) and let the family

(gt)t∈T be injective. If L is a commutative group then, by Proposition 8.10, any dynamical inversion function

on M is an automorphism of DSL. Conversely, if there exists a dynamical inversion function ∼: M → M such

that ∼ is an automorphism on DSL then, by Proposition 8.9, DSL is strictly reversible and, by Proposition 6.11,

time-invertible. In addition, by Proposition 8.8 there must exist a monoid automorphism ρ : T → T satisfying

(8.45); but on the other hand, by Lemma 8.4, ρ must be unique and therefore, by Lemma 8.2, it must be identical

to the function mapping any t ∈ T into its algebraic inverse. Since by Lemma 8.3 that function is a monoid

automorphism just in case L is commutative, then L is a commutative group.
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To sum up: the received view is based on a double inference: (i) from the (non-)existence of

a time-reversal operator to the (non-)invariance of a theory under such operator, and (ii) from

such (non-)invariance to the structural (a)symmetry of time. Proposition 8.11 shows that, in

order to allow for both those inferences, one has precisely to model time with a commutative

group. This result bears remarkable consequences on the very hard-core of the received view,

for it easy to prove such a relatively rich time model to be invariably endowed with a mirror

symmetry.

8.1.2.3 Symmetric Time, Circular Approach

Lemma 8.3 showed that any commutative group comes naturally equipped with a symmetry,

consisting of the function mapping all of its elements to the corresponding algebraic inverses;

what consequences has all this on the dynamical behavior of the corresponding time system?

One straightforward consequence of Proposition 8.11 is that all time systems whose time models

are commutative groups are themselves invariant under a reversal of time. Hence,

Corollary 8.11.1. Let TSL = (I, (ιt)t∈T ) be the time system of a commutative group L; then

any dynamical inversion function ∼: I → I, if it exists, is an automorphism of L.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a commutative group L = (T,+) and let ∼: I → I be a dynamical

inversion function. By Proposition 7.5, the indexed family (ιt)t∈T is a monoid isomorphism of L in TATSL and,

as such, it is injective; as a consequence, by Proposition 8.11, ∼ is an automorphism of TSL.

But on the other hand, all the time systems of commutative groups are time-symmetric:

Proposition 8.12. The time system of any commutative group is time-symmetric.

Proof

Let TSL = (I, (ιt)t∈T ) be the time system of a commutative group L = (T,+) with identity 0. Let ∼: I → I be

the function such that, for any i ∈ I
∼ (i) = −i; (8.56)

thus, for any i ∈ I and for any t ∈ T = I

(t− i) + (∼ (t− i)) = 0

−i+ (∼ (t− i)) = −t

∼ (t− i) = i+ (−t). (8.57)

As a consequence, by commutativity

∼ (ιt(∼ (i))) =∼ (ιt(−i)) =∼ (t− i) = i+ (−t) = −t+ i = (ιt)−1(t). (8.58)

In addition, by hypothesis, TSL is completely logically reversible. Hence, by De�nition 40, TSL is time-symmetric.

Corollary 8.11.1 and Proposition 8.12 jointly show that the internal dynamics of all commutative

groups is invariant under a reversal of time. Intuitively, this means that for any such time model
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L = (T,+) and the related time system TSL = (I, (ιt)t∈T ), one can reverse the way the family

(ιt)t∈T operates, exchanging the image of any t ∈ T with that of its algebraic inverse, without

changing the dynamics of TSL.

To sum up: once a one-to-one correspondence between the structure of physical processes and

that of physical time is assumed, then the invariance of the given theory under a time-reversal

operator guarantees that the algebraic structure of time is that of a commutative group, and

hence to possess an internal symmetry. In our language, provided that the family of functions

of a dynamical system DSL is injective, if that system is time-symmetric and invariant under

dynamical inversion then its time model is a commutative group. In that case, the time sys-

tem TSL of its time model is time-symmetric too, and its dynamical inversion function is an

automorphism as well.

Conversely, if a time-reversal operator exists on the domain of the given theory, but the theory

is not invariant as of it, then the given time model cannot be a commutative group. Speaking in

the language of dynamical systems this means that, if DSL is time-symmetric but its dynamical

inversion functions are not automorphisms of DSL, then L is not a commutative group. By

Proposition 8.8, there are two distinct cases in which this may happen. On the one hand, a

function ρ satisfying condition (8.45) may exists, although it is not a monoid automorphism of

the given time model. In that case, by Lemma 8.2 and Lemma 8.4, ρ is precisely the function

mapping any element of the time model to its algebraic inverse, which makes the time model a

group, even though not a commutative one. On the other hand, the required function ρ may

not even exist. In that case, there would exist some duration in the given time model, which

indexed a state transition whose inverse function, instead, was not indexed by any duration: by

Proposition, 6.9, the given system would not be strictly reversible, which would make its time

model not even a group. In the former case, the dynamics of the given time model would still

be reversible, but not time-symmetric. In the latter case, it would neither be reversible.

This results would seem to vindicate the received view once and for all because, together with

Proposition 8.11, they support the inference from the time-reversal (non-)invariance of a theory

to the dynamical (non-)equivalence of the future and the past directions of time.

However, thing are not just as straightforward as they seem. For let us suppose that we were

given a time-symmetric dynamical system and let us suppose, once again, that the family of

its state transitions was injective; then how could we know whether that system was invariant

under time-reversal? Following Proposition 8.8, we should go in search of a certain monoid

automorphism on its time model; according to Proposition 8.11 that would be as much as

wondering whether or not time has the algebraic structure of a commutative group. But here

troubles would start coming up.

If we had direct acquaintance with the algebraic structure of time, we would be capable ipso

facto of determining both its dynamical and its topological properties without having to look at

the time-reversal invariance of theories. In that case, the received view would be simply useless.

But on the other hand, if we had no way of deciding whether or not time is a group, then we
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would simply be incapable of determining in what cases a time-symmetric dynamical system

was also invariant under a reversal of the time direction. In that case, the received view would

become inapplicable.

The problem with the received view is that, according to Proposition 8.11, in order to support

the very inferences (i) from the existence of a time-reversal operator to the invariance of the

given theory under time-reversal and (ii) from the invariance of that theory to the structural

properties of its time model, it must take it for granted that such a time model has at least as

much structure as it is needed to speak of a reversal of the direction of time, in the sense that its

time system is both reversible (by Proposition 7.18) and time-symmetric (by Proposition 8.12).

But, according to Corollary 8.11.1, that is precisely as much as being demanding that time has

the same structure in both directions, putting the cart before the horses.

So, even conceding that the structure of time essentially depended on that of physical processes,

the whole problem should be restated as follows. If the basic laws of physics were not time-

reversal invariant, namely if no time-reversal operator existed, then we would be sure that time

had no internal symmetry. But, on the other hand, if the fundamental laws of physics were

all time-reversal invariant, as they seem to be6, then we could only conclude that time had no

proper direction just in case it was modeled by a commutative group, as it ordinarily is. So, the

fundamental question becomes: does it really need to?

8.2

Too Much Time?

Symmetries are a guide to the intrinsic features of the phenomena theories describe. But sym-

metries may also obtain as a result of providing theories with too much mathematical structure,

if compared to that which is strictly needed to model such phenomena. In those cases, a theory

would o�er multiple and equivalent representations for the same phenomenon, so that it would

be possible in principle to discard the redundant or super�uous part of its mathematical appara-

tus without in any way a�ecting its descriptive e�cacy. But how to distinguish between genuine

symmetries, and those which only depend on super�uous theoretical structure?

Following Ismael and van Fraassen (2003), we may understand a theory as a theoretical ontology,

together with a set of laws. Elements of the ontology should possess enough structure so that

only some relations are allowed; this way, only one of the metaphysically possible worlds which

could obtain from combining the elements of a given ontology is chosen. The role of laws is that

of selecting a subset of points in a metaphysically possible world, corresponding to those worlds

which are physically possible, i.e. which may obtain if the right conditions were satis�ed. In set-

theoretical terms, we may look to physically possible worlds as uninterpreted models of a theory,

6For a discussion on this topic see Horwich (1987); Callender (1995); Hutchison (1995a,b); Albert (2000);
Earman (2002).
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namely as purely mathematical objects satisfying the set-theoretical predicate de�ning the latter.

Once mathematical structures of this kind are given, they should be linked to phenomena by

means of the empirical interpretation of their ontologies. Those features which enter the empirical

interpretation of a theory but not its mathematical formulation are referred to by Ismael and

van Fraassen as qualities. In their view, automorphisms on a theory which suggest the existence

of super�uous structure in its mathematical formulation are precisely those which (i) preserve

satisfaction of laws, mapping physically possible worlds to physically possible worlds (and which

are therefore called symmetries of the laws) and (ii) preserve all the qualitative features of a

model. Following Healey (2009), we may qualify transformations of this kind as theoretical

symmetries, namely non-trivial automorphisms of the set of models of a theory, connecting

models which might equivalently be used to represent the same empirical situation.

So far we understood dynamical systems as uninterpreted models (physically possible worlds)

of the general theory of dynamical systems, whose ontology is shaped in set-theoretical terms

through the very de�nition of a dynamical system, and whose laws are given by the speci�c form

of their state transitions. Entering the details of how dynamical systems can be interpreted

empirically would go beyond the scope of our discussion; what is worth noticing in this context

is that (i) whatever the speci�c form it may take, the very least requirement one should move

to the empirical interpretation of a dynamical system is that of being capable of representing

all the dynamically relevant features of a physical phenomenon, in which case we shall call it

adequate, and (ii) in general, the empirical interpretation of a dynamical systems leaves part

of its mathematical structure uninterpreted (Giunti, 2007, 2010b). We shall call that part of

a dynamical system which is given empirical interpretation the empirical substructure of that

system (van Fraassen, 1980, p. 64), while the remaining part of that system we shall call surplus

structure (Redhead, 1975, pp. 87-88).

Surplus structures are undoubtedly redundant, in the sense of being negligible while applying

a theory to a given phenomenon; nonetheless, their redundancy might be relative to a given

empirical domain, and hence it might disappear as a result of extending the application domain

of a theory. Still, redundant structure in the sense envisaged by Ismael and van Fraassen,

if there is some, must be searched precisely among the surplus structure of a theory. More

precisely, if part of a mathematical structure is redundant in Ismael and van Fraassen's sense,

then (a) it is a proper substructure of the given one, (b) there exists at least one adequate

interpretation of that substructure and (c) there exists at least one adequate interpretation of

the given structure leaving that substructure uninterpreted. In plain words, this means that

we could model exactly the same phenomena we model thanks to that substructure by means

of a completely di�erent part of the theoretical machinery we are given, in such a way that no

relevant empirical phenomenon is left uninterpreted.
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8.2.1 Splitting Time in Two

There are principally two di�erent ways to decompose a dynamical system into its proper sub-

structures. The �rst is to partition its state space into mutually disjoint sets of dynamically

connected points (Giunti, 2010a); the second is to split their time models into distinct non-

trivial submonoids. In the latter case, which is the one we shall concentrate on, we speak of the

temporal sections of a dynamical system.

Definition 43 (Temporal Section of a Dynamical System)

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+); a temporal section of

DSL on a proper submonoid L′ = (T ′,+|T ′) of L′, denoted, by DSL|L′ , is the ordered pair

DSL|L′ = (M, (gt)t∈T ′)

.

Proposition 8.13. The temporal sections of a dynamical system are dynamical systems.

Proof

Let DSL = (M, (gt)t∈T ) be a dynamical system on a monoid L = (T,+) with identity 0, let L′ = (T ′,+|T ′) be
a proper submonoid of L and let DSL|L′ = (M, (gt)t∈T ′) be the temporal section of DSL on L; then DSL|L′ =

(M, (gt)t∈T ′) satis�es all conditions required by De�nition 1 to be a dynamical system on L′, simply by hypothesis.

It is easy to verify that any time-symmetric dynamical system on a linearly ordered commutative

group has at least two isomorphic temporal sections, whose temporal orders are opposite to each

other.

Let us begin by de�ning the positive part of a linearly ordered group L = (T,+,≤) with identity 0

as the ordered triple L+ = (T+,+|T+ ,≤ |T+), where T+ = {t ∈ T : 0 ≤ t}, +|T+ is the restriction

of + to the set T+ and, similarly, ≤ |T+ is the restriction of ≤ to the same set. Symmetrically,

let us de�ne the negative part of L = (T,+,≤) as the triple L− = (T−,+|T− ,≤ |T−), where

T− = {t ∈ T : t ≤ 0}. It is then easy to show all linearly ordered commutative groups to be

composed of two disjoint (modulo the identity element) specular submonoids.

Lemma 8.5. The positive and negative parts of any linearly ordered group are linearly ordered

submonoids of that group.

Proof

Let L = (T,+,≤) be a linearly ordered group with identity 0 and let L+ = (T+,+|T+ ,≤ |T+) and L− =

(T−,+|T− ,≤ |T−) be its positive and negative parts. To prove Lemma 8.5, we shall only concentrate on L+,

since the analogous proof for L− goes similarly, mutatis mutandis. By de�nition, T+ is a proper subset of L,

including the identity element. Hence, to prove that L+ is a submonoid of L, we only have to show that T+ is

closed with respect to +|T+ . So, as a reductio, let us suppose that for some t, v ∈ T+ − {0}, it was the case that
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t+ |T+v ∈ T−; then by de�nition of T+ and T−, we would get

t+ |T+v ≤ t and t+ |T+v ≤ v,

t+ v ≤ t and t+ v ≤ v,

(−t+ t) + v ≤ −t+ t and t+ (v + (−v)) ≤ v + (−v),

v ≤ 0 and t ≤ 0, (8.59)

that is, v ∈ T− and t ∈ T−, contrary to the hypothesis. Finally, if either t = 0 or v = 0 then closure holds trivially.

To prove that T+ is linearly ordered by ≤ |T+ , it is su�cient to notice that ≤ |T+ is transitive, antisymmetric,

connected and compatible with + by inheritance from ≤.

It should be remarked that the time systems of the positive and negative parts of a given linearly

ordered group L are not temporal sections of its time system TSL, for they do not possess its

entire state space. Rather, the positive and negative parts of L split the time model of TSL into

two specular components, each of which being the time model of a temporal sections of TSL.

Proposition 8.14. Let L = (T,+,≤) be a linearly ordered group with identity 0, let L+ =

(T+,+|T+ ,≤ |T+) and L− = (T−,+|T− ,≤ |T−) be its positive and negative parts, let L−∗ =

(T−,+|T− ,≥ |T−) be the linearly ordered monoid obtained from L− by reversing its linear order

and let ρ : T → T be the function mapping any t ∈ T to its algebraic inverse; then:

(i) the restriction ρ|T+ : T+ → T− of ρ

1. is an isomorphism of (T+,+|T+) in (T−,+|T−) if and only if L is commutative;

2. is an isomorphism of (T+,≤ |T+) in (T−,≥ |T−).

(ii) the restriction ρ|T− : T− → T+ of ρ

1. is an isomorphism of (T−,+|T−) in (T+,+|T+) if and only if L is commutative;

2. is an isomorphism of (T−,≤ |T−) in (T+,≥ |T+).

Proof

In order to prove Proposition 8.14, we only need to prove statement (i), statement (ii) following similarly. So let

L = (T,+,≤) be a linearly ordered group with identity 0, let L+ = (T+,+|T+ ,≤ |T+) be its positive part, let

L− = (T−,+|T− ,≤ |T−) be its negative part, and let L−∗ = (T−,+|T− ,≥ |T−) be the linearly ordered monoid

obtained from L− by reversing its linear order. Furthermore, let ρ : T → T be the function mapping any t ∈ T to

its algebraic inverse, and �nally let ρ|T+ : T+ → T be the restriction of ρ to T+. By Lemma 8.5, L+ is a linearly

ordered monoid; then:

1. ρ|T+ is an isomorphism from (T+,≤ |T+) to (T−,≥ |T−):

• it is bijective: by hypothesis, any t ∈ T+ has a unique algebraic inverse −t ∈ T−, while any −t ∈ T−

is the algebraic inverse of exactly one t ∈ T+;

• for any t, v ∈ T+:

t ≤ v

ρ|T+(v) + t+ ρ|T+(t) ≤ ρ|T+(v) + v + ρ|T+(t)

ρ|T+(v) ≤ ρ|T+(t)

ρ|T+(t) ≥ ρ|T+(v). (8.60)
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2. ρ|T+ is an isomorphism of (T+,+|T+) to (T−,+|T−) if and only if L is commutative:

• it is bijective: as before;

• it maps identity element into identity element:

ρ|T+(0) = −0 = 0; (8.61)

• it is structure-preserving if and only if L is commutative:

(a) if L is commutative then, for any t, v ∈ T+:

ρ(t+|T+v) = ρ(t+v) = −(t+v) = −v+(−t) = −t+(−v) = ρ(t)+ρ(v) = ρ(t)+|T−ρ(v) (8.62)

(b) if L is not commutative then, for some t, v ∈ T+ and thanks to the bijectivity of ρ|T+ :

t+ |T+v 6= v + |T+t

ρ(t+ |T+v) 6= ρ(v + |T+t)

6= ρ(v + t)

6= −(v + t)

6= −t+ (−v)

6= −t+ |T−(−v)

6= ρ(t) + |T−ρ(v). (8.63)

Symmetries of this kind, producing two specular structures out of a given one, we may generally

call chiral symmetries. However, we are not interested in chiral time models as such: what is of

main interest for our purposes is that time-reversal operators are capable of transferring chiral

symmetries from time models to their associated dynamical systems.

Proposition 8.15. Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a linearly

ordered commutative group L = (T,+,≤) with positive part L+ = (T+,+|T+ ,≤ |T+) and negative

part L− = (T−,+|T− ,≤ |T−), and let L−∗ = (T−,+|T− ,≥ |T−) be the linearly ordered monoid

obtained from L− by reversing its linear order. Furthermore, let ρ : T → T be the function

mapping any t ∈ T to its algebraic inverse and let ρ|T+ : T+ → T and ρ|T+ : T− → T be the

restrictions of ρ to T+ and T− respectively; then

(i) any dynamical inversion function on M is a ρ|T+-isomorphism of DSL|L+
in DSL|L−∗,

and

(ii) any dynamical inversion function on M is a ρ|T−-isomorphism of DSL|L−∗ in DSL|L+
.

Proof

Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system on a linearly ordered commutative group L =

(T,+,≤) with positive part L+ = (T+,+|T+ ,≤ |T+) and negative part L− = (T−,+|T− ,≤ |T−). By Lemma 8.5,

L+ and L− are linearly ordered submonoids of L; so, let L−∗ = (T−,+|T− ,≥ |T−) be the linearly ordered monoid

obtained from L− by reversing its linear order. By De�nition 43, DSL|
L+

= (M, (gt)t∈T+) and DSL|
L−∗

=

(M, (gt)t∈T−) are temporal sections of DSL and hence, by Proposition 8.13, they are dynamical systems. In

addition, let ρ : T → T be the function mapping any t ∈ T to its algebraic inverse and let ρ|T+ : T+ → T



Symmetry and Becoming 147

and ρ|T+ : T− → T be the restrictions of ρ to T+ and T− respectively; by Proposition 8.14, they are monoid

isomorphisms. Finally, let ∼: M → T be a dynamical inversion function; then for any t ∈ T+ and any x ∈M

∼ (gt(x)) =∼ (gt(∼ (∼ (x))) = (gt)−1(∼ (x)) = g−t(∼ (x)) = gρ|T+ (t)(∼ (x)), (8.64)

while for any t ∈ T−, for any x ∈M

∼ (gt(x)) =∼ (gt(∼ (∼ (x))) = (gt)−1(∼ (x)) = g−t(x) = gρ|T− (t)(∼ (x)); (8.65)

accordingly, by De�nition 3, (i) ∼ is a ρ|T+ -isomorphism of DSL|
L+

in DSL|
L−∗

and (ii) ∼ is a ρ|T− -isomorphism

of DSL|
L−∗

in DSL|
L+

.

Proposition 8.15 makes all time-symmetric dynamical systems on a linearly ordered commutative

group decomposable into two chiral temporal sections; what consequences does this property bear

on their empirical interpretation?

Let DSL = (M, (gt)t∈T ) be a time-symmetric dynamical system of the kind just described and

let DSL|L+
and DSL|L−∗ be two chiral temporal sections of DSL. Let us start by interpreting

the sole DSL|L+
; since it shares the same state space as DSL but only part of its time model,

this can intuitively be done by simply applying any given empirical interpretation of DSL, with

the sole proviso of leaving the negative part of L temporarily uninterpreted.

For the sake of simplicity, let us assume the given interpretation of DSL to be adequate. Once

the empirical interpretation of DSL|L+
has been performed, let us wonder: is there still anything

left in the empirical phenomenon which can be modeled by DSL?

Certainly, no dynamically relevant magnitude other than time, for by hypothesis the state space

of DSL|L+
is identical to that of DSL, whose interpretation we supposed to be adequate. So,

our question becomes: is there any interval of physical time which has not been modeled by the

empirical interpretation we gave of DSL|L+
?

Interpreting temporal intervals is just as much as interpreting state transitions, for we know

a surjective monoid homomorphism to exist between the time model of any given dynamical

system and its transition algebra, which under the current hypothesis is bijective. So, is there

any physical process left in the given phenomenon which was not included in our interpretation

of DSL|L+
? Since DSL|L+

and DSL|L−∗ are isomorphic, we have good reasons to suppose that

this cannot be the case: in fact, for any transition g−t : x→ g−t(x) taking place in the negative

temporal section DSL|L−∗ of DSL there must exist a transition gt :∼ (x)→ (gt(∼ (x))) being its

exact positive duplicate in DSL|L+
, and vice versa. Hence, the empirical substructure of DSL

might possibly reduce to either the sole DSL|L+
or the sole DSL|L+∗

.

If that was really the case, given the empirical interpretation of one of a pair of chiral temporal

sections of a dynamical system, the other one would become surplus structure. In addition, being

the two temporal sections isomorphic, the converse situation may obtain as well. Hence, all of the

three conditions pointing to the existence of super�uous theoretical structure would be satis�ed:

(a) each of a pair of chiral temporal sections of a dynamical system is a proper substructure

of that system, (b) each one is adequately interpreted whenever the given dynamical system is,
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and (c) there may exist at least one adequate interpretation of that system leaving one of its

two chiral temporal sections uninterpreted.

8.2.2 When Worlds Collide

Ismael and van Fraassen lingered on chiral symmetries for a while, wondering whether they

might be evidence of super�uous theoretical structure. In particular, they noticed that `there

should be a strong suspicion of super�uous structure if two distinct worlds are related by a

transformation that has some world as a �xed point (Ismael and van Fraassen, 2003, p. 387)',

which is precisely the type of symmetry displayed by chiral temporal sections of dynamical

systems. In the meanwhile, however, they warned us against being too con�dent with symmetries

of this type, for discarding either of the two chiral components of a given structure as a mere

duplicate of the other could lead to the paradoxical consequence of denying the existence of their

composition.

The same warning was also raised, in a more speci�c way, by Earman. In his words, the

hypothesis we discussed so far would be ascribable to what he called the Reichenbach-Gold

view, according to which any two models di�ering only as their time order `are not descriptions

of two di�erent physically possible worlds but rather are "equivalent descriptions" of one and

the same world (Earman, 1974, p. 23)'. One of the major di�culties he attributed to this view

is that, `if on the Reichenbach-Gold position, all possible worlds are not to collapse into a single

one, there must be some objective distinguishing feature which separates them and which can

be ascertained to hold independently of the direction of time (Earman, 1974, p. 23)'; however,

he didn't see any distinguishing feature of that kind.

Is the interpretation we gave of chiral dynamical systems a�ected by these type of shortcomings?

I submit that it is not. Ismael and van Fraassen discussed chiral symmetries as transformations

of purely mathematical structures, or symmetries of worlds. So, while speaking of discarding

either of two chiral structures as a mere redundant copy of the other, they were referring to

mathematical objects of which no empirical interpretation was yet been given. In our view,

instead, what should be dismissed as redundant is not either of two isomorphic chiral dynami-

cal systems, but its empirical interpretation. Under this light, time-symmetric, time-invertible

dynamical systems obtaining as a composition of two isomorphic chiral temporal sections are

perfectly legitimate mathematical objects, which might nonetheless be too expensive to model

empirical phenomena.

On the other hand, Earman's objection seems to be going too far. Why should it be that,

following the Reichenbach-Gold view, all possible worlds should collapse on each other? Even

granting, with him, that the time-reversal operator had no privileged status among the possible

types of symmetry a theory might display, that would still be not enough to support an overall

collapse of all its possible models. In general, structural equivalence is mediated by a symmetry;

so at best, one may argue that all symmetric kinematic models of a theory, independently
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of the type of symmetry relating them, would be pairwise equivalent to each other. This,

however, would raise no di�culty: truly, symmetric kinematic models would amount to merely

di�erent instantiations of the same abstract model, precisely as we assumed so far; but in no

way this would make all abstract models of a theory reduce to one. In our case, the objective

distinguishing feature keeping di�erent abstract models separated as of each other would be

precisely their dynamical non-equivalence.

Can we thus conclude that the invariance under dynamical inversion of dynamical systems on

commutative groups is a certain symptom of the redundancy of their time models? Unfortu-

nately, not. Surely, symmetries of this kind are positive evidence in favor of such a redundancy,

but they are not yet a proof. To establish once and for all that our representation of the physical

world could dispense with time models which are commutative groups, one should be able to

prove that all di�erential equations physical laws consist of could lead to the same results if they

were restricted to the sole domain of non-negative (non-positive) real numbers, provided they

were modeled by time-symmetric dynamical systems.

Giving this proof goes beyond the aim of our discussion. However, what is of our interest is

to underline that modeling physical time as a commutative group is not a mandatory choice.

But if so then the possibility of providing time with a completely irreversible time-system, and

hence with a well-behaved dynamically grounded representation of tenses, is still open, and the

hypothesis of objective temporal becoming with it.
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Conclusion

Chapter 2 was dedicated to examine whether the philosophical dispute between presentist and

eternalist ontologies might cast some light on the problem of objective temporal becoming, either

proving or disproving the existence of an ontological basis on which tenses could be objectively

established. Our conclusion was that, insofar as this contention is framed inside a classical space-

time background, there can be no decisive argument in favor of either position, nor they can

be of any utility for the problem of objective temporal becoming, for in that case the existence

of an absolute partition of space-time into subsequent layers of co-presentness is guaranteed ab

initio.

In the subsequent chapter, we accordingly left the classical scenario in favor of that of special

relativity theory. Rather than confronting eternalism with presentism, in that case we held

an eternalist ontology, examining the contention between its radical, full-view interpretation

and its moderate, hybrid ones. Once again, we concluded that there is nothing in the very

structure of the assumed space-time framework which could tip the scales in favor of either

position, giving either a de�nite refutation or con�rmation of the existence of a metaphysically

distinguished present moment. Rather, we showed that more than one objective and exhaustive

de�nition of co-presentness other than chronological simultaneity, albeit necessarily weakened,

can be supported by that structure.

Chapter 4 was instead dedicated to discuss the logical consistency and the signi�cance of pro-

viding time with dynamical properties. The main result of our discussion was that the idea of

objective temporal becoming is neither internally inconsistent nor meaninglessness, at least as

long as one is willing to accept that time could move or pass in a speci�c, non-kinematic sense.

This way, we defused some of the major threats to objective temporal becoming, though at

the cost of renouncing a straightforward metaphysical interpretation of tenses and a naive in-

terpretation of the dynamical features of time's motion. Moving to general dynamical systems

theory, we were �nally capable to reconceive the movement of time as a non-metaphysical albeit

mind-independent and indispensable component of our representation of deterministic systems.

150
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Chapter 5 outlined the foundations of a general theory of deterministic motion, one of whose

minimal requirements is that time should be modeled by a monoid. This result was the starting

point for both the analysis of the various types of reversible dynamics we analyzed in Chapterr

6 and for the construction of time-systems we made in Chapter 7. In particular, time systems

show that a di�erent way of understanding the objective passage of time is available, consisting

in nothing more than its algebraic features. Finally, we proved that the model of objective

temporal becoming o�ered by time systems is tenable just in case physical time can be given a

weaker algebraic structure than that of a group, while in Chapter 8 we gave positive, though

not conclusive, evidence in favor of this thesis.

9.1

Discussion

Time systems thus o�er a very general model for objective temporal becoming, rooting all basic

ingredients of time's passage in the sole algebraic properties of time models. In the �rst place,

they provide any time model with a proper dynamics, which we showed to coincide with the

motion of the identity element. In the second place, we showed that motion to be at the basis

of a dynamical interpretation of tenses, which we proved to be both objective and, under some

very general conditions, entirely consistent. The time has come to examine whether such model

is also capable to overcome the philosophical objections which we saw to stand against objective

temporal becoming, or whether it may possibly be susceptible to any objection on its own.

9.1.1 Setting Time in Motion

In the course of Chapter 4, we discussed two logical objections to the claim that time �ows,

namely Smart's charge of inconsistency, articulated along his two-pronged reductio, and Grün-

baum's charge of triviality, later reshaped in the form of Price's charge of circularity.

The analysis we made showed that, rather than denying the passage of time as such, the aim

of Smart's argumentation was to deny that time could move in a way analogous to that of solid

bodies, owing de�nite kinematic properties such as a determinate instantaneous speed, a well-

de�ned position in space at di�erent times, etc. Time systems o�er a consistent, non-kinematic

model for the dynamical component of temporal becoming, which is capable to provide time with

a well-de�ned acceptation of passage, while escaping both horns of Smart's critique at once.

To begin with, the state spaces and the time models of time systems always coincide: the

distinction between time sets and sets of instants is merely functional, namely they are just

di�erent interpretations of the very same set. This way, time systems identify the temporal

reference of becoming with time itself, this way dodging the second of Smart's reductiones at

the very outset. What about the �rst one? Its major premise was that, if the motion of time was
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to be measured with respect to time itself, then time had to possess a well-de�ned instantaneous

speed. General dynamical systems theory refuted this claim twice. In the general case, it made it

possible to speak of the dynamical evolution of deterministic systems with discrete state spaces

or on discrete time sets, for which no standard de�nition of speed is available. On the other hand,

in the special case of time systems, it made it possible to prove that providing time models with

internal dynamics is just a di�erent way to represent their algebraic structure, so that requiring

it to be mathematically modeled by a monoid is all that we need to set time in motion.

Our discussion of Grünbaum's argument, instead, led us to conclude that claiming that time

moves from past to future, rather than being a mere truism, is a theoretically meaningful as-

sertion, whose content is that there exists a well-de�ned distinction between the past and the

future directions of time. The study we made of time systems and of the dynamical interpre-

tation of tenses they support con�rms this conclusion: to say that time moves invariably from

past to future is just as much as saying that the dynamics of the given time system is completely

irreversible, which Proposition 7.22 showed in its turn to be logically equivalent to the existence

of an everywhere clear-cut distinction among tenses.

Incidentally, time systems also refute a minor objection which have occasionally been moved

against the objectivity of temporal becoming, namely that the scienti�c description of phenomena

simply can do away with it, nothing in the laws of physics requiring the existence of a unique

moving now (Smart, 1955; Grünbaum, 1967a; Park, 1972): since our description of deterministic

systems cannot dispense with assuming time to be a monoid, as we saw, for that very reason it

is also forced to provide time with a proper dynamics.

9.1.2 Back to Geometry

One possible critique which can be raised against our model is that, as we had the chance to

notice while discussing the here-now conception of the present1, reducing co-presentness to a

binary relation which is coextensive to the identical relation may result in trivializing the very

idea of the objective present:

It would [...] be a complete trivialization of the thesis of the mind-independence of

becoming to [say] that, by de�nition, an event occurring at a certain clock time t has

the unanalyzable attribute of nowness at t (Grünbaum, 1967a, p. 27).

One may charge the dynamical acceptation of presentness, given by De�nition 38, of precisely

this type of de�ciency: in fact, it identi�es the present of each moment with the corresponding

image of the time transition of null duration, which we know very well to model the identity

relation on the time set.

This objection is nonetheless rejected by Corollary 7.19.1, in the light of which being present at

time i = t can be reduced to the property of lying in the t-future image of the identity element.

1See � 3.3.1.
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The dynamical acceptation of presentness is accordingly neither unanalyzable nor trivial: in fact,

it brings positive content concerning the dynamics of the identity element, the algebraic structure

of time models, and the way state transitions are temporally indexed; all in all, De�nition 38 is

telling us something positive about the way we expect deterministic systems to behave.

There is still another, more serious di�culty the dynamical interpretation of tenses must over-

come. Moving from the usual space-time framework to general dynamical systems theory, we

were forced to abandon the standard ontology of events or time-places in favor of an ontology of

states and times. This ontological gap seems to be blocking any attempt to transfer our results

directly into a space-time scenario. The time sets of dynamical systems were so far treated

independently of their state spaces, as they were entirely distinguishable, either structurally or

functionally, as of the latter ones; however, relativistic theories consider time a non-separable

component of the four-dimensional spatio-temporal manifold (Earman, 1970). So, how to embed

time models in relativistic space-times?

Unfortunately, there seems to be no straightforward answer to this question. The most intuitive

solution would be that of interpreting time sets through the proper times of moving particles;

however, that solution would fail in the case of complex systems, whose evolution depends on

the behavior of several, possibly remote, components. Perhaps a more exotic solution could be

that envisaged by Rietdijk (1985) and Peacock (1992), according to whom the present moment

should consist, at each time, of a hypersurface of constant action, i.e. a three-dimensional layer

of events on which the product of energy and duration is constant. Since the total energy of a

closed deterministic system is ordinarily assumed to be �xed, each layer would provide us with

a spatio-temporal representation of the instantaneous state of a system, while subsequent layers

would describe the evolution of that system in time; the one-dimensional time-like cross-section

of the union of all such layers would accordingly describe its time model. Unfortunately, the

instantaneous distribution of energy in a deterministic system is not necessarily homogeneous, so

that according to this proposal di�erent components of a unique state might happen to belong

to di�erent nows. Furthermore, such proposal might give rise to privileged frames of reference

(Clifton and Hogarth, 1995).

Nevertheless, the model we built may reveal not to be so strongly committed to a classical world

view, as long as we renounce to the very idea of a global instantaneous state and we regard

becoming as a purely local matter (Dieks, 2006a): after all, wasn't it the very conceptual core of

Einstein's critique of chronological simultaneity? Maybe. From this point of view, the motion of

time would really look like that of an ideal �uid, whose particles would all move independently

as of each other, even though all downstream. Perhaps, pace Smart, "the river of time" might

possibly be no so un�t image to describe temporal becoming.
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9.1.3 What Makes Time Special

Perhaps, in providing time with a proper dynamics, we have gone a bit too far. As all monoids

have an associated time system whose state-space is identical to the domain of the monoid, there

is a de�nite sense in which all monoids pass or �ow. But then, consider a dynamical system whose

state space represents the possible positions of a material particle moving in one-dimensional

space. Similar to time-systems, the state-space of this system is identical to its time set, namely

the set of real numbers. What could then prevent us from saying that space is �owing as well?

This possible objection overlooks the functional distinction which we repeatedly observed to hold

between instants and durations: what we called instants or moments have in general the role

of modeling the subsequent stages of an arbitrary algebraic structure, understood as a system

which is capable to undergo a deterministic evolution; durations have in general the function

of modeling the temporal distance separating those stages, as well as that of identifying the

functions connecting them. So, while the domain of any monoid can serve both as the state

space and the time set of a time system, its elements are attached di�erent meanings as of

they are understood as moments or durations. In the �rst case, they are the states through

which a quite special dynamics evolves (namely, the dynamics established by equation (7.2). In

the second case, however, independently of this speci�c dynamics, such elements would count

as durations, or intervals of time. Nevertheless, no monoids other than those whose associated

dynamics is the one speci�ed by (7.2) could ever be claimed to �ow or pass with respect to

themselves, i.e. to possess an intrinsic dynamics: for only in this case the time models and

the associated dynamical systems turn out to be equivalent descriptions of essentially the same

entity, as Corollary 7.4.1 and Proposition 7.5 formally show.

But why is it so? What is there, which impose us to understand time models as mathematical

representations of time? There seem to be two, related reasons for this. On the one hand,

as Smart's own argumentation pointed out, we can speak of movement or passage only by

referring to a temporal dimension. In other words, taking place in time is an essential theoretical

component of the very notion of dynamics, so that insofar as dynamical systems are understood

to model the evolution of deterministic systems, their time models must be understood ipso

facto as being modeling time. On the other hand, the role of time models is that of indexing

the family of transformations which govern the evolution of deterministic systems; so to say,

they provide the one parameter which makes the transition algebra of a dynamical system a

one-parameter monoid of transformations. Skow (2007) and Callender (2010b) independently

argued that ful�lling this role is precisely what makes time di�erent from space: in order to

keep laws as simple as possible one has to keep the number of independent variables as small

as possible, and durations are precisely the unique independent parameter one needs to get the

simplest possible laws: `[t]ime is the measure of change: its existence simply consists of there

being functions giving the magnitudes of other quantities at di�erent times. So time is given as

the totality of possible arguments of such functions (Dummett, 2000, p. 509)'
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In this view, time �ows exactly because, and only insofar as, it is an independent variable. To

understand this claim, let us begin with the basic intuition that anything which moves should

possess di�erent states at di�erent times. Here's the crucial point: dynamics essentially requires

instants to vary, but what is there to make them change, if not the brute fact that times �ows?

To make this point another way: dynamical laws require the trajectory of any moving object

to be a function of time; but what should be time a function of? Surely not of space, nor

of any physical process, for otherwise we would run into the very same kind of absurdities we

encountered while discussing the objections to Smart's second argument2. It is essential to the

very concept of motion (and hence to that of speed) that it should be determined with respect

to a physical variable whose values are capable to change freely, i.e. without being functionally

related to any other quantity entering the dynamical picture: It is this change which time's

passage consists of, a change which is both a brute fact of experience and a logical requirement

of physical laws: if we cannot arrest the course of events, it is exactly because there is nothing

in the physical world on which time could depend.

2See � 4.1.2.2.
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