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Introduction

The increasing environmental awareness, associated with the increase in demand and price for
fossil fuels, is leading to the implementation of novel energy models based on renewable en-
ergy sources (RES). Until 2014, over 69.68 GW of PV and 250 GW of wind power generation
is installed worldwide [49] and the amount of installed power is expected to rise in the near
future [93]. The technological advances in this field have made possible the installation of RES
generators of a great variety of scales, from private users to the great power company ones.
For this reason, RES generation is already capillary distributed in the power network trough
both big size generators (nowadays, the typical scale of large RES generators is about to 10
MW, but integrated plants can reach a size of hundred of MW) and small size ones, typically
distributed over the entire system. This kind of energy production represents a totally new
approach in energy generation, called distributed generation [94].

The implementation of such energy generation technologies has produced great benefits in
terms of energy production and environmental impact. However, RES generation strongly de-
pends on climatic conditions; this introduces into the system an high variability in terms of
active and reactive power production, output frequency and voltage. Such variability deter-
mines a difficult integration of large-scale wind and solar photovoltaic (PV) energy generation
into the existing infrastructures [32, 36, 53, 58, 95]. Due to this variability, major issues has
been pointed out in term of energy security and access, inspiring changes in methods and
paradigms associated to energy supply management in order to add flexibility to the system.

Until now, the management of electrical energy system has been done with deterministic
approaches [8, 12, 38, 98], allowing his proper functioning by virtue of an accurate profile
management of generation and of an high degree of accuracy in loads prediction. The high
reliability of the Electric Energy Management System and its typical top-down control struc-
ture, associated with the presence of systems of centralized production, has been tackled by
introducing an electricity market whose function is to define the energy price and the gener-
ation profiles in relation to supply and demand laws [97]. However, the fast development of
renewable energy sources and in particular of non-programmable ones introduces in this sys-
tem a non-deterministic variable that is changing both the electricity market behaviour and the
electric energy system management, pointing out the need to change the methodologies used
for their modeling.
The switch from fully programmable energy supply towards a time and space fluctuating one
needs to change the technical and economic models on which those systems are based on [76]. In
particular, the migration from strict deterministic based dispatching and planning rules towards
a more flexible statistical description of the system is needed, in order to obtain a methodology
able to describe the increasing intrinsic variability of the system. In order to describe and model
power systems with an high RES generation, is important to point out that such systems are
made by a great number of microscopical interacting elements who behave in a stochastic way.
For this reason, these systems can not be easily described in a deterministic way, but must
be described by a statistical representation of the system observables. In this thesis, a novel
methodology based on a statistical mechanics approach is presented in order to describe
on a statistical basis the effect of renewable energies on both electricity energy systems and
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electricity balancing markets. This has been done by perturbing the system on a microscopic
scale, and creating a realistic set of unbalanced states that can be studied statistically in order
to obtain the expected distribution of global system variables that measure the system stabil-
ity. This approach wants to be the core finding of this thesis, and is presented in the following
into two different papers. In the first one [80], the impact of RES generation on power grid
voltage stability is studied. In the second one (citazione paper mercato) the impact of RES
generation over the global network power balance has been quantified in terms of physical size
and economic cost.

Clean energy production and CO2 emission reduction are strictly connected with the concept
of sustainable mobility [33]. About 15% of total CO2 emissions comes from transportation, and
a promising solution to this issue is given by electric vehicles (EV) technologies [6]. Integration
between RES and EV mobility is a perfect way to ensure sustainable mobility. Moreover, Grid
to Vehicle (G2V) and Vehicle to Grid (V2G) [87] concepts allows to use EV as distributed
controllable loads or charging systems over the network. In relation to that, the EV charging
infrastructure can be used to limit the fluctuations caused by RES providing at the same time
a clean energy source to mobility, in a positive virtue feedback [52, 77]. In order to build
an optimized EV charging infrastructure, a good planning methodology is needed, able to
distribute in space the necessary amount of charging stations and charging plugs crucial for
guaranteeing the charging needs of the expected EV fleet. In relation to this, in this thesis,
two papers are proposed. In these two works, two topics are covered; the first one [35] studies
the existing mobility infrastructure, by using a newly proposed methodology based on complex
networks theory [23], whereas the second one [65] is based on an Agent Based Modelling
(ABM) that allows to simulate the behaviour of an EV fleet into a medium size city, yielding
the spatial and time distribution of the fleet charging needs.

In the following, an outline of the thesis is given. In part I, a brief overview of the used
methods is given: complex networks theory [23], agent based modelling [75] and power flow
method [46, 89, 90] are described. In part II, a novel methodology able to describe the effects
of RES generation on power grids is introduced. After a brief description, two papers are
presented; in the first one, a novel statistical based method is presented, able to understand
the possible effects of distributed RES in terms of power grid voltage quality. In the second
one, after a brief introduction about electricity markets, a similar methodology is used to
forecast the amount of unexpected power produced by distributed RES. Moreover, a new ABM
methodology is proposed for the simulation of an energy market session carried out for network
balancing purposes, the electricity balancing market. In part III, EV mobility charging needs
are studied by means of two research papers. In the first one [35], a complex networks approach
for the evaluation of existing mobility infrastructure is presented. In this paper, an extension
of the Louvain methodology [14] of community detection is proposed for the evaluation of the
most critical and important sites into the commuting network. In the second one [65], an agent
based model of the traffic flow is implemented in order to describe the charging needs of a
medium sized city EV fleet. Using these results, a charging infrastructure planning procedure
is proposed, together with an EV charging strategy.



Part I

Methods

3



Overview

This part is intended to describe the main methodologies used to study power grids and traffic
infrastructures, such as complex networks theory [23], agent based modelling [75] and power
flow method [46, 89, 90]. The first two ones are the main methods used for complex systems
description, and has been used in the papers proposed in parts II and III in order to enhance
the understanding of the studied systems. A brief overview of such methods, together with
some important references is given in chapter 1.
Power flow method is one of the main methods used for the study and characterization of power
grids operational parameters, and it is based on the numerical solution of a non-linear set of
equations, called power flow equations. An introduction to such method is given in chapter 2
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Chapter 1

Complex networks theory and agent
based modeling

The complex networks theory is based on a mathematical formulation called graph theory.
A very good introduction to Complex Networks science, together with the main definitions
associated to graph theory are given in the book of Guido Caldarelli, Scale-Free Networks [23].

1.1 Graph theory definition

Graphs are described by a set of vertices (or nodes) and a set of connections between them,
called edges (or links). The number of edges connected to each vertex is called degree, often
addressed as k. Edges can have a direction or not. In the first case the graph is called
oriented graph. Also, at each edge can be assigned a value, called weight, that represents
somehow the intensity of interaction between the connected edges. If this happens, the graph
is called weighted graph. For example, in the special case of power grids, one possible graph
representation can be obtained by choosing as weight the power that flows between edges, and
as direction of the links the direction of such flow.

A graph is often indicated as G(n;m), where n is the number of vertices (called also order)
and m is the number of edges (called also size). The maximum number of edges mmax is
dependent from the number of vertices of the graph. In particular, for undirected graphs it
is mmax = n(n−1)

2
. This number can be easily obtained by noticing that the number of edges

that each node can have is exactly (n− 1); taking into account this number for each node and
dividing by two in order to avoid double counting, his computation is straightforward. In case
of directed graphs, the division by two is not needed and the maximum number of links become
mdir
max = n(n− 1).

The topological characteristics of a graph G(n;m) can be represented by means of a adja-
cency matrix A(n;n) whose entries aij are 0 if vertices i; j are not connected and 1 otherwise.
The adjacency matrix is symmetric only in the case of undirected graph; in case of directed
graph, this assumption is generally false. In case of weighted graphs each matrix entry aij is
equal to the corresponding link weight, if link exists, and 0 otherwise.

Starting from the adjacency matrix, some graph characteristics can be computed. In par-
ticular, the degree ki of each vertex i is calculated by equation 1.1 in case of undirected graphs,
and by equations 1.2 and 1.3 for directed graphs, where a in-degree and a out-degree can be
defined.

ki =
n∑
j=1

aij (1.1)

5



CHAPTER 1. COMPLEX NETWORKS THEORY AND AGENT BASED MODELING 6

kini =
n∑
j=1

aij (1.2)

kouti =
n∑
j=1

aji (1.3)

A path Pij on a graph is an ordered set of links that allows to go from vertex i to vertex j.
At each path is associated a length l(P) defined in equation 1.4. Among all the possible paths
that can connect vertices i and j, the minimum length ones are called shortest paths, and are
often addressed as σij. Notice that there can be more then one shortest paths for each couple
of nodes.

Another important measure on graphs is the distance dij between nodes i and j; it is defined
as the length of the shortest path between node i and j, or alternatively as shown in equation
1.5. The largest distance between two vertices in the graph is often called graph diameter.

lij =
∑

m,k∈Pij

amk (1.4)

dij = min{
∑

m,k∈Pij

amk} (1.5)

The clustering coefficient Ci of vertex i is an important measure of the level of how much the
graph is connected around vertex i. Ci is given by the average fraction of pairs of neighbours
that are also neighbours of each other, formally:

Ci =
1

(ki)(ki− 1)/2

∑
j,k

aijaikajk. (1.6)

The average of clustering coefficient around all nodes of the graph is often taken as a measure
of how much the vertices of the graph are connected among them.

1.2 Complex network theory

A lot of natural and artificial systems shows the possibility to be described by means of a graph.
Such high interacting systems can be abstracted in a way that represents how their components
are related among them, and these relations patterns can improve a lot our knowledge of them.
By the time that this thesis has been written, a lot of work has been done in order to under-
stand, for example, the interaction of proteins among some biological processes [91], the way
in which epidemics spread around the world [50], and how the World Wide Web behaves [74].
By describing these systems components and the way in which they interact, is possible to
understand a lot of behaviours that are really difficult to explain using standard methods. This
methodology is called complex networks theory, and aims to provide a theoretical background
to the study of such systems, by studying the properties of their graphs.
All these systems, in fact networks, show non-trivial topological features, that includes heavy
tail in the degree distribution, high clustering coefficient, community and/or hierarchical struc-
ture that are not highlighted in past studied regular networks such as lattices and random
graphs. Many of these features can be obtained by the study of the topological properties
of the networks, such as their community and hierarchical structure and resilience to attacks.
Another important information, crucial in this thesis, is the concept of topological centrality,
that aims to characterize the network nodes in order to sort their importance in relation to
precise phenomena like the identification of the most influential people in a social network or
key infrastructure nodes in the Internet or power grids.
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NetworkX

Computations related to networks and graphs has been performed using the software Net-
workX [47]. NetworkX is a Python library for studying graphs and networks, a collection of
libraries useful to calculate and represent a vast number of the possible calculations that can
be performed on a graph. In particular, it has been used in this thesis for the calculation
of betweenness centrality and RageRank over the studied networks. The calculation methods
implemented by it are, for betweenness centrality, the one proposed by Brandes [18] and for
PageRank the one described in [55].

1.3 Community detection

Most of the systems of interest, once represented as networks, are found to divide naturally into
communities, subsets of nodes that share the same characteristics. Detection and characteriza-
tion of community structures are one of the most important fields of study in network sciences.
Understanding if and how a system can be divided in parts, called clusters or communities,
can be a crucial point in improving his level of description [42]. One of the most effective
approaches is the modularity optimization over the possible divisions of a network. The modu-
larity is a quality function, that measures the density of links inside communities as compared
to links between communities. This quantity, introduced by Newman [67] is defined as shown
in equation 1.7, where Aij is the adjacency matrix, si is the strength of node i, m = 1

2

∑
ij Aij

and δ(u, v) is a function that values 1 if u = v and 0 otherwise.

Q =
1

2m

∑
i,j

[
Aij −

sisj
2m

]
δ(ci, cj) (1.7)

Computation of modularity is not an easy task, and several methods have been proposed
to speed-up the optimization process. The most important and used one has been proposed
by Blondel et al., and is often addressed as Louvain method [14]; in this paper, a methodology
that shows the possibility to find high modularity partitions of large networks in short time
and that unfolds a complete hierarchical community structure for the network is proposed,
thereby giving access to different resolutions of community detection. The proposed method
aims to optimize the modularity by an hierarchical iterative technique that aims to agglomerate
communities at each iteration, speeding up the process. In chapter 5, a paper that propose an
extension of the Louvain method able to identify the most important nodes of each community,
called core nodes is attached.

1.4 Centrality measures

In complex networks, the topological position of nodes can affect their behaviour and influence
among the system. As an example, in social networks, high degree nodes (the so-called hubs)
have a primary role in information spreading and opinion formation. The same phenomena can
be observed in epidemics where high flow places, such as airports and big cities, improve the
infection spreading. The identification of these nodes by simple topological methodologies is an
important branch of complex networks, that has led by far to important scientific results [23].
In this work, two different centrality measures have been used: the betweenness centrality, and
the pagerank.

Betweenness centrality Betweenness centrality [44] is a centrality measure based on topo-
logical characteristics of the network, and assumes that edges that share the most shortest
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paths are somewhat more important in the network. This measure has been developed in so-
cial sciences, and is based on the assumption that information spreads faster when it passes
among high betweenness nodes. Formally, the betweenness centrality of each node is defined
as the normalized number of shortest paths that passes through it, and can be calculated by
equation 1.8. Given his simple definition, betweenness centrality can be calculated for directed,
undirected, weighted and unweighted graphs.

BCi =
∑

s,t∈{V−{i}}

σist∑
s,t σst

(1.8)

PageRank This centrality measure has been proposed in 1998 by Google search engine
founders Brin and Page [70], together with Motswami and Winograd. This method intro-
duces a new measure of importance for web pages, and has been for years the main algorithm
used by Google to sort the web pages. PageRank formulation has been made in relation to the
WWW hyperlink structure. Every hyperlink received by a web page increases her PageRank
value by a quantity proportional to the PageRank of the sending one. The importance of each
node is related to the probability that a user, randomly clicking on hyperlinks, will arrive at a
particular page. A first definition of PageRank is given by the iteration of equation 1.9. De-
spite the simple definition, the calculation of PageRank is not straightforward. The presence of
dangling nodes (i.e. nodes with only in-edges) makes calculation difficult without introducing
a parameter that takes into account the probability of random jumping into the network; this
parameter is called damping factor. A complete review of the PageRank calculation methods
can be found in [55]. The PageRank algorithm can be easily extended to different kind of
systems. In this thesis, in particular, it has been used for power networks nodes in the paper
reported in chapter 3.

ri =
∑
j→i

rj
kj

(1.9)

1.5 Agent based modelling

Agent-based modelling has seen a number of applications in the last few years [15]. It is
a powerful simulation modelling technique often applied to real-world business problems like
organizational simulation, diffusion simulation, market simulation and flow simulation.

A perfect (in my opinion) description of ABM has been proposed by Bonabeau et al. in [15]:
”In agent-based modelling (ABM), a system is modelled as a collection of autonomous decision-
making entities called agents. Each agent individually assesses its situation and makes decisions
on the basis of a set of rules. Agents may execute various behaviours appropriate for the
system they represent, for example, producing, consuming, or selling. Repetitive competitive
interactions between agents are a feature of agent-based modelling, which relies on the power of
computers to explore dynamics out of the reach of pure mathematical methods. At the simplest
level, an agent-based model consists of a system of agents and the relationships between them.
Even a simple agent-based model can exhibit complex behaviour patterns and provide valuable
information about the dynamics of the real-world system that it emulates. In addition, agents
may be capable of evolving, allowing unanticipated behaviours to emerge. Sophisticated ABM
sometimes incorporates neural networks, evolutionary algorithms, or other learning techniques
to allow realistic learning and adaptation.”

Electricity markets have been widely studied during time due to their crucial role in terms
of power grid overall stability. The complexity of electricity markets calls for rich and flexible
modelling techniques in order to describe market dynamics, useful for designing appropriate
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regulatory frameworks. A growing number of researchers developed agent-based models for
simulating electricity markets, aiming to describe the various electricity market phases, crucial
for the definition of electrical energy price. The diversity of the proposed approaches shows
an increasing interest in this field of study. A brief review of this methods is given in [97]. In
this thesis, a new agent based methodology able to model the electricity balancing market is
presented. The paper [64], submitted on Scientific Reports journal, can be found in chapter 4.



Chapter 2

Power flow method

The power-flow method, also called load-flow calculation, is one of the fundamental techniques
used for power system simulation and management. This method, presented at first by Ward
and Hale [96], aims to describe an electrical system in terms of bus voltages and branches power
flows, in order to know the operational steady state of such systems.
The method is based on the numerical solution of a non-linear system of equations, called
power-flow equations.
On the next sections, power grid modelling, mathematical formulation of the problem and his
numerical solution will be described.

2.1 Network modelling

Power grids goal is to transmit and distribute electrical energy between producers, like power
plants, and users, like industries or private houses.
Power grids can be described as interconnected networks, each of them working at a different
voltage. Each network can be modelled by a set of nodes, often addressed as buses in electrical
engineering, that represents electrical substations, and by a set of link, also called branches,
that represents electrical connections between nodes.
In this model, active (Pi) and reactive (Qi) power production and consumption is performed on
nodes i, characterized by a voltage Vi, a phase ϕi and a frequency f whereas power flows through
edges between nodes i and j, each of them characterized by an impedance of Zij. In order to
understand the effect of power production or consumption changes into this system, is possible
to perform a calculation called power flow method, (also called load flow method) [89, 90].

Power flow into and out of each of the buses can be calculated as the sum of power flows of
all of the lines connected to the referred bus. Aim of the load flow method is to find the set of
complex voltages Vi = Vi · eiϕi , described by magnitude Vi and angle ϕi, which, together with
the network impedances, produces the load flows at the system terminals. At each bus i there
is a production (or consumption) of complex power Si = Pi + iQi. If such node is connected to
the system, the complex power flow into the network at node i can be also written as:

Si = ViI
∗
i , (2.1)

where Ii = Iie
iφ is the complex current.

The power grid can be also viewed as a graph, and his topology can be described by the
so-called incidence matrix A. This matrix, which has N columns and Nb rows, represents in
matrix form the connections between the buses. Such matrix is defined, for directed graphs,
as A = aij, where aij = ± if buses i and j are connected , 0 if not. The sign of the entry is
given by the link direction that, in this case, can be decided a priori. If the network itself is

10
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linear, interconnections between buses and between buses and ground can be described by the
bus admittance matrix Y = 1

Z
, inverse of the bus impedance matrix Z. Y is simple to obtain

starting from the line admittance matrix YL, that can be obtained as follows. Considering a
network with a number Nb of buses and another number Nl of lines, each of them characterized
by a (generally complex) impedance Z, the line admittance matrix can be obtained by placing
the admittance of each line on the main diagonal of an NL ×NL matrix:

I =



1
Z1

0 0 0 . . . 0

0 1
Z2

0 0 . . . 0

0 0 . . . 0 . . . 0
0 0 0 . . . . . . 0
. . . . . . . . . . . . . . . 0
0 0 0 0 0 1

ZNL


(2.2)

Knowing the lines admittance matrix YL and the incidence matrix A, the bus admittance
matrix Y can easily be computed by eq. 2.3.

Y = A · YL · A (2.3)

2.2 Power flow equations

Starting from the generalized Ohm’s law (eq. 2.4, in subscript form in 2.5) is possible, in
principle, to obtain voltages and currents of the systems, and to calculate powers from the
power flow equations 2.6, one for each bus.

I = YV (2.4)

Ik =
N∑
j=1

YjkVj (2.5)

Sk = Vk

N∑
j=1

Y ∗jkV
∗
j (2.6)

In order to do so, is necessary to limit the number of unknowns, fixing the value of some
variables. Each of the complex equations reported in 2.6 carries 6 variables, 2 for complex
voltage, current and power. However, these three quantities are related by eq. 2.1, so that
any two of these can be specified by the other four, and the network itself provides two more
constraints. The other two constraints for each equation are provided using some assumptions
based on the physical properties of the buses. In relation to this, three types of buses are
defined:

• Load buses (PQ): in these buses, consumed (or produced) active and reactive power P
and Q can be easily obtained. For this reason, is a common practice to set these values
as constraints for system solution. The remaining unknowns for this buses will be voltage
magnitude V and angle ϕ.

• Generator buses (PV): In these buses is installed a major generator, that is supposed to
work as an ideal voltage generator. For this reason, active power P and voltage V are
considered as constraints, leaving as unknowns Q and ϕ.
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• One slack bus (ref): this bus is often associated with the bus with the biggest generator,
and for this bus voltage magnitude V and phase ϕ are taken as constraints, leaving active
P and reactive Q power as unknowns.

The obtained non-linear system must be solved numerically, and the main methods used for
its solution are described in [89, 90]. In particular, the calculations made for this thesis has been
performed using the program MATPOWER [100]. MATPOWER is a MATLAB package used
for solving power flow and optimal power flow problems with various solution algorithms. All
the calculations performed in this thesis have been made using the Newton-Raphson method,
described in [89].



Part II

Estimation of renewable energy sources
effects on power grids
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Overview

During last years, the amount of power produced by renewable energy sources has shown a
really interesting increase in terms of installed power and economic investments. The worldwide
availability of these energy sources and their relative pollution-free energy production are seen
as fundamental for CO2 emissions reduction.
Recently, technological advances have made possible to install RES generators at really different
scales, from the private user one, where KW size PV generators can be installed on single
households, to the big energy company one, where generators of the size of hundreds of MW
can be installed. This difference has led to a total new approach in energy production, called
distributed generation. By using this approach, energy generation is not anymore accounted
exclusively to great energy companies, but even to small and medium size users; this allows
to move the cost of the implementation of new energy generating systems toward a more
private issue, improving at the same time the energetic independence of some geographical
zones. However, this distributed, uncontrolled generation over the entire power system is
difficult to control. Actual power systems are built for strictly hierarchical and programmed
power production, and a complete change in infrastructure planning, both from technical and
theoretical point of view, is needed in order to manage the increasing amount of RES energy
production.

The presence of distributed RES generation introduces an high stochastic variability over
the system, impossible to describe using the classic deterministic methods. For these reasons, a
totally new method of description of such systems, inspired on statistical mechanics methods,
is proposed; in such method, RES generators are represented by stochastic fluctuating power
generation facilities over the entire grid. Due to this intrinsic variability of a large amount of
power supply over the network, the system can not be found anymore in a single programmable
state, but in a state that is susceptible of the random processes that can occur over the network.
For this reason, the system must be studied in a statistical way. This has been done by using a
numerical procedure able to produce an high number of possible states. in which the system can
effectively be because of uncertainties in RES power production. The effects of such random
fluctuations can now be described by means of a statistical representation of global system
variables over the entire set.

In the next two papers, such new methodology is presented. In the first paper, Distributed
generation and Resilience in Power Grids, found in chapter 3, the possible stability impact
of increasing RES generation on Polish power grid is studied. As important result, has been
found that a centrality oriented distribution of RES generators can improve or decrease stability.
In chapter 4, after a brief introduction to electricity markets, the paper Green power grids:
how energy from renewable sources affects networks and markets [64] is proposed.
In this paper, submitted on scientific reports, the previously described statistical approach has
been used to sample the expected distribution of deviations from network power balance due
to the intrinsic variability of RES generation. Moreover, this information has been used for the
development of a new agent based methodology able to forecast the economic cost associated
to these fluctuations. This paper aims to propose a tool for the simulation of the electricity
balancing market with the goal of developing an integrated approach to evaluate and analyse the
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effects of RES on the power system. In order to be able to assess the economic issues associated
with the electricity balancing market is necessary to define the size of the market during time.
After this step, once the effective power balancing needs are known, the entire market session
can be simulated. The first part of the work aim to determine (based on the output profile
from the previous day-ahead market session) the dimension of balancing services required by
the BM. To such purpose, a statistical analysis tool that allows to establish a georeferenced
distribution of necessary balancing services has been developed. Basic assumption was to
consider only the imbalances and not events such as failures or outages of lines, transformers
and production units. Such imbalances has been obtained by the estimation of RES power
generation uncertainties for each geographical area in which the electricity market is divided.
Using such estimations, the geographical distribution and the time evolution of the size of the
balancing market have been determined and given in statistical terms. Such information are
a prerequisite in order to define market strategies and to make a comparative evaluation of
different market models. Once information about the market size has been obtained, has been
possible to simulate the real balancing market phase by means of an Agent Based Modeling
With this method, every market operator has been described by an agent that learns to place
a bid on the market, given the characteristics of the network and a previous learning phase.
ABM is a method widely used for the simulation of complex competitive market phases, and is
based on the assumption that global systemic observables, like market size and price, depends
in great place from the interaction between bidders. By using this methodology, has been
possible to obtain the total cost related to the unbalancing effects caused by RES generation
over the network, and the price at which the energy used for balancing purposes has been sold.
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3.1 Abstract

The upcoming growth in renewable energy sources (RES) will introduce an high number of
stochastic fluctuations on power grids. In order to find a way to describe and estimate the
effects of such fluctuations, we study the effects of the allocation of distributed generation
on the resilience of power grids. We find that an unconstrained allocation and growth of
the distributed generation can drive a power grid beyond its design parameters. In order to
overcome such a problem, we propose a topological algorithm derived from the field of Complex
Networks to allocate distributed generation sources in an existing power grid.

3.2 Introduction

Distributed Generation from renewable sources is having a deep impact on our power grids.
The difficult task of integrating of the stochastic and often volatile renewable sources into a the
grid designed with a power-on-demand paradigm could perhaps solved leveraging on distributed
storage [11]; nevertheless, massive and economic power storage is not yet readily available. In
the meanwhile, power grids are nowadays required to be robust and smart, i.e. systems able to
maintain, under normal or perturbed conditions, the frequency and amplitude supply voltage
variations into a defined range and to provide fast restoration after faults. Therefore, many
studies have concentrated on the dynamic behaviour of Smart Grids to understand how to
ensure stability and avoid loss of synchronization during typical events like the interconnection
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of distributed generation. The large number of elements present into real grids call for simplifi-
cations like the mapping among the classic swing equations [88] and Kuramoto models [39–41]
that has allowed to study numerically or analytically the synchronization and the transient
stability of a power network.

Even simple models [37] akin to the DC power flow model [98] show that the network
topology can dynamically induce complex blackout size probability distributions (power-law
distributed), both when the system is operated near its limits [24] or when the system is subject
to erratic disturbances [79]. New realistic metrics to assess the robustness of the electric power
grid with respect to the cascading failures [99] are therefore needed.

Smart grids are going to insist on pre-existing networks designed for different purposes and
tailored on different paradigms and new kind of failures are possible: therefore a careful tran-
sition is needed. One possible approach could be the use of advanced metering infrastructure
(AMI) not only for implementing providers and customers services, but also to detect and
forecast failures; nevertheless an ill-designed network will never be efficient.

Our approach will not concentrate on the instabilities but will focus instead on the condition
under which, in presence of distributed generation, the system can either be operated controlled
back within its design parameters, i.e. it is resilient. It is akin in spirit to the approach of [27],
that by applying DC power flow analysis to a system with a stochastic distribution of demands,
aims to understand and prevent failures by identifying the most relevant load configurations
on the feasibility boundary between the normal and problematic regions of grid operation.

To model power grids, we will use the more computational intensive AC power flow algo-
rithms as, although DC flows are on average wrong by a few percent [90], error outliers could
distort our analysis.

To model distributed renewable sources, we will introduce a skewed probability distribution
of load demands representing a crude model of reality that ignores effects like the correlations
between different consumers or distributed producers (due for examples to weather conditions).

3.3 Methods

3.3.1 AC Power Flow

The AC power flow is described by a system of non-linear equations that allow to obtain
complete voltage angle and magnitude information for each bus in a power system for specified
loads [46]. A bus of the system is either classified as Load Bus if there are no generators
connected or as a Generator Bus if one or more generators are connected. It is assumed that
the real power PD and the reactive power QD at each Load Bus are given while for Generator
Buses the real generated power PG and the voltage magnitude |V | are given. A particular
Generator Bus, called the Slack Bus, is assumed as a reference and its voltage magnitude |V |
and voltage phase Θ are fixed. The branches of the electrical system are described by the bus
admittance matrix Y with complex elements Yijs.

The power balance equations can be written for real and reactive power for each bus. The
real power balance equation is:

0 = −Pi +
N∑
k=1

|Vi| |Vk| (Gik cos θik +Bik sin θik)

where N is the number of buses, Pi is the net real power injected at the ith bus , Gik is the
real part and Bik is the imaginary part of the element Yij and θik is the difference in voltage
angle between the ith and kth buses. The reactive power balance equation is:
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0 = −Qi +
N∑
k=1

|Vi| |Vk| (Gik sin θik −Bik cos θik)

where Qiis the net reactive power injected at the ith bus .
Real and reactive power flow on each branch as well as generator reactive power output

can be analytically determined but due to the non-linear character of the system numerical
methods are employed to obtain a solution. To solve such equations, we employ Pylon [2], a
port of MATPOWER [100] to the Python programming language.

A requirement for the stability of the load and generation requirements is the condition that
all branches and buses operate within their physical feasibility parameters; going beyond such
parameters can trigger cascades of failures eventually leading to black outs [71].

In the present paper a topological investigation on the power grid has been developed in
order to evaluate the effects of distributed generation on the voltage and power quality. Hence
a steady state analysis has been carried out and the transient phenomena connected to the
power flow control has been neglected. Under this hypothesis the frequency variation con-
nected to power flow control has been considered stabilized and the system has been considered
characterized by a constant steady state supply voltage frequency. Therefore, if all the nodes
are near their nominal voltage it is much easier to control the system and to avoid reaching
unfeasible levels of power flow. Consequently, to measure the effects of power quality of a power
grid under distributed generation we measure the fraction F of load buses whose tension goes
beyond ±5% of its nominal voltage. Notice that real networks are often operated with some of
the buses beyond such parameters so that (especially for large networks) it is expected to be
F 6= 0. The maximum of the resilience for a power grid (intended as the capability of restoring
full feasible flows) is therefore expected for F = 0.

3.3.2 Distributed Generation and Skew-normal distribution

We will consider distributed generation due to erratic renewable sources like sun and wind;
therefore, we will model the effects of “green generators” on a power grid as a stochastic
variation the power requested by load buses. Load buses with a green generator will henceforth
called green buses. We will consider the location of green buses to be random; the fraction p
of green buses will characterize the penetration of the distributed generation in a grid.

If the power dispatched by distribution generation is high enough, loads can eventually
become negative: this effect can be related to the efficiency of green generators. We model such
an effect by considering the load on green buses described by the skew-normal distribution [10],
a pseudo-normal distribution with a non-zero skewness:

f (x, α) = 2φ (x) Φ (αx)

where α is a real parameter and

φ (x) = exp (−x2/2) /
√

2π Φ (αx) =
∫ αx
−∞ φ (t) dt

. The parameter α will characterize the level of the distributed generation: to positive α
correspond loads positive on average, while for negative α green nodes will tend to dispatch
power.

Our model grids will therefore consist of three kind of buses: NG generators (fixed voltage),
Nl pure loads (fixed power consumption) and Ng green buses (stochastic power consumption)
with NG+Nl+Ng = N the total number of buses and Ng +Nl = NL the number of load nodes.
The fraction p = Ng/NL measures the penetration of renewable sources in the grid.



CHAPTER 3. DISTRIBUTED GENERATION AND RESILIENCE IN POWER GRIDS 19

3.3.3 Complex Networks and Page Rank

The topology of a power grid can be represented as a directed graph G = (V,E), where to the
i-th bus corresponds the nodes ni of the set V and to the k-th branch from the i-th to the j-th
bus corresponds the edge ek = (i, j) of the set E. In Power System engineering, it is custom to
associate to the graph G representing a power networks its incidence matrix B whose elements
are

Bik =


1 if ek = (i, ) ∈ E

− 1 if ek = ( , i) ∈ E
0 otherwise

. An alternative representation of the graph much more used in other scientific fields is its
adjacency matrix A whose element are

Aij =

{
1 if (i, j) ∈ E
0 otherwise

.
While Graph Theory has an old tradition since Euler’s venerable problem on Koenigsberg

bridges [13], Complex Networks is the new field investigating the emergent properties of large
graphs. An important characteristic of the nodes of a complex network is their centrality, i.e.
their relative importance respect to the other nodes of the graph [23]. An important centrality
measure is Page Rank, the algorithm introduced Brin and Page [19] to rank web pages that is
at the hearth of the Google search engine. The Page Rank ri of the i-th node is the solution of
the linear system

ri =
1− ρ
N

+ ρ
∑ Aijrj

doj

where N is the number of buses (nodes), doi =
∑
i

Aij is the number of outgoing links (out-

degree) and ρ = 0.85 is the Page Rank damping factor. In studying power grids, we will employ
Page Rank as it is strictly related to several invariants occurring in the study of random walks
and electrical networks [28].

3.4 Results

3.4.1 Effects of distributed generation

We have investigated the effects of our null model of distributed generation on the 2383 bus
power grid of Poland, 1999. Starting from the unperturbed network, we have found an initial
fraction F0

∼= 1.6% of load buses beyond their nominal tension. We have therefore varied the
penetration p at fixed distributed generation level α’s; results are shown in Fig. 3.1.

We find that the behaviour of the fraction F of buses operating near their nominal tension
does not follow a monotonic behaviour. Initially (low values of p), the penetration of distributed
generation enhances resiliency (i.e. decreases F ). At higher values of p, F grows and resilience
worsens. Such an effect is particularly severe if green nodes introduce a surplus (α < 0) of
power respect to the normal (p = 0) operating load requests. On the other hand, keeping the
levels of renewable energy production below (α > 0) the normal load request delays the point
beyond which the penetration of distributed generation worsens the resiliency.

Notice that when distributed generation is ancillary (α > 0) and not predominant in the
power supplied of the network, full penetration (p = 1) of renewable sources lead to more stable
state than the initial (p = 0) one.
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Figure 3.1: Effects of the penetration p of distributed generation on the resilience of the Polish
power grid at different values α of the green generators. Notice that for α = 0 renewable
sources satisfy on average the load requested by the network, while for α < 0 there is a
surplus of renewable energy. Lower values of the fraction F of buses operating near their
nominal tension correspond to a higher resiliency. Notice that the penetration of distributed
generation initially enhances resiliency. At higher values of p, resilience worsens; in particular,
it is severely impaired if distributed generation produces on average more energy than the
normal load requests (α = −1). It is therefore advisable to keep levels of renewable energy
production below (α = 1) the normal load request.
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Figure 3.2: Comparison between random placement (filled symbols) and page-rank placement
(empty symbols) of green nodes in the Polish grid, both for surplus production of renewable
energy (upper panel, α = −1) and for levels of renewable energy production below the normal
load request (lower panel, α = 1). The page-rank placement of renewable sources allows to
attain lower values of the fraction F of buses operating near their nominal tension (and hence
a higher resiliency) at lower values of the penetration p. The ideal situation is for levels of
renewable energy production below the normal load request, where a plateau to low values of
F is quickly attained.

3.4.2 Targeted distributed generation

Beside their natural application to web crawling, the Page Rank algorithm can be applied to
find local partitions of a network that optimize conductance [9]. We therefore investigate what
happens in a power network if distributed generation is introduced with a policy that accounts
for the pagerank of load nodes. In other words, for a level of penetration p, we choose the first
ng = pNL load nodes in decreasing pagerank order to become green nodes. The effects of such
a choice are shown compared to the random penetration policy in Fig. 3.2.

We find that, for low penetration levels, the pagerank policy reduces the number of nodes
operating beyond their nominal tension both for positive and for negative α’s. Again, the excess
of power production (α < 0) reduces the resilience of the network.

Preliminary results show that Page Rank is the best behaved among centralities in enhancing
power grid resilience; such study will be the subject of a future publication.
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3.5 Discussion

We have introduced a model base on the AC power flow equation that allows to account for the
presence of erratic renewable sources distributed on a power grid and for their efficiency. By
defining the resilience of the grid as a quantity related to the possibility of controlling the power
flow via voltage adjustments (hence returning within the operating bounds of its components),
we have studied the penetration of distributed generation on a realistic power grid.

We have found that while the introduction of few ”green” generators in general enhances
the resilience of the network by decreasing the number of nodes operating beyond their nominal
voltage, a further increase of renewable sources could decrease the power quality of the grid.
Anyhow, if distributed generation is ancillary and not predominant in the power supplied of
the network, the grid at full penetration (p = 1) of renewable sources is in a more stable state
than the starting grid (p = 1).

Our finding that a surplus of production from renewable sources is also a source of additional
instabilities is an effect that is perhaps to be expected in general for networks that have been
designed to dispatch power from their generators to their loads and not to locally produce
energy. While we have found this possible increase in instability with the penetration in an
isolated grid, what happens when more grids are linked together is an open subject. Power grids
are typical complex infrastructural systems; therefore they can exhibit emergent characteristics
when they interact with each other, modifying the risk of failure in the individual systems [25].
As an example, the increase in infrastructural interdependencies could either mitigate [20] or
increase [21, 56] the risk of a system failure.

Finally, we find that a policy of choosing the sites where to introduce renewable sources
according to Page Rank allows to increase the resilience with a minimal amount of green buses.
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bIMT Institute for Advanced Studies, Lucca, Italy
cDepartment of Physics and Earth Sciences, Jacobs University, Bremen, Germany
dIstituto dei Sistemi Complessi (ISC), Roma, Italy
eLondon Institute for Mathematical Sciences, London, UK
fLinkalab, Cagliari, Italy
gDipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Italy
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4.1 Abstract

The increasing attention to environmental issues is forcing the implementation of novel en-
ergy models based on renewable sources, fundamentally changing the configuration of energy
management and introducing new criticalities that are only partly understood. In particular,
renewable energies introduce fluctuations causing an increased request of conventional energy
sources oriented to balance energy requests on short notices. In order to develop an effective
usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper
we present a microscopic model for the description and the forecast of short time fluctuations
related to renewable sources and to their effects on the electricity market. To account for the
inter-dependencies among the energy market and the physical power dispatch network, we use
a statistical mechanics approach to sample stochastic perturbations on the power system and
an agent based approach for the prediction of the market players’ behaviour. Our model is a
data-driven; it builds on one day ahead real market transactions to train agents’ behaviour and
allows to infer the market share of different energy sources. We benchmark our approach on
the Italian market finding a good accordance with real data.
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Introduction

The increasing demand for energy, the improved sensitivity to environmental issues, and the
need for a secure supply are all contributing to a new vision of energy resource management
[8, 34]. This new awareness is contributing to the development of a novel approach in energy
planning, based on the rational use of local resources [86]. In this contest, distributed energy
management is considered one of the viable solutions to integrate local renewable sources and to
promote rational use of energy [63]. Moreover, the recent emphasis on sustainability, also related
to the climate change policies, asks for a fast development in the use of renewable resources in
local energy systems. This determines a fast growth of distributed generation and co-generation
at which does not correspond an equally fast upgrade of the electricity infrastructure. This
inhomogeneous evolution of the different components of power systems is the consequence of the
actual structure of the electricity network which, being characterised by strict dispatching and
planning rules, hardly fits with the increasing demand of flexibility connected to the distributed
generation [16].

Such scenario induces unavoidable effects on the electricity market which reveals an unex-
pected sensitivity to the enhancement of distributed generation based on Renewable Energy
Sources (RES) [53, 58, 82]. In fact, due to their non-programmable characteristic and the
widespread geographic distribution, the development of RES-based distributed generation is
undermining the technical and economic models on which the electricity system are actually
based on; in particular, they highlight problems in the classical management model of energy-
flows. In fact, the classical hierarchical and deterministic methodologies used to (i) manage the
power system, (ii) forecast the energy demands and production, (iii) balance the network, all
show drawbacks which finally affect the electricity market price. An instructive example of such
problems comes from the analysis of the effects of the subsidies policy granted by governments
to promote the exploitation of RES and for implementing the climate change policies: in fact,
such policies have played a major role in the magnification of critical market anomalies, like
the negative and/or null price of electricity registered in the Germany and Italy. Therefore,
to implement the new smart grid paradigms, it is necessary to change and renew the classical
approaches for modeling and managing the electricity market. However, even if the produc-
tion of energy from renewable sources introduces perturbations in the power system and in the
electricity market [54], it constitutes a crucial value in emissions trading. Generators based on
renewable sources have a great intrinsic forecast uncertainty, highly variable both in time and
space. Hence, the increasing amount of REnewable-like (RE) generators induce a stochastic
variability in the system; such variability could induce security issues like difficulties in voltage
controlling [80] or unforeseen blackouts [72] and eventually causes a relevant error in the power
flow forecasting that can give rise to extreme results on energy market, like very high prices or
null/negative price sell. To understand such effects, we must describe not only the dynamics of
the fluctuations in energy production/demand but also the functioning of electricity markets.

Actual electricity markets aim to reach efficient equilibrium prices at which both producers
and distributors could sell electricity profitably. Typically, the electricity markets are hierar-
chically structured according to time-based criteria strictly connected to the power system’s
constrains. In particular, the Short Term Market (ST) is usually structured into One Day
Ahead Market (ODA), Intraday Market (ID) and Ancillary Service, Reserve and Balancing
Market (ASR) [51]. Almost all the simulation approaches for the electricity market are either
based on stochastic [60, 69] or on game theoretical [85] studies based on past data series, while
few models focus on market equilibrium as obtained from production and transmission con-
straints [45]. To the best of our knowledge, nobody yet addressed the effects of distributed
generation not only in power balancing but also in balancing market prices taking into account
the network constraints.
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In this paper we present a simplified model that, taking into account the power system con-
straints, allows both the forecasting of the balancing market and to single out the contribution
of various actors into the formation of the price. Our model is data-driven, since information
on the day-ahead market transactions is used to tune the agent-based simulation of the market
behaviour. In our model we take as static constraints the grid topology, the type of production
per node and the transmission rules. Our dynamical constraints are the maximum and mini-
mum generation from power stations and their ramp variation (i.e. how fast can be changed the
amount of generated energy); such constraints influence factors like the short term availability
of an energy source. The input of our model are typical consumer requests and the forecasted
geo-referred wind and solar energy generation. We model the balancing market by introducing
agents aiming to maximise their profits; such agents mimic the market operators of conventional
generators [22]. Agents’ behaviour is modelled by a probability distribution for the possible
sell/buy actions; such distribution is obtained by a training process on synthetic data. In each
simulation, agents place bids on the balancing market based on the energy requests fixed by
the ODA market. In order to ensure the system security, the Transmission System Operators
(TSO) selects the bids to guarantee energy balancing in real time. We model the TSO be-
haviour by choosing bids combinations according to the TSO’s technical requirements and the
economic merit order. Our model allows not only to forecast the statistics of the fluctuations
in power offer/demand – related to energy security – but also the behaviour of the balancing
market on a detail basis and to infer the market share of the various energy sources (e.g. oil,
carbon etc.); hence, it has important practical implications, since it can be used as a tool and
a benchmark for agencies and operators in the distribution markets. Moreover, our modelling
allows to understand the changes in the market equilibria and behaviour due to the increasingly
penetration of distributed generation and to address the question of economic sustainability
of given power plants. As a case study, we present a detailed one-day analysis of the Italian
electricity market.

4.2 Results

RES impact fundamentally the functioning of electricity market due to the technical constraints
of the power system that requires an instantaneous balance between the power production and
demand. In fact, the electricity market is structured to guarantee the matching among the offers
from generators and the bids from consumers at each node of the power network according to
an economic merit order [8]. To perform this task, the exchanges starts one day ahead on the
basis of a daily energy demand forecasting and then successive market sections refine the offers
at the aim of both satisfying the balancing condition and of preserving the power quality and
the security of energy supply.

The most extensively studied market sector is the day-ahead market, which has been mod-
elled both in terms of statistical analysis of historical data [30], game theory for the market
phase [85] and stochastic modelling of the market operators behaviour [69].

On the other hand, few models have been proposed for the last market section [8, 17, 38,
61], devoted to assure the real-time power reserve. In fact, ASR allows to compensate the
unpredictable events and/or the forecasting errors that can occur on the whole power system.
In particular, the Balancing Market (BM) has a fundamental role in guaranteeing the reliability
of the power system in presence of the deregulated electricity market.

The most important studies in ASR modelling aim to provide methods that allows the
forecasting the amount of power needed for network stabilization purposes [8, 38, 61], whereas
only few research activities deal with the energy price forecast [69]. With respect to the state
of the art, we present in this paper an alternative model for daily BM time evolution. In
particular, we reproduce the operator market strategies by means of an agent based approach,
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where agents represent typical market operators.
Our model is characterised by three phases: sampling of the perturbations, training of the

agents and forecast of the balancing market.
In the first phase we use the information about the ODA and ID market to infer realistic

power flow configurations by taking into account the physical constraints of the electric grid.
We then introduce stochastic variations related to the geographically distribution of power con-
sumption and RES generation; in such a way, we generate a statistical sample of configurations
representing realistic and geo-referenced time patterns of energy requests/productions to be
balanced. The difference at each time between the total actual power requests and the volume
of the ODA+ID market is the size of the balancing market. The result of this phase samples
the statistics of fluctuations induced by renewable sources; hence, it has important applications
respect to energy security (forecasting energy congestions and/or outages) and to maintaining
quality of service. We show in Figure 4.1 the setup of the system for the first phase; in par-
ticular, panel (a) shows the topology of the electricity transmission network in Italy, panel (b)
shows the Italian market zone splitting and panel (c) shows a typical daily time evolution of
ODA+ID outcomes with the detailed contribution of each primary energy source. Notice that
market zones are used for managing eventual congestions occurring in the Italian electricity
market.

In the second phase we use such balancing requests together with the static and the dynamic
constraints of conventional power plant to train the agents of the balancing market by optimising
their bidding behaviour (see sec.4.4). Notice that in the balancing market generators are
only conventional; hence, optimising the usage and implementation of renewable resources
to diminish short time market fluctuations is crucial to augment the sustainability of power
production.

In the third phase we use the balancing market size and the trained agents’ biddings to
evaluate market price evolution by performing a statistically significant number of simulations.
In such simulations, each agent can place bids, both for positive (upward market) or negative
(downward market) balancing needs. This data is produced along the day at fixed intervals
on a geo-referenced grid; for the Italian balancing market bids are accepted each 15 minutes.
Typical simulations outputs in the upward and the downward electricity balancing market are:

• The time evolution of the balancing market size.

• The time evolution of the electricity prices

• The market share for each technology type

In figure 4.2 we compare the results of the model with real data of the actual upward and
downward balancing market obtained from the Italian market operator web site [1]; notice
that the data reported in [1] are aggregated for each hour. We take as a reference period the
2011-2012 winter season. In the upper panels of figure 4.2 we show that the predicted sizes
of the downward and upward markets – expressed in term of energy reductions/increases for
balancing requirement – agree with the historical data of the reference period. In the lower
panels of figure 4.2 we show that the predicted prices in the downward and upward markets
also agree with the historical data of the reference period. We notice that price and size have
a similar shape, highlighting the expected correlation among sizes and prices. To the best of
our knowledge, this is the first time that is possible to forecast the behaviour of the balancing
market without using historical time series analysis but using informations coming out from
the one-day ahead power system.

An interesting output of our approach is the forecast of the detailed contribution of each
primary energy source to the downward and upward electricity balancing market. In figure
4.3 we show that conventional energy sources contribute in a different manner to the upward
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and downward market. As an example, due to dynamical constraints, carbon power plants
contribution is negligible (due to the limits in the minimum operative power generation, mostly
in the upward market) even if their energy cost is the lowest. This result highlights that
market shares do not depend only on energy costs but stems from an equilibrium among
dynamic response, energy cost, geographical positions and interactions among the different
energy sources.

4.3 Discussion

The use of renewable energy sources is creating a new energy market where it is of the utmost im-
portance to be in a condition to anticipate trends and needs from users and producers to reduce
inefficiencies in energy management and optimize the production. The future transformation
of the traditional passive distribution network in a pro-active is requiring the implementation
of energy system where production and request fluctuations can be efficiently managed. In par-
ticular, fluctuations have the strongest impact on markets and energy continuity at short-time
scales.

Previous research on short time energy forecasting concentrates on next-day electricity prices
showing that the analysis of time series yields accurate and efficient price forecasting tools
when using dynamic regression and transfer function models [69] or ARIMA methodology [30].
Systematic methods to calculate transition probabilities and rewards have also been developed
to optimize market cleaning strategies [86]; to improve market clearing price prediction, it
is possible to employ neural networks [60]. A further step toward and integrated model of
(day ahead) market and energy flows has been taken in [17], where authors propose a market-
clearing formulation with stochastic security assessed under various conditions on line flow
limits, availability of spinning reserve and generator ramping limits. However, one-day ahead
markets and balancing markets are fundamentally different and need separate formulations [8].

Since wind power is possibly the most erratic renewable source, it has been the focus of
most investigations on short-time fluctuations. The analysis of possible evolutions in optimal
short-term wind energy balancing highlights the needs of managing reserves through changes
in market scheduling (more regular and higher) and in introducing stochastic planning method
as opposed to deterministic one [53]. In [95], together with a probabilistic framework for secure
day-ahead dispatch of wind power, a real-time reserve strategy is proposed as a corrective
control action. On the operator side, the question regarding the virtual power plant (i.e. a set
of energy sources aggregated and managed by a single operator as a coherent single source)
participation to energy and spinning reserve markets with a bidding strategies that takes into
account distributed resources and network constraints has been developed in [61] resorting to
heavy computational solutions like nonlinear mixed-integer programming with inter-temporal
constraints solved by genetic algorithms.

In this paper we model both the electric energy flows and the very short time market
size taking into account the variability of renewable generation and customer demands via a
stochastic approach. Network and ramping constraints are explicitly taken into account via
the AC power flow model while market price prediction is modelled through an agent based
simulation of energy operators. The input of the model are the day-ahead prices and sizes,
quantities that is possible to successfully predict [30, 69]. Our approach falls in the class of
models of inter-dependent critical infrastructures. We validate our model in the case of the
Italian power grid and balancing market; we find that even a simplified stochastic model of
production and demand based on uncorrelated Gaussian fluctuations allows to predict the
statistics of energy unbalances and market prices. Our model complements the virtual-plant
approaches that concentrate on the marketing strategies of single operators managing several
sources. To the best of our knowledge, the explicit mechanism through which fluctuations enter
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into the price determination has never been considered explicitly before our investigation.
In the actual phase of transition from a centralised to a distributed generation system, our

approach allows to address the complex task of estimating the additional cost associated to the
balancing of renewable energy sources. Such evaluation would allow to better understand the
real impact of green sources in diminishing the carbon footprint, since balancing – in absence
of a well developed technology of energy storage – still relies heavily on conventional genera-
tors. Moreover, by comparing the current situations with novel scenarios where new generators
(nodes in the model) are introduced, our approach allows for a detailed geo-localised what-if
analysis of the energy planning. An important direction to develop for our model would be
a deeper understanding and modelling of fluctuations. In fact, the probability distribution
of fluctuations in energy production has different statistics according to the renewable type.
Moreover, both spatial and temporal correlations should be taken into account: as an example,
weather influenced sources – like wind and solar generators – display naturally a cross correla-
tion among nearby located sources, and a temporal correlations due to the non-instantaneous
character of weather variations. Though our analysis stems from a theoretical approach to
understanding the effect of stochastic components in an interconnected system, it has imme-
diate practical implications since the computational burden of our method is compatible with
the scheduling time of the balancing market permitting the potential use of this software for
on-the-fly decision support.

An important development of our model would be to address what-if analysis aimed to
understand how the introduction of new rules and policies affects the market. In fact, it has
been shown that regulatory intervention affect – via cash out arrangement – not only spot
price dynamics, but also price volatility (i.e. fluctuations). Moreover, by predicting power
unbalances, our approach allows for a better understanding of the energy security risks induced
by renewable sources. In fact, the introduction of the stochastic components is crucial for the
management of electrical energy system, for which the deterministic approach has historically
allowed a proper functioning of the electric energy system, by virtue of (i) an accurate profile
for the management of generation and (ii) a high degree of accuracy in loads prediction, i.e.
conditions that are nowadays deeply changed.

4.4 Methods

The development of models that allow the evaluation of ancillary service cost in an electricity
system during a RES-based transition phase, has practical implications particularly important
in the energy system planning. Moreover, the associated tools can be useful implemented by
the TSOs and the market operators to forecast in real time both the expected amount of energy
required for balancing purposes and their price evolution.

In previous studies [30, 69], market sizes and the electricity price forecasts have been eval-
uated by statistical analysis of historical time series. Despite of the good accuracy of these
methods, their formulations do not allow the forecasting of the possible changes in markets
caused by a transformation of the system involving market rules and/or infrastructure evolu-
tion (different power grids topology, transmission codes, new or different management of power
plants). Here we propose a methodology that is able to take into account any upgrade since
it models the behaviour of the market operators subject to a realistic set of perturbations of
the actual system. The reference configuration of the power system is obtained starting from
two datasets. The first dataset is related to the characteristics of the power system (from
the TERNA website [92]) and includes: the geo-referenced position of every 220 and 380 KV
substations together with their electrical characteristics, the geo-referenced position of con-
ventional generators together with their power rates and power ramp limits and the electrical
characteristics of the power network. The second dataset (from the GME website [1]) reports
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the detailed time evolution of production/consumption for each 15 minutes of a reference day
in the winter period 2011-2012.

Since we aim to describe the entire electricity balancing market session, we perform a
complete simulation for each of the market subsections. For each interval of 15 minutes, the
simulation is characterised by three phases: sampling of the perturbations, training of the
agents and forecast of the balancing market.

In the first phase, the electric state of power grid is initially perturbed stochastically, in order
to reproduce both the power production variability of RES generators and the fluctuation in
the electricity demand. As output, a realistic set of perturbed physical states of electricity
network, at each of which correspond an unbalance power condition, is given. This phase
allows the statistical forecasting of the size of the balancing market.

In the second phase, the forecast sizes of the balancing market are used to train the agents
tuning their offer propensities, i.e. their willingness to offer a certain amount of energy at a
certain price. These propensities are, in the real case, due to an expertise of the operators in
understanding market fluctuations and placing the bid that ensures them to reach the maximum
profit.

In the third phase, trained agents place bids on a set of realistic perturbations representing
the possible balancing requirements; price is formed according to TSO’s merit order.

The implementation of the proposed methodology requires a detailed description and anal-
ysis of the power system from a technical and economical point of view. In particular, the
evaluation of the perturbed states in a medium-size national power transmission grid is a com-
plex task; in our Italian case-study, it involves around a thousand of interconnected nodes
dispatching power, around a hundred of conventional generators, around a thousand of RES
generators, and around thousands of loads. Each node is subject to complex physical con-
straints which have to be modelled adequately in order to ensure a correct description of the
system. In addition, global system constraints must be considered in order to ensure the correct
behaviour of the system in term of the quality of the supply. Moreover, the distributed RES
generators and loads which are aggregated at the corresponding transmission nodes, assume
values of power that fluctuate in time and space. We model their power production or con-
sumption in a statistical way, assuming Gaussian-like forecast errors with standard deviations
σi, which represent the expected power variations at each single node i of the power grid in
a given time. The application of AC power flow algorithm [100] allows the validation of the
dynamic and static physical constraint giving the possible states of the power system. The
considered variables associated to them are:

• Load power demand Dl and the corresponding σl;

• Wind power production Gw and the corresponding σw;

• Photovoltaic power production GPV and the corresponding σPV .

The system variability is tackled via a statistical mechanics approach; the set of possible states of
the system at a defined time is numerically sampled by adding to the expected power production
and consumption at every node i and RES generator of the grid a random value extracted from
a Gaussian distribution with zero mean and variance σi. Each perturbed state is characterised
by a different total power production Gtot and demand Dtot, and their difference S = Gtot−Dtot

is the required balancing power; hence, S is a random variable that represents the market size;
to sample the statistics of the market behaviour, we need a significant number of possible
balancing requirements. To such an aim, we generate 6000 statistically independent perturbed
states for each time interval.

In order to model the balancing market, the specific rules on which it is based on should
be described. In general, a market session is an auction, in which the bids placed by market
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operators are accepted by the TSO according to a cost minimization method. The operative
rules of the Italian balancing market are briefly described in supplementary informations sec-
tion. For each perturbed state, an auction will be made with a corresponding sampled value
S of the market size. Since S can be either positive or negative we can have respectively a
so-called upward market or a downward market session.

In a market session, each agent (market operator) k represents a conventional power plant
and can place a bid (pk, gk) on the auction, in which it specifies the amount of energy gk that
the corresponding power plant can provide to the system, and its price pk. Once the bids have
been placed, the TSO accepts all the viable offers until the total energy needed for balancing
is reached, according to the price and complaining with the actual power flow constraints.

Since the bid values are obtained according to the agent k propensities described by a
specific probability distribution Mk, agents must be trained to estimate their propensities. To
such an aim, we start from an initial guess Mk = M0 and perform several market sessions in
which each agent updates its propensities in order to maximise a profit function as described
in detail in the supplementary informations section.

Once the agents have been trained, we can forecast the behaviour of the balancing market
by performing market sessions on the sampled perturbed states. In addition to the market size
S, we can calculate the global price per kilowatt P =

∑
pk/S from the set of accepted offers.

Notice that P is a random variable associating a market price to each perturbed state of the
system.

The outputs of the simulations are the sampled distributions Pup, Pdown, Sup and Sdown

of sizes and prices of the upward and downward market. In order to describe the system
evolution during time, this distributions have been obtained for each time interval t, obtaining
a dynamical distribution of market size and energy price. In order to validate the outcomes of
our simulations with the available balancing market outcomes [1], results has been aggregated
for each hour of the day.
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Figure 4.1: Input elements for evaluating the size of the balancing market (i.e. the short
time fluctuations in power generation/demand). In panel (a) we show the electric transmission
network in Italy; the topology and the physical characteristics of lines and generators are the
constraints that influence the power flow. In panel (b) we show the market zone splitting used
for managing the congestions of the entire Italian network. In panel (c) we show a typical
ODA+ID market final output with the detailed contribution of each primary energy source;
hence, it represent the day ahead energy needs as foreseen from energy operators. The balancing
market takes care of short time fluctuations that occur during the day respect the scheduled
ODA+ID output.
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Figure 4.2: Comparison among the results of our model and the real balancing market. Notice
that unbalanced power can either lead to (i) the necessity of producing less power than what
foreseen (left panels, downward markets) or to (ii) the need of more power than what foreseen
(right panels, upward markets). Full rectangles represent the 1st−3rd quartile range (i.e. data is
inside such range with 50% probability) of the real data; the black segment in the full rectangles
is the median of the real data. Red segments correspond to the median and blue segments define
the range from the 1st to the 3rd quartile of the data synthetically generated from our models.
In the upper panels we show the comparisons among real data and the predicted size of upward
and downward markets, i.e. the difference among the foreseen energy production and the actual
request. In the lower panels we show the comparison among real market prices and the ones
predicted from our agent based model.
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Figure 4.3: Estimated total energy (a-b panels, downward and upward market respectively)
and total cost (c-d panels, downward and upward market respectively) in the balancing market;
notice that our model is able to detail the contribution of each conventional power plant tech-
nology. As expected, due to low ramping (i.e. slowness in changing operational conditions),
carbon sources have a very low impact on the balancing market even if they have often the
lowest costs.
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4.5 The Italian balancing market

Due to the difficulty in storing electrical energy, the equilibrium of supply and demand is a key
aspect of electricity transmission and distribution, as it has to be maintained dynamically at
every instant. The aim of electricity market is to provide a optimal framework able to ensure
real time equilibrium, guaranteeing at the same time realistic energy prices. In the following, an
overview of electricity markets is presented, starting from the definition of the market operators
and ending with a description of the various market phases.

Electricity market as a balancing feature on power systems The power system is
mainly composed by a power network, whose goal is to transfer the energy produced by the
power system supply side towards the system demand side. The network operations are usu-
ally entrusted to a single entity, the so-called transmission system operator (TSO). The main
responsibility of the TSO is to guarantee the correct functioning of the transmission network
and to provide an high quality energy to the demand side. Usually, there is a small number of
TSOs in each power system (in Italy, there is only one).

The aim of the entire power system is to provide high quality energy to consumers, by
ensuring highly controlled voltage and frequency output. Such consumers are usually supplied
by long-term contracts, so the supply-side of the market has to account for all the flexibility to
keep the electricity system in a power balanced state. In addition, power production goal is to
supply to the system all the needed power in a way that allows the TSO to transmit this power
to the demand side. The main power production side actors are the system power plants. Power
plants are able to produce power and to supply it to the network. Generally, these power gen-
erators size range from an order of KW to hundred of MW, and their ability to dispatch power
is usually slitted into two different sub-classes: programmable or non programmable sources.
The so-called programmable ones are those whose production is controllable during time, like
big conventional power plants; the non-programmable ones are those whose production is de-
pendant from various factors as wind or sun level, like RES. The first ones provide flexibility
to the market, given by their ability to change power production as needed; the second ones
are hard to control, and add variability to power demand that increases with the increasing
of fraction of power provided by them. For this reason, an increase in the amount of power
produced by non-programmable sources will likely cause instabilities on the power system.

Electricity demand has a cyclical behaviour with a time-scale that varies from day-time and
night-time differences, to weekly and seasonal differences. In order to reach power equilibrium,
energy production must be guided in an efficient way, able at the same time to guarantee
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both power balance and economic equity. The best way to obtain this equilibrium has been
identified as a set of electricity market phases, in which electricity demand and production sides
interact seeking economical rules, trying to reach an economically optimized system response
to power production and consumption variations. The main goal of this set of phases, also
called electricity market, is to guarantee the instantaneous equilibrium of supply and demand.

Reserve markets Achieving equilibrium between power supply and demand is not easy, and
therefore three different control levels have been implemented in order to control every aspect
of it. The main difference between them is the time responsiveness and the cost. They are
called the Primary, Secondary and Tertiary Reserve:

• Primary reserve: Primary reserve is an automated process that forces power plants to ad-
just their production in order to react to sudden changes in total load. All the generators
that are expected to provide this service are made working away from their operational
margins, in order to guarantee the availability of power when and if is needed. Primary
reserve is limited and expensive, has a typical reaction time of the order of minutes, and
it is used only for small adjustments in power production, compared to the total system
operative powers.

• Secondary reserve: Generation facilities involved in secondary reserve are directly called
by the TSO when medium changes in loads or production happens into the system. A
typical secondary reserve scheme is a failure of a small power plant or a great increase (or
decrease) in production of renewable generators, due to unexpected meteorological con-
ditions. Typically, secondary reserve players are asked to adjust their power production
directly by the TSO when some power related problem occurs, and have to react in a time
frame of 10- 15 minutes. Due to this restricted time frame, there is not sufficient time to
shut down or start up generators. For this reason, only already running generators can
participate to secondary reserve by varying their production.

• Tertiary reserve: basically, it works like the secondary reserve, but on larger time steps.
A typical scheme is the failure of a great power plant on the system. In fact, one or more
power plants are asked to provide the missing energy to the system, by varying their
production or, in case of needing, by an emergency starting procedure.

Energy market phases Power balancing on the power system is achieved by different market
steps, performed over time scales that span from months to minutes. In the following, an
overview of the various phases is given.

• Long-time market, or Futures market (LTM): During this market phase, that lasts from a
year to a week before the effective power delivery, market operators sell futures regarding
the amount of power that is planned to be produced. In relation to their great capacity
but little ability to change power output in time, the main actors in this step are great
power generators.

• Day-ahead market (ODA): one day before the effective power dispatch, more detailed
forecasts on power demand and RES generation are available. By using this datasets,
an improved market phase is performed, in which the LTM offers can be reconsidered
by the market operators. By doing so, the effective power produced by each generator
is adjusted to match the energy needs of the entire system. Usually, this phase energy
prices are taken as a reference.
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• Intra-day market (ID): After the day-ahead market is closed, some changing can occur
in both demand and supply side of the market. In order to balance the effect of such
oscillations, market operators are allowed to vary their production accordingly to the
network needs. Usually, the amount of energy exchanged in this session is smaller then
the one exchanged in day-ahead.

• Ancillary services market: takes care of the grid deviations from power balance. ODA and
IM outcomes are based on one-day ahead forecast of load power consumption and RES
power production, and these forecasts carry an intrinsic variability that will likely cause
real time systemic deviations from equilibrium. For these reasons, a real time power
balancing method is needed in order to ensure the correct functioning of the system.
This power balancing is made by means of the so-called ancillary services markets. In
Italy, it starts right after IM clearing with the MSD ex-ante phase, where market reserve
is created. After such phase Balancing Market (BM) is performed: here, the abilited
market operators offer to change their power supply for a certain cost. In order to limit
the network fluctuations, the TSO accepts or not these offers ordering them to change
the power supply of the generators under their control. Due to the small time frame of
these processes, the BM energy sell price will be higher than the previous phases one.

4.6 Agent based simulation of electricity balancing mar-

ket

We base our agent model on the Roth-Erev algorithm [75]; such kind of algorithms have already
been applied for simulating the Italian ODA electricity market [78]. In such kind of models,
agents learn how to place optimal bids in competitive auctions with the aim of buying (or
selling) in the most convenient way.

The behaviour of real operators is related to their market knowledge, often obtained by a
learning process performed during time. Roth-Erev algorithms simulate this learning process
by adjusting propensities using a self-consistent methodology whose goal is to maximize profits.
In this paper we apply a modified version of Roth-Erev algorithm as introduced by Nicolaisen et
al [68]. Since we don’t have the information on the exact relationships among market operators
and brokers, we consider every conventional power plant generator as a single agent.

We describe operator propensities using a statistical description of the possible bidding
strategies. The bidding strategies of the operator k are described by a finite discrete set
Sk = {(mi

k, s
i
k)}. Here 0 < i < N is the strategy index, N is the number of possible strategies,

si is the operator propensity to offer at a given markup value mi
k (1 ≤ mi

k ≤ 10 for upward
bids, 0 ≤ mi

k ≤ 1 for downward bids); in our simulations N = 50. The mark-up value allows to
calculate the bidding price as poff = Cprod ·mi, where Cprod is the production cost (per MWh)
of each generator, given by his technology type. The behaviour of the operators is modelled by
a stochastic process in which the probability of placing a bid at a given price poff = Cprod ·mi

is the normalised propensity qi = si/
∑

i s
i.

An agent k can offer an amount of power gkoff that must meet the following constraints:

• Gk
min ≤ Gk

given + gkoff ≤ Gk
max: every generator has a minimum Gk

min and a maximum

Gk
max of allowed power supply; Gk

given is the actual power production of the generator.

• −Gk
ramp ≤ gkoff ≤ Gk

ramp: due to construction and technological limits, each generator
has ramping constraints that limits in time their maximum change in power production
Gramp.
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To optimise the propensities of the agents, we apply an iterative algorithm. At the beginning
of the learning algorithm, all propensities sn have the same value sn = 1. The iterations of the
algorithm are divided in three phases:

1. Bid presentation: Every agent presents a bid (goff , poff ), both for upward and downward
market. This bid is given by a feasible quantity of offered energy goff (i.e. satisfying the
physical constraints) and by a price poff that will be drawn from agents’ propensities.

2. Market session: Given the knowledge of the balancing needs of the system, the TSO
accepts all the bids needed to ensure that energy while seeking economic profit, verifying
that the physical constraints of the system are met.

3. Agent update: Market outcomes are communicated to each agent, that updates his
propensities in relation to the profit made in the session. Agents propensities at iter-
ation t are updated as follows:

si(t) = (1− r) · si(t− 1) + Ei(t) (4.1)

where r ∈ [0, 1] is a memory parameter and Ei(t) is obtained from the relation:

Ei(t) =

{
(poff − Cprod) · goff if bid has been accepted at time t

e ·mi(t− 1)/ (N − 1) otherwhise
(4.2)

where e ∈ [0, 1] is an experimental parameter that assign a different weight to played and
non-played actions.

To the best of our knowledge, Roth-Erev algorithms have been always applied by training
agents over historical data. In this paper we overcome the need of historical data by training
the agents on realistic system states that are synthetically generated.
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Overview

About 15% of the total CO2 emissions is ascribable to mobility. For this reason, a crucial point
in the limitation of global CO2 emissions is the migration from a fossil fueled towards a more
clean and green EV mobility. Despite the increasing efforts made in technological research
related to the improving of electric vehicles performances, EV mobility necessarily needs an
ad-hoc infrastructure perfectly integrated with cities and local electrical power systems. This
integration fits perfectly in a smart city vision, in which the different systems forming a
city must be integrated and interconnected. Aim of this vision is to improve the smart city
technical, social and economical performances and to make the entire system sustainable: for
such purpose, new studies related to infrastructure planning and analysis are needed.

In this thesis, two different approaches are proposed. In Community core detection
in transportation networks, a topological study on the Sardinian mobility network is per-
formed. In such paper, an improvement to Louvain community detection method is proposed,
able to identify the most important and central nodes in each of the obtained communities. As
application of the method, analysis of the city of Atlanta traffic and of Sardinian commuting
network are performed. For each of them, has been possible to identify the communities in
which these systems are split, and the most central nodes among them. In the second one,
An Agent Based Approach for the Development of EV fleet Charging Strategies
in Smart Cities a novel agent based traffic model is presented, able to estimate the charging
needs of an EV fleet in a medium size city. This model, an extension to the queue model [26],
allows to obtain, by georeferenced way, the time evolution of power needed by the analysed EV
fleet for charging purposes.

By using this information, has been possible to propose and test an infrastructure planning
procedure that can be used for the implementation of such charging infrastructure into the
studied city. Moreover, has been possible to test different charging strategies that can be
performed by the infrastructure management company, and their possible impact over the
power system in terms of charging power requirements.
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5.1 Abstract

This work analyzes methods for the identification and the stability under perturbation of a ter-
ritorial community structure with specific reference to transportation networks. We considered
networks of commuters for a city and an insular region. In both cases, we have studied the
distribution of commuters’ trips (i.e., home-to-work trips and viceversa). The identification
and stability of the communities’ cores are linked to the land-use distribution within the zone
system, and therefore their proper definition may be a useful approach in transport infrastruc-
ture planning. In particular, the identification of community cores can be used to improve the
transport infrastructure quality, helping to identify the optimal positioning of traffic related
services, like parking lots and EV charging stations, enhancing the transition of private and
public mobility towards green, zero emission technologies.

5.2 Introduction

Many Complex Systems can be modeled as networks, in which vertices are the entities of
interest in the system under investigation and edges are the relations between couple of ver-
tices/entities. For example in the World Wide Web the vertices are the web pages and the
edges are the hyperlinks (in this case the network is directed and we have arcs instead of simple
edges). Intuitively, not all vertices and edges have equal roles within a large-scale network;
some vertices may be of some importance for the distribution of traffic in the network, and the
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edges that carry most of the traffic do so because they connect ”groups” of vertices that are
particularly important within the network. The scope of this paper is to understand the nature
of these ”groups”, their ”community structure” or ”clustering”, and find ways to determine the
importance of vertices inside each community, revealing its inner hierarchy. The community
structure of a network is a topic that has been comprehensively treated in [42].

The first problem of graph clustering is one of definition. Although the concept is intuitive,
it is not defined in a rigorous way, as there is no definition of community boundary, or a unique
way of determining whether a particular edge is part of a community and not of another.
Therefore, as pointed out in [42], communities are algorithmically defined, i.e., they are the
final product of the algorithm, without a precise a priori definition.

As an application, this paper analyses methods for the identification and the stability of a
community structure using two transportation networks.

The two analysed networks are: a regionwide network of commuting trips in the insular
region of Sardinia, in Italy, and a network of daily commuting trips in the metropolitan area of
Atlanta, USA. In both cases, we have studied the distribution of commuting trips, i.e., home-
to-work trips and viceversa. The choice was determined by the fact that trips of these types
are clearly defined to planners, because their correlation to the land-use is well understood,
necessarly tied to the population of the origin zone and the employment of the destination
zone.

The field of transportation is a natural choice for the definition of a community structure,
though the field itself has some inherent limitations. One of the main challenges that the world
will face in the next 20 years is given by the transition of private and public mobility towards
less greenhouse emissions technologies. Despite the great technological advances in electrical
engines technologies, electric vehicles (EV) are still uncommon. In order to successfully im-
plement EV as main mobility vectors, new models able to describe and identify the optimal
support infrastructure are needed. An important approach able to describe such systems is
given by complex networks theory and in particular by the studies related to spatial networks.
The identification of the most relevant vertices from the point of view of the internal stability
of a community and the overall partition structure could help to improve transportation infras-
tructure description, being a powerful method in the identification of a correct investment plan.
On a practical matter, the measurement of important traffic variables is lengthy and expen-
sive. For once, different methods to count traffic volumes return different answers, especially
in the identification of commercial vehicles [4]. Additionally, the development of a regionwide
origin-destination (OD) matrix at the zone level is a long and costly procedure; in particular
the matrix of the metropolitan area used in this study has been derived after a year-long survey
process, and the final OD matrix is assembled by weighting a matrix of survey responses ac-
cording to the population of the areas where the partecipants live. A second calibration stage
is generally done to test whether the OD matrix obtained assignes traffic compatibly with the
traffic on the major highways of the study area; as a result of this process, the trip distribution
and assignment may work well globally, but larger discrepancies may persist locally. Finally,
during the time occurred to carry out this process, conditions on the ground may have already
changed, since the land-use of an area is constantly changing, therefore creating discrepancies
in the final OD matrix.

Notwithstanding these inherent difficulties, the identification of communities within a metropoli-
tan area network still holds great importance. First, the formation of communities in a network
is a byproduct of land-use development. Land-use development occurs for a number of reasons
(service maximization, profit, etc), and the location for development is chosen according to the
optimization in terms of different variables, like price of land, proximity to transit, regulation,
that are however variables related to each zone/vertex of the system. For example, demand
for transport between two vertices may lead to the opening of a new edge (e.g., a new bus
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route, a new road), which in turn may lead to more demand for transport (in the form of ”in-
duced demand”, [62, 73]). The community structure is not solely a function of the attributes of
each zone/vertex, but also of the network arrangement, hence it forms a more comprehensive
measure of the importance of a group of zones as a subsection of the zone system.

It is important to know which vertices are the most relevant from the point of view of
the internal stability of a community and the overall partition structure. We will see in the
next section that this idea is at the cornerstone of the community stability. In other fields
the problem has been studied in terms of network breakdown, which has found applications
in the accessibility of a transportation network for flood damage. Knowledge of community
structure can serve planners in the situation of natural disasters to predict the onset of network
breakdown, as studied in [83]. In other fields, it has been applied to the identification of crucial
edges in a web network under cybernetic attack [7, 81, 84].

5.3 Materials and Methods

5.3.1 Community detection and modularity

There are now many community detection methods [42] and the most popular is the modularity
optimization introduced by Newman and Girvan [66]. This method has various drawbacks, the
most important of which is the existence of a resolution limit [43] which prevent it to detect
smaller modules, but has also the advantage of being easy to implement. The modularity
function that needs to be optimized is defined as [67]:

Q =
1

2m

∑
ij

(Aij − Pij) δ(Ci, Cj) (5.1)

where the sum is over all the node pairs, A is the adjacency matrix, m is the total number of
edges and Pij is the expected number of edges between the vertices i and j for a given null
model. The function will result in a null contribution for couples of vertices not belonging to
the same community (Ci 6= Cj). For an unweighted network, the choice Pij = kikj/2m equates
to taking as a null model a random network with the same degree sequence as the original
network.

To optimize the modularity we used the Louvain algorithm [14] based on two steps that are
repeated iteratively until a global maximum is reached. In the first step we create a network
partition where the number of communities is equal to the nodes number. Then, the algorithm
iterates over all nodes and computes for each node the modularity gain within the communities
of its neighbors; a node movement is maintained if it leads to a positive variation in modularity.
The iteration is repeated until a local maximum is reached, that is until there is not any other
move that lead to an increase in modularity.

Figure 5.1: (Color online) This figure shows an example of the first step execution over a
network with 15 nodes: at the beginning all nodes are isolated (left), then the algorithm start
to merge several nodes together (center) until the local maximum is reached (right) (after
Blondel et al. [14])
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In the second step the algorithm creates a new network whose nodes are the communities;
the total weight of the links between communities is the total weight of the links between the
nodes of these communities. Typically the nodes number diminishes drastically at this step
and this ensures the rapid convergence of the algorithm for large networks.

Figure 5.2: (Color online) This figure shows an example of the second step where it is possible to
note the creation of self links associated to the communities internal connections(after Blondel
et al. [14]).

The main problems of all algorithms for community detection is the fact that the community
definition does not provide any information about the importance of a node inside its own
community. Nodes of a community do not have all the same importance for the community
stability: the removal of a node in the ”core” of a network affects the partition much more than
the deletion of a node that stays on the edge of the community (i.e. a node connected in the
same way with nodes internal and external to its community). The purpose of the following
section is to develop a novel way for detecting cores inside communities by using the properties
the of modularity function.

5.3.2 dQ analysis for cores detection in a partition

By definition, if the modularity associated to a network has been optimized, every perturbation
in the partition leads to a negative variation in the modularity (dQ). If we move a node from
a partition we have M − 1 possible choices (with M the number of communities) as possible
targets for the new host communty of this node. We decided to define the dQ associated to
each node as the smallest variation in absolute value (or the closest to 0 since dQ is always
a negative number) for all the possible choices and this is in our view a measure of how that
node is internal in its community.

Fig. 5.3 shows the typical dQ frequency distribution of nodes inside a community; the
data points were fitted using a decaying exponential form exp(−x/`) with typical length `.
The typical lenght ` and defines a starting point to discriminate the core nodes. For practical
purposes, the threshold value dthr = 2`, is an appropriate boundary value to differentiate
between core nodes (the ones below the threshold) and the border nodes (the peripheral nodes).

Fig. 5.4 shows the cores detected for the city of Atlanta, GA, using the method described
above.

5.4 Datasets

5.4.1 Sardinian Inter-municipal Commuting Network

Sardinia is the second largest Mediterranean island with an area of approximately 24, 000 square
kilometers and 1, 600, 000 inhabitants. At the date of 1991, the island was partitioned in 375
municipalities, the second simplest body in the Italian public administration, each one of those
generally corresponding to a major urban centre (in Figure 5.5 we report the geographical
distribution of the municipalities). For the whole set of municipalities the Italian National
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Figure 5.3: (Color online) dQ frequency plots relative to 4 communities detected for the city of
Atlanta, GA. The correlation coefficients of the exponential fits are (from top right to bottom
left, respectively) 0.956, 0.946, 0.937 and 0.933. In general, these distributions are the tipical
dQ frequency distribution inside a community (provided there are enough nodes to perform an
exponential fit).

Figure 5.4: (Color online) Cores detected for the city of Atlanta, GA, using a threshold equal
to double the typical length of the exponential distribution of the dQ frequencies.

Institute of Statistics [48] has issued the origin-destination table (OD) corresponding to the
commuting traffic at the inter-city level. The OD is constructed on the output of a survey about
commuting behaviors of Sardinian citizens. This survey refers to the daily movement from the
habitual residence (the origin) to the most frequent place of employment (the destination): the
data comprise both the transportation means used and the time usually spent for displacement.
Hence, OD data give access to the flows of people regularly commuting among the Sardinian
municipalities. In particular we have considered the external flows i → j which measure the
movements from any municipality i to the municipality j and we will focus on the flows of
individuals (workers and students) commuting throughout the set of Sardinian municipalities
by all means of transportation. This data source allows the construction of the Sardinian inter-
municipal commuting network (SMCN) in which each node corresponds to a given municipality
and the links represent the presence of a non-zero flow of commuters among the corresponding
municipalities.

The standard mathematical representation of the resulting network is provided by the adja-
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Figure 5.5: (Color online) Geographical versus topologic representation of the the Sardinian
inter-municipal commuting network (SMCN): the nodes (red points) correspond to the towns,
while the links to a flow value larger than 50 commuters between two towns.

cency matrix A of elements (aij). The elements on the principal diagonal (aii) are set equal to
zero, since intra-municipal commuting movements are not considered here. Off-diagonal terms
aij are equal to 1 in the presence of any non-zero flow between i and j (i → j or j → i)
and are equal to 0 otherwise. The adjacency matrix is then symmetric and describes regu-
lar bi-directional displacements among the municipalities. The adjacency matrix contains all
the topological information about the network but the dataset also provides the number of
commuters attached to each link. It is therefore possible to go beyond the mere topological
representation and to construct a weighted graph where the nodes still represent the municipal
centres but where the links are valued according to the actual number of commuters. Analo-
gously to the adjacency matrix A, we thus construct the symmetric weighted adjacency matrix
W in which the elements wij are computed as the sum of the i→ j and j → i flows between the
corresponding municipalities (per day). The elements wij are null in the case of municipalities
i and j which do not exchange commuting traffic and by definition the diagonal elements are
set to zero . According to the assumption of regular bi-directional movements along the links,
the weight matrix is symmetric and the network is described as an undirected weighted graph.
The weighted graph provides a richer description since it considers the topology along with the
quantitative information on the dynamics occurring in the whole network.

5.4.2 ARC Network

The Atlanta Regional Commission (ARC) maintains a network model for land use purposes of
the metropolitan area of the city of Atlanta, in the State of Georgia, USA. The ARC travel
demand model is designed to represent the state of the practice in travel demand modeling and
to meet all modeling requirements in the US EPA Transportation Conformity Rule. Further
details on the arrangement of zones are reported in [3].

The main data source for the calibration of the travel demand models was a household
travel survey of eight thousand households conducted for the ARC from April 2001 through
April 2002. The household survey data was the main source of data for developing the trip
generation and distribution model. The trip generation model is a fairly unique trip based
model in that it estimated the frequency a person will make trips, by the purpose of the trip,
and then applies this frequency to individual persons to determine the total amount of travel
made by the residents of the region. Therefore, as in the case of the SMNC network, the
trips reported in the ARC model are produced by a trip generation model, which is calibrated
according to the result of a survey. The calibration is achieved by matching the trip length,
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frequency and by evaluating geographic area biases (e.g., natural features, political or service
delivery boundaries, etc).

The work presented in this paper is centered on the activity of commuters, which in the
ARC model are described as Home Based Work (HBW) trips. It is commonplace to describe
such trips as trips made for the purpose of work and which either begin or end at the traveler’s
home. This is a typical trip purpose that is related to the employment at the destination zone
and population/household income of the traveler or the household at the origin zone. Mode
details on the nature and calibration of the HBW demand and distribution model can be found
in [3] for this specific model. The nature of the relationship between demand for travel and
land-use are further explored in the modeling review works by Wilson [5] and Batty [12].

Figure 5.6: (Color online) Extension of the zone system in the ARC model. Only the links
with a weight greater than 250 have been shown. Each point is a centroid of a TAZ.

A number of socioeconomic variables are recorded in the ARC model, which are of impor-
tance for planning purpose and as inputs to the trip generation and demand growth algorithms.
The figures below show, in order, the gradient plots of population and employment per zone,
as recorded in the nationwide Census 2010. Darker zones indicate higher value for the corre-
sponding variable.

Figure 5.7: (Color online) Gradient plot for Population in the ARC model.

Figure 5.7 shows the gradient plot of the zone population. Population is seen in this figure
as being scattered around the center that forms the core of the downtown area.

Figure 5.8 shows the gradient plot for the zone employment, measured as the number of
jobs located in the zone the variable refers to. Employment is seen in this figure as primarily
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Figure 5.8: (Color online) Gradient plot for Employment in the ARC model.

in-strength Correlation

Employment 0.984
Academic 0.977
Both 0.984

Table 5.1: Results of correlation analysis between dQ and the in-strength related to particular
segments of the traveling population in the SMCN network.

located in the downtown zones (which are quite small in size) plus other job centers in the
suburban metropolitan areas.

5.5 Results

The sequence of charts that follow describes the correlation of the quantity dQ and the various
socioeconomic variables that are available for analysis.

The table below shows the result of correlation analysis between the computed dQ and the
in-strength of the various zones in the SMCN network. For the sake of clarity, the Sardinian
and ARC networks are in principle directed, as previously described in 5.4, and the in-strength
has been computed starting from these original networks. On the contrary, the community
detection has been performed using undirected networks obtained from the directed ones by
summing up the weigths of incoming and outgoing links. The correlation results shown in the
table 5.1 only give a overall picture of the quality of correlation between traffic and community
structure. Figures 5.9-5.10 show the geographic distribution of the gradients of dQ values across
the zone system. Figure 5.9 shows the values of dQ arranged by color (darker color indicates
higher value). Higher dQ indicates that the zone under investigation is more to the center of
a community than the zones with lighter color. The data in Figure 5.9 shows that the two
likeliest centers of a community (the two darkest zones in the figure) are not both centers of
population and/or employment, nor are all large centers of population and/or employment
necessarily key zones to the definition (and for its definition, stability) of a community. In
other words, community and socioeconomic activity are not on a one-to-one relationship, and
it is not always possible to imply a ranking of one of these quantities with respect to the other
and viceversa.

Figure 5.10 (right) below shows what the communities identified look like with respect to
the political subdivisions of the island of Sardinia, the provinces that corresponds to the NUT3
regions in the international classifications (left). To put this result in context, it is important
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Figure 5.9: (Color online) dQ plot for the network related to Employment in the SMCN network.

to note that the present political subdivision in eight provinces took effect in 2005 after a law
passed in 2001 raised the number of provinces from the original number of four. Therefore,
at the time the ISTAT data was collected (2001), Sardinia was subdivided politically in four
provinces, hence the results of the modularity analysis showed that at least seven communities
existed, subdivided geographically roughly along the lines of the boundary of the new (and
present time) provinces. The two subdivisions, ”topological” the first, political the second, are
remarkably alike, suggesting that either the political subdivision was designed to accomodate
the arrangement of commuting movements, or the topological subdivision is a result of ease of
movement within a (not yet established) political subdivision.

Figure 5.10: (Color online) A comparison between the current provincial division (CA =
Cagliari, CI = Carbonia-Iglesias, VS = Medio Campidano, OR = Oristano, OG = Oglias-
tra, NU = Nuoro, SS = Sassari and OT = Olbia-Tempio) of the Sardinia region, Italy, and the
result of the community detection.
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Finally, it is worth noting that, according to the results of a regional referendum in May
2012, the four new provinces established in according to the 2001 law will be abolished starting
March 2013.

Table 5.2 shows the result of the correlation between in-strength, dQ and employment for
the ARC network. Correlation with employment is quite poor while, as in the case of the
SMCN network, correlation with the in-strength is quite good. It is instructive then to see
the geographic arrangement of the communities and other features of the network. Figure 5.11

Variable Correlation

in-strength 0.782
Employment 0.052

Table 5.2: Results of correlation analysis between dQ and various variables in the ARC network.

shows the dQ distribution for the ARC network. Darker zones indicate zones with higher dQ,
and the darkest zones can be considered as the center of a community. Figure 5.12 show (color-
coded) the community boudaries. The correlation between dQ and in-strength is explored

Figure 5.11: (Color online) dQ plot for the ARC network.

Figure 5.12: (Color online) dQ and community boundary plot for the ARC network

by means of the Figure 5.13, which shows a correlation of almost 0.8. As per the case of the
SMCN network, community and socioeconomic activity are not on a one-to-one relationship,
and it is not always possible to imply a ranking of one of these quantities with respect to the
other and viceversa.
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Figure 5.13: (Color online) The correlation between dQ and in-strength is equal to 0.78.

5.6 Discussion

The two case studies that have been the subject of this analysis showed that community struc-
ture coming from the networks analysis with its cores definitions, and socioeconomic activity
are not on a one-to-one relationship, and it is not always possible to imply a ranking of one of
these quantities with respect to the other and viceversa. Hence, the ”community” is a distinct
mathematical object with its own land-use meaning that contains some valuable infromation
to be exploited. Correlation between the community stability (expressed in dQ value) and
socioeconomic variables only tells part of story, while the remaining contribution to the com-
munity stability is to be found in the topological property of the networks. Our application
to transportation networks has been a kind of territorial benchmark for this novel approach,
but the proposed method for detecting cores in communities through the optimization of the
modularity function is quite general and can be applied to other networked systems.



Chapter 6

An Agent Based Approach for the
Development of EV fleet Charging
Strategies in Smart Cities

M.Mureddu1, A. Scala2,3, A. Chessa2,3, G. Caldarelli2,3, M. Musio4, A. Damiano4

aDipartimento di Fisica, Università di Cagliari, 09123 Cagliari, Italy
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6.1 Abstract

In the present paper an agent based approach, addressed to simulate the behaviour of a Plug-in
Electric Vehicles (PEV) fleet into a Smart City, is presented. Considering the traffic data-set
available from mobility plans, a spatial and time model, representing the evolution of travel
patterns, can be developed considering each vehicle as an agent. The following statistical anal-
ysis in space and time of the agent behaviours is used to plan the PEV charging infrastructure
of municipalities. The proposed planning methodology has been tested on an European city
in order to evaluate the effectiveness of the proposed procedure. Such charging infrastructure,
defined according to the mobility needs, has been tested and used to evaluate the customer
satisfaction of PEV users in term of charging demand. The proposed charging system has been
implemented to estimate the average daily energy profiles for charging the smart city PEV fleet
during a typical workday. This has been finally used as one day ahead energy reference profile
to develop a market-oriented EV charging strategies. The performance of the proposed smart
charging strategies has been finally simulated and compared.

6.2 Introduction

Thanks to the increasing environmental awareness and to the will to reduce both the dependence
on fossil sources and the emissions of greenhouse gases, the energy policy of many governments
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around the world is oriented to strongly support the exploitation of renewable energy sources
(RES). In particular, the European Union (EU), through its Energy and Climate Policy, has
set two ambitious targets by 2020: providing 20% of gross energy consumption from RES and
reducing by 20% the greenhouse gases respect the values registered in 1990 [93]. In addition, the
EU, considering the huge impact of the mobility sector by the energy point of view, has imposed,
as a mandatory constraint, that 10% of the overall energy consumption in the land transport
will have to be supported by RES. This could be achieved by means of bio-fuels and electric
vehicles (EVs). Although the first solution seems to be more rapidly viable, the second one pro-
vides many more opportunities from the technical, economical and social points of view. In this
framework, the urban mobility and its integration with the power system represent promising
opportunities toward the application of the smart grid paradigm to small-medium size cities
with the aim of introducing a novel city concept, known as “smart city”. The smart city basic
idea is to manage complex systems (like cities) in a novel manner. This new concept is based
on an integrated vision of the different systems forming a city in order to improve its technical,
social and economical performances making the entire system sustainable. Energy is one of the
main topics involved in the development of a “smart city” and contemplates (by means of a
wide use of communication devices) the integration and synergic management of distributed
generators, controllable loads and energy storage systems. The main goal is to improve the
overall city energy performance, reducing at the same time the CO2 emissions [94]. In this con-
text, the urban mobility has a fundamental role because its transformation towards sustainable
technologies could support both the reduction of energy consumption and the implementation
of diffused, controllable loads and energy storage systems suitable for the development of smart
grids [76]. In particular, the use of EV batteries according to the Grid to Vehicle (G2V) [77]
or Vehicle to Grid (V2G) concepts [52] allows their use as distributed controllable loads or
energy storage systems. In fact, if the charging process is appropriately managed by an aggre-
gator, the cluster of the plugged EV batteries can be considered as a controllable load (when
only the G2V is applied) or a controllable distributed energy storage system, in accordance
with the V2G paradigm [33]. Moreover, storage devices allow to mitigate the intermittence
of non-dispatchable or stochastic generators, e.g. wind turbines and PV plants, especially in
weak networks [59]. In these applications, according to the V2G concept, EVs could be seen
both as electricity consumers and as electricity suppliers, offering an integrative solution for the
implementation of distributed energy storage. Several studies have analyzed V2G as a promis-
ing option for providing ancillary services [57] [87]. Most studies identify economic benefits
for electric vehicles owners and great technical advantages for network operators when EVs
provide extra power supply, peak load shaving, load shifting, spinning reserve and frequency
regulation services [33]. Different methodologies have been developed taking into account the
mobility needs of EVs owners. Although the reference studies on V2G considered only average
mobility behaviours [52], the impact of driving habits on the V2G capability has been recently
investigated and evaluated by means stochastic models [31]. Nevertheless, besides the mobility
requirement of an EV user, the availability of charging infrastructures plays an important role
in defining the EVs battery capacity available for V2G services.
In the present paper an agent based model (ABM) has been developed to simulate the be-
haviour of a EV fleet into the municipalities and subsequently to estimate the time evolution
and spatial distribution of EVs charging stations in a smart city. The definition of the correct
sizing, in terms of number and rated power of charging stations, has been developed by means
of a planning procedure based on a georeferenced estimation of power requirements referred to
a defined dimension of EV fleet. Defined the charging infrastructure that optimizes the require-
ments of EVs, appropriate charging strategies are finally proposed in order to firstly satisfy the
customer demand and then to forecast, manage, and optimize the charging station electricity
supply.
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6.3 Mobility Model

The knowledge of mobility requirements is considered the starting point in approaching both
the EV mobility planning and the definition of smart charging strategies. For these reasons,
the mobility modeling is a key topic for the development of energy management algorithms in
mobility systems. In the present paper, a traffic model, based on the so-called queue model,
has been applied [26]. This method is suitable for medium size cities characterized by the
movement of several thousand of vehicles both for commuting and other duties needs. This
approach considers vehicles as agents that operate in an infrastructure network represented by
means of a weighted directed graph whose topology is deduced from the city road map.
The graph is obtained considering as nodes the intersections of city roads and as edges the
city roads, weighted in order to take into account the crossing time of the vehicles. Each node
is georeferenced in order to relate its position into the graph to city road map. The agents
develop their travel respecting the graph topological constraints and choosing a route that
minimizes the travel time. Given the informations about commuting, number of employees for
each zone, and population density, a number of agents and their destination can be generated.
On the basis of these hypotheses, the effect of those trips on the entire mobility network can
be simulated in a day-time window.

6.3.1 The agent based approach

According to the proposed approach, each vehicle in the city is described as an agent, which
can be classified referring to the type of mobility habits (commuter and free flowing) and to
the power-train characteristics of the car – conventional vehicle (CV) or EV. Each agent is
characterized by an energy state and a mobility state. The energy state is connected to the
available energy for travelling purposes, whereas the mobility state is associated to moving or
parking condition.
In particular, the parking time represents an important information for mobility modeling.
Hence it has been statistically represented considering Poisson distributions used as follows. If
the agent is a commuter, his parking time, expressed in seconds, is modeled by means of two
distributions, equally distributed among the agents, with λ = 21600 (6 hours) or λ = 28800 (8
hours), otherwise the agent is a free flowing, and his parking time is modeled considering just
a distribution with λ = 3600 (1 hour).
The Poisson probability distribution used for the above mentioned purposes is defined as follows:

γ(k) =
λk · e−λ

k!
, k ∈ N (6.1)

Considering the average distance travelled by the vehicles in the city, the mobility energy
constraints of CV can be neglected. This hypothesis cannot be extended to EVs due to their
limited autonomy which depend on the energy that can be stored in their battery-packs; to
take into account the EV energy constraints, the following parameters have been introduced in
order to evaluate the EV agent autonomy:

• EV battery capacity, Emax
EV ;

• EV stored energy at the time t, EEV (t);

• EV state of charge at time t, SOC(t);

• EV energy consumption during the travel pattern.
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Table 6.1: Electric power required by EV vs. average speed

v(km/h) P(W)

10 1000
20 2010
30 3415
40 5040
50 7070
60 4816
70 6410
80 8370
90 10730
100 13575
110 16940

Figure 6.1: Schematic description of the proposed Agent Based mobility model. In the
Flowchart is highlighted the three main phases referred to a time step: generation of agents,
agents movement evaluation, and agents update.

In the latter case, the consumption is estimated referring to a typical EV city car and taking
into account the different energy consumption between city/non-city environment. The EV
electricity consumption is evaluated referring to a simple function of electric power vs. EV
average speed, as reported in Table 6.1.
Moreover, the EV mobility status is characterized by an additional condition when it is parked.
It can be plugged to the charging station, or no-plugged. All these conditions must be oppor-
tunely modeled. Once the agents properties have been defined, it is necessary to describe the
agents interactions in order to represent the urban traffic condition. For these purposes, the
following modeling has been proposed, considering in each time-step, three phases:

1. In the first phase, new agents are generated;

2. In the second phase, each single agent position is updated, using the queue model;

3. In a third phase, agent energy and mobility states are updated.

In the following, each phase is described in detail. The entire method is also schematically
depicted in the flowchart reported in Fig.6.1
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Generation of Agents

The generation of agents is modeled resorting to the database of the urban and mobility plans,
from which the following main informations must be extracted:

• the number of incoming vehicles that move from each municipality k towards the smart
city Ck

in(t), is used to determine the normalized distribution reported in (6.2);

• the number of vehicles that move from the smart city to each municipality l, C l
out(t) is

used to determine the normalized distribution reported in (6.3);

• the normalized population density distribution ai, in a generic zone i, in which the smart
city is divided, is defined as reported in (6.4), where Aabi is the given number of inhabitants
per i-th zone;

• the normalized 2D spatial distribution of employees determined as reported in (6.5), where
Wi, is the 2D spatial distribution of employees in i-th zone;

• the normalized 2D spatial distribution of the number of commercial activities si.

ckin(t) =
Ck
in(t)∑

k C
k
in(t)

(6.2)

clout(t)
∗ =

C l
out(t)∑
l C

l
out(t)

(6.3)

ai =
Aabi∑
iA

ab
i

(6.4)

wi =
Wi∑
iWi

(6.5)

Considering these parameters, the rules that govern the agent generations are reported in the
following. In particular, the previously described distributions are used to statistically generate
origin and destination points of each agent. The process starts with the random extraction of
the origin and destination zone i of each agent referring to its mobility classification as reported
in the following:

• “Incoming commuters” – the origin is extracted from distribution ckin(t) and destination
from wi;

• “Outcoming commuters” – the origin is extracted from distribution ai and destination
from ckout(t);

• “Intra-city free flowing agents” – the origin is extracted from distribution ai and desti-
nation from si;

• “Inter-city free flowing agents” – the origin point is extracted from the k municipalities
and the destination from distribution si;

Once origin and destination of each agent are generated, the algorithm calculates the shortest
path which connects those two nodes. If the agent is an EV user, due to the fact that his
autonomy must be sufficient to reach his destination, the extracted length route must comply
this constraint otherwise the path is assigned to a CV. At the end of this check-process the
assigned shortest path is the effective agent route.
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The queue model

The queue model is used for the estimation of time effects of urban traffic on agent movement.
The model determines iteratively, for each time-step ∆t, the novel position of each agent on a
graph. This iterative process computes the new position of each agent at the time t starting
from the positions at time t−∆t of all agents operating in the graph. Then, knowing, for each
city road, the free flow maximum speed v0, the road length L, the integer flow capacity C, and
the street lines n, the crossing time T0 of each road can easily be computed by T0 = L

v0
. This

information together with the number of agents travelling at time t−∆t in each edge, allows the
estimation of the time evolution of the agent movement taking into account the effects of traffic.
As a consequence the agents position is changed iteratively for each time-step, following the
rule that each agent can move to the subsequent element of his path if the following conditions
are fulfilled. The agent crosses the link in a time tcross > T0 if N − 1 < C, where N is the
number of vehicles that already crossed the link and if the next link of agent path is not already
full. If one of these condition is not satisfied, then the agent remains in his actual link and
updates his crossing time tcross. Iterating this simple rules-check over each agent, the system
status is updated and the movement of each single agent can be represented.

Agents update

In this phase, performed at the end of each time-step, the agents mobility and energy states
are updated. Each agent can assume at the time t, according to his position in the graph at
the time t−∆t, the following mobility state:

• In movement to destination – if the agent has not reached the end of his route at the
time t;

• In movement from destination – if the agent is coming back home and he has not com-
pleted his route at the time t;

• Parked – if the agent has reached his destination at the time t;

If the agent is an EV user, there is also an update in the energy state, which depends on the
agent mobility state at the time t − ∆t. In particular, if the agent is in movement, then the
energy state EEV

j , is updated as reported in (6.6).

EEV
j (t) = EEV

j (t−∆t)− Pj(v0) · T0 ·Bcross, (6.6)

Where P (v) is the electric power supplied to the vehicle for travelling speed v, and Bcross is a
logic variable that assumes the value of 1/0 if the vehicle, according to queue model, has/has
not crossed a link. If the agent is parked & plugged to charging station the EV updates his
energy state according to (6.7).

EEV
j (t) = EEV

j (t−∆t) + P charge
j ·∆t, (6.7)

Where P charge
j is the power provided to the agent’s EV by the charging station. If the agent is

parked & no-plugged the energy state is not updated and EEV
j (t) = EEV

j (t−∆t).

6.3.2 Model outputs

For each time-step, the model outputs are: the agents position, the EVs charging state, and
the total number of active agents N(t). Moreover, the power provided at each plugged EV
can be monitored and recorded. These output data can be aggregated in order to determine
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the entire charging profiles and the customer satisfaction indexes. In particular, the j-th agent
satisfaction index has been defined as the daily energy supplied to the EV, Esup

j , respect to the
energy required, Ereq

j .

Sj =
Esup
j

Ereq
j

(6.8)

In the following the parameters introduced to analyse and to evaluate the performance of the
mobility system are reported:

• j-th agent customer satisfaction index defined according to (6.8);

• the traffic situation in the city at each time-step;

• the number of EVs in movement ;

• the number of vehicles in each edge of the graph;

• the electric power required by each plugged EV in the city;

• the electric power required at each charging station;

• the number of free and used plugs in each charging station.

In order to limit statistical fluctuations, the entire simulation has been iterated a significant
number of times, so that the outputs can be considered representative. The results associated
to the city are handled in order to represent them by means of distribution for each time of
the day. Furthermore, the time evolution of the following outputs, representing globally the
EV mobility in the city is obtained. The total electric power supplied by the charging stations
P tot(t) has been used to evaluate in the period of time tb − ta the energy provided to supply
the EV fleet of the city Eprov.

Eprov(ta; tb) =

∫ tb

ta

P tot(t)dt; (6.9)

The average customer satisfaction index of the EV users related to proposed charging strategy
is evaluated by means (6.10) where AB is the total number EVs enabled to charge, and NAB

is the total number of those vehicles.The average state of charge state of the cluster of EV at
the time t is defined according to (6.11)

S =

∑
j∈AB Sj

NAB

, (6.10)

SOC(t) =

∑
j SOCj(t)

NEV (t)
. (6.11)

Finally, global variables Etot
prov, S

tot and SOCtot are obtained, as the temporal means of the
previous defined values over the entire day.

6.4 EV Charging Infrastructure Planning

The proposed mobility model has been firstly used to develop a methodology able to determine,
on the basis of EV user request, the correct localization in a municipality of the EV charging
station and the relative power size and plugs number. In order to achieve this goal a planning
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procedure has been proposed. The basic idea is to consider an “ideal case” in which no con-
straints in space, time and power occur at EV charge. At the aim of geographically identifying
the energy demand, the city has been divided in zone each characterised by an “ideal aggrega-
tor” able to satisfy all EV plug-in. Under this hypothesis, the EV users are free to move and to
park because they are sure to be plugged-in. This condition represents the optimal situation, in
terms of charging customer satisfaction. Hence, to develop the planning process the dimension
of the EV fleet to be served by the proposed infrastructure is firstly defined. Then, in order to
evaluate the power needed by the system at each time-step, it has been supposed that the j-th
vehicle is supplied with a constant power Pj(t) able to fully charge the battery-pack during the
estimated parking time tleavej

Pj(t) =
Emax
j − EEV

j (t)

tleavej − t
(6.12)

This approach joint to the mobility model previously described allows the estimation of the
number of vehicles plugged and of the total charging power profile Pi(t) for each time step
∆t and for each i-th zone. The statistical analysis of the obtained data per “ideal aggregator”
allows the identification of the zones characterised by the maximum average number of potential
connections and the average power profile required. Sorting the obtained results, it is possible
to determine, by means of a Pareto analysis, the trade-off between the number of served city
areas and the number of served agents. Subsequently, considering the power profile of each
optimal “ideal aggregator” and defined the service time [T1 ÷ T2], the optimal power P opt

i and
the number of plugs N opt

i can be is estimated by :

P opt
i =

∫ T2
T1
Pi(t)dt

T2 − T1
; (6.13)

N opt
i =

∫
t
Nplugged
i (t)dt

T2 − T1
. (6.14)

Finally, considering the parking area and the power grid constraint into the i-th area, it is
possible to plan the distribution of the charging stations in terms of rating power and numbers
of plugs.

6.5 Charging Strategies

Considering the proposed mobility model and defined a suitable spatial distribution of charging
stations for a planned EV fleet, the development of charging strategies in a smart city has been
fulfilled. The methodology followed to define them is based on the criteria of maximising the EV
user satisfaction index, implementing at the same time a city charging profile that minimizes
the global electricity cost.
In order to achieve this purpose a distributed approach has been implemented considering for
each i-th area a local aggregator that is able to manage and control the power delivered by
each plug of charging station. Obviously, the rated power of the charging station and the
constraints of the power system impose a maximum power profile for each i-th area Pmax

i (t)
evaluated referring to the most severe condition. Under this hypothesis, for each time-step ∆t,
the charging stations of the i-th area cannot provide more power than that expected, evaluated
as average by the mobility model in the most severe condition. Using this assumption, two
supply profile schemes have been used. The first one is the so-called “flat profile”, in which
Pmax
i (t) = P opt

i . This profile ensures the maximum customer satisfaction, because allows the
supplying of the entire energy required in the “ideal” maximum case determined in planning
study. In fact the modulation of charging power of each plug-in vehicle allows globally a
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Figure 6.2: Comparison between the “ideal” charging profile determined in planning procedure
and “flat” charging profile with proposed charging strategy in a generic i-th area.

peak shaving and valley filling of the “ideal” power Pi(t) required in the i-th zone. In Fig.6.2 is
reported the strategy used that is able to “modulate” the charging process of each EV so that the
power profile in the i-th zone assumes a flat profile, assuring that the energy equivalence between
the two profiles. The second one is called “price-related” profile. It satisfies the constraint
that in each time-step the provided energy must have the same cost Ecost. Considering the
day-ahead market prices α(t) in each hour of the day, the reference charging profile can be
obtained by (6.15).

Pmax
i (t) =

Ecost
α(t)∆t

(6.15)

In order to define a reference value for energy cost Ecost, the minimum value of flat profile
cost min(Eflat

cost (t)) has been used. A comparison among the three different profiles is shown
in Fig.6.3. The picture highlights a difference in energy supply which causes a reduction in
the customer satisfaction index. However, the “ideal” charging is generally oversized respect
to the average demand. On the basis of this consideration, the proposed smart charging has
been developed. In particular, a power modulation of charging process of the single plugged
EV is developed, imposing a limitation to the charging station access oriented to maximize the
energy service and based on the EV charge conditions. To develop such charging strategy, it
is necessary to have in real-time for each charging station the information about the number
of EVs plugged and the SOCj of each plugged-EV in i-th zone and the total amount of power
that can be provided globally in the i-th area Pmax

i (t) and specifically to each j-th plugged
EV P plug

j . Using these informations, the j-th charging plug uses a prioritized smart charging
strategy based on the assumption that for each time-step the maximum power must be supplied
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to the plugged vehicles, hence the supply has to be developed according to priority list. The
EV priority is obtained as follows:

1. During the plug-in process, each agent decides a priority class between a value of 1, 2 or
3 at which is associated a Efrac parameter;

2. At each time-step, the local aggregator sorts the j-th plugged vehicle by a value PIj
defined in (6.16)

3. Following this order, the aggregator starts to provide to each plug a power P plug
j until it

reaches his limit power Pmax
i (t).

PIj = (1 + Efrac) · SOCj; (6.16)

The presence of different priority classes gives to each user the possibility to choose the charging
service quality. This strategy has the great advantage to avoid the use of forecasted external
information, referring only to parameters under his direct control, like the SOC of his plugged
vehicles or the total power provided. This ensures a great flexibility.

6.6 Case study

In order to validate the proposed methodology, the mobility model and the EV charging infras-
tructure planning procedures have been tested in an European city. The municipality chosen

Figure 6.3: A comparison between different profiles: in black the ideal one, in blue the flat one,
and in yellow the price-related one. Ecost is assumed to be equal to 100% of the minimum flat
profile cost.
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Figure 6.4: Geographical dataset of Cagliari used to develop the mobility model: the census
zones are reported in black and the mobility infrastructure in red). Sub-plot a) shows the entire
metropolitan area. Subplot b), c) and d) shows details of suburbs of Cagliari.

as case study is Cagliari, the chief town of Sardinia Region in Italy. It is medium-size city that
represents the main attractor of the metropolitan area characterised by 11 neighbour munici-
palities and by a population of about one half million of habitants. The mobility infrastructure
of this metropolitan area is reported in Fig.6.4. The open-street map datasets has allowed the
definition of a detailed graph representation of the mobility system. Vehicle behaviours and
all the information required for the development of the proposed algorithms are deducted by
2001 Italian census and Cagliari’s Urban Mobility Plan (UMP) [29, 48]. The dimension of the
municipality daily car flow is reported in Table 6.2. Considering that the number of commuters
moving to, from, and into the city at each hour of the day is referred to the census zone of the
city, the spatial distribution of Cagliari census zones has been used to geographically split up
the municipality, as highlighted in Fig.6.4. Moreover, the UMP provides detailed information
about the measured daily average number of vehicles that moves into the municipality at each
hour, that can be used for the validation of the mobility model simulation results.

This data-set allows the application of the mobility model and the planning process de-

Table 6.2: Daily Number of cars moving to, from and into the city of Cagliari

Incoming Outgoing Internal

Commuters 2976 11452 29865
Free-flowing 8274 25597 86852
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Figure 6.5: The georeferenced distribution of “ideal” charging power in the case of study, used
for planning procedure in the case of an EV fleet representing the 10% of entire vehicle fleet.

scribed in sections 6.3 and 6.4 respectively. The validation of the mobility model is the first
step for the following development of charging infrastructure planning and charging strategy
tests. The simulation results of the proposed mobility model are compared with the UMP con-
firming the worth of the proposed methodology. Subsequently, to develop the EV infrastructure
planning a reference dimension of the future city EV fleet has been set. In particular, in the
proposed case study, it is defined equal to 10% of entire vehicle fleet of Cagliari. Referring to
the planning procedure described in section 6.4, the estimation of the “ideal” power and num-
ber of plugs of each zone of the city has been computed. Under this hypothesis the simulation
outputs highlights that the daily mean value of electric power required by “ideal” EV charging
infrastructure is equal to P = 1, 26MW , and the mean number of connected EV is N = 1358.
The georeferenced distribution of “ideal” charging power, referred to each area of Cagliari, is
showed in Fig.6.5. The analysis of the geographic distribution of power, needed to recharge
EVs, shows the presence of a limited number of zones characterised by high values of power
demand. In particular, the Pareto analysis shows that the 20% of the census zones provides
the 81,5% of the total recharging demand.
On the basis of this result the final charging infrastructure has been defined distributing the
charging stations just in these areas. The charging infrastructure is defined referring to the
commercial rating power available. The stations have been distributed in order to provide
“fast charge” (rating power 12 kW) and “slow charge” (rating power 3 kW) in the proportion,
respect to the plugs available, of 10 % 90%, respectively. The number of charging stations are
27 and the number of plugs are 807. The charging system is able to modulate the charging



CHAPTER 6. AGENT BASED TRAFFIC MODELING 63

power in order to perform smart charging strategy.
Defined the charging infrastructure, the entire mobility system of Cagliari, considering an EV
fleet representing the 10% of vehicle fleet, has been again simulated with the aim of verifying
the effect of the proposed stations distribution on EV demand. In particular, the “flat profile”
charging strategy without any limitation to the access at the charging infrastructure is consid-
ered. The results, reported in Fig.6.6, highlight that the installed power is oversized and the
analysis of the customer satisfaction index, reported in the first row of Table 6.3, highlights
that the 97% of the EV charging demand has been satisfied and no-stops in the EV, due to the
unavailability of charging structure, occurs.

6.6.1 Smart Charging Strategies

The charging strategy proposed in section 6.5 has been tested considering the charging infras-
tructure previously described. In particular, after the statistical analysis of the mobility results,
a reference profile for the city aggregator has been defined for the “flat” profile and for the
“price-related” profile. The charging reference profile is evaluated referring to the rated power
“flat” profile by means of the introduction of a scaling factor parameter Cfrac defined as follows:

Cfrac =
Ecost

min(Eflat
cost (t))

(6.17)

In order to manage the access to the charging station avoiding the connection of charged EV, a
limit of the state of charge SOC lim is imposed. The results of the proposed charging strategies
for one of the possible case of mobility pattens extracted according to the statistical model,
reported in section 6.3, are shown in Fig.s 6.7 and 6.8. The global index of performance are
reported in Table 6.3. In particular, an utilization energy factor defined as the fraction of energy
delivered by the system respect to the forecast one Efrac has been introduced. Considering the
uncertainty of the EV agent evolution and of the consequent EV electricity demands, it can be
stated that in both cases the time evolution of required power is able to well track the reference
profile determined one day-ahead by the statistical analysis. The daily error is well synthesised
by global parameter Efrac. The results reported in Table 6.3 highlight, as expected, that
considering “price-related” profile the global satisfaction index of EV agents is lower respect
to the other profile but the global error in the energy profile definition one-day ahead is very
small and the total cost, determined referring to the spot price in the Italian electricity market,
is significantly lower than the “flat” profile. This makes the “price-related” profile a suitable
reference in order to develop novel smart charging oriented to maximise the satisfaction index.

6.7 Conclusion

In the present paper an agent based approach, addressed to simulate the behaviour of a Battery
Electric Vehicles fleet into a Smart City, is presented. The proposed model is used to plan the
charging infrastructure and subsequently to forecast the daily time evolution of EV charging
requirements. In order to keep the one day-ahead consumption profile into defined boundaries, a
smart charging is proposed and tested on the municipalities of Cagliari in Italy. The simulation

Table 6.3: Comparative Analysis of the charging strategy Results

Profile SOC lim(%) Cfrac(%) Efrac Stot C((Euro)

Flat 100 100 81 97 767
Flat 95 80 88 86 613
Cost 95 80 93 68 458



CHAPTER 6. AGENT BASED TRAFFIC MODELING 64

Figure 6.6: Planning validation – comparison between the power available at the charging
station and power supplied to EV fleet by the charging stations using the flat profile strategy
in one of the mobility condition simulated.

of the proposed methodology has allowed to verify the different behaviour of the same charging
infrastructure when different charging strategies are implemented and when the uncertainty
of EV mobility behaviour occurs, highlighting the worth and the potentiality of the proposed
methodology.



CHAPTER 6. AGENT BASED TRAFFIC MODELING 65

Figure 6.7: Comparison between the flat power reference profile and the provided one by EV
charging infrastructure considering of Cfrac 80%.
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Figure 6.8: Comparison between the “price-related” power reference profile and the provided
one by EV charging infrastructure considering of Cfrac 80%.



Conclusions

The great impact of mobility and electricity generation on global CO2 emission, perceived as
the main cause of global warming, is pointing out the need to switch towards more clean and
emission-free energy sources. Such issue, together with the increasing efforts required for fossil
fuels harvesting and the negative public opinion view towards nuclear power production, has
lead to the exploitation of wind and photovoltaic power generation systems as cleaner, easier and
reliable energy sources. An increase in energy production by such generation technologies, and
in general of all the so-called renewable energy sources (RES) is viewed as a crucial achievement
in most industrialized countries.

Despite the great advantages associated to such energy sources, their intrinsic variability in
power production badly fits with the highly hierarchical structure and the strictly dispatch rules
of actual power systems. For such reason, the actual power transmission and supply infrastruc-
tures are not able to properly manage a large-scale integration of RES power generation, and
new physical, economic, and engineering models are needed in order to implement features able
to manage the impact of such sources on the system.
In this thesis, a new approach based on statistical mechanics methods has been introduced,
able to model the effects of RES generation on both physical and economic aspects of power
systems infrastructures. Such approach is based on the assumption that systems with high
intrinsic variability can not be easily described in a deterministic way. For this reason, three
different RES power production fluctuations effects have been evaluated over a numerical sam-
pling of possible states in which the system could evolve: the number of voltage critical nodes
on the Polish power grid, the power unbalances in the Italian power system, and the cost as-
sociated to their balancing procedure. Such methods and their results are described in two
papers, reported in part II. In the first one, Distributed generation and Resilience in
Power Grids [80], the voltage stability of Polish power system in relation to the amount of
installed RES distributed generation is studied. In particular, it has been found that small
RES generation facilities distributed all over the system can limit the number of critical effects
over the nodes. On the other hand, an increase in the size and number of such generators can
produce a great unstability over the entire system. Application of the method has also shown
how the use of centrality measures as index for the preferential positioning of such generators
can limit their impact on system stability. In the second paper, Green power grids: how
energy from renewable sources affects networks and markets [64], the global system
approach previously described is used for the determination of power unbalances in the Italian
power system due to the presence of RES generation. Furthermore, the cost associated to the
management of such unbalances has been calculated by means of an agent based modeling of
the electricity balancing market, and validated with the real data obtained from the network
authority archive.
In addition, in part III the papers Community core detection in transportation net-
works [35] and An Agent Based Approach for the Development of EV fleet Charg-
ing Strategies in Smart Cities [65] are reported. In such papers, two different mobility
infrastructure studies are presented: in the first one, an improvement of Louvain community
detection method is used for the identification of mobility infrastructures critical nodes; in the
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second one, an agent based approach is used to model EV mobility in the metropolitan area
of a medium sized city, in order to find the time and spatial evolution of an EV fleet charging
needs. Such information has been used to implement and test a planning procedure able to
identify the optimal space distribution of charging stations over the system. A successive test
phase of such planning procedure has shown a great reliability in the identification of high
charging power needs zones. The further development of such methods could lead to a model
able to represent the possible interactions among the mobility and the power system infras-
tructures. One of the most interesting extensions is related to the modelization of the impact
of EV charging on the power system; through the analysis of stability effects induced by such
distributed power consumption, could be possible to identify critical issues associated to such
practice and to propose and test related solutions. Furthermore, the impact of Vehicle to Grid
approach (V2G) [32] on power grids stability can be tested. By this approach, charging EVs
can be used as distributed storage system over the entire power system, serving as a buffer able
to limit the fluctuations in RES power production.

All the proposed studies are based on the simulation and observation of the system from a
global point of view, and do not rely on historical data analysis. For such reason, the proposed
models can be used for infrastructure planning, allowing to test possible system expansions and
regulation changes, in order to understand their possible effects in both physical and economic
perspective. Despite the excellent results obtained by such method, is important to point out
the limitations introduced by the global statistical description of the system. A common remark
associated to such vision is her faultiness in the detailed space and time description of localized
phenomena. Such representation is common in stochastic systems; the variability associated to
a large number of elements make a detailed description of the system evolution impossible. On
the other hand, such approach allows to identify, from a statistical perspective, a vast number of
features and phenomena proper of the system, allowing to quantify their impact from a physical
and economic point of view. For this reason, the proposed methods can be widely used by both
infrastructure management authorities and private companies interested in providing services
related to the infrastructure well-behaviour. Moreover, such methodologies can be used for
the estimation of possible future scenarios outcomes, improving our knowledge of interacting
infrastructures global behaviour, and enhancing the possibilities to switch towards more clean
and emission free energy generation in the nearest future.
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