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ABSTRACT'

N!methyl!2!pyrrolidone/(NMP)/and/ionic/liquids/(ILs)/are/solvents/with/
“green”/characteristics,/such/as/low/volatility/and/low/toxicity./They/can/be/
used/ as/ a/ valid/ alternative/ to/ the/ common/ organic/ solvents/ with/ a/ high/
environmental,/ health/ and/ safety/ impact./ The/ aim/ of/my/ research/was/ to/
investigate/ their/ thermodynamical,/ structural,/ and/ dynamical/ properties,/
both/ in/ the/ neat/ state/ and/ in/mixture,/ by/ using/ a/ combined/ approach/ of/
different/experimental/techniques/together/with/computational/ones./

In# PAPER# I,# the$ structural$ effect$ of$ water$ on$ NMP$ over$ the$ whole$
concentration) range) were$ studied' by' using' molecular) dynamics) (MD)!
simulations,+ wide!angle& ! ! ! X!ray$ scattering$ experiments,$ and$ density$
measurements.* The* reason* of* why$ a$ density$ maximum$ is$ observed$
experimentally! is# explained.! As# an# extension# of# the$ previous$ study! we#
further' investigated' NMP!Water% mixtures% by% a% combined% use% of% NMR%
spectroscopy,* calorimetric* measurements,* and* puckering* analysis* of* MD*
simulations! (PAPER& II).&These! results'provided'additional' information'on'
the$structural$and$dynamics$changes$of$NMP$taking$place$upon$dilution./

In# PAPER# III# and$ IV$ the$ results$ of# volumetric! and$ calorimetric$
measurements! concerning( some( alkylammonium( nitrate( (XAN)& ionic%
liquids'+'NMP!and$ethylammonium,alkanoate,(EAX),ionic,liquids,+,Water,
binary'mixtures!are$reported."Negative(VE!and$HE!values'were'obtained'for'
all#of#the#investigated#systems!in#PAPER#III#and$IV,$indicating$the$presence$
of#strong#XAN#+#NMP#and#EAX#+#Water#interactions./
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1. Introduction!

The(study(of( species( in(solution( is(one(of( the(most( important(goals( in(

chemistry.( Indeed,( solvents( define( a( major( part( of( the( environmental(

performance( of( processes( in( chemical( industry( and( also( impact( on( cost,(

safety( and( health( issues.( However,( as( the( introduction( of( cleaner(

technologies( has( become( a( major( concern( throughout( both( industry( and(

academia,( the( search( for( alternatives( to( the( most( damaging( solvents( has(

become( a( high( priority.( An( efficient( way( to( reach( this( goal( is( to( replace(

hazardous(solvents(with(ones(that(show(better(EHS((environmental,(health(

and(safety)(properties,(commonly(called(“green(solvents”,(such(as(organic(

solvents( environmentally( harmless( or( ionic( liquids( (ILs)( that( show( low(

vapour(pressure,(and(thus(less(emission(to(air.1(

In(the(light(of(these(considerations,(as(subject(of(my(research(I(selected(

some(compounds(of( technological( interest(with(green(characteristics,(such(

as(a)(NKmethylK2Kpyrrolidone((NMP)(and(b)(room(temperature(ionic(liquids(

(RTILs).( In( particular,( the( aim( of( this( work( was( i)& to( understand( the(

behaviour(of(NMP(in(water,(since(the(presence(of(water( influence(notably(

its(physicochemical(properties;(ii)(to(extend(the(RTILs(proprieties(database,(

and( to( understand( the( behaviour( of( neat( ionic( liquids( and( their(mixtures(

with(water(or(with(NMP(so(as( to( test( their(applicability( in(substitution(of(

neat(ILs,(which(could(have(inadequate(properties(for(a(selected(application.(

1.1.!N-methyl-2-pyrrolidone!

( Concurrently( with( the( explosion( of( interest( in( ionic( liquids,( solvents(

with(noteworthy(properties(quite(close(to(ionic(liquids(were(studied,(tested(
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and(used(for(several(applications,(such(as(NKmethylK2Kpyrrolidone((Figure(

1).( Indeed,( NMP( exhibits( very( attractive(

properties( such( as( high( boiling(point( (477.45(K),(

low(melting(point( (249.55(K),( low(volatility,( low(

viscosity,( large( chemical( and( thermal( resistance,(

and( low( toxicity( that( make( it( a( highly( useful(

solvent( in( a( variety( of( chemical( reactions.( For(

instance,( it( is( employed( in( process( chemicals,(

coatings,(engineering(plastics,(agricultural(chemicals,(electronic,(and(paint(

stripping( and( cleaning.2(Among( its(many(uses,( the(most( interesting(were(

discovered(recently:(thanks(to(its(excellent(solvating(capabilities,(NMP(has(

been( used( to( exfoliate( graphene( layers( form( graphite3( and( as( solubility(

enhancer(in(the(pharmaceutical(industry.4(

NMP( is( often( used( as( a( selective( solvent( in( combination( with( small(

amounts(of(water.(It(is(well(known(that(the(presence(of(water(in(NMP(has(a(

significant( impact( on( its(properties,(particularly(on( its( solvent(power( and(

selectivity,( in( a( number( of( processes.( Thus,( investigations( of( NMPKwater(

mixtures( are( very( important,( not( only( scientifically( but( also( industrially,(

because(physicoKchemical(properties(of(NMP(can(be(tuned(by(appropriate(

mixture(composition.5K6(The(concentration(dependence(of(different(physicoK

chemical( properties( for( this( mixture,( such( as( viscosity,3–6( density,6–8( and(

selfKdiffusion(coefficients,6(evidenced(an(inversion(point(on(going(from(the(

NMPKrich( region( to( the( waterKrich( region.( Although( all( these( findings(

pointed( out( the( presence( of( important( interactions( between( water( and(

NMP,( a( detailed( understanding( of( the( structural( organization( of( this(

Figure!1.!NMP(structure.!
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system(is(still(lacking.(

In(order( to(understand( the(macroscopic(properties(of(NMP(and,( thus,(

to( further( develop( its( applications,( it( is( essential( to( investigate( the(

microscopic( structure( and( dynamics( of( this( system( at( molecular( level.(

Recently,( by( combining( energy( dispersive( XKray( diffraction( experiments(

and(molecular(dynamics((MD)(simulations(with(generalized(AMBER(force(

field,( Gontrani& and& Caminiti9& achieved( a( very( good( agreement( between(

theoretical( and( experimental( diffraction( patterns( of( liquid( NMP.( The(

analysis( of( the( radial( distribution( functions( showed( that( the( network( of(

intermolecular( CKH```O( hydrogen( bonds( between( methyl( and( carbonyl(

groups(observed( in( the(crystal(structure10( is(partly(preserved( in( the( liquid(

structure.( In( 2009,& Carver& et& al.11( studied( the( structure( of( NMP( extremely(

diluted( in( water( by( using( experimental( mutual( diffusion( coefficients(

complemented( with( MD( simulations.( The( attention( of( Carver& et& al.( was(

focused(on( the(water(behaviour( in(presence(of(NMP.(Conversely,(what( is(

the(behaviour(of(NMP( in( the(presence(of( smaller(percentage(of(water?( In(

front( of( the( aforementioned( singular( trends( of( the( physicoKchemical(

properties(of( this( system,( it(was(evident( that( its( structural(organization( is(

strongly(dependent(on(the(water(content.((

Thanks( to( a( combined(use(of( calorimetric( and(density(measurements,(

NMR( spectroscopy,( XKray( diffraction( patterns,( and( MD( simulations,( my(

work( provided( highlighting( information( on( the( structural( and(dynamical(

changes(of(NMP(taking(place(upon(dilution.(Furthermore,(the(reason(why(a(

maximum( is( present( in( the( density( curve( is( clarified( by( analysing( the(

structural(organization(obtained(by(MD(simulations.((
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1.2. Ionic!Liquids!

Ionic( liquids( (ILs)( are( substances( belonging( to( molten( salts( which(

consist( of( large( organic( cations( like( ammonium,( imidazolium( or(

pyridinium( (Figure( 2)( combined( with( anions( of( smaller( size( and( more(

symmetrical( shape( such( as( [NO3]K,( [COO]K,( [BF4]K,( [PF6]K,( ( [CF3SO3]K,(

[(CF3SO2)2N]K((Figure(3).12(

(

Figure!2.(Some(of(the(most(common(ionic(liquid(cations.(

(

Figure!3.(Some(of(the(most(common(ionic(liquid(anions.(

The(significant(size(and(the( low(degree(of(symmetry(of(cations(result( in(a(

poor(packing(of(this(type(of(salts(and(hence(most(of(these(compounds(are(

in( the( liquid( state( at( ambient( temperature.( Interestingly,( simply( by(

changing(the(anion(or(cation(portion(a(noticeable(change(of(the(properties(

of( the( ionic( liquid(as,( for(example,( the(viscosity,(polarity,(and(density(can(

be(obtained.(This(ability(has(given(them(the(appellative(fdesigner&solventsf.(

Furthermore,( their( ionic( nature( gives( them( a( vapour( pressure( extremely(
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low( (often(not(measurable).(Many( ionic( liquids(are(both(air( and(moisture(

stable(and(having(also(a(good( thermal(and(chemical( stability,( they(can(be(

heated(up(to(high(temperatures.(Thanks(to(all(of( these(features,(especially(

their(nonKvolatile(nature(and(good(solvation(properties(for(polar(and(apolar(

solvents,( ILs( attract( much( attention( as( a( valid( alternative( to( traditional(

volatile(organic(solvents(i.e.(they(are(largely(used(as(solvents(and(catalysts(

in(organic(reactions(such(as(in(Heck,13(DielsKAlder,(FriedelKCrafts(acylation(

and( alkylation,14( in( chromatography,15( in( mass( spectroscopy,16( as(

lubricants,17(and(as(support(for(the(immobilization(of(enzymes.18,19((

The(number(of( ionic( liquids(that(can(be(synthesized(is(extremely(high(

(estimated(greater(than(1014),( then(the(synthesis(and(characterization(of(all(

possible(ionic(liquids(is(not(a(feasible(approach(to(a(rational(and(optimized(

use(of(these(solvents.(It(is(necessary(to(investigate(ILs(at(the(molecular(level(

and( to(obtain,( for( each( ionic( liquid( class,( a( structureKproperty( correlation.(

This( could(be(done(using(different(experimental( techniques( together(with(

computational(studies.((

Over( the( last( years,( the(main( goal( of( numerous( research( groups( and(

industries(was(to(investigate(a(great(number(of(different(ionic(liquids(for(a(

range(of(novel(applications.20–29(The(structure(and(dynamics(of(RTILs(in(the(

neat( state( or( in( binary(mixtures( with( organic( solvents( or( with( water( are(

largely( studied( using( different( experimental( techniques( such( as( XKray(

diffraction( (XRD),( Infrared( Spectroscopy( (IR),(Raman(Spectroscopy,(Multi(

Nuclear( Resonance( Spectroscopy( (NMR),( and(Molecular( Dynamics( (MD)(

simulations.( A( short( overview( on( how( experimental( techniques( and(

computational( studies( has( greatly( contributed( to( the( knowledge( of( the(
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structure(and(dynamics(of(some(ionic(liquids(is(given(below.((

(ImidazoliumK( and( alkylammoniumKbased( ILs( are( among( the( most(

studied( families(of( ionic( liquids.(Among( the(most( recent( revealing(works,(

there( is( the( study( of( six( COOHKfunctionalized( imidazolium( ionic( liquids(

crystal( structures,( where( the( presence( of( hydrogen( bonds( in( the(

hydrophobic( and( hydrophilic( ionic( liquids( were( highlighted.30( The(

presence(of(HKbonds(is(of(paramount(importance(for(ionic(liquids(because(

it(can(significantly(influence(a(number(of(physical(properties.31(Chen(et&al.32(

studied( the( hydrogenKbonding( interaction( between( 1KethylK3KmethylK

imidazolium( acetate( ([EMIM][Ac])( and( seven( solvents( (D2O,( CD3OD,(

CD3CN,(d6KDMSO,(CD3COCD3,(C6D6,(and(CDCl3)(by(using(ATKIR(and(NMR(

experiments.(This(study(evidenced(that(along(with(the(increasing(of(solvent(

concentration,(the(HKbonding(interaction(in(the(neat(IL(decreases,(while(the(

hydrogen(bonding(interaction(between([EMIM][Ac](and(solvent( increases.&

Marincola(et&al.33(studied(by(NMR(spectroscopy(the(interaction(of(water(with(

two( imidazoliumKbased( ionic( liquids( showing( a( packed( structure( where(

headKtoKhead,(headKtoKtail,(and(tailKtoKtail(contacts(occur(and(where(the(site(

of( maximal( mobility( restriction( is( at( the( polar( head.( Remsing& et& al.34(

combined( NMR( experiments( with( MD( simulations( to( investigate( the(

behaviour( of( 1KethylK3KmethylKimidazolium( chloride( in( water( and(

dimethylsulfoxide( solvents.( Both( experimental( and( MD( results( revealed(

that( in( concentrate( IL( aqueous( solutions,( water( molecules( interact(

preferentially(with( the( anion( and( the( imidazolium( ring,( exchanging(with(

ClK( ions( around( the( ring( and( thus( weakening( the( interactions( between(

cations(and(anions.((
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As( far( as( the( alkylammoniumKbased( ionic( liquids,( the( structure( of(

ethylK( and(nKpropylammonium(nitrate( (EAN( and( PAN,( respectively)(was(

largely(studied(in(different(works35–42(and(a(thorough(description(of(the(HK

bonding( interactions( observed( in( their( structure( was( provided.( A( recent(

paper(by(Kirchner&et&al.43(and(recent(neutron(scattering(studies(on(EAN(and(

PAN44–46(showed(the(existence(of(structural(heterogeneities(on(a(10(Å(scale(

which(are(compatible(with( the(existence(of(alkyl(chain(aggregation(that( is(

the( driving( force( responsible( for( the( formation( of( micellar( aggregates( in(

other(structured(liquids.(ILs(are(largely(used(as(solvent/catalyst(in(organic(

reactions( leading(high(yields;47(EAN(is(a(useful(polar(stationary(phase( for(

gasKliquid( chromatography48( and( it( was( used( to( enhance( the( recovery( of(

denaturedKreduced(hen(egg(white(lysozyme(showing(the(ability(to(prevent(

aggregation( of( the( denatured( protein.49( Greaves( and( coKworkers35(

developed(a(highKthroughput(approach(in(order(to(prepare(and(dry(a(series(

of( ILs( from( 48( Brønsted( acidKbase( combinations.( Visual( screens( were(

developed( to( identify( which( acidKbase( combinations( formed( protic( ionic(

liquids( (PILs),( and( of( those,(which( PILs(were( likely( to( have( high( surface(

tensions.( Alkylammoium( alkanoate( is( another( ionic( liquid( class( which(

attracted( the( attention( of( the( scientific( community.50–56( EthylK,( nKpropylK,(

and(nKbutylammonium(methanoate( (EAM,( PAM,( and( BAM,( respectively)(

were( synthesized( and( tested( as( mobileKphase( for( reversed( phase( liquid(

chromatography.(EAM,(which(has(a(polarity(similar(to(that(of(methanol(or(

acetonitrile,( has( been( indicated( as( suitable( solvent( to( be( used( as( mobile(

phase( in( liquid(chromatography.( 52,53,57(Chhotaray(et& al.,( 54( reported(density,(

viscosity,( and( velocity( of( sound( values( at( different( temperatures( and(
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atmospheric( pressure( for( five( ILs:( propylammonium( methanoate( or(

ethanoate( and( 3KhydroxyKpropylammonium( methanoate( or( ethanoate( or(

trifluoroethanoate.(

In( addition( to( the( numerous( structural( and( dynamical( studies( of( ILs,(

experimental( and/or( theoretical( thermodynamic( studies( on( pure( ILs( and(

their(mixtures(with(organic(solvents58–64(or(water65–68(were(reported.(Heintz58(

reviewed(the(developments(of(thermodynamic(and(thermophysical(studies(

of( ILs(+(nonKaqueous( solvent( mixtures( including( an( overview( on( the(

experimental( data( available.( The( review( is( limited( to( systems( having( the(

most( promising( chance( to( be( successfully( used( in( different( fields( of(

chemistry(and(chemical(engineering.((

Characterization( of( mixtures( containing( ionic( liquids( and( organic(

solvents(or(water( is(thus(required(to(test(their(applicability(in(substitution(

of( neat( compounds( which( could( have( inappropriate( properties( for( a(

selected(application,( i.e.( limited( solvent(power( range,(high(viscosity,( etc.12(

In(particular,( since(most(of( ILs(are(quite(hygroscopic(and( the(water(has(a(

significant(impact(on(their(properties,(for(a(proper(and(safety(use(of(ILs,(it(

is(necessary(to(investigate(how(water(or(other(solvents(affect(their(physicoK

chemical(properties.(69((

Porcedda( et& al.65( studied( some( thermophysical( properties( of( EAN( or(

PAN( +(Water(mixtures;( the( positive( excess( enthalpy( implicates( a(weaker(

interaction( upon( mixing.( It( can( be( stated( that( the( intermolecular( forces(

between( the( same( kind( of( ions( or( molecules( (IL–IL( and( water–water(

interactions)( are( stronger( than( those( among( dissimilar( ones.( As( the(

hydrophobic/hydrophilic(ratio(increases,(along(with(the(length(of(the(alkyl(
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chain( in( the( ILs,( the(specific( interactions( IL–Water(become( less( important.(

Diisopropylethylammonium( methanoate( +( Water( mixtures( have( been(

investigated( by(Anouti& et& al.,( 55( to( obtain( density,( heat( capacity,( refractive(

index,(and(excess(quantities(values.(Another(promising(alkanoateKbased(IL(

for( practical( applications,( because( of( its( low( toxicity,( is( 2K

hydroxyethylammonium(methanoate,(which(has(been( synthesized( for( the(

first( time( by( Bicak( in( 2005.50( Density( and( ultrasonic( velocity( of( their(

mixtures(with(water(or(methanol(or(ethanol(have(been(measured(by(Iglesias&

et&al.(56(Recently,(some(studies(have(pointed(out(the(interesting(properties(of(

NMP(with(some(ILs.62–64(A(series(of(ammonium(based(ionic(liquids,(similar(

to( those( considered( in( this( thesis,( with(NKmethylK2Kpyrrolidone( mixtures(

were(studied(by(Kavitha&et&al.;62–64( (ILs(+(NMP(showed(structureKbased(and(

temperature(dependent(properties.(

Despite( the( rapid( and( incessantly( growth( of( scientific( papers,( a(

satisfactory( knowledge( of( structural,( dynamical,( and( thermophysical(

properties( of( liquid( mixtures( containing( ILs,( which( is( important( for(

designing(of(any( technological(processes,( it( is( far( from(being(achieved.( In(

order(to(improve(the(knowledge(on(these(properties,(a(systematic(study(of(

different(ILs(was(carried(out(by(using(calorimetry,(densitometry,(NMR,(and(

FTKIR(experiments.((

The(selected(ILs(for( this(work(belong(to( the(alkylammonium( i)(nitrate(

(Figure(4)(and(ii)(alkanoate(families((Figure(5).(In(detail,(they(are:(

i) ethylammonium( nitrate( (EAN),( nKpropylammonium( nitrate( (PAN),(((((

nKbutylammonium( nitrate( (BAN),( and( 2Kmethoxyethylammonium(

nitrate((MEOEAN).(
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ii) ethylammonium( methanoate( (EAM),( ethylammonium( propanoate(

(EAP),(and(ethylammonium(butanoate((EAB).(

*

MEOEAN 

 
BAN 

PAN 

EAN      

+

(

Figure!4.(Alkylammonium(nitrate(ionic(liquids(selected(for(this(work.(

+ 

- 

EAM 

- 

EAP 

EAB 

- 

!
Figure!5.(Etylammonium(alkanoate(ionic(liquids(selected(for(this(work.(
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2. Experimental!Section!

2.1. Materials!

Compounds,! structures,! and! abbreviations! of! materials! used! in! this!

thesis!are!reported!in!Table!1.!

N?methyl?2?pyrrolidone! (purity! >! 99.5!%)!was! purchased! from! Sigma?

Aldrich.!Ethylammonium!nitrate!and!n?propylammonium!nitrate! (purity!>!

97!%)!were!purchased!from!Iolitec.!2?methoxy?ethylammonium!nitrate!and!

n?butylammonium! nitrate! were! prepared! by! F.! Leonelli! (Università! “La!

Sapienza”! –! Roma)! following! a! previously! reported! procedure.1,2! Solvents!

(LC?MS! grade),! 2?methoxyethylamine! (99! %)! and! n?butylamine! were!

purchased!from!Aldrich.!Nitric!acid!(65!%!w/w)!was!purchased!from!Carlo!

Erba.!

Alkylammonium!nitrate!ionic!liquids!(XAN)!and!NMP!were!dried!for!5!

days!at!room!temperature!under!high!vacuum!(6⋅10?2!Torr)!over!P2O5!before!

using.!

Ethylammonium!alkanoate!(EAX)!ionic!liquids!were!synthesised!during!

my! research! stay! at! the! QUILL! laboratories! of! the! Queen’s! University!

Belfast! in! the! frame! of! the! Erasmus! PLACEDOC! program.! The! adopted!

procedure! is! the! following:!alkylcarboxylic!acid!(methanoic,!>!98!%!puriss.!

Glacial,!Riedel?de!Haën;!propanoic,!≥!99.5!%,!Sigma!Aldrich;!butanoic,!≥!99!

%,! Sigma! Aldrich)! was! added! dropwise! to! an! equimolar! amount! of! an!

aqueous!ethylamine!solution!(70!%!in!water,!FlukaChemika)! in!a!one?neck!

one?litre! round?bottom! flask,! cooled! with! liquid! N2! (as! the! reaction! is!

exothermic).!The!flask!was!kept!closed!after!each!acid!addition,!and!cooled!

by!adding!more!liquid!N2!when!necessary.!The!reaction!is!fairly!exothermic!
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and!maintaining! the! temperature! low! is! important.!After! all! the! acid! had!

been! added,! the! reaction! was! left! to! warm! up! to! room! temperature! for!

approximately! two! hours,! and! then! stirred! at! room! temperature! for! one!

hour.!Water!was!removed!by!freeze?drying!technique!at!0.03!mbar!pressure.!

After! a! 12! h! cycle,! the! water! content! was! checked! by! Karl?Fischer! (KF)!

titration.! The! result! showed! over! 3! w/w! %! water! content,! so! the! freeze?

drying! cycle! was! repeated! twice! more,! until! no! decrease! in! the! water!

content!was!observed.!The!resulting!ethylammonium!methanoate,!EAM!(97!

%! yield);! ethylammonium! propanoate,! EAP! (97! %! yield);! and!

ethylammonium! butanoate,! EAB! (98! %! yield)! are! extremely! hygroscopic!

light! yellow! liquids,! therefore! they! were! kept! under! N2! atmosphere,! in! a!

glove!box!until!use.!

The! ILs!with!NMP!or!with!water!mixtures!were!prepared! by!mass! as!

follow:! i)% for! ILs! (1)! +! NMP! (2)! mixtures! the! proper! amounts! of! ILs! and!

NMP!were!weighted!with! an! analytical! balance! (±! 0.0001! g)! in! screw?cap!

glass!vials!in!a!glove?bag!under!nitrogen!atmosphere;!ii)!for!ILs!(1)!+!water!

(2)! mixtures,! the! procedure! was! analogous! to! the! previous! one! but! the!

proper! amounts! of! water! to! give! different! compositions! samples! were!

added!after!removing!the!vials!from!the!bag.!

For!density!determinations,!all!materials!were!degassed!for!about!2!h!by!

means!of!an!ultrasonic!device!(WVR!model!USC100T!?!45!kHz,!30!W).!

For!NMR!analysis,!mixtures!were!moved!to!a!nitrogen?filled!glove?bag!

where!it!was!transferred!to!a!5!mm!NMR!tube.!!!

!
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Table!1!
Compounds:! name! with! abbreviation,! source,! purity,! final! water! content,! and!
purification!and!analysis!methods.!

!

2.2. Characterizations!!

2.2.1. !!Lewis!acidity!measurement!and!data!treatment!!

An! efficient! employment! of! ionic! liquids! in! scientific! research! and!

technical!applications!requires!a!deep!knowledge!on!their!physico?chemical!

properties,!which! are! extremely! connected!with! the! IL?IL! and/or! IL?solute!

interactions.! These! interactions! and! their! strength,! influenced! by!

intermolecular!van!der!Waals! forces,! intermolecular!Coulomb! interactions,!

and!ability!of!a!solvent!to!form!hydrogen!bonds,!can!be!quantified!by!using!

the! so?called! “donor–acceptor! concept”! approach! developed! by! Victor!

Gutmann.3,4! He! defined! the! acceptor! number! (AN),! as! a! measure! for! the!

Chemical!name!
(abbreviation)! Source!

Purity!
/!%!

Purification!
method!

Final!water!
content!
/mole!
fraction!

Analysis!
method!

! ! ! ! ! !

N?methyl?2?pyrrolidone!
(NMP)!

Sigma?
Aldrich! >99.5!

dehydration!
in%vacuo! <!0.02! 1H?NMR!

ethylammonium!nitrate!
(EAN)! Iolitec! >97!

dehydration!
in%vacuo! <!0.02! 1H?NMR!

n+propylammonium!nitrate!
(PAN)! Iolitec! >97!

dehydration!
in%vacuo! <!0.02! 1H?NMR!

n+butylammonium!nitrate!
(BAN)! synthesis! ?!

dehydration!
in%vacuo! <!0.01! 1H?NMR!

2?methoxyethylammonium!
nitrate!

(MEOEAN)!
synthesis! ?!

dehydration!
in%vacuo! <!0.01! 1H?NMR!

ethylammonium!
methanoate!

(EAM)!
synthesis! ?! dehydration!

in%vacuo!
<!0.006! KF!

titration!

ethylammonium!
propanoate!

(EAP)!
synthesis! ?! dehydration!

in%vacuo!
<!0.006! KF!

titration!

ethylammonium!!
butanoate!
(EAB)!

synthesis! ?! dehydration!
in%vacuo!

<!0.006! KF!
titration!

! ! ! ! ! !
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electrophilic!properties!of!a!solvent,!specifically!the!ability!to!accept!electron!

pairs.! The! Gutmann! AN4! is! a! well?established! quantitative! measure! of!

Lewis!acidity!and!it!could!help!to!predict!the!intermolecular!interactions!of!

nucleophiles! and! other! electron?rich! substrates! with! the! IL! cations.! It! is!

determined! from! the! 31P?NMR! chemical! shift! of! a! triethylphosphine! oxide!

(TEPO)! probe! molecule,! dissolved! in! the! respective! pure! solvent.4! RTIL?

TEPO! complexes! induce! a! change! in! the! chemical! shift! in! the! 31P?NMR!

spectrum,!which!is!directly!proportional!to!the!AN.!To!obtain!precise!data,!

the!31P!NMR!chemical!shifts!are!measured!at!several!concentrations!of!TEPO!

as! recommended!by!Gutmann,!because! the! chemical! shifts! are! affected!by!

concentration!of!TEPO!and!the!magnetic!permeability!of!the!solvent.!These!

data! are! then! extrapolated! to! infinite! dilution,! δinf! (31P! chemical! shift! at!

infinite! dilution! of! TEPO).! The! AN! value! is! calculated! by! using! the!

following!equation:!

AN!=!2.348!δinf! ! ! ! ! ! ! ! ! ! ! !1)!

The!proportionality!constant!in!eq.!1!has!been!empirically!determined!from!

the!endpoints!of!hexane!(AN!=!0)!and!10?3!M!solution!in!1,2?dichloroethane!

of!antimony(V)!chloride!(AN!=!100).!!

! Sample!preparation!was!done!in!the!glove?box.!Three!samples!(≈!1!g)!

of!each!alkylammonium!alkanoate!were!weighed!into!a!sample!vial!(10!cm3)!

containing! a! magnetic! stirring! bar.! The! vial! was! left! on! the! balance,! and!

TEPO!wasc!added! (approximately!3,! 5!or! 7!mol!%!per!mol!of! ionic! liquid!

cation).!After!a!5!hours?long!stirring!of! the! sample! to!ensure! the!complete!

dissolution,! the! liquids! were! loaded! into! NMR! tubes! (5! mm,! borosilicate!

glass),! each! containing! a! capillary!with!DMSO?d6.! The! tubes!were! closed,!
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taken! out! of! the! glove?box! immediately! prior! to! measurement.! 31P?NMR!

spectra!were!acquired!at!121.452!MHz!using!a!Bruker!300!spectrometer.!All!

samples!were!measured!at!300.15!K.!

2.2.2. Volumetric!measurements!and!data!treatment!

The! density,! or! more! precisely!mass! density! of! a! sample,! is! one! of! its!

most!important!and!easily?measured!physical!properties.!It!is!defined!as!the!

mass! of! a! sample! divided! by! its! volume! and! its! values! are! currently!

expressed!in!the!SI!units!kg!m?3!and!more!often!in!the!submultiple!g!cm?3.5!

Densities! are!widely! used! to! identify! pure! substances! and! to! characterize!

and!estimate! the! composition!of!many!kinds!of!mixtures.!The!densities! of!

the! liquid!mixtures!and! the!pure! compounds!were!measured,! at! 298.15!K,!

by!means! of! a! vibrating! tube! densitometer! (model!DMA! 58?Anton! Paar! ?!

Gratz,! Austria).! Accuracy! in! the! temperature! was! better! than! ±0.01! K.!

Density! precision! and! accuracy! were! ±0.00001! and! ±0.00005! g/cm3,!

respectively.! The! instrument!was! calibrated! before! each! experimental! run!

using!dry!air!and!distilled!water!as!references.!Solutions!were!prepared!by!

weight! in! septum?capped!vials! of! approximately! 2! cm3! using! needles! and!

syringes!to!transfer!liquids.!The!molar!volumes,!Vm,!were!obtained!from:!

( )
mix

MxMx
V

ρ
2211

m
+

=
! ! ! ! ! ! ! ! !2)!

The!excess!molar!volumes,!VE,!defined!as!the!difference!between!real!and!

ideal! mixing! volume! at! a! given! temperature,! can! be! calculated! as! the!

difference! between! the! mixture! molar! volume! and! the! volume! of! the!
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necessary! amounts! of! pure! liquids,! from! the! molar! mass,! Mk,! and! the!

density,!ρk,!the!mole!fraction,!xk,!of!the!component!k!(k%=!1!or!2):!

( ) ( )
2

22

1

11
m

E

ρρ
MxMx

VV −−= ! ! ! ! ! ! ! !3)!!!!!!!!!

VE!data!were!fitted!by!means!of!the!Redlich?Kister!(RK)!equation!having!the!

form:!

i
n

i
i xxxxV )(a 21

1

0
21

E −= ∑
−

=

! ! ! ! ! ! ! !4)!

The! absolute! standard! deviation! of! the! fit,! σ(VE),! was! calculated! by! the!

following!equation:!

nN
VV

V jj

−

−Σ
=

2E
exp ,

E
calc ,E )(

)(σ ! ! ! ! ! ! !5)!

where! N! is! the! number! of! experimental! points! and! n! is! the! number! of!

coefficients.!!

Excess!molar!volumes!at! infinite!dilution,! ∞E,
kV ,!of!each!component!k,!

is!defined!as! the!difference!between!the!molar!volumes!at! infinite!dilution!

and!in!the!neat!state:! *E,
kkk VVV −= ∞∞ .!Their!values!were!calculated!from!

the!RK!parameters!by!means!of!the!following!equation:!

∑
=

∞ −=
n

i
i

k
k aV

0

E, )1(
! ! ! ! ! ! ! ! !6)!

Furthermore,!from!the!standard!deviations!of!the!above!RK!parameters!

we!calculated!the!SD,!and!the!uncertainties,!u!(u%=!2⋅SD),!of!the!excess!molar!
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volumes!at!equimolar!composition, E
5.0V ,!and!of!the!partial!molar!volumes!of!

each!component!at!infinite!dilution,Vk
E,∞

.!

The!procedure!was!checked!by!comparison!of!our!experimental!VE!data!

of! the! water! +! ethanol! system! with! reliable! literature! data.6! We! found! a!

difference!lower!than!0.8!%!in!the!whole!composition!range.!!

2.2.3. Calorimetric!measurements!and!data!treatment!

Heats! of! mixing! coinciding! with! excess! enthalpies,! ΔH! =! HE,! are!

important!for!understanding!molecular!interactions!because!they!are!related!

to!the!structure!and!the!interaction!energy!of!the!particles!(molecules!and/or!

ions)!in!the!pure!substance!and!in!the!mixture.7!They!are!also!important!for!

the!design!of!industrial!processes,!since!they!can!be!used!directly!in!energy!

balance! calculations! and! give! information! about! Gibbs! energy! and! hence!

about!phase!equilibrium.!Heats!of!mixing!and!their!derivatives!with!respect!

to! pressure! and! temperature! relate! to! the! volumetric! properties! and! heat!

capacity!of!mixtures.!!

∂H E

∂p
"

#
$

%

&
'
T

=V E −T ∂V E

∂T
"

#
$

%

&
'
P

!! ! ! ! ! ! !7)!

∂H E

∂T
"

#
$

%

&
'
P

=CP
E ! ! ! ! ! ! ! ! !8)!

Eq.!7!sets!a!relationship!between!the!pressure!dependence!of!HE!and!VE;!

the!larger!the!VE!the!larger!is!the!effect!of!pressure!on!HE.!Eq.!8!can!be!used!

as! a! consistency! test! of! excess! molar! enthalpies! measured! over! extended!
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temperature! and! pressure! ranges! by! comparing! with! calorimetric!

measurements!of!excess!heat!capacities.!!

Heats! of! solution! were! collected! through! a! heat! flow! calorimeter! by!

Thermometric!(model!2277,!Thermal!Activity!Monitor!?!Järfälla,!Sweden)!at!

298.15! K! (±0.01! K).! Experiments! were! conducted! by! adding! a! pure!

component,! via! Hamilton! gas?tight! syringes! of! capacity! in! the! range! of!

(250.0! to! 1000)! µL! driven! by! Cole?Parmer! (model! 74900! ?! Vernon! Hills,!

Illinois,!USA)!pumps,!to!an!ampoule!of!1!or!4!cm3!capacity!initially!charged!

with! the! other! component! or! with! a! stock! mixture! of! them.! With! this!

system,!we!were!able!to!make!accurate!injections!starting!from!a!minimum!

of!1!µL,!with!precision!0.5!%,!and!to!measure!accurate!heat!effects!as!small!

as!0.01!J,!with!sensitivity!0.5!µW.!We!chose!this!technique!instead!of!mixing?

flow! calorimetry! to! avoid! errors! due! to! incomplete!mixing! and! to! obtain!

more!precise!values!of!the!partial!molar!enthalpy!at!infinite!dilution.5!

The!experimental!solution!heats,!Qexp,!released!by!the!additions!of!very!

small!quantities!of! the! titrant,!nk,!practically! represent!partial!molar!excess!

enthalpies,! E
kH :!

kk nQH /E≅ !! ! ! ! ! ! !!!!!!! !!!!!!!!!!!!!!!9)!

The!partial!molar!excess!enthalpies!is!defined!as!the!difference!between!

the! partial! molar! enthalpy! of! a! given! component, kH ,! and! the! molar!

enthalpy!of!the!same!compound!in!the!pure!state,! *
kH .!

From! the! eq.! 9,! calculated! values! of! the! solution! heats,! Qcalc,! can! be!

obtained,! being! E
calc,kH ! accounted! for! by! proper! differentiation! of! the!
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equation! HE! =! f(x),! such! as! the! Redlich?Kister! (RK)! one! (eq.! 10)8! or! the!

modified!Margules!one!(eq.!11):8!

( )∑
=

−−=
n

k

k
k xxcxx

RT
H
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1
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E

! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!10)!
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−+=
21221112

212112
12121221
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xxxAxAxx

RT
H ! ! ! !!!!!!!!!!!!11)!

A! standard! least! squares! procedure! identifies! the! best! values! of!

parameters! at! the! minimum! of! the! objective! function! ( )2calcexp QQOF −Σ= .!

Proper!allowance!was!made!for!the!heat!involved!in!the!phase!composition!

changes! brought! about! by! the! vapour?liquid! equilibration! after! each!

addition.! An! exhaustive! description! of! the! apparatus,! the! experimental!

procedure,!and!the!data!treatment,!can!be!found!in!literature.9,!10!

From! the! standard! deviations! of! the! RK! or! Margules! equation! we!

calculated!the!uncertainties,!u,!on!HE!at!equimolar!mixtures!and!on!partial!

molar!enthalpies!of!each!component!at!infinite!dilution, ∞E,
kH .!

The! reliability! of! the!whole! procedure!was! checked! by!measuring! the!

HE,! in! the! whole! range! of! concentration,! of! the! system! Benzene! (1)! +!

Cyclohexane! (2).! Comparison! with! reliable! literature11! data! revealed! a!

discrepancy! lower! than! 2! %.! The! uncertainty! in! the! observed! heat,!Q,! as!

determined!by!the!reproducibility!of!the!experiments!and!by!integration!of!

the!peak!area,!can!be!evaluated!as!0.5!%.!!

!
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2.2.4. NMR!Spectroscopy!

The!analysis!of!1H!NMR!spectra!is!routinely!used!to!verify!the!purity!of!

ILs!obtained!by!synthesis.!The!shielding!constants!are!sensitive!to!molecular!

conformations,!the!chemical!environment!(especially!when!hydrogen!bonds!

can! be! formed),! and! interactions! between! cations! and! anions.! Therefore,!

both!1H!chemical!shifts!of!neat!compounds!and!their!mixtures!were!used!to!

study! intermolecular! interactions! in! the! systems! under! investigations.!

Complementary! information!was! obtained!by! the! analysis! of! 13C! chemical!

shifts!and!spin?lattice!relaxation!times.!

As! stated! elsewhere,12–17! the! investigation! of! aggregation! behaviour! by!

means!of!NMR!spin!relaxation!rate!measurements!relies!on!the!dependence!

of!the!rates!on!the!dynamics!of!molecular!reorientation!as!expressed!by!the!

spectral!density! function! J(ω).18! For!proton?carrying! 13C!nuclei! in!medium?

sized! molecules,! the! spin! relaxation! is! usually! dominated! by! the! dipole?

dipole!interaction!with!directly!bonded!protons.!If!the!protons!are!subjected!

to! broadband! decoupling! and! the! cross?correlations! between! different!

interactions! can! be! neglected,! the! 13C! spin–lattice! relaxation! is! a! simple!

exponential!process,! characterized!by!a! single! time! constant,!T1,! called! the!

spin–lattice!relaxation!time.!Neglecting!the!contributions!from!protons!that!

are! not! directly! bonded,! the! dipolar! contribution! to! the! spin–lattice!

relaxation!rate!(1/T1DD)!and!the!nuclear!Overhauser!enhancement!(NOE)!are!

given!by!Equations!12!and!13,!respectively:!

!
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1
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!

where! N! is! the! number! of! attached! protons;! γH,! γc! and! ωH,! ωc! are! the!

gyromagnetic! ratios! and! Larmor! frequencies! of! proton! and! carbon,!

respectively;!  ! is! the! reduced! Planck! constant;! rCH! is! the! carbon–proton!

distance!(fixed!at!1.09!Å!for!our!analysis);!µ0!is!the!permittivity!of!free!space.!

Provided!the!motion!is!isotropic,!J(ω)!is!given!by:!

( )
τω

τω 221
2

c

cJ
+

=

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!14)! ! 1!!13
! 14)!

where! τc! is! the! correlation! time! for! the! motion! of! the! C?H! axis! and!

approximates! the! time! required! for! rotation! of! the! molecule! through! 1!

radian.!

When!the!contribution!of!T1DD!to!the!measured!T1!is!100!%,!the!NOE!value!

reaches! a!maximum! of! 1.988! (=γΗ/2γΧ).! For! 13C! nuclei!where!DD! relaxation!

competes! with! other! mechanisms,! the! contribution! of! the! dipole?dipole!

mechanism! can! be! calculated! if! the! experimental! NOE! (NOEexp)! is!

determined!as:!

% DD relaxation =
NOEexp
1.988

×100
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!15)

!

Experimental%details.%1H!NMR!spectra!were!obtained!with!a!Varian!Unity!

INOVA! 500! spectrometer! operating! at! the! proton! resonance! frequency! of!

499.84!MHz,!while! 13C!NMR! spectra!were! recorded! using! a! Varian!Unity!

INOVA! 400! spectrometer! with! 13C! resonance! frequency! of! 100.57! MHz.!



Chapter!2!–!Experimental!Section!

! 29!

Locking!was!performed!using!an!inserted!capillary!tube!filled!with!D2O.!All!

experiments!were!carried!out!at!300!K.!

1H!spectra!were!acquired!using!16!scans,!a!spectral!width!of!3000!Hz,!a!

relaxation! delay! of! 15! s,! and! a! 90°! pulse! of! 8.5! µs.! Chemical! shifts! were!

referred!to!the!signal!of!the!residual!water!of!D2O!in!the!capillary!tube!(δ%=!

4.78!ppm).!!

Two?dimensional! adiabatic! ROESY! spectra! were! acquired! with! a!

standard!pulse!sequence19,20!over!a!sweep!width!of!3000!Hz!using!2048!data!

points!in!the!t2!dimension!and!256!increments!in!the!t1!dimension.!A!total!of!

16!scans!were!collected!for!each!t1!increment!with!an!acquisition!time!of!0.15!

s!followed!by!an!additional!relaxation!delay!of!2!s.!A!mixing!time!of!200!ms!

was!used!for!all!samples.!The!ROESY!data!set!was!processed!by!applying!a!

shifted! square! sine?bell! function! in! both! dimensions! and! zero?filling! to!

2048×2048!real!data!points!prior!to!the!Fourier!transformation.!

The!13C!spin–lattice!relaxation!times!(T1)!were!measured!by!the!inversion!

recovery! method.! A! total! of! 16! scans! were! collected! and! 16?18! variable!

delays!were!used.!The!relaxation!delay!was!at! least!five!times!greater!than!

the!longest!T1.!The!reported!values!are!averages!of!three!measurements!with!

an!estimated!precision!of!5!%.!

13C{1H}!nuclear!Overhauser!enhancement!(NOE)!factors!were!determined!

from!the!ratios!of!peak!intensities!in!a!spectrum!obtained!with!continuously!

applied!composite!pulse!decoupling!and!in!a!spectrum!where!the!NOE!was!

suppressed! by! gating! the! decoupler! on! only! during! acquisition.! For! both!

spectra,! a! delay! of! at! least! 10!T1!was! allowed! between! acquisition! pulses.!

The!NOE!measurements!were!reproducible!within!±10!%.!
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2.3. Molecular!dynamics!simulations!

MD! simulations! are! a! powerful! method! for! obtaining! detailed!

molecular! information! on! a! large! variety! of! systems! from! the!microscopic!

point! of! view.! The! method! uses! a! force! field! to! describe! the! interaction!

between! atoms.!A! largely! used! force! field! for! different! kind! of!molecules!

those!of!AMBER!and!can!be!written!as!follow:21!

Vtotal = kr r − req( )
bonds
∑

2
+ kθ θ −θeq( )

angles
∑

2
+

Vn
2
1+ cos nφ −γ( )( )+

torsions
∑

Aij
R12ij

−
Bij
R6ij

+
qiqj
εRij

#

$
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&

'
((

i< j
∑

!!!!!16)

! !
!

where!Kr,!Kθ,!Vn!are!the!force!constants!for!the!bond!lengths,!r.!θ!and!φ!are!

bond!and!torsional!angles,!respectively.!Aij%!and!Bij!are!force!constants!for!the!

Lennard?Jones! potential! describing! the! van! der! Waals! interaction,! and! qi!

and! qj! the! charges! of! atoms! i% and! j! in! the! electrostatic! contribution! to! the!

total!potential!energy,!with!the!dielectric!constant!of!the!medium,!ε.!Rij!is!the!

distance!between!atoms!i%and!j.!

MD!simulations!of!the!NMP!+!Water!system!were!performed!with!the!

AMBER! 11! package22! (both!CPU! and!GPU!versions! of! PMEMD)23! using! a!

cubic!box!containing!about!11000!atoms!of!the!pure!liquid!(NMP!or!water)!

or! of! the! NMP! +!Water! mixtures.! Several! systems! with! different! x1! were!

simulated!covering!the!whole!composition!range! (x1!=!0.81;!0.67;!0.57;!0.37;!

0.22;!0.18;!0.08).
!

The! adopted! simulation! protocol! is! described! below.! Bound! and! van!

der!Waals! force! field! parameters! for! NMP!were! taken! from% Gontrani% and%

Caminiti,24!and!the!rigid!four!site!TIP4PEW!model!was!used!for!water.25!It!is!

known! that! depending! on! the! solvent,! the! atomic! partial! charges! are!
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expected!to!vary;!the!use!of!a!proper!set!of!charge!is!fundamental!to!ensure!

that!molecular!simulations!produce!reliable!results.26,27!Three!set!of!charges!

for! NMP! were! evaluated! for! the! simulation! of! NMP! +! Water! system:!

charges!in!Set1!were!taken!from!ref.!13;!charges!in!Set2!were!obtained!from!

QM!calculations!taking!into!account!the!polarization!effect!of!water;!charges!

in!Set3!were!obtained!by!interpolation!of!charges!in!Set1!and!Set2.!Charges!

in! Set2! were! calculated! using! Restrained! Electrostatic! Potential! (RESP)28!

procedure!using! the!Hartree?Fock! theory! level!with!6?31G!basis!set,!which!

was!also!used!for!charges!in!Set1,!and!modelling!the!effect!of!water!with!a!

polarizable!continuum!model!(PCM).!We!used!the!current! implementation!

in! Gaussian! 09! of! PCM,29! performing! a! reaction! field! calculation! using!

integral!equation!formalism!IEF?PCM!model.30–32!Ideally,!charges!in!Set2!are!

the!charges!in!an!infinitely!dilute!water!solution!(i.e.!for!x1=0),!while!charges!

in!Set1!have!been!shown!to!reproduce!correctly!the!structural!properties!of!

pure!NMP!(x1=1).!Charges!in!Set3!were!obtained!for!intermediate!values!of!

NMP!mole! fraction,!by!a! linear! fitting!of!charges! in!Set1!and!Set2! for!each!

value!of!x1.!!

The!starting!spatial!configurations!of!pure!liquids!were!created!with!the!

tleap%program!of! the!AMBER!11!package.! The!molecules! of!NMP!+!Water!

mixtures! were! packed! in! a! simulation! cubic! box! of! side! 55! Å! using!

PACKMOL! program.33! Every! pair! of! atoms! of! different! molecules! was!

separated!by,!at!least!2!Å,!and!the!molecules!centres!were!distributed!inside!

the!cube!at!random!starting!positions.!Each!of!the!systems!was!equilibrated!

with!a!first!short!NVT%ensemble!run!(260!ps)!followed!by!a!NPT%ensemble!run!

(3!ns)!with!the!same!pressure!and!temperature!to!be!used!in!the!production!
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step!(1!atm,!300!K)!using!the!Berendsen!algorithm34!with!time!constants!of!1!

ps!in!the!initial!phase!of!equilibration,!and!3!ps!in!the!last!part.! !Periodical!

removal! (every!10!ps)!of! the! centre!of!mass!velocity!was!done! in!order! to!

minimize! the! “flying! ice! cube”! phenomenon.35! 3! ns! of!NPT! equilibration!

were!sufficient!to!reach!the!statistical!equilibrium!as!assessed!by!inspecting!

the! convergence! of! the! thermodynamic! properties.! All! simulations! were!

carried!out!using!a!time!step!of!2!fs!and!SHAKE!constraints36!on!hydrogen!

atoms!(tolerance=0.00005);!a!cut?off!radius!of!9!Å!was!used!in!calculating!the!

non?bonded! interactions.! Electrostatic! interactions! were! calculated! by! the!

particle!mesh!Ewald!method37!as! implemented!in!AMBER!11,!with!a!cubic!

B?spline! interpolation!order!and!0.00001!tolerance!for!the!direct!space!sum!

cutoff.! The! length! of! production! run! was! of! 80! ns! for! each! system,! and!

absolutely!no!variation! in! selected!RDFs!calculated! from!10!ns!portions!of!

the!trajectory!was!observed!in!any!of!the!systems!(data!not!shown).!!

In! order! to! extract! structural! information! from! the! large! set! of!

coordinates!obtained!during!simulations,!the!most!common!type!of!analysis!

has!been!done!by!calculating!the!radial!distribution!functions!(RDFs)!or!pair!

correlation! functions,! usually! indicated! as! g(r).! The! RDF! of! a! site! B! with!

respect!to!a!site!A!is!the!probability!to!find!atom!B!at!a!distance%r!from!atom!

A!(normalized!with!the!bulk!density!of!B):!

gAB =
ρB r rA = 0( )

ρB
=

V
NB

!

"
#

$

%
&
NB rA,Δ( )
VB rA,Δ( ) !! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!17)

!

where ρB r rA = 0( ) !is!the!conditional!distance!dependent!density!of!site!B!at!

the! distance! rA! from! site!A;! rB! is! the! bulk! density;!NB! (r,!Δ)! is! the! average!
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number!of!B!which!can!be!found!in!the!volume!VB!(r,!Δ)!of!the!spherical!slice!

between! (rA! –! 0.5Δ)!and! (rA! +! 0.5Δ).! Integration! of! the! RDFs! to! the! first!

minimum! gives! a! coordination! number,! which! is! an! average! number! of!

neighbors! in! the! first!coordination!sphere.! It!becomes!hydration!number! if!

the!RDF!is!calculated!between!a!solute!and!the!solvating!water!molecules.!

Spatial!distribution!functions!(SDFs)!can!be!considered!as!the!extension!

of!RDFs!to!three!dimensions!thereby!giving!orientational!information!of!the!

structure.!Fixing!a!local!coordinate!system!in!the!reference!molecule,!or!on!a!

portion! of! it,! spatial! pairwise! correlations! are! calculated! within! the! local!

frame! as! vectors! (not! as! plain! distances! as! in! the! RDF).! Apart! from! this!

difference,!SDF!is!defined!in!the!same!way!as!RDF,!and!can!be!calculated!in!

the!Cartesian!space!as:!

SAB i, j,k( ) = 1
NA

Ii, j,k RnA
A r

nB
B
− r

nA
A( )"

#$
%
&'

nB=1

NB

∑
nA=1

NA

∑ ! ! ! !!!!!!!!!!!!18)!

where! RnA
A ! is! a! rotational! transformation!matrix! from! laboratory! frame! to!

molecular!frame!fixed!on!molecule!A!and! Ii, j,k ! is!used!to!collect! the!three?

dimensional!spatial!populations!of!site!B.!

The!analysis!of!normalized!RDF!and!SDF!was!done!using!an!in!house!

modified!version!of!the!Tranal!program!of!the!Mdynamix!Package.38!
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3. Results!

3.1. N+methyl+2+pyrrolidone!!

The!results!of!a!combined!approach!of!MD!simulations,!wide=angle!X=

ray! scattering! experiments,! and! density!measurements,! to! investigate! the!

structural! effect! of! water! on!

NMP! over! the! whole!

concentration! range! is! reported!

in!PAPER!I.
1

!!

A! very! good! agreement!

between! computed! and!

experimental!density!values!and!

diffraction! patterns! was!

obtained,!and!the!analysis!of!the!

MD! trajectories! allowed! us! to!

explain! why! a! density!

maximum! is! observed!

experimentally! for! this! system!

(Figure! 3.1! bottom).! The! simulations! indicated! that! water! molecules! can!

occupy!“empty!cavities”!of!NMP!network,!i.e.!spatial!regions!which!are!not!

accessible! to! the! heavy! atoms! of! the! solvating! NMP! molecules,! but! are!

accessible! to! water!molecules! (Figure! 3.1! top).! Each! cavity! can! host! only!

two!water!molecules;! therefore! the! addition!of!water! to!NMP! leads! to! an!

increase!in!density!up!to!a!water:NMP!molar!ratio!of!2:1.!Further!addition!

of!water!molecules!alters! the!NMP!network!and!the!density!decreases!the!

as!the!water!content!increases.!

Figure! 3.1.! Top:! cross=section! representation! of!
the! SDFs! of! heavy! atoms! of! selected! NMP!

molecules! a)! in! the! neat! state;! b)! at! x1! =0.81.!!
Bottom:! experimental! (! )! and! computed! ! (Set1,!

";!Set2,!! ;!Set3,!#)!densities,&ρ.!
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As! an! extension! of! the! previous! study,
1

! we! further! investigated!

NMP=Water! mixtures! by! a! combined! use! of! NMR! spectroscopy,!

calorimetric! measurements,! and! puckering! analysis! of! MD! simulations!

(PAPER! II).
2

! These! results! provided! additional! information! on! the!

structural!and!dynamics!changes!of!NMP!taking!place!upon!dilution:!!

i)! the! calorimetric! study! evidenced! the! presence! of! strong! interactions!

between! NMP! and! water! and! revealed! that,! under! comparable!

conditions,! the! solvation! of! NMP! by! water! results! in! an! interaction!

stronger!than!the!solvation!of!water!by!NMP.!!

ii)&the!changes!of!1H!and!
13

C!chemical!shifts
!

and!2D!ROESY!spectra!upon!

dilution! suggested! a!

preferential! location! of!

water! nearby! the!

carbonyl! group! of!

NMP! and! the!

formation!of!hydrogen!

bonding!between!these!

two! molecules.! In!

parallel,!observation!of!

correlation! times! by!

13

C!NMR! spectroscopy!

evidenced!a!different!dynamic!behaviour!moving! from! the!NMP=rich!

region!to!the!water=rich!region,!characterized!by!a!maximum!value!at!

about!0.7!water!mole!fraction!(Figure!3.2).!This!maximum!corresponds!

to!the!concentration!at!which!the!highest!density!is!observed.!

Figure! 3.2.! Left:! 1H!NMR! spectra! of! dried!NMP!and!

its!aqueous!mixtures!at!different!water!mole!fractions.!

Right:! rotational! correlation! times,! τc,! for! NMP! as! a!

function!of!the!water!mole!fraction.!
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iii)& Puckering! analysis! of& MD! simulations! showed! that! the! NMP!

conformations! distribution! is! not! affected! by! the! interactions! with!

water!molecules!over!the!entire!concentration!range.!

3.2. Room!Temperature!Ionic!Liquids!

In! PAPER! III
3

! are! reported! the! results! concerning! some!

alkylammonium! nitrate! (XAN)! ionic! liquids! +! NMP! mixtures! that! were!

investigated! over! the! whole! concentration! range! by! using! density! and!

calorimetric! measurements! with! the! purpose! to! understand! the! effect! of!

XAN! alkyl! chain! length! on! their!mixing! properties!with!NMP.! The!main!

information!from!the!density!measurements!is!that!the!increase!of!the!alkyl!

chain! length! of! the! XAN! cation! inhibits! the! compaction! of! neat! XAN.!

Negative! and! similar!VE

! values!

for! each! XAN! +! NMP! system!

were! found,! indicating! that! the!

alkyl! chain! length! does! not!

significantly! influence! the!

mixture! compaction.! Negative!

HE

! values! (Figure! 3.3)! were!

obtained! for! all! of! the!

investigated! systems;! a! clear!

indication! for! the! presence! of!

strong! attractive! interaction!

between! the! components;! in!

addition,!it!can!be!highlighted!that!the!mixing!process!of!these!ammonium!

nitrate!ionic!liquids!is!more!exothermic!for!ILs!with!short!alkyl!chain!than!

Figure! 3.3.! Excess! molar! enthalpies! and! partial!

molar! enthalpies! of! XAN! +! NMP! systems! as!

function!of!the!IL!mole!fraction.!a)!EAN;!b)!PAN;!

c)!BAN;!d)!MEOEAN.!

a) b) 

c) d) 
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for! those!with! long!ones.! In!general,! the!dissolution!of!XAN!by! the!NMP!

solvent!was! found! to! result! in! stronger! interactions!with! respect! to! those!

accompanying!the!NMP!dissolution!by!the!ionic!liquids.!MEOEAN!showed!

a! different! behaviour! compared! to! the! other! selected! alkylammonium!

nitrate!ionic!liquids:!&

i)! the! addition! of! a! polar! group! to! the! shorter! alkyl! chain! considered!

promotes! a! greater! compaction! of! the! neat! ionic! liquids! than! EAN,!

PAN!and!BAN.!

&ii)!when!MEOEAN!is!mixed!with!the!organic!solvent!NMP,!the!methoxy!

group!inhibits!the!interactions!between!the!ions!of!XAN!and!NMP.!!

In! the! supplementary!data,! the!NMR! results! are! reported.! The!
1

H! and!

13

C! chemical! shift! analysis! evidenced! the! presence! of! hydrogen! bond!

network! between! the! polar! head! of! the! cation! and! NMP! solvent.!

Complementary!information!on!the!XAN!+!NMP!interaction!was!assessed!

by!
13

C!NMR! relaxation!measurements.! The! carbons! in! the!NMP! ring! and!

those!of!the!methylenic!groups!in!XAN!show!an!inversion!point!of!R1!in!the!

mole! fraction! range! of! 0.6=0.8,! and! it! is! more! pronounced! for! BAN! ionic!

liquid.!This! inversion!point! is!not!observed! for!CH3!carbons!both! in!XAN!

and!in!NMP,!probably!due!to!the!rotational!contribution.!!

Further!information!about!the!structure!and!dynamic!of!these!systems!

can!be!improved!with!a!study!from!the!microscopic!point!of!view!through!

MD!simulations.!

Furthermore,! volumetric! results! of! XAN! +! Water! mixtures! were!

reported.! Negative! VE

! values! were! found! for! each! system,! like! in! NMP!

systems! (PAPER! III),
3

! indicating! the! presence! of! strong! attractive!
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interactions!between! ionic! liquids! and!water! solvent,! greater! than! in!neat!

compounds.!The!VE

!curves!of!each!system!showed!a!comparable! trend!so!

they!are!not!affected!by!the!alkyl!chain!length.!Even!in!this!case,!MEOEAN!

+!Water!system,!showed!the!smallest!reduction!of!volume.!!

In! PAPER! IV,
4

! EAX! +!Water!mixtures!were! studied! by! using! density!

and! calorimetric!measurements.!Density! values! of! neat! EAX!decreases! as!

the! alkyl! chain!

length! of! the! anion!

increases,! which!

can! be! attributed! to!

an! increase! in! steric!

hindrance! as! the!

chains! become!

more! voluminous!

(Figure! 3.4! left).!

EAX! +!Water!mixtures! can! be! classified! as! “contractive”! binary!mixtures!

because!of!negative!VE

!values.!By!comparing!VE

!trends,!it!is!evident!that!the!

addition!of!the!first!=CH2!group!to!the!alkyl!chain!of!the!methanoate!anion!

causes! a! relevant! increase! in! compaction! of! the! mixture,! while! a! further!

extension! of! the! alkyl! chain! has! an! opposite! effect! even! if! it! is! quite!

moderate!(Figure!3.4!right).!In!regards!to!calorimetric!results,!the!negative!

excess!enthalpies! found!for!each!system!suggest! the!presence!of!attractive!

interactions!between!the!mixture!constituents!stronger!than!the!interactions!

acting!in!pure!liquids.!

E
xH 5.0= !values!for!each!investigated!system!are!quite!

close! indicating! that! the! alkyl! chain! length! of! the! anion! does! not!
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Figure! 3.4.! Experimental! densities,! ρ,! (left)! and! excess! molar!

volumes,! VE,! (right)! of! EAX! (1)! +! Water! (2)! mixtures! as! a!

function!of!x1.!
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significantly!influence!the!mixing!process.!In!agreement!with!VE

!results,!the&

addition!of!the!first!=CH2!group!to!the!alkyl!chain!of!the!methanoate!anion!

favourites! a! greater! interaction! between! the! components,! while! a! further!

increase!in!length!of!the!alkyl!chain!inhibits!this!interaction.!

In! the! supplementary! data,! FT=IR! spectra! of! EAX! +!Water! systems! are!

reported.! The! ν3! and! ν1! water! band! shifts! to! lower! wavenumber! when!

water! interacts! with! the! solvent,! indicating! that! the! water! molecules!

interact!via!H=bonding!with!the!ionic!liquids.!!

EAX!ionic! liquids!are! investigated! in!NMP!mixtures!by!using!density!

and! calorimetric! measurements.! Excess! molar! volumes! are! negative! and!

quite! small! in! absolute! value.!VE

! curves! show! a!minimum!at! different!x1:!

EAM! in! the! region! of! lower! values! of! the!more! polar! component,! the! IL;!

EAP! approximately! at! equimolar! composition;! EAB! in! the! IL=rich! region.!

These!results!demonstrate!that!the!anion!affected!significantly!the!IL=NMP!

interactions.!Calorimetric!measurements!showed!that!EAP!and!EAB!when!

are!mixed!with!NMP!generate!a!weak!endothermic!effect!in!the!NMP=rich!

region,!while!in!the!IL=rich!region!the!mixing!is!exothermic.!In!the!case!of!

the!EAM!+!NMP!system,!it!was!found!a!moderate!exothermic!mixing!effect!

in! the! whole! concentration! range.! By! comparing!HE

! values! of! the! three!

systems,!it!can!be!observed!that!a!longer!alkyl!chain!in!the!carboxylic!anion!

prevent!the!IL=solvent!interaction,!while!a!shorter!alkyl!chain!favoured!it.!!

In! view!of! these! results,! it! can! be! noticed! that!NMP! is! unable! to! exert!

strong! attractive! interactions! towards! EAX! as,! for! example! water! does!

(PAPER! IV),! probably! because! of! the! well=known! different! capability! to!

interact!via!hydrogen!bonding.!!
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4. Conclusions!and!Perspectives!

In!this!contribution!it!is!shown!how!experimental!studies!together!with!

computational! ones! can! provide! useful! information! on! the! structure! of!

liquid! systems! in! general,! and! can! greatly! improve! the! knowledge! of!

molecular! structural! changes! upon! a! solvent! dilution.! My! attention! was!

focused! on! solvents! with! interesting! green! characteristics! and! attractive!

proprieties!to!be!used!as!valid!alternatives!to!the!common!organic!solvents.!

In! particular,! NCmethylC2Cpyrrolidone! and! alkylammonium! nitrate! and!

alkanoate!ionic!liquids!were!considered.!

The! study! of! NMP! +!Water! system! reported! in! PAPER! I! and! II! is! an!

example! of! how! a! combined! approach! of! MD! simulations! and! different!

experimental! techniques! contributed! to!understand!a!particular! structural!

NMP! organization! in! aqueous! mixtures,! which! is! the! cause! of! a! density!

maximum!at!the!NMP:Water!molar!ratio!of!1:2.!!

Room!temperature! ionic! liquids!are!one!of! the!most!promising!class!of!

material! that! in! the! last! decades!were! used! in! several! applications.! Their!

performance!is!strongly!influenced!by!physicochemical!characteristics!such!

as! alkyl! chain! and! cation/anion! head! nature,! for! the! neat! ILs,! and! by! the!

polar/apolar!nature!of!additive!solvents!in!binary!mixtures.!As!it!could!be!

expected,! the!physicochemical!proprieties!of!both! families!of! ionic! liquids!

investigated! in! this!work!are! significantly! influenced!by! the! ion!nature!or!

by!the!alkyl!chain!length.!!In!particular,!structural!modification!in!the!anion!

and! in! the! cation! affected! significantly! the! ILCsolvent! interactions.! In!

general,!as!can!be!seen!in!PAPER!III!and!IV,!a!longer!alkyl!chain!length!in!

the! cation! (XAN)! or! in! anion! (EAX)! generates! a! decrease! in! density!
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indicating!that!the!compaction!of!neat!ionic!liquids!in!bearing!longer!alkyl!

chains!is!hindered.!The!addition!of!a!polar!group!(methoxyC)!to!the!shorter!

alkyl! chain! in! the! considered! XAN! ionic! liquids! promotes! a! greater!

compaction!of!the!neat!ionic!liquids!than!the!other!XAN.!

XAN!ionic!liquids!showed!a!better!affinity!for!NMP!solvent,!while!EAX!

ones!for!water!solvent.!

The!results!presented!in!this!work!provide!valuable!new!information!on!

XAN! and!EAX! ionic! liquids! and! their!mixtures!with!water! or!NMP,! and!

allow!us! to!dispose!quantities,! obtained! in! a!direct! and! reliable!way,! that!

are!necessary!for!the!chemical!plants!design.!

Of! course! the! use! of! a! combined! experimental! and! computational!

approach,! as! it! has! been! done! for! the! NMP! +! Water! system,! would! be!

important!for!a!better!understanding!of!structural!and!dynamical!changes!

in! ILs,! especially! those! that! occurs! upon! solvent! dilution.! Therefore,! we!

intend!to!continue!the!experimental!studies!of!these!IL!!+!solvent!mixtures!

by! using! different! experimental! techniques! and!MD! simulations!with! the!

goal!to!obtain!a!inCdepth!knowledge!of!these!systems!from!the!microscopic!

point!of!view.!
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The structural organization of N-methyl-2-pyrrolidone + water mixtures:
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A combined approach of molecular dynamics simulations, wide angle X-ray scattering experiments,
and density measurements was employed to study the structural properties of N-methyl-2-pyrrolidone
(NMP) + water mixtures over the whole concentration range. Remarkably, a very good agreement
between computed and experimental densities and diffraction patterns was achieved, especially if
the effect of the mixture composition on NMP charges is taken into account. Analysis of the inter-
molecular organization, as revealed by the radial and spatial distribution functions of relevant solvent
atoms, nicely explained the density maximum observed experimentally. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4869235]

I. INTRODUCTION

N-methyl-2-pyrrolidone, NMP, is a heterocyclic com-
pound having a five-membered ring structure with a lactam
functionality (Fig. 1). It is hygroscopic, aprotic, and strongly
polar solvent with high boiling point (477.45 K), low melt-
ing point (249.55 K), low volatility, low viscosity, and a mild
amine odour. Furthermore, it has large chemical and thermal
resistance and low toxicity. All of these characteristics make
NMP a highly useful solvent in a variety of chemical reactions
where an inert medium is required. Indeed, NMP is employed
in a wide range of industrial applications,1 such as chem-
icals processing, coatings, engineering plastics, agricultural
chemicals, electronic, paint stripping and cleaning, and many
others. Among its many uses, the most singular has been
discovered recently: thanks to its excellent solvating capabil-
ities, NMP has been used to exfoliate graphene layers from
graphite.2

NMP is often used as a selective solvent in combination
with small amounts of water (W). Since the presence of
water has a significant effect on the solvent properties
of NMP, particularly on its selectivity and efficacy in a
number of processes,3 a wide interest has been turned to the
physicochemical characterization of these mixtures. However,
despite the numerous data in the literature,3–11 the structure
and organization of NMP in water mixtures is still not
clear. For instance, the density and the viscosity of NMP (1)
+ W (2) mixtures showed an interesting trend as a function of
the composition, having a maximum at x1 ≈ 0.3. This peculiar
behavior has been suggested to be due to the simple formation
of complexes or hetero-associates species of the type (NMP

a)Electronic mail: fmocci@unica.it
b)Electronic mail: lorenzo.gontrani@gmail.com

× 2H2O).10 Usually, the curve representing density with re-
spect to composition is monotonic, nonlinear; but in few cases
a point of maximum is found, such as, to cite a few, a series of
cyclic amide or ethanolamine in water mixtures.12 However,
to the best of our knowledge the origin of this phenomenon at
microscopic level is not known yet. NMP in pure state or in
extremely dilute aqueous solution was studied through molec-
ular dynamics (MD) simulations.13, 14 In 2012, Gontrani and
Caminiti13 studied the structure of NMP in liquid state by
using X-ray diffraction complemented with interpretative
models built with MD simulations. Although X-ray data were
employed successfully in the study of pure liquids15 and elec-
trolyte solutions16 in the past, the literature about structural
studies of water solutions of organic liquids is still scarce,
apart from some studies on water-alcohol mixtures.17–21 The
very good agreement between experimental and calculated
patterns found in Ref. 13 suggested that the use of a simple
two-body force field is appropriate for the NMP system. In
2009, Carver et al.14 studied the structure of NMP extremely
diluted in water by using experimental mutual diffusion co-
efficients complemented with MD simulations. The analysis
showed the presence of four well-defined solvation shells
around the NMP. In particular, they found that only 2.5 water
molecules were bound to the carbonyl oxygen and 15.5 waters
were found in the first solvation shell of the methyl group. The
attention of Carver et al.14 was focused on the water behavior
in presence of NMP. Conversely, what is the behavior of NMP
in the presence of smaller percentage of water? In front of
the aforementioned singular trends of the physical-chemical
properties of this system, it is evident that its structural
organization is strongly dependent on the water content.

The aim of this study is to investigate the structural orga-
nization of NMP + W mixtures over the whole concentration

0021-9606/2014/140(12)/124503/10/$30.00 © 2014 AIP Publishing LLC140, 124503-1
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FIG. 1. Atom numbering scheme of N-methyl-2-pyrrolidone (NMP).

range, contributing to cover the concentration gap left open by
previous studies,14 with X-ray diffraction and densitometry
techniques complemented with computed models built with
MD simulations. The performance of MD simulations in pre-
dicting the experimental densities and X-ray diffraction pat-
terns is discussed, and the reason why a maximum is present
in the density curve is clarified by analysing the structural
organization obtained by MD simulations.

II. EXPERIMENTAL

A. Materials

N-methyl-2-pyrrolidone (purity > 97%) was purchased
from Sigma-Aldrich and was dried in vacuum (p = 2 × 10−2

mbar) for 24 h.

B. Density measurements

NMP + W mixtures were prepared by weight in septum-
capped vials of approximately 2 cm3 using needles and sy-
ringes to transfer liquids. Before weighting, NMP was de-
gassed for about 2 h by means of an ultrasonic device (WVR
model USC100T – 45 kHz, 30 W), while pure water was used
immediately after distillation.

The densities (ρ) of the liquid mixtures and the pure
compounds were measured at 298.15 K by means of a vi-
brating tube densitometer (model DMA 58, Anton Paar,
Gratz, Austria). Accuracy in the temperature was better than
±0.01 K. Density precision and accuracy were ±0.00001
and ±0.00005 g/cm3, respectively. Each density measurement
was performed in duplicate. The instrument was calibrated

before each experimental run using dry air and distilled water
as references.

C. X-ray diffraction

NMP + W mixtures were prepared by weight as follow:
first, the proper amounts of NMP were weighted with an an-
alytical balance in screw-cap glass vials in a glove-bag un-
der nitrogen atmosphere; then, the vials were removed to the
glove-bag and suitable amounts of water were added to give
mole fraction x1 of: 0.08; 0.18; 0.22; 0.37; 0.57; 0.66; 0.81.
The mixtures were transferred into the capillary tube for X-
ray measurements and sealed with wax. Data used for the
elaboration of X-ray patterns are reported in Table I.

The wide angle X-ray scattering experiments were per-
formed using the noncommercial energy-scanning diffrac-
tometer built in the Department of Chemistry at the Univer-
sity “La Sapienza” of Rome (Patent no. 01126484, June 23,
1993). For a detailed description of instrument, technique, and
the experimental protocol of the data acquisition phase, the
reader is referred to Refs. 22–25.

In this experiment, the 0–2ϑ instrument geometry (only
one of the two diffractometer arms can move) was used. In
such a setup, higher diffracted intensities can be recorded. The
appropriate measuring time (i.e., number of counts) was cho-
sen to obtain scattering variable (Q) spectra with high signal-
to-noise ratio (600 000 counts on average). The diffraction
patterns acquired at the different angles are then joined to
obtain a continuous spectrum in Q. Only five diffraction an-
gles are enough to cover a Q-spectrum ranging from 0.1 to
20 Å−1. The total intensity of the radiation scattered by a sam-
ple in a diffraction experiment, after the correction for sys-
tematic effects (polarization, absorption, incoherent and mul-
tiple scattering) and rescaling to absolute units (electron units
per stoichiometric unit), can be expressed as the sum of two
terms

I (Q)E.U. =
N∑

i=1

xif
2
i + i(Q). (1)

The first term represents the independent atomic scattering
from the atoms in a stoichiometric unit, while i(Q) is the “total
structure function” and constitutes the structurally sensitive
part of the scattering intensity, being due to the interference
contributions from different atoms.

TABLE I. Mole fraction of NMP x1, density ρ, stoichiometric volume SV, NMP and water molar concentration, and molar concentration of each chemical
element in the mixtures. Molar concentrations are expressed as mol/dm3.

Mixture x1 ρ (g/cm3) SV (Å3) [NMP] [water] [O] [N] [C] [H]

(a) 0.81 1.0332 165.9869 10.004 2.310 12.305 10.004 50.020 94.638
(b) 0.66 1.0376 173.4963 9.571 4.930 14.431 9.571 47.855 95.999
(c) 0.57 1.0410 179.8866 9.231 6.967 16.198 9.231 46.155 97.013
(d) 0.37 1.0476 205.7407 8.071 13.742 21.813 8.071 40.355 100.123
(e) 0.22 1.0445 256.4906 6.474 22.355 28.829 6.474 37.025 102.976
(f) 0.18 1.0396 293.0697 5.666 26.527 32.193 5.666 28.33 104.048
(g) 0.08 1.0267 497.3145 3.339 38.396 41.735 3.339 16.695 106.843
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The variable Q is the magnitude of the transferred mo-
mentum, and depends on the scattering angle (2ϑ), accord-
ing to the relation Q = 4π (sinϑ /λ) = cost * E * sinϑ , with
cost = 1.014 Å−1/keV, if E is expressed in keV and Q in
Å−1. The function i(Q) is related to the radial distribution
functions (RDF) descriptive of the structure, according to the
formula

i (Q) =
N∑

i=1

N∑

j=1

xixjfifjHij (Q), (2)

where we have introduced the partial structure functions Hij

defined in terms of radial distribution functions by the Fourier
integral

Hij (Q) = ρ0

∫ ∞

0
4πr2(gij (r) − 1))

sin (Qr)
Qr

dr (3)

(ρ0 is the bulk number density).
By inverting this Fourier transform, we get

gij (r) − 1 = 1
(2π )3ρ0

∫ ∞

0
4πQ2Hij (Q)

sin (Qr)
Qr

dQ. (4)

Thus, if the n(n + 1)/2 pair distribution functions gij(r) are
calculated from a theoretical simulation, the partial structure
factors, and, ultimately, i(Q) can be achieved. Therefore, the
link between experimental data and molecular modelling is
particularly important, considering the fact that from a X-ray
diffraction experiment a “total scattering” quantity is obtained
(i.e., a linear combination of Hij, Eq. (2)) and that the de-
convolution into its components is not directly feasible. The
structure functions, both the one derived from experimental
diffraction patterns and that obtained from theoretical radial
distribution functions were multiplied by a modification func-
tion M(Q), a sharpening factor, necessary to improve the curve
resolution at high Q, and then Fourier-transformed in the dis-
tance domain, according to the relation

Diff(r) = D(r) − 4πr2ρ0 = 4πr2ρ0(G(r) − 1)

= 2r

π

∫ ∞

0
Qi(Q)M(Q) sin(rQ)dQ. (5)

The differential correlation function Diff(r) function contains
only the structural contribution to the distribution function,
since the uniform distribution component, corresponding to
the second term of the subtraction, or to 1, is dropped. For a
comprehensive report of all the formulas, see Refs. 26 and 27.

Summarizing, the comparison between experimental and
model data for a given NMP/W solution will be carried out
using both Qi(Q)M(Q) (reciprocal space) and Diff(r) (di-
rect space). If a comparison among the various systems is
sought, a very useful function is the so-called “atomic” struc-
ture function f(Q), where i(Q) is normalized by the inde-
pendent atomic scattering, the first term of the right sum in
Eq. (1). With this further normalization, the scaling aris-
ing from species concentration is removed and the scattering
functions are more easily comparable, though the dependence
on scattering factors cannot be completely eliminated, since

the total functions are scattering factor-weighted sums of par-
tial functions.26, 27

D. Computational details

Molecular dynamics simulations were performed with
the AMBER 11 package28 (both CPU and GPU versions of
PMEMD)29 using a cubic box containing about 11 000 atoms
of the pure liquid (NMP or water) or of the NMP + W mix-
tures. Several systems with different x1 were simulated cov-
ering the whole composition range. More specifically, in ad-
dition to the simulations of the two pure liquids, seven simu-
lations of the mixtures were performed with the following x1

values: 0.81; 0.67; 0.57; 0.37; 0.22; 0.18; 0.08.
The adopted simulation protocol is described below.

Bound and van der Waals force field parameters for NMP
were taken from Gontrani and Caminiti,13 and the rigid four
site TIP4PEW model was used for water.30 It is known that
depending on the solvent the atomic partial charges are ex-
pected to vary; the use of a proper set of charge is funda-
mental to ensure that molecular simulations produce reliable
results.31, 32 Three sets of charges for NMP were evaluated
for the simulation of NMP/W system: charges in Set1 were
taken from Ref. 13; charges in Set2 were obtained from QM
calculations taking into account the polarization effect of wa-
ter; charges in Set3 were obtained by interpolation of charges
in Set1 and Set2. Charges in Set2 were calculated using
Restrained Electrostatic Potential (RESP)33 procedure using
the Hartree-Fock theory level with 6-31G basis set, which was
also used for charges in Set1, and modelling the effect of wa-
ter with a polarizable continuum model (PCM). We used the
current implementation in Gaussian 09 of PCM,34 performing
a reaction field calculation using integral equation formalism
IEF-PCM model.35–37 Ideally, charges in Set2 are the charges
in an infinitely dilute water solution (i.e., for x1 = 0), while
charges in Set1 have been shown to reproduce correctly the
structural properties of pure NMP (NMP mole fraction equal
to 1). Charges in Set3 were obtained for intermediate values
of NMP mole fraction, by a linear fitting of charges in Set1
and Set2 for each value of x1. The three sets of partial atomic
charges are reported in Table II.

The starting spatial configurations of pure liquids were
created with the tleap program of the AMBER 11 package.
The molecules of NMP + W mixtures were packed in a sim-
ulation cubic box of side 55 Å using PACKMOL program.38

Every pair of atoms of different molecules was separated by,
at least, 2 Å, and the molecules centers were distributed inside
the cube at random starting positions. Each of the systems
was equilibrated with a first short NVT ensemble run (260 ps)
followed by a NPT ensemble run (3 ns) with the same pres-
sure and temperature to be used in the production step (1 atm,
300 K) using the Berendsen algorithm39 with time constants
of 1 ps in the initial phase of equilibration, and 3 ps in the
last part. Periodical removal (every 10 ps) of the centre of
mass velocity was done in order to minimize the “flying ice
cube” phenomenon.40 3 ns of NPT equilibration were suffi-
cient to reach the statistical equilibrium as assessed by in-
specting the convergence of the thermodynamic properties, as
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TABLE II. Partial atomic charges used in the three sets of MD simulations. The mole fraction of NMP is denoted as x1.

Set1 Set2 Set3

Atom type all x1 all x1 x1 = 0.08 x1 = 0.18 x1 = 0.22 x1 = 0.37 x1 = 0.57 x1 = 0.66 x1 = 0.82

O1 − 0.61897 − 0.71551 − 0.71551 − 0.69850 − 0.69377 − 0.68014 − 0.66044 − 0.65174 − 0.63658
C2 0.61137 0.64648 0.64648 0.64026 0.63853 0.63356 0.62636 0.62318 0.61764
N3 − 0.13761 − 0.12354 − 0.12354 − 0.12595 − 0.12662 − 0.12855 − 0.13134 − 0.13257 − 0.13472
C4 − 0.24240 − 0.29921 − 0.29921 − 0.28931 − 0.28655 − 0.27861 − 0.26714 − 0.26207 − 0.25324
H5 0.10784 0.12658 0.12658 0.12330 0.12387 0.11976 0.11596 0.11428 0.11136
H6 0.10784 0.12658 0.12658 0.12330 0.12387 0.11976 0.11596 0.11428 0.11136
H7 0.10784 0.12658 0.12658 0.12330 0.12387 0.11976 0.11596 0.11428 0.11136
C8 − 0.10358 − 0.10252 − 0.10252 − 0.10270 − 0.10275 − 0.10290 − 0.10312 − 0.10321 − 0.10338
H9 0.07067 0.09096 0.09096 0.08739 0.08639 0.08353 0.07939 0.07756 0.07437
H10 0.07067 0.09096 0.09096 0.08739 0.08639 0.08353 0.07939 0.07756 0.07437
C11 − 0.02696 − 0.02805 − 0.02805 − 0.02788 − 0.02783 − 0.02770 − 0.02751 − 0.02742 − 0.02727
H12 0.03663 0.05124 0.05124 0.04867 0.04796 0.04591 0.04294 0.04163 0.03934
H13 0.03663 0.05124 0.05124 0.04867 0.04796 0.04591 0.04294 0.04163 0.03934
C14 − 0.15957 − 0.23324 − 0.23324 − 0.22027 − 0.21665 − 0.20626 − 0.19122 − 0.18458 − 0.17301
H15 0.06981 0.09572 0.09572 0.09116 0.08989 0.08623 0.08094 0.07861 0.07454
H16 0.06981 0.09572 0.09572 0.09116 0.08989 0.08623 0.08094 0.07861 0.07454

shown in Figure S1 of the supplementary material.46 All sim-
ulations were carried out using a time step of 2 fs and SHAKE
constraints41 on hydrogen atoms (tolerance = 0.00005); a cut-
off radius of 9 Å was used in calculating the non-bonded inter-
actions. Electrostatic interactions were calculated by the par-
ticle mesh Ewald method42 as implemented in AMBER 11,
with a cubic B-spline interpolation order and 0.00001 toler-
ance for the direct space sum cutoff. The length of production
run was of 80 ns for each system, and absolutely no variation
in selected RDFs calculated from 10 ns portions of the trajec-
tory was observed in any of the systems (data not shown).

We investigated the structural properties of these systems
in the whole concentration range through the analysis of nor-
malized RDF and SDF (Radial and Spatial Distribution Func-
tion) calculated using the Tranal program of the Mdynamix
Package.43 Integration of the first peak of the appropriate RDF
allowed calculating the number of water molecules in the first
solvation shell of selected atoms.

III. RESULTS AND DISCUSSION

A. Theoretical calculations and density
measurements

Three sets of MD simulations (Set1, Set2, Set3) were car-
ried out differing in the charges used for NMP. The average
density values at 298 K obtained in the three sets of MD sim-
ulations, together with the experimental values, are plotted as
function of x1 in Fig. 2. It can be seen that the density values
obtained in Set1 simulations reproduce somehow the experi-
mental trend. For this set, the comparison with experimental
values is clearly very good at high NMP mole fractions, but
at lower NMP concentrations the values from the simulations
are systematically lower than experimental ones. The discrep-
ancy is larger in the region where the maximum is observed.
Results from Set2 are in good agreement with experimental
data in the region of low NMP concentrations; however, the
agreement worsens at higher NMP contents with computed

density values higher than the experimental one. This indi-
cates that charges used in Set2, obtained considering pure wa-
ter as solvent (see Sec. II D), are suitable for simulations at
low NMP contents, but are too polarized for reproducing the
behavior of the mixtures when the content of NMP solvating
NMP itself increases. For this reason, we carried out an addi-
tional set of simulation, Set3, using the partial atomic charges
obtained by a linear fitting between the charges in Set1 and
Set2. The average densities obtained in Set3 not only repro-
duce very well the experimental trend but also have absolute
values quite close to the experimental ones over the whole
concentration range.

The agreement between experimental and computed data
validated the use of MD simulations to understand the origin
of the peculiar density trend from the microscopic point of

FIG. 2. Experimental (black circles) and theoretical (Set1, blue squares;
Set2, green triangles; Set3, red diamonds) densities, ρ, of NMP (1) + W
(2) mixtures at 298 K.
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FIG. 3. RDFs between the water oxygen (Ow) with selected atoms of NMP and with other water oxygen atoms in NMP (1) + W (2) mixtures at different x1
values.

view. To reach this goal, we analysed the radial and spatial
distribution functions obtained from the Set3 simulations. In
Fig. 3, the RDFs of the oxygen of water (Ow) with selected
atoms of NMP and of other water molecules are shown. As
can be seen, the most intense first maxima were observed
in the RDFs of the carbonyl (O1 and C2), and the methyl
(C4) groups. It can also be noticed that the intensity of these
maxima increases with increasing NMP mole fraction. It is
interesting to highlight that the RDFs of N3 and C14 ex-
hibit a second maximum more intense than the first one at
high NMP concentrations. These observations are consistent
with the presence of H-bonds between water and the carbonyl
group of NMP, and possibly with the methyl group. When
the water content is reduced, these interactions prevail on
those of water with other NMP atoms, and the second maxi-
mum of N3 and C14 can therefore be attributed to the water
molecules bound to the carbonyl and methyl groups. Similar
considerations can be done for the third maximum in C11 and
C8 RDFs. To support the RDFs interpretation, representative
distances between selected NMP atoms and the oxygen of a
water molecule coordinating the carbonyl oxygen are repre-
sented in Figure 4.

The number of water molecules bound to the carbonyl
oxygen, to the methyl group, and to the oxygen of water,
calculated by integrating the first peak of O1, C4, and Ow
RDFs, are shown in Fig. 5. As it can be expected, this number

decreases with increasing NMP mole fraction. In particular,
the decrease is approximately linear for the water molecules
bound to the carbonyl oxygen and to other water molecules,
while those bound to the methyl group decrease more rapidly
at mole fraction up to x1 = 0.4.

FIG. 4. Distances between selected NMP atoms and the oxygen atom of a
water molecule hydrogen bonded to the carbonyl group.
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FIG. 5. Number of water molecules in the first hydration shell of (a) the
carbonyl oxygen of NMP (red diamonds), (b) methyl carbon of NMP (blue
circles), and (c) water oxygen (green squares).

Previous studies44 have shown that in order to prop-
erly describe the spatial arrangement of molecules in solu-
tion, it is quite useful to visualize the SDFs of the solvating
molecules around a selected molecular type or a fragment.
SDFs are three-dimensional functions, and therefore to rep-
resent them their dimensionality should be reduced. This is
commonly done by representing isodensity surfaces (or iso-
surfaces), i.e., surfaces that connect points with a given value
of probability to find the particle(s) for which the SDF is cal-
culated. Another common way to reduce the dimensionality
is through the cross-section representations, i.e., plotting the
value assumed by the SDFs on a selected two-dimensional
surface, very often a plane. In normalized SDFs, the value of
1 corresponds to the bulk value, and to visualize the inter-
molecular spatial organization values higher than 1 should be
selected. To identify regions where the probability is lower
than in the bulk, the cross-section representations are more
useful.

In Fig. 6 are displayed the isodensity surfaces of the
SDFs of different atom types around a reference molecule of
NMP, calculated from the trajectories of the pure NMP system
(Fig. 6(a)), and from the Set3 trajectories of all the simu-
lated mole fractions (Figs. 6(b)–6(h)). In Fig. 7 are shown
the cross sections of the SDFs calculated on the same set of
trajectories for all of the NMP heavy atoms. Visual inspec-
tion of SDFs nicely explains the NMP + W organization and
the increase in density observed experimentally when adding
water to NMP. In Fig. 6(a), it can be seen how neat NMP
solvates itself. The spatial region with higher probability of
finding the methyl carbon (C4) and the methylenic carbon in
β-position with respect to the amide group (C11) were found
close to the carbonyl oxygen of the reference molecule. The
SDFs of the carbonyl oxygen (O1) has higher values in three
different regions close to the reference molecule: on the left
and on the right side of the amide group, and on the op-
posite side of the carbonyl group. As shown in Fig. 6(b),

when a small amount of water is added, x1 = 0.81, water
molecules coordinate mainly to the oxygen of the carbonyl
group. It is interesting to highlight that at low water content,
water molecules can coordinate to the carbonyl oxygen with-
out excessively perturbing NMP SDFs adopted in the NMP
neat state (Figs. 6(a)–6(d) and 7(a)–7(d)), thus resulting in an
increase of the density as observed experimentally. This ar-
rangement is possible because, as can be seen by comparing
Fig. 6(a) with Fig. 6(b) and Fig. 7(a) with Fig. 7(b), the water
molecule size fit perfectly with the “empty cavity” observed
in the SDFs of solvating NMP molecules in proximity of the
carbonyl group. As “empty cavity” we refer to the spatial re-
gion which is not accessible to the heavy atoms of the solvat-
ing NMP molecules, but is accessible to water molecules. In-
stead, the addition of more than two water molecules for each
NMP molecule (Figs. 6(f)–6(h)) leads to significant modifica-
tions of the SDFs adopted in the NMP neat state, and to the
decrease in density, as it is expected when adding water to a
liquid with higher density. Another proof that water molecules
occupy a region not accessible to the heavy atoms of NMP is
given by the RDFs between the carbonyl oxygen and each of
the heavy atoms in the system (Fig. 8 and Fig. S2 of the sup-
plementary material46). The peak of the first maximum of O1-
Ow RDF is found in a region where the probability of finding
any of the NMP atoms is zero. The same behavior is observed
at all mole fractions shown in Fig. S2 of the supplementary
material.46

It is important to note that even if the “cavity” can host
only two water molecules, this does not imply that the wa-
ter molecules in that region are somehow in a cage or iso-
lated from other water molecules. The same water molecule
can coordinate two carbonyl groups as hydrogen donor, and
at the same time it can form other hydrogen bonds as an ac-
ceptor, as illustrated in the example shown in Fig. S3 of the
supplementary material46 and as indicated by the number of
coordinating water molecules for both Ow and O1 reported in
Fig. 5.

B. X-ray diffraction

Experimental and model patterns calculated from Set3
trajectories of i(Q) and Diff(r) for each mixture at different
mole fractions of NMP are shown in Figs. 9 and 10, respec-
tively; model patterns of i(Q) and Diff(r) calculated from each
set of MD simulations (see Sec. II D) are reported in the sup-
plementary material (Figs. S4 and S546). The changes in the
structure of the NMP + W mixtures are more easily visible
in the cumulative plot (Fig. 11) of the atomic structure func-
tion f(Q). All the experimental functions were calculated us-
ing in-house written codes. The X-ray model patterns (struc-
ture function and radial distribution function) were calculated
on 4000 frames sampled regularly in the diffusive part of the
trajectory. As it can be seen, a good agreement between exper-
imental and simulated data obtained from the Set3 trajectories
(see Sec. II D) was achieved, for all distance and Q ranges.
Such agreement indicates that the model is reliable and ap-
propriate to capture the overall structural information about
these mixtures.
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FIG. 6. (a) x1 = 1, (b) x1 = 0.81, (c) x1 = 0.66, (d) x1 = 0.57, (e) x1 = 0.37, (f) x1 = 0.22, (g) x1 = 0.18, (h) x1 = 0.08: Isodensity surfaces of the SDFs
of selected NMP atoms in NMP (1) + W (2) mixtures at different x1 values. Isodensity surface value is 3 for the NMP atoms and 13 for water atoms. Colour
scheme used for the SDFs: magenta: Ow; yellow: Hw1 and Hw2; red: O1; green: C4; ciano: C11. 2D structures of NMP and water are reported for visual aid,
with atom colours matching those used in the SDFs representation.

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 7. (a) x1 = 1, (b) x1 = 0.81, (c) x1 = 0.66, (d) x1 = 0.57, (e) x1 = 0.37, (f) x1 = 0.22, (g) x1 = 0.18, (h) x1 = 0.08: Cross-section representation of the
SDF of heavy atoms of NMP in NMP (1) + W (2) mixtures at different x1 values. The cross-section is that of the plane defined by O1–C2–N2, which also
corresponds to the plane of the average NMP structure.
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FIG. 8. RDFs between the NMP oxygen and heavy atoms of NMP or water
in NMP (1) + W (2) mixture at x1 = 0.81.

The patterns showed the broad peaks typically found in
liquids, with a moderate degree of ordering suggested by the
intensity of the peaks. In the most diluted mixture, the two
signals falling at 2 and 3 Å−1 in i(Q) (water “doublet” peak),
which were attributed to O–O and O–H intermolecular cor-
relations of the hydrogen-bond network of liquid water,45

are clearly evident. The two peaks decrease in intensity as
NMP content increases until they merge into a single signal at
1.5 Å−1, similar to what is found for neat NMP. As the wa-
ter content decreases the structure function becomes similar
to that found for neat NMP.13

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 9. (a) x1 = 0.81, (b) x1 = 0.66, (c) x1 = 0.57, (d) x1 = 0.37, (e) x1
= 0.22, (f) x1 = 0.18, (g) x1 = 0.08: Total structure function Qi(Q)M(Q).
Experimental (dashed, blue) and model from Set3 trajectories (continuous,
green) for NMP (1) + W (2) mixtures at different x1 values.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 10. (a) x1 = 0.81, (b) x1 = 0.66, (c) x1 = 0.57, (d) x1 = 0.37, (e) x1
= 0.22, (f) x1 = 0.18, (g) x1 = 0.08: Differential correlation function Diff(r).
Experimental (dashed, blue) and model from Set3 trajectories (continuous,
green) for NMP (1) + W (2) mixtures at different x1 values.

The results shown comply very nicely with the volumet-
ric data and with the SDF plots discussed above, since the
addition of water to NMP up to x1 = 0.37 (Figs. 9(a)–9(d))
does not affect very much the relative balance of structural
correlations and the resulting X-ray structure functions very
much, apart from a small gradual drift of the 9 Å−1 and
6 Å−1 peaks towards lower Q values, due to the loss of NMP
ring intermolecular contacts. This result indicates that NMP
overall structure is only slightly perturbed up to x1 = 0.37.
At smaller NMP concentrations (Figs. 9(e)–9(g)), the new in-
termolecular contacts originated by the water molecules that
cannot be allocated inside NMP structure (“pure” water) tend
to dominate. This picture is mirrored in the radial patterns of
Fig. 10, which show how NMP intramolecular fingerprints,
i.e., the two molecular peaks at 1.5 and 2.2 Å of the ring (1,2
and 1,3 contacts) and the 1,4 peak around 3.7 Å (contributed
by (N)CH3–O and by the larger N–C and O–C distances) are
hardly noticeable at mole fractions larger than 0.37. At the
same time, the oxygen–oxygen water shell structure peaks
come out (at 2.85, 4.7, and 7 Å).

The structure pattern just described is even more ev-
ident in the f(q) functions (Fig. 11). It can be seen how
the peaks generally undergo only slight modifications in the
first three solutions. Focusing on the 2.5–3.5 Å−1 range,
in particular, the most concentrated solutions show a nega-
tive peak, the central region around 0.37 shows a plateau,
while increasing the water content, the characteristic peak
around 2.9 Å−1, mostly originated by O–H intermolecular
correlations,45 builds up.
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FIG. 11. Total structure function f(Q) for NMP (1) + W (2) mixtures at
different x1 values.

IV. CONCLUSIONS

The structure of N-methyl-2-pyrrolidone + water mix-
tures was investigated by combining density measurements,
X-ray diffraction, and molecular dynamics simulations. Three
sets of MD simulations were carried out differing in the
charges used for NMP. In order to reproduce the experimental
density trend of this binary system over the whole composi-
tion range of concentration, it was important to consider that
the variation in the solvation around NMP affects the charge
polarization. The sets of charges, which well reproduce the
neat NMP or NMP in diluted aqueous solution, were found
to be not perfectly suited for simulating the behavior at in-
termediate concentration. This lack is certainly of importance
when the simulations are used, as in our case, to understand
the presence of a density maximum at intermediate concentra-
tion. However, a simple linear fitting of the charges that well
reproduces the density at the terminal parts of the curve is ca-
pable to correct this weakness. As regards the X-ray patterns,
all of simulated data were appropriate to reproduce the exper-
imental trend. The very good agreement between measured
and calculated densities or X-ray patterns suggests that the
models employed are appropriate for this system. Analysis of
SDFs of relevant NMP and water atoms around NMP clari-
fies the origin of the density maximum. In fact, by comparing
the SDFs calculated from the neat NMP trajectory and those
calculated from the mixtures trajectories, it could be observed
that water molecules can occupy a cavity of the NMP net-
work, which is empty in neat NMP. The mentioned cavity can
host only two water molecules; therefore, the addition of wa-
ter to NMP leads to an increase in density up to the molecular
ratio of 2:1. Further addition of water alters the NMP network
and the density decreases increasing the water content.

The X-ray results are in very good agreement with the
volumetric data and with the SDF plots: the addition of wa-
ter to NMP up to x1 = 0.37 does not affect the relative bal-
ance of structural correlations and the resulting x-ray struc-
ture functions, and at smaller NMP mole fractions, the new
intermolecular interactions originated by the water molecules
that cannot be allocated inside the structure of NMP (“pure”
water) dominate.
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FIG. S1. Temporal variation of the thermodynamic properties of a 
representative NMP-water system at x1=0.81 during the equilibration phase. 
After an initial part (0-260 ps) of NVT equilibration, the MD simulations were 
performed under NPT conditions. 
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FIG S2. RDFs between the NMP oxygen and 1) H atoms of NMP or water (plots on 
left); 2) heavy atoms of NMP or water (plots on right) in NMP (1) + W (2) mixture at 
different x1 values.  
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FIG S3. An example of water molecules coordinated to the carbonyl group of NMP. 
The ball representation of atoms of selected molecules has been scaled to the van der 
Waals radius. Colour code: cyan: carbon, white: hydrogen, blue: nitrogen, red: NMP 
oxygen; pink: water oxygen. The first water molecule from the bottom coordinates two 
carbonyl groups as hydrogen donor; at the same time it forms an hydrogen bonds as an 
acceptor with a water molecule coordinating the oxygen of a nearby NMP molecule. 
The latter water molecule is acceptor of hydrogen bond from other water molecules, 
which coordinates yet another carbonyl group.  This example illustrates how, even if 
only one water molecule is found in the volume not accessible to other NMP 
molecules, each water molecule can be coordinated to one or more water molecules.  
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FIG S4. Total structure function I(Q). Experimental (dashed, blue) and model 
(continuous: red, Set1; orange, Set2; green, Set3) for NMP (1) + W (2) mixtures at 
different x1 values.  
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FIG S5. Differential correlation function Diff(r). Experimental (dashed, blue) and 
model (continuous: red, Set1; orange, Set2; green, Set3) for NMP (1) + W (2) mixtures 
at different x1 values.  
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ABSTRACT: N-Methyl-2-pyrrolidone (NMP) is a solvent with
applications in different industrial fields. Although largely employed in
aqueous mixtures, little is known on the structural and dynamic
properties of this system. In order to improve the knowledge on NMP
aqueous solutions, useful to the development of their applications,
NMR spectroscopy, calorimetric titration, and puckering analysis of
molecular dynamics (MD) simulations were employed in this work. Our
calorimetric study evidenced the presence of strong interactions
between NMP and water and revealed that, under comparable
conditions, the solvation of NMP by water results in an interaction
stronger than the solvation of water by NMP. Overall, the changes of 1H
and 13C chemical shifts and 2D ROESY spectra upon dilution suggested
a preferential location of water nearby the carbonyl group of NMP and
the formation of hydrogen bonding between these two molecules. In parallel, observation of correlation times by 13C NMR
spectroscopy evidenced a different dynamic behavior moving from the NMP-rich region to the water-rich region, characterized
by a maximum value at about 0.7 water mole fraction. MD simulations showed that the NMP conformation remains the same
over the whole concentration range. Our results were discussed in terms of changes in the NMP assembling upon dilution.

1. INTRODUCTION
Over the past years, considerable interest has been manifested
in the use of N-methyl-2-pyrrolidone (NMP) as a solvent for
industrial applications. Indeed, NMP (Figure 1) exhibits very

fascinating properties, such as high boiling point (477.45 K),
low melting point (249.55 K), low volatility, low viscosity, large
chemical and thermal resistance, and low toxicity, that make it a
highly useful solvent in a variety of chemical reactions where an
inert medium is required. For instance, it is employed in
processing chemicals, coatings, engineering plastics, agricultural
chemicals, electronics, paint stripping and cleaning, etc.1 In

addition, NMP is also an attractive solubility enhancer in the
pharmaceutical industry.2

It is well-known that the presence of water in NMP has a
significant impact on its properties, particularly on its solvent
power and selectivity, in a number of processes. Thus,
investigations of NMP−water mixtures are very important,
not only scientifically but also industrially, because physico-
chemical properties of NMP can be tuned by appropriate
mixture composition.3−6 The concentration dependence of
different physicochemical properties for this mixture, such as
viscosity,3−6 density,4−6 and self-diffusion coefficients,4 evi-
denced a different behavior on going from the NMP-rich region
to the water-rich region. Although all these findings pointed out
the presence of important interactions between water and
NMP, a detailed understanding of the structural organization of
this binary system is still lacking.
In order to understand the macroscopic properties of NMP

and, thus, to further develop its applications, it is essential to
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Figure 1. Structure and atom numbering of NMP.
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investigate the microscopic structure and dynamics of this
system at a molecular level. Recently, by combining energy
dispersive X-ray diffraction experiments and molecular
dynamics (MD) simulations with the generalized AMBER
force field, we have achieved a very good agreement between
theoretical and experimental diffraction patterns of liquid
NMP.7 The analysis of the radial distribution functions showed
that the network of intermolecular C−H···O hydrogen bonds
between methyl and carbonyl groups observed in the crystal
structure8 is partly preserved in the liquid structure. Later, we
employed a combined approach of MD simulations, wide-angle
X-ray scattering experiments, and density measurements to
investigate the structural effect of water on NMP over the
whole concentration range.9 A very good agreement between
computed and experimental density values and diffraction
patterns was obtained, and analysis of the MD trajectories
allowed us to explain why a density maximum is observed
experimentally for this system. The simulations indicated that
water molecules can occupy “empty cavities” of the NMP
network, i.e., spatial regions which are not accessible to the
heavy atoms of the solvating NMP molecules but are accessible
to water molecules. Each cavity can host only two water
molecules; therefore, the addition of water to NMP leads to an
increase in density up to a water:NMP molar ratio of 2:1.
Further added water molecules alter the NMP network and the
density decreases, increasing the water content.
As an extension of our previous studies,7,9 in the present

work, we further investigated NMP−water mixtures over the
whole concentration range by a combined use of NMR
spectroscopy, calorimetric measurements, and puckering
analysis of MD simulations. The results provided additional
information on the structural and dynamics changes of NMP
taking place upon dilution.

2. EXPERIMENTAL SECTION
2.1. Sample Preparation. N-Methyl-2-pyrrolidone (purity

>99.5%) was purchased from Sigma-Aldrich. NMP was dried
for 5 days at room temperature under a high vacuum (6 × 10−2

Torr) over P2O5. The residual water content, estimated by 1H
NMR spectroscopy, was 0.18% w/w (0.02 mole fraction of
water, xw). From now on, this sample will be referred to as
dried, despite the presence of water.
For NMR analysis, dried NMP was moved to a nitrogen-

filled glovebag where it was transferred to a 5 mm NMR tube.
Aqueous solutions were prepared by weighing samples of NMP
in screw-cap glass vials in the glovebag, removing the samples
from the bag, and adding proper amounts of water to give mole
fractions of water, xw, of 0.15, 0.18, 0.34, 0.43, 0.63, 0.82, and
0.92.
2.2. Calorimetric Measurements and Data Treatment.

Heats of solution were collected through a heat flow
calorimeter by Thermometric (Jar̈fal̈la, Sweden - Thermal
Activity Monitor, model 2277) at 298.1 K (±0.1 K).
Experiments were conducted by adding a pure component,
via Hamilton gastight syringes of capacity ranging from 250.0 to
1000 μL driven by Cole-Parmer pumps (Vernon Hills, Illinois,
USA - model 74900), to an ampule of 4 cm3 capacity initially
charged with the other component or with a stock mixture of
them. With this system, we were able to make accurate
injections starting from a minimum of 1 μL, with precision
0.5%, and to measure accurate heat effects as small as 0.01 J,
with a sensitivity of 0.5 μW. We chose this technique instead of
mixing-flow calorimetry to avoid errors due to incomplete

mixing and to obtain direct experimental values of the partial
molar enthalpy in the whole concentration range.10

The experimental solution heats, Qexp, released by the
additions of very small quantities of the titrant, nj, practically
represent partial molar enthalpies, H̅j (H̅j ≅ Q/nj). Calculated
values of the solution heats, Qcalc, can be obtained by proper
differentiation of the equation HE = f(x), such as the Redlich−
Kister (RK) one:

∑= −
=

−H
RT

x x c x x( )
k

n

k
k

E

1 2
1

1 2
1

(1)

A standard least-squares procedure identifies the best values of
ck parameters at the minimum of the objective function OF =
∑(Qexp − Qcalc)

2. Proper allowance was made for the heat
involved in the phase composition changes brought about by
the vapor−liquid equilibration after each addition. An
exhaustive description of the apparatus, the experimental
procedure, and the data treatment can be found in the
literature.11,12

The reliability of the whole procedure was checked by
measuring the HE of the benzene + cyclohexane system in the
whole concentration range. Comparison with literature data13

revealed a discrepancy lower than 2%. The uncertainty in the
observed heat, Q, as determined by the reproducibility of the
experiments and by integration of the peak area, was evaluated
as 0.5%.

2.3. NMR Spectroscopy. 1H NMR spectra were obtained
with a Varian Unity INOVA 500 spectrometer operating at a
proton resonance frequency of 499.84 MHz, while 13C NMR
spectra were recorded using a Varian Unity INOVA 400
spectrometer with a 13C resonance frequency of 100.57 MHz.
Locking was performed using an insert capillary tube filled with
D2O. All experiments were carried out at 300 K.

1H spectra were acquired using 16 scans, a spectral width of
3000 Hz, a relaxation delay of 15 s, and a 90° pulse of 8.5 μs.
Chemical shifts were referred to the signal of the residual water
of D2O in the capillary tube (δ = 4.78 ppm).
Two-dimensional adiabatic ROESY spectra were acquired

with a standard pulse sequence14,15 over a sweep width of 3000
Hz using 2048 data points in the t2 dimension and 256
increments in the t1 dimension. A total of 16 scans were
collected for each t1 increment with an acquisition time of 0.15
s followed by an additional relaxation delay of 2 s. A mixing
time of 200 ms was used for all samples. The ROESY data set
was processed by applying a shifted square sine-bell function in
both dimensions and zero-filling to 2048 × 2048 real data
points prior to the Fourier transformation.
The 13C spin−lattice relaxation times (T1) were measured by

the inversion recovery method. A total of 16 scans were
collected, and 16−18 variable delays were used. The relaxation
delay was at least 5 times greater than the longest T1. The
reported values are averages of three measurements with an
estimated precision of 5%.

13C{1H} nuclear Overhauser enhancement (NOE) factors
were determined from the ratios of peak intensities in a
spectrum obtained with continuously applied composite pulse
decoupling and in a spectrum where the NOE was suppressed
by gating the decoupler on only during acquisition. For both
spectra, a delay of at least 10 T1 was allowed between
acquisition pulses. The NOE measurements were reproducible
within ±10%.
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13C NMR Relaxation Data Analysis. As stated else-
where,16−21 the investigation of aggregation behavior by
means of NMR spin relaxation rate measurements relies on
the dependence of the rates on the dynamics of molecular
reorientation as expressed by the spectral density function
J(ω).22 For proton-carrying 13C nuclei in medium-sized
molecules, the spin relaxation is usually dominated by the
dipole−dipole interaction with directly bonded protons. If the
protons are subjected to broadband decoupling and the cross-
correlations between different interactions can be neglected, the
13C spin−lattice relaxation is a simple exponential process,
characterized by a single time constant, T1, called the spin−
lattice relaxation time. Neglecting the contributions from
protons that are not directly bonded, the dipolar contribution
to the spin−lattice relaxation rate (1/T1

DD) and the nuclear
Overhauser enhancement (NOE) are given by eqs 2 and 3,
respectively:
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where N is the number of attached protons; γH, γc and ωH, ωc
are the gyromagnetic ratios and Larmor frequencies of proton
and carbon, respectively; ℏ is the reduced Planck constant; rCH
is the carbon−proton distance (fixed at 1.09 Å for our analysis);
and μ0 is the permittivity of free space. Provided the motion is
isotropic, J(ω) is given by

ω τ
ω τ

=
+

J( )
2

1
c

2
c

2
(4)

where τc is the correlation time for the motion of the C−H axis
and approximates the time required for rotation of the molecule
through 1 rad.
When the contribution of T1

DD to the measured T1 is 100%,
the NOE value reaches a maximum of 1.988 (=γH/2γC). For
13C nuclei where DD relaxation competes with other
mechanisms, the contribution of the dipole−dipole mechanism
can be calculated if the experimental NOE (NOEexp) is
determined:

= ×% DD relaxation
NOE

1.988
100exp

(5)

2.4. Computational Details. MD simulations were
performed with the AMBER 11 package23 (both CPU and
GPU versions of PMEMD)24 using a cubic box containing
about 11000 atoms of the pure NMP or of the NMP+W
mixtures at different xw, covering the whole composition range.
The adopted simulation protocol is described in our previous
paper.9 For each simulation, a conformational analysis was
performed by analyzing the changes in the ring puckering of
selected NMP residues. The quantitative description of
puckering in five-membered rings involves two parameters:
the pseudorotational angle and the amplitude. In the present
paper, the calculations of these parameters were done using the
Altona and Sundarlingam algorithm25 as implemented in the
ptraj analysis program of the AMBER package.23

The most populated NMP conformations in neat NMP or in
its aqueous mixtures were studied also in vacuo by means of
DFT calculations. In detail, selected starting geometries were
taken from MD trajectories and optimized at the B3LYP/6-
311++G(d,p) theory level using Gaussian 09 software.26 The
character of the stationary points was verified by carrying out
the vibrational analysis at the same theory level.

3. RESULTS AND DISCUSSION
3.1. Calorimetric Measurements. In Figure 2, the

experimental points and the smoothed curves of excess molar

enthalpies, HE, and partial molar enthalpies of constituents, H̅j
E,

for the NMP−water mixtures are plotted as a function of the
mole fraction of water, xw. The direct experimental data
concerning H̅j

E are reported in Table S1 of the Supporting
Information.
From a least-squares treatment by using eq 1, we obtained

the following values of the dimensionless coefficients: c1 =
−3.88358; c2 = +2.91937; c3 = −1.17099; c4 = +0.32630. From
the standard deviations of the above ck parameters, we
calculated the uncertainty on the excess molar enthalpy at
equimolar composition (HxW=0.5

E = −2407 ± 20 J mol−1) and on
the excess partial molar enthalpy of each component at infinite
dilution (H̅N

E,∞ = −20.6 ± 0.3 and H̅W
E,∞ = −4.5 ± 0.3 kJ mol−1).

Our HE and H̅i
E,∞ data agree with those of the literature: the HE

values at equimolar composition obtained by the RK
coefficients from the work of Zaichikov et al.27 and Macdonald
et al.5 are −2440 ± 25 and −2476 ± 75 J mol−1, respectively;
the H̅N

E,∞ obtained by other authors28,29 are −21.1 ± 0.4 and
−21.2 ± 0.4 kJ mol−1. As concerns the excess partial molar
enthalpies, there are no data for this mixture available in the
literature to compare directly with the present results. The high
exothermic mixing effect of the NMP−water system is
indicative of the presence of strong interactions between the
components of the mixture. Indeed, generally mixtures between
two different organic compounds are characterized by the
endothermic effect, while the mixing is exothermic when two
components give rise to attractive interactions among unlike
molecules stronger that those present in like molecules.30

Figure 2. Excess molar enthalpies, HE, and partial molar enthalpies,
H̅j

E, of the NMP + water system as a function of the water mole
fraction, xw: ◆, H̅N

E ; ◇, H̅W
E . Curves are calculated according to eq 1.
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As can be seen in Figure 2, the shape of the HE curve is
highly asymmetric with a minimum value of −2754 J mol−1 at
xw ≈ 0.7, calculated from the RK coefficients. The asymmetry
of HE is explained with the nonspecular peculiar shape of H̅j

E. At
infinite dilution, excess partial molar enthalpies of water, H̅W

E ,
have absolute values much lower with respect to H̅N

E . In fact, the
addition of 1 mol of NMP caused a thermal effect roughly 4
times higher than that associated with the dissolution of 1 mol
of water. This behavior results in stronger attractive interactions
played by the water solvent in the dissolution and solvation of
the solute NMP, with respect to the same process in which the
same components play exchanged roles. It is not common that
the mixing of an organic compound with water originates such
a high, in absolute value, heat of mixing,30 but some exceptions
are found such as the case of dimethyl sulfoxide,5 which shows
a heat of mixing value similar to that of the NMP−water
system. Exothermic mixing effects of NMP have been observed
in mixtures with chloro-alkanes and -alkenes, the highest
exceptional value (HxW=0.5

E = −4750 J mol−1) being observed in
NMP + 1,1,2,2-tetrachloroethane mixtures.31 The higher
exothermic mixing effect of this latter system, compared to
those of the NMP−water mixtures, could be ascribed to the
strong electron-withdrawing effect of chloro atoms on the
hydrocarbon protons: the deshielded H atoms of halogenated
hydrocarbon are able to establish a hydrogen bond (HB) with
NMP stronger than that between NMP and water.
3.2. 1H NMR Spectroscopy. Figure 3 shows a stack plot of

the 1H NMR spectra of dried NMP and its mixtures with H2O.

As can be seen, the proton chemical shifts (δ) of both NMP
and water peaks were sensibly affected by the mixture
composition. Since δ is a sensitive indicator of the degree of
magnetic shielding of the nucleus, being influenced by
surrounding electrons and neighboring atoms and groups in
the molecule, chemical shift variations were indicative of the
occurrence of changes in the local chemical environment
experienced by protons in both molecules. In order to facilitate
the comparison among the δ changes of individual hydrogen
atoms in NMP, deviations expressed as the difference between
the positions of the signals in the presence and absence of water
(Δδ) are depicted in Figure 4 as a function of the water mole
fraction, xw.

It can be seen that, upon dilution, all NMP proton peaks
moved upfield, with the weakest effect on the proton in the
carbon adjacent to the CO group (H3). Simultaneously, the
water peak was monotonously downfield shifted on increasing
the water content, approaching the pure water signal (δw = 4.78
ppm). The shift to higher fields (lower δH) for H4, H5, and H7
protons of NMP evidenced a significant increase in magnetic
shielding of these nuclei upon hydration up to xw ≈ 0.8 (Figure
4). Above this value, δH4, δH5, and δH7 were all scarcely affected
by the mixture composition. These δ trends can be explained
satisfactorily if we consider recent results of MD simulations,
pointing out the occurrence of a preferential directionality in
the assembling of NMP molecules.9 In particular, spatial density
functions (SDFs) analysis indicated a high probability for the
CO group of a molecule to be close to the methyl carbon
and the methylenic carbon C4 of another one. It is, therefore,
likely that protons lying near the plane of the carbonyl groups
in spatially close molecules experience deshielding due to the
CO anisotropic effect. Accordingly, the further away the
proton is from the carbonyl group, the weaker this effect
becomes. In view of these considerations, the chemical shift
trends of H4, H5, and H7 may refer to the change in the spatial
arrangement of NMP. In the NMP-rich region, these protons
are pushed away from the CO group, and thus from its
deshielding cone, as additional water enters into the NMP
network and NMP molecules move away from each other. In
the water-rich region, above xw ≈ 0.8, the spatial distance
among NMP molecules would be such that H4, H5, and H7 are
not subject to the deshielding contribution to their chemical
shift by the magnetic anisotropy of the carbonyl groups of other
molecules. Concerning the changes of δH7, although our NMR
data did not provide direct evidence of a hydrogen bonding
between the methyl and carbonyl groups,7 we do not exclude a
possible contribution also from the breaking of this binding to
the increased shielding on the methyl protons upon dilution.
Differently from H4, H5, and H7, the H3 proton chemical

shift exhibited a weak concentration dependence (Figure 4),
evidencing changes in the magnetic environment of this
nucleus of lower entity with respect to those occurring around
the other protons. Likely, the H3 proton experiences only the
magnetic anisotropy of the adjacent carbonyl group, thus δH3
being almost independent of the mixture composition. This
hypothesis is in good agreement with the low probability of the

Figure 3. 1H NMR spectra of dried NMP (top) and its aqueous
mixtures at different water mole fractions, xw. The asterisk denotes the
residual water peak in dried NMP.

Figure 4. 1H chemical shift deviations from dried NMP, Δδ (δmix −
δdried), as a function of the water mole fraction, xw. Symbols for the
individual NMP protons are as follows: ◆, H3; ●, H4; ■, H5; ▲, H7.
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C3 carbon of solvating NMP molecules to lie below and above
the carbonyl group of another NMP molecule at any
concentration, as seen from the SDFs.9

Concerning the 1H chemical shift of water, being propor-
tional to the electron density about the nucleus, δw can be taken
as a measure of the polarization of water molecules, averaged
over the protons of all molecules in solution,32 and thus of the
hydrogen-bonding strength of water hydrogen: the larger the
δw, the stronger is the HB of water. Thus, the δw value
measured at xw = 0.02 (i.e., 3.8 ppm), being lower than that of
pure water, evidenced a smaller polarization of water molecules
in the presence of a large excess of NMP than in pure water.
This observation is consistent with the reported lowering of the
dielectric constant33 and surface tension2 of water with
increasing concentrations of NMP. It was interesting to note
that, during the course of titration, the 13C peak of the carbonyl
group downfield shifted (Figure S1 of the Supporting
Information), evidencing a reduction of the shielding on the
C2 carbon. According to the literature,32 this increase in δC2
may be ascribed to the involvement of the CO oxygen atom
in HB with water. Therefore, on the basis of this experimental
evidence, the change in the water chemical shift occurring upon
NMP dilution could be explained as follows. When a small
amount of water is added to NMP, water molecules tend to HB
interact with the oxygen atom of CO, presumably replacing
the intermolecular interactions between the carbonyl and
methyl groups. With δw being upfield shifted compared to pure
water, the OH···OC HB is weaker than that between water
molecules. On increasing the water content, water−water
interactions also take place, with the number of water−water
HBs increasing with the composition and becoming dominant
when xw approaches the neat water.
3.3. Puckering Analysis. To evaluate a possible correlation

between the composition dependence of the 1H chemical shifts
of NMP and conformational changes of this molecule, a
conformational analysis was done through MD simulations.
The possible conformations of a nonplanar five-membered ring,
such as that of NMP, can be grouped into two main classes of
different symmetry: the envelope (E) and the twist (T) forms.
In the E form, four atoms lay in the same plane with one atom
out of the plane, while, in the T form, three adjacent atoms
define a plane and the other two are found one below and one
above that plane. The relationship between T and E
conformations and the pseudorotational angles according to
the Altona and Sundarlingam convention25 is shown in Figure 5.
Several T and E conformations are possible, depending on
which atoms are found to be below or above the plane defined
by the other atoms. For each form, the superscript and/or
subscript indicate the atoms above and/or below the plane,
respectively. Twist conformations are even multiples of 18° of
the pseudorotational phase angles (P = 0°, 36°, ...), while
envelope conformations are odd multiples (P = 18°, 54°, ...).
Figure 6 shows the relative populations of the possible

conformational forms calculated for selected NMP residues
(right) and the average values of the puckering amplitude (left)
as a function of the pseudorotational phase angle in the NMP−
water systems at different compositions. Previous puckering
analysis performed on neat NMP7 showed that the E and T
forms are uniformly distributed in the neat NMP and the
relative population was found to be 50.13:49.86. This finding is
confirmed by our conformational analysis. Furthermore, our
data showed that (i) the favorite puckerings at all compositions
are the E form with C4 outside the plane formed by the other

ring atoms (4E and 4E) and the T form with C4 and C3 on the
opposite side of the plane defined by the other three atoms (4

3T
and 3

4T) (Figure 6, right side); (ii) the favorite ring puckering
forms are characterized by having the largest amplitude values
(ca. 20°) (Figure 6, left side); (iii) the addition of water to
NMP does not induce changes of its conformation equilibrium.
In conclusion, the ring puckering of NMP molecules is not
influenced by the presence of water over the whole
concentration range, and hence, the NMR chemical shift
trends shown in Figure 4 were excluded to be linked to
conformational change effects.
It is known that NMP puckering preferences in the solid

state are affected by the packing of the molecules in the
crystals.8 To verify whether in the liquid state the conforma-
tional preferences are affected by the interaction with solvating
molecules, DFT calculations were performed on selected
conformations. The calculations were done in vacuo to exclude
the effect of the solvent. Representative configurations of the
four most populated puckering states were selected from the
MD trajectories and optimized at the B3LYP/6-311++G(d,p)
level of theory. The optimization led to some minor
pseudorotation angle variation with respect to the starting
value, but it remained in all cases within the 18° range of the
original puckering. As shown in Table 1, the energy differences
among the puckering states were found to be negligible (3 ×
10−3 kJ/mol). This result indicates that the distribution of the
population among the highest populated puckering states in the
liquid neat NMP, or in its water solutions, is not due to the
solvation. The dihedral angle values of the 4E form compare
well with those of the minimum energy conformer calculated
by Müller et al.8 at the RHF/6-31G theory level (see Table 1).

3.4. 2D ROESY Spectra. Information on the location of
water in the proximity of NMP was provided by homonuclear
NOEs in the rotating frame (ROEs). 1H,1H ROESY is a 2D
NMR experiment for correlating signals arising from protons
close in space (interproton distance usually within about 5 Å).
In fact, the correlation peaks observed in ROESY spectra are
the result of cross-relaxation between neighboring protons, the
main mechanism of which is a through-space dipole−dipole
interaction.34,35 The cross-peak intensity reflects the extent of
magnetization transfer between interacting nuclei and is
inversely proportional to the sixth power of their internuclear
distance. Figure 7 shows the 2D ROESY spectrum of dried
NMP. As can be seen, cross-peaks clearly establish spatial

Figure 5. Pseudorotational circle of the NMP ring. Each point on the
circle represents a specific value of the pseudorotation phase angles, P.
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interactions among all proton atoms. Unfortunately, the
separation of the intra- and intermolecular dipolar contacts in
this system was not feasible, both because it comprises
molecules of the same kind and because the average
intramolecular distances between the H atoms of interest
calculated by MD simulations9 are all lower than 5 Å (Figure S2
in the Supporting Information). It is worth reminding that this
sample was characterized by the presence of a residual amount
of adsorbed water (xw = 0.02). No cross-peaks were observed
between water and NMP protons (Figure 7), meaning that the
spatial correlation between the two molecules was rather weak.
Figure 8 shows some sections of the 2D-ROESY spectra of

selected NMP−water mixtures. The spectra evidenced the
presence of NOE contacts between water and all NMP protons
at all compositions. Comparing the volume of these cross-
peaks, determined by integration and divided by the numbers
of equivalent protons of NMP and water contributing on these,
showed that water was within closer proximity to H7 with
respect to other protons up to xw = 0.43. Above this mole

fraction, the spatial correlations with water were almost the
same for all NMP protons. These observations suggest that,
when low amounts of water are added, water preferentially
interacts with NMP nearby the carbonyl domain, as
hypothesized also by our 1H and 13C NMR chemical shift
data, while at the highest water concentrations all sites are
surrounded by water molecules. This picture is in good
agreement with the NMP−water organization shown from
SDFs calculated in our previous study.9

3.5. 13C NMR Spin−Lattice Relaxation. Complementary
information on the NMP−water interaction was finally assessed
by 13C NMR relaxation measurements. Figure 9a shows the
values of the 13C spin−lattice relaxation rate R1 (=1/T1) for the
samples under investigation. The smallest R1 values were
recorded for the carbonyl carbon, while those of the protonated
carbons followed the order C5 > C3 > C4≫ C7. It can be seen
that the relaxation of all carbons speeded up upon dilution
below xw ≈ 0.8 and, then, slowed down with further additions
of water, this behavior being particularly pronounced for CH2

Figure 6. Populations of the possible conformational states (left) and average values of the amplitude of the puckering (right) calculated for selected
NMP residues in NMP−water systems at different compositions as a function of the pseudorotation angle.

Table 1. Dihedral and Pseudorotation Angles and Relative Energies (Electronic + Thermal Free Energy) of B3LYP/6-311+
+G(d,p) Optimized NMP Conformations

NMP conformations

dihedral angles 4
3T 3

4T 4E 4E Müller et al.a

C5−N6−C2−C3 18.0 −14.0 −4.4 1.5 −4.4
N6−C2−C3−C4 −33.3 31.8 −13.3 7.8 −13.3
C2−C3−C4−C5 36.4 −35.4 24.4 −13.2 24.4
C3−C4−C5−N6 −26.6 32.5 −26.5 13.9 −26.6
C4−C5−N6−C2 8.3 −14.0 20.1 −10.2 20.1
pseudorotation angles 218° 36° 190° 12°
ΔE (kJ mol−1) 3 × 10−3 0 3 × 10−3 0

aSee ref 8.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp505286z | J. Phys. Chem. B 2014, 118, 10493−1050210498



carbons. By measuring the NOE factor, the dipolar contribution
(T1

DD) to the 13C relaxation was calculated (eq 5). NOE values
varied from 1.9 to 2.0 for the CH2 carbons and 1.7 to 1.8 for
the CH3 carbon. Thus, the T1

DD contribution was assumed to
be dominant for protonated carbons. As for the carbonyl
carbon, the values obtained for NOE ranged between 1.1 and
1.3; the T1

DD contribution was estimated to be ≈60% of the
total T1 relaxation mechanism. Another possible contribution to
the 13C relaxation of C2 may arise from chemical shift

anisotropy, known to be important in samples with double
bonds, aromatic groups, and carbonyl carbons.36

Therefore, assuming the relaxation for the alkyl carbons to
undergo only by the dipolar mechanism, the R1’s of proton-
bearing carbons of NMP were used to compute the rotational
correlation times of each resolved site (eqs 2−4), and thus to
investigate the NMP local mobility as a function of water
concentration. As expected, the correlation time, τc, values for
the methyl group were shorter than those for CH2 groups due

Figure 7. 2D-ROESY spectrum of dried NMP. The asterisk denotes the peak of residual absorbed water.

Figure 8. Expanded regions of the 2D-ROESY NMR spectra of NMP−water mixtures at different water mole fractions, xw. The vertical axis shows
the frequency region of the water H atoms.
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to the rotation of the H3C−N bond (Figure 9b). It can also be
seen that the dynamics of all carbon sites were equally
influenced by the mixture composition, showing a remarkably
nonlinear behavior with a break point at xw values within 0.6
and 0.8. In particular, in the NMP-rich region, a monotonic
increase of τc’s took place with increasing water content,
indicating that NMP molecules experienced a reduction of
overall molecular motion. Differently, the notable feature of the
measured concentration dependence of τc’s in the water-rich
region was an overall decrease with the increase of added water,
thus showing a dynamic state of NMP opposite to that
observed below xw ≈ 0.8.
Similarly to the concentration dependence of τc, data in the

literature report a maximum value of viscosity (η) for the
NMP−water mixture at xw near 0.7 within the temperature
range 293.15−323.15 K. For the sake of comparison, the η
values, measured at 298.15 and 300.15 K over the whole
concentration range,37 are included in Figure 10 together with
the rotational correlation times for the C3 carbon atom as a
function of xw. It is apparent from this plot that the τc behavior

strongly correlated with the changes in viscosity. In classical
mechanics, the relation between these two properties for
isotropically reorienting spherical molecules approximately
follows the Stokes−Einstein equation:

τ πη
κ= a

T
4
3c

3

B (6)

where a is the radius of the molecule, T is the absolute
temperature, and kB is the Boltzmann constant. It is however
worth noting in Figure 9b that, despite the similar curve shape,
the rate of τc changes for CH2 carbons is much higher than that
of the CH3 carbon. This result may be indicative of a different
microviscosity around carbons in NMP.38 In particular, with the
methyl group being involved in a HB interaction with the
carbonyl one,7 it is not ruled out that the breaking of this
intermolecular bonding upon NMP dilution may provide an
additional contribution to the mobility of the methyl group,
thus differentiating its rate of τc change with respect to carbons
in the ring.

4. CONCLUSIONS
In the present work, combined thermodynamic, NMR, and
computational data have provided deep insights into the
structural and dynamic behavior of the binary water/N-methyl-
2-pyrrolidone (NMP) system. The main information from our
study is the occurrence of changes in the NMP assembling
upon dilution, corroborating our previous computed model.9

In our calorimetric experiments, the solvation of NMP by the
water solvent was found to result in an interaction stronger
with respect to the solvation of water by NMP solvent. The
different behavior played by the components is the origin of the
asymmetry of the HE curve. Of note is that the 1H chemical
shifts and 13C spin−lattice relaxation times were sensibly
dependent on the mixture composition, both showing a trend
below xw ≈ 0.8 different from that observed above this mole
fraction. This behavior coincides with those reported for other
physicochemical properties of NMP aqueous solutions such as
viscosity, density, and self-diffusion coefficients. Overall, our
NMR results are discussed in terms of hydrogen bonding
interactions. Those established between water and NMP are
responsible for the reduced water polarization in the presence
of NMP than in pure water. By increasing the concentration of

Figure 9. (a) 13C spin−lattice relaxation rates and (b) rotational correlation times, τc, for NMP as a function of the water mole fraction, xw. Symbols
for the individual carbon atoms are as follows: ▼, C2; ◆, C3; ●, C4; ■, C5; ▲, C7.

Figure 10. Concentration dependence of the rotational correlation
time, τc, for the C3 atom and viscosity, η, values of aqueous solutions
of NMP taken from the literature37 at 293.15 and 303.15 K. Symbols
are as follows: ◆, τc; ●, η. Lines were used as a visual aid. The
experimental τc data are those shown in Figure 9b.
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water, more and more water−water HBs are formed, favoring
the disruption of the NMP network. The NMP structural
assembling is significantly altered up to xw ≈ 0.8. Above this
value, all sites in pyrrolidone are surrounded by water
molecules. In parallel, changes in τc, estimated from the 13C
spin−lattice relaxation rates, correlate well with variation in the
system viscosity37 in the whole concentration range. Differ-
ences in the rate of τc change among the carbon sites suggested
a microviscosity around the methyl group different from those
of carbons in the ring.
Analysis of MD simulations performed at different water

contents allowed us to exclude that the singular trends observed
for NMP properties were to be attributed to variations in NMP
conformations. Indeed, the detailed analysis of the puckering
preferences of NMP revealed that the conformational
preferences are not influenced at all by the addition of water
to neat liquid NMP or by the water concentration.
Furthermore, the favored conformations (4E, 4E, 4

3T, and 3
4T)

do not differ in energy even in the absence of solvent, as shown
by DFT calculations performed in vacuo. Overall, the findings
of the present study are expected to be useful for the
understanding of the behavior of NMP in aqueous solutions on
the molecular level.
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Table S1. Experimental values of water mole fractions and of excess partial 
molar enthalpies of each component, H j

E , expressed in J mol-1, for the NMP + 
water system. 

xw HN
E  xw HN

E  xw HW
E  xw HW

E  xw HW
E  

0.3594 -73.4 0.7748 -5440.9 0.0112 -4446.7 0.3465 -4972.5 0.7411 -1796.6 
0.3628 -75.1 0.7761 -5510.0 0.0221 -4649.2 0.3521 -4943.3 0.7429 -1798.2 
0.3662 -75.5 0.7774 -5675.6 0.0328 -4870.9 0.3576 -4960.0 0.7447 -1763.9 
0.3698 -83.5 0.8856 -11050.2 0.0433 -4865.8 0.3630 -4914.8 0.7465 -1759.3 
0.3734 -95.2 0.8865 -12295.7 0.0536 -4887.3 0.3683 -4915.1 0.7482 -1739.2 
0.3770 -98.2 0.8873 -10984.3 0.0636 -4941.6 0.3736 -4860.9 0.7499 -1781.0 
0.3808 -112.2 0.8881 -10982.2 0.0734 -4904.8 0.3787 -4827.9 0.7516 -1744.2 
0.3846 -108.3 0.8890 -11527.8 0.0830 -4974.8 0.3838 -4878.8 0.7533 -1754.0 
0.3885 -118.9 0.8898 -11980.7 0.0925 -5033.8 0.3887 -4823.3 0.7550 -1715.5 
0.3925 -130.8 0.8907 -10796.7 0.1017 -4995.4 0.3936 -4860.8 0.7566 -1712.7 
0.3966 -137.5 0.8915 -11550.4 0.1107 -5046.8 0.3984 -4795.1 0.7582 -1681.7 
0.4007 -148.3 0.8924 -12255.9 0.1196 -5014.6 0.4032 -4763.9 0.7598 -1675.0 
0.4049 -161.4 0.8932 -11469.1 0.1283 -5147.6 0.4079 -4798.8 0.7614 -1671.5 
0.4093 -174.1 0.8941 -11540.3 0.1368 -5120.4 0.4125 -4747.6 0.7629 -1675.6 
0.4137 -186.0 0.8949 -11960.4 0.1452 -5111.4 0.4170 -4759.3 0.7631 -1869.3 
0.4182 -193.2 0.8958 -12831.7 0.1534 -5098.8 0.4214 -4719.7 0.7644 -1630.6 
0.4228 -212.5 0.8966 -10994.1 0.1614 -5066.4 0.4258 -4668.2 0.7654 -1797.3 
0.4275 -216.7 0.8975 -12499.8 0.1693 -5088.9 0.4858 -4310.8 0.7676 -1718.8 
0.4324 -235.4 0.8983 -12700.1 0.1771 -5183.2 0.4882 -4346.4 0.7697 -1657.9 
0.4373 -251.3 0.8992 -12347.1 0.1847 -5129.9 0.4906 -4391.5 0.7719 -1744.8 
0.4423 -273.2 0.9001 -11860.3 0.1921 -5135.7 0.4930 -4272.3 0.7740 -1704.2 
0.4475 -294.3 0.9009 -12774.8 0.1994 -5131.3 0.4954 -4352.8 0.7760 -1618.0 
0.4528 -319.9 0.9018 -13324.1 0.2066 -5022.7 0.4977 -4329.5 0.7780 -1639.9 
0.4582 -341.2 0.9877 -19573.1 0.2137 -5114.1 0.5001 -4272.3 0.7800 -1646.6 
0.4638 -362.4 0.9883 -19245.2 0.2206 -5187.0 0.7008 -2021.1 0.8734 -666.8 
0.4694 -382.6 0.9889 -21597.4 0.2274 -5091.1 0.7032 -2040.4 0.8759 -642.7 
0.4753 -420.0 0.9895 -21385.1 0.2341 -5084.5 0.7056 -2051.4 0.8783 -618.8 
0.4808 -447.5 0.9901 -19688.3 0.2407 -5141.1 0.7080 -2034.6 0.8806 -599.9 
0.4812 -447.2 0.9907 -19437.5 0.2472 -5091.8 0.7103 -1989.2 0.8828 -580.7 
0.4867 -475.6 0.9913 -20013.9 0.2535 -5117.8 0.7126 -2020.1 0.8849 -559.5 
0.4873 -482.6 0.9919 -20613.5 0.2619 -5176.6 0.7148 -2017.0 0.8870 -545.3 
0.4927 -499.4 0.9926 -20112.0 0.2700 -5085.4 0.7170 -1992.6 0.8890 -528.6 
0.4936 -498.2 0.9932 -20189.0 0.2780 -5138.9 0.7192 -1976.8 0.8909 -513.8 
0.4988 -500.2 0.9938 -19649.0 0.2848 -5075.7 0.7213 -1945.9 0.8927 -497.2 
0.5051 -541.1 0.9944 -20458.7 0.2915 -5134.4 0.7234 -1900.0 0.8945 -486.3 
0.5116 -580.6 0.9950 -20709.2 0.2981 -5079.9 0.7255 -1929.2 0.8963 -470.4 
0.5183 -632.4 0.9956 -20381.3 0.3045 -5086.6 0.7276 -1895.4 0.8979 -457.9 
0.5251 -572.0 0.9963 -22155.1 0.3108 -5067.1 0.7296 -1913.3 0.8996 -444.7 
0.7684 -5341.8 0.9969 -19189.5 0.3171 -5047.1 0.7316 -1884.8 0.9011 -433.2 
0.7697 -5615.4 0.9975 -20149.5 0.3232 -5024.5 0.7335 -1864.0 0.9027 -556.7 
0.7710 -6045.1 0.9981 -21826.9 0.3291 -4997.7 0.7355 -1842.1   
0.7722 -5643.8 0.9987 -21248.4 0.3350 -4944.7 0.7374 -1852.0   
0.7735 -5824.8   0.3408 -4996.0 0.7392 -1833.7   
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Figure S1. 13C chemical shift deviations of NMP carbonyl group from dried 
NMP, Δδ=(Δδmix-Δδneat), as a function of the water mole fraction, xw.  
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Figure S2. Intra-molecular distances between different H atoms for a selected 
NMP molecule from MD trajectories. 
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A B S T R A C T

A systematic study of a series of room-temperature ionic liquids, belonging to the alkylammonium
nitrate family (XAN), was carried out at 298.15K and 0.1MPa with the aim of investigating the effect of
the cationic chain length on some thermo-physical properties and their behavior in the organic solvent
N-methyl-2-pyrrolidone (NMP), over the whole concentration range. Experimental densities were used
to calculatemolar volumes, Vm, and excessmolar volumes,VE. Complementary informationwas obtained
by isothermal titration calorimetry that provided the values of the heat of mixing, HE, and the excess
partial molar enthalpies of each component, H

E
1 and H

E
2. The density values of neat XAN samples

decreased as the alkyl chain length of the cation increases, whereas, the addition of themethoxy group to
the considered smaller alkyl chain resulted in an increase of density. Negative VE and HE values were
found for each XAN+NMP system, indicating the presence of strong attracting interactions between the
constituents.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

Room-temperature ionic liquids (RTILs) belong to the class of
organic salts, liquid at room temperature in their neat state. The
rapid growth in ionic liquid literature indicates that, thanks to their
characteristics especially their non-volatile nature and good
solvation properties, RTILs attract much attention as a valid
alternative way to traditional volatile organic solvents [1–3]. An
interesting aspect is that a slight variation in the constituent ions of
ionic liquids can lead significant differences in their physicochem-
ical properties.

RTILs consist of two groups: protic (PILs) and aprotic (AILs) ionic
liquids. The acid proton, which is responsible for hydrogen
bonding, makes PILs different from other ionic liquids and suitable
for different potential applications, such as self-assembly media
[4,5], catalysts in chemical reactions [6,7], biological applications
[8]. Despite their interest and potentiality, a deep knowledge of
thermophysical properties of liquid mixtures containing PILs,

which is important for the design of any technological processes,
has not been fully accomplished yet by the scientific community.

Over the last years, the main goal of numerous research groups
and industries was to investigate a great number of different ionic
liquids for a range of novel applications [9–13]. Experimental and/
or theoretical thermodynamic studies on pure RTILs and their
mixtures with organic solvents [14–20] or water [21–24] were
reported. Heintz [14] reviewed the developments of thermody-
namic and thermophysical studies of RTILs + non-aqueous solvent
mixtures including an overview on the experimental data
available. The review is limited to systems having the most
promising chance to be used successfully in the different fields of
chemistry and chemical engineering.

In this work, a series of PILs, belonging to the alkylammonium
nitrate family (XAN), were selected with the aim of investigating
their behavior in the organic solvent N-methyl-2-pyrrolidone
(NMP), over thewhole concentration range. In particular, the study
is focused on ethylammonium nitrate (EAN), n-propylammonium
nitrate (PAN), n-butylammonium nitrate (BAN), and 2-methox-
yethylammonium nitrate (MEOEAN) ionic liquids (Table 1), with
the purpose to understand the effect of XAN alkyl chain length on
their mixing properties with NMP. NMP, known for its low toxicity,
low volatility and high solvent power, is one of the most popular

* Corresponding author. Tel.: +39 0706754415; fax: +39 0706754388.
E-mail address: porcedda@unica.it (S. Porcedda).
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and widely used solvent in the industries and academics and it is
becoming the product of choice for paint strippers, agricultural
chemicals, and process solvent applications [25]. Recently,
different studies have pointed out the interesting properties of
NMP with some RTILs [18–20] or simply with water [26].

EAN and PAN are the most known PILs and their properties
make them suitable for electrochemical, organic, or biochemical
applications. To cite a few, they are used as solvent/catalyst in
organic reactions leading high yields [27]; EAN is a useful polar
stationary phase for gas-liquid chromatography [28] and it was
used to enhance the recovery of denatured-reduced hen egg white
lysozyme showing the ability to prevent aggregation of the
denatured protein [29]. Concerning the thermodynamics proper-
ties of BANandMEOEANwithmolecular solvents, to the best of our
knowledge, no studies were published in the open literature. A
series of ammonium based ionic liquids, similar to those selected
in this work, with N-methyl-2-pyrrolidone mixtures were studied
by Kavitha et al. [18–20]; RTILs +NMP showed structure-based and
temperature dependent properties.

Characterization of mixtures containing ionic liquids and
organic solvents is needed to test their applicability in substitution
of neat compounds which could have inappropriate properties for
a selected application, i.e. limited solvent power range, high
viscosity etc [30]. To the best of our knowledge, results of Vm, VE,HE,
H

E
1, and H

E
2 have not been reported in the literature for the selected

XAN with NMP binary mixtures.

2. Experimental

2.1. Materials

Names with abbreviations, sources, purities, water content,
purification and analysis methods of the investigated compounds
are reported in Table 1.

2-Methoxy-ethylammonium nitrate and n-butylammonium
nitrate were prepared following a previously reported procedure
[31,32]. Solvents (LC–MS grade), 2-methoxyethylamine (99%) and
n-butylamine were purchased from Aldrich. Nitric acid (65%) was
purchased from Carlo Erba.

Before using, all materials were dried in vacuo (p=7!10"1

mbar) for 48h at room temperature. The XAN (1) +NMP (2)
mixtures were prepared by mass as follow: the proper amounts of
XAN and NMPwereweightedwith an analytical balance (Sartorius
A210P, Data Weighing Systems Inc. IL-USA; precision and accuracy
of #1!10"7 kg and #5!10"7 kg, respectively) in screw-cap glass
vials in a glove-bag under nitrogen atmosphere. For density
determinations, XAN and NMP were degassed for about 2h by
means of an ultrasonic device (WVR model USC100T "45kHz,
30W). The residual water content of NMP and XAN, estimated by
1H-NMR spectroscopy by using Varian Unity INOVA 500 spectrom-
eter operating at the proton resonance frequency of 499.84MHz,
was reported in Table 1.

2.2. Volumetric measurements and data treatment

The densities of the liquid mixtures and the pure compounds
were measured at 298.15K and 0.1MPa, by means of a vibrating
tube densitometer (model DMA 58-Anton Paar – Gratz, Austria).
Accuracy in the temperature was better than #0.01K. Density
precision and accuracy were #1!102 kgm"3 and #5!102 kgm"3,
respectively. The instrument was calibrated before each experi-
mental run using dry air and distilled water as references.
Solutions were prepared by weight in septum-capped vials of
approximately 2 cm3 using needles and syringes to transfer liquids.
The molar volumes, Vm, were obtained from:

Vm ¼ x1M1 þ x2M2ð Þ
rmix

(1)

and the excess molar volumes, VE, were calculated by the following
equation:

VE¼Vm"
x1M1ð Þ
r1

" x2M2ð Þ
r2

(2)

where rmix is the density of the mixture and xk,Mk, and rk are the
mole fraction, the molar mass, and the density of the component k
(k =1 or 2), respectively. VE data were fitted by means of the
Redlich–Kister (RK) equation having the form:

VE ¼ x1x2
Xn"1

i¼0

aiðx1"x2Þi (3)

The absolute standard deviation of the fit, s(VE), was calculated
by the following equation:

sðVEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðVE

j; calc " VE
j; expÞ

2

N " n

s

(4)

where N is the number of experimental points and n is the number
of coefficients. By un-weighted least squares treatment a
smoothed curve was obtained for each XAN (1) +NMP (2) system.
The RK coefficients values obtained for XAN (1) +NMP (2)mixtures
are reported in Table 2.

Excess molar volumes at infinite dilution, V
E;1
k , of each

component k, is defined as the difference between the molar
volumes at infinite dilution and in the neat state: V

E;1
k ¼ V

E;1
k " V(

k.
Their values were calculated from the RK parameters by means of:

V
E;1
k ¼

Xn

i¼0

ð"1Þkai (5)

Furthermore, from the standard deviations of the above RK
parameters we calculated the SD, and the uncertainties, u (u =2!
SD), of the excess molar volumes at equimolar composition, VE

x¼0:5,
and of the partial molar volumes of each component at infinite
dilution, V

E;1
k , which are reported in Table 2.

The procedure was checked by comparison of our experimental
VE data of the water + ethanol system with reliable literature data

Table 1
Investigated compounds: name with abbreviation, source, purity, final water content, purification and analysis methods.

Chemical name (abbreviation) Source Purity/mole fraction Purification method Final water content/mole fraction Analysis method

Ethylammonium nitrate (EAN) Iolitec >0.97 Dehydration
in vacuo

<0.02 1H NMR

N-propylammonium nitrate (PAN) Iolitec >0.97 Dehydration
in vacuo

<0.02 1H NMR

N-butylammonium nitrate (BAN) Synthesis – Dehydration
in vacuo

<0.01 1H NMR

2-methoxyethylammonium nitrate (MEOEAN) Synthesis – Dehydration
in vacuo

<0.01 1H NMR

N-methyl-2-pyrrolidone (NMP) Sigma–Aldrich >0.995 Dehydration
in vacuo

<0.02 1H NMR
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[33]. We found a difference lower than 0.8% in the whole
composition range.

2.3. Calorimetric measurements and data treatment

Heats of solution were collected through a heat flow calorime-
ter by Thermometric (model 2277, Thermal Activity Monitor –
Järfälla, Sweden) at (298.15#0.01)K and 0.1MPa. Experiments
were conducted by adding a pure component, via Hamilton gas-
tight syringes of capacity in the range of (250.0)1000)mL driven
by Cole-Parmer (model 74900 – Vernon Hills, Illinois, USA) pumps,
to an ampoule of 4 cm3 capacity initially charged with the other
component or with a stock mixture of them. With this system, we
were able to make accurate injections starting from a minimum of
1mL, with precision 0.5 %, and to measure accurate heat effects as
small as 0.01 J, with sensitivity 0.5mW. We chose this technique
instead of mixing-flow calorimetry to avoid errors due to
incomplete mixing and to obtain more precise values of the
partial molar enthalpy at infinite dilution [34].

The experimental solution heats,Qexp, released by the additions
of very small quantities of the titrant, nk, practically represent
partial molar enthalpies, Hk;Hk ffi Q=nk. From this equation,
calculated values of the solution heats, Qcalc, can be obtained,
beingHk;calc accounted for by proper differentiation of the equation
HE = f(x), such as the modified Margules one [35].

HE

RT
¼ x1x2 A12x2 þ A21x1 "

a12a21x1x2
a12x1 þ a21x2 þ hx1x2

" #
(6)

A standard least squares procedure identifies the best values of
dimensionless parameters: A21, A12, a21, a12 and h, at the minimum
of the objective function OF=S(Qexp"Qcalc)2. Proper allowance
was made for the heat involved in the phase composition changes
brought about by the vapour–liquid equilibration after each
addition. An exhaustive description of the apparatus, the
experimental procedure, and the data treatment, can be found
in literature [36,37].

The coefficients values obtained for XAN (1) +NMP (2)mixtures
are reported in Table 3. From the standard deviations of the
Margules equation we calculated the uncertainties, u, on HE at
equimolar mixtures and on partial molar enthalpies of each
component at infinite dilution, H

E;1
k , also reported in Table 3.

As explained in previous papers [36,37], the calorimetric
experimental procedure generates a large amount of experimental
data (c.a. 200 experimental points for each binary mixture
investigated, each composed of 4 numbers), which are not worth

an extensive tabulation herein. These data can be retrieved as
supplementary electronic material (xls-file) from the Authors.

The reliability of the whole procedure was checked by
measuring the HE, in the whole range of concentration, of the
system benzene (1) + cyclohexane (2). Comparison with reliable
literature [38] data revealed a discrepancy lower than 2 %.
The uncertainty in the observed heat, Q, as determined by the
reproducibility of the experiments and by integration of the peak
area, can be evaluated as 0.5 %.

3. Results and discussion

3.1. Volumetric properties

In Table 4, the mixture composition expressed as XAN mole
fraction, x1, experimental densities, molar volumes, and excess
molar volumes for each investigated XAN (1) +NMP (2) mixture
were reported. Each density value represents the mean of two
determinations. Virtually, the physico-chemical properties of RTILs
mainly depend on the nature and structure of ions and on the alkyl
chain length of the cation. As it can be seen in Table 4, the density
value of the neat XAN decreases as the alkyl chain length of the
cation increases,whereas, the addition of themethoxy group to the
smaller alkyl chain considered, results in an increase of density.
This behaviour is probably due to the difference in molecular
weight and to the enhanced capability to give polar–polar
attractive interactions. This indicates that a long alkyl chain
inhibits the compaction of neat XAN, while the addition of a polar
group in a short chain has opposite effect, i.e. promotes a greater
compaction of the neat ionic liquids. In Fig. 1, the density values of
the XAN (1) +NMP (2) mixtures are plotted with respect to x1. In
general, the density trend of each XAN+NMP system is monotonic
with a downward concavity. RTILs are miscible with molecular
solvents with medium- to high- dielectric constants i.e. solvents
containing polar groups and immiscible with low dielectric liquids
[39–41]. In the present study, we found that all XAN are completely
miscible in NMP over thewholemole fraction range, since NMP is a
very polar solvent with a moderately high relative dielectric
constant (e =32.2 at T =298.15K) [42]. Molar volumes, Vm, and
excess molar volumes, VE, values were calculated by processing
density data using Eqs. (1) and (2). The Vm trend is falsely linear, in
fact, each curve is fitted by a polynomial equation of 2nd degree
having an upward concavity (Figure S1 of the supplementary
material). This concavity ismore easily visible andmagnified in the
VE curves representation, Fig. 2. Negative VE values were found for

Table 3
Values of the coefficients obtained from theMargules Eq. (5), of molar excess enthalpies at equimolar composition, HE

¼x¼0:5, of partial molar enthalpies at infinite dilution
for each component, H

1
k , and of associated uncertainties, u.

System A12 A21 a21 a12 h HE
x¼0:5 #m H

1
1 #m H

1
2 #m

J mol"1 kJmol"1

EAN+NMP "5.142 "4.351 2.353 1.426 "3.799 "3494 # 25 "12.74#0.07 "10.79#0.09
PAN+NMP "5.112 "4.073 1.403 "0.920 "2.887 "3300#24 -12.67#0.06 -10.10#0.08
BAN+NMP "4.623 "3.445 2.315 1.772 "3.529 "3046#14 "11.46#0.06 "8.55#0.06
MEOEAN+NMP "4.426 "3.031 1.467 0.718 "2.493 "2658#36 "11.0#0.2 "7.5#0.1

Table 2
Values of the coefficients, ai, obtained from the Redlich–Kister Eq. (3) with the standard deviations, s(VE). Values ofmolar excess volumes at equimolar composition, VE

x¼0:5, of
partial molar volumes at infinite dilution for each component, V

1
k , and of associated uncertainties, u.

System a0 a1 a2 a3 s (VE) VE
x¼0:5 #m V

1
1 #m V

1
2 #m

10"6!m3mol"1

EAN+NMP "2.3258 4.2359 "2.6674 "1.4055 0.02 "0.58#0.02 "7.8#0.4 "2.2#0.4
PAN+NMP "3.0289 3.4931 "1.6539 0 0.02 "0.76#0.02 "8.18#0.06 "1.19#0.06
BAN+NMP "2.8169 3.3232 "1.5604 0 0.01 "0.70#0.01 "7.70#0.05 "1.05#0.05
MEOEAN+NMP "2.3009 2.9592 "1.2011 0 0.01 "0.56#0.02 "6.46#0.04 "0.54#0.05
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each XAN+NMP system. The moderately negative VE values
(maximum lost in volume around 1!10"6 m3mol"1) found for
EAN/PAN/BAN+NMP systems, indicates the presence of strong
attractive interactions between the constituents, greater than in
neat compounds. The VE curves of each XAN+NMP system show a
comparable trend and they overlap in the NMP-rich region. Being
the compaction under mixing of EAN/PAN/BAN+NMP systems
almost the same, VE curves are not affected by the alkyl chain
length. As far as the MEOEAN+NMP system, the reduction of
volume is smaller than those obtained for the other XAN+NMP

systems (maximum lost in volume around 0.76!10"6 m3mol"1),
indicating that the addition of a polar group, such as the methoxy
one, prevents the compaction of the mixture.

4. Calorimetric properties

Complementary information was obtained by the calorimetric
determination of the heat of mixing. In Fig. 3, the experimental
points and the smoothed curves of partial molar enthalpies of
constituents, H

E
k , and the excess molar enthalpies, HE, for the

[(Fig._1)TD$FIG]

Fig. 1. Experimental densities, r, at 298.15K and 0.1MPa, of XAN (1) +NMP (2)
mixtures as a function of x1, the mole fraction of component (1). Symbols: &,
EAN+NMP; ^, PAN+NMP; *, BAN+NMP; ~, MEOEAN+NMP.

[(Fig._2)TD$FIG]

Fig. 2. Excess molar volumes, VE, of XAN (1) +NMP (2) mixtures at 298.15K and
0.1MPa as a function of x1, the mole fraction of component (1). The VE curve is
calculated with the ai-parameters Redlich–Kister Eq. (3) reported in Table 2.
Symbols: &, EAN+NMP; ^, PAN+NMP; *, BAN+NMP; ~, MEOEAN+NMP.

Table 4
Mixture composition expressed as the mole fraction of XAN, x1, experimental density, r,molar volumes, Vm, and excess molar volumes, VE, values at 298.15K and 0.1MPa of
XAN (1) +NMP (2) mixtures.a

System x1 10"3!r/kgm"3 106!Vm /m3mol"1 106!VE /m3mol"1 x1 10"3!r/kgm"3 106!Vm /m3mol"1 106!VE /m3mol"1

EAN (1)
+
NMP (2)

0.000 1.02825 96.41 0.00 0.480 1.11962 92.38 "0.61
0.049 1.04083 95.67 "0.39 0.540 1.12936 92.06 "0.50
0.138 1.05994 94.69 "0.74 0.592 1.13795 91.78 "0.41
0.166 1.06580 94.41 "0.81 0.630 1.14372 91.61 "0.30
0.223 1.07659 93.93 "0.88 0.684 1.15322 91.28 "0.25
0.242 1.08027 93.77 "0.91 0.763 1.16768 90.76 "0.21
0.292 1.08923 93.41 "0.92 0.830 1.17962 90.34 "0.15
0.347 1.09875 93.05 "0.88 0.915 1.19554 89.78 "0.11
0.457 1.11643 92.46 "0.69 0.981 1.20767 89.36 "0.06
0.413 1.10961 92.68 "0.78 1.000 1.21076 89.28 0.00

–

PAN (1)
+
NMP (2)

0.000 1.02825 96.41 0.00 0.551 1.10572 101.12 "0.67
0.046 1.03838 96.49 "0.37 0.582 1.10868 101.48 "0.60
0.167 1.05942 97.19 "0.84 0.628 1.11318 102.03 "0.51
0.202 1.06453 97.48 "0.89 0.661 1.11642 102.41 "0.45
0.263 1.07330 98.00 "0.98 0.721 1.12267 103.07 "0.37
0.329 1.08153 98.64 "0.97 0.781 1.12874 103.73 "0.30
0.367 1.08639 99.02 "0.97 0.808 1.13096 104.08 "0.21
0.406 1.09060 99.45 "0.91 0.862 1.13673 104.64 "0.17
0.461 1.09652 100.07 "0.83 1.000 1.15035 106.16 0.00

–

BAN(1)
+
NMP (2)

0.000 1.02825 96.41 0.00 0.439 1.07493 107.34 "0.81
0.048 1.03644 97.36 "0.33 0.538 1.08043 110.19 "0.61
0.108 1.04494 98.68 "0.60 0.670 1.08806 113.91 "0.42
0.163 1.05172 99.98 "0.78 0.843 1.09720 118.79 "0.17
0.267 1.06231 102.62 "0.93 1.000 1.10549 123.16 0.00
0.365 1.06991 105.27 "0.89

–

MEOEAN (1)
+
NMP (2)

0.000 1.02825 96.41 0.00 0.564 1.16698 102.85 "0.46
0.053 1.04490 96.75 "0.31 0.670 1.18850 104.27 "0.33
0.109 1.06124 97.21 "0.53 0.694 1.19351 104.60 "0.30
0.173 1.07865 97.85 "0.67 0.873 1.22836 107.02 "0.07
0.208 1.08771 98.22 "0.73 0.963 1.24595 108.19 "0.002
0.367 1.12526 100.16 "0.73 1.000 1.25324 108.64 0.00
0.448 1.14299 101.24 "0.65

a Standard uncertainties u are m(T) = 0.01K, m(x1) = 0.001, m(VE) = 0.02!10"6m3mol"1,m(Vm)= 0.02!10"6m3mol"1.
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XAN+NMP mixtures are plotted as a function of the mole fraction
of XAN, x1. As can be seen, the shape of the HE curves are
moderately asymmetric, the values of the minimum at x1 = 0.47 for
each system, calculated from the Margules coefficients, are:
"3509 Jmol"1 for EAN+NMP system,"3319 Jmol"1 for PAN+NMP
system, "3062 Jmol"1 for BAN+NMP system, and "2689 Jmol"1

for MEOEAN+NMP system. The very high negative excess
enthalpies found for each system suggested the presence of strong
attractive interactions between the mixture constituents. Indeed,
generally mixtures between two different organic compounds are
characterized by endothermic effect, while the mixing is exother-
mic when two components give rise to attractive interactions
among unlike molecules stronger than those present in like
molecules. Exothermic mixing effects of NMP were observed in
mixtures with water (HE

x¼0:5 ="2407#20 Jmol"1) [43] and with
chloro-alkanes and -alkenes. The highest exceptionally value
(HE

x¼0:5 ="4750 Jmol"1) was observed in NMP+1,1,2,2-tetrachloro-
ethane mixtures [44]. The slight asymmetry of HE curve is
explained with the non-specular peculiar shape of H

E
k . At infinite

dilution, excess partial molar enthalpies of XAN, H
E;1
1 , have

absolute values higher than H
E;1
2 : the dissolution of XAN by NMP

solvent was found to result in an interaction stronger with respect
to the dissolution of NMP by the ionic liquids, indicating stronger
attractive interactions played by NMP in the dissolution of the
solute XAN, with respect to the same process in which the same
components play exchanged roles. It could be highlighted that, as
the alkyl chain length of the cation increases, H

E;1
k and HE

x¼0:5
decrease and the difference between H

E;1
k values increases. This

indicates that the mixing process is more exothermic when the
alkyl chain of the cation is smaller. Indeed, considering the
absolute values at equimolar composition, the HE

x¼0:5 decreases in
the following order: HE

x¼0:5 EAN>HE
x¼0:5 PAN>HE

x¼0:5 BAN.

MEOEAN+NMP system showed the lowest HE
x¼0:5 absolute value,

indicating that the addition of the polarmethoxygroup inhibits the
interaction between XAN and NMP or more likely that the
endothermic contribution necessary to separate the ions consti-
tuting MEOEAN is greater than the corresponding values
associated with the other considered XAN.

5. Conclusions

In the present work, selected thermodynamic properties of
some alkylammonium nitrate ionic liquids were studied with the
aim of investigating their behavior in the organic solvent
N-methyl-2-pyrrolidone (NMP) over the whole concentration
range. Density measurements and calorimetric titrations were
employed to characterize the mixing properties of these com-
pounds.

The main information from the density measurements is that
the increase of the alkyl chain length of the XAN cation inhibits the
compaction of neat XAN. Negative and similar VE values for each
XAN+NMP system were found indicating that the alkyl chain
length does not significantly influence the mixture compaction.

Negative HE values were obtained for all of the investigated
systems indicating the presence of strong attractive interaction
between the components; in addition, it can be highlighted that
the mixing process is more exothermic for short alkyl chain length
ammonium nitrate ionic liquids. In general, the dissolution of XAN
by the NMP solvent was found to result in stronger interactions
with respect to those accompanying the NMP dissolution by the
ionic liquids. MEOEAN showed a different behaviour compared to
the other selected alkylammonium nitrate ionic liquids: (i) the
addition of the polar group to the shorter alkyl chain considered
promotes a greater compaction of the neat ionic liquids than EAN,

[(Fig._3)TD$FIG]

Fig. 3. Molar excess enthalpies, HE, and excess partial molar enthalpies, H
E
k , for the binary mixtures XAN (1) +NMP (2) as function of x1, the mole fraction of

component (1), at 298.15K and 0.1MPa. (a) EAN+NMP system; (b) PAN+NMP system; (c) BAN+NMP system; (d) MEOEAN+NMP system. H
E
1, full symbols: &,

EAN; ^, PAN; *, BAN; ~, MEOEAN; and, &, NMP. Curves fitting are calculated with the parameters of the Margules Eq. (6) reported in Table 3.
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PAN and BAN, (ii) whenMEOEAN is mixedwith the organic solvent
NMP, the methoxy group inhibits the interaction between the ions
of XAN and NMP.

The present results provide valuable new information on these
alkylammonium nitrate ionic liquids and their mixture with
the useful solvent NMP, and allow us to dispose, in a direct and
reliable way, quantities that are necessary for the chemical plants
design.
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Fig. S1. Molar volumes, Vm,  of XAN (1) + NMP (2) mixtures at 298 K and 0.1 MPa as a function of x1, the 
mole fraction of component (1). The Vm curves are calculated with a 2nd degree polynomial equation. 
Symbols: !, EAN+NMP; ", PAN+NMP; #, BAN+NMP; !, MEOEAN+NMP.     
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III.1.$Supplementary$Data$

III.1.1.$NMR$experiments$of$XAN$(1)$+$NMP$(2)$systems$

Figure! III.1! shows! a! stack! plot! of! the! 1H! NMR! spectra! of! dried! ionic!

liquids,! NMP! and! their! mixtures! at! different! composition.! In! order! to!

simplify! the! comparison! among! the! proton! chemical! shifts! (δ)! changes!

occurring!upon!NMP!dilution,!deviations!expressed!as!difference!between!

the! positions! of! peaks! in! the! neat! compounds! and! in! their! mixtures,! are!

represented!in!Figures!III.2#III.4!as!a!function!of!the!NMP!mole!fraction,!x2.!

As!can!be!seen,!the!proton!δ!of!NMP!and!XAN!peaks!were!sensibly!affected!

by!the!mixture!composition:! the!alkyl!proton!signals! in!both!XAN!(Figure!

III.2)! and! NMP! (Figure! III.3)! compounds! moved! upfield! upon! NMP!

dilution,! while! those! of! the! [NH3]+! group! of! XAN! (Figure! III.4)! moved!

downfield.!In!addition,!the!13C!chemical!shift!of!the!carbonyl!carbon!(Figure!

III.4)! moved! upfield! upon! NMP! dilution,! suggesting! the! presence! of!

hydrogen!bond!between!XAN!and!NMP.1!Since!δ!is!a!sensitive!indicator!of!

the! degree! of! magnetic! shielding! of! the! nucleus,! being! influenced! by!

surrounding! electrons! and! neighbouring! atoms! and! groups! in! the!

molecule,! chemical! shift! variations! were! indicative! of! the! occurrence! of!

changes!in!the!local!chemical!environment!experienced!by!protons!in!both!

molecules.! It! is!worth!mentioning! that! recently!Alvarez! et! al.2! proposed! a!

model!for!the!interaction!between!EAN!and!water!according!to!which!the!

[NO3]#! anion! is! replaced! by! the! water! solvent.! Therefore,! in! the! light! of!

these!considerations,!a!possible!contribution!also!by!the!XAN!anion!on!the!

observed!chemical!shift!variations!is!not!excluded.!!
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Complementary!information!on!the!XAN#NMP!interaction!was!assessed!

by!13C!NMR!relaxation!measurements.!Figures!III.5#III.7!show!the!values!of!

the! 13C! spin#lattice! relaxation! rate! R1! (=! 1/T1)! for! the! samples! under!

investigation.! In! Figure! III.5#III.6! the! spin#lattice! relaxation! rates! of! NMP!

carbons!of!each!XAN!mixture!were!reported.!As!can!be!seen!in!Figure!III.5,!

the! R1! trends! for! the! three! XAN! +! NMP! systems! were! very! similar:! the!

smallest!R1!values!were!recorded!for!the!carbonyl!carbon,!while!those!of!the!

protonated!carbons!followed!the!order!C5!>!C3!>!C4!>!C7!>!C2.!!

By! comparing! the! R1! values! of! each! NMP! protonated! carbon! (Figure!

III.6),!and!those!of!the!XAN!alkyl!chains!(Figure!III.7),!it!can!be!noticed!that!

the! ring! carbons! in! NMP! and! those! of! the! methylenic! groups! in! XAN!

speeded! up! upon! dilution! below! x2! ≈! 0.3! and,! then,! slowed! down! with!

further!additions!of!NMP,!this!behaviour!being!more!pronounced!for!BAN!

ionic! liquid.!This! inversion!point! is!not!observed! for!CH3! carbons!both! in!

XAN!and!in!NMP,!probably!due!to!the!rotational!contribution.!!

The! analysis! of! the! present! NMR! data! is! currently! still! in! progress,!

coupled! with! MD! simulations! to! a! more! detailed! investigation! of! the!

structural!and!dynamical!properties!of!these!mixtures.!

!

!
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!

Figure' III.1.! 1H" NMR" spectra" of" neat! compounds,* XAN! and! NMP," and$ their$
mixtures) at) different)NMP!mole! fractions,+ x2." a)# EAN# +#NMP# system;# b)# PAN# +#
NMP$system;$c)$BAN$+$NMP$system.!
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$

! !

Figure$III.2.$1H!chemical!shift!deviations!of!alkyl!chain!protons!in!XAN!from!neat!

ionic! liquids,!Δδ! (δmix#δneat),! as! a! function! of! the!NMP!mole! fraction,!x2.! Symbols:!

EAN!(red),!PAN!(blue),!BAN!(green):!!,!N#CH2;!",!CH2#CH3!!of!PAN!and!BAN;!#,!

CH2#CH2#CH3!of!BAN;!!,!CH3.!

!

!

Figure$III.3.$1H!chemical!shift!deviations!of!NMP!protons!from!neat!NMP,!Δδ!(δmix#

δneat),!as!a!function!of!the!NMP!mole!fraction,!x2.!Symbols:!EAN!(red),!PAN!(blue),!

BAN!(green);!!,!5;!!,!3;!$,!4;!",!7.!
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!

Figure$III.4.!1H!chemical!shift!deviations!of!NH3!protons!in!XAN!(left)!and!13C!

chemical! shift! deviations! of! CO! carbon! in! NMP! (right),! as! a! function! of! the!

NMP!mole! fraction,! x2.! Δδ! =! (δmix#δneat),! where! δmix! is! the! chemical! shift! in! the!

mixture!and!δneat!the!chemical!shift!of!the!neat!compounds.!Symbols:!EAN!(red),!

PAN!(blue),!BAN!(green).$
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!

!

!

Figure$ III.5.$ 13C! spin#lattice! relaxation! rates! for!NMP! in! the! presence! of! a)! EAN!

(red);! b)!PAN! (blue);! c)!BAN! (green)! as! a! function!of! the!NMP!mole! fraction,!x2.!
Symbols:!!,!C5;!!,!C3;!$,!C4;!",!C7;!✕,!C2.!!
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! $

! $

Figure$III.6.$13C!spin#lattice!relaxation!rates!of!NMP!as!a!function!of!the!NMP!mole!

fraction,!x2.!Symbols:!EAN!(red),!PAN!(blue),!BAN!(green);!!,!C5;!!,!C3;!$,!C4;!",!

C7.!
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! $

$

Figure$III.7.$13C!spin#lattice!relaxation!rates!of!XAN!as!a!function!of!the!NMP!mole!

fraction,!x2.!Symbols,!EAN!(red),!PAN!(blue),!BAN!(green):!!,!N#CH2;!",!CH2#CH3!

of!PAN!and!BAN;!#,!CH2#CH2#CH3!of!BAN;!!,!CH3.!

!

III.2$Volumetric$data$of$XAN$(1)$+$Water$(2)$systems$

In$Table!III.1,!the!mixture!composition!expressed!as!XAN!mole!fraction,!

x1,! experimental! densities,!molar! volumes,! and! excess!molar! volumes! for!

each!investigated!XAN!(1)!+!Water!(2)!mixture!were!reported.!Each!density!

value! represents! the!mean! of! two! determinations.! Virtually,! the! physico#

chemical!properties!of!RTILs!mainly!depend!on!the!nature!and!structure!of!

ions!and!on!the!alkyl!chain!length!of!the!cation.!As!it!can!be!seen!in!Table!

III.2,!the!density!value!of!the!neat!XAN!decreases!as!the!alkyl!chain!length!
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of! the! cation! increase,!whereas! the! addition! of! the!methoxy! group! to! the!

smaller! alkyl! chain! considered,! results! in! an! increase! of! density.! This!

behaviour!is!probably!due!to!the!difference!in!molecular!weight!and!to!the!

enhanced! capability! to! give! polar#polar! attractive! interactions.! This!

indicates!that!a!long!alkyl!chain!inhibits!the!compaction!of!neat!XAN,!while!

the! addition! of! a! polar! group! in! a! short! chain! has! opposite! effect,! i.e.!

promotes!a!greater!compaction!of!the!neat!ionic!liquids.!In!Figure!III.8,!the!

density!values!of!the!XAN!(1)!+!Water!(2)!mixtures!are!plotted!with!respect!

to! x1.! In! general,! the! density! trend! of! each! XAN! +! Water! system! is!

monotonic!with!a!downward!concavity.!RTILs!are!miscible!with!molecular!

solvents!with!medium#!to!high#!dielectric!constants!i.e.!solvents!containing!

polar! groups! and! immiscible!with! low!dielectric! liquids.3–5! In! the! present!

study,!we! found! that! all! XAN! are! completely!miscible! in!water! over! the!

whole!mole!fraction!range,!since!water!is!a!polar!solvent!with!a!very!high!

relative!dielectric!constant!(εr=!78.5!at!T!=!298.15!K).6!

Negative! VE! values! were! found! for! each! XAN! +! Water! system.! The!

moderately! negative!VE! values! (maximum! lost! in! volume! around! 0.6×10#6!

m3! mol#1)! found! for! EAN/PAN/BAN! +! Water! systems,! indicates! the!

presence!of!strong!attractive!interactions!between!the!constituents,!greater!

than! in! neat! compounds.! The! VE! curves! of! each! XAN! +! Water! system!

showed! a! comparable! trend! and! they! overlap! in! the! water#rich! region.!

Being! the! compaction! under!mixing! of!EAN/PAN/BAN! +!Water! systems!

almost!the!same,!VE!curves!are!not!affected!by!the!alkyl!chain!length.!As!far!

as! the!MEOEAN!+!Water!system,! the!reduction!of!volume! is!smaller! than!

those! obtained! for! the! other! XAN! +! Water! systems! (maximum! lost! in!
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volume! around! 0.5×10#6!m3!mol#1),! indicating! that! the! addition! of! a! polar!

group,!such!as!the!methoxy!one,!limits!the!compaction!of!the!mixture.!

Excess! partial! molar! volumes! at! infinite! dilution! of! each! XAN! we!

considered,! ∞,
1
EV ,!vary! in! the! range! [#6.18! to! #5.10]! cm3!mol#1.! Such!values!

indicate! that! the! molar! volume! of! each! XAN! in! an! infinitely! diluted!

solution! is! reduced,! with! respect! to! the! neat! state,! ( )*1,
1 /VV E ∞ ! by! a! quite!

important!amount,!in!the!range![#5.8!%!to!#4.1!%].!!

The! related!quantities!of!water!are! in!general! lower,! amounting! to! #4.3!

%,!#2.6!%!and!#2.6!%!for!solutions!in!PAN,!BAN!and!MEOAN,!respectively,!

with! the!exception!of!EAN#containing!mixtures!where! the! ( )*2,
2 /VV E ∞ ! ratio!

amount!to!#8.5!%.!

!

$

$

$

$

$

$ $
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Table$III.1$
Mixture! composition! expressed! as! the! mole! fraction! of! XAN,! x1,! experimental!
density,!ρ,!molar!volumes,!Vm,! and! excess!molar!volumes,!VE,! values! at! 298.15!K!
and!0.1!MPa!of!XAN!(1)!+!Water!(2)!mixtures.a!

System$ x1$
10N3×ρ "
/kg$mN3$

106×Vm$
/m3$molN1$

106×VE$
/m3$molN1$

x1$
10N3$×ρ "
/kg$mN3$

106×Vm$
/m3$molN1$

106×VE$
/m3$molN1$

$ 0.000! 0.99704! 18.07! 0.00! 0.374! 1.17091! 44.12! #0.57!
! 0.006! 1.00558! 18.49! #0.04! 0.443! 1.17984! 49.06! #0.55!
! 0.024! 1.02679! 19.68! #0.12! 0.456! 1.18111! 50.01! #0.54!

EAN$(1)$ 0.050! 1.05191! 21.41! #0.22! 0.497! 1.18544! 52.94! #0.53!
+$ 0.073! 1.07055! 22.97! #0.30! 0.618! 1.19473! 61.67! #0.44!

Water$(2)$ 0.087! 1.08035! 23.93! #0.34! 0.747! 1.20199! 71.00! #0.34!
! 0.125! 1.10247! 26.55! #0.42! 0.819! 1.20480! 76.17! #0.25!
! 0.160! 1.11859! 29.01! #0.48! 0.908! 1.20740! 82.63! #0.12!
! 0.214! 1.13748! 32.77! #0.54! 0.911! 1.20774! 82.88! #0.13!
! 0.297! 1.15774! 38.64! #0.57! 0.955! 1.20942! 86.06! #0.11!
$ 0.298! 1.15798! 38.73! #0.57! 1.000! 1.20991! 89.34! 0.00!

! 0.000! 0.99704! 18.07! 0.00! 0.424! 1.13374! 54.79! #0.58!
! 0.013! 1.01180! 19.09! #0.08! 0.464! 1.13616! 58.39! #0.55!
$ 0.018! 1.01812! 19.59! #0.11! 0.498! 1.13794! 61.35! #0.52!

PAN$(1)! 0.052! 1.04740! 22.40! #0.27! 0.600! 1.14242! 70.43! #0.45!
+! 0.074! 1.06168! 24.24! #0.36! 0.699! 1.14543! 79.26! #0.35!

Water$(2)! 0.115! 1.08155! 27.76! #0.46! 0.799! 1.14777! 88.13! #0.25!
! 0.186! 1.10309! 33.86! #0.56! 0.838! 1.14853! 91.65! #0.20!
$ 0.204! 1.10719! 35.49! #0.57! 0.967! 1.15040! 103.15! #0.04!
$ 0.275! 1.11906! 41.66! #0.60! 1.000! 1.15090! 106.11! 0.00!
! 0.313! 1.12392! 45.03! #0.60! ! ! ! !

! 0.000! 0.99705! 18.07! 0.00! 0.464! 1.09807! 66.34! #0.50!

BAN$(1)! 0.045! 1.03613! 22.48! #0.28! 0.562! 1.10065! 76.72! #0.44!
+! 0.093! 1.05733! 27.45! #0.41! 0.580! 1.10084! 78.57! #0.41!

Water$(2)! 0.143! 1.07120! 32.56! #0.51! 0.667! 1.10247! 87.80! #0.35!

$ 0.193! 1.07965! 37.84! #0.54! 0.745! 1.10339! 96.07! #0.27!

! 0.330! 1.09218! 52.20! #0.56! 0.877! 1.10460! 110.10! #0.12!

! 0.401! 1.09542! 59.72! #0.51! 1.000! 1.10554! 123.15! 0.00!

! 0.000! 0.99705! 18.07! 0.00! 0.495! 1.22497! 63.20! #0.42!

! 0.039! 1.05734! 21.48! #0.19! 0.573! 1.23224! 70.51! #0.37!

MEOEAN$! 0.113! 1.12422! 28.09! #0.38! 0.646! 1.23749! 77.22! #0.31!

(1)! 0.161! 1.15110! 32.47! #0.44! 0.738! 1.24288! 85.77! #0.22!

+$ 0.229$ 1.17686! 38.66! #0.48! 0.693! 1.24051! 81.58! #0.27!

Water$(2)! 0.318$ 1.19933! 46.88! #0.49! 0.926! 1.25123! 103.27! #0.06!

! 0.428$ 1.21718! 57.00! #0.45! 1.000! 1.25380! 110.16! 0.00!
! ! ! ! ! ! ! ! !

a!Standard!uncertainties!u!are!u(T)=0.01!K,!u(x1)=0.001,!u(VE)=0.02×10#6$m3!mol#1,!
u(Vm)=0.02×10#6$m3!mol#1$
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Table$III.2$
Values!of!the!coefficients,!ai,!and!standard!deviations,!σ(VE)!obtained!from!the!RK!

equation.!Values!of!molar!excess!volumes!at!equimolar!composition,! E
xV 5.0= ,!excess!

partial! molar! volumes! at! infinite! dilution! for! each! component! k,! ∞,E
kV ,! and!

associated!uncertainties,!u.!!

System$ a0$ a1$ a2$ a3$ σ!(VE)" E
xV 5.0=

±u" ∞,
1
EV ±u" ∞,

2
EV ±u!

!! $10N6$× $m3$molN1!

EAN!+!Water! #2.07! 1.01! #1.28! 0.80! 0.002! #0.519±0.005! #5.17±0.04! #1.54±0.04!

PAN!+!Water! #2.07! 1.21! #1.40! 1.49! 0.001! #0.520±0.004! #6.18±0.03! #0.78±0.03!

BAN!+!Water! #1.86! 1.11! #1.54! 2.01! 0.002! #0.466±0.004! #5.1±0.1! #0.46±0.1!

MEOEAN!+!Water! #1.63! 1.17! #1.15! 1.15! 0.001! #0.407±0.004! #5.10±0.04! #0.46±0.05!

!

!

$

Figure$III.8.$Experimental!densities,!ρ,!(left)!and!excess!molar!volumes,!VE,!(right)!
of!XAN!(1)!+!Water!(2)!mixtures!as!a!function!of!x1,!the!mole!fraction!of!component!

(1).!The!VE! curve! is! calculated!with! the!ai#parameters!of!RK!equation! reported! in!

Table!III.2.!!

!

$ $
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ABSTRACT  

A systematic study of a series of room-temperature ionic liquids, belonging to the 

ethylammonium alkanoate family (EAX), was carried out at 298.15 K and 0.1 MPa with the aim 

of investigating the effect of the anionic chain length on some thermophysical properties and their 

behaviour in water (W), over the whole mole fraction range. The determination of Gutmann 

acceptor numbers (AN) for the neat EAX by using 31P NMR spectroscopy, allowed us to obtain a 

quantitative measure of Lewis acidity. Experimental densities, U, were used to calculate molar 

volumes, Vm, and excess molar volumes, VE. Complementary information was obtained by 

isothermal titration calorimetry that provided the values of the heat of mixing, HE, and the excess 

partial molar enthalpies of each component, 1
EH  and 2

EH . The density values of neat EAX 

samples decrease as the alkyl chain length of the anion increases. Moderate negative VE and HE 

values were found for each EAX + W system, indicating the presence of attracting interactions 

between the constituents.  
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1. Introduction 

Ionic liquids (ILs) and, in particular, room-temperature ionic liquids (RTILs) have been 

generating increasing interest over the last two decades [1] and many research groups and 

industries have been engaged to investigate a great number of different ionic liquids for a range of 

novel applications [2-6]. As witnessed by the rapid growth of scientific papers concerning this 

class of compounds, RTILs attract large attention as an alternative to traditional volatile organic 

solvents, thanks to some of their characteristics such as low volatility under ambient conditions, 

and good solvation properties towards polar and apolar compounds [7-9].  

Nitrogen-containing cations, such as ammonium, imidazolium, pyridinium, with weak 

nucleophilic anions such as [BF4]-, [PF6]-, [CF3SO3]-, [(CF3SO2)2N]- are typical ILs constituents. 

An interesting aspect is that, being composed of two parts (a cation and an anion, with different 

alkyl chain lengths on either of them, or both), it is possible to synthesise an huge number of 

different ILs characterised by a unique set of physicochemical properties [10]. However, the 

employment of ILs in scientific research and technical applications requires exact knowledge on 

their physical properties, which are connected with the IL-IL and/or IL-solute interactions. These 

interactions and their strength, influenced by intermolecular van der Waals forces, intermolecular 

Coulomb interactions, and ability of a solvent to form hydrogen bonds, can be quantified by using 

the so-called “donor–acceptor concept” approach developed by Victor Gutmann [11, 12]. He 

defined the acceptor number (AN), which is a method for quantifying the electrophilic or electron 

accepting properties of a solvent. The Gutmann AN [12] is a well-established quantitative measure 

of Lewis acidity and it could help to predict the intermolecular interactions of nucleophiles and 

other electron-rich substrates with the IL cations.   

Over the last years, experimental and/or theoretical thermodynamic studies on pure RTILs and 

their mixtures with water [13-16], which is important for the design of any technological 

processes, were reported. In the majority of published studies, the effect of the alkyl chain length 

of the cation has been investigated. More recently, alkanoate anions have been considered in the 

synthesis of new ILs [10, 17-23]. Greaves et al. [23, 24] synthesised different alkanoate ionic 

liquids and studied their nanostructure and some physicochemical properties. Ethyl-, n-propyl-, 

and n-butylammonium methanoate (EAM, PAM, and BAM, respectively) were synthesised and 

tested as mobile-phase for reversed phase liquid chromatography. EAM, which has a polarity 

similar to that of methanol or acetonitrile, has been indicated as suitable for use as mobile phase in 
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Liquid Cromathography  18, 19, 25]. Chhotaray et al. [20], reported the values of density, 

viscosity and speed of sound at atmospheric pressure and different temperatures for five ILs: 

propylammonium methanoate or ethanoate and 3-hydroxy-propylammonium methanoate, 

ethanoate or trifluoroethanoate. Diisopropylethylammonium methanoate + water mixtures have 

been investigated by Anouti et al. [21], to obtain the values of density, heat capacity, refractive 

index and excess quantities. Another promising alkanoate-based IL for practical applications, 

because of its low toxicity, is 2-hydroxyethylammonium methanoate, which has been synthesised 

for the first time by Bicak in 2005 [17]. Density and ultrasonic speed of their mixtures with water 

or methanol or ethanol have been measured by Iglesias et al. [22].  

In this work we report the experimental measurements of Gutmann AN of different 

ethylammonium alkanoate, EAX (ethylammonium methanoate, EAM; etylammonium propanoate, 

EAP; and etylammonium butanoate, EAB), and HE and VE values of their aqueous mixtures over 

the whole mole fraction range with the aim to evaluate the effect of alkyl chain length on some 

thermodynamic properties of these mixtures. Ethylammonium ethanoate being solid in the neat 

state [18] has not been considered. 

To the best of our knowledge, experimental measurements of Vm, VE, HE, 1
EH , and 2

EH  have 

not been reported in the literature for the selected EAX + water binary mixtures. 

2. Experimental Section 

2.1. Synthesis. Alkylcarboxylic acid (methanoic, > 98 % puriss. Glacial, Riedel-de Haën; 

propanoic, ≥ 99.5 %, Sigma Aldrich; butanoic, ≥ 99 %, Sigma Aldrich) was added dropwise to an 

equimolar amount of an aqueous ethylamine solution (70 % in water, Fluka Chemika) in a one-

neck one-litre round-bottom flask, cooled with liquid N2 (as the reaction is exothermic). The flask 

was kept closed after each acid addition, and cooled by adding more liquid N2 when necessary. 

The reaction is fairly exothermic and maintaining the temperature low is important. After all the 

acid had been added, the reaction was left to warm up to room temperature for approximately two 

hours, and then stirred at room temperature for one hour. Water was removed by freeze-drying 

technique at 0.03 mbar pressure. After a 12 h cycle, the water content was checked by Karl-Fischer 

titration. The result showed over 3 w/w % water content, so the freeze-drying cycle was repeated 

twice more, until no decrease in the water content was observed. The resulting ethylammonium 

methanoate, EAM (97 % yield); ethylammonium propanoate, EAP (97 % yield); and 
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ethylammonium butanoate, EAB (98 % yield) are extremely hygroscopic light yellow liquids, 

therefore they were kept under N2 atmosphere, in a glove box until use. Abbreviated names, % 

yield synthesis, final water content, purification and analysis methods of the investigated ionic 

liquids are reported in Table 1.  
Aqueous solutions of EAX were prepared in a glove box by weighing samples of EAX in 

screw-cap glass vials with an analytical balance (Sartorius A210P, Data Weighing Systems Inc., 

IL-USA; precision and accuracy mass of ±1u10-7 kg and ±5u10-7 kg, respectively). The proper 

amount of water to obtain different solutions of various compositions was added after removing 

the samples from the glove box.  

2.2.  Gutmann Acceptor Numbers and data treatment. Gutmann acceptor numbers (AN) [12], 

which quantify the electrophilicity or electron accepting properties of an ionic liquid, was 

determined from the 31P-NMR chemical shift of a triethylphosphine oxide (TEPO) probe 

molecule, dissolved in the respective pure solvent [12]. RTIL-TEPO complexes induce a change in 

the chemical shift in the 31P-NMR spectrum, which is directly proportional to the AN. To obtain 

precise data, the 31P NMR chemical shifts are measured at several concentrations of TEPO as 

recommended by Gutmann, because the chemical shifts are affected by the concentration of TEPO 

and the magnetic permeability of the solvent. These data are then extrapolated to infinite dilution, 

Ginf (31P chemical shift at infinite dilution of TEPO). The AN value is calculated by using the 

following equation: 

AN = 2.348 Ginf                     1) 

The proportionality constant in eqn. 1 has been empirically determined from the endpoints of 

hexane (AN = 0) and 10-3 M solution in 1,2-dichloroethane of antimony(V) chloride (AN = 100) 

[11, 12]. 

 Sample preparation was done in a glove box. Three samples (≈ 1 g) of EAX were weighed 

into a sample vial (10 cm3) equipped with a magnetic stirring bar. The vial was left on the balance, 

and TEPO was added (approximately 3, 5 or 7 mol % per mol of ionic liquid cation; see Table 2 

for the accurate masses). After a 5 hours-long stirring of the sample to ensure the complete 

dissolution, the liquids were loaded into NMR tubes (5 mm, borosilicate glass), each containing a 

capillary with benzene-d6. Then the tubes were closed and taken out of the glove box immediately 

prior to measurement. 31P-NMR spectra were acquired at 121.452 MHz using a Bruker 300 
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spectrometer. All samples were measured at 300.15 K.  

2.3. Volumetric measurements and data treatment. The densities of the liquid mixtures and the 

pure compounds were measured, at 298.15 K and 0.1 MPa, by means of a vibrating tube 

densitometer (model DMA 4500 ME-Anton Paar - Gratz, Austria). Accuracy in the temperature 

was better than ±0.01 K. Density precision and accuracy were ±1u102 kg m-3 and ±5u102 kg m-3, 

respectively. The instrument was calibrated before each experimental run using dry air and 

distilled water as references. Solutions were prepared by weight in septum-capped vials of 

approximately 2 cm3 using needles and syringes to transfer liquids. The molar volumes of mixture, 

Vm, were obtained from: 

� �1 1 2 2
m

mix

x M x M
V

U
�

                                       2) 

and the excess molar volumes, VE, were calculated by the following equation: 

� � � �1 1 2 2E
m

1 2

x M x M
V V

U U
 � �                                  

3)         

where ρmix is the density of the mixture and xk, Mk, and ρk are the mole fraction, the molar mass, 

and the density of the component k (k = 1 or 2), respectively. VE data were fitted by means of the 

Redlich-Kister (RK) equation having the form: 
1

E
1 2 1 2

0
a ( )

n
i

i
i

V x x x x
�

 

 �¦                               4) 

The absolute standard deviation of the fit, σ(VE), was calculated using the following equation: 

  

E E 2
, calc , expE ( )

( ) j jV V
V

N n
V

6 �
 

�
                            5) 

where N is the number of experimental points and n is the number of coefficients. By un-weighted 

least squares treatment a smoothed curve was obtained for each EAX (1) + W (2) system. The 

obtained RK coefficients are reported in Table 3. 
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Excess molar volumes at infinite dilution, E,
kV f , of each component k, is defined as the 

difference between the molar volumes at infinite dilution and in the neat state: E, *
k k kV V Vf f � . 

Their values were calculated from the RK parameters by means of: 

E,

0
( 1)

n
k

k i
i

V af

 

 �¦                                 6) 

Furthermore, from the standard deviations of the above RK parameters we calculated the SD, 

and the uncertainties, u (u = 2uSD), of the excess molar volumes at equimolar composition, 0.5
E

xV  , 

and of the partial molar volumes of each component at infinite dilution, E,
kV f , which are reported 

in Table 3.  

The procedure was checked by comparison of our experimental VE data of the water + ethanol 

system with reliable literature data [26]. We found a difference lower than 0.8 % in the whole 

composition range. 

2.4. Calorimetric measurements and data treatment. Heats of solution were collected through a 

heat flow calorimeter by Thermometric (model 2277, Thermal Activity Monitor - Järfälla, 

Sweden) at (298.15r0.01) K and 0.1 MPa. Experiments were conducted by adding a pure 

component, via Hamilton gas-tight syringes of capacity in the range of (250 to 500) PL driven by 

Cole-Parmer (model 74900 - Vernon Hills, Illinois, USA) pumps, to an ampoule of 1 cm3 capacity 

initially charged with the other component or with a stock mixture of them. With this system, we 

were able to make accurate injections starting from a minimum of 1 PL, with precision 0.5 %, and 

to measure accurate heat effects as small as 0.01 J, with sensitivity 0.5 PW. We chose this 

technique instead of mixing-flow calorimetry to avoid errors due to incomplete mixing and to 

obtain more precise values of the partial molar enthalpy at infinite dilution [27].  

The experimental solution heats, Qexp, released by the additions of very small quantities of the 

titrant, nk, practically represent partial molar enthalpies, , /k k kH H Q n# . From this equation, 

calculated values of the solution heats, Qcalc, can be obtained, being ,calckH accounted for by proper 

differentiation of the equation HE = f(x), such as the modified Redlich-Kister one [28]: 
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� �

� �� �

1
E 1 2 1 2

1

0 1 21

n
k

k
k

x x c x x
H
RT c x x

�

 

�
 

� �

¦
                                    7) 

A standard least squares procedure identifies the best values of ck parameters at the minimum 

of the objective function � � 2
exp calcOF Q Q 6 � . Proper allowance was made for the heat involved 

in the phase composition changes brought about by the vapour-liquid equilibration after each 

addition. An exhaustive description of the apparatus, the experimental procedure, and the data 

treatment, can be found in literature [29-31]. The coefficients values obtained for EAX (1) + W (2) 

mixtures are reported in Table 4. From the standard deviations of the RK equation we calculated 

the uncertainties, u, on HE at equimolar mixtures and on excess partial molar enthalpies of each 

component at infinite dilution, 
E,
kH f , also reported in Table 4.  

As explained in previous papers [29-31], the calorimetric experimental procedure generates a 

large amount of experimental data (c.a. 200 experimental points for each binary mixture 

investigated, each composed of 4 numbers), which are not worth an extensive tabulation herein. 

These data can be retrieved as supplementary electronic material (xls-file) from the Authors. 

The reliability of the whole procedure was checked by measuring the HE, in the whole range of 

concentration, of the system benzene (1) + cyclohexane (2). Comparison with reliable literature 

[32] data revealed a discrepancy lower than 2 %. The uncertainty in the observed heat, Q, as 

determined by the reproducibility of the experiments and by integration of the peak area, can be 

evaluated as 0.5 %.  

3. Results 

3.1.  Gutmann Acceptor Numbers. 31P-NMR chemical shifts for an infinite dilution of TEPO in 

ionic liquids, Ginf, were determined by extrapolation of 31P-NMR chemical shifts obtained for the 

three TEPO concentrations and the AN values of EAX were calculated (see Table 2). As an 

example, 31P-NMR chemical shifts of TEPO in selected EAX compositions, along with the fitted 

straight lines, are shown in Figure 1. The P–O bond lengths in the complexes with the phosphine 

oxide may be related to the phosphorus deshielding in 31P-NMR experiments, where TEPO is used 

as a 31P-NMR probe. 
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3.2. Volumetric properties. Mixture composition, experimental densities, molar volumes, and 

excess molar volumes for each investigated EAX (1) + W (2) mixtures are reported in Table 5. 

Each density value represents the mean of two determinations. As it can be seen in Table 5, the 

density value of the neat EAX decreases as the alkyl chain length of the anion increase. In Figure 

2, the density values of the EAX (1) + W (2) mixtures are plotted with respect to x1. Each curve 

exhibits a maximum for x1 < 0.3 which becomes more pronounced and shifted towards lower x1 

values as the alkyl chain of the anion increases. Molar volumes, Vm, and excess molar volumes, 

VE, values were calculated by using equations 2 and 3. The Vm trend is falsely linear; in fact, each 

curve is fitted by a polynomial equation of 2nd degree having an upward concavity as can be seen 

in Figure S1 of the supplementary material. This concavity is more clearly observable in the VE 

curves representation, Figure 3. All VE values are negative and show a minimum at x1 in the range 

(0.30 to 0.35) in the region of lower values of the more polar component, the IL. The VE curves do 

not follow the order suggested by the alkyl chain length of the EAX, indeed the higher volume 

contraction (-1.4u10-6 m3 mol-1) is showed by EAP. The VE curves of each EAX + W system show 

a comparable trend and they perfectly overlap only in the mole fraction range of 0.9 d x1 d 1.0.  

 By observing the 
E,
kV
f

values reported in Table 3, it can be noticed that 
E,
2V
f

, the excess partial 

molar volume at infinite dilution of the common component of each mixture, have very close 

values as well as 2V
f

; the solvent molecules at infinite dilution occupy the same volume 16.0 cm3 

mol-1. The first component, EAX, behaves in a different manner: 
E,
1V
f

doubles its value passing 

from EAM to EAP, furthermore EAP and EAB have the same 
E,
1V
f

value but different 1V
f

 

amounting to (107.2 and 124.9) cm3 mol-1, respectively.  

3.3. Calorimetric properties. By means of the ITC technique we obtained, in a direct manner, the 

excess partial molar enthalpy of each component, E
kH , and the value of the heat of mixing 

coinciding with HE for the mixtures under investigation. In Figure 4, the experimental points and 

the smoothed curves of E
kH  and HE for the EAX + W mixtures are plotted as a function of the 

mole fraction of EAX, x1. As can be seen, the non-specular peculiar shape of E
kH  generate HE 

curves quite asymmetric with the following coordinates of the minima, calculated from the RK 

coefficients: (0.33, -1020 J mol-1) for EAM + W; (0.34, -1217 J mol-1) for EAP + W; and (0.40, -

1004 J mol-1) for EAB + W system. By comparing excess partial molar enthalpies at infinite 
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dilution of EAX and W reported in Table 4, it can be noticed that E,
2H f

 showed a similar value for 

each system indicating that the dissolution of water played by the ionic liquid is not influenced by 

the alkyl chain length of the anion; on the other hand E,
1H f

 increase notably from EAM to EAB. 

E,
1H f have absolute values much more higher than those of water, indicating that the dissolution of 

EAX by water solvent results in an interaction much stronger with respect to the dissolution of 

water by the ionic liquids. E,
1H f of EAP and EAB have coinciding values and they are seven time 

higher than the value of E,
2H f . 

4. Discussion and Conclusions 

In the present work, combined calorimetric, volumetric, and Gutmann AN provided deep 

insights into some thermophysical properties of different ethylammonium alkanoate ionic liquids 

(EAX) with water (W) binary systems, which are also important for the design of technological 

processes. 

As stated in literature [33-35], ILs are miscible with molecular solvents with medium- to high- 

dielectric constants i.e. solvents containing polar groups and immiscible with low dielectric 

liquids. Consequently, all ionic liquids investigated in the present study are completely miscible in 

the water solvent over the whole mole fraction range, since water is a very polar solvent with a 

high relative dielectric constant (Hr = 78.3 at T = 298.15 K) [36]. 

The determination of AN by using the Gutmann method, allowed us to obtain a quantitative 

measure of electrophilicity of the investigated ionic liquids. It can be noticed from the AN values 

reported in Table 2, as the alkyl chain length of the anion increase the AN value decreases, 

indicating a greater acidity for EAM ionic liquid than the EAP and EAB. This could be due to the 

increase in steric hindrance of the cation–anion interactions on increasing the chain length, and to 

the aggregation of the long chain alkanoate anions, thus impeding the solvent–solute interactions. 

Similar results were obtained for some imidazolium cations [37]. By comparing our results with 

common organic solvent reported by Estager et al. [38], we can say that EAX ionic liquids are 

more acidic than the water as a solvent (AN = 54.8). 

By observing density results of the neat EAX, coherent with those reported by Graves et al. 

[24], it is possible to note that the density value decreases as the alkyl chain length of the anion 

increases, which can be attributed to an increase in steric hindrance as the chains become more 
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voluminous. As can be seen in Figure 3, EAX + W mixtures can be classified as “contractive” 

binary mixtures. Therefore, the negative VE values of each EAX + W system may be attributed to 

the interaction between unlike molecular interactions through hydrogen bonding, hence more 

efficient packing and/or attractive interaction occurred when the investigated ionic liquid and 

water were mixed. By comparing VE trends, it is evident that the addition of the first -CH2 group to 

the alkyl chain of the methanoate anion causes a relevant increase in compaction of the mixture, 

while a further extension of the alkyl chain has an opposite effect even if it is quite moderate.  

In regards to calorimetric results, the negative excess enthalpies found for each system suggest 

the presence of attractive interactions between the mixture constituents stronger than the 

interactions acting in pure liquids. Indeed, generally mixtures between two different organic 

compounds are characterised by endothermic effect, while the mixing is exothermic only when 

attractive interactions among unlike molecules are stronger than those present in like molecules. 

0.5
E
xH   values for each investigated system are quite close indicating that the alkyl chain length of 

the anion does not significantly influence the mixing process. Despite that, EAP + W system 

showed the highest 0.5
E
xH   absolute value. In agreement with VE results, the addition of the first -

CH2 group to the alkyl chain of the methanoate anion favourites a greater interaction between the 

components, while a further extension of the alkyl chain inhibits this interaction. 

Since thermodynamics properties of EAX with water mixtures, to the best of our knowledge, 

were not published in the open literature, it is possible to compare our thermodynamics results 

with an ionic liquid, which has the same cation (ethylammonium) but a different anion, as for 

example the ethylammonium nitrate (EAN). In our previous study [13], HE and VE of EAN + water 

mixtures showed a different behaviour: positive HE ( 0.5
E
xH  = 700 J mol-1) and negative VE (-0.52 

cm3 mol-1) were found. When EAN is mixed with water, it exhibits a volume contraction as well as 

EAX, even if at a lesser extent than EAX; while HE values have opposite sign in the whole range 

of composition. Positive excess enthalpies implicate weaker interaction between the components; 

the forces between the same kind of ions or molecules (IL–IL and water–water interactions) are 

stronger than those of IL-water. Indeed, ionic liquids containing the carboxylate anion, compared 

to those containing the nitrate one, show a greater affinity for water molecules. 
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SUPPLEMENTARY MATERIAL 

The online version of this article (doi: ...) contains supplementary material, which is available to 

authorized users. 
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Table 1 
Investigated EAX ionic liquids: name with abbreviation, % yield of the synthesis, final water content, and purification 
and analysis methods. 
 
 
 
 
 
 
 
 
 
 
 
Table 2 
Quantities of components for the EAX ionic liquids systems used to prepare solutions for 31P NMR spectroscopy; 31P 
chemical shift of TEPO, and Gutmann Acceptor Numbers of reference solvent and each selected ionic liquid. 

 Mass /g    

Solvent EAX  TEPO mol % TEPO  
31

P G
TEPO

 AN 

EAM 1.0188 0.0442 3  72.333 69.3 

 1.0223 0.0734 5  72.225  

 1.0138 0.1023 7  72.095  

EAP 1.0018 0.0342 3  70.848 65.7 

 1.0295 0.0504 5  70.797  

 1.0075 0.0804 7  70.711  

EAB 1.0159 0.0307 3  70.764 65.4 

 1.0090 0.0509 5  70.742  

 1.0093 0.0716 7  70.681  
 
 
Table 3 
Values of the coefficients, ai, obtained from the Redlich-Kister equation (4) with the standard deviations, V(VE). Values 
of excess molar volumes at equimolar composition, 0.5

E
xV  , of excess partial molar volumes at infinite dilution for 

each component, ,E
kV f , and of associated uncertainties, u.  

System a0 a1 a2 a3 σ (VE) 0.5
E

xV  ±u ,
1

EV f ±u ,
2
EV f ±u 

     10-6 u m3 mol-1 
EAM + W -3.52 2.09 -1.43 0.71 0.0006 -0.88±0.01 -7.76±0.02 -2.15±0.02 
EAP + W -4.72 3.19 -3.10 2.46 0.007 -1.18±0.01 -13.5±0.2 -2.2±0.2 
EAB + W -4.37 2.66 -3.43 3.17 0.001 -1.09±0.02 -13.6±0.6 -2.0±0.6 

 
 
 
 

Chemical name 
(abbreviation) % yield Purification 

method 

Final water 
content 

/mole fraction  

Analysis 
method 

     

ethylammonium metanoate 
(EAM) 97  dehydration 

 in vacuo < 0.006 Karl-Fisher 
titration 

ethylammonium propanoate 
(EAP) 97  dehydration 

 in vacuo < 0.006 Karl-Fisher 
titration 

ethylammonium butanoate 
(EAB) 98  dehydration 

 in vacuo < 0.006 Karl-Fisher 
titration 
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Table 4 
Values of the coefficients obtained from the Redlich-Kister equation (6), of excess molar enthalpies at equimolar 
composition, 0.5

E
xH  , of excess partial molar enthalpies at infinite dilution for each component, ,E

kH
f , and of 

associated uncertainties, u. 

 
Table 5 
Mixture composition expressed as the mole fraction of EAX, x1, experimental density, U, molar volumes, Vm, and 
excess molar volumes, VE, values at 298.15 K and 0.1 MPa of EAX (1) + W (2) mixtures.a 

System x1 
10-3 u U 
/kg m-3 

106 u Vm
 

/m3 mol-1 
106 u VE 

/m3 mol-1 x1 
10-3  u U 
/kg m-3 

106 u Vm
 

/m3 mol-

1 

106 u VE 

/m3 mol-1 

EAM (1) 
+ 

W (2) 

0.000 0.99704 18.07 0.00 0.625 1.04167 61.18 -0.72 

0.090 1.03176 23.84 -0.54 0.718 1.03948 67.84 -0.57 

0.200 1.04552 31.20 -0.87 0.834 1.03691 76.15 -0.35 

0.332 1.04766 40.34 -0.98 0.905 1.03539 81.26 -0.21 

0.386 1.04701 44.13 -0.97 1.000 1.03354 88.15 0.00 

0.495 1.04480 51.86 -0.89     

EAP (1) 
+ 

W (2) 

0.000 0.99704 18.07 0.00 0.624 0.99997 81.12 -0.97 

0.093 1.02726 26.66 -0.92 0.716 0.99597 90.84 -0.74 

0.200 1.02592 37.28 -1.31 0.821 0.99245 101.78 -0.49 

0.325 1.01697 50.06 -1.38 0.895 0.99013 109.66 -0.28 

0.398 1.01204 57.57 -1.33 1.000 0.98742 120.68 0.00 

0.500 1.00591 68.17 -1.19     

EAB (1) 
+ 

W (2) 

0.000 0.99704 18.07 0.00 0.605 0.97475 89.91 -0.93 

0.089 1.01358 27.94 -0.90 0.711 0.97061 102.97 -0.73 

0.198 1.00347 40.69 -1.23 0.839 0.96630 118.70 -0.43 

0.331 0.99113 56.64 -1.28 0.901 0.96449 126.33 -0.26 

0.401 0.98595 65.12 -1.23 1.000 0.96200 138.45 0.00 

0.497 0.98010 76.83 -1.12     
aStandard uncertainties u are u(T)=0.01 K, u(x1)=0.001, u(VE)=0.01u10-6 m3 mol-1,  u(Vm)=0.01 u10-6 m3 mol-1 

System c0 c1 c2 c3 c4 c5 0.5
E
xH  ±u ,

1
EH f ±u ,

2
EH f ±u 

   /J mol-1 /kJ mol-1               /kJ mol-1 
          

EAM + W 0.69 -1.500 -2.198 0 0 0 -929±3 -10.2±0.2 -2.53±0.03 
EAP + W 7.26 -1.81 -4.41 1.19 4.77 -5.73 -1120±15 -20±3 -3.2±0.3 
EAB + W -8.45 -1.55 -6.71 3.89 2.01 -6.98 -960±19 -22±5 -3.1±0.3 
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Fig. 1 Experimental 31P-NMR chemical shifts for TEPO as a function of TEPO concentration in selected EAX 
compositions (see Table 2). Linear regression was used to extrapolate these data to infinite dilution, Ginf /ppm. 
Symbols: �, EAM; �, EAP; z, EAB. 

 

 
Fig. 2 Experimental densities, U, at 298.15 K and 0.1 MPa, of EAX (1) + W (2) mixtures as a function of x1, the mole 
fraction of component (1). Symbols: �, EAM + W; �, EAP + W; z, EAB + W. 
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Fig. 3 Excess molar volumes, VE, of EAX (1) + W (2) mixtures at 298.15 K and 0.1 MPa as a function of x1, the mole 
fraction of component (1). The VE curve is calculated with the ai-parameters Redlich–Kister equation (3) reported in 
Table 3. Symbols: �, EAM + W; �, EAP + W; z, EAB + W. 
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Fig. 4 Molar excess enthalpies, HE, and excess partial molar enthalpies, E
kH , for the binary mixtures EAX (1) + W (2) 

as function of x1, the mole fraction of component (1), at 298.15 K and 0.1 MPa. a) EAM + W system; b) EAP + W 
system; c) EAB + W system. E

1H , full symbols: �, EAM; �, EAP; z, EAB; and E
2H , ☐, W. Curves fitting are 

calculated with the parameters of the Redlich-Kister equation (6) reported in Table 4. 
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Fig. S1. Molar volumes, Vm, of EAX (1) + W (2) mixtures at 298 K and 0.1 MPa 
as a function of x1, the mole fraction of component (1). The Vm curves are 
calculated with a 2nd degree polynomial equation. Symbols: !, EAM + W; ", 
EAP + W; #, EAB + W.   
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! IV$1!

IV.1%Supplementary%Data%

IV.1.1.%FT4IR%experiments%of%EAX%(1)%+%Water%(2)%systems%

A!comprehension!at!molecular!level!of!the!state!of!water!dissolved!in!ILs!

is! needed! for! further! understanding! of! ILs! as!media! for! different! kind! of!

applications.!Infrared!spectroscopy!is!one!of!the!most!powerful!techniques!

to!probe! the!molecular! state! of!water!present! in! solvents.! The!vibrational!

modes!of!water!that!result!in!bands!in!the!IR!spectrum!are!very!sensitive!to!

the! environment! and! to! the! state! of! water! association! via! H$bonding.1,2!

Stretching! modes! of! water! have! been! used! to! understand! the! type! of!

bonding! between! water! molecules! and! many! chemical! substances.! The!

water! molecule! has! C2v! symmetry! with! three! IR! active! vibrations:! the!

bending!IR!band!(ν2)!of!water!(either!pure!or!dissolved!in!solvents),!which!

usually! absorbs! in! the! region! [1650$1595]! cm$1,! and! the!antisymmetric! (ν3)!

and! symmetric! (ν1)! stretching! bands! of! water,! which! usually! lie! in! the!

region! [3800$3000]! cm$1.3,4! It! should! be! remarked! that! is! quite! difficult! to!

deduce! information! on! the!molecular! state! of! water! dissolved! in! various!

solvents!based!on!the!shifts!of!the!stretching!bands!of!water!because!there!

is!a!strong!correlation!between!the!ν3!and!ν1!bands.!!

FT$IR! spectra!were! recorded!using! a! Perkin!Elmer! Spectrum100! in! the!

range!of![3800$600]!cm$1.!As!can!be!seen!in!Figure!IV.1,!two!distinct!bands!

corresponding!to!the!ν3!and!ν1!modes!of!water!dissolved!in!EAX!are!in!the!

range! [3600$3200]! cm$1.! Taking! into! account! that! the! ν3! and! ν1! bands! in!

water! vapor! absorb! at! [3756! and! 3657]! cm$1! respectively,3,4! and! that! these!

bands!shift!to!lower!wavenumber!when!water!interacts!with!a!solvent,!the!

position! of! these! two! bands! indicates! that! the! water! molecules! can! be!
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! IV$2!

assigned!as!“freeXX!water!molecules!interacting!via!H$bonding!with!the!ionic!

liquids.! This! assignment! is! consistent! with! the! literature! data! on! the!

spectroscopic!manifestation!of! the! formation!of! symmetrical! complexes!of!

water!molecules!with!bases!such!as:!COO$$$$H$O$H$$$!$OOC.3,4!

Further! structural! information! from! IR! spectra! can! be! achieved! with!

computational!simulations.!!
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!
Figure%IV.1.%FT$IR!spectra!of!EAX!(1)!+!Water!(2)!mixtures.!a)!EAM;!b)!EAP;!c)!
EAB.!
!

neat EAP 

+ water 

a) 

b) 

c) neat EAB 

+ water 

neat EAM 

+ water 
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IV.1.2.% Volumetric% and% calorimetric% data% of% EAX% (1)% +% NMP% (2)%

systems%

Mixture!composition,!experimental!densities,!molar!volumes,!and!excess!

molar! volumes! for! each! investigated! EAX! (1)! +! NMP! (2)! mixtures! are!

reported! in% Table! IV.1.! Each! density! value! represents! the! mean! of! two!

determinations.!In!Figure!IV.2,!the!density!values!of!the!EAX!(1)!+!NMP!(2)!

mixtures!are!plotted!with!respect!to!x1.!The!densities!of!the!ILs!containing!

the! same! cation,! and! similar! anions,! increase! with! increasing! molecular!

weight!of!the!associated!anion.5!!

For! EAP$containing! mixtures! the! density! trend! is! almost! perfectly!

linear!whereas! the! curves! representing!EAB$containing!mixtures! shows! a!

moderate!upwards!concavity!and!that!representing!EAM!+!NMP!exhibits!a!

downward!concavity.!

Excess!molar!volumes,!VE,!(Figure!IV.1)!are!negative!and!quite!small!in!

absolute!value,!especially!if!compared!to!the!volume!contraction!that!these!

ILs!exhibited!in!water!(PAPER!IV).!VE!curves!show!a!minimum!at!different!

x1:!EAM!in!the!region!of!lower!values!of!the!more!polar!component,!the!IL;!

EAP! approximately! at! equimolar! composition;! EAB! in! the! IL$rich! region.!

The!VE!curves!do!not!follow!the!order!suggested!by!the!alkyl!chain!length!

of!the!EAX!and!the!higher!volume!contraction!($0.5×10$6!m3!mol$1)!is!showed!

by!EAB.!These!results!demonstrate!that!the!anion!affected!significantly!the!

IL$NMP!interactions.!!

By! observing! the! V k
E,∞

values! reported! in! Table! IV.2,! it! can! be! noticed!

that! all! values! are! negative.! In! EAP! +! NMP! system,!
∞E,

kV ! of! both!

components!have!small!similar!values,![$0.562!and!$0.530]!cm3!mol$1,!while!
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in!EAM!+!NMP!system,!
∞E,

1V !is!around!8!times!greater!(in!absolute!value)!

than!
∞E,

2V !and!in!EAB!+!NMP!system!
∞E,

2V ! is!2.5!times!greater!than!
∞E,

1V .!

The! largest! volume! contraction! of! a! component! at! infinite! dilution! with!

respect! to! the!neat!state,!expressed!by! ( ) 100/ *, ⋅∞
K

E
K VV ,! is! showed!by!EAM!!

($2.5!%)!and!by!NMP!($2.4!%)!in!the!EAB$containing!mixture.!

Complementary! information! was! obtained! by! the! calorimetric!

determination! of! the! heat! of! mixing! by!means! of! the! ITC! technique.!We!

obtained,! in! a! direct! manner,! the! excess! partial! molar! enthalpy! of! each!

component,!Hk
E
,!and!the!value!of!the!heat!of!mixing!coinciding!with!HE!for!

the!mixtures! under! investigation.! In! Figure! IV.3,! the! experimental! points!

and!the!smoothed!curves!of! Hk
E !and!HE! for! the!EAX!+!NMP!mixtures!are!

plotted! as! a! function! of! the! mole! fraction! of! EAX,! x1.! By! comparing!HE!

curves,! better! visible! in! Figure! IV.4,! EAP! and!EAB!when! are!mixed!with!

NMP!generate!a!weak!endothermic!effect!in!the!NMP$rich!region,!while!in!

the! IL$rich! region! mixing! is! exothermic! for! the! formation! of! mixtures!

containing!EAP!and,!to!a!lesser!extent,!EAM.!In!the!case!of!the!EAM!+!NMP!

system,! we! found! a! moderate! exothermic! mixing! effect! in! the! whole!

concentration! range.! HE! curve! of! EAM! +! NMP! is! quite! symmetric! as!

suggested! also! by! the! coordinates! of! the!minima,! calculated! from! the!RK!

coefficients!of!0.55,!$867.5!J!mol$1.!EAP!and!EAB!systems!showed!HE!curves!

quite!asymmetric,!due!to!the!non$specular!peculiar!shape!of! Hk
E
,!with!the!

following! coordinates! of! the!minima,! calculated! from! the!RK! coefficients:!

(0.15,! 223.2! J! mol$1)! for! EAP! +! W;! and! (0.24,! 325.9! J! mol$1)! for! EAB! +! W!

system.!If!we!compare!the!HE!values!of!the!three!systems,!we!can!observe!
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that! a! longer! alkyl! chain! in! the! carboxylic! anion! prevent! the! IL$solvent!

interaction,! while! a! shorter! alkyl! chain! favoured! it.! By! comparing! excess!

partial!molar! enthalpies! at! infinite!dilution!of!EAX!and!NMP! reported! in!

Table! IV.3,! it! can! be! noticed! that! the! absolute! value! of! H2
E,∞ ! values! are!

negative!and!they!decrease,! in!absolute!value,!as! the!alkyl!chain! length!of!

the!anion!increase.!On!the!other!hand!H1
E,∞ !increases!notably!from!EAM!to!

EAB!passing! from!$1.6!kJ!mol$1! to! the!positive!values,! (25!and!22)!kJ!mol$1!

for! EAP! and! EAB,! respectively.! For! EAP! or! EAB! +! NMP! mixtures! the!

dissolution! of! the! solvent! at! infinite! dilution! is! exothermic! while! the!

solubilisation!of! the! IL!at! infinite!dilution! in!NMP! is!associated! to!a!quite!

strong!endothermic!effect.!!

NMP!reveals!itself!unable!to!exert!strong!attractive!interactions!towards!

EAX!as,!for!example!water!does!(PAPER!IV),!probably!because!of!the!well$

known! different! capability! to! interact! via! hydrogen! bond.! EAM! +! NMP!

system!shows!a!very!particular!behaviour;!moreover!it!is!not!fully!coherent!

with! the! other! similar! systems.! A! search! in! the! literature! revealed! that!

mehanoate! ionic! liquids! are! very! prone! to! amide! formation,! c.a.! 25!%! of!

amide!after!4!years.6!Since!these!calorimetric!measurements!were!done!one!

year! later! the! synthesis,! the! not! negligible! amount! of! decomposition!

compounds!that!have!contaminate!our!samples,!could!have!influenced!the!

global!thermal!effect!measured!also.!The!calorimetric!data!concerning!EAM!

+!NMP!need!to!be!validate!before!they!can!be!submitted!for!publication.!!

!

!

!
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Table%IV.1%
Mixture! composition! expressed! as! the! mole! fraction! of! EAX,! x1,! experimental!
density,!ρ,!molar!volumes,!Vm,! and! excess!molar!volumes,!VE,! values! at! 298.15!K!
and!0.1!MPa!of!EAX!(1)!+!NMP!(2)!mixtures.a!

System% x1%
1043×ρ "
/kg%m43%

106×Vm%
/m3%mol41%

106×VE%
/m3%mol41% x1%

1043%×ρ "
/kg%m43%

106×Vm%
/m3%mol41%

106×VE%
/m3mol41%

EAM%
(1)%
+%

NMP%
(2)%

0.000! 1.02793! 96.44! 0.00! 0.624! 1.03479! 90.96! $0.29!

0.091! 1.03019! 95.52! $0.16! 0.715! 1.03458! 90.27! $0.22!

0.199! 1.03209! 94.51! $0.28! 0.834! 1.03415! 89.39! $0.11!

0.336! 1.03368! 93.29! $0.35! 0.902! 1.03392! 88.88! $0.05!

0.396! 1.03419! 92.78! $0.36! 1.000! 1.03393! 88.12! 0.00!

0.499! 1.03460! 91.94! $0.34! ! ! ! !

EAP%%
(1)%
+%

NMP%
(2)%

0.000! 1.02802! 96.43! 0.00! 0.606! 1.00456! 110.76! $0.17!

0.089! 1.02432! 98.52! $0.04! 0.714! 1.00041! 113.39! $0.14!

0.199! 1.02012! 101.09! $0.11! 0.831! 0.99611! 116.22! $0.10!

0.333! 1.01505! 104.23! $0.17! 0.914! 0.99380! 118.16! $0.14!

0.393! 1.01264! 105.66! $0.17! 1.000! 0.98994! 120.37! 0.00!

0.501! 1.00854! 108.25! $0.18! ! ! ! !

EAB%
(1)%
+%

NMP%
(2)%

0.000! 1.02802! 96.43! 0.00! 0.090! 1.02042! 100.14! $0.07!

0.090! 1.02042! 100.14! $0.07! 0.625! 0.98464! 122.31! $0.40!

0.200! 1.01234! 104.66! $0.19! 0.716! 0.97851! 126.23! $0.29!

0.327! 1.00373! 109.84! $0.32! 0.829! 0.9726! 130.95! $0.31!

0.401! 0.99873! 112.92! $0.35! 0.910! 0.96741! 134.52! $0.16!

0.493! 0.99241! 116.80! $0.34! 1.000! 0.962! 138.45! 0.00!

aStandard! uncertainties,! u,! are! u(T)=0.01! K,! u(x1)=0.001,! u(VE)=0.01×10$6%m3! mol$1,!!
u(Vm)=0.01×10$6%m3!m%

!

!
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!!

!
Figure%IV.2.%Experimental!densities,!ρ,!and!excess!molar!volumes,!VE,!of!EAX!(1)!+!
NMP!(2)!mixtures!as!a! function!of!x1,! the!mole! fraction!of!component! (1).!The!VE!
curve! is! calculated! with! the! ai$parameters! of! the! RK! equation! reported! in! Table!
IV.2.!Symbols:!!,!EAM;!",!EAP;!#,!EAB.!
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Table%IV.2%
Values!of!the!coefficients,!ai,!and!standard!deviations,!σ(VE)!obtained!from!the!RK!
equation.!Values!of!excess!molar!volumes!at!equimolar!composition,! Vx=0.5

E ,!excess!
partial! molar! volumes! at! infinite! dilution! for! each! component,! ∞,E

kV ,! and!

associated!uncertainties,!u.!!
System% a0% a1% a2% a3" σ%(VE)" E

xV 5.0=
±u" ∞,

1
EV ±u" ∞,

2
EV ±u!

! ! ! ! 1046%× %m3%mol41!
EAM!+!NMP! $1.37! 0.60! 0.14! 0.36! 0.0003! $0.343±0.001! $2.195±0.003! $0.280±0.003!
EAP!+!NMP! $0.74! 0.02! 0.20! 0! 0.0002! $0.185±0.003! $0.562±0.005! $0.531±0.005!

EAB!+!NMP! $1.61! $0.69! 0! 0! 0.001! $0.403±0.007! $0.923±0.006! $2.300±0.006!

%
%
Table%IV.3%
Values! of! the! coefficients,! ci,! ! obtained! from! the! RK! equation,! excess! molar!
enthalpies! at! equimolar! composition,! E

xH 5.0= ,! excess! partial! molar! enthalpies! at!

infinite!dilution!for!each!component,! ∞,E
kH ,!and!associated!uncertainties,!u.!

%
%
%

System% c0% c1% c2% c3% c4" c5" E
xH 5.0= ±u% ∞,

1
EH ±u% ∞,

2
EH ±u%

! ! ! /J%mol41% /kJ%mol41%%%%%%%%%%%%%%%/kJ%mol41%
! ! ! ! ! ! ! ! ! !

EAM!+!NMP! 0.58! $1.38! $1.11! 0! 0! 0! $858±5! $1.6±0.2! $3.9±0.1!

EAP!+!NMP! 0.98! 0.09! $0.52! $0.57! $0.13! 0! 56±10! 25±11! $1.42±0.09!

EAB!+!NMP! 0.98! 0.35! $0.21! $0.40! 0! 0! 218±8! 22±6! $0.3±0.05!
!

!
!

! ! !
! ! ! !
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%
Figure%IV.3.!Molar!excess!enthalpies,,HE,!and!excess!partial!molar!enthalpies,! E

kH ,,

for!the!binary!mixtures!EAX!(1)!+!NMP!(2)!as!a!function!of!x1,!the!mole!fraction!of!
component! (1),! at! 298.15!K!and!0.1!MPa.! E

1H ,! full! symbols:!!,!EAM;!",!EAP;!#,!

EAB;! and, E
2H ,!☐,!NMP.!Curves! fitting!are! calculated!with! the!parameters!of! the!

RK!equation!reported!in!Table!IV.3.!
!
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!
Figure%IV.4.!Molar!excess!enthalpies,,HE,! for! the!binary!mixtures!EAX!(1)!+!NMP!
(2)!as!function!of!x1,!the!mole!fraction!of!component!(1),!at!298.15!K!and!0.1!MPa.!
Symbols:!!,!EAM;!",!EAP;!#,!EAB.!
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