Università degli Studi di Cagliari

DOTTORATO DI RICERCA

Botanica Ambientale ed Applicata
Ciclo XXVII

TITOLO TESI

Archaeological seeds and local varieties of edible fruits: morphology through time

Settore scientifico disciplinari di afferenza
BIO/03

Presentata da:
Diego Sabato
Coordinatore Dottorato
Prof. Gianluigi Bacchetta
Tutor Prof. Gianluigi Bacchetta Dott.ssa Leonor Peña-Chocarro
Dott. Gianfranco Venora
Co-tutor Dott.ssa Laura Sadori
[GENERAL InTRODUCTION] 7
[SECTION 1] ARChaeobotany
[Chapter 1] Archaeobotanical analysis of a Bronze Age well from Sa OSA (Cabras), SARDINIA: a wealth of Knowledge 17
1.1 Introduction 19
1.1.1 General background1.1.2 The site
1.2 Material and methods 20
1.2.1 Macro-remains
1.2.2 Pollen
1.3 Results 221.3.1 Seeds and fruits1.3.2 Charcoal and wood
1.3.3 Pollen
1.4 Discussion 27
1.5 Conclusions 30
[Chapter 2] Phoenician-Punic trade: amphorae contents from Santa GiustaLAGOON, SARDINIA (ITALY)37
2.1 Introduction 39
2.1.1 General background2.1.2 The site
2.2 Material and methods 40
2.3 Results 41
2.4 Discussion 43
2.5 Conclusions 46

[SECTION 2] ApPLIED PLANT BIOLOGY

[CHAPTER 3] SEEDS MORPHO-COLOURIMETRIC ANALYSIS AS COMPLEMENTARY METHOD TO MOLECULAR CHARACTERIZATION OF MELON DIVERSITY
 51

3.1 Introduction 53
3.1.1 General background
3.1.2 Analyses
3.2 Material and methods 563.2.1 Seed lots detail3.2.2 Molecular analysis
3.2.3 Seed morpho-colourimetric analysis
3.3 Results 62
3.3.1 Molecular analysis
3.3.2 Seed morpho-colourimetric analysis
3.3.3 Integration of molecular data and seed/fruit phenotypes
3.4 Discussion 70
3.5 Conclusions 72
3.6 Annex 1: Accessions details Cucumis melo 77
3.7 Annex 2: Accessions details C. sativus, C. lanatus, C. colocynthis 803.8 Annex 3: SNPs details81
[CHAPTER 4] MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION OF the oldest melon seeds found in Western Mediterranean 87
4.1 Introduction 89
4.1.1 Melon
4.1.2 Introduction to the analyses
4.2 Material and methods 93
4.2.1 Seed lots detail
4.2.2 Molecular analysis
4.2.3 Morpho-metric seed analysis
4.3 Results 97
4.3.2 Morphological analysis
4.4 Discussion 102
4.5 Conclusions 104
4.6 Annex 1: SNPs details 109
[Chapter 5] Medieval melon and watermelon from Sassari (Italy): MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION 113
5.1 Introduction 1155.1.1 Historical and archaeological context5.1.2 Melon
5.1.3 Watermelon
5.1.4 Introduction to the analyses
5.2 Material and methods 117
5.2.1 Seed lots detail
5.2.2 Molecular analysis
5.2.3 Morpho-metric seed analysis
5.3 Results 115
5.3.1 Melon molecular analysis
5.3.2 Melon morphological analysis
5.3.3 Watermelon morphological analysis
5.4 Discussion 1285.4.1 Melon5.4.2 Watermelon
5.5 Conclusions 130
Annex 1: seed lots detail C. lanatus, C. colocynthis 135
Annex 1: SNPs details 136
Common Annexes Chapter 3 and Chapter 4
Annex C1: seed lots detail Cucumis melo 139
Annex C2: Genotyping data 143
Acknowledgements - Ringraziamenti 155

GENERAL INTRODUCTION

During the recent past, archaeobotanical studies have reached a significant position in the production of archaeological knowledge. The main aims of the archaeobotanical research are to explore the way in which plant resources were used and managed by human groups (Peña-Chocarro at al. 2000).

This discipline has an enormous potential for investigating the relationships between human communities and the natural environment, looking at the various aspects of plant use related to both cultivated and wild plants (Peña-Chocarro and Zapata 2003, Peña-Chocarro 2007). Diets, food procurement, agricultural practice (processing, storage, food preparation), rituals, are some of the main topics in which the study of plant remains can provide information (Mercuri 2008, Peña-Chocarro 2009, van der Veen 2011); furthermore, plant remains are a powerful tool to investigate topics related to ancient societies and their evolution, as long-term transformations of environment into a cultural landscape (Jacomet and Brombacher 2005, Birks 2012, Mercuri and Sadori 2012)

Recently Mercuri et al. (2014) summarized the state of art of archaeobotany research in Italy, pointing out that the multiproxy and integrated archaeobotanical approach centred on archaeological sites is one of the most specific and developed across Europe.

Sardinia has remained for a long time a blank gap on the map of European archaeobotanical research; records from early periods are rather scarce and are mostly relates to casual findings (Castaldi 1987, Sadori et al. 1989, Trump 1990, Costantini and Stancanelli 1997, Celant 1999, Celant 2000, Costantini 2002, Celant 2010). Some further researches on macro-remains have been carried out on samples of Phoenician-Punic period; although still pertinent to punctual discoveries (Montanari 2003, van Dommelen and Finocchi 2008, van Dommelen et al. 2008a, 2008b Miola et al. 2009, Pérez Jordà et al. 2010). Bakels (2002) ushered in the first extensive work on archaeobotany in the island, mainly focalized on Bronze Age period, which built up the bases for last newest researches in this field (Ucchesu 2014, Ucchesu et al. 2014a, 2014b Sabato et al. 2015 [Chapter 1]). Further works have been carried out also for the Medieval Age (Becca et al. 2013, Bosi and Bandini Mazzanti 2013). Meanwhile, archaeopalinology made also great progresses in Sardinia in the last two decades, producing important information on environmental changes in the Holocene period (Acquaro et al. 2001, López et al. 2005, Pittau et al. 2012, Di Rita and Melis 2013). Two archaeological sites have been studied within this thesis: a late Bronze Age well at Sa Osa, near Cabras (Sabato et al. 2015 [Chapter 1]) and Phoenician-Punic amphorae contexts from Santa Giusta lagoon [Chapter 2]. The most remarkable discover was the find of Cucumis melo seeds at Sa Osa, since it represents the earliest evidence from Western Europe and one of the most ancient finds of this taxon. Zohary at al. (2012) suggested that melon cultivation might have begun during the Bronze Age in the Near East and/or in Africa, although Janick at al. (2007) highlighted that this crop played a marginal role until at least the Classical period. Sweet melon became widely spread in Europe only in $15^{\text {th }}$ century AD rather later its introduction into the Iberian Peninsula during the Arab domination (Paris at al. 2012). The exceptional nature of this record encouraged me to enhance the information about these finds by further analyses described in [Section 2]. The identification of seeds is not always easy, especially on broken and distorted archaeological materials, and many different species can produce similar seeds within the same genus or even among different genus. In addition, it is almost impossible to distinguish varieties within the same species despite the fundamental value that accurate identification may have to trace the presence of edible and useful plants. From the very beginning of this discipline researchers tried to find morphological correlations with
the aim of distinguish between wild and cultivated plants (Stummer 1911). Several works have obtained good results on correlation of seed size, since seeds tendency increase their dimension under cultivation processes (Fuller 2007). In any way the results of these types of works are limited, since the human operator can only manage a limited number of samples and parameters, beside of larger error gap. Compared to conventional measurements, computer-aided morpho-colourimetry is exponentially faster, more accurate, precise and efficient, providing a significantly broader spectrum of measurements of morphological and colourimetric features and, at the same time, replacing subjective estimations with objective quantifications (Bacchetta et al. 2008). Several works about the application of image analysis to the diaspores of wild vascular flora have been carried out, providing excellent results of classification within taxonomic units close to infra-generic, infraspecific and intra-population levels (Bacchetta et al. 2008, Venora at al. 2009a, Venora at al. 2009b, Venora at al. 2009c, Grillo et al. 2010, Bacchetta et al. 2011a, 2011b; Pinna et al. 2014). Many studies have been focused also on crop wild relatives and landraces (Smykalova et al. 2011; Smykalova et al. 2013), and recently some authors focused on Vitis vinifera varieties (Rivera et al. 2007; Terral et al. 2010; Bouby et al. 2013, Orrú et al. 2013a) and two recent works correlated shape features of archaeological grape pips and Sardinian grape cultivars (Ucchesu et al. in press, Orrú et al. 2013b).

DNA sequence analyses can provide corroboration, resolution, support, and accuracy for those parts of phylogeny for which appropriate morphological data is lacking (Scotland at al. 2003). For example, one of the latest works performed with Sardinian grape cultivars correlated shape features with molecular discrimination; in this case the multiproxy approach allowed to achieve a clear discrimination among local cultivars and revealed the synonymy groups of local names attributed on same cultivar (Orrú et al. 2013a). Positive results have been obtained both on molecular and seed morphological traits on pumpkin (Liu et al. 2013). The goal of [Chapter 3] is to compare the phenotypic characterization achieved by seed features with the molecular analysis on melon genotypes, while [Chapter 4] and [Chapter 5] to correlate melon traditional landraces with archaeological seeds.

Archaeogenetic strongly improved in the last two decades (Palmer et al. 2012). In spite of waterlogging does not seem to favour DNA preservation, as hydrolysis is one of the major decay reactions (Schlumbaum et al. 2008), waterlogged plant remains have already been used as a good source of ancient DNA (Schlumbaum et al. 1998, Manen et al. 2003, Elbaum et al. 2005, Pollmann et al. 2005, Gyulai et al. 2008, Speirs et al. 2009). Small size degraded DNA fragments may be successfully amplified using the PCR (Polymerase Chain Reaction) designed to target small fragments, as an average length of 50-500b (Pääbo et al. 2004, Oliveira et al. 2012). Ancient DNA extraction has been successfully carried out on Late Bronze Age seeds from Sa Osa [Chapter 4] and some Medieval seeds form Sassari [Chapter 5].

Thesis structure

This research is divided in two main sections and five chapters:

[SECTION 1] ARCHAEOBOTANY

Aims:

- Determining richness, variety and frequency of plant macro-remains from different archaeological sites,
- Providing data on the subsistence system of inhabitants of the investigated sites,
- Evaluating the range of domestic species used and understanding the role of agriculture and its degree of development,
- Exploring the role of wild plants within the economy of the sites,
- Investigating agrarian practices and crop processing,
- Reconstructing the past landscape,
- Comparing the dataset of plant remains with other Mediterranean areas,
- Improving the archaeobotanical knowledge in Sardinia.

This section is composed of two chapters:
[CHAPTER 1] describes the research carried out on waterlogged plant remains from a Late Bronze Age well found near Cabras (1310-1120 cal BC), in an area named Sa Osa (Central-West Sardinia). Despite the limited set of samples, the combination of macro-remain and pollen analyses in this unique context provided important information for exploring not only local subsistence systems but also human impact on the surrounding environment. Grapes and figs were the most abundant remains together with other fruits and edible vascular plants. Remains of melon and mulberry were identified being the earliest remains of these two species for Western Europe. Their presence may confirm early trade between Nuragic people and the eastern Mediterranean and/or African coasts. Melon seeds have been used for further molecular and morphological researches [Chapter 4]. Intentional selection of wood suggests practices associated to the collection of raw material for specific technological demands. The presence of intestinal parasites in the pollen record points to the possible use of the well as a cesspit, at least in its later use, and this is one of the earliest evidence of this type of structures in prehistoric contexts.
[CHAPTER 2] concerns the plant remains contained in some Phoenician-Punic amphorae and depositional contexts found at the bottom of Santa Giusta lagoon (Central-West Sardinia). These amphorae have been related to two deposition phases, one dated to the $6^{\text {th }}-5^{\text {th }}$ century BC and a second dated to the $3^{\text {rd }}-2^{\text {nd }}$ century BC. Many of them contained also ovine/caprine bones with butchery marks associated with grapes and other fruits, as plums, sloes, and junipers, which may have played a role in meat preservation. Other fruits and nuts found in the same contexts, such as hazelnuts, walnuts, pine nuts, almonds and olives were probably related to food trade. The few remains of cucurbits such as watermelon and bottle gourd suggest contacts with Africa.

[SECTION 2] APPLIED PLANT BIOLOGY

Aims:

- Implementing statistical classifiers able to recognize and discriminate seeds belonging to different varieties,
- Comparing the groups established using molecular analyses with those achieved by seed morphology,
- Increasing the knowledge about the variation of the current extant melon seed collections,
- Recording local varieties partially, or not longer cultivated due to traditional agriculture abandon,
- Analyzing the variability of morpho-colourimetric seed features,
- Extracting and sequencing ancient DNA of archaeological seeds,
- Matching archaeological seeds molecular and morphological characters to their modern relatives,
- Studying origin and diffusion of ancient cultivation.

This section is composed of three chapters:
[Chapter 3] describes the phenotypic characterization achieved by seed features compared with molecular analysis on modern Cucumis melo genotypes. A set of 124 accessions of Cucumis melo has been selected for molecular and morpho-colourimetric analyses plus an additional selection of accessions of Cucumis sativus, Citrullus lanatus and Citrullus colocynthis used to highlight seed morphology distances among genus and species. A strong correlation has been found between the two characters. Both molecular and seed morphocolourimetrical analyses confirm the existence of two melon subspecies while an intermediate group has also found. A non-random allelic distribution in SNPs located in specific genomic regions suggests that some of these regions may account for a part of the observed variation in seed size. Six major groups of varieties can be discriminated on the basis on seed traits.
[ChAPTER 4] describes the comparison of molecular and morphological seed features of Late Bronze Age melon seeds found in Sa Osa [Chapter 1] with a set of 172 accessions of melon landraces, including 10 traditional Sardinian cultivars. Both molecular and morphological analyses confirmed that these archaeological seeds did not belong to a wild species, but to a cultivated melon, likely to be an intermediate form between the two melon subspecies. Reasonably, this primitive melon could be attributed to an ancestral non-sweet or low sugar form of chate, flexuosus or ameri varieties. The first two show cucumber-like genotypes that played a central role in early melon selection while ameri is thought to be the ancestors of the modern sweet varieties, such as inodorus and cantalupensis. A possible connection with African and Central Asian accessions has been roughed out.
[CHAPTER 5] describes de comparison of molecular and morphological seed features of Medieval melon and watermelon seeds discovered in a well in via Satta, in the centre of Sassari. Molecular characterization has been carried out on the same reference set described in [Chapter 4] while the morphological comparison of watermelon seeds was based on 36 Citrullus lanatus and C. colocynthis European, African, Asian and Sardinian landraces. Molecular and morphological analyses matched with both sweet and
non-sweet melon accessions. These varieties, nowadays mainly diffuse in South Mediterranean, North Africa and Central Asia, played an important role on first melon selection. Data suggests that several types of melon were already cultivated in Medieval Age while the present sugary melons became widely diffuse only in later phases, as pointed out in previous research. Morphological characterization of watermelon seeds evidenced a close relation with Sardinian, Spanish and Asian landraces, suggesting that watermelons were already close to modern varieties. Since at the time of findings Aragonian kingdom was commercial and political related with Sardinia and that the same territories were earlier dominated by Arabs, these results agree with the idea that these crops were introduces in Spain from Central Asia through Arab domination

References

Acquaro E, Caramiello R, Verga F, Ortu E, Arobba D, 2001. Analyses palynologiques et anthracologiques du site phénicienpunique de Tharros (Sardaigne). Revue d'Archèometrie 25:45-51.
Bakels C. 2002. Plant remains from Sardinia, Italy, with notes on barley and grape. Vegetation History and Archaeobotany, 11:3-8
Becca G, Deiana A, Filigheddu R. 2013. I legni del pozzo. In: Rovina D, Fiori M, eds. Sassari. Archeologia urbana. Ghezzano: Felici Editore, 93-95.
Birks HJB. 2012. Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. International Journal of Biodiversity Science 8:292-304.
Bacchetta G, Escobar García P, Grillo O, Mascia F, Venora G. 2011a. Seed image analysis provides evidence of taxonomical differentiation within the Lavatera triloba aggregate (Malvaceae). Flora 206:468-472.
Bacchetta G, Fenu G, Grillo O, Mattana E, Venora G. 2011b. Identification of Sardinian species of Astragalus section melanocercis (Fabaceae) by seed image analysis. Annales Botanici Fennici 48:449-454.
Bacchetta G, Grillo O, Mattana E, Venora G. 2008. Morpho-colorimetric characterization by image analysis to identify diaspores of wild plant species. Flora 203:669-682.
Bosi G, Bandini Mazzanti M. 2013. Informazioni etnobotaniche dai reperti carpologici del pozzo: risultati da un saggio preliminare. In: Rovina D, Fiori M, eds. Sassari. Archeologia urbana. Ghezzano: Felici Editore 86-92.
Bouby L, Figueiral I, Bouchette A, Rovira N, Ivorra S, Lacombe T, Pastor T, Picq S, Marinval P, Terral J. 2013. Bioarchaeological insights into the process of domestication of grapevine (Vitis vinifera L.) during Roman times in Southern France. PLoS ONE 8(5):e63195.
Castaldi E. 1987. Grotta del Guano di Oliena. Relazione preliminare dello scavo 1978. Atti della XXVI Riunione Scientifica il Neolitico in Italia. Firenze: Protostoria IIdPe, 831-843.
Celant A, 1998. Indagini archeobotaniche condotte su sedimenti archeologici. Appendice F. In: Melis MG ed. La tomba n. 3 di Iloi. Antichità sarde. Studi e ricerche 4(I-V), 160-162.
Celant A. 2000. Analisi dei macroresti vegetali della domus de janas 2. Appendice B. In: Depalmas A, ed. La domus de janas n. 2 di Iloi. Antichità sarde. Studi e ricerche 4(I-V), 165-169.
Celant A. 2010. Analisi dei macroresti vegetali provenienti dalla domus de janas IV della necropoli di S'Elighe Entosu (Usini, Sassari). In: Melis MG, ed. Usini. Ricostruire il passato. Una ricerca internazionale a S'Elighe Entosu. Sassari: Delfino Editore, 161-164.
Costantini L. 2002. Italia centro-meridionale. In: Forni G, Marcone A, ed. Storia dell'Agricoltura Italiana, vol. 1 L'età antica, 1. Preistoria, Aspetti bioarcheologici. Firenze: Accademia dei Georgofili, 221-234.
Costantini L, Stancanelli M. 1994. La preistoria agricola dell'Italia centro-meridionale: il contributo delle indagini archeobotaniche. Origini 18:149-244.
Di Rita F, Melis RT. 2013. The cultural landscape near the ancient city of Tharros (central West Sardinia): vegetation changes and human impact. Journal of Archaeological Science 40:4271-4282.
Elbaum R, Melamed-Bessudo C, Boaretto E, Galili E, Lev-Yadun S, Levy AA, Weiner S. 2005. Ancient olive DNA in pits, preservation, amplification and sequence analysis. Journal of Archaeological Sciences 33:77-88.
Fuller DQ. 2007. Contrasting Patterns in Crop Domestication and Domestication Rates: Recent Archaeobotanical Insights from the Old World. Annals of Botany 100: 903-924.
Grillo O, Mattana E, Venora G, Bacchetta G. 2010. Statistical seed classifiers of 10 plant families representative of the Mediterranean vascular flora. Seed Science and Technology 38:455-476.
Gyulai G, Waters L, Dane F. 2008. Ancient cucurbit DNA-unlocking domestication events. Budapest: Fublbright Year Book.
Jacomet S, Brombacher C. 2005. Reconstructing intra-site patterns in Neolithic lakeshore settlements: the state of archaeobotanical research and future prospects. In: Della Casa P, Trachsel M, Wetland economies and societies. Proceedings of the international conference Zurich, 10-13 March 2004. Collectio Archaeologica 3:69-94.
Janick J, Paris HS, Parrish DC. 2007. The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Annals of Botany 100:1441-1457.
Liu K, Muse SV. 2005. Powermarker: integrated analysis environment for genetic marker data. Bioinformatics 21:21282129.

López P, López Sáez JA, Macías R. 2005 Macías Estudio de la paleovegetación de algunos yacimientos de la Edad del Bronce en el SE de Cerdeña. Anejos de Complutum 10:91-105.
Manen JF, Bouby L, Dalnoki O, Marinval P, Turgay M, Schlumbaum A. 2003. Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. Journal Archaeological

Science 30:721-729.
Miola A, Da Ruos C, Sostizzo I, Uliana M. 2009. I resti archeobotanici ed entomologici. In: Bonetto J, Falezza G, Ghiotto A, Nora R, eds. Il foro romano. Storia di un'area urbana dall'età fenicia alla tarda Antichità. I materiali. Padova: Italgraf, 909-919.
Mercuri AM. 2008. Plant exploitation and ethnopalynological evidence from the Wadi Teshuinat (Tadrart Acacus, Libyan Sahara). Journal of Archaeological Science 35:1619-1642.
Mercuri AM, Allevato E, Arobba D, et al. 2014. Pollen and macroremains from Holocene archaeological sites: A dataset for the understanding of the bio-cultural diversity of the Italian landscape. Review of Palaeobotany and Palynology doi: 10.1016/j.revpalbo.2014.05.010.

Mercuri AM, Sadori L. 2012. Climate changes and human settlements since the Bronze age period in central Italy. Rendiconti Online Società Geologica Italiana 18:26-28.
Montanari C. 2003. Analisi antracologiche. In: Giannattasio BM, ed. Nora, Area C, scavi 1996-1999. Genova: Brigati, 305310.

Oliveira HR, Civáñ P, Morales J, Rodríguez-Rodríguez A, Lister DL, Jones MK. 2012. Ancient DNA in archaeological wheat grains: preservation conditions and the study of pre-Hispanic agriculture on the island of Gran Canaria (Spain). Journal of Archaeological Science 39:828-835.
Orrù M, Grillo O, Venora G, Bacchetta G. 2013a. Computer vision as a method complementary to molecular analysis: Grapevine cultivar seeds case study. Comptes Rendus Biologies 335:602-615.
Orrù M, Grillo O, Lovicu G, Venora G, Bacchetta G. 2013b. Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Vegetation History and Archaeobotany 22:231-242.
Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M. 2004. Genetic analyses from ancient DNA. Annual Review of Genetics 38:645-679.
Palmer SA, Smith O, Allaby RG. 2012. The blossoming of plant archaeogenetics. Annals of Anatomy 194:146-156.
Paris HS, Amar Z, Lev E. 2012. Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Annals of Botany 110:23-33.
Peña-Chocarro. 1994. Los modelos etnográficos en Arqueobotánica: los cereales vestidos. In: Barraca de Ramos P, ed. I Jornadas Internacionales sobre Tecnología Agraria Tradicional. Madrid: Museo Nacional del Pueblo Español, 21-29.
Peña-Chocarro L. 1999. Prehistoric agriculture in Southern Spain: the application of ethnographic models. BAR International Series 818. Oxford: Archaeo Press.
Peña-Chocarro L, Zapata L. 2003. Post-harvesting processing of hulled wheats. An ethnoarchaeological approach. In: Anderson PC, Cummings LS, Schippers TK, Simonel B, eds. Le traitement des récoltes: un regard sur la diversité, du Néolithique au présent Actes des XXIIIe rencontres internationales d'archéologie et d'histoire d'Antibes. Antibes: APDCA, 99-113.
Peña-Chocarro L, Zapata L, González Urquijo JE, Ibáñez Estévez JJ. 2000. Agricultura, alimentación y uso del combustible: aplicación de modelos etnográficos en arqueobotánica. Saguntum Extra 3:403-420.
Peña-Chocarro L. 2007. Il ruolo per l'archeobotanica degli studi etnografici sulla lavorazione dei cereali. L'informatore Botanico 38:103-105.
Pérez Jordà G, Morales Pérez J, Marlasca Martín R, Gómez Bellard C, van Dommelen P. 2010. La alimentación en una granja púnica de Cerdeña. In: Mata Parreño C, Pérez Jordà G, Vives-Ferrándiz Sánchez J, eds. De la Cuina a la Taula. IV Reunió d'Economia en el Primer Millenni a.C. Series: Saguntum Extra (9). Valencia: Departament de Prehistòria i Arqueología Universitat de València, 295-302.
Pinna S, Grillo O, Mattana E, Cañadas E, Bacchetta G. 2014. Inter- and intraspecific morphometric variability in Juniperus L. seeds (Cupressaceae). Systematics and Biodiversity 12:211-223.
Pittau P, Lugliè C, Buosi C, Sanna I, Del Rio M. 2012. Palynological interpretation of the Early Neolithic coastal open-air site at Sa Punta (central-western Sardinia, Italy). Journal of Archaeological Sciences 39:1260-1270.
Pollmann B, Jacomet S, Schlumbaum A. 2005. Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium, Switzerland. Journal Archaeological Science 32:1471-1480.
Rivera D, Miralles B, Obón C, Carreño E, Palazón JA. 2007. Multivariate analysis of Vitis subgenus Vitis seed morphology. Vitis 46:158-167.
Sabato D, Masi A, Ucchesu M, Peña-Chocarro L, Usai A, Giachi G, Capretti C, Bacchetta G. 2015. Archaeobotanical analysis of a Bronze Age well from Sardinia: a wealth of knowledge. Plant Biosystems. doi: 10.1080/11263504.2014.998313.

Schlumbaum A, Neuhaus JM, Jacomet S. 1998. Coexistence of tetraploid and hexaploid naked wheat in a Neolithic lake dwelling of Central Europe. Evidence from morphology and ancient DNA. Journal of Archaeological Science 25:1111-1118.
Schlumbaum A, Tensen M, Jaenicke-Després V. 2008. Ancient plant DNA in archaeobotany. Vegetation History and Archaeobotany 17:233-244.
Scotland RW, Olmstead RG, Bennett JR. 2003. Phylogeny Reconstruction: The Role of Morphology. Systematic Biology 52:539-548.
Smykalova I, Grillo O, Bjelkova M, Hybl M, Venora G. 2011. Morpho-colorimetric traits of Pisum seeds measured by an image analysis system. Seed Science and Technology 39:612-626.
Smykalova I, Grillo O, Bjelkova M, Pavelek M, Venora G. 2013. Phenotypic evaluation of flax seeds by image analysis. Industrial Crops and Products 47:232-238.
Speirs AK, McConnachie G, Lowe AJ. 2009. Chloroplast DNA from 16th Century Waterlogged Oak in Marine Environment: Initial Steps in Sourcing the Mary Rose Timbers. In: Haslam M, ed. Archaeological Science Under a Aicroscope: Studies in Residue and Ancient DNA Analysis in Honour of Thomas H. Loy. Camberra: ANU E Press, 175-189.
Stummer A. 1911. Zur Urgeschichte der Rebe und des Weinbaues. Mitteilungen der Anthropologischen Gesellschaft in Wien 41:283-296.

Tanda G, Basciu V, Paglietti G, Peña-Chocarro L, Ucchesu M, Zedda M. 2012. Grotta di Monte Meana (Santadi, CarboniaIglesias), campagne di scavo 2008-2009. Notizia preliminare. Atti 44° Riunione Scientifica IIPP, Cagliari, Barumini, Sassari. Firenze, 635-642.
Ucchesu M. 2014. I resti vegetali del villaggio di Canelles (Zetadomus) - Selargius (Ca) Relazione preliminare. Quaderni della Soprintendenza Archeologica di Cagliari e Oristano 25.
Ucchesu M, Peña-Chocarro L, Sabato D, Tanda G. 2014a. Bronze Age substistence in Sardinia, Italy: cultivated plants and wild resources. Vegetation History and Archaeobotany, doi: 10.1007/s00334-014-0470-2.
Ucchesu M, Orrù M, Grillo O, Venora G, Usai A, Serreli PF, Bacchetta G. 2014b. Earliest evidence of a primitive cultivar of Vitis vinifera L. during the Bronze Age in Sardinia (Italy). Vegetation History and Archaeobotany, doi: 10.1007/s00334-014-0512-9.
van der Veen M. 2011. Consumption, Trade and Innovation: Exploring the Botanical Remains from the Roman and Islamic Ports at Quseir al-Qadim, Egypt. Frankfurt: Africa Magna Verlag.
van Dommelen P, De Bruijn N, Loney H, Puig Moragón R, Roppa A. 2008a. Ceramica punica dal sito rurale di Truncu 'e Molas (Terralba, Sardegna). In: González J, Ruggeri P, Vismara C, Zucca R, eds. L’Africa romana. Le ricchezze dell'Africa. Risorse, produzioni, scambi. Atti del XVII convegno di studio, Sevilla. Roma, 1617-1626.
van Dommelen P, Finocchi S. 2008b. Sardinia: Diverging Landscapes. In: van Dommelen P, Gómez Bellard C, eds. Rural Landscapes of the Punic World. London: Equinox, 115-140.
Venora G, Grillo O, Saccone R. 2009a. Durum wheat storage centers of Sicily: evaluation of vitreous, starchy and shrunken kernels by image analysis system. Journal of Cereal Science 49:429-440.
Venora G, Grillo O, Ravalli C, Cremonini R. 2009b. Identification of Italian landraces of beans (Phaseolus vulgaris L.) using an image analysis system. Scientia Horticulturae 121:410-418.
Venora G, Saccone R, Grillo O, Orlando A. 2009c. Stima della resa in semola mediante tecniche di analisi d'immagine. La Tecnica Molitoria 60:399-409.
Zohary D, Hopf M, Weiss E. 2012. Domestication of Plants in the Old World. The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley. Oxford: Oxford University press.

CHAPTER 1

ARCHAEOBOTANICAL ANALYSIS OF A BRONZE Age well from Sa Osa (Cabras), Sardinia: a WEALTH OF KNOWLEDGE

Archaeobotanical analysis of a Bronze Age well from Sa Osa (Cabras), Sardinia: a wealth of Knowledge

Diego Sabato ${ }^{1}$, Alessia Masi ${ }^{2}$, Caterina Pepe ${ }^{2}$, Mariano Ucchesu ${ }^{1}$, Leonor Peña-Chocarro ${ }^{3,4}$, Alessandro Usai ${ }^{5}$, Gianna $^{\text {Giachi }}{ }^{6}$, Chiara Capretti 7, Gianluigi Bacchetta ${ }^{1}$
${ }^{1}$ Centro Conservazione Biodiversità (CCB), Dip. di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Italy
${ }^{2}$ Laboratorio di palinologia e paleobotanica, Dip. di Biologia Ambientale, Università di Roma La Sapienza, Italy
${ }^{3}$ Escuela Española de Historia y Arqueología en Roma-CSIC, Rome, Italy
${ }^{4}$ GI Arqueobiología, Instituto de Historia, CCHS-CSIC, Madrid, Spain
${ }^{5}$ Soprintendenza per i Beni Archeologici per le province di Cagliari e Oristano, Cagliari, Italy
${ }^{6}$ Soprintendenza per i Beni Archeologici della Toscana, Laboratorio di analisi, Firenze, Italy
${ }^{7}$ Istituto per la Valorizzazione del Legno e delle Specie Arboree, IVALSA-CNR, Sesto Fiorentino, Italy

Abstract

In 2008, during a rescue excavation in the Sa Osa area, near the town of Cabras (Sardinia, Italy), a Nuragic settlement was discovered. The excavation revealed numerous pits, wells and structures dug by the local communities between the Early Copper Age and the Iron Age. These structures were interpreted as elements of a settlement mainly involved in primary production. The most remarkable structure is Well-N, radiocarbon and archaeologically dated to the Late Bronze Age, which has yielded large amounts of waterlogged plant remains, animal and fish bones and pottery. Despite the limited set of samples, the combination of macro-remain and pollen analyses in this unique context provides important information useful for exploring not only local subsistence systems but also human impact on the surrounding environment.

Grapes and figs are the most abundant remains together with other fruits and edible vascular plants. Remains of melon and mulberry were identified being the earliest remains of these two species for Western Europe. Their presence may confirm early trade between Nuragic people and the eastern Mediterranean and/or African coasts. Intentional selection of wood suggests practices associated to the collection of raw material for specific technological demands.

The presence of intestinal parasites in the pollen record points to the possible use of the well as a cesspit, at least in its later use, and this is one of the earliest evidence of this type of structures in prehistoric contexts.

Key words: archaeobotany, waterlogged macro-remains, Bronze Age, pollen, intestinal parasites, Sardinia

1.1 Introduction

1.1.1 General background

Sardinia is located in the middle of the Mediterranean Basin and because of its strategic position was subjected to the influence of different cultures since prehistoric times. The earliest signs of human presence come from the Mesolithic ($9^{\text {th }}-8^{\text {th }}$ millennium cal. BC), whereas a stable occupation is documented only during the Early Neolithic ($6^{\text {th }}$ millennium cal. BC) (Lugliè 2009). The Nuragic civilization started during the Middle Bronze Age when human ranked communities began to mark their territories by means of monumental tombs, called Tombe dei giganti, and cyclopean towers, Nuraghi. These buildings were elements of networks for territorial control and had probably multiple functions, e.g. fortified dwellings, animal shelters, storerooms for food, raw materials and artefacts (Ugas 2006). Recent research into settlement patterns, funerary contexts, cult places, pottery and metal production, contacts and exchanges, has allowed increasing our knowledge on the Bronze Age (ca. $2000-930 \mathrm{BC}$) in Sardinia (Depalmas 2009). At the end of this period, the island played a significant role as part of the various interconnected trade routes between the Western and Eastern Mediterranean (Lo Schiavo 2003, Bernardini and Perra 2012). Nuragic societies developed commercial relationships, mainly with Cyprus which are documented by several copper ox-hide ingots and tools for metal working found in various contexts (Begemann et al. 2001, Lo Schiavo et al. 2009). During the Iron Age, Sardinia became part of the Phoenician commercial network, and later on, Punic colonies were established along its south-western coast (van Dommelen and Finocchi 2008).

Archaebotanical data in Sardinia are still scarce. Fruits, cereals and legumes were cultivated at least since the Middle and Late Neolithic, $5^{\text {th }}-4^{\text {th }}$ millennium BC (Sadori et al. 1989, Trump 1990, Mercuri et al. 2014). Research based on several Bronze Age sites throughout the island points to a quite developed agricultural system in the Nuragic communities (Bakels 2002, Ucchesu et al. 2014a, Sabato et al. 2015).

This paper focuses on the archaeobotanical remains (seeds, fruits, pollen, wood and charcoal) recovered from Well-N, a waterlogged context of the Nuragic settlement of Sa Osa.

1.1.2 The site

Sa Osa ($39^{\circ} 54^{\prime} 51^{\prime \prime N} 8^{\circ} 32^{\prime} 32^{\prime \prime} \mathrm{E}, 6 \mathrm{~m}$ a.s.l.) is located along the Central West coast of Sardinia (Fig.1a), on the alluvial plain of the Tirso river and it is limited by two ponds, Cabras to the North and Santa Giusta to the South.

The climate of this area is typically Mediterranean pluviseasonal oceanic with thermotypes ranging between the upper thermo- and the lower-mesomediterranean and ombrotypes between the upper dry and the lower subhumid (Bacchetta et al. 2009).

According to the existing ecosystems, the vegetation of the Sinis peninsula and surrounding areas can be categorized into three main types: rocky and dunal coast, wetlands and cultivated areas. The rocky coasts are dominated by halorupicolous and scrubland vegetation of the Crithmo-

Limonietea, Cisto-Lavanduletea and Quercetea ilicis classes, while the coastal sand dunes by psammophilous plant assemblages of the Cakiletea maritimae, Ammophiletea and HelichrysoCrucianelletea classes. The amphibious vegetation of the nearby lagoons is characterised by marshes dominated by helophytic, hydrophytic and salt-water plant communities of the classes PhragmitoMagnocaricetea, Ruppietea, Juncetea maritimi, Saginetea maritimae, Sarcocornietea fruticosae, Thero-Salicornietea. Most of the lowland areas are currently managed for agriculture, with rural environments dominated by cereals, vineyards and olive groves (Fenu and Bacchetta 2008).

Rescue excavations carried out during 2008 and 2009 (Fig.1b), revealed a Nuragic settlement composed of numerous wells and pits related to living spaces. These structures were dug by local communities between the Early Copper and the Iron Age, with emphasis during the Middle and Late Bronze Age (Usai 2011). During its occupation, the settlement was affected by water erosion and sedimentation due to river flooding events (Melis and Sechi 2011). The southern sector of Sa Osa revealed many small and medium-sized oblong pits and cylindrical wells filled in with various types of sediments. These cavities probably had different functions (e.g. dwelling, quarry, water supply) and, at some point, some were used either as refuse pits or for food storage (Usai 2011). Archaeobotanical research on two of these wells was carried out and plant remains, charred cereals (hulled barley and free-threshing wheats) and legumes, and few waterlogged macro-remains, mostly fig and grape remains, were recovered (Ucchesu et al. 2014a). The most remarkable structure was the so-called Well-N (Fig.1c) dated to the Late Bronze Age. Well-N fill has been considered as a single Stratigraphical Unit (SU171) probably formed during a short period of time (Usai 2011). The wide range of pottery retrieved shows the typical features of Central West Sardinian productions from the end of the Late Bronze Age (Serreli 2011). A crucible probably used for small scale metallurgy was also found. The presence of a symbolic miniature of a jar and several rare cups, interpreted as lamps, suggests a possible ritual significance for this structure (Usai 2011).

A huge amount of organic material has been preserved in waterlogged conditions (seeds, fruits, wood, charcoal, animal and fish bones and insects) (Sanna 2011). Radiocarbon dating of two grape pips collected at depth 1.40 and 2.15 meters has provided two dates, 1286-1115 2σ cal. BC and 1276-1088 2σ cal. BC (OxA-25106, OxA-25107) (Ucchesu et al. 2014a). One new dating on Cucumis melo seeds is reported in the Results section (Sabato et al. 2015).

1.2 Materials and methods

1.2.1 Macro-remains

Well-N was dug in sandstone and alluvial deposits. It has a cylindrical shape, slightly tapered towards the bottom measuring 1 m in diameter. The structure emerged 2 m above sea level. Sandy brownish sediments characterized the first metre while at 1.40 metres (the approximated level of the water table), the sediment became darker. Below this point, soil became increasingly fine and muddy due to the presence of water. The excavation stopped at a depth of ca. 4.20 meters for security reasons (Serreli 2011).

Figure 1. a) Location of the Nuragic site of Sa Osa (Cabras, Sardinia); b) view of the site during the excavation; c) Well-N.

Soil samples from Well-N were taken at different depths between 2.30 and 4.20 metres, for a total of approximately $1.5 \mathrm{~m}^{3}$. Three samples were sieved in-situ, during the excavation, using 4.0, 2.0 and 0.5 mm meshes, but the total volume of soil processed was not recorded. For the remaining samples different volumes of soil were taken and sub-sampled afterwards: 15 of 30 litres from 2.30/2.60 meters; 3 of 60 litres from 3.80/4.00 meters; 3 of 145 litres from 4.00/4.10 m and 5 of 20 litres from 4.10/4.20. Each subsample, randomly extracted from the total, was then sieved by washover using a column of sieves between 4.0 and 0.5 mm . A litre of soil was further sieved with a 0.25 mm mesh. This procedure follows protocols already developed for waterlogged contexts (Jacomet 2013). For each layer, a total of five litres was kept for future analyses. Identifications of seeds/fruits have been carried out using a reference collection and various specialized atlases (Jacomet 2006, Bojňanský and Fargašová 2007, Cappers et al. 2012). After identification, waterlogged remains were kept in distilled water and stored at $5^{\circ} \mathrm{C}$ in the Sardinian Germplasm Bank (BG-SAR).

The larger wood fragments have been identified by the Soprintendenza per i Beni Archeologici della Toscana and the Istituto per la Valorizzazione del Legno e delle Specie Arboree (IVALSA, CNR). The identification was performed following the Italian standard guidelines (UNI.11118:2004) using a transmitted light microscope and comparing the diagnostic characteristics of wood with the reference collection of IVALSA and atlas (Schweingruber 1990). Some of these
pieces revealed woodworking. Small fragments of charcoal and wood were dried and studied at the Departamento de Historia y Geografía, University of Valencia (Spain) using a stereomicroscope and DIC (Differential Interference Contrast) microscopy.

1.2.2 Pollen

Due to the reduced set of pollen samples, palynology was performed to support the study of plant macroremains. The four samples collected were chemically processed following Faegri and Iversen (1989). In order to estimate pollen and non-pollen palynomorphs (NPPs) content, a known amount of Lycopodium spores (Stockmarr 1971) was added to each weighted sample. Pollen grain identification was based on atlases (Reille 1992-1998) and on the reference collection from La Sapienza University. The cereal-type pollen has been divided into Hordeum group and Avena/Triticum group according to Moore et al. (1991) while oak pollen taxa have been distinguished on the basis of the features reported by Smit (1973). NPPs were counted and identified according to van Geel et al. (1986). Their percentages have been calculated using a sum including NPPs and pollen of terrestrial plants. Routine pollen analysis was carried out using a transmitted light microscope.

1.3 Results

1.3.1 Seeds and fruits

Most of the seeds and fruits from Well-N were found in excellent state of preservation due to waterlogging. In addition, some charred material was also retrieved. A total of 35 taxa were identified (Tab.1, Fig.2) including fruits and berries (grape, fig, myrtle, sloe, olive, melon, mulberry, blackberry), wild plants and charred cereals and legumes.

The number of Vitis vinifera pips and Ficus carica achenes is very large representing more than 90% of the total number of remains. For this reason, the number of these two taxa has been estimated according to the corresponding volume of thousand items of each taxon.

The most remarkable and unexpected find was the identification of ca. 50 seeds of Cucumis melo which has been never recorded in this area of the Mediterranean basin during this period. Some fragments recovered at a depth of 3.20 meters have been radiocarbondated by AMS (Beta345402) providing dates between 3260 to 3070 cal BP ($1310-1120 \mathrm{cal} \mathrm{BC}$) for 2σ (95% probability) and $3210-$ 3140 and $3130-3110$ and $3090-3080 \mathrm{cal} \mathrm{BP}$ for $1 \sigma(68 \%$ probability $)$. One of the three Morus sp. endocarps retrieved from the well has been found within the same layer.

Other taxa that may have been used for human consumption are Prunus spinosa (17 and 10 fragments), Pistacia lentiscus (141), Juniperus oxycedrus s.l. (5), Myrtus communis (247), Linum cf. usitatissimum (17), Rubus sp. (6) and Olea europaea (2).

The few sporadic charred grains found belong to cereals and legumes: two Triticum aestivum/durum, a single Hordeum vulgare and two Vicia faba.

Among the wild plants, Fumaria sp. (49), several Ranunculus sp. (30) and Medicago sp. (24)
were the most abundant.

Figure 2. Some of the seeds and fruits from Well-N of Sa Osa: a) Triticum aestivum/durum (charred, two sides), b) Pistacia lentiscus, c) Juniperus oxycedrus s.1., d) Olea europaea, e) Prunus spinosa, f) Cucumis melo, g) Myrtus communis, h) Medicago cf. arabica, i) Medicago cf. littoralis, j) Vitis vinifera, k) Quercus sp., 1) Malva sp. (capsule and seed), m) Rubus sp., n) Linum cf. usitatissimum, o) Morus sp., p) Fumaria sp., q) Ranunculus cf. trilobus, r) Rumex sp., s) Silene sp., t) Ficus carica

Depth (m) Studied soil volume (l)		$\begin{gathered} 2.30 / 2.60 \\ 15 \\ \hline \end{gathered}$	$2.60 / 2.90$?	3.10/3.70 ?	$\begin{gathered} 3.70 / 3.80 \\ ? \\ \hline \end{gathered}$	$\begin{gathered} 3.80 / 4.00 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 4.00 / 4.10 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 4.10 / 4.20 \\ 5 \end{gathered}$	Total
Cereals and legumes									
Hordeum vulgare	C				1				1
Triticum aestivum/durum	C	1				1			2
Cereal fragments	C					1			1
Cereal rachis	W			1					1
Vicia faba	C				2				2
Economic plants									
* Ficus carica estim. ${ }^{\circ}$	W	3750000	187500	337500	37500	337500	300000	37500	4987500
* Vitis vinifera estim. n°	W	5000	600	5000	2000	1900	700	200	15400
*V. vinifera frag. est. n°	W	1080		840	240	840			3000
V. vinifera frag. real ${ }^{\circ}$	W		27	25			120	53	225
Vitis vinifera (petioles)	W	4		20	12	18	7	5	66
Cucumis melo	W	10	8	28	1				47
Juniperus oxycedrus s.l.	W			2	2	1			5
J. oxycedrus (cone frag.)	W					1			1
Linum cf. usitatissimum	W	12	1	2		1	1		17
Morus sp .	W	2		1					3
Myrtus communis	W	132		57	28	20	5	5	247
Olea europaea	W			1		1			2
Pistacia lentiscus	W	11	11	44	20	45	10		141
Prunus spinosa	W	10	3	2	1		1		17
Prunus spinosa (frag.)	W	10							10
Quercus sp.	W				1	1			2
Rubus sp.	W	1	4				1		6
Wild plants									
Ajuga sp.	W			1					1
Carex sp.	W			1				1	2
Chenopodium sp.	W			2					2
Daucus sp.	W	1	1				1	2	5
Fumaria sp.	W	13	4	13		13	3	3	49
Heliotropium sp.	W			2				1	3
Lamiaceae	W						1		1
Malva sp .	W			5					5
Medicago cf. arabica	W	4	4	2	1		1		12
Medicago cf. littoralis	W	1		3	3				7
Medicago sp.	W			5					5
Papaver sp. (capsule fr.)	W	1		1					2
Polygonaceae	W						2		2
Ranunculus cf. arvensis	W			2		2	1		5
Ranunculus cf. trilobus	W		2	5		3	4		14
Ranunculus cf. sardous	W		2	5		4			11
Ranunculus sp.	W			1					1
Rumex sp.	W			4		1	3		8
Silene sp.	W		1			1	1		3
Dicotyledon leaf frag.	W					1			1
Indeterminate	W	2		2			1		5
Total		3756294	188168	343576	39809	340353	300863	37770	5006833

$*$ according to: F. carica 1000 seeds $=0.8 \mathrm{ml} ;$. . vinifera 1000 seeds $=50.0 \mathrm{ml} ; V$. vinifera fragments $120=1.0 \mathrm{ml}$
$\mathrm{C}=$ charred; $\mathrm{W}=$ waterlogged
Table 1. List of seeds and fruits identified in Well-N. Volume (in ml) of Ficus caricafor each layer following the table order: $3000,150,270,30,270,240,30$. Volume (in ml) of Vitis vinifera pips and fragments for each layer following the table order: 250-9frag, 30, 250-7frag., 100-2frag, , 95-7frag, 35-1 frag, 10

1.3.2 Charcoal and wood

A total of 877 fragments of waterlogged wood and charcoal were analyzed (Tab.2). Results show the presence of twenty different taxa, equally distributed between charred/semi-charred (305 fragments) and non-charred wood (351, 209 bark and 22 cork fragments). Erica sp. is the most abundant, amounting for almost half of the total remains of both wood and charcoal. Despite their distorted anatomy, several fragments of charred knots are probably related to this taxon.

Juniperus sp . is the second most common taxon (30% of the total). Eighty-five twigs show common traits: relatively straight with an approximate length of 15 cm , and ca. $8-10 \mathrm{~mm}$ wide, corresponding to $5-10$ rings. In addition, 52 out of the 64 twigs show latewood at the last ring suggesting that most of them were cut at the end of summer or the beginning of autumn, although the last ring resulted not clearly visible in the remaining 21 pieces.

The twelve Olea sp. fragments, all found on depth $3.80 / 3.40 \mathrm{~m}$, probably belong to a single wood piece. They all have a cylindrical shape, show nearly the same diameter, and some pieces fit together. Other identified taxa are: Pinus cf. halepensis (belonging to the typology of Pinus pinea/pinaster), Rosaceae Maloideae (typology of Crataegus/Sorbus) and Prunoideae (probably Prunus spinosa). Identification to species level cannot be often achieved on the basis of wood anatomy, however Pistacia could be probably related to P. lentiscus since nowadays it is almost the only Pistacia distributed in the island while P. terebinthus is limited to the Supramonte area (centraleastern Sardinia). The same applies to Alnus cf. glutinosa and Ficus cf. carica; common alder is the only Alnus growing in Sardinia while other species of Ficus have been introduced to the island only in recent times. Despite the difficulties to distinguish between small fragments of Ostrya and Carpinus, remains identified as Carpinus/Ostrya can be reasonably attributed to the genus Ostrya,.

1.3.3 Pollen

The sample $4.10 / 4.20 \mathrm{~m}$ has been excluded due to the extremely low pollen content. The total terrestrial pollen count in the other three samples analyzed ranges from 127 to 277 grains. Pollen preservation is quite good and concentration ranges from 1,786 to 32,884 pollen grains $/ \mathrm{g}$. A total of thirty-seven taxa has been identified (Fig.3). Pollen from trees and shrubs is not abundant and it mainly belongs to the Mediterranean sclerophyllous vegetation (Juniperus, Ericaceae, Olea, Cistus, Pistacia, Phillyrea, Quercus cf. suber and Q. ilex type) including few deciduous elements (Vitis, Alnus, deciduous oaks of the Quercus gr. pubescens, Ostrya/Carpinus orientalis).

The majority of the identified taxa belong to herbaceous plants. Brassicaceae, present in all samples with percentages ranging from $5.4 \%(3.80 / 4.00 \mathrm{~m})$ to $40.9 \%(4.00 / 4.10 \mathrm{~m})$, is the most abundant taxon. All Brassicaceae pollen grains can be included in the same morphotype with a diameter of ca. $20 \mu \mathrm{~m}$ showing high similarities to Nasturtium officinale and Camelina sativa pollen grains, both present in Sardinia, although C. sativa is considered as invasive exotic plant in the island (Podda et al. 2012). Since pollen grains have been found in clumps (and so counted as single units), it is likely that they derive from pieces of anther either preserved in faecal remains or transported by insects (Dimbleby 1985, Mercuri 2008, Bosi et al. 2011).

Depth (m)		2.30/2.60	2.60/2.90	3.10/3.70	3.70/3.80	3.80/4.00	4.00/4.10	4.10/4.20	Total
Studied soil volume (1)		15	?	?	?	3	3	5	
Alnus cf. glutinosa	W		1	4	3				8
Alnus/Corylus	W			4					4
Asteraceae	C							1	1
Carpinus/Ostrya sp.	C			2					2
Erica sp.	W		2	22	23	1	4	13	65
Erica sp.	C	44	5	55	20	13	21	5	163
Erica sp.	S				2	1			3
cf. Erica sp. (knurls)	C	22	2	11	13	6		12	66
Ficus cf. carica	W			13	3	1		1	18
Ficus cf. carica	C		1	1	3			1	6
Juniperus sp.	W	11	18	21	9	13	3	14	89
Juniperus sp. (twings)	W		1	65		1		18	85
Juniperus sp.	C			6	1	1		4	12
Olea sp.	W					12			12
Pinus cf. halepensis	W	14	4	4	2			17	41
Pinus sp.	W	2		1					3
Pistacia sp.	C	1		1					2
Prunus sp.	C			2	2	13		4	21
Quercus gr. pubescens	C			3		3			6
Quercus suber (cork)	W	18	3	1					22
Rhamnus/Phillyrea	C			2			1	1	4
Rosaceae maloideae	C			3		1			4
Tamarix sp.	C			2					2
Thymelaeaceae	C				1				1
Dicotyledon Agiosperm	W				1			4	5
Dicotyledon Agiosperm	C	4		5					9
Monocotyledon Agiosp.	C	1		1		1			3
Bark	W			112	22	47		28	209
Indeterminate	W			18	3	2		4	27
Total		117	37	359	108	116	29	127	877

$\mathrm{C}=$ charred; $\mathrm{W}=$ waterlogged; $\mathrm{S}=$ semi-charred;
Table 2. List of wood and charcoal identified in Well-N.

Figure 3. Results of pollen analysis from Well-N, percentage values and total pollen concentration are shown.

Poaceae are also abundant, peaking at 27% at $3.80 / 4.00 \mathrm{~m}$ while Chenopodiaceae range from 9.4% at $4.00 / 4.10 \mathrm{~m}$ to 16.2% at $3.80 / 4.00 \mathrm{~m}$. Many herbaceous taxa probably belong to cultivated and ruderal plants: Hordeum group, Avena/Triticum group, Fabaceae, Plantago, Rumex, Cichorioideae. Both the Hordeum and the Avena/Triticum groups include cultivated and wild forms, but the high percentages of these two pollen types suggest that they come from cereal crops.

Pollen of Vitis sp. has been retrieved in only one sample at the depth of 3.80/4.00 m (3.6\%). The identified NPPs (Non Pollen Palynomorphs) are eggs of intestinal parasites belonging to Ascaris (only one) and Trichuris cf. trichiura which show high percentages (44.3% at $3.10 / 3.70 \mathrm{~m}$) in all samples.

1.4 Discussion

Although common in large parts of Europe, waterlogged plant remains are unusual in the Mediterranean area where plant preservation is generally by charring. Examples of early contexts with waterlogged plant remains include the Neolithic sites of La Draga, in northeastern Spain (Antolín and Buxó 2011) and La Marmotta (Rome) (Fugazzola Delpino et al. 1993). The well and cistern fills of the Iron Age villages of Tossal de les Bannes and Illeta dels Banyets (Valencia, Spain) (Pérez-Jordá 2013) show some affinity with the contexts of Sa Osa. There are, however, other examples from the Mediterranean such as the Middle Bronze Age pit from San Lorenzo a Greve (Florence) (Mariotti Lippi et al. 2010), the more recent Classical contexts from North Italy (Bosi et al. 2011, Rinaldi et al. 2013), the harbour of Irun (Basque Country) (Peña-Chocarro and Zapata 2005), Iesso (Catalonia) (Buxó and Piqué 2008), Ostia (Rome) (Pepe et al. 2013, Sadori et al. 2014) or Caesarea Maritima (Israel) (Ramsay 2010) and the medieval contexts of the Basque country (Peña-Chocarro et al. 2014) and North Italy (Bandini Mazzanti et al. 2005, Bosi et al. 2009).

Archaeological evidence suggests that fill from Well-N is related to a single Stratigraphic Unit (Serreli 2011, Usai 2011). The three radiocarbon dates carried out on grape and melon seeds, collected at different depths and analyzed in two independent laboratories, together with the evidence from the pottery, point to a Late Bronze Age deposit (Serreli 2011). The morphology of the grape pips from all layers is homogeneous (Orrù et al. 2013), and other grape pips (likely wild) were found in the two other Middle Bronze Age wells from the same site (Ucchesu et al. 2014b)

The plant assemblage identified at Sa Osa shows a variety of cultivated and wild plants which represent both the rich diversity of species used by the Sa Osa population and the vegetation that characterized the environment of the area. Amongst them, fruits represent an important part of the record of useful plants.

The record of Cucumis melo is of great importance as it represents the earliest evidence from Western Europe and one of the most ancient examples of this taxon. Zohary et al. (2012) suggested that melon cultivation may have begun during the Bronze Age in the Near East and/or in Africa, although this crop played a marginal role until at least the Classical period (Janick et al. 2007). Melon became widely spread in Europe in Medieval times when introduced to the Iberian Peninsula during
the Arab domination (Paris et al. 2012). The earliest known representations of melon come from Egypt during the second half of the $2^{\text {nd }}$ millennium BC (Darby et al. 1977, Manniche 1989) and the oldest archaeobotanical finds are reported from the same area during the Neolithic (Fahmy 2001). Data from the Near East and Greece comes from the Bronze and the Iron Age (Kroll 1982, 1984, van Zeist et al. 2003). A few melon seeds from the Roman period have been retrieved in Pompeii (Murphy et al. 2013) and in Northern Italy (Castelletti et al. 2001, Rinaldi et al. 2013), the harbour of Rome (Pepe et al. 2013) and in Northern Europe (Livarda 2011). The early presence of melon in Sardinia suggests that its introduction during the Late Bronze Age could have followed the trade routes that linked the island to the Mycenaean and Minoan world through Cyprus for the exchange of metals (Begemann et al. 2001, Lo Schiavo et al. 2009). Archaeological research has evidenced that commercial relations between Cyprus and Sardinia were not only based on the trade of oxhide ingots, but exchanges included a variety of products such as tools for metal and wood working and luxury objects (Lo Schiavo 2012). Plants such as mulberry, could have had as well a role in these commercial relationships with Eastern Mediterranean and/or Africa. Although mulberry was imported from Asia only in historical times, Morus sp. has been recorded in a Punic channel of the ancient port of Carthage (van Zeist et al. 2001) directly connected with Sardinia up to the foundation of permanent colonies in the South-West coasts of the island (van Dommelen and Finocchi 2008). The absence of melon and mulberry records in Europe during the same period may indicate a limited and local spread of these species during the Bronze Age.

The most recurrent taxa were Vitis vinifera and Ficus carica. Despite the great number of fig achenes, this species is not represented in the pollen diagram probably due to its reduced pollen dispersion. According to Kislev et al. (2006), archaeobotanical evidence suggests that fig cultivation was practiced in the Near East already by the $12^{\text {th }}$ millennium BP but this data has been criticized (Lev-Yadun et al. 2006).

In the case of the grape, previous research on the seed morphology of the Sa Osa specimens has suggested a close relationship between the Sa Osa grape pips and modern Sardinian grapevine varieties (Orrù et al. 2013). Recently, further research confirmed this data (Ucchesu et al. 2014b). Bearing in mind that Vitis pollen travels short distances, the high pollen percentage found in one of the Sa Osa samples points to the proximity of grape vines to the site, which is also evidenced in the curve of the Mistras lagoon during the same period (Di Rita and Melis 2013). In the Mediterranean basin and particularly, in southern Greece and Cyprus cultivated pips are documented during the first half of the $3^{\text {rd }}$ millennium BC while in the southern Balkans the earliest records are from the $2^{\text {nd }}$ millennium BC (Kroll 1991). In Italy, the earliest record comes from Tuscany, from the Middle Bronze Age (Mariotti Lippi et al. 2000, Bellini et al. 2008), but it is only during the Iron Age that cultivation developed (Marvelli et al. 2013). In Sardinia, Vitis pips are found from the Middle Bronze Age (Bakels 2002, Celant 2010, Tanda et al. 2012, Ucchesu et al. 2014b). The beginning of viticulture in the western Mediterranean basin during the Bronze Age has been debated (Stika and Heiss 2013). In the Iberian Peninsula, the archaeological record suggests a direct relationship between the introduction of
viticulture and the first contacts with Phoenicians and Greeks (Gómez-Bellard et al. 1993, Buxó and Piqué 2008) and a similar trend is found in Southern France (Bouby et al. 2013, Brun 2011).

The scarce presence of cereals and legumes is probably related to the type of preservation. In fact, charred cereals and legumes are abundant in the other wells of the same site (Ucchesu et al. 2014a).

The presence of Prunus spinosa endocarps could indicate an intentional harvest although due to the wide spread of this species in the area an accidental incorporation into the well cannot be totally excluded. Similarly myrtle, juniper, mastic tree, and blackberry produce all edible fruits that may have arrived into the well as part of food refuse. All of these taxa could be easily collected in the surrounding area being an important complement to the diet of the local populations.

Pollen data indicates that the surroundings of Sa Osa were covered by Mediterranean scrub communities dominated by Juniperus and Ericaceae. Juniper is also recorded in the wood and seed assemblages. The big size of the cones of Juniperus oxycedrus s.l. suggests that the specimens from Sa Osa belong to this species which is also the commonest in the Western coast of Sardinia (Bacchetta et al. 2009). The juniper twigs identified are quite homogeneous in size, age and most of them were collected in the same period, at the end of the summer/autumn, when the wood is harder and less flexible suggesting that collection for specific uses, e.g. building material, was practiced. Twig selection for building purposes has been already put forward for the Middle Bronze Age site of Terramara di Montale although not specifically for Juniperus (Mercuri et al. 2006).

The phytocoenoses of Erica multiflora is very common in the Sinis Peninsula (Fenu and Bacchetta 2008) as well as the association of Erica arborea and Arbutus unedo in the mountains around Sa Osa (Bacchetta et al. 2009). The large amount of charcoal, semi-charred and non-charred wood fragments of Erica sp . could be related to its use as fuel as its wood has a high heating power in which probably explains its use in metallurgical activities such as iron reduction (Mariotti Lippi et al. 2000, Sadori et al. 2010). Erica wood fragments may be associated to the crucible found in the same context (Usai 2011).

Pistacia lentiscus is recorded in all samples. One of the most popular products of the mastic tree is its resin, a well-known product in the eastern Mediterranean (Greece and Turkey), Sardinia (Thi Mai et al. 2014, Loi 2013) and in some northern African communities (Morales et al. 2013). The oil extracted from Pistacia seeds is also used as oil lamp and for cooking.

Pollen analysis shows a predominance of herbaceous plants with a clear overrepresentation of synanthropic taxa, from which many are linked to human activities as it is the case of cereals and Brassicaceae. The morphology of Brassicaceae pollen grains (one morphotype with a grain diameter of ca. 20 mm) indicates two possible species: Nasturtium officinale and Camelina sativa. While the second seems to be recently introduced in Sardinia, the first one is widespread in the area (Podda et al. 2012). It is probable that Nasturtium officinale (watercress) was gathered from the wild and used as a food plant as recorded in the ethnographic record (Atzei 2009, Ranfa et al. 2014). Besides watercress, other plants of water environment are equally represented in the pollen assemblage. Mainly

Chenopodiaceae but also Artemisia, other Asteroideae, and Poaceae pollen can be related to marshy areas. Vegetation from coastal marshes is also common in the pollen diagram of the nearby lagoon of Mistras (Di Rita \& Melis 2013). Arboreal pollen is rather low and most taxa come from the maquis (typical evergreen sclerophyllous vegetation).

All pollen samples show high percentages of eggs of Trichuris cf. trichiuria (whipworm) while at depth $3.80 / 4.00 \mathrm{~m}$ these appear together with an Ascaris egg (mawworm). Trichuris and Ascaris are parasites of wild and domestic animals, mostly mammals, including humans. Finding these parasites in ancient contexts is unusual as to the chemical composition of the egg shell (chitin) requires anoxic conditions, such as those of pits and latrines, to get preserved (Florenzano et al. 2012). The association of these parasites with humans is well known from prehistoric times already. In particular, in Europe, eggs of Ascaris have been recorded in Upper Palaeolithic contexts associated to the Neanderthal man of Arcy sur Cure (France) (Carvalho Gonçalves et al. 2003) and also in the Similaun man (Ötzi), who lived c. 4150 BC (Oeggl 2009). However, most of the records come from medieval contexts (Bouchet et al. 2003, Bosi et al. 2011, Brinkkemper and van Haaster 2012, Florenzano et al. 2012). The absence of other species of Trichuris suggests that Well-N was possibly used as a cesspit being this the most ancient example of this type of structure in Sardinia and one of the oldest in Italy.

1.5 Conclusions

The analysis of plant remains from Well-N of Sa Osa has confirmed the high potential of the discipline for investigating plant use during the Bronze Age and exploring past landscapes in Sardinia.

Apart from the limited presence of cereal remains represented by charred remains of barley and naked wheats, most of the plant material correspond to fruits and berries preserved by waterlogging. The presence of intestinal parasites amongst the material recovered from Well N together with the presence of species such as figs, grapes, melon amongst others which may have gone through the intestinal tract, points to a change of the use of this well as a latrine, at least in the last phase, where probably other food remains may have been thrown in or arrived accidentally to it.

The plant assemblage shows the importance of fruits and berries in the plant diet of Sa Osa inhabitants and it reveals a significant diversity. And a quite developed agricultural system. Apart from cereals, the Sa Osa community made use of both wild and cultivated fruits (figs, grapes, olives, melon, elderberry, myrtle, sloe, lentisk, etc). One of the most interesting finds is represented by the seeds of melon which are the most ancient examples of this species in the Mediterranean Basin. Equally interesting is the presence of Morus sp. which also represents an early find.

Pollen analysis has been carried out on a limited number of samples but results highlight the presence of the typical Mediterranean vegetation.

Furthermore, the study of wood and charcoal has provided with information on the particular selection of wood species for specific uses such as building.

Although future work in other structures of the site may offer further interesting data, the analysis of plant material from Well-N has provided with a fascinating insight into plant use during the Bronze Age.

Acknowledgements

The work of D. Sabato has been funded by the Italian Ministry of Education, Universities and Research (MIUR) has funded Diego Sabato. We thank Ernestina Badal and Yolanda Carrión Marco for their support in wood and charcoal identification.

References

Antolín F, Buxó R. 2011. L'explotació de les plantes al jaciment de la Draga: contribució a la història de l'agricultura i de l'alimentació vegetal del Neolític a Catalunya. In: Bosch À, Chinchilla J, Tarrús J, eds. El poblat lacustre del Neolític antic de La Draga: Excavacions de 2000-2005. Girona: Monografies del CASC, 147-174.
Atzei AD. 2009. Le piante nella tradizione popolare della Sardegna. Sassari: Delfino Editore.
Bacchetta G, Bagella S, Biondi E, Farris E, Filigheddu R, Mossa L. 2009. Vegetazione forestale e serie di vegetazione della Sardegna (con rappresentazione cartografica alla scala 1:350.000). Fitosociologia 46:382.

Bakels C. 2002. Plant remains from Sardinia, Italy with notes on barley and grape. Vegetation Hist and Archaeobotany 11:3-8.
Bandini Mazzanti M, Bosi G, Mercuri AM, Accorsi CA, Guarnieri C. 2005. Plant use in a city in Northern Italy during the Late Medieval and Reinaissance periods: results of the Archaeobotanical Investigation of 'The Mirror Pit' ($14^{\text {th }}-15^{\text {th }}$ century A.D.) in Ferrara. Vegetation History and Archaeobotany 14:442-452.
Begemann F, Schmitt-Strecker S, Pernicka E, Lo Schiavo F. 2001. Chemical Composition and Lead Isotopy of Copper and Bronze from Nuragic Sardinia. European Journal of Archaeology 4:43-85.
Bellini C, Mariotti-Lippi M, Mori Secci M, Aranguren B, Perazzi P. 2008. Plant gathering and cultivation in prehistoric Tuscany (Italy). Vegetation History and Archaeobotany 17:103-112.
Bernardini P, Perra M. 2012. I nuragici, i fenici e gli altri, Sardegna e Mediterraneo tra Bronzo Finale e Prima Età del Ferro. Sassari: Delfino Editore.
Bojňanský V, Fargašová A. 2007. Atlas of seeds and fruits of central and east-European flora: the Carpathian Mountains region. Dordrecht: Springer.
Bosi G, Bandini Mazzanti M, Florenzano A, Massamba N’siala I, Pederzoli A, Rinaldi R, Torri P, Mercuri AM. 2011. Seeds/fruits, pollen and parasite remains as evidence of site function: Piazza Garibaldi-Parma (N Italy) in Roman and Mediaeval times. Journal of Archaeological Science 38:1621-1633.
Bosi G, Mercuri AM, Guarnieri C, Bandini Mazzanti M. 2009. Luxury food and ornamental plants at the 15th century A.D. Renaissance court of the Este family (Ferrara, northern Italy). Vegetation History and Archaeobotany 18:389-402.
Bouby L, Figueiral I, Bouchette A, Rovira N, Ivorra S, Lacombe T, Pastor T, Picq S, Marinval P, Terral J. 2013. Bioarchaeological insights into the process of domestication of grapevine (Vitis vinifera L.) during Roman times in Southern France. PLoS ONE 8(5):e63195.
Bouchet F, Guidon N, Dittmar K, Harter S, Ferreira LF, Chaves SM, Reinhard K, Araújo A. 2003. Parasite remains in archaeological sites. Memorias do Instituto Oswaldo Cruz 98:47-52.
Buxó R, Piqué R. 2008. Arqueobotánica: los usos de las plantas en la península Ibérica. Barcelona: Ariel Prehistoria.
Brinkkemper O, van Haaster H. 2012. Eggs of intestinal parasites whipworm (Trichuris) and mawworm (Ascaris): Non-pollen palynomorphs in archaeological samples. Review of Palaeobotany and Palynology 186:16-21.
Brun J. 2011. Viticulture et oléiculture en Gaule. In: Ouzoulias P, Tranoy L, eds. Comment les Gaules devinrent romaines. Paris: La Découverte, 231-253.
Cappers RTJ, Bekker RM, Jans JEA. 2012. Digitale Zadenatlas Van Nederland/Digital Seed Atlas of the Netherlands. (Groningen Archaeological Studies 4). Groningen: Barkhuis.

Diego Sabato PhD thesis: Section 1 - Chapter 1

Carvalho Gonçalves ML, Araújo A, Ferreira LF. 2003. Human intestinal parasites in the past: new findings and a review. Memórias do Instituto Oswaldo Cruz 98:103-118.
Castelletti L, Castiglioni E, Rottoli M. 2001. L’agricoltura dell'Italia settentrionale dal Neolitico al Medioevo. In: Failla O, Forni G, eds. Le piante coltivate e la loro storia. Dalle origini al transgenico in Lombardia nel centenario della riscoperta della genetica di Mendel. Milano: Franco Angeli Editore, 33-84.
Celant A. 2010. Analisi dei macroresti vegetali provenienti dalla domus de janas IV della necropoli di S'Elighe Entosu (Usini, Sassari). In: Melis MG, ed. Usini. Ricostruire il passato Una ricerca internazionale a S'Elighe Entosu. Sassari: Delfino Editore, 161-164.
Darby W J, Ghalioungui P, Grivetti L. 1977. Food, the gift of Osiris. London: Academic Press.
Depalmas A. 2009. Il bronzo medio della Sardegna. In: Atti della XLIV Riunione Scientifica dell’IIPP. La preistoria e la protostoria della Sardegna (Cagliari - Barumini - Sassari, 23-28 novembre 2009) vol. 1, Firenze, 123-130.
Dimbleby GW. 1985. The palynology of archaeological sites. London: Academic Press.
Di Rita F, Melis RT. 2013. The cultural landscape near the ancient city of Tharros (central West Sardinia): vegetation changes and human impact. Journal of Archaeological Science 40:4271-428.
Faegri K, Kaland PE, Krzywinski K. 1989. Textbook of pollen analysis, 4th edn. Chichester: Wiley.
Fahmy AGED. 2001. Plant Remains in Gut Contents of Ancient Egyptian Predynastic Mummies (3750-3300 BC). Online Journal of Biological Science 1:772-774.
Fenu G, Bacchetta G. 2008. La flora vascolare della penisola del Sinis (Sardegna Occidentale). Acta Botanica Malacitana 33:1-34.
Florenzano A, Mercuri AM, Pederzoli A, et al. 2012. The Significance of Intestinal Parasite Remains in Pollen Samples from Medieval Pits in the Piazza Garibaldi of Parma, Emilia Romagna, Northern Italy. Geoarchaeology 27:34-47.
Fugazzola Delpino MA, D’Eugenio G, Pessina A. 1993. La Marmotta (Anguillara Sabazia, RM): Scavi 1989, un abitato perilacustre di età Neolitica. Bollettino di Paletnologia Italiana 84:181-342.
Gómez-Bellard C, Guérin P, Pérez-Jordá G. 1993. Témoignage d'une production de vin dans l'Espagne préromaine. In: Amouretti MC, Brun P, eds. La production du vin et de l'huile en Méditerranée. Athens: École Française d'Athènes, 95-379.
Jacomet S. 2006. Identification of cereal remains from archaeological sites, 2nd edn. Basel: IPAS.
Jacomet S. 2013. Archaeobotany. Analyses of Plant Remains from Waterlogged Archaeological Sites. In: Menotti F, Sullivan A (eds) The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, 497-514.
Janick J, Paris HS, Parrish DC. 2007. The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Annals of Botany 100:1441-1457.
Kislev ME, Hartmann A, Bar-Yosef O. 2006. Early Domesticated Fig in the Jordan Valley. Science 312:13721374.

Kroll H. 1982. Kulturpflanzen von Tiryns. Archäol Anz 1:467-485.
Kroll H. 1984. Bronze Age and Iron Age agriculture in Kastanas, Macedonia. In: van Zeist W, Casparie WA, eds. Plants and ancient man. Boston: Balkema, 243-47.
Kroll H. 1991. Südosteuropa. In: van Zeist W, Wasylikowa K, Behre K, eds. Progress in old world palaeoethnobotany. Rotterdam-Brookfield: Balkema, 161-177.
Lev-Yadun S, Néeman G, Abbo S, Flaishman MA. 2006. Comment on "Early domesticated fig in the Jordan Valley". Science 314:1683.
Livarda A. 2011. Spicing up life in northwestern Europe: exotic food plant imports in the Roman and medieval world. Vegetation History and Archaeobotany 20:143-164.
Loi C. 2013. Preliminary studies about the productive chain of lentisk oil through ethnographic witness and experiments. In: Lugli F, Stoppiello AA, Biagetti S, eds. Ethnoarchaeology: Current Research and Field Methods Conference Proceedings, Rome, Italy, $13^{\text {th }}-14^{\text {th }}$ May 2010. BAR International Series 2472. Oxford: Archaeopress, 58-62.
Lo Schiavo F. 2012. Gli Altri: Nuragici e Ciprioti a confronto. In: Bernardini P, Perra M, eds. I nuragici, i fenici e gli altri, Sardegna e Mediterraneo tra Bronzo Finale e Prima Età del Ferro. Sassari: Delfino Editore.
Lo Schiavo F. 2003. Sardinia between East and West, Interconnections in the Mediterranean. In: Stampolidis NC, Karageorghis V, eds. Sea Routes, Interconnections in the Mediterranean $16^{\text {th }}-6^{\text {th }} B C$, Proceedings of the International Symposium held at Rethymnon, Crete, September 29th-October 2nd 2002. Athens: Univeristy of Crete and AG Leventis Foundation, 15-34.

Lo Schiavo F, Muhly JD, Maddin R, Giumlia-Mair A. 2009. Oxhide ingots in the central Mediterranean. Roma: CNR.
Lugliè C. 2009. Il Mesolitico. In: Atti della XLIV Riunione Scientifica dell’IIPP. La preistoria e la protostoria della Sardegna (Cagliari-Barumini-Sassari, 23-28 Novembre 2009) vol. 1., Firenze, 31-36.
Manniche L. 1989. An ancient Egyptian herbal. Austin: University of Texas Press.
Mariotti Lippi M, Bellini C, Mori Secci M. 2010. Palaeovegetational reconstruction based on pollen and seeds/fruits from a Bronze Age archaeological site in Tuscany (Italy). Plant Biosystems 144:902-908.
Mariotti Lippi M, Giachi G, Paci S, Di Tommaso PL. 2000. Studi sulla vegetazione attuale e passata della Toscana meridionale (Follonica-Italia) e considerazioni sull'impatto ambientale dell'attività metallurgica etrusca nel VI-V secolo a.C. Webbia 55:279-295.
Marvelli S, De’Siena S, Rizzoli E, Marchesini M. 2013. The origin of grapevine cultivation in Italy: the archaeobotanical evidence. Annals of Botany 3:155-163.
Melis R, Sechi S. 2011. L'insediamento nuragico di Sa Osa-Cabras (OR). Studio geoarcheologico. In: Mastino A, Spanu PG, Usai A, Zucca R, eds. Tharros Felix 4. Roma: Carocci Editore, 187-192.
Mercuri AM. 2008. Human influence, plant landscape evolution and climate inferences from the archaeobotanical records of the Wadi Teshuinat area (Libyan Sahara). Journal of Arid Environments 72:1950-1967.
Mercuri AM, Accorsi CA, Bandini Mazzanti M, et al. 2006. Economy and environment of Bronze Age settlements-Terramaras on the Po Plain (Northern Italy): first results from the archaeobotanical research at the Terramara di Montale. Vegetation History and Archaeobotany 16:43-60.
Mercuri AM, Allevato E, Arobba D, et al. 2014. Pollen and macroremains from Holocene archaeological sites: a dataset for the understanding of the bio-cultural diversity of the Italian landscape. In: Bertini A, Cirilli S, Magri D, eds. Changing Flora and Vegetation Through Time. Review of Palaeobotany and Palynology, doi: 10.1016/j.revpalbo.2014.05.010.
Moore PD, Webb JA, Collinson ME. 1991. Pollen analysis. London: Blackwell Scientific.
Morales J, Pérez-Jordà G, Peña-Chocarro L, Zapata L, Ruíz-Alonso M, López-Sáez JA, Linstädter J. 2013. The origins of agriculture in North-West Africa: macro-botanical remains from Epipalaeolithic and Early Neolithic levels of Ifri Oudadane (Morocco). Journal of Archaeological Science 40:2659-2669.
Murphy C, Thompson G, Fuller DQ. 2013. Roman food refuse: urban archaeobotany in Pompeii, Regio VI, Insula 1. Vegetation History and Archaeobotany 22:409-419.
Oeggl K. 2009. The significance of the Tyrolean Iceman for the Archaeobotany of Central Europe. Vegetation History and Archaeobotany 18:1-11.
Orrù M, Grillo O, Lovicu G, Venora G, Bacchetta G. 2013. Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Vegetation History and Archaeobotany 22:231-242.
Paris HS, Amar Z, Lev E. 2012. Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Annals of Botany 110:23-33.
Peña-Chocarro L, Alkain P, Urteaga M. 2014. Wild, managed and cultivated plants in Northern Iberia: an archaeobotanical approach to medieval plant exploitation in the Basque Country. PCA European Journal of Postclassical Archaeology 4:131-154.
Peña-Chocarro L, Zapata L. 2005. Trade and new plant foods in the Western Atlantic Coast: The Roman Port of Irun (Basque Country). In: Urteaga Artigas MM, NoainMaura MJ, eds. Mar Exterior. El Occidente Atlántico en época romana. Actas del Congreso Internacional. Pisa, 6-9 noviembre 2003. Rome: CSIC, 169-177.
Pepe C, Giardini M, Giraudi C, Masi A, Mazzini I, Sadori L. 2013. Climate and landscape in marginal marine environments: the ancient Roman harbour of Portus (Rome, Italy). Quaternary International 303:73-81.
Pérez-Jordá G. 2013. La agricultura en el País Valenciano entre el VI y el I milenio a.C. PhD Dissertation, Universitat de València. http://roderic.uv.es/handle/10550/31152. Accessed 21 August 2014.
Podda L, Lazzeri V, Mascia F, Mayoral O, Bacchetta G. 2012. The checklist of the Sardinian alien flora: an update. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40:14-21.
Ramsay J. 2010. Trade or trash: an examination of the archaeobotanical remains from the Byzantine harbour at Caesarea Maritima, Israel. International Journal of Nautical Archaeology 39:376-382.
Ranfa A, Maurizi A, Romano B, Bodesmo M. 2014. The importance of traditional uses and nutraceutical aspects of some edible wild plants in human nutrition: the case of Umbria (central Italy). Plant Biosystems 148:297-306.

Reille M. 1992-1998. Pollen et spores d'Europe et d'Afrique du Nord. Marseille: Laboratoire de botanique historique et palynologie.
Rinaldi R, Bandini Mazzanti M, Bosi G. 2013. Archaeobotany in urban site: the case of Mutina. Annali di Botanica 3:217-230.
Sabato D, Masi A, Ucchesu M, Peña-Chocarro L, Usai A, Giachi G, Capretti C, Bacchetta G. 2015. Archaeobotanical analysis of a Bronze Age well from Sardinia: a wealth of knowledge. Plant Biosystems, doi: 10.1080/11263504.2014.998313.
Sadori L, Allevato E, Bertacchi A, et al. 2014 Archaeobotany in Italian ancient Roman harbours. Review of Palaeobotany and Palynology, doi: 10.1016/j.revpalbo.2014.02.004.
Sadori L, Mercuri AM, Mariotti Lippi M. 2010. Reconstructing past cultural landscape and human impact using pollen and plant macroremains. Plant Biosystems 144:940-951.
Sadori L, Tanda G, Follieri M. 1989. Macrofossili vegetali provenienti dalla necropoli neolitica a domus de jana di Molia Illorai (Sassari). Giornale Botanico Italiano 123:14.
Sanna I. 2011. Sa Osa-Cabras (OR). I reperti organici del pozzo N. In: Mastino A, Spanu PG, Usai A, Zucca R, eds. Tharros Felix 4. Roma: Carocci Editore, 239-248.
Schweingruber FH. 1990. Anatomy of European woods. Bern: Paul Haupt.
Serreli P. 2011. Il quadrato W20 dell'insediamento di Sa Osa-Cabras (OR). Nota preliminare. In: Mastino A, Spanu PG, Usai A, Zucca R, eds. Tharros Felix 4. Roma: Carocci Editore, 219-238.
Smit A. 1973. A scanning electron microscopical study of the pollen morphology in the genus Quercus. Acta Botanica Neerlandica 22:655-665.
Stika HP, Heiss AG. 2013. Plant cultivation in the Bronze Age. In: Fokkens H, Harding A, editors. The European Bronze Age. Oxford: Oxford University Press, 348-369.
Stockmarr J. 1971. Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615-621.
Tanda G, Basciu V, Paglietti G, Peña-Chocarro L, Ucchesu M, Zedda M. 2012. Grotta di Monte Meana (Santadi, Carbonia-Iglesias), campagne di scavo 2008-2009. In: Atti della XLIV Riunione Scientifica - La preistoria e la protostoria della Sardegna (Cagliari, Barumini, Sassari 23-28 novembre 2009) vol. 2. Firenze, 635-642.
Thi Mai B, Girard M, Lanfranchi F. 2014. Uses of the mastic tree (Pistacia lentiscus L.) in the west Mediterranean region: an example from Sardinia, Italy. Chapter 6: A versatile world: examples of diversity in plant use. In: Chevalier A, Marinova E, Peña-Chocarro L, eds. Plants and people: choices and diversity through time. Oxford: Oxbow Books, 293-298.
Trump DH. 1990. Nuraghe Noeddos and the Bonu Ighinu Valley: excavation and survey in Sardinia. Oxford: Oxbow Books.
Ucchesu M, Peña-Chocarro L, Sabato D, Tanda G. 2014a. Bronze Age subsistence in Sardinia (Italy): cultivated plants and wild resources. Vegetation History and Archaeobotany, doi: 10.1007/s00334-014-0470-2.
Ucchesu M, Orrù M, Grillo O, Venora G, Usai A, Serreli PF, Bacchetta G. 2014b. Earliest evidence of a primitive cultivar of Vitis vinifera L. during the Bronze Age in Sardinia (Italy). Vegetation History and Archaeobotany, doi: 10.1007/s00334-014-0512-9.
UNI 11118:2004. Beni culturali - Manufatti lignei - Criteri per l'identificazione delle specie legnose.
Ugas G. 2006. L'alba dei nuraghi. Cagliari: Fabula.
Usai A. 2011. L'insediamento prenuragico e nuragico di Sa Osa-Cabras (OR). Topografia e considerazioni generali. In: Mastino A, Spanu PG, Usai A, Zucca R, eds. Tharros Felix 4. Roma: Carocci Editore, 159186.
van Dommelen P, Finocchi S. 2008. Sardinia: Divergent Landscapes. In: van Dommelen P, Gòmez Bellard C, eds. Rural landscape of the Punic Word. Monographs in Mediterranean Archaeology Series vol. 11. London: Equinox Ltd, 159-201.
van Geel B, Klink AG, Pals JP, Wiegers J. 1986. An upper Eemian lake deposit from Twente, eastern Netherlands. Review of Palaeobotany and Palynology 47:31-61.
van Zeist W, Bottema S, van der Veen M. 2001. Diet and Vegetation at Ancient Carthage: The Archaeobotanical Evidence. Groningen: Groningen Institute of Archaeology.
van Zeist W, Roller G, Fahmy AGEID. 2003. An archaeobotanical study of Ma'adi, a Predynastic site in Lower Egypt. In: van Zeist, W (ed) Reports on Archaeobotanical Studies in the Old World. Groningen: Groningen University press, 167-207.
Zohary D, Hopf M, Weiss E. 2012. Domestication of Plants in the Old World. The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley. Oxford: Oxford University press.

Chapter 2

Phoenician-Punic trade: amphorae

CONTENTS FROM SANTA GIUSTA LAGOON,

Sardinia (Italy)

Phoenician-Punic trade: Amphorae contents from Santa Giusta lagoon, Sardinia (Italy)

Diego Sabato ${ }^{1}$, Leonor Peña-Chocarro ${ }^{2,3}$, Carla Del Vais ${ }^{4}$, Ignazio Sanna ${ }^{5}$, Gianluigi Bacchetta ${ }^{1}$ Mariano Ucchesu ${ }^{1}$
${ }^{1}$ Centro Conservazione Biodiversità (CCB), University of Cagliari, Italy.
${ }^{2}$ Escuela Española de Historia y Arqueología en Roma (EEHAR)-CSIC, Roma, Italy
${ }^{3}$ GI Arqueobiología, Centro de Ciencias Humanas y Sociales (CCHS)-CSIC, Madrid, Spain.
${ }^{4}$ Dipartimento di Storia, Beni Culturali e Territorio, University of Cagliari, Italy.
${ }^{5}$ Soprintendenza per i Beni Archeologici per le province di Cagliari e Oristano, Italy.

Abstract

Research carried out in Santa Giusta lagoon since 2006 has revealed the presence of PhoenicianPunic archaeological contexts of exceptional importance. Several transport amphorae, together with domestic pottery and ceramics associated with funerary and ritual uses, have been recovered. Two deposition phases have been distinguished, one dated to the $6^{\text {th }}-5^{\text {th }}$ century BC and a second dated to the $3^{\text {rd }}-2^{\text {nd }}$ century $B C$.

Many amphorae contained ovine/caprine bones with butchery marks associated with grapes and other fruits. The waterlogged conditions favoured the preservation of organic materials, including pinecones, seeds and fruits of several taxa and wood remains.

Fruits and nuts such as Corylus avellana, Juglans regia, Prunus dulcis, Pinus pinea and Olea europaea are probably related to food trade while other edible plants such as Vitis vinifera, Prunus domestica, Prunus spinosa, and Juniperus oxycedrus may have played a role in meat preservation. The few remains of cucurbits, such as Citrullus lanatus and Lagenaria siceraria, suggest commercial contacts with other colonies in Northern Africa.

Keywords: Sardinia, Phoenician-Punic, amphorae, archaeobotany

2.1 Introduction

2.1.1 General background

Punic archaeology has long been the subject of intense interest and debate in which agricultural issues have been always central. Punic agricultural prosperity has been often highlighted in modern historiography and a significant place has been given to Mago and his 28 -volume agricultural treatise translated into Latin by the Roman Senate as a proof of his renowned agrarian excellence. Leaving aside whether the fame of Punic agriculture is really mirrored in Mago's work or as it has been suggested (Krings 2008) its purpose enters into more philosophical and political realms, it is all the more remarkable that over the years so little attention has been paid to the analysis of plant remains as direct evidence of plant cultivation and the great deal of information that can be drawn from them.

Punic archaeobotany is still in its infancy due to the lack of properly sampled contexts. Apart from the seminal work of van Zeist et al. (2001) in Carthage, which shows the enormous potential of the discipline to explore food production and agricultural topics, research into the role of plants in Punic subsistence has been very limited. In Sardinia, plant remains are also scarce due to the little spread of systematic flotation. With the exception of few cases (Bakels 2002, Wetterstrom 1987), proper sampling and the application of recovery techniques have started to be applied only recently (Buosi et al. 2015, Pérez Jordà 2010, Ucchesu et al. 2014a, Sabato et al. 2015 [Chapter 1]) producing results that consent to throw light on the use of plants in the past. Although the datasets are very reduced, plant remains from the Punic period in Sardinia are documented in sites such as Pinn'e Maiolu (Bakels 2002), Ortu Comidu (Wetterstrom 1986), Nora (Marinval and Cassien 2001, Miola et al. 2009) and Truncu'e Molas (Pérez Jordà 2010) demonstrating the presence of cereals (freethreshing wheats and barley), legumes (broad beans and lentils) and fruits (grapes).

Despite the specific context of the material studied (transport amphorae), this research offers the possibility of exploring the range of plants used during the Punic period and contributing to the development of archaeobotany in Sardinia.

2.1.2 The site

The pond of Santa Giusta is located in the north-central part of the Gulf of Oristano, close to the mouth of river Tirso (Fig. 1a). It has a round shape with an area of about 790 hectares that can reach a maximum of 900 hectares during the autumn-winter season. The brackish water of the lagoon is depth between 40 and 150 cm . Local people and archaeologists already knew the archaeological presences in the lagoon since at least the 70s. The underwater excavation of the Santa Giusta started in 2006 by Soprintendenza per i Beni Archeologici per le province di Cagliari e Oristano and the University of Cagliari. Phoenician-Punic amphorae were found belonging to two different phases, $6^{\text {th }}$ $5^{\text {th }}$ and $3^{\text {rd }}-2^{\text {nd }}$ century BC (Del Vais and Sanna 2009).

The various surveys carried out in the Northeast of the lagoon have identified two main areas of dispersion, which have been called Area A and B (Fig. 1b, 1c) (Del Vais and Sanna 2012). Both groups of amphorae contained numerous plants and animal remains which have been preserved in excellent condition thanks to the silt of the lagoon. Animal bones were identified as remains of ovines/caprines with evident butchery traces and prove the use of the amphorae as containers for transporting meat, but specific archaeozoological studies have to be carried out.

Figure 1. a) Location of Santa Giusta lagoon; b, c) The excavation area (in: Del Vais and Sanna 2009).

2.2 Materials and Methods

During the excavation, a total of 41 soil samples were collected from inside the amphorae and 51 samples were sucked from the deposition layers using a sub aquatic pump. The total number of contexts analysed in this study is 82 , which have been divided into two groups according to the chronological period they belong to, either $6^{\text {th }} / 5^{\text {th }}$ century BC or $3^{\text {rd }} / 2^{\text {nd }}$ centuries BC. Thirteen samples come from amphorae dated to the $6^{\text {th }} / 5^{\text {th }}$ centuries BC while eighteen have been dated to the $3^{\text {rd }} / 2^{\text {nd }}$ centuries. The content of two further cups dated to the $3^{\text {rd }} / 2^{\text {nd }}$ century was also considered but it was sterile. Several samples (51) were also collected from deposition layers. In the latter case, it is likely we are dealing with part of the amphorae content spread around due to breakage in antiquity. Only 11 of the samples from deposition layers have been attributed with security to the $3^{\text {rd }} / 2^{\text {nd }}$ centuries BC
while the remaining 40 are dated to a period between the transition from the $6^{\text {th }}$ to the $5^{\text {th }}$ century and the transition from the $3^{\text {rd }}$ to the $2^{\text {nd }}$ century BC due to the difficulty of attributing the soft silt layers to specific chronologies.

The samples were water sieved by the Soprintendenza dei Beni Archeologici della Sardegna with a coarse mesh of 2 mm ., and all waterlogged material was kept in distilled water and stored in a fridge at $+5^{\circ} \mathrm{C}$ temperature at the Sardinian Germplasm Bank (BG-SAR). Due to the mesh size used, plant remains below 2 mm were not collected.

Identifications were carried out using the reference collection of the Sardinian Germplasm Bank and various specialized atlases for seed and fruit identification (Beijerinck 1947, Bojňanský and Fargašová 2007, Cappers 2012). The botanical nomenclature follows Zohary et al. (2012) and Pignatti and Anzalone (1982).

2.3 Results

Samples provided more than 4,000 macro-remains that were found in an excellent state of preservation (Tab.1). A wide range of species has been identified (Fig. 3, 4) including fruits such as grapes (Vitis vinifera), plums (Prunus domestica), sloes (Prunus spinosa), almonds (Prunus dulcis), olives (Olea europaea), junipers (Juniperus oxycedrus cf. macrocarpa) and nuts such as hazelnuts (Corylus avellana), walnuts (Juglans regia) and pine nuts (Pinus pinea and P. halepensis) together with several pine cones (Fig.4). Furthermore, a few seeds of watermelon (Citrullus lanatus) and bottle gourd (Lagenaria siceraria), rarely found archaeologically, have been as well retrieved. Two seeds in both groups of samples represent the watermelon, while the bottle gourd has been only recorded in one sample from a deposition layer dated to the $3^{\text {rd }} / 2^{\text {nd }}$ centuries. A high number of the aquatic pondweeds (Potamogeton sp.) was also recorded.

No significant differences emerge between the two groups samples (amphorae and depositional layers). The occurrence of almonds, watermelon and bottle gourd in the most recent samples is the only difference, although their scarce presence cannot rule out that they were also present in the oldest contexts.

Amongst the juicy fruits, grapes are the most abundant. They appear in both the interior of amphorae and in the various deposition layers in all periods. They are more abundant in the samples from the amphorae and particularly in the group of the oldest ones. It is likely that the specimens recovered from the deposition layers come from broken vessels. Seeds from plums have been found in low numbers in both amphorae and deposition layers. Other fruits are the olive that appears in all samples and chronologies and the sloe and the juniper, which are also represented in all samples.

	$\begin{gathered} \text { Layers (40) } \\ 6^{\text {th }} / 3^{\mathrm{rd}} \\ \text { cent. } \mathrm{BC} \end{gathered}$	$\begin{gathered} \text { Layers (11) } \\ 3^{\text {rd }} 2^{\text {nd }} \\ \text { cent. BC } \end{gathered}$	Amphorae (13) $6^{\text {th }} / 5^{\text {th }}$ cent. BC	Amphorae (18) $3^{\text {rd }} / 2^{\text {nd }}$ cent. BC	Total
Citrullus lanatus	1	-	-	1	2
Corylus avellana	-	-	-	5	5
C. avellana fragments	-	-	2	-	2
Juniperus oxycedrus cf. macrocarpa	3	2	6	3	14
Juglans regia fragments	2	-	-	1	3
Lagenaria siceraria	-	1	-	-	1
Olea europaea	29	9	7	11	56
Olea europaea fragments	16	1	2	-	19
Pinus halepensis cones	3	-	-	1	4
Pinus pinea cones	-	1	-	1	2
P. pinea pine cone fragments	21	14	-	-	35
P. pinea	6	6	-	6	18
P. pinea fragments	46	60	2	6	114
Potamogeton sp.	75	-	1,362	664	1,437
Prunus domestica	4	-	1	5	10
P. domestica fragments	1	-	-	-	1
Prunus dulcis	2	-	-	8	10
P. dulcis fragments	8	3	-	5	16
Prunus spinosa	34	6	5	1	46
P. spinosa fragments	8	-	-	-	8
Prunus sp.	8	-	4	4	16
Quercus sp.	1	-	-	-	1
Quercus sp. fragments	1	-	-	-	1
Vitis vinifera	140	27	1,240	273	1,680
Indeterminate (wild plants)	11	-	-	-	11
Total	420	130	2,631	995	3,512

Table 1. List of seeds and fruits identified.

Figure 3. Waterlogged remains of: a) Pinus Pinea cone, bract scale and pine nut b) Pinus halepensis cone.

Figure 4. Waterlogged remains of a) Prunus dulcis (almond), b) Prunus domestica (plum), c) Prunus spinosa (sloe), d) Juniperus oxycedrus cf. macrocarpa (juniper), e) Olea europaea (olive), f) Vitis vinifera (grape), g) Lagenaria siceraria (bottle gourd), h) Citrullus lanatus (watermelon), i) Corylus avellana (hazelnut), 1) Juglans regia (walnut), m) Potamogeton sp. (pondweed).

2.4 Discussion

The material analysed for this paper is mainly composed of plants of economic importance being the fruits the dominant category. Cereals are absent probably due to the preservation conditions as waterlogging does not favour their conservation; cereal grains are preserved mainly in a charred condition. The same applies to legumes tend to decompose easily under waterlogged conditions. However, despite their absence both plant categories played an important role in the economy of Sardinian communities. In part because the Carthaginian occupation of the island has long been understood in terms of a colonial exploitation of the agrarian and mineral resources. The most abundant species is the grape that has been recovered from all contexts and periods. Due to the
concentration of remains in some of the vessels, particularly in the oldest material, it is likely that some of the amphorae contained grapes or dried raisins.

Many of the amphorae recovered contained remains of ovine/caprine bones suggesting the trading of meat pieces. Meat could be preserved salted, marinated, smoked, dried and also dipped in wine into which different additives were added (fruits, berries, etc.) which could explain the presence of grape pips. Textual evidence points to the role of wine as ingredient in many foods such as meat marinades, fish sauces, cheeses and desserts (McGovern 1999). Grape as well as other species such as plums and perhaps sloes (identified amongst the archaeobotanical remains) may have played a role in meat preservation. Some authors (Sampels 2013) emphasize the antioxidant capacity of many fruits, spices and berries (as plums and grapes) due to their content in phenols, anthocyanins and ascorbic acid. Furthermore, modern food industry uses plum products and grape seed extracts in food processing for improving the colour of finished meat rising the degree of acceptability of foods (Karre et al. 2013). Other species such as the strong scented berries of juniper, which have been found at the site and grow widely in Sardinia, could be considered as additives to improve wine flavour (Atzei 2003). Similar examples of grape pips associated to ovine/caprine bones are also documented in some amphorae from Nora (Poplin 1980, Marinval and Cassien 2001). Furthermore, a $10^{\text {th }}$ century AD receipt reported from Didimo in Geoponica (Book 19 ${ }^{\text {th }} 9.5$, translated by Meana et al. 1998) suggests the use of grape pomace without separating the skin from the berry, to preserve sheep, goat and deer salted meat. The remains found at Nora were interpreted in this line (André 1981). For Santa Giusta, this could be also the case, at least for some of the grape seeds found. Such a practice would allow recycling the wine waste produced in the numerous wineries active in the area (Pérez Jordà et al. 2010). Vitis pollen have been recorded since the $5^{\text {th }}$ century BC levels at Tharros (Acquaro et al. 2001) and is recorded at the transition from the middle Bronze Age to the Punic Period (approx. from 3500 to 2500 cal BP) in the lake of Mistras (Di Rita and Melis 2013). Grape pollen and pips have been found huge amount in the same are since Bronze Age (Lovicu et al. 2011, Orrù et al. 2013, Ucchesu et al. 2014b).

Grape pips may have also come from amphorae containing wine as, in antiquity, wine could include grape residues (pedicels, skins, pips). It remains unclear whether their variable presence in the archaeological record represented different grades of wine quality. Apart from grape pips, none of these remains have been reported from Santa Giusta. In some of the amphorae, there is evidence of treatment with a pitch coating (Del Vais and Sanna 2009) to reduce the permeability of the amphorae walls during transport of liquids pointing most probably wine. One of the commonest materials used for vessel coating was pine resin, which beyond waterproofing the pottery added also a pleasant flavour to the wine. It also helped to preserved wine by preventing oxygen from entering through the pores of the clay and therefore avoiding the multiplication of the bacteria responsible for the conversion of wine into vinegar. It has been suggested that it also contributed to lessen unpleasant taste or odour (McGovern 1996). Pliny, in Natural History (16.38), described the use of pine pitch for
lining storage jars. Pine resin from Aleppo pine (Pinus halepensis) has been traditionally used in Greece to produce the retsina, a popular resinated wine. Several pinecones have been retrieved belonging to two different species: Pinus halepensis and P. pinea from which also seeds have been identified. Their presence in the samples is difficult to interpret. In antiquity, pinecones sealed with clay were used as stoppers in amphorae (Twede 2002) while steeped in the wine helped to avoid the wine becoming vinegar. But, in order to enhance wine taste and scent, additives other than resin were also added (fruits, berries, spices, herbs, honey, etc.).

The presence of walnuts, hazelnuts, almonds and pine nuts amongst the remains suggests that also dry fruits were part of the traded items. Although Corylus avellana and Juglans regia are considered introduced plants in Sardinia (Podda et al. 2012), pollen of the genus Corylus and Juglans is present in the same area since at least 5300 BP (Di Rita and Melis 2013) and evident in the $5^{\text {th }}$ century BC (Acquaro et al. 2001). Juglans is considered an indicator of human activities (Di Rita and Melis 2013). In northern Italy Corylus is recorded since the Neolithic (Rottoli and Castiglioni 2009). As far as pine (P. halepensis and P. pinea) is concerned, it could be of local provenience although nowadays pines only thrive naturally in two restricted areas in the southwest, Porto Pino and Portixeddu-Buggerru (Mossa 1990). However, walnuts, hazelnuts and pine nuts identified in Punic Carthage have been interpreted as exotic food, since these plants do not grow naturally in the area (van Zeist et al. 2001). It is yet unclear whether these taxa were present in the island before the Phoenician colonization or if the colonists introduced them.

Seeds of Olea europea show various shapes and sizes representing perhaps different varieties belonging to cultivated and/or wild specimens. The record of olives in Sardinia goes back to at least the Middle Bronze Age, 1800-1300 BC. Olive stones were identified at the site of Duos Nuraghes (Bakels 2002) and Olea pollen appears in Tharros (Acquaro et al. 2001) and in the Mistras diagram (Di Rita and Melis 2013) where moderate frequencies (up to 5\%) are detected between 5300-1600 BP indicating that olive trees were extensively exploited. Bearing in mind the enormous importance of olive in the Mediterranean it is surprising that olive cultivation was not a common practice in Sardinia according to the archaeobotanical data (Di Rita and Melis 2013). The association of olive stones with amphorae remains open to various possibilities. On the one hand, olives or olive oil could have been traded and on the other, it also is likely that olives were ingredients of the meat dressing transported.

Citrullus lanatus (watermelon) and Lagenaria siceraria (bottle ground) only appeared in the latest phase, in samples from the $3^{\text {rd }}$ century BC, indicating, perhaps, a later introduction. In both cases the number of seeds is limited (only 3 seeds in total). It is believed that the area of domestication of Citrullus lanatus is located in Africa where it was growing at least since the beginnings of the $4^{\text {th }}$ millennium BP (Zohary et al. 2012). The oldest representation comes from an Egyptian wall painting from a tomb at Meir dated to the Old Kingdom (3100-2180) as reported by Janick et al. (2007). However, remains of cultivated watermelon are only found in Egypt during the $2^{\text {nd }}$ millennium BC. Hepper (1990) reported them from Tutankhamen tomb and this species has been also found in Sudan
(van Zeist 1983). Wasylikowa and van der Veen (2004) suggest the possibility that some seeds from sites in Egypt may have been erroneously identified as other Citrullus species being in fact C. lanatus. Cox and Van der Veen (2008) reported further remains of watermelon seeds dated to the $1^{\text {st }}$ millennium BC such as those from the site of Raybun, in South Arabia (Levkovskaya and Filatenko 1992), in the Hera temple of Samos, Greece (Kučan 1995) and Israel (Schultze-Motel 1974). For Europe, but also from northern Africa, remains have been retrieved in a number of sites dated to the Roman period (Castelletti at al. 2001, Rinaldi et al. 2013), for further details see Cox and van der Veen (2008). Watermelon was probably known by Phoenicians and the relative colonies. The presence of Lagenaria siceria is probably related to its traditional use as water container, a practice still common today in Sardinia (Atzei 2003) and Africa and widely diffused in Roman times (Schlumbaum and Vandorpe 2012).

Seeds of Potamogeton sp. (pondweed) were probably within the sediment that filled the amphorae during the deposition. This water plant thrives in shallow freshwater, but some species such as Potamogeton pectinatus (common in Santa Giusta pond) have shown some salinity tolerance (Van Wijk et al. 1988). The lagoon in Phoenician and Punic age was probably smaller than it is today (Del Vais and Sanna 2012). Lugliè (2001) reports a possible submerged ancient river bed in the south of the Area A, in phase with the findings of $6^{\text {th }}-5^{\text {th }}$ century BC . The abundant record of pondweeds both within the layers and inside the amphorae may perhaps suggest a low freshwater level

2.5 Conclusions

Waterlogged plant remains from various amphorae dedicated to the transport of goods dated to two different periods, the $6^{\text {th }}-5^{\text {th }}$ and the $3^{\text {rd }}-2^{\text {nd }}$ centuries BC were retrieved in Santa Giusta lagoon. Plant composition was similar in both assemblages suggesting some continuity in the use of the species identified. The absence of staples such as cereals is probably related to the preservation of the material under waterlogged conditions, which does not favour cereal grain preservation. Cereals get usually preserved by charring. Other species such as walnuts, hazelnuts and pine nuts were probably part of trade routes, which may have involved specific categories of products with high commercial value. In addition, basic products were locally produced. Palynological research in Sardinia has shown the presence of pine and other fruit trees although it is yet unclear whether they were cultivated in limited areas. The relatively large size of the fruits suggests a strong selection of the best specimens.

The occurrence of fruits, mainly grapes, and spices together with animal bones with clear butchery marks can be understood as a particular way of meat conservation a suggested by similar finds in other sites.

The record of two cucurbits, watermelon and bottle gourd, points to contacts with other colonies of the Northern coast of Africa, although these may have occurred only in the most recent phase. It is unlikely that these crops were locally cultivated. The spread of watermelon in Europe occurred during Roman colonization, when it played only a marginal role, while proper cultivation of this crop only
occurred later, in medieval times.
The analysis of plant remains from Santa Giusta lagoon has allowed exploring aspects of Phoenician/Punic trade in Mediterranean basin. This is especially important because archaeobotanical data from these periods is rather scarce not only in Sardinia but also in the remaining Mediterranean region. The dataset studied for this paper is a small part of the total available so further research will certainly contribute to clarify many of other issues raised in this paper and improve our knowledge about Punic agriculture.

References

Acquaro E, Caramiello R, Verga F, Ortu E, Arobba D, 2001. Analyses palynologiques et anthracologiques du site phénicien-punique de Tharros (Sardaigne). Revue d'Archèometrie 25:45-51.
André J. 1981. L'alimentation et la cuisine à Rome. Paris: Les Belles Lettres.
Atzei AD. 2003. Le piante nella tradizione popolare della Sardegna: documentazione sugli usi alimentari, aromatizzanti, profumieri, artigianali, cosmetici, medicinali, veterinari, magici, ornamentali, rituali, religiosi, tintori, antiparassitari e vari, delle piante. Sassari: Delfino Editore.
Bakels C. 2002. Plant remains from Sardinia, Italy, with notes on barley and grape. Vegetation History and Archaeobotany 11:3-8.
Beijerinck W. 1947. Zadenatlas der Nederlandsche Flora. H. Wageningen: Veenman \& Zonen.
Bojňanský V, Fargašová A. 2007. Atlas of Seeds and Fruits of Central and East-European Flora: The Carpathian Mountains Region. Dordrecht: Springer.
Buosi C, Pittau P, Paglietti G, Scanu GG, Serra M, Ucchesu M, Tanda G. 2014. A Human Occupation Cave During the Bronze Age: Archaeological and Palynological Applications of a Case Study in Sardinia (Western Mediterranean). Archaeometry. Doi: 10.1111/arcm.1213.
Cappers RTJ. 2012. Digitale Zadenatlas Van Nederland/Digital Seed Atlas of the Netherlands. Groningen: Barkhuis.
Castelletti L, Castiglioni E, Rottoli M. 2001. L’agricoltura dell'Italia settentrionale dal Neolitico al Medioevo. In: Failla O, Forni G, eds. Le piante coltivate e la loro storia. Dalle origini al transgenico in Lombardia nel centenario della riscoperta della genetica di Mendel. Milano: Franco Angeli Editore, 33-84.
Cox A, van der Veen M. 2008. Changing foodways: watermelon (Citrullus lanatus) consumption in Roman and Islamic Quseir al-Qadim, Egypt. Vegetation History and Archaeobotany 17:181-189.
Del Vais C, Sanna I. 2009. Ricerche su contesti sommersi di età fenicia e punica nella laguna di Santa Giusta (OR). Campagne 2005-2007. Studi Sardi XXXIV. Ortacesus: Grafiche Puddu.
Del Vais C, Sanna I. 2012. Nuove ricerche subacquee nella laguna di Santa Giusta (OR) (campagna del 20092010). Archeoarte 1:201-233.

Di Rita F, Melis RT. 2013. The cultural landscape near the ancient city of Tharros (central West Sardinia): vegetation changes and human impact. Journal of Archaeological Science 40:4271-4282.
Hepper FN. 1990. Pharaoh's flowers. The botanical treasures of Tutankhamun. Kew: Royal Botanic Gardens.
Janick J, Paris HS, Parrish DC. 2007. The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Annals of Botany 100:1441-1457.
Karre L, Lopez K, Getty KJK. 2013. Natural antioxidants in meat and poultry products. Meat Science 94:220227.

Krings V. 2008. Rereading Punic Agriculture: Representation, Analogy and Ideology in the Classical Sourcesvan. In: van Dommelen P, Gómez Bellard C, eds. Rural Landscapes of the Punic World. London: Equinox, 22-43.
Kučan D. 1995. Zur Ern_hrung und dem Gebrauch von Pflanzen im Heraion von Samos im 7. Jahrhundert v. Chr. Jahrbuch des Deutschen Archologischen Instituts 110:1-64.
Levkovskaya GM, Filatenko AA. 1992. Palaeobotanical and palynological studies in South Arabia. Review of Palaeobotany and Palynology 73:241-257.
Lovicu G, Labra M, De Mattia F, Farci M, Bacchetta G, Orrù M. 2011. Prime osservazioni sui vinaccioli rinvenuti negli scavi di Sa Osa. In: Mastino A, Spanu PG, Usai A, Zucca R, eds. Tharros Felix 4. Roma: Carocci Editore, 249-255.
Lugliè C. 2001. Il territorio di S. Giusta in età preistorica e protostorica: nuove acquisizioni. In: Melis T, ed. Santa Giusta. Oristano: Radici, 25-27.
Marinval P, Cassien M. 2001. Les pèpins de raisin (Vitis vinifera L.) des amphores phènico-puniques de l'épave de Coltellazzo, Nora-Pula (Cagliari Sardaigne, Italie). In: Marinval P, ed. Histoires d'hommes, histoires
de plantes (hommages au professeur Jean Erroux), Rencontres d'archéobotanique de Toulouse. Toulouse: Centre d'anthropologie, 122-130.
McGovern PE. 1999. Retsina, mixed fermented beverages, and the cuisine of Pre-Classical Greece. In: Tzedakis Y, Martlew H, eds. Minoans and Mycenaeans: Flavours of Their Time. Athens: Greek Ministry of Culture and National Archaeological Museum, 206-209.
McGovern PE, Glusker D, Exner L, Voigt M. 1996. Neolithic resinated wine. Nature 381:480-481.
Meana MJ, Cubero JI, Sáez P. 1998. Geopónica, o, extractos de agricultura de Casiano Baso. Madrid: Ministerio de Agricultura, Pesca y Alimentación, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria.
Miola A, Da Ruos C, Sostizzo I, Uliana M. 2009. I resti archeobotanici ed entomologici. In: Bonetto J, Falezza G, Ghiotto A, Nora R, eds. Il foro romano. Storia di un'area urbana dall'età fenicia alla tarda Antichità. I materiali. Padova: Italgraf, 909-919.
Mossa L. 1990. La vegetazione forestale del campo dunale di Buggerru-Portixeddu (Sardegna occidentale). Annali Botanici Studi sul Territorio 48:291-306.
Orrù M, Grillo O, Lovicu G, Venora G, Bacchetta G. 2013. Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Vegetation History and Archaeobotany 22:231-242.
Pérez Jordà G, Morales Pérez J, Marlasca Martín R, Gómez Bellard C, van Dommelen P. 2010. La alimentación en una granja púnica de Cerdeña. In: Mata Parreño C, Pérez Jordà G, Vives-Ferrándiz Sánchez J, eds. De la Cuina a la Taula. IV Reunió d'Economia en el Primer Mil•lenni a.C. Saguntum Extra 9, 295-302.
Pignatti S, Anzalone B. 1982. Flora d'Italia. vol 3. Bologna: Edagricole
Podda L, Lazzeri V, Mascia F, Mayoral O, Bacchetta G. 2012. The Checklist of the Sardinian Alien Flora: an Update. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40:14-21.
Poplin F. 1980. F. Les ossements animaux des amphores puniques de Nora I et II . In: Cassien M, ed. Campagne des sauvetages 1980 sur les sites sous-marins de Nora-Pula. Paris, 76-90.
Rinaldi R, Bandini Mazzanti M, Bosi G. 2013. Archaeobotany in urban site: the case of Mutina. Annali di Botanica 3:217-230.
Rottoli M, Castiglioni E. 2009. Prehistory of plant growing and collecting in northern Italy, based on seed remains from the early Neolithic to the Chalcolithic (c. 5600-2100 cal b.c.). Vegetation History and Archaeobotany 18:91-103.
Sabato D, Masi A, Ucchesu M, Peña-Chocarro L, Usai A, Giachi G, Capretti C, Bacchetta G. 2015. Archaeobotanical analysis of a Bronze Age well from Sardinia: a wealth of knowledge. Plant Biosystems, doi: 10.1080/11263504.2014.998313.
Sampels S. 2013. Oxidation and Antioxidants in Fish and Meat from Farm to Fork, Food Industry. Rijeka: InTech.
Schlumbaum A, Vandorpe P. 2012. A short history of Lagenaria siceraria (bottle gourd) in the Roman provinces: morphotypes and archaeogenetics. Vegetation History and Archaeobotant 21:499-509.
Schulze-Motel J. 1974. Literatur ber archologische Kulturpflanzenreste (1972/1973). Kulturpflanze 22:61-76.
Twede D. 2002. Commercial amphoraes. The earliest consumer packages?. Journal of Macromark 22:98-108.
Ucchesu M, Peña-Chocarro L, Sabato D, Tanda G. 2014a. Bronze Age subsistence in Sardinia (Italy): cultivated plants and wild resources. Vegetation History and Archaeobotany, doi: 10.1007/s00334-014-0470-2.
Ucchesu M, Orrù M, Grillo O, Venora G, Usai A, Serreli PF, Bacchetta G. 2014b. Earliest evidence of a primitive cultivar of Vitis vinifera L. during the Bronze Age in Sardinia (Italy). Vegetation History and Archaeobotany. Doi: 10.1007/s00334-014-0512-9.
van Wijk RJ, Van Goor EMJ, Verkley JAC. 1988. Ecological studies on Potamogeton pectinatus L. II. Autecological characteristics, with emphasis on salt tolerance, intraspecific variation and isoenzyme patterns. Aquatic Botany 32:239-260.
van Zeist W. 1983. Fruits in foundation deposits of two temples. Journal of Archaeological Science 10:351-354.
van Zeist W, Bottema S, van der Veen M. 2001. Diet and Vegetation at Ancient Carthage: The Archaeobotanical Evidence. Groningen: Groningen Institute of Archaeology.
Wasylikowa K, van der Veen M. 2004. An archaeobotanical contribution to the history of watermelon, Citrullus lanatus (Thunb.) Matsum. \& Nakai (syn. C. vulgaris Schrad.). Vegetation History and Archaeobotany 13:213-217.
Wetterstrom W. 1986. Appendix VII. A pilot paleoethnobotanical study at Ortu Comidu. In: Balmuth M, et al., eds. Sardara (Cagliari). Preliminary report of excavations 1975-1978 of the Nuraghe Ortu. Comidu. Notizie degli Scavi 8.37:406-409.
Wetterstrom W. 1987. A preliminary report on the plant remains from Nuraghe Toscono. In: Michels JW, Webster GS, eds. Studies in Nuragic archaeology, village excavations at Nuraghe Urpes and Nuraghe Toscono in west-central Sardinia, vol 373. BAR international series
Zohary D, Hopf M, Weiss E. 2012. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford: Oxford University Press.
48 Phoenician-Punic trade: amphorae contents from Santa Giusta lagoon, Sardinia (Italy)

Chapter 3

SEEDS MORPHO-COLOURIMETRIC ANALYSIS AS COMPLEMENTARY METHOD TO MOLECULAR CHARACTERIZATION OF MELON DIVERSITY

SEEDS MORPHO-COLOURIMETRIC ANALYSIS AS COMPLEMENTARY METHOD TO MOLECULAR CHARACTERIZATION OF MELON DIVERSITY

Diego Sabato ${ }^{1}$, Cristina Esteras ${ }^{2}$, Oscar Grillo ${ }^{1-3}$, Belén Picó ${ }^{2}$, Gianluigi Bacchetta ${ }^{1}$
${ }^{1}$ Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Italy.
${ }^{2}$ Instituto de Conservación y Mejora de la Agrodiversidada Valenciana (COMAV), Universitat Politécnica de Valéncia, Spain.
${ }^{3}$ Stazione Consorziale Sperimentale di Granicoltura per la Sicilia (SSGS), Caltagirone, Italy.

Abstract

Melon has undergone an intense process of selection and crossbreeding, resulting in many landraces distributed all over Europe, Africa and Asia. Due to this huge variability, the systematic position of this taxon has been reviewed many times in the last two decades.

The goal of this article is to compare the phenotypic characterization achieved by seed features with the molecular analysis on melon genotypes. A set of 124 accessions of Cucumis melo has been selected for molecular and morpho-colourimetric analyses plus an additional selection of accessions of Cucumis sativus, Citrullus lanatus and Citrullus colocynthis used to highlight seed morphology distances among genus and species.

Genotyping was performed on the basis of 211 polymorphic SNPs and was executed using the iPLEX ${ }^{\circledR}$ Gold MassARRAY Sequenom technology. A total of 137 parameters were specifically designed to evaluate seeds colour, size, shape and texture.

Both molecular and seed morpho-colourimetrical analyses confirm the existence of two melon subspecies while an intermediate group has also been found. A non random allelic distribution in SNPs located in specific genomic regions suggests that some of these regions may account for a part of the observed variation in seed size. Six major groups of varieties can be discriminated on the basis on seed traits.

Keywords: Cucurbitaceae; Cucumis melo; genetic characterization; old landraces; seed image analysis; wild crop relatives.

3.1 Introduction

3.1.1 General background

The Cucurbitaceae family consists of two well defined subfamilies (Zanonioideae and Cucurbitoideae) with about 130 genera and 800 taxa according to most recent classifications, outlining varying degrees of circumscriptive cohesiveness (Jeffrey 2005, Jeffrey and De Wilde 2006). Among them, the most economically important species are Cucumis melo L. (melon), Cucumis sativus L. (cucumber), Citrullus lanatus (Thunb.) Matsum \& Nakai (watermelon) and Cucurbita L. spp. (gourds and squashes).

Melon is worldwide diffused and comprises wild, feral and cultivated varieties, including sweet melons used for dessert and non-sweet ones consumed raw, pickled or cooked (Kirkbride, 1993, Bates and Robinson, 1995). The origin of domesticated melon is not fully understood yet, Africa has been traditionally thought to be the centre of origin of this species, as the presence of melon is attested in Egypt since at least the third millennium BC (Zohary et al. 2012) and since the second millennium BC in Western Mediterranean (Sabato et al. 2015 [Chapter 1]). However, recent studies postulate that the origin-distribution centre include the Australia-Malaysia area (Renner et al. 2007). In addition, due to the high level of variation found in Asia, especially in India, melon could have originated there and then reached Africa (Renner et al. 2007, Sebastian et al. 2010). Other theories suggest that two independent domestications took place (Jeffrey 1980, Esquinas-Alcazar and Guilick 1983, Mallick and Mausi 1986, Bates and Robinson 1995). First representations show fruits likely belonging to the nonsweet melon varieties chate and flexuosus (with long cucumber-like fruits) (Janick et al. 2007). The presence of round sweet melons in the Mediterranean basin till the Classical Age is uncertain, but it is well proven since the $11^{\text {th }}$ century AD by Arabian trade with Central Asia (Paris et al. 2012).

Although C. melo has been traditionally separated into two subspecies according to ovary hairiness, subspecies melo and agrestis (Naudin 1859), nowadays this classification mainly responds to molecular clustering. Different varieties have been reported within each subspecies (Naudin 1859, Munger and Robinson 1991). Pitrat et al. (2000) recognized 16 varieties: cantalupensis Naudin and reticulatus Ser. (cantaloupes, muskmelons), inodorus H.Jac. (winter melons, casaba melons), flexuosus L. (snake melons), chate Hasselq. (cucumber melons), adana Pangalo, chandalak Gabaev, ameri Pangalo (Asian melons), chito C.Morren (American melons), dudaim L. (pocket melons), and tibish Mohamed within the subsp. melo L. and acidulus Naudin, conomon Thunb., makuwa Makino and chinensis Pangalo (pickling melons), and momordica Roxb. (snap melons) within subsp. agrestis Naudin. In later revisions, Pitrat (2008) merged some varieties and Esteras et al. (2009, 2013), after further molecular studies, moved tibish and chito into the subspecies agrestis. Additional simplified systems have also been proposed (Nesom 2011). Some of these varieties are quite heterogeneous, and accessions displaying intermediate features are difficult to classify. On the other hand, the wild forms of agrestis are usually referred to as C. melo subsp. agrestis var. agrestis, following early
classifications. They are mainly distributed in North and Eastern Africa and the Indian sub-continent (Roy et al. 2012), but free-living forms of small size fruited melons have been found in Northern Australia, Southern USA and Central America. Among all the varieties, the sweet cantalupensis, reticulatus and inodorus melons are the ones with the most commercial interest worldwide (Pitrat, 2008).

3.1.2 Analyses

In order to establish genetic relationships among the aforementioned subspecies and varieties, several molecular studies have been carried out in melon, employing different marker systems like RFLPs, RAPDs, AFLPs, ISSRs, SSRs and lately SNPs (reviewed in: Esteras et al. 2012). Most of them support the division at sub-specific level and some have contributed to better reclassify some of the varieties (Stepansky et al. 1999, Deleu et al. 2009, Esteras et al. 2009, 2013). In addition, a high diversity has been reported within the subspecies agrestis, which has been used in breeding mainly to introduce disease resistances to commercial types. Geographically, more variation has been described near the centres of domestication (Africa and India) compared to other distribution areas (Blanca et al. 2012). SNPs are considered to be high-quality markers and are mostly used for genome-wide surveys of genetic diversity in high to medium-throughput genotyping platforms (Fan et al. 2006, Steermers and Gunderson 2007, Gabriel et al. 2009). The number of this kind of markers available in melon has largely increased in the last few years (Blanca et al. 2011, 2012). The availability of these large SNPs collections (http://melogene.net/) has encouraged diversity studies in melon on a genome-scale. Esteras et al. (2013) reported the first application of a GoldenGate platform to genotype a melon core collection with 768 markers distributed throughout the genome, demonstrating the usefulness of this SNP set for genetic diversity and population structure studies. Furthermore, the recent publication of the sequence of the melon genome (Garcia-Mas et al. 2012) will also promote this kind of surveys, providing an additional resource to map these newly identified SNPs.

Regarding phenotypic variability in this crop, several studies have been carried out with core collections representative of the species (Stepansky et al. 1999, Esteras et al. 2009, Leida et al. in press), and with germplasm from specific centres of origin and diversity (reviewed in: Esteras et al. 2012, Raghami et al. 2014). These assays have basically focused on fruit traits and response to biotic and abiotic stress and many QTLs controlling these traits have been already mapped in the melon genome (Diaz et al. 2011). In contrast to other species for which extensive efforts have been made in mapping QTLs for seed properties (Cai et al. 2012), and even in cloning the underlying genes (Orsi and Tanksley 2009), only some studies have included seed traits in melons. Some of them report the correlation of seed traits to botanical classification and origin (Stepansky et al. 1999, Yashiro et al. 2005, Tanaka et al. 2007). Fujishita and Nakagawa (1973) pointed out that seed size is one important trait for variety identification in melon. Fujishita (1980) described makuwa and conomon varieties with seeds smaller than 9 mm , reticulatus with seeds larger than 9 mm and momordica with
intermediate seeds. Moreover in a recent study Tanaka et al. (2013) correlated seed length and weight to chloroplast genome variation, using accessions belonging to six varieties and some unclassified accessions. However, seed traits have not been extensively analysed in large collections, representing the whole diversity of the species, mainly due to the difficulty to measure these tiny characteristics. In other cucurbits like Cucurbita pepo, seed traits have been used as discriminating factors since early studies (Decker and Newsom 1988), and correlation between seed and fruit traits has been reported (Paris and Nerson 2003). The existence of a similar correlation in melon needs to be demonstrated, but it would facilitate genetics studies of seed characteristics by using the available genetic information on fruit traits.

Since the inception of the taxonomy, hierarchical classifications have been constructed on the basis of morphology and it seems that these classifications are congruent with most of phylogenic levels. DNA sequence analyses can provide corroboration, resolution, support, and accuracy for those parts of phylogeny for which appropriate morphological data is lacking (Scotland et al. 2003). For example, one of the latest works performed with Sardinian grape cultivars correlated shape features with molecular discrimination, in this case the multiproxy approach allowed to achieve a clear discrimination among local cultivars and revealed the synonymy groups of local names attributed on same cultivar (Orrú et al. 2013a). Positive results have been obtained as well on molecular and seed morphological traits on pumpkin (Liu et al. 2013). Morpho-colourimetric evaluations are commonly employed as tools to assess shape, size and colour of objects, in order to relate these quantitative physical characteristics with qualitative aspects (Venora et al. 2009, Grillo et al. 2010). Compared to conventional measurements, computer-aided morpho-colourimetry is exponentially faster, more accurate, precise and efficient, providing a significantly broader spectrum of measurements of morphological and colourimetric features and, at the same time, replacing subjective estimations with objective quantifications (Venora et al. 2007a, Bacchetta et al. 2008). Several works about the application of image analysis to the diaspores of wild vascular flora have been carried out, providing excellent results of classification within taxonomic units close to infra-generic, infra-specific and intra-population levels (Bacchetta et al. 2008, Bacchetta et al. 2011a, 2011b, Grillo et al. 2012, Pinna et al. 2014). Many studies have been focused also on crop wild relatives and landraces (Venora et al. 2007b, Smykalova et al. 2011, Smykalova et al. 2013), and recently many authors focused on the Vitis vinifera complex (Rivera et al. 2007, Terral et al. 2010, Orrú et al. 2013a, 2013b).

The knowledge of the existing diversity in melon is essential, not only for the conservation of this genetic diversity, but also for its exploitation in commercial breeding, as this species displays crossability problems with other species of the genus Cucumis.

The goals of this research are to:

- compare the groups established using molecular analyses with those achieved by seed characters;
- analyse the variability of morpho-colourimetric seed features;
- implement statistical classifiers able to discriminate among the studied varieties;
- increase the knowledge about the variation of the current extant melon seed collections;

3.2 Material and methods

3.2.1 Seed lots detail

The starting material was a core collection of 200 melon accessions, including wild relatives, feral types, landraces, breeding lines and commercial cultivars from 54 countries representing the putative origin areas and diversification centres of the species. This collection was established on the framework of a previous project (MELRIP 2007-2010, Esteras et al. 2009, 2013). It has been multiplied and conserved at the COMAV Genebank (Institute for the Conservation and Breeding of the Agrobiodiversity, www.comav.upv.es). The full collection was genotyped with AFLP and SNPs markers, and extensively phenotyped for plant and fruit traits at COMAV.

According to the previously generated phenotypic and genotypic data, we selected a subset of 124 accessions, originated from 48 countries and representing all varieties. Fruits were collected at the optimum maturity stage corresponding to the complete morphologic and chromatic seed development. To avoid over-representation of single plant and/or fruit features, seeds from the highest number of plants and fruits available for each accession have been taken. Undeveloped (stenospermocarpic), hard deformed and sterile seeds were excluded. Fruit weight phenotypes of this subset of accessions produced in these previous phenotyping assays were used to study the correlation between fruit and the seed traits analysed in the present work. Details of accessions are provided in Annex 1. Representative pictures of fruits and seeds of each variety can be found in Fig. 1 and 2. This subcollection included accessions from both subspecies melo and agrestis. Within the subspecies melo, 41 accessions belonging to the cantalupensis, reticulatus and inodorus varieties were assayed, including representatives of most commercial market classes, but also old landraces selected in different countries. Moreover, 26 landraces of the ameri variety (including the close ameri, adana and chandalack varieties), mainly coming from Eastern Europe, Central and Western Asia and Northern Africa, were also considered. This variety is rarely found in the commercial chain and is thought to be the origin of modern cantalupensis and inodorus cultivars (Pitrat et al. 2000). Additionally, 10 African and Asian flexuosus melons, one representative of the cucumber-like melon chate from Southern Italy, and three ornamental aromatic dudaim from central Asia, were analysed.

The best-represented varieties of the subspecies agrestis were conomon (with the closely related chinensis and makuwa) and momordica as they are widely used as breeding materials, and included accessions from Far-Eastern countries and India. Several non-sweet and non-climacteric
agrestis accessions were assayed: six acidulus accessions from Central Africa, two tibish from Sudan (considered to be the most primitive form of melon) (Pitrat et al. 2000), one chito and nine wild agrestis melons with small fruits from Africa, India and America. Also seven accessions that do not fit any of these varieties, showing intermediate characteristics, were included. Accessions of C. melo subsp. agrestis var. agrestis were considered as a separate group, because they represent the wild form of melon whereas all the remaining varieties are cultivated forms.

With the purpose to evidence morphology distances in genus and species levels, a small set of close relatives of melon were used (Fig. 3). An overall amount of 21 accessions of Cucumis sativus, 18 of Citrullus lanatus and nine of Citrullus colocynthis, were selected [Annex 2]. All accessions were supplied by COMAV Genebank and represent mainly Iberian Peninsula landraces and Far East, African and Mediterranean ones.

3.2.2 Molecular analysis

The DNA was extracted from young leaves using the CTAB method with minor changes (Esteras et al. 2012). DNA concentrations in TE buffer were adjusted to $50 \mathrm{ng} / \mu \mathrm{l}$, with the PicoGreen fluorescence being measured on an ABI7900 apparatus (Applied Biosystems). Genotyping was done with a total of 211 polymorphic SNPs (Single Nucleotide Polymorphism), evenly distributed throughout the genome, that were selected from the SNP melon collection available in the Melogene database (http://www.melogene.net/) and in silico identified in two previous re-sequencing analysis (Blanca et al. 2011, 2012). Genotyping was performed using the iPLEX $^{\circledR}$ Gold MassARRAY Sequenom technology at the epigenetic and genotyping unit of the University of Valencia (Unitat Central d'Investigació en Medicina UCIM). This genotyping technology relies on Single Base Extension (SBE) using mass-modified dideoxynucleotide terminators of an oligonucleotide primer which anneals immediately upstream of the polymorphic site of interest to generate different allelic products. Using the MALDI-TOF mass spectrometry, the distinct mass of the extended primer identifies the SNP allele (Gabriel et al. 2009).

The genotyping results were employed to perform a cluster analysis using the PowerMarker software (Liu and Muse 2005). Nei's genetic distance (Nei et al. 1983) was used, and the support values for the degree of confidence at the nodes of the dendrogram were analysed by bootstrap resampling 1,000 times. Phylip 3.69 software (Felsenstein 1997) was employed to construct the consensus tree and TreeView32 (Page 1996) to visualize it. In addition, the number of alleles, the frequency of the most common allele (MAF) and the polymorphism information content (PIC) were calculated for each locus with PowerMarker.

Figure 1. fruits and seeds of each melon variety included in the study

Cucumis melo

000000000000000000000000

subsp. melo var. ameri

2000000000
 coconocono
 subsp. melo var. cantalupensis

subsp. melo var. inodorus

200000 incocoo
 subsp. melo var. chate
 subsp. melo var. flexuosus

subsp. agrestis var. conomon

$$
0000000000000
$$

subsp. agrestis var. chito
subsp. agrestis var. tibish subsp. agrestis var. momordica subsp. agrestis var. chinensis

Figure 2. fruits and seeds of each melon variety included in the study

Figure 3. Representative seeds of watermelon, colocynth, melon and cucumber.

The population structure underlying the genotyped collection, the number of populations and the probability of each accession belonging to each inferred population, was analysed using STRUCTURE v2.2 (Pritchard et al. 2000) in Esteras et al. (2013). Information about markers employed in the genotyping assay and summary statistics generated in the genotyping analysis with PowerMarker software is provided in Annex 3. Detailed information for each SNP marker, such as sequence, allele variation and location is available in the Melogene database. Both the database of the melon genome, melonomics (http://melonomics.net), and the SNP melon collection available in melogene were used to select and analyse the variation of the melon orthologue of a gene underlying a major QTL associated to seed size in tomato, Seedweight 4.1 (Sw4.1) (Orsi and Tanksley 2009). This is an ABC transporter orthologous to the Arabidopsis ABC transporter gene At4g39850, also associated with variation in both seed length and width in this model species. This family of proteins is used in transmembrane transport of diverse substances.

Most SNPs used in this study were employed in previous mapping experiments and their position in the genetic map is known (Esteras et al. 2013). This genetic position was used to check the allelic distribution in the germplasm collection of SNPs located in regions of the genetic map in which QTLs for fruit size were previously located (Diaz et al. 2011), and to confirm if differential allelic distributions were also related with differences in the seed traits measured in the present study.

3.2.3 Seed morpho-colourimetric analysis

Before image acquisition, the scanner was calibrated for colour matching, using the Kodak Q60 R2 Colour Input Target reference image, following the protocol of Shahin and Symons (2003) as suggested by Venora et al. (2009). Two images were acquired for each sample, one with black and the other one with white background, using a flatbed scanner (Epson EU22), with a resolution of 400 dpi and 24 bit-depth, in RGB colour model and stored in TIFF format. Sub-samples consisting of 100 seeds were randomly chosen from the original seed lots and arranged on the scanner tray for scanning in such a way that they did not touch each other. When the original accession was numerically lower than 100 units, the analysis was executed on the whole seed lot. All images were analysed with KS400 release 3.0 image analysis software by Carl Zeiss Vision GmbH (Oberkochen, Germany). A macro, expressly developed for the characterization of cultivated leguminous seeds (Venora et al. 2009), was partially modified to perform automatically all the analysis procedures, reducing the execution time and contextual mistakes in the analysis process. In order to increase the discrimination power, this macro was further enhanced adding algorithms able to compute many other size, shape and colour features of each seed in the images. A total of 20 parameters, specifically designed to evaluate seed colour, were measured together with 17 features descriptive of seed dimensions, 78 shape Elliptic Fourier Descriptors (EFDs) able to define seeds contour shape, and further 22 Haralik's features to assess seed surface texture, for an overall amount of 137 morpho-colourimetric parameters (Table 1).

	Colour parameters
Rmean	Red channel mean value of seed pixels (grey levels)
R_SD	Standard Deviation of Red channel value
Gmean	Green channel mean value of seed pixels (grey levels)
G_SD	Standard Deviation of Green channel value
Bmean	Blue channel mean value of seed pixels (grey levels)
B_SD	Standard Deviation of Blue channel value
Hmean	Hue channel mean value of seed pixels (grey levels)
H_SD	Standard Deviation of Hue channel value
Lmean	Lightness channel mean value of seed pixels (grey levels)
L_SD	Standard Deviation of Lightness channel value
Smean	Saturation channel mean value of seed pixels (grey levels)
S_SD	Standard Deviation of Saturation channel value
Dmean	Density channel mean value of seed pixels (grey levels)
D_SD	Standard Deviation of Density channel value
S	Skewness, asymmetry degree of intensity values distribution (grey levels)
K	Kurtosis, peakness degree of intensity values distribution (densitometric units)
H	Energy measure of the increasing intensity power (densitometric units)
E	Entropy Dispersion power (bit)
Dsum	Sum of Density values of the seed pixels (grey levels)
SqDsum	Sum of the Squares of density values (grey levels)

Shape parameters	
A	Area (mm^{2})
P	Perimeter (mm)
Pconv	Convex Perimeter (mm)
PCrof	Crofton's Perimeter (calculated using the Crofton's formula) (mm)
Pconv/PCrof	Ratio between convex and Crofton's perimeters
Dmax	Maximum diameter of the seed (mm)
Dmin	Minimum diameter of the seed (mm)
Dmin/Dmax	Ratio between minimum and maximum diameters
Sf	Shape Factor $=\left(4 \mathrm{X} \pi \mathrm{X}\right.$ area)/Perimeter ${ }^{2}$ (normalized value)
Rf	Roundness Factor $=\left(4 \mathrm{X} \pi \mathrm{X}\right.$ area) $/$ max diameter $\left.{ }^{2}\right)($ normalized value $)$
Ecd	Diameter of a circle with an area equivalent to that of the seed (mm)
EAmax	Maximum axis of an ellipse with equivalent area (mm)
EAmin	Minimum axis of an ellipse with equivalent area (mm)
Cpt	Compact grade $=(\sqrt{2} 2(4 / \pi) \mathrm{X}$ area)/ $/$ max
C	Curl = ratio between maximum diameters and Fiber lengths
Fl	Fiber length (mm)
Cux	Convexity = ratio between Crofton's Perimeters and real Perimeters
EFDs 1 to 78	Elliptic Fourier Descriptors

	Texture parameters
Haralik 1	Angular second moment
HaralikSD1	Standard Deviation of Angular second moment
Haralik 2	Contrast
HaralikSD2	Standard Deviation of Contrast
Haralik 3	Correlation
HaralikSD3	Standard Deviation of Correlation
Haralik 4	Sum of square: variance
HaralikSD4	Standard Deviation of Sum of square: variance
Haralik 5	Inverse difference moment
HaralikSD5	Standard Deviation of moment
Haralik 6	Sum average
HaralikSD6	Standard Deviation of Sum average
Haralik 7	Sum variance
HaralikSD7	Standard Deviation of Sum variance
Haralik 8	Sum Entropy
HaralikSD8	Standard Deviation of Sum Entropy
Haralik 9	Entropy
HaralikDS9	Standard Deviation of Entropy
Haralik 10	Difference variance
HaralikSD10	Standard Deviation of Difference variance
Haralik 11	Difference Entropy
Haralik SD11	Standard Deviation of Difference Entropy

Table 1. List of characters analysed in morpho-colourimetric analysis

3.3 Results

3.3.1 Molecular analysis

The 211 polymorphic SNPs used in this study were quite informative with PIC (Polymorphism Information Content) average values ranging from 0.01 to 0.48 (see Supplementary data). Table 2 shows the polymorphism detected in each of the analysed group of accessions. The highest degree of polymorphism was found in the ameri accessions (91.00%), followed by flexuosus (85.78%) which also displays the highest genetic diversity (0.32), being cantalupensis and inodorus less variable (63.51% and 63.98% respectively). Within subsp. agrestis the highest polymorphism level was found in momordica (73.93%), with a genetic diversity of 0.30 , being the wild agrestis less variable (46.92\%).

C. melo subsp. melo		C. melo subsp. agrestis	
ameri	91.00\% / 0.2559 ${ }^{\text {a }}$	agrestis	46.92\% / 0.1535
cantalupensis	63.51\% / 0.2022	conomon	42.65\% / 0.1243
dudaim $^{\text {b }}$	-	chito ${ }^{\text {b }}$	-
flexuosus	85.78\% / 0.3193	acidulus	42.65\% / 0.1504
inodorus	63.98\% / 0.1609	makuwa	5.21\%/ 0.0197
reticulatus	53.55\%/ 0.1873	momordica	73.93\% / 0.3044
chate ${ }^{\text {b }}$	-	chinensis	$53.35 \% / 0.1715$
		tibish	

${ }^{\text {a }}$ Nei's gene diversity (1973).
${ }^{\mathrm{b}}$ not calculated, none or less than three genotypes analysed in this group

Table 2. Polymorphism level and gene diversity in the different groups according to SNP analysis.

The relationships among the varieties assayed in this study are shown in the NJ tree, constructed with the polymorphic SNPs (Fig. 4). This tree supports the sub specific division and the intermediate position of momordica, flexuosus and dudaim varieties. Within C. melo subsp. melo, inodorus and cantalupensis varieties, are clustered apart, with two differentiated clusters within inodorus (one containing mainly the Spanish types and a more disperse one with African and Eastern Europe types), and two clusters of cantalupensis (commercial Charentais types, and other cantalupensis and reticulatus types). Accessions of ameri variety appear mixed with inodorus and cantalupensis. In the C. melo subsp. agrestis the African agrestis and tibish varieties, and the Asian conomom, makuwa and chinensis ones, could be clearly separated in two groups. Most of the other varieties of this subspecies were intermediate between these two groups.

1000

Figure 4. NJ tree constructed with SNPs results. Each group of accessions according to botanical variety is represented in a different colour. Only Bootstrap values higher than 500 are showed.

Annex 1 includes the population or populations (accessions with admixture) to which each accession is assigned according to the Structure analysis (Esteras et al. 2013). The cantalupensis accessions corresponded mostly to two structured populations (Charentais French types, population 1, and American reticulatus, population 2). A similar situation was found in the inodorus accessions, with a differentiated population of the Spanish melons (population 3), and a second from Northern Africa and Eastern Europe (population 4). In both varieties some traditional or improved materials showed an admixture of one or two cantalupensis and/or inodorus populations. Some Central Asian ameri, ananas and chandalack accessions belonged to a differentiated population (population 5), but most of them showed admixture of two or more populations. Agrestis accessions were mostly separated into the exotic Eastern conomon (population 6) and the African wild agrestis plus acidulus and tibish (population 7), despite some degree of admixture of population 6 and 7 was found in the latter groups.

3.3.2 Seed morpho-colourimetric analysis

In order to assess the phenotypic differences among genus and species hierarchy, the LDA was applied, considering all accessions of Cucumis melo, C. sativus, Citrullus lanatus and C. colocynthis. The discrimination of these species, based on 16,096 seeds, is quite clear. All species were discriminated with a high percentage, overall correct identification was 97.6% (Table 3). Misclassification between the two genera, Cucumis and Citrullus, was fairly close to zero. Also classification errors between the two respective species within the same genus were not significant ($1.1 \%-5.4 \%$ between C. melo and C. sativus, $0.7 \%-5.2 \%$ between C. lanatus and C. colocynthis).

	Cucumis melo	Cucumis sativus	Citrullus lanatus	Citrullus colocynthis	Total
Seeds number					n°
Cucumis melo	$\mathbf{1 1 , 4 7 2}$	123	-	-	11,595
Cucumis sativus	112	$\mathbf{1 , 9 5 0}$	-	-	2,062
Citrullus lanatus	76	1	$\mathbf{1 , 4 1 2}$	10	1,499
Citrullus colocynthis	16	-	49	$\mathbf{8 7 5}$	940
Percentage					$\%$
Cucumis melo	$\mathbf{9 8 . 9}$	1.1	-	-	100.0
Cucumis sativus	5.4	$\mathbf{9 4 . 6}$	-	-	100.0
Citrullus lanatus	5.1	0.1	$\mathbf{9 4 . 2}$	0.7	100.0
Citrullus colocynthis	1.7	-	5.2	$\mathbf{9 3 . 1}$	100.0
97.6% overall classification					

- 97.6% overall classification

Table 3. Results of cross validated LDA analysis on Cucumis melo, Cucumis sativus, Citrullus lanatus and Citrullus colocynthis. First part of the table reports the amount of analysed seeds, the second part the respective percentage. The value of the number of an item crossed with itself and the other items indicates the number/percentage of seeds correctly classified as the same group, e.g. among the 11,595 of C. melo seeds, $11,472(98.9 \%)$ have been correctly classified as melon, $123(1.1 \%)$ as C. sativus and none as C. colocynthis or C. lanatus.

Figure 5 reports the 2D scatter-plot graph of the discrimination among Cucumis and Citrullus species. The four taxa are clearly grouped and the distance between the two genera, Cucumis and Citrullus, is higher than that between the two species within the same genus. C. colocynthis and C. lanatus seeds are more distant than C. melo and C. sativus seeds.

Figure 5. Scatter plot graph based on LDA analysis discrimination of Cucumis melo, Cucumis sativus, Citrullus lanatus and Citrullus colocynthis. Small points represent single seed data, black points represent their average (centroid). Spatial arrangement of points suggests similarity and dissimilarity of groups, but just first two functions of 3 available can be used for the graphical representation. The variance on X axis is 74.4% and on Y axis is 15.1%, the remaining 10.5% is distributed on the non represented third function.

Table 4 shows the first 10 discriminant parameters according to the F-to-remove value. As expected, the most important seed character was related to seed colour, mainly the mean red channel value (Rmean). It means that colour, and in particular the wavelengths related to the red light, is the most reliable feature to distinguish among these taxa. Seed dimension also plays an important role in discrimination. Minimum diameter (Dmin), Area (A) and some derived measures such as the maximum axis of the ellipse with equivalent area (Eamax), were of great importance. Also two texture parameters (Haralik11 and 5), resulted in being useful for the taxa identification, mainly related to differences between the spotted and wrinkled watermelon seeds and the smooth and monochromatic melon and cucumber seeds.

	Parameter	F-to-emove	Tollerance	Wilks' lambda
1	Rmean	3526.6	0.045	0.008
2	Dmin	914.2	0.020	0.005
3 Area	755.6	0.019	0.005	
4	Haralik11	651.4	0.197	0.005
5	Haralik5	595.1	0.001	0.005
6	FD18	593.8	0.290	0.005
7	SDsum	570.9	0.008	0.005
8	Eamax	532.5	0.126	0.005
9	Sf	526.4	0.009	0.005
10	Cpt	404.2	0.005	0.005

Table 4. First 10 factors used for discrimination among species inorder of decreasing F-to-remove, that describes the power of each variable in the model. The Tolerance indicates the proportion of a variable variance not accounted by other independent variables in the equation. Wilks' lambda is a direct measure of the proportion of variance in the combination of dependent variables that is unaccounted for by the independent variable.

Discrimination of melon seeds between the two C. melo subspecies was also clear with an overall correct identification of 93.2% (Table 5). Seeds of the subspecies melo were correctly classified in 98.2% of cases, with only 146 seeds out of the 8,125 analysed seeds misattributed to the subspecies agrestis. Wild melons were also correctly classified in 96.4% of cases, with the remaining 3.6% of the cases misclassified as seeds belonging to the same subspecies and not to subspecies melo. Subspecies agrestis was correctly discriminated in 76.7% of cases.

	C. melo subsp. melo	C. melo subsp. agrestis	C. melo subsp. agrestis (wild)	Total
Seed number				n°
C. melo subsp. melo	$\mathbf{7 , 9 7 9}$	146	-	8,125
C. melo subsp. agrestis	486	$\mathbf{2 , 0 0 8}$	124	2,618
C. melo subsp. agrestis (wild)	-	31	$\mathbf{8 2 1}$	852
Percentage	$\mathbf{9 8 . 2}$	1.8		$\%$
C. melo subsp. melo	18.6	$\mathbf{7 6 . 7}$	-	100.0
C. melo subsp. agrestis	-	3.6	4.7	100.0
C. melo subsp. agrestis (wild)			$\mathbf{9 6 . 4}$	100.0
93.2% overall classification				

- 93.2% overall classification

Table 5. Results of cross validated LDA analysis on melon subspecies.

Unlike the inter-genera classification, infraspecific classification is mainly due to seed size parameters (Table 6). Area and Eecd are the first two parameters used to distinguish between subspecies, the colour traits being less important. Nevertheless, R_SD, S_SD, B_SD, L_SD colour values were useful to differentiate melo seeds, with a darker cream colour, from lighter agrestis seeds.

	Parameter	F-to-remove	Tollerance	Wilks' lambda
1	Eecd	532.1	0.006	0.112
2	Area	333.0	0.003	0.108
3	Gmean	224.8	0.018	0.106
4	R_SD	188.1	0.006	0.106
5 S_SD	170.4	0.039	0.106	
6 B_SD	144.7	0.023	0.105	
7	L_SD	118.6	0.003	0.105
8 Energy	107.0	0.032	0.104	
9	Entropy	99.4	0.017	0.104
10	HaralikSD7	99.0	0.022	0.104

Table 6. First 10 factors used for discrimination among subspecies in order of decreasing F-to-remove.
Table 7 shows the cross-validated results of melon varieties classification. Correct classification percentages of varieties belonging to subspecies agrestis (ranging from 55.8% to 93.3%) was greater than that of melo varieties (ranging from 37.1% to 86.1%). Overall correct identification was of 64.9%. Wild melons formed a homogeneous group, with only a 6.7% of misclassification with other related types of the agrestis subspecies.

The other two varieties of subspecies agrestis, more genetically related to the wild types, are tibish and acidulus. Accessions of both varieties included in this study were all from Africa except one from Sri Lanka, and their seeds were quite well discriminated, 79.5% and 80.6% respectively. A lower degree of discrimimination (ranging from 54.2% to 70.6%) was found in accessions of the conomon and related varieties, chinensis and makuwa, misclassifications mostly occurred among them. Within the subspecies melon, seed analysis gave a 20% of ameri classified as inodorus and vice versa. Also a 24.4% and 16.4% of misclassification with the ameri type was found in cantalupensis and reticulatus, respectively. Momordica was misidentified in several other varieties, mainly belonging to subspecies melo (ameri, flexuosus and reticulatus). It was not possible to define this variety as a determined group, since seeds can be correctly classified as momordica only in 55.8% of cases. Figure 6 shows the spatial position occupied by each variety where affinity distances can be deduced. Varieties belonging to subspecies agrestis, except from momordica variety, are distributed mainly in the left quadrant, rather than subspecies melo that occupies the right side. An intermediate group across the two subspecies, formed with momordica, dudaim, flexuosus and chate varieties, can be easily determined. Both dimension and colour traits proved to be key parameters (Table 8). Area and Eecd were again the most discriminant factors followed by colour parameters.

	$\begin{aligned} & \text { Ĩ } \\ & \text { § } \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & \text { D } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \text { In } \\ & \text { In } \\ & \text { I } \\ & \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { S. } \\ & \text { U } \end{aligned}$	$\frac{\stackrel{\pi}{3}}{\frac{1}{3}}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E } \\ & \frac{0}{0} \\ & 0 \end{aligned}$			$\begin{aligned} & \sqrt[5]{7} \\ & 0.0 \end{aligned}$		$\begin{aligned} & \tilde{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { N } \\ & \text { d } \\ & \text { む } \end{aligned}$	$\frac{0}{3}$		$\begin{aligned} & \stackrel{0}{\Xi} \\ & \text { E } \\ & \dot{U} \\ & . \quad \end{aligned}$	$\begin{aligned} & \tilde{0} \\ & 0 \\ & 000 \\ & 0 \\ & \text { U } \\ & . \quad \end{aligned}$	Total
Seed number																		n°
ameri	1569	479	164	114	27	54	6	45	12	-	-	-	-	1	-	41	3	2515
inodorus	456	1516	64	93	12	11	1	23	1	1	-	-	-	-	-	20	1	2199
cantalupensis	233	57	354	182	51	37	-	7	4	1	10	-	-	-	-	9	10	955
reticulatus	112	24	68	444	-	1	18	-	-	-	-	-	-	-	-	14	-	681
chate	6	-	-	-	85	5	-	2	-	-	-	-	-	-	-	-	-	98
flexuosus	147	2	16	12	21	637	22	47	1	1	-	-	-	-	-	1	-	907
dudaim	42	-	-	13	1	-	229	1	7	1	-	-	-	1	-	-	-	295
momordica	68	31	2	18	2	32	1	198	-	-	-	-	-	-	-	3	-	355
acidulus	14	2	15	-	-	7	1	1	458	10	19	1	19	3	-	1	17	568
tibish	-	-	-	-	-	-	4	-	18	124	-	1	1	-	-	-	8	156
chinensis	23	1	24	-	-	-	4	-	16	1	317	80	46	30	42	-	1	585
conomon	-	-	-	-	-	-	-	-	10	14	52	195	24	-	-	-	1	296
makuwa	-	-	-	-	-	-	-	-	8	17	55	30	274	-	4	-	-	388
chito	-	-	-	-	-	-	1	-	-	2	-	-	-	83	4	-	-	90
agrestis	-	-	-	-	-	-	-	-	-	15	13	-	22	7	795	-	-	852
indet. melo	60	126	44	60	-	-	-	-	27	5	5	-	-	-	-	114	34	475
indet.agrestis	-	-	6	2	-	6	-	1	29	1	1	-	-	-	-	4	130	180
Percentage																		\%
ameri	62.4	19.0	6.5	4.5	1.1	2.1	0.2	1.8	0.5	-	-	-	-	-	-	1.6	0.1	100.0
inodorus	20.7	68.9	2.9	4.2	0.5	0.5	-	1.0	-	-	-	-	-	-	-	0.9	-	100.0
cantalupensis	24.4	6.0	37.1	19.1	5.3	3.9	-	0.7	0.4	0.1	1.0	-	-	-	-	0.9	1.0	100.0
reticulatus	16.4	3.5	1-	65.2	-	0.1	2.6	-	-	-	-	-	-	-	-	2.1	-	100.0
chate	6.1	-	-	-	86.7	5.1	-	2.0	-	-	-	-	-	-	-	-	-	100.0
flexuosus	16.2	0.2	1.8	1.3	2.3	70.2	2.4	5.2	0.1	0.1	-	-	-	-	-	0.1	-	100.0
dudaim	14.2	-	-	4.4	0.3	-	77.6	0.3	2.4	0.3	-	-	-	0.3	-	-	-	100.0
momordica	19.2	8.7	0.6	5.1	0.6	9.0	0.3	55.8	-	-	-	,	-	-	-	0.8	-	100.0
acidulus	2.5	0.4	2.6	-	-	1.2	0.2	0.2	80.6	1.8	3.3	0.2	3.3	0.5	-	0.2	3.0	100.0
tibish	-	-	-	-	-	-	2.6	-	11.5	79.5	-	0.6	0.6	-	-	-	5.1	100.0
chinensis	3.9	0.2	4.1	-	-	-	0.7	-	2.7	0.2	54.2	13.7	7.9	5.1	7.2	-	0.2	100.0
conomon	-	-	-	-	-	-	-	-	3.4	4.7	17.6	65.9	8.1	-	-	-	0.3	100.0
makuwa	-	-	-	-	-	-	-	-	2.1	4.4	14.2	7.7	70.6	-	1.0	-	-	100.0
chito	-	-	-	-	-	-	1.1	-	-	2.2		-	-	92.2	4.4	-	-	100.0
agrestis	-	-	-	-	-	-	-	-	-	1.8	1.5	-	2.6	0.8	93.3	-	-	100.0
indet. melo	12.6	26.5	9.3	12.6	-	-	-	-	5.7	1.1	1.1	-	-	-	-	24.0	7.2	100.0
indet.agrestis	-	-	3.3	1.1	-	3.3	-	0.6	16.1	0.6	0.6	-	-	-	-	2.2	72.2	100.0

- 64.9% overall classification

Table 7. Results of cross validated LDA analysis on melon varieties
In order to set up statistically solid groups, according to morpho-colourimetric data, varieties with similar phenotypic characters were clustered. Six different macro-groups were isolated: the ameri/inodorus group, the cantaloupe group (cantalupensis and reticulatus), the intermediate group (dudaim, chate, flexuosus and momordica), the African agrestis group (tibish and African acidulus), the conomon group (conomon, chinensis, makuwa and Asian acidulus) and the wild type group (agrestis and chito). In Table 9, cross validated results of LDA is shown, while Table 10 reports the main features that contribute to taxa discrimination. Again Area was one of the most important discriminatory parameters, together with Eecd and some colour descriptors. Overall correct identification was of 78.3%. Most macro-groups resulted in being correctly classified, with percentages up to 73.5%, except for cantaloupe group that reached 61.9% of correct identification, confirming a high overlapping of these ecotypes with the ameri/inodorus group, which anyway can be
correctly isolated in 85.1% of cases. Indeterminate melo and agrestis groups, formed with nonclassifiable accessions, were totally scattered in their respective subspecies and intermediate forms.

Figure 6. Scatter plot graph based on melon varieties. Small points represent single seed data, black points represent their average (centroid). Spatial arrangement of points suggests similarity and dissimilarity of groups, but just first two functions of 16 available can be used for the graphical representation. The variance on X axis is 70.1% and on Y axis is 8.2%, the remaining $21,7 \%$ is distributed over the 16 non represented functions. Major areas occupied of subspecies agrestis and melo varieties and their intermediate forms are marked.

Parameter	F-to-remove	Tollerance	Wilks' lambda	
1	Area	221.7	0.008	0.005
2	Eecd	156.4	0.004	0.004
3	SqDsum	100.5	0.018	0.004
4 Gmean	97.1	0.023	0.004	
5	H_SD	86.7	0.254	0.004
6 Rf	74.7	0.047	0.004	
7 B_SD	69.8	0.024	0.004	
8 R_SD	57.4	0.006	0.004	
9 Pconv	54.6	0.001	0.004	
10	Dmax	49.0	0.002	0.004

Table 8. First 10 factors used for discrimination among varieties in order of decreasing F-to-remove.

			$\begin{aligned} & \dot{8} \\ & .0 \\ & .0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \dot{2} \\ & \text { ED } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \frac{0}{3} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\cong} \\ & \cong \\ & \stackrel{\ddot{U}}{\sharp} \end{aligned}$		Total
Seed number									n°
cantaloupe grp.	1027	443	135	3	10	-	13	5	1,636
ameri/inodorus grp.	462	4,006	193	2	1	-	42	8	4,714
intermediate grp.	76	306	1,230	32	5	-	2	4	1,655
African agrestis grp.	16	13	17	610	51	-	2	15	724
conomon grp.	27	28	1	39	1,096	73	3	2	1,269
wild types	-	-	-	24	46	870	-	2	942
indet. melo	84	232	3	31	10	-	95	20	475
indet. agrestis	15	1	10	27	1	-	2	124	180
Percentage									\%
cantaloupe grp.	61.9	27.9	8.3	0.2	0.6	-	0.9	0.4	100.0
ameri/inodorus grp.	9.9	85.1	4.1	-	-	-	0.8	0.1	100.0
intermediate grp.	5.6	18.5	73.5	1.1	0.7	-	0.2	0.4	100.0
African agrestis grp.	2.1	1.3	3.2	87.9	1.8	-	0.3	3.5	100.0
conomon grp.	1.8	2.3	0.1	2.2	87.6	5.4	0.4	0.1	100.0
wild types	-	-	-	0.7	5.6	93.3	-	0.3	100.0
indet. melo	16.2	51.4	0.8	7.8	1.9	-	18.5	3.4	100.0
indet. agrestis	6.1	0.6	5.6	13.9	1.7	-	1.1	71.1	100.0

Table 9. Results of cross validated LDA analysis on groups of variety with higher similarity: cantaloupe grp. (cantalupensis and reticulatus), ameri/inodorus grp., intermediate grp. (chate, dudaim, flexuosus and momordica), African agrestis grp. (African acidulus and thibis), conomon grp. (conomon, chinensis, makuwa and Asian acidulus), wild type grp. (agrestis and chito) and agrestis and melo indeterminate landraces.

Parameter	F-to-remove	Tollerance	Wilks' lambda	
1	Gmean	159.86	0.022	0.015
2	Area	125.42	0.001	0.015
3	Eecd	122.42	0.001	0.015
4	H_SD	106.21	0.234	0.015
5 Dmin/Dmax	78.28	0.024	0.014	
6 B_SD	71.56	0.023	0.014	
7	SqDsum	68.77	0.011	0.014
8	Cpt	67.38	0.004	0.014
9	HaralikSD5	59.32	0.041	0.014
10	EAmax	57.08	0.003	0.014

Table 10. First 10 factors used for discrimination among macro-groups in order of decreasing F-to-remove.

3.3.3 Integration of molecular data and seed/fruit phenotypes

High positive correlation ($\mathrm{r}=0.921$) was found between the seed parameter Area and fruit weight, measured in a previous phenotyping assay. The coefficient of determination $\left(\mathrm{R}^{2}\right)$ amounted to 0.849 .

The analysis of the allelic frequencies of some SNPs located in genomic regions in which QTLs involved in fruit weight have been reported (Diaz et al. 2011), reveals some regions in which allelic distribution seems to be non random in different seed size groups of accessions, with specific alleles
being more frequent in accessions with small/large seeds. For example, accessions with low values of the Seed parameter Area have high frequencies of one of the two alleles of 3 SNPs located in Linkage group I (LGI), in regions in which QTLs for fruit weight have been reported, CMPSNP711 and AI_17-E07 (located at 45,2 and $46,8 \mathrm{cM}$, respectively) and CMPSNP731 (located at $80,4 \mathrm{cM}$), whereas similar frequencies for the two alleles are observed in the SNPs located in other regions of this LGI. In fact, the ANOVA shows significant differences in the average Seed Area for these three markers between accessions belonging to the two homozygous genotypic classes (mean \pm standard deviation of homozygous a, allele more frequent in large seed accessions $=39.9 \pm 10.9,39.1 \pm 10.8$ and 39.2 ± 11.4; homozygous b, allele more frequent in small seed accessions $=25.0 \pm 14.3,19.4 \pm 10.4$, and $18.9 \pm 10.5)$.

The best hit of the Arabidopsis thaliana gene At4g39850 with the melon unigene collection of melonomics was found with MELO3C018991, located in CM3.5_scaffold00035 from 2610482 to 2613142. This scaffold is anchored to the melon genetic map in LGVII at $32,1 \mathrm{cM}$. A differential allelic distribution in small versus large seed size accessions, similar to that found markers of LGI, was found in SNP CMPSNP262 (located in LGVII at 30,5cM). Information about the natural genetic variation of the gene MELO3C018991 was obtained from the melogene database of SNPs. A single SNP in this gene was found. It was a non-synonym mutation (C / T aa $249 \mathrm{~S} / \mathrm{N}$). According to the sequence information provided by the melogene data base, one allele had been sequenced in three pools composed of inodorus, momordica and agrestis acidulus accessions (including most of the accessions of these groups analysed in this study that have large or intermediate seed size), whereas the alternative allele had been sequenced in the conomon pool of accessions (also including many of the conomon accessions analysed in the present study, all with small seed size).

3.4 Discussion

The division of melon in two subspecies, C. melo subsp. melo and C. melo subsp. agrestis, already described elsewhere (Silberstein et al. 1999, Monforte et al. 2003, Deleu et al. 2009, Esteras et al. 2009, Blanca et al. 2011), is well supported by both molecular and seed morpho-colourimetric analyses, with some accessions in intermediate positions. The high degree of admixture of populations of both subspecies, found with SNPs in the flexuosus, chate, dudaim and momordica varieties, is in agreement with the high molecular variability previously reported in them (Esteras et al. 2013) and with the reported idea that from these varieties evolved most of the current melon populations. In fact, in the largest melon re-sequencing assay performed by Blanca et al. (2012), momordica was the most heterogeneous variety, and shared the highest percentage of SNPs with other varieties of both subspecies. All of these non-sweet varieties have limited diffusion through Africa and Near East. The same pattern can be evidenced by morpho-colourimetric analysis which shows the intermediate position of these varieties between the two subspecies. Similar achievements were found for C. melo subsp. agrestis var. agrestis, the wild forms of melons, which resulted in being isolated from the
cultivated accessions. Among cultivars, chito was one of the subspecies agrestis varieties that showed more misclassification with the wild agrestis group, consistently with the history of this group. This is a small type of melon naturalized in America that shares many characters with wild agrestis as it likely derivates from wild African types introduced into the Americas (Pitrat et al. 2000), so it cannot be totally considered as cultivated.

Within the subspecies melo, ameri accessions show high degrees of admixture with all other melo varieties. This group of accessions is the most heterogeneous within the cultivated melon and include quite different landraces. The high crossbreeding of with inodorus and cantalupensis produced a wide range of intermediate forms that does not always permit to isolate ameri from the others. These results also agree with the hypothesis that modern inodorus and cantalupensis derived from these variable Asian melons (Pitrat et al. 2000). Few reports describe the variability of Asian types of the subsp. melo. In a recent study on Iranian melons, Raghami et al. (2014) reported the high diversity in melons from these area and remarked their differences with European/American inodorus and cantalupensis. Seed image analysis results agree with molecular ones, although the latter are, as expected, more discriminant. Molecular analysis reveals three differentiated groups within inodorus and cantalupensis (Spanish inodorus, Charentais melons and reticulatus) that were hard to distinguish on the basis of seed traits.

Within the subspecies agrestis, the conomon group (conomon, chinensis and makuwa) was quite similar molecularly, also according to previous studies (Blanca et al. 2012), and presented closely related seed traits. Despite acidulus and tibish being molecularly similar to wild agrestis, the bigger size of their seeds allows to separate these two varieties from the wild form. However, acidulus and tibish are quite hardly differentiated on the basis of seed traits having a significant degree of misclassification. Old classification models placed tibish in subspecies melo (Pitrat et al. 2000), but molecular analyses demonstrated its greater similarity to agrestis (Esteras et al. 2009). Seed morphology agrees with the classification of this primitive melon belonging to subspecies agrestis. In line with molecular data, the unclassified landraces seem to be mostly mixed types of different varieties of the subspecies melo, mostly inodorus, but with some traces of subspecies agrestis.

According only to seed morphology it was possible to isolate six different groups of varieties: a group of accessions of ameri and inodorus closely related to the other group of cantalupensis and reticulatus, an intermediate group between the two subspecies (dudaim, chate, flexuosus and momordica), a group of African agrestis varieties (tibish and acidulus), the conomon group formed with conomon, chinensis, makuwa and Asian acidulus, and a group formed with wild melon types (agrestis and chito).

Seed image analysis has proved to be also successful to discriminate between genus and among species and intraspecific groups in cucurbits, resulting in an interesting tool to assist the classification of cucurbit germplam at different taxonomic levels. At the genus and species levels, data completely fit with the current taxonomy, where species of the same genus are more related than species of
different genus. Citrullus lanatus and C. colocyntis show higher heterogeneity in seeds morphocolourimetric features than Cucumis melo and C. sativus. Despite of C. coloynthis being traditionally considered the wild ancestor of C. lanatus, genetic analysis showed that the cultivated and Egusi watermelon (var. lanatus) and the citron type (var. citroides) diverged into separate lineages appearing independently evolved from a common ancestor, possibly C. ecirrhosus (Dane and Liu 2007). Furthermore, whereas cucumber and melon are two cultivated crops phylogenetically close related and surely deriving from the same ancestor (Sebastian et al. 2010), C. colocynthis is a perennial (rarely annual) wild species growing on sandy habitats in desert and semi-desert areas of North Africa, the Near East and South-West Asia as far as India (Jeffrey 2001). All of these differences are clearly reflected on seed morphology.

Despite the importance of seed size in plant evolution and crop domestication, relatively little is known about the genetic and molecular processes underlying natural variation in seed size and morphology. Integration of SNPs and phenotypic data sets provide the opportunity to obtain information about the genetics of seed traits. A strong correlation was found between the seed Area, the most discriminant seed trait among melon accessions, and fruit weight, which agree with the results reported in other Cucurbits (Paris and Nerson 2003). Moreover, the evidence of a non random allelic distribution in large/small seed groups of accessions of SNPs located in some genomic regions in which QTLs involved in fruit weight had been previously located (Diaz et al. 2011) suggests that some of these regions may also account for part of the observed variation in seed size. This non random distribution of alleles could be also due to an effect of the structure of the population, then associations of alleles to seed traits must be proved in larger unstructured populations or in populations specifically designed, such as introgression lines with which we are currently working. For example, populations derived from the cross of acidulus/tibish and wild agrestis could be suited to study the genetics of seed traits as these varieties are molecularly similar, but significantly differ in seed traits. The use of the available genomic tools can also facilitate the identification of candidate mutations involved in seed traits, such as that found in the melon orthologue of the tomato $S W 4$ (Orsi and Tanksley 2009). Our results raised the possibility that the melon orthologue of SW4 might also underlie natural variations in seed size in melon, but the association needs to be demonstrated in appropriate populations.

3.5 Conclusions

Molecular analysis recognized some differentiated populations, but also a wide range of mixed types. Despite this molecular admixture, seed image analysis revealed six major groups that can be discriminated on the basis of specific phenotypic traits, mainly associated to seed size and morphology and less to seed colour. The obtained seed groupings are in agreement with the molecular relationships and with the history of the melon varieties. In fact wild agrestis, Far eastern conomon and African tibish and acidulus could be clearly distinguished. Discrimination of the cultivated types of the melo subspecies (inodorus, cantalupensis, reticulatus and ameri) was also possible although less clear, due
to a more intense crossing and breeding process undergone by these commercial groups. The intermediate position of momordica, flexuosus and dudaim groups across the two subspecies is also detected by seed morpho-colourimetric analysis. The identification of the more discriminant specific traits allows the development of a method to classify new seeds in any of the reported groups. A great deal of the extant melon variation is maintained in different seed collections, so this tool would be of great utility to manage their variation and optimize their conservation and use. Also the integration of molecular and seed data would be a useful tool to study the genetics of seed traits.

Funding

The Italian University and Research Ministry (MIUR) financed the PhD scholarship (Diego Sabato), making this research possible. Molecular analysis was carried out with contributions of the PLANT KKBE project PIM2010PKB-00691 and the complementary grant from the Generalitat Valenciana ACOMP/2013/141.

Acknowledgements

We wish to acknowledge Dr. Gianfranco Venora for his support and for enabling the use of the laboratory at Stazione Consorziale Sperimentale di Granicoltura per la Sicilia (CT). Authors thank the National Plant Germplasm System of the USDA, for providing some accessions of their melon collection. Also we would like to thank M. Pitrat who within the MELRIP project provided some of the melon accessions used in this study. Cucumber and Watermelon collections were provided by Dr. M.J. Diez from the COMAV Genebank. We thank Dr. R. Peiró from COMAV for her support on statistical analysis and E. Martinez for her technical support. Thanks to Sidney Goïame for the language review.

References

Bacchetta G, Grillo O, Mattana E, Venora G. 2008. Morpho-colorimetric characterization by image analysis to identify diaspores of wild plant species. Flora 203:669-682.
Bacchetta G, Escobar García P, Grillo O, Mascia F, Venora G. 2011a. Seed image analysis provides evidence of taxonomical differentiation within the Lavatera triloba aggregate (Malvaceae). Flora 206:468-472.
Bacchetta G, Fenu G, Grillo O, Mattana E,Venora G. 2011b. Identification of Sardinian species of Astragalus section Melanocercis (Fabaceae) by seed image analysis. Annales Botanici Fennici 48:449-454.
Bates DM, Robinson RW. 1995. Cucumbers, melons and water-melons. In: Smartt J, Simmonds NW, eds. Evolution of Crop Plants. 2nd edn. Harlow: Longman Scientific, 89-96.
Blanca J, Cañizares J, Ziarsolo P, et al. 2011. Melon transcriptome characterization: Simple Sequence Repeats and Single Nucleotide Polymorphisms discovery or high throughput genotyping across the species. The Plant Genome 4:118-131.
Blanca J, Esteras C, Ziarsolo P, et al. 2012. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280.
Cai G, Yang Q, Yang Q, Zhao Z, Chen H, Wu J, Fan C, Zhou Y. 2012. Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genomics 13:105.
Dane F, Liu J. 2007. Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genetic Resources and Crop Evolution 54:1255-1265.
Deleu W, Esteras C, Roig C, et al. 2009. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology 9:90.
Decker DS, Newsom LA. 1988. Numerical analysis of archaeological Cucurbita pepo seeds from Hontoon island, Florida. Journal of Ethnobiology 8:35-44.
Diaz A, Fergany M, Formisano G, et al. 2011. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biology 11:111.
Esquinas-Alcázar JT, Gulick PJ. 1983. Genetic Resources of Cucurbitaceae: A Global Report. Rome: IBPGR Secretariat.
Esteras C, Formisano G, Roig C, et al. 2013. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical Applied Genetics 126:1285-1303.
Esteras C, Lunn J, Sulpice R, et al. 2009. Phenotyping a highly diverse core melon collection to be screened using Ecotilling. In: $8^{\text {th }}$ Plant Genomics European Meetings, Lisbon, 7-10 October, 214.
Esteras C, Nuez F, Picó B. 2012. Genetic diversity studies in Cucurbits using molecular tools. In: Wang Y, Behera TK, Kole C, eds. Cucurbits: Genetics, Genomics and Breeding of Cucurbits. New Hampshire: Science Publishers Inc, 140-198.
Fan JB, Chee MS, Gunderson KL. 2006. Highly parallel genomic assays. Nature Reviews Genetics 7:632-644.
Felsenstein J. 1997. An alternating least squares approach to inferring phylogenies from pairwise distances. Systematic Biology 46:101-111.
Fisher RA. 1936. The use of multiple measurements in taxonomic problems. Annals of Human Genetics 7:179188.

Fisher RA. 1940. The precision of discriminant functions. Annals of Human Genetics 10:422-429.
Fujishita N. 1980. About comparison Cucumis melo seeds excavated from the Ikegami ruin with the contemporary melon seeds and the melon seeds excavated from other ruins. Osaka Culture Center 6:105124.

Fujishita N, Nakagawa K. 1973. About seed (embryo) and fruit development of Cucumis species. Effects of growth regulator affected apomixix and parthenocarpy of C. melo. Japanese Society for Horticultural Science 42:186-187.
Fukunaga K. 1990. Introduction to statistical pattern recognition. 2nd edn. San Diego: Academic Press.
Gabriel S, Ziaugra L, Tabbaa D. 2009. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics 60:11-18.
Garcia-Mas J, Benjak A, Sanseverino W, et al. 2012. The genome of melon (Cucumis melo L.). Genome amplification in the absence of recent duplication in an old widely cultivated species. Proceedings of the National Academy of Sciences 109:11872-11877.
Grillo O, Mattana E, Venora G, Bacchetta G. 2010. Statistical seed classifiers of 10 plant families representative of the Mediterranean vascular flora. Seed Science and Technology 38: 455-476.
Grillo O, Draper D, Venora G, Martìnez-Laborde JB. 2012. Seed image analysis and taxonomy of Diplotaxis DC (Brassicaceae, Brassiceae). Systematics and Biodiversity 10:57-70.
Hastie T, Tibshirani R, Friedman J. 2001. The elements of statistical learning: Data mining, inference and prediction. New York: Springer.
Holden JE, Finch WH, Kelly K. 2011. A comparison of two-group classification methods. Educational and Psychological Measurement 71:870-901.

Janick J, Paris HS, Parrish DC. 2007. The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Annals of Botany 100:1441-1457.
Jeffrey C. 1980. A review of the Cucurbitaceae. The Botanical Journal of the Linnean Society 81:233-247.
Jeffrey C. 2001. Cucurbitaceae. In: Hanelt P, ed. Mansfeld's encyclopedia of agricultural and horticultural crops. Berlin: Springer, 1510-1557.
Jeffrey C. 2005. A new system of Cucurbitaceae. Botanicheskii Zhurnal 90:332-335.
Jeffrey C, De Wilde WJJO. 2006. A review of the subtribe Thladianthinae (Cucurbitaceae). Botanicheskii Zhurnal 91:766-776.
Kirkbride JHJr 1993. Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Boone: Parkway Publ.
Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the $14^{\text {th }}$ International Joint Conference on Artificial Intelligence, 1137-1143.
Leida C, Moser C., Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Picó B. In press. Variability of candidate genes and genetic association for sugar accumulation and climacteric behavior in melon (Cucumis melo L.)
Liu, Ge Y, Wang DJ, Li X, Yang XX, Cui CS, Qu SP. 2013. Morphological and molecular diversity in a germplasm collection of seed pumpkin. Scientia Horticulturae 154:8-16.
Liu K, Muse SV. 2005. Powermarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128-2129.
Mallick MFR, Masui M. 1986. Origin, distribution and taxonomy of melons. Scientia Horticulturae 28:251-261.
Monforte AJ, Garcia-Mas J, Arús P. 2003. Genetic variability in melon based on microsatellite variation. Plant Breeding 122:153-157.
Munger HM, Robinson RW. 1991. Nomenclature of Cucumis melo L. Cucurbit Genetics Cooperative 14:43-44.
Naudin C. 1859. Essais d'une monographie des espèces et des variétés du genre Cucumis. Annales des Sciences Naturelles 11:5-87.
Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70:3321-3323.
Nei M, Tajima F, Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. II Gene frequency data. Journal of Molecular Evolution 19:153-170.
Nesom GL. 2011. Toward consistency of taxonomic rank in wild/domesticated Cucurbitaceae. Phytoneuron 13:133.
Orrù M, Grillo O, Venora G, Bacchetta G. 2013a. Computer vision as a method complementary to molecular analysis: Grapevine cultivar seeds case study. Comptes Rendus Biologies 335:602-615.
Orrù M, Grillo O, Lovicu G, Venora G, Bacchetta G. 2013b. Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Vegetation History and Archaeobotany 22:231-242.
Orsi CH, Tanksley SD. 2009. Natural Variation in an ABC Transporter Gene Associated with Seed Size Evolution in Tomato Species. PLoS Genet 5:e1000347. doi:10.1371/journal.pgen. 1000347.
Page RDM. 1996. Tree View: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12:357-358.
Paris HS, Amar Z, Lev E. 2012. Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Annals of Botany 110:23-33.
Paris HS, Nerson H. 2003. Seed Dimensions in the Subspecies and Cultivar-groups of Cucurbita pepo. Genetic Resources and Crop Evolution 50:615-625.
Picard R, Cook D. 1984. Cross-Validation of Regression Models. Journal of the Acoustical Society of America 79:575-583.
Pinna S, Grillo O, Mattana E, Cañadas E, Bacchetta G. 2014. Inter- and intraspecific morphometric variability in Juniperus L. seeds (Cupressaceae). Systematics and Biodiversity 12:211-223.
Pitrat M. 2008. Melon (Cucumis melo L.). In: Prohens J, Nuez F, eds. Handbook of Crop Breeding, vol I: Vegetables. New York: Springer, 283-315.
Pitrat M, Hanelt P, Hammer K. 2000. Some comments on infraspecific classification of cultivar of melon. In: Katzir N, Paris HS, eds. Proceeding of Cucurbitaceae 2000, Máaleh Hahamisha, Israel, 19-23 March 2000. Acta Horticulturae 510:29-36.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.
Raghami M, López-Sesé AI, Reza Hasandokht M, Zamani Z, Reza Fattahi Moghadam M, Kashi A. 2014. Genetic diversity among melon accessions from Iran and their relationships with melon germplasm of diverse origins using microsatellite markers. Plant Systematics and Evolution 300:139-151.
Renner SS, Schaefer H, Kocyan A. 2007. Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). Evolutionary Biology 7:58.
Rivera D, Miralles B, Obón C, Carreño E, Palazón JA. 2007. Multivariate analysis of Vitis subgenus Vitis seed morphology. Vitis 46:158-167.

Roy A, Bal SS, Fergany M, et al. 2012. Wild melon diversity in India (Punjab State). Genetic Resources and Crop Evolution 59:755-767.
Scotland RW, Olmstead RG, Bennett JR. 2003. Phylogeny Reconstruction: The Role of Morphology. Systematic Biology 52:539-548.
Sabato D, Masi A, Ucchesu M, Peña-Chocarro L, Usai A, Giachi G, Capretti C, Bacchetta G. 2015. Archaeobotanical analysis of a Bronze Age well from Sardinia: a wealth of knowledge. Plant Biosystems, doi: 10.1080/11263504.2014.998313.
Sebastian P, Schaefer H, Telford IRH, Renner SS. 2010. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species from melon is from Australia. Proceedings of the National Academy of Sciences 107:14269-14273.
Shahin MA, Symons SJ. 2003. Colour calibration of scanners for scanner independent grain grading. Cereal Chemistry 80:285-289.
Silberstein L, Kovalski I, Huang R, Anagnostou K, Jahn M.K, Perl-Treves R. 1999. Molecular variation in melon (Cucumis melo L.) as revealed by RFLP and RAPD markers. Scientia Horticulturae 79:101-111.
Smykalova I, Grillo O, Bjelkova M, Hybl M, Venora G. 2011. Morpho-colorimetric traits of Pisum seeds measured by an image analysis system. Seed Science and Technology 39:612-626.
Smykalova I, Grillo O, Bjelkova M, Pavelek M, Venora G. 2013. Phenotypic evaluation of flax seeds by image analysis. Industrial Crops and Products 47:232-238.
Steermers FJ, Gunderson KL. 2007. Whole genome genotyping technologies on the Bead Array TM platform. Biotechnology Journal 2:41-49.
Stepansky A, Kovalski I, Perl-Treves R. 1999. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Systematic Evolution 217:313-333.
Tanaka K, Akashi Y, Fukunaga K, et al. 2013. Diversification and genetic differentiation of cultivated melon inferred from sequence polymorphism in the chloroplast genome. Breeding Science 63:183-96.
Tanaka K, Nishitani A, Akashi Y, et al. 2007. Molecular characterization of South and East Asian melon, Cucumis melo L., and the origin of Group Conomon var. makuwa and var. conomon revealed by RAPD analysis. Euphytica 153:233-247.
Terral J, Tabard E, Bouby L, et al. 2010. Evolution and history of grapevine (Vitis vinifera L.) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Annals of Botany 105:443-455.
Venora G, Grillo O, Shahin MA, Symons SJ. 2007a. Identification of Sicilian landraces and Canadian cultivars of lentil by image analysis system. Food Research International, 40:161-166.
Venora G, Grillo O, Ravalli C, Cremonini R. 2007b. Tuscany beans landraces, on-line identifications from seeds inspection by image analysis and Linear Discriminant Analysis. Agrochimica, 51:254-268.
Venora G, Grillo O, Saccone R. 2009. Quality assessment of durum wheat storage centres in Sicily: evaluation of vitreous, starchy and shrunken kernels using an image analysis system. Journal of Cereal Science 49:429-440.
Yashiro K, Iwata H, Akashi Y, et al. 2005. Genetic relationship among East and South Asian melon (Cucumis melo L.) revealed by AFLP analysis. Breeding Science 55:197-206.
Zohary D, Hopfand M, Weiss E. 2012. Domestication of plants in the Old World. The origin of cultivated plants in West Asia, Europe and the Mediterranean Basin. Oxford: Oxford University Press.
3.6 Annex 1: Cucumis melo accessions details utilized for morpho-colorimetric and molecular analyses and the corresponding results of Population Structure.

Population Structure	Code	Code2**	subsp.	variety	type	country	local or commercial name	seeds
-	InAL3	-	melo	inodorus	landrace	Albania	Ames 23237	100
5/4	InCN142	In-HamiChi	melo	inodorus	landrace	China	Hami melon	96
3	InES53	In-TeNinvSp2	melo	inodorus	landrace	Spain	Tendral negro de inv.	95
3	InES54	In-BTempSp	melo	inodorus	landrace	Spain	Blanco tempranillo	81
4	InES55	In-LaHCCSp	melo	inodorus	landrace	Spain	Hilo carrete	95
4	InES56	In-BLisSp	melo	inodorus	landrace	Spain	Blanco liso	81
3	InES61	In-PsPiñSp	melo	inodorus	landrace	Spain	Piel de sapo Piñonet	97
3/5	InES75	La-ErizoSp	melo	inodorus	landrace	Spain	Eriçó mallorquin	98
3	InES78	In-LaBolasSp	melo	inodorus	landrace	Spain	Bolas	85
3	InES79	In-AmAoroSp	melo	inodorus	landrace	Spain	Amarillo oro	95
3	InES80	In-RoSp	melo	inodorus	landrace	Spain	Rochet	99
4	InGR118*	In-BaskGreece	melo	inodorus	landrace	Greece	Baskavas	98
4	InHU17	In-MusHung	melo	inodorus	landrace	Hungary	cukordinnye	99
4/1	InIT28	In-Cucumita	melo	inodorus	landrace	Italy	Cucummarazzo	99
-	InPT120*	-	melo	inodorus	landrace	Portugal	Branco de ribateja	69
3	InPT126*	In-CraPor	melo	inodorus	landrace	Portugal	Crabranco	82
3/4	InPT39	La-MelaoPor	melo	inodorus	landrace	Portugal	Melão	48
5/1	InPT40	La-CascaPor	melo	inodorus	landrace	Portugal	Casca de Carvalho	98
4/1	InTN65	In-AsliTun	melo	inodorus	landrace	Tunisia	Aslí	98
4	InTN85	In-MaazTun	melo	inodorus	landrace	Tunisia	Maazoon	98
-	InTR104	-	melo	inodorus	landrace	Turkey	Kırkağaç - PI 169305	98
4	InTR87	In-WTTur	melo	inodorus	breeding-line	Turkey	Winter type-PI 169329	99
-	InTR91	-	melo	inodorus	landrace	Turkey	Kırkağaç	100
4	InUS123	In-CGBUSA	melo	inodorus	breeding-line	USA	Casaba golden beauty	92
3/4	InUS143	In-HoneyDewUSA	melo	inodorus	breeding-line	USA	Honeydew green flesh	97
1	CaFR141*	Can-GyFran	melo	cantalupensis	breeding-line	France	Gynadou	98
1	CaFR159*	Can-NOFran	melo	cantalupensis	breeding-line	France	Nantais Oblong	96
1/5	CaFR161	Can-NCFran	melo	cantalupensis	landrace	France	Noir des Carmes	98
1	CaFR172	Can-PGFran	melo	cantalupensis	landrace	France	Petit Gris de Rennes	100
1/5	CaFR179	Can-PresFran	melo	cantalupensis	landrace	France	Prescott Fond Blanc	100
1	CaFR201	Can-VedFran	melo	cantalupensis	breeding-line	France	Vedrantais	94
-	CaHU18	-	melo	cantalupensis	landrace	Hungary	Ezüst ananasz	96
1/4/5	CaIL162	Can-NYIs	melo	cantalupensis	breeding-line	Israel	Noy Israel	99
5/1	CaJP29	Can-PearlJa	melo	cantalupensis	breeding-line	Japan	Pearl - PI 266947	93
5/1	CaUS171*	Can-PSUSA	melo	cantalupensis	breeding-line	USA	Persian Small Type	81
2/1	ReFR116*	Can-ASLFran	melo	reticulatus	breeding-line	France	ASL	95
2	ReGT16	Can-SUD2Guat	melo	reticulatus	landrace	Guatemala	SUD-CU-2	90
-	ReLY33	-	melo	reticulatus	landrace	Libia	Khiar	100
2	ReUS114*	Can-HBJUSA	melo	reticulatus	breeding-line	USA	Ar Hale's Best Jumbo	98
1/2	ReUS92	Can-GCHUSA	melo	reticulatus	breeding-line	USA	Golden Champlain	100
1/2	ReUS93	Can-GHUSA	melo	reticulatus	breeding-line	USA	Golden Honey	98
-	ReYU97	-	melo	reticulatus	landrace	ExYugoslavia	YUG	100
-	AmAF109	-	melo	ameri	landrace	Afganistan	Safed Sarda	98

5/4	AmAF2	Am-3584Afg	melo	ameri	landrace	Afganistan	PI 125951	98
5/1/2/4/3	AmBO5	La-Bol	melo	ameri	landrace	Bolivia	Bol-84	91
5/4/1	AmDE166*	Am-OpalGer	melo	ameri	landrace	Germany	Opalkugel	95
4	AmEG9	Am-KafEgy	melo	ameri	landrace	Egypt	Kafr hakim - PI 288233	100
5	AmGE12	Am-NanaGeorg	melo	ameri	landrace	Georgia	Nanatri	100
4/5	AmGE13	Am-KolGeor	melo	ameri	landrace	Georgia	Koljonitza-PI 314427	85
5/4	AmGE156*	Am-NesviGeor	melo	ameri	landrace	Georgia	Mucha nesvi	91
6/7/1	AmIR149*	Am-KhaIran	melo	ameri	landrace	Iran	Khatoni	74
5	AmIR 190*	La-SousIran	melo	ameri	landrace	Iran	Souski	98
5/4/2	AmIR26	Am-6053Iran	melo	ameri	landrace	Iran	PI 140632	99
-	AmKZ106	-	melo	ameri	landrace	Kazakhstan	Imljskaja	92
1/5/4/6	AmMA37	Am-Afr1Mor	melo	ameri	landrace	Morocco	AFR-C-1	92
5/4	AmMN36	Am-ChandMon	melo	ameri	landrace	Mongolia	Chandalack	79
5	AmRU41	Am-KorcaRus	melo	ameri	landrace	Russia	Korça	99
2	AmRU42	Am-ApelRus	melo	ameri	landrace	Russia	Apelsinaja	92
4	AmRU44	Am-KuvRus	melo	ameri	landrace	Russia	Kuvinska - PI 506460	99
5/4	AmTJ83	Am-TokTaj	melo	ameri	landrace	Tajikistan	Tokash	98
5/6/1/4	AmTN84	Am-BattiTun	melo	ameri	landrace	Tunisia	Battikh	90
4/5	AmTR88	Am-AltimTur	melo	ameri	landrace	Turkey	Altimbas - PI 169331	88
4	AmTR89	Am-HassanTur	melo	ameri	landrace	Turkey	PI 169368	97
5/3/4	AmTU137	Am-GalaTun	melo	ameri	landrace	Tunisia	Galaoui	98
4/3/2/5	AmUA119*	Am-BirUkr	melo	ameri	landrace	Ukraine	Birjucekutskaja	99
-	AmUA90	-	melo	ameri	landrace	Ukraine	Salgirskaja - PI 506459	100
5	AmUZ167	Am-OuzUzb	melo	ameri	landrace	Uzbekistan	Ouzbeque	84
5	AmUZ95	Am-KokUzb	melo	ameri	landrace	Uzbekistan	Kokcha	98
-	AmUZ96	-	melo	ameri	landrace	Uzbekistan	Kizil-uruk	81
1/5	ChIT27	Chate-CarBIta	melo	chate	landrace	Italy	Carosello	98
-	DuAF1	-	melo	dudaim	landrace	Afganistan	Dudaim	100
6/7/2	DuAF180	Dud-QPMAfg	melo	dudaim	landrace	Afganistan	Qeen's pocket melon	97
-	DuGE296	-	melo	dudaim	landrace	Georgia	Dudaim	98
5	FxAF174	Flex-TarehAfg	melo	flexuosus	landrace	Afganistan	PI 222187	40
7/6/5	FxIN115	Flex-AryaInd	melo	flexuosus	landrace	India	Arya	99
5/6/7	FxIN20	Flex-Co20Ind	melo	flexuosus	landrace	India	Snakemelon	96
5/3/7	FxIQ23	Flex-KhiIrak	melo	flexuosus	landrace	Irak	khiar taaruzy	98
5/3/7/1	FxSD186*	Flex-SilkaSud	melo	flexuosus	landrace	Sudan	Silka	100
-	FxTR16	-	melo	flexuosus	landrace	Turkey	Acur	96
-	FxTR21	-	melo	flexuosus	landrace	Turkey	Acur	95
-	FxTR4	-	melo	flexuosus	landrace	Turkey	Siyak	96
-	FxTR54	-	melo	flexuosus	landrace	Turkey	Adsiz	98
5/4/2/6	FxTR86	Flex-AcukTur	melo	flexuosus	landrace	Turkey	Acuk - PI 167057	89
-	LaET11	-	melo	indet.landrace	landrace	Etiopia	Popone	111
1/5/4	LaFR151*	La-KroFran	melo	indet.landrace	landrace	France	Kroumir	96
1/2/3/6	LaIT00	Can-PopIta	melo	indet.landrace	landrace	Italy	Popone d'oro	98
5/1/7/4	LaML35	La-KankMali	melo	indet.landrace	landrace	Mali	Kankani - PI 490388	72
-	AcLK148*	-	agrestis	acidulus	landrace	Sri Lanka	Kekiri	97
7	AcSN45	Ac-G22843Se	agrestis	acidulus	landrace	Senegal	PI 436534	100
-	AcSN46	-	agrestis	acidulus	landrace	Senegal	PI 436532	96

7/6	AcZA98	Ac-5384Zamb	agrestis	acidulus	landrace	Zambia	PI 505602	86
6/7	AcZW100	Ac-TGR1551Zimb	agrestis	acidulus	landrace	Zimbabwe	TGR1843-PI 482429	93
6/7	AcZW99	Ac-TGR1843Zimb	agrestis	acidulus	landrace	Zimbabwe	TGR 1551-PI 482420	96
6/7	AgCO153	Ag-MeloncCol	agrestis	agrestis	wild	Colombia	Meloncillo	100
6/7	AgCU127*	Ag-Cuba	agrestis	agrestis	wild	Cuba	CUBA	96
7	AgGH14	Ag-15591Gha	agrestis	agrestis	wild	Ghana	PI 185111	98
7/6	AgIN128	Ag-CallInd	agrestis	agrestis	wild	India	Callosus	97
7/6	AgIN204	Ag-WChInd	agrestis	agrestis	wild	India	Wild chibbar	96
7	AgNG38	Ag-Co38Nig	agrestis	agrestis	wild	Nigeria	CO38	91
7	AgSN133*	Ag-FadSud	agrestis	agrestis	wild	Sudan	Fadasi	95
7	AgSN146*	Ag-HumSud	agrestis	agrestis	wild	Sudan	Humaid	91
7	AgSN197*	Ag-TendSud	agrestis	agrestis	wild	Sudan	Tendelti	88
6/5	CnCH105	Con-GouChi	agrestis	chinensis	landrace	China	Gogua	96
6	CnCH6	Con-Co6Chi	agrestis	chinensis	landrace	China	makuwa	98
1/6	CnJP207	Con-YapuJa	agrestis	chinensis	landrace	Japan	Yamato Purinsu	96
6	CnKR173	Con-SCKo	agrestis	chinensis	landrace	Korea	Songwhan Charmi	95
6	CnKR32	Con-Pat81Ko	agrestis	chinensis	landrace	Korea	PAT-81	100
6	CnPL169*	Con-PaulPol	agrestis	chinensis	landrace	Polonia	Paul	100
6/5	CoCH154*	Con-MielChi	agrestis	conomon	landrace	China	Miel blanc	98
-	CoJP136	-	agrestis	conomon	landrace	Japan	Freeman's cucumber	99
6	CoJP185	Con-ShiroJa	agrestis	conomon	landrace	Japan	Shiro uri okayama	99
6	MkCH158*	Con-NanChi	agrestis	makuwa	landrace	China	Nanbukin	96
6	MkCH7	Con-LongtChi	agrestis	makuwa	landrace	China	Longtian - PI 618854	96
-	MkJP188	-	agrestis	makuwa	landrace	Japan	Omaru Gin makuwa	100
6	MkJP30	Con-GMJa	agrestis	makuwa	landrace	Japan	Ginsen mak.-PI420176	96
7/6/1	CtIN22	Chi-VellInd	agrestis	chito	landrace	India	Velleri - PI 164320	90
6/7/1	MoIN135*	Mom-FPInd	agrestis	momordica	landrace	India	Faizabadi phoont	95
5	MoIN19	Mom-KhaInd	agrestis	momordica	landrace	India	Kharbuja	99
6/5/7	MoIN21	Mom-PI124Ind	agrestis	momordica	landrace	India	PI 124112	93
4/5	MoSA157*	La-NajdAS	agrestis	momordica	breeding-line	Saudi Arabia	NADJ	68
7	TiSN198*	Tibish-DSud	agrestis	tibish	landrace	Sudan	Tibish Djebel	98
7	TiSN199*	Tibish-KSud	agrestis	tibish	landrace	Sudan	Tibish Khurtagat	58
6/7	LaMG202*	La-VoaMad	agrestis	indet.landrace	landrace	Madagascar	Voatango	81
6/7/5	LaZA47	La-TransSAfr	agrestis	indet.landrace	landrace	South Africa	wild type - PI 282448	99
PI accessions were provided by NPGS (USDA)			*accessions from MELRIP project			** code in Leid	et al. in press	

3.7 Annex 2: Cucumis sativus, Citrullus lanatus and Citrullus colocynthis accessions details utilized for morpho-colorimetric analyses.

Code	species	variety	Country	location	local/commercial name	seeds
CyAF82	C. colocynthis		Afghanistan			89
CyDZ33	C. colocynthis		Algeria	Ighil, Béchar		100
CyDZ34	C. colocynthis		Algeria	Ighil, Béchar		91
CyES49	C. colocynthis		Spain	Murcia	Citruyus	95
CyES72	C. colocynthis		Spain	Almería		91
CyES99	C. colocynthis		Spain	Arona.Tenerife	Sandía	86
CyIT59	C. colocynthis		Italy		Coloquintida	99
CyMA4	C. colocynthis		Morocco	Tinghir		106
CyZA83	C. colocynthis		South Africa			72
LcAO08	C. lanatus	citroides	Angola	Humpata.Mulenga, Huila		79
LcES64	C. lanatus	citroides	Spain	Casas Altas, Valencia	Sandía para mermeladas	81
LcES67	C. lanatus	citroides	Spain	Ademuz, Valencia	Sandía	86
LnAO22	C. lanatus	lanatus	Angola	Namibe.Kanbongue		104
LnAO53	C. lanatus	lanatus	Angola	Luanda		75
LnAO55	C. lanatus	lanatus	Angola	Luanda		68
LnDZ25	C. lanatus	lanatus	Algeria	Mostaganem		85
LnDZ59	C. lanatus	lanatus	Algeria	Ammes, Béchar		94
LnDZ78	C. lanatus	lanatus	Algeria	Mustapha Ben Brahims		78
LnES51	C. lanatus	lanatus	Spain	Rota, Cádiz	Sandía de Rota	89
LnES62	C. lanatus	lanatus	Spain	Moraleda, Granada	Sandía inverniza	78
LnES81	C. lanatus	lanatus	Spain	.Mallorca	Sandía de pinyol blanc	65
LnGR32	C. lanatus	lanatus	Greece	Navplion, Argholidha		97
LnKZ81	C. lanatus	lanatus	Kyrgyzstan	Lenin Dzho		89
LnMA3	C. lanatus	lanatus	Morocco	Khmelat		91
LnSY93	C. lanatus	lanatus	Syria	Damasco		45
LnUZ78	C. lanatus	lanatus	Uzbekistan	San Salar		80
SaCN05	C. sativus		China	Ju, Shandong	Chun Huang Gua	100
SaCN06	C. sativus		China	Xinzheng, Henan	Shou Pi Qing Huang Gua	100
SaCN07	C. sativus		China	Haicheng, Liaoning	Qing Jiang Xian Gua	99
SaCN08	C. sativus		China	Haicheng, Liaoning	Cao Huang Gua	98
SaCN09	C. sativus		China	Jianping, Liaoning	Jian Ping Xian Qiu Huang Gua	98
SaES37	C. sativus		Spain	Badajoz	Pepino enano	100
SaES39	C. sativus		Spain	Tramacastilla, Teruel	Pepino	106
SaES42	C. sativus		Spain	Quicena, Huesca	Pepino gordo	98
SaES44	C. sativus		Spain	Rueda de JalónZaragoza	Pepino antiguo	100
SaES72	C. sativus		Spain	Ugíjar, Granada	Pepino	99
SaES72	C. sativus		Spain	Cebreros, Ávila	Pepino pequeño blanco	97
SaES80	C. sativus		Spain	Benaoján, Málaga	Pepino del terreno	99
SaIN58	C. sativus		India	Calcutta	Pepino	97
SaJP04	C. sativus		Japan		Sunpu-Fushinari	98
SaRU05	C. sativus		Russia		Nezynsrij	97
SaRU06	C. sativus		Russia		Nezynsrij	96
SaRU25	C. sativus		Russia		Bercizozskij	100
SaRU26	C. sativus		Russia		Posrednik 97-J	97
SaRU27	C. sativus		Russia		Plodozitys 147	100
SaRU363	C. sativus		Russia			97
SaRU463	C. sativus		Russia			86

3.8 Annex 3 SNPs details: Information about the 211 SNP markers employed in the genotyping assay and summary statistic results generated in genotyping analysis with PowerMarker software.

Marker name	LG	cM	Ref.*	Major Allele Frequency	$\begin{gathered} \text { Genotype } \\ \mathrm{n}^{\circ} \\ \hline \end{gathered}$	Allele n°	Gene Divesity*	Heterozygosity	PIC
snv87591**	1			0.607	3	2	0.477	0.087	0.363
AI_09-F07	1	0	X	0.888	3	2	0.198	0.029	0.179
CMPSNP1095	1	3.2	X	0.791	3	2	0.330	0.126	0.276
CMPSNP83	1	18.1	X	0.510	3	2	0.500	0.078	0.375
AI_17-E07	1	45.2	X	0.612	3	2	0.475	0.078	0.362
CMPSNP711	1	46.8	X	0.500	3	2	0.500	0.049	0.375
snv219731	1			0.816	3	2	0.301	0.039	0.256
CMPSNP410	1	59.6	X	0.544	3	2	0.496	0.078	0.373
F116	1	69.2	X	0.617	3	2	0.473	0.087	0.361
AI_05-G01	1	72.4	X	0.874	3	2	0.221	0.019	0.196
CMPSNP731	1	80.4	X	0.675	3	2	0.439	0.049	0.343
CMPSNP204	1	86.8	X	0.791	3	2	0.330	0.029	0.276
CMPSNP774	2	0	X	0.524	3	2	0.499	0.039	0.374
CMPSNP431	2	4.8	X	0.558	3	2	0.493	0.049	0.372
CMPSNP502	2	32.6	X	0.716	3	2	0.407	0.039	0.324
CMPSNP1057	2	37.4	X	0.883	3	2	0.206	0.019	0.185
snv173017	2	37.4		0.883	3	2	0.206	0.019	0.185
snv27560	2			0.752	3	2	0.373	0.087	0.303
AI_14-H05	2	40.6	X	0.583	3	2	0.486	0.117	0.368
snv235996	2			0.617	3	2	0.473	0.107	0.361
CMPSNP128	2	50.2	X	0.820	3	2	0.295	0.029	0.251
CMPSNP246	2	53.4	X	0.714	3	2	0.409	0.049	0.325
snv231408	2			0.529	3	2	0.498	0.078	0.374
CMPSNP1003	2	58.2	X	0.723	3	2	0.400	0.068	0.320
CMPSNP886	2	63	X	0.607	3	2	0.477	0.068	0.363
snv14547	2			0.544	3	2	0.496	0.058	0.373
snv14545	2			0.701	3	2	0.419	0.088	0.331
snv14541	2			0.670	3	2	0.442	0.039	0.344
snv14540	2			0.926	3	2	0.136	0.010	0.127
CMPSNP658	2	77.9	X	0.612	3	2	0.475	0.039	0.362
CMPSNP566	2	86	X	0.626	3	2	0.468	0.029	0.359
CMPSNP94	2	90.9	X	0.748	3	2	0.377	0.039	0.306
AI_18-E05	3	3.2	X	0.694	3	2	0.425	0.087	0.334
snv58869	3			0.714	3	2	0.409	0.029	0.325
snv58852	3			0.718	3	2	0.405	0.039	0.323
snv58849	3			0.796	3	2	0.325	0.019	0.272
snv58847	3			0.728	3	2	0.396	0.058	0.318
CMPSNP275	3	4.8	X	0.568	3	2	0.491	0.029	0.370
CMPSNP540	3	8	X	0.623	3	2	0.470	0.049	0.360
CMPSNP165	3	24.3	X	0.515	4	3	0.509	0.078	0.389
snv232359	3			0.539	3	2	0.497	0.049	0.373
snv78115	3			0.480	5	3	0.572	0.039	0.478
CMPSNP769	3	42.8	X	0.578	3	2	0.488	0.029	0.369
CMPSNP164	3	46.2	X	0.675	3	2	0.439	0.049	0.343
CMPSNP998	3	56.3	X	0.602	3	2	0.479	0.039	0.364
snv201818	3			0.912	3	2	0.161	0.020	0.148
snv174716	3			0.743	3	2	0.382	0.107	0.309
CMPSNP595	3	61.1	X	0.752	3	2	0.373	0.068	0.303
CMPSNP712	3	62.7	X	0.529	3	2	0.498	0.068	0.374
snv209888	3			0.990	2	2	0.019	0.000	0.019
CMPSNP480	4	0	X	0.545	3	2	0.496	0.070	0.373
snv_METC120280_217	4			0.529	3	2	0.498	0.184	0.374
CMPSNP787	4	6.4	X	0.757	3	2	0.368	0.078	0.300
CMPSNP1132	4	11.2	X	0.563	3	2	0.492	0.058	0.371
PS_34-C02	4	17.6	X	0.684	3	2	0.432	0.068	0.339
CMPSNP907	4	20.8	X	0.665	3	2	0.446	0.068	0.346
snv143844	4			0.526	3	2	0.499	0.071	0.374
CMPSNP264	4	32.1	X	0.519	3	2	0.499	0.068	0.375
snv2392	4			0.927	3	2	0.135	0.029	0.126
CMPSNP147	4	48.3	X	0.553	3	2	0.494	0.117	0.372
snv161722	4			0.617	3	2	0.473	0.146	0.361
AI_03-F03	4	53.1	X	0.631	3	2	0.466	0.117	0.357
CMPSNP352	4	54.7	X	0.646	3	2	0.458	0.068	0.353
CMPSNP852	4	62.7	X	0.655	3	2	0.452	0.029	0.350
CMPSNP607	4	69.1	X	0.757	3	2	0.368	0.039	0.300
CMPSNP677	4	77.1	X	0.665	3	2	0.446	0.029	0.346
snv59920	4			0.937	3	2	0.118	0.010	0.111
snv133267	4			0.689	3	2	0.428	0.078	0.337
CMPSNP24	4	86.8	X	0.623	3	2	0.470	0.069	0.360
PS_07-E07	4	101.5	X	0.563	3	2	0.492	0.078	0.371

snv30491	4			0.665	3	2	0.446	0.107	0.346
SC51-3375	4	114.6	X	0.859	3	2	0.242	0.010	0.213
CMPSNP898	5	0	X	0.655	3	2	0.452	0.126	0.350
CMPSNP387	5	18.5	X	0.636	3	2	0.463	0.068	0.356
CMPSNP437	5	26.5	X	0.665	3	2	0.446	0.049	0.346
CMPSNP726	5	41.2	X	0.845	3	2	0.262	0.039	0.228
snv152833	5			0.893	3	2	0.191	0.019	0.173
snv178174	5			0.874	3	2	0.221	0.039	0.196
PSI_25-H03	5/8	59.4	X	0.515	3	2	0.500	0.039	0.375
CMPSNP788	5	50.9	X	0.617	3	2	0.473	0.029	0.361
SSH9G15	5	52.5	X	0.673	3	2	0.440	0.059	0.343
snv203948	5			0.709	3	2	0.413	0.019	0.328
snv203941	5			0.922	3	2	0.143	0.019	0.133
60k41.243	5	73.4	X	0.626	3	2	0.468	0.068	0.359
CMPSNP1155	5	79.8	X	0.646	3	2	0.458	0.087	0.353
AI_13-H12	5	89.4	X	0.660	3	2	0.449	0.058	0.348
CMPSNP735	5	94.2	X	0.738	3	2	0.387	0.039	0.312
snv85853	5			0.845	3	2	0.262	0.019	0.228
CMPSNP925	6	1.6	X	0.642	3	2	0.460	0.069	0.354
CMPSNP218	6	8	X	0.607	3	2	0.477	0.087	0.363
CMPSNP571	6	20.8	X	0.529	3	2	0.498	0.087	0.374
snv10873	6			0.758	4	3	0.376	0.040	0.319
snv10871	6			0.646	3	2	0.458	0.146	0.353
snv10863	6			0.660	3	2	0.449	0.155	0.348
snv102438	6			0.840	3	2	0.269	0.049	0.233
CMPSNP1167	6	25.6	X	0.864	3	2	0.235	0.039	0.207
CMPSNP433	6	32	X	0.694	3	2	0.425	0.068	0.334
CMPSNP3	6	43.2	X	0.646	3	2	0.458	0.049	0.353
snv80700	6			0.743	3	2	0.382	0.068	0.309
CMPSNP292	6	49.6	X	0.607	3	2	0.477	0.087	0.363
snv180558	6			0.665	3	2	0.446	0.068	0.346
snv180557	6			0.583	3	2	0.486	0.058	0.368
CMPSNP295	6	49.6	X	0.825	3	2	0.288	0.078	0.247
snv26555	6			0.583	3	2	0.486	0.058	0.368
snv_METC113399_986	6			0.752	3	2	0.373	0.068	0.303
CMPSNP1038	6	57.6	X	0.837	3	2	0.273	0.050	0.236
CMPSNP1021	6	57.6	X	0.568	3	2	0.491	0.068	0.370
A_38-F04	6	70.7	X	0.539	3	2	0.497	0.087	0.373
AI_13-F02	6	85.3	X	0.535	3	2	0.498	0.059	0.374
CMPSNP378	6	86.9	X	0.650	3	2	0.455	0.039	0.351
snv31558	7			0.926	3	2	0.136	0.010	0.127
AI_05-F11	7	4.9	X	0.525	3	2	0.499	0.049	0.374
snv237194	7			0.675	3	2	0.439	0.087	0.343
CMPSNP249	7	11.3	X	0.650	3	2	0.455	0.078	0.351
CMPSNP262	7	30.5	X	0.636	3	2	0.463	0.087	0.356
CMPSNP579	7	30.5	X	0.524	3	2	0.499	0.058	0.374
CMPSNP1009	7	32.1	X	0.853	3	2	0.251	0.059	0.219
CMPSNP287	7	35.3	X	0.694	3	2	0.425	0.029	0.334
snv227297	7			0.767	3	2	0.357	0.019	0.294
snv227298	7			0.770	3	2	0.355	0.010	0.292
snv227300	7			0.519	3	2	0.499	0.068	0.375
snv116229	7			0.995	2	2	0.010	0.010	0.010
CMPSNP56	7	43.3	X	0.650	3	2	0.455	0.097	0.351
CMPSNP465	7	59.4	X	0.680	3	2	0.435	0.019	0.341
CMPSNP415	7	72.2	X	0.626	3	2	0.468	0.029	0.359
CMPSNP12	8	0	X	0.597	3	2	0.481	0.087	0.365
CMPSNP766	8	4.8	X	0.636	3	2	0.463	0.029	0.356
CMPSNP718	8	11.2	X	0.587	3	2	0.485	0.068	0.367
snv72549	8			0.578	3	2	0.488	0.087	0.369
snv72552	8			0.563	3	2	0.492	0.097	0.371
CMPSNP97	8	19.2	X	0.578	3	2	0.488	0.437	0.369
CMPSNP44	8	22.4	X	0.680	3	2	0.435	0.039	0.341
AI_21-D08	8	28.8	X	0.614	2	2	0.474	0.000	0.362
CMPSNP181	8	35.2	X	0.574	3	2	0.489	0.020	0.369
snv145912	8			0.995	2	2	0.011	0.011	0.011
F013	8	48.1	X	0.646	3	2	0.457	0.063	0.353
CMPSNP1066	8	79.2	X	0.607	3	2	0.477	0.010	0.363
CMPSNP553	9	0	X	0.524	3	2	0.499	0.078	0.374
CMPSNP173	9	3.2	X	0.626	3	2	0.468	0.087	0.359
P5.64	9	8	X	0.617	3	2	0.473	0.126	0.361
snv156328	9			0.932	2	2	0.127	0.000	0.119
snv156330	9			0.951	3	2	0.092	0.039	0.088
snv181016	9			0.510	3	2	0.500	0.109	0.375
CMPSNP1077	9	19.2	X	0.592	3	2	0.483	0.039	0.366
CMPSNP320	9	20.8	X	0.728	3	2	0.396	0.078	0.318
CMPSNP144	9	22.4	X	0.607	3	2	0.477	0.029	0.363
snv81780	9			0.558	3	2	0.493	0.068	0.372

82 Seeds morpho-colourimetric analysis as complementary method to molecular characterization of melon diversity

snv81788	9			0.612	3	2	0.475	0.058	0.362
snv96603	9			0.789	3	2	0.333	0.029	0.277
snv96602	9			0.932	3	2	0.127	0.019	0.119
snv96589	9			0.529	3	2	0.498	0.107	0.374
CMPSNP1035	9	33.6	X	0.617	3	2	0.473	0.068	0.361
CMPSNP159	9	36.8	X	0.691	3	2	0.427	0.029	0.336
snv235812	9			0.743	3	2	0.382	0.068	0.309
snv16859	9			0.544	3	2	0.496	0.049	0.373
snv16858	9			0.699	3	2	0.421	0.058	0.332
CMPSNP1133	9	59.2	X	0.573	3	2	0.489	0.117	0.370
CMPSNP890	9	64	X	0.525	3	2	0.499	0.070	0.374
psi36-10864	10	0	X	0.530	3	2	0.498	0.100	0.374
psi36-839	10	0	X	0.520	3	2	0.499	0.059	0.375
CMPSNP172	10	1.6	X	0.743	3	2	0.382	0.068	0.309
snv72138	10			0.660	3	2	0.449	0.078	0.348
snv238357	10			0.582	3	2	0.487	0.041	0.368
CMPSNP528	10	8	X	0.529	3	2	0.498	0.068	0.374
snv92882	10			0.714	3	2	0.409	0.068	0.325
CMPSNP65	10	14.4	X	0.748	3	2	0.377	0.058	0.306
snv57827	10			0.757	3	2	0.368	0.058	0.300
CMPSNP762	10	23.9	X	0.748	3	2	0.377	0.050	0.306
CMPSNP671	10	28.8	X	0.529	3	2	0.498	0.118	0.374
snv86654	10			0.535	3	2	0.498	0.040	0.374
snv96678	10			0.752	3	2	0.373	0.049	0.303
snv212837	10			0.752	3	2	0.373	0.107	0.303
snv87950	10			0.621	3	2	0.471	0.039	0.360
snv38521	10			0.772	3	2	0.352	0.165	0.290
snv38520	10			0.510	3	2	0.500	0.071	0.375
snv38519	10			0.801	3	2	0.319	0.029	0.268
CMPSNP550	10	38.5	X	0.660	3	2	0.449	0.350	0.348
CMPSNP426	11	0	X	0.607	3	2	0.477	0.049	0.363
HS_35-E11	11	16.4	X	0.743	3	2	0.382	0.087	0.309
snv223744	11			0.665	3	2	0.446	0.049	0.346
PSI_41-B07	11	27.6	X	0.694	3	2	0.425	0.029	0.334
snv205766	11			0.500	3	2	0.500	0.446	0.375
CMPSNP389	11	47.7	X	0.602	3	2	0.479	0.233	0.364
CMPSNP30	11	66	X	0.608	3	2	0.477	0.098	0.363
CMPSNP315	11	90.9	X	0.711	3	2	0.411	0.049	0.327
CMPSNP475	11	98.9	X	0.535	3	2	0.498	0.059	0.374
CMPSNP122	11	100.5	X	0.607	3	2	0.477	0.049	0.363
snv236017	11			0.922	2	2	0.143	0.000	0.133
snv5835	11			0.913	3	2	0.159	0.117	0.147
snv5837	11			0.942	3	2	0.110	0.019	0.104
snv_METC085477	11			0.597	3	2	0.481	0.068	0.365
CMPSNP385	12	4.8	X	0.762	3	2	0.363	0.049	0.297
CMPSNP310	12	9.8	X	0.505	3	2	0.500	0.058	0.375
snv152951	12			0.874	3	2	0.221	0.019	0.196
snv152951	12			0.874	3	2	0.221	0.039	0.196
AI_35-A08	12	16.4	X	0.617	3	2	0.473	0.068	0.361
AI_09-G07	12	18.1	X	0.740	3	2	0.385	0.140	0.311
CMPSNP285	12	21.4	X	0.908	3	2	0.167	0.049	0.153
snv234449	12			0.675	3	2	0.439	0.107	0.343
CMPSNP361	12	37	X	0.583	3	2	0.486	0.078	0.368
CMPSNP5	12	58.1	X	0.743	3	2	0.382	0.029	0.309
snv106138	12			0.568	3	2	0.491	0.049	0.370
FR14F22	12	67.7	X	0.524	3	2	0.499	0.058	0.374
P02.03	12	69.3	X	0.631	3	2	0.466	0.097	0.357
snv59053				0.879	3	2	0.213	0.029	0.191
snv22707				0.871	3	2	0.224	0.040	0.199
snv230197				0.985	2	2	0.029	0.029	0.029
snv230201				0.539	3	2	0.497	0.204	0.373
snv230204				0.791	3	2	0.330	0.146	0.276
snv230212				0.971	2	2	0.057	0.059	0.055
snv234334				0.617	3	2	0.473	0.107	0.361
* References in which these markers were experimentally validated and where additional information is available. X= Esteras et al. 2013 ** Markers beginning by snv are new SNPs selected from Melogene database									

Chapter 4
Molecular and morphological CHARACTERIZATION OF THE OLDEST MELON seeds found in Western Mediterranean

Molecular and morphological characterization of the oldest melon seeds found in Western Mediterranean

Diego Sabato ${ }^{1}$, Belén Picó 2, Oscar Grillo ${ }^{3}$, Cristina Esteras ${ }^{2}$, Leonor Peña-Chocarro ${ }^{4,5}$, Gianluigi Bacchetta ${ }^{1}$

${ }^{1}$ Centro Conservazione Biodiversità (CCB), Dip. di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Italy
${ }^{2}$ Instituto de Conservación y Mejora de la Agrodiversidada Valenciana (COMAV), Universitat Politécnica de Valéncia, Spain.
${ }^{3}$ Stazione Consorziale Sperimentale di Granicoltura per la Sicilia (SSGS), Caltagirone, Italy.
${ }^{4}$ Escuela Española de Historia y Arqueología en Roma-CSIC, Rome, Italy
${ }^{5}$ GI Arqueobiología, Instituto de Historia, CCHS-CSIC, Madrid, Spain

Abstract

During a rescue archaeology campaign at Sa Osa, Sardinia (Italy), an intact Late Bronze Age well was discovered. The structure yielded a large amount of waterlogged plant remains from which a group of Cucumis melo seeds were one of the most remarkable. These remains are the earliest record of this taxon in the Western Mediterranean and one of the oldest ever recorded. Plant remains were preserved by permanent waterlogging in anoxic conditions making the Cucumis seeds good candidates for molecular and morphometric characterization.

DNA extraction from archaeological samples followed a special procedure to avoid contamination. Archaeological seeds were molecular and morphologically compared with a set of 172 accessions of traditional melon landraces from Europe, Africa and Asia. Genotyping was performed using 211 polymorphic SNPs and the genotyping technology iPLEX \circledR^{\circledR} Gold MassARRAY Sequenom. A total of 95 morphometric parameters, acquired by an automatic image analysis system, were specifically designed to evaluate seed size and shape.

Both molecular and morphological analyses confirmed that these archaeoseeds did not belong to a wild species but to a cultivated melon, likely to be an intermediate form between the two melon subspecies, melo and agrestis. This primitive melon could be attributed to a group of ancestral nonsweet or low sugar forms of chate, flexuosus and ameri varieties, showing similarities with African and Central Asia accessions. Chate and flexuosus are cucumber-like forms which played a central role in early melon selection while ameri, mostly diffused in the Near East and Central Asia, are thought to be the ancestors of the modern sweet varieties, such as inodorus and cantalupensis.

Key words: Cucumis melo, ancient DNA, seed morphology, archaeobotany, image analysis, molecular analysis.

4.1 Introduction

4.1.1 Melon

Cucumis melo L. has gone through an intense process of diversification, and today it shows great variation in morphological and physiological characters with different groups and varieties being reported (Naudin 1859, Munger and Robinson 1991). Although C. melo has been traditionally divided into two subspecies according to ovary hairiness, subspecies melo (long hairs) and subspecies agrestis (short hairs) (Jeffrey 1980, 2001, 2005), nowadays this classification is based mainly on molecular clustering (Esteras et al. 2012, 2013). The wild forms of melon (C. melo subsp. agrestis var. agrestis) show a great genetic variability and are distributed across the tropical and sub-tropical belt in Africa and Asia and including numerous previously overlooked species-level relatives from Australia and around the Indian Ocean (Sebastian et al. 2012). Pitrat et al. (2000) recognized 16 varieties: cantalupensis Naudin, reticulatus Ser. (cantaloupe, muskmelon), inodorus H. Jac. (winter melon, casaba melon), flexuosus L. (snake melon), chate Hasselq. (cucumber melon), adana Pangalo, chandalak Gabaev, ameri Pangalo (Asian melon), chito C.Morren (American melon), dudaim L. (pocket melon), tibish Mohamed, acidulus Naudin, conomon Thunb., makuwa Makino, chinensis Pangalo (pickling melon), and momordica Roxb. (snap melon); in later revisions, Pitrat (2008) merged together some of these varieties.

The knowledge about the origin and diffusion of the main cultivated plants (cereals, legumes, grape and fruit trees) has greatly increased in the last two decades, whereas very little is still known about vegetable crops such as Cucumis melo (Zohary et al. 2012). To some extent, this is due to problems related to preservation of archaeological material. The origin of domesticated melon is not fully understood yet. North Africa and Near East have been considered the traditional centre of origin of this species (Zohary et al. 2012). However, recent studies suggest that the melon origin-distribution centre includes the Australia-Malaysia area since melon appears closer to the Australian-Asian group than to the African species (Renner et al. 2007). In addition, due to the high level of variation found in Asia, especially in India, it is suggested that melon may have originated there spreading later to Africa (Renner et al. 2007, Sebastian et al. 2010). Other theories point to the possibility of two independent domestication events (Bates and Robinson 1995, Jeffrey 1980, Esquinas-Alcazar and Gulick 1983, Mallick and Mausi 1986, Tanaka et al. 2013). A genetic relationship between South African and East Asian melons was found by Nakata et al. (2005).

It is likely that this crop had a marginal role at least up to Medieval times, when sweet melon was introduced to the Iberian Peninsula during the Arab domination (Paris et al. 2012). The oldest known archaeological record of this taxon is a single seed of Cucumis sp. found in the Spirit Cave, Thailand, in a layer dated 7622 ± 300 BP (Gordman 1969, 1972). This area is part of the region of native distribution of wild melon (Sebastian et al. 2010) and, therefore, this find has been considered more related to a wild plant than to a cultivated form (Solheim 1972). In Asia early finds have been reported from several sites between the $3^{\text {rd }}$ and $2^{\text {nd }}$ millenium BC in China (Watson 1969), in Iran

[^0](Costantini 1977) and in India and Pakistan (Fuller and Madella 2001). The first Mediterranean records are located in Egypt. Two melon seeds were found in a burial at Hierakonpolis 3700-3300 BC (Fahmy 2001, 2003), and some doubtful non-carbonised and semi-carbonised seeds from Neolithic levels in Maadi 3500-3350 BC (van Zeist et al. 2003a). One further seed was found in a kitchen area of Tell Hammam et-Turkman dated to the Early Bronze Age IV, 2500-2000 BC (van Zeist et al. 2003b). A single pollen grain of Cucumis sp. was found in a core in Crete, at a level dated to ca. 2300 BC (Bottema and Sarpaki 2003). In Greece, three carbonized seeds have been reported in the Late Bronze Age Tirynth (Kroll 1982), a few others in the Iron Age Kastanas (Kroll 1983, 1984, Megaloudi 2006) and several in the Sanctuary of Hera in the island of Samos, dated to the $7^{\text {th }}$ century BC (Kučan 1995, Megaloudi 2006). A single melon seed have been found in a Punic channel of Carthage (van Zeist and van der Veen 2001). During Roman period, several seeds have been found in Central and North-Western Europe, where the presence of melon is considered a sign of "Romanization" (Livarda 2011, Bakels and Jacomet 2002, Wiethold 2003). In Italy, several records have been reported in the North of the peninsula (Castelletti et al. 2001, Rinaldi et al. 2013), Pompeii (Murphy et al. 2013) and in the last phases of the Trajan Harbour, in Rome (Pepe et al. 2013, Sadori et al. 2014).

Rescue excavations carried out during 2008 and 2009 in Sa Osa, Central-West Sardinia, revealed a Nuragic settlement composed of numerous wells and pits related to living spaces. These structures were dug by local communities between the Early Copper and the Iron Age, with emphasis during the Middle and Late Bronze Age. The most remarkable structure was the so-called Well-N (Fig.1c) dated to the Late Bronze Age (Usai 2011). Sabato et al. (2015a) [Chapter 1] described the discovery of melon seeds in Well-N, which is the oldest known record of this taxon in the Western Mediterranean and one of the oldest in the world. Despite the archaeological context was undisturbed and that two grape seeds were already dated producing Bronze Age dates (Ucchesu et al. 2014a), waterlogged seeds can not be easily differentiated from modern material. For this reason, to avoid any doubt, fragments of these remains have been radiocarbon dated by AMS within a time range between 1310-1120 cal BC 2б (Sabato et al. 2015 [Chapter 1]).

Details of earliest melon records, including artistic representations, written data and archaeological finds, listed in Table 1 and represented in Figure 1, although chronology is approximated since none of previous archaeological records has been directly radiocarbon dated. The anoxic conditions of the silt, the continuous supply of water and the constant temperature allowed maintaining the material in a exceptionally state of preservation making these seeds good candidates for ancient DNA preservation and morphological characterization.

	Age		Country	Place	Reference
1	6272-5072 BC	A*	Thailand	Spirit Cave	Gordman 1969 ${ }^{4}$, 1972
2	3750-3300 BC	A	Egypt	Hierakonpolis	Fahmy 2001 ${ }^{1}$, 2003
3	3500-3350 BC	A^{+}	Egypt	Maadi	van Zeist et al. 2003a ${ }^{1}$
4	ca. 3000 BC	A	China	Zhejieang	Watson $1969{ }^{4}$
5	3000-2000 BC	A	Oman	Hili	Tengberg 2003
6	2686-2181 BC	G	Egypt	several	Keimer $1924{ }^{1,2}$
7	2500-2000 BC	A	Syria	Tell Hammam	van Zeist et al. 2003b ${ }^{1}$
8	ca. 2350 BC	P*	Greece	Kournas, Crete	Bottema and Sarpaki 2003
9	ca. 2000 BC	A	Iran	Shahr-I Sokhta	Costantini 1977
10	ca. 2000 BC	A	China	Shanni	Watson $1969{ }^{4}$
11	2000-1700 BC	A*	India	Rojd	Weber 1991 ${ }^{6}$
12	1700-1500 BC	A	India	Inamgaon	Kajale $1988{ }^{6}$
13	1700-1300 BC	A*	India	Balathal	Kajale $1986{ }^{6}$
14	1700-1300 BC	A*	Pakistan	Loebanr 3	Costantini $1987{ }^{6}$
15	1550-1300 BC	G	Egypt	Theban Necropolis	Manniche 1989 ${ }^{2}$
16	1517-1192 BC	G	Egypt	Theban Necropolis	Darby et al. $1977{ }^{2}$
17	1310-1120 BC	A	Italy	Sa Osa, Sardinia	Sabato et al. 2015 [Chapter 1]
18	1200-1000 BC	A	Greece	Tirynth	Kroll $1982{ }^{\text {1,5 }}$
19	1050-900 BC	A	Greece	Kastanas	Kroll $1983{ }^{5}$, 1984
20	1000-500 BC	W	China	-	Confucius (attributed) Keng 1974 ${ }^{4}$
21	700-600 BC	A	Greece	Heraion, Samos	Kučan $1995{ }^{1,5}$
22	ca. 350 BC	A	Tunisia	Carthage	van Zeist and van der Veen 2001
23	ca. 168 BC	A	China	Hunan	Yu $1977{ }^{4}$
24	$100 \mathrm{BC}-500 \mathrm{AD}$	A	NW Europe	several	Livarda 2011
25	10-0 BC	A^{+}	Switzerland	Vindonissa	Jacomet et al. 2002
26	15-40 AD	A	Italy	Mutina	Rinaldi et al. 2013
27	50-200 AD	A	Egypt	Mons Porphyrites	van der Veen and Tabinor 2007
28	50-250 AD	A	C Europe	several	Bakels and Jacomet 2002
29	ca. 64 AD	W	Italy	-	Columella ${ }^{2,3}$
30	ca. 77 AD	W	Italy	-	Gaius Plinius Secundus ${ }^{2,3}$
31	79 AD	A	Italy	Pompei	Murphy et al. 2013
32	100-200 AD	A*	Egypt	Mons Claudianus	van der Veen 1996, 2001
33	100-300 AD	G	Tunisia	several	Balmelle 1990, Blanchard-Lemé et al. 1995, Yacoub $1995{ }^{2}$
34	180-250 AD	A	France	Alesia	Wiethold 2003
35	220-651 AD	A	Turkmenistan	Merv Oasis	Nesbitt and O'Hara 2000
36	ca. 250 AD	G	Greece	Thessaloniki	Pazaras $1981{ }^{2}$
37	ca. 260 AD	W	Italy	-	Quintus Gargilius Martialis ${ }^{3}$
38	300-400 AD	G	Spain	Mérida	Álvarez Martínez et al. $2000{ }^{2}$
39	ca. 400 AD	W	Italy	-	Palladius ${ }^{3}$
40	ca. 400 AD	W	Italy	-	Apicius ${ }^{3}$
41	500-600 AD	G	Lebanon	-	Baratte $1978{ }^{2}$, Balmelle et al. $1990{ }^{2}$
42	500-600 AD	A	Italy	Portus	Pepe et al. 2013
43	550-600 AD	A	Tunisia	Carthage	van Zeist and van der Veen 2001
44	500-700 AD	W	China	several	Li 1970
45	533-544 AD	W	China	-	Jia Sixie (attributed) Li $1969{ }^{4}$
$\mathrm{A}=$ Archaeological finds				${ }^{1}$ References reported in Zohary et al. 2012	
$\mathrm{G}=$ Graphical representations				${ }^{2}$ Pictures reported in Janick et al. 2007	
$\mathrm{W}=$ Written sources				${ }^{3}$ Sources reported in Paris et al. 2012	
$\mathrm{P}=$ Pollen record				${ }^{4}$ References reported in Walters 1989	
* identified as Cucumis or C. melo/sativus				${ }^{5}$ References reported in Megaloudi 2006	
${ }^{+}$doubtful find or cf. C. melo				${ }^{6}$ References reported in Fuller and Madella 2001	

Table 1. Records of melon in chronological order from the earliest identifications until the $6^{\text {th }}$ century $A D$, including graphical representations, written sources and archaeological finds. Chronology is approximative since, apart from Sa Osa, none of archaeological remains has been directly radiocarbon dated.

Figure 1. Melon records earlier than melon seeds found in Sa Osa. For reference numbers see Tab. 1.

4.1.2 Introduction to the analyses

Cold, dry and/or low oxygen environments are beneficial for DNA survival, where preservation by freezing and desiccation is the best way for ancient DNA preservation (Oliveira et al. 2012). Despite waterlogging does not favour DNA preservation as hydrolysis is one of the major decay reactions (Schlumbaum et al. 2008), a PCR (Polymerase Chain Reaction) designed to target small fragments, as lengths of 50-500b, may be succesful to amplify ancient DNA (Pääbo et al. 2004, Speirs et al. 2009). Waterlogged plant remains have been used as source of ancient DNA (Manen et al. 2003, Elbaum et al. 2005; Pollmann et al. 2005, Gyulai et al. 2008, Speirs et al. 2009). Archaeogenetic studies have strongly increased over the last two decades and an extensive literature on the subject is available in Palmer et al. (2012).

Morpho-colorimetric evaluations are commonly used as a tool to assess shape, size and colour of objects, in order to relate quantitative physical characters and qualitative aspects. Several studies have focused on the application of image analysis to the diaspores of spontaneous flora, providing excellent results when taxonomic units very close to infra-generic and infra-specific levels are used (Bacchetta et al. 2008, Grillo et al. 2010). A previous research focused on grape varieties correlated molecular and seed morphology (Orrú et al. 2013a) and two further works correlated seed shape of Sardinian grape landraces and archaeological pips found in the same context of Sa Osa (Lovicu et al. 2011, Orrú et al. 2013b, Ucchesu et al. 2014b).

Melon seed length has been already correlated to genetic and geographical differentiation among melon groups (Fujishita 1983). Tanka et al. 2013 indicated that large-seed melon is mainly cultivated in USA, Europe, West and Central Asia and northern Africa, whereas India both large- and small-seed melon are equally frequent, while small-seed are more common in southern Africa, South and East Asia melon. In Sabato et al. (in press) [Chapter 3] a strong correlation between molecular and seed characters of melon has been also shown.

Basing on this wide research background, the aims of the present work are:

- Extracting and genotyping the ancient DNA of Late Bronze Age melon seeds from Sa Osa ;
- Acquiring the morphological features of the same remains by an image analysis system;
- Comparing molecular and morphological data with modern worldwide melon landraces

4.2 Materials and methods

4.2.1 Seed lots detail

The starting material was a core collection of 212 melon accessions built within the framework of a previous project (MELRIP 2007-2010, Esteras et al. 2012, 2013). These accessions, representative of all melon varieties from Europe, Africa and Asia, have genotyped with AFLP (Amplified Fragment Length Polymorphism) and SNP (Single Nucleotide Polymorphism) markers, and extensively phenotyped for plant and fruit traits. Only accessions belonging to traditional landraces were considered for the present research for a total of 172 seed lots (145 and 115 for molecular and morphological analysis respectively) from 44 different countries from Europe, Africa and Asia [Annex C1]. Seed lots have been mainly provided by USDA (United States Department of Agriculture) and COMAV (Conservación y Mejora de la Agrodiversidad Valenciana) Germplasm Banks. Four accession from Cyprus have been provided by the Cyprus Germplasm Bank and ten Sardinian landraces, mostly decrypted in Attene and Rodriguez (2008), have been supplied by the Agriculture Department of University of Sassari and one by a local farmer.

Archaeological seeds have been preserved in waterlogged condition and stored in distilled water at $+5^{\circ} \mathrm{C}$ temperature (Sabato et al. 2015 [Chapter 1]). Identification of melon seeds followed indication of Frank and Stika (1988) apart from using a wide range of modern reference material. Only 15 full preserved seeds have been selected for morphological analysis (Fig. 2), while broken seeds were used for radiocarbon dating and DNA extraction.

Figure 2. Three waterlogged Late Bronze Age seeds from Sa Osa (Cabras, Sardinia) before molecular and morphological analyses.

4.2.2 Molecular analysis

DNA extraction of archaeological samples followed a special procedure to avoid contamination. DNeasy Plant Mini Kit (Qiagen) was used and its protocol was followed with minor changes (more time with the initial buffer). All the tools involved (tubes, gloves, blades, etc.) have been UV irradiated for 12 hours and previously autoclaved if not disposable (like pliers and steel beads). The archaeological material was never manipulated in rooms where modern cucurbits were being treated and extractions were carried out in a sterile flow-hood chamber. Seed surface were cleaned out with a solution of $10 \% \mathrm{Ca}(\mathrm{OCl})_{2} \mathrm{w} / \mathrm{v}$ for one minute. Six samples were selected, four with a single seed, and two with three seeds. To confirm the lack of contamination during the whole process a negative control was included (a sample that follows all extraction steps without containing any archaeological or modern tissue). unfortunately, only a sample sample yielded a minimum amount of DNA for quantifying and genotyping,

A total of 123 SNPs markers, evenly distributed throughout the genome, were selected from the SNP melon collection available in the Melogene database (http://www.melogene.net/). This database contains a total of 38,587 SNPs that were in silico identified in two previous re-sequencing analysis (Blanca et al. 2011, Blanca et al. 2012). The most important one (Blanca et al. 2012) re-
sequenced 67 genotypes, grouped into 8 pools that represent all the botanical groups of the species, for mining for SNPs These polymorphisms, identified by the alignment of the sequences to the reference transcriptome, represent the largest collection existing for melon. This transcriptome, the most complete version to date, was created by Blanca et al. (2012) using a combination of expressed sequence tags (ESTs) from classical Sanger sequencing and the next generation sequencing methods, e.g. 454 (Roche) and SOLID (Life Technologies Inc.).

Information about the SNPs used is available in Annex 1 and detailed information for each SNP marker, such as sequence, allele variation and location is available in the Melogene database. Most SNPs used in this study were employed in previous mapping experiments and their position in the genetic map is known (Esteras et al. 2013). Genotyping with this set of markers was performed using iPLEX® Gold MassARRAY Sequenom technology, carried out at the epigenetic and genotyping unit of the University of Valencia (Unitat Central d'Investigació en Medicina UCIM). This genotyping technology relies on Single Base Extension (SBE) using mass-modified dideoxynucleotide terminators of an oligonucleotide primer which anneals immediately upstream of the polymorphic site of interest to generate different allelic products. Using the MALDI-TOF mass spectrometry, the distinct mass of the extended primer identifies the SNP allele (Gabriel et al. 2009). The genotyping results were employed to perform a cluster analysis using the PowerMarker software (Liu and Muse 2005). Nei's genetic distance (Nei et al. 1983) was used, and the support values for the degree of confidence at the nodes of the dendrogram were analysed by bootstrap re-sampling 1,000 times. Phylip 3.69 software (Felsenstein 1997) was employed to construct the consensus tree and TreeView32 (Page 1996) to visualize it. The Principal Coordinate Analysis (PCoA) was performed using GenAlEx 6.501. In addition, major allele frequency, gene diversity, heterozygosity and polymorphism information content (PIC) for each locus were calculated for this melon collection using PowerMarker software (Liu and Muse 2005).

4.2.3 Morpho-metric seed analysis

The process follows the same protocol described in Sabato et al. (in press) [Chapter 3] and [Chapter 4]. Images were acquired using a flatbed scanner, with a resolution of 400 dpi, 24 bit-depth and a scanning area not exceeding 1024×1024 pixel. As suggested by Venora et al. (2007), before image acquisition the scanner was calibrated for colour matching, following the protocol of Shahin and Symons (2003). Digital images of seeds, randomly disposed on the flatbed tray, were acquired and used for the analysis. Two images were acquired for each sample of seeds, with black and white background. Digital images of seeds were analyzed using the software package KS-400 V. 3.0 (Carl Zeiss, Vision, Oberkochen, Germany). The accuracy and speed of measurements was maximized by running an automated macro, specifically developed for the characterization of seeds (Bacchetta et al. 2008; Grillo et al. 2010). Considering that seed colour is altered in the archaeological seeds, colour and texture have been not considered in this research, but in order to increase the number of
discriminant parameters, the Elliptic Fourier Descriptors (EFDs) were also computed, as described by Orrù et al. (2013a), to accurately describe the shape of the analysed seeds. A total of 95 parameters, describing of seed size and shape, were computed (Tab. 1). Data were statistically elaborated applying the stepwise LDA (Linear Discriminant Analysis).

We selected five main groups of varieties to compare the archaeological seeds: the Sweet melon group ($=\mathrm{SWG}$), all sweet melon varieties of subspecies melo: var. ameri, inodorus, cantalupensis, reticulatus and indeterminate landraces of subsp. melo; the Intermediate group ($=\mathrm{ING}$), non sweet melons with intermediate characteristics between the two melon subspecies: var. dudaim, chate, flexuosus and momordica; the African agrestis group (= AFG), African acidulus, tibish and the two African indeterminate landraces of subsp. agrestis; the Conomon group (=COG), all sweet and semi-sweet melons of subspecies agrestis diffuse in Far East: var. conomon, chinensis, makuwa and Asian acidulus: and the Wild types group (=WTG), wild and semi-wild melons: var. agrestis and chito.

Shape parameters	
A	Area (mm^{2})
P	Perimeter (mm)
Pconv	Convex Perimeter (mm)
PCrof	Crofton's Perimeter (mm)
Pconv/PCrof	Ratio between convex and Crofton's perimeters
Dmax	Maximum diameter of the seed (mm)
Dmin	Minimum diameter of the seed (mm)
Dmin/Dmax	Ratio between minimum and maximum diameters
Sf	Shape Factor $=\left(4 \mathrm{X} \pi \mathrm{X}\right.$ area) $/$ Perimeter ${ }^{2}$ (normalized value)
Rf	Roundness Factor $=\left(4 \mathrm{X} \pi \mathrm{X}\right.$ area) $/$ max diameter $\left.{ }^{2}\right)($ norm. value $)$
Ecd	Diameter of a circle with an area equivalent to the seed (mm)
EAmax	Maximum axis of an ellipse with equivalent area (mm)
EAmin	Minimum axis of an ellipse with equivalent area (mm)
Cpt	Compact grade $=(\sqrt{ } 2(4 / \pi) \mathrm{X}$ area)/Dmax
C	Curl $=$ ratio between maximum diameters and Fiber lengths
Fl	Fiber length (mm)
Cvx	Convexity = ratio of Crofton's Perimeters and real Perimeters
78 EFDs	Elliptic Fourier Descriptors

Table 2. List of characters analyzed in the morphological analyses.

4.3 Results

4.3.1 Molecular analysis

In Annex C1 genotyping data are presented. Seventeen loci were not amplified in the archaeological material, probably due to ancient DNA degradation. Seventy-one SNPs were homozygous for one allele, a trait frequently found in the Eastern European, Western Asian and North African accessions belonging to chate, flexuosus and ameri varieties. Often (in approximately a 30\% of cases) the same allele of the archaeological seeds was present in African melons (acidulus and tibish), but rarely found in Far Eastern Asian melons (conomon). Furthermore, ancient DNA shares more alleles with inodorus and cantalupensis varieties, which seem more related to the Far Eastern conomon. A high number of loci (35) were heterozygous, with one of the highest heterozygosity level. Both alleles of these heterozygous loci, are frequent in melo cultivars/African agrestis and in those shared by conomon and agrestis. One of the alleles of some of the heterozygous loci is quite rare in modern genotypes and it is only present in some North African, Indian or Far eastern accessions.

The PCoA carried out using the genotyping results of 123 polymorphic SNPs is shown in Figure 3a (coordinate 1 VS 2) and Figure 3 b (coordinate 1 VS 3). In both representation the archaeological seeds were grouped in the left section of the graph according to the first axe (these explain the 49.05% of the total variation) together with accessions of subspecies melo and more distant from those of subspecies agrestis. These results clearly show that the Bronze Age melon seeds belong to cultivated melons, likely the subspecies melo, quite distant to modern landraces. Closest accessions were two ameri from Russia (AmRU42) and Morocco (AmMA37), two chate melons from South Italy (ChIT27 and ChIT122) and two indeterminate landraces from Mali (LaML35) and Italy (LaIT00) (Fig. 3c). ChIT27, ChIT122 and AmMA37 (Brix degree 4 to 6) can be considered non-sweet forms whereas AmRU42 and LaML35 can be considered a low sugar accession (Brix degree 5 to 8).

Figure 3a. PCoA analysis showing the molecular results from the archaeological seeds and the modern melon collection. The graph shows functions 1 and 2 corresponding to axis X and Y respectively.

Figure 3b. PCoA analysis showing the molecular results of the archaeological seeds and the modern melon collection. The graph shows functions 1 and 3 corresponding to axis X and Y respectively.

Figure 3c. PCoA analysis showing the molecular results of thearchaeological seeds and themodern melon collection. The graph only focuses on closest accession. Functions 1,2 and 3 corresponding to axis X, Y and Z respectively.

4.3.2 Morphological analysis

A first morphological comparison was carried out between the 15 archaeological seeds, the two melon subspecies (melo and agrestis) and wild melons (Table 3). The analysis, based on 11,374 seeds, gave an overall correct identification of 92.6% while misclassification between wild and cultivated melon was fairly close to zero. Correct classification of subspecies melo and wild melon was high (98.9% and 95.3% respectively), although subspecies agrestis overlapped 21.6% with subspecies melo. None of the ancient seeds have been classified as wild melons, being mostly classified as cultivated agrestis ($80 \%, 12$ seeds) and some as cultivated melo ($20 \%, 3$ seeds), suggesting their intermediate position between the two subspecies.

	subsp. melo		subsp. agrestis		wild melon		total	
	$\%$	n°	$\%$	n°	$\%$	n°	$\%$	n°
C. melo subsp. melo	98.9	8072	1.2	96	-	-	100.0	8168
C. melo subsp. agrestis	21.1	539	71.8	1830	7.1	181	100.0	2550
wild melon	-	-	4.6	30	95.4	625	100.0	656
Archaeoseeds	$\mathbf{2 0 . 0}$	$\mathbf{3}$	$\mathbf{8 0 . 0}$	$\mathbf{1 2}$	-	-	$\mathbf{1 0 0 . 0}$	$\mathbf{1 5}$

- 92.6% overall classification

Table 3. Results of the morphological comparison between archaeological seeds and cultivated melon subspecies and wild melon.

The comparison among the five main groups described in "Materials and methods" and the archaeological seeds is reporten in table 4. Most macro-groups were classified correctly, with percentages of overall correct identification of 81.3%. SWG was correctly identified in the 93.4% of cases, although ING overlapped with this group in the 55.1% of cases, confirming the high similarity of these ecotypes. None of the archaeological seeds were classified as SWG or WTG. Nine of them (60.0%) have been classified as ING while three seeds (20.0%) have been associated to AFG. The remaining three seeds have been classified as COG (20.0\%). Table 5 shows a list of 28 parameters that contributed to discrimination according to the F-to-remove value, which indicate the weight of a single parameter in the statistical analysis. The most important characters of discrimination were related to seed dimension, as the area, the diameter value of a circle with an equivalent area, the minimum axis value of an ellipse with equivalent area and the perimeter (A, Ecd, EAmin, P). In minor amount also features that describe seed shape contributed to discrimination, as the compact grade value, the ratio between minimum and maximum diameters and several Elliptic Fourier Descriptors (Cpt, Dmin/Dmax and FDs).

	SWG		ING		AFG		COG		WTG		TOTAL	
	$\%$	n°										
SWG	93.4	6317	5.2	351	1.4	94	0.1	4	-	-	100.0	757
ING	55.1	930	44.2	747	0.6	10	0.1	2	-	-	100.0	1689
AFG	7.6	61	7.1	57	71.9	580	13.5	109	-	-	100.0	627
COG	4.4	60	2.9	39	11.3	155	69.3	947	12.1	165	100.0	1366
WTG	-	-	-	-	-	-	11.8	88	88.2	658	100.0	746
ARC	-	-	$\mathbf{6 0 . 0}$	$\mathbf{9}$	$\mathbf{2 0 . 0}$	$\mathbf{3}$	$\mathbf{2 0 . 0}$	$\mathbf{3}$	-	-	$\mathbf{1 0 0 . 0}$	$\mathbf{1 5}$

- 81.3% overall classification

Table 4. Results from LDA analysis comparing the archaeological seeds (ARC) to variety groups with similar morphological characteristics. For code details see "Materials and methods"

LDA analysis has been also applied considering each accession as independent group. Scatterplot graph in Figure 4 a and 4 b show archaeological seed and accession distributions, the latter only represented by the mean of respective position of all seed coordinate directions (centroids). Closest accessions were a conomon-chinensis from Asia (CnPL169), indeterminate landraces of from Africa (LaMG202, LaZA47, LaET11), South African acidulus (AcZA98, AcZW99, AcZW100), a dudaim from Georgia (DuGE296) and a flexuosus from Iraq (FxIQ23). Further accessions that show similar features were several ameri, conomon and flexuosus from Central and East Asia. All of these closet accessions are non-sweet or low sweet cultivated landraces.

	Parameter	F-to-emove	Tollerance	Wilks' lambda
$\mathbf{1}$	A	253.072	0.001	0.059
$\mathbf{2}$	Ecd	193.983	0.001	0.057
$\mathbf{3}$	EAmin	141.611	0.005	0.056
$\mathbf{4}$	Cpt	132.240	0.003	0.055
$\mathbf{5}$	FD22	85.535	0.593	0.054
$\mathbf{6}$	FD14	81.101	0.200	0.054
$\mathbf{7}$	FD6	72.134	0.011	0.054
$\mathbf{8}$	FD11	66.003	0.144	0.053
$\mathbf{9}$	FD10	64.820	0.337	0.053
$\mathbf{1 0}$	FD26	37.425	0.663	0.052
$\mathbf{1 1}$	P	35.608	0.004	0.052
$\mathbf{1 2}$	FD18	31.017	0.676	0.052
$\mathbf{1 3}$	FD2	21.483	0.978	0.052
$\mathbf{1 4}$	Dmin/Dmax	21.474	0.015	0.052
$\mathbf{1 5}$	FD42	17.029	0.721	0.052
$\mathbf{1 6}$	FD15	15.730	0.299	0.052
$\mathbf{1 7}$	FD47	13.211	0.632	0.052
$\mathbf{1 8}$	FD21	7.645	0.641	0.051
$\mathbf{1 9}$	FD36	7.273	0.404	0.051
$\mathbf{2 0}$	FD13	6.563	0.270	0.051
$\mathbf{2 1}$	FD12	5.957	0.219	0.051
$\mathbf{2 2}$	FD56	5.898	0.476	0.051
$\mathbf{2 3}$	FD40	5.679	0.282	0.051
$\mathbf{2 4}$	FD24	5.335	0.376	0.051
$\mathbf{2 5}$	FD52	5.326	0.505	0.051
$\mathbf{2 6}$	FD23	4.643	0.278	0.051
$\mathbf{2 7}$	FD50	4.364	0.790	0.051
$\mathbf{2 8}$	FD75	4.056	0.941	

Tab. 5. Factors used for discrimination among species in order of decreasing F-to-remove, that describes the power of each variable in the model. The Tolerance indicates the proportion of a variable variance not accounted by other independent variables in the equation. Wilks' lambda is a direct measure of the proportion of variance in the combination of dependent variables that is unaccounted for by the independent variable.

Figure 4a. LDA analysis results of morphological comparison between the archaeological melon seeds and the modern collection. Only accession centroids are represented. The graph shows functions 1 and 2 corresponding to axis X and Y respectively. For code details see "Matherials and methods"

Figure 4b. LDA analysis results of morphological comparison between the archaeological melon seeds and the modern collection. Only accession centroids are represented. The graph shows functions 1 and 3 corresponding to axis X and Y respectively. For code details see "Matherials and methods"

3.3 Discussion

The archaeological seeds from Sa Osa are chronologically situated in one of the most prosperous prehistoric Sardinian phase, the Nuragic period. This civilization began during the Middle Bronze Age when human communities started to mark their territories by means of monumental tombs, called Tombe dei giganti, and cyclopean towers, Nuraghi (Lilliu 1985). In this period Sardinia played a significant role as part of several interconnected trade routes between Western and Eastern Mediterranean (Lo Schiavo 2003, Bernardini and Perra 2012). The Nuragic societies developed commercial relations mainly with the island of Cyprus, which are documented by several, copper oxhide ingots and tools for metal working (Begemann et al. 2001, Lo Schiavo et al. 2009). The early presence of melon during the Late Bronze Age in Sardinia may suggests that its introduction could have followed these trade routes (Sabato et al. 2015a [Chapter 1]). The integrated analysis of morphological and molecular characterization represents a unique opportunity to study the history of the earliest spread of melon in the Mediterranean Basin and Europe.

Molecular results seem to demonstrate that this Late Bronze Age melon was quite distant from modern ecotypes and probably it is today extinct. In any way it was clearly distant to wild melons and more related to cultivated melons from the subspecies melo. Closest accession were ameri, chate, flexuosus and hybrids nowdays mostly diffused in Italy, Near east, Central Asia and Africa. Admixture with cantalupensis and inodorus it is also shown. A high number of alleles of the subspecies agrestis
were also present indicating a closer relation to the African and Indian material than to the Far Eastern melons. Some loci of the archaeological material could not be amplified due, perhaps, to DNA degradation or to additional mutations in the flanking regions that prevent amplification. These mutations could have disappeared in the current analyzed germplasm collection. The higher level of heterozygosity found in the archaeological accession may reflect either crossing in open pollination or a mixture of different cultivars, which could point to the growing of different types of melons at the time. Several genomic regions have been related to sugar content in melon. Leida et al. (in press) associated the marker SNP711 located in LGI $(46, \mathrm{cM})$ to sugar content. This marker has resulted heterozygous C / T in the archaeological material, while the allele C found in homozygous condition in most of the non-sweet or low sugar genotypes (ameri, flexuosus, acidulous, momordica, dudaim and agrestis) is absent in the sweet genotypes (cantalupensis and inodorus). Another interesting region is located in LGIX ($22,4-33,6 \mathrm{cM}$), marker SNP1035; Dai et al. (2011) demonstrated that this region maps the acid invertase 2 , AIN2, a gene involved in sugar accumulation in melon fruits. The archaeological accession in this region is heterozygous as chate melon. It is also heterozygous for marker SNP144 being the allele G more frequent in non-sweet genotypes.

Also morphological analyses indicated that ancient material did not belong to wild melons, but more likely to an intermediate cultivated form between the subspecies melo and subspecies agrestis. Seed morphology related these seeds whith acidulus, flexuosus, dudaim accessions from Near East and Africa, and conomon from Far Asia. The interpretation of morphological data has to take into account that seed size was one of the first parameters of discrimination. After more than three millennia of constant selection with the objective of increasing fruit size, current melon landraces are likely to produce bigger seeds than the archaeological forms. Seed and fruit size increase through human selection has been already demonstrated for other cultivated plants (Fuller 2007). Similar trend has been found in other cucurbits (Paris and Nerson 2003) and a strong statistical correlation has been found between melon seed and fruit size (Sabato et al. in press [Chapter 3]). Akashi et al. (2002) reconized two melon groups based on seed length, large-seed and small-seed groups, and Tanka et al. (2013) correlated the small-seed group with Southern African and Far Asia accessions. Considering that African landraces suffered less breeding processes compared to European and Central Asian accessions, seeds may have remained smaller than their European relatives, and this can explain the closer relation with the archaeological seeds.

Ameri landraces from the Near East and Central Asia are considered to be the first step of diversification of sweet melons (Pitrat et al. 2000); in fact, they are sweet, but with a lower sugar content than the modern inodorus and cantalupensis cultivars. Esteras et al. (2013) and Leida et al. (in press.) have highlighted that these accessions showed a molecular admixture of several subpopulations, including modern Charentais, reticulatus, a group of inodorus (including singular Spanish landraces still used in local markets and inodorus from Northern Africa, Eastern Europe and Western Asia), and highly variable ameri landraces from Egypt, Israel, Turkey, Russia, Central Asia
and Middle East. Therefore non-sweet varieties of chate and flexuosus played a central role in primitive crop selection. Janick at al. (2007) collected several ancient representations of melon, mostly found in North Africa, which belong to these cucumber-like forms. The oldest representations, in ancient Egypt, were found in several tombs from the Old Kingdom (2686-2181 BC) (Keimer 1924), followed by others from the New Kingdom (1550-1300 BC) (Manniche 1989) and some wooden models almost coeval (1517-1192 BC) (Darby et al. 1977). The cultivation of these varieties, consumed unripe in salad, is mentioned by several ancient authors, as Columella (ca. 64 AD) and Plinius the Elder (ca. 77 AD). Although for long time these representations were considered as cucumbers (Cucumis sativus), they have recently identified as flexuosus types (Janick et al. 2007). Chate melon, unknown to the international market, has nowadays a limited diffusion in the Mediterranean basin. In Italy, it is traditionally cultivated only in a small area in the South of Apulia, were it is known as Carosello, Meloncella and Cummarazzo (Laghetti et al. 2008). Also in China written sources report the knowledge of melons at least since the $10^{\text {th }}$ century BC . Melons are mentioned in Shih-Ching (Book of songs), editing attributed to Confucius (551-470 BC), which includes 305 traditional songs and poems of the Western Zhou dynasty (1046-771 BC) composed approximately between 1000 and 500 BC (Keng 1974). The melons mentioned in this work have been associated to sweet forms of conomon for which China is a secondary centre of diversification (Keng 1974, Walters 1989).

3.4 Conclusion

Both molecular and morphological analyses confirmed that Sardinian Late Bronze Age melon seeds from Sa Osa belong to a domesticated plant. This extinct primitive melon was probably an intermediate form between the two melon subspecies, melo and agrestis, likely close to varieties of chate, flexuosus and ameri. Specific genomic regions indicated non-sugar content of this fruit, which agree with the theory that non-sweet cucumber-like forms of chate and flexuosus melon played a central role in early selection. Ameri, mostly diffused in the Near East and Central Asia, are thought to be the ancestors of the modern sweet varieties, such as inodorus and cantalupensis, and showed as well some affinity with the ancient materials. Both analyses suggested a relation of archaeological seeds with African landraces, which probably suffered less breeding process than European and Central Asian relatives, while a strong contribution of Near East and Central European ecotypes is also evident.

Acknowledgements

Authors thank the NPGS (National Plant Germplasm System) of the USDA (United States Department of Agriculture) for providing some accessions of their collections. We wish to acknowledg M. Pitrat, who within the MELRIP project provided some of the melon accessions used in this study. We also thank G. Attene, who provided mostly of the Sardinian melon landraces, and F.

Mascia, who provided accession AmITS10. We thank E. Martinez and G. Perpiña Martin (COMAV) for their technical support on melon collection.

We would like to express our appreciation to G. Venora for his support and for enabling the use of the laboratory at Stazione Consorziale Sperimentale di Granicoltura per la Sicilia.

Reference

Álvarez Martínez JM, Caldera P, de la Barrera JL, Nogales Basarrate T, Velázquez A. 2000. Museo Nacional de Arte Romano. Madrid: Electra, 102-103.
Akashi Y, Fukuda N, Wako T, Masuda M, Kato K. 2002. Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica 125:385-396.
Attene G, Rodriguez M. 2008. Risorse genetiche di specie ortive della Sardegna. Sassari: Euro Editrice.
Bacchetta G, Grillo O, Mattana E, Venora G. 2008. Morpho-colorimetric characterization by image analysis to identify diaspores of wild plant species. Flora 203:669-682.
Bakels C, Jacomet S. 2002. Access to luxury food in Central Europe during the Roman period: the archaeobotanical evidence. World Archaeology 34:542-557.
Balmelle C. 1990. Recherches franco-tunisiennes sur la mosaïque de l'Afrique antique, part 1, Xenia. Rome: l'Ecole Française de Rome.
Bates DM, Robinson RW. 1995. Cucumbers, melons and water-melons. In: Smartt J, Simmonds NW, eds. Evolution of Crop Plants. 2nd edn. Harlow: Longman Scientific, 89-96.
Baratte F. 1978. Catalogue des mosaïques romaines et paléchretiénnes du Musée du Louvre. Paris: Éditions de la Réunion des musées nationaux.
Begemann F, Schmitt-Strecker S, Pernicka E, Lo Schiavo F. 2001. Chemical Composition and Lead Isotopy of Copper and Bronze from Nuragic Sardinia. European Journal of Archaeology 4:43-85.
Bernardini P, Perra M. 2012. I nuragici, i fenici e gli altri, Sardegna e Mediterraneo tra Bronzo Finale e Prima Età del Ferro. Sassari: Delfino Editore.
Blanca J, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, Garcia-Mas J, Picó B. 2011. Melon transcriptome characterization: Simple Sequence Repeats and Single Nucleotide Polymorphisms discovery or high throughput genotyping across the species. The Plant Genome 4:118-131.
Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernã Ndez-Pedrosa V, Collado C, Rodrã Guez de Pablos R, Ballester A, 737 Roig C, Cañizares J, Picó B. 2012. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280.
Blanchard-Lemée M, Ennaïfer M, Slim H, Slim L. 1995. Sols de l'Afrique romaine: Mosaïques de Tunisie. Paris: Imprimerie Nationale Editions.
Bottema S, Sarpaki A. 2003. Environmental change in Crete: a 9000-year record of Holocene vegetation history and the effect of the Santorini eruption. The Holocene 13:733-749.
Castelletti L, Castiglioni E, Rottoli M. 2001. L'agricoltura dell'Italia settentrionale dal Neolitico al Medioevo. In: Failla O, Forni G, eds. Le piante coltivate e la loro storia. Dalle origini al transgenico in Lombardia nel centenario della riscoperta della genetica di Mendel. Milano: Franco Angeli Editore.
Costantini L. 1977. Le Piante. In: Tucci G, ed. La città bruciata del deserto salato. Venezia: Erizzo, 159-171.
Dai N, Cohen S, Portnoy V, et al. 2011. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology 76:118.

Darby W J, Ghalioungui P, Grivetti L. 1977. Food, the gift of Osiris. London: Academic Press.
Elbaum R, Melamed-Bessudo C, Boaretto E, Galili E, Lev-Yadun S, Levy AA, Weiner S. 2005. Ancient olive DNA in pits, preservation, amplification and sequence analysis. Journal of Archaeological Science 33:7788.

Esteras C, Formisano G, Roig C, et al. 2013. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical Applied Genetics 126:1285-1303.
Esteras C, Nuez F, Picó B. 2012. Genetic diversity studies in Cucurbits using molecular tools. In: Wang Y, Behera TK, Kole C, eds. Cucurbits: Genetics, Genomics and Breeding of Cucurbits. New Hampshire: Science Publishers Inc, 140-198.
Esquinas-Alcázar JT, Gulick PJ. 1983. Genetic resources of Cucurbitaceae: a global report. Rome: IBPGR Secretariat.
Fahmy AGED. 2001. Plant remains in gut contents of ancient Egyptian predynastic mummies (3750-3300 BC). Journal of Biological Sciences 1:772-774.

Fahmy AGED. 2003. Palaeoethnobotanical studies of Egyptian Predynastic cemeteries: new dimensions and contributions. In Neumann K, A Butler, Kahlheber S, eds. Food, fuel and fields. Progress in African archaeobotany. Frankfurt: Heinrich Barth Institut, 95-106.
Felsenstein J. 1997. An alternating least squares approach to inferring phylogenies from pairwise distances. Systematic Biology 46:101-111.
Frank KS, Stika HP. 1988. Bearbeitung der makroskopischen pflanzen-und einiger tierreste des Römerkastells sablonetum (ellingen bei weissenburg in Bayern). Materialhefte zur Bayerischen Vorgeschichte, Band 61. Kallmünz: Lassleben.
Fuller DQ. 2007. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Annals of Botany 100:903-924.
Fuller DQ, Madella M. 2001. Issues in Harappan Archaeobotany: retrospect and prospect. In: Settar S, Korisettar R, eds. Indian archaeology in retrospect. Volume 2. Protohistory. Archaeology of the Harappan civilization. Indian Council of Historical Research: New Delhi, 317-390.
Gabriel S, Ziaugra L, Tabbaa D. 2009. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics 60:11-18.
Gorman CF. 1969. Hoabinhian: a pebble-tool complex with early plant associations in southeast Asia. Science 163:671-3.
Gorman CF. 1972. Excavations at Spirit Cave, North Thailand: Some Interim Interpretations. Asian Perspectives 13:79-107.
Grillo O, Mattana E, Venora G, Bacchetta G. 2010. Statistical seed classifiers of 10 plant families representative of the Mediterranean vascular flora. Seed Science. and Technology 38:455-476.
Gyulai G, Waters L, Dane F. 2008. Ancient cucurbit DNA-unlocking domestication events. Budapest: Fublbright Year Book.
Jacomet S, Kučan D, Ritter A, Suter G, Hagendorn A. 2002. Punica granatum L (pomegranates) from early Roman context in Vindonissa (Switzerland). Vegetation History and Archaeobotany 11:79-92.
Janick J, Paris HS, Parrish DC. 2007. The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Annals of Botany 100:1441-1457.
Jeffrey C. 1980. A review of the Cucurbitaceae. The Botanical Journal of the Linnean Society 81:233-247.
Jeffrey C. 2001. Cucurbitaceae. In: Hanelt P, ed. Mansfeld's encyclopedia of agricultural and horticultural crops. Berlin: Springer, 1510-1557.
Jeffrey C. 2005. A new system of Cucurbitaceae. Botanicheskii Zhurnal 90:332-335.
Kajale MD. 1996. Palaeobotanical Investigations at Balathal: Preliminary Results. Man and Environment 21:98102.

Kajale MD. 1988. Plant Economy. In Dhavalikar MK, Sankalia HD, Ansari ZD, eds. Excavations at Inamgaon. Pune: Deccan College Postgraduate and Research Institute, 727-821.
Keimer L. 1924. Die Gartenpflanzen in Alten Agypten. Vol. 1. Hamburg: Hoffmann und Campe Verlag.
Keng H. 1974. Economic plants of ancient North China as mentioned in Shih Ching (Book of Poetry). Economic Botany 28:391-410.
Kroll H. 1982. Kulturpflanzen von Tiryns. Archäologischer Anzeiger 1:467-485.
Kroll, H. 1983. Kastanas. Ausgrabungen in einem Siedlungshügel der Bronze- und Eisenzeit Makedoniens 19751979. Die Pflanzenfunde. Prähistorische Archäologie in Südosteuropa 2. Berlin: Volker Spiess, Table 51.

Kroll H. 1984. Bronze Age and Iron Age agriculture in Kastanas, Macedonia. In: van Zeist W, Casparie WA, eds. Plants and ancient man. Boston: Balkema, 243-47.
Kučan D. 1995. Zur Ernährung und dem Gebrauch von Pflanzen im Heraion von Samos im 7. Jahrhundert v. Chr. Jahrbuch des Deutschen Archäologischen Instituts 110, 1-64.
Laghetti G, Accogli R, Hammer K. 2008. Different cucumber melon (Cucumis melo L.) races cultivated in Salento (Italy). Genetic Resources and Crop Evolution 55:619-623.
Leida C, Moser C., Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Picó B. In press. Variability of candidate genes and genetic association for sugar accumulation and climacteric behavior in melon (Cucumis melo L.)
Li HL. 1969. The vegetables of ancient China. Economic Botany 23:253-260.
Li HL. 1970. The origin of cultivated plants in southeast Asia. Economic Botany 24:3-19.
Lilliu G. 1985. Ichnussa: la Sardegna dalle origini all'Età classica. Milano: Scheiwiller.
Liu K, Muse SV. 2005. Powermarker: integrated analysis environment for genetic marker data. Bioinformatics 21: 2128-2129.
Livarda A. 2011. Spicing up life in northwestern Europe: exotic food plant imports in the Roman and medieval world. Vegetation History and Archaeobotany 20:143-164.
Lo Schiavo F. 2003. Sardinia between East and West, Interconnections in the Mediterranean. In: Stampolidis NC, Karageorghis V, eds. Sea Routes, interconnections in the Mediterranean $16^{\text {th }}-6^{\text {th }}$ BC. Athens: University of Crete, Leventis Foundation, 15-34.
Lo Schiavo F, Muhly JD, Maddin R, Giumlia-Mair A. 2009. Oxhide ingots in the central Mediterranean. Roma: CNR.

Lovicu G, Labra M, De Mattia F, Farci M, Bacchetta G, Orrù M. 2011. Prime osservazioni sui vinaccioli rinvenuti negli scavi di Sa Osa. In: Mastino A, Spanu PG, Usai A, Zucca R, eds. Tharros Felix 4. Roma: Carocci Editore, 249-255.
Mallick MFR, Masui M. 1986. Origin, distribution and taxonomy of melons. Scientia Horticulturae 28:251-261.
Manen JF, Bouby L, Dalnoki O, Marinval P, Turgay M, Schlumbaum A. 2003. Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. Journal Archaeological Science 30:721-729.
Manniche L. 1989. An ancient Egyptian herbal. Austin: University of Texas Press.
Megaloudi F. 2006. Plants and diet in Greece from Neolithic to Classical Period: the archaeobotanical remains. British Archaeological Reports International Series 1516. Oxford: Archaeopress.
Munger HM, Robinson RW. 1991. Nomenclature of Cucumis melo L. Cucurbit Genetics Cooperative 14:43-44.
Murphy C, Thompson G, Fuller DQ. 2013. Roman food refuse: urban archaeobotany in Pompeii, Regio VI, Insula 1. Vegetation History and Archaeobotany 22:409-419.
Nakata E., Staubm JE, López-Sesé AI,Katzir N. 2005. Genetic diversity in Japanese melon (Cucumis melo L.) as assessed by random amplified polymorphic DNA and simple sequence repeat markers. Genetic Resources and
Crop Evolution 52: 405-419.
Naudin C. 1859. Essais dune monographiedes espèces et des varieties du genre Cucumis. Annales Des Sciences Naturelles 11:5-87.
Nei M, Tajima F, Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. II Gene frequency data. Journal of Molecular Evolution 19:153-170.
Nesbitt M, O’Hara S. 2000. Irrigation agriculture in Central Asia: a long-term perspective from Turkmenistan. In: Barker G, Gibertson D, eds. The Archaeology of drylands. Living at the margin. London-New York: Routledge, 103-122.
Oliveira HR, Civáň P, Morales J, Rodríguez-Rodríguez A, Lister DL, Jones MK. 2012. Ancient DNA in archaeological wheat grains: preservation conditions and the study of pre-Hispanic agriculture on the island of Gran Canaria (Spain). Journal of Archaeological Science 39:828-835.
Orrù M, Grillo O, Venora G, Bacchetta G. 2013a. Computer vision as a method complementary to molecular analysis: Grapevine cultivar seeds case study, Comptes Rendus Biologies 335:602-615.
Orrù M, Grillo O, Lovicu G, Venora G, Bacchetta G. 2013b. Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Vegetation History and Archaeobotany 22:231-242.
Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M. 2004. Genetic analyses from ancient DNA. Annual Review of Genetics 38:645-679.

Page RDM. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358.
Palmer SA, Smith O, Allaby RG. 2012. The blossoming of plant archaeogenetics. Annals of Anatomy 194:146156.

Paris HS, Amar Z, Lev E. 2012. Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Annals of Botany 110:23-33.
Paris HS, Nerson H. 2003. Seed Dimensions in the Subspecies and Cultivar-groups of Cucurbita pepo. Genetic Resources and Crop Evolution 50:615-625.
Pazaras T. 1981. Two early Christian tombs from the western cemetery of Thessaloniki. Makedonica 21:373389.

Pepe C, Giardini M, Giraudi C, Masi A, Mazzini I, Sadori L. 2013. Climate and landscape in marginal marine environments: the ancient Roman harbour of Portus (Rome, Italy). Quaternary International 303:73-81.
Pitrat M. 2008. Melon (Cucumis melo L.). In: Prohens J, Nuez F, eds. Handbook of Crop Breeding, vol I: Vegetables. New York: Springer, 283-315.
Pitrat M, Hanelt P, Hammer K. 2000. Some comments on infraspecific classification of cultivar of melon. In: Katzir N, Paris HS, eds. Proceeding of Cucurbitaceae 2000, Ma’aleh Hahamisha, Israel, 19-23 March 2000. Acta Horticulturae 510:29-36.

Pollmann B, Jacomet S, Schlumbaum A. 2005. Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium, Switzerland. Journal Archaeological Science 32:1471-1480.
Renner SS, Schaefer H, Kocyan A. 2007. Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). Evolutionary Biology 7:58.
Rinaldi R, Bandini Mazzanti M, Bosi G. 2013. Archaeobotany in urban site: the case of Mutina. Annals of Botany 3:217-230.
Sabato D, Esteras C, Grillo O, Picó B, Bacchetta G. in press. Seed morpho-colourimetric analysis as complementary method to molecular characterization of melon diversity. Scientiae Horticulturae.
Sabato D, Masi A, Ucchesu M, Peña-Chocarro L, Usai A, Giachi G, Capretti C, Bacchetta G. 2015. Archaeobotanical analysis of a Bronze Age well from Sardinia: a wealth of knowledge. Plant Biosystems. Doi: 10.1080/11263504.2014.998313.

Sadori L, Allevato E, Bertacchi A, et al. 2014. Archaeobotany in Italian ancient Roman harbours. Review of Palaeobotany and Palynology. doi:10.1016/j.revpalbo.2014.02.004.
Schlumbaum A, Tensen M, Jaenicke-Després V. 2008. Ancient plant DNA in archaeobotany. Vegetation History and Archaeobotany 17: 233-244.
Sebastian P, Schaefer H, Telford IRH, Renner SS. 2010. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species from melon is from Australia. Proceedings of the National Academy of Sciences 107:14269-14273.
Shahin MA, Symons SJ. 2003. Colour calibration of scanners for scanner independent grain grading. Cereal Chemistry 80:285-289.
Solheim WG. 1972. An earlier agricultural revolution. Scientific American 226:34-41.
Speirs AK, McConnachie G, Lowe AJ. 2009. Chloroplast DNA from $16^{\text {th }}$ Century Waterlogged Oak in Marine Environment: Initial Steps in Sourcing the Mary Rose Timbers. In: Haslam M, ed. Archaeological Science Under a Aicroscope: Studies in Residue and Ancient DNA Analysis in Honour of Thomas H. Loy, Camberra: ANU E Press, 175-189.
Tanaka K, Akashi Y, Fukunaga K, Yamamoto T, Aierken Y, Nishida H, Lin Long C, Yoshino H, Sato YI, Kato K. 2013. Diversification and genetic differentiation of cultivated melon inferred from sequence polymorphism in the chloroplast genome. Breeding Science 63:183-196.
Tengberg M. 2003. Archaeobotany in the Oman peninsula and the role of eastern Arabia in the spread of African crops. In: Neumann K, A Butler, Kahlheber S, eds. Food, fuel and fields. Progress in African archaeobotany. Frankfurt: Heinrich Barth Institut, 229-237.
Ucchesu M, Peña-Chocarro L, Sabato D, Tanda G. 2014a. Bronze Age subsistence in Sardinia (Italy): cultivated plants and wild resources. Vegetation History and Archaeobotany. Doi: 10.1007/s00334-014-0470-2.
Ucchesu M, Orrù M, Grillo O, Venora G, Usai A, Serreli PF, Bacchetta G. 2014b. Earliest evidence of a primitive cultivar of Vitis vinifera L. during the Bronze Age in Sardinia (Italy). Vegetation History and Archaeobotany. Doi: 10.1007/s00334-014-0512-9.
Usai A. 2011. L'insediamento prenuragico e nuragico di Sa Osa-Cabras (OR). Topografia e considerazioni generali. In: Mastino A, Spanu PG, Usai A, Zucca R, eds. Tharros Felix 4. Roma: Carocci Editore, 159186.
van der Veen M. 1996. The plant remains from Mons Claudianus, a Roman in the Eastern Desert of Egypt - an interim report quarry settlement. Vegetation History and Archaeobotany 5:137-141.
van der Veen M. 2001. Chapter 8. The botanical evidence.In: Maxfield VA, Peacock DPS, Mons Claudianus. Survey and excavation 1987-1993. Vol 2. Excavations: Part 1. Paris: Fouilles IFAO, 174-222.
van der Veen M, Tabinor H. 2007. Food, fodder and fuel at Mons Porphyrites: the botanical evidence. In: Maxfield VA, Peacock DPS, eds. Survey and Excavation at Mons Porphyrites 1994-1998. Volume 2: The Excavations. London: Egypt Exploration Society, 83-142.
van Zeist W, Bottema S, van der Veen M. 2001. Diet and Vegetation at Ancient Carthage: The Archaeobotanical Evidence. Groningen: Groningen Institute of Archaeology.
van Zeist W, Roller G, Fahmy AGED. 2003a. An archaeobotanical study of Ma'adi, a Predynastic site in Lower Egypt. In: van Zeist W, ed. Reports on Archaeobotanical Studies in the Old World. Groningen: Groningen University press, 167-207.
van Zeist W, Waterbolk-van Rooijen W, Palfenier-Vegter RM, Jan de Roller G. 2003b. Plant Cultivation at Tell Hammam et-Turkman. In: van Zeist W, ed. Reports on Archaeobotanical Studies in the Old World, Groningen: Groningen University press, 61-114.
Venora G, Grillo O, Shahin MA, Symons SJ. 2007. Identification of Sicilian landraces and Canadian cultivars of lentil by image analysis system. Food Research International, 40:161-166.
Walters TW. 1989. Historical overview on domesticated plants in China with special emphasis on the Cucurbitaceae. Economic Botany 43:297-313.
Watson W. 1969. Early cereal cultivation in China. In: Ucko PJ, Dimbleby GW, eds. The domestication and exploitation of plants and animals. London: Gerald Duckworth and Co., 397-402.
Weber SA. 1991. Plants and Harappan Subsistence. An Example of Stability and Change from Rojd. New Delhi: Oxford and IBH.
Wiethold J. 2003. How to trace "romanisation" of central Gaule by archaeobotanical analysis? - Some considerationes on new archaeobotanical results from Fance Centre-Est. In: Favory, Vignot A, eds. Actualité de la recherche en histoire et archéologie agraires. Actes du colloque international AGER 5, septembre 2000. Ann Lit 764. Besançon: Envir Soc Archéol 5, 269-282.
Yacoub M. 1995. Splendeurs des mosaïques de Tunisie. Tunis: Agence Nationale du Patrimoine.
Yu YS. 1977. Han. In: Chang KC, ed. Food in Chinese culture: anthropological and historical perspectives. New Haven: Yale University Press, 53-84.
Zohary D, Hopf and M, Weiss E. 2012. Domestication of plants in the Old World. The origin of cultivated plants in West Asia, Europe and the Mediterranean Basin. Oxford: Oxford University Press.

Annex 1. Information about the 123 SNP markers employed in the genotyping assay and summary statistic results generated in genotyping analysis with PowerMarker software. In Esteras et al. 2013 markers were experimentally validated and further information is available.

Marker name	LG	cM	Major Allele Frequency	Genotype n°	Allele n°	Gene Divesity	Heterozygosity	PIC
AI_09-F07	1	0	0,8185	3	2	0	0,021	0,253
CMPSNP1095	1	3,2	0,8390	3	2	0,270	0,089	0,234
CMPSNP83	1	18,1	0,5034	3	2	0,500	0,069	0,375
AI_17-E07	1	45,2	0,6233	3	2	0,470	0,068	0,359
CMPSNP711	1	46,8	0,5479	3	2	0,495	0,041	0,373
CMPSNP410	1	59,6	0,5034	3	2	0,500	0,069	0,375
F116	1	69,2	0,6301	3	2	0,466	0,068	0,357
AI_05-G01	1	72,4	0,8322	3	2	0,279	0,007	0,240
CMPSNP731	1	80,4	0,6918	3	2	0,426	0,055	0,336
CMPSNP204	1	86,8	0,7911	3	2	0,331	0,021	0,276
CMPSNP774	2	0	0,5274	3	2	0,498	0,041	0,374
CMPSNP431	2	4,8	0,5068	3	2	0,500	0,055	0,375
CMPSNP502	2	32,6	0,6276	3	2	0,467	0,041	0,358
CMPSNP1057	2	37,4	0,8288	3	2	0,284	0,027	0,244
AI_14-H05	2	40,6	0,6541	3	2	0,453	0,089	0,350
CMPSNP128	2	50,2	0,8356	3	2	0,275	0,027	0,237
CMPSNP246	2	53,4	0,7448	3	2	0,380	0,041	0,308
CMPSNP1003	2	58,2	0,7945	3	2	0,327	0,041	0,273
CMPSNP886	2	63	0,5925	3	2	0,483	0,062	0,366
CMPSNP658	2	77,9	0,6336	3	2	0,464	0,021	0,357
CMPSNP566	2	86	0,6301	3	2	0,466	0,027	0,357
CMPSNP94	2	90,9	0,7379	3	2	0,387	0,041	0,312
AI_18-E05	3	3,2	0,6448	3	2	0,458	0,076	0,353
CMPSNP275	3	4,8	0,6096	3	2	0,476	0,027	0,363
CMPSNP540	3	8	0,6507	3	2	0,455	0,041	0,351
CMPSNP165	3	24,3	0,5171	4	3	0,506	0,075	0,385
CMPSNP769	3	42,8	0,6575	3	2	0,450	0,027	0,349
CMPSNP164	3	46,2	0,6781	3	2	0,437	0,041	0,341
CMPSNP998	3	56,3	0,6370	3	2	0,462	0,041	0,356
CMPSNP595	3	61,1	0,7774	3	2	0,346	0,048	0,286
CMPSNP712	3	62,7	0,5308	3	2	0,498	0,062	0,374
CMPSNP480	4	0	0,6250	3	2	0,469	0,056	0,359
CMPSNP787	4	6,4	0,7363	3	2	0,388	0,062	0,313
CMPSNP1132	4	11,2	0,5377	3	2	0,497	0,048	0,374
PS_34-C02	4	17,6	0,6884	3	2	0,429	0,062	0,337
CMPSNP907	4	20,8	0,5959	3	2	0,482	0,041	0,366
CMPSNP264	4	32,1	0,5514	3	2	0,495	0,062	0,372
CMPSNP147	4	48,3	0,5548	3	2	0,494	0,082	0,372
AI_03-F03	4	53,1	0,6414	3	2	0,460	0,110	0,354
CMPSNP352	4	54,7	0,6610	3	2	0,448	0,062	0,348
CMPSNP852	4	62,7	0,6952	3	2	0,424	0,034	0,334
CMPSNP607	4	69,1	0,7671	3	2	0,357	0,027	0,293
CMPSNP677	4	77,1	0,6849	3	2	0,432	0,041	0,338
CMPSNP24	4	86,8	0,6586	3	2	0,450	0,062	0,349
PS_07-E07	4	101,5	0,5308	3	2	0,498	0,075	0,374
SC51-3375	4	114,6	0,8527	3	2	0,251	0,021	0,220
CMPSNP898	5	0	0,6130	3	2	0,474	0,103	0,362
CMPSNP387	5	18,5	0,6541	3	2	0,453	0,048	0,350
CMPSNP437	5	26,5	0,6747	3	2	0,439	0,034	0,343
CMPSNP726	5	41,2	0,8664	3	2	0,231	0,034	0,205
CMPSNP788	5	50,9	0,6336	3	2	0,464	0,021	0,357
SSH9G15	5	52,5	0,7324	3	2	0,392	0,056	0,315
60k41.243	5	73,4	0,5753	3	2	0,489	0,055	0,369
CMPSNP1155	5	79,8	0,6655	3	2	0,445	0,076	0,346
AI_13-H12	5	89,4	0,6747	3	2	0,439	0,048	0,343
CMPSNP735	5	94,2	0,7500	3	2	0,375	0,048	0,305
CMPSNP925	6	1,6	0,5799	3	2	0,487	0,063	0,369
CMPSNP218	6	8	0,6370	3	2	0,462	0,068	0,356
CMPSNP571	6	20,8	0,5345	3	2	0,498	0,076	0,374
CMPSNP1167	6	25,6	0,8459	3	2	0,261	0,048	0,227
CMPSNP433	6	32	0,7808	3	2	0,342	0,068	0,284
CMPSNP3	6	43,2	0,6690	3	2	0,443	0,041	0,345

CMPSNP292	6	49,6	0,5856	3	2	0,485	0,048	0,368
CMPSNP295	6	49,6	0,8241	3	2	0,290	0,090	0,248
CMPSNP1021	6	57,6	0,5034	3	2	0,500	0,075	0,375
CMPSNP1038	6	57,6	0,8507	3	2	0,254	0,035	0,222
A_38-F04	6	70,7	0,5690	3	2	0,490	0,062	0,370
AI_13-F02	6	85,3	0,5207	3	2	0,499	0,048	0,375
CMPSNP378	6	86,9	0,6747	3	2	0,439	0,021	0,343
AI_05-F11	7	4,9	0,5000	3	2	0,500	0,048	0,375
CMPSNP249	7	11,3	0,6575	3	2	0,450	0,068	0,349
CMPSNP262	7	30,5	0,6815	3	2	0,434	0,048	0,340
CMPSNP579	7	30,5	0,5137	3	2	0,500	0,055	0,375
CMPSNP1009	7	32,1	0,8931	3	2	0,191	0,048	0,173
CMPSNP287	7	35,3	0,7034	3	2	0,417	0,028	0,330
CMPSNP56	7	43,3	0,6610	3	2	0,448	0,075	0,348
CMPSNP465	7	59,4	0,6918	3	2	0,426	0,027	0,336
CMPSNP415	7	72,2	0,6404	3	2	0,461	0,021	0,355
CMPSNP12	8	0	0,6379	3	2	0,462	0,062	0,355
CMPSNP766	8	4,8	0,6610	3	2	0,448	0,034	0,348
CMPSNP718	8	11,2	0,6207	3	2	0,471	0,041	0,360
CMPSNP97	8	19,2	0,6438	3	2	0,459	0,397	0,353
CMPSNP44	8	22,4	0,7295	3	2	0,395	0,034	0,317
AI_21-D08	8	28,8	0,5149	3	2	0,500	0,015	0,375
CMPSNP181	8	35,2	0,6146	3	2	0,474	0,007	0,362
F013	8	48,1	0,6852	3	2	0,431	0,052	0,338
PSI_25-H03	5/8	59,4	0,5582	3	2	0,493	0,034	0,372
CMPSNP1066	8	79,2	0,6389	2	2	0,461	0,000	0,355
CMPSNP553	9	0	0,5274	3	2	0,498	0,068	0,374
CMPSNP173	9	3,2	0,5479	3	2	0,495	0,055	0,373
P5.64	9	8	0,6541	3	2	0,453	0,075	0,350
CMPSNP1077	9	19,2	0,6336	3	2	0,464	0,007	0,357
CMPSNP320	9	20,8	0,7637	3	2	0,361	0,048	0,296
CMPSNP144	9	22,4	0,6438	3	2	0,459	0,027	0,353
CMPSNP1035	9	33,6	0,6438	3	2	0,459	0,055	0,353
CMPSNP159	9	36,8	0,7207	3	2	0,403	0,034	0,322
CMPSNP1133	9	59,2	0,5616	3	2	0,492	0,096	0,371
CMPSNP890	9	64	0,5420	3	2	0,496	0,063	0,373
psi36-10864	10	0	0,6268	3	2	0,468	0,070	0,358
psi36-839	10	0	0,6172	3	2	0,473	0,048	0,361
CMPSNP172	10	1,6	0,7705	3	2	0,354	0,034	0,291
CMPSNP528	10	8	0,5959	3	2	0,482	0,068	0,366
CMPSNP65	10	14,4	0,7808	3	2	0,342	0,055	0,284
CMPSNP762	10	23,9	0,6910	3	2	0,427	0,049	0,336
CMPSNP671	10	28,8	0,5724	3	2	0,490	0,124	0,370
CMPSNP550	10	38,5	0,6747	3	2	0,439	0,349	0,343
CMPSNP426	11	0	0,6541	3	2	0,453	0,034	0,350
HS_35-E11	11	16,4	0,7363	3	2	0,388	0,075	0,313
PSI_41-B07	11	27,6	0,7089	3	2	0,413	0,021	0,328
CMPSNP389	11	47,7	0,6138	3	2	0,474	0,207	0,362
CMPSNP30	11	66	0,6517	3	2	0,454	0,062	0,351
CMPSNP315	11	90,9	0,7188	3	2	0,404	0,035	0,323
CMPSNP475	11	98,9	0,6418	3	2	0,460	0,035	0,354
CMPSNP122	11	100,5	0,6473	3	2	0,457	0,034	0,352
CMPSNP385	12	4,8	0,8000	3	2	0,320	0,041	0,269
CMPSNP310	12	9,8	0,5171	3	2	0,499	0,034	0,375
AI_35-A08	12	16,4	0,5034	3	2	0,500	0,021	0,375
AI_09-G07	12	18,1	0,8028	3	2	0,317	0,127	0,266
CMPSNP285	12	21,4	0,9212	3	2	0,145	0,034	0,135
CMPSNP361	12	37	0,5414	3	2	0,497	0,062	0,373
CMPSNP5	12	58,1	0,7655	3	2	0,359	0,028	0,295
FR14F22	12	67,7	0,5655	3	2	0,491	0,041	0,371
P02.03	12	69,3	0,6267	3	2	0,468	0,075	0,358

Chapter 5
Medieval melon and watermelon seeds FROM SASSARI (ITALY): MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION

Medieval melon and watermelon seeds from Sassari (ITALY): MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION

Diego Sabato ${ }^{1}$, Belén Picó 2, Oscar Grillo ${ }^{1,3}$, Cristina Esteras ${ }^{2}$, Leonor Peña-Chocarro ${ }^{4,5}$, Giovanna Bosi ${ }^{6}$, Gianluigi Bacchetta ${ }^{1}$
${ }^{1}$ Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Italy.
${ }^{2}$ Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politécnica de Valéncia, Spain.
${ }^{3}$ Stazione Consorziale Sperimentale di Granicoltura per la Sicilia (SSGS), Caltagirone, Italy.
${ }^{4}$ Escuela Española de Historia y Arqueología en Roma-CSIC, Rome, Italy
${ }^{5}$ GI Arqueobiología, Instituto de Historia, CCHS-CSIC, Madrid, Spain.
${ }^{6}$ Laboratorio di Palinologia e Paleobotanica, Dip. di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy.

Abstract

In 2007, during an archaeological excavation in the city centre of Sassari (Italy), a well dated 1330-1350/60 AD was discovered. The fill of this context yielded a huge assemblage of ceramics, zoological and plant remains. Among the 117 plant taxa identified, a consistent presence of melon and watermelon seeds was recorded. Their exceptional state of preservation allowed the application of specific analyses for molecular and morphological characterization.

Sets of 172 accessions of melon and 36 watermelon landraces from Europe, Asia and Africa, included Sardinian traditional cultivars, were selected for molecular and morphological comparison to the archaeological seeds. Genotyping was performed using 211 polymorphic SNPs and the genotyping technology iPLEX ${ }^{\circledR}$ Gold MassARRAY Sequenom. A total of 95 morphometric parameters, acquired by an automatic image analysis system, were specifically designed to evaluate seeds size and shape.

Results from the molecular and morphological analyses showed a good match between the archaeological seeds and domesticated melons with both sweet and non-sweet landraces. The analyses suggested that several types of melon were already cultivated in the Medieval period although sugary melons became probably widely diffused only in later phases. The morphological characterization of watermelon evidenced a close relation with Sardinian, Spanish and Asian landraces, suggesting that this fruit was already close to modern varieties.

Key words: Cucumis melo, Citrullus lanatus, ancient DNA, morphological analysis, molecular analysis, archaeobotany

5.1 Introduction

5.1.1 Historical and archaeological context

The development of the city of Sassari, today the second largest city in Sardinia (Italy), took place during the $12^{\text {th }}$ and $13^{\text {th }}$ century AD, when it became the main centre for inland and foreign trade of a wide variety of products (Rovina and Flori 2013). In 1272, the city fell under the control of the Republic of Pisa and later, in 1294, under that of the Republic of Genoa (Rovina and Flori 2013). In 1323, citizens spontaneously decided to become part of the Aragon kingdom of King James II (Porcu Gaias 1996). This alliance did not last long, since a few years later, between 1330 and 1331 AD, the continuous insurrections of the city led the Aragonese to the expulsion of some local citizens which were soon replaced by colonists from Catalonia, Aragon, Valencia and Tarragona (Pala 1980).

During the renovation of via Satta road, in 2007, in the core of the city-centre of Sassari, a Medieval well belonging to this period was discovered. It was originally part of an open area or domestic courtyard which has been dated between 1330-1350/60 AD according to the typology of majolica fragments from Pisa, Savona, and Valencia widely diffused in this period (Biccone 2013). The sediment appeared very rich in waterlogged plant remains. Wood remains were studied at the University of Sassari (Becca et al. 2013) while seeds and fruits were studied by the Laboratorio di Palinologia e Paleobotanica of University of Modena and Reggio Emilia. A total of 880,000 items, mainly fruits of 117 taxa have been identified (Bertacci 2011/2012; Bosi and Bandini Mazzanti 2013). A significant number of melon and watermelon seeds were recovered (respectively 1964 and 116 seeds); their excellent degree of preservation made of many of these remains perfect candidates for molecular and morphological analysis.

5.1.2 Melon

Cucumis melo L. has gone through an intense process of diversification and several groups and varieties have been reported (Naudin 1859, Munger and Robinson 1991, Pitrat et al. 2000, Pitrat 2008). This taxon diverges in two subspecies, melo and agrestis, and the main varieties are: cantalupensis Naudin, reticulatus Ser. (cantaloupe, muskmelon), inodorus H. Jac. (winter melon, casaba melon), flexuosus L. (snake melon), chate Hasselq. (cucumber melon), ameri Pangalo, dudaim L. (pocket melon) to subsp. melo; and agrestis Naudin, chito C.Morren, tibish Mohamed, acidulus Naudin, conomon Thunb., makuwa Makino, chinensis Pangalo (pickling melon), and momordica Roxb. (snap melon) whitin the subsp. agrestis. Nowadays, classification is mainly based on molecular clustering (Esteras et al. 2012, 2013). Wild melons (C. melo subsp. agrestis var. agrestis) are distributed on the tropical and sub-tropical belt from Africa and Asia and show a great genetic variability. There are numerous previously overlooked species-level relatives in Australia and around the Indian Ocean (Sebastian et al. 2012). Renner et al. (2007) suggested that their origin-distribution centre include the Australia-Malaysia area as melon is closer to the Australian-Asian group than to the

African species. Due to the high level of variation found in Asia, especially in India, melon could have originated in this area and then reached Africa (Renner et al., 2007; Sebastian et al., 2010). Other theories suggest that African and Asian melons may have diversified independently (Bates and Robinson 1995, Jeffrey 1980, Esquinas-Alcázar and Gulick 1983, Mallick and Mausi 1986, Tanaka et al. 2013). A genetic relationship between South African and East Asian melons was found by Nakata et al. (2005).

One of the oldest archaeological records of melon in Europe has been found in Sardinia, beeing likely a cucumber-like type (Sabato et al. 2015 [Chapter 1] and [Chapter 4]). Non-sweet forms of melon, often confused with Cucumis sativus (cucumber), were probably the first melons known in the Near East, North Africa and the South-West Mediterranean (Zohary et al. 2012, Janick at al. 2007), while modern market sweet melons became widely diffused in Europe only in the Renaissance period (Paris et al. 2012). Sugary melon was probably introduced into Italy and neighbouring countries in the late $15^{\text {th }}$ century (Pitrat et al. 2000, Jeffrey 2001, Goldman 2002), and its cultivation rapidly expanded to large parts of Europe and then to the Americas, becoming very popular as it is suggested by the representation of cantaloupes and muskmelons in painted festoons of the luxury palace of Villa Farnesina (1515-1518 AD) near Rome (Janick and Paris 2006). In Ferrara (North Italy), melon seeds were found in several sites (Bandini Mazzanti et al. 2005, 2009), including a pit dated to the second half of $15^{\text {th }}$ century located in the Ducal Palace; these remains showed a significant bigger size compared to other late $14^{\text {th }}$ century seeds discovered in the same area, pointing out a different crop typology (Bosi et al. 2009).

5.1.3 Watermelon

Citrullus lanatus (Thunb.) Matsum \& Nakai (watermelon) is divided into three subspecies: subsp. vulgaris (Schrad. ex Eckl. et Zeyh.), subsp. mucosospermus Fursa, and subsp. lanatus, which includes the var. caffer (Schrad.) Mansf. ex Fursa, only spread in the Kalahari desert, and var. citroides (Bailey) Mansf. ex Greb. (Jeffrey 2001). Although some authors considered C. colocynthis (L.) Schrad., or C. lanatus var. caffer (Jeffrey 2001, Navot and Zamir 1987) or var. citroides (Maynard 2001) the wild ancestors of modern watermelon, genetic analysis showed that watermelon and the citron type (var. citroides) diverged into separate lineages which independently evolved from a common ancestor, possibly C. ecirrhosus (Dane and Liu 2007). C. colocynthis is a perennial (rarely annual) wild species growing on sandy habitats in desert and semi-desert areas of North Africa, the Near East and South-West Asia as far as India (Jeffrey 2001).

It is generally accepted that watermelon originated in Africa in the Kalahari Desert (EsquinasAlcázar and Gulick 1983), where it was growing at least since the beginnings of the fourth millennium BP (Zohary et al. 2012). The earliest records of watermelon were found in Egypt during the second millennium BC (Hepper 1990) and in Sudan (van Zeist 1983). However, Wasylikowa and Van der Veen (2004) suggest that some of the seeds from Egyptian sites may have been erroneously identified
as different Citrullus species being most likely C. lanatus seeds. Cox and Van der Veen (2008) reported further records from the first millennium BC such as those from South Arabia, Greece and Israel. In Europe, watermelon seeds have been found in several Punic [Chapter 2], and Roman sites (Castelletti at al. 2001, Rinaldi et al. 2013) and are widely recorded during Medieval times in Italy (Bosi et al. 2009), Hungary (Gyulai et al. 2011, 2012) and in Islamic contexts of the Iberian Peninsula, (López Garí and Marlasca 2009).

5.1.4 Introduction to the analyses

Archaeogenetics have strongly developed in the last two decades (Palmer et al. 2012). As hydrolysis is one of the major decay reactions (Pääbo et al. 2004, Schlumbaum et al. 2008, Oliveira et al. 2012), waterlogging does not appear to favour DNA preservation. However, waterlogged plant remains have been already used as a good source of ancient DNA (Schlumbaum et al. 1998, Manen et al. 2003, Elbaum et al. 2005, Pollmann et al. 2005, Gyulai et al. 2008, Speirs et al. 2009).

Morpho-colorimetric evaluation has been already carried out to the diaspores of several spontaneous plants, providing excellent results to characterize very close taxa at infra-generic and infra-specific levels (Bacchetta et al. 2008, Grillo et al. 2010). A previous research focused on grape varieties correlated molecular and seed morphology (Orrú et al. 2013a) and two further works correlated seed shape of Sardinian grape landraces and archaeological pips found in the same context of Sa Osa (Ucchesu et al. 2014, Orrú et al. 2013b).

Melon seed length has been already correlated to genetic and geographical differentiation among melon groups (Fujishita 1983). Tanaka et al. 2013 indicated that large-seed melon is mainly cultivated in USA, Europe, West and Central Asia and northern Africa, whereas in India both largeand small-seed melon are equally frequent, while small-seed is more common in southern Africa, South and East Asia melon. In Sabato et al. (in press) [Chapter 3] a strong correlation between molecular and seed characters of melon has been shown, and in [Chapter 4] ancient DNA extraction has been already successfully carried out on waterlogged Late Bronze Age melon seeds from Sardinia, together with morphological seed characterization.

Basing on this wide research background, the aims of present work are:

- Extracting and genotyping ancient DNA of Medieval melon seeds from Sassari;
- Acquiring morphological features of melon seeds by an image analysis system;
- \quad Acquiring morphological features of watermelon seeds from the same context;
- Comparing molecular and morphological data with modern worldwide melon and watermelon landraces.

5.2 Materials and methods

5.2.1 Seed lots details

The starting material was a core collection of 212 melon accessions established on the framework of a previous project (MELRIP 2007-2010, Esteras et al. 2012, 2013), genotyped with AFLP and SNPs markers, and extensively phenotyped for plant and fruit traits. Only accessions belonging to traditional landraces were considered for the present research for a total of 172 seed lots (145 for molecular and 115 for morphological analysis) from 44 different countries [Annex C1]. Further 36 watermelon and colocynth accessions have been used only for morphological analysis [Annex 1].

Accessions have been mainly provided by USDA (United States Department of Agriculture) and COMAV (Centro de la Conservación y Mejora de la Agrodiversidad Valenciana) germplasm bank, and, to a lesser extent by Cyprus and Bari germplasm banks, and the Cagliari Botanical Gardens. Sardinian landraces, mostly described in Attene and Rodriguez (2008), have been supplied by the Agriculture Department of University of Sassari, AGRIS (Agenzia per la Ricerca in Agricoltura della regione Sardegna) and local farmers.

Archaeological seeds have been identified and dried at the Laboratorio di Palinologia e Paleobotanica of University of Modena and Reggio Emilia. A total of 196 full preserved melon (Fig. 1a) and 70 watermelon seeds (Fig. 1b) have been selected for morphological analysis. Broken or harddistorted samples were used for DNA extraction.

Figure 1. Medieval seeds from Sassari: (a) melon, Cucumis melo; (b) watermelon, Citrullus lanatus.

5.2.2 Molecular analysis

DNA extraction from archaeological samples followed a special procedure to avoid contamination. DNeasy Plant Mini Kit (Qiagen) was used and its protocol was followed with minor changes (more time with the initial buffer). All the tools involved (tubes, gloves, blades, etc.) have been UV irradiated for 12 hours and previously autoclaved if not disposable (like pliers and steel beads). The archaeological material was never manipulated in rooms where modern cucurbits were being treated and extractions were carried out in a sterile flow-hood chamber. Seed surfaces were cleaned out with a solution of $10 \% \mathrm{Ca}(\mathrm{OCl})_{2} \mathrm{w} / \mathrm{v}$ for one minute. Five samples were selected, three with a single seed, one with three seeds and a third with seed fragments. To confirm the lack of contamination during the whole process a negative control was included (a sample that follows all extraction steps without containing any archaeological or modern tissue). Only two samples yielded a minimum amount of DNA for quantifying and genotyping, the sample with three seeds, named Archaeo1, and the one with seed fragments, named Archaeo2.

A total of 123 SNPs markers, evenly distributed throughout the genome, were selected from the SNP melon collection available in the Melogene database (http://www.melogene.net/). This database contains a total of 38,587 SNPs that were in silico identified in two previous re-sequencing analysis (Blanca et al. 2011, Blanca et al. 2012). The most important one (Blanca et al. 2012) resequenced 67 genotypes, grouped into 8 pools that represent all the botanical groups of the species, for mining for SNPs. These polymorphisms, identified by the alignment of the sequences to the reference transcriptome, represent the largest collection existing for melon. This transcriptome, the most complete version to date, was created by Blanca et al. (2012) using a combination of expressed sequence tags (ESTs) from classical Sanger sequencing and the next generation sequencing (NGS) methods, e.g. 454 (Roche) and SOLID (Life Technologies Inc.).

Information about the SNPs used is available in Annex 2 and detailed information for each SNP marker, such as sequence, allele variation and location is available in the Melogene database. Most SNPs used in this study were employed in previous mapping experiments and their position in the genetic map is known (Esteras et al. 2013). Genotyping with this set of markers was performed using iPLEX® Gold MassARRAY Sequenom technology, carried out at the epigenetic and genotyping unit of the University of Valencia (Unitat Central d'Investigació en Medicina UCIM). This genotyping technology relies on Single Base Extension (SBE) using mass-modified dideoxynucleotide terminators of an oligonucleotide primer which anneals immediately upstream of the polymorphic site of interest to generate different allelic products. Using the MALDI-TOF mass spectrometry, the distinct mass of the extended primer identifies the SNP allele (Gabriel et al. 2009). The genotyping results were employed to perform a cluster analysis using the PowerMarker software (Liu and Muse 2005). Nei's genetic distance (Nei et al. 1983) was used, and the support values for the degree of confidence at the nodes of the dendrogram were analysed by bootstrap re-sampling 1,000 times. Phylip 3.69 software (Felsenstein 1997) was employed to construct the consensus tree and

TreeView32 (Page 1996) to visualize it. The Principal Coordinate Analysis (PCoA) was performed using GenAlEx 6.501. In addition, major allele frequency, gene diversity, heterozygosity and polymorphism information content (PIC) for each locus were calculated for this melon collection using PowerMarker software (Liu and Muse 2005).

5.2.3 Morphological analysis

The process follows the same protocol described in Sabato et al. (in press) [Chapter 3] and [Chapter 4]. Images were acquired using a flatbed scanner, with a resolution of $400 \mathrm{dpi}, 24$ bit-depth and a scanning area not exceeding 1024×1024 pixel. As suggested by Venora et al. (2007), before acquiring the image, the scanner was calibrated for colour matching, following the protocol of Shahin and Symons (2003). Digital images of seeds, randomly disposed on the flatbed tray, were acquired and used for the analysis. Two images were acquired for each sample of seeds, with black and white background. Digital images of seeds were analyzed using the software package KS-400 V. 3.0 (Carl Zeiss, Vision, Oberkochen, Germany). The accuracy and speed of measurements was maximized by running an automated macro, specifically developed for the characterization of seeds (Bacchetta et al. 2008; Grillo et al. 2010). Considering that seed colour is altered in the archaeological seeds, colour and texture have been not considered in this research, but in order to increase the number of discriminant parameters, the Elliptic Fourier Descriptors (EFDs) were also computed, as described by Orrù et al. (2013a), to accurately describe the shape of the analysed seeds. A total of 95 parameters, describing seed size and shape, were computed (Tab. 1). Data were statistically elaborated applying the stepwise LDA (Linear Discriminant Analysis).

Shape parameters

A	Area $\left(\mathrm{mm}^{2}\right)$
\mathbf{P}	Perimeter (mm)
Pconv	Convex Perimeter (mm)
PCrof	Crofton's Perimeter (mm)
Pconv/PCrof	Ratio between convex and Crofton's perimeters
Dmax	Maximum diameter of the seed (mm)
Dmin	Minimum diameter of the seed (mm)
Dmin/Dmax	Ratio between minimum and maximum diameters
Sf	Shape Factor $=(4 X \pi$ area $) /$ Perimeter ${ }^{2}($ normalized value $)$
Rf	Roundness Factor $=(4 X \pi X$ area $) /$ max diameter $\left.^{2}\right)($ norm. value $)$
Ecd	Diameter of a circle with an area equivalent to the seed (mm)
EAmax	Maximum axis of an ellipse with equivalent area (mm)
EAmin	Minimum axis of an ellipse with equivalent area (mm)
Cpt	Compact grade $=(\sqrt{2}(4 / \pi) X$ area $) /$ Dmax
C	Curl $=$ ratio between maximum diameters and Fiber lengths
Fl	Fiber length $($ mm $)$
Cvx	Convexity $=$ ratio of Crofton's Perimeters and real Perimeters
$\mathbf{7 8}$ EFDs	Elliptic Fourier Descriptors

Table 2. List of characters analyzed in morphological analyses.

We selected five main groups of varieties to compare the archaeological seeds: the Sweet melon group (= SWG), all sweet melon varieties of subspecies melo: var. ameri, inodorus, cantalupensis, reticulatus and indeterminate landraces of subsp. melo; the Intermediate group (= ING), non sweet melons with intermediate characteristics between the two melon subspecies: var. dudaim, chate, flexuosus and momordica; the African agrestis group (= AFG), African acidulus, tibish and the two African indeterminate landraces of subsp. agrestis; the Conomon group (= COG), all sweet and semi-sweet melons of subspecies agrestis diffuse in Far East: var. conomon, chinensis, makuwa and Asian acidulus: and the Wild types group (= WTG), wild and semi-wild melons: var. agrestis and chito.

5.3 Results

5.3.1 Melon molecular analysis

In Annex C2 genotyping data are presented. In Archaeol seven loci were not amplified (CMPSNP83, CMPSNP731, CMPSNP1066, CMPSNP144, CMPSNP30, CMPSNP5 and FR14F22), while the number of non amplified loci in Archaeo2 (48) were rather high due probably to the low amount of DNA of this sample. A high number of loci in both samples (56 in Archaol and 25 in Archao2) were heterozygous.

PCoA analysis is shown in Figure 2a (functions 1 and 2), Figure 2b (functions 1 and 3) and Figure 2c (3D representation). In all graphs, the archaeological seeds were grouped together with accessions of the subspecies melo and at some distance from those of the subspecies agrestis. These results clearly show that the medieval seeds belong to a cultivated melon of subspecies melo to a certain distance to modern landraces in Archaeol and closer in Archaeo2. The closest accessions to Archaeol were two ameri accessions, one sugary melon from Russia (AmRU42) and another lowsweet type from Morocco (AmMA37). Several snake-melons (var. flexuosus) from India, Near East and North-East Africa (FxIN20, FxIQ24, FxSA188, FXSD186), and a cucumber-melon (var. chate) from Italy (ChIT27, ChIT122) were also close. Archaeo2 sample was close to the above-mentioned accessions plus further snake-melons from Turkey (FxTR86), Spain (FxES82) and Italy (FxITS9) and several sweet ameri, as AmTN86, AmIR26, AmIR183 and AmITS10, from Tunisia, Iran and Italy. Other accessions, as conomon from China (CoCH125), cantalupensis from France (CaFR121, CaFR191), inodorus form Portugal (InPT40) and two indeterminate landraces from Italy and Mali (LaIT00, LaML35) belonged to the same area.

Figure 2a. PCoA analysis of the molecular comparison of archaeological seeds and the modern melon collection. The graph shows functions 1 and 2 corresponding to axis X and Y respectively.

Figure 2b. PCoA analysis of the molecular comparison of archaeological seeds and the modern melon collection. The graph shows functions 1 and 3 corresponding to axis X and Y respectively.

Figure 2c. PCoA analysis of the molecular comparison of archaeological seeds and the modern melon collection. The graph shows 3D representation of the closer accessions to the archaeological seeds.

5.3.2 Melon morphological analysis

A first morphological comparison between the 196 archaeological melon seeds, considered as an unknown group, the two cultivated melon subspecies and the wild melons was carried out (Tab. 2). Among the total of 11,374 seeds, 92.6% was correctly classified. The subsp. melo and the wild melons were correctly classified in 98.8% and 95.4% of the cases respectively, while subsp. agrestis overlapped in 21.1% of the cases with subsp. melo. None of the archaeological seeds was grouped with the wild melons, while 169 seeds (86.2%) were classified as subsp. melo and 27 seeds (13.8%) were grouped with the cultivated subsp. agrestis.

	subsp. melo		subsp. agrestis		wild melon		total	
	$\%$	n°	$\%$	n°	$\%$	n°	$\%$	n°
subsp. melo	98.8	8072	1.2	96	-	-	100.0	8168
subsp. agrestis	21.1	539	71.8	1830	7.1	181	100.0	2550
wild melon	-	-	4.6	30	95.4	626	100.0	656
Archaeo	$\mathbf{8 6 . 2}$	$\mathbf{1 6 9}$	$\mathbf{1 3 . 8}$	$\mathbf{2 7}$	-	-	$\mathbf{1 0 0 . 0}$	$\mathbf{1 9 6}$

- $\quad 92.6 \%$ overall classification

Table 2. LDA analysis results comparing the archaeological seeds with the two melon subspecies and the wild melon.

The comparison among the five main groups described in the Materials and methods section and the archaeological seeds is reporten in table 3. Overall correct classification reached the 81.3% with picks of 93.4% and 88.2% for the SWG and WTG. Most of the Medieval seeds have been classified as belonging to the ING (102 seeds, 52.0%) and SWG (72 seeds, 36.7%), but it should be considered that more than half of the seeds of ING (930 seeds, 55.1%) were classified as belonging to SWG. The few remaining archaeological seeds have been assigned to AFG (19 seeds, 9.7\%) and COG (3 seeds, 1.5%). None of the archaeological seeds has been classified as wild melon.

	SWG		ING		AFG		COG		WTG		total	
	$\%$	n°										
SWG	93.4	6317	5.2	351	1.4	94	0.1	4	-	-	100.0	757
ING	55.1	930	44.2	747	0.6	10	0.1	2	-	-	100.0	1689
AFG	7.6	61	7.1	57	71.9	580	13.5	109	-	-	100.0	627
COG	4.4	60	2.9	39	11.3	155	69.3	947	12.1	165	100.0	1366
WTG	-	-	-	-	-	-	11.8	88	88.2	658	100.0	746
ARC	$\mathbf{3 6 . 7}$	$\mathbf{7 2}$	$\mathbf{5 2 . 0}$	$\mathbf{1 0 2}$	$\mathbf{9 . 7}$	$\mathbf{1 9}$	$\mathbf{1 . 5}$	$\mathbf{3}$	-	-	$\mathbf{1 0 0 . 0}$	$\mathbf{1 9 6}$

- 81.3% overall classification

Table 3. Results from the LDA analysis comparing the archaeological seeds (ARC) to variety groups with similar morphological characteristics. For code details see Materials and methods.

The scatter-plot graphs of Figure 3 a and 3 b show accession distribution considering each accession as an independent group. All archaeological seeds and the mean of accessions coordinate (centroides) are represented. Archaeological seeds showed rather large distribution, indicating high variability. Closest accessions to archaeoseeds centroid were in most cases accessions of subspecies melo both sweet and non-sweet: flexuosus from Turkey and Italy (FxTR21, FxTR86, FxITS9), dudaim from Georgia and Afghanistan (DuGE296, DuAF1), ameri from Ukraine and Germany (AmUA90, AmDE166), reticulatus from Libya, cantalupensis form France (CaFR172), inodorus from Spain and Turkey (InES80, InES55, InES61, InTR104). Some accessions belonging to subspecies agrestis (chinensis from Japan, CnJP207; acidulus from Senegal, AcSN46) together with some indeterminate landrace of the two subspecies (LaFR151, LaMG202) were also close to the average of medieval seed features.

Figure 3a. LDA analysis results from morphological comparison between the archaeological melon seeds and the modern collection. Only accession centroids are represented. The graph shows functions 1 and 2 corresponding to axis X and Y respectively. For code details see Materials and methods.

Figure 3b. LDA analysis results of the morphological comparison between the archaeological melon seeds and the modern collection. Only accession centroids are represented. The graph shows functions 1 and 3 corresponding to axis X and Y respectively. For code details see Materials and methods.

5.3.3 Watermelon morphological analysis

The 70 archaeological watermelon seeds were compared to 1,199 seeds of modern Citrullus lanatus landraces (1,712 of C. lanatus var. lanatus and 487 of C. lanatus var. citroides) and 1,039 seeds of Citrullus colocynthis (Table 4). Correct classification of these three groups was very high with a 93.8% of correct identification. Misclassification among groups never exceeded 6.4%. None of the archaeological seeds has been classified as Citrullus colocynthis, while 67 seeds (95.7%) were classified as var. lanatus and only 3 seeds (4.4%) as var. citroides.

	Citrullus colocynthis		C. lanatus var. lanatus		C. lanatus var. citroides		total	
	\%	n°	\%	n°	\%	n°	\%	n°
Citrullus colocynthis	89.1	926	8	83	2.9	30	100.0	1039
C. lanatus var. lanatus	0.7	12	97.3	1665	2.0	35	100.0	1712
C. lanatus var. citroides	1.8	9	6.4	31	91.8	447	100.0	487
Archaeo	-	-	95.7	67	4.3	3	100.0	70

- 93.8% overall classification

Table 4. LDA analysis results comparing archaeological seeds with watermelon landraces and wild colocynth.
Figure $4 a$ and $4 b$ show distribution of accessions considering each as an independent group. Traditional Sardinian landraces showed high affinity with the archaeological seeds, mainly accessions LnITS3 (a yellow flash watermelon from the southern island of Sant'Antioco), LnITS1 and LnITS5 (both from Benetutti, near Sassari) and LnITS2 (from Gonnosfanadiga, SW Sardinia). Also, accessions from southern Spain (LnES65), central Asia, Uzbekistan (LnUZ78) and Kyrgyzstan (LnKZ81) were close to the medieval seeds.

5.4 Discussion

5.4.1 Melon

Melons have been recorded in Sardinia since the Late Bronze Age (Sabato et al. 2015 [Chapter 1]) being probably a non-sweet type [Chapter 3]. Janick et al. (2007) have highlighted the lack of clear indications of the presence of sugary melons comparable in quality to the modern sweet melon in the Mediterranean basin during classical times. Pitrat et al. (2000) hypothesized that a primitive ameri melon, diffused from the Near East and Central Asia, was the ancestor of modern sugary varieties. Paris et al. (2012) reported that the earliest clear evidence of sweet melon comes from the $9^{\text {th }}$ century from Central Asia from the Khorasan region, an area extending across Turkmenistan, Uzbekistan, Afghanistan, Tajikistan, Iran and eastern Iraq. Several accessions from this aerea showed molecular and morphological affinity with the medieval seeds. In addition, Paris et al. (2012), suggest that the first description of sugary melons in Europe, most probably a casaba type (var. inodorous), comes from Andalusia (southern Spain) and it is dated to the late $11^{\text {th }}$ century during the Islamic domination of Spain. They also indicate that the spread of sweet melons from Central Asia to Western Europe was the consequence of the Islamic conquest, a period of intense trade and agricultural development. Archaeological Cucumis melo/sativus seeds were found abundant in the Islamic contexts $\left(8^{\text {th }}-12^{\text {th }}\right.$ century AD) of the city of Lleida, Catalonia (Alonso Martínez 2005).

Figure 4a. LDA results from the morphological comparison between archaeological watermelon seeds and the modern collection. Only accession centroids are represented. Functions 1 and 2 correspond to axis X and Y respectively.

Figure 4b. LDA results from the morphological comparison between archaeological watermelon seeds and the modern collection. Only accession centroids are represented. Functions 1 and 3 correspond to axis X and Y respectively.

The spread of sweet melon during Medieval times may have been limited by farmer's lack of knowledge about its cultivation. Even if the cultivated genotypes have the potential for sugar accumulation, growing sweet melons is hard in soils with excessive humidity and under low temperatures (Pitrat 2008). This may be one of the reasons because melons from Central Asia moved first to regions of similar hot and semi-arid climate as Andalucía, but had more difficulties to spread in Central Europe. Cantaloupes and muskmelons depicted in Villa Farnesina (Roma, 1515-1518 AD) show the typical features of over-watering effects, being cracked and puckered, suggesting that by the $15^{\text {th }}$ century local farmers did not yet fully controlled melon cultivation (Janick and Paris 2006). Modern breeding-lines resistant to over watering, higher sweetness, lower temperature, lower solar exposure and to the most common pathogens have been selected only during the last few decades (Fernández-Trujillo et al. 2011). Different sweet melon varieties were probably introduced gradually in Europe in several occasions, following central European routes (Paris et al. 2012), as it is suggested by the similarity of some Hungarian and Turkish varieties (Szamosi et al. 2010).

Molecular analysis of the medieval melon seeds showed some affinity with modern landraces, but they are still distant in their main characters. The closest accessions to the archaeological seeds were both sweet varieties, as ameri, inodorus and cantalupensis, and non-sweet varieties of flexuosus and chate coming from Central Asia, Near East, North Africa and Europe. Several genomic regions have been related to sugar content in melon; Leida et al. (in press) associated the marker CMSNP711 located in LGI (46.0 cM) to sugar content, this marker is heterozygous C/T in both archaeological samples, as it happens in a non sweet melon; in addition, the allele C found in homozygous condition in most of the non-sweet or low sugar genotypes is absent in most of the sweet genotypes. Another interesting region is located in LGIX (22.4-33.6cM) marker CNSNP1035; Dai et al. (2011) demonstrated that this region maps the acid invertase 2, AIN2, a gene that is involved in sugar accumulation in melon fruits. In Archaeol this region is homozygous as most sweet accessions of cantalupensis, ameri and inodorus melons, while heterozygous in Archaeo2, which is also heterozygous for marker SNP144 having the allele G more frequent in non-sweet genotypes. In any case, the coexistence of two or more cultivar cannot be ruled out, since the high heterogeneity of Medieval seeds, one of the highest within the whole melon collection can reflect a mixture of typologies. The fact that some loci could not be amplified in the archaeological material can be explained as result of DNA degradation or by the fact that additional mutations can exist in the flanking regions that prevent amplification. These mutations could have disappeared in the current germplasm collection.

Morphological analysis showed as well a high variability in seed shape, due probably to the coexixtence of a mixture of different melon types. In our reference collection several non-sweet accessions have morphological seed features similar to sweet forms, being located in an intermediate position across the two melon subspecies (mostly corresponding to flexuosus, chate, dudaim and momordica varieties). Two Sardinian accessions showed some similarity by both molecular and
morphologically analyses, mainly FxITS9, a snake-melon diffused in Sant'Antioco, in the South, known as Facussa (Attene and Rodriguez 2008), and AmITS10 a sugary ameri collected in Villamar, in the centre of the island. Although these accessions belong to quite different varieties they showed to be part to the same genetic pool.

Some accession with molecular and morphological affinity to the ancient materials were the Iberian landraces, as FxES82, a snake-melon called Alficoz which is a traditional crop mostly diffused today in the area of Valencia and Catalonia. A representation of a melon plant (with branches, leaves and round fruits) appears in a palace as a symbol and crest of the Meloni family, dated to the Sassari Aragonese period, between the $14^{\text {th }}-15^{\text {th }}$ centuries (Porcu Gaias 1996, Atzei 2009). At the time of the finds (1330-1350/60 AD) the city of Sassari was part of the Kingdom of Aragon. Historical sources reported that colonists from this area moved into the city between 1330 and 1331 AD and this is also demostrated by the finds of Valencian pottery, togeter with ceramics form Pisa and Savona, in the same context of the seeds (Biccone 2013). The Arab domination of the territory of Valencia lasted until 1238 AD, but also after this event the Arabs continued living in this region (Coscollá Sanz 2003). Sugary melons may have arrived into Sardinia through Aragonese commercial trades which probably knew this crop from the Arabs.

5.4.2 Watermelon

It is believed that the area of domestication of Citrullus lanatus is located in Africa where it was growing at least since the beginnings of the $4^{\text {th }}$ millennium BC (Zohary et al. 2012). In Sardinia, it has been recorded in Phoenician-Punic contexts in the western coast of the island [Chapter 2]. Romans knew this crop, although it probably had a marginal role (Janick et al. 2007). Apart from the fruit, watermelon seeds were also consumed as "snack food" in Egypt (Cox and Van der Veen 2008) at least since the Islamic period. This practice has survived today in the area and also in other regions of Africa (Jensen et al. 2011); a similar use is recorded in Italy in the Renaissance period (Castelvetro 1614). The fruit is commonly mentioned in the Islamic literature during the $12^{\text {th }}-13^{\text {th }}$ centuries AD and, as for melon, it seems that watermelon was introduced by the Arab conquerors in Spain delaying its cultivation in other parts of Europe, where the cultivation of this crop started much later due the non favourable climatic conditions (Zohary et al. 2012). Bates and Robinson (1995) noticed that before the $16^{\text {th }}$ century AD , written sources rarely mention watermelons. The two main varieties of watermelon (citroides and lanatus) were probably cultivated in early periods. Citron melon (C. lanatus var. citroides) is an old and neglected crop, quite rare nowadays in Europe that was used mainly as fodder, since their raw fruits are inedible for humans. In Corse, Laghetti and Hammer (2007) reported the traditional use of this variety (in the present it is represented by accessions LcFR01 and LcFR02) only in the North of the island where it is used for making jams. In Sardinia, there is no evidence of similar use.

Morphological analysis confirmed that the Medieval watermelon seeds from Sassari most likely belonged to the proper sugary watermelon instead of to the wild colocynth or citron melon. All Sardinian traditional cultivars as well as some Spanish and Central Asian accessions, showed high similarity with the archaeological seeds pointing out, perhaps, to a common ancestor. The closest local accession is a yellow flesh watermelon from the South of the island but the number of samples was not enough to suggest that the archaeological seeds belonged to this form. The flesh colour of watermelons varies from red to yellow, although the latter is more uncommon nowadays, and both are still well represented in traditional landraces (Szamosi et al. 2009). Ancient DNA analysis on Medieval and Renaissance watermelon seeds have demonstrated the presence of both red-flesh and yellow-flesh watermelons in Hungary (Gyulai et al. 2011, 2012).

5.5 Conclusions

The integrated analysis of molecular and morphological characterization of medieval melon and watermelon seeds from Sassari offered the opportunity to understand the diffusion of these crops in Europe.

Both analyses indicated that different varieties of melon were cultivated in Sardinia during the Medieval period. These varieties likely included sweet and non-sweet forms, and the high genetic admixture suggested that phenotypes were still not fixed, making these fruits still distant to present melon typologies. Two Sardinian landraces and several accession from Central Asia, the Near East, Africa and Spain, showed molecular and morphological affinity with the archaeological material. This is in agreement to the previous idea that the first selection of sugary melons may occurred in Central Asia and then, through the Arabs, they reached the Western Mediterranean, while the wide diffusion in Europe only occurred later as a consequence of independent introductions between the late Medieval and Renaissance periods (Paris et al. 2012).

According to seed features, watermelon seeds also showed a close relation with traditionl Sardinian, Spanish and Central Asia landraces, suggesting that the cultivation of this crop was already in advanced stage.

Sardinian commercial and political connections with the Kingdom of Aragon at the time of the findings may suggest a relation with the introduction of sugary melon and watermelon, which probably hybridized with pre-existing local types, which are known since the Late Bronze Age (for melon) and the Punic period (for watermelon).

Acknowledgements

The authors thank the NPGS (National Plant Germplasm System) of the USDA (United States Department of Agriculture), the Cyprus and Bari Germplasm Banks for providing some accessions of their collections. We also thank M. Pitrat, who within the MELRIP project provided some of the melon accessions used in this study. We wish to acknowledg M.J. Diez (COMAV Genebank), who
provided most of cucumber and watermelon accessions, and G. Attene (University of Sassari), who provided most of Sardinian landraces. We thank L. Baghino and G. Mallica (AGRIS, Agenzia per la Ricerca in Agricoltura della regione Sardegna) which provided accessions LnITS2 and LnITS4, and F. Mascia for the accession AmITS10. We thank E. Martínez and G. Perpiñá Martín (COMAV) for their technical support on the melon collection.

We would like to express our gratitude to G. Venora for his support and for enabling the use of the laboratory at Stazione Consorziale Sperimentale di Granicoltura per la Sicilia.

We thank D. Rovina (Soprintendenza per i Beni Architettonici, Paesaggistici, Storici Artistici ed Etnoantropologici per le Province di Sassari e Nuoro) for allowing us the use of archaeological material, and M. Bandini Mazzanti (University of Modena e Reggio Emilia) for the pretious opinions on this work.

Reference

Alonso Martínez A. 2005. Agriculture and food from the Roman to the Islamic Period in the North-East of the Iberian peninsula: archaeobotanical studies in the city of Lleida (Catalonia, Spain). Vegetation History and Archaeobotany 14:341-361.
Attene G, Rodriguez M. 2008. Risorse genetiche di specie ortive della Sardegna. Sassari: Euro Editrice.
Atzei AD. 2009. Le piante nella tradizione popolare della Sardegna. Sassari: Delfino Editore.
Bacchetta G, Grillo O, Mattana E, Venora G. 2008. Morpho-colorimetric characterization by image analysis to identify diaspores of wild plant species. Flora 203:669-682.
Bandini Mazzanti M, Bosi G, Guarnieri C. 2009. The useful plants of the city of Ferrara (Late Mediaeval/Renaissance) based on archaeobotanical records from middens and historical/culinary/ethnobotanical documentation. In: Morel JP, Mercuri AM, eds. Plants and Culture: seeds of the cultural heritage of Europe. Bari: EdiPuglia, 93-106.
Bandini Mazzanti M, Bosi G, Mercuri AM, Accorsi CA, Guarnieri C. 2005. Plant use in a city in Northern Italy during the Late Medieval and Reinaissance periods: results of the Archaeobotanical Investigation of 'The Mirror Pit' (14th - 15th century A.D.) in Ferrara. Vegetation History and Archaeobotany 14:442-452.
Bates DM, Robinson RW. 1995. Cucumbers, melons and water-melons. In: Smartt J, Simmonds NW, eds. Evolution of Crop Plants. 2nd edn. Harlow: Longman Scientific, 89-96.
Becca G, Deiana A, Filigheddu R. 2013. I legni del pozzo. In: Rovina D, Fiori M, eds. Sassari. Archeologia urbana. Ghezzano: Felici Editore, 93-95.
Bertacci F. (2011/2012) Il contenuto archeocarpologico del pozzo di via Satta a Sassari (XIV sec. d.C.): informazioni etnobotaniche e di carattere ambientale. Tesi di Laurea Magistrale, Università di Ferrara.
Biccone L. 2013. Via Sebastiano Satta. In: Rovina D, Fiori M, eds. Sassari. Archeologia urbana. Ghezzano: Felici Editore, 73-85.
Blanca J, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, García-Mas J, Picó B. 2011. Melon transcriptome characterization: Simple Sequence Repeats and Single Nucleotide Polymorphisms discovery or high throughput genotyping across the species. The Plant Genome 4:118-131.
Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernández-Pedrosa V, Collado C, Rodríguez de Pablos R, Ballester A, 737 Roig C, Cañizares J, Picó B. 2012. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280.
Bosi G, Bandini Mazzanti M, Florenzano A, Massamba N'siala I, Pederzoli A, Rinaldi R, Torri P, Mercuri AM. 2011. Seeds/fruits, pollen and parasite remains as evidence of site function: Piazza Garibaldi-Parma (N Italy) in Roman and Mediaeval times. Journal of Archaeological Science 38:1621-1633.
Bosi G, Mercuri AM, Guarnieri C, Bandini Mazzanti M. 2009. Luxury food and ornamental plants at the 15 th century A.D. Renaissance court of the Este family (Ferrara, northern Italy). Vegetation History and Archaeobotany 18:389-402.
Bosi G, Bandini Mazzanti M. 2013. Informazioni etnobotaniche dai reperti carpologici del pozzo: risultati di un saggio preliminare. In: Rovina D, Fiori M, eds. Sassari. Archeologia urbana. Ghezzano: Felici Editore, 86-92.
Castelletti L, Castiglioni E, Rottoli M. 2001. L'agricoltura dell'Italia settentrionale dal Neolitico al Medioevo. In: Failla O, Forni G, eds. Le piante coltivate e la loro storia. Dalle origini al transgenico in Lombardia nel centenario della riscoperta della genetica di Mendel. Milano: Franco Angeli Editore.
Castelvetro G. 1614. Brieve racconto di tutte le radici, di tutte l'erbe e di tutti i frutti, che crudi o cotti in Italia si
mangiano. In: Firpo L, ed. 1974. Gatronomia del Rinascimento. Torino: UTET, 131-176.
Coscollá Sanz V. 2003. La Valencia musulmana. Valencia: Carena Editors.
Cox A, van der Veen M. 2008. Changing foodways: watermelon (Citrullus lanatus) consumption in Roman and Islamic Quseir al-Qadim, Egypt. Vegetation History and Archaeobotany 17:181-189.
Dai N, Cohen S, Portnoy V, et al. 2011. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol Biol 76:1-18.
Dane F, Liu J. 2007. Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genetic Resources and Crop Evolution 54:1255-1265.
Elbaum R, Melamed-Bessudo C, Boaretto E, Galili E, Lev-Yadun S, Levy AA, Weiner S. 2005. Ancient olive DNA in pits, preservation, amplification and sequence analysis. Journal of Archaeological Sciences 33:77-88.
Esquinas-Alcázar JT, Gulick PJ. 1983. Genetic Resources of Cucurbitaceae: A Global Report. Rome: IBPGR Secretariat.
Esteras C, Formisano G, Roig C, et al. 2013. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical Applied Genetics 126:1285-1303.
Esteras C, Nuez F, Picó B. 2012. Genetic diversity studies in Cucurbits using molecular tools. In: Wang Y, Behera TK, Kole C, eds. Cucurbits: Genetics, Genomics and Breeding of Cucurbits. New Hampshire: Science Publishers Inc, 140-198.
Felsenstein J. 1997. An alternating least squares approach to inferring phylogenies from pairwise distances. Systematic Biology 46:101-111.
Fernández-Trujillo JP, Picó B, Garcia-Mas J, Álvarez JM, Monforte AJ. 2011. Breeding for Fruit Quality in Melon. In: Jenks MA, Bebeli PJ, eds. Breeding for Fruit Quality. John Wiley \& Sons, Inc. 261-278.
Fujishita N. 1983. Genetic diversity and phylogenetic differentiation in melon. Current Topics in Plant Breeding 24:3-21.
Gabriel S, Ziaugra L, Tabbaa D. 2009. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics 60:11-18.
Goldman A. 2002. Melons for the passionate grower. New York: Artisan.
Grillo O, Mattana E, Venora G, Bacchetta G. 2010. Statistical seed classifiers of 10 plant families representative of the Mediterranean vascular flora. Seed Science. and Technology 38:455-476.
Gyulai G, Waters L, Dane F. 2008. Ancient cucurbit DNA-unlocking domestication events. Budapest: Fublbright Year Book.
Gyulai G, Szabó Z, Wichmann B, Bittsánszky A, Waters L. Jr, Tóth Z, Dane F. 2012. Conservation Genetics Heat Map Analysis of nuSSRs of aDNA of Archaeological Watermelons (Cucurbitaceae, Citrullus l. lanatus) Compared to Current Varieties. Genes, Genomes and Genomics 6:86-96.
Hepper FN. 1990. Pharaoh's flowers. The botanical treasures of Tutankhamun. Kew: Royal Botanic Gardens.
Janick J, Paris HS. 2006. The cucurbit images (1515-1518) of the Villa Farnesina, Rome. Annals of Botany 97:165-176.
Janick J, Paris HS, Parrish DC. 2007. The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Annals of Botany 100:1441-1457.
Jensen BD, Maïga Touré F, Hamattal MA, Touré FA, Nantoumé AD. 2011. Watermelons in the sand of Sahara: cultivation and use of indigenous landraces in the Tombouctou Region of Mali. Ethnobotany Research \& Applications 9:151-162.
Jeffrey C. 1980. A review of the Cucurbitaceae. The Botanical Journal of the Linnean Society 81:233-247.
Jeffrey C. 2001. Cucurbitaceae. In: Hanelt P, ed. Mansfeld's encyclopedia of agricultural and horticultural crops. Berlin: Springer, 1510-1557.
Laghetti G, Accogli R, Hammer K. 2008. Different cucumber melon (Cucumis melo L.) races cultivated in Salento (Italy). Genetic Resources and Crop Evolution 55:619-623.
Laghetti G, Hammer K. 2007. The Corsican citron melon (Citrullus lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. ex Greb.) a traditional and neglected crop. Genetic Resources and Crop Evolution 54:913-916.
Leida C, Moser C., Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Picó B. In press. Variability of candidate genes and genetic association for sugar accumulation and climacteric behavior in melon (Cucumis melo L.)
Liu,K, Muse SV. 2005. Powermarker: Integrated analysis environment for genetic marker data. Bioinformatics 21:2128-2129.
López Garí JM, Marlasca R. 2009. L'edat mitjana. El naixement de ses Feixes. In: Mari M, ed. Vila i ses Feixes. Els camins de l'aigua. Eivissa: Can Llaudes, 77-93.
Mallick MFR, Masui M. 1986. Origin, distribution and taxonomy of melons. Scientia Horticulturae 28:251-261.
Manen JF, Bouby L, Dalnoki O, Marinval P, Turgay M, Schlumbaum A. 2003. Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. Journal of Archaeological Science 30:721-729.
Maynard DN. 2001. An introduction to the watermelon. Alexandria: ASHS Press.
132 Medieval melon and watermelon seeds from Sassari (Italy)

Munger HM, Robinson RW. 1991. Nomenclature of Cucumis melo L. Cucurbit Genetics Cooperative 14:43-44.
Nakata E., Staubm JE, López-Sesé AI,Katzir N. 2005. Genetic diversity in Japanese melon (Cucumis melo L.) as assessed by random amplified polymorphic DNA and simple sequence repeat markers. Genetic Resources and Crop Evolution 52: 405-419.
Naudin C. 1859. Essais d'une monographie des espèces et des variétés du genre Cucumis. Annales des Sciences Naturelles 11:5-87.
Navot N, Zamir D. 1987. Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Systematics and Evolution 156:61-67.
Nei M, Tajima F, Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. II Gene frequency data. Journal of Molecular Evolution 19:153-170.
Oliveira HR, Civáñ P, Morales J, Rodríguez-Rodríguez A, Lister DL, Jones MK. 2012. Ancient DNA in archaeological wheat grains: preservation conditions and the study of pre-Hispanic agriculture on the island of Gran Canaria (Spain). Journal of Archaeological Science 39:828-835.
Orrù M, Grillo O, Venora G, Bacchetta G. 2013a. Computer vision as a method complementary to molecular analysis: Grapevine cultivar seeds case study. Comptes Rendus Biologies 335:602-615.
Orrù M, Grillo O, Lovicu G, Venora G, Bacchetta G. 2013b. Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Vegetation History and Archaeobotany 22:231-242.
Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M. 2004. Genetic analyses from ancient DNA. Annual Review of Genetics 38:645-679.

Page RDM. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358.
Pala G. 1980. Una nota sul ripopolamento di Sassari al tempo di Alfonso il Benigno. Annali della Facoltà di Lettere e Filosofia dell’Università di Cagliari, N.S., vol. I, XXXVII (1976-77), Sassari, 133-161.
Palmer SA, Smith O, Allaby RG. 2012. The blossoming of plant archaeogenetics. Annals of Anatomy 194:146156.

Paris HS, Amar Z, Lev E. 2012. Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Annals of Botany 110:23-33.
Pitrat M. 2008. Melon (Cucumis melo L.). In: Prohens J, Nuez F, eds. Handbook of Crop Breeding, vol I: Vegetables. New York: Springer, 283-315.
Pitrat M, Hanelt P, Hammer K. 2000. Some comments on infraspecific classification of cultivar of melon. In: Katzir N, Paris HS, eds. Proceeding of Cucurbitaceae 2000, Máaleh Hahamisha, Israel, 19-23 March 2000. Acta Horticulturae 510:29-36.

Pollmann B, Jacomet S, Schlumbaum A. 2005. Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium, Switzerland. Journal Archaeological Science 32: 1471-1480.
Porcu Gaias M. 1996. Sassari: Storia architettonica e urbanistica dalle origini al '600. Nuoro: Ilisso.
Renner SS, Schaefer H, Kocyan A. 2007. Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). Evolutionary Biology 7:58.
Rinaldi R, Bandini Mazzanti M, Bosi G. 2013. Archaeobotany in urban site: the case of Mutina. Annals of Botany 3:217-230.
Rovina D, Fiori M. 2013. Sassari. Archeologia urbana. Ghezzano: Felici Editore.
Sabato D, Esteras C, Grillo O, Picó B, Bacchetta G. In press. Seed morpho-colourimetric analysis as complementary method to molecular characterization of melon diversity. Scientiae Horticulturae.
Sabato D, Masi A, Ucchesu M, Peña-Chocarro L, Usai A, Giachi G, Capretti C, Bacchetta G. 2015. Archaeobotanical analysis of a Bronze Age well from Sardinia: a wealth of knowledge. Plant Biosystems. 10.1080/11263504.2014.998313.

Schlumbaum A, Neuhaus JM, Jacomet S. 1998. Coexistence of tetraploid and hexaploid naked wheat in a Neolithic lake dwelling of Central Europe. Evidence from morphology and ancient DNA. Journal of Archaeological Science 25:1111-1118.
Schlumbaum A, Tensen M, Jaenicke-Després V. 2008. Ancient plant DNA in archaeobotany. Vegetation History and Archaeobotany 17:233-244.
Sebastian P, Schaefer H, Telford IRH, Renner SS. 2010. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species from melon is from Australia. Proceedings of the National Academy of Sciences 107:14269-14273.
Shahin MA, Symons SJ. 2003. Colour calibration of scanners for scanner independent grain grading. Cereal Chemistry 80:285-289.
Speirs AK, McConnachie G, Lowe AJ. 2009. Chloroplast DNA from 16th Century Waterlogged Oak in Marine Environment: Initial Steps in Sourcing the Mary Rose Timbers. In: Haslam M, ed. Archaeological Science Under a Aicroscope: Studies in Residue and Ancient DNA Analysis in Honour of Thomas H. Loy, Camberra: ANU E Press, 175-189.
Szamosi C, Solmaz I, Sari N, Barsony C. 2009. Morphological characterization of Hungarian and Turkish watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) genetic resources. Genetic Resources and Medieval melon and watermelon seeds from Sassari (Italy)

Crop Evolution 56:1091-1105.
Szamosi C, Solmaz I, Sari N, Barsony C. 2010. Morphological evaluation and comparison of Hungarian and Turkish melon (Cucumis melo L.) germplasm. Scientia Horticulturae 124:170-182.
Tanaka K, Akashi Y, Fukunaga K, Yamamoto T, Aierken Y, Nishida H, Lin Long C, Yoshino H, Sato YI, Kato K. 2013. Diversification and genetic differentiation of cultivated melon inferred from sequence polymorphism in the chloroplast genome. Breeding Science 63:183-196.
Ucchesu M, Orrù M, Grillo O, Venora G, Usai A, Serreli PF, Bacchetta G. 2014. Earliest evidence of a primitive cultivar of Vitis vinifera L. during the Bronze Age in Sardinia (Italy). Vegetation History and Archaeobotany. Doi: 10.1007/s00334-014-0512-9.
van Zeist W. 1983. Fruits in foundation deposits of two temples. Journal of Archaeological Science 10:351-354.
Venora G, Grillo O, Shahin MA, Symons SJ. 2007. Identification of Sicilian landraces and Canadian cultivars of lentil by image analysis system. Food Research International, 40:161-166.
Wasylikowa K, van der Veen M. 2004. An archaeobotanical contribution to the history of watermelon, Citrullus lanatus (Thunb.) Matsum. \& Nakai (syn. C. vulgaris Schrad.). Vegetation History and Archaeobotany 13:213-217.
Zohary D, Hopf and M, Weiss E. 2012. Domestication of plants in the Old World. The origin of cultivated plants in West Asia, Europe and the Mediterranean Basin. Oxford: Oxford University Press.

Annex 1. Citrullus lanatus and Citrullus Colocynthis seed lots detail.

Annex 2. Information about the 123 SNP markers employed in the genotyping assay and summary statistic results generated in genotyping analysis with PowerMarker software. In Esteras et al. 2013 markers were experimentally validated and further information is available.

Marker name	LG	cM	Major Allele Frequency	$\begin{gathered} \text { Genotype } \\ \mathrm{n}^{\circ} \end{gathered}$	Allele n°	Gene Divesity	Heterozygosity	PIC
AI_09-F07	1	0	0,8185	3	2	0	0,021	0,253
CMPSNP1095	1	3,2	0,8390	3	2	0,270	0,089	0,234
CMPSNP83	1	18,1	0,5034	3	2	0,500	0,069	0,375
AI_17-E07	1	45,2	0,6233	3	2	0,470	0,068	0,359
CMPSNP711	1	46,8	0,5479	3	2	0,495	0,041	0,373
CMPSNP410	1	59,6	0,5034	3	2	0,500	0,069	0,375
F116	1	69,2	0,6301	3	2	0,466	0,068	0,357
AI_05-G01	1	72,4	0,8322	3	2	0,279	0,007	0,240
CMPSNP731	1	80,4	0,6918	3	2	0,426	0,055	0,336
CMPSNP204	1	86,8	0,7911	3	2	0,331	0,021	0,276
CMPSNP774	2	0	0,5274	3	2	0,498	0,041	0,374
CMPSNP431	2	4,8	0,5068	3	2	0,500	0,055	0,375
CMPSNP502	2	32,6	0,6276	3	2	0,467	0,041	0,358
CMPSNP1057	2	37,4	0,8288	3	2	0,284	0,027	0,244
AI_14-H05	2	40,6	0,6541	3	2	0,453	0,089	0,350
CMPSNP128	2	50,2	0,8356	3	2	0,275	0,027	0,237
CMPSNP246	2	53,4	0,7448	3	2	0,380	0,041	0,308
CMPSNP1003	2	58,2	0,7945	3	2	0,327	0,041	0,273
CMPSNP886	2	63	0,5925	3	2	0,483	0,062	0,366
CMPSNP658	2	77,9	0,6336	3	2	0,464	0,021	0,357
CMPSNP566	2	86	0,6301	3	2	0,466	0,027	0,357
CMPSNP94	2	90,9	0,7379	3	2	0,387	0,041	0,312
AI_18-E05	3	3,2	0,6448	3	2	0,458	0,076	0,353
CMPSNP275	3	4,8	0,6096	3	2	0,476	0,027	0,363
CMPSNP540	3	8	0,6507	3	2	0,455	0,041	0,351
CMPSNP165	3	24,3	0,5171	4	3	0,506	0,075	0,385
CMPSNP769	3	42,8	0,6575	3	2	0,450	0,027	0,349
CMPSNP164	3	46,2	0,6781	3	2	0,437	0,041	0,341
CMPSNP998	3	56,3	0,6370	3	2	0,462	0,041	0,356
CMPSNP595	3	61,1	0,7774	3	2	0,346	0,048	0,286
CMPSNP712	3	62,7	0,5308	3	2	0,498	0,062	0,374
CMPSNP480	4	0	0,6250	3	2	0,469	0,056	0,359
CMPSNP787	4	6,4	0,7363	3	2	0,388	0,062	0,313
CMPSNP1132	4	11,2	0,5377	3	2	0,497	0,048	0,374
PS_34-C02	4	17,6	0,6884	3	2	0,429	0,062	0,337
CMPSNP907	4	20,8	0,5959	3	2	0,482	0,041	0,366
CMPSNP264	4	32,1	0,5514	3	2	0,495	0,062	0,372
CMPSNP147	4	48,3	0,5548	3	2	0,494	0,082	0,372
AI_03-F03	4	53,1	0,6414	3	2	0,460	0,110	0,354
CMPSNP352	4	54,7	0,6610	3	2	0,448	0,062	0,348
CMPSNP852	4	62,7	0,6952	3	2	0,424	0,034	0,334
CMPSNP607	4	69,1	0,7671	3	2	0,357	0,027	0,293
CMPSNP677	4	77,1	0,6849	3	2	0,432	0,041	0,338
CMPSNP24	4	86,8	0,6586	3	2	0,450	0,062	0,349
PS_07-E07	4	101,5	0,5308	3	2	0,498	0,075	0,374
SC51-3375	4	114,6	0,8527	3	2	0,251	0,021	0,220
CMPSNP898	5	0	0,6130	3	2	0,474	0,103	0,362
CMPSNP387	5	18,5	0,6541	3	2	0,453	0,048	0,350
CMPSNP437	5	26,5	0,6747	3	2	0,439	0,034	0,343
CMPSNP726	5	41,2	0,8664	3	2	0,231	0,034	0,205
CMPSNP788	5	50,9	0,6336	3	2	0,464	0,021	0,357
SSH9G15	5	52,5	0,7324	3	2	0,392	0,056	0,315
60k41.243	5	73,4	0,5753	3	2	0,489	0,055	0,369
CMPSNP1155	5	79,8	0,6655	3	2	0,445	0,076	0,346
AI_13-H12	5	89,4	0,6747	3	2	0,439	0,048	0,343
CMPSNP735	5	94,2	0,7500	3	2	0,375	0,048	0,305
CMPSNP925	6	1,6	0,5799	3	2	0,487	0,063	0,369
CMPSNP218	6	8	0,6370	3	2	0,462	0,068	0,356
CMPSNP571	6	20,8	0,5345	3	2	0,498	0,076	0,374
CMPSNP1167	6	25,6	0,8459	3	2	0,261	0,048	0,227
CMPSNP433	6	32	0,7808	3	2	0,342	0,068	0,284
CMPSNP3	6	43,2	0,6690	3	2	0,443	0,041	0,345

CMPSNP292	6	49,6	0,5856	3	2	0,485	0,048	0,368
CMPSNP295	6	49,6	0,8241	3	2	0,290	0,090	0,248
CMPSNP1021	6	57,6	0,5034	3	2	0,500	0,075	0,375
CMPSNP1038	6	57,6	0,8507	3	2	0,254	0,035	0,222
A_38-F04	6	70,7	0,5690	3	2	0,490	0,062	0,370
Aİ_13-F02	6	85,3	0,5207	3	2	0,499	0,048	0,375
CMPSNP378	6	86,9	0,6747	3	2	0,439	0,021	0,343
AI_05-F11	7	4,9	0,5000	3	2	0,500	0,048	0,375
CMPSNP249	7	11,3	0,6575	3	2	0,450	0,068	0,349
CMPSNP262	7	30,5	0,6815	3	2	0,434	0,048	0,340
CMPSNP579	7	30,5	0,5137	3	2	0,500	0,055	0,375
CMPSNP1009	7	32,1	0,8931	3	2	0,191	0,048	0,173
CMPSNP287	7	35,3	0,7034	3	2	0,417	0,028	0,330
CMPSNP56	7	43,3	0,6610	3	2	0,448	0,075	0,348
CMPSNP465	7	59,4	0,6918	3	2	0,426	0,027	0,336
CMPSNP415	7	72,2	0,6404	3	2	0,461	0,021	0,355
CMPSNP12	8	0	0,6379	3	2	0,462	0,062	0,355
CMPSNP766	8	4,8	0,6610	3	2	0,448	0,034	0,348
CMPSNP718	8	11,2	0,6207	3	2	0,471	0,041	0,360
CMPSNP97	8	19,2	0,6438	3	2	0,459	0,397	0,353
CMPSNP44	8	22,4	0,7295	3	2	0,395	0,034	0,317
AI_21-D08	8	28,8	0,5149	3	2	0,500	0,015	0,375
CMPSNP181	8	35,2	0,6146	3	2	0,474	0,007	0,362
F013	8	48,1	0,6852	3	2	0,431	0,052	0,338
PSI_25-H03	5/8	59,4	0,5582	3	2	0,493	0,034	0,372
CMPSNP1066	8	79,2	0,6389	2	2	0,461	0,000	0,355
CMPSNP553	9	0	0,5274	3	2	0,498	0,068	0,374
CMPSNP173	9	3,2	0,5479	3	2	0,495	0,055	0,373
P5.64	9	8	0,6541	3	2	0,453	0,075	0,350
CMPSNP1077	9	19,2	0,6336	3	2	0,464	0,007	0,357
CMPSNP320	9	20,8	0,7637	3	2	0,361	0,048	0,296
CMPSNP144	9	22,4	0,6438	3	2	0,459	0,027	0,353
CMPSNP1035	9	33,6	0,6438	3	2	0,459	0,055	0,353
CMPSNP159	9	36,8	0,7207	3	2	0,403	0,034	0,322
CMPSNP1133	9	59,2	0,5616	3	2	0,492	0,096	0,371
CMPSNP890	9	64	0,5420	3	2	0,496	0,063	0,373
psi36-10864	10	0	0,6268	3	2	0,468	0,070	0,358
psi36-839	10	0	0,6172	3	2	0,473	0,048	0,361
CMPSNP172	10	1,6	0,7705	3	2	0,354	0,034	0,291
CMPSNP528	10	8	0,5959	3	2	0,482	0,068	0,366
CMPSNP65	10	14,4	0,7808	3	2	0,342	0,055	0,284
CMPSNP762	10	23,9	0,6910	3	2	0,427	0,049	0,336
CMPSNP671	10	28,8	0,5724	3	2	0,490	0,124	0,370
CMPSNP550	10	38,5	0,6747	3	2	0,439	0,349	0,343
CMPSNP426	11	0	0,6541	3	2	0,453	0,034	0,350
HS_35-E11	11	16,4	0,7363	3	2	0,388	0,075	0,313
PSI_41-B07	11	27,6	0,7089	3	2	0,413	0,021	0,328
CMPSNP389	11	47,7	0,6138	3	2	0,474	0,207	0,362
CMPSNP30	11	66	0,6517	3	2	0,454	0,062	0,351
CMPSNP315	11	90,9	0,7188	3	2	0,404	0,035	0,323
CMPSNP475	11	98,9	0,6418	3	2	0,460	0,035	0,354
CMPSNP122	11	100,5	0,6473	3	2	0,457	0,034	0,352
CMPSNP385	12	4,8	0,8000	3	2	0,320	0,041	0,269
CMPSNP310	12	9,8	0,5171	3	2	0,499	0,034	0,375
AI_35-A08	12	16,4	0,5034	3	2	0,500	0,021	0,375
AI_09-G07	12	18,1	0,8028	3	2	0,317	0,127	0,266
CMPSNP285	12	21,4	0,9212	3	2	0,145	0,034	0,135
CMPSNP361	12	37	0,5414	3	2	0,497	0,062	0,373
CMPSNP5	12	58,1	0,7655	3	2	0,359	0,028	0,295
FR14F22	12	67,7	0,5655	3	2	0,491	0,041	0,371
P02.03	12	69,3	0,6267	3	2	0,468	0,075	0,358

Annex C1: Seed lots detail Cucumis melo

CODE	CODE 2		Molec. Analy.	Morph. Analy.	subsp.	variety	Country	local name	$\begin{gathered} \text { seed } \\ \mathrm{n}^{\mathrm{o}} \\ \hline \end{gathered}$
AcIN193	Ac-SVIInd	C	X		agrestis	acidulus	India		
AcLK148		M		X	agrestis	acidulus	Sri Lanka	kekiri	97
AcLK187	Ac-SRKSLan	C	X		agrestis	acidulus	Sri Lanka		
AcSN45	Ac-G22843Se	U	X	X	agrestis	acidulus	Senegal		100
AcSN46		U		X	agrestis	acidulus	Senegal		96
AcZA98	Ac-5384Zamb	U	X	X	agrestis	acidulus	Zambia		86
AcZW100	Ac-TGR1551Zimb	U	X	X	agrestis	acidulus	Zimbabwe		93
AcZW99	Ac-TGR1843Zimb	U	X	X	agrestis	acidulus	Zimbabwe		96
AgCM195	Ag-TayCam	C	X		agrestis	agrestis	Cameroom	tayer	
AgGH14	Ag-15591Gha	U	X	X	agrestis	agrestis	Ghana		98
AgIN128	Ag-CallInd	C	X	X	agrestis	agrestis	India	callosus	97
AgIN204	Ag-WChInd	C	X	X	agrestis	agrestis	India	wild chibbar	96
AgNG38	Ag-Co38Nig	C	X	X	agrestis	agrestis	Nigeria		91
AgSN133	Ag-FadSud	M	X	X	agrestis	agrestis	Sudan	fadasi	95
AgSN144	Ag-Hsd2446Sud	C	X		agrestis	agrestis	Sudan		
AgSN145	Ag-Hsd93Sud	C	X		agrestis	agrestis	Sudan		
AgSN146	Ag-HumSud	M	X	X	agrestis	agrestis	Sudan	humaid	91
AgSN147	Ag-Hum93Sud	C	X		agrestis	agrestis	Sudan		
AgSN197	Ag-TendSud	M	X	X	agrestis	agrestis	Sudan	tendelti	88
AmAF109		C		X	melo	ameri	Afganistan		98
AmAF2	Am-3584Afg	U	X	X	melo	ameri	Afganistan		98
AmDE166	Am-OpalGer	M	X	X	melo	ameri	Germany		95
AmEG113	Am-AnaDokEgy	C	X		melo	ameri	Egypt	ananas dokki	
AmEG9	Am-KafEgy	U	X	X	melo	ameri	Egypt	kafr hakim	100
AmES51	Am-LaVGSp	C	X		melo	ameri	Spain	verde gordo	
AmGE12	Am-NanaGeorg	C	X	X	melo	ameri	Georgia	nanari	100
AmGE13	Am-KolGeor	U	X	X	melo	ameri	Georgia	koljonitza	85
AmGE156	Am-NesviGeor	M	X	X	melo	ameri	Georgia	mucha nesvi	91
AmIL208	Am-YokIs	C	X		melo	ameri	Israel	yokneam	
AmIR149	Am-KhaIran	M	X	X	melo	ameri	Iran	Khatoni	74
AmIR183	Am-SarakIran	C	X		melo	ameri	Iran		
AmIR190	La-SousIran	M	X	X	melo	ameri	Iran	souski	98
AmIR26	Am-6053Iran	U	X	X	melo	ameri	Iran		99
AmITS10		L	X	X	melo	ameri	Italy	Villamar	100
AmKZ106		C		X	melo	ameri	Kazakhstan		92
AmKZ31	Am-MestKaz	C	X		melo	ameri	Kazakhstan	mestnaia	
AmMA189	Am-SouiMor	C	X		melo	ameri	Morocco	souilah	
AmMA37	Am-Afr1Mor	C	X	X	melo	ameri	Morocco		92
AmMN36	Am-ChandMon	C	X	X	melo	ameri	Mongolia		79
AmRU41	Am-KorcaRus	C	X	X	melo	ameri	Russia	korça	99
AmRU42	Am-ApelRus	C	X	X	melo	ameri	Russia	apelsinaja	92
AmRU43	Am-ChandAfg	C	X		melo	ameri	Afganistan	chandalak	
AmRU44	Am-KuvRus	U	X	X	melo	ameri	Russia	kuvinska	99
AmTJ83	Am-TokTaj	C	X	X	melo	ameri	Tajikistan	tokash	98
AmTN84	Am-BattiTun	C	X	X	melo	ameri	Tunisia	battikh	90
AmTR88	Am-AltimTur	U	X	X	melo	ameri	Turkey	al timbas	88
AmTR89	Am-HassanTur	U	X	X	melo	ameri	Turkey	hassanbey	97
AmTU137	Am-GalaTun	C	X	X	melo	ameri	Tunisia	galaoui	98
AmUA119	Am-BirUkr	M	X	X	melo	ameri	Ukraine	birjucekutskaja	99
AmUA90		U		X	melo	ameri	Ukraine		100
AmUZ167	Am-OuzUzb	C	X	X	melo	ameri	Uzbekistan		84
	nex C1 - Seed lot								139

AmUZ168	Am-OuzUzb2	C	X		melo	ameri	Uzbekistan		
AmUZ95	Am-KokUzb	C	X	X	melo	ameri	Uzbekistan	kokcha	98
AmUZ96		C		X	melo	ameri	Uzbekistan	kizil-uruk	81
CaFR121	Can-CAFran	C	X		melo	cantalupensis	France	cantalup d'Alger	
CaFR161	Can-NCFran	C	X	X	melo	cantalupensis	France	noir des carmes	98
CaFR172	Can-PGFran	C	X	X	melo	cantalupensis	France	petit gris de Rennes	100
CaFR179	Can-PresFran	C	X	X	melo	cantalupensis	France	prescott fond blanc	100
CaFR191	Can-SucrFran	C	X		melo	cantalupensis	France	sucrin de tours	
CaHU18		C		X	melo	cantalupensis	Hungary	ezüst ananasz	96
CaITS8		S		X	melo	cantalupensis	Italy	zeurrosu di Gesico	63
ChIT122	Chate-CarIta	C	X		melo	chate	Italy	carosello	
ChIT27	Chate-CarBIta	C	X	X	melo	chate	Italy	carosello barese	98
CnCH105	Con-GouChi	C	X	X	agrestis	chinensis	China	gogua	96
CnCH6	Con-Co6Chi	C	X	X	agrestis	chinensis	China		98
CnJP207	Con-YapuJa	C	X	X	agrestis	chinensis	Japan	yamato purinsu	96
CnKR173	Con-SCKo	C	X	X	agrestis	chinensis	Korea		95
CnKR32	Con-Pat81Ko	C	X	X	agrestis	chinensis	Korea		100
CnPL169	Con-PaulPol	M	X	X	agrestis	chinensis	Polonia	paul	100
CoCH117	Con-BaishChi	C	X		agrestis	conomon	China	baishami	
CoCH125	Con-Chi51Chi	C	X		agrestis	conomon	China		
CoCH154	Con-MielChi	M	X	X	agrestis	conomon	China	miel blanc	98
CoCH164	Con-OgonChi	C	X		agrestis	conomon	China	ogon	
CoCH206	Con-XiaoChi	C	X		agrestis	conomon	China	Xiaobai	
CoJP136		C		X	agrestis	conomon	Japan	freeman's cucumber	99
CoJP185	Con-ShiroJa	C	X	X	agrestis	conomon	Japan	shiro uri okayama	99
CoJP200	Con-MamJa	C	X		agrestis	conomon	Japan	Tokio mammuth	
CoPH138	Con-GapPhi	C	X		agrestis	conomon	Philippines	gapan	
CoPH182	Con-SanIlPhi	C	X		agrestis	conomon	Philippines	san Ildefonso	
CtIN22	Chi-VellInd	C	X	X	agrestis	chito	India	velleri	90
DuAF1		C		X	melo	dudaim	Afganistan		100
DuAF180	Dud-QPMAfg	C	X	X	melo	dudaim	Afganistan	qeen's pocket melon	97
DuGE296		C		X	melo	dudaim	Georgia		98
FxAF174	Flex-TarehAfg	C	X	X	melo	flexuosus	Afganistan		40
FxES82	Flex-AlficozSp	C	X	X	melo	flexuosus	Spain	alficoz	100
FxiN115	Flex-AryaInd	C	X	X	melo	flexuosus	India	arya	99
Fxin 20	Flex-Co20Ind	C	X	X	melo	flexuosus	India		96
FxIQ23	Flex-KhiIrak	C	X	X	melo	flexuosus	Irak	khiar taaruzy	98
FxIQ24	Flex-Co24Irak	C	X		melo	flexuosus	Irak		
FxITS9		S	X	X	melo	flexuosus	Italy	facussa	100
FxSA188	Flex-SnakeSA	C	X		melo	flexuosus	Saudi Arabia	snake melon	
FxSD186	Flex-SilkaSud	M	X	X	melo	flexuosus	Sudan	silka	100
FxTR15		C	X		melo	flexuosus	Turkey		
FxTR16		C		X	melo	flexuosus	Turkey		96
FxTR2		C			melo	flexuosus	Turkey		
FxTR21		C	X	X	melo	flexuosus	Turkey		95
FxTR4		C		X	melo	flexuosus	Turkey		96
FxTR54		C		X	melo	flexuosus	Turkey	adsiz	98
FxTR86	Flex-AcukTur	U	X	X	melo	flexuosus	Turkey	acuk	89
Fxtr9		C	X		melo	flexuosus	Turkey		
InCN142	In-HamiChi	C	X	X	melo	inodorus	China	hami	96
InES48	In-AmCañSp	C	X		melo	inodorus	Spain	caña dulce	
InES49	In-LaCocaSp	C	X		melo	inodorus	Spain	coca	
InES50	In-LaEscrSp	C	X		melo	inodorus	Spain	escrito oloroso	
InES52	In-BBescrSp	C	X		melo	inodorus	Spain	blanco escriturado	

InES53	In-TeNinvSp2	C	X	X	melo	inodorus	Spain	tendral negro de inv.	95
InES54	In-BTempSp	C	X	X	melo	inodorus	Spain	tempranillo	81
InES55	In-LaHCCSp	C	X	X	melo	inodorus	Spain	hilo carrete	95
InES56	In-BLisSp	C	X	X	melo	inodorus	Spain	blanco liso	81
InES58	La-MadASp	C	X		melo	inodorus	Spain	madura amarilla	
InES59	In-TeMollSp	C	X		melo	inodorus	Spain	mollerusa	
InES61	In-PsPiñSp	C	X	X	melo	inodorus	Spain	piel de sapo (piñonet)	97
InES62	In-BBlargSp	C	X		melo	inodorus	Spain	blanco	
InES63	In-TeNinvSp	C	X		melo	inodorus	Spain	negro de invierno	
InES64	In-PsPipaSp	C	X		melo	inodorus	Spain	pipa de oro	
InES66	In-PsPiñonSp	C	X		melo	inodorus	Spain	piñoncillo	
InES67	In-BBredSp	C	X		melo	inodorus	Spain	amarillo	
InES68	In-RoMoch1Sp	C	X		melo	inodorus	Spain	mochuelo	
InES69	In-TeLVillSp	C	X		melo	inodorus	Spain	largo de villaconejos	
InES70	In-LaMelAmaSp	C	X		melo	inodorus	Spain	amarilla	
InES71	In-LaCalSp	C	X		melo	inodorus	Spain	calamonte	
InES72	In-HCECSp	C	X		melo	inodorus	Spain	hilo Carrete	
InES73	In-PsVPintSp	C	X		melo	inodorus	Spain	verde pinto	
InES74	In-LaAmanSp	C	X		melo	inodorus	Spain	amarillo manchado	
InES75	La-ErizoSp	C	X	X	melo	inodorus	Spain	eriçó mallorquin	98
InES76	La-ComunSp	C	X		melo	inodorus	Spain	común	
InES77	In-TeNinvSp	C	X		melo	inodorus	Spain	de invierno	
InES78	In-LaBolasSp	C	X	X	melo	inodorus	Spain	bolas	85
InES79	In-AmAoroSp	C	X	X	melo	inodorus	Spain	amarillo oro	95
InES80	In-RoSp	C	X	X	melo	inodorus	Spain	rochet	99
InGR118	In-BaskGreece	M	X	X	melo	inodorus	Greece	baskavas	98
InHU17	In-MusHung	C	X	X	melo	inodorus	Hungary	cukordinnye	99
InIT28	In-Cucumita	C	X	X	melo	inodorus	Italy	cucummarazzo	99
InITS1		S		X	melo	inodorus	Italy	fattitu di Bosa	75
InITS2		S		X	melo	inodorus	Italy	di Orroli	98
InITS3		S		X	melo	inodorus	Italy	de jerru	68
InITS4		S		X	melo	inodorus	Italy	biancu	96
InITS5		S		X	melo	inodorus	Italy	di Villagrande	94
InITS6		S		X	melo	inodorus	Italy	bou di Gesico	100
InITS7		S		X	melo	inodorus	Italy	muscadeddu	99
InPT120		M		X	melo	inodorus	Portugal	branco de ribateja	69
InPT126	In-CraPor	M	X	X	melo	inodorus	Portugal	crabranco	82
InPT39	La-MelaoPor	C	X	X	melo	inodorus	Portugal		48
InPT40	La-CascaPor	C	X	X	melo	inodorus	Portugal	casca de carvalho	98
InTN65	In-AsliTun	C	X	X	melo	inodorus	Tunisia	aslí	98
InTN85	In-MaazTun	C	X	X	melo	inodorus	Tunisia	maazoun	98
InTR104		U		X	melo	inodorus	Turkey		98
InTR150	In-KirkTur	C	X		melo	inodorus	Turkey	kirkagac	
InTR209	In-YuTur	C	X		melo	inodorus	Turkey	yuva	
InTR91		C		X	melo	inodorus	Turkey		100
LaBG163	La-OgenBul	C	X		melo	indet.	Bulgaria	ogen	
LaBG177	La-BanBul	C	X	X	melo	indet.	Bulgaria	plovdider banane	99
LaDZ4	La-MalacAlg	C	X		melo	indet.	Algeria	malacara	
LaET11		C		X	melo	indet.	Etiopia	popone	111
LaFR151	La-KroFran	M	X	X	melo	indet.	France	Kroumir	96
LaGE192	La-SusaGeo	C	X		melo	indet.	Georgia	susakitri	
LaIR140	La-GorgIran	C	X		agrestis	indet.	Iran	gorgab	
LaIT00	Can-PopIta	C	X	X	melo	indet.	Italy	popone d'oro	98
LaIT210	La-ZatIta	C	X		melo	indet.	Italy	zatta	

LaMG202	La-VoaMad	M	X	X	agrestis	indet.	Madagascar	voatango	81
LaML35	La-KankMali	U	X	X	melo	indet.	Mali	kamkani	72
LaZA47	La-TransSAfr	U	X	X	agrestis	indet.	South Africa		99
MkCH158	Con-NanChi	M	X	X	agrestis	makuwa	China	nanbukin	96
MkCH7	Con-LongtChi	U	X	X	agrestis	makuwa	China	longtian	96
MkJP188		C		X	agrestis	makuwa	Japan	Omaru Gin makuwa	100
MkJP30	Con-GMJa	U	X	X	agrestis	makuwa	Japan	ginsen makuwa	96
MoIN135	Mom-FPInd	M	X	X	agrestis	momordica	India	faizabadi phoont	95
MoIN176	Mom-MR1Ind	C	X		agrestis	momordica	India		
MoIN19	Mom-KhaInd	C	X	X	agrestis	momordica	India	kharbuja	99
MoIN21	Mom-PI124Ind	U	X	X	agrestis	momordica	India		93
TiSN198	Tibish-DSud	M	X	X	agrestis	tibish	Sudan		98
TiSN199	Tibish-KSud	M	X	X	agrestis	tibish	Sudan	tibish khurtagat	58
$\mathrm{U}=\mathrm{NPGS}$ (USDA)		C = COMAV Germoplasm Bank							
$\mathrm{M}=$ MELRIP project		$\mathrm{Y}=$ Germoplasm Bank of Cyprus							

L09dNSdi

 ตوansan
 orsansan s/てaNdo

 szIansan'

 rosdnsan

 s601dNAdNO

L09dNSdW3

 OtSaNSaNO O

 rбаNSano

 ォoordanの

 9の小నana

 тขтаNan

 ıronNSan

利NANO

 szansan＇ sદLaNsaw

 و rLaNsav

 ster－1sos

 Lوansano

 มाてaNsan
 sLLANSav

 sเદา-1รง

 LL9dN

Diego Sabato PhD thesis: Section 2 - Common Annexes Chapter 4 and Chapter 5

 ${ }_{6}^{6 L S d N}$

t0: -88-

L6dNSavo	
slansavo	
99Lasamo	
ZIdNSdWO	
sidnsano	-
s9rdisario	
osansano 5	
L8ZdNSdWD	U
600 T SSATO	
6LSANSANO	¢
z9zdNSdWD	-
¢tansano	E
$\mathrm{HH}^{-} \mathrm{s}_{0}^{-} \mathrm{IV}$	
8LEdNSdWO	
zosticios	¢
$\text { rois }-8 \mathrm{E}=\mathrm{Y}$	O§
880IdNSano U	
	U
stzansanoo	
z6ansanos	
EdNSano	
	-
	¢̧
	Eర゙EEEE UEEEE
	S
	5
	E
	5
	¢
	E
	O
	F
	8
	O

Acknowledgements - Ringraziamenti

Vorrei ringraziare in primo luogo tutti i miei tutor: Leonor Peña-Chocarro, Gianluigi Bacchetta, Laura Sadori e Gianfranco Venora. In particolare Leonor Peña-Chocarro e Laura Sadori per avermi sostenuto in questi anni, sia da un punto di vista professionale sia umano, e aver contribuito in maniera sostanziale a questo lavoro, cosciente del fatto che senza di loro tutto questo non sarebbe stato possibile. Ringrazio in oltre Gianluigi Bacchetta per la sua grande disponibilità ed il tempo dedicato al miglioramento di questo lavoro.

Un ringraziamento speciale va a Belén Picó, Cristina Esteras e Oscar Grillo, che hanno contribuito in maniera sostanziale a questo studio anche non figurando come tutor ufficiali.

Un caloroso "Grazie" a tutte quelle persone che hanno contribuito allo sviluppo di questa ricerca: per il reperimento dei materiali: Maria José Diez, Giovanna Attene, Limbo Baghino, Giammario Mallica, Maurizo Mulas, Valeria Tomaselli, Rino Bisignano, Francisco Bruno Navarro Reyes, Francesco Mascia; per l'identificazione dei reperti: Guillem Pérez-Jordá, Yolanda Carrión Marco, Ernestina Badal, Jacob Morales; per l'aiuto tecnico: Eva Martínez, Gorka Perpiñá, Lorenzo Angioni; statistico: Rosa Peiró, Luca Frigau; e per i loro preziosi contributi e consigli: Mariano Ucchesu, Alessia Masi, Caterina Pepe, Annamaria Mercuri, Giovanna Bosi, Valerio Lazzari, Martino Orrù, Angela Dettori, Hugo Oliveira.

I would like to express my gratitude to the external reviewers, Jaromir Benes and Dorian Fuller, for their precious opinions on this work.

Un agradecimiento especial a mis amigos, algunos de toda la vida y otros conocidos en los últimos años, que no han contribuito a este trabajo en sí mismos, pero sin embargo fueron fundamentales para mi bienestar mental y en el darme la fuerza para llegar al final de este camino: Alejandro Alain García Martínez, Alonso Verdoy Gómez, Valeria Cataldo, Monica Albini, Cecilia Cacchione, Giovanna Marrese, Sergio Sulmona Marinella Principina, Sara Mariana Guijarro, Senen Bañez Rdríguez, Monterrat Lopera Trujillo, Laura Padernia Molina, Javier García Clemente, Arantxa Gil Vezquez, Giulia Bruno, Melania Di Napoli, Angela Rondinelli, Sidney Goïame, Angelo Lombardi, Simone Lupo Bagnacani, Carlo Leone, Giorgio Celenza, Vincenzo Sforza, Ana Peiró Pastor, Jose Vicente Blazquez Sanmartin, Borja Peiró, Alberto Valera Tudela, Dario Manco, Valerio Cosentino, Andrea Ceglia, Salvatore Pappalardo, Chiara Ruggeri, Claudia Manni... espero no olvidar a nadie/spero non dimenticare nessuno.

Nessun ringraziamento sarà mai sufficiente per esprimere la mia gratitudine verso i miei genitori, Gianna Trono e Michele Sabato, per il loro sostegno e la loro preziosa guida.

[^0]: Molecular and morphological characterization of the oldest melon seeds found in Wester Mediterranean 89

