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To my son 
 

My child, when in a few years you will find this text in 
the home library, you will read about biodiversity, the 
need to preserve it and a method, the Image Analysis, 

as a tool for the correct classification of different seeds. 
 

But, mind you, do not believe you can use the same 
tool, the image, to discriminate among men; do not 

stop the appearance but look inside, look at their soul.  
 

With love 
Mom 
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Summary 

 
 

Biodiversity concepts 

The variety of life on Earth, its biological diversity and the natural 

patterns it forms, is commonly referred to biodiversity. The number of 

species of plants, animals, and microorganisms, the enormous diversity of 

genes in these species, the different ecosystems on the planet, such as deserts, 

rainforests and coral reefs are all part of a biologically diverse Earth.  

The biodiversity we see today is the fruit of billions of years of evolution and 

natural selection, shaped by natural processes and, increasingly, by the 

influence of humans. It assures the ecosystems aptitude to adapt to 

environmental changes, guaranteeing ecological balance and future life. It 

forms the web of life of which we are an integral part and upon which we so 

fully depend.  

In recent years, biotic and abiotic factors have put into serious 

difficulties this natural aptitude of macro and micro-ecosystems, undermining 

the ecological balance throughout the world. As a result, the loss of 

biological diversity is constantly increasing and the extinction of threated 

species is the gravest aspect of this crisis. Particular species can have strong 

effects on ecosystem processes by directly mediating energy and material 

fluxes or by altering abiotic conditions that regulate the rates of these 

processes (Fig. 1). So, the alteration of the species, together with the 

disturbance regime, and the climate can sensibly affect the ecosystem 

processes (Chapin et al., 2000). 
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Almost all cultures have in some way or form recognized the 

importance that nature and its biological diversity has had upon them and the 

need to maintain it; therefore, appropriate conservation and sustainable 

development strategies attempt to preserve the declining biodiversity. 

Biodiversity boosts ecosystem productivity where each species, no matter 

Figure 1.  Mechanisms by which species traits affect ecosystem processes. 
Changes in biodiversity alter the functional traits of species in an ecosystem in ways that directly 
influence ecosystem goods and services (1) either positively (for example, increased agricultural or 
forestry production) or negatively (for example, loss of harvestable species or species with strong 
aesthetic/cultural value). Changes in species traits affect ecosystem processes directly through 
changes in biotic controls (2) and indirectly through changes in abiotic controls, such as 
availability of limiting resources (3a), disturbance regime (3b), or micro- or macroclimate 
variables (3c). Illustrations of these effects include: reduction in river flow due to invasion of deep-
rooted desert trees (3a); increased fire frequency resulting from grass invasion that destroys native 
trees and shrubs in Hawaii (3b); and insulation of soils by mosses in arctic tundra, contributing to 
conditions that allow for permafrost (3c). Altered processes can then influence the availability of 
ecosystem goods and services directly (4) or indirectly by further altering biodiversity (5), resulting 
in loss of useful species or increases in noxious species.  
http://www.nature.com/nature/journal/v405/n6783/fig_tab/405234a0_F4.html 
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how small, all have an important role to play. For example, a larger number 

of plant species means a greater variety of crops, greater species diversity 

ensures natural sustainability for all life forms and healthy ecosystems can 

better withstand and recover from a variety of disasters.  

A healthy biodiversity provides a number of natural services for everyone:  

� Ecosystem services, such as  

• Protection of water resources 

• Soils formation and protection 

• Nutrient storage and recycling 

• Pollution breakdown and absorption 

• Contribution to climate stability 

• Maintenance of ecosystems 

• Recovery from unpredictable events 

� Biological resources, such as  

• Food 

• Medicinal resources and pharmaceutical drugs 

• Breeding stocks, population reservoirs 

• Future resources 

• Diversity in genes, species and ecosystems 

� Social benefits, such as  

• Research, education and monitoring 

• Recreation and tourism 

• Cultural values 

 

The cost of replacing these (if possible) would be extremely expensive. It 

therefore makes economic and development sense to move towards 

sustainability. A report from Nature magazine also explains that genetic 

diversity helps to prevent the chances of extinction in the wild (Chapin et al., 

2000; Tilman, 2000). 



14 

 

To avoid the well known and well documented problems of genetic 

defects caused by in-breeding, species need a variety of genes to ensure 

successful survival. Without this, the chances of extinction increases. And as 

we start destroying, reducing and isolating habitats, the chances for 

interaction from species with a large gene pool decreases. 

While there might be “survival of the fittest” within a given species, each 

species depends on the services provided by other species to ensure survival. 

It is a type of cooperation based on mutual survival and is often what a 

“balanced ecosystem” refers to. 

 

Despite knowing about biodiversity’s importance for a long time, 

human activity has been causing massive extinctions, and the consequence is 

a loss of both α diversity (number of species coexisting within a uniform 

habitat) and β diversity (species turnover rate in function of changing 

habitats) (Cody, 1986). As the Environment New Service, reported back in 

August 1999: “The current extinction rate is now approaching 1,000 times 

the background rate and may climb to 10,000 times the background rate 

during the next century, if present trends continue resulting in a loss that 

would easily equal those of past extinctions”. 

In different parts of the world, species face different levels and types 

of threats. But overall patterns show a downward trend in most cases. As 

explained in the United Nations’ 3rd Global Biodiversity Outlook, the rate of 

biodiversity loss has not been reduced because the 5 principle pressures on 

biodiversity are persistent, even intensifying: 

I. Habitat loss and degradation 

II. Climate change 

III.  Excessive nutrient load and other forms of pollution 

IV.  Over-exploitation and unsustainable use 

V. Invasive alien species 
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Most governments report to the UN Convention on Biological Diversity that 

these pressures are affecting biodiversity in their country. The International 

Union for the Conservation of Nature (IUCN) maintains the Red List to 

assess the conservation status of species, subspecies, varieties, and even 

selected subpopulations on a global scale (Fig. 2).  

 

 

 

 

 

 

 

 

 

 
 
Figure 2. Geographical distribution of the 15,600 species (about 7,270 animal species and 8,330 
plant and lichen species) considered at risk of extinction according to the IUCN Red List 
compilation. 

 

 

A growing attention is given to the conservation of plant biodiversity 

in outside of the natural environment, both for the species of agronomic 

interest, and spontaneous flora, in compliance with the obligations under the 

Convention on Biological Diversity (CBD) (Rio de Janeiro, 1992). This was 

the first global agreement for the conservation and sustainable use of 

biodiversity on a global level, signed by 192 countries including Italy and the 

European Union, representing a milestone in international law. For the first 

time the conservation of biological diversity was recognized as “common 

need of mankind” and an integral part of development. 

The Convention has established three main goals: the conservation of 

biological diversity, the sustainable use of its components, and the fair and 
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equitable sharing of the benefits from the use of genetic resources. Moreover 

the article 9 of CBD, “Conservation ex situ”, has introduced the in situ and ex 

situ conservation concepts, defining the principles to plan strategies and to 

guarantee the conservation. It indicates a series of measures to be taken to the 

recovery, restoration and reintroduction of the endangered species, by means 

of ex situ conservation, in addition to the conservation strategies in situ.  

Besides to preserve existing genetic resources, the conservation allows the 

study and the development of new cultivars during genetic improvement 

processes, it provides the populations for reintroduction and repopulation 

programs of degraded habitats, and then it permits industry, agriculture and 

scientific research to use essential for progress. Finally, the ex situ 

conservation allows to study the best strategies to apply at the in situ 

conservation of threatened species (Bacchetta, 2011a).  

The conservation in situ (areas of origin) and the on farm (in the areas 

of cultivation) are, obviously, a priority, but the ex situ management is 

essential in those cases, and there are many, in which the first two, for 

different reasons, are difficult to achieve. Currently, in fact, the multiple 

pressures that act on habitat may in some cases threaten the survival of one or 

more species or the integrity and function of entire ecosystems, making 

difficult the implementation of the in situ conservation strategies. In these 

cases, only the techniques ex situ can guarantee the preservation of genetic 

variability of germplasm (seeds, pollen, plant parts, spores, etc.) and then the 

regeneration, reproduction and/or multiplication of the species to be 

preserved. The conservation ex situ also plays an indispensable role in the 

research and genetic improvement because it promotes the sustainable use of 

germplasm available.  

 

After the CBD of 1992, several government organizations deal with 

biodiversity conservation issues. The Fourth Assessment Report (AR4) of the 
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United Nations Intergovernmental Panel on Climate Change (IPCC) (2007) 

indicated the conservation ex situ as one of the main measures of the 

ecosystems to adapt to climate change in course.  

Furthermore, in 2006, 11 Centres of the Consultative Group on 

International Agricultural Research (CGIAR) and other international 

collections place their ex situ genebank collections under the International 

Treaty on Plant Genetic Resources for Food and Agriculture of the FAO 

Constitution. Different conventions or agreements were approved; among 

these, the International Treaty provides in its “Article 15” that the 

Contracting Parties:  

(i) recognize the importance of the ex situ collections of plant genetic 

resources for food and agriculture;  

 (ii) call upon the International Agricultural Research Centres to sign 

agreements with the Governing Body of the Treaty with regard to ex situ 

collections.  

In 2013, the Commission endorses the updated Genebank Standards for 

Plant Genetic Resources for Food and Agriculture, which provide an 

overview of the current state of ex situ conservation practices, including field 

genebank management procedures, cryopreservation of germplasm and in 

vitro practices, as well as the conservation of orthodox seeds. 

 

Finally, the ex situ conservation, as an unavoidable system to preserve 

biodiversity is possible thanks to the activities of structures more and more 

widespread such as the germplasm banks, gene bank collections, botanical 

gardens, etc., whose function is not only to preserve threatened species, but 

also to store, by long-term techniques, seeds, spore, woods, tissues and any 

other structures that make up the genetic biodiversity of the planet. 
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The Mediterranean: a biodiversity hotspot under threat  

The Conservation International (CI) organization, adopting the Myers’ 

hotspots concept (Myers et al., 2000) as its central strategy, reassessed it 

introducing quantitative thresholds for the designation of biodiversity 

hotspots. So, to be qualified as a hotspot, a region must meet two strict 

criteria: it must contain at least 1500 species of vascular plants (>0.5 percent 

of the world’s total) as endemics, and it has to have lost at least 70% of its 

original habitat. 

The Mediterranean Basin is one of the world’s richest places in terms 

of plant diversity – about 25,000 species are native to the region, and more 

than half of these are endemic – in other words, they are found nowhere else 

on earth. This has led to the Mediterranean being recognized as one of the 

first 34 Global Biodiversity Hotspots (Fig. 3). 

 

 

 

 

 

 

 

Figure 3. Global biodiversity hotspots map. 
 

 

The Mediterranean Basin, with its lofty mountains, ancient rivers, 

deserts, forests, is a mosaic of natural and cultural landscapes, where human 

civilization and wild nature have coexisted for centuries. The unique 

conjunction of geography, history, and climate has led to a remarkable 
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evolutionary radiation that continues to the present day, as animals and plants 

have adapted to the myriad opportunities for life that the region presents.  

The location of basin at the intersection of two major landmasses, 

Eurasia and Africa, has contributed to its high diversity and spectacular 

scenery. In particular, in the western basin, plant endemism is very high, due 

mainly to the age of the geological platform. The northern and southern 

coasts of Mediterranean basin, present two different situations because of the 

different human influence (Barbero et al., 1990). In the northern part, the 

collapse of the agro-sylvo-pastoral system of the past centuries has led to 

major changes in plant community structure and the extension of woodlands 

dominated by competitive species. On the other hand, the southern part of the 

Mediterranean basin (in particular North Africa) has been subjected to the 

severe effects of constant increases in population and livestock, which have 

completely destroyed the soils and caused severe erosion and poor 

regeneration (Médail & Quézel, 1999). 

Furthermore, with almost 5,000 islands and islets, the Mediterranean 

comprises one of the largest groups of islands in the world. Mediterranean 

islands display extraordinary features, with high rates of endemism, and act 

as a natural laboratory for evolutionary studies. Their particularities give rise 

to specific conservation challenges. Thus many of the endemic island plant 

species are confined to single small locations, they are extremely vulnerable 

to habitat destruction, overgrazing, and urban expansion (Fig. 4). 

The Top 50 Mediterranean Island Plants highlights some of the most 

threatened plant species of the Mediterranean islands, stressing particular 

situations and conservation needs (Montmollin and Strahm, 2005). 
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Figure 4. Mediterranean basin hotspots. 1: Canaries and Madeiran archipelagos; 2: High 

and Middle Atlas Mountains; 3: Baetic-Rifan complex; 4: Maritime and Ligurian Alps; 5: Tyrrhenian 
islands; 6: Southern and Central Greece; 7: Crete. 8: Anatolia and Cyprus; 9: Syria-Lebanon-Israel; 
10: Mediterranean Cyrenaic. 

 

 

Sardinia (Fig. 5) for its orographic condition, geographical location, 

special chorologic and ecological features, as well as for its low population 

compared to the extension of the territory, guarded favorable areal to the 

development and maintenance of a large number of endemic species, which 

appear to be over 10% of the population floristic island.  

The endemic species can be grouped in entities related to:  

- endemic Sardinian, if it concerns the only Sardinia or restricted area 

included in it; 

- Sardinian-Corsican, extended to Corsica;  

- sometimes Sardinia-Corsica-Balearic, also including the Balearic 

Islands;  

- endemism is often extended to the Tuscan Archipelago, Tyrrhenian to 

the Region or other limited range 
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Figure 5. Topographic map of Sardinia. 
 

 

 

So, Sardinia presents a considerable amount of endemic taxonomic 

units (Table 1), specially in its mountain massifs, mostly tied to carbonatic 

substrata, establishing the conditions of ecologic isolation that cause the hot 

spot effect (Médal & Quézel, 1997; Bacchetta et al., 2005). 

 

 

Table 1. Vital signs of Sardinia. 
 Vascular flora Endemic flora 
Families 135 52 
Genera  695 158 
Taxa 2 054 347 
   
Endemics as a percentage of total Sardinian vascular flora  16.89 
Endemics as a percentage of world total 0.12 
Region extent (km²) 24 090 
Human population density (people/ km²) 69 
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Furthermore, in Sardinia region, as well as in the whole 

Mediterranean basin, several of endemic species have a narrow distribution 

as Anchusa capellii Moris, A. formosa Selvi, Bigazzi et Bacch., A. littorea 

Moris, Aquilegia barbaricina Arrigoni et Nardi, A. nuragica Arrigoni et 

Nardi, Astragalus maritimus Moris, A. verrucosus Moris, Borago morisiana 

Bigazzi et Ricceri, Centranthus amazonum Fridlender et A. Raynal, Dianthus 

morisianus Vals., Euphrasia genargentea (Feoli) Diana, Lamyropsis 

microcephala (Moris) Dittrich et Greuter, Limonium merxmuelleri Erben, 

Linum muelleri Moris, Nepeta foliosa Moris, Polygala sinisica Arrigoni, 

Ribes sardoum Martelli. 

 

The ex situ conservation as biodiversity preservation strategy 

Today, the impact of both direct and indirect human activities, such as 

urbanization, tourism, fires, changes in agricultural practices, introduction of 

alien and invasive species, and harvesting, as the important and continuing 

climate and environmental changes, make explicit the need for interventions 

aimed at the preservation and protection of biological resources now at risk 

(Montomollin & Strahm, 2005). 

As mentioned above, the ex situ conservation has demonstrated to be 

essential in order to ensure biodiversity preservation and, to allow the right 

practices for collecting and storing seeds, in the last decade, there has been a 

significant increase in the establishment of centers for the conservation and 

germplasm banks, with the aim of studying not only the best storage 

conditions, but even phenology, and ecophysiology of seeds (viability, 

dormancy, germination range, optimal germination conditions and cardinal 

temperatures, longevity and soil seed bank), of the stored samples. 

Furthermore, to characterize the threatened species, it is essential to know 

their morphology (weight and morphometric traits of seeds) in order to 

compare these features with the common values. 
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The germplasm characterization can be carried out through the 

evaluation of qualitative parameters, related to the shape, size and colour of 

seeds. The evaluation of seed morphology and the colour definition, in a 

quantitative way, are complex and not always possible above all because the 

germplasm of the spontaneous species is characterized by high intraspecific 

variability (Granitto et al., 2003; Harper et al., 1970). So, these 

characteristics are difficult to measure and often it is possible only a 

subjective estimation.  

 

Until a few years ago, sizes are manually measured and colour is 

roughly determined by comparison with standard colours of specific graphic 

tables from which it is possible to obtain approximate values of RGB (Red, 

Green, Blue) and HLS (Hue, Lightness, Saturation) (Fagundez & Izco, 2003). 

This method is clearly very subjective and not repeatable.  

As demonstrated by recent scientific publications, electronics and computer 

science has provided technologic solutions so that all these limits can be 

overcome by using image analysis systems able to obtain accurate and 

precise measurements. Artificial vision is considered a subfield of 

engineering that is related to informatics, optics, mechanical engineering and 

industrial automation. Although one of the most common applications of 

machine vision is the inspection of manufactured goods, more times, this 

innovative technology proved to be a great help also in biological fields, and 

in particular it proved to be able to take precise and accurate measures about 

seeds shape, size and colour (Venora et al., 2007; 2009a; Bacchetta et al., 

2008; Mattana et al., 2008; Grillo et al., 2010; Bacchetta et al., 2011; Pinna 

et al., 2014). 

As human inspectors working on visual inspection to judge the quality 

and the quantity of germplasm features, so machine vision systems use digital 
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cameras and/or scanners, and image processing software to perform similar 

inspections. 

Even if humans may display finer perception over the short period 

and greater flexibility in classification and adaptation to new defects and 

quality assurance policies, many times machine vision systems appear more 

adequate that human inspectors, specially for visual inspections that require 

high-speed, high-magnification and/or repeatability of measurements. 

Frequently these tasks extend roles traditionally occupied by human beings 

whose degree of failure is classically high through distraction, illness and 

circumstance. However, computers do not “see” in the same way that human 

beings are able to. Cameras are not equivalent to human optics and while 

people can rely on inferences and assumptions, computing devices must 

“see” by examining individual pixels of images, processing them and 

attempting to develop conclusions with the assistance of knowledge bases 

and features such as pattern recognition engines.  

Artificial vision concerns to the fundamental part of instrumental 

acquisition of images; while image analysis, regards their processing and the 

numerical control, representing so the way to objectify and parameterize 

measures and evaluations (Symons et al., 2003; Venora et al., 2009b; Grillo, 

2009). 

 Today, the artificial vision has an essential role in the study of 

vegetal biology, allowing an interaction between knowledges pertaining to 

disciplines of high technologic and innovative capability, such as electronics 

and computer science, with competences relating to biological area, in order 

to bring out multidisciplinary connections between studies and researches 

many times outwardly very different. 
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State of the art and innovative aspect of the project 

Driven by the excellent results obtained in previous works about the 

characterization and identification of seeds of cultivated species using the 

image analysis techniques (Granitto et al., 2003; Shahin & Symons, 2003; 

Kilic et al., 2007; Venora et al., 2007, 2009a; 2009b), some years ago, within 

the scientific collaboration between the Centre for Conservation of 

Biodiversity (CCB) of the Department of Botany, University of Cagliari and 

the Stazione Sperimentale di Granicoltura per la Sicilia, a work of 

germplasm morpho-colorimetric characterization and statistical identification 

of the most representative families of Mediterranean vascular flora was 

developed. A database of 33 morpho-colorimetric features (Table 2) of 

autochthonous germplasm in entry into the Germplasm Bank of Sardinia 

(BG-SAR) was built and statistical classifiers able to discriminate seeds 

belonging to different genera and species, were realized, as described in 

Grillo PhD dissertation (2009).  

Such classifiers, based on the Linear Discriminant Analysis (LDA), 

showed high ability of correct identification and, then, they have been 

implemented for ten of the most representative families of the Mediterranean 

vascular flora (Grillo et al., 2010).  

Currently, this method is fully accepted, utilized in plant taxonomy 

studies and contributes to the correct conservation of species in germplasm 

banks, particularly in the identification of diasporas of wild plant species 

(Bacchetta et al., 2011b; Grillo et al., 2011, 2013; Pinna et al., 2014; Santo et 

al., 2015). 
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Table 2. Thirty-three selected features for seed measurements. 
Feature Description 

Mean R Mean of red channel pixel value, express in grey levels. 

StdD R Standard deviation of red channel pixel value, express in grey levels. 

Mean G Mean of green channel pixel value, express in grey levels. 

StdD G Standard deviation of green channel pixel value, express in grey levels. 

Mean B Mean of blue channel pixel value, express in grey levels. 

StdD B Standard deviation of blue channel pixel value, express in grey levels. 

Mean H Mean of hue channel pixel value, express in grey levels. 

StdD H Standard deviation of hue channel pixel value, express in grey levels. 

Mean L Mean of lightness channel pixel value, express in grey levels. 

StdD L Standard deviation of lightness channel pixel value, express in grey levels. 

Mean S Mean of saturation channel pixel value, express in grey levels. 

StdD S Standard deviation of saturation channel pixel value, express in grey levels. 

Mean D Mean of density pixel value, express in grey levels. 

StdD D Standard deviation of density pixel value, express in grey levels. 

Skew Measure of asymmetry of the density values distribution. 

Kurtosis Measure of concentration or dispersion of the density values. 

Energy Measure of force of the increase in intensity. 

Entropy Measure of force of the dispersion, as chaos of density levels. 

Sum D Sum of density pixel value, express in grey levels. 

Sum SQR D Sum of squares of density pixel value, express in grey levels. 

Area Area of the seed projection, express in mm2.  

Feret min Minimum diameter of the seed projection, express in mm. 

Feret max Maximum diameter of the seed projection, express in mm. 

Feret ratio Ratio of minimum to maximum diameters. 

Perimeter Perimeter of the seed projection, express in mm. 

Convex perimeter Perimeter of the seed projection, excluding concave zones.  

Crofton’s perimeter Perimeter of the seed projection, according to the Crofton’s formula. 

Perimeter ratio Ratio of convex to Crofton’s perimeters. 

F Circle Shape factor = (4*π*Area)/(Perimeter)2. 

D Circle Value of the diameter of the equal area circle. 

Ellipse A max Major axis of the ellipse with same area. 

Ellipse A min Minor axis of the ellipse with same area. 

Roundness factor Roundness factor  = (4*Area)/[π*(Feret Max)2] 



27 

 

Image measurements 

Image analysis attempts to find the descriptive parameters, usually 

numeric, that briefly represent the information of importance in the image, 

producing numeric output suitable for statistical analysis or graphical 

representations. Usually, measurements that can be performed on features in 

images can be grouped into three classes: size, shape and colour, or more in 

general, densitometric measurements.  

 

The main basic measures of feature size in digital images are the area, 

the perimeter and the diameters. For a pixel-based representation, the Area 

(A) simply is the number of pixels within the feature, purely determined by 

counting. Higher is the resolution of the image and more precise and accurate 

are the measurements. Of course, it must be remembered that the size of a 

feature in a two-dimensional image may be related to the size of the 

corresponding object in three-dimensional space, because commonly the 

binary images in which the features are measured, are merely projections, or 

shadows of the objects (Grillo, 2009).  

The Perimeter (P) of a seed, as well as of any other feature, could be 

well defined simply by counting the pixels composing the boundary around 

the seed. Consequently, also in this case, knowing the pixel resolution of the 

image it is possible to estimate the perimeter length simply by counting of 

boundary pixels. Even if this pixel counting might be considered a very 

simple operation, a lot of mathematical calculation and their setting are 

involved to establish what to measure within the image, such as the Convex 

perimeter and the Crofton’s perimeter. As showed in Fig. 6, the Convex 

perimeter (Pconv) is referred to the perimeter of an object in which all the 

convexities were filled, and it is measured at the same way in which the net 



28 

 

perimeter is gauged. This parameter is very useful when structures 

morphologically heterogeneous must be evaluated. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Net (in green) and Convex perimeter (in red) in 

Medicago polymorpha legum. 
 

The Crofton’s perimeter (PCrof), or Crofton’ formula (Crofton, 1869) 

allows an approach more mathematical to evaluate the length of the boundary 

around the seed. It is a classic result of integral geometry relating the length 

of a curve to the expected number of times a random line intersects it 

(Santalo, 1953). So, for this study, the ratio between the convex and 

Crofton’s perimeters, was considered too. 

The Calliper dimensions, or more commonly Feret’s diameters, 

represent another measurement of object size. They were used to evaluate 

length and width of a seed or of other globose objects, but not to measure 

length and width of a fibre, because it might be twisted. Moreover, it was 
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possible to calculate the minimum and the maximum diameters, by counting 

of axis pixels. 

 

Shape measurements are dimensionless quantities, independent of 

their size, and commonly used in image analysis, that numerically describe 

the shape of an object. For example, the ratio between length and width, or 

more precisely between the minimum diameters and the maximum 

orthogonal to it, gives the aspect ratio. The Shape factor is a value very 

commonly used to describe the symmetry of an object; it is a function of the 

perimeter P and the area A, and it is reported as a normalized value. In this 

case, a factor equal to one represents the perfect circle. 

The Roundness factor is a parameter less used then the previous. It 

describes the circularity of an object and it is normalized too; this factor is a 

function of the maximum diameter Dmax and the area A. The Feret ratio (Fr) 

is a function of the two diameters Dmin and Dmax (Grillo, 2009).  

Table 3 shows some examples of values that this three factors can 

give, relates to four different shapes. 

 

 

 

 

 

 

 

 

Table 3. Numerical differences between some shape measurements. 
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Project aim and objectives 

An adequate definition of the seed morpho-colorimetric parameters, 

represents an important diagnostic factor in the plant taxonomy studies and 

consequently may be of great help for the improvement of the management 

and the effective ex situ conservation in the germplasm banks (Grillo, 2009). 

 

The discriminant ability of a classification system depends not only 

on the intra-specific representativeness of taxa analyzed, but also, on the 

quality and quantity of the parameters measured and used to discriminate 

between groups of belonging. For this reason, it is supposable that an 

increase in parameters evaluated for each seed, it will be useful to improve 

the performance of the classifier. 

From the recent literature, it appears that the study of surface texture 

of an object (Fig. 7), whatever its nature, seems to be of great importance for 

the characterization of the same (Diamond et al., 2004; Gerger & Smolle, 

2004; Nanni et al., 2010). There are many texture indicators (Fig. 8), based 

on Haralick’s parameters, able to assess quantitatively how the colour tones 

may vary within an object by defining, in a particularly detailed way, colour, 

density and the different chromatic variations. Few results are reported in the 

literature about this kind of studies on seeds, and so, it might be interesting 

and original, to including texture parameters (about 20) in the classification 

system already developed. 
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Figure 8. Graphical representation of 
inspected pixels on textural description. 

 

Figure 7. Significant variations in texture on flowers surface of Malva accessions. 
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Also the study of seeds morphology could be improved including new 

parameters describing the shape: these parameters are the “Elliptic Fourier 

Descriptors” hereafter EFDs (Iwata et al., 2002, 2004; Kawabata et al., 2009; 

Yoshioka et al., 2004, Orrù et al., 2013). Based on the profile of a seed 

projection on the two-dimensional plane, it is possible to generate codes 

descriptive of the shape. These codes, known as “chain codes”, allow 

describing, in detail, the outline of a shape and, for comparison with the 

ellipses geometrically perfect, the Fourier descriptors are obtained.  

 

 

 

 

 

 

 

 

 

Then, 78 additional parameters that can be included as common 

morphological variables in the statistical classification system. 

 

As a consequence, for each seed can be measured and recognized: 

• 33 descriptors of morpho-colourimetric features, already commonly 

used in the taxonomy studies with image analysis tools; 

• 20 textural parameters, Haralick’s descriptors;  

• 78 EFDs.  

Figure 9. Images of corollas from Lisianthus cultivars with four typical corollas shapes. 
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Therefore, an overall of about 130 traits, that constitutes a very huge amount 

of seed traits, never previously achieved, can be determined. 

The improvement of this system, which has already proved to be 

highly effective in taxa identification, will be particularly useful for the 

management of common activities of germplasm banks, in particular for the 

determination of unknown specie seeds or in confirmation of doubt 

classifications, for the analysis of soil seed banks, for ecological or 

archaeobotanical studies, and at infrageneric level, for the determination and 

revision of critical, or currently under review, taxonomic groups.   

 

Then, the objectives of the research project conducted during the PhD 

program were: 

1. to develop a specific Macro introducing Haralick’s parameters and 

EFDs for a more detailed texture and shape characterization of wild 

seeds; 

2. to identify, measure and evaluate, through image analysis, morpho-

colourimetric characters of some of the most representative species of 

the Mediterranean vascular flora stored in the Sardinian Germplasm 

Bank (BG-SAR); 

3. to implement statistical classifiers, in order to recognize and 

discriminate seeds belonging to different families, genera and species. 

A database, constantly in evolution, should be at the bottom of 

classifiers, and so it should be necessary to provide for such updating, 

during the standard management of the germplasm in the seed banks; 

4. to improve the ex situ conservation of the targeted species and the 

germplasm banks management trough this innovative classification 

system. 
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Part I 

The image analysis technique and statistical treatment of data 

 

 

Morphometry is the science of measuring of quantitative parameters 

of object morphology, while the colorimetry is the science used to quantify 

and describe physically the human colour perception. Morpho-colorimetric 

evaluations are commonly employed as a tool to assess shape, size and colour 

of objects, in order to relate these physical characters with quality aspects. 

Compared to conventional measurements, computer-aided morpho-

colorimetry is exponentially faster, more accurate, precise and efficient, 

providing a significantly broader spectrum of measurements of 

morphological and colorimetric features and, at the same time, replacing 

subjective estimations with objective quantifications. The first part of this 

dissertation introduces the fundamentals of image analysis, starting with the 

essentials of computer vision, the elaboration and processing techniques 

usually applied to digital images and to achieve binary images used as masks 

to measure the objects of interest (Chapter 1). Chapter 2 deals with the new 

shape and texture features of seeds producing by Elliptic Fourier Descriptors 

(EFDs) and Haralick’s parameters introduced in the image analysis system to 

improve the germplasm characterization. Chapter 3 gives a detailed 

argumentation concerning the materials and the methods used in this work, 

dealing about the selected and analysed germplasm, the applied 

methodologies and the used tools, including an explanation regarding 

statistical treatment of the raw data achieved by image analysis.  
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Chapter 1 

Computer Vision: fundamentals and image processing 

 

Introduction  

Although the human eye is a high precision tool, it has some 

important restrictions if compared with the use of imaging devices based on 

computers for technical purposes. Human vision is especially poor at judjing 

color or brightness of features; it is inherently qualitative and comparative 

rather than quantitative, responding to the relative size, angle, or position of 

several objects but unable to support numeric measures unless one on the 

reference objects is a measuring device (Russ, 2007).  

Moreover human vision is limited to wavelength ranged between 380 

and 700 nm, with a higher sensibility at 550 nm, hence only a little portion of 

the spectrum. In addition, human vision tends to overestimate and 

underestimate the information at the borderline between objects with 

different intensity according to the “Mach Band effect” phenomenon (Fig. 1). 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Match Band effect. The thin lines or “bands”along the gradient are illusory. 
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At last, because of the “Simultaneous Contrast effect”, human vision 

is particularly influenced by the background light (Fig. 2).  

 

 

 

 

 

 

Figure 2. Simultaneous Contrast effect. It is possible to notice that the square B on the 
right is more contrasted and visible that the left A. 

 

 

These faults of the human vision are the cause of various visual 

illusions (Fig. 3). 

 

 

 

 

 

 

 

Traditionally, in any field, quality inspection is performed by trained 

human inspectors. In addition to being costly, this method is highly variable 

and decisions are not always consistent between inspectors or from day to 

day. This is, however, changing with the advent electronic imaging systems 

Figure 3. A moving optical illusion. 
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and with the rapid decline in cost of computers, peripherals and other digital 

devices. Moreover, especially for various quality factors of biological 

elements, the inspection can be a very repetitive task, but also very 

subjective. In this type of environment, machine vision systems are ideally 

suited for routine inspections and qualitative and quantitative assessments. To 

date, machine vision has extensively been applied to solve various problems, 

ranging from simple quality evaluation of food products to complicated robot 

guidance applications (Tao et al., 1995; Pearson, 1996; Abdullah et al., 2000; 

2008). 

 

Image acquisition systems 

The application of machine vision has increased considerably in 

recent years. There are many fields in which machine vision is involved: 

terrestrial and aerial mapping of natural resources (Hirano et al., 2003), crop 

monitoring (Ling et al., 1996), robotics (Blasco et al., 2002), quality control 

(Daley & Britton, 2003; Zheng & Sun, 2009), non-destructive inspections 

(Venora et al., 2009b; 2009c), and many more. In the last 20 years, many 

authors have successfully applied some of the techniques developed in these 

fields for botanical study, with the aim to make easy and over all objective, 

the dimensional evaluation of anatomical elements (Venora & Calcagno, 

1991; Venora & Porta-Puglia, 1993; Hu et al., 2006; Xiang Du et al., 2007; 

Bachetta et al., 2008; Sánchez del Álamo et al., 2008), identification of 

different physical defects (Blasco et al., 2007; Venora et al., 2009b), and also 

the classification of germplasm to distinguish different species or 

agronomical varieties, belonging to the same taxonomic rank (Venora et al., 

2007; 2009a; Mattana et al., 2008; Bacchetta et al., 2008, 2011a, 2011b; 

Zapotoczny et al., 2008, Grillo et al., 2009, 2010, 2013). 
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The breadth of applications depends, among many other things, on the 

fact that machine vision systems provide substantial information about the 

nature and the attributes of the objects present in the scene. Another 

important feature of such system is that they open the possibility of studying 

this object in regions of the electromagnetic spectrum, where human vision is 

unable to operate, as in the ultraviolet or infrared regions (Moltó & Blasco, 

2009). In addition to the opportunity to work appling non-destructive and 

automatic techniques, image analysis provides greater reliability and 

objectivity than human inspection, because the decision made by operators 

are easily affected by external factors such as fatigue, acquired habits, 

competences and frequently also by culture (Studman & Ouyang, 1997; 

Venora et al., 2009b). For the same reason, machine vision allows to obtain 

higher repeatability than human inspection, minimizing or standardizing the 

possible mistakes, and furthermore great speed during the execution of the 

analysis. Finally, image analysis allows to execute computations, giving the 

opportunity to take more information by the same object. 

Depending on the nature of the sample, on the size and location of it, 

the acquiring system must suit certain needs, and consequently it take to have 

some specifications, but, in many cases, a video or photo-camera can be 

adequate to capture images. Working on the detection of external defects, or 

on the classification of objects with different morpho-colorimetric 

characteristics, with a digital camera it is possible to obtain high quality 

images containing all the need information. In some cases, it can be helpful 

to apply specific filters to detect specific elements. For example, to evaluate 

the quality of many food, using different filters able to absorb different 

wavelength light, it is possible to distinguish a defect from another, or one 

type of damage from another (Blasco et al., 2007). 
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Also the flatbed scanner proved to be the ideal acquiring source in a 

lot of application. Generally, when the size and over all the depth of the 

samples are small, and when the capture time are not important, the flatbed 

scanner is probably the best acquiring system, although unlike the camera, 

the flatbed scanner not allows to regulate the focus to optimize the sharpness 

of the sample. This kind of acquiring system, are image gathering devices 

that incorporate a fixed relationship between the illumining source (lamp) 

and the solid state sensors of the scanning head, allowing to capture the 

sample images in a constant manner. Due to their increasing popularity, the 

cost of these devices is dropping rapidly. These characteristics may turn the 

flatbed scanners into the image acquisition system of choice (Shahin & 

Symons, 2001; Grillo, 2009). 

 

Digital images 

The hardware configuration of computer-aided machine vision 

systems is relatively standard. Typically, a vision system consist of: 

• an illumination device which illuminates the sample; 

• an image acquisition system, such as a camera, a scanner or a 

image reconstruction apparatus; 

• a personal computer or a microprocessor system to provide the 

image processing, analysis and storage; 

• a high resolution colour monitor which allows the 

visualization of images and the effects of various processing routines.  

 

Figure 4 shows a complete set-up, provided with a professional 

flatbed scanner equipped with a trans-illuminator cover. 
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Figure 4. Essential elements of a computer vision system. 

 

A part from the used acquisition system, the first goal to achieve is the 

image digitalization. This mathematical procedure, executed by the capture 

device, consists in the conversion of a real image into a digital image, that 

simply is a matrix of number. A digital image a[m,n] described in a 2D 

discrete space is derived from an analogical image a(x,y) in a 2D continuous 

space through a sampling process that is frequently referred to as digitization 

(Young et al. 1995). 

The 2D continuous image a(x,y) is divided into N rows and M columns. 

The intersection of a row and a column is termed a pixel (Fig. 5). The value 

assigned to the integer coordinates [m,n] with {m = 0,1,2,…,M–1} and {n = 

0,1,2,…,N–1} is a[m,n]. In fact, in most cases a(x,y), which we might 

consider to be the physical signal that impinges on the face of a 2D sensor, is 
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actually a function of many variables including depth ( z ), colour ( l ), and 

time ( t ) (Young et al. 1995). 

 

 

 

Figure 5. Digitization of a continuous image. 

 

The number of pixel per unit of measurement can be used to define 

the resolution of a digital image, even though a lot of international standards 

specify that it should not be so used, at least in the digital camera field. In this 

cases, the convention is to describe the pixel resolution with the set of two 

positive integer numbers (M,N), where the first number is the number of pixel 

columns (width) and the second is the number of pixel rows (height), for 

example as 640 x 480. 

Another popular convention is to cite resolution as total number of 

pixels in the image, typically given as number of megapixels, which can be 

calculated by multiplying pixel columns by pixel rows and dividing by one 
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million. Other conventions include describing pixels per length unit or pixels 

per area unit, such as pixels per inch (PPI) or per square inch (DPI). But, 

even if they are widely referred to as such, none of these pixel resolutions are 

true resolutions, because they simply describe the geometric resolution of a 

digital image (Fig. 6). 

 

Figure 6. Different pixel resolution image. 

 

As stated above, the value assigned to the integer coordinates [m, n] 

(the pixel), is a function of some variables, including depth (z), colour (l), 

and/or time (t). Consequently, the quality of a grey scale image q is defined 

by a tern of integer numbers, q (m, n, z), where m and n are the pixel 

coordinates, and z are the grey depth. 

To define numerically the grey or colour depth, it is need to introduce 

another important notion, helpful to understand how many information are 

included in a digital image. The terms color depth or bit depth describe the 

number of bits used to represent the colour of a single pixel. Bit (binary unit) 

is the unit of measurement of digital information, and it uses a binary 

decoding system, only constituted by two integer number, 0 and 1. The 

number of bits of a digital image defines the grey tones resolution that 

increase esponetially relating to the bit levels. Figure 7 shows the same image 

with different bit depth. It is possible to note that the more bit depth 

increases, the more image definition appears detailed (Grillo, 2009). 
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Figure 7. Different bit depth image. 

 

Image processing 

Owing to the imperfections of image acquisition systems, often the 

captured image are subject to various defects that could affect the subsequent 

processing and consequently the image analysis. Therefore, it is preferable to 

correct the image, after they have been acquired and digitalized it (Zheng and 

Sun, 2008). Generally this procedure is fast and relatively low-cost; for 

example, it includes noise removing operations, smoothing filters 

applications, contrast regulations, image histograms equalizations and much 

more. All operations of defects correction and image preparation to the 

analysis are commonly defined image processing or digital picture 

processing, as it was often called. 

 

Noise, contrast and shading correction 

An acquired image is always subject to different types of noise, such 

as the readout noise, produced by the sensor of camera, or the electronic 

noise caused by electronic circuit of the capture device during the 

analog/digital convertion, or the salt and pepper noise that generates, in the 

image scattered pixels with very different color or intensity from their 
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surrounding pixels. All this leads degradation of image quality (Fig. 8). There 

are various solutions that can be used to adjust images with this kind of 

defects, and all applies similar mathematical algorithms as smoothing filter 

(Lee, 1983; Mastin, 1985; Rank et al., 1999; Freeman et al., 2006). 

 

 
Figure 8. Example of an image corrupted by noise (salt and pepper effect). 

 

Smoothing filters are used to blur an image and reduce noise. There 

are different types of such filters that can be applied for different kinds of 

problems. Some of them are linear filters, as the Mean and the Gaussian 

filters, while others are non-linear filter, as the Median filter. In linear filters, 

the output pixel value is calculated using the weighted sum of the input 

pixels. A non-linear filter does not calculate the weighted sum of pixels in the 

neighbourhood. It assigns a value to the output pixel, which is directly based 

on the values of the pixels in the neighbourhood. 

Figure 9 shows the effects of the Gaussian and Median filter applied 

to the noised image showed in figure 8. Images A and B are the result of a 

Gaussian functions application, respectively with a 3 x 3 and 9 x 9 template  
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Figure 9. Example of image correction by using smoothing filters. 

 

size. It is possible to note that the salt and pepper effect is only lightly 

reduced and the blurring of the image is remarkable. Instead, images C and D 

are the result of a Median filter, applying respectively templates with size of 

3 x 3 and 9 x 9. In this case it is evident the 3 x 3 Median function (C) 

provides the best result without blurring or smoothing effects on the output 

image, while a template of 9 x 9 (D) appears overloaded. 
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Today it is possible to acquire images with an optimum quality, 

because the high technology of the capturing devices allows to do it. 

However, sometimes captured image are not enough contrasted or, in other 

words, the intensity values of the image are restricted to a small range of 

intensity levels, and thus pixels with different intensity values are not well 

distinguished from each other (Zheng & Sun, 2008). 

Most of the contrast enhancing tools use the image histogram (Jain, 

1989), a plot of the number of pixels with each possible brightness level. It is 

a valuable tool for examining the contrast in the image (Russ, 2007). Figure 

10, shows an example image in which the histogram covers the full dynamic 

range, indicating good contrast.  

 

 

 
Figure 10. Example of a good exposure adjustment, since the brightness 

values cover the entire range without clipping at black or white. 
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Various formulas and various modalities exist to detect and apply the 

optimal histogram width (Scott, 1979; Hui et al., 1999; Kim et al., 2001), 

some of these are automatics and other interactively adjustable, but always, 

the original histogram is transferred from one scale to another, mostly from a 

smaller scale to larger one. Accordingly, the difference between two 

neighbouring intensity values is increased (Zheng & Sun, 2008).  

 

Color calibration 

Frequently, colour images present significant problems related to the 

lack of homogeneity of light source. Basically, the solution derives from a 

subtraction operation between the original not well illuminated image and the 

background not well illuminated image, but it can be applied only when the 

imperfection of illumination appears constant (Grillo, 2009).   

Furthermore, in electronic imaging, and above all in computer vision, 

the imaging devices, cameras, scanners, colour monitors, require careful 

calibration to ensure that they reproduce standardized images (Lee, 2005). 

Basically, the aim of colour calibration is to measure or adjust the 

colour response of a device (input or output) to establish a known 

relationship to a standard colour space. In image analysis, its importance is 

get involved both with the possibility to use different kinds of acquisition 

systems and with the necessity to exclude any light variation due to the wear 

on the illumination device, garanting constant results. The device which has 

to be calibrated is sometimes known as calibration source, while the color 

space that serves as a standard is known as calibration target. 

One of the most common process of colour calibration works for 

image matching, is reported in this research work. The ad hoc method 

developpeed by Shahin & Symons (2000) was applied to calibrate and 

standardize the images acquired using a flatbed scanner. This method uses a 



54 

 

Kodak Q60 Target Color Chart (Fig. 11) as reference image, to carry out a 

Look-Up Table (LUT) useful to match, compare and adjust the acuired 

image. 

. 

 

Figure 11. Kodak Q60 Target Color Chart reference image. 
 

 
Mathematical morphology 

The most important process in the switch from the pre-elaboration of 

an image to its measure, is the segmentation. It is a crucial step that allows to 

reduce images to information, dividing the image into regions and 

distinguishing the objects of interest. Segmentation is often described by 

analogy to visual processes as a foreground/background separation, implying 

that the selection procedure concentrates on a single kind of features and 

discards the rest. Although this is not quite true for computer systems, which 

generally deal much better than humans with scenes containing more than 

one type of features of interest (Russ, 2007), this analogy appear really 

appropriate to well understanding the concept of segmentation. Indeed, the 

result of segmentation is usually a binary image, in which the regions of 

interest (ROIs) are white and the background is black. 
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The aim of image segmentation is the domain-independent partition 

of the image into a set of region which are visually distinct and uniform with 

respect to some property, such as grey level, texture or colour (Freixenet et 

al., 2002). The problem of segmentation has been, and still is, an important 

research field and many segmentation methods have been proposed in 

literature (Malik et al., 2001; Frucci & Sanniti di Baja, 2008). Depending on 

the complexity of the processed image, it is possible to apply different 

segmentation methods to obtain a binary image in which to measure the 

regions of interest. Although hundreds of segmentation algorithms have been 

proposed in the last 30 years, basically two different approaches exist to 

tackle the segmentation: for discontinuity and for similarity. The methods 

based on the discontinuity property of the pixels, also called boundary-based 

methods, try to detect isolated dots, lines and borders to reconstruct the 

contours of the regions of interest. To do this, some filters that allow to 

identify the borderlines of the objects are used and a few operations of 

mathematical morphology are applied. Instead, the approach for similarity, 

commonly called region-based method, that is the most widely used, is useful 

when the regions of interest are segmented imposing an intensity threshold 

(Freixenet et al., 2002; Riva, 2004). 

 

Selecting features within an image is an important prerequisite for 

most kind of measurement or understanding of the scene. Traditionally, one 

simple way thresholding accomplished to define the range of brightness 

values in the original image, selects the pixels within this range as belonging 

to the foreground (ROI) and rejects all of the other pixels in the background. 

This is the simplest method of image segmentation, using black and white or 

other colours to distinguish the regions (Shapiro et al., 2001 Russ, 2007). In a 

thresholding operation, the input is typically a greyscale or colour image and, 
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in the simplest implementation, the output is a binary image representing the 

segmentation and it is determined by a single parameter known as the 

intensity threshold (Fig. 12). 

 

 

 

Figure 12. Thresholding a colour image. Original image (A) and binary image (B). 

 

Thresholding may be set interactively by user watching the image and 

using a coloured overlay to preview the result and adjusting the setting. The 

brightness histogram of the image, or of a region of it, is very useful for 

making adjustments (Fig. 13). 

 

Figure 13. Threshold histogram for the brightness values selection. 
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There are also many automatic methods to adjust thresholding settings, 

using either the histogram or the image itself as a guide (Prewitt and 

Mendelson, 1966; Weszka, 1978; Otsu, 1979; Kittler et al., 1985; Rigaut, 

1988; Russ and Russ, 1988; Sahoo et al., 1988; Lee et al., 1990; Russ, 1995; 

Sezgin and Sankur, 2004). 

Segmentation of grey scale images into regions for measurement or 

recognition is probably the most important area for image analysis. Many 

other thresholding methods exist and were used extensively in a lot of 

artificial intelligence applications (Fukunaga, 1990), as well as the 

thresholding from texture, that is a very interesting practice allowing the 

image segmentation on the bases of different texture orientation and/or 

spatial frequencies (Haralick et al., 1975), or the boundary lines and contour 

criteria, that perform image thresholding on the bases of the boundary 

information, and many novel techniques too, that are rather ad hoc and 

narrow in their range of applicability, are constantly implemented. Review 

articles by Fu & Mui (1981) and Haralick & Shapiro (1988) present good 

guides to the literature, and most standard image analysis textbooks, such as 

Castleman (1979), Rosenfeld & Kak (1982), Gonzalez & Woods (2007), and 

Pratt (2007) also contain sections on image segmentation. 

 

As result of segmentation, binary image represents the starting point for 

a geometric evaluation and it works as a mask for a colour assessment and for 

following image combinations. But the product of segmentation rarely is 

perfect. For images of realistic complexity, even the most elaborate 

segmentation routines misclassify some pixels as foreground or background. 

Generally, these are pixels belonging to the boundaries of regions or patches 

of noise within regions (Russ, 2007). The main tools that allow to correct this 

kind of mistakes, can be organized into two groups of operations: Boolean 
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logical operations for combining images, and morphological operations 

which modify single pixels within images.  

These include erosion and dilation, opening and closing, scrapping 

and filling  operations, as well as all the possible combination of them. All are 

fundamentally neighbour operations that work in spatial domain. Although 

these operations are discussed in literature in terms of set theory, a much 

simpler and more empirical approach is taken simply describing these 

operations in terms of adding and removing pixels from the binary image 

according to certain rules, which depend on the pattern of neighbouring 

pixels (Russ, 2007). 

Erosion removes pixels from an image or, equivalently, discards any 

pixel touching other pixels that are part of the background (that is already 

OFF). This operation removes a layer of pixels from around the periphery of 

whole region of interest, causing some shrinking of dimensions (Fig. 14). As 

erosion removes pixels, the complementary operation of dilation adds pixels 

to the perimeter of the region. Figure 15 shows an example of a practical use 

of this morphological operations. 

 

 
Figure 14. Erosion and dilation morphological operations. 

 

EROSION 
 
 
 
 
 
DILATION 
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Figure 15. Separation of touching regions using morphological and Boolean 
operations. (A) Input image; (B) after a few cycles of erosion; (C) some cycles of 
dilation applied to B image using logic to prevent merging of regions; (D) AND 
Boolean operator between images A and C. 

 

When the objects in the scene are all similar in size, as it might 

happen working with seeds, it is possible to apply some cycles of erosion 

until all of them are separated but not completely erased (image B). 

Afterwards, a few dilation operations grow the objects making them bigger 

than their original size. Logical operations are imposed to prevent that the 

objects will merge again (image C). Employing an AND Boolean operator 

between the input image and the image in which the objects are separated, a 

new image with the original objects separated is produced (image D).  

Because erosion and dilation cause respectively a reduction and 

increasing in the size of objects, and for this reason they are sometimes 

known as etching and plating or shrinking and growing, there are several 

rules to adjust these operations. Particularly it is possible to adjust the 
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neighbour pattern, that allows to set the direction (horizontal, vertical or 

both) of erosion or dilation, and the number if iterations, also called depth of 

the operation, that roughly corresponds to the distance that boundaries will 

grow or shrink radially (Grillo, 2009). 

 

Two similar morphological operators that can be used in similar 

conditions, but in different orders, are opening and closing operations. 

Generally, the first is helpful to enlarge pixel holes or coves within the 

regions of interest, while the closing operator is used to close up breaks in 

objects (Fig. 16). 

 

   

   

Figure 16. Opening operation to separate touching seeds (images A, B and 
C); and closing operation to fill a cove in a seed (images D, E and F).  
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Finally, the morphological operators fill  and scrap, allows exclusively 

to fill holes in the objects and to erase spots or noise in the binary image, on 

the bases of dimension settings. 

A particular morphological operator is the skeletonization. It could be 

described as a forced erosion of an object, applied up to make it one pixel 

thick (Pavlidis, 1980; Nevatia & Babu, 1980; Davidson, 1991; Lam et al., 

1992; Ritter & Wilson, 2001). This function is often used to obtain the length 

of an object (Fig. 17).  

 

   

Figure 17. Skeletonization of an object. 

 

Just as the skeleton of objects may be determined in an image, it is 

also possible to skeletonize the background. Indeed, considering equidistant 

points from objects boundaries, this opertation effectively divides the image 

into regions around each object (Serra, 1982). This is a very common 

morphological operation because it is often used, in combination with erosion 

and dilation operations, to separate objects with different size and shape (Fig. 

18). Moreover, modifying the setting parameters, the skeletonization may be 

helpful to identify object contours (Grillo, 2009). 
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Figure 18. Background skeletonization to separate touching seeds.  
(A) Original image; (B) segmentation and selection of touching seeds; (C) isolation of 
touching seeds; (D) background skeletonization of image C; (E) image with all 
separated seeds (Grillo, 2009). 
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Chapter 2 

A new set of seed features: Elliptic Fourier Descriptors and Haralick’s 

parameters 

 

Introduction  

The discriminant ability of the identification system depends not only 

on the intra-specific representativeness of analyzed taxa, but also, on the 

quality and quantity of the parameters measured and used to differentiate 

among groups. For this reason, the Elliptic Fourier Descriptors (Iwata et al., 

2002, 2004; Kawabata et al., 2009; Yoshioka et al, 2004; Orrù et al., 2012; 

2013) for a detailed description of the shape, and the Haralick’s parameters, 

evaluating the surface texture of seeds (Diamond et al., 2004; Gerger & 

Smolle, 2004; Nanni et al., 2010), were considered as variables and included 

in the statistical classification system, in addition to the common seeds 

morpho-colorimetric traits used in previous similar works (Bacchetta et al., 

2008a; 2011a; Grillo et al., 2010, 2013). 

 

Shape measurements: Elliptic Fourier Descriptors (EFDs) 

Fourier descriptors (FDs) are very popular shape descriptors and are 

mainly used in a 2D shape description context. The general idea is to create a 

mono-dimensional function from a bi-dimensional boundary contour of, for 

example, the exterior shape of a seed: the shape signature. An example is the 

centroid distance signature which is a (periodic) function that represents the 

distance from the boundary to the centroid of the image. This shape signature 

can be approximated by a Fourier series, where the obtained coefficients are 

called Fourier descriptors. The larger the set of derived descriptors, the better 
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the accuracy for shape retrieval will be. The advantages of FDs are (1) their 

low complexity, (2) each descriptor has a physical meaning, (3) they can 

easily be normalised and (4) they describe shape features at all scales (Zhang 

& Lu, 2004, 2005). 

 

Some variations on FDs exist. An example are Elliptic Fourier 

descriptors hereafter EFDs, introduced by Kuhl & Giardina (1982). EFDs 

describe a closed contour with a series of rotating phasors with elliptical loci; 

the contour is hence represented as a set of harmonically related ellipses. 

Elliptical Fourier analysis removes the following three limitations 

encountered in conventional Fourier analysis: (1) the sampled interval has to 

be equally divided, (2) the descriptors depend on the chosen coordinate 

system and (3) the difficulty of dealing with outlines that curve back on 

themselves (Lestrel, 1989). The drawback of EFDs is that many descriptors 

have to be used, as each harmonic (ellipse) consists of four descriptors. 

However, this is not really of concern because the harmonics are computed 

fairly easy and fast. EFDs have often been used for describing shape 

variation of biological products, ranging from rice to petals or a stallions 

sperm heads (Iwata et al. 2010; Kawabata et al., 2009; Severa et al., 2010, 

Rogge et al., 2014) 

The main advantage of the EFDs (Crosgriff, 1960; Fritzsche, 1961; 

Raudseps, 1965; Borel, 1965), is invariance to translation, rotation and 

scaling of the observed object. Thus the shape description becomes 

independent of the relative position and size of the object in the input image. 

In this way, the distance between camera and placement of the object relative 

to the optical axis of image acquisition system not affects values of the 

Fourier descriptors. 
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This method, fundamentally, do not define the shape of the object but  

allows description of the boundary of the seed projection as an array of 

complex numbers which correspond to the pixel positions on the seed 

boundary. So, from the seed apex, defined as the starting point in a Cartesian 

system, chain codes are generated. A chain code is a lossless compression 

algorithm for binary images. The basic principle of chain codes is to 

separately encode each connected component (pixel) in the image. The 

encoder then moves along the boundary of the image and, at each step, 

transmits a symbol representing the direction of this movement. This 

continues until the encoder returns to the starting position (Fig. 1).  

 

  
Figure 1. Chain code generation (e.g. 23234443343334…). 
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Mathematical basis of EFDs method 

Extensive description on elliptic Fourier feature analysis is found in 

Kuhl & Giardina (1982). Briefly, an object’s boundary is approximated by 

Fourier series expansions of the boundary that is first transformed into a time 

series of a function that arises through chain coding (Freeman, 1974) of the 

path at constant speed around the object in which individual chain links are at 

the pixel-to-pixel level, taking on integer values between 0 and 7. 

These values represent the direction of movement from one pixel to the next, 

either being horizontal (0 or 4 for + or - x direction, respectively), vertical (2 

or 6 for + and - y direction), or diagonal (1, 3, 5, or 7 for direction 

intermediate between the corresponding even numbers). The approximations 

of the x and y positions of the object’s boundary are given as truncated series 

expressions as follows: 

 

 

 

 

where n is the number of harmonics (N total) and t is the time along the chain 

path of period T. As N→∞, these expressions become x(t) and y(t). 

Mathematical solution of the expressions for coefficients an, bn, cn, and dn are 

determined by writing the time derivatives of x(t) and y(t) as Fourier series 

expressions and equating the coefficients with corresponding coefficients 

from the derivatives of x(t) and y(t).  
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This yields the following: 

 

 

 

where p is an index that corresponds to each pixel along the boundary 

contour, ∆xp and ∆yp  are the changes in the x and y projections of the chain 

between the pth and (p -1)th positions, having possible values of - 1, 0, and 1. 

The time variables tp-1 and tp represent the total time needed to reach the (p - 

1)th and pth positions froman arbitrary starting point on the boundary, with ∆tp 

being the time increment between these points and noting that its value is 

either 1 or √2. Values for the coefficients depend on the starting point of the 

path of the contour and are therefore difficult to use when comparing objects 

of different orientations. 

 At the expense of absolute dimensional information, the series functional 

expressions may be normalized such that the shapes can be compared among 

images. 

 

A common procedure is to normalize and align the object with respect 

to the first harmonic ellipse (Kuhl & Giardina, 1982; Yoshioka et al., 2004; 

Neto et al., 2006; Mebatsion et al., 2012). Setting aside the translation-

determining constant additive terms, A0 and C0, and expressing XN and YN in 



75 

 

phasor notation, the first harmonic phasor is rotated into alignment with the 

semi-major axis of its locus, whereupon the starting point of the contour is 

phase shifted to coincide with a maximum value, as determined by setting the 

derivative of the magnitude of the first harmonic phasor equal to zero. This 

yields: 

 

so that 

 

 

and the spatial rotation ψ is obtained from  

 

Finally the object is made independent of its size by diving the coefficients 

by the magnitude of the semi –major axis, E* 

 

 

The standardized coefficients become  

 

 

 

Iwata et al. (1998) proposed that coefficients an
**  and dn

**   define the 

symmetrical variations, while bn
**  and cn

**  define the asymmetrical 

variations. By way of example, the boundary of a kernel is displayed in 
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Figure 2, in which the contours arising from the series solutions at one and 

ten harmonics are included. Also included is the ellipse of the equivalent 

second central moment with its minor and major axes from the 

morphological properties analysis. 

 

 

According to Terral et al. (2010), about the use of a number of 

harmonics for an optimal description of seed outlines, in order to minimize 

the measurement errors and to optimize the efficiency of shape 

reconstruction, 20 harmonics were used, in this study, in order to define the 

seed boundaries, obtaining a further 78 parameters useful to discriminate 

among the studied seeds (Orrù et al. 2012, 2013) (Fig. 3). 

Figure 2.  Trace of the boundary of a seed. Also shown are the ellipse, with minor and major axes, of 
the equivalent second central moment as calculated in morphological property determination and the 
elliptic Fourier series contour functions at one and ten harmonics. 
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Figure 3. EFDs procedure: from a digitalized image to the chain codes. 

 

 

Texture evaluation: Haralick’s descriptors  

The texture is series of surface features that gives important 

information about the densitometry and color distribution of an object. 

Although, for the human vision the interpretation of chromaticity changes is 

easy and natural, Haralick’s descriptors measured with image analysis 

system, allow to define mathematically, and so in a quantitative way, the 

color on a surface, identifying and describing any areas for distribution, 

intensity and/or homogeneity, characteristic variables of a particular group.  

 In 1973 Haralick introduced the co-occurrence matrix and texture 

features for automated classification of rocks into six categories (Haralick & 

Shanmugam, 1973). Today, these features are widely used representing a 

popular approach for the analysis and classification of many medical images 

(Fig. 4), including breast masses and tumors seen in mammograms, 

diagnosing diseases related to skin (Mittra & Parek, 2001), carotid artery 

(Hassan et al., 2012), liver (Lee et al., 2007), brain (Dhanalaskshmi & 
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Rajamani, 2013; Jafarpour et al., 2012; Zulpe et al., 2012), abdomen (Mitrea 

et al., 2011), and breast (Mclauren et al., 2009) and for microscope images of 

biological cells too (Harder et al., 2006; Conrad et al., 2004; 

Sivaramakrishna et al., 2002; Bovis & Singh, 2000; Gupta & Markey, 2005; 

Lee et al., 2006).  

 

 

 

 

 

 

 

 

 

On the contrary, few results are reported in the literature about this 

kind of studies on seeds of both agronomical and wild species for 

tassonomical purpouses (Fig. 5) (Diamond et al., 2004; Gerger & Smolle, 

2004; Nanni et al., 2010).  

 

 

 

 

 

 

 

Figure 5. Texture in (A) black striped white seed of sunflower; (B) wet yellow seed of mango; (C) 
Ferula arrigoni seed. 

Figure 4. Microscopic images of (a) normal and (c) malignant colon biopsy samples, and (b) 
regular structure of normal colon tissue. 

A B C 
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Figure 6. Resolution cells 1 and 5 are 0° (horizontal) nearest neighbors to resolution cell 0; 
resolution cells 2 and 6 are 135° nearest neighbors; resolution cells 3 and 7 are 90° nearest 
neighbors; and resolution cells 4 and 8 are 45° nearest neighbors to 0. 

One drawback of the features is the relatively high costs for 

computation. However, it is possible to speed up the computation using 

general-purpose graphics processing units (GPUs). Nowadays, GPUs 

(ordinary computer graphics cards) are more and more used to accelerate 

graphical as well as non-graphical software by highly parallel execution 

(Gipp et al., 2009). 

Texture analysis, using some or all of the 14 texture features proposed 

by Haralick & Shanmugam (1973), is based on the spatial gray level 

dependence (SGLD) matrices, which encapsulates the spatial relationship 

between pixels of an image. The relationship may be specified in two ways: 

(1) horizontal and vertical distance of neighbors with the pixel of interest; (2) 

the spatial relationship between pixel of interest and neighbors lying at 

various orientations e.g. θ = 0°, 45°, 90°, 135° (Fig. 6).   
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In this study, in addition to EFDs, the morpho-colorimetric pattern of 

feauters recorded for each seed was further improved adding algorithms able 

to compute 11 Haralick’s descriptors and the relative standard deviations for 

each analyzed seed.  

The evaluation of texture, tone and context allows to define the spatial 

distribution of the image intensities and discrete tonal features. When a small 

area of the image has little variation of discrete tonal features, the dominant 

property of that area is grey tone. When a small area has wide variation of 

discrete tonal features, the dominant property of that area is texture (Haralick 

and Shapiro, 1991).  

According to Haralick et al. (1973), the concept of tone is based on 

varying shades of grey of resolution cells in a photographic image, while 

texture is concerned with the spatial (statistical) distribution of grey tones. 

Texture and tone are not independent concepts; rather, they bear an 

inextricable relationship to one another very much like the relationship 

between a particle and a wave. Context, texture and tone are always present 

in the image, although at times one property can dominate the others. 

The basis for these features is the gray-level co-occurrence matrix (G 

in equation 1). This matrix is square with dimension Ng, where Ng is the 

number of gray levels in the image. Element [i,j] of the matrix is generated 

by counting the number of times a pixel (p) with value i is adjacent to a pixel 

with value j and then dividing the entire matrix by the total number of such 

comparisons made. Each entry is therefore considered to be the probability 

that a pixel with value i will be found adjacent to a pixel of value j. 

 

 (1) 
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In Table 1, the 11 Haralick’s descriptors measured on each seed to 

mathematically describe the surface texture, are reported. 

 

Table 1. Haralick’s descriptors measured as reported in Haralick et al. (1973). 
 Feature Equation 

Har 1 Angular second moment 

 
Har 2 Contrast 

 
Har 3 Correlation 

 
  where µx, µy, σx and σy are the means and the standard 

deviations of px and py. 
 

Har 4 Sum of square: variance 

 
Har 5 Inverse difference 

moment 
 

Har 6 Sum average 

 
  where x and y are the coordinates (row and column) of an 

entry in the co-occurrence matrix, and px+y(i) is the probability 
of co-occurrence matrix coordinates summing to x+y. 
 

Har 7 Sum variance 

 
Har 8 Sum entropy 

 
Har 9 Entropy 

 
Har 10 Difference variance 

 
Har 11 Difference entropy 
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Chapter 3 

Materials and Methods 

 

Introduction  

The purpose of this study was to implement an image analysis system 

previously developed by Grillo et al. (2010) through the introduction of a 

new set of seed morpho-colorimentric variables, Elliptic Fourier Descriptors, 

hereafter EFDs and Haralick’s parameters described in Chapter 2.  

The targeted species were selected among those present in the Sardinian 

Germplasm Bank (BG-SAR), at the Centre for Conservation of Biodiversity 

(CCB) of the Department of Botany, University of Cagliari (Mattana et al., 

2005). 

The best moment for the seeds harvest, the methods and the quantity 

of the material are regulated by ethical and scientific criteria that provide a 

high quality of the collected material and avoid the pauperization of the in 

situ genetic resources. So, germplasm was collected following internationally 

recognized protocols to guarantee the greatest representativeness of the 

genetic diversity of original population (Guarino et al., 1995; Bacchetta et 

al., 2008a). The lots in admittance at the BG-SAR were submitted to a period 

of post-maturation under controlled conditions (30% of relative humidity), 

and then cleaned and manually selected by sieves or by the aid of variable air 

flow gravimetric separators (Agriculex CB-2 Column Seed Cleaner). During 

the standard treatments of the accessions for their correct conservation, the 

images of the seeds lots were acquired in digital format, before their entrance 

into the dehydratation room (15°C at the 15% of relative humidity), in order 

to avoid each possible variation in shape and colour (Bacchetta et al., 2008a). 
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The quantity of the seeds to analyze depends on the material 

availability of the BG-SAR. For the analysis of every accession, a sample 

constituted by no less of 100 units was randomly prepared, but when the 

original accession was lower than 100 units, the analysis was executed on the 

totality of the whole lot. This should guarantee the representativity of the 

accession, and at the same time, minimize the intraspecific variability of the 

seeds morpho-colorimetric characteristics, generally due to the seed position 

inside the fruit and to the fruit position in the plant (Harper et al., 1970; 

Rovner & Gyulai, 2008). 

 

Sample images were acquired using a flatbed scanner (Epson 

Perfection-V600), with a resolution of 400 dpi and a scanning area not 

superior to 1024 x 1024 pixels. As discussed in previous chapter, the employ 

of a flatbed scanner to capture digital images, represents a cheap and quick 

solution to carry out and file image libraries of high quality, exploitable for 

morphological (McCormac et al., 1990; McDonald et al., 2001) and 

colorimetric measures (Shahin & Symons, 1999; Shahin et al., 2006). 

Furthermore, a so simple image acquiring system can be undoubtedly 

integrated in the daily germplasm bank management. 

Seeds were arranged on the scanner glass flat, so that they did not 

touch each other, they were also covered with a box dressed with opaque 

paper to avoid interference of environmental light. A couple images were 

acquired for each seed sample. The first was captured using a cover box 

dressed with opaque black paper, while the second was acquired covering the 

seeds with another box dressed with opaque white paper and with a reduced 

height, in order to avoid that the vividness of the seed shadows on a white 

background can corrupt the real dimension and colour of seeds. This 

procedure, that was followed for each accession, allows to apply the same 
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segmentation method aside from the seeds colour, without manually editing 

the resulted image to correct few little binarization errors. 

The digital images so obtained were stored in TIFF format (Tagged 

Image File Format) and, together with the Kodak Q60 reference image that 

was monthly acquired in order to calibrate the scanner, they were send by e-

mail to the Image Analysis laboratories of the Stazione Sperimentale di 

Granicoltura per la Sicilia (SSG), where they were calibrated, processed and 

analyzed using specific macros developed, with a commercial image analysis 

software (Grillo, 2009). 

 

The ‘Macro’ 

A macro could be defined as a list of program lines, compiled in the 

proprietary language of the used software for image processing and analysis, 

that allows to execute automatically and quickly all the routine functions and 

operation of acquiring, colour and geometric calibration, elaboration, 

processing and measurement of images. 

To reach the aims of this study, the KS-400 release 3.0 image analysis 

software by Carl Zeiss Vision GmbH (Germany) was used, together to its 

library of algorithms and functions. A macro, expressly developed for the 

image analysis of wild species seeds (Bacchetta et al., 2008b; Grillo et al., 

2010), was partially modified, implemented with the introduction of the new 

set of variables, EFDs and Haralick’s descriptors, and used to achieve size, 

shape and colour measures of individual seeds in the images. 

Hereafter, an illustrative sequence of various steps of this macro, 

called germplasm-analysis_1.mcr, is reported to explain the work method 

adopted to analyze the seeds. 

Even if, as explained above, a separation algorithm could be applied 

to electronically singulate the seeds after the acquisition, depending on the 
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hardware speed, it might result a very slow procedure, and for this reason it 

was chosen to place the seeds on the top of the scanner, in singulated 

arrangement. Moreover, because of the high variability in seed morphology 

of the studied taxa, the setting of the conditions that would have allowed the 

electronic separation, would be resulted very hard and tedious.  

The two original images of the seeds, that one with black background 

and that the other with white background, in this case Medicago arborea 

(Fig. 1), are acquired using a flatbed scanner and then standardized to correct 

the colour of the image, as discussed in previous chapter.  

 

  

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Black background (A) and white background (B) original images. 
 

Using an interactive threshold to segment the contrasted image, the 

binary image is produced and used as a mask to execute the selected 

measures. A coloured label mask is superimposed to the binary resulted 

image, simply to control that all the seeds within the scene are separate. 

Before to perform the measurements, applying a conversion algorithm the 

RGB standardized image is transformed in HLS colour space. This image 

allows to extract information about colour hue, lightness and saturation of 

each seed. 

A B 
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All the seeds within the image are automatically selected for the 

measuring process, both in the RGB and in the HLS image, but clearly, 

maintaining the chance to deselect any seed that appear not well segmented. 

Finally, all the seeds are numbered with the purpose to have a reference 

indication related to the obtained data, because these numbers, labelled on the 

seeds, also indicate the order in which them are analyzed by the system (Fig. 

2). 

 

Figure 2. MAP image of selected seeds. 

 

 

The germplasm samples 

In this study, 157 accessions were analysed, belonging to three 

different genera, Cistus, Medicago, Lavatera and Malva, mainly collected in 

Sardinia, for a total of about 13,000 seeds. Some material, collected in other 

territories of the Mediterranean basin (e.g. Italian and Iberian peninsulas, 

Corsica, Balearic islands, Greece, Morocco) was also analysed, as well as 

seeds obtained by ex situ cultivation in the Botanic Gardens of Cagliari or 

provided by other scientific institutions (Botanical Department - University 
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of Catania, Botanical Department - University of Bari, Conservatoire 

Botanique National Mediterranéen de Porquerolles, Dirección General de 

Medio Natural de Murcia,  Jardí Botánic de Valencia, Institut y Jardí 

Botánic de Barcelona, Banco de semillas de la Universidad Politecnica de 

Madrid, Jardin Botanico de Cordoba, Banca del Germoplasma 

dell’Università degli Studi del Molise, Conservatoire Botanique National de 

Corse, Seed Conservation Department of the Kew Gardens, Mediterranean 

Agronomic Institute of Chania MAICh of Crete). 

 

Statistics 

In the statistic field, the aptitude to reorganize the raw data in few 

numbers or significative indicators able to describe the whole quantity of data 

without modify the overall meaning, is defined descriptive statistic. 

Particularly in the scientific research, the employ of a suitable treatment of 

data is very important, in order to overcome all the problems due to the 

experimental error, that is the cluster of the variations led by non-controlled 

factors, whose effects are overlapped to that one of the studied factor.  

As discussed in the first chapter, one of the aims of this study consists 

in the implementation of statistical classifiers able to recognize and 

discriminate seeds belonging to different botanical ranks. In order to achieve 

this goal, the more significant morphocolorimetric features measured by 

image analysis, were used to describe size, shape and colour of each analysed 

seed, to identify and classify them on the basis of these morphological and 

colorimetric parameters. 
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Linear Discriminant Analysis 

Sometimes, analyzing the data of various hundreds of groups of 

objects, in this case families, genera and species of seeds, the principal 

practical limitation of the pattern recognition is the high-dimensionality of 

the dataset. In the past several decades, many dimensionality reduction 

techniques have been proposed. The Linear Discriminant Analysis (LDA) 

(Fukunaga, 1990) is one of the most popular supervised methods for linear 

dimensionality reduction. It has been proven to be very powerful in many 

practical applications. The LDA is a multivariate statistical analysis and 

allows to analyze simultaneously measurements of many characters 

(qualitative and/or quantitative variables) from many samples. 

Fundamentally, this kind of statistical analysis aims to summarize the cases 

and simplify their structure to obtain the most correct grouping of them. The 

LDA is a very well-known method for dimensionality reduction and 

classification that projects high-dimensional data onto a low-dimensional 

space where the data achieve maximum class separability (Fukunaga, 1990; 

Duda et al., 2000; Hastie et al., 2001).  

 

The derived features in LDA, also called discriminant functions, are 

linear combinations of the original features, where the coefficients are from 

the transformation matrix. The optimal projection or transformation in 

classical LDA is obtained by minimizing the within-class distance and 

maximizing the between-class distance simultaneously, thus achieving 

maximum class discrimination.  
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Calling J this objective, the original LDA formulation, also known as 

the Fisher Linear Discriminant Analysis (FLDA) (Fisher, 1936; 1940), that 

deals with binary-class classifications, can be described by the following 

formula: 
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where w is a linear transformation matrix, Sb is the between-class 

scatter matrix and Sw is the within-class scatter matrix. 

 

 

As discussed above, the purpose of the LDA is to maximize the 

between-class scatter, minimizing, at the same time, the within-class scatter. 

The two scatter matrices, Sb (between-class) and Sw (within-class), are 

defined as: 
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where c is the number of classes; mi and pi are the mean vector and a 

priori probability of class i , respectively;   is the total mean 

vector; Si is the covariance matrix of class i (Grillo, 2009). 

 

Generally, to obtain the discriminant functions and consequently 

classify objects (seeds in this case) into one of two or more groups, on the 

base of a set of features that describe the objects (e.g. area, perimeter, red, 
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green or blue channel, etc.), it is need to assign an object to one of a number 

of predetermined groups, based on observations made on the object. It is 

important to note that the groups are known or predetermined a priori.  

So, it is possible summarize that the basic tasks of the LDA are two: 

• to detect set of features that better can determine group 

membership of the object; 

• to identify the classification model (or rule) that better can 

separate the groups. 

 

The first of these two purposes, the detection of feature set, is a 

process of variables selection by steps, that allows to define the LDA method 

as stepwise Linear Discriminant Analysis (sLDA). Using this method, only 

the best features for the identification of the different seed samples were 

detected, in order to implement a statistical classifier able to discriminate and 

classify the seeds, on the basis of morpho-colorimetric features. When there 

are a lot of predictors, the stepwise method can be useful to select 

automatically the best variables to be used in the classification model. The 

stepwise method starts with a model that doesn’t include any of the predictor. 

At each step, the predictor with the largest F to Enter value that exceeds the 

entry criteria (F ≥ 3.84) is added to the model. The variables left out of the 

analysis at the last step have F to Enter values smaller than 3.84, so no more 

are added. The Tolerance value indicates the proportion of a variable’s 

variance not accounted for by other independent variables in the equation. A 

variable with very low Tolerance value proves little information to a model. 

F to Remove value describes the power of each variable in the model and it is 

useful to describe what happens if a variable is removed from the current 

model. The process was automatically stopped when no remaining feature 

increased the discrimination ability (Venora et al., 2009a; 2009b). 
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The second purpose concerns the model or rule of classification to 

predict the membership of a new object on the base of the model. This 

approach is commonly used for the classification/identification of unknown 

groups characterized by quantitative and qualitative variables (Fisher, 1936; 

1940).  

This method requires a teaching procedure that use information 

derived by previous identified sample groups (also called training set) 

allowing to develop and to teach all the classifiers used in the study.  

 

In a Linear Discriminant Analysis, the class categories or the groups 

that represent what it is looking for, are called dependent variable; while 

each measured feature, that describes the analysed object, is statistically 

defined independent variable. Hence, in these cases study, the analysed 

objects are seeds, the dependent variable is the considered taxonomic rank 

(family, genera or species) of the germplasm accessions, while the 

descriptive features (area, perimeter, red, green or blue channel, etc.) are the 

independent variables. 

Thus, the LDA finds a set of discriminant functions, whose values are 

as close as possible within groups and as far apart as possible between 

groups. A discriminant function (fni), that above was defined as a linear 

combination of the discriminating variables, has the following mathematical 

form: 

 

kniknininini xaxaxaxaaf +++++= K3322110   

 

where (fni) is the value (or score) on the canonical discriminant 

function for case i in the group n; x is the value on discriminant variable for 
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the same case in the same group; and a is the autovalor which produce the 

desired characteristics in the function. 

The coefficients a1, a2, a3, …, ak, for the first discriminant function are 

derived so as to maximize the differences between the group means. At the 

same way, the coefficients a1, a2, a3, …, ak, for the second discriminant 

function are also derived in order to maximize the difference between the 

group means, but they are subject to the constraint that the values, on the 

second discriminant function, are not correlated with the values on the first 

discriminant function, and so on for the discriminant function that follow. In 

geometrical terms, the second discriminant function is orthogonal to the first, 

and the third discriminant function is orthogonal to the second, and so on. 

The maximum number of unique functions that can be derived is equal to the 

number of groups minus one or equal to the number of discriminating 

variables. 

Summarizing, the discriminant functions were selected so that: 

• f1 reflects, as much as possible, the differences between the 

groups; 

• f2 reflects, as much as possible, the differences between the 

groups, not highlighted by f1; 

• f3 reflects, as much as possible, the differences between the 

groups, not highlighted by f1 and f2; 

• … and so on. 

 

Each linear discriminant function explains a certain percentage of the 

total variance (or variability) of the cases, and all of them explain the 100% 

of the variability. Generally, it is desirable that the first two discriminant 

functions explain variability levels higher than 60-70% (Grillo, 2009). 



98 

 

The simplest case of a LDA assumes that the groups are linearly 

separable. It occurs when the groups can be separated by a linear 

combination of features that describe the objects. If the independent variables 

are only two, the separator between object groups is simply a line; if the 

features are three, the separator is a plane; while if the number of independent 

variables is more than three, the separator become a hyper-plane. In this last 

case, the great utility of linear dimensionality reduction of the LDA method, 

is evident, and can be better explained taking advantage of graphical 

representations. Figure 3 shows a graphical representation of a case in which 

objects belonging to three different groups (dependent variables) are detected 

by only two discriminant functions. 

 

 
Figure 3. Bi-dimensional plot of a Linear Discriminant Analysis. 

 

 

In Figure 4, a 3D plot shows the scores of three of the discriminating 

functions used to distinguish the objects belonging to five different groups.  
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Figure 4. Three-dimensional graphic representation of a LDA. 
 

 

The principal advantage of the multidimensional plot is in the 

possibility to represent graphically the discriminant scores in a biggest space 

than a classical Cartesian plane. In this way, it is simplest to visually 

appreciate the distances among groups. 

When different groups of objects have to be discriminated and only 

two discriminant functions are available, it is possible to insert a third 

function that allows to draw a multidimensional plot, the Mahalanobis 

distance. This is a measure introduced by the Indian statistician Prasanta 

Chandra Mahalanobis (1936) and it is based on correlations among variables 

by which different patterns can be identified and analysed. It determines 

similarity of an unknown sample set to a known one. In other words, 

Mahalanobis distance is a measure of distance between two data points in the 

space defined by two or more discriminant functions; a high value indicates 

that a particular case includes extreme values for one or more independent 
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variables and it can be considered not similar to other cases (Bacchetta et al., 

2008b). 

Formally, the Mahalanobis distance from a group of values with mean 

µ=(µ1,µ2,µ3,…µn)
T, and covariance matrix S for a multivariate vector 

x=(x1,x2,x3,…xn)
T is defined as (De Maesschalck et al., 2000): 

 

)()()( 1 µµ −−= − xSxxD T
M     

 

In Figure 5, a three dimensional graphic representation is showed, in 

which objects belonging to different groups are detected by two discriminant 

functions and the Mahalanobis distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 3D plot of a LDA with two discriminant functions and  
the Mahalanobis distance. 
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A major drawback of LDA is that it often suffers from the small 

sample size problem when dealing with the high dimensional data. When 

there are not enough training samples, Sw (in the 6.1) may become singular 

and it is difficult to compute the LDA vectors. Several approaches have been 

proposed to address this problem (Liu et al., 1992; Belhumeur et al., 1997; 

Chen et al., 2000; Yu & Yang, 2001), but a common problem with all these 

proposed variant LDA approaches is that they all lose some discriminative 

information in the high dimensional space. Anyway, the stepwise LDA 

method has been applied successfully in many different applications (Swets 

& Weng, 1996; Venora et al., 2007; 2009a; Bacchetta et al., 2008b, Grillo, 

2009). 

 

The cross-validation 

In this research study, the cross-validation procedure, also called 

rotation estimation (Picard & Cook, 1984; Kohavi, 1995), was applied, both 

to evaluate the performance and to validate any classifier, and to avoid 

problems and/or mistakes that might arise on account of seed samples not 

enough numerically representative. Indeed, this procedure is usually applied 

for small amount of data, in lack of a broad group of new unknown cases 

(test set). It tests the individual cases and classifies them on the basis of all 

the others (SPSS, 2007). 

The most common types of cross-validation are three. The repeated 

random sub-sampling validation, is a method that randomly splits the dataset 

into training and test (or validation) set. For each such split, the model is fit 

to the training set of data, and predictive accuracy is assessed using the test 

set of data. The results are then averaged over the splits. The advantage of 

this method is that the proportion of the training/test split is not dependent on 

the number of iterations (as it occurs for the k-fold cross validation type). The 
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disadvantage of this method is that it is very expensive from the point of view 

of the optimal use of the available dataset. 

In K-fold cross-validation, another very common type of cross-

validation, the original sample is partitioned into K subsamples. One of the K 

subsamples is put aside as the test dataset to validate the model, and the 

remaining K−1 subsamples are used as training set. The cross-validation 

process is then repeated K times (the folds), with each of the K subsamples 

used exactly once as the validation data. Then, the K results from the folds 

can be averaged (or otherwise combined) to produce a single estimation. The 

advantage of this method is that all cases are used for both training and 

validation, and each case is used for validation exactly once, but as hinted 

above, the ratio between the split training set and the test set, is closely 

related to the number K of process iterations. 

The third common type of cross-validation is the leave-one-out cross-

validation (LOOCV). As the name suggests, it involves using a single case 

from the original sampleset as the validation dataset, and the remaining cases 

as the training set. This is repeated such that each case in the sampleset is 

used once as the test set. This is the same as a K-fold cross-validation with K 

being equal to the number of cases in the original sample. Unfortunately, the 

leave-one-out cross-validation is often computationally expensive because of 

the large number of times the training process is repeated. 

 

Finally, in order to evaluate the quality of the discriminant functions 

achieved for each statistical comparison, the Wilks’ Lambda, the percentage 

of explained variance and the canonical correlation between the discriminant 

functions and the group membership, were computed. The Box’s M tests was 

executed to assess the homogeneity of covariance matrices of the features 

chosen by the stepwise LDA while the analysis of the standardized residuals 
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was performed to verify the homoscedasticity of the variance of the 

dependent variables used to discriminate among the groups’ membership 

(Box, 1949; Haberman, 1973; Morrison, 2004). Kolmogorov-Smirnov’s test 

was performed to compare the empirical distribution of the discriminant 

functions with the relative cumulative distribution function of the reference 

probability distribution, while the and Levene’s test was executed to assess 

the equality of variances for the used discriminant functions calculated for 

groups’ membership (Gastwirth et al., 2009; Levene, 1960; Lopes, 2011). 
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Part II 

Case studies  

 

The second part of this dissertation concerned some applications of 

the image analysis technologies discussed above.  

In Chapter 1, in particular, the morpho-colorimetric characterization of Cistus 

L. (Cistaceae) seeds by image analysis was treated: a database of 

morphometric and colorimetric data was carried out to statistically 

discriminate and identify at inter an intra-specific level. 

Seed image analysis provided evidence of taxonomical differentiation 

within the Medicago L. sect. Dendrotelis (Fabaceae) (Chapter 2). 

Finally, the relationships among 79 taxa belonging to the Lavatera 

and Malva genera were discussed in Chapter 3, in order to contribute to their 

doubtful systematic treatment. 
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Chapter 1 

Inter and intra-specific diversity in Cistus L. (Cistaceae) seeds, analysed by 

computer vision techniques 

 

 

Abstract 

Seed mean weight and 137 morpho-colorimetric quantitative variables 

describing shape, size, colour and textural seed traits, were measured using 

image analysis techniques, with the aim to discriminate among different 

species and subspecies of the genus Cistus. Also, the intra-specific 

phenotypic differentiation of C. creticus through the comparison of three 

subspecies (C. creticus subsp. creticus, C. c. subsp. eriocephalus and C. c. 

subsp. corsicus) and the inter-population variability among five C. creticus 

subsp. eriocephalus populations were evaluated. Data obtained were analysed 

applying stepwise Linear Discriminant Analysis method, recording an overall 

cross-validated classification performance of 80.6% at species level. With 

regard to C. creticus as case study, percentages of correct discrimination of 

96.7% and 99.6% were achieved at intraspecific and inter-population levels, 

respectively. In this classification model, the relevance of the colorimetric 

and textural descriptive features was highlighted besides to the seed mean 

weight that was the most discriminant feature at specific and intraspecific 

level. These achievements proved the ability of image analysis system to be 

highly diagnostic in the statistically assessment of the morpho-colorimetric 

traits variability of studied taxa seeds.   
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Introduction 

The rockrose (Cistus L., Cistaceae) is one of the most representative 

and widespread genus of the Mediterranean vascular flora, includes about 20 

species from the Mediterranean area, reaching the Caucasus mountains to the 

East and the Canary Islands to the West (Ferrer-Gallego et al., 2013). Its 

highest diversity is found in the Western Mediterranean region, with 14 

species occurring in the Iberian Peninsula and North-Western Africa 

(Guzmán & Vargas, 2005; Fernández-Mazuecos & Vargas, 2010). A long 

history of human activities has favoured distribution and abundance of Cistus 

species in the Mediterranean Basin, which plants are formed as early 

successional stages following woodland disturbances such as fire and soil 

overturning (Thompson, 2005).  

In marked contrast to the detailed knowledge of ecological 

characteristics, understanding of the evolution of morphological characters 

and phylogenetic relationships within the genus is extremely limited. Even if 

Cistus is a relatively small genus, it is complex because shows a significant 

morphological diversification, caused by the polymorphism of a number of 

species and the hybridization between related species (Simonet & Ansereau, 

1939; Pawluczyk et al., 2012). Indeed, hybridization has been reported to be 

an active process in Cistus genus (Ellul et al., 2002), and many hybrid 

combinations within and among pink or white-flowered species have been 

recorded (in the field), based on intermediate morphological characters 

(Paolini et al., 2009).  

The taxonomy of Cistus has traditionally been based on vegetative 

(nerve number, shape, and hairiness of leaves) and reproductive characters 

(sepal number, petal colour, style length, and number of fruit valves), 

although evolutionary mechanisms responsible for the morphological 

diversity within the genus remain poorly understood (Guzman & Vargas, 
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2009; Fernández-Mazuecos & Vargas, 2010). For taxonomic purposes, 

several investigations on the anatomical and morphological leaf traits of 

Cistus species have been previously reported (e.g. Jeanmonod & Gamisans 

2007; Tattini et al., 2007; Catoni et al., 2012). On the other hand, few 

attempts of taxonomic classification of Cistus based on the morpho-

colorimetric description of seeds, have been reported in literature (Cerabolini 

et al., 2003; Delgado et al., 2008; Moreira et al., 2012). Although it is not 

wholly determined by morphological characters, many authors testified the 

importance of seed size and shape also to predict the seed persistence in the 

soil (Funes et al., 1999; Saatkamp et al., 2009), at least in some climatic 

conditions. This aspect seems also to be indirectly related to a certain inter-

specific variability, proved on many plant genera (Hernández-Martínez et al., 

2011; Grillo et al., 2013), but not in others (Pinna et al., 2014). In contrast, 

because the seed morphological aspects are genetically fixed characters, 

undoubtedly the seed shows diagnostic features much more statistically 

significant in comparison to other plant characters. 

In the last two decades, image analysis has achieved several goals in 

morpho-colorimetric evaluation of seeds (Wiesnerová & Wiesner, 2008; 

Granitto et al., 2003; Venora et al., 2009a) for identification of both wild 

plant (Rovner & Gyulai, 2007; Bacchetta et al., 2008a; Grillo et al., 2012) 

and agronomical important species (Shahin & Symons, 2003a; Venora et al., 

2007, 2009b; Firatligil-Durmus et al., 2010; Grillo et al., 2011; Smykalova et 

al., 2011; 2013), proving to be a performance analytical tool for taxonomic 

studies.  

The discriminant ability of the identification system depends not only 

on the intra-specific representativeness of analyzed taxa, but also, on the 

quality and quantity of the parameters measured and used to differentiate 

among groups. For this reason, as reported in recent literature, Haralick’s 
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parameters, evaluating the surface texture of seeds (Diamond et al., 2004; 

Gerger & Smolle, 2003; Nanni et al., 2010), and the Elliptic Fourier 

Descriptors hereafter EFDs (Iwata et al., 2002, 2004; Yoshioka et al, 2004; 

Kawabata et al., 2009; Orrù et al., 2012; 2013) for a detailed description of 

the shape, were considered as variables and included in the statistical 

classification system, in addition to the common seeds morpho-colorimetric 

traits used in previous similar works (Bacchetta et al., 2008a; 2011a; Grillo et 

al., 2010, 2013). 

Applying computer vision techniques, the family of Cistaceae, and six 

taxa, belonging to genus Cistus, were involved in a previous work (Bacchetta 

et al., 2008a). Incrementing the number of features and the amount of 

analysed seed lots, Grillo et al. (2010) improved the classification 

performance, for each of the ten studied families, also included the Cistaceae 

and the relative taxa.  Compared to previous studies, we increase here the 

number of taxa and parameters, including Haralick’s parameters and EFDs, 

assessing two taxonomic levels (species and subspecies), as well as the 

population variability of one case study. 

Specifically, following the systematic treatment proposed by The 

Plant List (2013), the aims of the present work were to: (1) characterize the 

genus Cistus at species level on the basis of seed mean weight, shape, size, 

colour and textural measurements by computer vision; (2) evaluate both the 

intra-specific phenotypic differentiation of C. creticus through the 

comparison of three subspecies (C. creticus subsp. creticus, C. creticus 

subsp. eriocephalus and C. creticus subsp. corsicus) and the inter-population 

variability among five C. creticus subsp. eriocephalus populations. 
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Material and methods 

Seed-lot details 

Seeds of 14 taxa of the genus Cistus, belonging to 49 populations, 

were collected during a period of 21 years (from 1993 to 2013), in eight 

Mediterranean regions (Corse, France, Greece, Italy, Morocco, Sardinia, 

Sicily and Spain) for an overall of 65 accessions and 6,475 seeds (Table 1). 

Considering the high statistical significance that seed mean weight has been 

proved to have in previous methodologically similar works (Grillo et al., 

2010; Bacchetta et al., 2011a; 2011b; Smykalova et al., 2011; 2013), this 

feature was considered attempting to discriminate among the studied Cistus 

taxa and, then, recorded before acquiring the seed lots image. Afterwards, the 

seeds were ultra-dried out down to 3% R.H., guaranteeing homogeneity and 

regularity in seed size and weight (Pérez-García et al., 2007). All accessions 

were stored at -25°C in the Sardinian Germplasm Bank (BG-SAR), according 

to the protocols reported in Bacchetta et al. (2008b).  
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Table 1. Geographical regions, sampling years and seed amount of the studied Cistus taxa 
populations. 

Taxon Population Geographical 
region 

Collecting 
year 

Seed 
amount 

C. albidus 
Prox 
Chechaouen 

Morocco 2001 100 

C. albidus 
Mt. Corrasi 
(Oliena) 

Sardinia 2006 100 

C. albidus 
Miniera Sos 
Enattos (Lula) 

Spain  2006 100 

C. albidus Jaen (JA) Spain 2008 100 

C. albidus 
Sierra Elvira 
(GR) 

Spain 2009 100 

C. albidus 
Sierra Elvira 
(GR) 

Spain 2009 100 

C. albidus 
Rio Cabril 
(Cuenca) 

Spain 2013 100 

C. clusii CIEF Valencia Spain 2000 100 
C. clusii Lesina (FG) Italy 2006 100 

C. clusii 
La Resinera 
(JA) 

Spain  2009 100 

C. clusii 
Sierra de Lujar 
(GR) 

Spain 2009 100 

C. clusii Ragusa Italy 2009 100 

C. clusii 
Pineta di 
Vittoria (RG) 

Italy 2013 97 

C. creticus 
subsp. corsicus 

Santo Pietro di 
Tenda 

Corse 1993 100 

C. creticus 
subsp. creticus 

Karfas (Chios) Greece 2006 100 

C. creticus 
subsp. creticus 

Leonforte (EN) Sicily 2010 100 

C. creticus 
subsp. creticus 

Akrotiri 
(Chania) 

Greece 2012 100 

C. creticus 
subsp. 
eriocephalus 

Agruxiau (CI) Sardinia 2006 100 

C. creticus 
subsp. 
eriocephalus 

Agruxiau (CI) Sardinia 2007 100 

C. creticus 
subsp. 
eriocephalus 

Pineta della 
Foce del 
Garigliano (CE) 

Italy 2009 100 

C. creticus 
subsp. 
eriocephalus 

Casargiu (CI) Sardinia 2010 100 

C. creticus 
subsp. 
eriocephalus 

Agruxiau (CI) Sardinia 2010 100 

C. creticus 
subsp. 
eriocephalus 

Portixeddu 
(Buggerru) 

Sardinia 2011 100 
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Table 1. Continue 
C. creticus 
subsp. 
eriocephalus 

Piscinamamma 
(Pula) 

Sardinia 2012 100 

C. crispus 
Hyeres 
(Porquerolles) 

France 2005 100 

C. crispus 
Colle S. Rizzo 
(ME) 

Sicily 2006 86 

C. crispus Hinojos (JA) Spain 2010 100 

C. crispus 
Ctra a Bab 
Berret 

Morocco 2011 100 

C. 
heterophyllus 
subsp. 
cartaginensis 

CIEF Valencia Spain 2007 100 

C. 
heterophyllus 
subsp. 
cartaginensis 

DGMN Murcia Spain 2007 100 

C. ladanifer 
Hyeres 
(Porquerolles) 

France 2005 100 

C. ladanifer Andujar (JA) Spain 2010 100 

C. ladanifer 
Prox 
Chechaouen 

Morocco 2011 97 

C. laurifolius 
Sierra de Baza 
(GR) 

Spain 2001 100 

C. laurifolius CIEF Valencia Spain 2007 100 

C. laurifolius 
Sierra de Lujar 
(GR) 

Spain 2009 100 

C. laurifolius 
Ketama a Jbel 
Tidighine 

Morocco 2011 100 

C. 
monspelliensis 

Agruxiau (CI) Sardinia 2006 100 

C. 
monspelliensis 

Pantano 
Quebrajano (JA) 

Spain 2008 100 

C. 
monspelliensis 

Diga Sterili (S. 
Giorgio - CI) 

Sardinia 2010 100 

C. 
monspelliensis 

Montevecchio 
(Guspini - CI) 

Sardinia 2010 100 

C. 
monspelliensis 

Prox 
Chechaouen 

Morocco 2011 100 

C. 
monspelliensis 

Khamis M'Diq a 
Bab Berret 

Morocco 2011 100 

C. 
monspelliensis 

Calaverde (Pula) Sardinia 2012 100 

C. parviflorus 
Karave - Isola di 
Gavdos (Creta) 

Greece 2012 100 

C. parviflorus Giaudos  Greece 2013 99 

C. populifolius 
Serra Penas 
Altas 

Spain 2004 99 

C. populifolius 
Pantano 
Quebrajano (JA) 

Spain 2008 100 

C. salviifolius Huelva (HU) Spain 1999 100 
C. salviifolius Agruxiau (CI) Sardinia 2006 100 
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Table 1. Continue 

C. salviifolius 
Porto Campana 
(Chia) 

Sardinia 
2007 100 

C. salviifolius 
Quartu S. Elena 
(CA) 

Sardinia 
2007 100 

C. salviifolius Agruxiau (CI) Sardinia 2007 100 

C. salviifolius 
Porto Campana 
(Chia) 

Sardinia 
2007 100 

C. salviifolius 
Monte Altesina - 
Nicosia (EN) 

Sicily 2010 100 

C. salviifolius Cungiau (CI) Sardinia 2010 100 

C. salviifolius 
Mt. Vecchio - 
Guspini (CI) 

Sardinia 2010 100 

C. salviifolius 
Is Arenas 
(Arbus) 

Sardinia 2010 100 

C. salviifolius 
Simius 
(Villasimius) 

Sardinia 
2010 100 

C. salviifolius 
Porto Campana 
(Chia) 

Sardinia 
2010 100 

C. salviifolius 
Portixeddu 
(Buggerru) 

Sardinia 
2011 100 

C. salviifolius 
Ctra a Bab 
Berret 

Morocco 2011 100 

C. salviifolius Calaverde (Pula) Sardinia 2012 100 
C. salviifolius Taranto Italy 2013 100 
C. salviifolius Collesano (PA) Sicily 2013 97 

 

 

Image analysis system 

Samples digital images, consisting of 100 seeds randomly disposed on 

tray, were acquired using a flatbed scanner (Epson GT-15000) with a digital 

resolution of 400 dpi and a scanning area not exceeding 1024×1024 pixel. 

For accessions of fewer than 100 seeds, the analysis was executed on the 

whole batch. A total of 6,475 seeds were analyzed. Before the image 

acquisition was performed, the scanner was calibrated for colour matching 

following the protocol of Shahin and Symons (2003b) before seed samples 

image acquisition, as suggested by Venora et al. (2009b).  

Digital images of seeds were processed and analyzed using the 

software package KS-400 V. 3.0 (Carl Zeiss, Vision, Oberkochen, Germany). 

A macro specifically developed for the characterization of seeds (Venora et 
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al., 2009b), was modified to perform automatically all the analysis 

procedures, reducing the execution time and contextually mistakes in the 

process. 

In order to improve the discrimination power, this macro was further 

enhanced adding algorithms able to compute the Elliptic Fourier Descriptors 

(EFDs) for each analyzed seed. This method allows description of the 

boundary of the seed projection as an array of complex numbers which 

correspond to the pixel positions on the seed boundary. So, from the seed 

apex, defined as the starting point in a Cartesian system, chain codes are 

generated. A chain code is a lossless compression algorithm for binary 

images. The basic principle of chain codes is to separately encode each 

connected component (pixel) in the image. The encoder then moves along the 

boundary of the image and, at each step, transmits a symbol representing the 

direction of this movement. This continues until the encoder returns to the 

starting position. This method is based on separate Fourier decompositions of 

the incremental changes of the X and Y coordinates as a function of the 

cumulative length along the boundary (Kuhl and Giardina 1982). Each 

harmonic (n) corresponds to four coefficients (an, bn, cn and dn) defining the 

ellipse in the XY plane. The coefficients of the first harmonic, describing the 

best fitting ellipse of outlines, are used to standardize size (surface area) and 

to orientate seeds (Terral et al. 2010). According to Terral et al. (2010), about 

the use of a number of harmonics for an optimal description of seed outlines, 

in order to minimize the measurement errors and to optimize the efficiency of 

shape reconstruction, 20 harmonics were used to define the seed boundaries, 

obtaining a further 78 parameters useful to discriminate among the studied 

seeds (Orrù et al. 2012). 

Moreover, the macro was further improved adding algorithms able to 

compute 11 Haralick’s descriptors and the relative standard deviations for 
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each analyzed seed. These parameters are generally used when the objects in 

the images cannot be separated due to indefinite grey values variations. In 

these cases, the evaluation of texture, tone and context allows to define the 

spatial distribution of the image intensities and discrete tonal features. When 

a small area of the image has little variation of discrete tonal features, the 

dominant property of that area is grey tone. When a small area has wide 

variation of discrete tonal features, the dominant property of that area is 

texture (Haralick & Shapiro, 1991). According to Haralick et al. (1973), the 

concept of tone is based on varying shades of grey of resolution cells in a 

photographic image, while texture is concerned with the spatial statistical 

distribution of grey tones. Texture and tone are not independent concepts; 

rather, they bear an inextricable relationship to one another very much like 

the relationship between a particle and a wave. Context, texture and tone are 

always present in the image, although at times one property can dominate the 

others. 

The basis for these features is the grey-level co-occurrence matrix (G 

in equation 1). This matrix is square with dimension Ng, where Ng is the 

number of grey levels in the image. Element [i,j] of the matrix is generated 

by counting the number of times a pixel with value i is adjacent to a pixel 

with value j and then dividing the entire matrix by the total number of such 

comparisons made. Each entry is therefore considered to be the probability 

that a pixel with value i will be found adjacent to a pixel of value j. 

 

 (1) 
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In Table 2, the 11 Haralick’s descriptors measured on each seed to 

mathematically describe the surface texture, are reported. 

 

Table 2. Haralick’s descriptors measured as reported in Haralick et al. (1973). 
 Feature Equation 

Har 1 Angular second moment 

 
Har 2 Contrast 

 
Har 3 Correlation 

 
  where µx, µy, σx and σy are the means and the standard 

deviations of px and py. 
 

Har 4 Sum of square: variance 

 
Har 5 Inverse difference 

moment 
 

Har 6 Sum average 

 
  where x and y are the coordinates (row and column) of an 

entry in the co-occurrence matrix, and px+y(i) is the probability 
of co-occurrence matrix coordinates summing to x+y. 
 

Har 7 Sum variance 

 
Har 8 Sum entropy 

 
Har 9 Entropy 

 
Har 10 Difference variance 

 
Har 11 Difference entropy 
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Seed mean weight and 137 morphometric, colorimetric and textural 

characters were measured on each seed (Table 3). 

 

Table 3. List of morpho-colorimetric features measured on seeds, excluding the 78 Elliptic 
Fourier Descriptors calculated according to Hâruta (2011). 
 Feature Description 
A Area  Seed area (mm2) 
P Perimeter Seed perimeter (mm) 
Pconv Convex Perimeter  Convex perimeter of the seed (mm) 

PCrof Crofton’s Perimeter  
Perimeter of the seed calculated using the Crofton’s formula 
(mm) 

Pconv 
/PCrof 

Perimeter ratio Ratio between convex and Crofton’s perimeters 

Dmax Max diameter Maximum diameter of the seed (mm) 
Dmin Min diameter Minimum diameter of the seed (mm) 
Dmin 
/Dmax 

Feret ratio Ratio between minimum and maximum diameters 

Sf Shape Factor 
Seed shape descriptor = (4 x π x area)/perimeter2 (normalized 
value) 

Rf Roundness Factor 
Seed roundness descriptor = (4 x area)/(π x max diameter2) 
(normalized value) 

Ecd Eq. circular diameter 
Diameter of a circle with an area equivalent to that of the seed 
(mm) 

EAmax Maximum ellipse axis Maximum axis of an ellipse with equivalent area (mm) 
EAmin Minimum ellipse axis Minimum axis of an ellipse with equivalent area (mm) 
Rmean Mean red channel  Red channel mean value of seed pixels (grey levels) 
Rsd Red std. deviation Red channel standard deviation of seed pixels 
Gmean Mean green channel  Green channel mean value of seed pixels (grey levels) 
Gsd Green std. deviation  Green channel standard deviation of seed pixels 
Bmean Mean blue channel  Blue channel mean value of seed pixels (grey levels) 
Bsd Blue std. deviation  Blue channel standard deviation of seed pixels 
Hmean Mean hue channel  Hue channel mean value of seed pixels (grey levels) 
Hsd Hue std. deviation  Hue channel standard deviation of seed pixels 

Lmean 
Mean lightness 
channel 

Lightness channel mean value of seed pixels (grey levels) 

Lsd 
Lightness std. 
deviation 

Lightness channel standard deviation of seed pixels 

Smean 
Mean saturation 
channel 

Saturation channel mean value of seed pixels (grey levels) 

Ssd 
Saturation std. 
deviation 

Saturation channel standard deviation of seed pixels 

Dmean Mean density Density channel mean value of seed pixels (grey levels) 
Dsd Density std. deviation  Density channel standard deviation of seed pixels 
S Skewness Asymmetry degree of intensity values distribution (grey levels) 

K Kurtosis 
Peakness degree of intensity values distribution (densitometric 
units) 

H Energy Measure of the increasing intensity power (densitometric units) 
E Entropy Dispersion power (bit) 
Dsum Density sum Sum of density values of the seed pixels (grey levels) 
SqDsum Square density sum Sum of the squares of density values (grey levels) 
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Statistical analysis  

The achieved data were used to built a database including seed mean 

weight, morpho-colorimetric, EFDs and Haralick’s descriptors. Statistical 

elaborations were executed using SPSS software package release 16.0 (SPSS 

Inc. for Windows, Chicago, Illinois, USA), and the stepwise Linear 

Discriminant Analysis method (LDA) was applied to identify and 

discriminate among the investigated Cistus accessions.  

This approach is commonly used to classify/identify unknown groups 

characterized by quantitative and qualitative variables (Fisher, 1936; 1940; 

Sugiyama, 2007), finding the combination of predictor variables with the aim 

of minimizing the within-class distance and maximizing the between-class 

distance simultaneously, thus achieving maximum class discrimination 

(Hastie et al., 2001; Holden et al., 2011; Alvin & William, 2012; Kuhn & 

Johnson, 2013). The stepwise method identifies and selects the most 

statistically significant features among the 138 measured on each seed, using 

three statistical variables: Tolerance, F-to-enter and F-to-remove. The 

Tolerance value indicates the proportion of a variable variance not accounted 

for by other independent variables in the equation. F-to-enter and F-to-

remove values define the power of each variable in the model and are useful 

to describe what happens if a variable is inserted and removed, respectively, 

from the current model. This method starts with a model that does not include 

any of the variables. At each step, the variable with the largest F-to-enter 

value that exceeds the entry criterion chosen (F ≥ 3.84) is added to the model. 

The variables left out of the analysis at the last step have F-to-enter values 

smaller than 3.84, and therefore no more are added stopping the process 

(Venora et al., 2009b; Grillo et al., 2012). Finally, a cross-validation 

procedure was applied to verify the performance of the identification system, 
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testing individual unknown cases and classifying them on the basis of all 

others (SPSS, 2007). 

All the raw data were standardized before starting any statistical 

elaboration. Moreover, in order to evaluate the quality of the discriminant 

functions achieved for each statistical comparison, the Wilks’ Lambda, the 

percentage of explained variance and the canonical correlation between the 

discriminant functions and the group membership, were computed. The 

Box’s M tests was executed to assess the homogeneity of covariance matrices 

of the features chosen by the stepwise LDA; while the analysis of the 

standardized residuals was performed to verify the homoscedasticity of the 

variance of the dependent variables used to discriminate among the groups’ 

membership (Box, 1949; Haberman, 1973; Morrison, 2004). Kolmogorov-

Smirnov’s test was performed to compare the empirical distribution of the 

discriminant functions with the relative cumulative distribution function of 

the reference probability distribution, while the and Levene’s test was 

executed to assess the equality of variances for the used discriminant 

functions calculated for groups’ membership (Levene, 1960; Gastwirth et al., 

2009; Lopes, 2011). 

To graphically highlight the differences among groups, 

multidimensional plots were drawn using the first three discriminant 

functions or, alternatively, when the number of discriminant groups n did not 

allow to obtain at least three discriminant functions (n−1), the two available 

discriminant functions and the Mahalanobis’ square distance (Mahalanobis, 

1936) were used. This measure of distance is defined by two or more 

discriminant functions and ranges from 0 to infinite. Samples are increasingly 

similar at values closer to zero. Higher values indicate that a particular case 

includes extreme values for one or more independent variables, and can be 
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considered significantly different to other cases of the same group (Bacchetta 

et al., 2008a). 

 

Results and Discussion 

The discriminant analysis at species level showed an overall cross-

validated classification performance of 80.6% (Table 4). C. parviflorus and 

C. heterophyllus showed the highest percentage of correct discrimination, 

recording values of 95% or higher. In contrast, C. laurifolius was correctly 

discriminated with a percentage of 60%, misclassified as C. salviifolius in the 

13.8% of cases and as C. creticus and C. albidus for 11.3% and 8.5% 

respectively, in addition to less important erroneous attributions with other 

species. 

 

Table 4. Percentage of correct identification at species level. In parenthesis, the number of 
analysed seeds. 

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Total 

C. albidus (1) 
77.6 
(543) 

- 
0.7 
(5) 

- 
2.7 
(19) 

- 
2.9 
(20) 

4.3 
(30) 

- 
11.6 
(81) 

0.3 
(2) 

100.0 
(700) 

C. clusii (2) - 93.0 
(555) 

1.2 
(7) 

4.4 
(26) 

0.0 
1.5 
(9) 

- - - - - 
100.0 
(597) 

C. creticus (3) 
0.3 
(3) 

0.5 
(6) 

92.2 
(1014) 

4.7 
(52) 

0.1 
(1) 

0.4 
(4) 

0.9 
(10) 

- - 
0.3 
(6) 

0.5 
(4) 

100.0 
(1100) 

C. crispus (4) - - 
12.7 
(49) 

87.0 
(336) 

- 
1.7 
(5) 

- - - - 
0.3 
(1) 

100.0 
(386) 

C. 
heterophyllus 
(5) 

2.5 
(5) 

- - - 95.5 
(191) 

- - - 
1.5 
(3) 

0.5 
(1) 

- 
100.0 
(200) 

C. ladanifer (6) - 
4.4 
(13) 

0.7 
(2) 

4.0 
(12) 

- 
90.9 
(270) 

- - - - - 
100.0 
(297) 

C. laurifolius 
(7) 

8.5 
(34) 

- 
11.3 
(45) 

1.0 
(4) 

0.8 
(3) 

- 
61.3 
(245) 

0.3 
(1) 

3.0 
(12) 

13.8 
(55) 

0.3 
(1) 

100.0 
(400) 

C. 
monspelliensis 
(8) 

1.0 
(7) 

- 
0.3 
(2) 

- - - 
0.3 
(2) 

73.6 
(515) 

- 
24.9 
(174) 

- 
100.0 
(700) 

C. populifolius 
(9) 

0.5 
(1) 

- 0.0 - 
29.6 
(59) 

- - 
1.5 
(3) 

67.8 
(135) 

0.5 
(1) 

- 
100.0 
(199) 

C. salviifolius 
(10) 

2.0 
(34) 

0.9 
(15) 

5.5 
(93) 

2.7 
(46) 

0.1 
(2) 

- 
2.7 
(46) 

13.3 
(225) 

0.4 
(7) 

72.2 
(1226) 

0.2 
(3) 

100.0 
(1697) 

C. parviflorus 
(11) 

0.5 
(1) 

- 
4.5 
(9) 

- - - - - - - 
95.0 
(189) 

100.0 
(199) 

Overall            80.6 
(6575) 
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The first discriminating ten variables at species level, chosen by the 

LDA discrimination process, are reported in Table 5. The seed mean weight 

represented the most powerful parameter, showing a significantly high value 

of F-to-remove. According to the achievements previously reached by Grillo 

et al. (2010), the other best 35 variables, selected over the available 138, 

were principally colorimetric features (RGB and HLS colour channels) and 

densitometric descriptors, in addition to a few of other dimensional 

parameters, explaining the wide within-species variability of seed size 

(Delgado et al., 2008; Tavşanoğlu & Çatav, 2012). In the present analysis the 

EFDs not entered into the classification system used to discriminate Cistus 

species; this result is probably due to seed shape homogeneity that 

characterized all the investigated taxa.  

 

Table 5. Tolerance, F-to-remove and Wilks’ lambda values of the best ten key parameters chosen 
by the LDA to discriminate the 11 studied Cistus species. 

 Tollerance F to remove Wilks  λ 

SW 0,647 1023,746 8,11·10-03 

Gsd 0,016 233,773 4,26·10-03 

Dsd 0,011 143,175 3,82·10-03 

Dsum 0,014 140,214 3,81·10-03 

SqDsum 0,013 134,938 3,78·10-03 

A 0,007 133,390 3,78·10-03 

Dmean 0,002 131,830 3,77·10-03 

Bsd 0,028 113,834 3,68·10-03 

Lmean 0,001 98,198 3,60·10-03 

Lsd 0,006 94,354 3,59·10-03 

 

The analysis of C. creticus at infra-specific level showed an overall 

performance of 96.7% (Fig 1a), with misattributions mostly related to C. 

creticus subsp. corsicus, misclassified as C. creticus subsp. eriocephalus in 

12% of cases (data not shown). The histogram of the standardized residuals 
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(Fig. 1b), the normal probability plot (Fig. 1c) and the dispersion plot of the 

standardized residuals (Fig. 1d) were also included to better understand the 

normal distribution of the data. 
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Figure 1. A) Discriminant scores 3D graphical representation of the three studied Cistus creticus subspecies; B) histogram of the standardized 

residuals; C) Normal Probability Plot (P-P) tested with the Kolmogorov-Smirnov’s test (K-S); D) dispersion plot of the standardized 
residuals tested with the Levene’s test (F). 
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According to the previous classification model, the seed mean weight 

was the most discriminant feature, even though the relative value of F-to-

remove recorded minor statistical relevance (Table 6). As expected, this 

feature is comparable among taxa belonging to the same species,  

nevertheless statistically differences exist. Also in this case, the most 

discriminating parameters were descriptive of colorimetric and textural traits 

of the seed surface, but only 24 steps have been enough to identify these 

three taxa by means of LDA (Table 6). These results well fit with those 

obtained by Grillo et al. (2010), that similarly found seed mean weight as the 

most discriminant feature, followed by mean and standard deviation values of 

RGB colour channels.  

 
 
 
Table 6. Tolerance, F-to-remove and Wilks’ lambda values of the best ten key parameters chosen 
by the LDA to discriminate the three studied Cistus creticus subspecies. 

 Tollerance F to remove Wilks  λ 

SW 0,242 97,060 8,26·10-02 

Gsd 0,020 65,452 7,84·10-02 

Bsd 0,018 64,436 7,83·10-02 

A 0,029 58,085 7,75·10-02 

Dsum 0,002 53,227 7,68·10-02 

SqDsum 0,003 40,636 7,52·10-02 

S 0,504 38,748 7,50·10-02 

Ssd 0,111 27,020 7,34·10-02 

Bmean 0,005 24,603 7,31·10-02 

Rmean 0,004 22,760 7,29·10-02 
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Regarding the variability among the C. creticus subsp. eriocephalus 

populations, the analysis achieved an overall cross validated discrimination 

percentage of 99.6% (Fig. 2a), ranged from 98% of correct discrimination for 

the Italian population of Pineta della Foce del Garigliano and 100% for three 

of the Sardinian populations (Agriuxiau, Portixieddu and Piscinamanna). 

Also for this discrimination model, the histogram of the standardized 

residuals (Fig. 2b), the normal probability plot (Fig. 2c) and the dispersion 

plot of the standardized residuals (Fig. 2d) were computed. This high 

differentiation among populations was achieved by a statistical model 

involving, among the 51 chosen variables, 25 Haralick’s and EFDs 

descriptors, but unlike previous analyses, the seed mean weight was not the 

most important feature in the classification system (data not shown). 

.  
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Figure 2. A) Discriminant scores 3D graphical representation of the five studied Cistus eriocephalus populations; B) histogram of the 

standardized residuals; C) Normal Probability Plot (P-P) tested with the Kolmogorov-Smirnov’s test (K-S); D) dispersion plot of the standardized 
residuals tested with the Levene’s test (F). 
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Definitively, as reported in Grillo et al. (2010), the seed mean weight 

proved to be the most discriminating feature both at specific and infra-

specific level, but not at population level. Furthermore, the obtained data 

explain that parameters related to the surface, seed colour, density and 

distribution proved to be more discriminant than the size and shape ones. 

Effectively, the genus Cistus is not the only one showing these phenotypic 

characteristics. Grillo et al. (2010) found that the families of Cistaceae and 

Scrophulariacaeae seem exclusively to show non-morphological features in 

the best key parameters able to discriminate at specific or infra-specific level. 

Similarly, according to Bacchetta et al. (2011a), the seeds of Astragalus sect. 

Melanocercis, showed chromatic features as the most discriminant. 

 

Conclusions 

The satisfactory discrimination performances reached by the 

statistical comparisons among Cistus species, subspecies and populations, on 

the basis of seed morpho-colorimetric data, agree with the results reported in 

the previous papers on the same taxa (Bacchetta et al., 2008a; Grillo et al., 

2010). Comparing with the present study, the number of cases was raised, 

making more difficult the discrimination among taxa because of increased 

infra-specific variability. On the other hand, the improvement of the image 

analysis system adopted, in which an overall of 138 seed features was 

evaluated, allowed to reinforce the discrimination power. In addition, except 

the mean seed weight that resulted to be the most discriminant character in 

the comparisons conducted at species and infra-specific level, colorimetric 

and textural parameters resulted key variables in the statistical elaborations. 

The resulting effect of these developments led to a slight reduction of the 

overall performance but also to the ability of the system to discriminate 

among a larger amount of different taxa. Considering the high similarity in 
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seed morpho-colorimetric traits, it could be considered a good compromise 

for the development of an identification system based on seed characters, 

anyway affected by biotic and abiotic factors. 

Finally, confirming the current taxonomic treatment accepted by The 

Plant List (2013) at the inter- and infra-specific levels, these achievements, 

prove that this method is effective also when the morphometric variability 

within each group should be extremely reduced such as in inter-population 

groups.  

 

Acknowledgement 

I would thank to Prof. Gianluigi Bacchetta, Dr. Oscar Grillo, Dr. 

Gianfranco Venora and Dr. Eva Canadas for their great contribution to the 

writing of this chapter. Thanks also to the researchers of all the institutions 

that kindly provided seed material: Dr. Christine Fournaraki of MAICh 

(Crete), Dr. Esteban Bermejo and Dr. Paqui Herrera Molina of Jardin 

Botanico de Cordoba, Dr. Caroline Favier of Conservatoire Botanique 

National de Corse, Prof. Salvatore Brullo of Dipartimento di Botanica, 

Università degli studi di Catania and Prof. Luigi Forte of Orto Botanico, 

Università degli studi di Bari. This research was supported by the “Provincia 

di Cagliari” and “Ente Foreste della Sardegna”. 

 

 

 

 

 

 

 

 



133 

 

References 

ALVIN C.R. & WILLIAM F.C. 2012. Methods of Multivariate Analysis. 3rd edition. John 

Wiley & Sons. 

BACCHETTA G., BUENO SANCHEZ A., FENU G., JIMENEZ-ALFARO B., MATTANA 

E., PIOTTO B., VIREVAIRE M. 2008b. Conservacion ex situ de plantas silvestres. 

Principado de Asturias / La Caixa. 

BACCHETTA G., FENU G., GRILLO O., MATTANA E., VENORA, G. 2011b. 

Identification of Sardinian species of Astragalus section Melanocercis (Fabaceae) 

by seed image analysis. Annales Botanici Fennici 48, 449-454. 

BACCHETTA G., GARCÍA P.E., GRILLO O., MASCIA F., VENORA G. 2011a. Seed 

image analysis provides evidence of taxonomical differentiation within the Lavatera 

triloba aggregate (Malvaceae). Flora 206, 468-472. 

BACCHETTA G., GRILLO O., MATTANA E., VENORA, G. 2008a. Morpho-colorimetric 

characterization by image analysis to identify diaspores of wild plant species. Flora 

203, 669-682.  

BOX G.E.P. 1949. A general distribution theory for a class of likelihood criteria. Biometrika 

36, 317-346. 

CATONI R., GRATANI L., VARONE L. 2012. Physiological, morphological and 

anatomical trait variations between winter and summer leaves of Cistus species. 

Flora 207, 442-449. 

CERABOLINI B., CERIANI R.M., CACCIANIGA M., DE ANDREIS R., RAIMONDI B. 

2003. Seed size, shape and persistence in soil: a test on Italian flora from Alps to 

Mediterranean coasts. Seed Science Research 13, 75-85. 

DELGADO J.A., SERRANO J.M., LÓPEZ F., ACOSTA, F.J. 2008. Seed size and seed 

germination in the Mediterranean fire-prone shrub Cistus ladanifer. Plant Ecology 

197, 269-276. 

DIAMOND J., ANDERSON N.H., BARTELS P.H., MONTIRONI R., HAMILTON P.W. 

2004. The use of morphological characteristics and texture analysis in the 

identification of tissue composition in prostatic neoplasia. Human Pathology 35, 

1121-1131. 

ELLUL P., BOSCAIU M., VICENTE O., MORENO V., ROSELLÓ, J.A. 2002. Intra- and 

interspecific variation in DNA content in Cistus (Cistaceae). Annals of Botany 90, 

345-351. 



134 

 

FERNÁNDEZ-MAZUECOS M. & VARGAS P. 2010. Ecological rather than geographical 

isolation dominates Quaternary formation of Mediterranean Cistus species. 

Molecular Ecology 19, 1381-1395. 

FERRER-GALLEGO P.P., LAGUNA E., CRESPO M.B. 2013. Typification of Linnaean 

names in Cistus. Taxon 62, 1046-1049. 

FIRATLIGIL-DURMU Ş E., ŠÁRKA E., BUBNÍK Z., SCHEJBAL M., KADLEC P. 2010. 

Size properties of legume seeds of different varieties using image analysis. Journal 

of Food Engineering 99, 445-451. 

FISHER R.A. 1936. The use of multiple measurements in taxonomic problems. Annals of 

Eugenics 7, 179-188. 

FISHER R.A. 1940. The precision of discriminant functions. Annals of Eugenics 10, 422-

429. 

FUNES G:, BASCONCELO S., DÍAZ S., CABIDO M. 1999. Seed size and shape are good 

predictors of seed persistence in soil in temperate mountain grasslands of Argentina. 

Seed Science Research 9, 341-345. 

GASTWIRTH J.L., GEL Y.R., MIAO W. 2009. The impact of Levene's test of equality of 

variances on statistical theory and practice. Statistical Science 24, 343-360. 

GERGER A. & SMOLLE J. 2003. Diagnostic imaging of melanocytic skin tumors. Journal 

of Cutaneous Pathology 30, 247-252.  

GRANITTO P.M., GARRALDA P.A., VERDES P.F., CECCATO H.A. 2003. Boosting 

classifiers for weed seeds identification. Journal of Computer Science and 

Technology 3, 34-39. 

GRILLO O., DRAPER D., VENORA G., MARTÍNEZ-LABORDE J.B. 2012. Seed image 

analysis and taxonomy of Diplotaxis DC. (Brassicaceae, Brassiceae). Systematic 

and Biodiversity 10, 57-70. 

GRILLO O., MATTANA E., FENU G., VENORA G., BACCHETTA G. 2013. Geographic 

isolation affects inter- and intra-specific seed variability in the Astragalus 

tragacantha complex, as assessed by morpho-colorimetric analysis. Comptes 

Rendus de Biologies 336, 102-108. 

GRILLO O., MATTANA E., VENORA G., BACCHETTA, G. 2010. Statistical seed 

classifiers of 10 plant families representative of the Mediterranean vascular flora. 

Seed Science and Technology 38, 455-476. 



135 

 

GRILLO O., MICELI C., VENORA G. 2011. Computerised image analysis applied to 

inspection of vetch seeds for varietal identification. Seed Science and Technology 

39, 490-500. 

GUZMÁN B. & VARGAS P. 2005. Systematics, character evolution, and biogeography of 

Cistus L. (Cistaceae) based on ITS, trnL-trnF, and matK sequences. Molecular 

Phylogenetics and Evolution 37, 644-660. 

GUZMÁN B. & VARGAS P. 2009. Historical biogeography and character evolution of 

Cistaceae (Malvales) based on analysis of plastid rbcL and trnL-trnF sequences. 

Organisms Diversity and Evolution 9, 83-99. 

HABERMAN S.J. 1973. The analysis of residuals in cross-classified tables. Biometrics 29, 

205-220. 

HARALICK R.M. & SHAPIRO L.G. 1991. Glossary of computer vision terms. Pattern 

Recognition 24, 69-93. 

HARALICK R.M., SHANMUGAM K., DINSTEIN, I. 1973. Textural features for image 

classification. IEEE Transactions on Systems. Man and Cybernetics 3, 610-621. 

HÂRUTA O. 2011. Elliptic Fourier analysis of crown shapes in Quercus petraea trees. 

Annals of Forest Research 54, 99-117. 

HASTIE T., TIBSHIRANI R., FRIEDMAN J. 2001. The elements of statistical learning: 

Data mining, inference, and prediction. New York: Springer. 

HERNÁNDEZ-MARTÍNEZ M.Á., NÚÑEZ-COLÍN C.A., GUZMÁN-MALDONADO 

S.H., ESPINOSA-TRUJILLO E., HERRERA-HERNÁNDEZ M.G. 2011. 

Morphological variability by means of seed traits of populations of Amelanchier 

denticulata (Kunth) Koch, from Guanajuato, Mexico. Chapingo Serie Horticultura 

17, 161-172. 

HOLDEN J.E., FINCH W.H., KELLY K. 2011. A Comparison of two-group classification 

methods. Educational and Psychological Measurement 715, 870-901. 

IWATA H., NESUMI H., NINOMIYA S., TAKANO Y., UKAI Y . 2002. Diallel analysis of 

leaf shape variations of Citrus varieties based on Elliptic Fourier Descriptors. 

Breeding Science 52, 89-94. 

IWATA H., NIIKURA S., SEIJI M., TAKANO Y., UKAI Y. 2004. Genetic control of root 

shape at different growth stages in Radish (Raphanus sativus L.). Breeding Science 

54, 117-124. 



136 

 

JEANMONOD D. & GAMISANS J. 2007. Flora Corsica. Edisud, Aix-en-Provence. pp. 

581-583. 

KAWABATA S. YOKOO M., NII K. 2009. Quantitative analysis of corolla shapes and petal 

contours in single-flower cultivars of Lisianthus. Scientia Horticulturae 121, 206-

212. 

KUHL F.P. & GIARDINA C.R. 1982. Elliptic Fourier features of a closed contour. 

Computer Graphics 18, 259-278. 

KUHN M. & JOHNSON K. 2013. Discriminant Analysis and Other Linear Classification 

Models. In: Applied Predictive Modeling pp. 275-328. Springer New York. ISBN: 

978-1-4614-6848-6 

LEVENE H. 1960. Robust tests for equality of variances. In: Olkin, I., Ghurye, S.G., 

Hoeffding, W., Madow, W.G. & Mann H.B., Eds., Contributions to Probability and 

Statistics: Essays in Honor of Harold Hotelling. Stanford University Press. pp. 278-

292. 

LOPES R.H.C. 2011. Kolmogorov-Smirnov Test. In: Lovric M., Eds., International 

Encyclopedia of Statistical Science. Springer Berlin Heidelberg. pp. 718-720. 

MAHALANOBIS P.C. 1936. On the generalized distance in statistics. Proceedings of the 

National Institute of Science of India 12, 49-55. 

MOREIRA B., TAVSANOGLU Ç., PAUSAS J.G. 2012: Local versus regional intraspecific 

variability in regeneration traits. Oecologia 168, 671-677. 

MORRISON, D.F. 2004. Multivariate Statistical Methods. 4th edition. Cengage Learning 

Duxbury Press. 

NANNI, L., SHI, J.Y., BRAHNAM, S., LUMINI A. 2010. Protein classification using 

texture descriptors extracted from the protein backbone image. Journal of 

Theoretical Biology 264, 1024-1032. 

ORRÙ M., GRILLO O., LOVICU G., VENORA G., BACCHETTA G. 2013. Morphological 

characterisation of Vitis vinifera L. seeds by image analysis and comparison with 

archaeological remains. Vegetation History and Archaeobotany 22, 231-242. 

ORRÙ, M., GRILLO, O., VENORA, G., BACCHETTA G. 2012. Computer vision as a 

complementary to molecular analysis: grapevines cultivars case study. Comptes 

Rendus de Biologies 335, 602-615. 

PAOLINI J., FALCHI A., QUILICHINI Y., DESJOBERT J.M., DE CIAN M.C., VARESI 

L., COSTA J. 2009. Morphological, chemical and genetic differentiation of two 



137 

 

subspecies of Cistus creticus L. (C. creticus subsp. eriocephalus and C. creticus 

subsp. corsicus). Phytochemistry 70, 1146-1160. 

PAWLUCZYK M., WEISS J., VICENTE-COLOMER M.J., EGEA-CORTINES M. 2012. 

Two alleles of rpoB and rpoC1 distinguish an endemic European population from 

Cistus heterophyllus and its putative hybrid (C. × clausonis) with C. albidus. Plant 

Systematics and Evolution 298, 409-419. 

PÉREZ-GARCÍA F., GONZÁLEZ-BENITO M.E., GÓMEZ-CAMPO C., 2007. High 

viability recorded in ultradrying seeds of 37 species of Brassicaceae after almost 40 

years of storage. Seed Science and Technology 35, 143-153. 

PINNA M.S., GRILLO O., MATTANA E., CAÑADAS E.M., BACCHETTA G. 2014. 

Inter- and intraspecific morphometric variability in Juniperus L. seeds 

(Cupressaceae). Systematics and Biodiversity 12, 211-223.  

ROVNER I. & GYULAI F., 2007. Computer-assisted morphometry: a new method for 

assessing and distinguishing morphological variation in wild and domestic seed 

populations. Economic Botany 61, 154-172. 

SAATKAMP A., AFFRE L., DUTOIT T., POSCHLOD P. 2009. The seed bank longevity 

index revisited: limited reliability evident from a burial experiment and database 

analyses. Annals of Botany 104, 715-724. 

SHAHIN M.A. & SYMONS S.J., 2003a. Lentil type identification using machine vision. 

Canadian Biosystems Engineering 45, 3.5-3.11. 

SHAHIN M.A. & SYMONS S.J., 2003b. Colour calibration of scanners for scanner 

independent grain grading. Cereal Chemistry 80, 285-289.  

SIMONET M. & ANSEREAU P. 1939 The meioisis of two Cistus hybrids: C. x hybridus 

Pouri and C. x Rodier Verg var. antipolintensis. Dans. pp 1526-1527. 

SMYKALOVA I., GRILLO O., BJELKOVA M., HYBL M., VENORA G. 2011. Morpho-

colorimetric traits of Pisum seeds measured by an image analysis system. Seed 

Science and Technology 39, 612-626. 

SMYKALOVA I., GRILLO O., BJELKOVA M., PAVELEK M., VENORA, G. 2013. 

Phenotypic evaluation of flax seeds by image analysis. Industrial Crops and 

Products 47, 232-238. 

SPSS. 2007. Base 16.0 Application Guide. Prentice Hall, USA, New Jersey. 



138 

 

SUGIYAMA M. 2007. Dimensionality reduction of multimodal labeled data by local Fisher 

discriminant analysis. The Journal of Machine Learning Research 8, 1027-1061. 

TATTINI M., MATTEINI P., SARACINI E., TRAVERSI M.L., GIORDANO C., AGATI 

G. 2007. Morphology and biochemistry of non-glandular trichomes in Cistus 

salviifolius L. leaves growing in extreme habitats of the Mediterranean basin. Plant 

Biology 9, 411-419. 

TAVŞANOĞLU C. & SERTER ÇATAV S. 2012. Seed size explains within-population 

variability in post-fire germination of Cistus salviifolius. Annales Botanici Fennici 

49, 331-340.  

TERRAL J., TABARD E., BOUBY L., IVORRA S., PASTOR T., FIGUEIRAL I., PICQ S., 

CHEVANCEJ.B., JUNG C., FABRE L., TARDY C., COMPAN M., BACILIERI 

R., LACOMBE T., THIS P. 2010. Evolution and history of grapevine (Vitis 

vinifera) under domestication: new morphometric perspectives to understand seed  

domestication syndrome and reveal origins of ancient European cultivars. Annals of 

Botany 105, 443-455. 

THE PLANT LIST 2013. Version 1.1. Published on the Internet; http://www.theplantlist.org/ 

(accessed 19 August 2014). 

THOMPSON J.D. 2005. Plant Evolution in the Mediterranean. Oxford University Press, 

Oxford 288 pp. 

VENORA G., GRILLO O., RAVALLI C., CREMONINI R., 2009b. Identification of Italian 

landraces of bean (Phaseolus vulgaris L.) using an image analysis system. Scientia 

Horticulturae 121, 410-418. 

VENORA G., GRILLO O., SACCONE R. 2009a. Quality assessment of durum wheat 

storage centres in Sicily: Evaluation of vitreous, starchy and shrunken kernels using 

an image analysis system. Journal Cereal Science 49, 429-440. 

VENORA G., GRILLO O., SHAHIN M.A., SYMONS S.J., 2007. Identification of Sicilian 

landraces and Canadian cultivars of lentil using image analysis system. Food 

Research International 40, 161-166. 

WIESNEROVA D. & WIESNER L. 2008. Computer image analysis of seed shape and seed 

color for flax cultivar description. Computers and Electronics in Agriculture 61, 

126-135. 



139 

 

YOSHIOKA Y., IWATA H., OHSAWA R., NINOMIYA S. 2004. Analysis of Petal Shape 

Variation of Primula sieboldii by Elliptic Fourier Descriptors and Principal 

Component Analysis. Annals of Botany 94, 657-664. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 

 

Chapter 2 

Seed image analysis provides evidence of taxonomical differentiation 

within the Medicago L. sect. Dendrotelis (Fabaceae) 

 

Abstract 

Morpho-colorimetric quantitative variables describing seed size, 

shape, colour and texture were analyzed using image analysis techniques, in 

order to evaluate the variability among Medicago taxa sect. Dendrotelis and 

verify the current taxonomical treatment which divide this section into three 

species: M. arborea L., M. citrina (Font Quer) Greuter and M. strasseri 

Greuter, Matthäs & H. Risse. Further comparisons were conducted to 

discriminate among populations and regions of provenance. Data obtained 

were statistically analysed applying stepwise Linear Discriminant Analysis 

method (LDA), recording an overall cross-validated classification 

performance of 100.0% at species level. With regard to inter-population 

comparisons, percentages of correct discrimination above 98% were achieved 

and high performance was recorded in the discrimination among M. arborea 

taxa distinguished by region of provenance. For each of these statistical 

comparisons, the best discriminant variables chosen by the stepwise LDA 

were related to colour and textural information. Finally, the obtained results 

confirmed the validity of the proposed method to be highly diagnostic in the 

statistically assessment of the morpho-colorimetric traits variability of 

Medicago taxa seeds, both for the taxonomic differentiation at specific levels 

and regional and populational groups. 
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Introduction 

Medicago L. is a large genus of the legume family (Trifolieae, 

Fabaceae) that includes a big amount of agriculturally and economically 

important species (e.g. M. sativa L.). This genus comprises about 83-85 

species, grouped in 12 sections (Bena, 2001; Lock, 2005; Small & Jomphe, 

1989). The natural distribution area of the genus covers broad regions of 

Eurasia (Mediterranean Region and W to C Asia) and Northern Africa (Heyn, 

1963; Lesins & Lesins, 1979; Mehregan et al., 2002). 

In contrast with the remaining 11 sections, formed by annual or 

perennial herbs, the section Dendrotelis (Vassilcz.) Lassen comprises woody 

shrubs showing physiological adaptations to water and salt-stressed 

environments (Chebbi et al., 1994; Koning et al., 2000; Sibole et al., 2003, 

2005). The unique features that characterize the section are the presence of 

perennial stems, showing annual rings of wood and bark produced by cambia 

(Small & Jomphe, 1989). One to three species, depending on systematic 

criteria (Bolòs & Vigo, 1974; Lesins & Lesins, 1979; Small & Jomphe, 1989; 

Sobrino et al., 2000), have been recognized within this section: M. arborea 

L., M. citrina (Font Quer) Greuter and M. strasseri Greuter, Matthäs & H. 

Risse. All of them are restricted to rocky and cliff faces in coastal places of 

the Mediterranean Basin. 

All the species of the section Dendrotelis are polyploid. Medicago 

arborea and M. strasseri are tetraploids (2n=32; Cluster et al., 1996; 

Falistocco, 1987; González-Andrés et al., 1999; Rosato et al., 2008), whereas 

M. citrina is hexaploid (2n=48 chromosomes; Boscaiu et al., 1997; Rosato et 

al., 2008). Recently, molecular cytogenetic studies have supported the close 

relationships between M. arborea and M. strasseri that showed a single 45S 

rDNA locus and two 5S rDNA loci. By contrast, the hexaploid M. citrina 

could be distinguished from the tetraploid species by the presence of four 45S 
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rDNA and five 5S rDNA (Rosato et al., 2008). These findings suggest that 

fine cytogenetic approaches could be relevant to assess the origins of the 

polyploidy in the section Dendrotelis, and to gain insights on the level of 

karyological distinctiveness, and hence evolutionary divergence, among the 

three species. The cytogenetic data indicate a clear evolutionary split in 

woody medics (tetraploid vs. hexaploid species), reflecting divergent patterns 

of karyological evolution.  

Medicago arborea has been taxonomically recognized by all authors 

dealing with the genus. It has been widely cultivated as a forage plant in the 

Mediterranean region (Olives, 1969), and introduced as ornamental in other 

areas of Europe, North Africa and Asia, blurring the boundaries of its natural 

distribution. Some authors have suggested that this species was originally 

endemic to some small islets of the Aegean Sea, being later introduced 

throughout most places of its current Mediterranean range (Greuter, 1986).  

Medicago strasseri is endemic of Crete, being known from only two 

limestone gorges in the central part of the island (Greuter et al., 1982). It is 

closely related to M. arborea and some authors have included it within that 

species at the subspecific level (Sobrino et al., 2000).  

Medicago citrina is a Spanish endemic restricted to a few small islets 

surrounding the Balearic Islands (Alomar et al., 1997), and the Valencian 

Community, where the species is represented at the volcanic Columbretes 

archipelago (Bolòs & Vigo, 1984), and a small islet by the East coast of the 

Iberian Peninsula (Serra et al., 2001). It was first described as a pale, yellow-

flowered variety of M. arborea (Font Quer, 1924), and concerns about its 

specific status have been reported by several authors (Bolòs & Vigo, 1974; 

Lesins & Lesins, 1979; Pérez-Bañón et al., 2003; Small & Jomphe, 1989). 

Taken together, all the karyological data unequivocally support the 

recognition of M. citrina as a distinct species (Rosato & Rosselló, 2009). 



144 

 

Although no clear evidences have been published and further studies 

will be needed, we have noticed (personnel observations, E. Laguna and P. 

Ferrer-Gallego) that for some of the most apparent external, morphometric 

characters (size of leaves and flowers, size of flower pieces, legume shape), 

several differences can be easily appreciated, both in situ and ex situ 

collections of adult plants, for M. citrina. Juan (2002) demonstrated that the 

population of M. citrina from a small islet -‘Illot de la Mona’ or ‘Escull del 

Cap’- very close to the continent in NE of Alicante, shows clear 

morphometric differences with respect to the rest of the known native 

populations - Columbretes and Balearic islands - for the flower pieces. In 

addition, further studies both using AFLPs (Juan et al., 2004) and mixed 

genetic-morpholocical analyses (Crespo et al., 2008) have found genetic 

differences among the four main populations known for this species: 

Alicante, Columbretes, Cabrera and Ibiza islands. Besides the data and 

evidences for M. citrina, the cultivated plants of M. arborea also shows 

apparent differences in fruit shape and leaf colour (E. Laguna, pers. obs.).  

The potential of biometric indices is well known and many authors 

exploited it for various studies related to seeds, particularly regarding 

morpho-colorimetric evaluations (e.g. Granitto et al., 2003; Grillo et al., 

2011; Kiliç et al., 2007; Shahin & Symons, 2003; Smykalova et al., 2013; 

Venora et al., 2007; Venora et al., 2009a; Wiesnerova & Wiesner, 2008). 

Bacchetta et al. (2008) characterized seeds of wild vascular plants of the 

Mediterranean Basin, using digital images and implementing statistical 

classifiers able to discriminate seeds belonging to different genera and 

species. Then, Grillo et al. (2010) improved that classification system, 

developing 10 specific statistical classifiers at the family level for 

Angiosperms and testing the system on the genus Juniperus L. 

(Cupressaceae), demonstrating that the method is also reliable for 
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Gymnosperms. Recently, Pinna et al. (2014) focalized this topic on 

Mediterranean taxa of Juniperus at interspecific, specific and intraspecific 

levels, and shortly before Orrù et al. (2012) confirmed the effectiveness of 

this identification method, studying seeds of Vitis vinifera L. varieties. 

Afterwards, many authors have successfully used Elliptic Fourier Descriptors 

in seed studies (e.g. Mebatsion et al., 2012; Orrù et al., 2013; Terral et al., 

2010). 

Applying the same technical approach, the aim of this study is to 

investigate the Medicago sect. Dendrotelis taxa, in order to evaluate the seed 

morpho-colorimetric variability, finding additional evidences to reinforce the 

most recent taxonomical treatment which divide this section into three 

species, as found by Juan et al. (2003) and Rosato et al. (2008) using 

molecular techniques. 

 

Material and Methods 

Seed collection and image acquisition  

A total of 1295 seeds of 13 accessions belonging to three Medicago 

species of the sect. Dendrotelis and three accessions of the related M. marina 

L. from section Medicago, used as out-group, were collected, during a period 

of ten years, in Mediterranean Basin countries (Table 1) and stored in the 

Sardinian Germplasm Bank (BG-SAR), according to Bacchetta et al. (2008). 

Digital images of seeds were acquired using the same equipment and 

following the same procedure reported in Chapter I, and processed using the 

software package KS-400 V. 3.0 (Carl Zeiss, Vision, Oberkochen, Germany). 

A macro specifically developed for the characterization of seeds (Venora et 

al., 2009b), was modified to perform automatically all the analysis 

procedures, reducing the execution time and contextually mistakes in the 

analysis process. 
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Table 1. Collecting years, localities, geographic coordinates and seed amount of the three studied 
Medicago species of the sect. Dendrotelis.  
 

Taxon 
Collecting 

year Locality 

Biogeographic 
Province 

according to 
Rivas-

Martínez 
(2004) 

Geographic coordinates 

Seed 
number N E 

M. 
citrina 

2012 
Columbretes 
(Spain) 

Balearic 39º53’58.49’’ 0º48’0.88’’ 100 

2012 

Illot de la 
Mona 
(Spain) 

Valencian-
Catalonian 

38º48’0.88’’ 0º41’2.18’’ 100 

2013 

Illot de Ses 
Bledes 
(Balearic 
Islands) 

Balearic 39º 8’ 18.67’’ 2º 57’ 41.93’’ 100 

M. 
arborea 
 

2005 

Castel 
Boccale 
(Italy) 

Padanian 45°8’9.34’’ 10°54’54.90’’ 100 

2006 

Castel 
Boccale 
(Italy) 

Padanian 
  100 

2013 

Castel 
Boccale 
(Italy) 

Padanian 
  100 

2012 

Parque 
Natural El 
Montgó 
(Spain) 

Valencian-
Catalonian 

38º49’4.96’’ 0º5’43.74’’ 100 

2013 
Capoterra 
(Sardinia) 

Sardinian 39°10’14.79’’ 8°57’24.16’’ 100 

2013 
Nebida 
(Sardinia) 

Sardinian 39°19’2.02’’ 8°26’13.24’’ 98 

2006 
Chios 
(Greece) 

Western 
Anatolian 

38°21’35.85’’ 26°7’22.07’’ 100 

2010 

Villefranche-
sur-Mer 
(France) 

Occitanian-
Provençal 

43°41’45.89’’ 7°18’15.89’’ 100 

2005 
Porquerolles 
(France) 

Occitanian-
Provençal 

43°0’0.12’’ 6°12’13.12’’ 97 

M. 
strasseri 2014 

Crete 
(Greece) 

Cretan 35°30’14.84’’ 24° 2’29.69’’ 100 

M. 
marina 

2009 

Playa 
Mesqueda - 
Mallorca 
(Balearic 
Islands) 

Balearic 39°44’55.87’’  3°24’38.53’’ 100 

2009 
Is Arenas 
(Sardinia) 

Sardinian 39°31'31.73" 8°26'24.61" 100 

2009 

Castel 
Porziano 
(Italy) 

Coastal West 
Italian 

 41°41'50.91" 12°23'20.67" 100 
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Morpho-colorimetric analysis: shape and texture descriptors 

In order to improve the discrimination power, the macro was further 

enhanced adding algorithms able to compute the Elliptic Fourier Descriptors, 

hereafter EFDs (Iwata et al., 2002, 2004; Kawabata et al., 2009; Orrù et al., 

2012, 2013; Yoshioka et al., 2004) for each analyzed seed. This method 

allows description of the boundary of the seed projection as an array of 

complex numbers which correspond to the pixel positions on the seed 

boundary. So, from the seed apex, defined as the starting point in a Cartesian 

system, chain codes are generated. A chain code is a lossless compression 

algorithm for binary images. The basic principle of chain codes is to 

separately encode each connected component (pixel) in the image. The 

encoder then moves along the boundary of the image and, at each step, 

transmits a symbol representing the direction of this movement.  

This continues until the encoder returns to the starting position. This method 

is based on separate Fourier decompositions of the incremental changes of 

the X and Y coordinates as a function of the cumulative length along the 

boundary (Kuhl & Giardina, 1982). Each harmonic (n) corresponds to four 

coefficients (an, bn, cn and dn) defining the ellipse in the XY plane. The 

coefficients of the first harmonic, describing the best fitting ellipse of 

outlines, are used to standardize size (surface area) and to orientate seeds 

(Terral et al., 2010). According to Terral et al. (2010), about the use of a 

number of harmonics for an optimal description of seed outlines, in order to 

minimize the measurement errors and to optimize the efficiency of shape 

reconstruction, 20 harmonics were used to define the seed boundaries, 

obtaining a further 78 parameters useful to discriminate among the studied 

seeds (Orrù et al., 2013). 

Moreover, the macro was further improved adding algorithms able to 

compute 11 Haralick’s descriptors and the relative standard deviations for 
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each analyzed seed (Lo Bianco et al., submitted). These parameters are 

generally used when the objects in the images cannot be separated due to 

indefinite grey values variations. In these cases, the evaluation of texture, 

tone and context allows to define the spatial distribution of the image 

intensities and discrete tonal features. When a small area of the image has 

little variation of discrete tonal features, the dominant property of that area is 

grey tone. When a small area has wide variation of discrete tonal features, the 

dominant property of that area is texture (Haralick & Shapiro, 1991). 

According to Haralick et al. (1973), the concept of tone is based on varying 

shades of grey of resolution cells in a photographic image, while texture is 

concerned with the spatial (statistical) distribution of grey tones. Texture and 

tone are not independent concepts; rather, they bear an inextricable 

relationship to one another very much like the relationship between a particle 

and a wave. Context, texture and tone are always present in the image, 

although at times one property can dominate the others. 

The basis for these features is the gray-level co-occurrence matrix (G in 

equation 1). This matrix is square with dimension Ng, where Ng is the 

number of gray levels in the image. Element [i, j] of the matrix is generated 

by counting the number of times a pixel with value i is adjacent to a pixel 

with value j and then dividing the entire matrix by the total number of such 

comparisons made. Each entry is therefore considered to be the probability 

that a pixel with value i will be found adjacent to a pixel of value j. 
 

(1) 
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In table 2, the 11 Haralick’s descriptors measured on each seed to 

mathematically describe the surface texture, are reported. 

 

Table 2. Haralick’s descriptors measured as reported in Haralick et al. (1973). 
 Feature Equation 

Har 1 Angular second moment 

 
Har 2 Contrast 

 
Har 3 Correlation 

 
  where µx, µy, σx and σy are the means and the standard 

deviations of px and py. 
 

Har 4 Sum of square: variance 

 
Har 5 Inverse difference 

moment 
 

Har 6 Sum average 

 
  where x and y are the coordinates (row and column) of an 

entry in the co-occurrence matrix, and px+y(i) is the probability 
of co-occurrence matrix coordinates summing to x+y. 
 

Har 7 Sum variance 

 
Har 8 Sum entropy 

 
Har 9 Entropy 

 
Har 10 Difference variance 

 
Har 11 Difference entropy 
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Mean seed weight and 137 morphometric, colorimetric and textural 

characters were measured on each seed (Table 3). 

 

 

Table 3. List of morpho-colorimetric features measured on seeds, excluding the 78 Elliptic 
Fourier Descriptors calculated according to Hâruta (2011). 
 Feature Description 
A Area  Seed area (mm2) 
P Perimeter Seed perimeter (mm) 
Pconv Convex Perimeter  Convex perimeter of the seed (mm) 

PCrof Crofton’s Perimeter  
Perimeter of the seed calculated using the Crofton’s formula 
(mm) 

Pconv 
/PCrof 

Perimeter ratio Ratio between convex and Crofton’s perimeters 

Dmax Max diameter Maximum diameter of the seed (mm) 
Dmin Min diameter Minimum diameter of the seed (mm) 
Dmin 
/Dmax 

Feret ratio Ratio between minimum and maximum diameters 

Sf Shape Factor 
Seed shape descriptor = (4 x π x area)/perimeter2 (normalized 
value) 

Rf Roundness Factor 
Seed roundness descriptor = (4 x area)/(π x max diameter2) 
(normalized value) 

Ecd Eq. circular diameter 
Diameter of a circle with an area equivalent to that of the seed 
(mm) 

EAmax Maximum ellipse axis Maximum axis of an ellipse with equivalent area (mm) 
EAmin Minimum ellipse axis Minimum axis of an ellipse with equivalent area (mm) 
Rmean Mean red channel  Red channel mean value of seed pixels (grey levels) 
Rsd Red std. deviation Red channel standard deviation of seed pixels 
Gmean Mean green channel  Green channel mean value of seed pixels (grey levels) 
Gsd Green std. deviation  Green channel standard deviation of seed pixels 
Bmean Mean blue channel  Blue channel mean value of seed pixels (grey levels) 
Bsd Blue std. deviation  Blue channel standard deviation of seed pixels 
Hmean Mean hue channel  Hue channel mean value of seed pixels (grey levels) 
Hsd Hue std. deviation  Hue channel standard deviation of seed pixels 

Lmean 
Mean lightness 
channel 

Lightness channel mean value of seed pixels (grey levels) 

Lsd 
Lightness std. 
deviation 

Lightness channel standard deviation of seed pixels 

Smean 
Mean saturation 
channel 

Saturation channel mean value of seed pixels (grey levels) 

Ssd 
Saturation std. 
deviation 

Saturation channel standard deviation of seed pixels 

Dmean Mean density Density channel mean value of seed pixels (grey levels) 
Dsd Density std. deviation  Density channel standard deviation of seed pixels 
S Skewness Asymmetry degree of intensity values distribution (grey levels) 

K Kurtosis 
Peakness degree of intensity values distribution (densitometric 
units) 

H Energy Measure of the increasing intensity power (densitometric units) 
E Entropy Dispersion power (bit) 
Dsum Density sum Sum of density values of the seed pixels (grey levels) 
SqDsum Square density sum Sum of the squares of density values (grey levels) 
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Statistical analysis  

The achieved results were used to build a database including morpho-

colorimetric, EFDs and Haralick’s descriptors. Statistical elaborations were 

executed using SPSS software package release 15 (SPSS, 2007), and the 

stepwise Linear Discriminant Analysis (LDA) method was applied to identify 

and discriminate among the investigated Medicago accessions.  

This approach is commonly used to classify/identify unknown groups 

characterized by quantitative and qualitative variables (Duda et al., 2000; 

Fisher, 1936, 1940; Fukunaga, 1990), finding the combination of predictor 

variables with the aim of minimizing the within-class distance and 

maximizing the between-class distance simultaneously, thus achieving 

maximum class discrimination (Hastie et al., 2001; Holden et al., 2011; Kuhn 

& Johnson, 2013; Rencher & Christensen, 2012). Then, the stepwise 

procedure identifies and selects the most statistically significant features 

among the 137 measured on each seed (Grillo et al., 2012; Venora et al., 

2009a). Finally, a cross-validation procedure was applied to verify the 

performance of the identification system, testing individual unknown cases 

and classifying them on the basis of all others (SPSS, 2007). 

To graphically highlight the differences among groups, 

multidimensional plots were drawn using the first three discriminant 

functions or, alternatively, when the number of discriminant groups n did not 

allow to obtain at least three discriminant functions (n−1), bidimensional 

plots were drawn. To represent the morpho-colorimetric variability among 

taxonomical groups, box plots were drawn using the Mahalanobis’ square 

distance values (Mahalanobis, 1936). This measure of distance is defined by 

two or more discriminant functions and ranges from 0 to infinite. Samples are 

increasingly similar at values closer to zero. Higher values indicate that a 

particular case includes extreme values for one or more independent 
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variables, and can be considered significantly different to other cases of the 

same group (Bacchetta et al., 2008). 

 

Results  

Data obtained by measuring mean seed weight and 137 morpho-

colorimetric quantitative variables describing seed size, shape and colour, 

were analysed by stepwise LDA, and statistical classifiers were developed in 

order to distinguish the three studied taxa. 

 The three taxa belonging to the sect. Dendrotelis were perfectly 

identified and classified (data not shown). Figure 1 report a graphical 

distribution of the three taxonomical groups on the basis of the two available 

discriminant function. In order to validate the comparison among the three 

studied taxa, M. marina was included in this analysis as out-group, resulting 

perfectly distinguished from the other species of the section Dendrotelis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical representation of the discriminant analysis for Medicago species. 
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A further comparison was implemented between M. arborea and M. 

citrina, in order to assess their taxonomic identity or their similarity level 

without the influence of M. strasseri, because it has a distribution area non-

overlapping with the other two taxa. Also in this case, a perfect 

discrimination was achieved (data not shown). To evaluate and compare the 

specific morpho-colorimetric variability of these two taxa, the Mahalanobis’ 

square distance values were used highlighting the spatial dispersion between 

M. arborea and M. citrina species (Fig. 2).  

 

 
Figure 2. Graphic representation of the Mahalanobis’ square distance values of  

M. arborea and M. citrina species. 
 

 

Analyzing in more detail the relationship between M. arborea and M. 

citrina, the seeds of the available Spanish populations - mainland Spain and 

close archipelagos, excluding Balearic Islands - were compared. The M. 

citrina populations of Columbretes and Illot de la Mona, and that of M. 

arborea from Parque Natural El Montgó, resulted perfectly distinguishable 
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with an overall cross-validated percentage of correct identification of 100.0% 

(Table 4). Applying the same statistical model, the seeds of the two 

populations of M. citrina were grouped, incrementing the within variability 

of this species group, and compared with the Spanish population of M. 

arborea. One more time, 100.0% of correct identification was reached at 

species level (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Percentage of correct identification among M. citrina and M. arborea Spanish populations. In 
parenthesis, the number of seeds analyzed. 

 

 
M. citrina  

Columbretes 
(Castellon) 

M. citrina  
Illot de la Mona 

(Alicante) 

M. arborea 
 Parque Natural El Montgò 

(Alicante) 
Total 

M. citrina  
Columbretes (Castellon) 100.0 (100) - - 

100.0 
(100) 

M. citrina  
Illot de la Mona (Alicante) 

- 100.0 (100) - 
100.0 
(100) 

M. arborea  
Parque Natural el Montgó 
(Alicante) 

- - 100.0 (100) 
100.0 
(100) 

Overall    100.0 
(300) 
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A separate comparison was carried out among the three studied 

populations of M. citrine to evaluate the inter-population variability (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Graphic representation of the discriminant function scores for the 
three population of M. citrina. 

 

 

Also in this case, high performances were obtained, achieving a 

percentage of correct classification of 99.0%. The population of Illot de la 

Mona (Spain) was perfectly discriminated, while slight misclassifications 

were recorded between M. citrina seeds from Columbretes (Spain) and from 

Illot de Ses Bledes (Balearic Islands), correctly distinguished in 99.0 and 

98.0% of the cases, respectively (data not shown).  
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Furthermore, M. arborea taxa were compared, distinguishing them by 

region of provenance and reaching 94.2% of overall accuracy (Table 5, Fig. 

4). In particular, all the seeds from Spain were correctly assigned, and no 

seed from other regions was mistakenly assigned to this group. Seeds from 

Sardinia were correctly discriminated with 93.4% accuracy, erroneously 

attributed to Italy and France in 5.6% and 1.0% of the cases, respectively. 

Seeds from Italy were correctly discriminated with 94.0% accuracy, equally 

distributing the misclassified cases with Sardinian and French seed groups. A 

satisfactory result was obtained for seeds from Greece, which percentage of 

correct classification was 98.0%, while only 2.0% was wrongly classified as 

seed from Italy. Contrastingly, seeds from France showed the lowest 

percentage of correct assignment (90.4%), due to the assignment of 6.6% of 

them to Italy seed group, 2.5% to Sardinia group and 0.5% to Greece one.  

 

Table 5. Percentage of correct identification among M. arborea taxa, carried out for regions of 
provenance. In parenthesis, the number of seeds analyzed. 
 

 Sardinia Italy Spain Greece France Total 

Sardinia 93.4 (185) 5.6 (11) - - 1.0 (2) 100.0 (198) 

Italy 3.0 (9) 94.0 (282) - - 3.0 (9) 100.0 (300) 

Spain - - 100.0 (100) - - 100.0 (100) 

Greece - 2.0 (2) - 98.0 (98) - 100.0 (100) 

France 2.5 (5) 6.6 (13) - 0.5 (1) 90.4 (178) 100.0 (197) 

Overall      94.2 (895) 
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Figure 4. Graphic representation of the discriminant function scores for the five regions  
of provenance of M. arborea. 

 

For each of these statistical comparisons, the best five discriminant 

variables chosen by the stepwise method are shown in Table 6. In the 

evaluation of the parameters that more than other influenced the 

discrimination process of the Medicago taxa, the most important variables 

were related to colour and textural information. Only for the first two 

classifiers at species level, the mean seed weight represented the most 

powerful parameter used in the discriminant functions, showing a 

significantly high value of F-to-remove (Table 6). For the other processing 

analyses, this parameter was not present in the discriminant function or 

appeared after the first ten most important ones, as occurred in the 

discrimination of M. arborea taxa by geographical region. In this last, as well 

as in the comparison carried out to correlate the Spanish populations of M. 

arborea and M. citrina, the Haralick’s descriptors were found to be 

particularly powerful among the best five key parameters (Table 6).  
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Discussion 

With the aim of confirm the most recent taxonomical treatment that 

includes into the section Dendrotelis three species of Medicago, seed 

morpho-colorimetric variability of M. arborea, M. citrina and M. strasseri 

was investigated applying image analysis techniques to extract accurate 

measurements and the LDA to statistically compare them. 

According to the first preliminary comparison, the three studied 

species were perfectly distinguishable (Fig. 1). This satisfactory 

discrimination agrees with the results reported by Juan et al. (2003) and 

Rosato et al. (2008) on the basis of molecular techniques, confirming the 

current taxonomic treatment at the section level.  

Table 6. Number of groups, discriminant steps and performance of identification. Ranking of the 
best five discriminant parameters and the percentage of correct classification are reported for each of 
the implemented statistical comparisons (C1 = comparison among M. arborea, M. citrina and M. 
strasseri; C2 = comparison between M. arborea and M. citrina; C3 = comparison among the Spanish 
population of M. arborea and M. citrina; C4 = comparison among the M. arborea taxa distinguished 
by region of provenance; C5 = comparison among the M. citrina populations). 

 

 C1 C2 C3 C4 C5 

N of groups 3 2 3 5 3 

      

N of steps 28 23 29 47 27 

      

1st discriminant 
parameter 

Weight 
(0.29; 10585.55; 

0.13) 

Weight  
(0.36; 3910.32; 

9.17e-6) 

Har6 

(0.03; 8861.38; 
9.91e-6) 

Ssd 

(0.06; 169.42; 
0.01) 

Har6 

(0.03; 5060.28; 
5.51e-6) 

2nd discriminant 
parameter 

Gmean  

(0.03; 166.56; 
0.02) 

E 
(0.01; 138.56; 

1.12e-6) 

Har10 

(0.01; 437.41; 
6.30e-6) 

Smean  

(0.02; 105.16; 
0.01) 

Har10 

(0.01; 591.27; 
8.39e-6) 

3rd discriminant 
parameter 

Rsd 

(0.01; 152.17; 
0.02) 

Har7 
(0.02; 5.37; 

9.17e-6) 

Smean 

(0.04; 280.76; 
4.58e-6) 

S 

(0.43; 66.92; 
0.01) 

Har9 

(0.03; 387.09; 
6.25e-6) 

4th discriminant 
parameter 

Lmean 

(0.01; 120.88; 
0.01) 

SqDsum 
(0.01; 109.86; 

1.06e-6) 

Har9 
(0.03; 272.48; 

4.48e-6) 

Har10 

(0.17; 41.77; 
0.01) 

Harsd10 

(0.08; 108.67; 
3.34e-6) 

5th discriminant 
parameter 

Lsd 

(0.01; 152.17; 
0.02) 

Gsd 
(0.10; 103.57; 

1.05e-6) 

Ssd 
(0.08; 239.08; 

4.12e-6) 

E 
(0.01; 35.75; 

0.01) 

Harsd4 
(0.16; 106.10; 

3.31e-6) 

      

Percentage of correct 
identification between 
groups 

100.0% 100.0% 100.0% 94.2% 99.0% 

For each parameter, the tolerance, F-to-remove and Wilks’ lambda values are reported in brackets. 
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Considering the non-overlapping geographical distribution of M. 

strasseri respect to that the couple M. arborea and M. citrina, a comparison 

was conducted between these last two species, highlighting the marked 

morpho-colorimetic differentiation between them and confirming the clear 

taxonomic distance between these species. Molecular cytogenetic studies 

have been relevant to assess the recognition of M. citrina (hexaploid) as a 

distinct species relating to M. arborea and M. strasseri too (tetraploids) 

(Boscaiu et al., 1997; Cluster et al., 1996; Falistocco, 1987; González-Andrés 

et al., 1999; Rosato et al., 2008). Moreover, analyzing the spatial dispersion 

of the statistical cases by the Mahalanobis’ square distance values, it is 

possible to deduce that the inter-specific morpho-colorimetric variability of 

the M. citrina is sensibly higher than M. arborea, although M. arborea seed 

sample is numerically more conspicuous then M. citrina (Fig. 2).  

To better understand the relationship between M. arborea and M. 

citrina a comparison among the three Spanish populations of these two 

species was implemented, giving a perfect correct identification also in this 

case. This achievement suggests that seed colour and texture descriptors are 

able to discriminate among different populations from the same geographical 

area (Tab. 4). These results support as reported by Juan et al. (2003) on 

flower pieces, demonstrating that the population of M. citrina from Illot de la 

Mona shows clear morphometric differences with respect to the Columbretes 

and Balearic Islands populations. Furthermore, the same authors (Juan et al., 

2004) and later Crespo et al. (2008) found genetic differences between the 

four main populations known for this species by means of mixed genetic and 

morphological analyses. Similar results were reached comparing the three 

available populations of M. citrina, supporting these findings (Fig. 3). 
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In order to analyze more in detail the M. arborea variability, a 

comparison among the region of provenience was conducted (Table 5, Fig. 

4). The perfect identification obtained for the seeds from Spain should 

indicate that these populations are independent from the morphological, 

genetic and evolutive points of view, respect to the populations from the 

other studied Mediterranean regions. On the other hand, the 

misidentifications highlighted among the seeds from Sardinia, Italy and 

France, although in low percentages, could suggest a certain connection 

among these regions and a consequent genetic flow mirrored in some 

morpho-colorimetric seed characters. The little misattribution of 2% of the 

seeds from Greece as Italy should support this idea, allowing to presume a 

plausible link with Italy.  

By evaluating the contribution of the variables, using the 

discrimination algorithm (LDA), it was possible to identify the features that, 

more than others, were relevant for the discrimination of the Medicago taxa 

studied. At specific and intraspecific level, parameters related to the seed 

colour and texture proved to be more discriminant than the size or shape-

descriptive ones.  

One important difference among the three species of section 

Dendrotelis is the weight, necessarily related to size of seeds, larger in M. 

citrina, intermediate in M. arborea and smaller in M. strasseri (Greuter et al., 

1982; Robledo et al., 1993). Furthermore, as reported by González-Andrés 

(1999) the seeds of M. citrina seems to be more rounded, the seeds of M. 

strasseri have a longer hilum compared with the total length of the seed, and 

the hilum angle is higher in M. citrina, lower in M. strasseri and intermediate 

in M. arborea. Nevertheless, features describing of the seed shape don’t 

appear among the first five discriminant parameters (Table 6). 
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On the other hand, the recent literature proves that the study of 

surface texture of an object, whatever its nature, seems to be of great 

importance for its characterization (Diamond et al., 2004; Gerger & Smolle, 

2004; Nanni et al., 2010). The results reported in table 6 confirm this 

assumption. Except the mean seed weight that resulted to be the most 

discriminant character in the two comparisons conducted at species level, 

only colorimetric and textural parameters appear among the best five for each 

executed statistical comparison. This achievement highlights the importance 

of the introduction of these descriptors, improving the image analysis system 

previously developed by Grillo et al. (2010) in which morphometric features 

were the first discriminant parameters. Also in Bacchetta et al. (2011), 

regarding the Lavatera triloba aggregate, the first three parameters with the 

highest discriminatory power were of morphological type, although colour 

evaluation was very important in this work for correct seed identification.  

The present results confirmed the validity of the proposed method for the 

taxonomic differentiation of Medicago at specific levels, and its identification 

capability of regional and populational groups. 
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Chapter 3 

Morpho-colorimetric characterization of Malva alliance taxa by seed 

image analysis 

 

Abstract 

Seed morphometric and colorimetric features, describing shape, size, 

and textural seed traits, of 28 taxa belonging to the genus Lavatera and 

Malva were measured using an image analysis system. The data were 

statistically analyzed to contribute to the taxonomical treatment of the 

Malvae alliance and to evaluate some doubtful systematic position. A clear 

differentiation between the taxa traditionally attributed respectively to the 

genus Lavatera and Malva, was highlighted. Furthermore, the image analysis 

system here proposed, was able to discriminate among the Lavatera sections, 

confirming the taxonomic organization for this genus. Similarly, the results 

obtained for Malva, both at species level and among sections, supported this 

analytical tool as diagnostic for systematic purposes. 

 

 

 

 

 

 

 

 

 

 

 



171 

 

 

Introduction 

The family of Malvaceae A.L. de Jussieu, is represented by dialipetals 

and pentamerous plants, with hermaphrodite and actinomorphic flowers or 

with a weak tendency to zygomorphism (Klitgård, 2013). 

Malvaceae includes more than 100 genera and 2000 species, grouped in five 

tribes, with cosmopolite chorology, some of them invasive, mostly spread at 

tropics, especially in Southern America (Tutin, 1964). The Malva alliance 

(Malva, Lavatera and annexed genera; Bates, 1968) led, more than once, to 

different opinions among those who investigated these taxa from a 

phylogenetic and morphological point of view through traditional 

classification systems. These problems arise from the high level of 

homoplasy in morphological characters that distinguishes the entire group 

(Escobar et al., 2009). 

Linneaus (1753) emphasized the characters of the epicalyx as a 

discriminating factor of Lavatera and Malva genera. According to this 

classification system, followed by many others (e.g., de Candolle, 1824; 

Baker, 1890; Fernandes, 1968a,b) and still the most frequently used in 

modern floras (e.g., Flora Europaea, Flora USSR, Flora Iberica), the c. 20 

species of Lavatera (Mediterranean herbs and shrubs with highest diversity in 

the western Mediterranean, a few shrubby species in California and Mexico, 

Ethiopia and Western Australia; Tournefort, 1706; Fernandes, 1968b) have 

three fused epicalyx bracts; while the c. 12 perennial and annual species of 

Malva (native to Eurasia with the center in the western Mediterranean, 

introduced elsewhere: Morton, 1937; Dalby, 1968), are characterized by also 

three (sometimes two) but free epicalyx bracts (Escobar et al., 2009). 
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By molecular analysis, Ray (1995) reassessing the phylogeny of the 

two genera highlighting the existence of two groups of species, 

morphologically characterized by the peculiarities of the fruits: 

 

- Clade of Lavateroids: monophyletic group including 16 Euro-

Mediterranean species belonging to the genera Lavatera and Malva, 

characterized by fruits with melted mericarps that open when ripe 

releasing the seeds, while the walls remain attached to a carpophore 

more or less developed in so as to form small patches of hyaline. This 

type of result is not attributable to a true schizocarp but rather to an 

intermediate form between a schizocarp and a capsule. 

 

- Clade of Malvoids: monophyletic group of species belonging to both 

genera Lavatera and Malva, mainly with cosmopolitan chorology, 

also including those  

 
- of the genus Lavatera distributed in Australia and the New World. 

These species possess schizocarps, with mericarps with thick walls 

and angular, not releasing the seed but that detach from the fruiting 

bodies separately or entirely (as in the case of Malva nicaeensis All.). 

 

These morphological differences were strongly supported by analysis 

of interstitial telomeric sequences (ITS) that allowed the distinction of the 

two groups of species. According to Ray (1995), the clades are perfectly 

distinguishable by the analysis of the characteristics of the fruit. These results 

derived by molecular analysis have been recognized by Bayer & Kubitzki 

(2003) as a starting point for the division of the two genera and currently the 
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only genus Lavatera would include the species with “Lavateroid” fruit as 

defined by Ray (1995). 

Nevertheless, molecular studies on the Malva alliance carried out by Ray and 

other authors (Fuertes Aguilar et al., 2002, Tate et al., 2005), are currently 

considered as partial, because based on a not completed samples of taxa 

(Escobar et al., 2009). Recently, challenging the already abandoned Linnean 

classification scheme based on the characters of epicalyx, but without 

considering the characteristics of schizocarp, and following the principle of 

priority established by International Code of Botanical Nomenclature 

(ICBN), Banfi et al. (2005) proposed to consider a single genus Malva for all 

entities, except the Macaronesian endemite Navaea phoenicea (Vent.) Webb 

& Berthel. 

 Being the taxonomic treatment of Lavatera and Malva controversial, 

the potential of biometric indices of the seeds, as tool for the systematic 

approach and differentiation between the two genera, was investigated. 

Previously, Bacchetta et al. (2011a), successfully demonstrated the evidence 

on taxonomical differentiation inside the genus Lavatera L. sect. 

Glandulosae by seed phenetic characterization using a seed image analysis 

system. Several authors deal with morpho-colorimetric evaluations of seeds 

for similar purposes (Granitto et al., 2003; Shahin & Symons, 2003a; Kilic et 

al., 2007; Venora et al., 2007, 2009a; Grillo et al., 2011; Smykalova et al., 

2013). In particular, seed image analysis has gained relevance in 

morphometrics and colour evaluation (Granitto et al., 2003; Wiesnerova & 

Wiesner, 2008; Venora et al., 2009a) for its utility in the identification of 

diasporas of wild plant species (Rovner & Gyulai, 2007; Bacchetta et al., 

2008a, 2011b; Grillo et al., 2010, 2013; Pinna et al., 2014; Santo et al., 

2015), proving to be a useful tool for taxonomic studies, where very close 

taxa need to be characterized and discriminated.  
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Afterwards, many authors have successfully used Elliptic Fourier 

Descriptors, hereafter EFDs in seed studies (e.g. Yoshioka et al., 2004; Terral 

et al., 2010; Mebatsion et al., 2012; Orrù et al., 2013; Ucchesu et al., 2015; 

Sabato et al., submitted) as well as, “Haralick” parameters, evaluating the 

surface texture of seeds (Diamond et al., 2004; Gerger & Smolle, 2004; 

Nanni et al., 2010; Lo Bianco et al., submitted).  

The aim of the present work is to contribute to the assessment of the 

taxonomic position of taxa belonging to the Lavatera and Malva genera, by 

investigating the morphometric and colorimetric features of the germplasm 

features of their seeds. 

 

Material and methods 

Lavatera and Malva seed lots 

Seeds of 20 taxa of Lavatera belonging to 55 populations and eight 

taxa of Malva from eight populations were collected, in ten different 

geographical regions during a period of ten years. An overall of 79 

accessions (Table 1) were studied and, in order to allow an effective long 

time storage, they were ultra-dried out down to 2-3% R.H., guaranteeing 

homogeneity and regularity in seed size and weight (Pérez-García et al., 

2007). Finally, they were hermetically sealed in glass tubes with capsules of 

micro-granular silica gel and stored at -25°C in a cold room, in the Sardinian 

Germplasm Bank (BG-SAR), according to the protocols reported in 

Bacchetta et al. (2008b). 
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Table 1. Populations, sampling years and seed amount of the studied Lavatera and Malva 
taxa. 

 

Taxon Accepted name Sectio Population 
Geographical 

region 
Collecting 

year 
Seed 

amount 

Lavatera 
acerifolia 

Malva acerifolia 
(Cav.) Alef. 

Axolopha 

Icod de los 
Vinos (Santa 
Cruz de 
Tenerife) 

Spain 2005 100 

Lavatera 
agrigentina 

Malva 
agrigentina 
(Tineo) Soldano 
& al. 

Glandulosae Agira (Enna) Sicily 2010 100 

Lavatera 
agrigentina 

Malva 
agrigentina 
(Tineo) Soldano 
& al. 

Glandulosae Assoro (Enna) Sicily 2010 100 

Lavatera 
agrigentina 

Malva 
agrigentina 
(Tineo) Soldano 
& al. 

Glandulosae 
Ponte 
Capotarso 
(Caltanisetta) 

Sicily 2008 99 

Lavatera 
agrigentina 

Malva 
agrigentina 
(Tineo) Soldano 
& al. 

Glandulosae 
Piana Grande, 
Ribera 
(Agrigento) 

Sicily 2008 100 

Lavatera 
arborea 

Malva arborea 
(L.) Webb & 
Berthel. 

Anthema 

Saline 
Sant’Antioco 
(Carbonia-
Iglesias) 

Sardinia 2008 100 

Lavatera 
arborea 

Malva arborea 
(L.) Webb & 
Berthel. 

Anthema 

Mora de Santa 
Quiteria, 
Tobarra 
(Albacete) 

Spain 2003 33 

Lavatera 
arborea 

Malva arborea 
(L.) Webb & 
Berthel. 

Anthema 

Porto 
Campana, 
Domus de 
Maria 
(Cagliari) 

Sardinia 2007 100 

Lavatera 
arborea 

Malva arborea 
(L.) Webb & 
Berthel. 

Anthema 

Porto 
Campana, 
Domus de 
Maria 
(Cagliari) 

Sardinia 2007 37 

Lavatera 
arborea 

Malva arborea 
(L.) Webb & 
Berthel. 

Anthema 

Porto 
Campana, 
Domus de 
Maria 
(Cagliari) 

Sardinia 2007 100 

Lavatera 
arborea 

Malva arborea 
(L.) Webb & 
Berthel. 

Anthema 

Capo Testa, 
Santa Teresa di 
Gallura (Olbia-
Tempio) 

Sardinia 2012 100 

Lavatera 
assurgentiflora 

Malva 
assurgentiflora 
(Kellogg) 
M.F.Ray 

Anthema 
Strybing 
Arboretum 
(California) 

USA - 54 

Lavatera 
bryonifolia 

Malva 
unguiculata 
(Desf.) Alef. 

Olbia 
Rethymno 
(Crete) 

Greece - 11 

Table 1. Continue 

Lavatera cretica 
Malva multiflora 
(Cav.) Soldano 
& al. 

Anthema 
Calpe, Peñón 
de Ifach 
(Alicante) 

Spain 2004 90 

Lavatera flava 
Malva flava 
(Desf.) Alef. 

Glandulosae 
Tazaghine 
(Rif) 

Morocco 2009 200 

Lavatera 
maritima 

Malva subovata 
(DC.) Molero & 
J. M. Monts. 

Axolopha Nebida Sardinia 2008 100 
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Table 1. Continue 

Lavatera 
maritima 

Malva subovata 
(DC.) Molero & 
J. M. Monts. 

Axolopha 
Calpe, Peñón 
de Ifach 
(Alicante) 

Spain 2004 96 

Lavatera 
maritima 

Malva subovata 
(DC.) Molero & 
J. M. Monts. 

Axolopha BG-SAR Sardinia 2008 100 

Lavatera 
maritima 

Malva subovata 
(DC.) Molero & 
J. M. Monts. 

Axolopha BG-SAR Sardinia 2007 100 

Lavatera 
maritima 

Malva subovata 
(DC.) Molero & 
J. M. Monts. 

Axolopha BG-SAR Sardinia 2006 100 

Lavatera 
maritima 

Malva subovata 
(DC.) Molero & 
J. M. Monts. 

Axolopha BG-SAR Sardinia 2010 100 

Lavatera 
maroccana 

Malva 
maroccana 
(Batt. & Trab.) 
Soldano & al. 

Olbia 

Cabezas de San 
Juan, Laguna 
de la Cigarrera 
(Sevilla) 

Spain 2003 90 

Lavatera 
mauritanica 

Malva davaei 
(Cout.) Valdés 

Anthema 
Cabo de San 
Vicente 
(Algarve) 

Portugal 2003 100 

Lavatera 
moschata 

Malva moschata 
L. 

Bismalva 
Sankt 
Wolfgang 
(Salzburg) 

Austria 2005 100 

Lavatera 
oblongifolia 

Malva 
oblongifolia 
(Boiss.) Soldano 
& al. 

Olbia 
Ugijar 
(Granada) 

Spain 2010 100 

Lavatera 
oblongifolia 

Malva 
oblongifolia 
(Boiss.) Soldano 
& al. 

Olbia 
Alpujarra 
(Granada) 

Spain - 100 

Lavatera olbia 
Malva olbia (L.) 
Alef. 

Olbia 
Is molas, Pula 
(Cagliari) 

Sardinia 2012 100 

Lavatera olbia 
Malva olbia (L.) 
Alef. 

Olbia 

Monte 
Agruxau 
(Carbonia-
Iglesias) 

Sardinia 2010 100 

Lavatera plazzae 

Malva 
stenopetala 
(Batt.) Soldano 
& al. 

Olbia Giave (Sassari) Sardinia 2006 99 

Lavatera plazzae 

Malva 
stenopetala 
(Batt.) Soldano 
& al. 

Olbia Giave (Sassari) Sardinia 2006 100 

Lavatera 
punctata 

Malva punctata 
(All.) Alef. 

Olbia Aydin Turkey - 16 

Lavatera 
thuringiaca 

Malva 
thuringiaca (L.) 
Vis. 

Olbia Wien Austria 2008 81 

Lavatera triloba 
subsp. pallescens 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Buggerru 
(Carbonia-
Iglesias) 

Sardinia 2011 100 

Lavatera triloba 
subsp. pallescens 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Buggerru 
(Carbonia-
Iglesias) 

Sardinia 2011 100 

Lavatera triloba 
subsp. pallescens 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Buggerru 
(Carbonia-
Iglesias) 

Sardinia 2011 100 

Lavatera triloba 
subsp. pallescens 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Buggerru 
(Carbonia-
Iglesias) 

Sardinia 2009 100 

Lavatera triloba 
subsp. pallescens 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Buggerru 
(Carbonia-
Iglesias) 

Sardinia 2009 100 
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Table 1. Continue 

Lavatera triloba 
subsp. pallescens 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Buggerru 
(Carbonia-
Iglesias) 

Sardinia 2010 100 

Lavatera triloba 
subsp. pallescens 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Buggerru 
(Carbonia-
Iglesias) 

Sardinia 2010 100 

Lavatera triloba 
subsp. pallescens 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Chia, Domus 
de Maria 
(Cagliari) 

Sardinia 2005 90 

Lavatera triloba 
subsp. pallescens 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Chia, Domus 
de Maria 
(Cagliari) 

Sardinia 2005 100 

Lavatera triloba 
subsp. 
minoricensis 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Illa de l'Aire 
(Menorca) 

Balearic Islands 2008 100 

Lavatera triloba 
subsp. 
minoricensis 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Illa de l'Aire 
(Menorca) 

Balearic Islands 2008 80 

Lavatera triloba 
subsp. 
minoricensis 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae S’Escilas Balearic Islands 2008 80 

Lavatera triloba 
subsp. 
minoricensis 

Malva lusitanica 
subsp. pallescens 
(Moris) Valdés 

Glandulosae 
Punta Nati 
(Menorca) 

Balearic Islands 2008 30 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Diebres 
(Guadelajara) 

Spain 2008 25 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae Toledo Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 

Senda Galiana, 
Sierra de 
Cascojo 
(Toledo) 

Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae Toledo Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Almedina, 
Ciudad Real 

Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
El Bonillo  
(Albacete) 

Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Caspe 
(Zaragoza) 

Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
La Parra 
(Badajoz) 

Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Los Santos de 
Maimona 
(Badajoz) 

Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Zafra 
(Badajoz) 

Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Matanegra 
(Badajoz) 

Spain 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Correinas, 
Elmas 
(Cagliari) 

Sardinia 2010 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Sa Tuerra, 
Assemini 
(Cagliari) 

Sardinia 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Santa Maria, 
Assemini 
(Cagliari) 

Sardinia 2008 100 
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Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Tuerra, Domus 
de Maria 
(Cagliari) 

Sardinia 2010 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Canali Saliu, 
Pula (Cagliari) 

Sardinia 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Canali Saliu, 
Pula (Cagliari) 

Sardinia 2010 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Correinas, 
Elmas 
(Cagliari) 

Sardinia 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Stani de 
Serdiana 
(Cagliari) 

Sardinia 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Campu su 
Gureu, Sestu 
(Cagliari) 

Sardinia 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Riu Saliu, 
Selargius 
(Cagliari) 

Sardinia 2008 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Chia, Domus 
de Maria 
(Cagliari) 

Sardinia 2011 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae 
Terrasili, 
Assemini 
(Cagliari) 

Sardinia 2011 100 

Lavatera triloba 
subsp. triloba 

Malva lusitanica 
(L.) Valdés 
subsp. lusitanica 

Glandulosae Pula (Cagliari) Sardinia 2011 100 

Lavatera 
trimestris 

Malva trimestris 
(L.) Salisb. 

Olbia 
Chefchaouen 
(Rif) 

Morocco 2004 107 

Malva alcea Malva alcea L. Bismalva Mijares (Avila) Spain 2003 77 

Malva hispanica 
Malva hispanica 
L. 

Bismalva 
Guadajira, La 
Orden 
(Badajoz) 

Spain 2004 100 

Malva multiflora 
Malva multiflora 
(Cav.) Soldano 
& al. 

Anthema 
Poggio dei 
Pini, Capoterra 
(Cagliari) 

Sardegna 2012 98 

Malva nicaeensis 
Malva nicaeensis 
All. 

Malva 
Guadajira, La 
Orden 
(Badajoz) 

Spain 2004 90 

Malva parviflora 
Malva parviflora 
L. 

Malva 
Guadajira, La 
Orden 
(Badajoz) 

Spain 2004 100 

Malva sylvestris  
Malva sylvestris 
L. 

Malva 
Arganda del 
Rey (Madrid) 

Spain 2004 100 

Malva 
tournefortiana 

Malva 
tournefortiana L. 

Bismalva 

Talarrubias, 
Sierra de 
Puerto Peña 
(Badajoz) 

Spain 2004 16 

Malva 
verticillata 

Malva 
verticillata L. 

Malva Wien Austria - 102 
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Image analysis system 

Samples digital images, consisting of 100 seeds randomly disposed on 

tray, were acquired using a flatbed scanner (Epson GT-15000) with a digital 

resolution of 400 dpi and a scanning area not exceeding 1024×1024 pixel. 

For accessions of fewer than 100 seeds, the analysis was executed on the 

whole batch. A total of 7,178 seeds were analyzed. 

Image acquisition was performed before drying the seeds at 15°C to 

15% of R.H. to avoid spurious variation in dimension, shape and colour. The 

scanner was calibrated for colour matching following the protocol of Shahin 

and Symons (2003b) before seed samples image acquisition, as suggested by 

Venora et al. (2009b).  

Digital images of seeds were processed and analyzed using the 

software package KS-400 V. 3.0 (Carl Zeiss, Vision, Oberkochen, Germany). 

A macro specifically developed for the characterization of seeds (Venora et 

al., 2009b), was modified to perform automatically all the analysis 

procedures, reducing the execution time and contextually mistakes in the 

analysis process. 

In order to improve the discrimination power, this macro was further 

enhanced adding algorithms able to compute the EFDs for each analyzed 

seed. This method allows description of the boundary of the seed projection 

as an array of complex numbers which correspond to the pixel positions on 

the seed boundary. So, from the seed apex, defined as the starting point in a 

Cartesian system, chain codes are generated. A chain code is a lossless 

compression algorithm for binary images. The basic principle of chain codes 

is to separately encode each connected component (pixel) in the image. The 

encoder then moves along the boundary of the image and, at each step, 

transmits a symbol representing the direction of this movement. This 

continues until the encoder returns to the starting position. This method is 
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based on separate Fourier decompositions of the incremental changes of the 

X and Y coordinates as a function of the cumulative length along the 

boundary (Kuhl & Giardina 1982). Each harmonic (n) corresponds to four 

coefficients (an, bn, cn and dn) defining the ellipse in the XY plane. The 

coefficients of the first harmonic, describing the best fitting ellipse of 

outlines, are used to standardize size (surface area) and to orientate seeds 

(Terral et al. 2010). According to Terral et al. (2010), about the use of a 

number of harmonics for an optimal description of seed outlines, in order to 

minimize the measurement errors and to optimize the efficiency of shape 

reconstruction, 20 harmonics were used to define the seed boundaries, 

obtaining a further 78 parameters useful to discriminate among the studied 

seeds (Orrù et al. 2012). 

Moreover, the macro was further improved adding algorithms able to 

compute 11 Haralick’s descriptors and the relative standard deviations for 

each analyzed seed. These parameters are generally used when the objects in 

the images cannot be separated due to indefinite grey values variations. In 

these cases, the evaluation of texture, tone and context allows to define the 

spatial distribution of the image intensities and discrete tonal features 

(Haralick et al., 1973). When a small area of the image has little variation of 

discrete tonal features, the dominant property of that area is grey tone. When 

a small area has wide variation of discrete tonal features, the dominant 

property of that area is texture (Haralick & Shapiro, 1991). According to 

Haralick et al. (1973), the concept of tone is based on varying shades of grey 

of resolution cells in a photographic image, while texture is concerned with 

the spatial (statistical) distribution of grey tones. Texture and tone are not 

independent concepts; rather, they bear an inextricable relationship to one 

another very much like the relationship between a particle and a wave 
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(Haralick, 1979). Context, texture and tone are always present in the image, 

although at times one property can dominate the others. 

The basis for these features is the gray-level co-occurrence matrix (G 

in equation 1). This matrix is square with dimension Ng, where Ng is the 

number of gray levels in the image. Element [i,j] of the matrix is generated 

by counting the number of times a pixel with value i is adjacent to a pixel 

with value j and then dividing the entire matrix by the total number of such 

comparisons made. Each entry is therefore considered to be the probability 

that a pixel with value i will be found adjacent to a pixel of value j. 

 

 

(1) 

 

In Table 2, the 11 Haralick’s descriptors measured on each seed to 

mathematically describe the surface texture, are reported. 

A total of 137 morphometric, colorimetric and textural characters 

were measured on each seed (Table 3). 
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Table 2. Haralick’s descriptors measured as reported in Haralick et al. (1973). 
 Feature Equation 

Har 1 Angular second moment 

 
Har 2 Contrast 

 
Har 3 Correlation 

 
  where µx, µy, σx and σy are the means and the standard 

deviations of px and py. 
 

Har 4 Sum of square: variance 

 
Har 5 Inverse difference 

moment 
 

Har 6 Sum average 

 
  where x and y are the coordinates (row and column) of an 

entry in the co-occurrence matrix, and px+y(i) is the probability 
of co-occurrence matrix coordinates summing to x+y. 
 

Har 7 Sum variance 

 
Har 8 Sum entropy 

 
Har 9 Entropy 

 
Har 10 Difference variance 

 
Har 11 Difference entropy 
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Table 3. List of morpho-colorimetric features measured on seeds, excluding the 78 Elliptic 
Fourier Descriptors calculated according to Hâruta (2011). 
 Feature Description 
A Area  Seed area (mm2) 
P Perimeter Seed perimeter (mm) 
Pconv Convex Perimeter  Convex perimeter of the seed (mm) 

PCrof Crofton’s Perimeter  
Perimeter of the seed calculated using the Crofton’s formula 
(mm) 

Pconv 
/PCrof 

Perimeter ratio Ratio between convex and Crofton’s perimeters 

Dmax Max diameter Maximum diameter of the seed (mm) 
Dmin Min diameter Minimum diameter of the seed (mm) 
Dmin 
/Dmax 

Feret ratio Ratio between minimum and maximum diameters 

Sf Shape Factor 
Seed shape descriptor = (4 x π x area)/perimeter2 (normalized 
value) 

Rf Roundness Factor 
Seed roundness descriptor = (4 x area)/(π x max diameter2) 
(normalized value) 

Ecd Eq. circular diameter 
Diameter of a circle with an area equivalent to that of the seed 
(mm) 

EAmax Maximum ellipse axis Maximum axis of an ellipse with equivalent area (mm) 
EAmin Minimum ellipse axis Minimum axis of an ellipse with equivalent area (mm) 
Rmean Mean red channel  Red channel mean value of seed pixels (grey levels) 
Rsd Red std. deviation Red channel standard deviation of seed pixels 
Gmean Mean green channel  Green channel mean value of seed pixels (grey levels) 
Gsd Green std. deviation  Green channel standard deviation of seed pixels 
Bmean Mean blue channel  Blue channel mean value of seed pixels (grey levels) 
Bsd Blue std. deviation  Blue channel standard deviation of seed pixels 
Hmean Mean hue channel  Hue channel mean value of seed pixels (grey levels) 
Hsd Hue std. deviation  Hue channel standard deviation of seed pixels 

Lmean 
Mean lightness 
channel 

Lightness channel mean value of seed pixels (grey levels) 

Lsd 
Lightness std. 
deviation 

Lightness channel standard deviation of seed pixels 

Smean 
Mean saturation 
channel 

Saturation channel mean value of seed pixels (grey levels) 

Ssd 
Saturation std. 
deviation 

Saturation channel standard deviation of seed pixels 

Dmean Mean density Density channel mean value of seed pixels (grey levels) 
Dsd Density std. deviation  Density channel standard deviation of seed pixels 
S Skewness Asymmetry degree of intensity values distribution (grey levels) 

K Kurtosis 
Peakness degree of intensity values distribution (densitometric 
units) 

H Energy Measure of the increasing intensity power (densitometric units) 
E Entropy Dispersion power (bit) 
Dsum Density sum Sum of density values of the seed pixels (grey levels) 
SqDsum Square density sum Sum of the squares of density values (grey levels) 
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Statistical analysis  

The achieved results were used to built a database including morpho-

colorimetric, EFDs and Haralick’s descriptors. Statistical elaborations were 

executed using SPSS software package release 16.0 (SPSS Inc. for Windows, 

Chicago, Illinois, USA), and the stepwise Linear Discriminant Analysis 

method hereafter LDA was applied to identify and discriminate among the 

investigated Lavatera and Malva  accessions.  

This approach is commonly used to classify/identify unknown groups 

characterized by quantitative and qualitative variables (Fisher, 1936; 1940; 

Sugiyama, 2007), finding the combination of predictor variables with the aim 

of minimizing the within-class distance and maximizing the between-class 

distance simultaneously, thus achieving maximum class discrimination 

(Hastie et al., 2001; Holden et al., 2011; Alvin & William, 2012; Kuhn & 

Johnson, 2013). The stepwise method identifies and selects the most 

statistically significant features among the 137 measured on each seed, using 

three statistical variables: Tolerance, F-to-enter and F-to-remove. The 

Tolerance value indicates the proportion of a variable variance not accounted 

by other independent variables in the equation. F-to-enter and F-to-remove 

values define the power of each variable in the model and are useful to 

describe what happens if a variable is inserted and removed, respectively, 

from the current model. This method starts with a model that does not include 

any of the variables. At each step, the variable with the largest F-to-enter 

value that exceeds the entry criterion chosen (F ≥ 3.84) is added to the model. 

The variables left out of the analysis at the last step have F-to-enter values 

smaller than 3.84, and therefore no more are added stopping the process 

(Venora et al., 2009b; Grillo et al., 2012). Finally, a cross-validation 

procedure was applied to verify the performance of the identification system, 
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testing individual unknown cases and classifying them on the basis of all 

others (SPSS, 2007). 

All the raw data were standardized before starting any statistical 

elaboration. Moreover, in order to evaluate the quality of the discriminant 

functions achieved for each statistical comparison, the Wilks’ Lambda, the 

percentage of explained variance and the canonical correlation between the 

discriminant functions and the group membership, were computed. The 

Box’s M tests was executed to assess the homogeneity of covariance matrices 

of the features chosen by the stepwise LDA while the analysis of the 

standardized residuals was performed to verify the homoscedasticity of the 

variance of the dependent variables used to discriminate among the groups’ 

membership (Box, 1949; Haberman, 1973; Morrison, 2004). Kolmogorov-

Smirnov’s test was performed to compare the empirical distribution of the 

discriminant functions with the relative cumulative distribution function of 

the reference probability distribution, while the and Levene’s test was 

executed to assess the equality of variances for the used discriminant 

functions calculated for groups’ membership (Gastwirth et al., 2009; Levene, 

1960; Lopes, 2011). 

To graphically highlight the differences among groups, 

multidimensional plots were drawn using the first three discriminant 

functions or, alternatively, when the number of discriminant groups n did not 

allow to obtain at least three discriminant functions (n−1), the two available 

discriminant functions and the Mahalanobis’ square distance (Mahalanobis, 

1936) were used. This measure of distance is defined by two or more 

discriminant functions and ranges from 0 to infinite. Samples are increasingly 

similar at values closer to zero. Higher values indicate that a particular case 

includes extreme values for one or more independent variables, and can be 
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considered significantly different to other cases of the same group (Bacchetta 

et al., 2008a). 

 

Results  

A preliminary investigation was carried out to discriminate between 

the two groups object of the study. Using this model, 97.6% of the cross-

validated samples of the all studied Lavatera and Malva taxa were correctly 

classified (data not shown).  

In order to identify the taxa of Lavatera that are closer to genus 

Malva and viceversa, all the taxa were singularly compared among them, 

highlighting some mutual misattributions. In particular, L. maroccana was 

misidentified to Malva group in the 13% of the cases, wrongly classified 

mainly as M. sylvestris and M. tournefortiana, and L. moschata was confused 

with the same Malva species for 18% of the cases (data not shown). 

Successively, the 20 taxa belonging to the genus Lavatera were 

compared among them, without the influence of the genus Malva. An overall 

percentage of correct identification of 87.5% was reached (Table 4). In this 

group, a correct classification range included between 63.6% (L. 

brynonifolia, misclassified as L. maroccana in the 27.3% of cases, and as L. 

moschata in the 9.1%) and 98.0% for L. olbia was recorded. 

In order to perform a statistical comparison, all the Lavatera 

accessions were grouped into their sections of belonging. The system was 

able to discriminate among the five groups studied in the 87.8% of the cases 

(Table 5). As shown, the Glandulosae and Bismalva sections were correctly 

distinguished for the 94% of their seeds; on the other hand, the Olbia sectio 

was discriminate for the 73.7%, misattributed as Glandulosae for 15.5%, 

Bismalva for 6.2% and Anthema for 4.6% of its seeds.  
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Table 4. Percentage of correct identification for Lavatera accessions at species level. In parenthesis, the number of analysed seeds. 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) Total 

L. acerifolia (1) 
95.0 
(95) 

- 
1.0 
(1) 

- - - - - - - - 
1.0 
(1) 

- - - 
1.0 
(1) 

1.0 
(1) 

- 
1.0 
(1) 

- 
100.0 
(100) 

L. agrigentina (2) - 
93.0 
(370) 

2.5 
(10) 

- - - - 
0.3 
(1) 

- - - 
0.3 
(1) 

- - - - 
1.5 
(6) 

0.8 
(3) 

1.8 
(7) 

- 
100.0 
(398) 

L. arborea (3) 
4.3 
(20) 

1.5 
(7) 

67.2 
(316) 

0.2 
(1) 

- - 
0.2 
(1) 

1.5 
(7) 

- 
0.4 
(2) 

0.2 
(1) 

- - 
10.6 
(50) 

- 
0.9 
(4) 

1.5 
(7) 

1.5 
(7) 

10.0 
(47) 

- 
100.0 
(470) 

L. assurgentifolia (4) 
3.8 
(2) 

- - 
96.2 
(51) 

- - - - - - - - - - - - - - - - 
100.0 
(53) 

L. bryonifolia (5) - - - - 
63.6 
(7) 

- - - 
27.3 
(3) 

- 
9.1 
(1) 

- - - - - - - - - 
100.0 
(11) 

L. cretica (6) - - - - - 
82.2 
(74) 

- - - 
17.8 
(16) 

- - - - - - - - - - 
100.0 
(90) 

L. flava (7)  
- 
 

- - - - - 
86.7 
(157) 

- - - - - - - - - 
1.7 
(3) 

0.6 
(1) 

11.0 
(20) 

- 
100.0 
(181) 

L. maritima (8) 
1.7 
(10) 

0.5 
(3) 

6.5 
(39) 

0.3 
(2) 

- - 
0.5 
(3) 

77.5 
(462) 

- - 
0.2 
(1) 

- - - - 
1.2 
(7) 

0.2 
(1) 

0.2 
(1) 

11.2 
(67) 

- 
100.0 
(596) 

L. maroccana (9) - - - - 
2.2 
(2) 

1.1 
(1) 

- - 
91.1 
(82) 

1.1 
(1) 

- - - - 
2.2 
(2) 

2.2 
(2) 

- - - - 
100.0 
(90) 

L. mauritanica (10) - - - - - 
7.0 
(7) 

- - 
3.0 
(3) 

86.0 
(86) 

- - - - 
2.0 
(2) 

2.0 
(2) 

- - - - 
100.0 
(100) 

L. moschata (11) - - - - 
8.0 
(8) 

- - - 
4.0 
(4) 

- 87.0 
(87) 

- - - - 
1.0 
(1) 

- - - - 
100.0 
(100) 

L. oblongifolia (12) 
4.5 
(9) 

- - - - - - - - - 
0.5 
(1) 

79.5 
(159) 

0.5 
(1) 

- - 
15.0 
(30) 

- - - - 
100.0 
(200) 

L. olbia (13) - - - - - - - - - - - - 98.0 
(196) 

- - - - - 
0.5 
(1) 

1.5 
(3) 

100.0 
(200) 

L. plazzae (14) - 
1.5 
(3) 

1.5 
(3) 

- - - - - - - - - - 
80.4 
(160) 

- - 
2.0 
(4) 

0.5 
(1) 

14.1 
(28) 

- 
100.0 
(199) 

L. punctata (15) - - - - - - - - 
12.5 
(2) 

- - - - - 87.5 
(14) 

- - - - - 
100.0 
(16) 

L. thuringiaca (16) - - - - - 
1.2 
(1) 

- - - 
1.2 
(1) 

1.2 
(1) 

- - - - 
96.3 
(78) 

- - - - 
100.0 
(81) 

L. triloba subsp. pallescens (17) - 
0.2 
(2) 

0.1 
(1) 

- - - 
2.4 
(21) 

- - - - - - - 
0.2 
(2) 

- 88.0 
(782) 

5.2 
(46) 

3.9 
(35) 

- 
100.0 
(889) 

L. triloba subsp. minoricensis (18) - - 
0.3 
(1) 

- - - - - - 
0.3 
(1) 

- - - - 
0.7 
(2) 

- 
1.4 
(4) 

87.2 
(252) 

10.0 
(29) 

- 
100.0 
(289) 

L. triloba subsp. triloba (19) 
0.0 
(1) 

0.0 
(1) 

0.4 
(9) 

0.0 
(1) 

- - 
1.9 
(44) 

0.5 
(11) 

- - - 
0.1 
(2) 

0.0 
(1) 

2.7 
(2.7) 

- - 
1.0 
(23) 

0.9 
(21) 

92.4 
(2148) 

0.0 
(1) 

100.0 
(2325) 

L. trimestris (20) - - - - - - - - - 
0.9 
(1) 

- - - - - - - - - 
99.1 
(106) 

100.0 
(107) 

Overall                     87.5 
(6495) 
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With the aim to verify the inter-specific seed morpho-colorimetric 

variability within each group, the five Lavatera sections were analysed 

separately. In Table 6, the percentage of correct identification among 

Lavatera accessions sectio Axolopha, is shown. An overall of cross-validated 

classification of 99.3% was recorded.  

 

 

 

 

 

Table 5. Percentage of correct identification among Lavatera sections. In 
parenthesis, the number of analyzed seeds. 

 (1) (2) (3) (4) (5) Total 

Axolopha (1) 74.9 
(521) 

9.1 
(63) 

13.6 
(95) 

2.0 
(14) 

0.4 
(3) 

100.0 
(696) 

Glandulosae (2) 
1.1 
(45) 

94.9 
(3873) 

2.0 
(81) 

2.0 
(82) 

0.0 
(1) 

100.0 
(4082) 

Anthema (3) 
7.2 
(51) 

10.5 
(75) 

76.7 
(547) 

5.3 
(38) 

0.3 
(2) 

100.0 
(713) 

Olbia (4) - 
15.5 
(140) 

4.6 
(42) 

73.7 
(666) 

6.2 
(56) 

100 
(904) 

Bismalva (5) - - - 
6.0 
(6) 

94.0 
(94) 

100 
(100) 

Overall      87.8 
(6495) 

Table 6. Percentage of correct identification among Lavatera accessions sectio Axolopha. In 
parenthesis, the number of analyzed seeds. 

 L. acerifolia L. maritima Total 

L. acerifolia 
99.0 
(99) 

1.0 
(1) 

100.0 
(100) 

L. maritima 
0.7 
(4) 

99.3 
(92) 

100.0 
(596) 

Overall   99.3 
(696) 
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The Glandulosae sectio, involving five species, L. agrigentina, L. 

flava, L. triloba in its three subspecies L. triloba subsp. pallescens, L. triloba 

subsp. minoricensis and L. triloba subsp. triloba, was  correctly classified for 

92.5% (Table 7), ranged from 95.4% for L. triloba subsp. triloba and 84% for 

L. flava, whose seeds were mainly misclassified among those of L. triloba 

subsp. triloba. 

 

 

 

To compare these two species, Spanish populations of L. triloba 

subsp. triloba and Moroccan seed accessions of L. flava were also analysed 

and compared, achieving an identification performance of 95.4% (Table 8). 

Seeds of L. triloba subsp. triloba were clearly distinguishable and only 4.3% 

were mistaken and classified within L. flava. Furthermore, only 6.1% of L. 

flava seeds were mistaken as L. triloba subsp. triloba.  

Finally, to evaluate the inter-population variability of L. triloba subsp. 

triloba, Spanish and Sardinian seed accessions were compared, achieving an 

identification performance of 99.6%. Seeds were clearly distinguishable for 

geographical region of provenance with slightly misattributions of 0.4% (data 

not shown).  

Table 7. Percentage of correct identification among Lavatera accessions sectio Glandulosae. In 
parenthesis, the number of analyzed seeds. 

 (1) (2) (3) (4) (5) Total 

L. agrigentina (1) 92.7 
(369) 

- 
2.8 
(11) 

0.8 
(3) 

3.8 
(15) 

100.0 
(398) 

L. flava (2) - 84.0 
(152) 

5.0 
(9) 

0.6 
(1) 

10.5 
(19) 

100.0 
(181) 

L. triloba subsp. 
pallescens (3) 

- 
1.6 
(14) 

88.8 
(789) 

4.9 
(44) 

4.7 
(42) 

100.0 
(889) 

L.  triloba subsp. 
minoricensis (4) 

- 
0.7 
(2) 

1.0 
(3) 

85.5 
(247) 

12.8 
(37) 

100.0 
(289) 

L. triloba subsp. 
triloba (5) 

0.6 
(14) 

1.5 
(35) 

1.4 
(33) 

1.1 
(25) 

95.4 
(2218) 

100.0 
(2325) 

Overall      92.5 
(4082) 
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 The four Lavatera species of Anthema sectio were clearly 

distinguished by means of morpho-colorimetric seed traits as reported in the 

LDA graphical representation (Fig. 1) (data not shown). 

 

 

 

 

Figure 1. Graphical representation of the discriminant analysis for Lavatera sectio Anthema. 

Table 8. Percentage of correct identification between Moroccan Lavatera flava and Spanish L. 
triloba subsp. triloba populations. In parenthesis, the number of analyzed seeds. 

 L. flava L. triloba ssp triloba Total 

L. flava 
93.9 
(170) 

6.1 
(11) 

100.0 
(181) 

L. triloba ssp triloba 
4.3 
(44) 

95.7 
(981) 

100.0 
(1025) 

Overall   95.4 
(1206) 
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 The Olbia sectio, involving eight Lavatera species, was also 

investigated and a correct classification of 97.3% was recorded. All the 

species were distinguished with percentage above 90% except for L. 

maroccana (83.3%), misclassified mainly as L. punctata (6.7%) and L. 

bryonifolia (5.6%) (Table 9). No comparison was carried out for Bismalva 

sectio being L. moschata the only available species for this group. 

 

 

 

 

 

 

 

 

 

Table 9. Percentage of correct identification among Lavatera accessions sectio Olbia. In 
parenthesis, the number of analyzed seeds.  

 (1) (2) (3) (4) (5) (6) (7) (8) Total 

L. bryonifolia (1) 
90.9 
(10) 

9.1 
(1) 

- - - - - - 
100.0 
(11) 

L. maroccana (2) 
5.6 
(5) 

83.3 
(75) 

- - - 
6.7 
(6) 

3.3 
(3) 

1.1 
(1) 

100.0 
(90) 

L. oblongifolia (3) - - 97.0 
(194) 

- - - 
3.0 
(6) 

- 
100.0 
(200) 

L. olbia (4) - - - 100.0 
(200) 

- - - - 
100.0 
(200) 

L. plazzae (5) - - - - 100.0 
(199) 

- - - 
100.0 
(199) 

L. punctata (6) - 
6.3 
(1) 

- - - 93.8 
(15) 

- - 
100.0 
(16) 

L. thuringiaca (7) - 
1.2 
(1) 

- - - - 98.8 
(80) 

- 
100.0 
(81) 

L. trimestris (8) - - - - - - - 100.0 
(107) 

100.0 
(107) 

Overall         
97.3 
(904) 
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 As well as the genus Lavatera, also the eight Malva accessions were 

compared by means of LDA statistical elaboration. Data processing led to an 

overall cross-validated discrimination performance of 95.8% (Fig. 2), 

recording values of 100% for M. hispanica and M. multiflora. All the other 

Malva accessions were correctly classified with percentages above 89%, with 

the exception of M. tournefortiana discriminated in the 81.3% of the cases, 

misclassified as M. parviflora, M. sylvestris and M. verticillata (data not 

shown).  

With the aim to record the inter-specific seed morpho-colorimetric 

variability, Malva species were compared within each section studied. 

Figures 3 and 4 report the graphical representations of the discriminant 

analysis for Malva sectio Bismalva and Malva sectio Malva, respectively. In 

both the cases, 99.5% of correct classification was obtained (data not shown). 

Only M. multiflora was present in the Anthema sectio, so no comparison was 

achievable. 

 

Discussion 

In order to contribute to the taxonomical treatment affiliation of 

Lavatera and Malva groups, their seed morpho-colorimetric features were 

investigated applying image analysis techniques in order to obtain accurate 

measurements to be subjected to LDA statistical elaborations. 

As shown in Table 4, the two groups were perfectly distinguishable 

confirming the taxonomic treatment at the genus level. Although some  taxa 

of Lavatera were closer to the genus Malva with respect to seed traits, the 

percentages of misattributions never exceed more than 20%. 

The image analysis system here developed, was clearly able to 

discriminate among the Lavatera sections taken into account, confirming the 

actual and accepted taxonomic organization for this genus. The high 
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performance of the statistical classifiers was principally due to the textural 

and EFDs descriptors, that showed significantly high value of F-to-remove, 

in addition to colorimetric (RGB and HLS colour channels) and 

densitometric features, selected among the available 138. The textural 

variables and EFDs introduced in this study, were involved in a large extent 

in the LDA process, representing the 65% and 51% of the whole variable 

pool of the discriminant function referred to Lavatera sectio Axolopha and 

Anthema respectively (data not shown).  

As reported in Bacchetta et al. (2011a), an overall cross-validated 

percentage of correct identification above 92.5% was again obtained in the 

discrimination of the five species included in the Lavatera sectio 

Glandulosae (Table 5), but the improvement of the image analysis system 

previously developed by Grillo et al. (2010) in which morphometric features 

were the first discriminant parameters, allowed to reinforce the classifier 

performance relating to L. flava.  

In fact, while keeping the same number of seeds compared to previous work, 

the percentage of correct classification increased from 60.2 % to 84.0%, and 

a similar trend of misattributions toward L. triloba subspecies was observed. 

Also in this case, the most discriminating parameters were descriptive of 

colorimetric and textural traits of the seed surface, highlighting the 

importance of the introduction of the new set of descriptors. 

Taking into account L. triloba group, L. triloba subsp. pallescens was 

classified with a lower efficiency (88.8%) compared to the above mentioned 

study of Bacchetta et al. (100%) because the within variability of the group 

significantly increased at the performance expense. 

Regarding to L. triloba subsp. minoricensis, the obtained data unambiguously 

confirmed this taxa as an independent subspecies (Escobar Garcia et al., 
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2010), on the basis of marked seed morpho-colorimetric traits differentiation 

with respect to the other L. triloba subspecies. 

 In this sense, the taxonomic relationships between Lavatera triloba 

s.l. and L. flava, whose similarity with L. triloba is absolutely comparable to 

some of the entities now voted as. L. triloba subspecies, have yet to be 

clarified in detail: this morpho-colorimetric investigation, definitely confirms 

the close relationship between these entities, often morphologically well 

differentiated. 

Within L. triloba, a quite perfect differentiation between the Spanish 

and Sardinian populations was found. Isolation and genetic divergences of 

the species in Sardinia may explain this outcome (Bacchetta et al., 2011a). 

Similarly, in the classification among the Malva sections, the best 

variables were the seed colorimetric and densitometric features, in addition to 

a few of other dimensional parameters. The new texture and shape 

descriptors occurred with total percentage of over 30% in the discriminant 

function, chosen by stepwise LDA (data not shown). 

 

 In conclusion, by analyzing morpho-colorimetric seed traits, a clear 

differentiation between the entities of Malvae alliance, traditionally attributed 

respectively to the genus Lavatera and to the genus Malva, was highlighted. 

Regarding to the Lavatera genus entities closer to the genus Malva,  a degree 

of similarity generally never exceeding 20% was recognized. These results 

confirm in part the differentiation of Ray (1995) of the two Malva alliance 

clades, supporting once again the validity of the two “historical” genera of 

Lavatera and Malva, and confirming that the assimilation of all entities to the 

single Malva genus, proposed by Banfi et al. (2005) does not match the 

morphology of germplasm. 
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Furthermore, the results obtained, both at species and section level, supported 

the image analysis tool as diagnostic for systematic purposes and the 

introduction of Haralick’s and EFDs variables proved useful for the system 

implementation.  

 

Acknowledgement 

I would thank to Prof. Gianluigi Bacchetta, Dr. Oscar Grillo, Dr. Gianfranco 

Venora for their great contribution to the writing of this chapter. Thanks also 

to Dr. Pedro Escobar Garcia of Department of Biogeography and Botanical 

Garden, Faculty Centre Biodiversity - University of Vienna and Francesco 

Mascia for their suggestions, revision and kind collaboration at this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



196 

 

References 

ALVIN C.R. & WILLIAM F.C. 2012. Methods of Multivariate Analysis. 3rd edition. John 

Wiley & Sons. 

BACCHETTA G., BUENO SANCHEZ A., FENU G., JIMENEZ-ALFARO B., MATTANA 

E., PIOTTO B. VIREVAIRE M. 2008b. Conservacion ex situ de plantas silvestres. 

Principado de Asturias / La Caixa. 

BACCHETTA G., FENU G., GRILLO O., MATTANA E. VENORA G. 2011b. 

Identification of Sardinian species of Astragalus section Melanocercis (Fabaceae) 

by seed image analysis. Annales Botanici Fennici 48, 449-454. 

BACCHETTA G., GARCÍA P.E. GRILLO O., MASCIA F. VENORA G. 2011a. Seed 

image analysis provides evidence of taxonomical differentiation within the Lavatera 

triloba aggregate (Malvaceae). Flora 206, 468-472. 

BACCHETTA G., GRILLO O., MATTANA E., VENORA G. 2008a. Morpho-colorimetric 

characterization by image analysis to identify diaspores of wild plant species. Flora 

203, 669-682.  

BAKER W.R. 1890. Synopsis of genera and species of Malveae. Journal of Botany 28, 140-

145, 207-213, 239-243, 339-343, 367-371. 

BANFI E., GALASSO G., SOLDANO A. 2005. Notes on systematics and taxonomy for the 

Italian vascular flora. I. Atti Società italiana di Scienze naturali. Museo civico di 

Storia naturale di Milano, Milano, 146, 219-244. 

BAYER C. & KUBITZKI K. 2003. Malvaceae, In: Kubitzki K. (Ed.). The Families and 

Genera of Vascular Plants 5, 225-311. 

BOX G.E.P. 1949. A general distribution theory for a class of likelihood criteria. Biometrika 

36, 317-346. 

CERABOLINI B., CERIANI R.M., CACCIANIGA M., DE ANDREIS R., RAIMONDI B. 

2003. Seed size, shape and persistence in soil: a test on Italian flora from Alps to 

Mediterranean coasts. Seed Science Research 13, 75-85. 

DALBY D.H. 1968. Malva. In: Tutin, T.G. et al. (Eds.). Flora Europaea, vol. 2. Cambridge 

University Press, Cambridge, pp. 249-251. 

DE CANDOLLE A.P. 1824. Prodromus Systematis Naturalis Regni Vegetabilis. Treuttel 

and Wurtz, Paris. 

DIAMOND J., ANDERSON N.H., BARTELS P.H., MONTIRONI R. HAMILTON P.W. 

2004. The use of morphological characteristics and texture analysis in the 



197 

 

identification of tissue composition in prostatic neoplasia. Human Pathology 35, 

1121-1131. 

DRAPER, S.R. & KEEFE, P.D. 1989. Machine vision for the characterization and 

identification of cultivars. Plant Varieties and Seeds 2, 53-62. 

ELLUL P., BOSCAIU M., VICENTE O., MORENO V. ROSELLÓ, J.A. 2002. Intra- and 

interspecific variation in DNA content in Cistus (Cistaceae). Annals of Botany 90, 

345-351. 

ESCOBAR GARCIA P., MASCIA F., BACCHETTA G. 2010. Typification of the name 

Lavatera triloba subsp. pallescens (Moris) Nyman and reassessment of L. 

minoricensis Cambess. (L. triloba subsp. minoricensis comb. nova). Anales del 

Jardín Botánico de Madrid 67, 79-86. 

ESCOBAR GARCÍA P., SCHÖNSWETTER P., FUERTES AGUILAR J., NIETO 

FELINER G., SCHNEEWEISS G.M. 2009. Five molecular markers reveal 

extensive morphological homoplasy and reticulate evolution in the Malva alliance 

(Malvaceae). Molecular Phylogenetics and Evolution 50, 226-239. 

FERNANDES R.B. 1968a. Contribuçoes para o conhecimento do género Lavatera L. I. 

Notas sobre algumas espécies. Collect. Bot. (Barcelona) 7, 393-448. 

FERNANDES R.B. 1968b. Contribuçoes para o conhecimento do género Lavatera II: 

taxonomia. Bol. Soc. Port. Ci. Nat. Ser. 2a 12, 67-103. 

FISHER R.A. 1936. The use of multiple measurements in taxonomic problems. Annals of 

Eugenics 7, 179-188. 

FISHER R.A. 1940. The precision of discriminant functions. Annals of Eugenics 10, 422-

429. 

FUERTES AGUILAR J., RAY M.F., FRANCISCO-ORTEGA J., SANTOS-GUERRA A., 

JANSEN R.K. 2002. Molecular evidence from chloroplast and nuclear markers for 

multiplecolonizations of Lavatera (Malvaceae) in the Canary Islands. Systematic 

Botany 27, 74-83. 

GASTWIRTH J.L., GEL Y.R., MIAO W. 2009. The impact of Levene's test of equality of 

variances on statistical theory and practice. Statistical Science 24, 343-360. 

GERGER, A. & SMOLLE, J. 2003. Diagnostic imaging of melanocytic skin tumors. Journal 

of Cutaneous Pathology 30, 247-252.  



198 

 

GRANITTO P.M., GARRALDA P.A., VERDES P.F., CECCATO H.A. 2003. Boosting 

classifiers for weed seeds identification. Journal of Computer Science and 

Technology 3, 34-39. 

GRILLO O., DRAPER D., VENORA G., MARTÍNEZ-LABORDE J.B. 2012. Seed image 

analysis and taxonomy of Diplotaxis DC. (Brassicaceae Brassiceae). Systematic and 

Biodiversity 10, 57-70. 

GRILLO O., MATTANA E., FENU G., VENORA G., BACCHETTA G. 2013. Geographic 

isolation affects inter- and intra-specific seed variability in the Astragalus 

tragacantha complex, as assessed by morpho-colorimetric analysis. Comptes 

Rendus de Biologies 336, 102-108. 

GRILLO O., MATTANA E., VENORA G., BACCHETTA G. 2010. Statistical seed 

classifiers of 10 plant families representative of the Mediterranean vascular flora. 

Seed Science and Technology 38, 455-476. 

GRILLO O., MICELI C., VENORA, G. 2011. Computerised image analysis applied to 

inspection of vetch seeds for varietal identification. Seed Science and Technology 

39, 490-500. 

HABERMAN S.J. 1973. The analysis of residuals in cross-classified tables. Biometrics 29, 

205-220. 

HARALICK R.M. & SHAPIRO L.G. 1991. Glossary of computer vision terms. Pattern 

Recognition 24, 69-93. 

HARALICK R.M. 1979. Statistical and structural approaches to texture. Proceedings of the 

IEEE 67, 786-804.  

HARALICK R.M., SHANMUGAM K., DINSTEIN I. 1973. Textural features for image 

classification. IEEE Transactions on Systems. Man and Cybernetics 6, 610-621.  

HASTIE T., TIBSHIRANI R., FRIEDMAN J. 2001. The elements of statistical learning: 

Data mining, inference, and prediction. New York: Springer. 

HOLDEN J.E., FINCH W.H., KELLY K. 2011. A Comparison of two-group classification 

methods. Educational and Psychological Measurement 715, 870-901. 

KAWABATA S. YOKOO M., NII K. 2009. Quantitative analysis of corolla shapes and petal 

contours in single-flower cultivars of Lisianthus. Scientia Horticulturae 121, 206-

212. 



199 

 

KILIC K., BOYACI I.H., KOKSEL H., KUSMENOGLU U.I. 2007. A classification system 

for beans using computer vision system and artificial neural networks. Journal of 

Food Engineering 78, 897-904. 

KLITGÅRD B.B. 2013. Neotropical Malvaceae (Bombacoideae). In: Milliken, W., Klitgård, 

B. & Baracat, A. (2009 onwards), Neotropikey - Interactive key and information 

resources for flowering plants of the Neotropics.  

KUHL F.P. & GIARDINA C.R. 1982. Elliptic Fourier features of a closed contour. 

Computer Graphics 18, 259-278. 

KUHN M. & JOHNSON K. 2013. Discriminant analysis and other linear classification 

models. In: Applied Predictive Modeling pp. 275-328. Springer New York. ISBN: 

978-1-4614-6848-6 

LEVENE H. 1960. Robust tests for equality of variances. In: Olkin, I., Ghurye, S.G., 

Hoeffding, W., Madow, W.G. & Mann H.B., Eds., Contributions to Probability and 

Statistics: Essays in Honor of Harold Hotelling. Stanford University Press. pp. 278-

292. 

LINNAEUS C. 1753. Species Plantarum. A 1957 facsimile of the first edition of 1753 with 

an introduction by W.T. Stearn and an appendix by J.L. Heller and W.T. Stearn. 

Ray Society, London. 

LO BIANCO M., FERRER-GALLEGO P., GRILLO O., LAGUNA E., VENORA G. & 

BACCHETTA G. Seed image analysis provides evidence of taxonomical 

differentiation within the Medicago L. sect. Dendrotelis (Fabaceae). Systematics 

and Biodiversity (Manuscript submitted for publication). 

LOPES R.H.C. 2011. Kolmogorov-Smirnov Test. In: Lovric M., Eds., International 

Encyclopedia of Statistical Science. Springer Berlin Heidelberg. pp. 718-720. 

MAHALANOBIS P.C. 1936. On the generalized distance in statistics. Proceedings of the 

National Institute of Science of India 12, 49-55. 

MEBATSION H.K., PALIWAL J., JAYAS D.S. 2012. Evaluation of variations in the shape 

of grain types using principal components analysis of the elliptic Fourier 

descriptors. Computers and Electronics in Agriculture 80, 63-70. 

MORRISON D.F. 2004. Multivariate Statistical Methods. 4th edition. Cengage Learning 

Duxbury Press. 

MORTON C.V. 1937. The correct names of the small-flowered mallows. Rhodora 39, 98-

99. 



200 

 

NANNI L., SHI J.Y., BRAHNAM S., LUMINI A. 2010. Protein classification using texture 

descriptors extracted from the protein backbone image. Journal of Theoretical 

Biology 264, 1024-1032. 

ORRÙ M., GRILLO O., LOVICU G., VENORA G., BACCHETTA G. 2013. Morphological 

characterisation of Vitis vinifera L. seeds by image analysis and comparison with 

archaeological remains. Vegetation History and Archaeobotany 22, 231-242.  

ORRÙ M., GRILLO O., VENORA G., BACCHETTA G. 2012. Computer vision as a 

complementary to molecular analysis: grapevines cultivars case study. Comptes 

Rendus de Biologies 335, 602-615.  

PÉREZ-GARCÍA F., GONZÁLEZ-BENITO M.E., GÓMEZ-CAMPO C. 2007. High 

viability recorded in ultradrying seeds of 37 species of Brassicaceae after almost 40 

years of storage. Seed Science and Technology 35, 143-153. 

PINNA M.S., GRILLO O., MATTANA E., CAÑADAS E.M. BACCHETTA G. 2014. Inter- 

and intraspecific morphometric variability in Juniperus L. seeds (Cupressaceae). 

Systematics and Biodiversity 12, 211-223.  

RAY M.F. 1995. Systematics of Lavatera and Malva (Malvaceae, Malveae) a new 

perspective. Plant Systematic and Evolution 198, 29-53. 

ROVNER I. & GYULAI F. 2007. Computer-assisted morphometry: a new method for 

assessing and distinguishing morphological variation in wild and domestic seed 

populations. Economic Botany 61, 154-172. 

SABATO D., ESTERAS C., GRILLO O., PICÓ B. & BACCHETTA G. 2015. Seeds 

morpho-colorimetric analysis as complementary method to molecular 

characterization of melon diversity. Scientia Horticulturae (Manuscript submitted 

for publication). 

SANTO A., MATTANA E., GRILLO O. & BACCHETTA G. 2015. Morpho-colorimetric 

analysis, germination variability and heteromorphy of Brassica insularis Moris 

(Brassicaceae) seeds. Plant Biology, doi:10.1111/plb.12236. 

SHAHIN M.A. & SYMONS S.J. 2003a. Lentil type identification using machine vision. 

Canadian Biosystems Engineering 45, 3.5-3.11. 

SHAHIN M.A. & SYMONS S.J. 2003b. Colour calibration of scanners for scanner 

independent grain grading. Cereal Chemistry 80, 285-289.  



201 

 

SMYKALOVA I., GRILLO O., BJELKOVA M., PAVELEK M., VENORA G. 2013. 

Phenotypic evaluation of flax seeds by image analysis. Industrial Crops and 

Products 47, 232-238. 

SPSS 2007. Base 16.0 Application Guide. Prentice Hall, USA, New Jersey. 

SUGIYAMA M. 2007. Dimensionality reduction of multimodal labeled data by local Fisher 

discriminant analysis. The Journal of Machine Learning Research 8, 1027-1061. 

TATE J.A., FUERTES AGUILAR J., WAGSTAFF S.J., LA DUKE J.C., BODO SLOTTA 

T.A., SIMPSON B.B. 2005. Phylogenetic relationships within the tribe Malveae 

(Malvaceae, subfamily Malvoideae) as inferred from ITS sequence data. American 

Journal of Botany 92, 584-602. 

TERRAL J., TABARD E., BOUBY L., IVORRA S., PASTOR T., FIGUEIRAL I., PICQ S., 

CHEVANCEJ.B., JUNG C., FABRE L., TARDY C., COMPAN M., BACILIERI 

R., LACOMBE T., THIS P. 2010. Evolution and history of grapevine (Vitis 

vinifera) under domestication: new morphometric perspectives to understand seed  

domestication syndrome and reveal origins of ancient European cultivars. Annals of 

Botany 105, 443-455. 

TOURNEFORT J.P. 1706. Suite de l´etablissement de quelque noveaux genres de plants: 

Lavatera. Histoire de L’Academic Royale des Sciences. 1731, 83-87. 

TUTIN T.G., HEYWOOD V.H., BURGES N.A., VALENTINE D.H, WALTERS S.M., 

WEBB D.A. (EDS.) (1964-1980). Flora Europaea, vol. 2-5. Cambridge University 

Press. 

UCCHESU M., ORRÙ M., GRILLO O., VENORA G., USAI A., SERRELI P.F.,  

BACCHETTA G. 2015. Earliest evidence of a primitive cultivar of Vitis vinifera L. 

during the Bronze Age in Sardinia (Italy). Vegetation History and Archaeobotany, 

10.1007/s00334-014-0512-9. 

VENORA G., GRILLO O., RAVALLI C., CREMONINI R. 2009b. Identification of Italian 

landraces of bean (Phaseolus vulgaris L.) using an image analysis system. Scientia 

Horticulturae 121, 410-418. 

VENORA G., GRILLO O., SACCONE R. 2009a. Quality assessment of durum wheat 

storage centres in Sicily: Evaluation of vitreous, starchy and shrunken kernels using 

an image analysis system. Journal Cereal Science 49, 429-440. 



202 

 

VENORA G., GRILLO O., SHAHIN M.A., SYMONS, S.J. 2007. Identification of Sicilian 

landraces and Canadian cultivars of lentil using image analysis system. Food 

Research International 40, 161-166. 

WIESNEROV D. & WIESNER L. 2008. Computer image analysis of seed shape and seed 

color for flax cultivar description. Computers and Electronics in Agriculture 61, 

126-135. 

YOSHIOKA Y., IWATA H., OHSAWA R., NINOMIYA S. 2004. Analysis of petal shape 

variation of Primula Sieboldii by Elliptic Fourier Descriptors and principal 

component analysis. Annals of Botany 94, 657-664. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



203 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



204 

 

Conclusions 

 

The focus of this doctoral thesis concerned the application of Image 

Analysis technique for an adequate definition of the seed morpho-

colorimetric parameters, that represents an important diagnostic factor in the 

plant taxonomy studies and consequently may be of great help for the 

improvement of the management and the effective ex situ conservation in the 

germplasm banks. 

The first part of this study was related to the computer vision 

fundamentals and statistical treatment of data. Based on the clear concept that 

the discriminant ability of a classification system depends not only on the 

intra-specific representativeness of taxa analyzed, but also on the quality and 

quantity of the parameters measured and used to discriminate between groups 

of belonging, a new set of recordable shape and texture variables was 

introduced in a yet consolidated image analysis system, with the aim to 

improve the performance of the classifiers. In the second part of this 

dissertation some case studies are reported as applications of this innovative 

technology, with the aim to prove its great usefulness for systematic 

purposes. The results here presented confirmed that an extensive database of 

morpho-colorimetric traits may be applied for taxonomy screening of species 

groups, comparing with the current systematic, as well as with groupings 

more recently revealed by genetic studies. 

 

The morpho-colorimetric characterization of Cistus L. (Cistaceae) 

seeds by image analysis was treated: a database of morphometric and 

colorimetric data was carried out to statistically discriminate and identify 

both at inter and intra-specific and populational level. The satisfactory 
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discrimination performances reached agree with the results reported in the 

previous papers on the same taxa, though, the improvement of the image 

analysis system adopted, in which an overall of 138 seed features was 

evaluated, allowed to reinforce the discrimination power also when the 

morphometric variability within each group, such as in inter-population 

groups, is extremely reduced. The taxonomical differentiation within the 

Medicago L. sect. Dendrotelis (Fabaceae) was also described. The obtained 

results confirmed the validity of the proposed method for the taxonomic 

differentiation of Medicago at specific levels, and its identification capability 

of regional and populational groups. Furthermore, the relationships among 79 

taxa belonging to the Lavatera and Malva genera were tretated, in order to 

contribute to their doubtful systematic treatment. 

 

Finally, this innovative kind of identification system, which method 

was specifically developed to identify wild seeds, and that requires only a 

few seconds for scanning and measurement operations, proved to be a quick, 

repeatable, reliable and non destructive method. It does not require any 

chemical reagents, expensive analytical consumables or high priced physical 

preparation of samples, hence it is a very cheap method. This precise and 

accurate identification system it was only possible thanks to efficient and 

useful cooperation between taxonomists and image analysis specialists. The 

expert, practical experience in such different fields allowed the development 

of a system so complex in its structure and so simple in the use. Indeed, 

having a broad database of morpho-colorimetric seed features for an adequate 

amount of families, genera and species would enable the identification of 

taxa already present in the database. In this way, this innovative tool would 

open new perspectives in plant taxonomy, but also offer the opportunity for 

germplasm banks to make identifications in a standard, speedy way. 
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In addition, the availability of morpho-colorimetric data should be 

helpful for ecological and/or archeobotanical studies such as the prediction of 

seed persistence in the soil. 
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