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Abstract 

Antimony (Sb) is considered a pollutant of priority interest, it is largely used in several industrial sectors 

(> 100,000 tons year worldwide) and is heavily mined worldwide (Leuz et al., 2006). In this work the 

hydrogeochemical behavior of Sb has been studied in water draining the abandoned antimony mine of 

Su Suergiu, SE Sardinia. Waters flowing at Su Suergiu show high Sb concentration and impact the main 

river of South Sardinia, the Flumendosa River that supplies water for agricultural and domestic uses. 

The main source of contamination at Su Suergiu is represented by the foundry slag heaps, in fact the 

slag drainages contain up to 30,000 µg L-1 Sb(tot) (median value 13,000 µg L-1 Sb(tot)). The 

determination of Sb specie in solution has been carried out through the analyses of both Sb(tot) (by 

ICP-MS and/or ICP-OES) and Sb(III) (by ASV). The Sb(III) concentration was determined on filtered (pore-

size 0.45 µm) water samples stabilized with L(+) tartaric acid plus nitric acid, that, among several 

stabilizations of Sb(III) tested, has been evaluated as the most effective. Results obtained, showed that  

Sb(V) prevails in water sampled at Su Suergiu and surrounding area as Sb(OH)6 ̄ species, in agreement 

with the circumneutral-slightly alkaline pH values and oxidizing condition (Sb(III) ≤6% of Sb(tot)). The 

Sb(V) is less toxic  but more mobile than Sb(III); the Sb behavior in water analyzed seems to be 

conservative, and the most important natural attenuation process of Sb contamination appears to be 

dilution. First in the water of Riu Ciurixeda (whose catchment collect all mine drainage), and after in the 

Flumendosa River, the Sb concentration decreases significantly, from 104 to 101 µg L-1, but in the 

Flumendosa River it still exceeded the limit recommended by both the World Health Organization (20 

µg L-1) and the European Union (5 µg L-1), especially under extremely high flow conditions (Sb(tot) = 51 

µg L-1; median relative to all flow conditions Sb(tot) = 22 µg L-1). 

In view of these results Sb(V) removal from solution was tested using a synthetic mineral belonging to 

the class of layered double hydroxides, that has the advantage, with respect to the other sorbents 

(metal oxy-hydroxides, organic polymers, etc...), of being able to remove contaminants from solutions 

at circumneutral pH values often found in the environment. The LDH are characterized by a layered 

structure composed by brucite-like sheets ([M2+
1-xM

3+
x(OH)2]x+), stacked along the c axis and positively 

charged, due to the partial substitution of bivalent cations (M2+ = Mg2+, Zn2+, Ca2+) by trivalent cations 

(M3+ = Al3+, Fe3+). The positive charges are compensated by anions or anionic complexes (An- = Cl-, NO3
-, 

CO3
2-) in the interlayer, where also structural water can occur. From an environmental point of view, 

LDH have anion exchange capacity, sorption capacity, high specific surface area and the “memory 

effect”, which is the capacity of the calcined phases which have undergone structural collapse from the 

loss of interlayer water and anions, to recover its structure when immerged in aqueous solution. 

Calcined and nitrate LDH were tested; the calcined resulted are the most effective. Among them the 

Mg(AlFe)-c oxides, derived from the calcination of hydrotalcite-like compounds 



 
 

{Mg6Al2(OH)16CO3∙4H2O}, removed Sb(OH)6 ̄ from solution through the rehydration and formation of a 

brandholzite-like compound  {Mg[Sb(OH)6]2·6H2O}. The 2ZnAl-c oxides derived from the calcination of 

zaccagnaite-like compounds (Zn4Al2(OH)12CO3∙3H2O) kept Sb(OH)6 ̄ from solution by its intercalation in 

the interlayer during the reconstruction of zincalstibite-like LDH {Zn2Al(OH)6[Sb(OH)6]}. The Sb(OH)6 ̄ 

removal capacity of both sorbents is seriously affected by the presence of coexistent equal 

concentrations of As in solution, while the carbonate species and the SO4
2- result lower competition 

with respect to Sb(OH)6 ̄. Sorption tests with selected calcined LDH, Mg(AlFe)-c and 2ZnAl-c, were 

performed on water collected in the slag drainage of Su Suergiu, characterized by slightly alkaline pH 

and high concentration of SO4
2- (1006 mg L-1), HCO3 ̄ (485 mg L-1), As (3386 µg L-1) and Sb(tot) (9900 µg L-

1). Results show substantial capacity of Sb removal from solution, and also of As. Due to the relatively 

low concentration of Sb in Su Suergiu water with respect to the synthetic solution used in the sorption 

test, the main removal process of Sb resulted for both sorbents used in the intercalation in the 

interlayer during the reconstruction of carbonate(hydroxyl) LDH structure, also As seem to be removed 

through the same mechanism. In several experiments the dissolution of sorbents was observed, 

therefore it is necessary consider the impact from the dissolution of the metals composing them.  

The solid/liquid ratio strongly influences the removal processes, therefore future studies should  

address this aspect to assess the potential use of LDH in Sb removal from solution at circumneutral pH 

usually found in the environment. 

 

 

 

 

 

 

 

 

 

 

 



 
 

Preface 

This PhD work has been developed in the frameworks of the projects PRIN 2009 “study of geochemical 

behavior of antimony: speciation in the aqueous phase and dispersion in abandoned mining areas” 

(coordinator Cidu R.) and PRIN 2012 “interaction between biosphere and minerals: consequences for the 

environment and human health” (coordinator Lattanzi P.) of the Research Unit of the Department of 

Chemical and Geological Science of University of Cagliari. The aims of these projects were to improve 

the knowledge of the geochemical behavior of antimony (PRIN 2009), and the development of 

remediation strategies for the decontamination of water polluted by heavy metals (PRIN 2012). 

In these contexts, part of this work was dedicated to the study of the hydrogeochemistry of antimony, 

with particular regards to the determination of antimony species in solution through the study of 

antimony behavior in water draining an important mine area in the south east of Sardinia, the 

abandoned antimony mine of Su Suergiu, and the impact of these polluted waters on the Flumendosa 

River, the main river of the South Sardinia.  

Another part of this study was dedicated to the experimentation of the antimony removal from solution 

by means of synthetic minerals. Taking into account that at the environmental conditions of surface 

water usually the Sb(V) prevail as anionic complex dissolved in solution, the synthetic minerals 

belonging to the class of layered double hydroxides were chosen because they are able to remove 

contaminants that are stable as anionic species in solution at circumneutral pH. Their removal capacity 

of antimony was tested both on synthetic solutions and on natural waters.  
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CHAPTER 1. Introduction 

Antimony is heavily mined due to its usefulness in several industrial applications(> 100,000 tons year 

consumed worldwide) (Leuz et al., 2006; Mitsunobu et al., 2009); for instance, it is used as alloys in 

storage batteries and ammunition, as a pigment for paint or lacquers, in the smelting industry and in 

the textile industry (Krachler et al., 2001; Mitsunobu et al., 2009). Antimony is a non-essential element, 

ubiquitously distributed in the lithosphere and present in the aquatic environment as a result of natural 

processes such as weathering of Sb-bearing minerals and geothermal activity, and anthropogenic 

sources, like mining and industrial activities.  

The World Health Organization (WHO, 2011) and the European Community (Directive 98/83/EC) have 

established a guideline value of 20 µg L-1 Sb and 5µg L-1 for drinking water, respectively; while the US 

Environmental Protection Agency set the limit of Sb in drinking water at 6 µg L-1 (USEPA, 1979). In 

unpolluted waters the antimony concentration is commonly below 1 μg L-1, but close to mine areas or 

other anthropogenic sources it can reach up to 100 times natural levels. Particularly high 

concentrations of antimony have been detected in water draining abandoned mine and smelter sites 

(Cidu et al., 2008b; Filella et al., 2002a; Hiller et al., 2012).  

In the last few decades, antimony’s anthropogenic emissions have been significantly increasing, and 

being a pollutant element, with toxicity similar to arsenic, environmental effects linked to its extraction 

are arising great interest by several authors (Filella et al., 2002a;). Inorganic antimony compounds are 

considered more toxic than organic ones, and Sb(III) is considered more toxic than Sb(V) (Filella et al., 

2002b; Gebel 1997). The mobility, bioavailability and toxicology of antimony depend on its chemical 

speciation. Total concentration is not sufficient to assess antimony environmental effects (Filella et al., 

2002a, b). Even though several studies have been done, at present the geochemical behavior of 

antimony is not completely understood. Antimony can be present in natural waters as both dissolved 

Sb(III) and dissolved Sb(V); in the simple chemical system Sb-H-O under reducing conditions, aqueous 

antimony prevails as antimonous acid Sb(OH)3 while under oxidizing conditions the Sb(OH)6 ̄ specie is 

stable in a wide range of pH. Nevertheless Sb(III) has been also detected under oxidizing conditions, 

where it is thermodynamically unstable, as well as Sb(V) oxidized species has been reported in anoxic 

environments (Filella et al., 2002b and references therein). These observations suggest that the kinetics 

of redox reactions may play a significant role in defining the impact of Sb in the environment (Quentel 

et al., 2004). 

This work focused on the study of the geochemical behavior of antimony in water draining the 

abandoned mining area of Su Suergiu (SE Sardinia) and the impact of this water on the main river of 

South Sardinia, the Flumendosa River. Previous studies showed that waters draining Su Suergiu mine 

area which contain high antimony concentrations (up to 103-104 µg L-1) flowed untreated in the 

Flumendosa River, which supplies water for agricultural and domestic uses, and the antimony 
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contamination persists for several kilometer after its confluence (Cidu et al., 2008 a, b).  

To achieve a better understanding of the processes that control antimony dispersion in the aqueous 

system of this area, both Sb(III) and total antimony in solution were determined. The determination of 

Sb(III) in oxygenated water is difficult because of its thermodynamic instability and considerable efforts 

were devoted to assess the most appropriate  water sampling and stabilization conditions.  

Several sorbents, like metal oxides and hydroxides, organic polymers, clay minerals, have higher 

removal capacity at low pH values than circumneutral or slightly alkaline conditions (Carriazo et al., 

2007); previous studies showed that manganese oxides, aluminum and iron oxy-hydroxides, have high 

antimony removal capacity under reducing condition and at low pH values, while as the pH increases, 

the sorption capacity usually decreases (Leuz et al., 2006; Thanalabasingam and Pickering, 1990; Rakshit 

et al. 2011). In view of these studies, sorption experiments were performed using synthetic compounds 

of the class of layered double hydroxides (LDH). The LDH minerals are characterized by a layered 

structure composed of brucite-like sheets ([M2+
1-xM

3+
x(OH)2]x+), superposed and positively charged, due 

to the partial substitution of bivalent cations (M2+ = Mg2+, Zn2+, Ca2+) by trivalent cations (M3+ = Al3+, 

Fe3+). The positive charges are compensated by anions or anionic complexes (An- = Cl-, NO3
-, CO3

2-) in the 

interlayer, where structural water can also occur (Cavani et al., 1991). These minerals have important 

properties as: anion exchange capacity, sorption capacity, high specific surface area, and a property 

called “memory effect”. This latter is the capacity of the calcined phases, that undergone to structural 

collapse due to the lost of interlayer water and anions, to recovery its structure when immerged in 

aqueous solution. Efficacy and potential of LDH in remediation of polluted waters, at circum-neutral pH 

values, is well-known with respect to several anionic complexes like arsenate, chromate, vanadate, etc. 

(Goh et al., 2008) but has not been investigated enough in antimony-polluted solutions (Kameda et al., 

2011; Mitsunobu et al., 2009). Natural LDH phases, having Sb(OH)6 ̄ as interlayer anion complex 

(Cualstibite group), provide an important suggestion for the choice of starting cationic composition of 

LDH synthesis to use in removal tests (Mills et al., 2012). 

The double aim of this work is improve the knowledge of the antimony behavior in the waters draining 

the abandoned mine of Su Suergiu (SE Sardinia) and study the antimony removal mechanism from 

aqueous solutions by layered double hydroxides (LDH), to suggest a solution for removal of Sb(V) from 

polluted waters under the common environmental conditions of surface water, and to assess the 

applicability of this method. 
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CHAPTER 2. Investigations on the determination of Sb(III) traces in 

Sb(V)-rich media by ASV: tests with synthetic solutions and Sb-

polluted waters  

 

2.1 State of art  

Antimony occurs naturally in the aquatic environment as a consequence of natural processes and 

anthropogenic activities. Typical concentrations of total antimony in unpolluted water are less than 1 

μg L−1 but can significantly increase as a consequence of human activity. The World Health Organization 

(WHO, 2011) and the European Community (Directive 98/83/EC) have fixed the limit for drinking water 

at 20 and 5 μg L−1 Sb, respectively. In aquatic systems antimony is usually found in the oxidation states 

Sb(III) and Sb(V) that hydrolyze easily in aqueous solutions (Filella et al., 2002b). Under reducing 

conditions the antimonous acid [Sb(OH)3] and the products of its protonation and deprotonation 

[Sb(OH)2
+ and Sb(OH)4 ̄, respectively] are the main Sb(III) species, whereas under oxidizing conditions 

Sb(V) occurs as antimonic acid [Sb(OH)5] with the related aqueous species [e.g. Sb(OH)6 ̄]. On the basis of 

the current knowledge, the undissociated antimonous acid prevails over the products of its 

deprotonation and protonation (pKa of 11.82 at 25 °C from Zakaznova-Herzog and Seward, 2006) 

instead the Sb(V) protonated species prevail over undissociated antimonic acid (pKa of 2.85, Accornero 

et al., 2008). Consequently, in natural waters it is expect that the dominant species correspondent to 

the oxidation states Sb(III) and Sb(V) are respectively Sb(OH)3 and Sb(OH)6 ̄. In oxidizing condition 

Sb(OH)6 ̄ is stable in solution over a wide range of pH, however, thermodynamically unstable Sb(III) has 

been also detected under oxidizing conditions, like oxygenated marine water, surface water, 

groundwater and rain water; in the same way Sb(V) oxidized species has been also determined in 

anoxic environments (Filella et al., 2002b). Mobility, bioavailability and toxicity of antimony are related 

with its speciation, therefore, the determination of total antimony (Sb(tot)) is not sufficient to asses 

completely its environmental impact.  

Several analytical techniques can be used to determine the antimony species in aqueous media, like 

flow injection hydride generation atomic absorption spectrometry (Cabon et al., 2004), inductively 

coupled plasma-mass spectrometry (ICP-MS) and  inductively coupled plasma-optical emission 

spectrometry (ICP-OES) (Marcellino et al., 2008), total reflection X-ray spectrometry (Marguí et al., 

2013) and several electrochemical methods such as anodic stripping voltammetry (ASV) and 

potentiometric stripping analysis (Gadhari et al., 2011; Quentel and Filella, 2002; Renedo et al., 2007, 

Toghill et al., 2011). A critical point in the Sb(III) determinations, consists in the necessity of sample 

manipulations, like separation of the species and/or pre-concentration; moreover, in natural 
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oxygenated water the oxidation of Sb(III) in Sb(V) could affect the speciation results, but to the best of 

my knowledge a method for preserving the Sb(III) in Sb-rich water is not available so far. Therefore 

investigations focused on the determination of a simple method for the stabilization of Sb(III) in Sb(V)-

rich media were carried out. Several tests were performed with both synthetic solution and antimony 

polluted water and the determination of Sb(III) was performed by a polarograph with a voltammetry 

technique (ASV, anodic stripping voltammetry), that does not require pretreatment of the samples. 

Synthetic solutions were prepared in the laboratory, while the natural waters affected by antimony 

pollution were sampled in the abandoned antimony mine of Su Suergiu (SE Sardinia).  

At Su Suergiu the ore was mined underground since 1858, and was flanked by the foundry activity in 

the 1892. The mineralization is hosted in Paleozoic black shales and metalimestones, and consists of 

stibnite, scheelite, pyrite and arsenopyrite, with quartz and calcite in the gangue (Funedda et al., 2005). 

Usually the mining waste and residual materials related to metallurgical activity were dumped directly 

on the ground. After the final closure of all activities (1987), mining waste and foundry slag  were left on 

the ground, without actions to mitigate the environmental impact; the volume of slag heaps is 

estimated at about 66,000 m3 (RAS, 2003). Waters flowing at Su Suergiu contain high antimony 

concentrations, mainly due to the interaction with the residues of metallurgical processes (Cidu et al., 

2014).  Moreover, the waters are characterized by slightly alkaline pH and oxidizing conditions, 

therefore they are particularly suitable for the purposes of this study.  

 

2.2 Materials and methods  

2.2.1 Reagents and standards 

All synthetic solutions were prepared using ultrapure water (Millipore, Milli-Q©, 18.2 MΩ cm-1). The list 

and characteristics of reagents are reported in table 2.1. The Sb(III) standards were prepared daily, 

immediately before analyses, and the other standards were prepared 24 hours before analyses. All 

solutions and water samples were stored at 4°C until analysed.  

 

 Table 2.1 List of reagents and standard solutions. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

Reagent Brand Assay matrix 

Hydrochloric acid, HCl Carlo erba, superpure 37  

Hydrochloric acid, HCl Carlo Erba, ultrapure 37  

Nitric acid, HNO3 Carlo erba, superpure 69  

L(+) ascorbic acid, C6H8O6 Alpha Aesal Germany, ACS 99  

L(+) tartaric acid, C4H6O6 Sigma-Aldrch, Uk 99  

Sb(V) solid, K[Sb(OH)6]  Fluka, Sigma-Aldrich, Uk >99  

Rhodium solution, Rh Sigma-Aldrch, Uk 1025 HCL 5% 

Sb(III) solution, Sb2O3 Exaxol Italia 1000 C4H6O6 3 % + HNO3 1% 

Sb(V) solution, SbCl5 Exaxol Italia 100 HCl 25% 
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2.2.2 Analytical methods 

The concentration of Sb(III) was determined by anodic stripping voltammetry (ASV, Metrohm 797 VA 

Computrace) at the hanging mercury drop electrode (HDME) following the method developed by 

Metrohm (Application Bulletin 74/3e). The potential values were referred to an Ag/AgCl, 3 mol L-1 KCl 

reference electrode, and a Pt wire auxiliary electrode. Measurements were made by the differential 

pulse (DP) mode (table 2.2). During the analysis the solution was de-aerated with an inert gas (N2). 

 

Table 2.2 Parameter and operating conditions used for the Sb(III) determination by ASV. 

Working electrode HDME   Post electrolysis time  20 s 

Drop size 4 
 

(Deposition time) 
 Stirrer speed 2000 rpm 

 
Equilibration time 10 s 

Mode DP 
 

Pulse amplitude  10 mV 

Purge time 300 s 
 

Start potential - 300 mV 

Cleaning deposition potential - 240 mV 
 

End potential 50 mV 

Cleaning deposition time  180 s 
 

Voltage step 4 mV 

Post electrolysis potential  - 110 mV 
 

Voltage step time 0.2 s 

Peak potential - 150 mV   Sweep rate 20 mV s
-1

 

 

Voltammetric measurements of Sb(III) were made using 10 mL of sample plus 0.6 mL HCl and two 

manual additions of 1 mg L-1 Sb(III) standard solution, the volume of additions ranged between 25 and 

100 µL depending on the intensity of the sample signal (fig.2.1). 

 

 

Sb(tot) was determined by ICP-MS (quadrupole, Perkin–ElmerSCIEX ELAN DRC-e) using the 121Sb and 

123Sb atomic mass units, with Rh as internal standard (10 µg L-1 Rh). The ICP-MS was fitted with a cross-

Figure 2.1 Example of Voltammetric Sb(III) determination: (a) curves of Sb(III), where I(A) indicate the current in 
ampere and U(V) indicate the potential in volts; (b) peak charge (nA = nanoampere); (c) curves and Sb(III) 
concentration. 
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flow nebulizer and a Ryton Scott spray chamber. At high concentrations, Sb(tot) was also determined by 

ICP-OES (ARL Fisons 3520) fitted with a concentric nebulizer and a quartz, conical spray chamber. The 

operating parameters of the instruments were optimized daily. The working range of ICP-OES and ICP-

MS were 100 to 50,000 µg L-1 Sb and 0.1 to 100 µg L-1 Sb, respectively. Concentration of Sb(V) was 

determined subtracting Sb(III) from Sb(tot). 

 

2.2.3 Tests with  synthetic solutions 

Synthetic solutions, with nominal concentration of 10 µg L-1 Sb(III), were prepared by diluting the Sb(III) 

mother solution in Milli-Q water. The Sb(III) concentration was determined immediately and 

measurements were repeated after 7 and 30 days in order to assess the efficacy of stabilization during 

the time. The first series of preservation tests for the time stability of Sb(III) were:  

a) 1% v/v HCl  

b) 0.1% w/v L(+) ascorbic acid  

c) 0.2% v/w L(+) tartaric acid plus 0.1% v/v HNO3  

There are not previous data relative the use of L(+) tartaric acid plus nitric acid for the Sb(III)  

preservation; these reagents are tested considering that are used for the Sb(III) mother solution (see 

table 2.1).  

To evaluate if the initial Sb(III) concentration affects the efficacy of the stabilization, and to estimate the 

dilution effects during the determinations, further tests were performed on solutions with starting 

nominal concentrations equal to 5, 20 and 500 µg L-1 Sb(III). Determinations were repeated at a fixed 

time; on the basis of the first results only the stabilizations with hydrochloric acid or L(+) tartaric acid 

plus nitric acid were used. 

These stabilizations were also tested in Sb(V)-rich media. An appropriate amount of K[Sb(OH)6] were 

dissolved in Milli-Q water in order to have an 10 mg L-1 Sb(V) solution; considering the high purity of 

K[Sb(OH)6] (table 1.1), concentrations of Sb(III) <0.1 mg L-1 were expected. Three aliquots were 

prepared: one was kept in Milli-Q, the other two aliquots were stabilized with suprapure HCl or L(+) 

tartaric acid plus nitric acid. 

 

2.2.4 Water sampling 

Tests were also carried out with the antimony polluted water collected in the abandoned antimony 

mine of Su Suergiu (SE Sardinia) and surroundings. The physical-chemical parameters were measured at 

the sampling site, water samples were filtered through 0.45 µm pore-size filters (OlimPeak, 

polypropylene) into pre-cleaned high-density PE bottles and stored at 4°C till the analyses. For the 

determination of Sb(III) an aliquot was filtered and not stabilized, other two aliquots were filtered and 

stabilized with HCl 1% (v/v) or L(+) tartaric acid 0.2% (w/v) plus HNO3 1% (v/v). For analyses of Sb(tot) 
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by ICP-MS and/or ICP-OES another aliquot was filtered and acidified with HNO3 1%, (v/v).  

 

2.2.5 Standard addition tests 

For this purpose, three aliquots of 50 mL samples and a fixed volume of spike (0.1 mL) having an 

appropriate concentrations of Sb(III) were added to each aliquot (Cidu R., 2000). 

The standard addition tests were carried out with both synthetic solutions and mining-impacted water; 

samples stabilized with HCl 1% (v/v) or L(+) tartaric acid 0.2% (w/v) plus HNO3 1% (v/v), and not 

stabilized, were tested for each solution. When the test was performed with mining-impacted water, 

the spikes were added at the sampling site and Sb(III) was determined in laboratory within few hours 

after the sampling.  

 

The bottles used to store the stabilized aliquots of both synthetic solutions and mine water samples 

were pre-cleaned as follows: depending on the reagent to be used, the bottles were filled with HCl 3% 

(v/v) or HNO3 3% (v/v) for 3 days, thereafter were rinsed with Milli-Q, and in laboratory or at sampling 

point were also rinsed with the samples before collection. 

 

2.3 Results  

The detection limits were calculated considering 10 times the standard deviation of blank solutions 

processed during the analyses. The detection limits of Sb(tot) were 0.1 μg L-1 and 50 μg L-1 for ICP-MS 

and ICP-OES, respectively. Detection limit of Sb(III) determined by ASV was 0.4 μg L-1. 

 

2.3.1 Synthetic solutions 

Analyses performed on solutions containing nominal concentration of 10 μg L-1 showed recoveries 

>90% for measurements carried out within 7 days (table 2.3). After 30 days, concentrations of Sb(III) 

determined in the solution stabilized with L(+) tartaric acid plus nitric acid was stable, while a marked 

decrease was observed in the other solutions. In view of these results, the L(+) ascorbic acid was not 

used in subsequent tests.   

 

Table 2.3 Results of temporal stability of Sb(III) in synthetic solution containing 10 μg L
-1

 Sb(III) stabilized with 
HCl 1%, 0.1 % L(+) ascorbic acid or HNO3 1% + L(+) tartaric acid. 

*recovery is calculated with respect to the nominal initial Sb(III) concentration.  

 

 
Sb(III) 10 μg L

-1
 

 
1 d recovery* 

 
 7 d recovery  

 
30 d recovery 

 
 

 μg L
-1

  SD % 
 

μg L
-1

 SD % 
 

μg L
-1

  SD % 

re
a

g
en

ts
 HCl 1%  10.4 0.1 104 

 
9.1 0.5 91 

 
7.6 0.2 76 

0.1 % L(+) ascorbic acid  9.8 0.3 98 
 

9.3 0.7 93 
 

7.0 0.3 70 

HNO3 1% + L(+) tartaric acid  12.5 0.9 125   11.5 0.8 115   12.4 0.7 124 
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Determination performed on solutions containing 5 µg L-1 Sb(III) showed that after 20 days the 

concentration of Sb(III) was stable only when the stabilization with L(+) tartaric acid plus nitric acid were 

used, while decreased in solution with HCl 1% (v/v) (table 2.4). Instead concentrations of Sb(III) 

determined in synthetic solutions with initial Sb(III) of 20 µg L-1 concentration resulted in stable values 

over 20 days for both stabilizations. 

 

Table 2.4. Temporal stability of Sb(III) determined in sinthetic solution with initial concentrations 5 and 20 μg L
-1

 
stabilized with HCl 1%or HNO3 1% + L(+) tartaric acid. 

* recovery is calculated with respect to the nominal Sb(III) concentration of diluted samples.  

 

These results suggest that the efficacy of the Sb(III) stabilization with HCl is related not only with the 

time but also with the initial concentration of Sb(III) in solution. 

 

The working range of ASV was 1-20 µg L-1, consequently, in the analyses performed with natural 

solutions samples often needed to be diluted. To assess the effect of dilution during the analyses, 

further tests were carried out with concentrated solutions (500 µg L-1 Sb(III)). During analyses samples 

were diluted with Milli-Q containing the same reagents used for the stabilization. The recovery was in 

the range 96-109% with respect to the expected values (table 2.5). 

 

Table 2.5 Temporal stability of Sb(III) determined in synthetic solution with initial concentrations 500 μg L
-1

 Sb(III) 
and effects of dilution during analyses on aliquots stabilized with HCl 1%or HNO3 1% + L(+) tartaric acid. 

* recovery is calculated with respect to the nominal Sb(III) concentration of diluted samples.  

 

2.3.2 Mine water 

Concentrations of both Sb(V) and Sb(III) were determined only in water samples collected in the mine 

area, while the Sb(III) were always below the detection limit in uncontaminated waters; therefore 

uncontaminated waters are not considered in this study. 

The composition of water collected in the mine area is calcium and sulfate dominant, pH values were 

Sb(III) reagents 1 d recovery 
 

7 d recovery 
 

20 d recovery 

μg L
-1

 
 

μg L
-1

 SD % 
 

μg L
-1

 SD % 
 

μg L
-1

 SD % 

5  
HCl 1% 5.0 0.1 100 

 
4.6 0.3 92 

 
4.4 0.3 88 

HNO3 1% + L(+) tartaric acid 5.1 0.1 102   5.3 0.2 106   5.2 0.3 104 

20  
HCl 1% 20.6 0.3 103 

 
20.9 0.4 105 

 
20.9 0.6 105 

HNO3 1% + L(+) tartaric acid 21.5 0.4 108   21.3 0.5 107   20.6 0.2 103 

STD Sb(III) 500 µg/L  0d recovery* 
 

10d recovery 
 

20d recovery 

reagents dilution 
 

μg L
-1

 SD % 
 

μg L
-1

 SD % 
 

μg L
-1

 SD % 

1% HCl 
1/100 

 5.1 0.1 101 
 

5.0 0.1 100 
 

5.2 0.1 103 

HNO3 1% + L(+) tartaric acid  5.1 0.1 102 
 

5.4 0.2 107 
 

5.3 0.1 106 

1% HCl 
1/25 

 19.1 0.3 96 
 

20.3 0.3 101 
 

21.4 0.4 107 

HNO3 1% + L(+) tartaric acid  21.2 0.4 106 
 

20.8 0.4 104 
 

21.8 0.4 109 



9 

circumneutral to slightly alkaline, Eh values and dissolved oxygen indicated oxidizing conditions (table 

2.6).  

Table 2.6. Chemical-physical parameters and concentrations of major anions in water sampled at Su Suergiu.  

 

The high concentration of Sb(tot), from 1800 to 13,000 μg L-1, is due to the interaction of the water with 

the slag waste materials (§ 3). Coherently with the pH and redox conditions of water, the Sb(V) 

prevailed but also Sb(III), probably thermodynamically unstable, occurred (table 2.7).  

 

Table 2.7 Concentrations of Sb(V) and Sb(III) determined in water sampled at Su Suergiu within 24 hours 
upon the water collection (Sb(III) analyses were run on three replicates).     

 

 

 

 

 

 

 

 

 

 

 

 

Analyses were carried out within 48 hours and showed significant differences between the three 

aliquots considered. The relative standard deviation (standard deviation SD/mean) was <10% for Sb(III) 

determined in each aliquot, while the agreement among concentrations in the different aliquots ranged 

between 12 and 25%.  

 

2.3.3 Standard addition tests 

In sample with low Sb(III) contents, the Sb(III) values measured in stabilized aliquots agree, while Sb(III) 

determined in the aliquots not stabilized decreased significantly (table 2.8). For high Sb(III) 

concentration the highest values were obtained in the aliquot stabilized with hydrochloric acid, the 

sample date flow T water EC pH Eh  O2 Ca Mg Na K HCO3 Cl SO4 
 

Sb(tot) 

  
L s

-1
 ° C mS cm

-1
 

 
V  mg L

-1
 

 
μg L

-1
 

SU1 09-may-12 0.05 16 0.5 7.7 0.35  4.4 306 53 44 4.1 392 50 670  4600 

SU2 09-may-12 0.05 22 1.8 8.4 0.42  3.8 248 49 163 9.0 338 60 816  13,000 

SU1 26-may-14 0.25 19 2.2 7.5 0.40  8.0 440 45 110 3.7 420 60 920  7600 

SU1 30-jun-14 0.03 22 2.4 7.8 0.45  7.0 362 63 166 7.2 484 59 1000  9990 

MU8 13-may-14 1.00 19 1.1 7.9 0.46  11.0 140 15 45 2.2 268 74 232 
 

1800 

SU1 09-may-12 Sb(III)  Sb(V) 

 μg L
-1

 SD RSD %  mean SD RSD %  μg L
-1

 

not stabilized 27 2 7.4       
1% HCl 42 3 7.1       
HNO3 1% + L(+) tartaric acid 25 2 8.0       

     31 8 25  4570 

SU1 30-jun-14 Sb(III)  Sb(V) 

 μg L
-1

 SD RSD %  mean SD RSD %  μg L
-1

 

not stabilized 152 5 3.3       
1% HCl 180 16 8.9       
HNO3 1% + L(+) tartaric acid 110 10 9.1       

mean     147 28 19  9840 

SU2 09-may-12 Sb(III)  Sb(V) 

 μg L
-1

 SD RSD %  mean SD RSD %  μg L
-1

 

not stabilized 160 10 8.0       
1% HCl 150 10 9.1       
HNO3 1% + L(+) tartaric acid 120 8 6.7       

     143 17 12  12,850 
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agreement among the different aliquots fall in the same range observed in the test with synetic 

solutions.  

 

Table 2.8 Concentrations of Sb(III) determined by ASV in water sampled at Su Suergiu within 24 hours upon the 
water collection. Concentrations of standard addition were 40, 100 and 200 μg L

-1
 Sb(III) for sample SU1 26-may-14 

and 10, 20 and 40 L
-1

 Sb(III) for sample MU8 13-may-14. 

*concentrations of Sb(tot) were determined by both ICP-OES and ICP-MS. 

 

In the synthetic solution reproducibility of Sb(tot) determined by ASV was good (<6%) in all aliquots, 

while it was >10% for Sb(III) in solutions kept in suprapure HCl and in Milli-Q (table 2.9). The worse 

recovery occurs in the Milli-Q solution so stabilization appears necessary to preserve Sb(III) into 

solution. Concentration of Sb(III) was high (0.305 ± 0.005 mg L-1 ) with respect to the expected values in 

solution prepared using high-purity K[Sb(OH)6]. A further proof, using ultrapure HCl for the stabilization 

of samples and in the ASV cell during the analysis, was performed to evaluate if the acid provides 

antimony in solution. Results showed very low difference so, a possible explanation, could be that, at 

high concentrations of Sb(V), the partial reduction of Sb(V) to Sb(III) might be facilitated by the N2 flux, 

that is under reducing condition, and the acidity in the ASV analyses (Séby et al., 2012).  

 
  

  
standard addition test 

sample aliquot  Sb(III) 
 

Sb(III) 

 
 

 
μg L

-1
 SD RSD (%) 

 
μg L

-1
 SD RSD (%) 

MU8 13-may-14 
**Sb(tot) = 1800 μg L-1] 

not stabilized 
 

7.5 0.4 5.3 
 

10.5 0.5 4.8 

1% HCl, suprapure 
 

27 3.7 13.7 
 

19 1.5 7.9 

0.2% Ac.Tart.+1% HNO3 
 

26 0.9 3.5 
 

11 0.5 4.5 

mean 
 

20 8.8 44 
 

13.5 3.9 29 

SU1 26-may-14 
*Sb(tot) = 7600 μg L-1] 

non stabilized 
 

119 8.7 7.3 
 

155 10 6.5 

1% HCl, suprapure 
 

144 5.5 3.8 
 

180 10 5.6 

0.2% Ac.Tart.+1% HNO3 
 

80 4.9 6.1 
 

95 5.9 6.2 

mean 
 

114 26 23 
 

135 30 22 
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Table 2.9. Concentrations of Sb(tot) and Sb(III) determined by ASV in 10 mg L
-1

 synthetic solution  prepared dissolving K[Sb(OH)6)] in Milli-Q. Concentrations of 
standard addition were 100, 200 and 400 μg L

-1
 Sb(III). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   
 

 

 

 
     

  
standard addition test 

sample aliquot  Sb(tot), ASV  Sb(III) 
 

Sb(III) 

 
  mg L

-1
 SD RSD (%) 

 
mg L

-1
 SD RSD (%) 

 
mg L

-1
 SD RSD (%) recovery (%) 

 
  

  
 

         

STD Sb(tot) 10 mg L
-1

 

not stabilized  10.3 0.4 4.1 
 

0.237 0.03 10.5 
 

0.300 0.029 9.7 79 

1% HCl, suprapure  9.8 0.5 5.5 
 

0.285 0.04 15.1 
 

0.310 0.022 7.1 92 

1% HCl, ultrapure  10.3 0.3 2.9 
 

0.270 0.01 4.4 
     

0.2% Ac.Tart.+1% HNO3  9.5 0.3 3.2 
 

0.280 0.017 6.1 
 

0.305 0.016 5.2 92 
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2.4 Summary 

This study was focused on the determination of a simple method for the stabilization of Sb(III) in Sb(V)-

rich media, flanked to a simple Sb(III) analytical technique which does not require particular sample 

manipulations. For this purpose several reagents were tested with synthetic solutions and natural 

waters, and the Sb(III) was analyzed by ASV. The reagents tested for the stabilizations were: 1% v/v HCl, 

0.1% w/v L(+) ascorbic acid and 0.2% v/w L(+) tartaric acid plus 0.1% v/v HNO3.  

Tests carried out with synthetic solution showed that the concentration of Sb(III) decreased over time, 

therefore, sample stabilization is needed to avoid Sb(III) oxidation. The best reproducibility and 

recovery were obtained with the stabilization carried out with tartaric acid plus nitric acid.  

Results related to the antimony polluted water show that the Sb(III) is a minor constituent in the 

antimony rich water flowing at Su Suergiu, characterized by circumneutral pH values and oxidizing 

conditions. Among the several reagents tested, also with natural water the tartaric acid plus nitric acid 

appear the most suitable stabilization but  further investigations are needed to confirm this hypothesis. 

Speciation of antimony in aqueous solutions can be obtained with the determination of Sb(tot) either 

by ICP-MS or ICP-OES, and Sb(III) using ASV. The Sb(V) concentration is calculated by subtracting Sb(III) 

from Sb(tot). Due to the instability of Sb(III), analyses should be carried out as soon as possible upon the 

water collection (Cidu et al., 2015).  
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CHAPTER 3. Antimony contamination and dispersion in water 

draining the Su Suergiu abandoned mine area 

 

3.1 State of art 

Antimony can be introduced to the aquatic environment through natural processes and anthropogenic 

sources. In the last decades the concern of antimony like pollutant of priority interest has been growing 

as a consequence of increasing industrial production, its connected antimony extraction and the impact 

of these activities on the environment. The World Health Organization (WHO, 2011) has established a 

guideline value of 20 μg L−1 Sb for drinking water, while both the European Community (Directive 

98/83/EC) and Italian Legislation (DL. vo 31/2001) indicate 5 μg L−1 Sb. Typical concentrations of 

antimony in unpolluted waters are less than 1 μg L−1 but can increase in areas affected by 

anthropogenic activities, in particular very high concentrations of Sb may occur in water draining 

abandoned mine sites (Asaoka et al., 2012; Casiot et al., 2007; Cidu et al., 2008a, b;  Filella et al., 2002a; 

Ritchie et al., 2013). 

At present, the hydrogeochemistry of antimony is not completely understood. The most common 

oxidation states of this element in the environment are Sb(III) and Sb(V), and both hydrolyze easily in 

aqueous solutions (Filella et al., 2002b). The Sb(V) prevails in oxygenated water as Sb(OH)6 ̄ while under 

reducing condition Sb(III) is more stable as aqueous Sb(OH)3, but significant concentration of Sb(III) are 

found in oxic waters as well as oxidizing species have been determined in anoxic waters (Accornero et 

al., 2008; Filella et al., 2002a).  

It has been recognized that the fate and impact of antimony (mobility, bioavailability then toxicity) on 

the environment are related to its speciation (Filella et al., 2002b; Wilson et al., 2010).  Mobility of 

antimony in solution and its impact on the environment depend on several factors, such as antimony 

speciation, chemistry of solutions, pH and redox conditions. Amorphous iron and manganese 

oxyhydroxides present in natural waters may play a dual effect by absorbing and oxidizing the more 

toxic Sb(III) into Sb(V) (Belzile et al., 2001). Natural attenuation of antimony may occur also through 

sorption onto manganese and iron oxides (Filella et al., 2009; Wang et al., 2011) or by the precipitation 

of Sb-bearing solids (Mitsunobu et al., 2010, Roper et al., 2012). In other cases antimony persists in 

solution at long distance from the source of contamination (Ashley et al., 2003; Cidu et a., 2008a, b, 

Wilson and Webster-Brown, 2009). In this context, the kinetics of redox reactions and the affinity with 

potential ligands in forming aqueous complexes under environmental pH and oxidizing conditions play a 

significant role, but unfortunately there is still lack of information in this sense (Accornero et al., 2008; 

Filella et al., 2009; Quentel et al., 2004).  
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The present work is part of a larger project (PRIN 2009), that studied antimony geochemistry and the 

processes of its transfer toward the system water-soil-plant, aimed to better understand the processes 

and the factors that govern the dispersion of antimony so that more effective remedial action might 

reduce antimony contamination (Cidu et al., 2014).  

This study has been focused on the antimony contaminated water draining the abandoned mine of Su 

Suergiu (SE Sardinia, Italy), an area which is considered a priority in the regional remediation plan for 

contaminated sites. Antimony polluted water draining the abandoned mine, impact the main river of 

south Sardinia, the Flumendosa River, that supplies water for domestic and agriculture uses. Previous 

studies carried out in the area have established that the contamination continued several kilometer 

downstream the confluence of the polluted water into the Flumendosa River (Cidu et al., 2008a, b).  

 

3.2 Study area and mining history 

The study area is located in the south-east of Sardinia, in the mining district of the Sarrabus-Gerrei. 

Geology of the area consists of low-grade metamorphic rocks belonging to allocthonous units of 

External Nappes zone, set in place during the Hercynian orogenesis (Carmignani et al., 1986). Schematic 

geological setting of the area is show in figure 3.1. From the bottom to top the outcropping succession 

consists of the Cambrian to Lower Ordovician siliciclastic deposits, mainly micaceous metasandstones 

and quartzite, followed by intermediated-acid metavolcanic rocks (Middle Ordovician), sediments of 

pelagic deposition system constituted by black shales, metalimestones and quartzites (Silurian - Middle 

Devonian), Middle Devonian - Lower Carboniferous metalimestones, and Lower Carboniferous 

syntectonic deposits of the Culm type. The emplacement of the ore is linked to magmatic-hydrothermal 

activity contemporary to the main Hercynian deformation phases. The mineralization at Su Suergiu 

consists of stibnite (Sb2S3), scheelite (CaWO4), arsenopyrite (FeAsS), pyrite (FeS2) and gold, with calcite 

and quartz in the gangue; it is made up of lenses arranged parallel to the foliation of highly deformed 

black shales (Silurian - Middle Devonian) and metalimestone (Middle Devonian - Lower Carboniferous) 

belonging the cataclastic belt of Villasalto Fault (Funedda et al., 2005). 

At Su Suergiu mine activity was developed underground from 1858 to 1960, with exploitation peaks in 

the 1920-1930’s. From 1882 the mining activity was flanked by metallurgical activity. In the smelter,  

ores were processed to obtain antimony sulfides and oxides and from the first years of 1900 the 

foundry began also the production of metallic antimony from the oxides. During the reduction 

processes the oxides were mixed with charcoal, and sodium carbonate was added in order to obtain a 

better fluidity (Secchi and Lorrai, 2001). 
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Figure 3.1 Schematic geological map of the study area (RAS, 2013, modified). 



16 
 

The other reagents used in the smelter processes were coke, caustic soda and fuel oil. After the end of 

mining at Su Suergiu, ore coming from other areas of Italy, Turkey and China was processed in the 

foundry. 

In 1987 the metallurgical plant was finally closed and both mining residues and slag heaps were left on 

the surface. Landfills of mining residues are mainly constituted by fine materials, most of them are 

completely vegetated or nearly so and only the bodies situated near the stream beds show evidence of 

erosion processes. The foundry slags, consisting of residues of several metallurgical processes are 

dumped in two bodies (about 66,000 m3; RAS, 2003) in front of the foundry plant (fig.3.2) and are 

affected by significant erosion from storm runoff. 

 

 

 

At present, the only environmental mitigation consists of a retaining wall built on the edge of the slag 

heap to divert runoff and minimize the slag heap erosion processes. However, after storm events the 

wall was damaged and foundry wastes were transported by runoff for a long distance downstream 

from the dump (fig.3.3 and 3.4). 

The area under investigation comprises the Su Suergiu abandoned mine, the Riu Ciurixeda catchment 

and a portion of the Flumendosa River. Climate of the area is semi-humid, characterized by dry summer 

and rainfall variable from year to year, mostly occurring from October to April. Data collected from 

1955 to 1992 at stations located in the area show mean annual precipitation of 670 mm, and mean 

annual temperature of 16.2 °C (RAS, 1998).  

Figure 3.2 The heaps of foundry slag in front of the foundry plant. 
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Most rocks are characterized by permeability in the range of 10-4 to 10-7 cm s-1 (IGEA, 2009). 

Metalimestones show permeability in the range of 10-2 to 10-4 cm s-1 (IGEA, 2009), mainly due to 

fractures, but their relevance is negligible due to small outcrops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Erosion of slag waste after summer storms (date: 30.07.2014). 

 

Figure 3.4 Foundry waste carried downstream from the dump (date: 26.05.2014). 

 



18 
 

Morphology in the catchment is characterized by steep slopes (up to 60%) covered by degraded 

Mediterranean maquis. The springs are scanty, and usually show little flow (<0.1 L s-1 under high flow 

condition). Waters flowing at Su Suergiu are mainly streams whose flow conditions are dependent on 

the rainfall seasonal trend and that often flown underground. The Riu Ciurixeda stream collects the 

untreated drainage from Su Suergiu and flows directly into the Flumendosa River, the main river in 

south Sardinia.  

 

3.3 Water sampling and analyses 

Several sampling surveys were carried out under different seasonal conditions, from May 2012 to July 

2014, in the mine area and surroundings. Waters collected in the mine area consist of waters flowing 

out of adits, waters draining the mining and foundry slag, and streams. Upstream from the mine area, 

unpolluted water of spring, streams and the Flumendosa River before the Riu Ciurixeda confluence was 

sampled; water sampled downstream the mine area were collected in the Riu Ciurixeda which receives 

all mine drainages and the Flumendosa River after the confluence of polluted waters (fig.3.5). 

Physical-chemical parameters, such as temperature, electrical conductivity (EC), redox potential (Eh) 

and pH were measured at the sampling site. The Eh was measured with a platinum electrode, and 

values were corrected against ZoBell’s solution (Nordstrom, 1977). Alkalinity was measured both in the 

field and in the laboratory using the methyl-orange titration method with hydrochloric acid and the 

Gran function plot method, respectively. Alkalinity was chiefly attributed to the HCO3 ̄ ion, the CO3
-2 ion 

being always undetectable, and the contribution of non-carbonate species being negligible. At sampling 

sites, an aliquot of water was filtered through 0.45 µm pore-size filters (OlimPeak, polypropylene) and 

stored in HDPE (polyethylene high-density) bottle for ions analyses by ion chromatography; another 

aliquot was filtered into preconditioned HDPE and acidified with 1% v/v HNO3 for ICP-OES and ICP-MS 

analyses. At selected sites a further aliquot was filtered and stabilized with 1% v/v HNO3 + 0.2%, w/v 

L(+) tartaric acid, for Sb(III) analyses by anodic stripping voltammetry (ASV, Metrohm 797 VA 

Computrace) at the hanging mercury drop electrode (table 3.1). 

Total antimony, Sb(tot), was determined by ICP-MS (Sb(tot) <50 µg L-1) or ICP-OES (Sb(tot) >50 µg L-1). 

During trace elements analyses with ICP-MS, Rh was used as internal standard. The reference solutions 

SRM1643e supplied by the US National Institute of Standard & Technology (Gaithersburg, Maryland), 

and EnviroMAT ES-L-2 and EP-H-3 supplied by SCP Science (St. Laurent, Quebec) were used during ICP-

OES and ICP-MS analyses to evaluate analytical errors.   

Saturation index (SI) of gypsum and calcites were determined by WATEQ4F 4.00 source code (Ball and 

Nordstrom, 1991 and updates), saturation index is calculated as SI = log (IAP/Ksp), where IAP is the ionic 

activity product and Ksp is the solubility-product constant. 
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Figure 3.5 Location of water samples. 
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Table 3.1 Sample stabilization and analytical techniques. 

 

 

3.4 Results  

The ionic balance was always less than ±6%.  The reproducibility of Sb(tot) expressed as relative 

standard deviation, and the recovery were in the range of 2.9-9.7% and 98-105 %, respectively (table 

3.2).  

 

Table 3.2 Concentration of Sb(tot) determined in reference solutions. 

 

Values of pH, Eh and EC of all samples collected from 2012 to 2014 are summarized in table 3.3. All 

samples showed Eh and pH values indicating respectively oxidizing and neutral or slightly alkaline 

conditions; EC values of waters collected in the mine area increased significantly with the increase of 

sulfate and calcium concentrations, and also sodium in slag drainage (fig.3.6). Considering the relative 

abundance of major ions and the concentration of antimony in solution it is possible to group the 

samples in: upstream waters in which are included spring, surface waters collected out of the mine 

area, and the samples of Flumendosa River upstream from the confluence of the Riu Ciurixeda; water 

collected in the mine area that grouped slag drainage, surface waters and water collected from adits 

and borehole; finally, the downstream water group comprises samples of Riu Ciurixeda and Flumendosa 

River downstream from the confluence (table 3.4).  

Composition of samples collected in the mine area was Ca-(Na)-sulfate dominant, the very high 

concentration of sulfate, up to 1800 mg L-1 and median 925 mg L-1, is attributable to the oxidation of 

sulfide minerals. Water flowing immediately downstream from the slag wastes (samples SU1 and SU2) 

often resulted in sodium enrichmen as a consequence of the dissolution of sodium carbonate contained 

in the slag heap. 

Sample stabilization Elements Analytical method 

none Cl, F, SO4,NO3,Br, Ca, Mg, K, Na ion chromatography, IC (Dionex ICS3000) 

suprapure HNO3 1% (v/v)  
Ca, Mg, Na, K, S(tot), Si, B, Sb(tot) 

inductively-coupled plasma optical-emission 
spectrometry, ICP-OES (ARL Fisons 3520) 

Li, Be, B, Al, V, Cr, Mn, Ni, Co, Cu, 
Zn, Ga, As, Se, Rb, Mo, Ag, Sr, Ba, 
Fe, Cd, Sb(tot), Te, Tl, Pb, U 

inductively-coupled plasma mass spectrometry, 
ICP-MS (Perkin-ElmerSCIEX ELAN DRC-e) 

suprapure HNO3 1% (v/v) + 
tartaric L (+) acid 0.2% (w/v) Sb(III) 

anodic stripping voltammetry, ASV (Metrohom 
797 VA Computrace; app. bulletin 74/3 b) 

Reference solution Certified value 
 

Measured value 
 

recovery  Technique 

 
μg L

-1
 SD 

 
μg L

-1
 SD RSD % n° 

 
% 

 
           SRM1643e 58.3 0.61 

 
57.1 4.1 7.2 9 

 
98 ICP-MS 

ES-L-2/100 10 0.5 
 

10 0.96 9.7 9 
 

99 ICP-MS 
EP-H-3/10 505 16 

 
530 16.4 2.9 6 

 
105 ICP-OES 
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Samples of Rio Ciurixeda showed Ca-sulfate composition reflecting the influence of mine drainage, 

whereas waters of Flumendosa River are Ca-bicarbonate(sulfate) dominant and the relative 

abundances of major anions did not vary significantly before and after the confluence of Rio Ciurixeda 

(fig.3.6).  

 

 Table 3.3 Value of pH, Eh and EC determined in water samples (complete datas are reported in appendix I). 

 

 
 

 

 

   
upstream  n = 13 

 
mine area n = 27 

 
downstream n = 13 

 
units 

 
min max  median mean ± σ 

 
min max  median mean ± σ 

 
min max  median mean ± σ 

pH 
  

6.1 8.2 7.7 7.6 ± 0.6 
 

7.0 8.5 7.8 7.9 ± 0.4 
 

7.6 8.3 7.9 7.9 ± 0.2 

Eh  V 
 

0.38 0.51 0.45 0.45 ± 0.04 
 

0.34 0.43 0.46 0.44 ± 0.05 
 

0.37 0.50 0.46 0.45 ± 0.04 

EC mS/cm 
 

0.19 0.81 0.41 0.43 ± 0.16 
 

0.41 3.75 2.03 1.88 ± 0.91 
 

0.41 1.20 0.78 0.79 ± 0.27 

                 

Figure 3.6 Piper diagram showing the chemistry of solution. 
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Table 3.4 Values of flow, temperature, pH and dissolved oxygen determined at the sampling sites, and concentrations 
of major anions, Sb(tot) and Sb(III) determined in water samples. Label of sample are referred to fig.3.5.  

 

 

 
Sample Tipe(a) Date 

 
T w 

 
Flow pH 

 
O2 

 
Ca Mg Na K 

 
HCO3 Cl SO4 NO3 

 
Sb Sb(III) 

   
 (°C)  L s-1   mg L-1 

 
mg L-1 

 
mg L-1  µg L-1 

upstream  
 

     
          

   
SU8 sp 09.05.12  16  0.03 7.6  8.4 

 
30 10 30 0.8 

 
93 57 36 0.59  0.98 <dl(c) 

SU15 sp 13.06.12  18  <0.1 6.1  n.a.(b) 
 

7 4 31 1.7 
 

34 45 8 <0.1  0.47 <dl 
MU9 st 02.05.12  17  50 7.8  6.0 

 
49 8 26 1.8 

 
162 39 24 0.04  0.45 n.a. 

MU9 st 28.02.13  8  250 8.2  10.2 
 

24 6 22 1.5 
 

77 42 17 5.01  0.50 n.a. 
MU9 st 20.06.13  18  1 7.5  7.4 

 
69 11 33 1.7 

 
222 57 27 < dl  0.43 n.a. 

MU92 ri 23.05.12  17  1000 8.0  7.0 
 

66 23 33 2.2 
 

227 53 72 0.28  3.9 <dl 
MU92 ri 28.02.13  8  3000 7.8  10.2 

 
37 15 25 1.8 

 
128 48 40 5.14  1.9 n.a. 

MU92 ri 23.07.13  26  1000 7.7  5.8 
 

61 24 31 2.4 
 

218 47 63 < dl  4.5 <dl 
MU92 ri 09.01.14  10  4000 7.7  8.6 

 
46 19 28 1.8 

 
170 51 53 3.14  2.1 <dl 

MU92 ri 20.06.13  24  1000 8.1  7.0 
 

55 21 27 1.9 
 

215 48 51 < dl  5.35 <dl 
SU5 sp 09.05.12  13  <0.1 7.4  7.0 

 
26 13 27 1.5 

 
85 52 39 3.12  4.20 <dl 

SU13 sp 13.06.12  15  <0.05 7.0  n.a. 
 

31 19 25 1.4 
 

115 38 49 <0.1  1.37 <dl 
SU17 st 28.02.13  8  8 8.2  8.8 

 
107 28 30 0.6 

 
248 68 173 1.34  3.3 n.a. 

mine area  
 

     
          

   
SU3 st 09.05.12  15  0.5 7.8  3.8 

 
165 38 33 3.0 

 
214 55 400 <0.1  330 2 

SU3 st 11.12.12  8  20 8.2  n.a. 
 

99 25 37 2.7 
 

137 78 185 51.3  204 n.a. 
SU3 st 28.02.13  8  80 8.1  12.6 

 
41 11 26 2.4 

 
108 49 48 7.1  48.1 n.a. 

SU3 st 20.06.13  19  0.05 7.6  4.2 
 

422 92 46 3.2 
 

277 71 1280 < dl  315.5 n.a. 
SU1 sl 02.05.12  18  0.05 7.9  8.0 

 
310 57 48 4.1 

 
342 52 663 <0.1  4400 n.a. 

SU1 sl 09.05.12  16  0.05 7.7  4.4 
 

306 53 44 4.1 
 

392 50 669 0.99  4600 28 
SU1 sl 30.10.12  10  0.04 7.8  8.4 

 
350 82 383 8.8 

 
651 58 1370 <0.1  13,000 230 

SU1 sl 28.02.13  13  0.3 7.6  8.8 
 

339 75 94 4.2 
 

320 56 1007 < dl  6700 n.a. 
SU1 sl 01.07.13  22  0.1 8.1  7.0 

 
270 64 470 21 

 
558 55 1340 < dl  16,400 27 

SU1 sl 20.06.13  22  0.01 8.2  7.2 
 

267 52 311 16 
 

508 55 1200 5.6  15,000 n.a. 
SU1 sl 23.07.13  20  0.07 8.0  7.8 

 
286 65 360 14 

 
540 52 1170 < dl  13,000 60 

SU1 sl 26.05.14  19  0.25 7.5  8.0 
 

370 51 112 4.7 
 

415 60 925 2.00  7600 135 
SU1 sl 09.01.14  14  0.4 7.1  8.8 

 
337 47 56 2.2 

 
351 61 801 6.05  6000 40 

SU1 sl 30.06.14  22  0.03 7.8  7.0 
 

354 63 158 6.7 
 

484 59 1000 0.58  9990 147 
SU2 sl 02.05.12  22  0.07 8.4  7.2 

 
243 54 171 8.8 

 
264 64 789 <0.1  12,800 55 

SU2 sl 09.05.12  22  0.05 8.4  3.8 
 

248 49 163 9.0 
 

338 60 816 <0.1  13,000 140 
SU2 sl 30.10.12  16  0.1 8.5  10.4 

 
256 61 600 15 

 
458 76 1800 <0.1  30,000 760 

SU2 sl 28.02.13  9  0.05 8.5  12 
 

353 84 286 11 
 

387 63 1310 < dl  14,000 n.a. 
SU2 sl 20.06.13  25  0.01 8.3  7.0 

 
283 55 278 12 

 
400 60 1238 2.91  22,000 n.a. 

SU12 st 13.06.12  19  0.01 8.1  n.a. 
 

540 158 52 6.0 
 

296 54 1644 <0.1  890 1 
SU20 st 11.12.12  11  5 7.6  n.a. 

 
177 39 76 3.8 

 
208 76 420 44.4  4020 n.a. 

SU20 st 30.10.12  16  0.1 7.4  5.8 
 

401 90 95 6.0 
 

298 96 1280 20.9  4000 150 
SU20 st 28.02.13  8  30 8.0  12 

 
43 11 26 2.2 

 
115 51 51 7.86  90 n.a. 

SU4 ad 09.05.12  14  0.1 7.1  1.8 
 

138 21 33 1.5 
 

305 46 180 <0.1  490 1 
SU6 st 09.05.12  13  0.05 7.8  8.0 

 
158 32 31 3.1 

 
212 43 309 <0.1  850 6 

SU7 ad 09.05.12  12  0.01 7.8  8.4 
 

42 19 36 2.2 
 

98 50 120 5.85  225 3 
SU9 bh 23.05.12  18  0.01 7.0  3.2 

 
500 80 40 1.5 

 
352 89 1200 <0.1  99 1 

downstream  
 

     
          

   
MU8 st 02.05.12  17  50 8.3  8.0 

 
124 21 44 3.9 

 
254 60 193 <0.1  1500 n.a. 

MU8 st 23.05.12  17  40 7.9  5.6 
 

138 23 49 3.9 
 

284 75 193 0.63  1540 2 
MU8 st 28.02.13  8  50 8.0  10.2 

 
82 18 37 3.7 

 
186 61 133 8.76  1600 n.a. 

MU8 st 20.06.13  19  0.25 7.7  5.4 
 

160 27 58 4.1 
 

365 99 235 < dl  1100 70 
MU8 st 01.07.13  20  0.15 7.7  5.2 

 
176 30 65 4.5 

 
415 106 250 < dl  1060 35 

MU8 st 23.07.13  22  0.2 7.6  2.2 
 

166 29 69 5.4 
 

380 93 204 0.54  1340 50 
MU8 st 09.01.14  11  120 7.8  11 

 
99 18 37 3.4 

 
219 65 152 6.55  1600 5 

MU8 st 13.05.14  19  1 7.9  11 
 

137 20 46 3.3 
 

268 74 230 0.08  1800 13 
SU11 A ri 23.05.12  18  1000 8.0  6.6 

 
66 23 32 2.2 

 
227 53 75 <0.1  29 <dl 

SU11 ri 28.02.13  8  3000 8.0  10.6 
 

39 16 26 1.9 
 

129 48 43 5.52  19 n.a. 
SU11 ri 20.06.13  24  200 8.1  7.0 

 
57 22 27 1.9 

 
223 48 56 0.21  18 n.a. 

SU11 ri 23.07.13  27  200 7.8  5.8 
 

63 24 32 2.5 
 

218 48 69 0.31  22 <dl 
SU11 ri 09.01.14  11  4000 7.7  8.8 

 
47 20 28 1.9 

 
171 51 58 3.1  51 <dl 

(a)
 sp = spring; st = stream; ri = river; sl = slag drainage; ad = adit; bh = borehole. 

(b)
 n.a  = not analized  

(c)
 dl = detection limit 
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The median concentrations of antimony in uncontaminated Sardinian surface and ground waters were 

estimated at 0.3 µg L-1 (Cidu and Frau, 2009) and 0.5 µg L-1 Sb (Biddau, 2012) respectively. 

The median concentration of Sb(tot) determined in waters upstream from the mine area was below the 

limits established for drinking water, but relatively high (1.9 µg L-1) suggesting that the concentration of 

antimony in unpolluted water reflects high values of local background due to the geological setting of 

the Sarrabus-Gerrei mining district.  

Waters collected in the mine area were characterized by high antimony concentrations, but it is 

possible to note certain variability among them (fig.3.7). 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The slag drainage (samples SU1 and SU2), showed the highest concentrations, up to 30,000 µg L-1 

Sb(tot) (median value 13,000 µg L-1 Sb(tot)). Concentration of total antimony ranged between 48 – 4020  

µg L-1 (median: 323 µg L-1) in the other samples of the mine area. The adit drainages contain relatively 

low antimony concentrations, whereas the content of antimony in streams is conditioned by the flow 

Figure 3.7 Box plot of Sb(tot) concentrations in the water sampled in the mine area, in the Riu Cirixeda and 
in Flumensosa River before and after the confluence of polluted water. 
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conditions. The Riu Ciurixeda catchment collects water from the mine area and flows into the 

Flumendosa River with 103 µg L-1 Sb(tot) (median: 1520 µg L-1). The impact of Riu Ciurixeda on the 

Flumendosa River is clearly shown in fig.3.7. Despite the effect of dilution, the water flowing 

downstream the confluence showed a significantly increase of antimony concentration, up to 51 µg L-1 

(median Sb(tot) = 22 µg L-1) under extremely high flow condition, and exceeded the drinking water limit 

established by the WHO (20 µg L-1) and EU (5 µg L-1). 

The highest concentrations of Sb(III) were determined in the slag drainage where content of total 

antimony is maximum, and Sb(III) reached the 6% of Sb(tot); when Sb(III) was analyzed in water of 

Flumendosa River it was always under the detection limits (table 3.4). Speciation modeled by Visual 

MINTEQ showed that Sb(V) and Sb(III), respectively occur as Sb(OH)6 ̄ (100%) and Sb(OH)3 (99.9%) 

aqueous species. 

 

3.5 Discussion 

The oxidation reaction of stibnite, pyrite and arsenopyrite decreases the pH values, consequently, acid 

pH should be expected in water flowing at Su Suergiu, especially in the slag drainage. However these 

waters showed neural or slightly alkaline conditions from the buffer effect by carbonate minerals. In 

particular, the strong enrichment of sodium in the slag drainage (fig.3.8) indicates the dissolution of 

sodium carbonate that has been used in the ore processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

High availability of dissolved bicarbonate promotes the precipitation of calcite (fig.3.9) which reaches 

saturation more easily than gypsum, so the calcium in solution is limited by calcite solubility 

equilibrium. Gypsum saturation was never reached but it is possible that at extremely low flow 

condition gypsum also precipitates, especially in water draining the mine area. 
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Figure 3.8 Concentrations of Ca and Na vs EC; the circles indicate the slag drainage. 
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Figure 3.9 (a) Plot of calcite Saturation Index (SI) vs HCO3 concentration, the dashed line indicates the slag drainage; (b) plot of calcite Saturation Index (SI) vs Ca/SO4 
molar ratio;  (c) plot of gypsum Saturation Index (SI) vs Ca/SO4 molar ratio   
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Data collected from 2012 to 2014 agree with previous studies (Cidu et al. 2008b): the main source of 

antimony contamination of the water system at Su Suergiu is represented by the interaction between 

water and materials hosted in the slag heaps (fig.3.10), while water collected out of adits or in the 

streams that interact with the other mining residues showed relatively low antimony concentrations. It 

is noteworthy that waste materials eroded from the slag heaps are transported by the surface runoff 

and widely dispersed through the area, until the confluence of Riu Ciurixeda with the Flumendosa River. 

It is expected that, especially under high flow conditions when the stream waters flow mainly on the 

surface, the interaction between water and foundry slag continues also downstream the mine area and 

contributes to increase the antimony concentration in the Riu Ciurixeda. It could explain the relatively 

low variability of antimony concentration determined in the Riu Ciurixeda samples (MU8) as compared 

to the high variability of flow conditions. For example, considering the MU8 samples with the highest 

(120 L s-1) and the lowest (0.2 L s-1) flow values (table 3.4), respectively collected in 09.01.14 and 

23.07.13, the Sb(tot) vary slightly, from 1340 to 1600 µg L-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This result could be explained as follows: under low-flow condition, even at low inputs of water from 

the mine area, the high Sb(tot) content might be due to the concentration subsequent to the 

evaporation, while under high flow condition the effect of dilution might be partly compensated by the 

interaction between water and waste materials dispersed downstream the mine area.   

Figure 3.10 Concentration of Sb(tot) determined in water sampled on  May 
2012.  
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Total dissolved antimony increased with increasing SO4
-2 concentrations (fig.3.11). Antimony may come 

in solution through the oxidative dissolution of stibnite that could be represented by the reaction [1]: 

 

Sb2S3 + 7O2 + 8H2O ⟷ 2Sb(OH)5 + 3SO4
2- + 6H+         [1]                  

 

and Sb(OH)5 become stable in solution as anionic complex as indicated by the reaction [2](Leveret et al., 

2012 and reference therein): 

 

Sb(OH)5 + H2O  ⟷ Sb(OH)6 ̄ + H+
         lg K(298.15 K) = -2.848                    [2] 

 

The Sb/SO4
-2 molar ratio from reaction [1] is 0.667 while waters collected in the mine area ranged 

between 0.015-0.0001. This difference could mean that stibnite is not the principal source of sulfate, 

that it may also be derived from dissolution of other sulfide minerals, such as pyrite and arsenopyrite. 

Alternatively, antimony might be released also by dissolution of other Sb-bearing solid phases, like Sb-

oxides such as valentinite, Sb2O3, and tripuhyite, a ferric antimonite, contained in the residues of the 

metallurgical wastes. A third alternative is that after stibnite oxidizes, the antimony reprecipitates as a 

secondary mineral such as tripuhyite while the sulfate is still soluble and mobile. If this last alternative is 

the main reason for Sb/SO4 ratios, being so different from that of stibnite, then the greatest attenuation 

of Sb is occurring at the source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Concentration of Sb(tot) vs SO4
2-
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To indentify possible attenuation processes, such as precipitation of Sb-bearing solid phases or 

adsorption on particulate phases, the species calculation was performed on the slag drainage sample 

(SU2 30-oct-12) that showed the highest contents of Sb(tot), Sb(III), SO4
-2, and Na (Cidu et al., 2014). 

The results indicate undersaturation with respect to several antimony solid phases. Being Fe 

concentration under the detection limit (< 20 μg L-1), it is not possible to determine the saturation of 

tripuhyte, that can precipitate even at very low Fe concentration (Cidu et al., 2014). The Sb(V) 

attenuation through the  tripuhyte precipitation (especially near the source of contamination) it is not 

excluded so further studies are needed to constrain this hypothesis. Considering the results of the 

species calculation on the slag drainage sample (SU2 30-oct-12), it is reasonable to suppose 

undersaturation conditions also in the other samples. 

 At the state of current knowledge, dilution appears to be the main way for the natural decrease of 

antimony concentrations. The Sb/SO4
-2 molar ratios of water sampled in the Flumendosa River 

downstream the confluence of Riu Ciurixeda falls within the same range of samples collected in the 

mine area. With the cautions due to the uncertainties derived from the estimate of the flow, and 

considering only samples collected under high flow conditions, the dilution effect evaluated through 

the molar ratios of Sb/Cl- and Sb/Na between the Riu Ciurixeda (MU8) and the mixing (SU11) waters, 

suggests a conservative behavior for antimony (table 3.5). 

 

Table 3.5 Dilution factor between the Riu Ciurixeda (MU8) and the Flumendosa River 
downstream from the confluence (only high-flow conditions are represented in that 
often under-low flow conditions the Riu Ciurixeda flows underground). 

 

 

 

 

 

Comparing the load of conservative elements and Sb in Flumendosa River before and after the Riu 

Ciurixeda confluence (table 3.6), the ratios between the sum of loads of Riu Ciurixeda plus Flumendosa 

River before the confluence (MU92+MU8), and the Flumendosa River after the confluence (SU11), a 

conservative behavior of Sb as well chlorine, sulfate and sodium, is observed suggesting that 

downstream the mine area the main abatement of Sb concentration in solution is due to dilution. 

The Sb(III) has higher affinity with particulate phase than Sb(V) (Wu et al., 2011, Leuz et. al, 2006, 

Thanabalasingam and Pickering, 1990), consequently the dominance of Sb(V) due to the pH and 

oxidizing conditions of water under study, can explain the conservative behavior of antimony and the 

dispersion for a long distance downstream from the source of contamination. Also, the high 

bicarbonate concentrations would be highly competitive for sorption sites and tend to prevent 

Date MU8 SU11 dilution MU8/SU11 MU8/SU11 

  flow (L s
-1

) factor Sb/Cl 10
-3

 Sb/Na 10
-3

 

23.05.12 40 1000 25 38 35 

28.02.13 50 3000 60 66 59 

09.01.14 120 4000 33 25 24 
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antimony from easily sorbing onto sediment surfaces. 

 

Table 3.6 Comparison of load of Sb, Cl- ,SO4
2-

 and Na in Flumendosa River before and after 
the Riu Ciurixeda confluence. 

samples 09.01.14 flow Sb Cl
-
 SO4

2-
 Na 

 
L/s µg s

-1
 mg s

-1
 mg s

-1
 mg s

-1
 

MU92 4000 8400 204000 212000 112000 

MU8 120 192000 7800 18240 4440 

MU92+MU8 4120 200400 211800 230240 116440 

SU11 4000 204000 204000 232000 112000 

(MU92+MU8)/SU11 1.03 0.98 1.04 0.99 1.04 

 

 

It is necessary to underline that the geochemistry of water flowing at Su Suergiu, as well as the 

antimony contamination and the subsequent impact on the Flumendosa River, do not show significant 

variations since the first survey carried out in the area in the 2005 (table 3.7), and the recent actions 

aimed to retain the runoff of water appear insufficient to mitigate the impact of the contaminated 

water flowing from Su Suergiu. 

 

Table 3.7 Load of Sb determined in the Riu Ciurixeda waters under 
high flow conditions. 

 

 

 

 

 

 

3.6 Summary 

As a consequence of past mining activities, antimony dissolved reaches extremely high concentrations 

in water draining Su Suergiu mine, and the water contamination is extended several kilometers 

downstream the mine area. 

Results of recent study, in agreement with previous surveys, observed that the antimony contamination 

of water system is mainly due to the interaction of water with the foundry slag, while waters flowing 

out of adits appear a minor source of contamination. Highest antimony concentrations were detected 

in the water flowing out of the foundry slag dump; the slightly alkaline pH and oxidizing condition of 

slag drainages, favor the prevalence of Sb(V), less toxic but more mobile, than the Sb(III) form.  

There is no evidence of natural attenuation processes like precipitation of Sb-bearing phases or 

sorption on particulate phase, but it is not possible exclude them, especially near the source of 

sample date Flow Sb load 

  
L s

-1
 µg L

-1
 Kg day

-1
 

MU8 08.04.05 400 800 27.6 

MU8 02.05.12 50 1500 6.5 

MU8 23.05.12 40 1540 5.3 

MU8 28.02.13 50 1600 6.9 

MU8 09.01.14 120 1600 16.6 
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contamination, while downstream the mine area the main natural abatement of antimony 

concentration in solution can be represented by the dilution process. 

The Riu Ciurixeda collects all mine drainages, and about 3 kilometers down the mine area flows into the 

Flumendosa River, the most important water body of south Sardinia that provides water for both 

agricultural and domestics uses.  

Antimony concentration in water downstream the Su Suergiu decreases with the distance, however, 

despite the dilution effect due to the increase of the flow, the Riu Ciurixeda water has substantial 

antimony contamination. This result is the consequence of the strong contamination of the water 

draining Su Suergiu, the conservative behavior of antimony in solution and the interaction, downstream 

the mine area, of surface water with the slag waste widely dispersed till the confluence of Riu Ciurixeda 

into the Flumendosa River. After the confluence of Riu Ciurixeda into the Flumendosa River the 

antimony concentration decreases significantly due to the further dilution by uncontaminated 

tributaries, however, dissolved antimony exceeds the drinking water limit of both WHO (20 µg L-1) and 

EC (5 µg L-1), especially under high-flow condition (up to 51 µg L-1). 

On the basis of these results, appropriate actions aimed to mitigate the antimony contamination in the 

water system, should be addressed directly on the primary source of contamination at Su Suergiu, the 

slag heaps, in order to limit the interaction between the water and the slag waste, and to stop the 

dispersion of the slag waste downstream the mine area. Eventually, actions addressed on the mitigation 

of antimony directly through the treatment of the contaminated waters, should be carried out by 

means of sorbents having high affinity for Sb(V) and able to remove anions under slightly alkaline pH 

and oxidizing conditions. 
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CHAPTER 4. Study of Sb(V) removal from aqueous solution by layered 

double hydroxides (LDH) 

 

4.1 State of art 

With the growing concern of antimony as pollutant of priority interest, several studies were carried out 

with a large suite of sorbents in order to better understand the antimony sorption mechanisms and find 

solutions for the purification of antimony contaminated waters.  

The affinity of antimony for the sorbents depends on its aqueous speciation, the pH and redox 

conditions of solutions, as well as the physical-chemical characteristics of the solid surfaces. In general 

it was observed that the antimony sorption capacity of manganese oxides and iron oxy-hydroxides 

increases as the pH decreases (Ambe, 1987; Leuz et al., 2006; Thanalabasingam and Pickering, 1990). 

Guo et al. (2014) reported that adsorption of Sb(V) onto the iron oxides was favored at acidic 

conditions, while the Sb(III) adsorption is constant in a broad range of pH. Rakshit et al. (2011) found 

that gibbsite is able to sorb Sb(V), but the increment of pH from 5 to 7 can decrease significantly (40%) 

the Sb(V) retention capacity in gibbsite-dominated soil. Also activate alumina (Xu et al., 2001) show 

high Sb(V) sorption capacity at low pH values. A recent study was performed with chitosan-nano-titania 

composite sorbents (TA-chitosan); these compounds were able to sorb both Sb(V) and Sb(III) but 

showed the highest sorption capacity under reducing conditions, where Sb(III) is the prevalent form 

(Nishad et. al., 2014).  

All sorbents cited above showed more affinity for Sb(III) than Sb(V) and maximum sorption capacity at 

low pH, while as the pH increases the removal capacity decreases. The minerals belonging to the class 

of layered double hydroxides could represent an alternative for Sb(V) removal from aqueous solution 

under neutral or slightly alkaline conditions. Layered double hydroxides (LDH), also known as anionic 

clays or hydrotalcite-like compounds, are a class of natural and synthetic layered materials, described 

by the general formula: 

 [M2+
(1-x)M

3+
x (OH)2]x+(An-)x/n∙mH2O  

 

where M2+ are divalent cations (Mg2+, Zn2+, Ca2+, Fe2+, etc.), M3+ are trivalent cations (Al3+, Fe3+, Cr3+, 

etc.), An- indicates anionic species with the valence n (CO3
2-, SO4

2-, Cl-, NO3
-, etc.), and the value x 

indicates the molar ratio M3+/(M2++M3+). LDH exist naturally in the environment and the synthetic terms 

can be produced, in a wide range of compositions, through simply and relatively low expensive 

processes. Due to their high specific surface and anion exchange capacity these minerals can be used in 

a wide range of industrial sectors such as catalysis, polymerization, pharmaceutical industry (as drug 
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carriers), etc. (Goh et al., 2008). From the environmental point of view, LDH show the advantage that 

can be used at pH conditions at which some pollutants are most commonly found in the environment. 

Several studies showed that calcined and uncalcined LDH have a potential use as adsorbents for several 

toxic elements that are stable in aqueous solutions at circumneutral pH as oxyanions, such as arsenate, 

arsenite, selenate, selenite, chromate, vanadate etc. (Carriazo et al., 2007; Rojas Delgado et al., 2008; 

Goh et al., 2008 and reference therein). At oxidizing conditions of natural waters, the Sb(V) prevails on 

the Sb(III), and is stable in solution in a wide range of pH as Sb(OH)6 ̄ (Filella et al., 2002a). At the present 

time few studies have been carried out on the LDH antimony removal capacity from solutions 

(Mitsunobu et al., 2009; Kameda et al., 2011).  

This work was aimed to find suitable solutions for the remediation of antimony at pH and redox 

conditions usually occurring in natural waters. For this purpose, the Sb(OH)6 ̄ removal capacity of LDH 

with several compositions was investigated. The LDH were tested through sorption experiments 

performed with synthetic solutions containing Sb(OH)6 ̄. The removal processes were also studied by 

ATR-IR and finally, the sorbents that showed the most promising results were tested with the antimony 

polluted water collected in the Su Suergiu mine area (§ 3). 

  

4.1.1 Structure and properties of LDH 

The LDH are characterized by a layered structure that consists of positive hydroxide layers [M2+
(1-x)M

3+
x 

(OH)2]x+ stacked along the c axis, with anions and water molecules in the interlayers [(An-)x/n∙mH2O]x-. 

The hydroxide layers have a structure similar to that of brucite [Mg(OH)2] and are composed by 

octahedral units of divalent cations (M2+) coordinate by sixfold OH-, that share the edges in order to 

form infinite sheets (Goh et al., 2008). The brucite-like sheets result positively charged as a 

consequence of the isomorphous substitution of divalent cations to trivalent cations. For pure phases 

(i.e. without the precipitation of secondary phases) the molar ratio x = M+3/(M2++M3+) is comprised in 

the range 0.20 ≤ x ≤ 0.34 (Cavani et al., 1991; Vaccari 1998). The excess of positive charges is 

compensated by anionic species intercalated in the interlayer region, which can contain also a variable 

quantity of water molecules (fig.4.1). The interactions in the interlayer region consist of: Coulombic 

forces between the positively charged sheets and the anions in the interlayer, hydrogen bonding 

between the hydroxyl groups of the positive sheets and the interlayer anions, and hydrogen bonding 

between the hydroxyl groups and the water molecules; in addition the water molecules are connected 

through extensive hydrogen bonding to the hydroxyl groups of the metal sheets and the interlayer 

anions (Palmer et al., 2010).  

Both natural and synthetic LDH present several polytypes mainly belonging to the dimetric 

crystallographic group. The basal spacing c’ indicates the thickness of the brucite-like sheet and the 
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interlayer (fig.4.1), it can be calculated through the XRD basal reflection (003) as c’ = 3d(003). The 

thickness of the interlayer region depends on the dimension of the anionic species, on their orientation 

and on the water content. The lattice parameter a corresponds to the distance between two OH- 

neighbors in the same side of the brucite-like sheet or between two nearest metal cations. The value of 

a is obtained directly by the XRD reflection (110) as a = 2d(110) (Cavani et al., 1991; Mills et al., 2012), it 

depends on the type of cations constituent the sheet, on their ionic radii and the M2+/M3+ molar ratio.  

 

 

 

 

The layered structure confers to LDH high specific surface, adsorption capacity on the external surface 

and anions exchange capacity in the interlayer. 

The anion exchange capacity depends on the charge of the brucite-like sheets (i.e. M2+/M3+ molar ratio) 

and on the specific charge (i.e. negative charge/ionic radius) of the anionic species in the interlayer. 

When the M2+/M3+ ratio is low, the positive charge of the brucite-like sheets is high and the amount of 

anions required to neutralize the structure increases. In this case the thickness of the interlayer 

depends on the strong interactions between the positive sheets and the anions in the interlayer, and on 

the repulsion between two nearest positive sheets. When the M2+/M3+ ratio is high the interactions 

between the interlayer anions and the positive sheets are labile and the anions in the interlayer can be 

more easily exchanged with anions in solution, however the low positive charge can decrease the 

Figure 4.1 Structure of LDH (Goh et al., 2008, modified). 
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sorption capacity. A fundamental factor is the affinity between the anionic species and the brucite-like 

sheets. In general LDH have high affinity with anionic species with high charge density, such as 

carbonates that are preferentially intercalated in LDH and can avoid a further exchange. Usually the 

selectivity for the interlayer anions follows the order: CO3
2- > HPO4

2- > HAsO4
2- > CrO4

2- > OH- > F- > Cl- > 

NO3 ̄ (Braterman et al., 2004). 

The anion exchange occurs spontaneously when the anionic species contained in the interlayer has less 

affinity with the brucite-like sheets with respect to the anions dissolved in solution; this process is 

particularly useful to remove toxic elements forming anionic complexes in solution (HAsO4
2-, AsO4

3-, 

CrO4
2-, SeO4

2-, etc.). The reconstruction process (memory effect) is another very effective method that 

can be used to uptake the anions from solution (fig.4.2), in fact the mixed metal oxides derived from 

LDH calcination are able, when placed in contact with an aqueous solution, to reconstruct the layered 

structure by rehydration and intercalation of anionic species sorbed from solution (Palmer et al., 2009).  

These properties, together with the high sorption capacity at neutral or slightly alkaline conditions, 

make the LDH particularly suitable to purification of surface waters polluted by toxic anions.  

 

 

4.2 LDH: synthesis and characterization 

The Sb(V) under pH and redox conditions usually found in the environment is stable in solution as 

Sb(OH)6 ̄, an anionic specie with high ionic radius and low charge, therefore with low specific charge.  

Despite the low specific charge of Sb(OH)6 ̄, previous studies showed the potential of LDH for Sb(OH)6 ̄ 

removal from solution and encourage further investigations; in this work the Sb(OH)6 ̄ sorption capacity 

of both nitrate and calcined LDH were tested. Mitsunobu et al. (2009) reported that the LDH named 

Green Rust ([Fe2+
4Fe3+

2(OH)2]2+[SO4∙mH2O]2-) are able to incorporate the Sb(OH)6 ̄ present in solution by 

means of the formation of inner-sphere complex on the edge sites and the formation of outer-sphere 

complex in the interlayer surface. Kameda et al. (2011) reported that the mixed oxides derived from the 

calcination of hydrotalcite-like compounds  (Mg6Al2(OH)16CO3∙4H2O) removed efficiently the Sb(OH)6 ̄ by 

means of the formation of a secondary phase (brandholzite). 

Nitrate LDH (LDH-NO3) were used in order to verify the effectiveness of both anion exchange and 

adsorption processes for the Sb(OH)6 ̄ removal. For this purpose LDH-NO3 with MgAl and MgFe cationic 

Figure 4.2 Rehydration process of mixed metal oxides derived from calcination of LDH (Li, 2005, modified). 
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compositions, and different M2+/M3+ molar ratio, were synthesized. The MgAl-NO3 LDH easily release 

the NO3 ̄ contained in the interlayer and are able to remove anions from solution through both anion 

exchange and adsorption processes (Kentjono et al., 2012; Nedim et al., 2010). The MgFe-NO3 LDH are 

less effective than MgAl-NO3 LDH because remove anions from solution mainly by adsorption (Ferreira 

et al., 2006; Manohara et al., 2011). In this study the MgFe-NO3 LDH were adopted taking into account 

the high affinity between Sb(OH)6 ̄ and the iron hydroxides.  

To produce the calcined LDH, carbonate phases like hydrotalcite (Mg6Al2(OH)16CO3∙4H2O) and 

zaccagnaite (Zn4Al2(OH)12CO3∙3H2O) were synthesized. The cationic composition of the hydrotalcite-like 

compounds were modified through the partial substitution of Al with Fe, while the zaccagnaite-like 

compounds where synthesized varying the M2+/M3+ molar ratio. The mixed oxides derived from the 

calcination of the zaccagnaite-like compounds were used with the aim of reconstructing the structure 

of a compound like zincalstibite (Zn2Al(OH)6[Sb(OH)6]), a LDH belonging to the cualstibite group (Mills et 

al., 2012) and containing the Sb(OH)6 ̄ in the interlayer.  

 

4.2.1 Materials and methods 

4.2.1.1 Synthesis of LDH-NO3 

Synthetic LDH were prepared by a coprecipitation method. Cationic solutions (0.2 mM) were prepared 

dissolving Mg(NO3)2∙6H2O and Al(NO3)3∙9H2O (or Fe(NO3)3∙9H2O) in ultrapure water (Millipore, Milli-Q©, 

18.2 MΩ cm-1), in order to obtain established molar ratios M2+/M3+= 2, 3 and 4. Nitrate solutions were 

dropped, by a peristaltic pump, into a reactor containing 200 mL of ultrapure water under stirring (500 

rpm), and the precipitation was induced at pH 10.5±0.2 adding dropwise a NaOH solution (0.5 mM). 

During the synthesis, the atmosphere inside the reactor was controlled with a constant flux of Ar in 

order to prevent the presence of CO2 and, thus, the possible entrance of carbonate groups into the 

interlayer. After 24 hours of aging at 65°C, the precipitates were washed with deionised water and 

recovered by a filtration system (filter Nuclepore polycarbonate, pore-size 0.45 μm) connected to a 

vacuum pump. Solids recovered were dried at room temperature. 

 

4.2.1.2 Synthesis of LDH-CO3 

Cationic solutions (0.2 mM) for hydrotalcite-like phases were obtained dissolving the nitrate salts in 

ultrapure water. The molar ratio (M2+/M3+ = 3) of the natural phase hydrotalcite was used, while the 

M3+ was modified as follows: Mg2+/Al3+ = 3, Mg2+/Fe3+ = 3 and Mg2+/(Fe3++Al3+) = 3/(0.5 + 0.5). Cationic 

solutions (0.2 mM) for zaccagnaite-like phases were prepared dissolving Zn(NO3)2∙6H2O and 

Al(NO3)3∙9H2O with the molar ratios Zn2+/Al3+= 2 or 3. The carbonate solution (0.05 mM) were obtained 

dissolving Na2CO3 in ultrapure water.  

The saline solutions were dropped by a peristaltic pump into a reactor containing 200 mL  under stirring 
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(500 rpm). Precipitation was induced at pH 10±0.2 and 9.5±0.2 for hydrotalcite-like and zaccagnaite-

like, respectively, by dropping a 0.5 mM NaOH solution (fig.4.3). The precipitates were aged at 65°C for 

24 hours, after that were washed with abundant deionised water and recovered using a Bϋchner funnel 

(filter Whatman N° 54, cellulose) connected to a vacuum pump. Solids recovered were dried at room 

temperature and successively were calcined at 450°C for 4 hours. 

 

4.2.1.3 Chemical and mineralogical characterizations 

For chemical analyses a portion of all LDH-NO3 was dissolved in 5% v/v H2SO4, while LDH-CO3 and their 

calcined products were dissolved in 10% v/v HNO3. When solids were completely dissolved, acid 

solution were diluted with ultrapure water for cation analyses (Mg, Zn, Al and Fe) by inductively 

coupled plasma optical emission spectroscopy (ICP-OES, ARL Fisons 3520), whereas NO3
̄ was analysed 

by ion chromatography (IC, Dionex ICS3000). Mineralogical analyses were carried out by powder X-ray 

diffraction (XRD) using an automated Panalytical X’pert Pro diffractometer, with Ni-filter Cu-Kα1 

radiation (λ=1.54060 Å), operating at 40kV and 40mA, with the X’Celerator detector.  

 

4.2.2 Results  

Samples are marked with the chemical symbol of the cation constituent the brucite-like sheets, 

followed by NO3 or CO3 to indicate the anion in the interlayer, or “c” for the calcined phases. For LDH 

with the same cationic composition but different molar ratios, the number before the label indicates 

the M2+/M3+ value. 

Figure 4.3 Synthesis of LDH. 
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4.2.2.1 LDH-NO3 

The final products show different characteristics: 2MgAl-NO3 was a soft loose powder, while the other 

MgAl-NO3 and the MgFe-NO3 were hard. XRD patterns of both cationic compositions MgAl/MgFe-NO3 

showed the typical basal reflections (003) and (006) ascribable to the layered phases (Wang et al., 2009) 

(fig.4.4). The lattice parameters c and a were calculated respectively on the basis of the 2θ° angular 

positions of (003) and (110) reflections (table 4.1). The influence of the M2+/M3+ molar ratio on the 

structure of the solids is mainly evident in the MgAl-NO3. As the M2+/M3+ molar ratio decreases the 

basal spacing increases, whereas the values of the a parameter decrease gradually. The difference 

observed in the basal spacing can be attributable to the different orientation of the nitrate groups in 

the interlayer.  

Wang and Wang (2007), on the basis of the XRD and ATR-FTIR data, suggested that as the Mg/Al molar 

ratio decreases the nitrate orientations in the interlayer change from flat (Mg/Al = 4) to perpendicular 

(Mg/Al = 2) orientation. This hypothesis is in agreement with the consideration that the increasing of 

positive charge in the brucite-like sheet requires an increase of nitrate in the interlayer, which can be 

better arranged in perpendicular position with respect to brucite-like sheets. In addition, the increase 

of the basal spacing tends to minimize the electrostatic repulsions between the positive layers and 

confers good anion exchange capacity due to the increase of the external and interlayer surface (Wang 

et al., 2009). 

Results of chemical analyses showed a correspondence between the Mg/Al molar ratio of the synthetic 

products and that of the starting solutions, while the NO3 content suggests the presence of CO3 in the 

interlayer of 2MgAl-NO3 and 3MgAl-NO3. This can explain the broad shoulder in the right corner of the 

(006) basal reflection observed in the XRD pattern of 2MgAl-NO3.  

Manohara et al. (2011) reported that the optimal Mg2+/Fe3+ molar ratio in the MgFe-NO3 is closed to 

4/1, and for lower molar ratios the Fe3+ in excess precipitates as amorphous hydroxides; however other 

authors (Ferreira et al., 2006) obtained well crystalline 2MgFe-NO3. These differences can be attributed 

to the different synthesis condition adopted. The values of the lattice parameter a are very closed 

between the MgFe-NO3 samples with different Mg2+/Fe3+ molar ratio (fig.4.4); varying the Mg2+/Fe3+ 

molar ratio the value of a parameter should change, therefore these similarity probably means that the 

relative abundances of M2+ and M3+ in the brucite-like sheet varied slightly between the different solids 

synthesized. The content of NO3 ̄ measured in the MgFe-NO3 samples with molar ratio Mg2+/Fe3+ = 2 and 

3 was lower than the content of Fe3+ (table 4.1); this means that the real M2+/M3+ molar ratios in the 

final products differ from the nominal M2+/M3+ molar ratios of the starting solutions, and indicates that 

the Fe3+ can be partially precipitated as amorphous hydroxides. 
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          Table 4.1 Chemical compositions and structural parameters of synthesized LDH-NO3. 

          (*) content of CO3 in the solids was estimated on the basis of NO3 contents in order to balance the positive charges; 
a
M

3+
 = Al

3+
 or Fe

3+
;  

b 
c = 3d(003); 

c 
a = 2d(110) 

 

 

 

 

 

 

 

 

 

sample Mg/Al starting solution  Mg 
a
M

3+
 NO3  Mg/Al synthetic solid  Empirical formula  (003) d 

b
c  (100) d a

c 

 molar ratio  mmoles/g  molar ratio    °2θ Å Å  °2θ Å Å 

2MgAl-NO3 2  7.7 3.8 2.4  2.0  [Mg0.67Al0.33(OH)](NO3)0.21(CO3)0.06∙mH2O 
(*)

  10.077 8.771 26.314  60.775 1.523 3.046 

3MgAl-NO3 3  9.0 3.0 1.8  3.0  [Mg0.75Al0.25(OH)](NO3)0.15(CO3)0.05∙mH2O 
(*)

  11.216 7.883 23.649  60.376 1.532 3.064 

4MgAl-NO3 4  9.4 2.4 2.3  3.9  [Mg0.79Al0.21 (OH)](NO3)0.20∙mH2O  11.127 7.945 23.836  60.104 1.538 3.076 
                  

2MgFe-NO3 2  7.5 3.6 0.89  2.1    11.130 7.943 23.830  59.348 1.556 3.112 

3MgFe-NO3 3  8.8 2.9 1.7  3.0    11.127 7.946 23.837  59.215 1.559 3.118 

4MgFe-NO3 4  8.5 2.1 2.3  4.1  [Mg0.80Fe0.20 (OH)](NO3)0.22∙mH2O  11.034 8.012 24.036  59.196 1.560 3.119 

Figure 4.4 XRD patterns of (a) MgAl-NO3 and (b) MgFe-NO3;  
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4.2.2.2 LDH-CO3 

Chemical data showed that the M2+/M3+ of synthetic products reflect the compositions of starting 

solutions (table 4.2). Both hydrotalcite-like and zaccagnaite-like solids appeared as white soft loose 

powders, the color of samples with Fe3+ was lightly orange (fig. 4.5). 

  

 

 

Synthetic hydrotalcite-like samples showed the typical XRD patterns of hydrotalcite (Carriazo et al., 

2007; Yang et al., 2012). As the content of M3+ changes from Al3+ to Fe3+ the (110) reflection shifts 

toward lower 2θ° values indicating a change in the dimensions of the brucite-like sheets due to the 

different chemical compositions (fig.4.6). The figure 4.7 shows an example of carbonate Mg(AlFe)-CO3 

LDH with its calcined product: the absence of the basal reflections in the XRD pattern of Mg(AlFe)-c 

confirmed the collapse of the structure, the two broad peaks at angular positions 2θ ~43° and ~62° are 

compatible with a disordered periclase MgO. The M3+ cations are probably dispersed in the structure 

(Kameda et al., 2011).  

sample 
M

2+
/M

3 

 starting solution 
Mg Al Fe 

 M
2+

/M
3+  

synthetic solid 
 

calcined 
sample 

Mg Al Fe 
M

2+
/M

3+ 

 
synthetic solid

 

 
molar ratio mmoles/g  molar ratio   mmoles/g molra ratio 

MgAl-CO3 3 8.7 3.0 0  2.9  MgAl-c 12.6 4.4 0 2.8 

MgFe-CO3 3 8.6 0 2.9  2.9  MgFe-c 12.0 0 4.5 2.7 

Mg(AlFe)-CO3 3 7.9 1.4 1.4  2.8  Mg(AlFe)-c 12.4 2.2 2.3 2.8 

sample 
M

2+
/M

3 

 starting solution 
Zn Al 

 
 M

2+
/M

3+
 

synthetic solid 
 

calcined 
sample 

Zn Al 
 

M
2+

/M
3+  

synthetic solid 

 
molar ratio mmoles/g 

 
 molar ratio   mmoles/g 

 
molra ratio 

2ZnAl-CO3 2 6.73 3.09 
 

 2.19  2ZnAl-c 8.70 3.98 
 

2.19 

3ZnAl-CO3 3 7.13 2.25 
 

 3.17  3ZnAl-c 9.24 2.78 
 

3.32 

Table 4.2 Chemical analyses of LDH-CO3 and their calcined products. 

Figure 4.5. (a) MgAl-CO3 and (b) Mg(AlFe)CO3 dried samples.  
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XRD patterns of zaccagnaite-like solids are compatible with that of zaccagnaite (Lozano et al., 2012), the 

(110) reflection shifts gradually for different M2+/M3+ molar ratios (fig.4.8). The XRD pattern of the 

calcined phase can be assigned to a highly disordered zincite ZnO (fig.4.9), while peaks of secondary Al-

bearing phases were not detected, thus the Al3+ cations are probably dispersed in the structure as 

impurity (Zhang and Li, 2014). 

 

 

Figure 4.6 XRD patterns of synthetic hydrotalcite-like compounds with different Al
3+

 and Fe
3+

 
contents. 

Figure 4.7 XRD patterns of the Mg(AlFe)-CO3 and its relative calcined phase Mg(AlFe)-c. 
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Figure 4.8 XRD patterns of synthetic zaccagnaite-like compounds with different M
3+

/M
3+

 molar 
ratio. 

Figure 4.9 XRD patterns of the 2ZnAl-CO3 and its relative calcined phase 2ZnAl-c. 
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4.3 Removal of Sb(V) by LDH: laboratory test with synthetic solutions 

Sorption experiments were performed with high initial concentration of Sb(V) in solution, in order to 

estimate the removal capacity of sorbents and to identify the removal processes. 

First of all, speedy tests were carried out with LDH-NO3; afterward the most effective LDH-NO3 and 

calcined LDH-CO3 were used in preliminary sorption experiments. On the basis of results, selected 

sorbents were successively used to perform: 

- experiments with initial circumneutral pH; 

- experiments with different initial concentrations of Sb(V) in solution; 

- experiments with coexistent oxyanions in solution as possible competitors for Sb(V). 

 

4.3.1 Sorption Experiments 

The solutions for the sorption experiments were prepared dissolving an appropriate amount of 

KSb(OH)6 (Fluka, Sigma-Aldrich, UK) in ultrapure water (Millipore, Milli-Q©, 18.2 MΩ cm-1).  

 

4.3.1.1 LDH-NO3 speedy tests 

Batch experiments were performed by suspending, under stirring, 0.5 g of LDH-NO3 in 200 ml of 10 mM 

Sb(OH)6 ̄ solution. Time of reaction was 5 hours, in ambient atmosphere at room temperature (~25°C). 

The pH of solutions was measured (ORION® pHMeter and ORION Ross® electrode) before adding the 

sorbents and at fixed times (1, 2, 3 and 5 hours); at the same times, small volumes of solutions were 

sampled, filtered at 0.45 μm (filter OlimPeak, polycarbonate) and acidified (0.5% v/v H2SO4 suprapure) 

for chemical analyses by ICP-OES.  

 

4.3.1.2 Preliminary sorption experiments 

Were used the sorbents: 2MgAl-NO3, calcined 2ZnAl-c and 3ZnAl-c, calcined MgAl-c, MgFe-c and 

Mg(AlFe)-c. Experiments were carried out suspending, under stirring, 0.5 g of sorbents in 200 ml of 10 

mM Sb(OH)6 ̄ solution for 48 hours, in ambient atmosphere at room temperature (fig.4.10). During the 

experiments pH of solutions was monitored (0, 0.5, 1, 3, 6, 24 and 48 hours) and small amounts of 

solution were sampled, filtered through 0.45 μm and acidified with 1% v/v HNO3 suprapure for 

chemical analyses by ICP-OES.  

In order to verify if the initial low pH (~5) of Sb(OH)6 ̄ solutions affected the removal processes, further 

experiments at initial circumneutral pH were performed with 2ZnAl-c and Mg(AlFe)-c. Initial pH was 

increased by adding NaOH 0.5 M. 

 

4.3.1.3 Sorption experiments with different initial concentrations of Sb(OH)6 ̄ in solution 

Selected sorbents, 2ZnAl-c and Mg(AlFe)-c, were used to perform further experiments in the same 
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modality of preliminary sorption experiments, but with initial concentration of Sb(OH)6 ̄ in solution 

equals to:  1, 2.5, 5, and 12.5 mM.  

 

 

 

At the end of all experiments, solid sorbents were collected from the reactor, washed with distilled 

water and recovered by filtering at 0.45 µm (filters Nuclepore, polycarbonate) with a filtration system 

connected to a vacuum pump. After filtration, samples were dried at room temperature. 

 

4.3.1.4 Chemical analysis and mineralogical characterization 

Concentrations of Sb, Mg, Fe, Zn and Al in solution were analyzed by ICP-OES, NO3 ̄ was analysed by ion 

cromatography (IC, Dionex ICS3000). The uncertainties during ICP-OES analyses were evaluate through 

the reference solutions EP-H-3 and EP-L-3 (SCP Science, Quebec). 

Mineralogical analyses of sorbents, before and after experiments, were carried out by XRD. XRD 

patterns were collected in the 5-80° 2θ angular range on an automated Panalytical X’pert Pro 

diffractometer, with Ni-filter Cu-kα1 radiation (λ=1.54060 Å), operating at 40kV and 40mA, using the 

X’Celerator detector. 

 

4.3.2 Results and discussion  

The analytical precision, calculated as % RSD = 100*SD/mean (where RSD is the relative standard 

deviation, SD is the standard deviation), of antimony determined in the reference solutions was in the 

range of 1.3-3.5%, while the accuracy, calculated as 100* Measured value/Certified value, was 108 % 

and 101% for EP-H-3 and EP-L-3 reference solutions, respectively (table 4.3). 

 
 

Figure 4.10 Batch experiments. 
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Table 4.3 Concentration of Sb determined in the reference solutions.  

a
n = number of analyses 

 

 

4.3.2.1 LDH-NO3  

Results show that MgAl-NO3 remove Sb(OH)6 ̄ from solution better than MgFe-NO3; the removal 

capacity resulted 2MgAl-NO3 >> 3MgAl-NO3 ≥ 4MgAl-NO3 >> 2MgFe-NO3 ≥ 3MgFe-NO3 > 4MgFe-NO3 

(fig. 4.11 and table 4.4). 

 

 

Table 4.4 pH values and concentrations of Sb, NO3, Mg, Fe and Al 
determined in solutions before the addiction of sorbents and at the end of 
experiments. Complete analyses are reported in Appendix II. 

 

a
M

3+
 = Al or Fe; 

b
dl = detection limit

 

 

 

Initial pH of Sb(OH)6 ̄ solutions was slightly acid; as the sorbents were added to the solutions the pH 

values increased sharply and tended to stabilize at about 9-10, the only exception was represented by 

the experiment with 2MgAl-NO3, whose pH values were in the range 8.0-8.5. The removal processes 

were very fast; the most important variations of Sb(OH)6 ̄ concentration in solutions occurred during the 

first hour after the addition of sorbents, then the concentration remained almost constant (fig. 4.12).  

Comparing the XRD patterns of sorbents before and after experiments, except the 4MgFe-NO3 sample, 

it is possible to note a new peak at angular position ~19° 2θ in solids recovered after experiments (fig. 

4.13). 

Reference solution  Certified value  Measured value  Accuracy Technique 

  mg L
-1

 SD  mg L
-1

 SD % RSD 
a
n  %  

EP-H-3  5.05  0.16  5.44 0.19 3.5 12  108 ICP-OES 

EP-L-3  11.9  0.2  12.0  0.16 1.3 9  101 ICP-OES 

sample time pH Sb NO3 Mg 
a
M

3+ 
 

 h  mmoles L
-1

 

2MgAl-NO3 0 5.5 10 0 0 0 

5 8.0 5.4  0.65 0.16 
b
 < dl 

3MgAl-NO3 0 5.4 10 0 0 0 
5 9.8 7.6 0.39  0.20 < dl 

4MgAl-NO3 0 5.3 10 0 0 0 
5 9.7 7.8 0.39  0.22 < dl 

2MgFe-NO3 0 5.4 10 0 0 0 
5 9.8 8.5  0.27 0.49 < dl 

3MgFe-NO3 0 5.4 10 0 0 0 
5 9.6 8.6 0.39  0.36 < dl 

4MgFe-NO3 0 5.5 10 0 0 0 

5 9.9 9.3 0.40  0.28 < dl 
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Figure 4.11 Percentage of antimony removed 
from solution at the end of speedy test. 
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Figure 4.12 Concentrations of Sb determined in solution in function of the time during 
speedy sorption tests. 

Figure 4.13 XRD patterns of (a) MgAl-NO3 and (b) MgFe-NO3 before and after speedy sorption tests. 
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The new peak can be attributable at a disordered Mg-Sb-phase called brandholzite Mg[Sb(OH)6]2·6H2O 

(Kameda et al., 2011 and reference therein) and it is associated with the decrease of the intensity of 

peaks belonging to the original phases. The difference observed between the XRD patterns before and 

after experiments is related to the amount of Sb(OH)6 ̄ removed from solutions. In fact the major 

variations were observed in sample 2MgAl-NO3, where the basal reflections of the original 2MgAl-NO3 

phase were barely visible; on the contrary there were no appreciable differences between the 4MgFe-

NO3 XRD patterns before and after experiments.  

These results suggest that Sb(OH)6 ̄ was removed from solution primarily through the neoformation of a 

brandholzite-like compound, while there is no evidence of anion exchange processes. In fact, there is no 

relation between the concentrations of Sb(OH)6 ̄ removed and nitrate released to solutions (see table 

4.4), instead the presence of nitrate in solution was accompanied by small concentrations of 

magnesium, indicating that a partial dissolution of sorbents occurred. It could be attributable to the 

riequilibrium of sorbents in solutions (Ferreira et al., 2006), and could explain the increase of pH as a 

consequence of the release of hydroxyl groups in solution. Consequently, the lower intensity of peaks 

belonging to the LDH-NO3 observed in the XRD patterns after experiments could be attributed either to 

the partial dissolution of solids or to the neoformation of a disordered brandholzite-like phase on the 

external surface of solids, as well as to both processes. Moreover, a limited exchange in the interlayer 

between NO3 ̄ and Sb(OH)6 ̄ cannot be completely excluded.  

Taking into account that most Sb(OH)6 ̄ was removed very fastly in the first hour of all experiments, it is 

possible that the new phase was formed by means of the reorganization of Sb(OH)6 ̄ adsorbed onto 

external surface of LDH, rather than by a dissolution-reprecipitation process. This could explain the 

greater efficacy of 2MgAl-NO3 over the other sorbents. In fact, the 2MgAl-NO3 showed the highest 

excess of positive charge in the brucite-like sheets, so it was particularly suitable for the interaction 

between the Sb(OH)6 ̄ dissolved in solution and the surface of solid at the solid/liquid interface.  

As previously observed (§ 4.2.2), probably in the samples 2MgFe-NO3 and 3MgFe-NO3 the amount of 

Fe3+ contained in the brucite-like sheets is less than expected, consequently the excess of positive 

charge is lower. This could explain the lower Sb(OH)6 ̄ removal capacity of these samples, moreover it is 

possible that the Fe3+ confers more stability to the LDH structure than Al3+, and therefore decreases the 

sorption capacity. 

 

4.3.2.2 LDH-CO3 

4.3.2.2.a Preliminary sorption experiments 

The concentration of Sb(OH)6 ̄ in solution decreased sharply after the addition of the sorbents, with 

most Sb(OH)6 ̄ removed in the first 6 hours and removal capacity measured at 48 h of 90-100 %. The only 

exception was represented by MgFe-c that removed most Sb(OH)6 ̄ between 6 and 24 hours (fig. 4.14). 
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Moreover, 2MgAl-NO3, which showed the high Sb(OH)6 ̄ removal capacity during the speedy test, was 

significantly less effective with respect to the calcined LDH. 

The initial slightly acid pH of Sb(OH)6 ̄ 10 mM solutions (pH = 5.2-5.4) increased as soon the sorbents 

were added and tended to stabilize at high values (pH ~12) till the end of the experiments (table 4.5). 

In the experiments performed with calcined LDH the pH of solutions reached very high values (~ 12), 

whereas was circumneutral when 2MgAl-NO3 was used (fig.4.15). 

 

Table 4.5 Antimony concentrations and pH values determined in solution before the addition of sorbents and at the end 
of experiments. Complete analyses are reported in appendix III. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3MgAl-c 3Mg(AlFe)-c 3MgFe-c 3ZnAl-c 2ZnAl-c 2MgAl-NO3 

time pH Sb pH Sb pH Sb pH Sb pH Sb pH Sb 

h  mmoles L
-1

  mmoles L
-1

  mmoles L
-1

  mmoles L
-1

  mmoles L
-1

  mmoles L
-1

 

0 5.4 10.2 5.4 11.1 5.4 10.4 5.2 10.3 5.3 10.2 5.2 9.7 

48 11.9 1.2 12.1 0.7 12.2 1.0 12.0 0.8 11.9 0.6 7.7 5.1 
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Figure 4.14 Concentrations of antimony removed from solution versus time in preliminary 
experiments. 
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This marked difference is due to the different behavior of calcined LDH with respect to the LDH-NO3 

when entering in contact with the solution: the moderate increase of pH measured in the experiment 

with 2MgAl-NO3 can be due to the partial dissolution of the sorbent, while the marked increase of pH 

observed with calcined LDH was the consequence of reconstruction of the LDH structure that produces 

OH-. The processes of calcination and rehydration of the hydrotalcite-like compounds are described by 

the equations [1] and [2], respectively (Kameda et al., 2011; Lazardis et al., 2003): 

  

Calcination  

[Mg1−xAlx(OH)2](CO3)(x/2)  →  Mg1-xAlxO1+x/2 + (x/2)CO2 + H2O         [1] 

 

Reconstruction   

Mg1−xAlxO1+x/2 + x/nAn− + (1+x/2)H2O → Mg1−xAlx(OH)2An-
x/n+ xOH−     [2] 

 

XRD patterns of sorbents recovered after all experiments (Appendix III) show that calcined LDH with 

similar cationic compositions (i.e. hydrotalcite-like or zaccagnaite-like compounds), remove the Sb(OH)6 ̄ 

from solution through similar removal processes.  

For each cationic composition used, the samples showing the highest removal capacity, Mg(AlFe)-c and 

2ZnAl-c, were selected to perform experiments with initial circumneutral pH and to perform 

experiments with different starting Sb(OH)6 ̄ concentrations in solutions. The XRD patterns of these 

phases and the Sb(OH)6 ̄ removal processes are discussed below.  

 

4.3.2.2.b Experiments with different Sb(OH)6 ̄ initial concentrations  

The sorption capacity of sorbents was determined by the formula: 

 

qt = [(Ci - Cf)*V)]/W 

 

where:  

qt = sorption capacity (mmoles g-1) 

Ci = initial concentration of Sb(OH)6 ̄  (mmoles L-1) 

Cf = final concentration of Sb(OH)6 ̄  (mmoles L-1) 

V = volume of solution (L) 

W = weight of sorbent (g) 

 

Concentrations of Sb(OH)6 ̄ removed from solution at the end of experiments increased as the initial 



49 
 

concentrations increased (fig.4.16). In every test it is evident the great removal capacity of both types 

of calcined LDH; the removal processes were fast: most Sb(OH)6 ̄ was removed within six hours, 

irrespective of the initial Sb(OH)6 ̄ concentrations (tab.4.6).  

Both calcined LDH removed more than 99% of Sb(OH)6 ̄ in experiments with lower initial Sb(OH)6̄ 

concentrations (i.e. 1, 2.5 and 5 mM), while in experiments with 10 and 12.5 mM Sb(OH)6 ̄ the 

percentage of Sb(OH)6 ̄ removed was slightly lower, and for the highest initial Sb(OH)6 ̄ concentration the 

Mg(AlFe)-c was slightly more effective than 2ZnAl-c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XRD patterns of Mg(AlFe)-CO3, its calcined product and the solids recovered after batch experiments 

performed with different initial Sb(OH)6 ̄ concentrations are reported in figure 4.17. XRD patterns of 

sorbents recovered after all experiments showed a new peak at the angular position ~19.2° 2θ 

attributable to a brandholzite-like compound (Kameda et al., 2011). The XRD patterns of solids 

recovered after experiments with 1, 2.5 and 5 mM Sb(OH)6 ̄ initial concentrations, contained both 

hydrotalcite-like (basal reflections at the angular positions ~11.3° and ~22.6° 2θ) and brandholzite-like 

compounds (~19.2° 2θ). As the initial Sb(OH)6 ̄ concentration increases, the intensity of the basal 

reflections of hydrotalcite-like solids decreases, while the new peaks ascribable to the brandholzite-like 

phase increase. In the XRD patterns relative to the experiments with 10 and 12.5 mM Sb(OH)6 ̄ the basal 

reflections of hydrotalcite-like phase are not longer detectable, the peak at ~19.2° 2θ of the 

brandholzite-like phase became more pronounced and also other peaks are visible (~18° and ~33° 2θ). 

The brandholzite is an antimony layered phase described by the general formula {Mg[Sb(OH)6]2·6H2O}.  
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Sb 12.5 mM  2ZnAl-c  Sb 12.5 mM Mg(AlFe)-c 

time pH  Sb Zn Al  time pH Sb Mg Al Fe 

h   mmoles L
-1

  h  mmoles L
-1

 

0 5.6  12.3 an.a. n.a.  0 5.6 12.4 n.a. n.a. n.a. 
0.5 11.9  4.9 n.a. n.a.  0.5 11.9 9.8 n.a. n.a. n.a. 
1 12.0  3.9 n.a. n.a.  1 12.0 7.7 n.a. n.a. n.a. 
3 12.0  2.7 n.a. n.a.  3 12.0 3.1 n.a. n.a. n.a. 
6 11.8  2.3 n.a. n.a.  6 11.8 1.5 n.a. n.a. n.a. 
24 10.6  2.1 n.a. n.a.  24 10.6 1.1 n.a. n.a. n.a. 
48 10.0  0.9 <0.01 0.2  48 10.0 0.9 0.13 <0.02 <0.01 
             

Sb 10 mM  2ZnAl-c  Sb 10 mM Mg(AlFe)-c 

time pH  Sb Zn Al  time pH Sb Mg Al Fe 

h   mmoles L-1  h  mmoles L-1 

0 5.2  10.2 n.a. n.a.  0 5.4 11.1 n.a. n.a. n.a. 
0.5 11.7  4.1 n.a. n.a.  0.5 10.9 9.2 n.a. n.a. n.a. 
1 11.8  2.6 n.a. n.a.  1 11.3 8.4 n.a. n.a. n.a. 
3 11.9  1.5 n.a. n.a.  3 12.0 3.3 n.a. n.a. n.a. 
6 11.9  1.1 n.a. n.a.  6 12.1 1.3 n.a. n.a. n.a. 
24 12.0  0.63 n.a. n.a.  24 12.1 0.8 n.a. n.a. n.a. 
48 12.0  0.57 0.04 0.4  48 12.1 0.7 <0.02 <0.02 <0.01 
             

Sb 5 mM  2ZnAl-c  Sb 5 mM Mg(AlFe)-c 

time pH  Sb Zn Al  time pH Sb Mg Al Fe 

h   mmoles L-1  h  mmoles L-1 

0 5.2  5.1 n.a. n.a.  0 5.2 5.1 n.a. n.a. n.a. 
0.5 10.8  4.6 n.a. n.a.  0.5 11.1 4.6 n.a. n.a. n.a. 
1 11.8  3.3 n.a. n.a.  1 11.3 4.2 n.a. n.a. n.a. 
3 11.8  1.7 n.a. n.a.  3 11.8 2.0 n.a. n.a. n.a. 
6 11.8  0.86 n.a. n.a.  6 12.1 0.13 n.a. n.a. n.a. 
24 10.3  0.14 n.a. n.a.  24 11.8 0.05 n.a. n.a. n.a. 
48 9.6  0.04 <0.01 <0.1  48 10.3 0.03 <0.02 <0.02 <0.01 
             

Sb 2.5 mM  2ZnAl-c  Sb 2.5 mM Mg(AlFe)-c 

time pH  Sb Zn Al  time pH Sb Mg Al Fe 

h   μmoles L-1 mmoles L-1  h  μmoles L-1 mmoles L-1 

0 5.2  2641 n.a. n.a.  0 5.1 2454 n.a. n.a. n.a. 
0.5 11.4  313 n.a. n.a.  0.5 11.4 491 n.a. n.a. n.a. 
1 11.4  41 n.a. n.a.  1 11.5 0.6 n.a. n.a. n.a. 
3 11.5  17 n.a. n.a.  3 11.6 0.2 n.a. n.a. n.a. 
6 11.5  13 n.a. n.a.  6 11.6 0.6 n.a. n.a. n.a. 
24 11.5  70 n.a. n.a.  24 11.6 0.5 n.a. n.a. n.a. 
48 11.0  5 <0.01 0.3  48 11.6 5.6 <0.02 <0.02 <0.01 

             

Sb 1 mM  2ZnAl-c  Sb 1 mM Mg(AlFe)-c 

time pH  Sb Zn Al  time pH Sb Mg Al Fe 

h   μmoles L-1 mmoles L-1  h  μmoles L-1 mmoles L-1 

0 5.3  1031 n.a. n.a.  0 5.2 1031 n.a. n.a. n.a. 
0.5 11.3  12.0 n.a. n.a.  0.5 10.7 5.1 n.a. n.a. n.a. 
1 11.3  9.3 n.a. n.a.  1 10.7 4.3 n.a. n.a. n.a. 
3 11.3  5.4 n.a. n.a.  3 10.7 5.9 n.a. n.a. n.a. 
6 11.4  7.0 n.a. n.a.  6 11.0 3.7 n.a. n.a. n.a. 
24 11.4  8.2 n.a. n.a.  24 11.0 6.8 n.a. n.a. n.a. 
48 10.5  1.2 <0.01 <0.1  48 11.4 2.7 0.12 <0.02 0.02 

Table 4.6 Concentrations of Sb, Mg, Al, Fe and Zn, and pH determined in solution during experiments with different 
initial Sb concentrations.   

 

  
a
n.a. = not analized 
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 The structure of brandholzite consists of two different types of layers: {Sb(OH)6]9}9- and 

{[Sb(OH)6]3[Mg(H2O)6]6}9+, alternatively stacked along the c axis; the layers are composed by Sb(OH)6 

and Mg(H2O)6 octahedra interconnected by hydrogen bonds only (Friedrich et al., 2000). The 

brandholzite has a layered structure, but differs from the LDH structure, therefore Sb(OH)6 ̄ was 

removed from solution through a process other than the simple reconstruction of the hydrotalcite-like 

structure. 

After the addition of the sorbents the pH values of solutions increased rapidly, and reached the range in 

which CO3
2- is the dominant carbonatic species, thus the reconstruction of the Mg(AlFe)-CO3 was 

favored because the CO3
2- has high affinity for the interlayer; however at high pH values also the OH- 

can compete for the entry in the interlayer. Results suggest that in experiments with 1, 2.5 and 5 mM 

Figure 4.17 XRD patterns of Mg(AlFe)-CO3 and its relative calcined phases before and after the sorption experiments 
with different initial Sb(OH)6̄ concentrations in solution.  
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Sb(OH)6 ̄, the Mg(AlFe)-c that did not react with the Sb(OH)6 ̄ to form a brandholzite-like compounds, 

reconstructed the LDH structure. Further studies are needed in order to verify if the reconstruction of 

the LDH structure is contemporary with the formation of the brandholzite-like phase, or begins after 

that most of the Sb(OH)6 ̄ is removed and the CO3
2- and/or the OH- become the main anionic specie in 

solution. The thickness of the interlayer may be useful to assess what anionic specie (the CO3
2- or the 

OH-) prevails in the interlayer region; the interlayer distance of LDH intercalated with OH- should be 

lower than that of a LDH with CO3
2- (Cavani et al., 1991; Koritnig et al., 1975). The angular positions of 

(003) basal reflection determined in the original Mg(AlFe)-CO3 and in the samples recovered after 

experiments performed with 1, 2.5 and 5 mM Sb(OH)6 ̄ concentrations, show a low increase in the 

interlayer distance as the initial Sb(OH)6 ̄ concentration increases (table 4.7). The increase suggests that 

low amount of Sb(OH)6 ̄ could be present in the interlayer, while does not permit to exclude the 

presence of OH-. It is possible that the interlayer is inhomogeneous and contain both OH- and CO3
2-, as 

well as a low amount of Sb(OH)6 ̄; this could also explain the enlargement of the (003) basal reflection of 

samples recovered after experiments with respect to the original Mg(AlFe)-CO3, that indicates a loss of 

the structural order. Moreover this could explain the slight fluctuation of Sb(OH)6 ̄ concentration in 

solution in the experiments with 1 and 2.5 mM Sb(OH)6 ̄, as a result of the exchange between the 

Sb(OH)6 ̄ intercalated and the CO3
2- and/or OH- in solution, due to the lower specific charge of Sb(OH)6 ̄ 

with respect both CO3
2- and OH-. 

 

Table 4.7 Angular position of the (003) basal reflection of Mg(AlFe)-CO3 
and samples recovered after sorption experiments with 1, 2.5 and 5 mM 
Sb(OH)6̄ starting concentration in solution. 

sample (003) d(003) 

 °2 θ Å 

Mg(AlFe)-CO3 11.317 7.813 

Mg(AlFe)-c +Sb 1 mM 11.313 7.815 

Mg(AlFe)-c +Sb 2.5 mM 11.275 7.842 

Mg(AlFe)-c +Sb 5 mM 11.248 7.860 

 

 

There is a good correspondence in the angular positions of the new peak observed in the XRD patterns 

of 2MgAl-NO3, 2MgFe-NO3 and Mg(AlFe)-c recovered after the experiments. This peak belongs to the 

brandholzite-like phase, so it is possible to say that the main removal process of Sb(OH)6 ̄ is the same for 

the above-cited experiments and is conditioned by the presence of Mg2+ at the surface of calcined and 

uncalcined LDH (fig.4.18).  

The calcined LDH showed the major sorption capacity thanks to the higher reactivity surface, while for 

the LDH-NO3 the type of M3+ cation seems to influence the structural properties of the sorbents and 
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consequently the sorption capacity. 

It is possible that trivalent cations are present in the structure of brandholzite as impurities and 

contribute to the low crystallinity; moreover, because a moderate dissolution of sorbents occurred, is 

not excluded that trivalent cations could precipitate as amorphous hydroxides contributing to the 

Sb(OH)6 ̄ removal from solution.  

 

 

 

 

 

 

 

 

 

 

 

 

XRD atterns of 2ZnAl-CO3, its calcined product and the solids recovered after batch experiments 

performed with different initial Sb(OH)6 ̄ concentrations are reported in figure 4.19. Results indicate that 

the 2ZnAl-c removed Sb(OH)6 ̄ from solution through the reconstruction mechanism (memory effect). In 

fact, XRD patterns of the solids recovered after the experiments showed new peaks ascribable to a LDH 

mineral named zincalstibite. The zincalstibite belongs to the cualstibite group (Mills et al., 2012) and is 

described by the formula Zn2Al(OH)6[Sb(OH)6]. Structure of zincalstibite consists of brucite-like sheets, 

containin Zn2+ and Al3+ in the Zn/Al = 2 molar ratio, regularly alternating along the c axis with interlayer 

composed by isolated Sb(OH)6 ̄ octahedra without additional water (Bonaccorsi et al., 2007; Mills et al., 

2012).  

The removal process is very fast, most Sb(OH)6 ̄ was removed within three hours and the solution pH 

values sharply increased as soon as the sorbents were added (table 4.6). The XRD patterns of sorbents 

relative to the experiments with low initial Sb(OH)6 ̄ concentrations (i.e. 1, 2.5 and 5 mM) showed peaks 

belonging to two different LDH: the peaks at ~9°, ~18.1°, ~19.6 and 21.3° 2θ are attributable to the 

zincalstibite-like phase, while the peaks at ~11.7 and ~23.5° 2θ are compatible with the original 

carbonate LDH (table 4.8). As the initial Sb(OH)6 ̄ concentrations increased the intensity of 2ZnAl-CO3 

peaks decreased, and in turn the intensity of zincalstibite peaks increased.  

 

Figure 4.18 XRD patterns of 2MgAl-NO3 and 2MgFe-NO3 after speedy sorption test and XRD 

pattern of Mg(AlFe)-c recovered after preliminary experiment. 
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Table 4.8 Angular position of the (003) basal reflection of 2ZnAl-CO3 and 
samples recovered after sorption experiments with 1, 2.5 and 5 mM 
Sb(OH)6̄ starting concentration in solution. 

 

 

 

 

 

 

sample (003) d(003) 

 °2θ Å 

2ZnAl-CO3 11.669 7.578 

2ZnAl -c +Sb 1 mM 11.697 7.559 

2ZnAl -c +Sb 2.5 mM 11.689 7.564 

2ZnAl -c +Sb 5 mM 11.707 7.559 

Figure 4.19 XRD patterns of 2ZnAl-CO3 and its relative calcined phases before and 
after the sorption experiments with different initial Sb(OH)6̄ concentrations in 
solution. 
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The sorbents of experiments performed with 10 and 12.5 mM initial Sb(OH)6 ̄ concentrations no longer 

showed the XRD peaks of the carbonate phase, and the concentrations of Sb(OH)6 ̄ in solution decreased 

till the end of experiments, so it is excluded the release of Sb(OH)6 ̄ in favor of the entrance of CO3
2- or 

OH- in the interlayer. However at the pH values ~10-12, the CO3
2- and the OH- can compete for the entry 

in the interlayer, therefore is possible the presence of these anions intercalated as impurities.  

Little fluctuations of Sb(OH)6 ̄ in solution were observed during the experiments with 1 and 2.5 mM 

initial Sb(OH)6̄ concentrations: in these cases, due to the relatively low initial Sb(OH)6 ̄ concentrations, it 

is possible that, after the removal of most Sb(OH)6 ̄, the CO3
2- and/or OH- become the dominant 

dissolved anionic species in solution and, thus, could compete for the entrance in the interlayer. At the 

same way, the presence of OH- and /or CO3
2-in the interlayer of the zaccagnaite-like compounds is not 

excluded.  

Further studies are needed to assess whether the reconstruction of carbonate and antimonate LDH are 

contemporary, and under what conditions the reconstruction of one phase prevails over the other. 

 

Results of batch experiments performed with initial circumneutral pH are reported in Appendix IV. 

There were no significative differences with respect to the results obtained in the preliminary sorption 

experiments, indicating that the initial slightly acid pH of Sb(OH)6 ̄ solution did not affect the removal 

processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

4.3.3 Effects of coexistent anions in solution 

Sorption experiments were performed with coexistent anions in solutions in order to assess their 

competitive effect on the Sb(OH)6 ̄ removal capacity of LDH. For this study, the possible competitors 

were chosen considering the chemical composition of the waters draining the Su Suergiu abandoned 

mine (§ 3), consequently experiments were carried out with equal molar concentrations in solution of 

Sb(OH)6 ̄ and SO4
2-, Sb(OH)6 ̄ and HCO3 ̄ or Sb(OH)6 ̄ and HAsO4

2-. The SO4
2- and HCO3 ̄ anions were chosen 

because they are the main anionic species in the contaminated mine water of Su Suergiu. The HAsO4
2- 

anion was selected because of its high toxicological relevance and its high concentration, up to 2-3 mg 

L-1, in waters flowing at Su Suergiu. Moreover, As(V) represents an excellent competitor; in fact, several 

studies reported the high affinity for As with both calcined and uncalcined LDH with various cationic 

and anionic compositions (Goh et al., 2008 and reference therein; Ardau et al. 2013; Wang et al., 2009). 

 

4.3.3.1 Materials and methods 

Solutions for competition experiments were prepared dissolving an appropriate amount of Na2SO4, 

NaHCO3 or Na2HAsO4∙7H2O and KSb(OH)6 in Milli-Q water. To avoid the precipitation of the slightly 

soluble Na[Sb(OH)6] (Diemar et al., 2009 and reference therein) and its impact on the removal 

processes, the initial Sb(OH)6 ̄ concentration in solution and the liquid/solidLDH ratio were changed 

compared to the previous sorption experiments.    

For the batch tests, 0.1 g of Mg(AlFe)-c or 2ZnAl-c was suspended, under stirring, in 400 ml of solution 

containing equal concentrations (1 mM) of dissolved Sb(OH)6 ̄ and competitors; experiments without 

competitors were also performed as a reference. At defined times (0, 0.5, 1, 3, 6, 24 and 48 hours) pH 

of solutions was measured and small volumes of solutions were sampled, filtered through 0.45 µm 

(filter OlimPeak, polycarbonate) and acidified with 1% v/v HNO3 suprapure for chemical analyses by ICP-

OES. At the end of experiments solid sorbents were recovered and washed with distilled water using a 

filtration system. Sorbents were dried at room temperature and successively characterized by powder 

XRD diffraction. 

 

4.3.3.2 Results and discussion 

Both 2ZnAl-c and Mg(AlFe)-c showed high Sb(OH)6 ̄ removal capacity with coexistent SO4
2- and HCO3 ̄, 

while the presence of HAsO4
2- reduced dramatically the Sb(OH)6 ̄ removal capacity of both sorbents 

(fig.4.20).  

Therefore, the competition effect on the Sb(OH)6 ̄ removal results HAsO4
2- >> HCO3 ̄ > SO4

2-. In all 

experiments the concentration of Na in solution did not vary significantly with time, so it is excluded 

that the precipitation of Na[Sb(OH)6] affected the removal processes (table 4.9 and 4.10). 
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Table 4.9. Concentrations of Sb(OH)6̄ and coexistent oxyanions in solution and pH values of solution determined 
during competition experiments performed with Mg(AlFe)-c. 
 

Mg(AlFe)-c Sb  Sb+SO4
2-

  Sb+HAsO4
2-

  Sb+ HCO3̄ 

time pH Sb  pH Sb SO4
2-

 Na  pH Sb HAsO4
2-

 Na  pH Sb Na 

h  mmoles L
-1

   mmoles L
−1

   mmoles L
−1

   mmoles L
−1

 

0 5.2 1.03  5.1 1.03 1.08 2.06  8.6 1.03 1.02 2.04  8.3 1.02 1.11 

0.5 10.5 0.87  10.6 0.89 1.01 2.12  10.5 1.01 0.94 2.03  10.4 0.90 1.03 

1 10.6 0.73  10.7 0.75 1.00 2.18  10.5 1.01 0.90 2.08  10.5 0.79 1.06 

3 10.8 0.43  10.9 0.44 0.92 2.12  10.6 1.00 0.77 2.06  10.6 0.64 1.06 

6 10.8 0.34  10.9 0.33 0.93 2.16  10.6 0.99 0.68 2.09  10.5 0.60 1.05 

24 9.6 0.31  9.6 0.30 1.03 2.37  10.3 1.03 0.48 2.22  9.6 0.57 1.10 

48 9.3 0.29  9.1 0.28 1.06 2.11  9.8 0.99 0.43 2.02  9.5 0.51 0.99 

2ZnAl-c Sb  Sb+SO4
2-

  Sb+HAsO4
2-

  Sb+HCO3̄ 

time  pH Sb  pH Sb SO4
2-

 Na  pH Sb HAsO4
2-

 Na  pH Sb Na 

h  mmoles L
-1

   mmoles L
−1

   mmoles L
−1

   mmoles L
−1

 

0 5.1 1.02  5.2 1.01 1.08 2.13  8.6 1.02 1.03 2.06  8.2 1.03 1.04 

0.5 10.4 0.61  10.6 0.68 0.97 2.13  9.2 0.99 0.98 2.05  10.0 0.60 1.02 

1 10.5 0.54  10.6 0.60 0.98 2.12  9.2 0.98 0.96 2.07  10.1 0.54 1.02 

3 10.5 0.42  10.7 0.53 0.97 2.12  9.2 0.97 0.94 2.04  10.1 0.50 1.05 

6 10.6 0.33  10.5 0.42 0.97 2.10  9.2 0.96 0.91 2.07  10.1 0.47 1.03 

24 9.6 0.21  9.9 0.29 1.01 2.21  8.2 0.95 0.87 2.10  10.0 0.37 1.04 

48 8.5 0.15  9.5 0.22 1.04 1.96  8.1 0.93 0.87 1.97  8.7 0.24 0.96 

Table 4.10. Concentrations of Sb(OH)6̄ and coexistent oxyanions in solution and pH values of solution determined 
during competition experiments performed with 2ZnAl-c. 
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Figure 4.20. Percentage of Sb(OH)6̄ removed from solution at the 
end of competition experiments. The experiments are marked as 
follow:  Sb = experiments with Sb(OH)6̄ 1mM; Sb+SO4 = 
experiments with equal molar concentrations of Sb(OH)6̄ and SO4

2-
 ; 

Sb+HCO3 =  experiments with equal molar concentrations of 
Sb(OH)6̄ and HCO3̄ ; Sb+As = experiments with equal molar 
concentrations of Sb(OH)6̄ and HAsO4

2-
. 
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In experiments performed with Mg(AlFe)-c without competitors in solution and with coexistent SO4
2- 

most Sb(OH)6 ̄ was removed within six hours (fig. 4.21). The presence of SO4
2- did not affect the Sb(OH)6 ̄ 

removal process: the trend of Sb(OH)6 ̄ concentrations in solution is the same in both experiments. In 

presence of coexistent HCO3 ̄, the removal Sb(OH)6 ̄ capacity of Mg(AlFe)-c decrease significantly. The 

most competitive effect was obtained with HAsO4
2-: at the end of the experiment less than 4% of 

Sb(OH)6 ̄ and about 60% of HAsO4
2- were removed from solution. The removal process appear slower 

with respect to the other experiments, in fact most of HAsO4
2- was removed within 24 hours. It seems 

that at the end of experiment the equilibrium between the sorbent and HAsO4
2- was still incomplete 

(fig.4.21) 

XRD patterns of solids recovered after experiments are in agreement with results of chemical analyses 

(fig. 4.22). Patterns of Mg(AlFe)-c after experiment without competitors and with coexistent SO4
2- or 

HCO3 ̄ show well defined reflections at ~19° 2θ, attributable to brandholzite-like compound. The XRD 

pattern of sorbent relative to the experiment with HCO3 ̄ show also a broad peak at angular position 

~12° 2θ and an enlargement on the right shoulder of the peak at ~19° 2θ, ascribable respectively to the 

(003) and (006) reflections of the LDH structure. This could explain the decrease of the Sb(OH)6 ̄ removal 

capacity; in fact, both formation of brandholzite-like compound and reconstruction of hydrotalcite-like 

compound occurred. Even the presence of CO3
2- in solution (pH = 9.5 - 10.6) might have favored the 

reconstruction of the Mg(AlFe)-CO3, although the formation of brandholzite-like compound prevailed.  

On the contrary, the peak of brandholzite-like compound is just a slight hump in the XRD pattern of 

solid recovered after experiment with coexistent HAsO4
2-, while the basal reflections attributable to a 

LDH layered structure are well recognizable; therefore it is possible to assume that HAsO4
2- was 

incorporated in the interlayer of a less ordered LDH. At the experimental pH conditions (9.8-10.5) the 

HAsO4
2- species dominates the aqueous As(V) speciation, previous authors discussed about the 

speciation of As(V) in the LDH interlayer (Ardau et al., 2013 and reference therein), but at the present 

the knowledge is still incomplete. At the pH values of experiment, it is possible that also a minor 

amount of CO3
2- and/or OH- entry in the interlayer, this could explain the enlargement of peak at ~12° 

2θ due to a less ordered structure.  

The results obtained, in agreement with previous studies (Kameda et al., 2011), showed that the 

coexistence of SO4
2- does not affect the Sb(OH)6 ̄ removal capacity of Mg(AlFe)-c, whereas in presence of 

carbonate species the Sb(OH)6 ̄ removal capacity decrease significantly due to the contemporary 

reconstruction of the hydrotalcite-like phase and the formation of the brandholzite-like compound. It 

was also observed that the coexistence of As(V) affects seriously the Sb(OH) 6̄ removal capacity of 

Mg(AlFe)-c, due to the high affinity of As(V) for the LDH (Türk et al., 2009;  Wang et al., 2009).  
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Figure 4.22 XRD patterns of Mg(AlFe)-CO3 and its calcinate products before and after experiment without 
coexistent anions in solution (Sb), and with the coexistent Sb(OH) 6̄ and SO4

2-
 (Sb+SO4), Sb(OH)6̄ and HCO3

̅
 

(Sb+HCO3), Sb(OH)6̄ and HAsO4
2-

 (Sb+As). 

Figure 4.21 Concentrations of Sb(OH)6̄ , SO4
2-

 and As in solutions during competition experiments 
performed with Mg(AlFe)-c. The experiments are marked as follow: Sb = experiment with Sb(OH)6̄ 
1mM; Sb+SO4 = experiment with equal molar concentrations of Sb(OH)6̄ and SO4

2-
 ; Sb+HCO3 =  

experiment with equal molar concentrations of Sb(OH)6̄ and HCO3
̅
 ; Sb+As = experiment with equal 

molar concentrations of Sb(OH)6̄ and HAsO4
2-

. 
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The sorption capacity of 2ZnAl-c slightly decreased in presence of coexistent SO4
2- and HCO3 ̄, total 

amount of Sb(OH)6 ̄ removed from solution at the end of experiments was close to that determined in 

the experiment without competitors (fig.4.20). The greatest variations of Sb(OH)6 ̄ in solution were 

observed within the six hours, even if at the end of the experiments the equilibrium between the 

sorbents and the solutions was not complete (fig.4.23). In presence of HAsO4
2- the concentrations of 

Sb(OH)6 ̄ removed dramatically decreased, but contrary to that observed when Mg(AlFe)-c was used, in 

this case at the end of experiment a high concentration of HAsO4
2- in solution was measured: at the end 

of the time of reaction, less than 10% and 12% of  Sb(OH)6 ̄ and HAsO4
2-, respectively, were removed 

from solution. 

The XRD pattern of solid recovered after experiment performed without competitors in solution shows 

peaks indicating the presence of two different phases:  the peaks at angular positions about 11.6° and 

23.5° 2θ° are compatible with the basal reflection (003) and (006), respectively, of the original 2ZnAl-

CO3, whereas the peaks at ~9°, 18° and 19° 2θ are ascribable to the zincalstibite-like compound 

(fig.4.24). Peaks at the same angular positions can be observed in the XRD pattern of solid recovered 

after experiment with coexistent SO4
2-. These results suggest that at the solution pH values, determined 

during these experiments, the CO3
2- and/or the OH- anions occurring naturally in the water were taken 

to reconstruct the original LDH structure. As observed in previous studies (Ardau et al., 2013), the SO4
2- 

resulted low affine with ZnAl-LDH; in presence of coexistent HCO3 ̄, in agreement with the chemical 

results that showed a slight decrease of Sb(OH)6 ̄ sorption capacity, the peaks belonging the 

zincalstibite-like phase lose intensity, on the contrary the intensity of peaks of carbonate phase 

increase. 

In the XRD pattern of solid recovered after the experiment with HAsO4
2-, the presence of two broad 

undefined humps in the angular ranges 30-33° and 35-37° 2θ indicates that at the end of experiment 

part of the 2ZnAl-c did not react and explain the lower pH value with respect to those of the other 

experiments, and the lower removal capacity. The peaks belonging the zincalstibite-like phase are less 

intense than those of sorbents relative to the other experiments, whereas the peaks compatible with 

the original carbonate phase are well defined, therefore it is possible that the low amount of HAsO4
2- is 

intercalated in the interlayer. 
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Figure 4.23 Concentrations of Sb(OH)6̄ , 
SO4

2-
 and As in solutions during 

competition experiments performed with 
2ZnAl-c. The experiments are marked as 
follow:  Sb = experiments with Sb(OH)6̄ 
1mM; Sb+SO4 = experiments with equal 
molar concentrations of Sb(OH)6̄ and 
SO4

2-
 ; Sb+HCO3 =  experiments with 

equal molar concentrations of Sb(OH)6̄ 
and HCO3̄ ; Sb+As = experiments with 
equal molar concentrations of Sb(OH)6̄ 
and HAsO4

2-
. 

Figure 4.24 XRD patterns of 2ZnAl-CO3 and its calcined 

products before and after experiment without 

coexistent anions in solution (Sb), and with the 

coexistent Sb(OH)6̄ and SO4
2-

 (Sb+SO4), Sb(OH)6̄ and 

HCO3̄ (Sb+HCO3), Sb(OH)6̄ and HAsO4
2-

 (Sb+As). 
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4.3.4 Summary 

Synthetic MgAl/MgFe-NO3 and calcined LDH, obtained from hydrotalcite-like [Mg3
2+ M3+-c, with M3+= 

Al3+ and/or Fe3+] and zaccagnaite-like [ZnAl-c] compounds, were tested for the Sb(OH)6 ̄ removal from 

aqueous solution. Results showed that both calcined and nitrate LDH are able to remove Sb(OH)6 ̄, and 

calcined LDH are most effective than LDH-NO3. 

Results of speedy sorption experiments suggest that both MgAl-NO3 and MgFe-NO3 LDH remove 

Sb(OH)6 ̄ from solution through the formation of a brandholzite-like compounds, while the anion 

exchange process was not observed but is not excluded; moreover, Al/Fe hydroxides precipitated after 

partial dissolution of the sorbents, could contribute to the removal of Sb(OH)6 ̄. The Sb(OH)6 ̄ removal 

from solution through the interaction at the liquid/solid interface, between the Sb(OH)6 ̄ dissolved and 

the positive surface of the brucite-like sheets of LDH-NO3, could explain the higher efficacy showed by 

the 2MgAl-NO3 LDH that presents the highest excess of positive charge in the brucite-like sheet.  

The calcined LDH tested, removed Sb(OH)6 ̄ through different processes, both fast and effective. As 

observed in the experiments performed with LDH-NO3, the calcined hydrotalcite-like phases uptake 

Sb(OH)6 ̄ through the neoformation of a brandholzite-like compound; however the calcined phase 

results more effective than the LDH-NO3 thanks to the higher reactive surface. The 2ZnAl-c removed the 

Sb(OH)6 ̄ by means of the reconstruction of the zincalstibite-like phase, a ZnAl LDH containing the 

Sb(OH)6 ̄ intercalated. 

The presence of LDH-CO3 has been detected at the end of experiment with relative low initial Sb(OH)6̄ 

concentration in solution, performed with both Mg(AlFe)-c and 2ZnAl-c. Further investigation are 

needed in order to assess the evolution of the removal processes during the first hours of reactions, in 

particular when both carbonate and antimonate phases are present.  

The competition experiments show that coexistent sulfate did not affect the Sb(OH)6 ̄ removal capacity 

of both calcined sorbents, whereas in presence of carbonate specie the 2ZnAl-c resulted the most 

effective. In presence of equal concentrations of HAsO4
2- and Sb(OH)6̄ dissolved, the Sb(OH)6 ̄ removal 

capacity of both 2ZnAl-c and Mg(AlFe)-c decrease dramatically. However, the Mg(AlFe)-c removed high 

amount of HAsO4
2-, whereas when the 2ZnAl-c were used, less than 15% of both As and Sb were 

removed from solution and the at the end of experiment part of the sorbent did not react. 
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4.4 ATR-IR study of Sb(OH)6 ̄ removal from aqueous solutions by 

calcined LDH 

 

4.4.1 State of art 

The Total Attenuated Reflection IR spectroscopy (ATR-FTIR) is an analytical method useful to improve 

the comprehension of sorption processes. ATR-FTIR spectra can provide information about the behavior 

of inorganic ions onto oxide surfaces, such as differentiation between inner-sphere or outer-sphere 

complex (Lefèvre, 2004). Moreover, ATR-FTIR allows to record spectra of aqueous solutions and gives 

some important data on the geometry of the hydrolysis species (Davantès and Lefèvre, 2013; Muller et 

al., 2008). ATR-FTIR permits the study in situ of sorption processes, a suitable method for sorbents with 

high reactive surface like metal oxides and LDH. Previous authors used the ATR-FTIR to study the 

interlayer anion orientation of MgAl-NO3 LDH (Wang et al., 2007) and the anion exchange processes 

between SO4
2- and (poly)molybdate using ZnAl-SO4 LDH (Davantès and Lefèvre, 2013). The adsorption 

of Sb(V) ion was investigated onto iron oxides by McComb et. al (2007). Previous studies reported that 

the Sb(OH)6 ̄ ion contains an octahedral SbO6 core that exhibits six normal mode vibrations, but only the 

ν3 corresponding to the ν(Sb-O) mode asymmetric stretch motion (500-680 cm-1) and the ν4 relative to 

the δ(Sb-O) bending motions (230-320 cm-1) are detectable by IR. Studies performed on solid 

hexahydroxyantimonate salts have identified other bands attributable to Sb(OH)6 ̄: the ν(O-H) stretch 

bands at 3220 cm-1, the δ(O-H) and γ(O-H) in plane deformation bands at 1105 and 735 cm-1, 

respectively (McComb et al., 2007 and reference therein). 

In this study the ATR-FTIR spectroscopy was used to better understand the removal processes of 

Sb(OH)6 ̄ from solution by calcined LDH. The ATR-FTIR was used to characterize the hydrotalcite-like and 

zaccagnaite-like compounds and their calcined products; the Sb(OH)6 ̄ spectrum in aqueous solution was 

recorded in order to be able to compare it with the spectrum of Sb(OH)6 ̄ sorbed into LDH. The removal 

processes were studied between batch and in situ ATR-FTIR experiments.  

 

4.4.2 Materials and methods 

4.4.2.1 Instrument 

ATR-IR spectra were measured by a dry-air-purged Thermo Scientific Nicolet 6700 spectrometer 

equipped with a Mercury Cadmium Telluride (MCT) detector. Spectral resolution was 4 cm−1 and 

spectra were averaged over 512 scans. The used ATR accessory is an horizontal diamond/ZnSe crystal (A 

= 3.14 mm2) with one internal reflection on the upper surface and an angle of incidence of 45° (Smart 

MIRacle from PIKE). Data were reprocessed with the OMNIC software. 
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4.4.2.2 ATR-IR spectra of Sb(OH)6 ̄ in solution 

The Sb(OH)6 ̄ solutions were prepared by dissolving KSb(OH)6 in Milli-Q water (Millipore, 18.2 MΩ cm-1). 

Due to the low solubility of antimony salt, the spectra of Sb(OH)6 ̄ in solutions were determined on 0.05 

and 0.025 M solutions. At 0.05 M concentration Sb(V) could form polymers, simulation with MEDUSA 

database showed that the polymerization occurs at pH <6.5. In order to recover the spectra of Sb 

polymers, the ATR-IR spectra of Sb(OH)6 ̄ 0.05 M were determined at different pH values. The pH of 

solution was adjusted using NaOH or HCl 0.1 N, the ATR-IR spectra were measured with water on 

diamond/ZnSe crystal as reference spectrum.  

 

4.4.2.3 Characterization of LDH by ATR-FTIR 

The ATR-IR spectra of hydrotalcite-like (Mg(AlFe)-CO3) and zaccagnaite-like (2ZnAl-CO3) compounds, 

their calcined products and samples recovered after sorption experiments with 1, 5 and 10 mM Sb(OH)6 ̄ 

solutions (§ 4.3) were recorded. The ATR-IR spectra were determined on a film of LDH prepared directly 

on the surface of the ATR crystal with air as reference spectrum. To obtain a uniform film of sample on 

the crystal, the sorbents were suspended in Milli-Q water, 1 µL of suspension was pipetted onto the 

crystal and dried with a slight flow of N2.  

 

4.4.2.4 Batch experiments 

Batch experiments were carried out suspending 0.1g of Mg(AlFe)-c or 2ZnAl-c, under stirring, in 100 ml 

of Sb(OH)6 ̄  10 mM solution. Time of reaction was 24h, experiments were performed at room 

temperature and free atmosphere. Before the addition of the sorbents and at fixed time, the pH was 

monitored and small volumes of suspension were sampled for the ATR-FTIR and ICP-OES analyses. The 

suspensions were filtered through 0.02 µm (filter Sartorius, polycarbonate) and solutions for ICP-OES 

analyses were acidified with 1% v/v HNO3 suprapure. The solids for ATR-FTIR analyses were washed 

with Milli-Q water, put on the crystal and dried with a gentle flow of N2; the spectra were recorded with 

air as reference spectrum. At the end of experiments solid sorbents were filtered (0.02 µm), washed 

with Milli-Q water and dried at room temperature for XRD analyses. XRD patterns were recovered with 

an automated Panalytical X’pert Pro diffractometer, with Ni-filter and Cu-Kα1 radiation (λ=1.54060 Å), 

operating at 40kV and 40mA, with the X’Celerator detector. To compare the results, analogus 

experiments were performed using Milli-Q water only.  

 

4.4.2.5 In situ ATR-FTIR experiments 

Tests in situ were performed with 2ZnAl-c; the ATR-IR spectra were recorded on a film of sorbent in 

contact with a flux of Sb(OH)6 ̄ solution, using a flow cell connected to a peristaltic pump (0.6 mL min-1). 

The film of 2ZnAl-c was deposited on the crystal following the protocol illustrated by Davantès and 
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Lefèvre (2013): 1 μL of 2ZnAl-c suspension was pipetted onto the crystal and dried with a light flow of 

N2, the procedure was repeated three times. Subsequently a drop of water was put on the film to 

record the background. One experiment was performed with a 5 mM Sb(OH)6 ̄ solution for 14 hours; 

another experiment was carried out using a 10 mM Sb(OH)6 ̄ solution varying the pH in the range of 10-

5.2, the pH was modified adding NaOH or HCl 0.1 M. The experiments were performed under 

controlled atmosphere (N2 flux) to avoid the contamination of CO2.  

 

4.4.3 Results and discussion 

4.4.3.1 ATR-IR spectra of Sb(OH)6 ̄ in solution 

The ATR-IR spectra of 0.05 and 0.025 M Sb(OH)6 ̄ solutions do not show high intensity as a consequence 

of the low concentration of solutions, however it is possible to recognize defined absorption peaks at 

about 3100, ~1640,~1030, ~990 and ~740 cm−1 (fig. 4.25a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to previous studies, the peaks observed in the spectrum can be assigned to the Sb(OH)6 ̄. The 

peak at 3100 cm−1 is attributed to the O-H stretch *ν(O-H)] mode, the peak at 1030 cm−1 observed in the 

spectrum of Sb(OH)6 ̄ 0.05M solution is composed by two peak at ~1044 and 980 cm−1 (recognized in the 

Sb(OH)6 ̄ 0.025M spectrum) assigned to the in-plane deformation *δ(O-H)] mode, and the peak at about 

740 cm−1 is relative to the out-of-plane O-H deformation *γ(O-H)] mode.  

The peak at 1650 cm−1 is relative to water, a further water band is visible at 3300 cm−1 in the spectrum 

of Sb(OH)6 ̄ 0.025M as a broad hunch on the left shoulder of the peak at 3100 cm-1. 

Figure 4.25 (a) ATR-IR spectra of Sb(OH)6̄ in 0.05 and 0.025 M aqueous solutions. (b) ATR-IR spectra of Sb(OH)6̄ in 
0.05 M aqueous solutions recovered at different pH. Water on the ZnSe crystal was used as reference spectrum. 
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The ATR-IR spectra of Sb(OH)6 ̄ (fig.4.25b) collected at different pH (4.3 < pH < 6.9) do not change 

significantly, indicating the absence of polymerization or evolution in the geometry of Sb(OH)6 ̄ in 

solution. Depending on the change of the intensity of the signal, it is possible recognize two peaks at 

~1044 and 980 cm−1 also in 0.05 M Sb(OH)6 ̄ solutions. 

 

4.4.3.2 Characterization of LDH by ATR-FTIR 

The ATR-IR spectrum of Mg(AlFe)-CO3 shows bands ascribable to the LDH structure (fig. 4.26a).  The 

broad band at 3500 cm-1 is due to the O-H stretching mode [ν(O-H)] of water molecules in the interlayer 

and the broad band at about 3000 cm-1 is relative to the hydrogen bonds that connected both water 

molecules and carbonate dispersed in the interlayer (Ferreira et al., 2004 and reference therein). The 

peak at 1650 cm-1 corresponds to the HOH deformation *δ(H-O-H)] of water molecules in the interlayer, 

while the peak at 1362 cm-1 is attributable to the ν3 asymmetric stretching mode of carbonate in the 

interlayer. In the ATR-FTIR spectrum of 2ZnAl-CO3 (fig.4.26b) the peak at 1364 cm-1 and the broad band 

in the region 1500-1670 cm-1 are attributable respectively to the presence of carbonate and water in 

the interlayer (Lozano et al., 2012; He et al., 2010). The region 2800-3600 cm-1 is relative to the 

presence of water molecules and anions in the interlayer. In both Mg(AlFe)-CO3 and 2ZnAl-CO3 spectra, 

the bands in the region below the 1000 cm-1 are relative to the vibration metal-oxygen-metal in the 

brucite-like sheets. 

The spectra of calcined solids, Mg(AlFe)-c and 2ZnAl-c, indicate the loss of the layered structure, even if 

low residual water and carbonates can be still present. 

 

 

 

The sorbents recovered after sorption experiments with different initial Sb(OH)6 ̄ concentrations in 

solution (§ 4.3) are marked with the label of the calcined LDH followed by the initial concentration of 

Sb(OH)6 ̄ . 

 

Figure 4.26 ATR-IR spectra of (a) Mg(AlFe)-CO3 and its calcined product, and (b) 2ZnAl-CO3 and its calcined product; with 
air as reference spectrum. 
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4.4.3.2.a Mg(AlFe)-c 

The ATR-FTIR and XRD results are in agreement. The XRD patterns of samples Mg(AlFe)-c+Sb 1mM and 

Mg(AlFe)-c+Sb 5 mM show the presence of both brandholzite-like compound and carbonate LDH 

(fig.4.27a), the intensity of the reflections of the carbonate phase decreases as the initial concentration 

of Sb(OH)6 ̄ increases, becoming not detectable in the XRD pattern of sample Mg(AlFe)-c+Sb 10mM. The 

ATR-IR spectrum of Mg(AlFe)-c+Sb 1mM shows a well defined peak at 1362 cm-1 indicating the presence 

of carbonate in the interlayer accompanied by the water bands at 1650 cm-1 and in the region of 3000-

3500 cm-1 (4.27b). These peaks are visible also in the ATR-IR spectra of the other Mg(AlFe)-c+Sb samples 

indicating the presence of carbonate in both of them; this means that the carbonate phase is also 

present in the Mg(AlFe)-c+Sb 10mM samples, but probably is not enough and/or is less ordered to be 

detectable by XRD. 

 

 

 

 

 

Two peaks at ~1090 and ~1040 cm-1, that not appear in the spectra of the original carbonate LDH or in 

the calcined samples, are barely visible in the spectrum of Mg(AlFe)-c+Sb 1mM and became clearly 

visible as the initial concentration of Sb(OH)6 ̄ increase.  

 

4.4.3.2.b 2ZnAl-c 

XRD patterns of 2ZnAl-c recovered after experiments with Sb(OH)6 ̄ 1 and 5 mM solutions show the 

presence of both 2ZnAl-CO3 and zincalstibite-like compounds (fig. 4.28a), while only the antimonate 

phase is detectable after experiment with 10 mM Sb(OH)6 ̄ initial concentration. In the same way, in the 

Figure 4.27 (a) XRD patterns and (b) ATR-IR spectra of Mg(AlFe)-c after sorption experiments performed with different 
Sb(OH)6̄ concentrations. Air on the crystal was reference spectrum. The green dashed lines delimit the new peaks in the 
region 1000-1100 cm

-1
 of ATR-IR spectra. 
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ATR-IR spectra of 2ZnAl-c+Sb 1mM the bands of the 2ZnAl-CO3 (the peak of carbonate at 1362 cm-1, and 

the water and hydrogen bonds bands in the region 1650 cm-1 and 3000-3550 cm-1, respectively) are well 

defined (fig.4.28b). The peak of carbonate loses intensity in 2ZnAl-c+Sb 5mM and is not visible in the 

2ZnAl-c+Sb 10 mM sample, indicating the absence of carbonate.  

 

 

 

 

 

Two new peaks are present in the same position to those observed in the Mg(AlFe)-c +Sb samples (at 

1090 cm-1 and 1040 cm-1), and become marked as the initial Sb(OH)6 ̄ concentration of sorption 

experiments increase.   

In figure 4.29 the spectra of sorbents recovered after experiments with Sb(OH)6 ̄ 10 mM initial 

concentration, are compared with the spectrum of Sb(OH)6 ̄ 0.05 M solution. It is possible to note that 

the new peaks of solids observed in the region 1000 -1100 cm-1, not ascribable to the carbonate phases 

or their calcined products, are compatible with the peaks assigned to the in-plane deformation *δ(O-H)] 

mode of Sb(OH)6 ̄ in solution. The bands of Sb(OH)6 ̄ at 760 cm-1 and 3100 cm-1 (not showed in the figure) 

are not recognizable due to the overlap in the solid by the bands relative to the metal-oxygen-metal 

and hydrogen bonds vibrations, respectively.  

In case of adsorption through outer-sphere complex, the spectrum of the adsorbed specie should be 

similar to that of the species in solution because there is not significant deformation of the geometry of 

the molecule, while a little shift between the peaks of the sorbed and of the solution species can occur 

as a consequence of the change of the liquid-solid environment. Therefore ATR-IR results suggest that 

the new peaks observed in sorbents recovered after sorption experiments are relative to the presence 

Figure 4.28 (a) XRD patterns and (b) ATR-IR spectra of 2ZnAl-c after sorption experiments performed with different Sb(OH) 6̄ 
concentrations, air on the crystal was reference spectrum. The green dashed lines delimit the new peaks in the region 1000-
1100 cm

-1
 of ATR-IR spectra. 
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of antimony in the solids. The geometry of the Sb(OH)6 ̄ does not change from the liquid to the solid 

form, this means that antimony is present in the solids structure as Sb(OH)6 ̄ specie and is adsorbed 

through outer-sphere complexes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These results are coherent with the formation of brandholzite-like and zaccagnaite-like compounds as 

Sb(OH)6 ̄ removal processes by Mg(AlFe)-c and 2ZnAl-c, respectively (§ 4.3). In fact antimony is present 

in the structure of both brandholzite-like and zaccagnaite-like compounds as Sb(OH)6 ̄, and is connected 

with the other units of the structures by means of Coulombic interaction or hydrogen bonds. 

It should be considered that it is not possible to recognize or exclude the presence of hydroxyl groups in 

the interlayer of LDH phases, because the peaks of hydroxyl group in the interlayer (3500-3700 cm-1) fall 

in the range of the water molecules (Linares et al., 2014). 

 

4.4.3.3 Batch experiments 

Samples recovered after the batch experiments are marked with the label of the calcined LDH followed 

by “+Sb” to indicate experiments performed with Sb(OH)6 ̄ in solution, or “-blk” for experiments with 

only Milli-Q water. 

 

4.4.3.3.a Mg(AlFe)-c 

In both experiments the sharp increase of pH values indicates the rehydration of the sorbents (table 

4.11). Concentration of Sb(OH)6 ̄ in solution decreased during the time and, at the end of experiments, 

Figure 4.29 ATR-IR spectra of 2ZnAl-c+Sb 10mM and Mg(AlFe)-
c+Sb 10mM compared with the spectrum of Sb(OH)6̄ 0.05 M in 
solution.  

The green dashed lines delimit the new peak in the region 1000-
1100 cm

-1
. The orange dashed lines delimit the peaks ascribable 

to Sb(OH)6̄ 0.05M in solution. 
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the Sb(OH)6 ̄ removed was about 32%. The sorption capacity was equal to 3.2  mmoles gLDH
-1 (close to 

that observed in the sorption experiments performed with different solid/solution ratio (§ 4.3.)) 

 

 

 

 

 

 

 

 

 

 

The ATR-IR spectra of Mg(AlFe)-c blk show the progressive increase of broad peaks in the region  3600-

3000 cm-1 and below 1000 cm−1 attributable to a gradual reconstruction of the LDH structure, while the 

peaks at 1362 cm−1 and 1645 cm−1 indicate the presence of carbonate and water in the interlayer, 

respectively (fig.30a). Also ATR-IR spectra of Mg(AlFe)-c +Sb show the reconstruction of the layered 

structure and the entrance of carbonate in the interlayer, while the Sb(OH)6 ̄ band appears well defined 

only at the end of experiment (fig.30b). The comparison of spectra recorded at 1 hour (fig.31) suggests 

that the adsorption of Sb(OH)6 ̄ onto the Mg(AlFe)-c starts as soon as the solid comes into contact with 

the Sb(OH)6 ̄ solution, however further investigations are needed to better understand the evolution of 

the sorbent surface during the first hours.  

 

 

 

Mg(AlFe)-c blk   Mg(AlFe)-c +Sb 

time pH Sb  time pH Sb 

h  mmoles L
-1

  h  mmoles L
-1

 

0 5.6 0  0 5.6 9.8 

0.12 10.0 0  0.12 10.0 8.8 

1 10.3 0  1 10.2 7.9 

2 10.3 0  2 10.2 7.1 

4 10.3 0  4 10.1 7.4 

24 10.3 0  24 10.8 6.7 

Table 4.11 pH values and Sb(OH)6̄ determined in solution during batch 
experiments performed with Mg(AlFe)-c. 

Figure 4.30 ATR-IR spectra of (a) Mg(AlFe)-c blk and (b) Mg(AlFe)-c +Sb determined at fixed time during batch experiments, 
with air as reference spectrum. 
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XRD pattern of Mg(AlFe)-c blk recovered at the end of experiments confirms the presence of LDH-CO3 

through the peaks at low angles ascribable to the basal reflection of hydrotalcite-like compound. The 

XRD pattern of Mg(AlFe)-c +Sb shows marked peaks at ~18° and 19° 2θ attributable to the brandholzite-

like compound, and a broad peak at about 12° 2θ ascribable to LDH-CO3 (fig.4.32). 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3.3.b 2ZnAl-c 

Also in experiments performed with 2ZnAl-c the sharp increase of pH values indicate the rehydration of 

the sorbents (table 4.12). Concentration of Sb(OH)6 ̄ 10 mM solution decreases as 2ZnAl-c was added to 

solution, and at the end of experiment the Sb(OH)6 ̄ removed was about 36% and sorption capacity 

resulted to be 3.6 mmoles gLDH
-1. 

Figure 4.31 ATR-IR spectra of (a) Mg(AlFe)-c blk and (b) Mg(AlFe)-c 
+Sb determined 1 hour after the addition of sorbents in solution. 

ATR-IR spectrum of Sb(OH)6̄ 0.05M is out of scale. 

Figure 4.32 XRD patterns of Mg(AlFe)-c  blk and Mg(AlFe)-c +Sb samples recovered after batch experiments. 



72 
 

 

 

 

 

 

 

 

 

 

 

ATR-IR spectra of both 2ZnAl-c+Sb and 2ZnAl-c blk show a rapid and progressive increase of bands in 

the region 3600-3000 cm−1 and below 1000 cm−1 (fig. 4.33), indicating the reconstruction of the layered 

structure as soon as the sorbents were added to the solutions. In the spectra of 2ZnAl-c blk the 

progressive increment of carbonate peak, at ~1360 cm−1, is relative to the reconstruction of LDH-CO3 

phase.  

 

 

 

 

In agreement with the ATR-IR spectra, XRD pattern of 2ZnAl-c blk sample recovered at the end of the 

experiment shows peaks referable to zaccagnaite-like compound. 

The peaks of both Sb(OH)6 ̄ (region 1100-1000 cm−1) and carbonate ( ~1360 cm-1) are present in the 

spectra of 2ZnAl-c +Sb since the beginning of the experiments, suggesting the contemporary adsorption 

2ZnAl-c blk  2ZnAl-c +Sb 

time pH Sb  time pH Sb 

h  mmoles L
-1

  h  mmoles L
-1

 

0 5.6 0  0 5.6 9.8 

0.4 8.8 0  0.4 9.8 9.1 

1 9.3 0  1 10.8 7.1 

2 9.2 0  2 10.8 7.3 

4 9.0 0  4 10.8 6.7 

24 8.0 0  24 9.9 6.3 

Table 4.12 pH values and Sb(OH)6̄ determined in solution 
during batch experiments performed with 2ZnAl-c. 

Figure 4.33 ATR-IR spectra of (a) 2ZnAl-c blk and (b) 2ZnAl-c +Sb determined at fixed time during batch experiments, with 
air as reference spectrum. 
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of these anionic species with the preferential adsorption of antimony during the experiment; however, 

due to the complexity of the spectra in the region below 1000 cm-1, it is not possible to state with 

certainty how the structures evolve during experiment. The XRD pattern of 2ZnAl-c+Sb confirms the 

presence of both zaccagnaite and zincalstibite-like compound, with the predominance of the last one 

(fig.4.34).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3.4 In situ ATR-FTIR experiments 

Spectra of in situ experiment performed with a flux of Sb(OH)6 ̄ 5 mM solution onto a film of 2ZnAl-c (fig. 

4.35) show the sharp decrease of the calcined solid peaks with the contemporary increment of the 

peaks related to LDH structure as soon as the solution interacts with the sorbent. The evolution of the 

structure is visible during the first 3 hours, while spectra recorded between 4 and 14 hours (not shown) 

do not show further evolution of the structure. Although the experiment was performed under 

controlled N2 atmosphere, the presence of carbonate was detected at ~1360 cm-1. 

In the experiment performed changing pH of solution, the initial pH of Sb(OH)6 ̄ 10 mM solution was ~6 

(fig.4.36). The film of 2ZnAl-c was equilibrated with solution for three hours; successively the pH was 

increased till 10 and the spectrum was recorded after 20 minutes of riequilibrium between sorbent and 

solution. This operation was repeated decreasing slowly the pH till 5.2. ATR-IR spectra show the rapid 

decrease of 2ZnAl-c peaks and the adsorption of Sb(OH)6 ̄, while the spectra acquired at different pH 

values do not show significant variations, suggesting that, at these experimental conditions (low 

amount of sorbent, high concentration of Sb(OH)6 ̄, atmosphere controlled with a flux of N2) the pH does 

not influence the adsorption and does not determine the desorption of Sb(OH)6 ̄ or the dissolution of 

the sorbent. 

Figure 4.34 XRD patterns of 2ZnAl-c blk and 2ZnAl-c +Sb samples recovered after batch 
experiments. 
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4.4.4 Summary 

ATR-FTIR was used to characterize the hydrotalcite-like (Mg(AlFe)-CO3) and zaccagnaite-like (2ZnAl-CO3) 

compounds, and their calcined products. Moreover the removal processes of Sb(OH)6 ̄ from solution by 

calcined LDH were investigated. 

 ATR-IR spectra show that both Mg(AlFe)-c and 2ZnAl-c adsorbed Sb(OH)6 ̄ through the formation of 

outer-sphere complex; these results, in agreement with the XRD data, are compatible with the 

formation of either brandholzite-like or zaccagnaite-like compounds as Sb(OH)6̄ removal processes from 

solution by Mg(AlFe)-c and 2ZnAl-c, respectively. Moreover there is no evidence of other types of 

sorption processes. The adsorption of Sb(OH)6 ̄ is very fast and in experiments performed in free 

atmosphere, ATR-IR spectra indicated that the Sb(OH)6 ̄ and the carbonate are adsorbed contemporary 

by both Mg(AlFe)-c and 2ZnAl-c. Some questions are still open and need further investigations: the 

region of the ATR-IR spectra below 1000 cm-1 is composed by the overlap of several signals related to 

the oxygen-metal-oxygen vibration and it is not possible to distinguish if the development of the 

carbonate and the antimonate phases is contemporary during the first hours of experiments, or if one 

of them prevails during the reconstruction of the structures. Moreover the overlap of the signals does 

not permit to individuate (or exclude) the presence of hydroxyl group in the interlayer of LDH. 

Figure 4.35 In situ ATR-IR spectra recovered as 
function of time with a flux of Sb(OH)6̄ 5 mM solution 
onto a film of 2ZnAl-c. A drop of water on the film of 
sorbent was used as reference spectrum. 

Figure 4.36 In situ ATR-IR spectra recovered at 
different pH of a flux of Sb(OH)6̄ 10 mM solution onto a 
film of 2ZnAl-c. A drop of water on the film of sorbent 
was used as reference spectrum. 

ATR-IR spectra with drop of water on the film of 

sorbent as reference spectrum. 
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4.5 Removal of antimony by LDH: sorption test with antimony polluted water 

collected at Su Suergiu abandoned mine 

 

4.5.1 Mine water 

The antimony removal capacity of calcined LDH, Mg(AlFe)-c and 2ZnAl-c, was tested on the antimony 

polluted water sampled in the abandoned mine of Su Suergiu (§ 3). The mine area of Su Suergiu is in the 

south east of Sardinia; the mineralization is hosted in Paleozoic black schists and metalimestones, and 

consists of stibnite, scheelite, pyrite and arsenopyrite with quartz and calcite in the gangue (Funedda et 

al., 2005). The ore were mined underground since the 1858, while the foundry activity started in 1892. 

After the definitive closure of all activities in 1987, mining wastes and foundry slags have been left on 

the ground, without actions addressed to mitigate the environmental impact; the volume of slag heaps 

is estimated at about 66,000 m3 (RAS, 2003).  

The waters draining the mine area are characterized by slightly alkaline pH and oxidizing conditions, 

with high concentrations of antimony (up to 104 μg L-1) and arsenic (up to 103 μg L-1) (Cidu et al., 2012). 

The highest concentrations of antimony are usually detected in the waters flowing downstream of the 

foundry slag. These waters also contain high concentration of arsenic, sulfate and bicarbonate that may 

compete with antimony in the sorption processes. For these reasons the slag drainage was chosen to 

perform the sorption test with LDH; in the present case the water was collected at the sampling point 

SU1 (fig.4.37), under low flow conditions (date of sampling 30.6.2014).  

 

 

 

Figure 4.37 (a) Location of the sampling point SU1 and (b) sampling operation. 
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The physical and chemical parameters (T°C, pH, EC and Eh) were measured at the sampling site; 4 L of 

unfiltered water were sampled for sorption experiments in HDPE bottles, whereas other aliquots were 

filtered through 0.45 µm (OlimPeak, polypropylene) and acidified with 1% v/v HNO3 suprapure for 

analyses by ICP-MS and ICP-OES, or with 1% v/v HNO3 suprapure plus 0.2 w/v tartaric acid  for Sb(III) 

analyses by ASV; the aliquot for analysis of major ions by IC was only filtered. 

 

4.5.2 Sorption experiments 

Water for sorption experiments was filtered (0.45 µm) in laboratory few hours after the sampling and 

stored in HDPE bottles at 4°C for one night; batch experiments started less than 24 hours after the 

sampling. Different solid/solution ratios were used: 0.1, 0.25, 0.5 and 1 g of 2ZnAl-c or Mg(AlFe)-c were 

suspended in 400 ml of SU1 water. Experiments performed with Mg(AlFe)-c are labeled as A (1 g of 

sorbent), B ( 0.5 g), C (0.25 g) and D (0.1 g), whereas experiments carried out with 2ZnAl-c are: E (1 g), F 

(0.5 g), G (0.25 g) and H (0.1 g). Experiments were performed at room temperature; time of reaction 

was 24 hours under vigorous stirring. Before the addiction of the sorbents and at fixed time (0, 0.3, 1, 3, 

5 and 24 hours) pH of solutions was measured. At the end of the experiments, the solutions were 

recovered for chemical analyses using a filtration system (0.45 µm, filters Nuclepore polycarbonate) 

connected to a vacuum pump. For each solution an unacified aliquot was used for analyses of major 

ions by IC and another was acidified with 1% v/v HNO3 for ICP-OES and ICP-MS analyses. After the 

filtration, solid sorbents were washed with distilled water and dried at room temperature. 

Mineralogical analyses of sorbents, before and after experiments, were carried out by powder X-ray 

diffraction (XRD). 

 

4.5.3 Results and discussion 

4.5.3.1 Mine water (SU1) 

Water sampled showed slightly alkaline and oxidizing conditions, the high value of EC is related to the 

high content of calcium and sulfate. Chemical composition was Ca-sulfate dominant, with sulfate 

deriving from the oxidation of sulfides; the presence of carbonate species avoided the decrease of pH 

(§ 3.5). As a consequence of the interaction with the foundry slag, the solution showed high 

concentration of Sb(tot) (9900 µg L-1) and As (3386 µg L-1) (table 4.13). Concentration of Sb(III) was 

determined to be 147 µg L-1. Results of speciation calculation indicated that Sb(V) and Sb(III), 

respectively occur as Sb(OH)6 ̄ (100%) and Sb(OH)3 (99.9%) aqueous species (§ 3.4).   
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       Table 4.13 The pH, EC values and concentrations of major ions, Zn, Al, Fe, Sb(tot) and As determined in SU1 water before and after sorption experiments. 

 

 

 
sample amount of sorbent  label 

 
EC pH  SO4

2- HCO3̄ Cl F 
 

Ca Mg Na K 
 

Zn Al Fe 
 

Sb(tot) As 
 

Sb rem As rem 

  
g   

 
uS/cm 

 
 mg L-1  mg L-1 

 
μg L-1 

 
μg L-1 

 
% 

   
  

   
 

                   

 
SU1 

 
  

 
2400 8.2  1006 485 59 1.7 

 
362 63 166 7 

 
30 < 29 < 20 

 
9900 3386 

   

   
  

   
 

                   

SU
1 

+
 MgAlFe-c 1  A 

 
1745 9.7  771 18 63 0.1 

 
129 59 162 4.6 

 
< 18 < 29 < 20 

 
1008 < 0.5 

 
90 100 

MgAlFe-c 0.5  B 
 

1990 9.4  956 29 63 0.1 
 

80 109 166 4.8 
 

< 18 < 29 < 20 
 

432 6.5 
 

96 100 

MgAlFe-c 0.25  C 
 

2120 9.2  1048 48 64 0.4 
 

68 140 166 4.6 
 

< 18 18 140 
 

169 25 
 

98 100 

MgAlFe-c 0.1  D 
 

2240 8.4  1066 127 64 0.8 
 

131 120 166 4.7 
 

< 18 700 < 20 
 

9830 150 
 

4 96 

   
  

   
 

                   

SU
1 

+
 2ZnAl-c 1  E 

 
2040 7.9  958 80 63 0.3 

 
244 25 163 4.3 

 
242 28 < 20 

 
20 4.5 

 
100 100 

2ZnAl-c 0.5  F 
 

2140 8.0  1008 125 63 0.5 
 

234 45 167 4.8 
 

260 67 < 20 
 

34 8.3 
 

100 100 

2ZnAl-c 0.25  G 
 

2240 8.1  1054 169 65 1.1 
 

264 56 161 4.4 
 

174 105 < 20 
 

78 35 
 

99 99 

2ZnAl-c 0.1  H 
 

2330 8.1  1077 252 64 1.6 
 

278 62 168 4.4 
 

1485 78 < 20 
 

6190 92 
 

41 97 
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4.5.3.2 SU1 + Mg(AlFe)-c  

Solutions recovered at the end of experiments performed with Mg(AlFe)-c showed significant decrease 

of EC values especially for A and B experiments, combined with the decrease of Ca and/or HCO3 ̄ 

concentrations (table 4.13). A significant decrease of dissolved SO4
2- was also observed in experiment A. 

Moreover in experiments B, C and D the increase of Mg concentrations in solutions indicated the partial 

dissolution of the sorbents (fig. 4.38).  

 

 

After the addition of Mg(AlFe)-c in solution, the increment of pH observed was related to the amount of 

sorbent used. The pH increased sharply in solution of experiments A and B, the increment was less 

sharp in solution of experiment C while the variation of pH was very limited in the experiment with the 

lowest amount of sorbent (fig.4.39). 
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Figure 4.38 (a) EC values and (b) concentrations of SO4
2-

, HCO3
-
, Ca and Mg determined in SU1 sample and in solutions 

recovered after experiments performed with 1 g (A), 0.5 g (B), 0.25 g (C) and 0.1 g (D)  of Mg(AlFe)-c. 

Figure 4.39 Variation of pH values determined in solution in function of the time in 
sorption experiments performed with 1 g (A), 0.5 g (B), 0.25 g (C) and 0.1 g (D) of 
Mg(AlFe)-c. 
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 At the end of experiments B and C more than 95% of Sb(tot) was removed from the solutions, in 

experiment A was about 90% while less than 5% Sb(tot) was removed in experiment D. In all 

experiments more than 96 % of As was removed (fig.4.40).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XRD patterns of sorbents recovered after experiments A, B and C show the peaks at low angular 

positions attributable to the layered structure of LDH, whereas only the peak at ~10° 2θ is barely visible 

in the XRD pattern relative to the experiment D (fig.4.41). The XRD patterns of all samples contain also 

well defined peaks ascribable to calcite, whereas the peaks belonging to the brandholzite-like 

compounds were never detected. 

These results suggest that the increase of pH values, related to the rehydration of the Mg(AlFe)-c, 

favored the precipitation of calcite thanks to the prevalence of CO3
2- as carbonate species and the high 

concentration of Ca in the SU1 water.  

The highest values of pH (up to 10.3), were measured during experiment A. However, the concentration 

of Ca in solution at the end of experiment was higher than in solutions of experiments B and C 

suggesting a minor calcite precipitation. It is possible that, due to the high amount of sorbent, the 

precipitation of calcite was partially inhibited by the uptake of CO3
2- during the reconstruction of the 

LDH structure. On the contrary, in experiments B and C, even if the pH values were lower, the minor 

quantities of sorbents needed less CO3
2- for the reconstruction of the LDH structure thus permitting the 

precipitation of a greater amount of calcite.  

At the pH values determined in all experiments, the As prevails in solution as HAsO4
2-; this species has 

high affinity with the LDH (Türk et al., 2009), therefore As should be removed from solution through the 

entry in the interlayer region.  

Figure 4.40 Percentage of Sb(tot) (a) and As (b) removed from solutions at the end of 
experiments performed with 1 g (A), 0.5 g (B), 0.25 g (C) and 0.1 g (D) of Mg(AlFe)-c. 
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Figure 4.41 XRD patterns of sorbents 
recovered after experiments performed with 
1 g (A), 0.5 g (B), 0.25 g (C) and 0.1 g (D) of 
Mg(AlFe)-c. 

XRD pattern of Mg(AlFe)-CO3 and the sorbent 

recovered after the sorption experiment 

performed with initial concentration 12.5 

mM of Sb(OH)6̄ in solution are reported to 

compare the results. 
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Being the initial concentration of Sb(tot) in the SU1 water too low to reach the saturation of 

brandholzite, it is probable that also Sb(tot) was removed from solution by means of the incorporation 

in the interlayer during the reconstruction of the LDH.  

The concentrations of Mg determined in solution at the end of experiments B and C indicate the 

dissolution of the sorbents, but not resulted in the experiment A. In experiments B and C the Sb(tot) 

removed from solution (96% and 98%, respectively) was higher than in experiment A (90%) even if the 

amounts of sorbents were lower. This different efficacy in the Sb(tot) removal can be attributable to 

the different pH values of solutions. In fact, even if in experiment A was used the greatest amount of 

sorbent and there is no evidence of its dissolution, the high pH values implies that also the OH- can 

compete for the entry in the interlayer. Moreover, as a consequence of the dissolution of the sorbents 

in experiments B and C, both Sb(tot) and As could be sorbed also by amorphous Al and/or  Fe 

hydroxides.  

In general, the thickness of the interlayer can give important information about the nature and the 

orientation of the anionic species intercalated (Palmer et al., 2009; Wang et .al 2009 and reference 

therein). In the present case could be useful to distinguish the prevalent species in the interlayer to 

better understand the removal processes. The thickness of LDH intercalated with OH- should be lower 

than CO3
2- (Cavani et al., 1991; Koritnig et al., 1975), however, also HAsO4

2- and Sb(tot) (and SO4
2- in 

experiments A and B) can influence the thickness of the interlayer. Therefore, more detailed analyses of 

solids recovered after experiments are needed in order to better characterize the interlayer 

composition. 

In experiment D the low amount of Sb(tot) removed from solution may be attributable on several 

factors.  

The concentration of Mg in solution indicates the dissolution of at least 69 wt% of Mg(AlFe)-c used, 

therefore the amount of anions that can be intercalated during the reconstruction of the LDH structure 

decreases significantly. Moreover, the amount of Mg(AlFe)-c is not enough to increase considerably the 

pH of solution during the rehydration, thus the competition effect operated by CO3
2- or OH- decreases. 

Results indicate that in these conditions, even if the concentration of Sb(tot) was higher than that As, 

the HAsO4
2- is removed from solution better than Sb(tot), maybe due to its major affinity with the LDH. 

In addition also amorphous Al end Fe hydroxides may have contributed to the removal processes. 

 

4.5.3.3 SU1 + 2ZnAl-c 

Solutions recovered at the end of experiments performed with ZnAl-c showed, with respect to the SU1 

water, lower EC values mainly due to the decrease of HCO3 ̄ and Ca concentrations that is more 

pronounced with increasing the amount of sorbent used (fig.4.42). Moreover the concentrations of Zn 

and Al in solution indicate a low dissolution of sorbents (table 4.10).  



82 
 

During the first hours after the addition of the sorbent, low increase of pH values, attributed to the 

rehydration of 2ZnAl-c, was determined only in solutions of experiments E and F (fig.4.43). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 4.44 Concentration of Sb (a) and As(b) determined in SU1 sample and in 
solutions recovered after experiments performed with 1 g (E), 0.5 g (F), 0.25 g 
(G) and 0.1 g (H) of 2ZnAl-c. 

Figure 4.42 (a) EC values and (b) concentrations of SO4
2-

, HCO3
-
, Ca and Mg determined in SU1 sample and in solutions 

recovered after experiments performed with 1 g (E), 0.5 g (F), 0.25 g (G) and 0.1 g (H) of 2ZnAl-c. 

Figure 4.43 Variation of pH values determined in solution in function of 
the time in sorption experiments performed with 1 g (E), 0.5 g (F), 0.25 g 
(G) and 0.1 g (H) of 2ZnAl-c. 
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At the end of experiments E, F, and G both Sb(tot) and As in solution are totally removed from solution 

or nearly so; only at the end of experiment H the Sb(tot) removed from solution was about 40% 

whereas As removed was 97 % (fig.4.44). 

XRD patterns of all sorbents recovered after experiments show peaks at the same angular position of 

the basal reflection belonging to the original phase 2ZnAl-CO3, also the peaks ascribable to calcite are 

present in experiments E, F and G (fig.4.45).  

The decrease of both Ca and Mg concentrations determined in solution at the end of experiments E, F 

and G, is attributable to the precipitation of calcite. In general in experiments performed with 2ZnAl-c is 

observed a minor decrease of Ca concentrations with respect the analogous experiments performed 

with the Mg(AlFe)-c, indicating the precipitation of minor amount of calcite, maybe due to the different 

ranges of pH values determined in the experiments performed with the two different sorbents. 

Considering that in the SU1 water the concentration of HCO3 ̄ was very high  with respect to Sb(tot), and 

that the 2ZnAl-CO3 LDH phase prevails in the final solids of experiments E, F, and G, it is plausible that 

the Sb(tot) is removed from solution by means of the incorporation in the interlayer region during the 

rehydration of the 2ZnAl-c phase. Nevertheless, it is not possible to exclude the formation of the 

antimonate LDH (zincalstibite) in amount not detectable with the XRD analyses.  

In the range of pH measured during the experiments, the As prevails in solution as HAsO4
2-. Considering 

the high affinity of HAsO4
2- for LDH having ZnAl cationic composition (Ardau et al., 2013), probably also 

HAsO4
2- enters as minor component in the interlayer of the reconstructing 2ZnAl-CO3 LDH. Moreover, 

both HAsO4
2- and Sb(tot) could be adsorbed onto amorphous Al-hydroxides precipitated after the 

dissolution of low amount of sorbents. 

The solid recovered after the experiment H shows the peaks at low angular range relative to the basal 

reflection of the 2ZnAl-CO3 LDH and a peak at about 18° 2θ attributable to the zincalstibite-like 

compound. The defined peaks at ~16.8°, 20° and 29° 2θ are ascribable to the monohydrocalcite; 

furthermore a broad hump in the range 30-40° 2θ indicates that part of 2ZnAl-c did not react at the end 

of the experiment (fig.4.45). A possible explanation may be that the amount of sorbent used was too 

low, therefore the CO3
2-, derived from the dissociation of HCO3 ̄ to buffer the increment of pH 

subsequent to the rehydration of the 2ZnAl-c, was not enough and the reconstruction of the carbonate 

LDH and the precipitation of calcite were hindered. In these conditions the competition of CO3
2- with 

respect to Sb(tot) decreases and it is possible the reconstruction of both 2ZnAl-CO3 and  zincalstibite-

like structure. Furthermore, due to its higher affinity for LDH interlayer and its initial lower 

concentration with respect to Sb(tot), As was almost completely removed, while the less affine SO4
2- 

remained in solution. Also in this case the precipitation of Al as amorphous Al-hydroxides could 

contribute to the Sb(tot) and As removal from solution.  
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Figure 4.45 XRD patterns of 
sorbents recovered after 
experiments performed with 1 g (E), 
0.5 g (F), 0.25 g (G) and 0.1 g (H) of 
2ZnAl-c. 

XRD patter of 2ZnAl-CO3, its calcined 

product and the sorbent recovered 

after the sorption experiment 

performed with initial concentration 

of Sb(OH)6̄ 12.5 mM in solution are 

reported to compare the results. 
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Comparing the concentration of Sb(tot) and As removed from solution at the end of experiments by 

Mg(AlFe)-c and 2ZnAl-c, it is possible to note that 2ZnAl-c removed Sb(tot) better than Mg(AlFe)-c, 

whereas the sorbents  show  similar  As removal capacity (fig.4.46). Supposing that both Mg(AlFe)-c and 

2ZnAl-c removed Sb(tot) by its intercalation in the interlayer region of reconstructed LDH, the 

difference in the amount of Sb(tot) removed could be attributable to the higher pH reached in solution 

during the experiments with Mg(AlFe)-c, that implies the major competition for the entry in the 

interlayer operated by CO3
2- and OH- against Sb(tot). Another reason could be the major dissolution of 

the sorbents detected in the Mg(AlFe)-c experiments. In this case part of the contaminants in solution 

could be adsorbed by the amorphous Al-Fe hydroxides precipitated in solution that have high sorption 

capacity at low pH. Most detailed analyses of solids recovered after sorption experiments are needed in 

order to better understand the presence of secondary phases (i.e. amorphous Fe and/or Al hydroxides) 

and their role (in presence of LDH) in the removal of Sb(tot) and As from solution. 

 

4.5.4 Summary 

Sorption experiments were performed with the slag drainage collected at Su Suergiu, characterized by 

slightly alkaline pH and high concentrations of both antimony and competitor anions in solution. The 

results confirm the good antimony removal capacity of both Mg(AlFe)-c and 2ZnAl-C, and encourage 

further investigations; moreover in all experiments also good arsenic removal capacity was observed.  

It was noted that due to the relative low concentration of antimony in the SU1 water, compared to 

antimony concentration utilized in the sorption experiments performed with synthetic solutions, the 

formation of brandholzite was never detected as antimony removal process in experiment performed 

with Mg(AlFe)-c, while the presence of the zincalstibite-like compound was observed only in one 

experiment in which the 2ZnAl-c was used. 

Results showed that the key factor is the solid/liquid ratio that, in particular in experiment performed 

with Mg(AlFe)-c, determined the variation of pH and thus the evolution of the entire processes in 

Figure 4.46 Concentrations of (a) Sb(tot) and As (b) removed from SU1 water at the end of sorption experiments. The 
red line (a) and the blue line (b) indicate the initial Sb(tot) and As concentrations, respectively. 
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solutions. The dissolution of both Mg(AlFe)-c and 2ZnAl-c were detected in some experiments. The M3+ 

(Al3+ and/or Fe3+) ion can be precipitated as amorphous hydroxides and contributed to the removal 

processes, whereas both Mg and Zn could remain in solution. One important open question is directed 

on the occurrence of the dissolution of the sorbents and the impact of the introduction of the metals 

contained in these materials in the aquatic system. Therefore future studies should be developed in 

order to assess the most appropriate solid/liquid ratio in order to obtain the greatest advantage from 

the use of these materials in the removal of antimony, and arsenic as well. 
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CHAPTER 5. Conclusions 

In the last years, the topic of antimony has been arising great interest, due to the environmental impact 

linked to its extraction and use in several industrial applications. Many authors have investigated the 

different respects of antimony pollution; nevertheless, many points need to be better clarified in order 

to plan future remediation strategies. 

For this reason, in this work, a multidisciplinary approach to the antimony issue was followed, aimed at 

improving our knowledge. On the one hand, geochemical characterization of antimony polluted water 

draining the abandoned mine of Su Suergiu (SE Sardinia) was performed in order to understand 

antimony speciation and dispersion mechanisms, on the other hand a removal technique by means of 

synthetic LDH minerals was tested. The study provided interesting results in each investigated field. 

Being the determination of total antimony insufficient to assess the fate and the impact of this 

contaminant on the environment, in this study the water analyses included the determination of both 

Sb(III) and Sb(V). Speciation of antimony in aqueous solutions can be obtained through the 

determination of Sb(tot), either by ICP-MS or ICP-OES, and Sb(III) using ASV. The Sb(V) concentration is 

calculated by subtracting Sb(III) from Sb(tot). Due to its thermodynamic instability the concentration of 

Sb(III) decreases during the time, therefore a sample stabilization is needed to avoid that the Sb(III) 

oxidation affects the results. For this reason, during this work, a stabilization technique has been 

investigated. Several reagents (i.e. 1% v/v HCl; 0.1% w/v L(+) ascorbic acid; 0.2% v/w L(+) tartaric acid 

plus 0.1% v/v HNO3) were tested with both synthetic solutions and natural waters. The most effective 

Sb(III) stabilization of antimony polluted water (containing high Sb(V) concentration) resulted the L(+) 

tartaric acid plus nitric acid, however the instability of Sb(III) even in stabilized sample, leads to suggest 

to carry out analyses as soon as possible, within 7 days upon the water collection (Cidu et al., 2015). 

Further investigations are needed to validate and/or improve this method. 

The analysis of the waters draining the Su Suergiu abandoned mine allows to state that antimony 

pollution is extended for several kilometers downstream the mine area. In agreement with previous 

surveys (Cidu et al., 2008a, b), it was observed that the antimony contamination of water system is 

mainly due to the interaction of water with the foundry slag; in fact the slag drainage showed the 

highest antimony concentration (up to 104 µg L-1) whereas waters flowing out the adits appear as a 

minor source of contamination. Waters draining Su Suergiu are characterized by slightly alkaline pH and 

the oxidizing conditions that favor the prevalence of Sb(V) in solution, less toxic but more mobile than 

the Sb(III) form *Sb(III) ≤ 6 % Sb(tot)+. There are no evidences of natural attenuation processes like 

precipitation of Sb-bearing phases or sorption on particulate phases, consequently, the only natural 

abatement of antimony concentration in solution is represented by the dilution process. 

The mine drainages are collected by the Riu Ciurixeda catchment; the Riu Ciurixeda about 3 kilometers 

down the mine area flows into the Flumendosa River, the most important water body of south Sardinia 
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which provides water for both agricultural and domestics uses. The Riu Ciurixeda shows a strong 

antimony contamination (103 µg L-1) given by the contribution of the mine drainages and also by the 

interaction between water and foundry slag widely dispersed along the river banks till the confluence of 

Riu Ciurixeda into the Flumendosa River.  

After the confluence of Riu Ciurixeda into the Flumendosa River the antimony concentration decreases 

significantly, however, dissolved antimony still exceeds the recommended limit for drinking water of 

both WHO (20 µg L-1) and EC (5 µg L-1),  especially under high flow condition (up to 51 µg L-1). These 

results suggest that possible actions aimed to mitigate the antimony contamination in the water 

system, should be addressed directly on the slag heaps, which represent the primary source of 

contamination at Su Suergiu. An appropriate intervention should be aimed to limit the interaction 

between slag heaps and water, and to stop the dispersion of the slag waste downstream the mine area. 

Eventually, actions addressed on the mitigation of antimony, through the treatment of the 

contaminated waters, should be carried out by means of sorbents having high affinity for Sb(V) and able 

to remove anions under slightly alkaline pH and oxidizing conditions. 

For these reasons the second part of this work was focused on testing the efficacy of synthetic LDH 

minerals in Sb(V) removal from aqueous solution. In a first stage, LDH with different compositions were 

synthesized and used in sorption tests with synthetic Sb(V)-bearing solutions in order to identify the 

most effective phases and their Sb(V) removal processes. Successively these sorbents were used in 

sorption tests carried out with slag drainages collected at Su Suergiu.   

The following phases were tested: nitrate LDH with composition MgAl/MgFe-NO3; carbonate calcined 

LDH obtained from hydrotalcite-like [Mg3
2+M1

3+-c, with M3+= Al3+ and/or Fe3+] and zaccagnaite-like 

[ZnAl-c] compounds. Results showed that both calcined and nitrate LDH are able to remove Sb(OH)6 ̄ 

from solution, and that calcined LDH are most effective than LDH-NO3.  

Among the calcined LDH tested, the more effective Mg(AlFe)-c and 2ZnAl-c were selected. These phases 

remove Sb(OH)6 ̄ from solution through different processes, both fast and efficient: the Mg(AlFe)-c 

uptake Sb(OH)6 ̄ through the formation of a brandholzite-like compound {Mg[Sb(OH)6]2∙6H2O}, a Sb-

bearing layered phase; whereas the 2ZnAl-c removed the Sb(OH)6 ̄ by its intercalation in the interlayer 

during the reconstruction of a zincalstibite-like LDH [Zn2Al(OH)6(Sb(OH)6]. Experiments performed with 

coexistent anions in solution indicated that the competition effect on the Sb(OH)6 ̄ removal results 

HAsO4
2- >> HCO3 ̄ > SO4

2-. 

Also ATR-FTIR analyses were performed in order to characterize these materials and their Sb(OH)6 ̄ 

removal processes. ATR-IR, in agreement with the XRD data, showed that both Mg(AlFe)-c and 2ZnAl-c 

adsorbed Sb(OH)6 ̄ through the formation of outer-sphere complex; these results, are compatible with 

the formation of either brandholzite-like or zaccagnaite-like compounds as result of Sb(OH)6 ̄ removal 

processes from solution by Mg(AlFe)-c and 2ZnAl-c, respectively. The ART-IR spectra of experiments 
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performed in free atmosphere, shows a very fast adsorption of Sb(OH)6 ̄, and the contemporary 

carbonate adsorption by both Mg(AlFe)-c and 2ZnAl-c. However further studies are needed in order to 

better understand the evolution of the removal processes during the first hours of reactions. 

The last stage of this work consisted in sorption experiments performed with the slag drainage 

collected at Su Suergiu, which are characterized by slightly alkaline pH and high concentration of both 

antimony and competitor anions in solution. Also these tests confirm the good antimony removal 

capacity and encourage further investigations. Both Mg(AlFe)-c and 2ZnAl-C removed Sb under slightly 

alkaline pH and oxidizing condition, and showed good Sb removal capacity in presence of higher 

concentrations of coexistent anions. Moreover also good arsenic removal capacity was observed.  

The relative low concentration of antimony in the mine drainage water (sample SU1), with respect to 

the synthetic solutions used in the first sorption experiments, did not allow the formation of 

brandholzite in experiment performed with Mg(AlFe)-c; instead, in batch tests performed with 2ZnAl-c 

the presence of the zincalstibite-like compound was observed, even if in only one experiment. In fact, in 

these experiments results suggest that both Sb and As are removed from solution by the intercalation 

in the interlayer during the reconstruction of LDH-CO3(OH).  

Results showed that the key factor is the solid/liquid ratio that, especially in experiment performed 

with Mg(AlFe)-c, determined the variation of the pH and thus the evolution of the whole processes in 

solutions. The dissolution of both Mg(AlFe)-c and 2ZnAl-c was detected in several experiments. The M3+ 

(Al3+ and/or Fe3+) can precipitate as amorphous hydroxides, contributing to the removal processes, 

whereas both Mg and Zn tend to remain in solution. The possible dissolution of the sorbents and the 

environmental impact produced by the introduction in the aquatic system of the metals contained in 

these materials is an important open question. Therefore, future studies should be addressed to assess 

the most appropriate solid/liquid ratio in order to optimize the antimony removal.  
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Appendix I 

Physical chemical parameter of water collected at Su Suergiu from 201 to 2014. 
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 Physical chemical parameter of water samples determine at the sampling points. 

Sample Name   Type Date Flow T water   pH Eh EC 

          L s-1 °C   
 

V mS cm-1 

upstream 
         SU8 Villasalto - Armungia 
 

spring 09.05.12 0.03 16 
 

7.6 0.43 0.33 

SU15 Monte Genis-fontanelle 1 
 

spring 13.06.12 <0.1 18 
 

6.1 0.43 0.19 

MU9 Rio Spigulu 
 

stream 02.05.12 50 17 
 

7.8 0.38 0.36 

MU9 Rio Spigulu 
 

stream 28.02.13 250 8 
 

8.2 0.51 0.25 

MU9 Rio Spigulu 
 

stream 20.06.13 1 18 
 

7.5 0.44 0.51 

MU92 Flumendosa 
 

river 23.05.12 1000 17 
 

8.0 0.45 0.55 

MU92 Flumendosa 
 

river 28.02.13 3000 8 
 

7.8 0.51 0.41 

MU92 Flumendosa 
 

river 23.07.13 1000 25.9 
 

7.7 0.38 0.55 

MU92 Flumendosa 
 

river 09.01.14 4000 10 
 

7.7 0.48 0.49 

MU92 Flumendosa 
 

river 20.06.13 1000 24 
 

8.1 0.45 0.52 

SU5 Su Suergiu viale dei pini 
 

spring 09.05.12 <0.1 13 
 

7.4 0.46 0.31 

SU13 Su Suergiu mine 
 

spring 13.06.12 <0.05 15 
 

7.0 0.49 0.36 

SU17 Rio Corr'e Cerbus 
 

stream 28.02.13 8 8 
 

8.2 0.51 0.81 

mine area 
         SU3 Rio Sessini 
 

stream 09.05.12 0.5 15 
 

7.8 0.43 1.00 

SU3 Rio Sessini 
 

stream 11.12.12 20 8 
 

8.2 0.47 0.78 

SU3 Rio Sessini 
 

stream 28.02.13 80 8 
 

8.1 0.51 0.41 

SU3 Rio Sessini 
 

stream 20.06.13 0.05 19 
 

7.6 0.47 2.30 

SU1 Su Suergiu mine 
 

slag drainage 02.05.12 0.05 18 
 

7.9 0.34 1.46 

SU1 Su Suergiu mine 
 

slag drainage 09.05.12 0.05 16 
 

7.7 0.35 1.50 

SU1 Su Suergiu mine 
 

slag drainage 30.10.12 0.04 10 
 

7.8 0.47 3.03 

SU1 Su Suergiu mine 
 

slag drainage 28.02.13 0.3 13 
 

7.6 0.48 2.03 

SU1 Su Suergiu mine 
 

slag drainage 01.07.13 0.1 22 
 

8.1 0.44 3.10 

SU1 Su Suergiu mine 
 

slag drainage 20.06.13 0.01 22 
 

8.2 0.46 2.70 

SU1 Su Suergiu mine 
 

slag drainage 23.07.13 0.07 20 
 

8.0 0.37 2.70 

SU1 Su Suergiu mine 
 

slag drainage 26.05.14 0.25 19 
 

7.5 0.40 2.14 

SU1 Su Suergiu mine 
 

slag drainage 09.01.14 0.4 14 
 

7.1 0.47 1.78 

SU1 Su Suergiu mine 
 

slag drainage 30.06.14 0.03 22 
 

7.8 0.45 2.39 

SU2 Su Suergiu mine 
 

slag drainage 02.05.12 0.07 22 
 

8.4 0.36 1.68 

SU2 Su Suergiu mine 
 

slag drainage 09.05.12 0.05 22 
 

8.4 0.42 1.79 

SU2 Su Suergiu mine 
 

slag drainage 30.10.12 0.1 16 
 

8.5 0.48 3.75 

SU2 Su Suergiu mine 
 

slag drainage 28.02.13 0.05 9 
 

8.5 0.49 2.50 

SU2 Su Suergiu mine 
 

slag drainage 20.06.13 0.01 25 
 

8.3 0.45 2.60 

SU12 Su Suergiu mine 
 

stream 13.06.12 0.01 19 
 

8.1 0.46 2.64 

SU20 Rio Sessini 
 

stream 11.12.12 5 11 
 

7.6 0.45 1.25 

SU20 Rio Sessini 
 

stream 30.10.12 0.1 16 
 

7.4 0.46 2.44 

SU20 Rio Sessini 
 

stream 28.02.13 30 8 
 

8.0 0.50 0.41 

SU4 Su Suergiu mine 
 

adit 09.05.12 0.1 14 
 

7.1 0.37 0.79 

SU6 Su Suergiu mine 
 

stream 09.05.12 0.05 13 
 

7.8 0.46 0.90 

SU7 Su Suergiu mine 
 

adit 09.05.12 0.01 12 
 

7.8 0.47 0.46 

SU9 Su Suergiu mine 
 

borehole 23.05.12 0.01 18 
 

7.0 0.44 2.18 

downstream 
         MU8 Rio Ciurixeda 
 

stream 02.05.12 50 17 
 

8.3 0.40 0.79 

MU8 Rio Ciurixeda 
 

stream 23.05.12 40 17 
 

7.9 0.48 0.86 

MU8 Rio Ciurixeda 
 

stream 28.02.13 50 8 
 

8.0 0.50 0.71 

MU8 Rio Ciurixeda 
 

stream 20.06.13 0.25 19 
 

7.7 0.46 1.10 

MU8 Rio Ciurixeda 
 

stream 01.07.13 0.15 20 
 

7.7 0.46 1.20 

MU8 Rio Ciurixeda 
 

stream 23.07.13 0.2 22 
 

7.6 0.39 1.15 

MU8 Rio Ciurixeda 
 

stream 09.01.14 120 11 
 

7.8 0.49 0.78 

MU8 Rio Ciurixeda 
 

stream 13.05.14 1 19 
 

7.9 0.46 1.06 

SU11 Flumendosa  
 

river 23.05.12 1000 18 
 

8.0 0.45 0.56 

SU11 Flumendosa 
 

river 28.02.13 >1000 8 
 

8.0 0.50 0.41 

SU11 Flumendosa 
 

river 20.06.13 200 24 
 

8.1 0.45 0.53 

SU11 Flumendosa 
 

river 23.07.13 200 27 
 

7.8 0.37 0.55 

SU11 Flumendosa 
 

river 09.01.14 4000 11   7.7 0.49 0.50 
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Appendix II 

Results of chemical analyses of speedy sorption tests. 
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Concentrations of Sb, Mg, Al and NO3, and pH values determined in solution during the speed sorption experiments performed with MgAl-NO3. 

 
2MgAl-NO3  

  
3MgAl-NO3  

  
4MgAl-NO3  

time pH Sb Mg Al NO3 
 

time pH Sb Mg Al NO3 
 

time pH Sb Mg Al NO3 

h 
 

mmoles L
-1

 
 

h 
 

mmoles L
-1

 
 

h 
 

mmoles L
-1

 

0 5.5 10 
a
n.a. n.a. n.a. 

 
0 5.4 10 n.a. n.a. n.a. 

 
0 5.3 10 n.a. n.a. n.a. 

1 8.6 5.8 0.13 n.a. n.a. 
 

1 9.8 7.8 0.19 n.a. n.a. 
 

1 9.8 8.2 0.16 n.a. n.a. 

2 8.4 5.5 0.13 n.a. n.a. 
 

2 9.8 7.6 0.20 n.a. n.a. 
 

2 9.9 8.3 0.17 n.a. n.a. 

3 8.0 5.4 0.14 n.a. n.a. 
 

3 9.7 7.6 0.18 n.a. n.a. 
 

3 9.8 7.5 0.20 n.a. n.a. 

5 8.0 5.4 0.16 < 0.06 0.65 
 

5 9.8 7.6 0.20 <0.06 0.39 
 

5 9.7 7.8 0.22 < 0.06 0.39 
a
n.a. = not analyzed 

 

 

Concentrations of Sb, Mg, Fe and NO3, and pH values determined in solution during the speed sorption experiments performed with MgFe-NO3. 

 
2MgFe-NO3  

  
3MgFe-NO3  

  
4MgFe-NO3  

time pH Sb Mg Fe NO3 
 

time pH Sb Mg Fe NO3 
 

time pH Sb Mg Fe NO3 

h 
 

mmoles L
-1

 
 

h 
 

mmoles L
-1

 
 

h 
 

mmoles L
-1

 

0 5.4 10 
a
n.a. n.a. n.a. 

 
0 5.4 10 n.a. n.a. n.a. 

 
0 5.5 10 n.a. n.a. n.a. 

1 9.3 9.3 0.38 n.a. n.a. 
 

1 9.6 9.1 0.29 n.a. n.a. 
 

1 10.0 9.4 0.23 n.a. n.a. 

2 9.6 9.0 0.43 n.a. n.a. 
 

2 9.6 8.9 0.31 n.a. n.a. 
 

2 10.0 9.3 0.25 n.a. n.a.  

3 9.4 8.7 0.44 n.a. n.a. 
 

3 9.6 8.8 0.35 n.a. n.a. 
 

3 9.9 9.2 0.26 n.a. n.a. 

5 9.8 8.5 0.49 < 0.02 0.27 
 

5 9.6 8.6 0.36 < 0.02 0.39 
 

5 9.9 9.3 0.28 < 0.02 0.40 

    
a
n.a. = not analyzed 



102 
 

 

Appendix III 

Results of chemical analyses and mineralogical characterization of preliminary sorption experiments. 
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Concentrations of Sb, Mg, Fe, Al, Zn and NO3 and pH values determined in solution during the preliminary sorption experiments. 

a
n.a. = not analyzed 

 

 
3MgAl-c 

 
3Mg(AlFe)-c 

 
3MgFe-c  3ZnAl-c  2ZnAl-c  2MgAl-NO3 

time pH Sb Mg Al 
 

time pH Sb Mg Al Fe 
 

time pH Sb Mg Fe  time pH Sb Zn Al  time pH Sb Zn Al  time pH Sb Mg Al 

h 
 

mmoles L-1 
 

h 
 

mmoles L-1 
  

h 
 

mmoles L-1  h  mmoles L-1  h  mmoles L-1  h  mmoles L-1 

0 5.4 10.2 an.a. n.a. 
 

0 5.4 11.1 n.a. n.a. n.a. 
 

0 5.4 10.4 n.a. n.a.  0 5.2 10.3 n.a. n.a.  0 5.3 10.2 n.a. n.a.  0 5.2 9.7 n.a. n.a. 

0.5 11.3 8.0 n.a. n.a. 
 

0.5 10.9 9.2 n.a. n.a. n.a. 
 

0.5 10.9 10.1 n.a. n.a.  0.5 11.7 5.1 n.a. n.a.  0.5 11.3 4.1 n.a. n.a.  0.5 7.7 6.2 n.a. n.a. 

1 11.5 7.3 n.a. n.a. 
 

1 11.3 8.4 n.a. n.a. n.a. 
 

1 10.9 10.0 n.a. n.a.  1 11.8 3.1 n.a. n.a.  1 11.8 2.6 n.a. n.a.  1 7.8 5.8 n.a. n.a. 

3 12.0 3.4 n.a. n.a. 
 

3 12.0 3.3 n.a. n.a. n.a. 
 

3 10.9 9.6 n.a. n.a.  3 11.9 2.3 n.a. n.a.  3 11.9 1.5 n.a. n.a.  3 8.0 5.4 n.a. n.a. 

6 12.0 2.2 n.a. n.a. 
 

6 12.1 1.3 n.a. n.a. n.a. 
 

6 11.3 8.1 n.a. n.a.  6 11.9 1.9 n.a. n.a.  6 11.9 1.1 n.a. n.a.  6 7.9 5.2 n.a. n.a. 

24 12.0 1.4 n.a. n.a. 
 

24 12.1 0.8 n.a. n.a. n.a. 
 

24 12.2 1.8 n.a. n.a.  24 12.0 1.0 n.a. n.a.  24 12.0 0.6 n.a. n.a.  24 7.7 5.1 n.a. n.a. 

48 11.9 1.2 <0.01 <0.02 
 

48 12.1 0.7 <0.01 <0.02 <0.01 
 

48 12.2 1.0 <0.01 <0.01  48 12.0 0.8 <0.01 <0.1  48 11.9 0.6 0.04 0.4  48 7.7 5.1 0.26 <0.1 
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XRD patterns of MgAl-CO3 and its relative calcined phases before and after the preliminary 
sorption experiments. 

 

 

 

XRD patterns of MgFe-CO3 and its relative calcined phases before and after the preliminary 

sorption experiments. 
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 XRD patterns of 3ZnAl-CO3 and its relative calcined phases before and after the preliminary 
sorption experiments. 

 

 

 

XRD patterns of 2MgAl-NO3 and its relative calcined phases before and after the preliminary 
sorption experiments. 
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Appendix IV 

Results of chemical analyses and mineralogical characterization of sorption experiments with 

circumneutral initial pH. 
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Concentrations of Sb, Mg, Fe, Al and Zn, and pH values determined in 

solution during the sorption experiments with circumneutral initial pH. 

  3Mg(AlFe)-c     2ZnAl-c 

 time pH Sb  Mg Al Fe    time pH Sb  Zn Al 

 h   mmoles L-1    h   mmoles L-1 

0 7.2 10.10 an.a. n.a. n.a. 
 

0 7.2 10.02 n.a. n.a. 

0.5 11.1 9.34 n.a. n.a. n.a. 
 

0.5 11.3 5.95 n.a. n.a. 

1 11.3 8.75 n.a. n.a. n.a. 
 

1 12.0 3.31 n.a. n.a. 

3 12.0 5.81 n.a. n.a. n.a. 
 

3 12.0 1.67 n.a. n.a. 

6 12.1 2.16 n.a. n.a. n.a. 
 

6 12.0 0.92 n.a. n.a. 

24 12.1 0.53 n.a. n.a. n.a. 
 

24 12.1 0.56 n.a. n.a. 

48 12.2 0.47 <0.01 <0.02 <0.01   48 12.1 0.47 <0.01 0.2 
a
n.a. = not analyzed 

 

 

 

XRD patterns of Mg(AlFe)-CO3 and its relative calcined phases before and after sorption 

experiments with circumneutral initial pH. 

. 
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XRD patterns of 2ZnAl-CO3 and its relative calcined phases before and after sorption 

experiments with circumneutral initial pH. 
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Appendix V 

Results of chemical analyses of competition sorption experiments. 
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Concentrations of Mg, Fe and Al determined in solution before the addition of the sorbents and at the end of competition experiments 

performed with Mg(AlFe)-c. 

 

 

 

Concentrations of Zn and Al determined in solution before the addition of the sorbents and at the end of competition 
experiments performed with 2ZnAl-c. 

 

 

 

 

 

 

 

 

Mg(AlFe)-c Sb 
 

 Sb+SO4
2-

 
 

 Sb+HAsO4
2-

 
 

 
 

Sb+HCO3̄ 
 

 
time Mg Al Fe  time  Mg Al Fe  time Mg Al Fe  time Mg Al Fe 

 
h mmoles L

-1
  h mmoles L

-1
  h mmoles L

-1
  h mmoles L

-1
 

 
0 < 0.02 < 0.02 < 0.001  0 < 0.02 < 0.02 < 0.001  0 < 0.02 < 0.02 < 0.001  0 < 0.02 < 0.02 < 0.001 

 
48 0.20 < 0.02 < 0.001  48 0.33 < 0.02 < 0.001  48 0.46 < 0.02 < 0.001  48 0.22 < 0.02 < 0.001 

2ZnAl-c Sb 
 

 Sb+SO4
2-

 
 

 Sb+HAsO4
2-

 
 

 
 

Sb+HCO3̄ 
 

 
time Zn Al 

 
 time Zn Al 

 
 time Zn Al 

 
 time Zn Al 

 
h mmoles L

-1
 

 
 h mmoles L

-1
 

 
 h mmoles L

-1
 

 
 h mmoles L

-1
 

 
0 < 0.001 < 0.01 

 
 0 < 0.001 < 0.01 

 
 0 < 0.001 < 0.01 

 
 0 < 0.001 < 0.01 

 
48 < 0.001 < 0.01 

 
 48 < 0.001 < 0.01 

 
 48 0.02 < 0.01 

 
 48 < 0.001 < 0.01 


