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Abstract

In this thesis, we propose a non-parametric method to study the dependence of the
quantiles of a multivariate response conditional on a set of covariates. We define a
statistic that measures the conditional probability of concordance of the signs of the
residuals of the conditional quantiles of each univariate response. The probability
of concordance is bounded from below by the value of largest possible negative
dependence and from above by that of largest possible positive dependence. The
value corresponding to the case of independence is contained in the interior of that
interval. We recommend two distinct regression methods to model the conditional
probability of concordance. The first is a logistic regression with a logit link modified.
The second one is a nonlinear regression method, where the outcome is modeled as
a polynomial function of the linear predictor. Both are conceived to constrain the
predicted probabilities to lie within the feasible range. The estimated probabilities
can be tested against the values of largest possible dependence and independence.
The method permits to capture important aspects of the dependence of multivariate
responses and assess possible effects of covariates on such dependence. We use data
on pulmonary disfunctions to illustrate the potential of the proposed method. We
suggest also graphical tools for a correct interpretation of results.






Declaration

I declare that to the best of my knowledge the contents of this thesis are original
and my work except where indicated otherwise.






Aknowledgments

In first instance, I would like to thank my supervisor Monica Musio for supporting
and encouraging me during all these years. She gave me the opportunity to start
my career in the research.

I want to express my best gratitude to Matteo Bottai, who offered me the op-
portunity to collaborate with him and his research team at Karolinska Institutet in
Stockholm. His advices and research suggestions were really precious.

I am also thankful to all my colleagues and friends that shared with me the
experience of the PhD thesis, with constant encouragement and for helping to reduce
the daily stress. Among them I want to mention Marianna, Rossella and Valentina,
that were always ready for consultations and to cheer me up in the moments of
discomfort.

A special mention goes to Paolo, Celia, Cecilia and all my colleagues in Stock-
holm. They helped me to get adapted in a completely new environement. They
offered me their support at work sharing their knowledge with me and, not less
important, they are good friends in life.

I would also like to thank all members of the Department of Mathematics of
University of Cagliari.

I especially want to thank my boyfriend Giancarlo for having been patiently at
my side during this experience and for encouraging me to continue my work when
it was too hard to do so.

Finally, but most importantly, I would like to thank my parents and my sisters
for their constant support over all my studies and for believing in me in this project.






Contents

[List of Figures| 11
[List of Tables| 15
(I  Background and literature review| 21
(1 Introduction to Quantile Regression| 23
(1.1 Quantiles and Quantile function| . . . . . . . . .. ... ... ... .. 23
(1.2 Linear quantile regression| . . . . . . . .. .. ... ... .. ..... 26
(1.3 Quantile regression as a linear program| . . . . . . . . ... ... ... 28
[L4 Characterization of solutions . . . . . . ... ... ... ... ... .. 30
(1.5 Quantile regression versus linear regression | . . . . .. ... .. ... 32
(1.6 Equivariance|. . . . . . . . . ... 34

2 Multiple responses| 37
[2.1  Multivariate linear regression| . . . . . . . . . ... ... ... ... . 38
(2.2 Multivariate quantiles and multivariate quantile regression| . . . . . . 39
[2.2.1 Geometrical median-oriented quantiles| . . . . . . . .. .. .. 40

[2.2.2  Multivariate quantile functions based on depth functions| . . . 41

[2.2.3  Multivariate quantile based on norm minimization: the geo- |

metric quantilel . . ... ..o 43

[2.2.4  Multivariate quantiles as inversions of mappings| . . . . . . . . 44

[2.2.5 Comparison of multivariate quantile definitions and their ap- |

| plication to multiple response regression| . . . . .. . .. . .. 44
[3 Association and dependence structures| 47
[3.1  Desired properties of dependence measures| . . . . . . . . . ... ... 47
3.2 TLinear correlationl . . . . . . . . . ... 48
3.3  Concordancel. . . . . . . . .. 49
[3.3.1 Spearman’s rho and Kendall’s tau coefficients| . . . . . . . .. 49

[3.3.2 Positively quadrant dependent{. . . . . . . ... ... ... .. 52

[3.4 Tail dependence| . . . . . . ... oo 53




10 CHAPTER 0. CONTENTS

[3.5 Copula functions| . . . . . . .. ... ... 53

I Modeling of dependence of quantile regression residu- |

als’ signs for bivariate responses| 57
[4  Residuals signs’ concordance] 59
[ Modeling the concordance of probability| 65
[>.1 Constrained logistic regression model| . . . . . . .. .. ... ... .. 66
[5.2  Constrained polynomial regression model . . . . . . .. . ... .. .. 68
[>.3  Asymptotic properties . . . . . .. ... 70
[5.3.1 Asymptotic variance for the constrained logistic regression pa- |

[ rameters . . . ... 76
[>.3.2  Asymptotic variance for the constrained polynomial model . . 80

[>.4 Computational methods . . . . . . ... ... ... ... ... 83
b5 Simulation studied . . . . ..o 84

[6 Application and interpretation of results| 89
(7__Discussion and Future Workl 113
7.1 Summary and Conclusions| . . . . . ... ... ... ... ... .... 113
(.2 Future workl . . . . . . . . ... 113
(Bibliography| 115
[Appendix A Simulation tables| 119

[Appendix B Software development] 127




List of Figures

M1

Left: quantile function of a discrete random variable (Poisson with

parameter A = 5). Right: quantile function for a continuous random

variable (standard Normal).| . . . . . .. ... ... . o000

3

Example of linear quantile regression estimates compaired with OLS

on the mean for a dataset with continuous response Y and covariate

X. The distribution of Y is clearly asymmetric. The red dashed lines

correspond to estimates for 7 = {0.10, 0.25,0.50, 0.75,0.90}, while the

green solid line corresponds to the classical OLS estimate.| . . . . . .

21

Bivariate dependence structure.| . . . . ... ..o

P2

Haltspace Depth, F Uniform on Unit Square] . . . . . . . . . . . ...

1

Bivariate dependence of residuals of quantile regression. The red

dashed lines correspond to concordant residuals represent positive

dependence. The blue solid line represent negative dependence, that

I 1“ !11“(:(21!12!11! If::il‘!l!lg‘!lﬁ, | ..........................

B

Logistic constrained function ;. Note that o, € (0gep—, Odepr = 1),

boundaries are attained only asymptotically. The value of ogc,— is

0.2 and corresponds to the choiche of a quantile 7 = 0.6 or 7 = 0.4] .

67

52

Polynomial constrained function hA(t) € [04ep—, Tgept = 1]. The func-

tion is well defined at the boundaries of the space. The value of

extreme negative dependence used in the figure is o4, = 0.2, it

comes from the choiceof 7 =04 0r7=06J . . . . .. ... .. ...

6.1

Scatterplot showing association between the ratio FEV1/FVC and

FEV1, for males and females.| . . . . . .. ... ... ... ... ...

6.2

Probability of concordance predicted by constrained logistic regres-

sion along age, for females, in correspondence to 5 selected quantiles.

Prediction values are compared with limit values of ¢ statistic, as

shown 1n the reference panel.|. . . . . . .. ... ... ... ... ...




12 LIST OF FIGURES

[6.3 Z-score values resulting from testing the differences between predic-
tion probabilities, relative to constrained logistic regression, and ;e
for all the covariate patterns in the dataset. The scores are plotted
here against age for females, for 5 selected quantiles. A reference
graph, illustrating the interpretation of figures, i1s also reported. Dif-
ferences are tested at a level of 95%] . . . . . . .. ... ... . ... 97

[6.4 Probability of concordance predicted by constrained logistic regres-
| sion along height, for females, in correspondence to 5 selected quan-
| tiles. Prediction values are compared with limit values of o statistic,
[ as shown in the reference panel.| . . . . . . . . .. ... ... ... .. 98

[6.5 Z-score values resulting from testing the differences between predic-
tion probabilities, relative to constrained logistic regression, and oy ey
for all the covariate patterns in the dataset. The scores are plotted
[ here against height for females, for 5 selected quantiles. A reference
| graph, illustrating the interpretation of figures, 1s also reported. Dif-
| ferences are tested at a level of 95%. . . . . . .. ... ... ... .. 99

[6.6 Probability of concordance predicted by constrained logistic regres-
[ sion along age, for males, in correspondence to 5 selected quantiles.
[ Prediction values are compared with limit values of ¢ statistic, as
| shown in the reference panel.|. . . . . . . ... ... ... ... . ... 100

[6.7  Z-score values resulting from testing the differences between predic-
tion probabilities, relative to constrained logistic regression, and ;e
for all the covariate patterns in the dataset. The scores are plotted
here against age for males, for 5 selected quantiles. A reference graph,
llustrating the interpretation of figures, 1s also reported. Ditferences
are tested at alevel of 95%0) . . . . . . ... 101

[6.8 Probability of concordance predicted by constrained logistic regres-
| sion along height, for males, in correspondence to 5 selected quan-
| tiles. Prediction values are compared with limit values of o statistic,
[ as shown in the reference panel.| . . . . . . . . ... ... ... .. 102

[6.9  Z-score values resulting from testing the differences between predic-
tion probabilities, relative to constrained logistic regression, and oy ey
for all the covariate patterns in the dataset. The scores are plotted
| here against height for males, for 5 selected quantiles. A reference
| graph, illustrating the interpretation of figures, 1s also reported. Dif-
| ferences are tested at a level of 95%.] . . . . . .. ... ... ... .. 103

[6.10 Probability of concordance predicted by constrained polynomial re-
[ gression along age, for temales, in correspondence to 5 selected quan-
[ tiles. Prediction values are compared with limit values of o statistic,
| as shown in the reterence panel.| . . . . . . . ... ... ... ... .. 104




LIST OF FIGURES

13

6.11

Z-score values resulting from testing the difterences between predic-

tion probabilities, relative to constrained polynomial regression, and

Oindep tOr all the covariate patterns in the dataset. The scores are

plotted here against age tor temales, for 5 selected quantiles. A refer-

ence graph, illustrating the interpretation of figures, is also reported.

Differences are tested at a level of 95%)] . . . . o v o v oo

6.12

Probability of concordance predicted by constrained polynomial re-

gression along height, for females, in correspondence to 5 selected

quantiles. Prediction values are compared with limit values of &

statistic, as shown in the reference panel.| . . . . . . . . ... .. ...

106

6.13

Z-score values resulting from testing the difterences between predic-

tion probabilities, relative to constrained polynomial regression, and

Oindep tOr all the covariate patterns in the dataset. The scores are

plotted here against height for females, for 5 selected quantiles. A

reference graph, illustrating the interpretation of figures, is also re-

ported. Differences are tested at a level of 95%. . . . . . ... .. ..

6.14

Probability of concordance predicted by constrained polynomial re-

gression along age, for males, in correspondence to 5 selected quan-

tiles. Prediction values are compared with limit values of o statistic,

as shown in the reference panel.| . . . . . . . . . ... ... ... ...

[6.15

Z-score values resulting from testing the difterences between predic-

tion probabilities, relative to constrained polynomial regression, and

Oindep 0T all the covariate patterns in the dataset. The scores are

plotted here against age for males, for 5 selected quantiles. A refer-

ence graph, illustrating the interpretation ot figures, 1s also reported.

Differences are tested at a level of 95%. . . . . . . . . . ... ... ..

109

[6.16

Probability of concordance predicted by constrained polynomial re-

gression along height, for males, in correspondence to 5 selected quan-

tiles. Prediction values are compared with limit values of o statistic,

as shown in the reference panel.| . . . . . . . .. ... ... ... ...

6.17

Z-score values resulting from testing the difterences between predic-

tion probabilities, relative to constrained polynomial regression, and

Oindep 01 all the covariate patterns in the dataset. The scores are plot-

ted here against height for males, for 5 selected quantiles. A reterence

graph, illustrating the interpretation of figures, i1s also reported. Dif-

ferences are tested at a level of 95%. . . . . . . . ... ...




14

LIST OF FIGURES



List of Tables

A1

General contingency table of the distribution ot quantile residuals

TEETESSIONS.| . . .« . . . o o e e e e

12

Distribution of residuals of quantile regression for independence.| . . .

3

Distribution of residuals of quantile regression for pertect positive

dependence.| . . . . . ...

o}

Distribution of residuals of quantile regression for perfect negative

dependence when 7 < 0.5.f . . . . . . ... ... L.

A5

Distribution of residuals of quantile regression for perfect negative

dependence when 7 > 0.5.f . . . . . . ... ... L.

L6

Distribution of residuals of quantile regression it zero residuals apart.|

63

L7

o statistic values under hypothesis of perfect negative dependence,

perfect independence and perfect positive dependence for 9 quantiles|

64

B

Estimated standard error, bias and mean squared error of proba-

bility predictions, relative to the first smulation setting: binormal

omoskedastic distribution of (Y, Y?), size 200, constrained polyno-

mial regression method.| . . . . . ... ...

52

Estimated standard error, bias and mean squared error of proba-

bility predictions, relative to the first smulation setting: binormal

omoskedastic distribution of (Y, Y?), size 500, constrained polyno-

mial regression method.| . . . . . . ... ... 0oL

[5.3

Estimated standard error, bias and mean squared error of proba-

bility predictions, relative to the first smulation setting: binormal

omoskedastic distribution of (Y, Y?), size 1000, constrained polyno-

mial regression method.| . . . ... .. ... ... L.

54

Estimated standard error, bias and mean squared error of proba-

bility predictions, relative to the first smulation setting: binormal

omoskedastic distribution of (YT, Y?), size 200, constrained logistic

regression method.| . . . . . ... .. oL

[5.5

Estimated standard error, bias and mean squared error of proba-

bility predictions, relative to the first smulation setting: binormal

omoskedastic distribution of (Y*,Y?), size 500, constrained logistic

regression method.| . . . . .. ... oo o oo




16 LIST OF TABLES

(5.6 Estimated standard error, bias and mean squared error of proba-
bility predictions, relative to the first smulation setting: binormal
omoskedastic distribution of (Yl,Yv), size 1000, constrained logistic

[ regression method.| . . . . . .. ... o oL 88

[6.1 Parameters estimates of constrained logistic regression model for fe-

| males, outcomes were FEV1 and FEV1/FVC. 200 Bootstrap tilted
| replications are used to estimate standard errors.| . . . . . .. .. .. 91

[6.2 Parameters estimates of constrained logistic regression model for

| males, outcomes were FEV1 and FEV1/FVC. 200 Bootstrap expo-

[ nentially tilted replications are used to estimate standard errors.|. . . 92

[6.3  Parameters estimates of constrained polynomial regression model for

| females, outcomes were FEV1 and FEV1/FVC. 200 Bootstrap expo-

[ nentially tilted replications are used to estimate standard errors.|. . . 93

[6.4 Parameters estimates of constrained polynomial regression model for

| males, outcomes were FEV1 and FEV1/FVC. 200 Bootstrap expo-
| nentially tilted replications are used to estimate standard errors.| . . . 94

[A.1 Estimated standard error, bias and mean squared error of proba-
bility predictions, relative to the second smulation setting: binor-
mal eteroskedastic distribution of (Y, Y?), size 200, polynomial con-

| strained regression method.| . . . . ... ... 120

[A.2  Estimated standard error, bias and mean squared error of proba-

bility predictions, relative to the second smulation setting: binor-
mal eteroskedastic distribution of (Y, Y*), size 500, polynomial con-

[ strained regression method.| . . . . ... ... 120

[A.3 Estimated standard error, bias and mean squared error of probabil-
1ty predictions, relative to the second smulation setting: binormal
eteroskedastic distribution of (Y!,Y?#), size 1000, polynomial con-

| strained regression method.| . . . . . ... .. ... 0L 121

[A.4 Estimated standard error, bias and mean squared error of probabil-

1ty predictions, relative to the second smulation setting: binormal
eteroskedastic distribution of (Y, Y?), size 200, logistic constrained

| regression method.| . . . . . ... ..o 0oL 121

[A.5 Estimated standard error, bias and mean squared error of probabil-
1ty predictions, relative to the second smulation setting: binormal
eteroskedastic distribution of (Y, Y?), size 500, logistic constrained

[ regression method.| . . . .. .. ... oL 122

[A.6 Estimated standard error, bias and mean squared error of probabil-

1ty predictions, relative to the second smulation setting: binormal
eteroskedastic distribution of (Y, Y#), size 1000, logistic constrained

regression method.| . . . . . ... ..o oo 122




LIST OF TABLES 17

[A.7 Estimated standard error, bias and mean squared error of probability |
predictions, relative to the third simulation setting: Frank copula
distribution of (Y, }/7), size 200, polynomial constrained regression
method) . . . . .. 123

[A.8 Estimated standard error, bias and mean squared error of probability |
predictions, relative to the third simulation setting: Frank copula
distribution of (Y',Y*), size 500, polynomial constrained regression

methodl . . . . 123

[A.9  Estimated standard error, bias and mean squared error of probability |
predictions, relative to the third simulation setting: Frank copula
distribution of (Y, Y#), size 1000, polynomial constrained regression
methodl) . . . . ... 124

[A.10 Estimated standard error, bias and mean squared error of probability |
predictions, relative to the third simulation setting: Frank copula |
distribution of (Y, Y#), size 200, logistic constrained regression method.|124

[A.11 Estimated standard error, bias and mean squared error of probability |
predictions, relative to the third simulation setting: Frank copula |
distribution of (Y'!, Y?), size 500, logistic constrained regression method.[125

[A.12 Estimated standard error, bias and mean squared error of probability |
predictions, relative to the third simulation setting: Frank copula dis- |
tribution of (Y',Y#), size 1000, logistic constrained regression method.[125




18

LIST OF TABLES



Introduction

In univariate data analysis, quantile regression has become a popular and useful
technique to characterize the impact of explicative variables on the whole distribu-
tion of variables of interest [22]. Quantile regression has many advantages compared
to the standard linear regression. It permits a complete description of the condi-
tional distribution, it is robust to the presence of outlyers values, it is invariant to
non decreasing monotonic transformations of the outcome. Furthermore it does not
require any parametrical assumptions on the distribution of the error terms.

When analysing the effect of a set of variables on more than one outcome simul-
taneously univariate regression methods are not completely satisfactory. Indeed,
correlations and associations connecting dependent variables might be determinant
to the correct detection of covariates effects and of their interactions. The techniques
used must then guarantee the contemplation of existing dependence structures in
the data. The lack of a univoquous definition of multidimensional quantiles poses
an obstacle to the extension to multiple-outputs in quantile regression. Despite the
huge literature devoted to the topic (see for instance the review in [33] and other
related papers [5], [6], [1I], [17], [27], [28] and [39]), to the best of our knowl-
edge, none of the methods proposed up to now has shown clear advantages over the
others.

In this dissertation we present an alternative approach to study the multivariate
associations in quantile frameworks. Our proposal does not require any definition
of multivariate quantile. We suggest the use of a method based on the simultaneous
analysis and comparison of univariate quantile residuals.

The method proposed is innovative, appealing from an applied perspective and
offers an extension to the consideration of other multivariate structures.

The first part of this thesis is a literature review; it does not contain any original
material. Chapter [1| is an introduction to quantile regression with focus on the
aspects useful for the developement of the method proposed. Chapter [2|reviews the
existing methods to extend quantile regression to multivariate settings. Chapter
is a compendium of association structures and indexes to their measure.

The original contribution of the thesis is contained entirely in the second part. In
Chapter |4 we introduce the method of bivariate quantile residuals signs dependence.
We define an index of concordance of quantile regressions residuals analyzing its
properties. In Chapter |5 we describe two regression methods for modelong the
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conditional probability. Some mathematical asymptotic properties are proved and
simulation studies to validate finite sample properties are reported. In Chapter [0]
we illustrate the insights of the method developed through the application to a real
dataset on pulmonary disfunctions. We suggest the use of some graphical tools, and
a statistical test to assess independence among quantile residuals. Finally, Chapter 7]
summarizes the findings of our work and suggests further extensions of the method.



Part 1

Background and literature review






Chapter 1

Introduction to Quantile
Regression

In this chapter we present the method of linear quantile regression, paying particular
attention to the aspects of it that will be used throguhout the thesis.

Quantile regression is a statistical tool developed to study the distribution of
a dependent variable conditionally to a set of covariates of interest. In this sense,
it can be viewed as complement and extension of least squares methods, used to
estimate and make inference on the centrality of the distribution through the con-
ditional mean. It is a semiparametric method since it enables to make inference on
conditional quantiles without relying on any parametric distributional form of the
error terms.

Quantile regression, in its main idea, dates back to early 1757, when it was
introduced by Boscovich [3]. He was the first to prove that the median of a variable
can be derived as the solution to the minimization of a sum of absolute deviations.

Because of the difficulties related to the computation of absolute values the
method remained mostly unused until the introduction of linear programming in
the 1950’s. Indeed the simplicity of least squares, introduced later by Legendre in
1805, is the reason why, up to the present, this technique is the most known and
used in statistical inference problems.

1.1 Quantiles and Quantile function

Given a random variable Y, its probability distribution is usually described by con-
sidering the probability density function (pdf) and the cumulative distribution func-
tion (cdf). The cdf of Y is defined as

Fy(y) = P(Y <y).

Another quantity that can be helpful to explore the probability Y is the quantile
function.
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Definition 1. Let us consider the left limit for the cdf Fy (y~) = limyy, Fy (t). Given
7 € (0,1), a value of y such that

Ky )=PY <y <7t and Fy(y)=PY <y)>r1

is called quantile of order T of the distribution. A quantile is a value that splits the
distribution in two complementary regions.

There is a sort of inverse relation between quantiles and the values of the cdf.
This relation cannot be defined in general as an ordinary inverse function since the
distribution function is not always a bijection. It can then be possible to have more
than one value 7 associated to a single y value. This is always the case with discrete
random variables, an example of that situation is illustrated in figure Left. For
this reason it is necessary to define a generalized inverse of the distribution function.

We therefore define the quantile function as

Qy(t) = F (1) = inf{y e R|Fy(y) > 7}.

For 7 = 0.5, Qy(0.5) is the median.

Poiss(5) N(0,1)
12 | 3
10 - - 2
8 - — 11
e " ©
el I Goey Ta07) el 01
— |
| |
4 -0 17
— | |
| |
2 = Lo 2 -
- [
| |
0 - o 3
00 02 04 06 08 10 00 02 04 06 08 10
T T

Figure 1.1: Left: quantile function of a discrete random variable (Poisson with pa-
rameter A = 5). Right: quantile function for a continuous random variable (standard
Normal).

A 7th quantile of a random variable Y can be also obtained as the minimizer of
an expected loss function.
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Let us define the following asymmetric piecewise loss linear function

TU for u >0
priu) = { (r—Du  foru<0 (1.1)

= u(r —I(u <0))

which is represented in figure for different values of 7.

3.0 -
— = 1=02
--- 1=04
25 — 1-08
4
\\ t=0.8 0
201 7
\ l/
\\ \ '/
*e \ /
p‘l?(u) 1.5 1 oo /s
. \ ’
.. N ,
\\ \ /'
1.0 1 NN a
« N\ /
. AN ‘ L
05 ~T -2 BR S -
: T~ao B S _ -
\_\~ -~\‘ '/"_ ”/
0.0 TN
' T T T
-3 -2 -1 0 1 2 3
u

Figure 1.2: Piecewise loss function.

The defined loss function, for 7 # 0.5, assigns different weights to positive and
negative values of u. It reduces to the simple absolute value when 7 = 0.5. It has
also the property of being convex, this last result arising from the triangle inequality
applied to absolute values as the norm on the real line.

We would like to find a value & which minimizes the expected loss:

E(p(Y —€) = / iy - ©)de

o0

= [ w-9rwi -1 [ - Ondy
y>§ Yy

<€

§ o0
— (1) / ufy (y)dy — E(r — ) Fr(€) +7 /{ ufy (y)dy — (1 — Fy(€)]

—0o0
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13
— TE(Y) - / ufy ()dy — €l — Fy(©).

—00

Taking the derivative with respect to ¢ and equating to zero we get

_ 4
g o

E(p-(Y —&)) being a convex function, we have that its minimum is attained at any
¢ such that 7 = Fy(£). When the solution is unique ¢ = F,'(7), otherwise we
have an interval of 7-th quantiles from which, by convention, the smallest must be
chosen.

Let us consider n independent and identical distributed (i.i.d.) variables
Yi,...,Y, with cdf Fy(y) and let consider (yi,...,y,) one possible realization of
it. If we replace the cdf Fy by the empirical distribution function

0

Fu(y) = %ZH(YJ- < y;)

we can derive the sample 7-th quantile £ of Y, in an analogous way, by minimizing
the sample loss expected function

n

Igneiﬂg/pf(y—f)an(y) = lgg@%;m(y—f) (1.2)
~ it | 0 ry -9+ X - D - 9]
Jiy;>€ Jy;<§

The sample median is simply the minimizer of the sum of absolute deviations

n
Iglelﬂgz;lyj—ﬂ
]:

The sample piecewise asymmetric loss is convex since is the sum of convex func-
tions.

1.2 Linear quantile regression

Let us suppose to have a sample of Y7, ...,Y,, i.i.d. distributed according to a cdf F
whose shape is not precisely known.

Let X = {x3,...,%,} be an n x ¢ matrix of observed variables. We would like
to establish a linear relationship between the 7th quantile of {y,...,y,}, observa-
tions from the random sample Y7, ... Y, and the matrix of covariates X, by the

I3
[TE{Y] - [ uhay - Fy@]} R (6) — [ — ()] + () = — + B (©).
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estimation of an unknown g-parameter vector B, = {f1+,...,,-}. We assume the
relationship to be described by the following linear model

y‘]:X?IBT—i_E;]? j:l,...,n
Qy, (1|x;) = x! B, for any 7 € (0,1).

where x; is a row of the design matrix X.

We make the additional assumption that Q. (7|x;) = 0, where ¢; are random
variables representing the errors of the model.

The regression parameter vector 3, can be estimated through the following min-
imization problem

BT = min Zp‘r(yj - X;—'FBT)- (1.4)

where p, is the loss piecewise function defined in [I.I} When ¢ = 1 and x; = 1 for
all j, the quantile regression minimization problem coincides to the location model
defined in the previous section.

Note that the objective function

R(B) = pely; — X! Br) (15)

is continuous and differentiable except for the points where one or more residuals are
zero. This partial nondifferentiability, implies that the usual first order condition is
not sufficient for the determination of its minimum.
At points of nonderivability, R(3,) has partial derivatives in all directions [22],
depending, however, on the directions of evaluation.
The directional derivative at direction w is
d

VR(,87—7W) = ER('B—HSW”'”:O

= > (y—x[B—ajtw)t — (Iy; — 2] B —x]tw) < 0)]le=o

7=1
T T T
Y w8 W,

where
Ut =

T

T—I(u<0) ifu#0
7—Iv<0) foru=0

If at a point 3, the directional derivatives are all nonnegative

VR(B.,w)>0 forallweR?! with [|w|| =1
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then 3, minimizes R(B;). This is a natural generalization of simply setting
VR(B;) = 0 when R is smooth. It simply requires that the function is increas-
ing as we move away from the point B, regardless of the direction in which we
move.

Note that the objective function in can also be interpreted as a strictly
proper scoring rule for quantiles (see [14] for an exhaustive description of the topic).

1.3 Quantile regression as a linear program

The quantile regression problem in (1.4} can be reformulated and solved as a linear
programming problem. Wagner, in 1959 [41], was the first to formalize this result.
In this section we will introduce some notions of linear programming to interpret
the quantile regression in these terms. For further details on linear programming see
Hillier and Lieberman (2005) [20], whereas for the connection to quantile regression
we refer to Koenker (2004) [22].
In general notation, a standard linear program is an optimization problem

min b’x (1.6)

xeR”

subject to linear constraints

Ax=c
x>0

where A € R™" b € R", ¢ € R", and b’x is the objective function. The matrix
A of constraints is such that rank(A) = rank(A|c) = m.

Definition 2. A vector x* € R™ is said a feasible solution of (1.6 if it satisfies all
the constraints. The set of all such vectors constitutes the set of all feasible solutions.

Definition 3. A vector x** € R" is said an optimal solution to (1.6)) if it is a feasible
solution of it and b"x** < b'x.

Let A(h) € R™*™ be a submatrix formed using m linearly independent columns
of A, where h € H indicates the subset of m-columns selected. We will indicate with

h the complementary set associated to the remaining n — m columns. The system
of equality constraints Ax = c¢ can be then rewritten as

(A(h) A(h)) ( igzg > —c (L.7)

For x(h) = 0 we have
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Definition 4. The vector

()= (29

is a solution of the system of constraints (1.7)) and is called basic solution. If x > 0,
then the basic solution is feasible.

Each basic solution is associated to a base of the matrix A.

Theorem 1. For each b € R™ such that the linear program has an optimum,
there exists an optimal solution X** which is a feasible basic solution.

Note that the number of feasible basic solutions is bounded from above by (Z),
which represents all possible combinations of m columns among n. Indeed, not
all such combinations correspond to basic solutions; the columns could be linearly
dependent or the corresponding basic solution could be not feasible.

Let us rewrite the quantile regression model in ([1.3)) as
Yy = X?,Bq— —+ €j = X?ﬁ»r + (Uj — Uj)

where u; = ¢;1(e; > 0) and v; = |¢;]|I(g; < 0).
The quantile minimization problem in (|1.4))

n

. o T
min, 2; p-(y; — %1 Br)
j:

can be reformulated in terms of a standard linear program as

Bmin [r7u+ (1 — 1)’V (1.8)

subject to
y — X/BT =u—-Vv

and with nonnegativity constraints
u>0andv>0.

Here 3, € R? and 27 = (1,...,1) is an n-vector of ones.

To convert the linear quantile minimization problem in a linear programming
problem we have made the following identifications: b = (O], 72", (1 — 7)T2"),
x = (T bfu”, bfv")T, A=[XI| -1, c=y.

A feasible basic solution for the linear program in , corresponding to the
quantile regression problem, takes the form

B-(h) = X" (h)y(h)
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u(h) =v(h)=0.

This last result will be discussed in more detail in section [L.4l

In its reformulation, the quantile regression problem can be efficiently solved
by the application of linear programming algorithms. Among them we recall the
simplex method, for which we refer to Barrodale and Roberts (1974) [1], and the
class of interior point methods based on a modification of the first one (see Koenker
and D’Orey (1987) [25] and Koenker and Portnoy (1997) [24]).

1.4 Characterization of solutions: finite sample
and asymptotic properties of quantile regres-
sion

The solutions of the regression quantile minimization problem have some nice finite
sample and asymptotic properties. We remind some of them, the complete theory
with proofs of cited theorems can be found in Koenker and Bassett (1978) [23] and
Koenker (2004) [22].

It is important to observe that most of the following properties come from the
fact that the quantile regression problem can be rewritten and solved as a linear
programming problem as shown in section [1.3]

Let us remember that regressing a response variable on a set of ¢ covariates ¢ > 2,
is geometrically equivalent to the determination of the parameters of a hyperplane.

Suppose

e B. is the solution sets containing the elements BT;
e £L=1{1,...,n} is the set containing the indexes of the n observations;

e H is the set of all (Z) g-element subsets of £, obtained by selecting q different
elements each time.

Every h € H has a relative complement h = £\ h which is the set containing the
n — q elements of £ not in h. Together h and h serve to partition the design matrix
X. Let y(h), for example, be a k-vector with coordinates {y;|i € h} and X(h) the
square matrix with rows {x;|i € h}.
Finally, let
H = {h € H| rank X(h) = ¢}

be the subset of H whose elements h are such that the matrix X (k) is non singular.
The set B, is never empty but the solution to the minimization problem in ({1.4])
is not unique in general.

Theorem 2 (Koenker and Bassett, 1978 [23]). If X has full column rank q then
the set of regression quantiles, B, has at least one element of the form,
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B- = X(h) 'y (h)
for some h € H. Moreover, B, is the convex hull of all solutions of this form.

The theorem states that a regression hyperplane passes through at least ¢ points
between the n observed. This follows directly from the linear programming formula-
tion of the minimization problem (section . This result gives us the opportunity
to introduce an important property related to the sign of residuals.

Another important finite sample consequence of solving the quantile regression
problem as a linear programming one, is that, provided that the design matrix
contains a column of ones, there will be approximately n(1 — 7) positive residuals
and n71 negative ones. This is formally stated in the two following results.

Given BT € B, a solution to the minimization problem let us denote with:

e P(rés,) the number of positive residuals, rés, =y — X,éT > 0;
e N(rés,) the number of negative residuals, rés, =y — X[;T < 0;

e Z(reés,;) the number of zero residuals, rés, =y — XBT =0,

9

Theorem 3. Given P(rés;), N(rés;), and Z(rés,), if X contains a column of
ones, then for any B, € B, we have

N(res;) < nr <n— P(rés,;) = N(res,) + Z(res,) (1.9)

and
P(rés;) <n(l —7) < P(rés,) + Z(reés,). (1.10)
If BT 1s unique then the inequalities hold strictly.
To better understand the statement of the last theorem let us divide every mem-

ber of the inequalities by n = N(res,)+ P(rés,)+ Z(rés,). This leads to the result
expressed by the following corollary.

Corollary 1. If Z(rés,) = q, then the proportion of negative residuals is approxi-
mately T

N(res;) <1< N(res;) n Z(res;)
n n n
and the number of positive residuals is approzimately (1 — T)
P(res,) P(res,) Z(res,)

<l-7< + .
n n n

It is worth remarking that if F is continuous then Z(rés,) = ¢ with probability
one.

The quantile regression estimator defined in theorem [2] satisfies asymptotic dis-
tributional properties. These can be derived from the results concerning the large
sample distribution of quantiles.
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Theorem 4. Let {Yy,...,Y,} be i.i.d. random wvariables from the distribution F
and for some quantile & = F~(7). Let us consider the sample quantile

—manpT —&). (1.11)

£eERY 4

If F is continuous and has continuous and positive density f at £(7), then

Vi, — &) ~ N (0, %) :

The extension to the estimator of a quantile regression model is discussed in the
following theorem.

Theorem 5. Let b’(n ) denotes an estimated Tegresszon quantile from model .
Let & = F(r), & = (&,0,...,0) € RY and &y = B, — B. Assume:

(1) F is continuous and has continuous and positive density f at £(T)

(ii) xqg =1,1=1,...,n and lim,_,oo n ' XXT = Q, a positive definite matriz,
then : )
2 (1l —7)
\/ﬁ[é(n,‘r) - £‘r] ~ Nq (0, WQ 1) . (112)

1.5 Comparison between quantile regression and
linear regression

We will compare quantile regression with the standard univariate linear regression
trying to synthesize the advantages of the first one over the second.

We first recall that given a random sample {Y7,...,Y,} from a distribution F, an
observed matrix of covariates X = {xy,...,%,} and a set of ¢ unknown parameters
B ={p,...,5,}, alinear regression model is written as

Yj :X]TB+€]-, 17=1,...,n
gj iidu; ~ N(0,0?) (1.13)
E(y;lx;) = x] 8.

The estimates of the g-vector @3 is the result of the minimization of the sum of
regression residuals

n

B=min> (y;—x;0)" (1.14)
j=1
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Figure 1.3: Example of linear quantile regression estimates compaired with OLS on
the mean for a dataset with continuous response Y and covariate X. The distribution
of Y is clearly asymmetric. The red dashed lines correspond to estimates for 7 =
{0.10,0.25,0.50,0.75,0.90}, while the green solid line corresponds to the classical
OLS estimate.

The problem in can be easily solved getting a closed form of the parameter

estimates

B=(X"X)"X"y.
Then ,é is a good estimator, in the sense that it satisfies the statistical properties of
unbiasedness, consistency, efficiency and asymptotic normality.

The strength of OLS regression is related to its simplicity and completness,
however there are some weaknesses in this method that can be overcome by the
extension to the regression on quantiles.

The first limitation of linear regression, which we have seen when modeling the
conditional mean of the dependent variable, is that it provides only a partial view
of the relationship with a set of covariates. This might be not just incomplete,
but also misleading if the research interest is more on the tails of the distribution.
Quantile regression, on the other hand, permits inference on the entire shape of
the conditional distribution, by modeling the covariates’ effects on each quantile
function separately, as summarized in figure 1.4}
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Another important feature of quantile regression is that no distributional as-
sumptions about the regression error terms are required. This implies that the
method could be applied to any dataset regardless of the functional form, further-
more there are no difficulties in the presence of eteroskedasticity.

The other advantages of the method are strictly related to the definition of
quantile itself. It is well known that in general the mean is sensible to the presence
of outlyers, while quantiles are a robust measure to summarize the data in such
conditions. This is perfectly reflected in the inference problem.

Finally we recall that quantiles and, as a consequence, inference on quantiles is
invariant to increasing monotonic transformations A, while this is not true for the
mean. This last property is really important, and together with other equivariance
features will be analyzed more in detail in section [L.6]

1.6 Equivariance

Regression quantiles satisfy interesting properties of equivariance that can be really
helpful for a coherent interpretation of regression results. Some of them are in
common with least-squares regression, the last one that we will state is directly
related to the definition of quantile itself.

Let us start by denoting by 3(7: y, X) the estimate of the 7-th regression quantile
based on observations (y, X), with X = {x3,...,x,} a n X ¢ matrix. The following
are four basic properties of the solution of a quantile regression problem.

Theorem 6. (Koenker and Bassett, 1978 [23]) Let A be any q x q nonsingular
matriz, v € RY, and a > 0. Then, for any T € [0, 1],

(i) B(r;ay,X) = aB(r;y, X)

(ii) B(r; —ay,X) = —aB(1 — 1;y,X)
(iii) B(7;y + X, X) = B(r1y,X) +7
(iv) B(r;y, XA) = A~ B(r;y,X).

Properties (i) and (i7) state that if all values of the outcome y are multiplied
by a quantity a, the solution will be modified at the same way. We talk of scale
equivariance.

Property (iii) is usually called shift or regression equivariance. This property
says that, when adding a linear combination of explicative variables to the dependent
variable, the solution corresponds to the sum of the solution of the linear model with
y as outcome plus the vector 4 in the linear combination. In particular we observe
that regression residuals for the two models coincide:

v +Xv] - XB(r;y + X7, X) = y+Xy-XB(1;y,X) +7
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= y+Xy-XB(1;y,X) - X~y (L.15)
= y—XB(1;y,X).

Thus regression residuals are equivariant under transformations of this kind.
The last property, (iv), is called equivariance to reparametrization of design.
Another property, which is much stronger than those shown above, is the one
known as equivariance to monotone transformations. Let h be a nondecreasing
function on R. For any random variable Y

Qn(y) (1) = h{Qy(7)},

meaning that the quantiles of the transformed outcome Y are the transformed quan-
tiles of the original Y.
This follows from the simple probabilistic equality

PY <y) = P{h(Y) < h(y)}.

When convenient, one can then model directly the transformed h(y) on the
covariates via quantile regression. Hence, having estimated a linear model, XBT,
for the conditional 7th quantile of h(y) given X, we can interpret h=*(X/3;) as an
appropriate estimate of the conditional 7th quantile of y given X. This property
does not hold for the expectation operator because, in general, E[h(y)] # h(E(y)),
except when h is linear.

This last property can be used to handle in a simple way different modelization
problems. Among others we recall the method of Logistic Quantile Regression intro-
duced by Bottai et al. in 2010 [4] for the modelization of bounded outcomes. This
method is based on the use of a logistic transformation of the dependent variable,
constructed in a way that predictions are constrained to lie within the feasible range
of the bounded variable. For an application of the method see Columbu and Bottai
(2015)[7].
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Chapter 2

Multiple responses

Univariate regression methods can be extended to consider the effect of a set of
covariates on more than one response variable simultaneously. Appropriate statis-
tical techniques must be introduced for this purpose. In fact, ignoring the presence
of a multivariate structure in the data, and then conducting separate analysis on
each of the responses, would be exhaustive only if there is independence between
them. Generally, the candidate response variables in a dataset are correlated in
some way, and the global understanding of the relationships between explanatory
variables and responses might be lost, if the dependence among the last ones is not

taken into account.

Y values

X= x=1

Y values

y1 y2 y1 y2
Outcome Outcome

Figure 2.1: Bivariate dependence structure.
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To better illustrate and understand the importance of the study of multivariate
dependencies in multiple response problems we will consider the following example.

We refer for simplicity only to the bivariate case, however the considerations
below can be easily extended to higher dimensions. Let’s suppose to study the effect
of a dichotomous predictor X = {0,1} on a bivariate dependent variable (Y, Y?),
from which we extract the i.i.d. samples y' = {yi,...,y.} and y* = {v7,..., 9>}
of size n. We can analyze the relationship between y' and y? in the two groups
determined by X = 0 and X = 1. The effect of the covariates can induce completely
different association structures between the responses. Indeed, let us consider, for
example, the situation depicted in figure When X = 0 there is a situation
of maximal positive dependence between y! and y?, the same subject which shows
high values for the first response has high values also for the second one. The
dependency is inverted when X = 1, in this case subjects with high values of y!
have a low value for y? and viceversa. It is clear that all this information would
have not been captured without introducing the multivariate framework.

In this chapter we first recall the formalization of multivariate regression mod-
els on the mean, which can be done with very little complication considering the
properties of multivariate normal distribution. We will then review the concepts
of multivariate quantiles and multivariate quantile regression with reference to the
various existing methods in the literature.

Note that the extension to the multivariate case is not straightforward when
considering quantiles. In fact, due to the absence of a numerical order in dimensions
higher or equal than 2, there is not a natural extension of the definition of quantile,
and therefore of related regression methods, in multidimensional spaces. As we will
see in section [2.2] there exist many different definitions of multivariate quantiles,
but, unfortunally, all of them sacrifice some of the properties of univariate quantiles.

2.1 Multivariate linear regression

We will refer to [32] for the description of multivariate regression.

Let us consider a set of m random variable (Y ... Y™) on which we would
like to assess the effect of a set of q predictors X = {xy,...,x,}. A multivariate
regression model, for a sample of size n, can be written in matricial notation as

Y(nxm) = X(nxq)B(qu) + E(nxm)v

where Y is the matrix stacking together the m observable vectors {y',...,y™},
X is the usual design matrix, and E is the matrix with columns the error vectors
{el,...,em}.

In analogy with the univariate linear regression we assume a normal distribution
for the errors. So the hypotheses of the model are:

1. E(Y)=XB or E(E) =0
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2. cov(y',y/) =2 foralli,j=1,...,m
3. cov(yn,yr) =0forall h,k=1,...,nand h # k

The covariance matrix 3 in assumption 2 contains the variances and covariances
1 m : .
Yi, - - -, Y, I any unit yy

011 012 ... Oim
. . O12 022 ... O9q
‘2 J _ _ ’
cou(y',y') =3 = | .
Otm O2m .. Omm

In conclusion Y ~ N,,,(X3, %), or equivalently E ~ N,,(0, X).
By analogy to the univariate OLS, the matrix B of parameters can be estimated
as

B = (X"X)"'X"Y

obtained by minimizing the least square error matrix (Y — XB)T(Y — XB).

The estimator fulfills the properties of a good estimator. Additionally to the
univariate least squares it has the property that all B,’l in B are correlated with each
other. The (’s within a given column of B are correlated because {x1,...,x,} are
correlated. Thus the relationship of the x’s to each other affects the relationship
of the (’s within each column to each other. On the other hand, the 3’s in each
column are correlated with 3’s in other columns because y!,...,y™ are correlated.

The correlations between the parameters of regression entail the need of adequate
multivariate hypotheses tests.

2.2 Multivariate quantiles and multivariate quan-
tile regression

Unlike the mean, it is not possible to naturally extend the definition of quantile to
the multivariate case. While the multivariate mean of a set of variables is simply
defined as the vector of the means of each variable, the same cannot be done for
quantiles. Quantiles are defined by considering the concept of order in the real line
R. Unfortunately it is not possible to generalize the natural order for R? when d > 2.
To prove it let us consider the definition of total order, as in [42].

Definition 5. The set C' is totally ordered under the relation < if and only if for
every ay, as,az € C' the following conditions are satisfied

1. if ay < ag and ay < a1 = ay = ay (antisymmetry);

2. if ay < ag and ay < az = a; < ag (transitivity);
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3. either ay < ag or ay < ay (dichotomy).

It is common to consider the Euclidean norm to define an order on R2

(. 0) < () = D2+ ()7 < /) + (13)2.

Unfortunately, the order induced by the Euclidean norm is not a total order. In
fact (1,2) < (2,1) and (2,1) < (1,2) but (1,2) = (2,1). This contradicts the
antisymmetry property. It is however possible to specify total orders for vectors in
R2. Consider for example the lexicographical order

(a,b) < (¢,d) if and only if a < cor (a =cAb < d);
and the antilexicographical order
(a,b) < (c,d) if and only if b <dor (b=dANa < c)

However such orders are not satisfactory because they do not extend the intuitive
notion of numerical order, for example we are not able to decide if (5,7) > (1, 30).
Hence, this is the reason why the definition of univariate quantile cannot be naturally
extended to the multidimensional case in a way that is possible to specify unique
quantiles and define orders in statistical terms.

Let us consider again the hypothetical situation described in figure [4.1] In this
example, restraining the analysis to the mean would probably be misleading. In
fact, the inversion of association caused by the effect of the binary variable seems
actually to be more in the tails of the distribution for the two outcomes. Thus it
would be helpful to have methods to handle the problem of multivariate regression
for quantiles.

In the literature there are many approaches to solving multivariate regression
problems for quantiles. Each of them is based on a specific geometrical definition
of multidimensional quantile. They are mostly based on vector valued concepts
of ranks. These definitions make use of the orientation information in a way that
becomes possible to define low and high points in a multidimensional data cloud. To
give a picture of the variety and the complexity of the situation we briefly report the
definitions for some of the existing approaches. We then evaluate if those definitions
satisfy some properties required to extend the concept of quantiles in a multivariate
setting. We refer to Serfling (2002) [33].

2.2.1 Geometrical median-oriented quantiles

To better understand the definitions of multivariate quantiles that we will introduce,
it is necessary to define a framework of geometry of multivariate data clouds. First
of all, we redefine univariate quantiles introducing the concept of center oriented
order where a natural linear order is lacking.
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For a 7 € (0,1), let us consider u = 2a — 1 a linear one-to-one-way transform.
This function maps the unit interval (0, 1) into the open interval (—1,1) in such a
way that 7’s corresponding to extreme quantiles are mapped to values close to +1
or —1, whereas those corresponding to central quantiles are mapped to values close
to zero. If F is a univariate cdf the definition of quantile function with reindexed 7
values is (see Serfling (2010) in [34])

Q(u,F)—Fl(Hu

) —1l<u<l.

For a given u each point y € R can be represented by its quantile y = Q(u, F).
For v = 0 we have the median Q(0, F'). When u # 0 quantiles are indexed rela-
tively to the median: its sign indicates the direction from the median whereas its
magnitude |u| measures the outlyingness from the median. For |u| = ¢ € (0,1) the

values F~! (%) and F! (%) represent the boundary points (or equivalently

the contour) demarking the upper and lower tails of equal probability weight 177‘3
The closed interval between the two values is a 7th quantile median-oriented inner
or central region.

In the multivariate case, where F' € R? with d > 2, a quantile function can be
indexed by elements of the unit open ball B~V = {uju € R?, |lu|| < 1}. Such in-
dexes associate to each point y € R? a quantile representation Q(u, F') and generate
nested contours {Q(u, F : |[u|]| = ¢)}, 0 < ¢ < 1. For u = 0 the most central point
is interpreted as the d-median M = Q(0, F)). In analogy to the univariate case,
for u # 0 the index u represents a direction from the median, and its magnitude
||u|| is an outlyingness parameter with higher values corresponding to more extreme
points. The contours for ||u|| = ¢ thus represent equivalent classes of points of equal
oulyingness, these contours can be used to define multivariate quantiles.

2.2.2 Multivariate quantile functions based on depth func-
tions

Statistical depth functions are used in multivariate analyses to provide orderings of
points in R?. They give a measure of the centrality of a point in a cloud of data.
We will define these functions restraining only to nonnegative bounded depth as in
[43]. A depth function with good ordering data properties should satisfy the four
requirements below.

1. The depth of a point y € R? should not depend on the underlying coordinate
system or, in particular, on the scales of the underlying measurements. This
property is called affine equivariance.

2. For a distribution having a uniquely defined center (or, more generally, a point
of symmetry with respect to a symmetry measure), the depth function should
attain its maximal value at this center.
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3. As a point y € R? moves away from the deepest point (the point at which
the depth function attains its maximal value; for a symmetric distribution
this point coincides with the center) along any fixed trajectory through the
center, the depth at y should decrease monotonically. That is, we require
monotonicity relative to the deepest point.

4. The depth of a point y should approach zero as ||y|| approaches infinity.

With these properties we can give a formal definition of a depth function. In the
following definition we will denote by § the class of cdf in RY.

Definition 6. Let us consider the mapping D(-;-) : R? x § — R nonnegative,
bounded and satisfying the above properties. That is, we assume:

(i) D(Ay +b; Fay,y) = D(y; Fy) holds for any random vector Y € R, any d x d
nonsingular matriz A, and any d-vector b;

(i) D(0; F) = supyera D(y; F) holds for any F' € § having center in 0;

(11i) for any F' € § having deepest point 0, D(y; F) < D(0+ 7(y —0); F') holds for
any T € [0,1];

(iv) D(y; F) — 0 as ||y]| = oo, for each F € §. The D(-; F) is called a statistical
depth function.

The point of maximal depth if unique, otherwise the average of such points, is
used as a notion of multivariate median.

The most commonly used depth function is the half space depth (also known as
Tukey, named after Tukey depth who introduced it in 1925), which is defined as the
minimal probability attached to any closed halfspace containing y

HD(y,F) =inf{F(H)|H is a closed halfspace,y € H}.

In particular, the sample halfspace depth of y is the minimal number of the data
points lying in a closed halfspace containing y. This depth function satisfies all of
the properties stated above (see [43]) and has ellipsoidal contours, as can be seen
in the right panel of figure [2.2.2]

For a depth function D(y, F'), let us consider its associated nested contours which
enclose the median M and bound inner regions of the form {y : D(y, F') > a}, for
a > 0.

Definition 7. The depth contour induces the quantile function Q(u, F'), foru € B,
with each y € R as follow. Fory = M, denote it by Q(0, F). Fory # M denote it
by Q(u, F), with w = pv, where p is the probability weight of the central region with
y on its boundary and v is the unit vector from M toward y.

Different versions of quantile functions are associated to different depth functions.
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Figure 2.2: Halfspace Depth, F Uniform on Unit Square

2.2.3 Multivariate quantile based on norm minimization:
the geometric quantile

For a univariate random variable Y, we have already shown as a quantile arises from
a minimization problem of the form

minE[(Y - §)(r — IV < ¢)]

this can be also rewritten in a useful way as

Igleiﬂg]EHY—ﬂ + (27— 1)(Y = &) (2.1)

Generalizations of this last formulation of the minimization problem have been con-
sidered to define multidimensional notions of quantiles. Among the many we recall

one of the most succesful definitions in these terms, given by Chauduri in 1996 [6].
For the extension to R? let us rewrite the objective function in (2.1 as

E[lY — & +u(Y =€)

where u = 27 — 1 is defined in the open interval (—1,1). The extension to the
multivariate case can be done by considering the multivariate geometrical framework
introduced in [2.2.1] Therefore, let us consider the index u € B@, where B
indicates the open unit ball.
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Definition 8. Letting Y € R? be a random multidimensional variable with d > 2,
the u-th geometric quantile of Y is

Q(u) = min F[®(u, X — &) — &(u, X)]

£cRe

where ®(u,t) = [|t||+ < u,t >, with || - || the Euclidian norm and < -,- > the inner
product.

2.2.4 Multivariate quantiles as inversions of mappings

Univariate quantiles are usually defined by considering the inversion function of
the cdf F~(7) for 7 € (0,1). Since it is not possible to consider the inverse of
a multivariate cdf, we could then think of substituting the cdf with an alternative
invertible function G, able to characterize the probability distribution. Dudley and
Koltchinskii, in an unpublished manuscript of 1992 [I1], defined such a function as
a one-to-one map from R¢ into the unit open ball B(¥ such that

Gr(t) = —-E (H};—::H) t € R (2.2)

Multivariate quantiles can be then defined as
Q(u) = Gx'(w)

with u € B¥1(0). For the complete theory, see Koltchinskii (1997) [26].
The geometric quantile introduced in Definition [ can also be viewed as the
inversion of the map if the random variable Y is absolutely continuous in R?.

2.2.5 Comparison of multivariate quantile definitions and
their application to multiple response regression

A quantile function Q(+, -), either in the univariate or in the multivariate case, should
always have some properties of interpretability. These properties can be summarized
in three points.

e The probabilistic interpretability of empirical and distribution quantiles. For
each fixed 7 € [0,1) the set {Q(u,t)|0 < t < 7,all u} should include a 7th
quantile inner region with boundary points Q(u, 7) and with median Q(u,0) =
M.

e Directional monotonicity to permit the description of location. For each fixed
direction u from M, the distance ||Q(u,7) — M|| should increase with 7 for
T € [0,1].
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e Suitable set theoretic interpretation. = The 7th quantile inner regions
{Q(u,t)|0 <t < 71,all u} are required to be affine equivariant, nested, compact
and connected.

The three definitions of multivariate quantiles discussed are quite satisfactory in
terms of quantile interpretability and satisfy most of the requirements. However,
each of them presents some limitation.

The depth approach verifies all the properties of interpretability; unfortunately,
the implementation of efficient algorithms to their calculation is really challeng-
ing. It involves the calculation of the infimum over an infinite number of direction
vectors. Furthermore, even if possible, the extension to regression settings is not
straightforward. The halfspace depth has been considered for this extension. Depth
regression was first introduced by Struyf and Rousseeuw in 1999 [39]. In a paper
from 2012 [27], Kong e Mizera developed a slightly modified quantile regression,
based on projectional quantiles to estimate depth contours.

Liu and Zuo (2014) [28] proposed two exact algorithms for the exact calculation
of halfspace depth and regression depth.

The definition based on norm minimization does not have the property of affine
equivariance. Multidimensional quantiles defined in this way are equivariant under
orthogonal transformations or rotations of the response vectors, but they are not
under arbitrary nonsingular transformations, including also coordinatewise scale
transformations. The extension to the regression is quite natural and was also
discussed in Chauduri’s paper [6].

In regression problems the lack of equivariance for multidimensional quantiles,
defined as minimizers of a norm, was overcome by Chakraborty [5] who considered
a transformation retransformation procedure based on a data driven coordinate sys-
tem. The method first linearly transforms the data to a new invariant coordinate
system, in which the regression parameters are estimated on the transformed coor-
dinates. Then the estimates are retransformed to the original coordinate system.

In a paper from 2010 Hallin et al. [I7] give a definition of multivariate quantiles
by making the connection between two of the enhanced classical definitions above.
They defined multivariate quantiles as a norm minimization problem in a way that
makes possible to define a strict interconnection with depth contours. This method
also leads to a concept of multiple-output regression halfspace depth.
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Chapter 3

Association and dependence
structures

In this chapter we will review the existing tools to detect and measure associations
between variables. In what follows we will mainly refer to Embrechts et al. (1998)
[13] and Trivedi and Zimmer (2005) [40].

Given a set of random variables there are many different ways to measure the
relationships between them. These are mostly described by considering measures
of dependence or association such as concordance, correlation, tail dependence. All
these indexes evaluate if such measured variables vary according to some pattern,
and summarize the information in a single number.

The term correlation indicates a measure of linear dependence between random
variables and is often erroneously considered as synonymous to the more general
association.

3.1 Desired properties of dependence measures

In probabilistic terms two random variables (Y, Y?) are said to be independent if
their joint distribution function is the same as the product of the marginal cdf's, in
other terms Fy1y2(y',y?) = Fy1(y') Fy2(y?).

Let 5(Y!,Y?) be a scalar measure of dependence, according to [13] and [40], a
good measure should satisfy the following properties:

1. symmetry: 6(Y1,Y?) =6(Y2,Y1);
2. normalization: —1 < < 1;
3. comonotonicity: §(Y1,Y?) =1 <= (Y',Y?) comonotonic;

4. countermonotonicity: 6(Y?!,Y?) = —1 <= (Y'!,Y?) countermonotonic;
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5. for a strictly monotonic transformation 7' : R — R of Y'!

(YL Y?) if T is increasing
1 2\ )
HT(Y),Y7) = { —0(Y1,Y?)  if T is decreasing;

another property which is often required to be satistied is
6. 6(YL,Y?) =0 < Y' Y? are independent.

The terms comonotonicity and countermonotonicity refer to the perfect positive
and negative dependence between two random variables. The concept of comono-
tonicity is easily extendable to dimensions higher than 2 while this is not true for
countermonotonicity. A formal definition can be given.

Definition 9. Two components (y;,y3) and (yy,y3) of a pair of random vectors
(Y1, Y?) are said to be comonotonic if {y; < yi,yp < yi} or {y; > vi, up > vi}-
They are called countermonotonic if {y; < y7,yx > vy or {y; > v, up < v}

The list of properties can be extended in different ways. Unfortunately, as it
is proved in the following proposition, there does not exist a dependency measure
satisfying all the requirements above.

Proposition 1. (Embrechts 2002 [13]) There is no dependency measure satisfyng
5 and 6 simultaneously.

Some of the properties (2, 3, 4 and 5 to be precise) could be modified to get
measures that satisfy also property 6. The alternative requirements are

2b. 0<0<1
3-4b. 6(Y1,Y?) =1 <= Y' Y? comonotonic or countermonotonic

5b. for T': R — R strictly monotonic 6(T'(Y?),Y?) =46(Y!,Y?).

3.2 Linear correlation

The correlation coefficient measures the linear dependence between two random
variables and is one of the most common dependency indexes. It can be extended
easily to the multidimensional case.

Definition 10. Given two random variables Y' and Y? we define their linear cor-

relation as
cov[Y Y?]

Oy10y2
where cov[Y1,Y?| = E[Y'Y?] — E[Y'E[Y?], and (oy1,0y2) > 0 denoting the stan-
dard deviations of Y* and Y2, respectively.

p(Y'Y?) =
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When m > 3 covariance and correlation are symmetric positive matrices with
elements all the pairwise covariances and correlations.

The correlation has many of the properties required from a dependency measure.
It is a symmetric measure. It is normalized, that is —1 < p(Y',Y?) < 1 where the
lower and the upper bounds correspond to perfect negative and positive dependence.
Though, there is a limitation when considering the range of possible values for
the correlation coefficient since the actual range of attainable values for each pair
of variables is defined from the marginal distributions. It is invariant for strictly
increasing linear transformations of the variables, but not under strictly increasing
nonlinear transformations. That is p(T(Y!), T(Y?)) # p(Y1,Y?) for T: R — R. In
case of independent random variables the correlation is null, p(Y!,Y?) = 0, since
cov(Y'Y?) = 0. However, the contrary is valid only if the pair (Y!,Y?) follows a
bivariate normal distribution.

Linear correlation is in general easy to calculate, unfortunately, it cannot be
defined if the variances of Y'! and Y? are not finite.

Thanks to its straightforward interpretation and calculation, linear correlation is
a reasonably good and popular dependence measure; however, the drawbacks men-
tioned above must be taken into consideration and thus motivate the introduction
of alternative measures.

3.3 Concordance

The concordance measures the agreement between two random variables. In fact,
a pair of random variables is said concordant if large values of one correspond to
large values of the other and equivalently for small values. On the contrary if small
values are associated to high values of the other variable the pair is said discordant.

Definition 11. Given (Y',Y?) a pair of continuous random variables from which
we select two observations (y;,y;) and (y;,y7) we say that

e (y},y?) and (yjl, yJQ) are concordant if fory! < yjz- we have y? < y]z , or if when
y; >y then y; > y3, this can be said equivalently as (y; — y;j)(y; — y;) >0

o (y;,y7) and (y;,y3) are discordant if y} <y? and y; > y> , orify} > y; and
y; < y;, we can alternatively write it as (y; —y;)(y; —y;) <0,

3.3.1 Spearman’s rho and Kendall’s tau coefficients

Spearmann’s rho is a dependence coefficient built on the concept of concordance.

Definition 12. Let (Y], Y?), (Y}, Y}), and (Y3, Y?) be three independent random
vectors. The Spearman rho coefficient is defined as

ps(Y1,Y?) = 3(P[(Y) = Y)(YY = ¥5) > 0] = P[(Y) — ¥5)(Y} = Y5') < 0])
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ps(Y!, Y?) = 3(P|[concordance] — P|discordance])

where the pairs have a common distribution function Hy1y=(y*,y?), and marginal
distributions Fy1(yt), Gy=(y?).

The Spearman rho coefficient is thus expressed in terms of concordance and
discordance since it is proportional to the probability of concordance minus the
probability of discordance for the two pairs (Y;!,Y}?) and (Y3, ). Note that while
the joint distribution function of (Yj!,Y?) is Hyiy2(y',y?), the joint distribution
function of (Y3!, Y3) is Fy1(y')Gy2(y?) (because Y3 and Y} are independent).

Spearman’s tho can be also thought of as a rank correlation measure. In fact
the values of variables compared are considered by evaluating their order or better
their ranked values; concordance associates high ranked values between them and
low ranked values for each pair. The following definition recalls more intuitively the
association based on ranks.

Definition 13. Spearman’s rank correlation is the linear correlation between Fy(Y)
and Fy(Y?)

VYY) = pUR ) B = R B 3

where Fy(Y') = Uy and F»(Y?) = Uy, are integral transforms of Y and Y.

By integral transform we refer to the standard result of probability in the fol-
lowing proposition.

Proposition 2. (Probability integral transform) Let X be a random variable with dis-
tribution function F. If F is continuous then the random variable F(X) is standard-
uniformly distributed, that is F(X) ~ U(0,1).

Hence the Spearman correlation coefficient is defined as the Pearson correlation
coeflicient between the ranked variables.

Another common measure of concordance is the Kendall tau coefficient defined
as the relative difference between probability of concordance and discordance.

Definition 14. Let (YY) and (Y3,Y}) two independent random wvectors,
Kendall’s tau coefficient is defined as

pr (Y1 Y?) = PV} — Y)Y~ ¥2) > 0] - PV} - V)7~ ¥2) <0 (32)

p- (Y1, Y?) = P[concordance] — P[discordance).



3.3. CONCORDANCE o1

As the Spearman rho coefficient, Kendall’s tau measures also the rank correlation
between two random variables.

Both pg and p, satisfy the following properties of an independence coefficient.
They are symmetric and normalized with —1 < pg, p, < 1. They have the prop-
erty of comonotonicity and countermonotonocity with perfect positive dependence
attained at 1 and perfect negative dependence reached at —1. Furthermore, if Y*
and Y? are independent then pg(Y?', Y?) = p, (Y Y?) = 0.

In addition these rank correlation measures satisfy the property of being invari-
ant under monotonic linear and nonlinear transformations and can capture perfect
dependence. However, they are not always easy to calculate.

Given a pair of random variables the values corresponding to Kendall’s tau and
Spearman’s rho can be quite different even if they both measure the probability of
concordance. There are some inequalities that can explain the relationship between
the two measures. We will report them; their proofs can be found in [30].

Theorem 7. (Daniels 1950 [§]) Let Y' and Y? be continuous random variables.
Then
1<3p, —2ps < 1.

Theorem 8. Let Y, Y2, p., and ps be as in Theorem 6. Then

1+IOS 1+:07' ?
> .
2 —( 2 ) (33)
and )
1_105 1_107
> 4
2 _( 2 > <3 )

The inequalities in the preceding two theorems can be combined to get the final
inequality in the corollary.

Corollary 2. Let Y', Y2, p., and ps be as in Theorem 6. Then

3p‘r_1 1+P7_P2
< < 0 7 >0
9 > pPs > 9 y  Pr =2
and )
2%, — 1 1+3p.
Pt =l < pe< -T2, <0

2 - 2

The two rank correlations and above are valid for continuous variables

and do not directly apply to discrete data. In these cases the coefficients must be

adjusted to handle the discreteness. When considering discrete data, for example,

there is the possibility of having ties, that is Pltie] = P[Y{ = Y)! or Y? = Y7]. A

modified version of Kendall’s tau allows one to take into consideration the probabilty
of ties.
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Definition 15. Let (Y{',Y?) and (Y3, Y}) be two two pairs of nonnegative discrete
random variables. Then Kendall’s tau coefficient is defined as

pr(YLY?) = AP < VALY < VP =14 PV = V) or V2= VY]
= 2P][concordance] — 1 + P|tie]

This definition can be derived by considering that
Plconcordance| — P[discordance| + P|tie] = 1.

With this new definition we can see how in the discrete case the Kendall’s tau
coefficient is dependent upon the margins of the compared variables. In addition
in case of small sample size, it is likely to have a high proportion of ties and this
reduces the range of feasible values for p, (Y1, Y2). There is a loss in efficiency going
from the continuous to the discrete.

3.3.2 Positively quadrant dependent

There are situations in which it is not necessary to calculate the strength of associ-
ation between two variables but is enough to know if they are concordant (positive
associated) or discordant (negative associated). We recall two definitions of associ-
ation concepts based on this philosophy.

Definition 16. Two random variables Y and Y? are positively quadrant dependent

(PQD) if

PY >y Y2 > 9% > PY' >y YP(Y? > o) forall z,y € R
or equivalently

PY'<y'Y?2<yH) > PY' <y )P(Y? <9?) forallz,y € R

gwen that P(Y' > y' V2 > y*) =1-PY!' <y )+ P(Y?2 <y?)—P(Y' <yl V2 <
y?). Analogously by reversing the sense of inequalities we can define the negative
quadrant dependence (NQD).

Intuitively, Y! and Y2 are PQD if the probability that they are simultaneously
small (or simultaneously large) is at least as large as it would be if they were inde-
pendent.

Definition 17. Two random variables Y and Y? are positively associated (PA) if
Elg1(Y)g2(Y?)] > E[g1 (Y] Elga(Y?)]

for all real-valued, measurable functions g, and go, which are increasing in both
components and for which the expectations above are defined.
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We remark that PQD and PA are invariant under increasing transformations. It
can be proved (see [I3]) that

comonotonicity = PA = PQD = p(Y,Y?) > 0,ps(Y',Y?) > 0,p. (Y, Y?) >0

and so comonotonicity is the strongest type of concordance of positive dependence.

3.4 Tail dependence

There are cases in which one is interested in detecting the association or concordance
between extreme values or tails of two random variables. This dependence describes
essentially the limiting proportion that one margin exceeds a certain threshold given
that another margin has already exceeded that threshold.

Definition 18. Let Y! and Y? be two random variables with distribution functions
Fy and Fy. The coefficient of upper tail dependence of Y' and Y? is
lim P[Y? > F, Y)Y > Fi ' (a)] = A,

a—1—

while the coefficient of lower tail dependence is

lim P[Y? < Fy, Y o)V < U a)] = N\

a—0t
provided that a limit \, € [0,1] and a limit \; € [0, 1] ezist. If A, € (0,1], Y and Y?
are said to be asymptotically dependent in the upper tail; if A\, € [0,1), Y and Y?
are said to be asymptotically dependent in the lower tail; to conclude if A, = 0 they
are said upper tail independent and if \; = 0 they are said lower tail independent.

3.5 Copula functions

When considering multivariate structures and dependencies between random vari-
ables copula functions are among one the most exhaustive statistical tools.

Let recall that, given a set of random variables Xi,...,X,,, the dependency
between them is completely described by their joint cdf

Fx(x1,...,2,) = P[X1 <zy,..., X, < x,].

The concept of copula arises from the idea of separating the multivariate cdf F
into the marginal cdfs of the single variables plus the description of the dependence
structure.

Let us consider again the random variables X, ..., X,, with continuous marginal
distributions Fj(x) = P(X; < z). Applying the probability integral transform in
proposition [2f to each component of the vector, we obtain

(Uy,...,U,) = (Fi(X1),..., Fo.(Xy))
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where each marginal has uniform distribution. The joint distribution of the n ran-
dom variables is called copula of X1,...,X,. This can be written as

Cluy, ... .uy) = C(Fi(x1),...,Folzy)) = PIF(X1) < Fy(21), ..., Fo(X2) < Fyla)]

= F(z1,...,2,).

Definition 19. A copula is the distribution function of a random variable in R™ with
uniform-(0, 1) marginals. Alternatively a copula is any function C : [0,1]" — [0, 1]
with the following properties:

1. C(x,...,x,) 1S increasing in each component x;;
2. C(,..., Lz, 1,.... 1) =ux; foralli € {1,...,n}, z; € [0,1];
3. for all (ay,...,a,),(b1,...,b,) € 0,1 with a; < b; we have

2 2
SO (=) C (o ,) 2 0 (3.5)

i1=1ip=1
where xj; = aj and xjo = b; for all j € {1,...,n}.

The two alternative definitions are equivalent. In fact, given that we consider the
multivariate distribution having standard uniform marginals, the three properties
can be easily derived. Property 1 is clear from the definition of distribution function;
property 2 follows from the fact that the marginals are uniform-(0, 1); property 3 is
true because the sum ({3.5) can be interpreted as Pla; < X3 < by,...,a, < X, <
b,], which is non-negative.

One of the most famous results relative to the theory of copulas is the following
due to Sklar. It dates back to 1959 [35].

Theorem 9. (Sklar 1959 [35]) Let F(xy,...,x,) be a joint cumulative distribution
function with marginals F;(x;). Then there ezists a copula C' such that, for all real
values (x1,...,xy,)

F(xy,...,x,) = C(Fi(z1),..., Fo(z,)).

If the marginals Fy(x;) are all continuous the copula is unique; otherwise it is
uniquely determined on range(Fy) X ... x range(F,) which is the cartesian prod-
uct of the ranges of the marginals cdf’s. Conversely, if C is a copula and F;(x;) are
univariate cdf’s then F(xq,...,x,) is a joint cdf with margins F;(z;).

It is then sufficient to know marginal distributions to completely reconstruct
the joint one. Any copula can be constructed by considering a set of marginal
distributions and a parameter 6, called dependence parameter, which measures the
structure of association between the marginals. In this sense a copula of X,..., X},
can be written also as C'(Fi(z1), ..., F.(x,);0).

The following theorem, which defines bounds of a copula, is an important result
on copula theory and is useful to define dependencies properties of such functions.
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Theorem 10. Let C be a copula and Y*' and Y? two random variables. For every
observed value y' and 1>

max{y' +y°+1-2,0} <C(y',y*) < min{y',y°}
with
max{y' +y> +1—2,0} = Cu(y*,y*) and min{y*,y*} = Cu(y',y?).
These bounds are known as Fréchet-Hoeffding bounds.

Since copulas are seen as dependence functions it is interesting to show that they
share some of the features of dependencies coefficients. We state them only for the
bivariate case.

A copula function satisfy the following properties:

1 (Y1, Y?) are independent <= C(y',y?) = Fi(y') Fa(y?);
2 (Y1 Y?) are comonotonic <= C(y',vy?) = C,(y',9?);
3 (YI,YQ) are countermonotonic <= C(y',4?) = Ci(y*, y?);

4 if (Ty,T,) are increasing continuous functions of (Y1, Y?) = C(y',¢y?) =
C(Ty(y'), To(y?)) (invariance).

Most of the dependence functions described in the previous paragraph can be
directly related to copulas, and this can be used to describe the association structure
carried by them in an easier way.

Definition 20. Let (Y, Y?) be a pair of continuous random variables with copula
C, ps and p, Spearman’s rho and Kendall’s tau coefficients, respectively. Then

ps(Y1,Y?) =12 /01 /Ol[C(u, v) — wv]dudv

p-(Y1,Y?) —4// (u,v)dC(u,v) — 1.

where u = F7 ' (yb) and v = Fy ' (y?).

and

Definition 21. Let (Y',Y?) be a pair of continuous random variables with copula
C. Then the coefficients of upper and lower tail dependence are given by the following

exTPTesSSIons
1 —2u+ C(u,u)

p— 1'
)\u uir{l— 1—u
and o
/\g = lim M
u—0t u

where u = F ' (yb).
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Given a set of completely known marginal distributions it is an important task
to choose the appropriate copula function to piece them together. There are in
literature a large number of families of copulas, each of them imposes a different
dependence structure. At the occurence it is important to select the one which
better describes the data.
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Chapter 4

Concordance of quantile regression
residuals signs’ as dependence
measure

We propose a new method which allows us to model multivariate structures of quan-
tiles in multiple response problems without relying on any definition of multivariate
quantile. The method is non parametric, based on the joint analysis of residuals’
signs of univariate quantile regression models. We define an index of dependence
similar to the coefficients introduced in chapter Such index measures the degree
of concordance of residuals’ signs. We then model the probability of concordance of
the residuals’ signs as a function of a set of covariates.

We will discuss the case of bivariate response variables. In the case of higher
dimension the method could be generalized by taking all the possible combinations
of pairs.

In this chapter we will define a coefficient of concordant residuals’ signs and show
its properties.

Let us consider n observations from a bivariate random variable (Y, Y?) and
a set of ¢ covariates X = {x1,...,%,}. Let us indicate with y* = {y,... ¢’} the
vectors of observations from (Y, Y?), where i = 1,2,.

Chosen a 7 € (0,1), for each of the two outcomes we build a univariate 7-th
quantile regression model as described in section

y;:Xfﬁ?r—i_Ez 22172 ]:177n

and estimate its unknown regression parameters 8. = {fL, 8.,,..., 0L, 1 }-

For any subject j we observe the estimated residuals 7 = y/; —X]TBZT The concor-
dance in their signs gives informations on the degree of dependence between them.
A discordance in the residuals signs indicates a situation of negative dependence,
while concordance can be interpreted as positive dependence. This is well depicted
in figure [4] where the dashed red lines represent two different situations of positive
and negative concordance, whereas the blue solid line is an example of discordance.
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i Al
y-Xp,>0

- _

i A
y-Xp.<0

Figure 4.1: Bivariate dependence of residuals of quantile regression. The red dashed
lines correspond to concordant residuals represent positive dependence. The blue
solid line represent negative dependence, that is discordant residuals.

We then generate an indicator variable, called Z, whose values can be stacked
in an n-dimensional vector z = (z1, ..., z,) with components

L[ S XIBAG SXIB) Y ) > XIB A S XTB)()
J 0 otherwise '

which describes the concordance of residuals for j =1,..., n.

We use the information contained in the vector z to construct a statistic which
represents the proportion of observations with concordant quantile regression resid-
uals’ signs

The & statistic can be viewed as a coefficient of concordance satisfying many of
the properties of a good measure of dependence introduced in chapter [3]

In order to measure the strength of dependence we need to calculate the values
of ¢ corresponding to the three extreme hypotheses of association: perfect positive
dependence, perfect negative dependence and independence.

To do so, we consider the marginal distribution of quantile regression residuals.
From Theorem [3]in section we know that there is approximately a proportion
of 7 negative and 1 — 7 positive quantile regression residuals.
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To calculate limiting values for the & statistic, we looked at the marginal quan-
tile distribution of residuals by constructing 2 x 2 contingency tables that contain
the proportion of subjects with positive or negative residuals in the two regression
models.

The general table is of the form from which the & statistic can be obtained

sign(y' — XBL)
+ -
. - + a b 1—7
1 1
sign(y” —XB;) T d =
1—17 T

Table 4.1: General contingency table of the distribution of quantile residuals regres-
sions.

summing the proportion of subjects with concordant residuals along the diagonal as
od=a+d. (4.3)

The two formulations of & in and are obviously equivalent. Contingency
tables are good tools to calculate the three limit values for 4.
Let us start by considering a situation of independence. In this case the joint

distribution of residuals corresponds to the product of the marginals. From table
we calculate the value of & as

Cindep = 1 + 272 — 27,

sign(y' — XB1)
+ -
) A +(1=72|7r=72|1—7
sign(y? — XB2) — (T - T% = -
1—7 T

Table 4.2: Distribution of residuals of quantile regression for independence.

Under the hypothesis of perfect positive dependence we assume that there are
no observations that generate discordant residuals. Under this assumption, from
table we can then calculate the corresponding value of positive dependence for
the coefficient of concordance as

Udep+ =1.
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sign(y' — X8}
+ -
) - + | 1—-7 0 1—71
sign(y' —XB;) 1 ; p.
1—17 T

Table 4.3: Distribution of residuals of quantile regression for perfect positive depen-
dence.

The perfect negative dependence is a little more complicated to assess. Under
such a hypothesis we would not expect to have any concordant residual. However,
as a consequence of the asymmetric structure of quantiles, the cells on the diagonal
can never be simultaneously empty if 7 # 0.5. We must separate the cases with
7> 0.50 and 7 < 0.50 and then construct two different tables (table and table
, each allowing a small amount of proportion of observations in a different cell
of concordance. Note that the case corresponding to the median can be indistinctly
considered in both tables.

sign(y' — XBL)
_|._ -
If 7 <0.50 ) A +11—-27 T 1—7
sign(y? — XB2) |+
1—171 T

Table 4.4: Distribution of residuals of quantile regression for perfect negative de-
pendence when 7 < 0.5.

sign(y’ — X31)
_|_ -
If 7> 0.50 , - + 0 1—7 1—7
szgn(yl—X,Bi) - 1—=71] 27—1 T
1—17 T

Table 4.5: Distribution of residuals of quantile regression for perfect negative de-
pendence when 7 > 0.5.

Although we have distinguished the cases 7 > 0.5 and 7 < 0.5, the final limiting
value of perfect negative dependence can be defined in a unique way by taking the
absolute value of the sum along the diagonal, so that

Odep— = ’27’ - 1‘
It is is easy to see that the calculated limit values of & are ordered as

0 S Odep— < Oindep S Odep+ — L.
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In the definition of the indicator of concordance, in equation (4.1f), we have consid-
ered the null residuals in the same group of the negative ones.

An alternative could have been to isolate the proportion of null residuals since,
from theorem [2 in section [1.3] we know that for every quantile regression model
there are at least ¢ residuals equal to zero. We then construct limiting values for
the coefficient of concordance in a second way by considering residuals divided into
the three categories: negative, null and positive.

Let £ > ¢ be the number of null residuals, resulting in a proportion of %, where

n is the number of observed subjects. It follows that there will be 7 — % = %
negative residuals and (1 —7) — £ = W positive ones. We construct a corre-

sponding contingency table, of dimension 3 x 3, and take the sum of the proportions
on the diagonal as an estimate of the statistic &, in the same way as we have done in
the first categorization of residuals (table [L.1)). The new classification of residuals
is reported in table from which we calculate

c=a+e+1l.
. 1_x a1
sign(y B:)
+ [0 -
+ a b c —2”(1;)*’“
sign(y* —X3%) | 0 d e f Zk/nk
_ h i 1 2nT—F
2n(1-7)—k | k | 2nt—k 2
2n n 2n

Table 4.6: Distribution of residuals of quantile regression if zero residuals apart.

The resulting three limiting values for the statistic remained unchanged except
for the limit corresponding to independence. The latter becomes

2n(1 — 7) — k| + 4k* + (2n7T — k)?
Oindep = (271,)2 .

The dependence on sample size for this threshold value introduces complications
in the interpretation of the strength of association.

In fact, with finite sample sizes it may occur that the order 0 < 0gep— < Tindep <
Odep+ = 1 is not valid anymore.

We preferred to keep the easy interpretation of the results coming from the first
formulation. When the number of null residuals is too large to not be taken into
consideration, one could always evenly split them between the negative and the
positive ones.

The limiting values chosen for the & statistic depend only on the quantile ana-
lyzed. As a reference we report in table [4.7] these values calculated for a selection
of quantiles.
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T 0.1/0.9 0.2/0.8 0.3/0.7 0.4/0.6 0.5

Oaep— 0.8 0.6 0.4 02 00
Oingep 082 068 058 052 050
Odeps 1 1 1 1 1

Table 4.7: & statistic values under hypothesis of perfect negative dependence, perfect
independence and perfect positive dependence for 9 quantiles

In order to preserve the interpretation in terms of probability of concordance,
we did not normalize our coefficient of dependence .

As to the other properties required from a good measure of dependence, we have
that:

1 6 is symmetric: 6(y' — X8l y? — XBZ) =o(y? — X3yl — XB&);

2 6(y'—XBL, y?—X32) = max(5) <= the signs of residuals are comonotonic;

3 6(y! — XBLy2 — X32) = min(6) <= the signs of residuals are counter-

T

monotonic;
4 there is a unique value of the statistic 6 at which independence is attained.

For what concerns invariance, we can prove that the & coefficient is invariant to
shift transforms of the outcome y*. That is, given v, € RY

Gyt —XBY(r: y', X),y? — XB(r;y%, X)) =
=6(ly' + Xv.] = XB' (7 : y' + X, X), ¥y — XB*(1;¥%, X))

where, to simplify the notation, we have indicated by Bi(T; [, m) the estimated regres-
sion parameter based on the observations (I, m). This result is a direct consequence
of the fact that, as shown with equation in section , quantile residuals
are invariant under this kind of transformations.

Another special property of equivariance for the ¢ coefficient is related to the
equivariance property to monotonic transformations, discussed in section [1.5

For a nondecreasing function h of the response y* we have that

Gy =XB' (1 ¥y, X), ¥y = XB(m;¥%, X)) = 6(y' —hHXB (7 : h(y"), X)),y -XB(1; y% X)).

This last result follows from the equality X8 (7 : y',X) = (X8 (7 : h(y'), X))
between the linear predictor of the quantile regression model on the simple outcome
y! and the inverse transform of the linear predictor of h(y?').



Chapter 5

Modeling the concordance of
probability

We recall that, under a specified quantile regression model, there is independence
between regression residuals and covariates

PE'<0|X)=7 i=1,2

The joint distribution of residuals, however, can still depend on such covariates. In
fact, it may happen that

PE'<0|2<0AX)#P(e'<0]|*<0).

For this reason the probability of concordant regression residuals, denoted by
ox = P(Z = 1|X), can be modeled conditionally on covariates. Its modelization
would allow us to detect if, once performed univariate analysis, there is still a residual
conditional association. The set of covariates used in the modelization could be the
same as the univariate quantile regressions, or a different one. For simplicity, in the
following notation we still denote by X the matrix of independent variables, being
aware that it could be different from the matrix used in the previous steps of the
model.

The probability of concordance could be analyzed by considering different regres-
sion models. Our first instinct would be to use standard models for probabilities,
such as logit and probit regressions. However, these could generate predictions out-
side the specific limits calculated from the concordance coefficient. We therefore
prefer to define ad hoc regression models, flexible enough to predict probabilities in
the suitable range.

In the following chapter we will propose two alternative models constructed as
to constrain the predicted probabilities in the feasible range of the residuals’ signs
statistic. For each of them we will present statistical properties and insights.
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5.1 Constrained logistic regression model

The first model proposed is a variant of the classical logistic regression. Logistic
regression is a generalized linear model (glm) developed to analyze relationships
between binary dependent variables and covariates. For the complete theory of
glm methods we refer to McCullagh and Nelder (1989) [29]. Let denote with
7m(X) = P(Y = 1|X) the conditional probability associated to a random variable Y.
Logistic regression models this probability by taking a continuous and increasing
transform g(7) = log(;*=) that maps the probabilities 7, belonging to the unit
interval (0, 1), into the real line (—o00,00). The use of this transform enables the
correct prediction of probabilities in their range of definition. The modelization is
based on the assumption that the random response Y follows a Bernoulli distribution
of probability .

In our specific situation we want to model the probabiility ox = P(Z = 1|X) for
the indicator of concordance Z. The limits imposed by the definition of 6 reduce
the range of allowed predicted probabilities when 7 # 0.5. The framework of logistic
regression, whose predicted probabilities are defined in the entire interval (0, 1), is
not completely exhaustive. We therefore decided to modify the logit link of classical
logistic regression in order to constrain predictions to the interval (ogep—, Tgept)-

Let us rescale the probability ox € (gep—, Taept ), extending its interval of defi-
nition to the entire unit interval (0, 1)

0X — Odep—

B Odep+ — Odep—
p being defined in (0, 1), in accordance with the glm theory, we need to select an
appropriate link function ¢ : (0,1) — R such that

9(p) = X,

where the linear predictor X+, € R and =, is the vector of unknown parameters
of the regression. The inverse of any cdf F': R — (0,1) would always be a correct
choice for this kind of link function. Following the literature on probability mod-
elization, and for easy of interpretation, we decided to consider a logit link such that
the final model of probability is defined as

G'X_Udepf
10g1t*(])) — log <ﬁ> — lOg (1 Udep;;jij;, ) (51)

Odep+ —Odep—

Odep+ — 0X
where the subscript 7 in the vector of parameters is referred to as the selected
quantile used to define the vector of concordance z, and 7 is the error term of the
model.
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Figure 5.1: Logistic constrained function o;. Note that o € (Guep—, Tgepr = 1),
boundaries are attained only asymptotically. The value of og,— is 0.2 and corre-
sponds to the choiche of a quantile 7 = 0.6 or 7 = 0.4.

The model in (j5.1]) assures predictions of probabilities inside the suitable range.
In fact, the inverse transform of the logit-modified link, see figure is

Tdep— + exp(X,)
Tdept + exp(X;)

ox = € (Odep— Tdep+)-

This model, similarly to the classical logistic, can be expressed as a glm where
the response Z ~ Bernoulli(ox). Regression parameters can thus be estimated by
considering the method of maximum likelihood.

Given a sample of n independent observations from the random variable Z, and
a probability of concordance ox defined in (04ep—, Gaep+ ), the likelihood function is

expressed as
n

1 2j
L(v+|25,%5) H (1 —o0y,) ¥

where v, = {7V:0,...,Vrq—1} is the unknown vector of parameters to be estimated.
The expression for the log-likelihood is

n

(rlzx) = Y[z log(ow) + (1 - 2) log(1 - o)

j=1
= Z[Iog(l — 0y,;) + zjlog(ox,) — zjlog(1 — oy, )]
j=1
n O,
= Z log(1 — ox;) + zjlog T
j=1 !
" Odep— + eXp(X?’YT)
= Z log | 1— T
— 1+ exp(x; )

Odep— + eXp(X?FYT) > :|

+ z;log
! (1 + exp(X] ¥r) = Taep— — exP(X]¥y)
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. 1 — 0gep— Ogep— + exp(xty;
- Z log< gdl} )—i—zjlog dep p(x; )
j 1+6Xp(xj '77') - Odep—

=1

where we recall that we always have ogepq = 1.
The first derivative of the loglikelihood with respect to ~, is

8€<'7/7'|Zj7 Xj)

S(v,) = =

3

= - X; + 2;X;
1+ exp(x;fr'yT) T e + eXP(X?’Yr)

exp(x; Yr) exp(x; ) ]

.
Il
—_

M-

X; exp(X} vy) <— ! + % )] :
! PN 1+ exp(xFvr)  Odep— + exp(x] vr)

Similar calculations yeld the second derivative with respect to .

85 "yT 1 20 dep— ]
X;X; exXp(X;vr) | — + )
Z’ p( ”[ (T4 oxp(XT7))?  (Guep + exp(xT7,))?

1 L

J

The maximum likelihood estimate for the vector «, of model is calculated by
setting (5.2) to zero.

Using a logistic regression model has the advantage of easy interpretation of
parameters in terms of odds ratios. However, there are some drawbacks connected
to the definition of the logit®™ function. Since the defined loglikelihood is strictly
concave if its equation admits a solution, this solution is unique and coincides with
the maximum likelihood estimator. Unfortunately, the likelihood equation does not
always have a solution. Problems arises as the parameters tend to o0, i.e. if the
observed probability is such that ox < 0gep— Or ox > Ogeps-

Such convergence problems are not so rare when analizing concordance for ex-
treme quantile residuals. In such cases alternative methods should be considered.

Many authors have addressed this issue for the classical logistic regression. The
solution proposed by Heinze and Schemper (2002) [19] could also be applied to our
model.

5.2 Constrained polynomial regression model

The second model proposed is a nonlinear regression model, in which the relationship
between the outcome and the covariates is studied through a nonlinear functional.
This kind of model offers the opportunity to analyze a wide range of functional
forms of the regression relationship.

A general nonlinear model is expressed as

zi =h(xj,v)+mn;, j=1....n (5.3)
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where the error terms are assumed to be i.i.d with conditional mean given by
E[n;|h(x;j,77)] = 0 and homoskedastic. The function h(x;,=;) is continuously dif-
ferentiable with respect to the components of ..
Among the many different possible choices we opted for a transform able to
constrain predicted probabilities in the range [04ep—, 0gep+]|. We recall that oge, = 1.
The function that we consider is the one defined as

1 if X7y, > 1
hxj, ) = (1= Ogep-)(X] ¥7)*(3 — 2X] ¥7) + Oep— if Ogep— < X]vr <1
Odep— if X?PYT <0

(5.4)
which is a polynomial transform of the predictor x;‘-F'yT.

The polynomial function, illustrated in figure satisfies regularity conditions
of continuity and differentiability and is nondecreasing on the real line.

A nonlinear regression model can be fitted using the method of moments. In
particular, when the error terms are i.i.d. as in this case, nonlinear least squares
is proved to be the most efficient method to be used from the class of moment
estimators (see [9]).

0.5 1

0dep—

05 0 0.5 1 15

Figure 5.2: Polynomial constrained function hA(t) € [04ep—, Odep+ = 1]. The function
is well defined at the boundaries of the space. The value of extreme negative de-
pendence used in the figure is 04— = 0.2 , it comes from the choice of 7 = 0.4 or
7 =0.6.

The nonlinear square estimator for the model in ([5.3)) with functional h(x;, ;)
defined in ([5.4]) is the minimizer of the following sum of squares

n

S(v) = D (z —h(x5,7))

Jj=1

(5.5)
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> iz — 1) if xTy, > 1
= 23:1['2] (1— Udep—)("?')’r)z(g - 2X§'F77) + Udep—]2 if Ogep— < XJT’YT <1
> (2= Odep—)? if X7y, <0

with first order derivatives given by

05(x,) Oh(x;,7) _
5 —22 gy 70)] = 7 = (5:6)

{ 122;:1[% - (1= Udep*)(X?'VT)Q(?’ - 2X?'7T) + Udez)f]XjT(l - Udep*)(xgj%')(l - X?"/f)
if 0gep— < ij'yT <1

0 otherwise .
The interpretation of the estimated parameters <, in nonlinear regression models

is not always straightforward. However, the interpretability of the ~, parameters is
beyond our scope. We rather seek to have a good prediction of probabilities. The
flexibility offered by the introduction of nonlinear transformations of the predictor

is a powerful tool. The polynomial h(x;,7,) in presents the advantage of being
always defined in the entire range; no problems arise when the estimates reach the
boundaries of the parameter space. This is a major advantage compared to the

constrained logistic alternative proposed in first instance.

5.3 Asymptotic properties of estimators of con-
cordance probability

The vector z of observations of the dependent variable Z, used to model the prob-
ability of concordance, derives from the estimated residuals in univariate quantile
regression models. The variance of quantile regression coefficients, B} and (3%, needs
to be considered when estimating the variance of the coefficient vector ~,.. This
kind of estimation structure is known in the literature as two-step estimation prob-
lem. M-estimators, introduced by Huber in 1967 [21], can be used to provide large
sample approximations of the variance. Stefanski and Boos (2002) [38] and Hardin
(2002) [I8] provide an exhaustive description of this kind of methods and referred
to the particular case of two-stage estimates in which moment estimating equa-
tions are stacked together in a single partitioned estimating equation as ”partial
M-estimation”.

Our goal is to derive a corrected estimator of the variance of 4, in a form com-
monly known as sandwich variance estimator. The problem reduces to the resolution
of a system of three estimating equations. Following Hardin (2002) [I§], we write
a unique 3 x 1 dimensional vector of estimating functions

\Ijl(Y171671_)
\Ij?,(Zv 7T|/371" :33)



5.3. ASYMPTOTIC PROPERTIES 71

where 8 = (B!, 3?,4,) is the complete vector of parameters to be estimated and
T = (Y!,Y? Z) is the vector of response variables.

M-estimators satisfy asymptotic properties of consistency under the following
mild regularity conditions (see Boos and Stefanski (2013) [2]):

L T; = (Y}, Y7, Z;) with j = 1,...,n is a triplet of i.i.d. samples, each with a

known cdf Fy, h=1,2,3;
2. 0 is a compact parameter space in R7*3;

3. U(T,0) is a vector of continuous and twice differentiable functions, where each
of its components (¥, ¥y and W3) is bounded by an integrable function of its
response variable not dependent on the elements of 0;

4. E[¥(T,6y)] = 0 where 0y is the true vector of values.
Some additional conditions are needed to establish asymptotic normality.

Theorem 11. (Asymptotic normality of %.). Under the above assumptions 1-4,
suppose that U™ (0) = %Z?:]_\Ij(tj,e) = op(n’%) and that @ 5 6,. In addition,
assume that

la. for each @ in a neighborhood of 6y, there exist a vector of functions g(t) =
(91(y"), 91(y?),91(z)) (possible depending on 6y) such that for all ,k h €
{1,2,3}

82
’ Uy (th, 0)] < gn(ts)

00,00,
with ¢ = (yl); ty = (y2>7 t3 = (Z>;
2a. A(0y) = E[-DY(T, 0y)| exists and is non singular
3a. B(6y) = E[U(T,0)V(T,0,)"] exists and is finite
ja. the joint pdf Fy:1y2(XBL, XB2) and the joint cdf fy1y2(XBr, XB2) exist.
Then
n'/2(0 — 6,) % MVN(,A"'B(A™)7) asn — oo (5.8)
and in particular
n2(3, — 0,.) 5 N(0,Vs(v,)) asn— oo

where

Vs(v:) = [A7(0)B(0)(A™(0))"|33)-
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Proof. For the first part of the theorem we have followed the proof of Theorem 7.2
by Boos and Stefanski (pag. 327) [2]. The proof is based on a component-wise
expansion of U"(6).

We know by assumption that () = o,(n"2) and thus a Taylor series expansion

A

of the h-th component of ¥™(8) results in

~

op(n"2) = Wi(6)
— UM (6,) + T (60)(0 — 6)) + %(é —60,)7 U (0:)(0 — 6,)

— w(60) + {0 (60) + (60— 00)7 0 (6) 6 - 6u)

where 0~;§ is on the line segment joining 6 and 6y, h = 1,2,3. Writing these 3
equations in matrix notation we have

Op(’nié) = \Il"(Oo) + {\I/”/(HO) + iQ*}<é - 00)7

where Q* is the 3 x 3 matrix with A-th row given by (8 — 6,)7 07" (6;). Note that
under condition 1a, each entry in Q* is bounded by ||6 — o||n™" 3> gu(tn) = 0,(1),
and thus Q* = o0,(1). By the weak law of large numbers, U™ () = —A(6))
which is nonsingular under condition 2a. Thus for n sufficiently large, the matrix in
brackets above is nonsingular with probability approaching 1. By the central limit

theorem, 1/n¥"(6,) KN MV N(0,B(6y)). On the set where the matrix in brackets is
nonsingular (lets that set Sy ), we have

~

: 1~
Vil6 - o) = ~{ w00+ 30} (VAT + o, 1)
Slutsky’s Theorem [36] in combination with the previous results then gives
n'/2(6 — 6) 5 MVN(0, A'B(A™1)T)

where we note that P(Sy) = 1. The estimated sandwich variance matrix can be
written in a compact form as

A A{VS(61>}qu {CAOUAS(Blaﬁ%}qu {C:OUS(/Gla'YT)}qu
V= {C?US(BQaﬁl)}qxq A{VS(/62)}q><q {COUAS(BQa’YT)}qu
{0005(777161)}%61 {COUS('VTw@Q)}qu {VS(’YT)}QXCI

and we are interested in the lower right partition of the matrix.
Let us consider the two matrices defined in conditions 2a and 3a

0w,
8(8L)T a?y 0 LARVERRVARE AR PRVEY
AB)=E| 0  5@dr 0 |,B(6)=E| WU WUlg W07
oV, oVs OV, \Iqule \113\113 \Ijg\pg

oBnT oEHt o
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oy _ 9vy _
BT = ool
= 0. This result follows directly from the definition of the vector of

where we have used the fact that the following derivatives are null
oVy  _ 0¥y

aBHT — ovF
estimating functions in ({5.7)).
For the sake of notation, let us denote the matrices components as

A L ow, [ 0v
Vi =E <8(ﬁ})T) . Vi =E <8(ﬂ$)T> - TV SE (0(%)T)

Vit =E (01, VTt =E(0,01), Vil=E (V01)

Riy=E (U1 V]), Ris=E(W¥]), Ry =E(U,0]).

Then the matrices of the sandwich can be rewritten in the form

-t 0 0 Vi™' Ry Ris
A= o -Vt o B=| RL, V' Ry |,
-Cr =C5; Vgt Riy Ry V!

where A is invertible (cf. condition 2a) with inverse

~V 0 0
At=| 0 -V, 0
V3OV V3C3Va =V

After some algebra we get that the sandwich variance of the =, estimator is

Vs(yr) = (VCIVVE ! 4+ VsCiVaRY, — Vs RL)(ViCTTV3) + (V3O ViRys + VaCo VoV~
— VRRL)(VaC3Va) — (VaCiViRys + VsC3VaRes — ViV Vs
= Va5 Wa + V5(CIViV T TACTT + GV RGVICTT — REVICTT + CiViR1:VaCy"
+ O3V Va3t — REVLOST — CFViRs + O3 VaRy3) Vs
= Vs + V(O Ve OFT + CiVaREVLCET — REVICTT + CHVIR 1, VO + CiVien COFF
RLVAC3T — CiViRus + C3VaRa)Va
where we indicate
VIV ™1V = Vs = Vs(8;).
VoV ™V = Vs = Vs(87),
V3V ™'V = Vs,
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After substituting the values of a selected sample of size n, the vector of equations
in (5.7) can be more explicitly written as

(y Bl) = a@;( )(y - Xﬁl) Z] 1 aﬁT (ng —7) (ygl - X;FIBD
(y 62) @g )(y - XBQ) Z] 1 8,@2 (WQ —7) (%2 - XJTBE)
Us(z, -8 B2) = 52 (m(’)’r|Z X)) = 201 g (m(rlz, %))

where w' = I(y" < X3') and with m we denote the general equation representing the
model selected to study the conditional probability of concordance. The first two
equations, which are common to the two proposed models, are those of univariate
quantile regression.

The indicator variable of concordance Z can be expressed in a useful way in
terms of the indicator function

Z=1y"' <XB)Iy* <XB7) + (1 -I(y' <XB;)(1 - Ly’ <XB7)).

From the properties of the indicator function we can rewrite Z as

Z = lyr<xpny2<xpe) + 1 — Lyi<xpnuyz<xp?)

whose expected value is

E(Z) = E(lyi<xpnpr<xpz) +1— Lyi<xpuyzaxp)
= P(lyi<xpnpr<xpz) + 1 — P(lyi<xpnupy2<xp?))
= 2F1y2(XBLXB2) + 1 — [ (XBL) — Fy2(XB2).

In the computations we will need the expected value of Z2, which is given by

E(Z?) = E[(lyr1<xpnny2<xpe) +1 = Iyiaxanuy2<xp2)’]
EQLy<xpnnp2<xpz) + 1 — Lyi<xpnuy2<xpz)
= 3Pl <xpynpr<xpz) + 1 — Pl <xpyuy2<xpz)
4Ry (XBL XA 11— By (XBY) - Fya(XA2).

Theorem [b|in section gives the asymptotic expression of the variance for
the vectors of quantile regression parameters 3! and 82. Theorem , allows us to
calculate their asymptotic distribution also in sandwich form, by the application of

(-3, yelding

T(1—17) Vg — T(1—17)

T XX (XBE P T XTX fya (XD

(5.10)

The two estimating quantile regression functions W;(3!) and Wy(32) are not
differentiable everywhere. We could then interchange the order of differentiation
and expectation, at the true parameter value 3, to have
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1 oy, B 0 B 0 B B
= E(@(ﬂ;)T)‘@(ﬁ;)TE(‘I’” T e

_ _%X(Fyl(X@) —7) = -X"X fy1 (X78}).

Analogously

1 oV, 0 T
5 =B ggr) = ey~ (X5,

We can then derive the central matrix of the sandwich variance as

Vil = B(W,¥]) = EX(w'-71)X(w'-7)"=EX"X(w'-7)?]  (5.11)
= EX"X((w")?+ 7 —w'r)
= X'XE((w")? + 7 —whr) = XTX[Fy1 (XB'7) + 72 — 27]
= X'X[r+72 =271 =X"X(r — ) = XTX(7(1 — 7))

and, in the same way, for the second quantile regression model
Vi = Bw)) = BX(w’ - 7)(X(w? - 7)) = EX'X(w? - 7% = X'X(r(1 - 7))
Computing the products V3V 'V} and V4,V 'V, we obtain the expressions for

the variance in (5.10)).

We remark that during these computations we employ the strict connection
between quantile and cumulative distribution function

Py (XB;) = Fy2(XB7) =7
at the true value of the B¢ parameter.
In the following paragraphs we will calculate the sandwich variance of =, for the

two proposed regression models of probability of concordance.
We will simplify the notation in the following way:

Fyl = Fyl (X?B}_) Fy2 = Fy2 (X?,@z) Fy1’y2 = Fy17y2 (X?ﬁi,x;ﬁg)

fri = (xEBY) fye = fr2(xTB2)  fyiyz = fyiye(x!BLxTB2)

Syrry2dt = fyry2(x] B 0)dE - fyryads = fyry2(s,x] B7)ds.
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5.3.1 Asymptotic variance for the constrained logistic re-
gression parameters

Let us consider the vector of observed estimating equations corresponding to the
complete model in which the last step involves logistic constrained regression:

((Wi(y",8)) = sor (@' =)y = XB)) = T}, 55r(w) — Ty} — %] B7)
Ua(y?, B7) = g5 (W* = )(v* = XB7) = 0, 5 (W] — 7)(yF — X[ B7)
1—0gep— O dep—t+exp(Xvyr
V(2,718 B2) = 55~ [bg (W&%J +zlog (w }

l—O'dep,

n 1—0gep Odep—texp(x}yr)
= Zj:l % |:10g (W%) + Zj log <M—J>:|

1-0gep—

\

where after differentiation the single j elements are

(01); = —xj(w; —7)  (Pa); = —x;(w) —7)

(Ws); = [Xj exp(x; ¥r) ( . + £ )] :

1+ exp(X]¥r)  Odep— + exp(X] ¥r)

Following the proof of theorem [11jon the asymptotic normality of 4, we can calculate
the corrected variance step by step, yelding

o 9 1 i
SN AL I T T - .
(V5); E < 8(’77)T>j E <3(,YT)TXJ eXp(X] ) [1 + exp(X?’)’T) Odep— T eXP(X?’YT)])

T T
exp(X; vr exp(x
= XJXT p( J 1) — X]XT p( J ,}/) [2Fy1 v2 —+ 1 — 27—]
71+ exp(x; ) ! Ogep— + exp(x;7r) ’

Vet = E(Us0y),
= E|:Xj exp(XJT'yT)(

Zj 1

Odep— + eXp(XjT’yT) 1+ exp(ij'yT)

)t

2; B 1 ) }
(adep +exp(xjyr)  1+exp(x;y)
A4F1ve +1 — 27 4F1 vo +2 — 47
_ exT T 2 YLY 3 YLy
= %% Pl ) L%,,_ eI (T exp () (g expT,)

]
(1 + exp(xT )2

(Vas); = (VaV5'V3);
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AFy1 yo+1-27 AF\1 yo+2—47 n 1
(@aep—+expGT )2 (Lhexp(xT77)) (Gaep— +exp(x277)) | (Itexp(xl77))2

2
T 1 _ 1 B
X]Xj |i1+exp(ij7‘r) U(iep—‘f‘eXp(X?’YT) <2FY1:Y2 + 1 2T):|

Note that the variable Z is, by definition, not necessarily differentiable with
respect of the parameters of quantile regression B! and B!. Anyway, the factors

Cy; (p12) and C3; (5.13) can be correctly calculated applying the property of

exchangeability of differentiation and expectation operators.

o 8\113 . 0 ‘ T Z; . 1
= E((@ﬂw)j‘aﬂ;E[XJeX“X”” <adep_+exp<xf%> 1+exp<x?%>>]

b 0 (2Fyiyet1— Fyi— Fya 1
= X el %)3& ( T ep(xly.) 1+ exp(XJT%)) (5.12)
() = E (g_g;) i 8%3E [Xj exp(3x; ) (adep_ + eZ;p(X]T%) 1+ 613;(X]T%)>}
= Xjexpl ) 6663 (QFZZT%@ ’Y_)FY T 1+ ex;<x? %)) (5.13)
= e [P e

2 - oo 2
esoy) \Pr(i—n) [ e

CiVe O = xxT J 2 dt —

(CTVs1C77); = x5%; (gdep—i—e:cp(xf%) 12, N Jyiye Jy

exp(x; ) Cr(l—n) [ e i
O3V O3 = x %7 2 2/ ds —
( 2V S52o )J XjX; O'dep—‘i‘exp(xf’%—) f§2/2 - le,Y2 S fY2

(Riz); = E(010;) = Efxxj (0 — 7)(w® — 7)) = Epyx; (I(y" < %7 8;) — 7)(I(y* < x;87) — 7)]

J
= XjX?[Fy17y2 — 7'2]

1 zj exp(x] ;) exp(x; ¥r)
—X;X; (w™ —71) 7 — 7
v+ cap(T) T+ eap(xly,)

(Ri3); = E(IV]);=E
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exp(X; ) }

T 2
= —x:X; |[(Fyi1vye — 2Fyv1ver — 7+ 27
! |:( vy vy >Jdep— + €$p<xf77)

J

(Ri3); = (R23);

T T 2
XX exXpiX; Y-
(C3VeRLVICTT); = -2 PG, >T
fyl fy2 O dep— + exp(xj '77)
T2 e e
4Fy17y2/ fy17y2dt/ fyl,y2d8 — 27’Fy17y2/ fyl,y2d8
e X1 L e
— A7 fyl’y2dt fyl’y2d8 + 2T fy17y2d8

<732

x] B}
- 27'Fyl7y2 / ’ fy11y2dt + T2Fyl7y2 + 27'3 / fy17y2dt - 7'4:|

—0o0 —0o0

(Ci‘VlRquCST)j = (CSVZR{leCTT)j

2
—x;xt exp(xt,) x; B2
RLVIC:T, = A 77 {2F/ 1 y2dt
( 13V1v1 )J f}2/1 Udep—+€$p(XjT’YT) YLY . Jyiy
X7 2
— TFy17y2 —47'Fyl’y2/ fylijdt+272Fy17y2

xJTﬁE X?ﬁg
— 27'/ [yt y2dt + 47* / fyiy2dt — 27% + 721

— 00 — 00

2
—xx! ([ exp(xly,) 76!
RTVC*T- = Coal) 7 T |:2F1 2/ 1y2ds
( 23 V2%V2 )] f52/2 O'dep—"i_exp(X?VT) YLY . fY Y
xT 3l
] T
— TFyiy: —47Fy1ys / friyzds + 272 Fy1 y2
73! L (e .
— 27’/ fy1y2ds + 41 / friyeds —27° + 7

(CiViR13); = (R,VICTT);  and  (C5VaRas); = (R3V2C5T);

(C1VsiCfF + CsVaRLLVICTT — RIVICOTT + Ci ViR VACsT + Oy Vo Oy — RIVRC3T
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— CiViRi3+ C3VaRys); = (C1Vs1OFF + 2(C5VaRLLVICTT) + C5 Vo O35

T 2 T2 2
- exp(xj’yT) {7-(1—7-) /; 7
= x.x! 2 1y2dt — fy
i <adep+e:cp(x?%) o \PLL Pt d

5 <32 <71 X7l
+ |:4Fyl’y2/ fyl,y2dt/ fyl’y2d8—27'17)/175/2/v fy17y2d8

f)%’l f}%? —00 —00 —00
L e X7 L e XT3
— 47 fy17y2dt fy17y2d8 + 27 fy17y2d8 — 27’Fy17y2 fy17y2dt
—00 —00 —00 —00
X2

2
2 3 4 7(1—7) X Br
+ 7 Fyl7y2 + 27 fy17y2dt -7 | + fT 2 fy1’y2d8 — fy2
—00 Y2 —0o0

To conclude we get the corrected matrix of variance for the j-th subject as:

(Vs(7:)); = [Vas 4+ Va(CiVar CfF + C5VaRVICTT — R VICTT + CTVI R VRO
+ C3VieC3T — Ry VaCyl — CfViRy3 + CiVaRa3) Vi)

(Vs + V3(CyVs1CF" 4 2(C5VaRL,VICYT) + C5 Vo O3 ) V) 5
1
T exp(xTyr) exp(x] yr) 2
XjX; [_ 1+ewp(;fvT) T 0d5p7+e;p(ij%) (2Fy1y2 +1- 27—)]

{ 4Fy1’y2 —+ 1 — 27' 4Fyl7y2 =+ 2 — 47'
(

Taep— +xXp(x]77))* (14 exp(Xj¥r))(Taep- + exp(x] )

exp(x!,) )2 {Tu_ﬂ (2 /x;fﬂz _—

(1+ exp(xép'yT))2 (Udep— + exp(xf’)’r) fin —0
2 2 x]Tﬁz XJTﬁ‘,l—
_ le) + (4FY1,Y2 / fy17y2dt/ fy17y2d5

f}%l f}2/2 —00 —00

xTBl XTBZ xTﬁl
VR 2 g T VR
— 27’Fy17y2 / fy17y2 dS — 47 / fy17y2 dt / fy17y2 dS

—00 —00 —00

x?,@} X?,@-%
+ 27 / fyiyzds — 27 Fy1 ye / fyiyzdt + 72 Fy1 ye

—00 —0o0

<732 1_ XT3} ?
+ 27’3/ fyljy?dt — 7'4) + T(f—27-) (2/ fylnydS — fy2> :| }
—0o0 Y2 —0o0



80 CHAPTER 5. MODELING THE CONCORDANCE OF PROBABILITY

5.3.2 Asymptotic variance for the constrained polynomial
model

Let us rewrite the system of moment equations related to the second regression
method proposed in section [5.2] as

\Ifl(ylﬁi)— (W' —7)(y' = XB;) =3
Uy(y? B2) = az( Wy* —XB2) =37
W (., |1 B aiT (2~ (1 = 04eg )X,
= Z] 1 a%( — (1 = 0gep-) (x

We recall that the last estimation step here requires a nonlinear regression model.
After differentiation, the expression of the j-th elements in the system above is

\]

1 gar (Wi — T)(y; — %5 B7)
1 a,@2( w? — )(yg - XTIBQ)
)*(3 — oxT Yr = Odep-)? =
T2 (3 = 2% 7 — Ouep- )’

\]

(1)) = x;(wj —7)  (Va); = x;(wf —7)

(U3); = —12(1=0dep-)%;[2j— (1= 0dep-) (5] ¥r)* (3=2% ¥r) =] (3] 1) — (3 77)°].

Analogously to section|5.3.1], we report the calculations of the sandwich estimator
of variance for the polynomial regression parameter -, , corrected for the errors of
estimation of 3! and B2. We have

(V5 = E<_%>]~
0

= 12(1 — 04ep- )X, WE{[ZJ' — (1 = aep—) (%] ¥2)* (3 = 2%] ;) — Gaep-|[(X] ¥2) — (X ¥+)?]}
= 12(1 = Guep- )%, {—6(1 = Oaep- ) [X; - — (%] 7))
+ [2Fyiyz+1—-27—(1— adep_)(xf%)z(?) — 2x§“%) — Oaep|[1 — 2ij»yT]

(V5™ = E(T303);
= E{(-12)(1 = daep-)x5[2 = (1 = 0uep-) (%] 7:)*(3 = 2x ¥r) — Gaep][(x ¥7) — (X} ¥+)?]
(—12)(1 = Gaep-)%] [27 = (1 = Oaep-) (%] ¥2)* (3 — 2 ) — Taep- ) [(x] ¥7) — (x 7))}
= 144(1 — Jdep_)2XjXJT[XJT'yT — (X?77)2]2{4Fy17y2[1 — Ogep— — (1 — adep_)2 — 72
— (1= 0uep- ) (%] 72)*(3 = 2% ¥7)] + 27°Ouep— + [204ep— + 27 = 2][(1 = Taep- ) (x; ¥+)°
(3 = 27 4)] + [(1 = Taep—) (3] ¥2)*(3 — 2x] v,))*}

(Vss); = (VaV5'13);
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[XJT')/T - (X?’)’T)2]2{4Fy17y2 (1= 04ep— —H] + (1 — 0gep_)? — 7% + 204 7>
T

ijf{—ﬁ(l — Odep—) X5 V7 — (XJT’YTV]Z +(1- 2X?7T)[2Fy1’y2 +1—27 —0gep— — HJ}
[204ep— + 272 — 2][H] + H?}
ijf{_G(l - Udepf)[x;r’%' - (X?’YT)Q]Q + (1 - 2X?77)[2FY1,Y2 +1-27 - Odep— — H]}

_|_

Note that in (Vs3); we have made the substitution H = (1 — adep,)(ij'yT)2(3 - QXJT*yT).

Because of the nondifferentiability of the indicator Z with respect to 3. and 32, as we
have already done for [5.12] and [5.13] we exchange differentiation and expectation operators
to obtain correct calculations of (C}); and (C3);. Indeed,

ov 0
€0 = B(G51) = B2 = a5l = (1 0y xE (5 — 2x20) = oy |
T j T
(] vr) = (X 2)?]}
0
= —12(1- Udep—)xjaiﬁlpFYl,Y? + 1= Fyr — By][(x) vr) — (%) v7)]
i [P T T \2
= —12(1- adep,)xjxj [2/_ Syt yz2dt — fyl][(Xj ¥r) — (Xj ¥ )]
ov 0
(C3); = E (aﬁg’> = TBQE{_:lQ(l — Odep—)Xj[25 — (1 = Ogep—) (X} ) (3 — 2X] ¥7) — Oep]
T ¥ T
[(x] vr) — (x] Y21}
0
= —12(1 - adep,)xja—ﬁz[QFy17yz +1—Fy1— Fyg}[(ij'yT) - (XJT'yT)Q]
N T T \2
= 120 - oup xR [ friyeds - fyallF ) - 6
X8 2 -
(CTVSICTT)j — (—12)2(1—0dep_)2XjX}1 2/ fyl’yzdt—fy1:| [(X?WT)—(XfVT)Q]Qw
L J—o0 Y1
[ X8 2 7(1—171)
(C;VSQC;T)J‘ = (—12)2(1—0'dep,)2XjX? 2/ fy17y2d8—fy2:| [(X}ﬂ’yT)—(ijfyT)z]fo
L J—o0 Y?2
(Ri2); = E(U103); = E[x;x] (w' —7)(w? —7)] = Elx;x] (Iy" <x/8}) —7)((y* < x] B2) — 7))
= XjX?[Fyl7y2 (X? }.,X? 72.) — 7‘2]
(Riz); = E(W103); = E{x;(w" — 7)12(1 = 04ep—)x;[2§ — (1 = Gaep— ) (x] ¥7)*(3 = 2%] ¥r) — Odep-|

(] vr) = (x]v2)?]}
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= 12(1 - Udep_)XjX?[(vaT) — (X;‘F’yT)Q]{Fylyz +1— 27 — 270 gep + 277
- 2r[(1- Udep—)(X]T'YT)Q(?’ - 2X?'7‘r)] - 27'FYl,YQ}
(Ri3)j = (Ra3);
* T «T XngT 21/ T T, 212 2
(C3VaR, VIO )j = 72, 12 144(1 — Jdepf) [(Xj Yr) — (Xj ¥r)7] [FYl,Y2 -7
yiJy2
XTﬁQ XTBI
J T J T
|:2/ fy17y2d8 — fy1:| |:2/ fy17y2d8 — fy2:|
(CiViR1VRC3T)j = (C3VaRLVICET);
x;xL xT B2
* I i
(R{svlclT)j = - 72 : 144(1 - Udep—)2[(x;"r’77) - (XJT’YT)2]2 [2/ le,Y2d8 - fyl}
vl —00
[(Fy1y2 +1)(1 = 27) — 270qep— + 277 — 27(1 = aep— ) (x] ¥7)?(3 = 2x; v7)]
x;x1 xT L
* Jg T
(R2T:J,V202T)j = - 72 : 144(1 - Udep—)Q[(XJT’YT) - (XJT7T)2]2 [2/ le,Y2d8 - fy?}
Y2 —00
[(Fy1y2 +1)(1 = 27) = 2704ep— + 27° — 27(1 = aep—) (%] 1) (3 — 2x; v7)]
(CiViRy); = (RVICTT); and  (C5VeRas); = (Ry3VaCsl);
(C3Ve O + CsVoRL VIO — RELVICTT + CEViR15 VO3 + O3 Veo O3 — RV C3T
— CTV1R13 + C;VQRQ:;)]‘ = (CfVSlcikT + C;VSQC;T + 2(C§V2R{2V10fT))j
T 32 2
(1 —7 x; B~
— xjx?144(1 — adep_)2[(x?77) — (XJT'YT)2]2{(f2) [2/ Jy1 y2ds — fw]
Yl —00
2 x] B7 x] B}
+ 2NN [2/ Jy1 yeds — fyl:| [2/ Jy1 y2ds — fy2:| [Fy1y2 — 72]}
yiJy2 —00 —00

T 51 9
1-— x; P
+ T( 7) |:2/ ’ fy17y2d8 — fy2:|

3 oo

All of the calculations above yeld the expression of the corrected matrix of variance, for
the j-th subject, below:

(VS(’YT))J'

+

[XJT')/T - (X?7T>2]2{4Fyl’y2 (1= 0dep— —H+ (1 — 0gep—)? — 7% + 204ep—7>
xijT{—6(1 — adep_)[xjrvf — (XJT’)/T)Q]2 +(1- 2X‘?’Y7-)[2Fyl7y2 +1—27 — 04¢p— — H|}
[204ep— + 272 — 2]H + H?

S XT {601 — oaep )Xy — (e 22+ (1= 2xT 7 ) 2By ya + 1= 27 — oaep — HI}
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P = )2 L0 fyryedt — fr P/ fon + 225y yeds — fyal?/ fye)

X3 {—6(1 — Gaep— ) [x] vr — (%] 2?2 + (1 = 2x] 7)) [2Fy1 y2 + 1 — 27 — 04ep— — H}

L P pedi— )2 PO fseds = fyellFye - 72/ fre)

X]'X?{_ej(l - Udep—)[X?7T - (X?’YT)QP + (1 - QX?’YT)[QFYl,YQ +1—-27— Odep— — H]}

as in 5.14, H = (1 — 04y ) (x77,)%(3 — 2xF 7).

5.4 Computational methods

To fit fit the models of probability of concordance, we need to use iterative processes.
The maximum likelihood maximization for logistic quantile constrained regression,
as well as the non least square estimation in the polynomial constrained regression,
cannot be expressed in closed form. In the following we refer to Davidson and
McKinnon (2003) [9] and Greene (2011) [I5].

For the constrained logistic regression model in section a Newton-Raphson
algorithm is used. Such a method is based on asecond order approximation of
the objective function to be minimized (if a maximization is needed instead one
could consider the function with negative sign). At each iteration the objective
function of interest is approximated by a quadratic function, and a step towards the
maximum/minimum of that quadratic function is taken. Let S(7) be the function
to be minimized, where - is a g-vector and S(-) is twice differentiable. Given any
initial value of -, say -, we can perform a second-order Taylor expansion of S()
about the starting point 4 in order to obtain an approximation S*(vy) of S(¥)

S*(v) = S(v0) + 94 (v — o) + 1(7 — )" Ho(v — %0)

2
where g(7) is the gradient of S(-), which is a column vector of length ¢ with entries
%S,’). We denote by H(7) the Hessian matrix of S(), which has the dimension
J

92S(v)
Ovj0ve

gradient and the Hessian evaluated at the starting point ~y. Differentiating S*(7y)
with respect to v we get the first order condition of minimization

q X q and is composed of elements of the form By g9 and Hy we denote the

go + Ho(y —%) =0
which suggests the iterative procedure
Y = — aHy ' go

where « is a step size parameter chosen at each iteration to improve convergence.
For the minimization in the non linear regression method, presented in section

we prefer to use a first order method such as the gradient search or descent.

This method works for simple differentiable objective functions. Given an initial
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vector 4o and S(«) a differentiable objective function to minimize, this algorithm
iteratively moves toward lower values of the function by taking steps in the direction
of the negative gradient, which is the direction of steepest descent. Let us consider
a first order Taylor approximation of S(7) about the starting point ~y,

S*(v) = S(v0) + 90 (v — o)

where gy denotes the gradient in the form already introduced for Newton’s method
evaluated at the starting point. Differentiating with respect to 7 we obtain that the
iterative steps are of the form

Y1 = Yo — 9o

where ¢ is the step length of moving and is allowed to change at every iteration.

One important feature of iterative algorithms is that they must start with an
initial starting point for the parameter « to estimate. A wrong choice of the starting
value may significantely affect the performances of the algorithm. In some cases it
could cause non convergence of the minimization iterations.

5.5 Simulation studies

We present a series of simulation studies to evaluate finite sample prediction proper-
ties of the two proposed estimators, under a variety of different scenarios. A selection
of the found results is presented in this section. For the remaining results, which
will lead to equivalent conclusions, we refer to appendix [A] of this thesis.

For each simulation setting we generate bivariate datasets, with different degrees
of association structures, and estimate the probability of concordance of quantile re-
gressions residuals along all the distribution of the bivariate outcome. The two mod-
els of logistic constrained and polynomial constrained regressions are considered and
compared as to their performances. We performed and analyzed univariate quantile
residuals for a grid of quantiles 7 = {0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90}.
Different sample sizes were considered (N = 200, N = 500, and N = 1000). Based
on B = 2000 Monte Carlo replications, we evaluated the absolute bias, standard er-
ror, and mean squared error of 6, in comparison to the true probability o.. This last
can be obtained from theoretical univariate and bivariate distribution probabilities.

In order to facilitate the theoretical derivation and comparison of probabilities,
in all simulation scenarios a single binary covariate, generated as z ~ Binom(1,0.5),
is used. This produces two estimates for each simulation corresponding to the two
groups with x = 0 and x = 1. The covariate used is the same in the univariate
quantile regression models and for the estimation of conditional probabilities.

The two probabilities o,—¢ and o,—; are calculated considering joint probability
distributions and survival distributions of the bivariate generated datasets. We used
the fact that the probability of concordance of the sign of residuals can be expressed
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as a sum of joint probabilities. This, jointly to the application of some basic results
on bivariate distributions, resulted in

ox = P(y' <XB; Ay? <XB2) + P(y' > XBiny” > XB2) =
2F1 2 (XBLXB2) +1— Fu(XBL) — Fy2(XB2).

All simulations were implemented with the aid of the statistical software R. For
univariate quantile regression we used the rq function in the library quantreg. As
to the estimates of concordance probability parameters, we used the nlm routine to
maximize the loglikelihood in the logistic constrained regression and implemented
a gradient search algorithm to minimize the objective function in polynomial con-
strained regression. The programs can be found in appendix [B]

Simulation 1. For the first study we generated bivariate samples from a normal
distribution whose vector of the means was (ag+a,2, by+b1x) and matrix of variance

covariance
1 0.7
0.7 2 )°

Note that the covariance, which is the parameter measuring the strength of associ-
ation, was set to the positive quite high value of 0.7.

Simulation 2. For the second study we generated samples of a bivariate
eteroskedastic normal variable with mean (ag + a2, by + byz) and covariance matrix

1+ %x —0.5 + %x
—0.5+ %x 2—x ’

For this setup we chose a negative structure of association between the sample
vectors y! and y2. The covariance was set to —0.5 for units with # = 0 and to
—0.5+ % when x = 1.

Simulation 3. The last study involves copula distribution functions discussed in
We generated bivariate samples from a bivariate random variable (Y1, Y?) ~
CTrank(y1y?2) where CTm@* indicates the Frank copula. This function is in the
class of Archimedean associative copulas and has dependence parameter defined
on the entire real line (—oo,00) (see [30]). Its dependence parameter 6 was set
to 7.92 which corresponds to a positive kendall’s tau, p, (Y, Y?) = 0.6. We con-
sidered as marginal distributions for the two variables a normal distribution with
characteristics Y' ~ N(ag + a;r,1,1) and a logistic distribution with parameters
Y? ~ Logistic(by + bix,2). We used the copula library in R to generate the chosen
bivariate distribution.

In all simulations we set ag = a; = 2 and by = b; = 3.

The performances of the proposed estimators proved to be consistent with the
parameters of prediction considered, in the same way for constrained logistic and
polynomial models, in all sample sizes for all quantiles considered. None of the
settings used for the generation of samples showed disadvantages over the others.

For simplicity, in the tables we denote by LCR the constrained logistic method
and by PCR the polynomial regression method.
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Simulation 1, Method:PCR, N=200

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Oz=0 0.8534 0.7606  0.7015 0.6660 0.6555 0.6682  0.7030  0.7638  0.8542
std.err.  0.0257  0.0359  0.0429 0.0462 0.0472 0.0464 0.0435 0.0369  0.0246
bias -0.0107 -0.0125 -0.0105 -0.0104 -0.0093 -0.0083 -0.0090 -0.0094 -0.0100
mse 0.0008 0.0014 0.0019 0.0022 0.0023 0.0022 0.0020 0.0014 0.0007

Oz=1 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Op=1 0.8552 0.7648  0.7009 0.6668 0.6553 0.6644 0.7020 0.7610 0.8534
std.err.  0.0255  0.0373  0.0430 0.0448 0.0471  0.0459 0.0427 0.0365 0.0250
bias -0.0090 -0.0083 -0.0111 -0.0096 -0.0095 -0.0121 -0.0100 -0.0122 -0.0108

mse 0.0007  0.0015 0.0020 0.0021 0.0023 0.0023 0.0019 0.0015 0.0007

Table 5.1: Estimated standard error, bias and mean squared error of probability pre-
dictions, relative to the first smulation setting: binormal omoskedastic distribution
of (Y1, Y?), size 200, constrained polynomial regression method.

Simulation 1, Method:PCR, N=500

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Oz=0 0.8598 0.7683 0.7072  0.6721 0.6612 0.6730 0.7087  0.7708  0.8604
std.err.  0.0159  0.0235 0.0276 0.0299 0.0298 0.0290 0.0271  0.0232  0.0160
bias -0.0043 -0.0048 -0.0048 -0.0044 -0.0036 -0.0035 -0.0033 -0.0024 -0.0038
mse 0.0003  0.0006  0.0008 0.0009 0.0009 0.0009 0.0007 0.0005 0.0003

Op=1 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Op=1 0.8609  0.7707 0.7078 0.6723 0.6603 0.6726 0.7069  0.7681  0.8596
std.err.  0.0160  0.0227  0.0271  0.0288 0.0300 0.0291  0.0270 0.0233  0.0161
bias -0.0033 -0.0025 -0.0042 -0.0042 -0.0045 -0.0039 -0.0051 -0.0050 -0.0046
mse 0.0003  0.0005 0.0008 0.0008 0.0009 0.0009 0.0008 0.0006 0.0003

Table 5.2: Estimated standard error, bias and mean squared error of probability pre-
dictions, relative to the first smulation setting: binormal omoskedastic distribution
of (Y1,Y?), size 500, constrained polynomial regression method.
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Simulation 1, Method:PCR, N=1000

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ox=0 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Ou=0 0.8619  0.7717  0.7103 0.6745 0.6621 0.6744 0.7101  0.7705 0.8616
std.err.  0.0113  0.0165 0.0195 0.0207 0.0211  0.0207 0.0193 0.0158  0.0112
bias -0.0022 -0.0027 -0.0015 -0.0014 -0.0017 -0.0024 -0.0017 -0.0017 -0.0020
mse 0.0001  0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0001

Op=1 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Ou=1 0.8609  0.7707  0.7078 0.6723 0.6603 0.6726  0.7069  0.7681  0.8596
std.err.  0.0115 0.0160 0.0194 0.0213 0.0213 0.0206 0.0194 0.0157 0.0116
bias -0.0023 -0.0015 -0.0017 -0.0020 -0.0027 -0.0021 -0.0019 -0.0026 -0.0026
mse 0.0001  0.0003 0.0004 0.0005 0.0006 0.0004 0.0004 0.0003 0.0001

Table 5.3: Estimated standard error, bias and mean squared error of probability pre-
dictions, relative to the first smulation setting: binormal omoskedastic distribution
of (Y1,Y?), size 1000, constrained polynomial regression method.

Simulation 1, Method:LCR, N=200

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ox=0 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Ou=0 0.8534 0.7606 0.7016 0.6661 0.6556  0.6681  0.7030  0.7638  0.8542
std.err.  0.0257 0.0359  0.0430 0.0462 0.0473 0.0464 0.0435 0.0371  0.0247
bias -0.0107 -0.0125 -0.0104 -0.0104 -0.0093 -0.0084 -0.0090 -0.0094 -0.0100
mse 0.0008 0.0014 0.0020 0.0022 0.0023 0.0022 0.0020 0.0015  0.0007

Ox=1 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Oa=1 0.8553  0.7649 0.7009 0.6669 0.6553 0.6644 0.7020 0.7610 0.8534
std.err.  0.0255  0.0372  0.0429 0.0447 0.0471  0.0459 0.0427 0.0365 0.0250
bias -0.0089 -0.0083 -0.0111 -0.0096 -0.0095 -0.0121 -0.0100 -0.0122 -0.0108
mse 0.0007  0.0014 0.0020 0.0021  0.0023 0.0023 0.0019 0.0015  0.0007

Table 5.4: Estimated standard error, bias and mean squared error of probability pre-
dictions, relative to the first smulation setting: binormal omoskedastic distribution
of (Y1,Y?), size 200, constrained logistic regression method.
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Simulation 1, Method:LCR, N=500

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Oz=0 0.8598 0.7683 0.7072 0.6721 0.6612 0.6730 0.7087  0.7708  0.8604
std.err.  0.0159  0.0235 0.0276  0.0299 0.0298  0.0290 0.0271  0.0232  0.0160
bias -0.0043 -0.0048 -0.0048 -0.0044 -0.0036 -0.0035 -0.0033 -0.0024 -0.0038
mse 0.0003  0.0006  0.0008 0.0009 0.0009 0.0009 0.0007 0.0005 0.0003

Oz=1 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Op=1 0.8609  0.7707  0.7078 0.6723 0.6603 0.6726  0.7069 0.7681  0.8596
std.err.  0.0160  0.0227  0.0271  0.0288 0.0300 0.0291  0.0270  0.0233  0.0161
bias -0.0033 -0.0025 -0.0042 -0.0042 -0.0045 -0.0039 -0.0051 -0.0050 -0.0046

mse 0.0003  0.0005 0.0008 0.0008 0.0009 0.0009 0.0008 0.0006 0.0003

Table 5.5: Estimated standard error, bias and mean squared error of probability pre-
dictions, relative to the first smulation setting: binormal omoskedastic distribution
of (Y1,Y?), size 500, constrained logistic regression method.

Simulation 1, Method:LCR, N=1000

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Oz=0 0.8619  0.7705 0.7105 0.6751 0.6631 0.6741 0.7103  0.7714  0.8622
std.err.  0.0113 0.0165 0.0195 0.0207 0.0211  0.0207 0.0193 0.0158 0.0112
bias -0.0022 -0.0027 -0.0015 -0.0014 -0.0017 -0.0024 -0.0017 -0.0017 -0.0020
mse 0.0001  0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0001

Op=1 0.8642 0.7732 0.7120 0.6765 0.6648 0.6765 0.7120 0.7732  0.8642
Op=1 0.8619 0.7717 0.7103 0.6745 0.6621 0.6744 0.7101 0.7705 0.8616
std.err.  0.0115 0.0160 0.0194 0.0213 0.0213 0.0206 0.0194 0.0157 0.0116
bias -0.0023 -0.0015 -0.0017 -0.0020 -0.0027 -0.0021 -0.0019 -0.0026 -0.0026
mse 0.0001  0.0003 0.0004 0.0005 0.00065 0.0004 0.0004 0.0003 0.0001

Table 5.6: Estimated standard error, bias and mean squared error of probability pre-
dictions, relative to the first smulation setting: binormal omoskedastic distribution
of (Y1,Y?), size 1000, constrained logistic regression method.



Chapter 6

Application and interpretation of
results

In this chapter we report the results relative to the application of the proposed
method to the analysis of a selection of 1996 subjects from the Po River Delta
study.

We introduce graphicals tool developed to illustrate and interpret the outputs
deriving from the application of our method. Furthermore, we suggest the use of a
statistical test to verify independence of conditional residuals signs.

The discussed example can be useful to understand the importance of evaluating
the residual correlation among outcomes after removal of the effect of covariates.

The Po River Delta study is a prospective study conducted to investigate ob-
structive pulmonary diseases on the general population of a rural area in northern
Italy (near Venice) [31].

Different spirometric indexes are usually evaluated to undertake lung function
impairement (we refer to the website of the Global Lung Function Initiative for a
complete review [10]). In the present application we consider the effect of a set of
variables on two of the most common parameters measured in spirometry.

The first one is Forced Expiratory Volume (FEV1), the volume exhaled during
the first second after a full inspiration. The second one is the ratio I;f/‘g where
(FVC) indicates the Forced Vital Capacity, a measure of the volume change of the
lung between a full inspiration to total lung capacity and a maximal expiration to
residual volume. The ratio measures the proportion of a person vital capacity that
they are able to expire in the first second of expiration.

Two covariates are considered: height (in centimeters), measured in standing
position without shoes, and age, recorded at last birthday. It is well known from
medical literature ( [16], [37]) that lung function measurements vary with age,
standing height, sex and ethnicity. The effect of height and age on the two lung
functions were therefore analyzed separately for men and women: for the same
height and age, females tend to have smaller lungs than males.

The dataset consists of 1996 subjects divided into 956 males (48%) and 1040
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females. All subjects are adults (age range 25-64).

Some preliminary statistical analysis was performed to describe behaviours and
relationships among the variables considered. Figure [6] suggests that there is a
difference in the association between FEV1 and the ratio for males and females.
FEV1 grows along with FEV1/FVC, but this association seems stronger for males
than for females. This is confirmed by correlation which is positive for both sexes but
higher in males (cor= 0.65 for males, cor= 0.45 for females). The existing correlation
between the two dependent variables considered requires the use of multivariate
methods to evaluate if this dependence has an impact on the effects of age and
height.

Association for males Association for females

FEV1

FEV1/FVC FEV1/FVC

Figure 6.1: Scatterplot showing association between the ratio FEV1/FVC and
FEV1, for males and females.

Pulmonary disfunctions are diagnosed by considering the extreme tails of the dis-
tribution of measured parameters in a "normal” population of reference, see [37].
Usually subjects with spirometrical parameters below the 5th percentile are consid-
ered respiratory deficient. Analysing and interpreting percentiles of their distribu-
tion rather than the simple mean might then be more informative in the determi-
nation of factors related to respiratory impairement.

As described in chapter [, as a first step we estimate a quantile regression model
for either outcome. We do it for a grid of 11 quantiles

7 ={0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, 0.95}
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and the two models estimated are the following
FEV1 =8}, + B age + B} height

FEVi/FVC = 2, + 32 age + B2 ,height.

The rq function of the quantreg package in R was used to estimate regression param-
eters. We extracted regression residuals in both models and used them to define the
indicator variable of concordance Z introduced in chapter [4 We used the same set
of covariates, either to fit univariate quantile regressions or to model the probability
of concordance (ox = P(Z = 1)).

The effects of height and age on ox are evaluated by applying either constrained
logistic or constrained polynomial regression. The results derived from the two are
then discussed and compared.

For the logistic constrained regression the fitted model is

. O (age,height) — Odep—
logzt*( (age;height) P

) = Vr0 + Vraag€ + V- 2height.
Odep+ — Odep—

For the nonlinear regression approach we estimate the model

O (age,height) = (1=0dep— ) (Vr0+Vr 1096472 height)? [3—2(7r0+Yr109e+7-2height)]|+0 dep—.

Table 6.1: Parameters estimates of constrained logistic regression model for females,
outcomes were FEV1 and FEV1/FVC. 200 Bootstrap tilted replications are used to
estimate standard errors.

Intercept Age Height
7=0.05 4.365 (-12.499, 21.229) 0.045 (-2.953, 3.044) -0.045 (-11.42, 11.33)
7=0.10 -0.345 (-10.577, 9.888) 0.051 (-0.561, 0.663) -0.017 (-2.35, 2.316)
7=0.20 -0.156 (-6.519, 6.207) 0.027* (0.004, 0.051) -0.009 (-0.049, 0.032)
7=0.30 0.046 (-4.781, 4.874) 0.013 (-0.004, 0.029) -0.004 (-0.034, 0.025)
7=040 0.292 (-3.238, 3.822) 0.005 (-0.009, 0.019) -0.002 (-0.024, 0.020)
7=0.50 0.526 (-2.730, 3.781) 0.000 (-0.013, 0.013) -0.000 (-0.020, 0.019)
7=0.60 0.142 (-4.056, 4.340) -0.001 (-0.014, 0.012) -0.000 (-0.026, 0.026)
7=0.70 -3.379 (-8.727, 1.968) 0.005 (-0.013, 0.023) 0.019 (-0.015, 0.052)
7=0.80 -5.645 (-14.656, 3.365) -0.004 (-0.028, 0.020) 0.032 (-0.023, 0.086)

=090 -0.760 (-21.156, 19.635)  0.003 (-3.039, 3.044)  -0.004 ( -11.072, 11.064)
7=095 -1.003 (-14.998, 12.993) —4.566" (-8.667, -0.465) —16.766" ( -31.460, -2.073)

* Significantly different from zero at the 5 per cent level.
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Table 6.2: Parameters estimates of constrained logistic regression model for males,
outcomes were FEV1 and FEV1/FVC. 200 Bootstrap exponentially tilted replica-
tions are used to estimate standard errors.

Intercept Age Height
7=0.05 0.198 (-47.731, 48.128) 0.021 (-0.622, 0.665) -0.009 (-2.477, 2.460)
7 =0.10 0.273 (-11.065, 11.612) 0.039* (0.007, 0.071) -0.011 (-0.075, 0.053)
7=0.20 0.369 (-6.151, 6.890) 0.044* (0.016, 0.073) -0.012 (-0.049, 0.026)
7=0.30 0.625 (-4.537, 5.786) 0.036* (0.018, 0.053) -0.009 (-0.039, 0.020)
7 =0.40 0.645 (-3.379, 4.670) 0.025* (0.009, 0.041) -0.007 (-0.029, 0.016)
7=0.50 0.750 (-2.327, 3.827) 0.012 (-0.002, 0.025) -0.003 (-0.021, 0.014)
7 =0.60 4.875 (-0.131, 9.882) 0.002 (-0.014, 0.019) -0.028 (-0.055, -0.000)
7 =10.70 0.121 (-4.470, 4.712) 0.014 (-0.004, 0.032) -0.004 (-0.030, 0.022)
7=0.80 -3.798 (-10.633, 3.037) 0.024 (-0.003, 0.052) 0.013 (-0.024, 0.050)
7=0.90 -0.806 (-61.564, 59.951) 0.019 (-1.574, 1.612) -0.008 (-6.680, 6.664)
(

T=0.95 -0.985 (-1773.722, 1771.752) -4.169 (-22.983, 14.645) -16.869 (-34.332, 0.594)

* Significantly different from zero at the 5 per cent level.

The interpretation of regression coefficients is beyond our scope, the interest of
the analysis being more on the interpretation of predicted probabilities. However, we
briefly comment on them. We are aware that, contrarily to the logistic transformed
method, which preserves interpretability in terms of odd ratios, we cannot provide
a meaningful interpretation of coefficients for the nonlinear alternative.

Coefficient estimates of the two approaches, together with their confidence in-
tervals, are reported in separate tables for males and females (Table , Table
, Table and Table . For the calculations of standard errors we used
200 exponentially tilted bootstrap replicates ( [10], [12]). In fact, although having
derived asymptotic approximations of corrected standard errors (see section ,
their analytical expression is too complicated and involves the calculation of bi-
variate unknowns cdfs. We therefore prefered to use sampling techniques for the
inference.

The results, in terms of statistical significance of estimates, are quite similar for
both methods considered. We found significant estimates only in correspondence to
few quantiles, and almost always relatively to the effect of age.

For the logistic approach, when 7 = {0.10,0.20,0.30,0.40} the estimates of the
coefficients associated with age for males are statistically significant, at a level of
95%, showing an increasing effect of concordance between the residuals of FEV1 and
the ratio FEV1/FVC along with age. The effect of height is not significant in any
of the quantiles considered. A similar consideration can be made for females. Here
the only significant estimates are in correspondence to the effect of age in the tails



93

Table 6.3: Parameters estimates of constrained polynomial regression model for
females, outcomes were FEV1 and FEV1/FVC. 200 Bootstrap exponentially tilted

replications are used to estimate standard errors.

Intercept

Age

Height

7 =0.05

0.907 (-6.463, 8.277)

0.008 (-0.013, 0.029)

-0.006 (-0.056, 0.045)

7=0.10 0.258 (-1.84,2.356)  0.009* (0.003, 0.015) -0.002 (-0.015, 0.011)
=020 0510 (-0.785, 1.804) 0.005* (0.0003, 0.009) -0.002 (-0.01, 0.006)
=030 0.755 (-0.177, 1.688)  0.002 (-0.001, 0.005) -0.002 (-0.008, 0.003)
=040 0.346 (-0.399, 1.092)  0.001 (-0.001, 0.003)  0.001 (-0.004, 0.005)
=050 0.376 (-0.246, 0.999)  0.0002 (-0.002, 0.003)  0.001 (-0.003, 0.005)
7=0.60 0.241 (-0.450, 0.932) 0.0001 (-0.002, 0.003) 0.002 (-0.003, 0.006)
7=0.70 -0.074 (-0.913, 0.766)  0.001 (-0.002, 0.004)  0.003 (-0.002, 0.008)
7=0.80 -0.406 (-1.595, 0.783) -0.001 (-0.005, 0.003)  0.005 (-0.002, 0.012)
7=090 -1.849 (-5.041, 1.342)  0.004 (-0.003, 0.011)  0.012 (-0.006, 0.031)
=095 -0.491 (-7.756, 6.774)  0.002 (-0.019, 0.024)  0.004 (-0.037, 0.044)

* Significantly different from zero at the 5 per cent level.

of the distribution (7 = {0.20,0.95}). The results about the nonlinear regression
coefficients are almost identical, except for two small differences. The effect of age
is significant also at the 10th percentile for females, estimates when 7 = 0.95 are
not significant.

We remark that the estimates are less accurate for extreme quantiles. Confidence
intervals are larger. In particular, we observe that, in correspondence to the 95th
percentile for the constrained logistic approach the estimates of the effects of age
and height are unusually large, besides the extreme largeness of confidence intervals.
We believe that, in these two situations, there was a failure in the maximization of
the likelihood due to the observation of true probabilities outside of the bound-
aries. Therefore, as higlighted in section [5.1] estimates at this quantiles cannot be
considered valid.

We have already observed that the aim of the modelization is the analysis of
changes in probabilities along with the effect of covariates. Therefore, it is important
to provide tools that can be of support for the interpretation and visualization of
such changes, if there are any.

The residual dependence on outcomes after removing the effect of the covariates
can be graphically described. To do so, after the estimation of the models, we
construct a figure in which the predicted probability of concordance is plotted against
covariates and directly compared with values of the largest possible dependence or
independence. We report the graphics for a selection of five quantiles out of the
eleven analyzed, for the two sex separated, and for both methods of probability
modelization.
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Table 6.4: Parameters estimates of constrained polynomial regression model for
males, outcomes were FEV1 and FEV1/FVC. 200 Bootstrap exponentially tilted
replications are used to estimate standard errors.

Intercept Age Height
7=0.05 0.379 (-5.971, 6.729)  0.005 (-0.007, 0.017 -0.001 (-0.037, 0.035)
7=0.10 0.399 (-1.505, 2.302)  0.008* (0.002, 0.015 -0.001 (-0.012, 0.009)
7=0.20 0.445 (-0.838, 1.729)  0.008* (0.003, 0.012 -0.001 (-0.009, 0.006)
7=0.30 0.176 ( (-0.004 ,0.006)
7=0.40 0.593 (-0.401, 1.587)  0.004* (0.001, 0.007 -0.001 (-0.006, 0.005)
7=0.50 0.542 (-0.168, 1.253)  0.002 (-0.000, 0.004)  -0.00005 (-0.004, 0.004)

- ) )
s 1720 )
-0.750, 1.103)  0.007* (0.003, 0.010)  0.001
- ) )
- ) )

7=0.60 1.383 (0.591, 2.174)  0.0003 (-0.002, 0.003) —0.005* (-0.009, -0.001)
=070 0.526 (-0.44, 1.492)  0.002 (-0.001, 0.005)  -0.001 (-0.006, 0.005)
=080 -0.105 (-1.254, 1.045)  0.004 (-0.001, 0.008)  0.002 (0.004, 0.008)
7=090 -0.444 (-4.328, 3.441)  0.004 (-0.009, 0.017)  0.003 (-0.016, 0.023)
=095 0.036 (-9.711, 9.783)  0.001 (-0.026, 0.029)  0.0004 (-0.050, 0.051)

* Significantly different from zero at the 5 per cent level.

We observe that the predictions are almost the same for both methods, showing
that there is coherence in the estimation of probabilities. When all the assumption
of the models are respected both models could be applied indisctinctly.

From figures 6.4, 6.6, [6.8, [6.10, [6.12 [6.14) [6.16] we can see that,
both for age and height, either for males and females, the association structure
between residuals is in general of positive dependence. We can say that the strenght
of positive association is higher for elderly patients, closer to 1 which is the value
of maximum positive dependence, both in males and females at the tails of the
distribution; whereas there is no effect of age on the probability from the median
above.

When looking at height we observe a slightly different situation. The concordance
decreases with height in the low tails, going from values close to 1 almost until the
threshold of independence. There is no change in the concordance for the median,
and we observe an increase with height when looking at the superior part of the
distribution.

The case of 7 = 0.95 must be analyzed separately. In fact, we observe different
predictions of probabilities for the constrained logistic and the constrained polyno-
mial regressions. In the first one (see figures , , , the probability
predicted is constant and equal to the minimal value attainable (o4.,_) for all the
combinations (males and females, height and age). On the other hand, for the sec-
ond one (see figures |6.10, |6.12) [6.14) we observe, almost always, a probability
which is slighlty increasing in all the covariates for females, and for age in males.
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The curve representing the probability of concordance passes through the line of in-
dependence, going from the negative dependence region toward the region of positive
dependence. In the case of the effect of height for males there is a difference. The
probability predicted is constant, falls in the upper region of positive dependence,
and is really close to the independence border (figure .

The situation observed for the modified approach logistic, derives from the failure
in the likelihood maximization discussed when commenting about coefficient esti-
mates. The assumptions of the model are not satisfied; true conditional probabilities
fall outside the range (0gep—, Odep+). In particular, we have that the true probability
is smaller than the minimum attainable. This induces high negative estimates of the
coefficients that result in a constant prediction of probability (Gage neight = Tdep—)-

To verify if there effectively is a change in the dependence structure between
the signs of the residuals, relying on the normal distribution of predicted values, we
performe Z-tests for all the different covariate patterns in the sample. We test the
differences between predicted probabilities of the model against the independence
value 0;p4ep. We consider a significance level of 95% and plot the values of the Z
statistic against the covariates. We then provide a graphical tool similar to the
one for the illustration of predictions. To simplify the interpretation we add to
the graphs horizontal lines in correspondence to 1.96 and -1.96 which delimit the
area representing 95% of the normal distribution. Values falling outside this area
are considered, with a confidence of 95%, different from the value of independence.
Furthemore, values above 1.96 correspond to covariate patterns in which a positive
dependence is detected and values below -1.96 to covariate patterns corresponding
to negative dependence. The results of Z-tests are reported in figures [6.3] 6.7
[6.11, [6.13] [6.15, [6.171 We observe that in general the structure of positive
dependence is confirmed except in few occasions. For 7 = 0.05 the predictions,
for females in polynomial regression along the covariate patterns in the dataset,
are between the situations of positive dependence and independence; whereas for
logistic constrained regression the situation of independence at this quantile was
more pronounced. There is a variation even at the 70th percentile: in the group of
females we have a confirmation of positive dependence, with sporadic observations
falling in the region of non-rejection, along age. Along height there is independence
in correspondence to low values and positive dependence for the highest ones in both
methods tested.

In particular we observe that, for all the scenarios considered, at the 95th quantile
there is always independence when the polynomial constrained regression is applied,
whereas the results of the test are not available for the logistic modified model,
which we have shown to be not valid at this level of the distribution.

Finally, in the extreme tails of the distribution of FEV1 and 1;%\217 corresponding
to the threshold values used to diagnose respiratory disfunctions, the application of
the method in the thesis showed that there is no change in the dependence structure
caused by age and height after having removed their univariate effect on quantiles.
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Figure 6.2: Probability of concordance predicted by constrained logistic regression
along age, for females, in correspondence to 5 selected quantiles. Prediction values
are compared with limit values of & statistic, as shown in the reference panel.
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Figure 6.3: Z-score values resulting from testing the differences between prediction
probabilities, relative to constrained logistic regression, and o4, for all the covari-
ate patterns in the dataset. The scores are plotted here against age for females, for
5 selected quantiles. A reference graph, illustrating the interpretation of figures, is
also reported. Differences are tested at a level of 95%.
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Figure 6.4: Probability of concordance predicted by constrained logistic regression
along height, for females, in correspondence to 5 selected quantiles. Prediction values
are compared with limit values of ¢ statistic, as shown in the reference panel.
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Figure 6.5: Z-score values resulting from testing the differences between prediction
probabilities, relative to constrained logistic regression, and o4, for all the covari-
ate patterns in the dataset. The scores are plotted here against height for females,
for 5 selected quantiles. A reference graph, illustrating the interpretation of figures,
is also reported. Differences are tested at a level of 95%.
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Figure 6.6: Probability of concordance predicted by constrained logistic regression
along age, for males, in correspondence to 5 selected quantiles. Prediction values
are compared with limit values of ¢ statistic, as shown in the reference panel.
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Figure 6.8: Probability of concordance predicted by constrained logistic regression
along height, for males, in correspondence to 5 selected quantiles. Prediction values
are compared with limit values of & statistic, as shown in the reference panel.
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Figure 6.9: Z-score values resulting from testing the differences between prediction
probabilities, relative to constrained logistic regression, and o4, for all the covari-
ate patterns in the dataset. The scores are plotted here against height for males, for
5 selected quantiles. A reference graph, illustrating the interpretation of figures, is
also reported. Differences are tested at a level of 95%.
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Figure 6.10: Probability of concordance predicted by constrained polynomial regres-
sion along age, for females, in correspondence to 5 selected quantiles. Prediction
values are compared with limit values of ¢ statistic, as shown in the reference panel.
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Figure 6.11: Z-score values resulting from testing the differences between prediction
probabilities, relative to constrained polynomial regression, and oj,qep for all the
covariate patterns in the dataset. The scores are plotted here against age for females,
for 5 selected quantiles. A reference graph, illustrating the interpretation of figures,
is also reported. Differences are tested at a level of 95%
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Figure 6.12: Probability of concordance predicted by constrained polynomial regres-
sion along height, for females, in correspondence to 5 selected quantiles. Prediction
values are compared with limit values of ¢ statistic, as shown in the reference panel.
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Figure 6.13: Z-score values resulting from testing the differences between prediction
probabilities, relative to constrained polynomial regression, and oj,qep for all the
covariate patterns in the dataset. The scores are plotted here against height for
females, for 5 selected quantiles. A reference graph, illustrating the interpretation
of figures, is also reported. Differences are tested at a level of 95%.
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Figure 6.14: Probability of concordance predicted by constrained polynomial re-
gression along age, for males, in correspondence to 5 selected quantiles. Prediction
values are compared with limit values of ¢ statistic, as shown in the reference panel.
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Figure 6.15: Z-score values resulting from testing the differences between prediction
probabilities, relative to constrained polynomial regression, and oj,qep for all the
covariate patterns in the dataset. The scores are plotted here against age for males,
for 5 selected quantiles. A reference graph, illustrating the interpretation of figures,
is also reported. Differences are tested at a level of 95%.
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Figure 6.16: Probability of concordance predicted by constrained polynomial regres-
sion along height, for males, in correspondence to 5 selected quantiles. Prediction
values are compared with limit values of ¢ statistic, as shown in the reference panel.
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Figure 6.17: Z-score values resulting from testing the differences between prediction
probabilities, relative to constrained polynomial regression, and oj,qep for all the
covariate patterns in the dataset. The scores are plotted here against height for
males, for 5 selected quantiles. A reference graph, illustrating the interpretation of
figures, is also reported. Differences are tested at a level of 95%.
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Chapter 7

Discussion and Future Work

7.1 Summary and Conclusions

The method presented in the thesis supplies an alternative solution to the anal-
ysis of multivariate structures in quantile regression frameworks. It preserves the
dependency on quantiles, without defining a notion of multivariate quantile.

Although not being an inferential regression instrument, our method can be
really powerful in real applications. It can be extensively used and understood by
researchers and allows an intuitive interpretation typical of univariate quantiles.

The crucial point of the method is the interpretation of multivariate structures in
terms of analyses of residual regressions. The avalaibility of appropriate regression
instruments to study conditional probabilities in a restricted range of definition is
an additional feature of the technique.

For what concerns modelization of probabilities, users could choose their own
preferred regression model. Linear regression with the introduction of splines on
covariates could also be a flexible tool for probability prediction. Among the two
regression methods proposed, we think that the use of a nonlinear regression method,
as the one described in section [5.2] is preferable to the logistic alternative discussed
in section [5.1] for prediction purposes, since it overcomes the problem related to
asymptotical definition of boundaries of the parameter space.

7.2 Future work

The method presented in the thesis offers the opportunity of many extensions. We
will list some of them.

e Comparison of more than two sets of residuals per time. When considering di-
mensions higher than 2, instead of making all the comparisons in pairs, define
an index that handles multidimensional comonoticities and countermonotonic-
ities.
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o Consider distinct quantiles in each pair. Comparing residuals of univariate
quantile regressions coming from taking different quantiles in each regression,
would give the opportunity to non-parametrically reconstruct the entire bi-
variate distribution of residuals.

o Application to non-quantile settings. The method could be applied to measure
concordances in any situation in which compared data are divided in two sets
based on different criteria; not only quantile repartition of the distribution.

o Avalaibility of software instruments. Last but not least, we aim at implement-
ing and releasing a package, either on R either on Stata, to give the users the
opportunity to apply the method without being forced to make the program-
ming theirselves.
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Simulation 2, Method:PCR, N=200

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8044 0.6318 0.4981 0.4137 0.3850 0.4137 0.4981 0.6318 0.8044
Oz=0 0.8022 0.6225 0.4881 0.4033 0.3776 0.4051 0.4906  0.6261  0.8027
std.err.  0.0057  0.0214 0.0363 0.0452  0.0490 0.0450 0.0363 0.0218  0.0063
bias -0.0022 -0.0093 -0.0099 -0.0104 -0.0074 -0.0086 -0.0075 -0.0057 -0.0017
mse 0.0001  0.0012 0.0031 0.0050 0.0055 0.0048 0.0029 0.0011 0.0001

Oz=1 0.8125 0.6597  0.5477  0.4794 0.4565 0.4794  0.5477  0.6597  0.8125
Op=1 0.8088  0.6527  0.5382  0.4712 0.4471 0.4680 0.5367 0.6481  0.8068
std.err.  0.0122  0.0293  0.0401  0.0468 0.0500 0.0468 0.0410 0.0287  0.0110
bias -0.0037 -0.0070 -0.0095 -0.0083 -0.0094 -0.0114 -0.0110 -0.0116 -0.0057

mse 0.0002 0.0011 0.0024 0.0038 0.0045 0.0037 0.0026 0.0010  0.0001

Table A.1: Estimated standard error, bias and mean squared error of probability
predictions, relative to the second smulation setting: binormal eteroskedastic distri-
bution of (Y1, Y?), size 200, polynomial constrained regression method.

Simulation 2, Method:PCR, N=500

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8044 0.6318 0.4981 0.4137 0.3850 0.4137 0.4981 0.6318 0.8044
Oz=0 0.8025 0.6277 0.4935 0.4101 0.3813 0.4116 0.4954 0.6291  0.8030
std.err.  0.0043 0.0151  0.0229 0.0293 0.0308 0.0287 0.0229 0.0147  0.0047
bias -0.0019 -0.0041 -0.0046 -0.0036 -0.0037 -0.0021 -0.0027 -0.0027 -0.0015
mse 0.0001  0.0008 0.0020 0.0033 0.0038 0.0031 0.0019 0.0007  0.0001

Op=1 0.8125 0.6597  0.5477  0.4794 0.4565 0.4794  0.5477 0.6597 0.8125
Op=1 0.8100  0.6577 0.5446  0.4759 0.4519 0.4757 0.5430 0.6557  0.8091
std.err.  0.0088  0.0192  0.0253 0.0297 0.0315 0.0297 0.0257 0.0186  0.0086
bias -0.0025 -0.0020 -0.0030 -0.0036 -0.0047 -0.0038 -0.0047 -0.0040 -0.0034
mse 0.0001  0.0007 0.0017 0.0029 0.0032 0.0028 0.0017 0.0007  0.0001

Table A.2: Estimated standard error, bias and mean squared error of probability
predictions, relative to the second smulation setting: binormal eteroskedastic distri-
bution of (Y1, Y?), size 500, polynomial constrained regression method.
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Simulation 2, Method:PCR, N=1000

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ox=0 0.8044 0.6318 0.4981 0.4137 0.3850 0.4137 0.4981 0.6318 0.8044
Ou=0 0.8028  0.6294 0.4965 0.4122 0.3837 0.4119 0.4961 0.6305 0.8033
std.err.  0.0035 0.0103  0.0166  0.0201 0.0214 0.0201  0.0164 0.0102  0.0038
bias -0.0016 -0.0024 -0.0016 -0.0015 -0.0013 -0.0019 -0.0020 -0.0014 -0.0012
mse 0.0001  0.0006  0.0016 0.0026  0.0031  0.0027  0.0016  0.0005  0.0001

Op=1 0.8125  0.6597  0.5477  0.4794 0.4565 0.4794  0.5477  0.6597 0.8125
Ou=1 0.8111  0.6589  0.5464 0.4786  0.4544 04777 0.5460 0.6574 0.8103
std.err.  0.0065 0.0131  0.0184 0.0216 0.0224  0.0213  0.0187 0.0129  0.0064
bias -0.0014 -0.0008 -0.0013 -0.0008 -0.0021 -0.0018 -0.0016 -0.0023 -0.0022
mse 0.0001  0.0005 0.0015 0.0025 0.0029 0.0025 0.0015 0.0005  0.0001

Table A.3: Estimated standard error, bias and mean squared error of probability
predictions, relative to the second smulation setting: binormal eteroskedastic distri-
bution of (Y1, Y?), size 1000, polynomial constrained regression method.

Simulation 2, Method:LCR, N=200

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ox=0 0.8044 0.6318 0.4981 0.4137 0.3850 0.4137 0.4981 0.6318 0.8044
Ou=0 0.8022 0.6225 0.4881  0.4033 0.3776  0.4051 0.4906 0.6261  0.8027
std.err.  0.0057  0.0214 0.0363 0.0452 0.0490 0.0450 0.0363 0.0217  0.0063
bias -0.0022  -0.0093 -0.0099 -0.0104 -0.0074 -0.0086 -0.0075 -0.0057 -0.0017
mse 0.0001  0.0012  0.0031 0.0050 0.0055 0.0048 0.0029 0.0011  0.0001

Ox=1 0.8125  0.6597  0.5477  0.4794 0.4565 0.4794  0.5477  0.6597 0.8125
Oa=1 0.8085  0.6527 0.5382  0.4712 0.4471 0.4680 0.5367 0.6481  0.8065
std.err.  0.0124  0.0294 0.0401  0.0468 0.0500  0.0468 0.0410 0.0287  0.0111
bias -0.0040 -0.0070 -0.0095 -0.0083 -0.0094 -0.0115 -0.0110 -0.0116 -0.0060
mse 0.0002 0.0011  0.0024 0.0038 0.0045 0.0037 0.0026 0.0010  0.0001

Table A.4: Estimated standard error, bias and mean squared error of probability
predictions, relative to the second smulation setting: binormal eteroskedastic distri-
bution of (Y1, Y?), size 200, logistic constrained regression method.
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Simulation 2, Method:LCR, N=500

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8044 0.6318 0.4981 0.4137 0.3850 0.4137 0.4981 0.6318 0.8044
Oz=0 0.8025 0.6277 0.4935 0.4101 0.3813 04116 0.4954 0.6291  0.8030
std.err.  0.0043  0.0151  0.0229 0.0293 0.0308  0.0287 0.0229  0.0147  0.0047
bias -0.0019 -0.0041 -0.0046 -0.0036 -0.0037 -0.0021 -0.0027 -0.0027 -0.0015
mse 0.0001  0.0008 0.0020 0.0033 0.0038 0.0031 0.0019 0.0007  0.0001

Oz=1 0.8125 0.6597  0.5477  0.4794 0.4565 0.4794  0.5477  0.6597  0.8125
Op=1 0.8098  0.6577 0.5446  0.4759  0.4519 04757 0.5430 0.6557  0.8089
std.err.  0.0090 0.0192 0.0253  0.0297 0.0315 0.0297  0.0257 0.0186  0.0087
bias -0.0027 -0.0020 -0.0030 -0.0036 -0.0047 -0.0038 -0.0047 -0.0040 -0.0036

mse 0.0001  0.0007 0.0017 0.0029 0.0032 0.0028 0.0017 0.0007  0.0001

Table A.5: Estimated standard error, bias and mean squared error of probability
predictions, relative to the second smulation setting: binormal eteroskedastic distri-
bution of (Y1, Y?), size 500, logistic constrained regression method.

Simulation 2, Method:LCR, N=1000

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8044 0.6318 0.4981 0.4137 0.3850 0.4137 0.4981 0.6318 0.8044
Oz=0 0.8006  0.6294 0.4965 0.4122 0.3837 0.4119 0.4961 0.6305 0.8007
std.err.  0.0014 0.0103 0.0166 0.0201 0.0214 0.0201 0.0164 0.0102 0.0016
bias -0.0038 -0.0024 -0.0016 -0.0015 -0.0013 -0.0019 -0.0020 -0.0014 -0.0037
mse 0.0001  0.0006 0.0016 0.0026 0.0031 0.0027 0.0016 0.0005  0.0001

Op=1 0.8125 0.6597  0.5477  0.4794 0.4565 0.4794  0.5477 0.6597 0.8125
Op=1 0.8010 0.6589  0.5464 0.4786 0.4544 04777 0.5460 0.6574  0.8007
std.err.  0.0034 0.0131 0.0184 0.0216 0.0224 0.0213 0.0187 0.0129  0.0027
bias -0.0115 -0.0008 -0.0013 -0.0008 -0.0021 -0.0018 -0.0016 -0.0023 -0.0118
mse 0.0001  0.0005 0.0015 0.0025 0.0029 0.0025 0.0015 0.0005 0.0001

Table A.6: Estimated standard error, bias and mean squared error of probability
predictions, relative to the second smulation setting: binormal eteroskedastic distri-
bution of (Y1, Y?), size 1000, logistic constrained regression method.
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Simulation 3, Method:PCR, N=200

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ox=0 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376  0.8526  0.8899
Ou=0 0.8798 0.8404 0.8275 0.8214 0.8179 0.8181 0.8255  0.8421  0.8797
std.err.  0.0261  0.0338 0.0364 0.0372 0.0375 0.0370 0.0363 0.0333  0.0255
bias -0.0101 -0.0121 -0.0100 -0.0101 -0.0120 -0.0134 -0.0120 -0.0105 -0.0102
mse 0.0008  0.0013 0.0014 0.0015 0.0015 0.0015 0.0015 0.0012  0.0008

Op=1 0.8899 0.8526  0.8376 0.8315 0.8299 0.8315 0.8376  0.8526  0.8899
Ou=1 0.8809 0.8423 0.8269 0.8202 0.8187 0.8193 0.8254 0.8403  0.8796
std.err.  0.0258  0.0327  0.0360  0.0373  0.0379  0.0370  0.0355 0.0341  0.0265
bias -0.0090 -0.0103 -0.0107 -0.0113 -0.0113 -0.0123 -0.0121 -0.0122 -0.0104
mse 0.0007  0.0012 0.0014 0.0015 0.0016 0.0015 0.0014 0.0013  0.0008

Table A.7: Estimated standard error, bias and mean squared error of probability
predictions, relative to the third simulation setting: Frank copula distribution of
(Y1, Y?), size 200, polynomial constrained regression method.

Simulation 3, PCR Model, N=500

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ox=0 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376 0.8526  0.8899
Ou=0 0.8858  0.8477 0.8336  0.8267 0.8248 0.8266  0.8331  0.8477  0.8857
std.err.  0.0163  0.0211  0.0235 0.0236  0.0238  0.0238 0.0225 0.0212  0.0165
bias -0.0041 -0.0049 -0.0040 -0.0048 -0.0052 -0.0049 -0.0044 -0.0049 -0.0042
mse 0.0003  0.0005  0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0003

Ox=1 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376 0.8526  0.8899
Oa=1 0.8872 0.8486 0.8332 0.8274 0.8252 0.8265 0.8335 0.8476  0.8856
std.err.  0.0164 0.0213  0.0237  0.0239 0.0239 0.0235 0.0232 0.0213  0.0165
bias -0.0027  -0.0039 -0.0043 -0.0041 -0.0048 -0.0050 -0.0041 -0.0050 -0.0043
mse 0.0003  0.0005  0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0003

Table A.8: Estimated standard error, bias and mean squared error of probability
predictions, relative to the third simulation setting: Frank copula distribution of
(Y1, Y?), size 500, polynomial constrained regression method.
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Simulation 3, PCR Model, N=1000

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376  0.8526  0.8899
Oz=0 0.8875 0.8504 0.8355 0.8293 0.8270 0.8293 0.8351 0.8502  0.8880
std.err.  0.0118  0.0152 0.0156  0.0166  0.0169 0.0169 0.0160 0.0149 0.0114
bias -0.0024 -0.0021 -0.0020 -0.0022 -0.0029 -0.0023 -0.0025 -0.0024 -0.0019
mse 0.0001  0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0002 0.0001

Oz=1 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376 0.8526  0.8899
Op=1 0.8886 0.8513 0.8353  0.8288  0.8277 0.8288  0.8345 0.8507  0.8876
std.err.  0.0119  0.0148 0.0160 0.0166  0.0169 0.0168 0.0163 0.0148 0.0118
bias -0.0013 -0.0012 -0.0022 -0.0027 -0.0022 -0.0027 -0.0031 -0.0019 -0.0023

mse 0.0001  0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0001

Table A.9: Estimated standard error, bias and mean squared error of probability
predictions, relative to the third simulation setting: Frank copula distribution of
(Y1, Y?), size 1000, polynomial constrained regression method.

Simulation 3, LCR Model, N=200

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Oz=0 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376 0.8526  0.8899
Oz=0 0.8798 0.8404 0.8275 0.8214 0.8179 0.8181 0.8255 0.8421  0.8797
std.err.  0.0261  0.0338 0.0364 0.0372 0.0375 0.0370 0.0363 0.0333  0.0255
bias -0.0101 -0.0121 -0.0100 -0.0101 -0.0120 -0.0134 -0.0120 -0.0105 -0.0102
mse 0.0008 0.0013 0.0014 0.0015 0.0015 0.0015 0.0015 0.0012  0.0008

Op=1 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376 0.8526  0.8899
Op=1 0.8809 0.8423 0.8269 0.8202 0.8187 0.8193 0.8254 0.8403 0.8796
std.err.  0.0258  0.0327  0.0360 0.0373  0.0379 0.0370 0.0355 0.0341  0.0265
bias -0.0090 -0.0103 -0.0107 -0.0113 -0.0113 -0.0123 -0.0121 -0.0122 -0.0104
mse 0.0007 0.0012 0.0014 0.0015 0.0016 0.0015 0.0014 0.0013 0.0008

Table A.10: Estimated standard error, bias and mean squared error of probability
predictions, relative to the third simulation setting: Frank copula distribution of
(Y1 Y?), size 200, logistic constrained regression method.
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Simulation 3, LCR Model, N=500

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ox=0 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376  0.8526  0.8899
Ou=0 0.8858 0.8477 0.8336  0.8267 0.8248 0.8266 0.8331  0.8477  0.8857
std.err.  0.0163  0.0211  0.0235 0.0236  0.0238  0.0238  0.0225 0.0212  0.0165
bias -0.0041 -0.0049 -0.0040 -0.0048 -0.0052 -0.0049 -0.0044 -0.0049 -0.0042
mse 0.0003  0.0005  0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0003

Op=1 0.8899 0.8526  0.8376 0.8315 0.8299 0.8315 0.8376  0.8526  0.8899
Ou=1 0.8872 0.8486 0.8332 0.8274 0.8252 0.8265 0.8335 0.8476  0.8856
std.err.  0.0164 0.0213  0.0237 0.0239 0.0239 0.0235 0.0232 0.0213  0.0165
bias -0.0027  -0.0039 -0.0043 -0.0041 -0.0048 -0.0050 -0.0041 -0.0050 -0.0043
mse 0.0003  0.0005  0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0003

Table A.11: Estimated standard error, bias and mean squared error of probability
predictions, relative to the third simulation setting: Frank copula distribution of
(Y1,Y?), size 500, logistic constrained regression method.

Simulation 3, LCR Model, N=500

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ox=0 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376 0.8526  0.8899
Ou=0 0.8875 0.8504 0.8355 0.8293 0.8270 0.8293 0.8351 0.8502  0.8880
std.err.  0.0118 0.0152 0.0156 0.0166 0.0169 0.0169 0.0160 0.0149 0.0114
bias -0.0024 -0.0021 -0.0020 -0.0022 -0.0029 -0.0023 -0.0025 -0.0024 -0.0019
mse 0.0001  0.0002  0.0002 0.0003 0.0003 0.0003 0.0003 0.0002 0.0001

Ox=1 0.8899 0.8526 0.8376 0.8315 0.8299 0.8315 0.8376 0.8526  0.8899
Oa=1 0.8886  0.8513  0.8353  0.8288 0.8277 0.8288 0.8345 0.8507  0.8876
std.err.  0.0119 0.0148 0.0160 0.0166 0.0169 0.0168 0.0163 0.0148 0.0118
bias -0.0013 -0.0012 -0.0022 -0.0027 -0.0022 -0.0027 -0.0031 -0.0019 -0.0023
mse 0.0001  0.0002  0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0001

Table A.12: Estimated standard error, bias and mean squared error of probability
predictions, relative to the third simulation setting: Frank copula distribution of
(Y1, Y?), size 1000, logistic constrained regression method.
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Appendix B

Software development

We report a selection of the programs used to show results in the thesis. We have
used the statistical software R. We indicate with 7 the general quantile.

B S s
#it####tgradient search algorithm for non linear least squares,######H#H#H#H##
######polynomial constrained regression#######H#HHHHHHEHHHIHHEHHHHEREHH
B S

mom.gs.l <- function(y,r,w) -mean(w*(y - (r~2%(3-2%r)*(r>0)*(r<1) + (r>1))
*(1-m)-m) "2) #non-linear polynomial function
mom.gs.s <- function(tx,y,r,w) tx%*lh(wx2*x(y - (r~2*(3-2*xr)*(r>0)*(r<1) + (r>1))
*(1-m)-m) * (6% (r-r~2) *(r>0) *(r<1)*(1-m))) /length(y) #gradient
mom.gs <- function(y,x,w=1,beta=1lm.fit(x,y)3$coef,delta=1,a=.25,b=1.25,t0l=1e-7,
maxiter=1000){
tx <- t(x)
r <- x¥%*x%beta
1 <- mom.gs.1l(y,r,w)
s <- mom.gs.s(tx,y,r,w)
for(i in 1:maxiter) {
nb <- beta + s*delta
r <- x%*x%nb
nl <- mom.gs.1l(y,r,w)
if (n1<1) {
delta <- axdelta
+
else {
if (abs (max ((beta-nb) /beta))<tol) return(nb)
beta <- nb
1 <- nl
s <- mom.gs.s(tx,y,r,w)
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delta <- bxdelta

}

}

print ("Convergence not achieved")

nb

} #gradient search algorythm

HEHBH B HAH B HAHBHHAHBHHAEHBH R HAEH B HAH B HAH SRR BH R HBH R H BB
#Hu##f#H###loglikelihood function for the###########H7HHHIH#
#H#####H####logistic constrained model#########H###HAHIHUHHHHHH
HESHHAFH AR HHAFHBHHHAFHHAFH B RS H RS H RS HHHRHRHRHR
loglik <- function(gamma, y, x, m, w=1){

n <- length(y)
eta <- x%xJcbind(gamma)
expeta <- exp(eta)
tx <-t(x)
11 <- log(1-m) - log(l+expeta) + y*log(expeta+m) - y*log(l-m)
g <- (expeta)*(-1/(1+expeta) + y/(m + expeta))
if (any(out <- which(eta > 709))){
yout <- yl[out]
etaout <- etalout]
11[out] <- log(l-m) - etaout + yout*etaout - yout*log(1l-m)
glout] <- yout -1
}
logl <- -sum(1llx*w)
attr(logl, "gradient") <- -t(tx%*%(gxw))
logl
}

For the simulation studies we report the program relative only to the first scenario
in G5

set.seed(123)

HHSFHHF R RS R
######binormal omoskedastik setting#####HitufHHHit#

HHHSH A HH SRS RS R R

library (mnormt)

rMnorm <- function(n, mul,mu2, V){

y <- NULL

for(i in 1:n){

y <- rbind(y,rmnorm(n = 1, mean = c(mul[i],mu2[i]), varcov = V))
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+
y
by

V <- matrix(c(1,0.7,0.7,2),2,2)

HEHAH B HAHBHHEHBHHEHAH RS HAHBHHEHBHHEH R B G H AR RS H AR RS HEHBHHEH AR RS H AR RS H AR RS H
#####Theoretical calculation of concordance probability ######H#####H#HSHIH
HARFHHHHHBFHHAFHBRHHBFHBAFHBRHHAFHBAAHBHHHAFH B A B ARG R RS R B HHAFH B R AR R RS
a0 <- 1

al <- 3

b0 <- bl <-2

ql0 <- gnorm(p=tau, a0, 1)

qll <- gnorm(p=tau, aO+al, 1)

q20 <- gnorm(p=tau, b0, sqrt(2))

q21 <- gnorm(p=tau, bO+bl, sqrt(2))

c(a0, b0), varcov = V)

pO <- pmnorm(c(ql0, g20), mean
sigma0 <- 1 + 2%(p0 - tauw)

pl <- pmnorm(c(qll, g21), mean = c(aO+al, bO+bl), varcov = V)

sigmal <- 1 + 2x(pl - tau)

p-true <- c(sigma0l, sigmal)

HEHHHHHH B R R R R R
######Monte Carlo replications#i########ddddH####
HAHBH B HAHBHHAHBHHAHBHHBHBH R HBHBRHAH RS HAH RS HAHH
library(quantreg)

B <- 2000

ppLC <- NULL

ppPC <- NULL

m <- abs(2*%tau -1) #maximum negative dependence
for(i in 1:B){

HEHAH B HAHBHHEHBEH B H AR RS H AR RS HEHBH RS H AR RS HAHH
######generate binormal omoskedastic data####
HEHHHHHH AR HBH AR R R

X <- rbinom(n,1,p=0.5)

mul <- a0 + al*x

mu2 <- b0 + blxx

y <= rMnorm(n, mul, mu2, V)

y1 <= y[,1]

y2 <- y[,2]
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tau)
tau)

ml <- rq(yl ~ x, tau
m2 <- rq(y2 = x, tau

resl <- mi$residuals
res?2 <- m2$residuals

sl <- sign(resl)
s2 <- sign(res2)

Z <- as.numeric(sl == s2)
xx <- cbind(1,x)

HHHHH R R R R R R R

#H########l ogistic constrained regression#####

HHHHH R R

pO <- mean(Z)

int0 <- log((pO-m + 0.03)/(1-p0)) #starting intercept point

ModLC <- nlm(f = loglik, p = c(int0,0), y = Z, X = xx, m=m, stepmax=10000)

beta.hatLC <- ModLC$estimate

predLC <- cbind((exp(beta.hatLC[1])+m)/(1 + exp(beta.hatLC[1])),
(exp(sum(beta.hatLC))+m)/(1 + exp(sum(sum(beta.hatLC)))) )

ppLC <- rbind(ppLC, predLC)

HHSHHF RS RS H GRS HE R

###polynomial constrained regression#####

HHHSH RS R R

X <- cbind(1,t <- scale(xx[,-11))

ModPC <- mom.gs(Z,X)

beta.hatPC <- (c(modPC[1]-sum(modPC[-1]*attr(t,"scaled:center")/attr(t,"scaled:scalc

modPC[-1]/ attr(t,"scaled:scale")))
predPC <- cbind((beta.hatPC[1] “2*(3-2*beta.hatPC[1])*(beta.hatPC[1]>0)*(beta.hatPC[1
+ (beta.hatPC[1]>1))*(1-m)+m,

(sum(beta.hatPC) "2* (3-2*sum(beta.hatPC) ) * (sum(beta.hatPC)>0)
* (sum(beta.hatPC)<1) + (sum(beta.hatPC)>1))*(1-m)+m)

ppPC <- rbind(ppPC, predPC)
b
######Calculate standard error, bias and MSE of probability estimates###

it ##Logistic constrained regression##i##
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ppestLC <- apply(ppLC,2,mean)

sdestpredLC <- apply(ppLC,2,sd)

biaspredLC <- ppestLC - p.true

MSEpredLC <- apply(((ppLC - p.true)”2),2,mean)

########Polynomial constrained regression####
ppestPC <- apply(ppPC,2,mean)
sdestpredPC <- apply(ppPC,2,sd)
biaspredPC <- ppestPC - p.true
MSEpredPC <- apply(((ppPC - p.true)~2),2,mean)

The following selection of program refers to the application shown in [6]

rm(list=1s())

library(quantreg)

library(epiR)

lung <- read.table(file="/home/silvia/Dropbox/RandomBivariate/ProgrammiR/
Data_lungfun.txt", sep="\t", header=TRUE)

ratio <- round(lung$fevl/lung$fvc,3)

lungfun <- cbind(lung, ratio)

lungfunf <- lungfun[sex==’female’,]

HAHAH B HAHHHHAHHHHBHBH R HAH RS HAHBGHAHBHHAH B HBH ARG HAH RS H AR H AR RS
Hu#H S festimation of the model#########H##H#HAHHAH
HEHAH B HAHBHHAHBHHEHBHHEHAH RS HAH B HAH RS R AR BH R HBH RS H AR RS H AR RS R AR B HHR

ml <- rq(fevl ~ age + hgt, tau = tau, data=lungfunf)
m2 <- rq(ratio ~ age + hgt, tau = tau, data=lungfunf)

resl <- mi$residuals
res?2 <- m2$residuals

srl <- sign(resl)
sr2 <- sign(res2)

indip <- 1 + 2%i"2- 2%i
m <- abs(2%xi-1)

Z <- as.numeric(srl == sr2)
X <- cbind(1,lungfunf$age, lungfunf$hgt)
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##dHHH R #Logistic constrained regression######H#HHHHHHEHHHIHTY

p0 <- mean(Z)

int0 <- log((p0-m+0.03 )/ (1-p0))

ModLC <- nlm(f = loglik, p = c(int0,0,0), y = Z, X = X, m=m, stepmax=1000)
gamma.hatLC <- ModLC$estimate

prLC <- x%*%gamma.hatLC #predizioni modello
p-hatLC <- (exp(prLC)+m)/(1 + exp(prLC))

it #Polynomial constrained regression###HHHHHHHHHIEE 1 #

X <- cbind(1,t <- scale(x[,-1]1))

modPC <- mom.gs(Z,X)

gamma.hatPC <- (c(modPC[1]-sum(modPC[-1]
xattr(t,"scaled:center")/attr(t,"scaled:scale")),
modPC[-1]/attr(t,"scaled:scale")))

B S S g 2
#######bootstrap exponentially tilted replications#####df#itHutaftitnns
B G 2
Gammab.hatLC <- NULL

Gammab.hatPC <- NULL

pb.hatLC <- NULL

pb.hatPC <- NULL

N <- nrow(lungfunf)

B <- 200

for(j in 1:B){

ww <- rexp(N)

mlb <- rq(fevl ~ age + hgt, tau = tau, data = lungfunf, w=ww)
m2b <- rq(ratio ~ age + hgt, tau = tau, data = lungfunf, w=ww)

reslb <- mlb$residuals
res2b <- m2b$residuals

srib <- sign(reslb)
sr2b <- sign(res2b)

Zb <- as.numeric(srilb == sr2b)
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#########Logistic Constrained regression######

pOb <- mean(Zb)

intOb <- log((pOb-m+0.05)/(1-pOb))

ModbLC <- nlm(f = loglik, p = c(int0b,0,0), y = Zb, X = X, m=m, w=ww,
stepmax = 1000)

gammab.hatLC <- ModbLC$estimate

Gammab.hatLC <- rbind(Gammab.hatLC, gammab.hatLC)

prbLC <- xY%*Jgammab.hatLC

pb.hatlCn <- (exp(prb)+m)/(1 + exp(prb))

pb.hatLC <- cbind(pb.hatLC,pb.hatLCn)

#####H####Polynomial constrained regression####Hi#fHH#HARH

modbPC <- mom.gs(Zb,X, w=ww)

gammab.hatPC <- (c(modbPC[1]-sum(modbPC[-1]
*attr(t,"scaled:center")/attr(t,"scaled:scale")),

modbPC[-1]/attr(t,"scaled:scale")))

prbPC <- x¥*Jgammab.hatPC

pb.hatbPCn <- (prbPC~2%(3-2*prbPC) * (prbPC>0) * (prbPC<1) + (prbPC>1))*(1-m)+m

pb.hatPC <- cbind(pb.hatLC, pb.hatbPCn)

Gammab.hatPC <- rbind(Gammab.hatPC, gammab.hatPC)

by

HEHHHHHH B H R R R R R R R R
HEHHHHHH BRI poST estimation commands######HHHHFHHHHHHFHFHBHAHHHHH
HEH R R R R R R R

#u##HHH R Logistic constrained regression######HHHHHHHHERSHIH
sd.gamma.hatLC <- apply(Gammab.hatLC,2,sd)

ci_lowLC <- gamma.hatLC - 1.96%*sd.gamma.hatLC

ci_upLC <- gamma.hatLC + 1.96*sd.gamma.hatLC

ci.estLC <- cbind(gamma.hatLC, gamma_lowLC, gamma_upLC)

sd.p.hatLC <- apply(pb.hatLC,1,sd)

prLC <- x%*’gamma.hatLC

p.hatLC <- (exp(prLC)+m)/(1 + exp(prLC))
p-hat_lowLC <- p.hatLC - 1.96%*sd.p.hatLC

p.-hat_upPC <- p.hatPC + 1.96%*sd.p.hatLC

ci_predLC <- cbind(p.hatPC, p.hat_lowLC, p.hat_upLC)

it #Polynomial constrained regression###HHHHHHHHEE 1 #H#
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sd.gamma.hatPC <- apply(Gammab.hatPC,2,sd)

gamma_lowPC <- gamma.hatPC - 1.96*sd.gamma.hatPC
gamma_upPC <- gamma.hatPC + 1.96%*sd.gamma.hatPC
ci.estPC <- cbind(gamma.hatPC, gamma_lowPC, gamma_upPC)

sd.p.hatPC <- apply(pb.hatPC,1,sd)

prPC <- x%*%gamma.hatPC

p.-hatPC <- (pr~2*(3-2%prPC) * (prPC>0) * (prPC<1) + (prPC>1))*(1-m)+m
p.-hat_lowPC <- p.hatPC - 1.96*sd.p.hatPC

p.-hat_upPC <- p.hatPC + 1.96*sd.p.hatPC

ci_predPC <- cbind(p.hatPC, p.hat_lowPC, p.hat_upPC)

HHHHH S HHH SRS R S R R R
#iHHH#HHHHRRRRHH#AGraphs of concordance probability########HH I ###
HHSFHHH R RS HH RS R R R RS R R R R
par(las=1, mai=c(.9,1.2,0.7,0.3))

plot (lungfunf$age, p.hatLC, ylim=c(m,1), main = "Concordance plot LC",
ylab = "Concordance Probability", xlab="Age",cex.main=2.5, cex.lab=2.5,
cex.axis=1.9, mgp = c(4.5,1.1,0), cex=1, pch=19)

abline(h=1, col=5, 1lwd = 3)

abline(h = indip, col="blue", lwd = 3)

abline(h = m, col="red", lwd = 3)

par(las=1, mai=c(.9,1.2,0.7,0.3))

plot(lungfunf$age, p.hatPC, ylim=c(m,1), main = "Concordance plot PC",
ylab = "Concordance Probability", xlab="Age", cex.main=2.5, cex.lab=2.5,
cex.axis=1.9, mgp = c(4.5,1.1,0), cex=1, pch=19)

abline(h=1, col=5, lwd = 3)

abline(h = indip, col="blue", lwd = 3)

abline(h = m, col="red", lwd = 3)

HEFH R R
HEHHHAH R R #Z-score 1independence test#####H###HEHHHAHHHHHHERH
B R S s s R S R s S S s S S

data <- as.data.frame(cbind(lungfunf$age,lungfunf$hgt))
pat <- epi.cp(data)
cv <- pat$cov.pattern



135

pprLC <- unique(p.hatLC)
sddLC <- unique(sd.p.hatLC)

pr.cvLC <- NULL

zscorelLC <- NULL

for(h in 1:length(pprLC)){
phat.cvLC <- pprLC[h]
pr.cvLC <- rbind(pr.cvLC, phat.cvLC)
zscore_pLC <- (phat.cvLC - indip)/ sddLC[h]
zscoreLC <- rbind(zscorelC, zscore_pLC)

}

col2rgb("grey", alpha=TRUE)

greytrans <- rgb(190, 190, 190, 127, maxColorValue=255)
par(mai=c(.9,1.3,0.6,0.3), mgp = c(4.5,1,0))

plot(cv$Vl,zscorelC, xlab="Age", ylab="Z-score", ylim =c(-3,16), yaxt=’n’,
main= "Zscore test LC", cex.main=2.5, cex.lab =2.3, cex.axis=1.8, pch=19)
axis(2, at= -1.96, labels=T, 1lwd=3, col="red", cex.axis=1.8, las=1)
axis(2, at= 1.96, labels=T, 1lwd=3, col="red", cex.axis=1.8, las=1)
abline(h=-1.96, 1lwd=3, col="red")

abline(h=1.96, 1lwd=3, col="red")

xmin <- par("usr") [1]

xmax <- par("usr") [2]

polygon(c(xmin, xmin, xmax, xmax, xmin), c(-1.96, 1.96,1.96, -1.96,-1.96), col=gre

pprPC <- unique(p.hatPC)
sddPC <- unique(sd.p.hatPC)

pr.cvPC <- NULL

zscorePC <- NULL

for(h in 1:length(pprPC)){
phat.cvPC <- pprPC[h]
pr.cvPC <- rbind(pr.cvPC, phat.cvPC)
zscore_pPC <- (phat.cvPC - indip)/ sddPC[h]
zscorePC <- rbind(zscorePC, zscore_pPC)

3

par(mai=c(.9,1.3,0.6,0.3), mgp = c(4.5,1,0))

plot(cv$Vl,zscorePC, xlab="Age", ylab="Z-score", ylim =c(-3,16), yaxt=’n’,
main= "Zscore test PC", cex.main=2.5, cex.lab =2.3, cex.axis=1.8, pch=19)
axis(2, at= -1.96, labels=T, lwd=3, col="red", cex.axis=1.8, las=1)
axis(2, at= 1.96, labels=T, lwd=3, col="red", cex.axis=1.8, las=1)
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abline(h=-1.96, 1lwd=3, col="red")

abline(h=1.96, 1lwd=3, col="red")

xmin <- par("usr") [1]

xmax <- par("usr") [2]

polygon(c(xmin, xmin, xmax, xmax, xmin), c(-1.96, 1.96,1.96, -1.96,-1.96), col=greyt



	List of Figures
	List of Tables
	I Background and literature review
	Introduction to Quantile Regression
	Quantiles and Quantile function
	Linear quantile regression
	Quantile regression as a linear program
	Characterization of solutions
	Quantile regression versus linear regression 
	Equivariance

	Multiple responses
	Multivariate linear regression
	Multivariate quantiles and multivariate quantile regression
	Geometrical median-oriented quantiles
	Multivariate quantile functions based on depth functions
	Multivariate quantile based on norm minimization: the geometric quantile
	Multivariate quantiles as inversions of mappings
	Comparison of multivariate quantile definitions and their application to multiple response regression


	Association and dependence structures
	Desired properties of dependence measures
	Linear correlation
	Concordance
	Spearman's rho and Kendall's tau coefficients
	Positively quadrant dependent

	Tail dependence
	Copula functions


	II Modeling of dependence of quantile regression residuals' signs for bivariate responses
	Residuals signs' concordance
	Modeling the concordance of probability
	Constrained logistic regression model
	Constrained polynomial regression model
	Asymptotic properties
	Asymptotic variance for the constrained logistic regression parameters
	Asymptotic variance for the constrained polynomial model

	Computational methods
	Simulation studies

	Application and interpretation of results
	Discussion and Future Work
	Summary and Conclusions
	Future work

	Bibliography
	Appendix Simulation tables
	Appendix Software development


