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Objectives 

 

 

Chemoreception represents one of the most important sensory modality to guarantee animals 

survival, and it plays a fundamental role also in an insect life. In fact, the detection of food 

sources and proper sites of ovoposition, the identification of conspecifics for mating or 

aggregation, the recognition of prey or predators are all behaviors resulting from the activation of 

different processes after the exposure to the wide range of soluble and volatile chemical 

molecules in the environment. In this respect, insects present clearly separate senses of taste 

and olfaction comparable to those of vertebrates, and they represent an excellent experimental 

model to investigate the complexity of gustative and olfactory systems also thanks to the relative 

simple organization of their neuronal circuits, as well as the feasibility of the breeding.  

On the basis of these considerations, aim of this work was to give a contribution on the general 

understanding of chemoreceptive mechanisms. In particular, two main aspects of 

chemoreception in insects were investigated, divided in two separate sections. 

Section 1. Elucidation of the role of K
+
 channels in the encoder repetitive firing in sensory 

receptors, by means of some K
+
 channels inhibitors (4-aminopyridine and 5-hydroxytryptamine). 

This study was conducted in the labellar chemosensilla of the blowfly, Protophormia terraenovae. 

Section 2. Study of the morphological properties of the olfactory system in the Mediterranean fruit 

fly Ceratitis capitata, by means of two different staining techniques, confocal microscopy and 

image analysis. The combination of these tools allowed the construction of three-dimensional 

maps of the first olfactory centre in the central nervous system of the medfly, the Antennal Lobe. 
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Introduction 

 

1. Insect Chemoreception 

The ability to sense various chemical substances in the environment is a fundamental 

requirement for animals survival. In this respect, chemoreception represents one of the most 

important sensory modality. Chemoreception is defined as the process by which organisms 

respond to chemical stimuli in their environments, and it basically relies on the chemical senses 

taste (gustation) and smell (olfaction), the most common and ancient sensory systems within the 

animal kingdom (de Bruyne and Warr, 2005; Strausfeld and Hildebrand, 1999). These senses 

convey information about the external world to the nervous system, inducing appropriate 

behavioral responses accordingly.  

In general, the distinction of taste and smell is based on the anatomical location of the sense 

organs, as well as the chemical state of the stimulant molecules (gaseous for odorants and solid 

or liquid for tastants). However, this distinction is not valid for aquatic organisms, that live in an 

environment in which all chemicals are dissolved in the same medium, water. To solve this 

contradiction, gustation is better defined as contact-chemoreception since chemicals, usually at 

higher concentrations, are perceived when there is a direct contact between the organisms and a 

substrate. In contraposition, olfaction is defined as distance-chemoreception, allowing to sense 

chemicals present in the environment at relatively low concentration (de Bruyne and Warr, 2005).  

In the past years, a great deal of research has been conducted on vertebrates and invertebrates 

to elucidate chemoreceptive mechanisms at all the morphological, biochemical, functional and 

behavioral levels. The results obtained by these combined efforts confirmed the thought that, 

despite the fact that there are clear anatomical and molecular distinctions between vertebrates 

and invertebrates, their sensory systems evolved a common organization (Ache and Young, 

2005; Hildebrand and Shepherd, 1997; Hildebrand, 1995; Strausfeld and Hildebrand, 1999) . 

Among invertebrates, Arthropods are the most ubiquitous animal group, representing about 80% 

of all known living animal species (Fig. 1), likely involved in ecosystems conservation due to their 

ability to invade almost all niches (Prather et al., 2013). Within the Arthropods phylum, the most 

important and representative group is constituted by insects. Insects have captured the attention 

of researchers interested in chemoreception, since they show clearly separate senses of taste 

and olfaction comparable to those of vertebrates (Benton et al., 2006; Yarmolinsky et al., 2009). 

Moreover, they represent an excellent experimental model to investigate the complexity of 

gustative and olfactory systems, thanks to the relative simple organization of their neuronal 

circuits, as well as the feasibility of the breeding. Drosophila melanogaster is only an example of 

insect species massively used in research: due to the availability of genetic tools for the creation 

of several types of mutants and the possibility to employ sophisticated electrophysiological and 
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biochemical techniques, this insect has become one of the central model organisms nowadays 

(Vosshall, 2000). 

Chemoreception plays a fundamental role in an insect life: the detection of food sources and 

proper sites of ovoposition, the identification of conspecifics for mating or aggregation, the 

recognition of prey or predators are all behaviors resulting from the activation of different 

processes after the exposure to the wide range of soluble and volatile chemical molecules in the 

environment. In particular, the first event involved in chemoreception is the interaction of those 

molecules with specific sensory neurons housed inside specialized cuticular structures, called 

sensilla, that are well defined chemosensory units. A sensillum constitutes the preferential 

pathway by which the information from the chemical world outside is carried into the internal 

environment. 

 

 

 

 

 

 

 

Figure 1. A pie-chart representation of animal groups according to their number of species. Arthropods constitute 

about 80% of all animal species. 
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2. General organization of insects sensilla 

A sensillum is generally characterized by three main components, regardless of the typology. In 

fact, each of these small sensory organs consists of a certain number of receptor cells together 

with accessory cells, all surrounded by a layer of cuticle (Hallberg and Hansson, 1999; Keil, 

1997a, 1997b).  

In general, the cuticle represents the outer layer that covers the entire body of an insect, an 

interface to the environment that provides protection from the external insults. In the sensilla, 

cuticle is modified and takes the form of an extroflection that protects the dendrites of the sensory 

neurons housed inside. Common to all the different types of sensilla is the presence of pores, 

that allow the passage of the stimulant chemicals from outside to the internal environment. The 

number of pores is strictly correlated to the sensory function: in particular, the cuticle covering 

olfactory sensilla contains numerous narrow pores, allowing access for the airborne molecules 

that stimulate the sensory cells inside (Basibuyuk and Quicke, 1999; Laue and Steinbrecht, 1997; 

Palma et al., 2013; Shanbhag et al., 1999; Steinbrecht, 1997). By the same principle, cuticle of 

taste sensilla presents a single larger pore at its tip (Hallberg and Hansson, 1999; Keil, 1997a, 

1997b; Prakash et al., 1995).  

The receptor cells inside sensilla are bipolar neurons, whose number is generally around 3-4, but 

it may vary greatly among species and, in some cases, also between sexes (Galizia, 2008). The 

soma of these cells is located at the base of the sensillum. The dendrites at the apical pole of the 

cell extend along the cuticular cavity, ending in a ciliated projection: dendrites are structured to 

increase the contact surface with the stimulants. The axons at the basal pole project into the 

central nervous systems directly, without making synaptic connections. All around these sensory 

neurons, usually three accessory cells with a secretory function are present, named on the basis 

of their role in morphogenesis. The outer cell is known as tormogen, and it forms the socket 

around the base of the sensillum. The trichogen cell is the middle one, and it produces the 

cuticular material that forms the hair. The innermost thecogen cell wraps the soma of the sensory 

neurons and forms the dendritic sheath that surrounds the dendrites (Hallberg and Hansson, 

1999; Keil, 1997b). Once the sensillum is completely formed, these cells secrete the sensillum 

lymph, that protects the nerve endings from desiccation, and keep the constant ionic environment 

necessary for receptor cells to function properly (Isono and Morita, 2010; Kaissling, 1996; Pollack 

and Balakrishnan, 1997; Vosshall and Stocker, 2007). 

Depending on the type of sensillum its shape can be different, usually hairs, pegs or other forms. 

Also the topological distribution on the body surface is variable, with the main density of olfactory 

sensilla in antennae and maxillary palps, and gustatory sensilla largely spread in mouthparts, 

tarsi and ovopositor (Fig. 2) (Dahanukar et al., 2005; de Bruyne and Warr, 2005). 
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Figure 2. Example of different typology of sensilla and their distribution on the body surface of Drosophila (image 

from de Bruyne and Warr, 2005). 

A. Different morphologies of olfactory sensilla, with sensory neurons in red. The cuticular layer presents several 

pores that allow the molecules to reach the dendrites inside the internal environment. 

B. Gustatory sensilla are bimodal structures, with both a taste and tactile function. Sensory receptors are shown 

in green, mechano-receptors in blue. Cuticle is modified at the tip, forming a single pore for the entrance of  

molecules.  

C. Anatomical distribution of sensilla on the body surface of the insect. Olfactory sensilla, in red, are located on 

antennae and maxillary palps, whereas taste sensilla, in green, are distrubuted on external and internal (hairless 

sensilla) mouthparts, tarsi, wings and ovopositor.  

 

 

3. Olfactory system of adult insects 

The peripheral olfactory organs in insects are located exclusively on the head of the animal, and 

consist primarily of a pair of appendages called antennae, but also of maxillary palps in some 

species (mainly dipterans) (de Bruyne et al., 1999; Galizia, 2008). The latter organ is 

characterized by a simple structure compared to that of the former, since it only houses one class 

of sensilla (generally basiconic) and a lower number of olfactory receptor neurons (ORNs) (Syed 



 12 

and Leal, 2007; Vosshall and Stocker, 2007). On the contrary, antennae possess different types 

of sensilla, as already mentioned, and a subdivision in three main elements. The proximal 

segment attached to the head capsule is called the scape, the middle one is known as the 

pedicel and the distal part is the flagellum. While scape and pedicel are covered mainly by 

mechanosensory sensilla, the flagellum represents the real olfactory sensitive portion of the 

antenna. In fact, this is the section where olfactory sensilla are principally located, with a direct 

correlation between this number and the length of the segment (Wcislo, 1995). The flagellum is 

the most variable part of the antenna, not only in terms of distribution of sensilla, but also for 

shape and size (Fig. 3). This variability occurs among species, as well as between sexes, with 

different functional and ecological implications. In some species of bees, for example, the 

terminal part of the flagellum is modified only in males, and this modification appears related to 

courtship behavior (Wcislo, 1995). In the same way, males of moths generally possess big and 

magnificent feathery antennae, very different from the slender ones of females. In these insects, 

the pronounced sexual dimorphism is not correlated to courtship, as in the previous case, but is 

associated with the requirement of more efficient olfactory sensitivity. Such sensitivity is assured 

by an increase of the surface in contact with the external environment, therefore the odorants 

may interact with a greater number of sensilla (Symonds et al., 2012; Vogt and Riddiford, 1981).  

 

 

 

Figure 3. Different typology of antennae (picture from H. Weber (1966). Grundriss der Insektenkunde; Gustav 

Fischer Verlag). 

 



 13 

Once the volatile molecules reach an olfactory sensillum, the contact between the stimulants and 

the dendrite of a sensory cell is a fundamental step for its activation. The passage of stimulants 

through the sensillar cuticle is possible thanks to the numerous pores distributed on the wall 

surface. This number is usually large, to enhance the possibility that the stimulants in low 

concentration in the air make contact with the sensillum. The main problem for researchers was 

to understand how the hydrophobic volatile olfactory stimulants may reach the dendrite 

membrane through an aqueous medium, such as the sensillum lymph. A first answer to this 

question was given in 1981, when Vogt and Riddiford showed in the wild silk moth Antheraea 

polyphemus, the presence of a specific class of soluble proteins in the sensillum lymph, that they 

called "pheromone-binding proteins" (PBPs). Afterwards, many studies have been conducted on 

a large number of insects species (Bohbot and Vogt, 2005; Györgyi et al., 1988; Krieger et al., 

1996; Leite et al., 2009; Shanbhag et al., 2001; Vogt et al., 1999, 1991, 1989; Xu et al., 2010, 

2009), thanks to which many types of PBPs and more general olfactory binding-proteins (OBPs) 

were discovered. The common thought that comes out from this great amount of work is that the 

main role of PBPs and OBPs is to solubilize odorants, in order to assure their transport through 

the sensillum lymph. A further evidence of the importance of this class of molecules was given by 

the case of the Drosophila LUSH PBP, a protein involved in the transport of the pheromone 

molecule cis-vaccenyl acetate to its specific olfactory receptor. The lack of this particular PBP 

was shown to seriously affect the possibility to recognize the pheromone (Xu et al., 2005).   

Furthermore, in a recent study the LUSH PBP has been determined not only to play a passive 

role in carrying the odorants, but also to participate actively in the activation of the odorant 

receptor, thanks to the conformational changes induced after the binding with its ligand (Laughlin 

et al., 2008). The olfactory pathway involves several proteins than the odorant-binding proteins, 

such as the olfactory receptors (ORs) located in the dendrite membranes, specific enzymes for 

the degradation of the odor molecules called odor-degrading enzymes (ODEs), and all the 

proteins involved in the transduction cascade (Hill et al., 2002; Ishida and Leal, 2005, 2002; 

Krieger and Breer, 1999; Vogt and Riddiford, 1981). 

The olfactory receptors belong to a family of G protein-coupled receptors (GPCRs), characterized 

by the presence of seven-transmembrane domains in the structure, and are one of the most 

important elements of the olfactory system both in insects and vertebrates, since they are the first 

responsible for the recognition and discrimination of the odor stimulants (Mombaerts, 1999). The 

first ORs in insect were discovered in 1999, thanks to the work conducted on Drosophila by three 

different research groups (Clyne et al., 1999; Gao and Chess, 1999; Vosshall et al., 1999). After 

those studies, many others were conducted, with the intent to completely understand the 

anatomical and functional properties underlying the olfactory transduction in insects. One 

interesting evidence found was that, although the similarity between GPCRs of mammals and 

insects, the latter developed a different protein topology, with the N-terminal located in the 

intracellular side and the C-terminal protruding in the extracellular surface (Benton et al., 2006). 
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Another important difference has been found regarding the expression of the receptors in the 

dendrite membrane: while in mammals every ORN expresses only one type of OR, in insects an 

additional receptor, called OR83b, is always expressed together with the regular one, both in 

antennae and maxillary palps. On the basis of these studies, it is clear that OR83b is a 

fundamental element for the correct function of the other ORs, although it does not serve as 

olfactory receptor by itself (Jones et al., 2005; Vosshall et al., 2000).   

The mechanisms of signal transduction in mammals are well established, while in insects they 

are still not totally clear. In the past years, the general thought was that the biochemical 

processes involved in the olfactory pathway were based on the activation of a G protein and the 

subsequent reaction cascade involving the production of IP3 as second messenger (Krieger and 

Breer, 1999). Recent studies, however, propose new insights, according to which the olfactory 

transduction pathway relies on a ligand-activated non-selective ion channel conduction (Fig. 4) 

(Sato et al., 2008; Wistrand et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The olfactory transduction pathway in mammals and insects (modified from Pellegrino and 

Nakagawa, 2009). 

A. Olfactory transduction in mammals. The G protein-coupled receptor (GPCR, in blue) is associated to a 

stimulatory G protein, called Golf. After the binding between the olfactory receptor and the odorant, the  

G protein activates the adenylate cyclase (AC) enzyme, with a consequent increase of the concentration of 

cAMP in the intracellular space. This leads to the opening of a cyclic nucleotide-gated (CNG, in pink) channel 

and the depolarization of the olfactory receptor neuron.  

B. A possible model in insects. The olfactory receptor (in green) expressed in a dendrite membrane 

constitutes a complex with the OR83b (in yellow). This complex functions as a ligand gated ion channel, open 

after the binding with the odors and without the involvement of a second messenger (Sato et al., 2008).  

C. On the basis of a second possible model in insects, the activation of a GPCR (green) by a ligand causes 

the activation of a G protein and the consequent production of cAMP. The increase of cAMP concentration 

inside the cell opens the CNG-like channel OR83b (yellow) (Wistrand et al., 2006). 
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After the binding between odorants and ORs, the receptor cells inside sensilla are activated, and 

the olfactory signal is sent to the higher brain centers where it is properly processed. In particular, 

the first center of olfactory information processing, into which ORNs project their axons, is the 

antennal lobe (AL) (Anton et al., 2003; Barrozo et al., 2009; Galizia et al., 1999; Hansson et al., 

1995; Kristoffersen et al., 2008; Mustaparta, 1996; Rospars, 1988; Stocker et al., 1990), 

analogous in structure and function to the olfactory bulb of vertebrates (Fig. 5) (Strausfeld and 

Hildebrand, 1999). Inside the AL, the projections of the olfactory neurons synapse with the 

dendrites of two types of target neurons, into specific spherical subunits called glomeruli, in a 

variable number among species (Rospars, 1988). These central neurons are the local 

interneurons, whose axons remain within the AL and connect few or many glomeruli, and the 

projection neurons, which send their axons in the higher brain centers, the mushroom bodies and 

the lateral protocerebrum (Distler and Boeckh, 1997; Ng et al., 2002; Stocker, 1994). The 

mushroom bodies are multimodal structures, receiving information both from the olfactory and the 

visual system (Farris, 2005; Strausfeld et al., 1998). This part of the insect brain is responsible for 

the learning and memory of the olfactory stimuli (Akalal et al., 2006; McGuire et al., 2001; Wolf et 

al., 1998) The lateral protocerebrum is a part of the insect brain still not well understood. On a 

general thought, its main role seems to be related to innate olfactory behaviors (Gupta and 

Stopfer, 2012; Kido and Ito, 2002).   

 

 

 

 

Figure 5. Schematic representation of the olfactory system. Vertebrates and insects possess a common 

organization. (Image from Benton, 2006). 
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4. Gustatory system of adult insects 

Unlike olfaction, the gustatory system of mammals and insects evolved quite independently 

(Vosshall and Stocker, 2007; Yarmolinsky et al., 2009). While in mammals there is only one 

gustatory organ localized in the head, in insects taste sensilla are widely distributed over the 

entire body surface. The target area of these sites in the central nervous system may vary 

depending on the site itself: since insects are segmented animals, mostly with a ganglion in each 

segment, axons of the taste sensory neurons project directly in the ganglion in which they occur 

(Stocker, 1994). The different location of taste sensilla reflects their diverse function: for example, 

while sensilla on the ovopositor appear to be involved in the selection of proper ovoposition sites, 

those on the tarsi and the mouthparts are strictly related to the feeding behavior (Pollack and 

Balakrishnan, 1997; Stocker, 1994; van Loon, 1996).  

In the past decades, the use of morphological and electrophysiological techniques allowed an 

extensive study of the gustatory system properties in many insects, in particular flies, and among 

these Drosophila melanogaster is certainly the best characterized. In Drosophila, and in flies in 

general, the taste sensory organ equivalent to the human tongue is called labellum, and it is 

located in the distal part of a muscular tube that forms the pharynx. All together, this parts 

constitute the proboscis that, thanks to its extension properties, in the absence of a proper 

stimulation is usually stowed at the base of the head. The labellum presents two pair formations, 

known as labial palps, on the surface of which three morphological types of taste sensilla are 

distributed: the small type (s) and long type (l) contain four sensory neurons, the intermediate 

type (i) only two (Stocker, 1994). A variety of other taste sensilla is widely distributed on several 

parts of the body, with sexual dimorphism due to the presence of sensilla involved in the sexual 

behavior on males (Bray and Amrein, 2003; Park et al., 2006).  

From a functional point of view, the electrophysiological tip recording technique (Hodgson et al., 

1955) has been one of the most useful experimental procedures employed to study the gustatory 

receptor neurons (GNRs) in insects. The evidence resulting from these studies is that taste cells 

respond mainly to food-related chemical stimuli, and each of them produces a stronger excitatory 

response after stimulation with a particular substance or category of substances. On the basis of 

these compounds, GNRs have been classified, although this specificity is not so strict and may 

be variable depending on the species (Evans and Mellon, 1962a, 1962b; Shiraishi and 

Kuwabara, 1970; van Loon, 1996). In a general way, in long and short bristles containing four 

neurons, one is sensitive to sugar (S cell), one to water (W cell), one to low concentrations of salt 

(L1 cell) and one is sensitive to high concentrations of salt and bitter compounds (L2 cell) (Amrein 

and Thorne, 2005; Vosshall and Stocker, 2007). Intermediate bristles contain only two taste 

neurones: one responds to stimuli considered attractants, such as sugars and salts at low 

concentrations, the other one is activated by stimulation with aversive tastants like bitter 

compounds and high concentration of salts (Yarmolinsky et al., 2009). As already mentioned, 

GRNs send their axons in different parts of the central nervous system. In particular, taste 
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neurons localized in the head appendages project in the subesophageal ganglion (SOG), the 

gustatory center comparable to the AL where the gustatory information is first processed, 

whereas fibers from taste sensilla located in other body areas reach the nearest thoracic 

ganglion. Unlike the ALs, the structure of the SOG is not so defined for two reasons: first, the 

SOG is not organized in morpho-functional units such as the glomeruli, and second, there are not 

clear margins that allow to distinguish a separate organ (Stocker, 1994).  

The ability to respond to a variety of compounds, albeit mostly belonging to the same category, is 

due to the receptor composition of the dendrite membrane. After the discovery of the olfactory 

receptor genes, the same or other methodologies were used for the identification of genes 

responsible for the gustatory receptors expression (Clyne et al., 2000; Dunipace et al., 2001; 

Scott et al., 2001). From these studies taste receptors turned out to possess a quite similar 

structure to that of ORs, since they consist of proteins with seven transmembrane domains. So 

far, many receptors have been identified in the S and L2 cells of Drosophila and, recently, also 

one molecular marker for W neurons (Inoshita and Tanimura, 2006). The receptors involved in 

the sense of salt at low concentrations still need to be investigated. 
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5. Insects used in this study and their importance 
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5.1. Protophormia terraenovae 

Protophormia terraenovae is an insect species belonging to the Diptera order, Calliphoridae 

family (Tab. 1). Also known as blowfly or blackbottle fly (Taylor et al., 2007), this insect usually 

lives in the northern hemisphere, where temperatures are cool, given its high cold tolerance (Byrd 

and Castner, 2012).  

Morphology. Adult insects of P. terraenovae (Fig. 1) are characterized by a dark blue to black 

metallic body color, with black legs and head. Among calliphorid species, its body size is one of 

the largest, with a total length between 6 and 12 mm and no differences in males and females. 

Sexes are distinguished mainly on the base of the distance between the eyes. (Byrd and Castner, 

2012; Rognes, 1991; Wall and Shearer, 1997).  

 

 

 

 

 

 

 

Life cycle. Females lay clusters of 100-200 eggs preferably on carrions, but also on living 

mammals as secondary invaders of myases (Taylor et al., 2007). After the hatching, larvae start 

feeding and develop until they reach their maximum size, turning into the pupal stage. During this 

phase, the outer cuticular case hardens and assumes progressively a darker brown color. Once 

the insect is mature, the case opens and the adult fly emerges. P. terraenovae in the adult stage 

may live for 30 days.  

Figure 1. Adult stage in Protophormia terraenovae (photo by Nikita E. Vikhrev). 
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Importance for humans. P. terraenovae is considered an insect of great interest: not only it is a 

veterinary pest, dangerous mainly for sheep but also for cattle and reindeer, but (Taylor et al., 

2007; Wall and Shearer, 1997), it is also used in forensic investigations as indicator of the time of 

death, given the importance of larvae in the evaluation of the post-mortem interval (Grassberger 

and Reiter, 2002; Myskowiak and Doums, 2002). Moreover, P. terraenovae is a blowfly species 

commonly used in the maggot debridement theraphy (MDT). The MDT is a medical therapy 

applied in particular cases of chronic wounds and necrotic flesh, when the hailing is not 

successful with the typical pharmacological and surgical treatments (Fig. 2) (Mumcuoglu et al., 

1999). It is based on the use of blowfly larvae on infected wounds: larvae release digestive 

enzymes and feed on necrotic tissues, without damaging the healthy ones around. In addiction, 

the secretion of antimicrobial peptides facilitate the disinfection of the treated wounds. After 

complete development, maggots leave the tissues and pupate (Sherman, 2002). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Application of the maggot debridement therapy (MDT) in a foot ulcer: initial condition (A), development 

of the therapy (B) and situation after 1 year treatment (C) (Sherman, 2002). 
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5.2. Ceratitis capitata 

The Mediterranean fruit fly Ceratitis capitata is a phytophagous insect of the Tephritidae family, 

Diptera order (Tab. 1). According to the literature, this species originated in sub-Saharan and 

South Africa (De Meyer et al., 2008), but it is currently distributed worldwide, mainly colonizing 

tropical areas and mild temperate regions (Headrick and Goeden, 1996; Thomas et al., 2010; 

Vera et al., 2002). 

Morphology. Adult medflies (Fig. 3) present a body length between 3,5 and 5 mm. The body color 

is mostly yellow, except for the dorsal part of the thorax in which a characteristic pattern of black 

spots is present (Fig. 4A). Also wings possess distinctive markings black, brown and yellow 

colored (Fig. 4B). Males and females show sexual dimorphism: besides the ovopositor, males 

can be distinguished from females by a peculiar pair of black modified bristles on the head (Fig. 

4C-D).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Male and female adults of Ceratitis capitata (Diamantidis et al., 2011) 
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Figure 4. Morphology of Ceratitis capitata. Distinctive markings on the dorsal part of the thorax (A) and wings (B) 

in adult medflies. Scale bar 1 mm. Photos by Ken Walker, Museum Victoria, Melbourne, Australia. 

Example of male (C) and female (D): males can be distinguished from female also by a pair of modified bristles 

on the head (black arrows in fig. C). Photos by OEPP/EPPO, 2011. 

 

 

 

Life cycle (Fig. 3D). The time required for life cycle depends on different factors. One of them is 

temperature: in temperate climates, in facts, development of eggs, larval and pupal stages needs 

around 30 days, and it usually stops when temperature reaches 10° C. Also the type and 

condition of infested fruits can affect the time: in citrus, such as lemons, larval life seems to be 

longer than in sweeter fruits as peaches. Females of adult medflies lay their eggs under the skin 

of fruits, particularly when the fruit is ripen and the skin is already broken in some areas. The 

same spot can be used by different females, that may deposit a cluster of 75 or more eggs. The 

eggs hatch within three days, and the larvae start to eat and develop inside the fruit. For 

pupation, larvae leave the fruit and pupate possibly in the soil. The adult medflies possess a 

limited ability to disperse, but winds can transport them in long distances. Under favorable 

conditions of food and temperatures, adults can live for months (Thomas et al., 2010). 
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Importance for humans. C. capitata is considered one of the most important agricultural pests in 

the world (De Meyer et al., 2008; Malacrida et al., 2007), since the high number of infested 

species (more than 350, Liquido and Cunningham, 1990), the possibility of adaptation to diverse 

environments and the high rate of reproduction (Gasperi et al., 2002). The citrus fruits are 

reported as the major vehicles for the medfly colonization in Mediterranean and American 

subtropical areas (McPheron and Steck, 1996). In general, globalization and the fruit trade are 

considered the key factors in the dispersal of species outside their natural living regions (Wilson 

et al., 2009), and this is true also in the case of C. capitata. The need to limit the economic loss 

has led to increase the efforts in finding efficient control systems, but nowadays this control is still 

problematic. Some strategies are based on olfactory chemoreception, such as the use of 

chemicals and traps, but the efficiency of these methods is directly related to the level of 

attractiveness of the odorant molecules and sometimes they are not sufficient. The modern 

biological control programs gave just partial success in the limitation of Ceratitis invasion, 

probably because, although the medfly has a wide range of competitors, a specific one has not 

been found yet. Another control system is based on the release of reared sterile insects in the 

environment to interrupt reproduction, and it is called sterile insect technique (SIT). In the case of 

medflies, this method is considered rather efficient but not sufficient alone for eradication, since 

sterile males are not competitive in mating as wild males (Headrick and Goeden, 1996).   

 

 

 

 

 

 

Table 1. Scientific classification of Protophormia terranovae and Ceratitis capitata 

 

Animalia Kingdom Animalia 

Arthropoda Phylum Arthropoda 

Insecta Class Insecta 

Diptera Order Diptera 

Calliphoridae Family Tephritidae 

Protophormia Genus Ceratitis 

Protophormia terraenovae Species Ceratitis capitata 

 

http://en.wikipedia.org/wiki/Animal
http://en.wikipedia.org/wiki/Animal
http://en.wikipedia.org/wiki/Arthropod
http://en.wikipedia.org/wiki/Arthropod
http://en.wikipedia.org/wiki/Insect
http://en.wikipedia.org/wiki/Insect
http://en.wikipedia.org/wiki/Fly
http://en.wikipedia.org/wiki/Fly
http://en.wikipedia.org/wiki/Blow-fly
http://en.wikipedia.org/w/index.php?title=Protophormia&action=edit&redlink=1
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Abstract 

In taste chemoreception of invertebrates the interaction of taste stimuli with specific membrane 

receptors and/or ion channels located in the apical membrane of taste receptor cells results in the 

generation of a receptor potential which, in turn, activates the „encoder‟ region to produce action 

potentials which propagate to the CNS. 

This study investigates, in the labellar chemosensilla of the blowfly, Protophormia terraenovae, 

the voltage-gated K
+
 currents involved in the action potential repolarization and repetitive firing of 

the neurons by way of the Kv channel inhibitors, 4-aminopyridine and 5-hydroxytryptamine. 

The receptor potential and the spike activity were simultaneously recorded from the „salt‟, „sugar‟ 

and „deterrent‟ cells, by means of the extracellular side-wall technique, in response to 150 mM 

NaCl, 100 mM sucrose and 1 mM quinine HCl, before, 0-10 min after apical administration of 

4-AP (0.01–10 mM) or 5-HT (0.1–100 mM). 

The results show that the receptor potential in all three cells is neither affected by 4-AP nor by 

5-HT. Instead, spike activity is significantly decreased, by way of blocking different Kv channel 

types: an inactivating A-type K
+
 current (KA) modulating repetitive firing of the cells and 

responsible for the after hyperpolarization, and a sustained K
+
 current that resembles the delayed 

rectifier (DKR) and contributes to action potential repolarization. 
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1. Introduction 

The essential elements of taste sensory systems in all animals are neuronal receptor cells which 

respond to gustatory stimuli by way of changes of their membrane potential, known as receptor 

potential, and transmit their information contents to the CNS encoded as spike firing frequency. It 

is generally accepted that a direct correlation exists between receptor potential amplitude and 

spike firing frequency in both vertebrates and invertebrates (Erler and Thurm, 1981; Herness, 

2000). 

The region of the neuron where spikes are generated is called „encoder‟ and is localized at the 

level of the dendrite, either in its proximal portion (Erler and Thurm, 1981) or in the distal one 

(Murakami and Kijima, 2000). 

Neuronal encoders are endowed with two different voltage-gated channel families: Na
+
 channels, 

involved in the action potential depolarization, and K
+
 channels (Kv) which play an important role 

in various aspects of the bioelectrical activity of excitable cells such as: setting the resting 

membrane potential, shaping the action potential waveform and modulating the frequency of 

neuronal firing (Halliwell, 1990; Hille, 2001; Kloppenburg and Hildebrand, 1995; Kloppenburg et 

al., 1999; Mathie et al., 1998; Mercer et al., 1995; Salkoff et al., 1992). Two different voltage-

gated K
+
 currents have been observed in a number of types of insect cells: a fast, inactivating 

A-type K
+
 current (KA) modulating repetitive firing of the cells and responsible for the after 

hyperpolarization, and a sustained K
+
 current that resembles the delayed rectifier (DKR) and 

contributes to action potential repolarization (Dacks et al., 2008; Kloppenburg and Hildebrand, 

1995; Kloppenburg et al., 1999; Mercer et al., 1995; Saito and Wu, 1991). 

Recent studies have covered several functional aspects of neuronal K
+
 channels with various 

approaches such as electrophysiology, molecular biology, neuromodulation and classical 

pharmacology (Chandy and Gutman, 1995; Cook and Quast, 1990; Critz et al., 1991; Dacks et 

al., 2008; Dolly and Parcej, 1996; Harvey, 1993; Jan and Jan, 1992; Kloppenburg and 

Hildebrand, 1995; Kolb, 1990; Mercer et al., 1995; Pongs, 1992; Rehm and Tempels, 1991; Wolff 

et al., 1998). 

Among the pharmacological probes, serotonin (5-HT), a known neurotransmitter, neurohormone 

and neuromodulator in the nervous system in vertebrates and invertebrates, has been found to 

modulate the activity of several K
+
 conductances, including voltage-independent membrane 

channels, voltage-dependent channels and Ca
2+

-activated channels (Birmingham and Tauck, 

2003; Critz et al., 1991; Dacks et al., 2008; Gatellier et al., 2004; Kloppenburg and Hildebrand, 

1995; Kloppenburg et al., 1999; Mercer et al., 1995). 

Another probe, 4-aminopyridine (4-AP), has been reported to selectively block K
+
 channels in 

axons of the cockroach (Pelhate and Pichon, 1974), squid (Meves and Pichon, 1975; Yeh et al., 

1976), the fanworm Myxicola and the lobster neuromuscular junctions (Schauf et al., 1976), frog 

nodes of Ranvier (Wagner and Ulbricht, 1975), neurons of Drosophila melanogaster (Mercer et 

al., 1995), tail sensory neurons of Aplysia (Critz et al., 1991), as well as in mammalian taste buds 
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(Liu et al., 2005). In antennal lobe neurons of Manduca sexta, 4-AP has been found to be an 

effective blocker of the fast A-type K
+
 current, leaving the slower-activating DKR current largely 

intact (Mercer et al., 1995). 

Several studies on various chemo- and mechanoreceptors of insects reported that the encoder, 

where nerve impulses initiate, is located somewhere near the sensillum base (Dethier, 1976; 

Morita, 1992), in the proximal area of the dendrite (Erler and Thurm, 1981) and/or in the distal 

dendrite (Murakami and Kijima, 2000). They also concluded that spikes not only propagate 

centripetally, but also centrifugally into the apical region of the dendrite (Erler and Thurm, 1981). 

A similar location for the encoder has been shown in the spider mechanoreceptor sensilla, 

containing bipolar neurons, where the action potentials normally start at the distal dendrites and 

propagate regeneratively to the soma (Gingl and French, 2003). 

With the purpose of studying the role of Kv channels in the encoder repetitive firing in sensory 

receptors, the labellar taste system of the blowfly, Protophormia terraenovae, represents a 

favorable and simple biological model. 

The taste chemosensory system of blowflies is composed of cuticular hairlike structures, called 

sensilla, each containing five bipolar neurons. Three are specific chemoreceptors and have been 

named „salt‟, „sugar‟ and „deterrent‟ cells depending on their best stimuli, one is a 

mechanoreceptor and the remaining one, called a „„water‟‟ cell, is a chemo/osmoreceptor 

(Dethier, 1976; Evans and Mellon, 1962; Liscia and Solari, 2000; Rees, 1970; Solari et al., 2010; 

Wieczorek and Koppl, 1978). 

The spikes recorded extracellularly from each of the four chemoreceptors differ in amplitude and 

waveform, can be separated from one another, and their relative amplitude ratios are a 

conserved feature for each species and sensillum type, regardless of the recording condition 

(Dethier, 1976; Liscia and Solari, 2000; Liscia et al., 1998; Smith et al., 1990). 

Based on these considerations, the present work investigates the voltage-gated K
+
 currents 

involved in the action potential repolarization and repetitive firing of the neurons. To this end, the 

responses of the „„salt‟‟, „„sugar‟‟ and „„deterrent‟‟ cells in the blowfly P. terraenovae were recorded 

following stimulation with NaCl, sucrose and quinine HCl, respectively, before and after treatment 

with 5-HT, a well known neuromodulator, neurotransmitter and neurohormone that modulates the 

electrophysiological properties of sensory neurons by suppressing the K
+
 current (Critz et al., 

1991; Dacks et al., 2008; Kloppenburg and Hildebrand, 1995; Kloppenburg et al., 1999; Mercer et 

al., 1995) and 4-AP, a known blocker of the voltage-gated K
+
 channels (Connor and Stevens, 

1971; Critz et al., 1991; Hille, 2001; Hodgkin and Huxley, 1952; Llinas, 1988; Mercer et al., 1995; 

Smith et al., 2000). 
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2. Materials and methods 

2.1. Insects 

Two- to five-day old adults of the blowfly, P. terraenovae (Robineau-Desvoidy), were used in all 

experiments. Flies were reared under standard conditions (22° C ± 1 and 70–80% of relative 

humidity) in the Dept. of Biomedical Sciences at the University of Cagliari, Italy. Insects were 

tested after being starved, but water satiated, for 24 h. 

 

2.2. Recording technique 

The receptor potential (RP) and the spike activity from labellar „„Largest‟‟ (Wilczek, 1967) 

uniporous chemosensilla were simultaneously recorded by means of the extracellular „side-wall‟ 

technique (Morita and Yamashita, 1959). All recording operations were carried out by means of 

micromanipulators under the field of a stereomicroscope. A thin Ag/AgCl wire serving as ground 

electrode was inserted into an isolated head through the „foramen magnum‟. The recording glass 

capillary electrode (diameter at the tip 10 μm), filled with P. terraenovae saline (standard saline: 

NaCl 17.1 mM, KCl 5.6 mM, CaCl2·2H2O 3.2 mM, MgCl2·6H2O 2.1 mM, glucose 79.4 mM; pH 

6–6.3), was brought in contact with a small crack in the sensillar side-wall cuticle, while the 

sensillum tip was independently stimulated with the various stimulants delivered by a 

micropipette. 

Signals were recorded with a high input impedance (1015 X) electrometer (WPI Duo 773), band-

pass filtered (DC to 100 Hz for RP and 0.1–3 kHz for action potentials), digitized by means of an 

Axon Digidata 1440A A/D converter (sampling frequency: 10 kHz), and stored on a PC for further 

analysis. 

Both RPs and spike discharges were analyzed in the 1st s, starting 30 ms after the onset of the 

stimulation, in order to avoid the baseline shift induced by the contact artifact. RP amplitude 

values were measured by means of the Axoscope 10.0 software, while spikes in the discharges 

were sorted with the SAPID Tools software (Smith et al., 1990) and identified as the „„sugar‟‟, 

„„salt‟‟ and „„deterrent‟‟ units, by comparing them with those responding to pure salt, sugar or bitter 

solutions described in previous papers (Dethier, 1976; Liscia and Solari, 2000; Liscia et al., 

1998). 

Spike width was measured as difference between „„time of end‟‟ and „„time of peak‟‟ of the spikes 

by means of the Clampfit 10.0 software, before and after 4-AP or 5-HT administration. 

 

2.3. Test compounds and experimental protocols 

Both the RPs and the spike activity were recorded following stimulation with 150 mM NaCl, 100 mM 

sucrose and 1 mM quinine HCl aqueous solutions, before (control) and after the administration of 
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4-aminopyridine (0.01, 0.1, 1 and 10 mM) or 5-hydroxytryptamine (0.1, 1, 10 and 100 mM). The 

recordings were performed immediately (t = 0), 1, 3, 5 and 10 min after drug administration. 

4-aminopyridine (4-AP) is a selective blocker of potassium conductance through voltage-gated 

K
+
 channels (Hille, 2001; Kim and Mistretta, 1993; Liu et al., 2005; Mathie et al., 1998; Wolff et 

al., 1998), while 5-hydroxytryptamine (5-HT or serotonin) is an inhibitor of three K
+
 currents (see 

review by Birmingham and Tauck, 2003): a voltage-independent K
+
 current (Klein and Kandel, 

1980), a voltage-dependent K
+
 current similar to the delayed rectifier (Baxter and Byrne, 1990, 

1989) and a calcium activated K
+
 current (Walsh and Byrne, 1989). 

4-AP and 5-HT were dissolved in P. terraenovae saline and administered to the preparations by 

diffusion for 1 min via the sensillum apical pore, via the dendritic liquor to reach the dendritic 

membrane of the receptor cells (Sollai et al., 2008). 

4-AP and 5-HT concentrations were selected according to information reported in the literature 

(Dacks et al., 2008; Gatellier et al., 2004; Kim and Mistretta, 1993; Lucero et al., 1992; Meves 

and Pichon, 1977) and on the basis of preliminary experiments. All compounds were purchased 

from SIGMA–Aldrich. 

 

2.4. Statistics 

Differences in RP amplitude, spike frequency and spike width were evaluated by means of the 

„two-sided‟ Student „„t‟‟ test with a 95% confidence level (P ≤ 0.05). Spike frequency vs. RP 

amplitude regression lines, were obtained from pooled data for all concentrations of each 

stimulus. 

Lines were then cross-compared with the test of parallelism and coincidence, in order to evaluate 

differences among the different stimuli in the absence of pharmacological treatment by taking into 

consideration two parameters with a 95% confidence level (P ≤ 0.05): differences between slopes 

(Ps, lines have different slopes) and elevations (Pi, lines are parallel but differ in Y-intercept). 

Pi was calculated only when Ps was not statistically significant. 

 

 

3. Results 

3.1. Relationship between receptor potential amplitude and spike frequency 

The spike firing frequency is positively correlated with the RP amplitude. The linear regression 

plots between spike numbers and RP values were significant in response to NaCl (R
2
 = 0.0717;  

P < 0.01), quinine HCl (R
2
 = 0.1576; P < 0.001) and sucrose (R

2
 = 0.4436; P < 0.001) (Fig. 1). 

The results of linear regression show that the difference between NaCl and sucrose slopes is not 

significant (Ps = 0.2715) and that between elevations is highly significant (Pi < 0.0001), while 

both NaCl/quinine HCl and sucrose/quinine HCl comparisons show that the slopes differ 

statistically (Ps = 0.008613 and Ps = 0.000372, respectively). 
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Figure 1. Receptor potential amplitude vs. spike firing frequency plot of the „„salt‟‟, „„sugar‟‟ and deterrent‟‟ cells in 

the taste labellar chemosensilla of the blowfly P. terraenovae, in response to the NaCl, sucrose and quinine HCl 

solutions. Data referring to all concentrations tested are pooled. 

 

3.2. Effects of 4-aminopyridine and 5-HT on ‘salt’ cell 

4-aminopyridine 10 mM (4-AP) administered directly into the sensillum, via the apical pore, 

significantly reduced the spike frequency in response to 150 mM NaCl from 42.59 ± 3.25 to 

30.09 ± 3.38 spikes/s, already 3 min after administration. 4-AP 1 mM caused the spike firing 

frequency to decrease from 50.11 ± 2.68 to 39.12 ± 3.71 spikes/s 5 min after administration, and 

4-AP 0.1 mM significantly reduced the spike frequency from 51.28 ± 2.71 to 38.76 ± 2.44 spikes/s 

only 10 min after administration (Fig. 2A and B). Fig. 2A and C shows that spike frequency in 

response to 150 mM NaCl decreased significantly from 56.37 ± 3.77 to 44.90 ± 2.92, from 

53.96 ± 2.85 to 22.81 ± 2.62 and from 50.32 ± 2.59 to 37.99 ± 2.79 spikes/s after 3, 5 and 10 min 

of 100, 10 or 1 mM 5-HT, respectively. No significant decreases were obtained after 0.01 mM 

4-AP or 0.1 mM 5-HT administration. Conversely, RP amplitudes in response to 150 mM NaCl 

tested were not affected by either compound at all concentrations (Fig. 2A–C). The spike width 

was increased, after 5 min 5-HT, from 1.223 ± 0.005 to 1.458 ± 0.018 ms (N = 30; p ≤ 0.0001), 

while no statistical variations were found after 4-AP administration (N = 30; p = 0.480) (Fig. 5A). 
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Figure 2. (A) Sample traces showing the receptor potential (mV) and the spike firing frequency following 

stimulation (vertical dashed line) with 150 mM NaCl, before (pre) and 5 min after (post) luminal administration of 

10 mM 4-AP or 100 mM of 5-HT. (B and C) Mean values ± S.E.M. of receptor potential and spike firing frequency 

following stimulation with 150 mM NaCl: before (C = control), 0, 1, 3, 5 and 10 min after drug apical administration 

of (B) 0.01, 0.1, 1 or 10 mM 4-AP and (C) 0.1, 1, 10 or 100 mM 5-HT. Filled symbols indicate significant 

differences from the control (p ≤ 0.05). Experiments performed on 30–33 sensilla (1 per fly) for both 

pharmacological probes. 



 39 

3.3. Effects of 4-aminopyridine and 5-HT on ‘sugar’ cell 

Fig. 3A and B shows that, when 4-AP was directly administered into the sensillum, spike 

frequency in response to 100 mM sucrose decreased significantly from 36.04 ± 1.60 to         

23.00 ± 1.07, from 35.06 ± 2.08 to 20.32 ± 1.94 and from 36.47 ± 1.83 to 28.47 ± 1.43 spikes/s, 

already after 3 min of incubation with 10 mM 4-AP, after 5 min with 1 mM 4-AP and only after 10 

min with 0.1 mM 4-AP, respectively. Similarly, spike frequency decreased significantly from  

35.09 ± 2.03 to 27.02 ± 0.92, from 33.83 ± 1.45 to 15.67 ± 1.23 and from 32.11 ± 1.20 to       

19.70 ± 0.91 spikes/s, already after 3 min of incubation with 100 mM 5-HT, after 5 min with 10 

mM 5-HT and only after 10 min with 1 mM5-HT, respectively (Fig. 3A and C). No significant 

decreases were obtained after 0.01 mM 4-AP or 0.1 mM 5-HT administration. Instead, RP 

amplitudes, in response to 100 mM sucrose, were affected neither by 4-AP nor 5-HT at all 

concentrations tested. Spike width was increased from 1.273 ± 0.005 to 1.500 ± 0.008 ms          

(N = 30; p ≤ 0.0001) after 5 min 5-HT, but did not change significantly after 4-AP administration 

(N = 30; p = 0.211; Fig. 5B). 

 

3.4. Effects of 4-aminopyridine and 5-HT on ‘deterrent’ cell 

Fig. 4A and B shows that spike frequency in response to 1 mM quinine HCl decreased 

significantly from 21.62 ± 0.87 to 14.70 ± 0.69 spikes/s, already after 3 min with 10 mM 4-AP, 

from 21.64 ± 1.17 to 10.88 ± 0.81 spikes/s, after 5 min with 1 mM 4-AP and, finally, from       

22.09 ± 1.29 to 14.45 ± 0.73 spikes/s, only after 10 min of 0.1 mM 4-AP. Similar effects were 

obtained after 5-HT administration; in fact, spike frequency decreased significantly from        

23.30 ± 1.22 to 16.93 ± 0.41, from 24.93 ± 1.27 to 15.43 ± 0.71 and from 23.67 ± 0.97 to       

13.10 ± 0.87 spikes/s, after 3, 5 and 10 min of 100, 10 and 1 mM 5-HT, respectively (Fig. 4A and 

C). No significant decreases were obtained after 0.01 mM 4- AP or 0.1 mM 5-HT administration. 

Instead, RP amplitudes, in response to 1 mM quinine HCl, were not affected after applications of 

all concentrations with 4-AP or 5-HT. Spike width was increased from 1.304 ± 0.006 to          

1.580 ± 0.022 ms (N = 32; p ≤ 0.0001) after 5 min 5-HT, but did not change before and after 4-AP 

administration (N = 32; p = 0.865) (Fig. 5C). 
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Figure 3. (A) Sample traces showing the receptor potential (mV) and the spike firing frequency following 

stimulation (vertical dashed line) with 100 mM sucrose, before (pre) and 5 min after (post) basolateral supply of 

10 mM 4-AP or 0.1 mM of 5-HT. (B and C) Mean values ± S.E.M. of receptor potential and spike firing frequency 

following stimulation with 100 mM sucrose: before (C = control), 0, 1, 3, 5 and 10 min after drug apical 

administration of (B) 0.01, 0.1, 1 or 10 mM 4-AP and (C) 0.1, 1, 10 or 100 mM 5-HT. Filled symbols indicate 

significant differences from the control (p ≤ 0.05). Experiments performed on 30–35 sensilla (1 per fly) for both 

4-AP or 5-HT. 
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Figure 4. (A) Sample traces showing the receptor potential (mV) and the spike firing frequency following 

stimulation (vertical dashed line) with 1 mM quinine HCl, before (pre) and 5 min after (post) basolateral supply of 

10 mM 4-AP or 0.1 mM of 5-HT. (B and C) Mean values ± S.E.M. of receptor potential and spike firing frequency 

following stimulation with 1 mM quinine HCl: before (C = control), 0, 1, 3, 5 and 10 min after drug apical 

administration of (B) 0.01, 0.1, 1 or 10 mM 4-AP and (C) 0.1, 1, 10 or 100 mM 5-HT. Filled symbols indicate 

significant differences from the control (p ≤ 0.05). Experiments performed on 30–35 sensilla (1 per fly) for both 

4-AP or 5-HT. 
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4. Discussion and conclusions 

In the taste chemoreceptors associated with labellar sensilla of blowflies the receptor potential, 

evoked by the interaction between taste stimuli with specific membrane receptors and/or ion 

channels located in the apical membrane of the dendrite, is converted into a discharge of action 

potentials that propagate to the CNS (Dethier, 1976; Erler and Thurm, 1981; Ishimoto and 

Tanimura, 2004; Morita, 1992; Murakami and Kijima, 2000). Spikes do not only propagate 

centripetally, but also centrifugally into the apical region of the dendrite (Erler and Thurm, 1981). 

Potassium (K
+
) channels play an important role in various aspects of the bioelectrical activity of 

excitable cells; in particular, inactivating KA channels modulate the repetitive firing of the neuron, 

while DRK channels contribute to action potential repolarization and shaping the action potential 

waveform (Halliwell, 1990; Hille, 2001; Kloppenburg and Hildebrand, 1995; Kloppenburg et al., 

1999; Mathie et al., 1998; Mercer et al., 1995; Salkoff et al., 1992). 

Our results show that the spike activity of the „salt‟, „sugar‟ and „deterrent‟ cells, evoked by 

stimulations with several concentrations of NaCl, sucrose and quinine HCl, respectively, is 

selectively and significantly decreased by applications of both pharmacological probes, in a dose-

dependent manner. In fact, the higher the drug concentration the shorter is the time required for 

observing a significant spike frequency decrease ranging, for both drugs, from a lack of response 

at the lowest concentration to a 3 min time at the highest. The effects of both drugs are 

completely reversed 5–20 min after administration of physiological saline (data not shown). 

Based on these results, we hypothesize that 4-AP may act on KA channels, responsible of 

repetitive firing in many types of neurons (Adams et al., 1980; Connor and Stevens, 1971), by 

blocking them in an open steady state, thus prolonging the outward K
+
 current during the after 

hyperpolarization phase and delaying repolarization, as suggested by Thompson (1982). 

According to Thompson „„it is not yet clear how 4-AP prevents inactivation, but it may act by 

shifting the voltage dependence of inactivation gating toward more depolarized voltages so that 

channels with bound aminopyridines do not inactivate at voltages where inactivation normally 

goes to completion‟‟. On the other hand, we can exclude a blocking effect on DRK channels in a 

closed state, thus preventing repolarization (Hille, 2001; Mathie et al., 1998; Meves and Pichon, 

1977; Smith et al., 2000; Wolff et al., 1998), since we did not observe an increase in spike width, 

which should follow from a reduction of the DKR current responsible of the action potential 

repolarization (Dacks et al., 2008; Kloppenburg and Hildebrand, 1995; Kloppenburg et al., 1999; 

Mercer et al., 1995; Saito and Wu, 1991). 

Instead, an increase in spike width was obtained after 5-HT administration, thus suggesting an 

effect on the DRK channels, in agreement with that reported in other systems (Dacks et al., 2008; 

Kloppenburg and Hildebrand, 1995; Kloppenburg et al., 1999; Mercer et al., 1995). 

In fact, a reduction of the K
+
 current responsible for membrane repolarization slows down the 

return to the membrane resting potential, resulting in a longer duration of the action potential. 
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The data in the literature show that 5-HT produces different effects which depend on several 

factors: (a) the cellular system considered, (b) the concentration used and, in this regard, it 

should be kept in mind that the applied concentration does not necessarily reflect the actual 

concentration experienced by the neuron, and (c) different effects could be mediated by different 

receptors (Gatellier et al., 2004; Kloppenburg and Hildebrand, 1995; Teshiba et al., 2001). In 

Bombyx mori, 5-HT applied at 0.1 mM to the brain increased the sensitivity to female pheromone, 

whereas 1 mM serotonin had the opposite effect (Gatellier et al., 2004). In antennal lobe neurons 

in the brain of M. sexta, 5-HT applied at low concentration (0.01 μM) reduced the excitatory 

responses evoked by electrical stimulation of the antennal nerve, while at high concentration (0.1 

mM) it enhanced the responses and at 1 μM had little apparent effect on the cell (Kloppenburg 

and Hildebrand, 1995). In the crayfish, the neuromodulatory effect of serotonin on the lateral giant 

neurons depends on its dosage, rate and duration: inhibitory effects are obtained when high 

concentrations are rapidly reached while excitatory effects occur when low or high concentrations 

are reached gradually (Gatellier et al., 2004; Teshiba et al., 2001). Serotonin has an excitatory 

effect on the biventer cervicis muscle of the chick at suitable concentrations and an inhibitory 

dose-dependent effect at high concentrations (Gatellier et al., 2004), but an irreversible toxic 

effect was observed with repeated exposures to serotonin (Teerapong and Harvey, 1977). In 

general, contradictory effects of different serotonin concentrations have been reported in 

vertebrates and invertebrates (Gatellier et al., 2004). 

The encoder is presumably located at the level of the dendrite (Dethier, 1976; Morita, 1992), in 

the proximal (Erler and Thurm, 1981) and/or in the distal portion of the dendrite (Murakami and 

Kijima, 2000), so that it can be easily reached by apical administration of the drug. 

Our results show that the RP amplitude, in response to all tested compounds, is not affected by 

apical applications of both 4-AP and 5-HT, in agreement with the fact that Kv channels are not 

known to be involved in RP generation, but are variously involved in the termination of action 

potentials, repolarization and re-establishment of resting potential (Halliwell, 1990; Hille, 2001; 

Kloppenburg and Hildebrand, 1995; Kloppenburg et al., 1999; Mathie et al., 1998; Mercer et al., 

1995; Rehm and Tempels, 1991; Salkoff et al., 1992). In fact, by the „side-wall‟ technique one can 

simultaneously record the RP and the ensuing spike activity from the stimulated chemoreceptor 

cell (Kijima et al., 1988; Morita and Yamashita, 1959). Labellar chemosensory neurons are known 

to be best responding to stimulus categories such as the ones we tested (NaCl, sucrose and 

bitter compounds) (Dethier, 1976). It is reasonable to assume that if a specific stimulus triggers 

transduction mechanisms and receptor currents in one cell only, the sensillar potential recorded 

be equivalent to the RP of that cell, with the other sensillar cells providing a negligible or no 

contribution to ionic currents (Morita, 1992). 

In conclusion, the present study reveals that both 4-AP and 5-HT alter the spike responses of 

peripheral chemosensory neurons to gustatory stimuli and suggest the presence of two different 

voltage-dependent K
+
 currents: one fast, transient A-type K

+
 current that modulates the frequency 
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of neuronal repetitive firing (Adams et al., 1980; Connor and Stevens, 1971; Salkoff et al., 1992) 

and a slower-activating K
+
 current that resembles the delayed rectifier current and that plays a 

role in the membrane repolarization process (Mercer et al., 1995; Saito and Wu, 1991). 

 

 

 

 

 

Figure 5. (A) Mean values ± S.E.M. and sample traces showing the spike width evoked by stimulation with 150 mM 

NaCl (A), 100 mM sucrose (B) and 1 mM quinine HCl (C), before (black), after 4-AP (blue) or after 5-HT (red) 

administration. Pre = before drug administration (control). Asterisk denotes values significantly different from the 

control (p ≤ 0.05).  

 

Acknowledgments 

The Authors wish to thank Dr. Marco Melis for his helpful cooperation and technical support in the 

experimental part of this study. This work was partly supported by the Italian „Ministero 

dell‟Istruzione, dell‟Università e della Ricerca‟ (MIUR). 



 45 

References 

Adams, D.J., Smith, S.J., Thompson, S.H., 1980. Ionic Currents in Molluscan Soma. Annu. Rev. 

Neurosci. 3, 141–167. 

Baxter, D.A., Byrne, J.H., 1989. Serotonergic modulation of two potassium currents in the pleural 

sensory neurons of Aplysia. J. Neurophysiol. 62, 665–679. 

Baxter, D.A., Byrne, J.H., 1990. Differential effects of cAMP and serotonin on membrane current, 

action-potential duration, and excitability in somata of pleural sensory neurons of Aplysia. J. 

Neurophysiol. 64, 978–990. 

Birmingham, J.T., Tauck, D.L., 2003. Neuromodulation in invertebrate sensory systems: from 

biophysics to behavior. J. Exp. Biol. 206, 3541–3546. 

Chandy, K.G., Gutman, G.A., 1995. Voltage-gated potassium channel genes, in: North, R.A. (Ed.), 

Handbook of Receptors and Channels. CRC Press Inc, Boca Raton, pp. 1–71. 

Connor, J.A., Stevens, C.F., 1971. Prediction of repetitive firing behavior from voltage clamp data on 

an isolated neuron soma. J. Physiol. 213, 31–53. 

Cook, N.S., Quast, U., 1990. Potassium channel pharmacology, in: Cook, N.S. (Ed.), Potassium 

Channels: Structure, Classification, Function and Therapeutic Potential. Ellis Horwood Ltd., 

Chichester, pp. 181–258. 

Critz, S.D., Baxter, D.A., Byrne, J.H., 1991. Modulatory effects of serotonin, FMRFamide, and 

myomodulin on the duration of action potentials, excitability, and membrane currents in tail 

sensory neurons of Aplysia. J. Neurophysiol. 66, 1912–1926. 

Dacks, A.M., Christensen, T.A., Hildebrand, J.G., 2008. Modulation of olfactory information processing 

in the antennal lobe of Manduca sexta by serotonin. J. Neurophysiol. 99, 2077–2085. 

Dethier, V.G., 1976. The Hungry Fly. Harvard University Press, Cambridge, MA, USA. 

Dolly, J.O., Parcej, D.N., 1996. Molecular properties of voltage-gated K
+
 channels. J. Bioenerg. 

Biomembr. 28, 231–253. 

Erler, G., Thurm, U., 1981. Dendritic impulse initiation in an epithelial sensory neuron. J. Comp. 

Physiol. A 142, 237–249. 

Evans, D.R., Mellon, D., 1962. Electrophysiological Studies of a Water Receptor Associated With the 

Taste Sensilla of the Blowfly. J. Gen. Physiol. 45, 487–500. 



 46 

Gatellier, L., Nagao, T., Kanzaki, R., 2004. Serotonin modifies the sensitivity of the male silkmoth to 

pheromone. J. Exp. Biol. 207, 2487–2496. 

Gingl, E., French, A.S., 2003. Active signal conduction through the sensory dendrite of a spider 

mechanoreceptor neuron. J. Neurosci. 23, 6096–6101. 

Halliwell, J.V., 1990. K
+
 channels in the central nervous system, in: Cook, N.S. (Ed.), Potassium 

Channels: Structure, Classification, Function and Therapeutic Potential. Ellis Horwood Ltd., 

Chichester, pp. 348–381. 

Harvey, A.L., 1993. Neuropharmacology of potassium ion channels. Med. Res. Rev. 13, 81–104. 

Herness, S., 2000. Coding in taste receptor cells. The early years of intracellular recordings. Physiol. 

Behav. 69, 17–27. 

Hille, B., 2001. Ionic Channels of Excitable Membranes, third. ed. Sinauer Press, Sunderland, MA. 

Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application 

to conduction and excitation in nerve. J. Physiol. 117, 500–544. 

Ishimoto, H., Tanimura, T., 2004. Molecular neurophysiology of taste in Drosophila. Cell. Mol. Life Sci. 

61, 10–18. 

Jan, L.Y., Jan, Y.N., 1992. Structural elements involved in specific K
+
 channel functions. Annu. Rev. 

Physiol. 54, 537–555. 

Kijima, H., Nagata, K., Nishiyama, A., Morita, H., 1988. Receptor current fluctuation analysis in the 

labellar sugar receptor of the fleshfly. J. Gen. Physiol. 91, 29–47. 

Kim, M., Mistretta, C.M., 1993. 4-Aminopyridine reduces chorda tympani nerve taste responses to 

potassium and alkali salts in rat. Brain Res. 612, 96–103. 

Klein, M., Kandel, E.R., 1980. Mechanism of calcium current modulation underlying presynaptic 

facilitation and behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. U.S.A. 77, 6912–6916. 

Kloppenburg, P., Ferns, D., Mercer, A.R., 1999. Serotonin enhances central olfactory neuron 

responses to female sex pheromone in the male sphinx moth Manduca sexta. J. Neurosci. 19, 

8172–8181. 

Kloppenburg, P., Hildebrand, J.G., 1995. Neuromodulation by 5-hydroxytryptamine in the antennal 

lobe of the sphinx moth Manduca sexta. J. Exp. Biol. 198, 603–611. 



 47 

Kolb, H.A., 1990. Potassium channels in excitable and non-excitable cells. Rev. Physiol. Biochem. 

Pharmacol. 115, 51–91. 

Liscia, A., Majone, R., Solari, P., Tomassini Barbarossa, I., Crnjar, R., 1998. Sugar response 

differences related to sensillum type and location on the labella of Protophormia terraenovae: a 

contribution to spatial representation of the stimulus. J. Insect Physiol. 44, 471–481. 

Liscia, A., Solari, P., 2000. Bitter taste recognition in the blowfly: Electrophysiological and behavioral 

evidence. Physiol. Behav. 70, 61–65. 

Liu, L., Hansen, D.R., Kim, I., Gilbertson, T.A., 2005. Expression and characterization of delayed 

rectifying K
+
 channels in anterior rat taste buds. Am. J. Physiol. - Cell Physiol. 289, C868–C880. 

Llinas, R., 1988. The intrinsic electrophysiological properties of mammalian neurons: insights into 

central nervous system function. Science 242, 1654–1664. 

Lucero, B.Y.M.T., Horrigan, F.T., Gilly, W.M.F., 1992. Electrical responses to chemical stimulation of 

squid olfactory receptor cells 162, 231–249. 

Mathie, A., Wooltorton, J.R., Watkins, C.S., 1998. Voltage-activated potassium channels in mammalian 

neurons and their block by novel pharmacological agents. Gen. Pharmacol. 30, 13–24. 

Mercer, A.R., Hayashi, J.H., Hildebrand, J.G., 1995. Modulatory effects of 5-hydroxytryptamine on 

voltage-activated currents in cultured antennal lobe neurones of the sphinx moth Manduca sexta. 

J. Exp. Biol. 198, 613–627. 

Meves, H., Pichon, Y., 1975. Effects of 4-aminopyridine on the potassium current in internally perfused 

giant axons of the squid. J. Physiol. 251, 60P. 

Meves, H., Pichon, Y., 1977. The effect of internal and external 4-aminopyridine on the potassium 

currents in intracellularly perfused squid giant axons. J. Physiol. 268, 511–532. 

Morita, H., 1992. Transduction process and impulse initiation in insect contact chemoreceptor. Zool. 

Sci. 9, 1–16. 

Morita, H., Yamashita, S., 1959. Generator potential of insect chemoreceptor. Science 130, 922–923. 

Murakami, M., Kijima, H., 2000. Transduction ion channels directly gated by sugars on the insect taste 

cell. J. Gen. Physiol. 115, 455–466. 

Pelhate, M., Pichon, Y., 1974. Selective inhibition of potassium current in the giant axon of the 

cockroach. J. Physiol. 242, 90P. 



 48 

Pongs, O., 1992. Molecular biology of voltage-dependent potassium channels. Physiol. Rev. 72, S69–S88. 

Rees, C.J.C., 1970. The Primary Process of Reception in the Type 3 (‟Water') Receptor Cell of the Fly, 

Phormia terranovae. Proc. R. Soc. B Biol. Sci. 174, 469–490. 

Rehm, H., Tempels, B.L., 1991. Voltage-gated K
+
 channels of the mammalian brain. FASEB J. 5, 164–170. 

Saito, M., Wu, C.F., 1991. Expression of Ion Channels and Mutational Effects in Giant Drosophila 

Neurons Differentiated from Cell Division-arrested Embryonic Neuroblasts. J. Neurosci. 11, 

2135–2150. 

Salkoff, L., Baker, K., Butler, A., Cuvarrubias, M., Pak, M.D., Wei, A., 1992. An essential “„set‟” of K1 

channels conserved in flies, mice and humans. Trends Neurosci. 15, 161–166. 

Schauf, C.L., Colton, C.A., Colton, J.S., Davis, F.A., 1976. Aminopyridines and sparteine as inhibitors 

of membrane potassium conductance. Effects on Myxicola giant axons and the lobster 

neuromuscular junction. J. Pharmacol. Exp. Ther. 197, 414. 

Smith, J.J.B., Mitchell, B.K., Rolseth, B.M., Whitehead, A.T., Albert, P.J., 1990. SAPID tools: 

microcomputer programs for analysis of multi-unit nerve recordings. Chem. Senses 15, 253–270. 

Smith, K.J., Felts, P.A., John, G.R., 2000. Effects of 4-aminopyridine on demyelinated axons, 

synapses and muscle tension. Brain 123, 171–184. 

Solari, P., Masala, C., Falchi, A.M., Sollai, G., Liscia, A., 2010. The sense of water in the blowfly 

Protophormia terraenovae. J. Insect Physiol. 56, 1825–1833. 

Sollai, G., Solari, P., Masala, C., Liscia, A., Crnjar, R., 2008. A K
+
/H

+
 P-ATPase transport in the 

accessory cell membrane of the blowfly taste chemosensilla sustains the transepithelial potential. 

J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 194, 981–988. 

Teerapong, P., Harvey, A.L., 1977. The effect of 5-hydroxytryptamine on the chick biventer cervicis 

muscle. Eur. J. Pharmacol. 44, 99–104. 

Teshiba, T., Shamsian, A., Yashar, B., Yeh, S.R., Edwards, D.H., Krasne, F.B., 2001. Dual and 

opposing modulatory effects of serotonin on crayfish lateral giant escape command neurons. J. 

Neurosci. 21, 4523–4529. 

Thompson, S., 1982. Aminopyridine block of transient potassium current. J. Gen. Physiol. 80, 1–18. 

Wagner, H.H., Ulbricht, W., 1975. 4-aminopyridine block of K channels and its partial relief on 

depolarization. Abstr. 5th Int. Biophys. Congr. 504. 



 49 

Walsh, J.P., Byrne, J.H., 1989. Modulation of a steady-state Ca
2+

-activated, K
+
 current in tail sensory 

neurons of Aplysia: role of serotonin and cAMP. J. Neurophysiol. 61, 32–44. 

Wieczorek, H., Koppl, R., 1978. Effect of sugars on the labellar water receptor of the fly. J. Comp. 

Physiol. A 126, 131–136. 

Wilczek, M., 1967. The distribution and neuroanatomy of the labellar sense organs of the blowfly 

Phormia regina Meigen. J. Morphol. 122, 175–201. 

Wolff, M., Vogel, W., Safronov, B.V., 1998. Uneven distribution of K
+
 channels in soma, axon and 

dendrites of rat spinal neurones: functional role of the soma in generation of action potentials. J. 

Physiol. 509, 767–776. 

Yeh, J.Z., Oxford, G.S., Wu, C.H., Narahashi, T., 1976. Dynamics of aminopyridine block of potassium 

channels in squid axon membrane. J. Gen. Physiol. 68, 519–535. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 50 

Section 2 
 

 

Morphological characterization of the antennal lobes 

in the Mediterranean fruit fly Ceratitis capitata 

 

Valentina Corda, Giorgia Sollai, Carla Masala, Paolo Solari, Roberto Crnjar 

 

Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Cittadella Universitaria, SP 8 

Km 0.700, 09042 Monserrato, (CA), Italy 

 

 

Abstract 

The medfly (Ceratitis capitata Wied.) is one of the most important pest for horticulture, targeting a 

great variety of fruit and vegetables species worldwide. Due to its commercial relevance, many 

studies focused on the development and improvement of control strategies based on olfactory 

chemoreception. A complete knowledge of the anatomical and functional properties of the 

olfactory system is still lacking. Aim of this work is to give a morphological characterization based 

on the three-dimensional reconstruction of the antennal lobes (ALs) in adult medfly brains.  

In order to reach this goal, we performed unilateral antennal backfills of olfactory receptor 

neurons (ORNs) in adult males and females by means of the neuronal tracer neurobiotin, 

revealed by streptavidin-Cy3 or avidin-Alexa Fluor 488 conjugated. In association with the 

anterograde staining, immunohistochemistry was applied in some brains. Confocal stacks 

acquired from whole-mount specimens were analyzed with the AMIRA software, using the 

Segmentation tool.  

Unilateral neurobiotin and immunohistochemical stainings successfully revealed the AL structure 

of the adult medfly in all the specimens tested. As in other insects, the ALs of C. capitata are 

organised in glomeruli, more tightly packed in the anterior part than the posterior one. Axons of 

ORNs innervate a bilateral pair of homologous glomeruli and form a commissure between the two 

ALs, which is a typical feature of Diptera. We systematically counted a number of 53 glomeruli in 

each AL studied, with few exceptions. 

Our results provide a basis for future investigations on the interactions with host plants of this 

important agricultural pest. 
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1. Introduction 

The Mediterranean fruit fly Ceratitis capitata (Wied.) is a widespread pest for horticulture, 

targeting a great variety of fruit and vegetables species (Liquido et al., 1990). It is considered one 

of the most important agricultural pests in the world not only for its broad polyphagy, but also 

because of its biological potential, the possibility of adaptation to diverse environment and the 

difficulty of control (De Meyer et al., 2008; Diamantidis et al., 2011; Gasperi et al., 2002; 

Malacrida et al., 2007). Due to its commercial relevance, many studies focused on the 

development and improvement of different control strategies. Some of them are based on the use 

of biological competitors (Headrick and Goeden, 1996) or sterile adults, as in the Sterile Insect 

Technique (SIT, Ratios et al., 2001; Shelly and Kennelly, 2002; Shelly and McInnis, 2003; Shelly, 

2005), others on chemicals, such as the mass-trapping (Cossè et al., 1995; Heath et al., 1991; 

Jang et al., 1994, 1989; Katsoyannos et al., 1997; Papadopoulos et al., 2001). Both the SIT and 

the mass-trapping involve the activation of the olfactory system, since they need efficient species-

specific attractants to work properly. Therefore, a deep knowledge of the morphological and 

functional properties of the peripheral and central olfactory structures is a fundamental 

requirement to fully understand the mechanisms involved in odor information processing.  

In this respect, in the past years several studies have been conducted on olfactory sensitivity of 

C. capitata towards different compounds of interest for this species. For example, 

electrophysiological recordings from antennae of medfly adults have shown a higher sensitivity of 

females than males for some Citrus peel oils and volatile compounds (Hernandez et al., 1996; 

Levinson et al., 1990; Light et al., 1992, 1988), although behavioral tests revealed a stronger 

preference of males for the volatiles of orange flavedo than females (Katsoyannos et al., 1997). 

In females, the odor preference may be affected by mating behavior: it has been observed that 

they are mostly attracted by the male-produced pheromone than the ripe guava odor during early 

sexual maturity, but this preference is inverted after mating (Jang, 1995). On the contrary, the 

exposure to some natural and synthetic compounds may influence the mating behavior in medfly 

males (Shelly et al., 2007, 2008, 2004, 1996).  

From a morphological point of view, information about the olfactory system of C. capitata in the 

literature is dramatically incomplete. Only few works have described the peripheral structures in 

adult medflies (Fig. 1A-C), with particular attention to the typology and distribution of olfactory 

chemosensilla on the antennal surfaces of males and females. Briefly, four sensillum types  

(classified as basiconic, clavate, trichoid, and grooved) (Fig. 1B) cover the antennal flagellum 

(Bigiani et al., 1989; Crnjar et al., 1988; Mayo et al., 1987; Sollai et al., 2010), with no differences 

in number and distribution (Fig. 1C) between sexes, except for clavate sensilla, found in a 

statistically higher number in the lateral surface of females (Sollai et al., 2010). A gap of 

knowledge on the olfactory structures in the central nervous system of this species is still present.  

In insects, the first brain centre in which the olfactory information is primarily processed is the 

antennal lobe (AL), analogous in structure and function to the olfactory bulb of vertebrates 
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(Strausfeld and Hildebrand, 1999). The olfactory information is sent to the ALs after the 

interaction between the volatile stimuli and the olfactory receptor neurons (ORNs) on the 

antennae. ORN axons project into specific spherical structures inside the AL, called glomeruli, 

where they synapse with the dendrites of target neurons (local interneurons and projection 

neurons), the role of which is to convey the information processed inside the ALs to the higher 

brain centers, the mushroom bodies and lateral horn (Homberg et al., 1989, 1988; Ito et al., 1998; 

Stocker, 1994).  

 

 

  

  
 

Figure 1. Morphological characterization of the antennae in Ceratitis capitata. (A) As other Diptera, the medfly 

presents aristate antennae, composed by scapus (s), pedicel (p), flagellum (f), and the arista (a). (B) The flagellar 

segment is covered by four types of olfactory sensilla: b = basiconic, c = clavate, t = trichoid, g = grooved. (C) 

Distribution of the diverse typology of sensilla in the medial (M) and lateral (L) pages of male and female 

antennae, with no difference between sexes except for clavate sensilla in the lateral surface of females antennae. 

(Images courtesy of Sollai et al., 2010) 

A B 

C 
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Due to its central role in processing the olfactory information, the glomerular organization of the 

ALs have been largely studied and described in several insect species, such as Drosophila 

(Laissue et al., 1999; Stocker et al., 1990), moths (Berg et al., 2002; Kanzaki et al., 1989; 

Rospars and Hildebrand, 1992; Skiri et al., 2005), honeybees (Galizia et al., 1999), mosquitoes 

(Anton and Rospars, 2004; Ghaninia et al., 2007; Ignell et al., 2005), cockroaches (Chiang et al., 

2001). The overall principle resulting from these studies is that this structural organization is 

conserved among species, presumably reflecting a common functional need (Galizia, 2008), but 

the number of glomeruli is variable depending on the species (Rospars, 1988). 

In recent years, the improvement of staining techniques based on fluorescent dyes, combined 

with confocal reconstruction of entire ALs by image analysis, have allowed the creation of three-

dimensional brain maps in several insects. Since no data are available for C. capitata, aim of this 

work was to give a contribution to the morphology of the ALs in adult medfly brains. For this 

purpose, unilateral antennal backfills in combination with immunohistochemical stainings were 

performed in adult males and females. A preliminary study was successfully conducted by means 

of the neuronal tracer neurobiotin, revealed by streptavidin-Cy3. Afterwards, further anterograde 

stainings were performed, and immunohistochemistry was applied in some brains. Confocal 

stacks acquired from whole-mount specimens were analyzed for the estimation of the number of 

glomeruli.  

 

 

2. Materials and methods 

2.1. Insects 

All the experiments were performed on adult medflies of C. capitata of both sexes, kindly supplied 

by the Dept. of Animal Biology of the University of Pavia (Italy) at the pupal stage, and reared 

under controlled conditions (22 ± 1° C, 60-70% relative humidity, 12:12 h light:dark cycle) in a 

climatic chamber. Adult flies were fed with a mixture of sugar and yeast (4:1). Fresh water was 

given twice a week.   

 
2.2. Staining techniques 

In order to obtain the morphological characterization of the antennal lobes in the Mediterranean 

fruit fly Ceratitis capitata, two different staining techniques were applied both in male and female 

flies. Preliminary unilateral antennal backfills were performed in 9 females, by means of the 

neuronal tracer neurobiotin (NB) (Vector Laboratories), revealed by streptavidin conjugated with 

the fluorochrome Cy3. For the further experiments, conducted both in males and females, 

backfills were performed using NB coupled with avidin-Alexa Fluor 488 as a one step process, or 

in association with an immunohistochemical procedure based on the application of a primary 
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antibody, specific for the visualization of brain areas with high synaptic density, such as the ALs. 

The 4',6-diamidino-2-phenylindole (DAPI) dye was used to visualize cell body nuclei. 

All chemicals were purchased from SIGMA-Aldrich, except otherwise stated.   

 

2.2.1. Antennal backfills 

Antennal backfills were performed with the same protocol both in the preliminary and in the 

further study. Living insects were inserted into 100 μl truncated plastic pipette tips, with the head 

protruding at the tip and immobilized with plastiline. Then, one of the antennae was placed 

vertically and stabilized with other plastiline. A small mould was built around the antenna with 

vaseline, filled with a drop of a NB solution (2% in distilled water), and the antenna was cut at the 

base of the flagellum. The mould was covered with more vaseline and the insects were kept at 

4°C in a moistened chamber to prevent desiccation, for 5 hours or overnight to allow the 

complete migration of the tracer. Afterwards, heads were removed from the insect body, and 

placed in a Petri dish with 4% paraformaldehyde (PFA) dissolved in sodium phosphate buffer 

(PBS, 0.1 M, pH = 7.2). The brains were dissected out of the head capsule and post-fixed in new 

fresh PFA at room temperature, for a total fixation time of 3 hours. Subsequently, brains were 

washed several times (usually 8 x 30 min) in PBS with 0.2% Triton X-100 (PBST), in order to 

completely remove all the PFA from the tissues. Brains were then incubated in avidin-Alexa Fluor 

488 (Invitrogen, Molecular Probes) at 1:400 dilution or in streptavidin-Cy3 (Jackson 

ImmunoResearch Europe) diluted 1:500 in volume, for three days. The nuclear marker DAPI 

(1:500) was added together with avidin or streptavidin for visualization of cell body nuclei. After 

incubation, brains were washed in PBST (8 times x 30 min), dehydrated in increasing ethanol 

solutions (50%, 75%, 95%, 2 times x 100%, 30 min each) and treated in xylene for 2-3 minutes. 

All the steps of fixation, washing and incubation were done on a shaker, in constant and gentle 

agitation. Finally, brains were mounted in DPX (a mixture of distyrene, a plasticizer, dissolved in 

toluene-xylene), using spacer rings to avoid pressure effects on the brain tissues by the coverslip. 

 

2.2.2. Immunohistochemistry 

In some specimens, after the application of the protocol used for the NB backfill stainings, and 

before incubation in avidin-Alexa Fluor 488 and anti-synapsin antibody, brains were treated with a 

blocking solution of PBST containing 0.2% bovine serum albumine (BSA) and 0.02% NaN3. The 

blocking step was done at room temperature on a shaker, for 12 hours or overnight, in order to 

prevent unspecific binding of the antibody and to reduce the background noise. Then, brains 

were incubated in a solution with avidin-Alexa Fluor 488 (1:400) and the mouse monoclonal 

primary antibody anti-synapsin (1:250, Hybridoma, University of Iowa, IA, USA) in PBST with 

0.2% BSA and 0.02% NaN3. The specimens were subsequently washed (8 times x 30 min) in 

PBST and incubated in a goat anti-mouse secondary antibody conjugated with Alexa Fluor 546 
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(Invitrogen, Molecular Probes), diluted 1:200, and DAPI (1:500) in PBST with 0.2% BSA and 

0.02% NaN3. After incubation, brains were washed again in PBST (8 times x 30 min), dehydrated 

in increasing ethanol solutions (50 - 100%, 30 min each), treated with xylene  (2-3 min), and 

finally mounted in DPX. 

 

2.3. Image acquisition and analysis  

Images from whole-mount specimens were obtained by means of two different confocal 

microscopes.  

In particular, the image stacks of the brains treated with streptavidin-Cy3, used in the preliminary 

study, were scanned with a Zeiss LSM 510 Meta confocal microscope (Carl Zeiss, Jena, 

Germany), equipped with a 20x/1.0 water immersion objective for entire brains, and a 63x/1.4 oil 

objective for single ALs. Structures stained with Cy3 were excited with a HeNe laser at 543 nm, 

whereas the 2-photon excitation at 750 nm was employed to detect the cell body nuclei labeled 

with DAPI, with appropriate filters to detect the fluorescence. Improvement of the image quality 

was achieved adjusting the contrast and the brightness with the Zeiss LSM Image Browser. 

Preparations treated with Alexa Fluor 488 and Alexa Fluor 546 were viewed with a Leica SP5 

confocal microscope, by using a 20x/0.5 dry and a 63x/1.40 oil objective. Scans were made with 

a supercontinuum white light laser, with an excitation wavelength of 488 nm for Alexa Fluor 488, 

and 556 nm for Alexa Fluor 546. Fluorescence was detected in a range of 495-580 and 561-635 

nm, respectively. Visualization of nuclei stained with DAPI was possible by means of a UV laser 

(405-diode) at 405 nm. Confocal image stacks were processed with the LAS.AF software before 

the computer analysis. Images of all specimens were obtained and stored in 12-bit resolution 

(1024 x 1024 pixels).  

 
2.4. Glomerular identification and nomenclature 

Among all the ALs scanned, 39 were selected for the analysis with the AMIRA 5.2.1 software 

(Visage Imaging, Berlin, Germany), by means of the Segmentation tool. Identification of glomeruli 

in the medfly ALs was made considering the location, the shape and the dimension, and the 

nomenclature used is based on that developed for Drosophila (Stocker et al., 1990). Each 

glomerulus was marked by one or two capital letters indicating the general position: A = anterior, 

P = posterior, D = dorsal, V = ventral,   L = lateral, M = medial, C = central. Letters were followed 

by numbers to distinguish glomeruli in the same region.  

 

2.5. Statistics 

Two-way ANOVA was used to evaluate the interaction of gender and homologous ALs related to 

AL size (as diameter). Afterwards, one-way ANOVA was used to determine whether significant 

differences in AL size were present between sexes, and right and left ALs. Also the volumes of 
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matched glomeruli in males and females were analyzed to assess the existence of sexual 

dimorphism. For this purpose, three-way ANOVA was used to compare differences related to 

gender and glomerulus type in homologous or different ALs. Volumes of glomeruli were 

calculated after the segmentation procedure, corresponding to the number of voxels x size of a 

single voxel. The voxel size obtained from the scanning was 0.2405 x 0.2405 x 0.25177 μm (x, y, z). 

Post-hoc comparisons were conducted with the Tukey test. Statistical analyses were conducted 

using STATISTICA for WINDOWS (version 7.0; StatSoft Inc, Tulsa, OK, USA). p values <0.05 

were considered significant. 

 

3. Results 

3.1. Backfills and antibody stainings  

Confocal acquisition of C. capitata brains allowed to visualize entire ALs in single image stacks. 

Among all the treated specimens, 39 ALs were successfully stained with backfills (Fig. 2A), and 5 

preparations showed also a good immunostaining both in the left and the right ALs (Fig. 2B). 

Unilateral backfills with NB, subsequently labeled by avidin-Alexa Fluor 488 or streptavidin-Cy3, 

revealed the sensory afferents from the antennae into the ALs, which constitute the antennal 

nerve (AN). Inside the ALs, these afferents form more or less dense packed regions, which 

correspond to the glomeruli, more tightly associated in the anterior part than the posterior one. 

Fibers from ORNs project inside the ALs with an ipsilateral and controlateral innervation pattern 

of all the glomeruli visualized, in males as in females. Due to this controlateral innervation, left 

and right ALs result interconnected by the antennal commissure (AC) (Fig. 2D). 

Immunohistochemical staining with the anti-synapsin antibody allowed to visualize different brain 

regions with high synaptic density. The ALs appear clearly defined structures, with a major 

number of glomeruli than those revealed by backfills. Anti-synapsin antibody also allowed to 

visualize clusters of cell bodies surrounding the ALs, presumably representing somata of 

interneurons and projection neurons, the nuclei of which were stained by DAPI (Fig. 2A-D). 

 

3.2. The ALs of Ceratitis capitata: general structure, identification of glomeruli 

and 3D   reconstruction 

As in other insects, medfly ALs are located in the anterior part of the brain, and possess an 

ellipsoid shape. For each AL, the diameter was measured (mean value = 105.857 μm in males, 

120.8 μm in females). Two-way ANOVA revealed no significant interaction between gender and 

AL type (F(1,16) = 0.17680, p = 0.67973); on the contrary, the one-way ANOVA analysis showed 

the existence of sexual dimorphism in size (F(1,16) = 5.7155, p = 0.02946), with no differences 

between homologous ALs (F(1,16) = 0.00707, p = 0.93402). Evaluation of glomeruli was achieved 

by the analysis of the confocal image stacks in both sexes. The comparison between the 
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anterograde and the antibody stained ALs (Fig. 2C) was necessary to better recognize single 

glomeruli, otherwise not individually identifiable in some cases.  

 

 

 

Figure 2. Staining results in the left AL of an adult medfly (A-C) and in a specimen treated in the preliminary study 

(D). 

A. Anterograde backfill with NB, revealed by avidin-Alexa Fluor 488. Projection of ORNs enter the AL and form 

dense packed regions identifiable as glomeruli. 

B. Immunohistochemical staining with anti-synapsin antibody allowed to highlight the presence of glomeruli inside 

the ALs, and clusters of cell bodies surrounding. 

C. NB and anti-synapsin stainings merged together. Comparison of the two stainings was fundamental in some 

cases, in order to recognize single glomeruli otherwise not identifiable. 

D. Preliminary anterograde backfill in a specimen treated with NB revealed by streptavidin-Cy3. Sensory afferents 

from ORNs enter the AL, forming the antennal nerve (AN). Due to a controlateral innervation, ALs are connected 

by the antennal commissure (AC). 

The nuclear marker DAPI revealed the cell body nuclei (A-D).      

A B 

C D 
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The same 53 glomeruli were systematically counted in each AL independently of the sex, with 

some exception, and some supernumerary glomeruli resulted in few cases. A preliminary three-

way ANOVA showed no significant interactions of glomerulus volume across gender, homologous 

ALs and glomerulus types (F(52,844) = 0.76321, p = 0.88958), thus a two-way ANOVA was used to 

determine the existence of possible changes related to sexes. This analysis confirmed a sexual 

dimorphism (F(52,844) = 3.7331, p = 0.00000), and post-hoc comparisons showed that only few 

glomeruli presented statistical changes in volume between males and females (Fig. 3). One of 

these larger glomeruli, named PD1 (p = 0.000051), is located dorso-medially, at the entrance of 

the AL. C3 (p = 0.047801) is located central, inside the AL. PV1 (p = 0.00005) is the most 

ventral glomerulus, oriented in the posterior area. A3 (p = 0.004119) is located in the anterior 

surface of the AL. Finally, the more consistent group of sexual dimorphic glomeruli, composed 

by PD4 (p = 0.038628), L1 (p = 0.006187), VL1 (p = 0.00005), AL1 (p = 0.000051), and 

AD1 (p = 0.00005), is distributed on the lateral region of the AL. 

 

 

 

 

 

 

 

Figure 3. Mean volume of the 53 glomeruli counted in the medfly ALs analyzed. The post-hoc comparisons 

conducted with the Tuckey test revealed sexual dimorphism only in a few number of glomeruli. * = significant 

difference between males (in blue) and females (in red). 
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The identification of single glomeruli allowed the construction of 3D maps of the ALs, based on 

glomeruli segmentation by the AMIRA software, both in males and females (Fig. 4-5). In order to 

simplify recognition, given the presence of regions with a high density of glomeruli, each 

 

 

 

 

 

Figure 4. 3D reconstruction of the glomeruli in the right AL of a male medfly, shown in the anterior (A), lateral (B), 

medial (C) and posterior (D) part of the AL. Glomeruli have been segmented with different colors to distinguish 

single units, since areas of more packed glomeruli are present inside the ALs. 53 glomeruli have been counted, 

named with capital letters and numbers according to Stocker (1994). Capital letters indicate the general position 

of glomeruli inside the ALs, the numbers are required to distinguish glomeruli in the same region. The orientation 

of the AL is indicated by the cross: A = anterior, P = posterior, D = dorsal, V = ventral, L = lateral, M = medial. 
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glomerulus has been marked with a different color. Glomeruli have been named in the different 

specimens on the basis of the same principle, as the general position is constant in homologous 

ALs, and intra- and inter-individually. 

 

 

 

 

 

Figure 5. 3D reconstruction of the glomeruli in the right AL of a female medfly, shown in the anterior (A), lateral 

(B), medial (C) and posterior (D) part of the AL. As for the reconstruction in the male specimen, glomeruli have 

been segmented with different colors to distinguish single units, and also in this case 53 glomeruli have been 

counted, and named according to Stocker (1994). The orientation of the AL is indicated by the cross: A = anterior, 

P = posterior, D = dorsal, V = ventral, L = lateral, M = medial. 
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4. Discussion and conclusions 

The aim of this study was to describe the morphology of the ALs in the Mediterranean fruit fly 

Ceratitis capitata, combining two different staining techniques, confocal microscopy and image 

analysis.  

Both the anterograde backfills with the neuronal tracer NB and the immunohistochemical stainings 

with the primary antibody anti-synapsin successfully revealed the glomerular structure of the 

medfly ALs. Glomeruli represent the morpho-functional units of the ALs in many species of 

insects (Anton and Rospars, 2004; Berg et al., 2002; Chiang et al., 2001; Galizia et al., 1999; 

Ghaninia et al., 2007; Ignell et al., 2005; Kanzaki et al., 1989; Laissue et al., 1999; Rospars and 

Hildebrand, 1992; Skiri et al., 2005; Stocker et al., 1990), with a common general organization, 

but a variable number (Rospars, 1988). The NB backfills, in particular, allowed to highlight, in the 

medfly, the projection patterns of axons from the ORNs located at the antennal level: fibers 

converge in the antennal nerve and enter the antennal lobe to form the synaptic connections with 

the second order sensory neurons, which is consistent with the anatomical arrangement of 

olfactory pathways in other dipteran species (Poddighe et al., 2010; Stocker, 1994). Although NB 

was applied only unilaterally, both ALs were revealed: this is due to the controlateral innervation 

of homologous glomeruli by bilateral fibres projecting from ORNs, passing via the antennal 

commissure, which is a typical feature of Diptera (Poddighe et al., 2010; Stocker, 2001, 1994). 

Immunohistochemical stainings with the anti-synapsin antibody clearly showed the morphology of 

different brain areas, indicative of a high density of synaptic connections. Inside the ALs, more 

glomeruli than those highlighted by anterograde stainings were revealed, presumably because 

these glomeruli are not innervated by antennal ORNs, but receive projections originating from the 

sensory neurons located in the sensilla of maxillary palps (Anton and Rospars, 2004; Anton et al., 

2003; Ghaninia et al., 2007; Stocker, 2001, 1994).  

The analysis of confocal image stacks allowed the recognition of glomeruli into the ALs, but a 

comparison between images acquired from NB and anti-synapsin treated specimens was 

necessary to clearly distinguish single glomeruli. In C. capitata ALs, in fact, the differentiation of 

glomeruli in dense regions is not so evident, probably for the absence of a consistent glial sheath 

to separate them (Stocker, 1994). Interestingly, glomeruli of the medfly present different shapes, 

conserved in both sexes, and different volumes: these features facilitated the anatomical 

matching of glomeruli belonging to the same region in diverse ALs. The segmentation procedure 

in C. capitata allowed to systematically count 53 glomeruli inside the ALs analyzed, with absent or 

supernumerary units in some cases. From the literature it is known that the glomerular number 

may greatly differ depending on the species (Rospars, 1988), but in Diptera, such as flies and 

mosquitoes, ALs are usually characterized by a glomerular number ranging from around 50 to 60 

(Ghaninia et al., 2007; Ignell et al., 2005; Laissue et al., 1999). In general, the count of missing or 

supernumerary glomeruli in different specimens during the segmentation step is not unusual, and 

this fact has been found in various species of insects studied so far (Couton et al., 2009; Kazawa 
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et al., 2009; Rospars and Hildebrand, 2000, 1992). The explanation for this may depend on a 

methodological error in the experimental and analysis procedures, as well as on individual 

variability. Although in C. capitata it is not possible to completely exclude the incorrect outline of 

glomeruli due to a methodological error, this should not be considered as the main source of 

differences, given the standardization of the staining protocols and the selection of confocal 

image stacks of a good quality for the count. On the contrary, individual variability may be largely 

responsible for the presence of anomalies in the number of glomeruli: this number, in fact, is 

directly related to the number of olfactory receptors expressed by sensory neurons (Couto et al., 

2005), and perturbations during development may influence the expression of genes responsible 

for these olfactory receptors (Couton et al., 2009; Rospars and Hildebrand, 2000).  

The results of this work highlight the presence of sexual dimorphism in the medfly: although 

glomeruli can be paired in homologous ALs and between sexes, females appear to possess 

some enlarged glomeruli as compared to males. Usually, species characterized by sexual 

dimorphism in the glomerular arrangement of the ALs may show differences in the number, 

dimensions and/or location of glomeruli (Rospars and Hildebrand, 2000). This dimorphism is 

generally present in species whose sexual behavior depends on pheromone communication. In 

male moths, for example, the detection of the sex pheromone emitted by females is assured by 

the presence of specific sensillum types on the antennal surface. Afferents from ORNs located in 

these sensilla project into the AL where they form, upon entering, the first glomerular station 

responsible of pheromone information processing, the macroglomerular complex (MGC, Berg et 

al., 1998; Hansson et al., 1995). Moreover, in Manduca sexta, in spite of its sexual dimorphism, 

three glomeruli have been found in females equivalent to the three glomeruli composing the MGC 

in males (Rospars and Hildebrand, 2000). In C. capitata, the comparison of the ALs between 

sexes showed the absence of a complex that resembles the MCG, however one of the glomeruli 

located at the entrance of the AL (PD1) results to be significantly larger in volume in females than 

in males. Even if functional studies should be conducted to verify the association of this 

glomerulus with the processing of pheromone information, the sexual dimorphism results 

coherent with the sexual behavior of medflies, in which males release the pheromone to attract 

females for mating (Arita and Kaneshiro, 1989; Flath et al., 1993; Jang et al., 1989).  

In addition to PD1, other eight glomeruli resulted significantly larger in females than in males, 

probably due to the need of a sophisticated system for the detection of proper ovoposition sites 

(Varela et al., 2009).    

The combination of two different staining techniques, confocal microscopy and image analysis 

allowed the construction of three-dimensional maps of the ALs of C. capitata, based on the 

manual segmentation of glomeruli, in both sexes. 3D reconstructions of the ALs have been made 

in several insect species so far (Berg et al., 2002; Couton et al., 2009; Galizia et al., 1999; 

Ghaninia et al., 2007; Greiner et al., 2004; Ignell et al., 2005; Laissue et al., 1999; Poddighe et 

al., 2010; Smid et al., 2003; Varela et al., 2009), since the availability of 3D maps of glomeruli is a 
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preliminary step to understand how the olfactory information is processed inside the brain, thus to 

obtain a chemotopic map of the ALs. In the medfly, the reconstruction of the ALs has been made 

in many specimens, based on confocal sections of single individuals. Glomeruli have been easily 

matched, thanks to the conserved shape and position inside the AL, and the number of 

segmented glomeruli was almost the same in all the specimens analyzed, with few variations 

only. This result is in accordance with studies conducted in various other insects, where number 

and position of glomeruli resulted conserved among individuals of the same species (Galizia et 

al., 1999; Rospars and Hildebrand, 2000, 1992).  

In conclusion, the 3D maps of the glomerular structure in Ceratitis capitata ALs represent an 

necessary starting point for functional studies, in order to assess the relationship between the 

structure and the function of the olfactory pathways, and better understand how the olfactory 

information is processed. The results of this study provide a solid basis for future investigations 

on the interactions with host plants of this important agricultural pest.  
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