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Introduction

Mediterranean regions are in a transitional clinzatee between arid and humid
regions (Di Castri & Mooney, 1973) where it has rbdg/pothesised that climate
changes may have thmeost pronounced effect (Palutikof et al. 1994, Ghbat al.,
1996, Lavorel et al., 1998). In many areas, theesyistic effects of climate and human
activities (inappropriate land use, grazing, firaghan expansion, land abandonment,
air/water/soil pollution) are already showing wongy signs of latent, unforgiving land
degradation. Actually, increased research is redquio further develop knowledge
especially in those fragile heterogeneous ecosystgrotentially vulnerable to
perturbations, such as coastal Mediterranean gd&@ascia-Mugnozza et al., 2000,
Reichstein et al., 2002, Lanfredi et al., 2004).

In studying global change and long-term monitorofgthe environment and
man’s effect on it, the necessity detailed andaldd spatial distributions of biophysical
parameter is rapidly increased. Nevertheless, aoilg biophysical measurements over
wide areas by means of traditional field surveys isme-consuming and expensive
task. Furthermore, the establishment of monitorfrgmeworks for environmental
problems is frequently based on retrospective, inribporal series of data. In
particular, interannual variations in phenologyetther animals and plants have been
already demonstrated to be sensitive observableaitwiis of biospheric responses to
global warming (Peneuelas, 2002). As a result, tensensing has become a pivotal
technology for environmental science, since it isffa unigue means to obtain faster,
cost-effective, synoptic, consistent and repetipeespective over large areas, allowing
to derive information about current states of ggspial and biophysical variables and
to monitor their changes.

In particular, there is a tremendous interest amdergial for retrieving
vegetation cover characteristics. In fact, vegetaplay a unique role in global climate
change studies, regulating the energy, water arsdegahanges between the earth-
atmosphere interface (Qi et al., 1995, among othétsreover, the peculiar spectral
signatureof green vegetation, characterised by a strongrpben at the blue and red
wavelenghts and a rather strong reflection ahte-infrared wavelenghts, enables one

to to distinguish it well from other terrestrialrgats. As a matter of fact, in the last



decade, a lot of knowledge has been gained abacatiogpmporal variations of
vegetation cover through satellite/airborne imagecessing. Several essential
vegetation biophysical characteristics, such as meémary productivity (NPP),
phenology, vegetation structure, e.g. Leaf Areaexn(LAl), community compaosition,
vegetation condition, canopy roughness length, h&em obtained by means of satellite
imagery analysis on a landscape or even largee sedh different degree of success
(Myneni et al., 1997, Goetz et al., 1999, Gowealgt1999, Muchoney et al., 2002, Cias
et al., 2005).

In particular, estimation of forest biomass and dleanges have become an
important topic in the global change researchabt,falthough it is generally agreement
that forest biomass above-ground carbon pool ilNtbighern Hemisphere has increased
in the past decades, and thus acts as the sin&trimwspheric CO2, nevertheless the
magnitude, location and causes of this increasaireoncertain (Goodale et al., 2002).

Besides, the recent advent of a new class of comaieemote sensing satellites
provides unprecedented observations of the easth fpace that are both synoptic and
detailed in nature. The possibility to resolve feas in scenes that coarser resolution
data cannot resolve offers the unique opportumitipdth validate conclusions derived
from coarser resolution systems and to extend tesabtained within rather
homogeneous areas toward more complex and mixatbaments. This is particularly
appealing when considering Mediterranean areas ewvhiétre performance of
environmental and climate models is often limitgdatoo rough description of the
Earth’s surface heterogeneity.

In this context, the objective of the following easch was twofold.

The first one was the production of Leaf Area IndeRl) distribution maps
within two forested study areas, by means of stdeflata. The utility of using high
resolution satellite data, like lkonos-2, and bbigh and medium (Landsat) spatial
resolution data when regional-wide map need to feelyred, was investigated and
results discussed. It is noteworthy that such aestigation considered two years of
observation in order to be able to assess to wki@ne results obtained with data
collected at a certain time point (year) matchemsé¢hrelated to data collected in other
years. In other words, two years of data collecti@ne considered to test whether it is

possibile to temporally extrapolate results obtdinesing a given dataset (i.e. the



empirical relationship calibrated at present) tstpend/or future satellite observations
of the same area. The choice to focus on LAI deribg the paramount role this
vegetation biophysical parameters plays within irntgot processes, such as canopy
radiation interception, evapotranspiration and plebtosynthesis (Qi J. et al., 2000;
Kyung-Ja Ha et. al., 200dmong others), consequently being a key input patemof
many climate (Sellers et al. 1986, Sellers et 8871 Chase et al., 1996, Buermann et
al., 2001, Tian Y. et al. 2002), hydrological (D&dret al., 1999) and ecological models
(e.g. Biome-BGC, see also Chen et al, 2000, Asnalr,e2003, Gong et al., 2003).

The second objective concerned a trend analysthjnMhe same study areas,
aimed at improving our understanding of Meditereanéorests’ response to changing
climatic conditions. In particular, a yearly serdd_andsat satellite data and daily local
meteorological measurements over a time span ohtjwgears (1984-2005) were
processed and compared in order to evaluate pessilaltionships between inter-annual
variations of vegetation activity/productivity amelated temperature and precipitation

regimes.



OUTLINE OF THESIS

Chapter 1 contains some theoretical background tabioer remote sensing of
vegetation biophysical properties including vegetatspectral characteristics at leaf
and canopy level, Leaf Area Index (LAl) and spdctvegetation Indexes (\)
definitions and rationale.

Chapter 2 provides a description of the two stugyas

Chapter 3 describes the LAI spatial distributionriezal analysis, including the
adopted datasets(situ measurements and satellite radiometric data), adstfor local
scale and regional-wide scale map production, haeabtained results

Chapter 4 concerns the vegetation retrospectivéysisacarried out by processing
yearly pairs of satellite and corresponding climatata within a time span of twenty
years (1984-2005).

Finally, some concluding remarks are reported iafiér 5.
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List of Acronyms

Some of the acronyms used once or confined in aifgp@aragraph and falling outside the
mean argumentation, are defined in the text/papdgoaly (e.g., all spectral vegetation indices
and satellite sensors’ acronyms).

acronyms interpretation

ANCOVA analysis of covariance
BRDF bidirectional reflectance distribution fuioct
cv coefficient of variation
DEM digital elevation model
DN digital number

EM electromagnetic spectrum
GCPs ground control points
GPS global positioning system
L radiance

A wavelength

LAI leaf area index

niR near-infrared

NPP net primary productivity
P precipitation

p reflectance

RMSE root mean square error
SWIR short-wave infrared

T temperature

T aerosol optical thickness
Vi spectral vegetation index
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1 Remote sensing of vegetation biophysical propees: theoretical

background

1.1 Spectral ranges for vegetation detection

From the electromagnetic (EM) spectrum, three tbfie wavelength regions can be
used to provide information on vegetation charasties: the Visible to Short Wave
Infrared, the Thermal Infrared and the Microwavgioes:

1) Visible to Short Wave Infrare(.40 - 2.50 pum)Vegetation reflectance in this
portion of the EM spectrum provides information ®egetation biophysical
parameters such as chlorophyll, physiological $tmec and leaf cellular water
content. Visible and near infrared channels arelaya on most optical satellite
sensors such as: NOAA-AVHRR (National and Oceanidmdspheric
Administration-Advance Very High Resolution Radide®, Terra-MODIS
(MODerate resolution Imaging Spectroradiometer) aASTER (Advanced
Spaceborne Thermal Emission and Reflection radiereSPOT (Satellite Pour
I'Observation de la Terre) Vegetation, Meteosatyigamt-AATSR (Advanced Along
Track Scanning Radiometer), Landsat ETM+ (Enhanteematic Mapper Plus),
TM (Thematic Mapper) and MSS (Multispectral Scapnékonos-2, Quickbird,
among others.

2) Thermal Infrared (6.0 - 15.0 umiEmittance of this portion of the EM spectrum
provides information on the thermal properties efi@tation cover such as sensible
heat. Sensible héats used to estimate evapotranspiration of vegetatanopies,
which is closely related to water stress. For imstg thermal infrared wavelengths
are available on NOAA-AVHRR, METEOSAT, ERS2-ATSR I¢Ag Track
Scanning Radiometer), GOES (Geostationary OpeitiBnvironment Satellite),
GMS (Geostationary Meteorological Satellite) andNI2ZSAT-TM sensors.

3) Microwave (0.1 - 100 cmActive and passive microwave approaches have been
developed to sense soil water content, which cahiglely relevant to vegetation

monitoring. Passive microwave sensors provide méiion on the thermal

! Same agnthalpy the heat absorbed or transmitted by a substamiegda change of temperature which
is not accompanied by a change of state.
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properties of water. Examples are: Passive sersxi& Sensor Microwave Imager
(SSM/I), currently available on the Defence Metdéogaal Satellite Programme
(DMSP) platform; TRMM Microwave Imager (TMI) of thdropical Rainfall
Measuring Mission (TRMM) and most of all the AdvadcMicrowave Scanning
Radiometer (AMSR), with dual-polarized channelsbaard the Earth Observing
System-Aqua platform. Active microwave sensors f@evinformation on the
dielectric constant, which may be related to vegmtawater content. References
can be found inMoghaddam and Saatchi (1999); Pampaloni (2004) hgnothers.
Examples of active sensors include RADARSAT, ENVISASAR (Advanced
Synthetic Aperture Rada@phd JERS-1 (Japanese Earth Resource Satellite).
This study will consider only the optical domaimgas from 0.4 to 2.50 um

1.2 Leaf and canopy reflectance

Leaf and canopy optical properties encompass ansixe subject, whose extensive
discussion is outside the scope of this thesiscdéere only some basic knowledge are
introduced. The spectral response of a leaf caroheeniently divided into three parts,
as reported in Figure 1:

- the visible (400-800 nm) characterized by a grabsorption of light by

photosynthetic pigments (chlorophydl and b, and carotenoids) in a green feaf

(Chappelle et al. 1992, Gitelson et al., 1996 Gi)elson et al.,1997, Lichtenthaler

et al., 1996); eventually, 70-90% of the incomirediation in blue and red

wavelength is absorbed;

- the near infrared plateau (800-1100 nm) wher@rgibi®n is limited to dry matter

but where multiple scattering within the leaf, teth to the arrangements and

fraction of air spaces between the cells (Dans65), i.e., to the internal structure,
drives the reflectance and transmittance levebsstiatter of light in this part of the
leaf is very effective because of the high contnaghe index of refraction between
the water-rich cell contents and the intercellal@arspaces; moreover, in the spectral

range 700-1300 nm plants are very bright becausedla spectral region between

2 the pigments absorb both blue and red light feringhe photosynthesis, while somewhat more of the
green light is reflected

18



the electronic transitions, which provide absomptia the visible and molecular

vibrations which absorb in longer wavelengths;

- the middle infrared (1100-2500 nm), which is aés@one of strong absorption,

primarily by water in a fresh leaf (Aoki et al., 89 Hunt et al. 1987, Hunt et al.

1989, Inoue et al., 1993; Pefiuelas et al., 1998¢c&le et al., 2001) and secondarily

by dry matter when the leaf wilts;

The water absorption bands are located both in iné@red and middle infrared at
approximately 1950, 1450, 1175, 970 nm. Minor apon also occurs at different
wavelength by other biochemical constituent in &sasuch as protein, lignin, cellulose
and nitrogen (Curran & Kupiec, 1995).

L eaf , Caell

pigments P stcture later content } Domimsnt Factar
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Figure 1 — Typical spectral response charactesisti@ green leaf (after Hoffer, 1978)

Light attenuation inside leaves results from compphenomena related to
biochemical composition and anatomical featuresifycet al., 1996, Ustin et al., 2001,
Carter et al., 2001), while the epidermis determitiee bidirectional reflectancé&s
shown in Figure 2 the upper layer of a leaf, capdiermis, is made up of specialized
cells arranged so that no gaps or openings existh® surface of these cells there is a
wax layer called the cuticule, which prevents moistloss from within the leaf. Both
are very transparent to infrared radiation andntiagority of the radiation is transmitted

to the more internal layer of spongy mesophyllugsswith irregularly shaped cells
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separated by interconnected openings, which ssatierinfrared radiation both upward
and downward and only a fraction is absorbed.

Furthermore, to fully explain the spectral behaviolia canopy, information on
the leaves’ spectral characteristics alone is afficgent. In fact, it is the combination of
multiple factors that gives rise to the canopyeethnce in vegetated pixels. A canopy
consists of a set of plants; each plant has usuadlyy leaf layers, e.g. many branches
which have many leaves. The leaves may differ pe tyage, size, orientation and shape,
creating together with the ground, shadowing amdcgiral variables as stems and
branches, a complex of elements that influencescmopy reflectance as a whole.
Canopy structure is also dynamic, changing on ti@es ranging from minutes to
years. Heliotropic leaves track the sun throughbetday. Other species fold, droop, or

drop their leaves in response to water stress, laylseason.
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Figure 2 — Schematic two-dimensional leaf crostimeand leaf reflectance properties (Sabins, 1996

Thus, in addition to leaf optical properties, egflectance, transmittance and
absorptance, among the most important elementstiaffe canopy reflectance (in a

certain period) are: green biomass cover percenf{age the proportion between
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vegetated and non-vegetated surface) and densitictugal/architecturaproperties,
such as leaf dimension; leaves location, e.g. cartind horizontal distribution, and
orientation in three-dimensional space, e.g. leawvetination and azimuth angle
distribution; illumination angle; reflectance oktlunderstorey layer (litter, soil or other
background).

Particularly, it must be stressed that changingvwig (i.e. sensor) and/or
illumination (i.e. sun) direction changes the pndjom of light reflected towards the
observer. This is a general statement not onlynexdeto vegetation but to any surface
since only an ideal and perfectly diffuse (Lamla}isurface would irradiate exactly
the same in any directions and would be independantight incoming direction.
Therefore, this is another element which shouldtdden into account when using
radiometric data to infer whatever information. TB&irectional reflectance” is a term
first used by Nicodemus et al.,, 1977 to refer tgs tHependency of radiometric
measurements from both viewing and illumination lasg However, although it is
currently part of the established nomenclaturetierreflectance products derived by in
situ, air- and spaceborne sensors, to be rigatomsist be said that the bidirectional
reflectance is not a physically measurable varfalitecan only be approximated by
measurements and it is rather sensitive to diftereensor sampling schemes,
preprocessing, atmospheric correction, and angntatelling (see the excellent review
on the basic concept and definitions of reflectameantities by Schaepman-Strub et al.,
(2006) for further details). Anyway, here it wilelreferred to as the broadly accepted
and used bidirectional reflectance approximatedcepn Therefore, the Bidirectional
Reflectance Distribution FunctidBRDF) describes the scattering of incident light

% It is defined as the ratio of the reflected rad@arrom an infinitesimal surface area in the dimect
(9r,@r) to the incident radiance upon the same surfem® the directiondi,®i). 8 and® are azimuth
and elevation coordinates of a spherical coordirsyt®em centered on the infinitesimal surface of
reflection. Bidirectional reflectance, as geomeilficand mathematically defined, can never be diyec
measured because truly infinitesimal solid angtesirad the directions of incoming or reflecting ratebn

do not include measurable amounts of radiant flux.

4 Since it is not possible to measure bidirectioredlectance, BRDF values reported in practice are
actually related to another reflectance propertjedabidirectional reflectance factor (BRF)This is
defined as the ratio of radiant flux actually refedl by a sample surface to that which would blectsd
into the same reflected-beam geometry by an idea§less, perfectly diffuse (Lambertian) standard
surface irradiated in exactly the same way as tmapte. However, it is generally accepted that
bidirectional reflectance factor measurementauéificdent angular density provide useful estimatéshe
true BRDF.The BRDF depends on wavelength and is determingtidogtructural and optical properties
of the surface, such as shadow-casting, mutipléesoay, mutual shadowing, transmission, reflection
absorption and emission by surface elements, a@attation distribution and facet density.
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from one direction in the hemisphere into anothieeation in the hemisphere. The
BRDF is an intrinsic reflectance property of a augf and can be used, when known, to
correct view and illumination angle effects. Evergn-Lambertian surface has its
characteristic BRDF, whereas the BRDF of an ideamhertian surface is ./
References on vegetation BRDF modelling could bmdoin Susaki et al. (2004), Gao
et al. (2003), Li (2000), Chen et Leblanc (199mhoag others. It is worth noting that,
given the importance of these two parameters, thgHaunch of NASA'’s Terra satellite
and the MODerate Resolution Imaging Spectroradier@iODIS (Justice et al., 1998)
1-km spatial resolution BRDF and 8-day compositd pfoducts are routinely made
available to the scientific community. However, getal validation concluded that
MODIS LAI tends to overestimate field measuremehis about 12% in dense

vegetation (Fensholt et al., 2004, Cohen et ab32@mong others).

1.3 Spectral Vegetation Indices

The spectral Vegetation Indices (VIs) are matherahtransformations designed to
assess the spectral contribution of green vegatationultispectral observations. They
basically are a ratio or a linear combination ob tw multiple spectral bands exploiting
the peculiar, aforementioned, spectral patterneaf kcomponents so as to be more
sensitive than individual bands to vegetation patans.

Band ratioing is a common practice in remote senam it reducemany forms of
multiplicative noise due to illumination conditio{solar illumination differences, cloud
shadows, atmospheric attenuation, certain topogragriations) present in multiple
bands.

In particular, VIs exploit the characteristic aljgarn by vegetation in the visible -
particularly in the red - portion of the spectruthue to the presence of clorophyll and
other absorbing pigments in the leaves, and hifilbatance of green live vegetation in
the near-infrared portion (Tucker, 1979), see &tpoe 1.

ViIs have been variously proposed, modified, thécay analyzed, compared,
summarized, categorized, and criticized. A complet@ew of the more than 100
published ViIs is obviously out of the scope of tthissis, and excellent reviews can be

® See MODIS Land team web sh#p://landval.gsfc.nasa.gov/ProductStatus.php ARtta=MOD15
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found in the literature (e.g. Basso et al. 2004;stfaete et al., 1996 (a), Rondeaux et
al.,, 1996, Bannari et al. 1995, Qi et al. 1994, eBaand Guyot, 1991, Perry and
Latenschlager, 1984). Therefore, here only multspé VIs’ rationale is outlined. The
readers interested in further details are refetwetie cited original publications.

Most of VIs have been designed on the basis o$tlildine concepts. Essentially, it
is a hypothetical line in red and nIR spectral gpalong which bare soils of differing
brightness 1i& This means that soil pixels in red and nIR s@écipace are highly
correlated with positive correlation coefficientdafunctionally related by a linear
equation of the form nIR =a*red +b.

Most indices measures the distance of one pixeahéosoil line (i.e. orthogonal
indices, such as the Perpendicular Vegetation IfdéX-a*red-b)/(4+1) proposed by
Crippen (1990) or the Weighted Difference Vegetatimdex (WDVI=nlIr-a*red)
developed by Clevers (1989)), whereas several atidices (e.g. the Normalised
Difference Vegetation Index=(nIr-red)/(nIR+red) (Re et al., 1973), among others)
measure the angle of the vegetation pixel in tli#ni® space in reference to the soil
line (Liang, 2004 (a)).

The Normalized Difference Vegetation Index, NDVW4, ane of the oldest, most
widely used ratio-based index and, generally, traraon vegetation index referred to.
It followed the simple ratio SR=nIR/red developedJordan (1969). NDVI has been
used at virtually all scales ranging from smalltpksearch to global investigations. Part
of its popularity stems from the fact that it ubeseline spectral bands available from
virtually all remote sensing systems, includingoewl infrared photography, and it is
computationally very efficient. Numerous studievédhgdhown the wide-ranging utility
of the NDVI from climate studies, to famine earlgning detection, epidemiology and
renewable natural resources management. In patjodrious authors found valuable
relationships between NDVI and biophysical plantagay properties, such as biomass
(Sannier et al., 2002; among other) and Leaf Anelgx (Cohen et al., 2003; Kyung-Ja
et al., 2001, among others).

Anyway, NDVI is rather sensitive to atmosphere aadopy background variations

and hence it is often difficult to interpret at lawl (Daughtry et al. 2000). Therefore, a

® the soil line concept, originally defined for thedrnIR feature space, can also be transferredther
spectral domainsThenkabail et al., 2000
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lot of alternative indices, often introducing catien factors or constants, aimed at
accounting for or minimising those varying exogesmaoises, have been developed.

In general a spectral index optimised for sengjtito a particular variable will also
be sensitive to other variables. In other wordsisially not possible to achieve both
optimal sensitivity to a desired process and totsénsitivity to all perturbing factors
(Verstraete et al., 1996 b). Examples are the Apnescally Resistant Vegetation
Index (ARVI, Kaufman and Tanre, 1992), which takesantage of the presence of the
blue channel in addition to the red and the nIRuithed within the NDVI to operate a
self-correction process for the atmospheric effectthe red channel based on the
difference between the blue and the red channeld; the series of soil adjusted
vegetation indices, e.g. the Soil Adjusted Vegetatindex (SAVI, Heute, 1988), the
Transformed Adjusted Vegetation Index (TSAVI, Bagetal. 1989), the Modified Soil
Adjusted Vegetation Index (MSAVI, Qi et al., 1994)d the Optimised Soil Adjusted
Vegetation Index (OSAVI, Rondeaux et al., 1996).

Finally, similar to the principal-component transf@ation the “Tasseled Cap”
transformationwas developed by Kauth and Thomagg)Lfbr Landsat Multi Spectral
Scanner (MSS) data; and its second component lasneeknown as the Greenness
Index. The “Tasseled Cap” is an affine transforowtiwhich determines a new
orthonormal basis for the bands that highlightdedénces in vegetation and soil,
enhancing the underlying structure of the imagést@nd Cicone (1984) have extended
the analysis to six bands of Landsat Thematic Mappd) data (excluding the thermal
infrared band), Huang et al. (2002) to Landsat ETh&nds, whereas Horne (2003)
provided coefficients for Ikonos-derived Greenextek.

It must be said that, generally, VI exhibits asyotigt(saturated) signals over high
biomass conditions, usually because red does ratgehmuch but nIR still increases
when canopy become denser. Therefore, many aufihwomsl that most indices have an
exponential relationship with vegetation biophysgarameters (e.g. Carlson& Ripley,
1997; Broge and Mortensen, 2002, Wang et al., 280%lerson et al., 2004, among
others).

In this thesis the predicted ability of multiplesvthave been tested either in relation

to their capacity to provide a quantitative estenabf vegetation structural

" A function on a linear space to itself, whichhie sum of a linear transformation and a fixed vecto
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characteristics (Leaf Area Index) and with regarditeir utility in monitoring inter-
annual possible changes of vegetation productivityesponse to occurring different

climatic conditions.

1.4 Leaf Area Index (LAI)

The LAl is broadly defined as one-half of the tcaa¢a of all leaves in the canopy
per unit ground area, within a defined regiorf/(n). It is a dimensionless, structural
vegetation parameter, which can be measured, athbad modelled across a range of
spatial scales, from individual tree crowns or t#us to whole regions or continents.
Thereforethe LAl is profitably used for scaling between leafd canopy measurements
of vegetation biophysical parameters and it hastneca central and basic descriptor of
vegetation cover/condition in carbon, water andg@ynéalance studies.

Traditionally, two common approaches have beeneatly utilized for estimating
LAI from optical remotely sensed data:

1) statistical methods, e.g. empirical relationshgstablished by statistically fitting
observed LAI values and correspondent remotely eserdata, mainly in form of
spectral Vegetation Indices (see next sections);

2) physical algorithms, relying on inverting canapflectance model.

Both approaches have advantages and limitations efQal. 2000). Empirical
relationships vary substantially in mathematicalrmfe and in their empirical
coefficients when different vegetation type arestdared. Moreover, they are sensitive
to soil background characteristics, bidirectionalogerties (solar and viewing
geometries), atmospheric conditions, chlorophylinaantrations and topography.
Additionally, in situ calibration measurements dfllover regional or global scales are
impractical.

On the other hand, biophysical inversion of remotsEnsed data is constrained by
the complexity of the remote sensing process. Yaria in sensor response associated
with solar and sensor geometries, surface diregtioreflectance, topography,
atmospheric absorption and scattering, and setscirieal-optical engineering interact
in complex manners that are difficult to decouptel guantify in individual images or

in time series of images. Moreover, there is noversally applicable canopy reflectance
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model for all vegetation types, thus making modelecion problematic. Model
selection is often a compromise between model cexity| invertibility, and
computational efficiency (Jacquemoud et al., 1995)e-dimensional radiative transfer
models are best suited to inversion, but they dfi@re the tendency to oversimplify. In
general, associated problems can include lack n¥ergence, sensitivity of results to
initial values chosen for the solution, and difftguin estimating model input
parameters that cannot be directly measured. Findie retrieval of LAl through
inversion of physically based canopy reflectancedet® is computationally very
cumbersome for large geographic areas (Walthaill. e2004, Deng et al., 2006).

In this thesis the statistical approach was explaneorder to assess to what extent
the availability of high resolution remotely senstda and LAl field measurements can
produce appropriate results, by simple regressioralyais, in heterogeneous

Mediterranean vegetation.
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2 Study area

One of the peculiarities of Mediterranean areahes great diversity in endemic
plant species (Cowling et al., 1996). However, mahthem are now confined to very
small areas and thus are extremely vulnerable toitdtaloss, overgrazing, and
urban/crops expansion. The two study areas weeetsel as partially representative of
these conditions. They are both located in the hewat part of Matera Province,

Basilicata region (South of Italy) along the loni&ea coast (see Figure 3, yellow

rectangles).

= =1

Figure 3 — Study areas reported on a Landsat ETMHigpectral image. The overlapped frame on
the lower right-hand corner highlights the Bastiéceegion within a map of Italy.

The first site, showed in the right-hand part ajufe 3 and hereafter referred to as
Pantano, represents the last residual of an anbiemid forest which covered 1600
hectares up to the 1930’s. Nowadays, it extendsitah@0 hectares. Also, it have been
progressively losing its marked hygrophilous chemastics because of aquifer
subsidence (Fascetti, 1996). However, it has rgcéecome a protected area because
of its natural, ornithological and entomologicalpontance (e.g. Bavusi et al., 1992). It
is a flat area, with an altitudes ranging from O5ten a.s.l., characterized by present
dunes, alluvial deposits with alternating sands elags and intercalations of gravels
mainly near the water courses. The vegetation @fither part of this area is mainly
represented by an azonal hygrophilous fordstaxinus oxycarpaBieb., Populus

canescensL., Ulmus minor Miller and Alnus glutinosalL.) with middle-European
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characteristics (Fascetti, 1996), whereas, nexth#® shoreline, the vegetation is
characterized by typical psammophilbusommunities Agropyron junceum(L.)
Beauv, Ammophila littoralis(Beauv.)Rothm, Eryngium maritimuni., Cyperus kalli
(Forsskal) Murb.) of sand dunes. Between the psammophilous vegetatnd the
hygrophilous forest there are patches of halopkil@@mmunities Juncus acutus..,
Erianthus ravennaé¢l.) Beauv.,Schoenus nigricank., Plantago crassifolidForsskal)
and maquis of Mediterranean sclerophyllous vegeiatonsisting of evergreen shrubs
(mainly Rosmarinus officinali&., Phillyrea latifolia L., Pistacia lentiscud.., Juniperus
oxycedrusL.). In the open areas of maquis and along thdwpags, arid grass
communities Aegilops geniculataRoth, Plantago psylliumL., Lagurus ovatuslL.,
Medicago polymorpha.) are found.

The second site, reported in the left side of FegBirand hereafter referred to as
Monte Coppolo (after Coppolo Mountain included witlthe area), is a forested area
located about 15 kilometres from the coast in agoaphically more complex territory
with altitudes ranging from 500 m to 800 m a.g.he area, extending about 800 ha, is
part of the Monte Pollino National Park. Alternatisandstones, marls and limestone,
with large outcrops of scaly shale complex, represere the geological substrate. In
the valley floors are deposited slope debris comgosf arenaceous or calcareous
elements. In this study area, mainly four vegetatiommunities can be distinguished: a
live oak forest(Quercus ilexL.), a mixed broadleaforest (Quercus cerrisL., Q.
pubescen®illd. and Carpinus orientalisMiller), a high maquis consisting of shrubs
with an average height of about 2-3 m (predomiya@tl ilex L., Juniperus oxycedrus
L., Phillyrea latifolia L., Pistacia lentiscud.. andSpartium junceurh..) and a garrigue
(Cistus salvifoliud.., Calicotome spinosé..) Link, Cistus monspeliensis andErica
arboreal.).

Both sites are characterised by a typical Meditexaa climate in which rainfalls
are concentrated during autumn and winter and dseren summer, when a period of
dryness takes place from May to September. Figushalvs the climatic diagrams,
based on a 30-year dataset (1970-2000) provideasvtymeteorological stations close

to the study sites, reporting the monthly mean tamperature (red line) and

8 living in sandy habitats (specialized condition)
® salt-tolerant vegetation
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precipitation (blue line). The dotted area représéime dry period. The annual average
rainfall is 535 mm and 726 mm for Pantano and Mddtppolo sites, respectively,
whereas the average annual air temperature is @r@6n°C for both sites. Mean

minimum and maximum air temperatures occur in Janalad in August, respectively.

T 40.21N/ 16.70E / 31m } 300 T | 40.15N / 16.45 / 250m ~300
Policoro 1200 Valsinni —200
50 [30-30] +16.0C 535mm 100 50, [30-30] +15.8C 726mm 100
4 190 B =90
40—7\\ ~80

8 -70

30+ - 60

8 -50

201 ~40

T -30

104§ | 120

- ~10

0 —t 0 0 0
JFMAMJJASOND|mm [JFEMAMJIJASOND mm

@) (b)

Figure 4 — Climatic diagrams of Pantano (a) anantdd&Coppolo (b) study areas, (1970-2000).
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3 Leaf Area Index retrieval

3.1 Dataset

3.1.1. LAl data

LAl data were collected during two field surveysread out in 2004 and in 2005
within 110 plots in all (55 independent plots pery, respectively).

Two previous field surveys, made in October 2008 april 2004, provided the
necessary practical knowledge of the study areasth@ opportunity to select and
locate the plots wherein performing the LAl measuats later on. In general, the
sampling locations were chosen in order to conditemmost representative vegetation
typologies characterising the study sites (in retatto only forested areas) and to
minimise vegetation structural and species heteritye within a surrounding area of
about 12x12 metres, corresponding to a 3x3-pixeh af Ikonos-2 data. Obviously,
plots were located in order to avoid plot overlagpiln both years, four vegetation
classes were investigateahaquis, live oak foresmixed oak foresfdeciduous forest)
andhygrofilous forest

For each sampling plot, the central geographicaldioates were recorded with a
handheldTrimble ProXRS5eographic Positioning System (GPS) receiver. Omdab,
GPS data were differentially corrected usifgthfinder postprocessing software
achieving an average horizontal position precigibrabout 1,5-2 meter. A LAI-2000
PCA-Plant Canopy AnalyzeflLi-COR, Lincoln, NE, USA)was used to determine
indirect LAl values. It is one of the numerous coemnaially available optical
instruments (Jonckheere et al.,, 2004), such as doecaeptometers, DEMON, and
TRAC, which infer LAI indirect estimates from measments of light transmission

through a plant canopy.
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In particular, PCA is designed to be used undeiusif lightening, and provides
effective LAl (LAI retrieved under the assumptiooisa random spatial distribution of
leaves, Chen & Black, (1991). It is based on a-&igh light sensor that measures
diffuse radiation simultaneously in five distinatigular bands ranging from 0° to 75°,
see figure 5. From the differences in diffuse radrameasured above and below the
canopy it estimates the canopy gap fraction peulandpand. The canopy gap fraction
is the fraction of view in a certain direction frdmeneath a canopy that is not blocked
by foliage. Finally, under the assumptions of admn spatial distribution of leaves,
canopy gap fraction data are inverted to obtain é#timates (LI-COR, 1992).

Figure 5 - LI-COR LAI 2000 Plant Canopy Analyzedathe acquisition scheme of its optical sensor.

In taking the measurements, some practical corefides, according to the
operating manual and the logistic constraints, Hasen taken into account. Thus, all
measurements were made:

a) under diffuse lighting condition in order to peat direct beam radiation,

reflecting off upper leaves, from causing thesevdsato be confused with gaps

(multiple scattering effects), that is during eamtyprning or late afternoon or with

uniformly overcast sky so as to avoid rapid chamgehe incoming radiation

intensity;

b) using a 315° view cap wedge blocking 3/4 oftbasor view in order to reduce

sensor footprinf and relate it to the set plot area (about 3x3 disopixel on an

average) also preventing sensor-operator interfesen

% The single, sampled area (A) per reading dependsanopy height (H), as A=fi*; where A is a
cylindric area with radius roughly equal to the @y height, f is the field of view fraction, which
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c) at all plots, below canopy readings were meakateach of at least four subplots
and these were averaged to provide a single LAlevédr each plot; specifically, to
this aim the sampling scheme sketched in figurea® adopted, where the four
black dots indicate the four subplot sensor locatieach accounting for a sampling
area (sensor footprint) of a quarter of circleijeldd areas) of about 5-10 m radius,
depending on canopy height; above and below cameggiings were performed
maintaining the same relative orientation between #umination direction and

sensor’s field of view;

1020 m

A
v

Figure 6 — Field LAl measurement sampling schemehé sketch above four reading per plot are

supposed.

d) if sky conditions were not sufficiently stablejo above canopy readings were
taken, one before and the other at the end of élmrvcanopy measurements, in order
to get a final average value. Since above canopglimgs (as frequently happens in
forested areas) were difficult to be carried oueytwere performed within the neafést
clearings (open field, roads).

It is worth highlighting that is rather importand exactly report what kind of
definition and protocol is adopted in determiningl lvalues. In fact, from the review of
the scientific literature it appeatbat several definitions and measuring technique,

direct or indirect, can be foun@velles, 1990; Welles and Norman, 1991; Welles and

depends on the utilised cap-view. The potentidd fief view of the sensor is larger than this bu th
effective range of view is reduced by foliage (LorC1992).

1 the nearer the better, since time between the ¢éadings had to be as short as possible, so astioeen
the same illumination conditions (sun elevation atehospheric conditions). Alternatives are possible
with two linked-instruments, performing synchroneeadings.
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Cohen, 1996; White et al., 2000; Hall et al., 19%@grettably, although they do not
always lead to the same quantitative results, nmepgrts fail to provide any details of
the LAI definition assumed, and a significant fraotdo not describe the methodology
used (Asner et al., 2003).

Following the above-reported criteria, 32\l ground measurementwere taken
during early July 2004 and 55 new ones were cawigd over spatially independent

plots, at the end of May 2005 (see figure 7).

Figure 7 — plot locations of LAl measurements eatout in 2004 (yellow dots) and 2005 (red dots),

respectively.

The summer season was selected to focus on LAiklisbn corresponding to the
maximum photosynthetic capacity of the vegetatiem@ observed. Finally, raw LAI
data were post-processed using C2000 software. ddiyt multiple above canopy
readings were averaged but also the most exteingl neadings were excluded
according to Cutini et al., 1998 who have found @A tends to underestimate actual
LAI values in comparison with direct methods (dittertraps) especially if LAI>5. The
underestimation of PCA was supposed to be relatedart actual non-random
distribution of the foliage within the canopy (clpmng effect), characterised by a higher
foliage density in the upper layer with respectth® lower ones where woody

vegetation prevail (Breda, 2003). In fact, thehfifing reading exclusion was assumed
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to minimising the woody vegetation contributionlaiver layer. It caused a nearly 12%
LAl increasing on average.

The difference in LAI values of Monte Coppolo anedlected the difference in
vegetation typology growing here. The highest valueere those of measurements
carried out within the live oak and maquis, whickrev characterised by rather close
vegetation canopies and were less disturbed tleaddbiduous forest wherein some low
values locally observed were apparently due tontefbes and underwood grazing (the
latter strongly reducing the forest renewing cagyaci

LAl values of hygrofilous deciduous forest of Partawere similar to those of
deciduous forest of Monte Coppolo. The lowest LAlues related to plots located
within degraded, neighbouring areas surroundeddyy kand.

Furthermore, LAI field data were examined in orterinvestigate whether there
was a statistically significant dependency on y&fanbservation and/or on vegetation
typology. Summary statistics of LAl data collectdaring the 2004 and 2005 surveys
are reported in figure 8 and table 1 (a) andrégpectively.
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Figure 8 — mean and variance of field LAl per wagjen typology and year
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Table 1 - Summary statistics for LAl data collectkating the 2004 (a) and 2005 (b) in four different

vegetation communities

Vegetation class N plot Mean StDev Min Max

Hygrofilous forest 15 3,96 1,33 1,19 6,20

Live oak forest 11 5,98 0,93 4,72 7,71

Maquis 12 4,80 1,34 2,82 7,10

Mixed broadleaf forest 16 3,30 1,56 1,0 5,44
Tot 55

(@) Year 2004

Vegetation class N plot Mean StDev Min Max

Hygrofilous forest 11 5.41 1.24 3.17 7.37

Live oak forest 12 5.02 0.97 3.38 6.98

Maquis 13 4.76 0.94 3.73 7.09

Mixed broadleaf forest 19 3.88 1.38 1.73 7.14
Tot 55

(b) Year 2005

Then, an analysis of variance (ANOVA) of LAl haviag independent variables the
year of observation and the vegetation typologysaering their interactions, was
performed. Results showed that singularly the yefrobservation didn’'t affect
significantly in situ LAl measurements (F=3.52, df=1/102, p=0.06) wherdae
vegetation typology did (F=10.94, df=3/102, p<0.DPOAlso, it didn’t result a
significant interaction between vegetation typolagyd year of observation (F=2.45,
df=3/102, p<0.07). Moreover, repeating the analgsiswo subsets related to 2004 and
2005 data, respectively, differences due to vegetaypology were significant for both
years (2004: F=8.59, df=3/51, p<0.0001; 2005: F&5d5=3/51, p<0.0024).

In other words, if we consider the full data s€d2 and 2005) then results showed
that there was no difference between LAI valuegectéd in 2004 and those measured
in 2005. Conversely, LAI of a particular vegetattgpologies significantly differ from
LAI of others, both pooling 2004 and 2005 data aeparately considering each single
year dataset.
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3.1.2. Satellite and ancillary data

Systent*corrected Landsat Temathic Mapper (TM) and EnhdriEemathic
Mapper Plus (ETM+) antundlé® multispectral and panchromatic lkonos-2 images, as
synchronous as possible to the LAl field surveysteracquired.

Ikonos-2 data were selected because the high bpasalution observations
provided are at a spatial scale equivalent to fiehsurements typically carried out in
ecological and land cover research and can betljinetated to the spatial structure of
vegetation (Consoli et al., 2006).

In addition, Landsat TM/ETM+ images, on board ohtlaat 5 and 7 platform,
respectively, were collected in order to both corapghe possible differences in direct
LAI retrieval with respect to Ikonos-based estinsatand assess the potentiality and
economic effectiveness of using high spatial resmuderived LAI maps for scaling
from LAl field data to the Landsat medium resolati@hen regional-wide LAI spatial
distributions need to be produced.

Ikonos-2 sensor has several similar measurememaateastics to the Landsat
TM or ETM+. These include a nominal descending toabiabout 10 AM local solar
equatorial crossing time on the sunlit side of Hagth and multispectral bandwidths -
measured at full width at half maximum — that areilar to the first four of TM and
ETM+, though band passes (sensor relative speasgonse) slightly differ among
different sensoré (Figure 9). In particular, the near-infrared (nIRynd is a slightly
modified Landsat TM band that minimizes atmosphesater absorption. Also, an other
difference relates to the radiometric resolution lle@nos acquires 11-bit digitized
radiometry versus 8-bit of TM and ETM+. Lastly, nien must be made about the two
alternate gain (high and low gain) used in ETM+igaektric acquisition in order to
optimise 8-bit available levels. Detailed infornoation Landsat and Ikonos history and
characteristics are out of the scope of this thasdscould be easily found in Markham

(2004) and in Dial et al. (2003), respectively,vesll as in official web sites, e.g.

12| andsat level 1G product and lkonos-2 Geo prodfietsthe minimum level of processing generally
offered to commercial Ikonos customers)

3 Bundle images are panchromatic and multispectral synchusly collected images, which ensure
radiometric consistency.

1 ETM band passes are not shown. However, diffeseheaveen TM and ETM are considerably smaller
than those between Landsat (TM or ETM) and Ikorosar.
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http://landsat.usgs.gov/technical_details/ and
http://www.spaceimaging.com/products/ikonos/.

Landsat TM and Ikonos relative spectral response
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Figure 9 - Ikonos-2 and first four Landsat TM basgsctral response curves

Four lkonos-2 images, one image per study areaygar, four Landsat TM
images (orbit track: path 188, row 32), two images yeat”, plus two multispectral
and one panchromatic ETM images, were used. IneT2lihe band’s interval, spatial
and radiometric resolution (Digital Number bit-qtiaation), as well as the acquisition

dates and percent cloud cover of all satellite iesa@ye reported.

Table 2 — Ikonos-2 and Landsat TM/ETM bands, spatid radiometric resolution, acquisition dates

spatial radiometric
Wavelength ) Acquisition
Sensor Band resolution resolution a
(um) 16 Date
(m) (bit)
bl - blue 0.445-0.516

4 11
0 b2 - green 0.506-0.595 “ “ 08/02/2004
o
S b3 - red 0.632-0.698 “ “
= b4 - NIR 0.757-0.853 “ “

06/22/2005
panchromatic 0.526-0.929 1

'3 |konos SWAT is 11.3 km at nadir, 13.8 at 26° mdidir, whereas Landsat TM/ETM+ SWAT is about
170x183 km.
16 After spatial re-sampling in orthorectificationopess
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b1l - blue 0.45-0.52 30 8

b2 - green 0.52-0.60 “ “ TM 05/26/04
b3 - red 0.63-0.69 “ " TM 08/30/04
b4 - NIR 0.76-0.90 “ - TM 05/13/05
_ b5 - SWIR 1 1.55-1.75 “ “ TM 06/30/05
;ﬁ E b6 - thermal ~ 10.40-12.50 120/60 “ ETM 21/07/04
82  b7-swir2 2.08-2.35 ETM 22/06/05
Landsat ETM® 15 8 04/21/2000
Panchromatic 0-52:0-90

& Also, Ikonosacquisition time is about 9.50 whereas Landsat TNWAE is around 9:20

®In case of Landsat TM/ETM, values are referrethelower right parof the frame (wherein the
study areas are located)

¢ It was used in Landsat co-registration process iigxt paragraph)

Specifically, Ikonos-2Z5eo products were requested to be generated witheut th
Dynamic Range Adjustment, whereas a Modulation Sf&nFunction Compensation
(MTFC) was typically applied by the providérMTFC is an edge sharpening technique
(see Ryan et al. (2003)), aimed at partially restonage degradation due to finite
detector size, optical aberrations, motion, diffiat, and electronic effects.

Goward et al. (2003) found that lkonos MTFC-on pucd at their original 4-m
spatial resolution, appears to have minor radiamettefacts as a result of the process.
Anyway, over relatively uniform vegetative areasgmatti (2003) observed little
radiometric difference with either MTFC-on/ MTFCtaiption.

Furthermore, when the lkonos observations were eggged to 30 m, even
Goward et al. (2003) noticed that this problem essentially absent. Off-nadir viewing
was requested to be limited to 20°, in order torguoiee the spatial resolution also
minimizing viewing differences with Landsat neadimaviewing (£ 7.5° scan angle).

Detailed information about the Ikonos-2 acquisitcamfiguration are reported in
Table 3.

" The MTFC is their standard product.
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Table 3 — Acquisition parameters of the Ikonos-ages.

lkonos-2 images 08-02-04 08-02-04 | 06-22-05 06-22-05
Pantano Monte Pantano Monte

Coppolo Coppolo

Nom. Collect. Azimuth 63 87 36 125
Nom. Collect. Elevation 73 75 69 80
Sun Angle Azimuth 141 141 180 137
Sun Angle Elevation 63 63 68 68

Ideally, all datasets should refer to the same.dattually, this is practically
difficult to achieve because of satellite tempaegolution further constrained by the
requirement that images need to be cloud free &t lever the region of interest.
Landsat TM and ETM have 16 days temporal resolutinereas lkonos-2 are on-
demand data with a local observation repeat freqpuer 3 days (depending on the
viewing angle constraint) but practically, for arsiard ordéf, able to guarantee an
acquisition within a month temporal window. Unforédely, during 2004 adverse
whether conditions prevent the more synchronousianTM (July, 13 and 29", and
August, 18") overpasses to be used. Furthermore, a malfunicjof the Landsat TM
system throughout June caused the closest (in timees to be those of May, B6r
August 3. Consequently, also Landsat ETM images were aeduiithough only
partial data (striped images) were available bexafsthe Scan Line Corrector-off
acquisition mode from July ¥42003° (see http:/landsat.usgs.gov/slc_off.html, for
references). We got more synchronous though manadgl satellite data in 2005. In
particular, lkonos 2004 images were completely dliree whereas those acquired in
2005 had only 5% cloud cover, respectively. Whereaadsat TM data had low cloud
cover in 2004 (0% and 5% for 05-26-2004 and 08-3042frames, respectively) but
they were appreciably cloudy in 2005, especially @6-30-2005 frame showing clouds
(28%) surrounding the study sites. Finally, 2004dsat ETM presented low cloud
cover (10%) far from the study sites, and the 2D@bdsat ETM a slightly highest

cloud cover (20%) though far from the area of ieser

'8 Depending on order priority (there are differeritgs related to it) and on number, locations and
acquisition dates of already scheduled acquisitiisis These constraints combines with cloud comed
user viewing angle restrictions.

9 Scan Line Corrector mechanism malfunctioning stgrirom 14 July 2003 and still present at time of
this study.
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In addition, some ancillary and reference data vemguired. A Digital Elevation
Model (DEM) with a pixel size of 30m, covering batudy areas, was provided by the
Advanced Computer System Spa. Additionally, onlytfee Monte Coppolo study area,
a DEM with a pixel size of 10m was derived from Spacedcontour lines included
within the 1:10.000 scale topographic map (Cartania Regionaleprovided by
Regione Basilicata.

Furthermore, reference coordinates to be usedthomctification procedure were
derived by digital coloured orthophotos (Terraitd000™ ©CGRSpA — Parm®)
Also, bidirectional reflectance measurements oédhasphalted areas located nearby
were carried out, by means of an hand-held Anati€pectral Device (ASD)
FieldSpec Pro Full Range spectroradiometer, tosee aground truthreflectance data
on which to reconstruct atmospheric conditionsig@umtal visibility) at time of Ikonos-

2 satellite overpass (see atmospheric correctioceolure in following sections). In
particular, those asphalted areas were carefulectsl as landscape elements (ground
targets) radiometrically constant over time anddagnough to be resolved by Ikonos-2
spatial resolution. Each spectrum was set to résrit an average of 25 readings and a
certain number of evenly spaced spectra, per arei@ acquired and averaged. At the
start of each measurements ASD were optinfizeahd reflectance Labsphere
Spectralon panel measurements were taken to gereerggut reflectance values.

ASD instrument has a spectral resolution of 1.4innthe 350-1000 nm spectral
range and have a spectral resolution of 10 nm én1®00-2500 nm. However, the
output of the spectroradiometer is interpolatechinitASD software to report data at
1nm sampling across the entire spectral range rémefes can be found in

http://www.asdi.com/products-FSP.asp web site).

3.1.2.1 Satellite data pre-processing

Although the new generation of sensors show immtalata acquisition and image
quality, some inherent distortions affecting thgnsi coming from the Earth surface
and collected by satellites still remain and regworrection before performing reliable

analysis. Typical corrections include geometric aadiometric distortions (Toutin,

% Coordinates were derived by on-line productslate at website www.atlanteitaliano.it hence
having a slight degraded spatial resolution wigpeet to original products

2L ASD optimization sets the integration time for thgible NIR detector and performs a dark current
reading.
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2004). Image geometric characteristics are sethikyarbit, spacecraft attitude (roll,
pitch, yaw), scanner properties and earth rotahod shape. Depending on these
features, the changing sensor viewing geometryndutata collection ultimately results
in wrong relative positions of image pixels. Radeairt data adjustment are mainly
aimed at reducintppographic and atmospheric effects. Topographsctdfillumination
conditions whereas atmospheric distortions are dae modification of the
electromagnetic radiation, in the solar spectruauysed by gas and aerosols scattering
and absorption.

Since images of multiple sensors and dates hace tasked and compared, it was
essential to obtain corrected reflectance imagdeerefore, the pre-processing of
remotely sensed images consisted in image orthfication, radiometric calibration,
atmospheric and topographic corrections. Firstlipfiraorder to correct for geometric
errors and obtained a co-registered dataset, imagee orthorectified starting by
processing the higher resolution data. Therefondially the two August 2, 2004
panchromatic Ikonos-2 scenes were orthorectifiesingt Ground Control Points
(GCPs) derived from coloured digital orthophotosl &rom the available DEMs (the
10m DEM for Monte-Coppolo and the 30m DEM for Pawataites, respectively).

Since detailed mathematical description of lkonosdénera is not available,
preventing the use of a rigorous relationship betwebject space (points on the
ground) and image space (pixels in the image), ditborectification process was
accomplished through the use of tRational Polynomial CoefficienfRPC) model,
provided by lkonos-2 vendor - Space Imaging — ad pé the image metadata.
References can be found in Dial & Grodecky (2004).

Afterwards, both the 2005 panchromatic and 2004tispdctral scenes, were
orthorectified and co-registered using GCPs derivied 2004 orthocorrected
panchromatic images. Finally, 2005 multispectrabhges were orthorectified using
2004 multispectral images as referencesnearest neighboure-sampling algorithm
using 1m/5m spatial resolution was used for parmohtac/multispectral Ikonos-2 data,
respectively.

Likewise, orthorectification of Landsat TM and ETMscenes was performed
according to the same hierarchical approach. Te &im, firstly the April 21, 2000
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panchromatic Landsat ETM+ image was orthorectifieding GCPs extracted from the
orthophotos and from the 30m DEM. Then, this geoicedty corrected images served
as reference to correct all multispectral imagesnearest neighboure-sampling
method using 15m/30m spatial resolution was adoptéor Landsat
panchromatic/multispectral data, respectively.

Root Mean Square Errors (RMSE), all less than lelpiexcept for lkonos

panchromatic images, are reported in Table 4.

Table 4 — RMSE (pixel unit) of orthorectificationgezess

frame multispectral | Panchromatic
08-02-2004 Pantano lkonos-2 0,45 2,81
08-02-2004 Monte Coppolo lkonos-2 0,99 2,84
06-22-2005 Pantano lkonos-2 0,1 0,22
06-22-2005 Monte Coppolo lkonos-2 0,15 0,32
04-21-2000 Landsat ETM 0,33 0,73
07-21-2004 Landsat ETM 0,61 \
06-22-2005 Landsat ETM 0,07 \
05-26-2004 Landsat TM 0,44 \
08-30-2004 Landsat TM 0,46 \
05-13-2005 Landsat TM 0,1 \
06-30-2005 Landsat TM 0,46 \
06-22-2005 Landsat ETM 0.07 \

The Universal Transverse Mercator (UTM), zone 3@togean Datum 1950, was the
adopteccoordinate system.

Before performing any radiometric rectificationl, iahages were calibrated to at-
sensor physical units by converting Digital Numbé@pNs) to Top-Of-Atmosphere
(TOA) radiance, | (W/m%sr/mm), using suitable, band-specific calibratimefficients
(L= gain *DN (+offset).

In particular, since both sensors showed significeatector sensitivity changes

with time, calibration coefficients updated for thespective image acquisition date

2 |t was preferred to the other available ETM panahatic images since it was acquired before the-scan
line mechanism malfunctioning occurred, therefaduding all pixels in the frame (no data missing).
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were used. Therefore, according to Space Imagi@P1R calibration coefficients
referring to lkonos-2 11 bit products and post bBaby 22, 2001 image production
(creation), were used. Whereas, with regard to sanhdfM and ETM images,
calibration coefficients according to Chander andritham (2003) and those included
in the header files, were used, respectively. Refses of approaches to and status of
Landsat and lkonos data calibration can be foundeilet (2006), Chander et al
(2004), Roeder et al. (2005) and Pagnutti (2003).adopted calibration coefficients

are shown in table 5 and table 6.

Table 5 — Ikonos radiometric calibration coeffidien
Ikonos-2 band (k) 11 bit, post 2/22/200gain
DN*[mW/cn? si]*

1/728
1/727
1/949
1/843

Al W N

Table 6 — Landsat TM and ETM+ calibration coeffit®

Landsat TM Post 05/05/2003 Landsat ETM
Band (k) Off-set Gain Band (k)| Off-set Gain
1 -1,52 0,763 1 -6,98 0,779
2 -2,84 1,442 2 -7,20 0,799
3 -1,17 1,040 3 -5,62 0,622
4 -1,51 0,872 4 -6,07 0,969
5 -0,37 0,120 5 -1,13 0,126
7 -0,15 0,065 7 -0,39 0,044

Finally, atmospheric corrections were performed ngsithe 6SSecond
Simulation of the Satellite Signal in the Solar @penradiative transfer code (Vermote
et al. 1997) in order to derive atmosphericallyrected surface reflectance from TOA
radiance. The application of radiative transferectmla specific scene and date requires
knowledge of the atmospheric properties at the ,timainly aerosol and water vapour
content, which are difficult to acquire even whéanped, and were not available in this
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case. As a consequence, 6S was firstly iteratived for retrieving the aerosol optical
depth ) at time of 2004 and 2005 Ikonos-2 overpass. Tie purpose, per band
reference reflectance values were provided by tH&D Aon ground reflectance
measurements over the asphalted areas re-sampldionos-2 relative spectral
response. Then, multiple runs were performed eawnd varying onlyt( 1, until the best
agreement between those ground measurements andufiit reflectance of
corresponding areas in the image was achf@@hraux Garson and Lacaze, 2003). In
this way, aerosol optical thicknesst0.222 ain=0.550um (i.e., a horizontal visibility
of approximately 25 km) ant=0.316 atA=0.550 (horizontal visibility of about 15 km)
for 2004 and 2005 lkonos-2 satellite overpass wbtained, respectively.

Next, 6S was run using the so-retrievedalues and providing atmospherically
corrected Ikonos-2 images. All image processingsstdut atmospheric corrections,
were performed usindcarth Resource Data Analys(ERDAS) Imaging 8.5 image
processing software.

The same approach was used to correct Landsat smatggvever, since the
asphalted targets were too small for being spgtra$olved at Landsat resolution, the
reference reflectance values for Landsat scenessatmeric characterisation were, in
this case, provided by the atmospherically corcedk®nos-2 images. In particular, a
sandy area along the coast was selected sincsultegd the most homogeneous and
wide among temporally radiometrically stable tasgeindividuated, by visual
inspections, within the Ikonos scenes. The Land$dtand ETM images resulted
characterised by an optical thicknesste0.1951 (i.e. horizontal visibility of about 30
km)?*,

Finally, different sun illumination conditions due topographic effects were
accounted for by applying a cosine-correction mdth¢reillet et al., 1982)Therefore,
reflectance values in each pixel were divided by dorrespondirf§ cosine of the
illumination angle cos(i)=cos(9@)*cos@®)+sin(90«)*sin(0)*cos(P-¢), where i=sun

23 Standardnedium latitude summetmosphere model amdaritimeaerosol model were adopted in each
6S runs.

%4 The different optical thickness related to 2006nis and Landsat ETM images may be explained in
terms of a longer path through the atmosphere famticularly through the lowest layer) the incoming
signal to lkonos sensor have to do with respethéolLandsat platform because of the off-nadir vievi
angle of Ikonos. Moreover, residual differences naydue to the different acquisition time.

% Under a firts approximation Lambertian surfacaiagstion.

% averaged over the same 12x12amd 90x90 riwindows centered on LAl field plots
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illumination angle in relation to the normal on ixgh, o=sun elevation angléd=sun
azimuth anglep=terrain slopegp=azimuth angle of the slope or terrain aspect. &lop

and aspect were derived by the available DEMs.
3.2 Upscalingin situ LAl measurements to satellite data

The retrieval of LAI from satellite data was perfead through a traditional
statistical approach: empirical relationships dg&thbd by statistically fitting field LAI
measurements and corresponding satellite refleetdata. In particular, ordinary least
square regressions with LAI or In(LAI) as the degemt variable and each band or
spectral Vegetation Indices (VIs) as the independ@miable, as well as multiple
regressions using multiple spectral bands, werpeed. It must be said thatadels
using a log-transformed response variable (In(LAtgre tested, too, to account for
possibleasymptotic nature that the LAl-radiometric datatienship may present (e.qg.
Broge and Leblanc, 2000).

For all the tests, a probability level &(05 was considered to be significant.

To this aim, for each plot a mean reflectance \alweas derived from
atmospherically corrected images. The average f8x3apixel window surrounding
the LAI plot centre was used. The use of such mwdmes is a common practice in
quantitative remote sensing studies because ohégessity to account for thel(
pixel) georeferencing error and related uncertaintbetween the actual ground
measurements locations and its assigned positiotissomage.

It must be said that a 3x3 Ikonos pixel window,responding to a 12x12area,
nearly matched the LAl measurements plot area. Bdsgera 3x3 Landsat pixel
window corresponded to an appreciably largest sarf@®@0x90 ). Therefore, in
order to compare lkonos and Landsat observatiodstlaair effectiveness in LAl
estimating also aggregation of Ikonos measurementsa 23x23 pixel window
(~90x90 nf) were computed. Once more, aggregation were peeidrby means of
arithmetic average in the attempt to approximageikegrated reflectance energy that
Landsat sensors measure (Goward et al. 2003).

Moreover, before carrying out the regression amalgad in order to assess if

factors like year of observation, vegetation tygglor site affected the LAI-spectral
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data relationships (Turner et al. 1999, Chen e¢R8D2, Davi et al., 2006) an analysis of
the covariance (ANCOVA) of LAl was performed haviag independent variables a
radiometric variable, i.e. one-by-one some VI wieited (NDVI among others) as well
as each individual band, the vegetation typology the year of observation, including
all possible interactions.

In particular, the significance ofear_of observation*radiometric_variable
vegetation_typology*radiometric_variable and
year_of observation*vegetation_typology*radiometriariable interactions were
examined in order to explore the possible dependehthe LAI-radiometric variable
relationship on the year of observation or on tkgetation typology or on both. In
other words, a significant interaction between thegetation_typologyand the
radiometric_variablewould suggest that the relation between LAI arel rddiometric
variable differs in the various vegetation typobxsyi This would imply the necessity to
develop separate empirical relationships for eaepetation typology. Similarly, a
significant interaction between thear_of observatiomnd theradiometric_variable
would mean that the functional relationship betweé&h and the radiometric variable
depends on, and hence change with, the specific gfedata acquisition. The latter
interaction, therefore, would entail that evensing the same radiometric data source
(i.,e. satellite sensor), referring to the same \stadea and, roughly, period of
observation (i.e. summer season/near-peak vegetddioelopment) it is not possible to
apply an empirical model developed by means of datkected in a certain year to
radiometric observations referring to differentgpar future) years.

In general, those interactions account for possikysting differences in
vegetation phenological status, sun-target-sensometric configuration, background
characteristics (due to different acquisitions gates well as in the spectral behaviour
of different vegetation typology.

An ANCOVA analysis was also carried out by substtythesite factor for the
vegetation_typologpne. The site factor was examined, since the teasa although
rather close each other, present significant ggdgeal and ecological differences. For
example, they are characterised by different geolsgbstrate and different vegetation
typology, except formaquis which is found within both areas. Howevenaquis

presented different vegetation species/structurengnthe two sites and may present
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different phenology within the two areas at theetimf satellite overpass, as well.
Furthermore, different topographic conditions —la terrain at Pantano area and a
variable aspect and slope at Monte Coppolo siteay differently affect the spectral
signal sensed by satellites.

In particular, ANCOVA analyses of either LAl and (llAl) data were
performed. Also, either high spatial resolutionnke-derived radiometric data referred
to the 3x3 lkonos pixel (12x1Znaveraging window and all available observations
(n=110) and medium resolution ETM-derived data mef to the 3x3 ETM pixel
(90x90nf) averaging window and n=94 observatidnsere examined to this purposes.

In all cases, the ANCOVA analyses indicated thahesonteractions were not
significant (p>0.05). Consequently, the models werduced®. Then, substantially,
results showed that only an year effect had toadkert into account in the LAI-VI
empirical model developing whereas, converselwa$ possible to pool data related to
different vegetation typology and different sites.

For example, table 7 reports results obtained for teduced models of
ANCOVA of In(LAI) data having as independent vatib Ikonos,®® or ETMays
NDVI, respectively, the vegetation-typology and thear of data collection. Whereas,
table 8 lists results provided by the ANCOVA anaysame factors and their possible
interactions, reduced models) of In(LAI) performgging each individual band instead

of the NDVI as radiometric variable.

Table 7 - Results of ANCOVA analysis using NDVIragiometric variable

radiometric data Model df F Prob>F
source

NDVI 1/103 | 65.80| 0.0001

Ikonosx-NDVI | year 1/103 | 46.240.0001

Vegetation 3/103| 11.850.0001

NDVI*year 1/103 | 45.66 0.0001

NDVI 1/87 13.26| 0.0005

%" Since some plots had to be discarded becausevééreylocated within the ETM missed data and an
additional one in order to avoid including watethir the 90x90 rarea.

8 the ANCOVA was performed again by retaining orignificant interactions

% The subscripts 3x3 indicate the size (pixel usithe averaging window.
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ETMasxs-NDVI year 1/87 9.20| 0.0032
Vegetation 3/87 7.37| 0.0002
NDVI*year 1/87 8.40 | 0.0047

Table 8 - Results of ANCOVA analysis using indivéd band as radiometric variable

radiometric Model df F Prob>F
data source
by 1/97 18.53 0.0001
year 1/97 33.97 0.0001
vegetation 3/97 4.67 0.0043
Ikonosixs-br | by*year 1/97 26.26 0.0001
b,*vegetation 3/97 5.49 0.0016
year* vegetation 3/97 5.87 0.0010
b, 1/103 32.62 0.0001
year 1/103 20.38 0.0001
lkonosxs-bz | vegetation 3/103 7.13 0.0002
by*year 1/100 19.95 0.0001
bs 1/100 68.65 0.0001
year 1/100 36.03 0.0001
Ikonosis-bs | vegetation 3/100 1.05 0.3755
bs*year 1/100 33.58 0.0001
year* vegetation 3/100 6.62 0.0004
by 1/100 3.13 0.0801
year 1/100 9.32 0.0029
Ikonosis-bs | vegetation 3/100 11.29 0.0001
bs*year 1/100 8.05 0.0055
year* vegetation 3/100 3.79 0.0128
b, 1/87 15.21 0.0002
year 1/87 10.23 0.0019
ETMsus-b1 | vegetation 3/87 16.19 0.0001
bi*year 1/87 14.89 0.0002
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b, 1/87 9.41 0.0029
ETMsys-bs year 1/87 5.49 0.0215
vegetation 3/87 5.89 0.0010
by*year 1/87 7.54 0.0073
bs 1/87 9.66 0.0025
ETMaxs-bs year 1/87 3.25 0.0748
vegetation 3/87 4.98 0.0031
bs*year 1/87 6.75 0.0110
by 1/88 4.39 0.0390
ETMabs | year 1/88 2.27 0.1359
vegetation 3/88 14.50 0.0001
bs 1/82 0.70 0.4052
year 1/82 4.86 0.0303
ETMayz-bs | vegetation 3/82 2.26 0.0876
bs* vegetation 3/82 2.95 0.0375
year* vegetation 3/82 2.82 0.0438
by 1/87 6.64 0.0117
ETMsys-by year 1/87 1.90 0.1714
vegetation 3/87 2.86 0.0415
b7*year 1/87 5.10 0.0264

Basically, results obtained by using either indidtiband and NDVI showed
the LAl-individual band relationship was not yeawariant but it was substantially
vegetation/site-independent. The only two excegtimoncerned significant interaction
betweenLAl -blue Ikonos band-vegetation typologpd between AI-SWIR1 ETM
band- vegetation typology.

Therefore, it was established to use two datasete per year — in developing
the empirical models.

On this basis, a comparative analysis of LAl reirig capacity between
different spectral bands/Viderived from different satellite sensafi&onos, Landsat
ETM and TM)was carried out.
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Results of regression analysis performed by pod@4 and 2005 data (general
model) are reported, as well, for comparison pugpo#t must be noted that when the
pooled dataset was considered since two TM imagagsypar were available the
following three possible combination of 2004 and2@ata were explored: 05262004
and 05152005, 05262004 and 06302005, 08302004 38@2005 named TM TM;
and TM;, respectively.Whereas, in order to synthetically distinguish egw TM
single-year datasets of different acquisition datey are reported in the following as
TMy, TMa and TMy (M/A/J subscripts indicate the month of acquisitidate,
May/August/June, respectively). It is noteworthwttipossible vegetation phenologic
differences had to be taken into account when coimgpdkonos-based and TM-based
results whereas they were not considered affedkogos vs ETM comparison since
respective acquisition dates were within ten day&d04 and even matched in 2005.

Finally, the effectiveness of using high-resolutisatellite (i.e lkonos) images as
subsampling for scaling from LAI field measuremetdsmoderate resolution sensors
(i.e. Landsat TM or ETM), was investigated.

Specifically, the following two hypotheses were nfndated, whose related

quantitative results are reported in the followsagtions (see figure 10):

Hypothesis 10n the basis of the available data, Ikonos higat®l resolution data
will explain more of the variability in LAl withithe selected highly heterogeneous

study area than Landsat (TM/ETM) medium resolutioe;

Hypothesis 2 a two-stage procedure including a first upscaliog LAl field
measurements to high resolution data in order todpice a 4m spatial resolution LAI
map (stage 1) to be used for the calibration of iemedresolution data (stage 2) will

outperform a direct upscaling of LAI field measuesits to Landsat satellite data.
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Figure 10 - Upscaling situ LAl measurements to satellite data: comparisowéen lkonos and Landsat
data performances (hypothesis 1 - oramgesusgreen arrow); comparison between direct Landsat
calibration and a two-stage calibration procedimgéthesis 2 - orange and blue arrowessusgreen

arrow) exploiting Ikonos-derived LAI spatial diddtitions as intermediate stage for ETM data califmat

3.2.1. Individual spectral band analysis

Firstly, an assessment of Landsat, TM and ETM+, dkwohos sensor
observations sensitivity to LAI variation on ther{spectral-band basis was carried
out.

To this aim, in order to make possible a comparisbresults obtained using
all available sources (Ikonos, TM and ETM) datated to plots located within areas
of missing data of the striped ETM images were wetl from the analysis. In
addition, one more plot was discarded since it \weated very close to a river (about
10 m) and the use of a 3x3 Landsat-pixel window la/dave included water.
Therefore, new, on purpose data sets were arraagedhey resulted in n=49 and
n=45 pairs of LAI field measurements and correspundadiometric data for 2004

and 2005, respectively.
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Table 9 provides a summary of regression modelfopeance (f) based on
the multi-year data sets, where bamsdthe k-spectral bana is the sample size. It is
noteworthy that generally the use of LAl/log-traorsied LAI values did not make
much difference (similar’rand p values), though usually slightly better lsswere
provided by the use of the transformed variablesr&fore, for sake of simplicity only
the better performing models between those usingdodl those using Ln(LAI) data
are reported, the latter in italics. In the follogitablesns indicate not significant

relationship (at 95% probability level).

Table 9 - Performance?|rof band-by-band regressions carried out using miffesensors, multi-year
or single-year data sets and different averagirgl piindows size
IkonoSy3x23  TM1 ™, TM3 ETM + 1konosSaxs
acquisition dates:  0gp22004 05262004 05262004 08302004 07212004 08022004
06222005 05132005 06302005 06302005 06222005 06222005
pooled data set (N=94)

bandl 0.04* 0.01™ 0.01™ 0.00™ 0.01™ 0.03™
band 2 0.15 0.01™ 0.00™ 0.02"™ 0.11 0.11
band 3 0.19 0.00™ 0.00™ 0.03™ 0.15 0.25
band4 0.01™ 0.07 0.05™ 0.00™ 0.00™ 0.00™
band 5 / 0.15 0.11 0.17 0.18 /
band 7 / 0.10 0.07 0.16 0.16 /
IkonoSy3x23 TMwm TM a ETM + IkonoSzy3

acquisition date:  9gp22004 05262004 08302004 07212004 08022004
2004 data set (n=49)

bandl 0.15 0.10 0.20 0.13 0.20
band 2 0.34 0.35 0.32 0.31 0.50
band 3 0.32 0.25 0.27 0.35 0.69
band4 0.04™ 0.17 0.03* 0.00™ 0.02™
band 5 / 0.24 0.31 0.31 /
band 7 / 0.23 0.33 0.38 /
IKONO0S,3,23 TMwm ™ ; ETM + Ikonos;,;

acquisition date: 0222005 05152005 30062005 06222005 06222005
2005 data set (n=45)
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bandl 0.00™ 0.06™ 0.03™ 0.00™ 0.04™

band 2 0.03™ 0.01™ 0.00™ 0.03™ 0.00™
band 3 0.05™ 0.00™ 0.02™ 0.05™ 0.02™
band4 0.03™ 0.02™ 0.00™ 0.01™ 0.05™
band 5 / 0.09™ 0.14 0.0 /
band 7 / 0.05™ 0.12 0.08™ /

ns = not significant at 95% probability level

According to previous work (e.g. Davi et al. 20@8®udani et al., 2006), when
significant relationships were establishedl was, generally, positively correlated
with nIR and negatively correlated with visible &8@/IR bands.

Also, as expected in those highly heterogeneousitbtegnean environment,
generally regression models using Ikopgslata sets, which means spectral response
of a surface area roughly corresponding toith&tu LAl measurements sampled area,
out performed Landsat ETM/TM as well as Ikopgsrbased ones.

Generally, lkonos,,; andETM (nearly synchronous datasets) yielded rather
similar results.

Results reported in table 9 reflected what poimtedby the ANCOVA analysis,
in terms of manifest year effect affecting LAl-in@tlual bands relationships.

In fact, regardless of the satellite source utilizékonos, Landsat TM or ETM -
and either using LAI or log-transformed LAI dathetuse of a general model (pooled
data set) provided either not significant or ratpepr correlations (all’<0.21). In
particular, no relationships were found betweereldu nlR band and LAI except for
the very weak one related to TMata set. Furthermore, for all TM-based data thets
red band was not correlated to LAI, whereas lkomod ETM red bands were able to
explain about 15-20% of variation of LAIl. About teame performance were achieved
by SWIR bands-based models of Thhd ETM data sets*( 16+18).

Furthermore, considerably different performance evebtained between the
single-year-based models. In particular, regressesults obtained using 2004 data
largely outperformed those related to 2005.

Therefore, in order to attempt explaining the uesgsful result obtained by
using 2005 data, all (2004 and 2005) Ikonos-deridath were examined in terms of
within-plot variability of spectral signal. In othevords, the standard deviation of the
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reflectance in each Ikonos band, within the aboveioeed pixel windows (plot sizes),
was computed. Then, the corresponding coefficienftsvariations (cv=standard
deviation/mean) were calculated and per each bandest analysis was used to
evaluate possible differences between mean cwedfib years (see table 10 and 11).

It was shown that plots used in 2005 were chargeiiby significantly higher
coefficients of variations of reflectance in alhiols, except for nIR band which anyway
was shown to be a rather useless one (see tabin@)for both window sizes. In
particular, mean cv<10% computed on the 3x3 pixedew characterised 2004 plots
whereas appreciably higher cv (except for nIR baelded to 2005 plots.

Also, as expected, highest cv values were obsarvéite 23x23 pixel window

of both years.

Table 10 — Mean coefficient of variation (%) of Has reflectance computed in 3x3 pixel window size

Radiometric mean t-Test

Year :

band cv t ratio df Prob<t
2004 0.05

band 1 -7.27 50.05 <0.0001
2005 0.16
2004 0.06

band 2 -6.27 56.00 <0.0001
2005 0.13
2004 0.08

band 3 -4.95 54 59 <0.0001
2005 0.17
2004 0.09

band 4 0.45 91.19 0.67
2005 0.08

Table 11 — Mean coefficient of variation (%) of tas reflectance computed in 23x23 pixel window

size
Radiometric mean t-Test

Year i

band cv t ratio df Prob<t
2004 0.16

band 1 -9.8 79.26 <0.0001
2005 0.37
2004 0.16

band 2 -6.26 90.62 <0.0001
2005 0.27
2004 0.26

band 3 -4.66 92.03 <0.0001
2005 0.39
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2004 0.13
band 4 -1.67 85.47 0.0488
2005 0.15

Moreover, the coefficients of variation @¥apiot200skongs Of reflectance
corresponding to 2004 plot locations (coordinatesitioned on 2005 Ikonos images
were computed. The aim was to assess if the highéiometric heterogeneity
obtained for plots of 2005 field survey ¢g¥piot200sikongs reflected a specific
characteristic of 2005-plots or rather whetherliyhest radiometric spatial variability
characterised the whole lkonos images (i.e. thelevaea) sensed in 2005. Therefore,
a comparison (t-test) between the coefficientsavfation of reflectance extracted over
the plots of 2004 field survey from the 2004 Ikommsiges (C¥oosplot,2004ikongs @and the
coefficients of variation of reflectance extractaer the same locations from the 2005
Ikonos images (G¥oapiot,20051kongs Was performed. Indeed, results similar to those
reported in table 10 were observed, i.exo&Miot2005konosSignificantly higher than
CV2004plot,2004ikonod S€E table 12), meaning that it was not a maftepecific locations
of 2005-plots.

Table 12 — Mean coefficient of variation (%) of Has 2004 and 2005 reflectance computed in 3x3

pixel window size centred on 2004 plot locations

Radiometric mean t-Test

Year

band cv t ratio df Prob<t
2004 0.05

band 1
2005 0.14 -9.16 61 <.0001
2004 0.06

band 2
2005 0.12 -6.52 68 <.0001
2004 0.08

band 3
2005 0.14 -5.09 71 <.0001
2004 0.09

band 4
2005 0.09 -0.85 93 0.196

Also, the effects of the different Ikonos sun-tdargensor geometries between
the two years, mostly related to the differencéwben sun and sensor-viewing

azimuth angles (see table 3), on the highest wiiloh radiometric variability
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observed in 2005 images was investigated by compd&iT™ and 30 m re-sampled
Ikonos data. In fact, the Landsat ETM sun-targesee acquisition geometry over the
same area (frame) can be considered nearly cormtantimé®. Therefore, due to the
high synchronicity between Ikonos and ETM acqusitdates, by re-sampling the
Ikonos images to the same ETM spatial resolutidh (§ the possible influence of
Ikonos different acquisition geometry on the witipiiot radiometric heterogeneity
was examined as follows.

Per each band, the ratios between 2004 and 2005-d€FMed cv of
reflectance of 3x3 pixel windows centred on 2005 ot pl locations
(CV2004_ETM_2005_pldCV2005_ETM 2005_pigs @S Well as the ratio between 2004 and 2005 re-
sampled Ikonos-derived cv of reflectance
(CV2004_30m_Ikonos_2005_pl§iV2005_30m_Ikonos_2005_plot Were computed. A t-test between
these ratios (see table 13), i.e. betweeBoog\ttm 2005 pidCV2005 ETM 2005 plot aNd
CV2004_30m_Ikonos_2005_pl&§V2005_30m_ikonos_2005_piotf€vealed that the differences between
the two sets of data were not statistically sigaifit. In other words, the increase of
within-plot radiometric variability observed, in @9, by ETM sensor was roughly the
same observed by (re-sampled) Ikonos one. Thetefsiree ETM data were
substantially considered not affected by differemquisition geometry, it was
concluded that the effects of Ikonos differentasijon geometry on the highest

spatial within-plot radiometric heterogeneity of0&0data were negligible.

Table 13 — Comparison between the ratios of wifiiot-coefficients of variations of reflectance

derived from 2004 and 2005 data of either ETM amdampled lkonos images

_ _ t-Test
Radiometric

Sensor CV 2004 .

band t ratio df Prob<t
CV 2005

band 1 30m-lkonos 0.6 3.8

ETM 12 83 0.999
band 2 30m-lkonos 0.8

ETM 12 2.8 74 0.997
band 3 30m-lkonos 0.9

ETM 11 1.2 57 0.878
band 4 | 30m-lkonos 1.1

ETM 1 0.5 83 0.300

% Only slightly different sun elevation angle duethe different day of the year.
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In conclusion, the highest radiometric variabiliof 2005 images were
attributed to the different period of data colleati In particular, it is likely that a
different vegetation phenologic status charactdrigegetation at time of 2005 data
collection with respect to vegetation phenologatiss of 2004. It is possible that at the
end of May 2005 (i.e. at time of 2005 field survdgjest vegetation had not yet
reached the peak of the phenologic c¥clgnaximum vegetation development) and
continued growing during the period betwaersitu LAl measurements and satellite
acquisition date. Therefore, phenologic changeshimig occurred between situ
LAl measurements and image acquisition date in 2@@bising measured LAl to
significantly differ from actual LAI values at timef satellite overpass. Conversely,
the maximum vegetation development was reasonahlghed in late June-early July,
2004, guaranteeing the consistency between LAl ateagents and actual LAl values
at time of 2004 satellite overpass. Also, backgdowifects, i.e. the impact of
understory vegetation on forest canopy reflectdicisson et al., 2006), could have
been possibly higher in 2005 than in 2004. In otherds, in June 2005 grass might be
green in those areas whereas at the beginning gfigta it was mostly in a senescent
status.

3.2.2. Vegetation Indices (VIs) computation and-Y/A regression analysis

Vis provide a widely applied, standardised approxch Al investigation. In
particular, the NDVI has been an extremely popWarfor biophysical parameter
retrieval. However, since numerous investigatiomgehshown that NDVI is not the best
solution for LAI retrieval under all circumstancleere a number of VI were computed
and their performances compared.

Table 14 (a) and (b) summarise formulae and reéeenf investigated VIs.

31 |n the case of forests and shrub-lands the maiengress peak is associated with the spring greef up
vegetation, whereas a second peak may occur inmmautluring the months of October and November
mainly associated to the precipitation regime whadlows for a larger availability of water duringet
main precipitation season.

%2 |konos images were acquired on tf&a2 August in 2004 and on the 2®f June in 2005
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In particular, indices based on red and nIR reflece as well as indices
including SWIR bands (the latter obviously only foandsat TM/ETM data) were
tested.

Also, soil-corrected indices using either empiticatletermined soil line
(TSAVI, SAVI2, GESAVI) or pre-defined adjustmentctars (SAVI, MSAVI, OSAVI)
were used. The, soil line parameters separatelyetefor the two study areas were
represented by the following equations, respegtivel

(1) niR=1.14*red + 0.01 (o site);

(2) nIR= 0.94*red + 0.07 (Mor@@eppolo site).

Table 15 and 16 lists results obtained considetiegpooled dataset and single

year datasets, respectively.
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Table 14 (a) —Landsat and lkonos-derived VI

Index name Acronym Equation Reference
Simple ratio SR niR/red (Jordan, 1969)
Normalized Difference Vegetation NDVI (nIR-red)/(nIR+red) (Rouse et al, 1973)
Index
Modified Simple Ratio MSR (nIR/red-1)A (nIR/red+1) (Chen, 1996)
Difference Vegetation DVI niR-red (Richardson et al, 1992)
Index
Renormalised Difference Vegetation RDVI V(NDVIXDVI) (Roujean & Breon, 1995)

Index
Green Normalized Difference GNDVI
Vegetation Index
Soil Adjusted Vegetation Index SAVI

Transformed Soil Adjusted Vegetation TSAVI

Index
Soil Adjusted Vegetation Index 2  SAVI 2
Modified Soil Adjusted Vegetation
MSAVI

Index

60

(nIR-green)/(nIR+green)

(nIR-red)(1+L)/(nIR*red*L), L=0.5
(nIR-a*red-b)/ (red+a*nIR-a*b)
a,b=soil line coefficients
niR/(red+a/b)
nIR+0,54((nIR+0,5Y-2*(nIR-red))

(Gitelson et al., 1996, b)

(Huete, 1988)
(Baret et al., 1989)

(Major et al. 1990)
(Qietal., 1994)



Optimised Soil Adjusted Vegetatior OSAV] (nIR-red)(1+0.16)/(nIR+red+0.16) (Rondeaux et H996)
Index
GEneralized Soil Adjusted Vegetation nIR-b*red-a/red+0,35 (Gilabert et al. 2002)
ndex GESAVI
Global Environmental Monitoring n*(1-n/4)-[(red-0.125)/(1-red)] (Pinty & Vestraete, 199
Index CEMI
Wide Dynamic Range Vegetation (c*nIR-red)/(c*nIR+red), ¢=0.2 (Gitelson, 2004)
index WDRVI
Soil and Atmospherically resistant 2.5*(nIR-red)/(1+nIR+6*red-7.5/blue) (Huete et 4097)
Vegetation Index 2 SARVIZ

L=canopy background brightness correction factoand b are the slope and the intercept of soit imR=a*red+b (a=1.1, b=0.01 for Pantano site; 8-0.

b=0.07 for Monte Coppolo site)=[2*(NIR*red)+1.5*NIR+0.5*red)]/(nIR+red+0.5)
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Table 14 (b) Additional Landsat-derived VI (usiB@V/IR bands)

Index name Acronym Equation Reference
Normalized Difference Water (nIR-MIR1)/(nIR+mIR1) (Gao, 1996)
Index NDWI
TM:
-0.2728*h-0.2174*-
Tasseled Cap - 0.5508*13+0.7221*+0.0733*3-0.1648*- (Christ & Cicone, 1984)
Greeness Vegetation Index GVI 0.7310
ETM:
-0.2728*h-0.2174*-
0.5508*k3+0.7221*h+0.0733*3-0.1648*L
T™:
Tasseled Cap - 0.1446*n+0.1761*p+0.3322*13+0.3396*h- (Christ & Cicone, 1984)
Wetness WV 0.6210*3-0.4184*13-3.3828

ETM:
0.2626*+0.2141*p+0.0926*x+0.0656*h-
0.7629*-0.5388*ly
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Table 15 — Performance)of VI-based regressions carried out using diffessmtsors, pooled data sets

and different averaging pixel windows size

Ikonosy3y03 ™ ¢ T™M, TM3 ETM + IkonosSays
acquisition 08022004 05262004 05262004 08302004 07212004 08022004

dates 06222005 05152005 06302005 06302005 06222005 06222005
pooled data set (n=95)
SR 0.10 0.00™ 0.00™ 0.05 0.12 0.08
NDVI 0.10 0.00™ 0.00™ 0.04™ 0.13 0.13
MSR 0.10 0.00™ 0.00™ 0.05° 0.13 0.09
DVI 0.00™ 0.06 0.04* 0.01™ 0.01"™ 0.01™
RDVI 0.03™ 0.05 0.02 0.03™ 0.05" 0.04"™
GNDVI 0.07 0.00™ 0.00™ 0.02™ 0.08 0.06
SAVI 0.03™ 0.05 0.03 0.02 0.03™ 0.03™
TSAVI 0.04™ 0.04"™ 0.02 0.03™ 0.05 0.05
SAVI 2 0.04™ 0.04"™ 0.02 0.02™ 0.05 0.08
MSAVI 0.02™ 0.05 0.03" 0.02™ 0.03™ 0.11
OSAVI 0.05 0.04* 0.01"™ 0.03™ 0.07 0.07
GESAVI 0.16 0.00™ 0.00™ 0.04™ 0.14 0.18
GEMI 0.00™ 0.07 0.05 0.01™ 0.00™ 0.01
WDRVI 0.10 0.00™ 0.04™ 0.05 0.15 0.11
SARVI2 0.03™ 0.01™ 0.02 0.00™ 0.00™ 0.00™
NDWI / 0.00™ 0.01"™ 0.26 0.23 /
TC-GVI 0.00™ 0.06 0.04* 0.01"™ 0.02™ 0.01"™
TC-wWVI / 0.02 0.04"™ 0.29 0.22 /

ns= not significant at 95% probability level

Table 16 — Performance’rof VI-based regressions carried out using diffesartsors, sinlge year data

sets and different averaging pixel window size

IkonosSy3y23 TMm TM a ETM + IkonosSzys
acquisition date:  0gp22004 05262004 08302004 07212004 08022004

2004 data set (n=49)

SR 0.29 0.01* 0.18 0.25 0.58
NDVI 0.26 0.02¢ 0.13 0.35 0.65
MSR 0.30 0.02¢ 0.17 0.28 0.60
DVI 0.02™ 0.14 0.00™ 0.03™ 0.16
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RDVI 0.11 0.10 0.04™ 0.11 0.34
GNDVI 0.21 0.11 0.10 0.30 0.37
SAVI 0.08™ 0.12 0.02™ 0.08™ 0.29
TSAVI 0.12 0.10 0.04™ 0.12 0.26
SAVI 2 0.13 0.07™ 0.05™ 0.11 0.02¢
MSAVI 0.07™ 0.11 0.02™ 0.07™ 0.08™
OSAVI 0.17 0.08™ 0.06™ 0.17 0.44
GESAVI 0.38 0.16 0.20 0.30 0.64
GEMI 0.01™ 0.11 0.00™ 0.02™ 0.15
PVI 0.01™ 0.14 0.00™ 0.02™ 0.12
WDRVI 0.29 0.02™ 0.15 0.33 0.63

SARVI2 0.08™ 0.10 0.02¢ 0.03™ 0.01™
NDWI 0.00™ 0.35 0.38
TC-GVI 0.03™ 0.12 0.15 0.04* 0.12
TC-WVI 0.00™ 0.34 0.38
TC-WVI / 0.02™ 0.00™ 0.04™ /
IkonoSy3y23 TMm TM 4 ETM + IkonoSaxs
acquisition date: 96222005 05152005 30062005 06222005 06222005
2005 data set (n=46)
SR 0.03™ 0.01™ 0.01™ 0.04™ 0.00™
NDVI 0.03™ 0.00™ 0.02™ 0.04™ 0.00™
MSR 0.03™ 0.00™ 0.01™ 0.04™ 0.00™
DVI 0.01™ 0.02™ 0.00™ 0.00™ 0.03™
RDVI 0.00™ 0.01™ 0.01™ 0.00™ 0.01™
GNDVI 0.01™ 0.00™ 0.00™ 0.02™ 0.01™
SAVI 0.00™ 0.00™ 0.01™ 0.00™ 0.02™
TSAVI 0.00™ 0.01™ 0.01™ 0.01™ 0.01™
SAVI 2 0.00™ 0.02™ 0.01™ 0.01™ 0.01™
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MSAVI 0.03™ 0.02" 0.01"™ 0.00™ 0.02"

OSAVI 0.01™ 0.01™ 0.01™ 0.01™ 0.01™
GESAVI 0.09™ 0.00™ 0.01™ 0.08™ 0.02™
GEMI 0.01™ 0.02™ 0.00™ 0.00™ 0.03™
PVI 0.01"™ 0.02 0.00™ 0.00™ 0.03™
WDRVI 0.03™ 0.00™ 0.01™ 0.05™ 0.00™
SARVI2 0.01™ 0.09™ 0.08™ 0.01™ 0.05™
NDWI / 0.03™ 0.14 0.10¢ /
TC-GVI 0.01™ 0.02™ 0.00™ 0.00™ 0.04™
TC-WVI / 0.05™ 0.05™ 0.03™ /

ns= not significant at 95% probability level

In general, the use of indices instead of individoands didn’t provide any
improvement when 2004 and 2005 data were pooled; aMl TM, dataset-based
regressions were even weakest than those relataditidual band. Substantially, results
for the general model were poor and only some exljmrovided significant correlations.
In particular, VIs including SWIR bands, such as\MD(e.g. ETM: f=0.23, TM:
r’=0.26) and Tasseled Cap Wetness (e.g. ETWD.22, TMs: r’=0.29), showed higher
Pearson correlations coefficients than those baseded and nIR bands (e.g. NDVI:
r’=0.13 for both Ikonags and ETM).

Also, when a per year analysis was carried ouylte$asically confirmed what
the analysis on individual bands had highlightetatTis, in 2004, it was possible to
explain at least 2/3 of LAI variation by means afthresolution radiometric data (e.g.
Ikonosks) as well as 1/3 of LAI variation if using mediurasolution satellite data (e.g.
Landsat ETM or Ikonasx.3), either using visible band-based indices and S\WWdiRd-
based ones. Whereas, in 2005, no significant osiships were found, but for NDWI of
TM; dataset ¢=0.14) which basically performed ag dnd b did in individual band
analysis.

The same explanations addressed for individual-lzenadlysis can be extended to
VlI-based regression results.

In particular, the strongest relationships with Lere provided by 2004-
Ikonosis—derived NDVI, GESAVI, and WDRVI {=0.63+0.65) followed by MSR and
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SR (=0.60 and 7=0.58, respectively). In fact, 2004-lkongsdataset provided highef r
than Landsat TM/ETM or lkonegg,3 datasets for almost all tested VI.

With respect to Landsat ETM, TM and EMiatasets the highet were found for
indices sensible to vegetation water content, NO®®04: f=0.38 and 7=0.35 for ETM
and T, respectively) and TC-Wetness.

On the other hand, for all different radiometricisies considerable differences in
terms of performance?jrbetween the various VIs’ were observed. For exangmong
Ikonosks soil-correctedndices GESAVI and OSAVI provided correlation coggnts
(r’=0.64 and 7=0.44, respectively) appreciably higher than SAWH a'SAVI (P=0.29
and f=0.26, respectively) whereas not significant resjress between LAl and SAVI2 or
MSAVI were observed. As well, DVI, GEMI, TC-GVI pvaled notably lowest
correlation coefficients while a not significantationship was observed for SARVI.

Moreover, for all different radiometric datasets &I always appreciably
outperformed the other soil-correciadices.

3.2.3 Multiple band approach and LAI maps productio

The purpose of Vs is to compensate for variablekbeound (e.g. soil and litter)
reflectance, different illumination conditions asdme forms of atmospheric attenuation
while emphasizing vegetation spectral featuressfittienko et al.. 2002). However, a VI
compresses the volume of remote sensing data bgctarfequal to the number of
channels used and significantly reduces the infaonaontained in the original data set
(Verstraete et al.. 1996). Furthermore, univarragressions using vegetation indices are
not able to independently model the red and ndeargd responses. For example, if the
red response is curvilinear and the near-infrasedot, a compromise fit is necessary. In
other words the use of VIs would seem to unnecigsanstrain the regression analysis.
In fact, because different biophysical mechanisorgrol different band responses, there
is no reason to believe the relation of individii@nds to ecological variables will
necessarily be the same. Thus, the multiple-bamptession approach through the
decoupling of band permits the analyst to potestidiscover different relationships
between the response variable and each band (Lesvetral. 1998).

Therefore, a multiple least square linear regresaitalysis with LAI/In(LAI) as

dependent variable and all available spectral baaslsexplicative variables, was
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computed. Only explicative variables which conttéowsignificantly to the regression
model, were retained.

Also, the predictive ability and stability of thm&l models was assessed by means of a
cross-validation procedure. Cross validation iscdhique to estimate the forecast skill of
a statistical forecasting model (Michaelsen, 19&gch member of a given dataset is
excluded in turn from the prediction algorithm pees (leave-one-out procedure) and
then predicted using the algorithm, or fit, or tiglaship, derived without it. This is done
for each member (i.e. the prediction algorithmasputedn times, ifn is the size of the
dataset). This avoids separating the dataset ictdilaration and test dataset, and allows
testing the predictive ability of the algorithm @ach member of the dataset. The
procedure is repeated n times and the Pearsonatmmecoefficients and the root mean
square error (RMSE) calculated between the pretliatel the observed values allow to
assess the accuracy of the model. The stabilgyatuated by the coefficient of variation
(cv) of the different slopes associated to theeggjon variables (Davi et al., 2006).

On the basis of previous results concerning the AN& of In(LAI) (see section
3.2) which showed that univariate In(LAl)-radiometdata relationships (either those
using a VI as radiometric variable and those usingndividual spectral band) depended
on the year of observation, even the LAI-multipkn® regression was supposed to be
dependent on the year of observation.

Furthermore, in this case, all available LAl measuents were uséy i.e. 55
observations per year for lkonos-derived datasdt48145 for 2004/2005 ETM-derived
dataset, respectively.

Regressions using In(LAI) outperformed models udiAg for both year-related
data sets and both satellite sensors. Thereforly, models developed using log-
transformed LAI data are reported and discussetthenfollowing. Table 17 and 18 set
forth intercepts and coefficients and relative pisea of multivariate regression models
using Ikonos-based 2004 and 2005 data sets, resggct

% For sake of clarity, it must be said that a maltiate analysis performed using lkonos reducedseata
(including only plots available for ETM) was cadieut, as well. Basically, it provided similar ré&suall
bands significant, multiple’x0.80 p<.0001 in 2004; only the last three bangsiicant, /=0.37, p<.0001,

in 2005, respectively), though obviously slightljfekent model coefficients were obtained. Howevar,
this case, the main purpose was to work out the bewirical model in order to produce the LAl
distribution map rather than to compare Ikonos Bmt¥l performances. Therefore, there were not a prior
reason to exclude any observation.
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With regard to lkonos and to both year datasetiseeregression models and each

model term, except for ibin 2005, were highly significant

(all band-relatgd

values<0.01; overall p<0.0001). However, the retatinfluence of the band was

markedly different.
Table 17 — Multivariate model terms and relatile and significance,

sensor, year 2004

Ikonos and Landsat ETM

Satellite sensor Model term estimate t p-value|
Intercept 3.41 9.38 <0.0001
bl -33.07 -3.77 0.0004
Ikonossys b2 35.59 2.73 0.0087
b3 -63.83 -8.26  <0.0001
b4 2.37 3.25 0.0021
Satellite sensor Model term estimate t p-value|
Intercept 2.22 466 <0.0001
ETMays bl -37.77 -3.02 0.0042
b4 6.02 3.89 0.0003
b5 -10.04 -5.50 <0.0001

Table 18 — Multivariate model terms and relativeps! and significance,

sensor, year 2005

lkonos and Landsat ETM

Satellite sensor Model term estimate t p-value|
Intercept 2.49 8.56 <0.0001

Ikonossxs b2 30.43 2.96 0.0016
b3 -34.57 -3.90 <0.0001

b4 -2.55 -4.28 0.0001

Satellite sensor Model term estimate t p-value|
Intercept 2.38 9.27 <0.0001

ETMays bl 35.64 4.07 0.0002

b2 -35.88 -4.14 0.0002
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For example, the red band had between 12+20 tidegse(iding on the year) over
the influence of nIR band. Also, for 2004-modelegrand blu&' coefficients were more
than ten times the nIR one. This outcome mighthaerésult of the red band having a
much lower asymptote than the near infrared bamgp(& 1985).

The multiple f were rather different among 2004=0.78) and 2005 %+0.33),
whereas similar RMSE were obtained for the two yg®MSE=0.22, RMSE=0.25 in
2004 and 2005, respectively). In other words, #iationships worked out in 2004 by
means of the multivariate regression allowed tdarpmbout two times more variation of
LAI than the model derived from 2005 data.

When regression on all six ETM reflective spechrahds against log-transformed
LAl was performed, it resulted in best regressiardsi including bands 1 (blue), 4(nIR)
and 5 (SWIR1) in 2004 whereas bands 1 (blue) afgtezn) in 2005, respectively. This
means that a number of bands resulted not contrgpatt explaining LAI variations. In
particular, in 2005, only the first two bands weetained as significant one in the
multivariate model. Besides, high overall modehgigance was observed in both years
(p<0.0001 and p<0.0005 in 2004 and 2005, respégfibough lower multiple &
(r*=0.46 and 3=0.27), respectively, with respect to Ikonos-redatmes, were obtained.
Respective RMSE were 0.36 and 0.28 for 2004 a8 2todels, respectively.

With regard to lkonos-based models, the correlaoefficients and RMSE
between predicted and measured values providetebgrbss-validation procedure were
r’=0.70 and RMSE=0.90, respectively, for year 200%| 6=0.36 and RMSE=1.05 for
the year 2005. Whereas, for ETM-based regressidr$.32 and RMSE=1.36 and
r’=0.22 and RMSE=1.21 for year 2004 and 2005, resmbgt Furthermore, either in
2004 and 2005 and for Ikonos as well as ETM relatath, rather low coefficients of
variation of the coefficients (terms) of multivasamodels resulted from the leave-one-

out procedure (for all model terms cv <7%) as showtable 19.

3 only for 2004 dataset
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Table 19 — Coefficients of variation per each ni¢elen coefficient (leave-one-out procedure)

Satellite year cv (%)

sensor intercept | bl b2 b3 | b4 | b5| b6
2004 4.0 -40| 6.2| -23 7.2 / /

Ikonossxs | 2005| 2.0 / 50| -36 -4.1| / /
2004 2.7 -6.6 / / 404 -3.6 /

ETM a3 2005 1.3 3.9 -3.7 / / / /

In the end, the functional relationships providgutie Ikonos-based multivariate
regression models for the two years (i.e. thoseltieg to provide the highest LAI
predictive skill among all tested empirical relasbips), respectively, were used to
produce 4m resolutidn LAl spatial distributions, see equation (1) anji (2

(1) LAI=exp(3.41-33.07*b1+35.59*b2-63.83*b3+2.37%p4 (year 2004)

(2) LAlI=exp(2.49+30.43*b2-34.57*b3-2.55*b4) (ye2005)

Figure 11 and 12 show the LAI maps, for 2004 an@52@ears, respectively,
realised by classifying LAI values into eight clasgfor cartographic reasons), displayed
over lkonos panchromatic image background.

Also, in figure 13 the relative percentages perhelasl class computed for the
two study sites and the two years of observationreported.

In particular, by focusing on 2004 LAl spatial dilstitions (much accurate and
reliable), some interesting information can be drawor example, within Pantano site
about 2/3 of the area was characterised by LAl ealtanging from 0 to 3 while the
remaining 1/3 was about almost equally distribubetiveen the 3+4 LAI range (18%)
and 4+6 one (15%). Only 2% of the territory presdritigh LAI values (6+8). Whereas,
appreciably higher LAI values characterised Montgpblo site, which presented LAI
values ranging from 4 to 6 within about 1/3 of @rea, from 6 to 8 and from 3 to 4
covering 11% and 16% of the surface, respectividlis findings reflected the differences
in LAI due to the different vegetation typologiesdacharacteristics of the two sites,
already partially highlighted b situ LAl measurements results (see paragraph 3.1.1.).
For instance, rather high LAI values (4+8) charastsl themaquisof Monte Coppolo,

whereas the same vegetation typology present lowsstalues (mostly 2+4) at Pantano

% Being applied on a per pixel basis
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wherein, in fact, it is generally represented byvdst and less dense vegetation
formations. Moreover, the deciduous hygrofilouseftrof Pantano showed LAI values
similar to those related to the deciduous fores¥lohte Coppolo. Finally, it can be noted

a forest degradation in some neighbouring areaa;, the cultivated land, in terms of
lowest LAI values.

71



Fig. 11 - IKONOS-derived LAI maps over the two sfigites Pantano and Monte Coppolo, for 2004, Augustquisition dates.
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Fig. 12 - IKONOS-derived LAl maps over the two stigites Pantano and Monte Coppolo, for 2005, J@necguisition dates.
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Monte Coppolo - year 2004

00-1 (15 %)
O1-2 (11 %)
m2-3 (13 %)
W 3-4 (16%)
m4-6 (32%)
W 6-8 (11%)
W8-10 (2%)
m10-12 (0%)

Pantano - year 2004

00-1 (19 %)
O01-2 (22 %)
m2-3 (24 %)
W 3-4 (18%)
@4-6 (15%)
W 6-8 (2%)
m8-10 (0%)
m10-12 (0%)

(@)

(b)

Monte Coppolo - year 2005

00-1 (10 %)
O1-2 (8 %)
02-3 (12 %)
W 3-4 (18%)
D 4-6 (28%)
W 6-8 (16%)
W 8-10 (7%)
m10-12 (1%)

Pantano - year 2005

00-1 (8 %)
01-2 (7 %)
m2-3 (13 %)
W 3-4 (18%)
m4-6 (34%)
W 6-8 (14%)
W 8-10 (4%)
m10-12 (2%)

(€)

(d)

Fig. 13 — LAl values distribution for Monte coppaad Pantano sites, in 2004 ((a) and (b)) and 2@)5
and (d)), respectively.

3.2.4. Using Ikonos-2 data as subsampling for alpsg LAI field measurements to

Landsat medium-resolution

The retrieval of land surface characteristics, sashLAl, from satellite data
through empirical model calibrated on “point” measunents needs an appropriate
density of ground observations. This means thatv#r&ability of the deriving products
within a single pixel (or better a 3x3 pixel windaensidering also the georeferencing
uncertainties) should be accounted for by the atbpampling scheme (Liang, 2004 b).
In highly heterogeneous vegetation this implies #mextremely large number of ground
observations have to be collected, which is a tmesuming, expensive and ultimately

not always easy/possible condition to satisfy faoacfical/logistic constraints (e.g.
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impenetrable areas). Particularly, the number odsuements increases as the spatial
resolution of satellite data decrease.

In this section a comparison between direct LAl sueaments-Landsat ETH¥
data calibration and a two-stage procedure, basedhe use of Ikonos images as
intermediate calibration, as described in the foila, is reported. The purpose was to
examine the effectiveness of using a high resalunoage as subsampling for upscaling
LAI field data to a coarse resolution satellite gaaas an alternative to collecting an
adequate, hence very large, numbelinokitu measurements theoretically necessary to
well characterise a Landsat 3x3 pixel window.

As sketched in a general form in figure 9 (left-thiaide), Ikonos data are firstly
used to produce a LAl map based on the best rekitip established betweansitu LAI
measurements (LAka) and Ikonos high resolution data (stage 1). Frbwsé maps,
mean LAl values over a 23x23 pixel window (aboux®® nf) are calculated (LAdonos
map {0 be used in LAknos maplandsat ETM radiometric data empirical model depéig
(stage 2). To this aim, a set of 128 non-overlagpiots, the size of 23x23 Ikonos pixels,
were selected within the two study areas avoidsxgnach as possible noise effects due to
near edge positions. The selection of plots waspaued by visual inspection of
orthophotos and Ikonos both panchromatic and npatisal images as well as by the
knowledge of the study sites gained during the iplelfield surveys.

However, specifically, stage 1 was here accompiishg the best performing
models’ already provided by regression analysis shown ravipus section, i.e. the
Ikonos-derived LAI maps produced by using the mualiate regression models (see
equation (1) and (2) within paragraph 3.2.3). Adlwbe statistical analysis shown in
previous paragraph already indicated that the leespirical mode® for a direct
upscaling of field LAl measurements to Landsat EdMa (figure 12 (b)) resulted to be
the multivariate models.

Therefore, in this paragraph specifically resudlated to stage 2 and to the overall

performance of the two-stage procedure are examilmegbarticular, either univariate

% Also Landsat TM data were tested but they provieleeh poorer results than ETM data (data not shown)
In fact, the better performance of ETM radiomettataset was already shown in previous sections.

37 One model per each year of observation

3 One model per each year of observation
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LAI-NDVI * ordinary least square regressions and multivarlad-multiple band
regressions were tested for Landsat ETM satelitkometric data calibrations (stage 2).
Also, both LAI and log-transformed LAI values wesgamined in regression analysis.
Since regressions using log-transformed LAl datgperiormed those using LAI only
results relative to the former are reported.

To sum up, two alternatives were investigated iersecond stage upscaling:

» case 1the relationship between Lfdnos map@nd Landsat ETM radiometric
data provided by NDVI-In(LAl)onos mapre€gression;

» case 2the relationship between Lfdnos map@nd Landsat ETM radiometric
data provided by multiple-band regressions.

The effectiveness of the two-stage procedure wassasd by comparing the
coefficients of determinationZrrelated to the In(LAdead-ETM multivariate regressions,
with the product of the coefficients of determioati of the two stages
(rztot: r2stageic r 2stageﬁ .

Results showed that univariate regressions perbrinetween ETM-derived
NDVI and corresponding In(LAbnos ma) data (stage 2, case 1) provided lower
coefficients of determination&0.76, RMSE=0.03 and’0.03, RMSE=0.06 for 2004
and 2005, respectively) than ETM-In(Libbhos may) Multivariate regressions (stage 2, case
2) for both years {=0.94, RMSE=0.13 and%0.89, RMSE=0.06, for 2004 and 2005,
respectively). Detailed outcomes of case 2 anabrgigeported in table 20 (a) and (b) for

the two year of observation, respectively.

Table 20 — Multivariate model terms, and respecsiope and significance, for Landsat ETM- sensor

Model term estimate t p-value|
Intercept 3.08 27.99 <0.0001
bl -38.40 -12.21 <0.0001
b3 -29.66 -7.78  <0.0001

b4 1.91 4.03 <0.0001

b5 -3.00 -3.06 0.0027

(a) year 2004

3% The NDVI was selected (out of several tested VI in jwas sections) since it resulted the best
performing spectral vegetation indices in VI-LAI pinical model developing, as shown in paragraph23.2
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Model term estimate t p-value|

Intercept 2.42 43.89 <0.0001
bl 3.88 3.17 0.0019
b2 11.53 5.47  <0.0001
b3 -17.38 -7.14  <0.0001
b4 -1.72 -12.15 <0.0001
b6 -4.77 -6.33 0.0027

(b) year 2005

In particular, for both year datasets, either maliate regression model and each
model term, were highly significant (all band-reldtp-values<0.003; overall p<0.0001).
Furthermore, as already resulted for direct ETM-+}LeM relationship (see paragraph
3.2.3), different bands were retained in the maldgending on the year of observation.
Moreover, in comparison with direct ETM-Lfdas multivariate regression, a large
number of bands were included. In particular, {02 dataset, direct ETM-LA\Las
multivariate regression had resulted in a two banddel including only b1l and b2 (see
paragraph 3.2.3) whereas all ETM bands, but b5e werluded in the ETM-LAlonos map
multivariate regression. As well, for 2004 dataseth respect to results related to direct
ETM-LAIl meas the ETM-LAlkonos map Multivariate regression included the additional
contribute of b3. Furthermore, the relative infloerof each band was notably different.
In 2004, bl (blue) and b3 (red) had between 1Q#B6s over the influence of b4 (nIR)
and b5 (SWIR1). Whereas, in 2005, b3 (red) anddo2ef) resulted to have the higher
sensitivity to LAI variations.

Finally, the overall performance of the two-stagecgdure for the two alternative
models (i.e. case 1 and case 2) and the two yeessited to be the following,

respectively:

1) case il
o= PstagelT “stage=0.78*0.76=0.60 (year 2004)
o= PstagelT “stage0.78*0.03=0.01 (year 2005)
2) case 2
Piot= PstagelT “stage=0.78%0.94= 0.73 (year 2004)
o= PstagelT “stage=0.78*0.89=0.29 (year 2005)
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Therefore, when compared with direct ETM-l.Alsregression analysis*G0.46
and £=0.27 for 2004 and 2005, respectively), these tesshowed the potentiality of
using a high resolution satellite data as interaedstage (stage 1) for upscaling “pofft”
field measurements to medium resolution satelliteage calibration (stage 2) in
mediterranean environment.

Obviously, the weaker the relationship used forfitet upscaling stage (stage 1)
the poorer will be the overall result. For exampte2005, the LAI distribution map used
for ETM calibration derived from a model accountifog only the 33% of surface LAI
variation (f=0.33). Therefore, substantially, no improvementenebserved by adopting
the two-stage procedure with respect to directlyfgpmed a multivariate regression
between field LAl measurements and ETM bands andh bmethods vyielded
unsatisfactory results*%0.29 and3=0.27, respectively).

Conversely, with regard to the 2004 dataset, begnassion models tested for the
second upscaling (stage 2) allowed to increasanmeunt of variation of LAkexplained
by means of ETM data. Namely, such improvement afaabout 10% and 25% for
NDVI-based model {,=0.60) and multivariate modef=0.73), respectively.

Once more, with data used in this study, the usenoltiple band instead of
spectral VI (NDVI represented the best performidgwut of several tested ones) allowed

to increase the predictive ability of empirical nebd

3.3 Discussion

This chapter presented a quantitative analysiscahestimating Leaf Area Index
(LAI) spatial distributions in Mediterranean foredtareas by means of remotely sensed
data.

A fundamental challenge to the retrieval of usdfidphysical products, such as
the LAI, from remote sensing within Mediterranearas is the fragmented and mixed
environment which characterises these zones wiert to other forest ecosystem (e.g.

those of northern latitude).

0|t is meant measurements having a small footigpilat size) in order to account for the high sgatia
variability of mediterranean environment.
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Therefore, given that older generation sensors haaey known limitations with
respect to their suitability for studying highlysdretized and complex land cover, the
need to evaluate the new generation of sensorsjidong highest spatial/spectral
resolutions is of critical importance.

In particular, high spatial resolution permits peofdreduced) size as well as
accurate location of calibration plots, which iBey issue when coping with high spatial
variability and diversity.

In this context, the utility of using Ikonos higlpatial resolution images was
investigated in order to evaluate:

a) the performance of empirical models developeduiljh regression analysis
between in situ LAl measurements and lkonos data for producing Ledatial
distributions of two forested Mediterranean arédatéra Province, South of Italy);

b) the opportunity of using high resolution satellidata, like Ikonos, as
subsampling for medium resolution satellite datehsas Landsat TM/ETM, when LAl
of wide areas need to be mapped.

To this aim, two LAl field surveys were carried ontearly summer 2004 and late
spring 2005 in order to collect a certain numbemaditu LAl measurements, namely 55
plots per year were sampled within four differerégegtation typologies nfaquis
deciduousforest, live oak forest andhygrophylousforest). Besides, as synchronous as
possible lkonos and Landsat TM/ETM satellite imagese acquired.

With respect to the first objective and in orde@assist in the selection of the best
empirical model, the training dataset (110 pairdng¢EAl)** values and corresponding
radiometric values) was examined in order to evaluba general model developed
pooling all data into a unique dataset could bedume conversely, it would have been
necessary to separately develop per species oreperor even per species and per year
regression models. Therefore, an analysis of camnae (ANCOVA) of In(LAI) having as
independent variable the radiometric variable,ytbar of observation and the vegetation

typology, and considering all possible interactiomsas performed. In particular, a

“Lin order to cope with possible radiometric sigratiusation which tends to occur at the higher
LAI values (see previous sections) the use of eitl and log-transformed LAI data was investigated
Respective results showed the superior performasfcempirical models developed using the log-
transformed variable. Hence, for sake of sinthdmse it is referred only to results related touke of the
log-transformed variable.
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number of radiometric variables were tested, ine-by-one each individual band as well
as several spectral vegetation indices (VIs).

Substantially, results of ANCOVA showed that th€Lil)-radiometric variable
relationship didn’t depend on vegetation typology b considerably depended on the
year of observation. It must be stressed that méssilts highlighted the utility of the
empirical models worked out in this way for a spltextrapolation of field LAl
measurements, hence allowing to obtain LAl distidou maps of the study areas in the
year of data collection. Conversely, they prevendedemporal extrapolation of the
empirical model (i.e. the possibility to apply trempirical model to radiometric
observations referring to year different from thaéd for model calibration) which would
have enabled to monitor the LAI dynamic over tharge

According to results provided by the ANCOVA anatysthe full dataset was
subdivided into two subsets, each one referringoite of the year of observation,
respectively, to be used in regression analysis.

Then, univariate ordinary least square regressi@mwng In(LAI) as dependent
variable and one-by-one each tested radiometri@ablar (individual band or VIs) as
independent variable, as well as multivariate lsgstare regressions exploring In(LAI)-
multiple spectral band relationships, were examined

The statistical analysis provided three main oue®mvhich can be summarised as
follows:

* multiple-band models were found to offer substantigorovement over single-
variable models (either individual band or specii)j

» the first LAl maps of the study areas were produbgdmeans of the best
performing models. In particular, one four-varialigdl available lkonos bands)
model was used to extrapolate the relationship aebraut to the landscape in
order to produce the LAl maps of the two study aie&2004;

» empirical models were robust with respect to veoret in vegetation typology and
other characteristics of the study sites, thus llgbghng the reliability of their
spatial extrapolation to other areas;

* empirical models were highly sensitive to condisicat time of data collection
(e.g., differences in forest vegetation phenoldgstatus, background optical

properties), thus limiting the possibility of thé@mporal extrapolation.
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In particular, in relation to the last finding, ansparison of within-plot radiometric
variability between Ikonos 2004 and 2005 images paformed by means of within-plot
coefficients of variation of reflectance in eacmtaln this way, it was shown that a
significantly highest within-plot heterogeneity cheterised the spectral signal in 2005.
This, in turn, highlighted the diminished suitatyiliof 2005 radiometric data for
developing empirical relationships between LAI meaments and satellite data, thus
giving reason for the poor results obtained.

Firslty, the following hypotheses were formulatedetxplain such a result. Firstly,
given the early period of 2005 field survey (anthted satellite data acquisition) with
respect to 2004 one, two main effects might berasguto significantly affect 2005 data
while not, or only to a minor extent, 2004 onese@fically, it is likely that forest
vegetation had not reach yet the phenological peakimum vegetation development) in
late May 2005 (i.e. at time of 2005 field survegdacontinued growing during the period
betweenn situ LAl measurements and satellite acquisition daaesimg measured LAI to
significantly differ from actual LAI values at timef satellite overpass (2005, ¥2f
June). Conversely, the maximum vegetation developmeas reasonably reached in late
June-early July 2004 (i.e. at time of 2004 fieldvsy), guaranteeing the consistency
between LAl measurements and actual LAI valuesinaé tof 2004 satellite overpass
(2004, 29 of August).

Secondly, it is possible that background effecs. (inainly those due to understory
herbaceous vegetation and litter) could have bégrifisantly different between 2005
and 2004. For example, during June 2005 grass slyngreen in those areas and hence
its spectral signal is more similar to that of &ireegetation than it is at the beginning of
Augusf? when grass is mainly in a senescent status.

Furthermore, although the LAl measurements footgsampled area) used in this
study was rather small (about 12x12ni.e. ad hoctailored to the Ikonos resolution in
order to account for the high spatial variabiligegent within the mediterranean areas,
nevertheless additional regression analysis peddrusing either Landsat TM/ETM data
and lkonos data aggregated to match Landsat remolfte. 23x23 lkonos pixel
averaging window corresponding to 3x3 Landsat pweldow were used) was carried
out for comparison purposes. However, as expesiade 90x90rhwide training areas

“2 lkonos images were acquired on tf&a? August in 2004 and on the 2&f June in 2005
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were in this case characterised by ground samplddces of less than 2%12x12nf),
poorest results were generally obtained.

This result highlighted the need for an appropriatearacterisation of the
variability of the deriving products (e.g., LAI) thin the areas (plot) used for calibration
(i.e., usually at least a 3x3 pixel window considgrthe georeferencing uncertainties).
Neverthelessin situ LAl measurements are extremely labour-intensieadering their
use for an extensive sampling rather demandingtifimpractical. Moreover, it must be
stressed that logistic constraints (e.g. impenkdiradreas) may further limits the
possibility to accomplish a suitable sampling sceem

Therefore, and with respect to the second objectiie study indicates an
alternative expedient which may offer a practicalams to produce LAI distribution maps
on a regional scale or above by means of a limitgdber of LAl ground measurements
using both lkonos and Landsat satellite images.i@isly, the idea is that Ikonos images
will cover only some percent of the area to be nedpwhich will be, in fact, entirely
sensed by Landsat sensor. Therefore, field LAI aéthfirstly be upscaled to lkonos
resolution in order to produce a high resolutionl Idéstribution map which in turn will
be used to calibrate the LAI-Landsat data empimcadiel.

Specifically, with data used in this study, it vedwn that this procedure allowed
to increase of about 25% the amount of variatiohAlf explained by means of Landsat
ETM radiometric data directly calibrated by meah&edd LAl measurements.

In conclusion, although needs to be further refired validated, the use of
observations at different spatial resolution (fidita + Ikonos + Landsat) so as shown in
this study can contribute to the validation of M@ELLAI products, routinely provided as
1-km spatial resolution data and hence not directijnpatible with the scale at which
ground measurements are usually collected, in ¥ighhgmented and mixed

environment.
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4 Multitemporal analysis of spectral VI and correspnding climatic
parameters

Mediterranean regions constitute a transitionainate zone between arid and
humid regions (Di Castri & Mooney, 1973) where @shbeen hypothesised that climate
changes may have the most pronounced effect (Raflgi al. 1994, Cubash et al., 1996,
Lavorel et al., 1998).

Indeed, there is an increasing evidence that cirahinge affects biological and
ecological processes. In particular, it seems tabeain driver of changes in natural
vegetation communities’ physiology, growth and pgmary productivity. Distribution
and abundance of either animals and plants aned|tas well as their life cycles, mainly
as a consequence of temperature increasing.

However, evidence of such effects has been mostliyeld to northern latitude
(Penuelas et al., 2002) where temperature is ntyrtied most important climatic factor
limiting plant photosynthesis (Yu et al., 2003).relethe prevalent effect of global
warming on vegetation seems to be an anticipatrmhhence a lengthen of the growing
season, ultimately determining an increase of rigtgry productivity.

Few studies have investigated the effects of ckntdtange on the lower latitude
forests and shrublands of Mediterranean areas wWiwetemperature and precipitation
play key roles in regulating plant biological preses.

Athough Mediterranean vegetation species preséfereint adaptive mechanisms
to water deficit and high summer temperature, rtbeégss it is not clear what might be
the response of these species to climate changeparidtularly to the temperature
increase and precipitation decrease forecastedvilediterranean basin (IPCC, 2001,
Palutitikof, 2002).

In general, plant response to changing environatezanditions is related to the
genetically acquired adaptive strategies and aetéiton which each species has
developed in order to survive and successfully acampvithin its ecological conditions
and related variability ranges.

If environmental conditions change within certhmits of tolerance, plants will put
into effect their adaptive strategies, but thesstegjies will differ from species to species
and not all species are able to react with the s#ageee of efficiency to the same type or
same intensity and duration of environmental st(Bsseira et al., 1995).
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Because of the high level of biodiversity whichacddcterizes the vegetation
communities of our area and therefore the diffedptive mechanisms adopted, one
can hypothesize that on a long term basis in thdiféieanean ecosystem climate changes
will trigger diverse or even contrasting phenomerar. example, an increase in winter
temperatures could determine a reduction of thegef dormancy (with heightened risk
to the plant of sudden frosts) and therefore agmgdtion of the growth phase, whereas
an increase in summer temperatures could increaser weficit impact and reduce the
summer growth of the vegetation. At the same tithe,species with a greater capacity
for adaptation could have a competitive advantage the others (Gratani et al., 2005),
meaning that the more vulnerable species could fnaditheir distributional area —
migrating to more suitable climates.

Multi-temporal series of satellite data offer awgoful means to monitor
vegetation pattern/changes (e.g. Nemani et al.3,2D0rner et al., 2005). There are series
now covering a timespan of more than twenty yeatsch thus constitute a significant
window of observation.

In particular, they can be used to gain insighb ithhe complex mechanisms
controlling the response of vegetation to climagiability. It is well known that
precipitation and temperature have an importaniuémice on the development and
condition of vegetation, particularly during theogth season, which determines its
condition in all later phases. Temperature is a fagtor in determining the various
phenologic phases of plants (sprouting, gemmatiteafing, flowering, fruiting,
senescence and winter dormancy) whereas precogpitegigulates photosynthetic activity
and the transfer of organic substances from leamddranches to the roots (Papanastasis
et al., 1997) and consequently the growth of tlaafpl

Mostly, temporal series of satellite-derived Norisedl Difference Vegetation
Index (NDVI) have been profitably used to this mse argueing that changes in NDVI
reflect changes in biological activities (Li et 2000, Sarkar and Kafatos, 2004, Suzuki et
al., 2006, Volcani et al., 2005, Stokli et al., 20@hang and Anderson., 2004, among
others). For example, Myneni et al. 1997 usingld&telerived series of NDVI, from
1981 to 1991, showed evidence of an increased glamtth in the northern high latitude
(> 40° N) associated with a lenghtening of the dgngwseason due to warmer

temperatures.
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The objective of this part of the study was to perf a retrospective analysis of
yearly vegetation productivity and correspondinignekic conditions of the two selected
study areas (see chapter 2), in order to evaluassile relationships between inter-

annual variation of vegetation and associated teatyes and precipitations.

4.1. Materials and methods

4.1.1 Satellite images

A series of Landsat TM/ETM images from 1984 to 20¢as acquired, all referring
to the late spring/summer period and thus relatonghe seasonal peak of vegetation
development period in the area under study (tabje 2

The choice of Landsat sensors was made becaubke aked for either a sufficient
spatial resolution allowing distinguishing the malifferent vegetation species in the
study areaslL{ve oak forest, Maquis, Mixed broadleaf forestgkbfilous forest and a

sufficiently long image time series.

Table 21 — List of Landsat images used

Acquisition Date Orbit track

(path, row)
06/20/84 188,32
06/13/87 188,32
08/02/88 188,32
05/10/89 187,32
07/18/94 188,32
06/19/95 188,32
06/14/99 188,32
08/03/00 188,32
07/06/01 187,32
05/26/04 188,32
06/30/05 188,32

In fact, since the two study sites are charactérisg significantly different
environmental conditions (e.g. altitude, distanoaT the sea) and hence ecosystems (see
chapter 2), they were separately analysed. Furtbrermvithin the same study area, also
per vegetation typology investigation were perfadma order to explore possible

different response associated with different velgaiaypology.
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The spectral vegetation index (VI) selected forrthdtitemporal analysis were the
Normalised Difference Vegetation Index (NDVI=(nIBe&)/(nIR+red)) and the
Normalized Difference Water Index (NDWI=(nIR-SWIR)IR+SWIR)).

The first one is largely the most used spectrakexndor remote sensing of
vegetation (Kawabata et al., 2001, Maselli et2004, Yang et al., 1998, among others),
and responds to changes in amount of green biommbksophyll content, and canopy
water stress (Liang, 2004, b). Whereas, the NDW4uisstantially a variation of NDVI
exploiting the short wave infrared spectral rande2-€.5 um) where the radiation
absorption due to water content is enhanced. Fodda TM/ETM+, nIR and SWIR
correspond to bands 4 (0.78-0.90 Am) and 5 (1.9%-finm), respectively. One reason
that the NDWI may not have received much attentiotil recently is that the infrequent
temporal coverage of TM and ETM+ make it diffictit estimate the vegetation water
content for various applications. Classic operationstruments such as the AVHRR did
do not include a SWIR band. However, new sateBiégmsors such as the Moderate
Resolution Imaging Sensor (MODIS) on NASA'’s Terrad @Aqua satellites now make
such data routinely available (Jackson et al., 20AKk0, several studies have profitably
used the NDWI derived by Landsat bands (e.g. Hiydet al., 1983, Anderson et al.,
2004, Maki, 2004, Healey et al., 2006).

Satellite images were preprocessed in order toirolataco-registered dataset as
well as a consistent radiometric scale. To this, diratly all frames were orthorectified
(as described in chapter 3) then a data normalisdtased on “pseudoinvariant” target
approach (Schott et al. 1988, Furby and Campb@li1pwas performed.

This approach assume that there are some pixedeyfminvariant” targets) in a
satellite image whose reflectance are quite stdotrigh time (e.g. deep water, bedrock).
Therefore, variations of radiometric measuremehthese pixels on different dates can
be related to exogenous “noises” which change tksatellite sensed signal, such as
different atmospheric and illumination conditionseven sensor response drift over the
years (see paragraph 3.1.2.1.).

The cloud free 2004-26-05 Landsat TM was selecteeference image for both
orthorectification and relative normalization. Tékre, it was firstly orthorectified and
atmospherically corrected following the same proceddescribed in paragraph 3.1.2.1.
Actually, since the reference image was a correcédi@éctance image the performed
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procedure allowed to obtained not only a relatisemralization of image radiometry but
also corrected surface reflectance images.

Then, a number of pseudoinvariant pixels with \@eaabrightness from dark to
bright (such as a stone quarry, urban areas, lakesaa water) were selectdédind
corresponding digital number (DN) and surface m#lace were extracted from each
band of the image to be corrected as well as ftuyed of the reference one, respectively.
In fact, since the atmosphere affect differentlgheavavelength it was necessary to
retrieve normalization coefficients individuallympeach bandkj.

Finally, per each image, per barld ljnear regressions (see equation 1) between
the reflectancep) of the reference image and corresponding digiahber (DN) of the
image to be corrected extracted on the pseudoamariargets provided the two
coefficients & andby) to be used for normalizing all other pixels of image. All highly
significant regression were obtained, and Peareaelation coefficients related to b3, b4
and b5, which were the bands used to calculateselected VIs for the multitemporal
analysis, were all > 0.97.

Q) pk= a + bk DN

4.1.2. Climatic data

The following climatic parameters were computedifrdaily measurements of
precipitation and surface air temperature colleatedr the period 1983-2005 by two
ground meteorological stations, one close to M@uppolo and the other to Pantano site,
respectively: maximum, mean and minimum temperatut@tal precipitation, growing
degree days (GDD), and the ratio between cumulatigeipitation and mean temperature
(P/T).

GDD is a widely used measurement, especially iricaljure, to estimate or
predict the length of the various phases of crogel@ment (Bonhomme, 2000) but also
to study the phenologic stages of diverse natupacies and their use as climatic
indicators (Spano et al., 1999). These are usgallyulated as the difference between the

mean daily temperature and a temperature below hwthe process of growth and

3|t must be said that two sets of pseudoinvariangets were used in relation to the two different
satellite image frames used (path 188, row 32 aattt £87, row 32, respectively). In particular, ¢igh
pseudoinvariant targets were found and used fol & 832 image frame whereas only six pseudoinvarian
targets were found for the overalapping zone betwi37-32 and 188-32 frames.
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development become significantly inhibited. Thegent analysis considers three distinct
threshold temperatures 0, 10, and 20°C and ssrtopossible negative GDD values.

In particular, in order to explore lag and cumwateffects of precipitation and
temperature on vegetation activities and developmmaean values for daily minimum,
mean and maximum temperature, as well as cumulasiees for GDD and precipitation
were computed for the 180, 90, 30 and 10 days dnegehe date of passage of the
Landsat satellite. Also, for the same temporal wimdhe P/T indicators was derived
using corresponding cumulative precipitation anéimemperature.

It must be said that these periods were chosenthétlaim of investigating which,
if any, of them best highlighted the relationshigtvieen VI (which refers to vegetation
peak) and climatic conditions during vegetation elegment. In fact, these different
temporal windows refer to different vegetation pblegical stages, which might
differently be affected by variations of climatiarameters. Furthermore, potentially, each
vegetation species could present a different optitamporal window for climatic
parameter calculation.

Finally, it is noteworthy that since the variousratic indicators were all strongly
correlated to mean temperature and cumulative gpitaton (statistically redundant
parameters) it was decided to report only the tesalative to these two indicators.

4.1.3. Statistical analyses

Univariate ordinary least square regressions wertopned between the adopted
Vls and climatic parameters referring to the abosetioned different temporal windows.
In particular, either per study site (a unique ¥lue per each study area) and per
species (different VI for different vegetation sigsc in order to investigate possible
different behaviour of the diverse vegetation tyguks) analysis were carried out.
Furthermore, given the high number of Pearson adimas computed, since per
each VI dataset one-by-one all (hamely eight) dicngarameters were tested, the related
statistical significances were corrected accordmnBonferroni procedure (Rom, 1990).
The statistical analyses were performed using S€afa (StataCorp, 2005)

statistical software package.

88



4.2. Results

4.2.1. Multiannual series of climatic parameterslapectral Vis

Examination of variations over the last twenty gefar some climatic parameters

revealed consistent interannual variation. Simylad significant interannual variation

was evident for the VIs studied. Figure 14 andhiéw these variations.
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4.2.2. Climatic parameters-VIs relationships

At first, statistical analyses performed by usingraque, mean VI for the whole

study area, were tested. Results are reportedbie £2. In Monte Coppolo study site
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both NDVI and NDWI resulted inversely correlatedtiwithe mean temperature of the
preceding 10-30 days. Also, a positive correlati@tween NDWI and the cumulative

rainfall of the preceding three monthsdPwas observed. Conversely, within Pantano
area none of the relationships resulted to be fatgni. Afterwards, the same analyses
were carried out on a vegetation typology basistable 23 and 24.

With regard to Monte Coppolo area, by examiningasately each vegetation
community, it was highlighted that a temperaturéeaf is particularly evident on
deciduous forest and maquis whereas it is weakem absent on live oak forest. Also, in
areas covered by maquis a positive correlation éatwthe NDWI and the cumulative
precipitation of the last three monthgd)Rvas observed.

With respect to Pantano study site, once more gmifgiant relationships
between any of the tested climatic parameters alsdwWere obtained, except for a
positive correlation between the NDWI and the clative precipitation of the last three
months (By).

Table 22 — Results of statistical analysis betwaignatic parameters and VIs for the two study arefa
M.Coppolo and Pantano (n=number of observationsnes significant at 95% probability level)

Climatic M.COPPOLO PANTANO
parameter
NDVI NDWI NDVI NDWI
r=-0.783 r=-0.831 r=-0.109 r=-0.244
T1s0 n=8 n=8 n=11 n=11
ns ns ns ns
r=-0.807 r=-0.847 r=-0.237 r=-0.224
Too n=8 n=8 n=11 n=11
ns p<0.1 ns ns
r=-0.869 r=-0.933 r=-0.333 r=-0.326
Tao n=8 n=8 n=11 n=11
p<0.05 p<0.01 ns ns
r=-0.877 r=-0.911 r=-0.400 r=-0.409
T1o n=8 n=8 n=11 n=11
p<0.05 p<0.02 ns ns
r=0.046 r=0.150 r=0.616 r=0.073
P1go n=8 n=8 n=11 n=11
ns ns ns ns
r=0.753 r=0.879 r=0.236 r=0.513
Pgo n=8 n=8 n=11 n=11
ns p<0.05 ns ns
r=0.425 r=0.560 r=0.327 r=0.406
Pso n=8 n=8 n=11 n=11
ns ns ns ns
r=0.243 r=0.313 r=0.171 r=0.446
Pio n=8 n=8 n=11 n=11
ns ns ns ns

T= mean temperature, P= cumulative precipitations for the 180, 90, 30 e 10 day temporal windows
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Table 23 — Results of statistical analysis betwaignatic parameters and VIs for M.Coppolo studgear
per vegetation typology

M.COPPOLO

p;lr';nggfer Deciduous forest Live oak forest Maquis
NDVI NDWI NDVI NDWI NDVI NDWI
r=-0.786 r=-0.859 r=-0.757 r=-0.676 r=-0.783 r=-0.798
T1s0 n=8; n=8; n=8; n=8; n=8; n=8;
ns p<0.06 ns ns ns ns
r=-0.801  r=-0.869 (=-0.778  r=-0.678 (=-0.809  r=-0.816
Tao n=8; n=8, n=8; ns n=8; ns n=8; ns n=8; ns
ns p<0.05 ' ' ' '
=080 r=0962  r=0823 \_5731 =087 _gss0
Tao n=s; n=s; n=s; n=8; ns n=s; n=8; p<0.05
p<0.05  p<0.001 p<0.1 ' p=0.052 <D
r=-0.839 r=-0.875 r=-0.848 r=-0.764 r=-0.890 (=-0.901
T1o n=8; n=8; n=8; n=8; n=8; n=8: p'<0 02
p<0.1 p<0.05 p<0.1 ns p<0.05 ' '
= r=-0.012 r=0.068 r=0.027 r=0.123 r=0.055 r=0.162
180 n=8; ns n=8; ns n=8; ns n=8; ns n=8; ns n=8; ns
= r=0.673 r=0.780 r=0.746 r=0.801 r=0.794 r=0.908
% n=8; ns n=8; ns n=8; ns n=8, ns n=8;ns  n=8;p<0.02
= r=0.385 r=0.567 r=0.332 r=0.245 r=0.441 r=0.565
30 n=8, ns n=8; ns n=8, ns n=8; ns n=8; ns n=8; ns
= r=0.127 r=0.105 r=0.281 r=0.406 r=0.337 r=0.457
10 n=8; ns n=8, ns n=8; ns n=8; ns n=8; ns n=8,ns

T= mean temperature, P= cumulative precipitations for the 180, 90, 30 e 10 day temporal windows

Table 24 — Results of statistical analysis betwaismatic parameters and VIs for Pantano study pega
vegetation typology

climatic PANTANO
parameter Hygrophilous forest Maquis
NDVI NDWI NDVI NDWI
r=-0.136 r=-0.294 r=-0.150 r=-0.458
T1g0 n=11 n=11 n=11 n=11
ns ns ns ns
r=-0.264 r=-0.282 r=-0.268 r=-0.424
Too n=11 n=11 n=11 n=11
ns ns ns ns
r=-0.364 r=-0.387 r=-0.350 r=-0.479
Tag n=11 n=11 n=11 n=11
ns ns ns ns
r=-0.434 r=-0.484 r=-0.404 r=-0.495
T1o n=11 n=11 n=11 n=11
ns ns ns ns
= r=0.598 r=0.094 r=0.692 r=0.359
180 n=11; ns n=11; ns n=11; ns n=11; ns
p r=0.226 r=0.433 r=0.337 r=0.855
%0 n=11; ns n=11; ns n=11; ns n=11; p<0.01
= r=0.345 r=0.426 r=0.372 r=0.638
30 n=11: ns n=11; ns n=11: ns n=11:ns
= r=0.168 r=0.335 r=0.191 r=0.593
10 n=11: ns n=11; ns n=11: ns n=11: ns

T= mean temperature, P= cumulative precipitations for the 180, 90, 30 e 10 day temporal windows
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4.3 Discussion

Changes in phenology (seasonal plant and animialtgatriven by environmental
factors) from year to year may be a sensitive asilyeobservable indicator of changes in
the biosphere (Menzel et al., 1999).

In this chapter, the potential of highlighting theter-annual variation in
Mediterranean vegetation activity and productivitging remotely sensed data, i.e.
spectral VIs, was shown.

In particular, with data used in this study, in neevhen mean temperatures were
higher a decrease in spectral VIs was observed dffiect was particularly evident for
some types of vegetatioméquisanddeciduoudorest), whereas it was limited or absent
in others fiygrophylousandlive oak forest In areas of Mediterranean maquis vegetation
was also sensitive to rainfall: years with morefai showed an increase in Vis.

Reduced sensitivity diiygrophylousandlive oakforest to interannual variations
in precipitation and temperature probably had diffié explanations.

Live oakforest is particularly well adapted to hot dry suers, which are typical
of the Mediterranean environmehive oak apart from having an effective leaf defence
mechanism for limiting evapotranspiration and coosst loss of water at high
temperatures (Crescente and Gratani, 2002) isva glowing species possessing a very
deep root apparatus (Barbero et al. 1992) allowingo supply itself with water
independently from precipitation. These charadiegsxplain why inlive oakareas Vls
showed little sensitivity to climatic parameters.

Hygrophylousforest, on the contrary, grows in zones where dbi¢ is almost
constantly saturated with water. The overabundaheeater can moderate the effects of
temperature and rainfall variations over the years.

Themaquisis partly made up of evergreen sclerophyll likelthe oak which has
leaf morphology (especially thick and tough) or legaal strategies (stomatal
regulations, etc) which are particularly adaptedVkediterranean environments. Some
other species of themaquis like semideciduous shrubs, however, show morersicgal
root apparatus and have a faster growth cycle higeatlopted ecological strategies based
on the morphological difference between winter awhmer foliage (Orshan, 1963,
Westman, 1981, Christodoulakis, 1989, Correia.etlB2, Gratani and Crescente, 1997)

and a shortening of the growth phase to take adganof the most favourable period
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(Werner et al., 1999).

Although the Mediterraneamaquisis made up of a variety of species with
diverse adaptive mechanisms, various ecophysiabggtudies have shown that
cumulative precipitation is “the factor which withost influence the response of
Mediterranean evergreen species to water condittonan interannual scale” (Bombelli
and Gratani, 2005), in particular during the peraddnaximum photosynthesis (Gratani
and Crescente, 1997, Gratani and Ghia, 2002).

This peculiarity ofmaquis seems to be shown by the NDWI index which is
sensitive to cumulative precipitation over the pdriof 180 days. The effect of
temperature, however, was only shown to be of itapae for the temporal windows of
30-10 days, showing the relative importance of fimmal mechanisms to structural
attributes. It is difficult to believe that the tperature over a period of 30 days could so
strongly influence structural attributes of vegetatsuch as LAl or biomass. It is more
likely that high summer temperatures associatetl aanditions of water deficit (stress)
are compensated by a reduction in photosynthetivitgc especially in the more
vulnerable species.

The importance of temperature for the regulatioeatfphysiological mechanisms
is also found when we analydeciduoudorest. Here, in particular the NDWI correlated
inversely with the mean temperature calculatedttiertemporal windows of 90, 30 and
10 days, highlighting a reduction of vegetation evatontent (but also of background
humidity) when temperatures are higher. In addittbe NDVI index was inversely
correlated to the mean temperature for the 10-30peaods, probably as a consequence
of reduced photosynthetic activity in conditiongloérmal stress.

To sum up, the results obtained showed how it sside to highlight the effect of
climatic variations not only on the duration or legng of the growth period for
vegetation, but also on the seasonal peaks thataohed. It is also evident that while
studies done on higher latitudes showed a poséffect of increased temperature on
vegetation growth, our results showed a reductfovil avhen mean temperatures rose.

Therefore, although the correlation nature of thedy limits our ability to
determine causal factor, nevertheless the availdhta and the current knowledge of
plant and ecosystem functioning allow to draw tbkofving interpretations. Climatic

variations can cause changes in the seasonal Viegepeaks measured by the satellite-
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derived VI and these changes, in water-limited Madanean regions, can be the
opposite of those observed in higher latitudestHémmore, the study showed the variety
of responses of Mediterranean vegetation to clenaliange. Even within the same
ecosystem different vegetation typologies showgdifitant diversity in their response to
climatic variations. As a result, it is extremelyfidult to make quantitative predictions
about the possible overall response which climat@nge will provoke in Mediterranean
ecosystems. Particularly, if we consider that theeoved results have been obtained with
climatic variations which are much inferior thams$le expected over the next century. For
example, according to the PRUDEN@Hediction of Regional scenarios and
Uncertainties for Defining EuropeaN Climate changesks and Effect project

(http://prudence.dmi.dk/ whose results represent an essential refereacestfidies

dealing with climate change at the European/Meditezan regional scale, an increase of
summer temperature of 5.5 °C (1.8 °C) and a dser@awinter precipitation of 50-100
mm (+10 mm) within southern and western Europe owour in the near fututé (2071-
2100) (Deque et al., 2005).

In the long term (from decades to centuries), chmapglimate may affect
productivity, via species competition, by alterisgecies composition and, ultimately,
ecosystem structure and functioning.

It is noteworthy that the different structure amahdtion of terrestrial ecosystems
affect those physical mechanisms, such as the egehaf heat, moisture, trace gases,
aerosol, and momentum between land surfaces andotbdying air, which may
influence the climate system (Pielke et al., 1988¥act, modelling as well as empirical
studies generally indicate that decreases in vegetancrease temperature and decrease
precipitation (Nobre et al., 1991, Bounoua et 2000, Buermann et al., 2001, Schwartz
and Karl, 1990, Bastable et al., 1993), eventuathplifying and/or speeding (positive

feed back) the climatic variations up within theseas.

“* Those climate scenarios were derived accordindnéoemission scenarios A2 defined by the
Intergovernmental Panel on Climate Chan@g#°CC, Special Report on Emissions Scenario, 2000

http://www.ipcc.ch/activity/sprep.htinHowever, similarly even though less prounandedatic variations

were forecasted if using the B2 scenario.
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5. Conclusion

In recent years, the use of satellite imagery wiaggical research and ecosystem
management has increased significantly. For exarpdé 10 recent issues of the journal
Ecological Applications contain at least one agticl which satellite imagery was used to
characterize vegetation or land coviédre widespread availability of satellite imageryglan
image processing software has made it relatively €far ecologists to use satellite
imagery to address questions at the landscape egidnel scales. However, as often
happens with complex tools that are rendered easyise by computer software,
technology may be misused or used without an utatesg of some of the limitations
or caveats associated with a particular applicatidme results can be disappointment
when maps are less accurate than expected or éstatecisions may be derived when
they are treated as truth (Fassnacht et al., 2006).

In particular, one of the most important biophykiparameters of vegetated
systems is the Leaf Area Index (LAI). It can be dus® infer processes (e.g.,
photosynthesis, transpiration, and evapotranspivptiand estimate net primary
production of terrestrial ecosystems. As such, isAhcreasingly desired as a spatial data
layer (i.e., map), to be used as input for modgllmogeochemical processes. However,
measuring LAI on the ground is difficult and reasra great amount of labour and cost.
Therefore, there is a clear need for methods tte deaf area spatially and temporally
under current conditions and environmental chacgaarios.

As a result, many studies have sought to estal#isitionships between LAI and
remote sensing data. Most of these studies ham reh empirical relationships between
the ground-measured LAl and observed spectral rsgs) although several have used
canopy reflectance models. With few exceptionshsstadies used medium resolution
multispectral data, like Landsat TM or ETM+ rathtban high resolution image, like
Ikonos (Johnson et al., 2002, Colombo et al.,, 2088§ concerned vegetation
communities other than mediterranean ones (Lee})200

In fact, a fundamental challenge to the retrievilraiable vegetation-related
information from remote sensing within mediterrameaeas is the fragmented and mixed
environment which characterises these zones wipet to other one (e.g. those of

northern latitude).
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Therefore, given that older generation sensors haaey known limitations with
respect to their suitability for studying highlysdretized and complex land cover, the
need to evaluate the new generation of sensorsjidong highest spatial/spectral
resolutions is of critical importance.

On the other hand, it has been hypothesised timaated changes may have the
most pronounced effect within the Mediterraneaniogespecially within the more
vulnerable coastal areas where ecosystems arddheehby the synergistic effects of
climate change and human disturbances.

In this context, in this study, the utility of uginkonos high resolution satellite
images either for estimating the LAI spatial distition of typical Mediterranean forests
as well as for scaling between in situ “point” maasents and medium resolution
Landsat data, when regional-wide LAl maps need d@oploduced, was quantitatively
investigated. Furthermore, some insight into theuparities of Mediterranean forests
response to possible changing climatic conditioas provided.

To this purposes, a widely used statistical apgrdac modelling the relationship
between satellite-derived radiometric variables gralind measurements of biophysical
variables, was utilised.

In particular, with regard to the LAI investigatidhe specific selection of the best
performing LAI-spectral data empirical model wasfpened on the basis of results
provided by: a) an analysis of covariance (ANCOMK)LAI having as independent
variables the radiometric variables (i.e. one-bg-amdividual band as well as several
spectral VIs were tested), the year of observatod the vegetation typology, and
considering all possible interactions; b) a regmsanalyses between field LAl data and
the various tested radiometric variables. Spedificthe ANCOVA analysis, performed
using the pooled dataset (both year, all vegetatypologies) in order to explore the
possible dependency of the LAl-radiometric datatrehship on the year of observation
and/or on the vegetation type, showed that onlgax gffect needed to be accounted for
and hence a unique empirical model for all vegetatpecies, but different models for
the two years of observation, had to be soughtrefbee, two separate datasets, one per
year, were used in regression analyses. On this, lwasnparison between univariate and
multivariate least square regressions, performaddsnin situ LAl measurements and

single radiometric variable (i.e. individual band ¥l) and betweenin situ LAI
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measurements and multiple band, respectively, stidiwe superior performances of the
multiple band models, which finally were used todarce the first LAl maps for the areas
under study.

However, it must be stressed that with data usebisnstudy results indicated not
only an appreciable sensitivity of empirical modielshe year of data collection in terms
of significantly different model coefficients fohé two years but also a substantially
different performance results between the two yehnsvestigation.

These outcomes may be important for future invasogs, as it indicate that even
using images referring to the same areas, acqduedg roughly the same season (i.e.
for data used in this study in summer when foresgetation phenological peak is
supposed to be reached) of two following years, ander restricted off-nadir Ikonos
satellite viewing angle requirements, very différeasults can be obtained. The last
finding was hypothesised to be mainly related ®dHferent period and, particularly, to
the different phenological status characterisingetation at time of 2005 data collection
with respect to 2004 one. In particular, the todyeperiod of 2005 observations could
have possibly led: to residual vegetation growttwkenin situ LAl measurements and
image acquisition date, causing measured LAl toiBggantly differ from actual LAI
values at time of satellite overpass; to a highgyact of understory vegetation on forest
canopy reflectance with respect to 2004.

Moreover, the Ikonos-based LAI spatial distribusaobtained so far offered the
possibility to assess the effectiveness of usimgh hiesolution lkonos data (i.e. Ikonos
derived LAI maps) as subsampling for upscalingsitu LAl measurements to medium
resolution Landsat data in order to limit the estee, extremely labour-intensive ground
sampling needed for a properly characterisatiomedium resolution satellite data.

In particular, the proposed strategy is implementetivo sequential steps. In the
first step, a reduced number of LAl measuremengssanaled to high resolution Ikonos
data in order to produce a LAI spatial distributwhich, in turn, provide the calibration
data for the second upscaling to the medium resolliandsat image.

Specifically, with data used in this study, it wslsown that this procedure
allowed an increase of about 25% of the amountagtion of LAl explained by means
of Landsat ETM radiometric data directly calibratdy means of field LAI

measurements.
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In conclusion, while the work carried out showee thotential of using high
spatial resolution satellite data (e.g. Ikonos)liéd retrieval in Mediterranean areas, it
is clear that more research is required before bAthese forests can be routinely
remotely estimated with confidence.

In particular, additional research is needed ireotd effectively understand the
sensitivity of the LAIl-radiometric data relationphio the timing of data collection. A
key issue of future studies should be to clarifyetiter, and under which constraints, it
is possible to apply empirical relationships caltbd using data collected at a certain
time point (year) to satellite data acquired infat#nt years. In fact, in this study,
because of the above mentioned differences inittiaeg of data collection (and hence
in the vegetation phenological status) in the tvearg, it has not been possible to
effectively verify the appropriateness of suchrageral extrapolation.

As a result, the retrospective analysis we conduetas limited to qualitative
estimates of inter-annual variability in vegetatlmomass, as assessed by spectral Vls.
Even with these limitations our analyses yielderigsting results. In particular, they
showed that it is possible to highlight an effectiimatic variations on the late spring-
early summer greenness peak of Mediterranean \exyetay means of remotely sensed
data. Furthermore, they pointed out that respotseasterannual variations in rainfall
and temperature regimes depends on vegetation ogypolEven within the same
ecosystem different vegetation typologies showgdificant diversity in their response
to variations in climatic parameters. Finally, ouwesults pointed out that in
Mediterranean ecosystems the association betweasratid variations and biomass
seasonal peaks can differ from what is observeughter latitudes. In fact, at higher
latitudes a positive effect of increased tempeeatum vegetation growth is observed,
whereas our results indicated a reduction of Visemimean temperatures rose in
Mediterranean areas, where water availability pgiaary limiting factor for vegetation
growth.

Clearly, although the results of this exploratdrydy are encouraging, much work
remains to be done in order to convert the avaldlowledge into quantitative and
operative findings and, more generally, to undexstthe dynamics of Mediterranean
vegetation. In fact, while remote sensing has bskown to provide an effective

contribution in these important endeavours, it seextremely difficult to draw general
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conclusions and make quantitative predictions altbetpossible prevalent or overall
response which the forecasted climatic changepraVoke in Mediterranean ecosystems.
All the more if we consider that the observed rssule. the relationships between
vegetation productivity and cumulative temperatusssl precipitations, have been
obtained with climatic variations less extreme thiaose expected over the next century.
In view of the hydric critical conditions of mostdditerranean areas resulting from the
more recently forecasted scenarios and the obsetiedlent responses of the diverse
vegetation typologies it is likely that the lattaay alter their competitive ability and thus
their ecology and conservation, with possible fetahanges in structure and functioning
of ecosystems.

In refining and validating results obtained so fature applications may exploit
the new generation of high temporal resolution sengi.e., MODIS) to monitor the
greenness levels along the whole annual phenologycke at a spatial resolution as fine
as 250 m (Zhang et al., 2003). For example, takitgantage of its increased spatial
resolution compared to its predecessor (i.e. tkemJAVHRR) MODIS observations can
be used for evaluating the timing of peak greennésmximum vegetation
activity/productivity) per study sites or even peggetation community. Also, the
investigation should be extended to other, possilidiest areas. Larger data sets should
be used to further explore the benefits and rolegstiof multivariate models, making it
possible to use part of the data for developingeitmpirical relationship (training) and
the other part for assessing the predictive abilitthe model (validation).

In general, and particularly when dealing with esige areas, data from satellite
images should be integrated with data from thedbgroliferating volume of spatial
information, available at increasingly higher sphtesolutions, e.g., DEM, soil maps,
land cover/vegetation maps. Such approach mayibates to improving the capacity
of information extraction from satellite data byoating the design of algorithms that
optimally assimilate remote sensing informationatig 2004, Tuyl 2005). These
additional ancillary data might also enhance oumfidence in the resultant
interpretations. In fact, the correlational natefemost analyses prevent or limit the
assignment of causal relations between the obsephethomena, as is typical of
experimental studies, and only allow inferentigblexations. Thus, the interpretation of

results might be strengthened by including in thalgses further environmental data

99



which are known to influence the processes undatystFor example, information on

terrain aspect and slope (DEM-derived products)wek as soil characteristics (e.g.,
depth and texture) would allow to better account dotual water availability at a

specific location taking into account both disttial climatic data, i.e. temperature and
precipitation, and soil water holding capacity.

Furthermore, a more detailed knowledge of overadlagical conditions might
facilitate the extrapolation of results obtainedthivi a specific site to habitat
characterised by similar conditions.

Finally, a further step would be the implementatairscaling studies combing
remote sensing and physiologically-based procesteling, which represent a rapidly
evolving field. A variety of process models now g which provide forest
photosynthesis and primary production estimatesse&heliability obviously depend on
the accuracy of input data. These models, apphea spatially distributed mode, can
assimilate a diverse assemblage of environmental daluding information on soils,
climate, and vegetation (Turner et al., 2004) andnck might effectively

integrate satellite-derived spatial data layerhsag LAI.
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