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Introduction 
 

Mediterranean regions are in a transitional climate zone between arid and humid 

regions (Di Castri & Mooney, 1973) where it has been hypothesised that climate 

changes may have the most pronounced effect (Palutikof et al. 1994, Cubash et al., 

1996, Lavorel et al., 1998). In many areas, the synergistic effects of climate and human 

activities (inappropriate land use, grazing, fires, urban expansion, land abandonment, 

air/water/soil pollution) are already showing worrying signs of latent, unforgiving land 

degradation. Actually, increased research is required to further develop knowledge 

especially in those fragile heterogeneous ecosystems potentially vulnerable to 

perturbations, such as coastal Mediterranean areas (Scarascia-Mugnozza et al., 2000, 

Reichstein et al., 2002, Lanfredi et al., 2004). 

In studying global change and long-term monitoring of the environment and 

man’s effect on it, the necessity detailed and reliable spatial distributions of biophysical 

parameter is rapidly increased. Nevertheless, collecting biophysical measurements over 

wide areas by means of traditional field surveys is a time-consuming and expensive 

task. Furthermore, the establishment of monitoring frameworks for environmental 

problems is frequently based on retrospective, multi-temporal series of data. In 

particular, interannual variations in phenology of either animals and plants have been 

already demonstrated to be sensitive observable indicators of biospheric responses to 

global warming (Peneuelas, 2002). As a result, remote sensing has become a pivotal 

technology for environmental science, since it offers a unique means to obtain faster, 

cost-effective, synoptic, consistent and repetitive perspective over large areas, allowing 

to derive information about current states of geophysical and biophysical variables and 

to monitor their changes.  

In particular, there is a tremendous interest and potential for retrieving 

vegetation cover characteristics. In fact, vegetation play a unique role in global climate 

change studies, regulating the energy, water and gas exchanges between the earth-

atmosphere interface (Qi et al., 1995, among others). Moreover, the peculiar spectral 

signature of green vegetation, characterised by a strong absorption at the blue and red 

wavelenghts and a rather strong reflection  at the near-infrared wavelenghts, enables one 

to to distinguish it well from other terrestrial targets. As a matter of fact, in the last 



 8 8

decade, a lot of knowledge has been gained about spatio-temporal variations of 

vegetation cover through satellite/airborne image processing. Several essential 

vegetation biophysical characteristics, such as net primary productivity (NPP), 

phenology, vegetation structure, e.g. Leaf Area Index (LAI), community composition, 

vegetation condition, canopy roughness length, have been obtained by means of satellite 

imagery analysis on a landscape or even larger scale with different degree of success 

(Myneni et al., 1997, Goetz et al., 1999, Gower et al., 1999, Muchoney et al., 2002, Cias 

et al., 2005). 

In particular, estimation of forest biomass and its changes have become an 

important topic in the global change research. In fact, although it is generally agreement 

that forest biomass above-ground carbon pool in the Northern Hemisphere has increased 

in the past decades, and thus acts as the sink for atmospheric CO2, nevertheless the 

magnitude, location and causes of this increase remain uncertain (Goodale et al., 2002).  

Besides, the recent advent of a new class of commercial remote sensing satellites 

provides unprecedented observations of the earth from space that are both synoptic and 

detailed in nature. The possibility to resolve features in scenes that coarser resolution 

data cannot resolve offers the unique opportunity to both validate conclusions derived 

from coarser resolution systems and to extend results obtained within rather 

homogeneous areas toward more complex and mixed environments. This is particularly 

appealing when considering Mediterranean areas where the performance of 

environmental and climate models is often limited by a too rough description of the 

Earth’s surface heterogeneity.  

In this context, the objective of the following research was twofold.  

The first one was the production of Leaf Area Index (LAI) distribution maps 

within two forested study areas, by means of satellite data. The utility of using high 

resolution satellite data, like Ikonos-2, and both high and medium (Landsat) spatial 

resolution data when regional-wide map need to be produced, was investigated and 

results discussed. It is noteworthy that such an investigation considered two years of 

observation in order to be able to assess to what extent results obtained with data 

collected at a certain time point (year) matched those related to data collected in other 

years. In other words, two years of data collection were considered to test whether it is 

possibile to temporally extrapolate results obtained using a given dataset (i.e. the 
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empirical relationship calibrated at present) to past and/or future satellite observations 

of the same area. The choice to focus on LAI derives by the paramount role this 

vegetation biophysical parameters plays within important processes, such as canopy 

radiation interception, evapotranspiration and net photosynthesis (Qi J. et al., 2000; 

Kyung-Ja Ha et. al., 2001; among others), consequently being a key input parameter of 

many climate (Sellers et al. 1986, Sellers et al. 1997, Chase et al., 1996, Buermann et 

al., 2001, Tian Y. et al. 2002), hydrological (D’Urso et al., 1999) and ecological models 

(e.g. Biome-BGC, see also Chen et al, 2000, Asner et al., 2003, Gong et al., 2003).  

The second objective concerned a trend analysis, within the same study areas, 

aimed at improving our understanding of Mediterranean forests’ response to changing 

climatic conditions. In particular, a yearly series of Landsat satellite data and daily local 

meteorological measurements over a time span of twenty years (1984-2005) were 

processed and compared in order to evaluate possible relationships between inter-annual 

variations of vegetation activity/productivity and related temperature and precipitation 

regimes. 
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OUTLINE OF THESIS 

Chapter 1 contains some theoretical background about the remote sensing of 

vegetation biophysical properties including vegetation spectral characteristics at leaf 

and canopy level, Leaf Area Index (LAI) and spectral Vegetation Indexes (VIs) 

definitions and rationale.  

Chapter 2 provides a description of the two study areas. 

Chapter 3 describes the LAI spatial distribution retrieval analysis, including the 

adopted datasets (in situ measurements and satellite radiometric data), methods for local 

scale and regional-wide scale map production, and the obtained results 

Chapter 4 concerns the vegetation retrospective analysis carried out by processing 

yearly pairs of satellite and corresponding climatic data within a time span of twenty 

years (1984-2005). 

Finally, some concluding remarks are reported in Chapter 5.  
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List of Acronyms 
Some of the acronyms used once or confined in a specific paragraph and falling outside the 
mean argumentation, are defined in the text/paragraph only (e.g., all spectral vegetation indices 
and satellite sensors’ acronyms). 
 
acronyms  interpretation       
 
ANCOVA  analysis of covariance 
BRDF   bidirectional reflectance distribution function  
cv   coefficient of variation  
DEM   digital elevation model       
DN   digital number     
EM    electromagnetic spectrum  
GCPs   ground control points 
GPS   global positioning system 
L   radiance 
λ   wavelength      
LAI   leaf area index          
nIR   near-infrared  
NPP   net primary productivity 
P   precipitation    
ρ   reflectance 
RMSE   root mean square error 
SWIR   short-wave infrared  
T    temperature 
τ   aerosol optical thickness 
VI    spectral vegetation index 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 



 12 



 13 

List of Tables  

 
Table 1 - Summary statistics for LAI data collected during the 2004 (a) and 2005 (b) in four different 

vegetation communities...........................................................................................................................32 

Table 2 – Ikonos-2 and Landsat TM/ETM bands, spatial and radiometric resolution, acquisition 

dates..........................................................................................................................................................34 

Table 3 – Acquisition parameters of the Ikonos-2 images..........................................................................36 

Table 4 – RMSE (pixel unit) of orthorectification process..........................................................................39 

Table 5 – Ikonos radiometric calibration coefficients.................................................................................40 

Table 6 – Landsat TM and ETM+ calibration coefficients..........................................................................40 

Table 7 –  Results of ANCOVA analysis using NDVI as radiometric variable..........................................44 

Table 8 – Results of ANCOVA analysis using individual band as radiometric variable ...........................45 

Table 9 – Performance (r2) of band-by-band regressions carried out using different sensors, multi-year or 

single-year data sets and different averaging pixel windows size ..........................................................49 

Table 10 – Mean coefficient of variation (%) of Ikonos reflectance computed in 3x3 pixel window size

 ...................................................................................................................................................... 51 

Table 11 – Mean coefficient of variation (%) of Ikonos reflectance computed in 23x23 pixel window 

              ......................................................................................................................................................  51 

Table 12 – Mean coefficient of variation (%) of Ikonos 2004 and 2005 reflectance computed in 3x3 pixel 

window size centred on 2004 plot locations ...............................................................................  52 

Table 13 – Comparison between the ratios of within-plot coefficients of variations of reflectance derived 

from 2004 and 2005 data of either ETM and re-sampled Ikonos images    .........................................   53 

Table 14  –Landsat and Ikonos-derived VI  ............................................................................................   56 

Table 15  – Performance (r2) of VI-based regressions carried out using different sensors, pooled data sets 

and different averaging pixel windows size ........................................................................................... 59 

Table 16  – Performance (r2) of VI-based regressions carried out using different sensors, sinlge year data 

sets and different averaging pixel window size .....................................................................................  59 

Table 17  – Multivariate model terms and relative slope and significance, Ikonos and Landsat ETM 

sensor, year 2004 ........................................................................................................................   64 

Table 18 – Multivariate model terms and relative slope and significance, Ikonos and Landsat ETM sensor,  

year 2005  ............................................................................................................................................... 64 

Table 19  – Coefficients of variation per each model term coefficient (leave-one-out procedure) ......... 66 

Table 20  – Multivariate model terms, and respective slope and significance, for Landsat ETM-sensor  

................................................................................................................................................................  72 

Table 21 – List of Landsat images used ...................................................................................................   81 

Table 22 – Results of statistical analysis between climatic parameters and VIs  for the two study areas of 

M.Coppolo and Pantano        ....................................................................................................................   86 



 14 14

Table 23 – Results of statistical analysis between climatic parameters and VIs  for M.Coppolo study area 

per vegetation ...........................................................................................................................................   87 

Table 24 – Results of statistical analysis between climatic parameters and VIs  for Pantano study area per 

vegetation typology  ................................................................................................................................... 87 

 



 15 

List of Figures  

 

Figure 1 – Typical spectral response characteristics of a green leaf ..............................................15 

Figure 2 – Schematic two-dimensional leaf cross section and leaf  reflectance properties  

               ......................................................................................................................................... 16 

Figure 3 – Study areas reported on a Landsat ETM+ multispectral image. The overlapped frame 

on the lower right-hand corner highlights the Basilicata region within a map of Italy  ...........  23 

Figure 4 – Climatic diagrams of Pantano (a) and Monte Coppolo (b) study areas, (1970-2000) . 25 

Figure 5 –  LI-COR LAI 2000 Plant Canopy Analyzer and the acquisition scheme of its optical 

sensor   ....................................................................................................................................... 28 

Figure 6 – Field LAI measurement sampling scheme. In the sketch above four reading per plot are 

supposed   .................................................................................................................................  29 

Figure 7 – plot locations of LAI measurements carried out in 2004 (yellow dots) and 2005 (red 

dots), respectively  ..................................................................................................................... 30 

Figure 8  – mean and variance of field LAI per vegetation typology and year  ........................... 31 

Figure 9 - Ikonos-2 and first four Landsat TM bands spectral response curves   ........................  34 

Figure 10 - Upscaling in situ LAI measurements to satellite data: comparison between Ikonos and 

Landsat data performances (hypothesis 1 - orange versus green arrow); comparison between 

direct Landsat calibration and a two-stage calibration procedure (hypothesis 2 - orange and blue 

arrows versus green arrow) exploiting Ikonos-derived LAI spatial distributions as intermediate 

stage for ETM data calibration   ................................................................................................ 48 

Fig. 11 - IKONOS-derived LAI maps over the two study sites Pantano and Monte Coppolo, for 

2004, August 2 acquisition dates .............................................................................................   68 

Fig. 12 - IKONOS-derived LAI maps over the two study sites Pantano and Monte Coppolo, for 

2005, June 22 acquisition dates .............................................................................................   69 

Fig. 13 – LAI values distribution for Monte coppolo and Pantano sites, in 2004 ((a) and (b)) and 

2005 ((c) and (d)), respectively .............................................................................................   70 

Figure 14 – Interannual climatic fluctuations - Valsinni and Policoro ground stations  .............   85 

Figure 15 – Interannual VI fluctuations observed for M.Coppolo and Pantano areas   ......... .....  85 

 



 16 



 17 

1 Remote sensing of vegetation biophysical properties: theoretical 

background  

 

1.1 Spectral ranges for vegetation detection 

 

From the electromagnetic (EM) spectrum, three different wavelength regions can be 

used to provide information on vegetation characteristics: the Visible to Short Wave 

Infrared, the Thermal Infrared and the Microwave regions: 

1) Visible to Short Wave Infrared (0.40 - 2.50 µm). Vegetation reflectance in this 

portion of the EM spectrum provides information on vegetation biophysical 

parameters such as chlorophyll, physiological structure and leaf cellular water 

content. Visible and near infrared channels are available on most optical satellite 

sensors such as: NOAA-AVHRR (National and Oceanic Atmospheric 

Administration-Advance Very High Resolution Radiometer), Terra-MODIS 

(MODerate resolution Imaging Spectroradiometer) and ASTER (Advanced 

Spaceborne Thermal Emission and Reflection radiometer), SPOT (Satellite Pour 

l’Observation de la Terre) Vegetation, Meteosat, Envisat-AATSR (Advanced Along 

Track Scanning Radiometer), Landsat ETM+ (Enhanced Thematic Mapper Plus), 

TM (Thematic Mapper) and MSS (Multispectral Scanner), Ikonos-2, Quickbird, 

among others. 

2) Thermal Infrared (6.0 - 15.0 µm). Emittance of this portion of the EM spectrum 

provides information on the thermal properties of vegetation cover such as sensible 

heat. Sensible heat1 is used to estimate evapotranspiration of vegetation canopies, 

which is closely related to water stress. For instance, thermal infrared wavelengths 

are available on NOAA-AVHRR, METEOSAT, ERS2-ATSR (Along Track 

Scanning Radiometer), GOES (Geostationary Operational Environment Satellite), 

GMS (Geostationary Meteorological Satellite) and LANDSAT-TM sensors. 

3) Microwave (0.1 - 100 cm). Active and passive microwave approaches have been 

developed to sense soil water content, which can be highly relevant to vegetation 

monitoring. Passive microwave sensors provide information on the thermal 

                                                 
1 Same as enthalpy: the heat absorbed or transmitted by a substance during a change of temperature which 
is not accompanied by a change of state. 
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properties of water. Examples are: Passive sensor Special Sensor Microwave Imager 

(SSM/I), currently available on the Defence Meteorological Satellite Programme 

(DMSP) platform; TRMM Microwave Imager (TMI) of the Tropical Rainfall 

Measuring Mission (TRMM) and most of all the Advanced Microwave Scanning 

Radiometer (AMSR), with dual-polarized channels, onboard the Earth Observing 

System-Aqua platform. Active microwave sensors provide information on the 

dielectric constant, which may be related to vegetation water content. References 

can be found in: Moghaddam and Saatchi (1999); Pampaloni (2004), among others. 

Examples of active sensors include RADARSAT, ENVISAT-ASAR (Advanced 

Synthetic Aperture Radar ) and JERS-1 (Japanese Earth Resource Satellite).  

This study will consider only the optical domain ranges from 0.4 to 2.50 µm. 

 

1.2 Leaf and canopy reflectance  

 

Leaf and canopy optical properties encompass an extensive subject, whose extensive 

discussion is outside the scope of this thesis, hence here only some basic knowledge are 

introduced. The spectral response of a leaf can be conveniently divided into three parts, 

as reported in Figure 1: 

- the visible (400-800 nm) characterized by a strong absorption of light by 

photosynthetic pigments (chlorophyll a and b, and carotenoids) in a green leaf2 

(Chappelle et al. 1992, Gitelson et al., 1996 (a); Gitelson et al.,1997, Lichtenthaler 

et al., 1996); eventually, 70-90% of the incoming radiation in blue and red 

wavelength is absorbed;  

- the near infrared plateau (800-1100 nm) where absorption is limited to dry matter 

but where multiple scattering within the leaf, related to the arrangements and 

fraction of air spaces between the cells (Danson, 1995), i.e., to the internal structure, 

drives the reflectance and transmittance levels; the scatter of light in this part of the 

leaf is very effective because of the high contrast in the index of refraction between 

the water-rich cell contents and the intercellular air spaces; moreover, in the spectral 

range 700-1300 nm plants are very bright because this is a spectral region between 

                                                 
2 the pigments absorb both blue and red light for use in the photosynthesis, while somewhat more of the 
green light is reflected 



 19 19

the electronic transitions, which provide absorption in the visible and molecular 

vibrations which absorb in longer wavelengths; 

- the middle infrared (1100-2500 nm), which is also a zone of strong absorption, 

primarily by water in a fresh leaf (Aoki et al., 1988, Hunt et al. 1987, Hunt et al. 

1989, Inoue et al., 1993; Peñuelas et al., 1993; Ceccato et al., 2001) and secondarily 

by dry matter when the leaf wilts;  

The water absorption bands are located both in near infrared and middle infrared at 

approximately 1950, 1450, 1175, 970 nm. Minor absorption also occurs at different 

wavelength by other biochemical constituent in leaves such as protein, lignin, cellulose 

and nitrogen (Curran & Kupiec, 1995).  

 

 
Figure 1 – Typical spectral response characteristics of a green leaf (after Hoffer, 1978) 

 

Light attenuation inside leaves results from complex phenomena related to 

biochemical composition and anatomical features (Fourty et al., 1996, Ustin et al., 2001, 

Carter et al., 2001), while the epidermis determines the bidirectional reflectance. As 

shown in Figure 2 the upper layer of a leaf, called epidermis, is made up of specialized 

cells arranged so that no gaps or openings exist. On the surface of these cells there is a 

wax layer called the cuticule, which prevents moisture loss from within the leaf. Both 

are very transparent to infrared radiation and the majority of the radiation is transmitted 

to the more internal layer of spongy mesophyll tissue, with irregularly shaped cells 
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separated by interconnected openings, which scatters the infrared radiation both upward 

and downward and only a fraction is absorbed.  

Furthermore, to fully explain the spectral behaviour of a canopy, information on 

the leaves’ spectral characteristics alone is not sufficient. In fact, it is the combination of 

multiple factors that gives rise to the canopy reflectance in vegetated pixels. A canopy 

consists of a set of plants; each plant has usually many leaf layers, e.g. many branches 

which have many leaves. The leaves may differ in type, age, size, orientation and shape, 

creating together with the ground, shadowing and structural variables as stems and 

branches, a complex of elements that influences the canopy reflectance as a whole. 

Canopy structure is also dynamic, changing on timescales ranging from minutes to 

years. Heliotropic leaves track the sun throughout the day. Other species fold, droop, or 

drop their leaves in response to water stress, light, or season. 

 

 

 

Figure 2 – Schematic two-dimensional leaf cross section and leaf  reflectance properties (Sabins, 1996) 

 

Thus, in addition to leaf optical properties, e.g. reflectance, transmittance and 

absorptance, among the most important elements affecting canopy reflectance (in a 

certain period) are: green biomass cover percentage (i.e. the proportion between 
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vegetated and non-vegetated surface) and density, structural/architectural properties, 

such as leaf dimension; leaves location, e.g. vertical and horizontal distribution, and 

orientation in three-dimensional space, e.g. leaves inclination and azimuth angle 

distribution; illumination angle; reflectance of the understorey layer (litter, soil or other 

background).  

Particularly, it must be stressed that changing viewing (i.e. sensor) and/or 

illumination (i.e. sun) direction changes the proportion of light reflected towards the 

observer. This is a general statement not only referred to vegetation but to any surface 

since only an ideal and perfectly diffuse (Lambertian) surface would irradiate exactly 

the same in any directions and would be independent on light incoming direction. 

Therefore, this is another element which should be taken into account when using 

radiometric data to infer whatever information. The “Bidirectional reflectance” is a term 

first used by Nicodemus et al., 1977 to refer to this dependency of radiometric 

measurements from both viewing and illumination angles. However, although it is 

currently part of the established nomenclature for the reflectance products derived by in 

situ, air- and spaceborne sensors,  to be rigorous it must be said that the bidirectional 

reflectance is not a physically measurable variable3. It can only be approximated by 

measurements and it is rather sensitive to different sensor sampling schemes, 

preprocessing, atmospheric correction, and angular modelling (see the excellent review 

on the basic concept and definitions of reflectance quantities by Schaepman-Strub et al., 

(2006) for further details). Anyway, here it will be referred to as the broadly accepted 

and used bidirectional reflectance approximated concept. Therefore, the Bidirectional 

Reflectance Distribution Function4 (BRDF) describes the scattering of incident light 

                                                 
3 It is defined as the ratio of the reflected radiance from an infinitesimal surface area in the direction 
(ϑr,Φr) to the incident radiance upon the same surface from the direction (ϑi,Φi). ϑ and Φ are azimuth 
and elevation coordinates of a spherical coordinate system centered on the infinitesimal surface of 
reflection. Bidirectional reflectance, as geometrically and mathematically defined, can never be directly 
measured because truly infinitesimal solid angles around the directions of incoming or reflecting radiation 
do not include measurable amounts of radiant flux. 
4 Since it is not possible to measure bidirectional reflectance, BRDF values reported in practice are 
actually related to another reflectance property called bidirectional reflectance factor (BRF). This is 
defined as the ratio of radiant flux actually reflected by a sample surface to that which would be reflected 
into the same reflected-beam geometry by an ideal, lossless, perfectly diffuse (Lambertian) standard 
surface irradiated in exactly the same way as the sample. However, it is generally accepted that 
bidirectional reflectance factor  measurements of sufficient angular density provide useful estimates of the 
true BRDF. The BRDF depends on wavelength and is determined by the structural and optical properties 
of the surface, such as shadow-casting, mutiple scattering, mutual shadowing, transmission, reflection, 
absorption and emission by surface elements, facet orientation distribution and facet density. 
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from one direction in the hemisphere into another direction in the hemisphere. The 

BRDF is an intrinsic reflectance property of a surface and can be used, when known, to 

correct view and illumination angle effects. Every non-Lambertian surface has its 

characteristic BRDF, whereas the BRDF of an ideal Lambertian surface is 1/π. 

References on vegetation BRDF modelling could be found in Susaki et al. (2004), Gao 

et al. (2003), Li (2000), Chen et Leblanc (1997), among others. It is worth noting that, 

given the importance of these two parameters, with the launch of NASA’s Terra satellite 

and the MODerate Resolution Imaging Spectroradiometer-MODIS (Justice et al., 1998) 

1-km spatial resolution BRDF and 8-day composite LAI products are routinely made 

available to the scientific community. However, stage 1 validation5 concluded that 

MODIS LAI tends to overestimate field measurements by about 12% in dense 

vegetation (Fensholt et al., 2004, Cohen et al., 2003, among others). 

 

1.3 Spectral Vegetation Indices  

 

The spectral Vegetation Indices (VIs) are mathematical transformations designed to 

assess the spectral contribution of green vegetation to multispectral observations. They 

basically are a ratio or a linear combination of two or multiple spectral bands exploiting 

the peculiar, aforementioned, spectral pattern of leaf components so as to be more 

sensitive than individual bands to vegetation parameters.  

Band ratioing is a common practice in remote sensing as it reduces many forms of 

multiplicative noise due to illumination conditions (solar illumination differences, cloud 

shadows, atmospheric attenuation, certain topographic variations) present in multiple 

bands.  

In particular, VIs exploit the characteristic absorption by vegetation in the visible - 

particularly in the red - portion of the spectrum, due to the presence of clorophyll and 

other absorbing pigments in the leaves, and high reflectance of green live vegetation in 

the near-infrared portion (Tucker, 1979), see also figure 1.  

VIs have been variously proposed, modified, theoretically analyzed, compared, 

summarized, categorized, and criticized. A complete review of the more than 100 

published VIs is obviously out of the scope of this thesis, and excellent reviews can be 
                                                                                                                                               
 
5 See MODIS Land team web site http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD15  
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found in the literature (e.g. Basso et al. 2004, Verstraete et al., 1996 (a), Rondeaux et 

al., 1996, Bannari et al. 1995, Qi et al. 1994, Baret and Guyot, 1991, Perry and 

Latenschlager, 1984). Therefore, here only multispectral VIs’ rationale is outlined. The 

readers interested in further details are referred to the cited original publications.  

Most of VIs have been designed on the basis of the soil-line concepts. Essentially, it 

is a hypothetical line in red and nIR spectral space along which bare soils of differing 

brightness lie6. This means that soil pixels in red and nIR spectral space are highly 

correlated with positive correlation coefficient and functionally related by a linear 

equation of the form nIR =a*red +b.  

Most indices measures the distance of one pixel to the soil line (i.e. orthogonal 

indices, such as the Perpendicular Vegetation Index (nIR-a*red-b)/(a2+1)2 proposed by 

Crippen (1990) or the Weighted Difference Vegetation Index (WDVI=nIr-a*red) 

developed by Clevers (1989)), whereas several other indices (e.g. the Normalised 

Difference Vegetation Index=(nIr-red)/(nIR+red) (Rouse et al., 1973), among others) 

measure the angle of the vegetation pixel in the red/nIR space in reference to the soil 

line (Liang, 2004 (a)).  

The Normalized Difference Vegetation Index, NDVI, is one of the oldest, most 

widely used ratio-based index and, generally, the common vegetation index referred to. 

It followed the simple ratio SR=nIR/red developed by Jordan (1969). NDVI has been 

used at virtually all scales ranging from small plot research to global investigations. Part 

of its popularity stems from the fact that it uses baseline spectral bands available from 

virtually all remote sensing systems, including colour infrared photography, and it is 

computationally very efficient. Numerous studies have shown the wide-ranging utility 

of the NDVI from climate studies, to famine early warning detection, epidemiology and 

renewable natural resources management. In particular, various authors found valuable 

relationships between NDVI and biophysical plant canopy properties, such as biomass 

(Sannier et al., 2002; among other) and Leaf Area Index (Cohen et al., 2003; Kyung-Ja 

et al., 2001, among others).  

Anyway, NDVI is rather sensitive to atmosphere and canopy background variations 

and hence it is often difficult to interpret at low LAI (Daughtry et al. 2000). Therefore, a 

                                                 
6 the soil line concept, originally defined for the red-nIR feature space, can also be transferred into other 
spectral domains (Thenkabail et al., 2000).  
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lot of alternative indices, often introducing correction factors or constants, aimed at 

accounting for or minimising those varying exogenous noises, have been developed. 

In general a spectral index optimised for sensitivity to a particular variable will also 

be sensitive to other variables. In other words, it usually not possible to achieve both 

optimal sensitivity to a desired process and total insensitivity to all perturbing factors 

(Verstraete et al., 1996 b). Examples are the Atmospherically Resistant Vegetation 

Index (ARVI, Kaufman and Tanrè, 1992), which takes advantage of the presence of the 

blue channel in addition to the red and the nIR included within the NDVI to operate a 

self-correction process for the atmospheric effect on the red channel based on the 

difference between the blue and the red channels; and the series of soil adjusted 

vegetation indices, e.g. the Soil Adjusted Vegetation Index (SAVI, Heute, 1988), the 

Transformed Adjusted Vegetation Index (TSAVI, Baret et al. 1989), the Modified Soil 

Adjusted Vegetation Index (MSAVI, Qi et al., 1994), and the Optimised Soil Adjusted 

Vegetation Index (OSAVI, Rondeaux et al., 1996).  

Finally, similar to the principal-component transformation the “Tasseled Cap” 

transformationwas developed by Kauth and Thomas (1976) for Landsat Multi Spectral 

Scanner (MSS) data; and its second component has become known as the Greenness 

Index. The “Tasseled Cap” is an affine transformation7 which determines a new 

orthonormal basis for the bands that highlights differences in vegetation and soil, 

enhancing the underlying structure of the image. Crist and Cicone (1984) have extended 

the analysis to six bands of Landsat Thematic Mapper (TM) data (excluding the thermal 

infrared band), Huang et al. (2002) to Landsat ETM+ bands, whereas Horne (2003) 

provided coefficients for Ikonos-derived Greeness Index. 

It must be said that, generally, VI exhibits asymptotic (saturated) signals over high 

biomass conditions, usually because red does not change much but nIR still increases 

when canopy become denser. Therefore, many authors found that most indices have an 

exponential relationship with vegetation biophysical parameters (e.g. Carlson& Ripley, 

1997; Broge and Mortensen, 2002, Wang et al., 2005, Anderson et al., 2004, among 

others).  

In this thesis the predicted ability of multiple VIs have been tested either in relation 

to their capacity to provide a quantitative estimate of vegetation structural 

                                                 
7 A function on a linear space to itself, which is the sum of a linear transformation and a fixed vector. 
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characteristics (Leaf Area Index) and with regard to their utility in monitoring inter-

annual possible changes of vegetation productivity in response to occurring different 

climatic conditions.  

 

1.4 Leaf Area Index (LAI) 

 

The LAI is broadly defined as one-half of the total area of all leaves in the canopy 

per unit ground area, within a defined region (m2/m2). It is a dimensionless, structural 

vegetation parameter, which can be measured, analyzed and modelled across a range of 

spatial scales, from individual tree crowns or clusters to whole regions or continents. 

Therefore, the LAI is profitably used for scaling between leaf and canopy measurements 

of vegetation biophysical parameters and it has become a central and basic descriptor of 

vegetation cover/condition in carbon, water and energy balance studies.  

Traditionally, two common approaches have been currently utilized for estimating 

LAI from optical remotely sensed data:  

1) statistical methods, e.g. empirical relationships established by statistically fitting 

observed LAI values and correspondent remotely sensed data, mainly in form of 

spectral Vegetation Indices (see next sections);  

2) physical algorithms, relying on inverting canopy reflectance model.  

Both approaches have advantages and limitations (Qi et al. 2000). Empirical 

relationships vary substantially in mathematical forms and in their empirical 

coefficients when different vegetation type are considered. Moreover, they are sensitive 

to soil background characteristics, bidirectional properties (solar and viewing 

geometries), atmospheric conditions, chlorophyll concentrations and topography. 

Additionally, in situ calibration measurements of LAI over regional or global scales are 

impractical. 

On the other hand, biophysical inversion of remotely sensed data is constrained by 

the complexity of the remote sensing process. Variations in sensor response associated 

with solar and sensor geometries, surface directional reflectance, topography, 

atmospheric absorption and scattering, and sensor electrical-optical engineering interact 

in complex manners that are difficult to decouple and quantify in individual images or 

in time series of images. Moreover, there is no universally applicable canopy reflectance 
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model for all vegetation types, thus making model selection problematic. Model 

selection is often a compromise between model complexity, invertibility, and 

computational efficiency (Jacquemoud et al., 1995). One-dimensional radiative transfer 

models are best suited to inversion, but they often have the tendency to oversimplify. In 

general, associated problems can include lack of convergence, sensitivity of results to 

initial values chosen for the solution, and difficulty in estimating model input 

parameters that cannot be directly measured. Finally, the retrieval of LAI through 

inversion of physically based canopy reflectance models is computationally very 

cumbersome for large geographic areas (Walthall et al., 2004, Deng et al., 2006). 

In this thesis the statistical approach was explored in order to assess to what extent 

the availability of high resolution remotely sensed data and LAI field measurements can 

produce appropriate results, by simple regression analysis, in heterogeneous 

Mediterranean vegetation. 
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2  Study area  

 

One of the peculiarities of Mediterranean area is the great diversity in endemic 

plant species (Cowling et al., 1996). However, many of them are now confined to very 

small areas and thus are extremely vulnerable to habitat loss, overgrazing, and 

urban/crops expansion. The two study areas were selected as partially representative of 

these conditions. They are both located in the southern part of Matera Province, 

Basilicata region (South of Italy) along the Ionian Sea coast (see Figure 3, yellow 

rectangles).  

 

Figure 3 – Study areas reported on a Landsat ETM+ multispectral image. The overlapped frame on 

the lower right-hand corner highlights the Basilicata region within a map of Italy. 

 

The first site, showed in the right-hand part of Figure 3 and hereafter referred to as 

Pantano, represents the last residual of an ancient humid forest which covered 1600 

hectares up to the 1930’s. Nowadays, it extends about 500 hectares. Also, it have been 

progressively losing its marked hygrophilous characteristics because of aquifer 

subsidence (Fascetti, 1996). However, it has recently become a protected area because 

of its natural, ornithological and entomological importance (e.g. Bavusi et al., 1992). It 

is a flat area, with an altitudes ranging from 0 to 5 m a.s.l., characterized by present 

dunes, alluvial deposits with alternating sands and clays and intercalations of gravels 

mainly near the water courses. The vegetation of the inner part of this area is mainly 

represented by an azonal hygrophilous forest (Fraxinus oxycarpa Bieb., Populus 

canescens L., Ulmus minor Miller and Alnus glutinosa L.) with middle-European 
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characteristics (Fascetti, 1996), whereas, next to the shoreline, the vegetation is 

characterized by typical psammophilous8 communities (Agropyron junceum (L.) 

Beauv., Ammophila littoralis (Beauv.) Rothm., Eryngium maritimum L., Cyperus kalli 

(Forsskal) Murb.) of sand dunes. Between the psammophilous vegetation and the 

hygrophilous forest there are patches of halophilous9 communities (Juncus acutus L., 

Erianthus ravennae (L.) Beauv., Schoenus nigricans L., Plantago crassifolia Forsskal) 

and maquis of Mediterranean sclerophyllous vegetation consisting of evergreen shrubs 

(mainly Rosmarinus officinalis L., Phillyrea latifolia L., Pistacia lentiscus L., Juniperus 

oxycedrus L.). In the open areas of maquis and along the pathways, arid grass 

communities (Aegilops geniculata Roth, Plantago psyllium L., Lagurus ovatus L., 

Medicago polymorpha L.) are found. 

The second site, reported in the left side of Figure 3 and hereafter referred to as 

Monte Coppolo (after Coppolo Mountain included within the area), is a forested area 

located about 15 kilometres from the coast in a topographically more complex territory 

with altitudes ranging from 500 m to 800 m a.s.l.. The area, extending about 800 ha, is 

part of the Monte Pollino National Park. Alternating sandstones, marls and limestone, 

with large outcrops of scaly shale complex, represent here the geological substrate. In 

the valley floors are deposited slope debris composed of arenaceous or calcareous 

elements. In this study area, mainly four vegetation communities can be distinguished: a 

live oak forest (Quercus ilex L.), a mixed broadleaf forest (Quercus cerris L., Q. 

pubescens Willd . and Carpinus orientalis Miller), a high maquis consisting of shrubs 

with an average height of about 2-3 m (predominantly Q. ilex L., Juniperus oxycedrus 

L., Phillyrea latifolia L., Pistacia lentiscus L. and Spartium junceum L.) and a garrigue 

(Cistus salvifolius L., Calicotome spinosa (L.) Link, Cistus monspeliensis L. and Erica 

arborea L.). 

Both sites are characterised by a typical Mediterranean climate in which rainfalls 

are concentrated during autumn and winter and decrease in summer, when a period of 

dryness takes place from May to September. Figure 4 shows the climatic diagrams, 

based on a 30-year dataset (1970-2000) provided by two meteorological stations close 

to the study sites, reporting the monthly mean air temperature (red line) and 

                                                 
8 living in sandy habitats (specialized condition)  
9 salt-tolerant vegetation  
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precipitation (blue line). The dotted area represents the dry period. The annual average 

rainfall is 535 mm and 726 mm for Pantano and Monte Coppolo sites, respectively, 

whereas the average annual air temperature is around 16 °C for both sites. Mean 

minimum and maximum air temperatures occur in January and in August, respectively.  

(a)      (b)    

Figure  4 – Climatic diagrams of Pantano (a) and Monte Coppolo (b) study areas, (1970-2000). 
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3  Leaf Area Index retrieval  

 

3.1 Dataset  

3.1.1. LAI data   

LAI data were collected during two field surveys carried out in 2004 and in 2005 

within 110 plots in all (55 independent plots per year, respectively).  

Two previous field surveys, made in October 2003 and April 2004, provided the 

necessary practical knowledge of the study areas and the opportunity to select and 

locate the plots wherein performing the LAI measurements later on. In general, the 

sampling locations were chosen in order to consider the most representative vegetation 

typologies characterising the study sites (in relation to only forested areas) and to 

minimise vegetation structural and species heterogeneity within a surrounding area of 

about 12x12 metres, corresponding to a 3x3-pixel area of Ikonos-2 data. Obviously, 

plots were located in order to avoid plot overlapping. In both years, four vegetation 

classes were investigated: maquis, live oak forest, mixed oak forest (deciduous forest) 

and hygrofilous forest.  

For each sampling plot, the central geographical coordinates were recorded with a 

handheld Trimble ProXRS Geographic Positioning System (GPS) receiver. Once in lab, 

GPS data were differentially corrected using Pathfinder postprocessing software  

achieving an average horizontal position precision of about 1,5-2 meter. A LAI-2000 

PCA-Plant Canopy Analyzer (Li-COR, Lincoln, NE, USA) was used to determine 

indirect LAI values. It is one of the numerous commercially available optical 

instruments (Jonckheere et al., 2004), such as Decagon ceptometers, DEMON, and 

TRAC, which infer LAI indirect estimates from measurements of light transmission 

through a plant canopy. 
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In particular, PCA is designed to be used under diffuse lightening, and provides 

effective LAI (LAI retrieved under the assumptions of a random spatial distribution of 

leaves, Chen & Black, (1991). It is based on a fish-eye light sensor that measures 

diffuse radiation simultaneously in five distinct angular bands ranging from 0° to 75°, 

see figure 5. From the differences in diffuse radiation measured above and below the 

canopy it estimates the canopy gap fraction per angular band. The canopy gap fraction 

is the fraction of view in a certain direction from beneath a canopy that is not blocked 

by foliage. Finally, under the assumptions of a random spatial distribution of leaves, 

canopy gap fraction data are inverted to obtain LAI estimates  (LI-COR, 1992). 

 

In taking the measurements, some practical considerations, according to the 

operating manual and the logistic constraints, have been taken into account. Thus, all 

measurements were made:  

a) under diffuse lighting condition in order to prevent direct beam radiation, 

reflecting off upper leaves, from causing these leaves to be confused with gaps 

(multiple scattering effects), that is during early morning or late afternoon or with 

uniformly overcast sky so as to avoid rapid change in the incoming radiation 

intensity; 

 b) using a 315° view cap wedge blocking 3/4 of the sensor view in order to reduce 

sensor footprint10 and relate it to the set plot area (about 3x3 Ikonos pixel on an 

average) also preventing sensor-operator interference; 

                                                 
10 The single, sampled area (A) per reading depends on canopy height (H), as A=fπH2; where A is a 
cylindric area with radius roughly equal to the canopy height, f is the field of view fraction, which 

Figure 5 -  LI-COR LAI 2000 Plant Canopy Analyzer and the acquisition scheme of its optical sensor. 
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c) at all plots, below canopy readings were measured at each of at least four subplots 

and these were averaged to provide a single LAI value for each plot; specifically, to 

this aim the sampling scheme sketched in figure 6 was adopted, where the four 

black dots indicate the four subplot sensor locations each accounting for a sampling 

area (sensor footprint) of a quarter of circle (striped areas) of about 5-10 m radius, 

depending on canopy height; above and below canopy readings were performed 

maintaining the same relative orientation between sun illumination direction and 

sensor’s field of view; 

 
Figure 6 – Field LAI measurement sampling scheme. In the sketch above four reading per plot are 

supposed. 

 

d) if sky conditions were not sufficiently stable, two above canopy readings were 

taken, one before and the other at the end of the below canopy measurements, in order 

to get a final average value. Since above canopy readings (as frequently happens in 

forested areas) were difficult to be carried out, they were performed within the nearest11 

clearings (open field, roads).  

It is worth highlighting that is rather important to exactly report what kind of 

definition and protocol is adopted in determining LAI values. In fact, from the review of 

the scientific literature it appears that several definitions and measuring technique, 

direct or indirect, can be found (Welles, 1990; Welles and Norman, 1991; Welles and 

                                                                                                                                               
depends on the utilised cap-view. The potential field of view of the sensor is larger than this but the 
effective range of view is reduced by foliage (Li-Cor, 1992). 
11 the nearer the better, since time between the two readings had to be as short as possible, so as to ensure 
the same illumination conditions (sun elevation and atmospheric conditions). Alternatives are possible 
with two linked-instruments, performing synchronous readings.  
 

10÷20 m 
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Cohen, 1996; White et al., 2000; Hall et al., 1995). Regrettably, although they do not 

always lead to the same quantitative results, many reports fail to provide any details of 

the LAI definition assumed, and a significant fraction do not describe the methodology 

used (Asner et al., 2003).  

Following the above-reported criteria, 55 LAI ground measurements were taken 

during early July 2004 and 55 new ones were carried out, over spatially independent 

plots, at the end of May 2005 (see figure 7).  

 

    
Figure 7 – plot locations of LAI measurements carried out in 2004 (yellow dots) and 2005 (red dots), 

respectively. 

 

The summer season was selected to focus on LAI distribution corresponding to the 

maximum photosynthetic capacity of the vegetation being observed. Finally, raw LAI 

data were post-processed using C2000 software. Not only multiple above canopy 

readings were averaged but also the most external ring readings were excluded 

according to Cutini et al., 1998 who have found that PCA tends to underestimate actual 

LAI values in comparison with direct methods (e.g. littertraps) especially if LAI>5. The 

underestimation of PCA was supposed to be related to an actual non-random 

distribution of the foliage within the canopy (clumping effect), characterised by a higher 

foliage density in the upper layer with respect to the lower ones where woody 

vegetation prevail (Breda, 2003). In fact, the fifth ring reading exclusion was assumed 
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to minimising the woody vegetation contribution of lower layer. It caused a nearly 12% 

LAI increasing on average.  

The difference in LAI values of Monte Coppolo area reflected the difference in 

vegetation typology growing here. The highest values were those of measurements 

carried out within the live oak and maquis, which were characterised by rather close  

vegetation canopies and were less disturbed than the deciduous forest wherein some low 

values locally observed were apparently due to recent fires and underwood grazing (the 

latter strongly reducing the forest renewing capacity).  

LAI values of hygrofilous deciduous forest of Pantano were similar to those of 

deciduous forest of Monte Coppolo. The lowest LAI values related to plots located 

within degraded, neighbouring areas surrounded by crop land. 

Furthermore, LAI field data were examined in order to investigate whether there 

was a statistically significant dependency on year of observation and/or on vegetation 

typology. Summary statistics of LAI data collected during the 2004 and 2005 surveys 

are reported in figure  8 and table 1 (a) and (b), respectively.  
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Figure 8  – mean and variance of field LAI per vegetation typology and year 
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Table 1 - Summary statistics for LAI data collected during the 2004 (a) and 2005 (b) in four different 

vegetation communities 

Vegetation class N plot Mean StDev Min Max 

Hygrofilous forest 15 3,96 1,33 1,19 6,20 

Live oak forest 11 5,98 0,93 4,72 7,71 

Maquis 12 4,80 1,34 2,82 7,10 

Mixed broadleaf forest 16 3,30 1,56 1,0 5,44 

Tot 55     

(a)    Year 2004 

 

Vegetation class N plot Mean StDev Min Max 

Hygrofilous forest 11 5.41 1.24 3.17 7.37 

Live oak forest  12 5.02 0.97 3.38 6.98 

Maquis 13 4.76 0.94 3.73 7.09 

Mixed broadleaf forest 19 3.88 1.38 1.73 7.14 

Tot 55     

(b)   Year 2005 

 

Then, an analysis of variance (ANOVA) of LAI having as independent variables the 

year of observation and the vegetation typology, considering their interactions, was 

performed. Results showed that singularly the year of observation didn’t affect 

significantly in situ LAI measurements (F=3.52, df=1/102, p=0.06) whereas the 

vegetation typology did (F=10.94, df=3/102, p<0.0001). Also, it didn’t result a 

significant interaction between vegetation typology and year of observation (F=2.45, 

df=3/102, p<0.07). Moreover, repeating the analysis on two subsets related to 2004 and 

2005 data, respectively, differences due to vegetation typology were significant for both 

years (2004: F=8.59, df=3/51, p<0.0001; 2005: F=5.50, df=3/51, p<0.0024).  

In other words, if we consider the full data set (2004 and 2005) then results showed 

that there was no difference between LAI values collected in 2004 and those measured 

in 2005. Conversely, LAI of a particular vegetation typologies significantly differ from 

LAI of others, both pooling 2004 and 2005 data and separately considering each single 

year dataset.  
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3.1.2. Satellite and ancillary data  

System12-corrected Landsat Temathic Mapper (TM) and Enhanced Temathic 

Mapper Plus (ETM+) and bundle13 multispectral and panchromatic Ikonos-2 images, as 

synchronous as possible to the LAI field surveys, were acquired.  

Ikonos-2 data were selected because the high spatial resolution observations 

provided are at a spatial scale equivalent to field measurements typically carried out in 

ecological and land cover research and can be directly related to the spatial structure of 

vegetation (Consoli et al., 2006).  

In addition, Landsat TM/ETM+ images, on board of Landsat 5 and 7 platform, 

respectively, were collected in order to both compare the possible differences in direct 

LAI retrieval with respect to Ikonos-based estimates and assess the potentiality and 

economic effectiveness of using high spatial resolution-derived LAI maps for scaling 

from LAI field data to the Landsat medium resolution when regional-wide LAI spatial 

distributions need to be produced.  

Ikonos-2 sensor has several similar measurement characteristics to the Landsat 

TM or ETM+. These include a nominal descending orbit at about 10 AM local solar 

equatorial crossing time on the sunlit side of the Earth and multispectral bandwidths - 

measured at full width at half maximum – that are similar to the first four of TM and 

ETM+, though band passes (sensor relative spectral response) slightly differ among 

different sensors14 (Figure 9). In particular, the near-infrared (nIR) band is a slightly 

modified Landsat TM band that minimizes atmospheric water absorption. Also, an other 

difference relates to the radiometric resolution as Ikonos acquires 11-bit digitized  

radiometry versus 8-bit of TM and ETM+. Lastly, mention must be made about the two 

alternate gain (high and low gain) used in ETM+ radiometric acquisition in order to 

optimise 8-bit available levels. Detailed information on Landsat and Ikonos history and 

characteristics are out of the scope of this thesis and could be easily found in Markham 

(2004) and in Dial et al. (2003), respectively, as well as in  official web sites, e.g. 

                                                 
12 Landsat level 1G product and Ikonos-2 Geo products (i.e. the minimum level of processing generally 
offered to commercial Ikonos customers) 
 
13 Bundle images are panchromatic and multispectral synchronously collected images, which ensure 
radiometric consistency. 
14 ETM band passes are not shown. However, differences between TM and ETM are considerably smaller 
than those between Landsat (TM or ETM) and Ikonos sensor.  
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http://landsat.usgs.gov/technical_details/ and 

http://www.spaceimaging.com/products/ikonos/. 

 

Landsat TM and Ikonos relative spectral response
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Figure 9 - Ikonos-2 and first four Landsat TM bands spectral response curves 

 

Four Ikonos-2 images, one image per study area per year, four Landsat TM 

images (orbit track: path 188, row 32), two images per year15,  plus two multispectral 

and one panchromatic ETM images, were used. In Table 2 the band’s interval, spatial 

and radiometric resolution (Digital Number bit-quantization), as well as the acquisition 

dates and percent cloud cover of all satellite images are reported.  

 

Table 2 – Ikonos-2 and Landsat TM/ETM bands, spatial and radiometric resolution, acquisition dates  

Sensor  Band 
Wavelength 

(µm) 

spatial 

resolution
16 (m) 

radiometric 

resolution 

(bit) 

Acquisition 

Datea  

 

Ik
on

os
 

b1 - blue 0.445-0.516 
 

4 

 

11 

 

 

08/02/2004 

 

 

06/22/2005 

 

b2 - green 0.506-0.595 “ “ 

b3 - red 0.632-0.698 “ “ 

b4 - NIR 0.757-0.853 “ “ 

panchromatic 0.526-0.929 1 “ 

                                                 
15 Ikonos  SWAT is 11.3 km at nadir, 13.8 at 26° off-nadir, whereas Landsat TM/ETM+ SWAT is about 
170x183 km.  
16 After spatial re-sampling in orthorectification process 
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b1 - blue 0.45-0.52 30 8 
 

TM 05/26/04 

TM 08/30/04 

TM 05/13/05 

TM 06/30/05 

ETM 21/07/04 

ETM 22/06/05 

b2 - green 0.52-0.60 “ “ 

b3 - red 0.63-0.69 “ “ 

b4 - NIR 0.76-0.90 “ “ 

b5 - SWIR 1 1.55-1.75 “ “ 

b6 - thermal 10.40-12.50 120/60 “ 

b7 - SWIR 2 2.08-2.35 “ “ 

 Landsat ETMc 

Panchromatic 
0.52-0.90 

15 

 

8 

 

04/21/2000 

 
a  Also, Ikonos acquisition time is about 9.50 whereas Landsat TM/ETM+ is around 9:20  
b In case of Landsat TM/ETM, values are referred to the lower right part of the frame (wherein the 
study areas are located)  
c  It was used in Landsat co-registration process (see next paragraph)  
 

Specifically, Ikonos-2 Geo products were requested to be generated without the 

Dynamic Range Adjustment, whereas a Modulation Transfer Function Compensation 

(MTFC) was typically applied by the provider17. MTFC is an edge sharpening technique 

(see Ryan et al. (2003)), aimed at partially restore image degradation due to finite 

detector size, optical aberrations, motion, diffraction, and electronic effects. 

Goward et al. (2003) found that Ikonos MTFC-on product, at their original 4-m 

spatial resolution, appears to have minor radiometric artefacts as a result of the process. 

Anyway, over relatively uniform vegetative areas Pagnutti (2003) observed little 

radiometric difference with either MTFC-on/ MTFC-off option. 

Furthermore, when the Ikonos observations were aggregated to 30 m, even 

Goward et al. (2003) noticed that this problem was essentially absent. Off-nadir viewing 

was requested to be limited to 20°, in order to guarantee the spatial resolution also 

minimizing viewing differences with Landsat near-nadir viewing (± 7.5° scan angle). 

Detailed information about the Ikonos-2 acquisition configuration are reported in 

Table 3. 

 

 

 

 

 

                                                 
17 The MTFC is their standard product. 
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Table 3 – Acquisition parameters of the Ikonos-2 images.    

        Ikonos-2 images 08-02-04 

Pantano  

08-02-04 

Monte 

Coppolo  

06-22-05 

Pantano  

06-22-05 

Monte 

Coppolo  

Nom. Collect. Azimuth 63 87  36 125 

Nom. Collect. Elevation 73 75  69 80 

Sun Angle Azimuth 141  141  180 137 

Sun Angle Elevation 63 63  68 68 

                

Ideally, all datasets should refer to the same date. Actually, this is practically 

difficult to achieve because of satellite temporal resolution further constrained by the 

requirement that images need to be cloud free at least over the region of interest. 

Landsat TM and ETM have 16 days temporal resolution, whereas Ikonos-2 are on-

demand data with a local observation repeat frequency of 3 days (depending on the 

viewing angle constraint) but practically, for a standard order18, able to guarantee an 

acquisition within a month temporal window. Unfortunately, during 2004 adverse 

whether conditions prevent the more synchronous Landsat TM (July, 13th and 29th, and 

August, 15th) overpasses to be used. Furthermore, a malfunctioning of the Landsat TM 

system throughout June caused the closest (in time) images to be those of May, 26th or 

August 30th. Consequently, also Landsat ETM images were acquired although only 

partial data (striped images) were available because of the Scan Line Corrector-off 

acquisition mode from July 14th 200319 (see http://landsat.usgs.gov/slc_off.html, for 

references). We got more synchronous though more cloudy satellite data in 2005. In 

particular, Ikonos 2004 images were completely cloud free whereas those acquired in 

2005 had only 5% cloud cover, respectively. Whereas, Landsat TM data had low cloud 

cover in 2004 (0% and 5% for 05-26-2004 and 08-30-2004 frames, respectively) but 

they were appreciably cloudy in 2005, especially the 06-30-2005 frame showing clouds 

(28%) surrounding the study sites. Finally, 2004-Landsat ETM presented low cloud 

cover (10%) far from the study sites, and the 2005-Landsat ETM a slightly highest 

cloud cover (20%) though far from the area of interest.  

                                                 
18 Depending on order priority (there are different prices related to it) and on number, locations and 
acquisition dates of already scheduled acquisitions’ list. These constraints combines with cloud cover and 
user viewing angle restrictions. 
19 Scan Line Corrector mechanism malfunctioning starting from 14 July 2003 and still present at time of 
this study. 
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In addition, some ancillary and reference data were acquired. A Digital Elevation 

Model (DEM) with a pixel size of 30m, covering both study areas, was provided by the 

Advanced Computer System Spa. Additionally, only for the Monte Coppolo study area, 

a DEM with a pixel size of 10m was derived from 5m-spaced contour lines included 

within the 1:10.000 scale topographic map (Carta Tecnica Regionale) provided by 

Regione Basilicata.  

Furthermore, reference coordinates to be used in orthorectification procedure were 

derived by digital coloured orthophotos (Terraitaly-it2000™ ©CGRSpA – Parma)20. 

Also, bidirectional reflectance measurements of three asphalted areas located nearby 

were carried out, by means of an hand-held Analytical Spectral Device (ASD) 

FieldSpec Pro Full Range spectroradiometer, to be used as ground truth reflectance data 

on which to reconstruct atmospheric conditions (horizontal visibility) at time of Ikonos-

2 satellite overpass (see atmospheric correction procedure in following sections). In 

particular, those asphalted areas were carefully selected as landscape elements (ground 

targets) radiometrically constant over time and large enough to be resolved by Ikonos-2 

spatial resolution. Each spectrum was set to result from an average of 25 readings and a 

certain number of evenly spaced spectra, per area, were acquired and averaged. At the 

start of each measurements ASD were optimized21 and reflectance Labsphere 

Spectralon panel measurements were taken to generate output reflectance values.  

ASD instrument has a spectral resolution of 1.4 nm in the 350-1000 nm spectral 

range and have a spectral resolution of 10 nm in the 1000-2500 nm. However, the 

output of the spectroradiometer is interpolated within ASD software to report data at 

1nm sampling across the entire spectral range (references can be found in 

http://www.asdi.com/products-FSP.asp web site).  

3.1.2.1 Satellite data pre-processing  

Although the new generation of sensors show improved data acquisition and image 

quality, some inherent distortions affecting the signal coming from the Earth surface 

and collected by satellites still remain and require correction before performing reliable 

analysis. Typical corrections include geometric and radiometric distortions (Toutin, 

                                                 
20 Coordinates were derived  by on-line products available at website www.atlanteitaliano.it  hence 
having a slight degraded spatial resolution with respect to original products 
21 ASD optimization sets the integration time for the visible NIR detector and performs a dark current 
reading. 
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2004). Image geometric characteristics are set by the orbit, spacecraft attitude (roll, 

pitch, yaw), scanner properties and earth rotation and shape. Depending on these 

features, the changing sensor viewing geometry during data collection ultimately results 

in wrong relative positions of image pixels. Radiometric data adjustment are mainly 

aimed at reducing topographic and atmospheric effects. Topography affects illumination 

conditions whereas atmospheric distortions are due to modification of the 

electromagnetic radiation, in the solar spectrum, caused by gas and aerosols scattering 

and absorption. 

Since images of multiple sensors and dates had to be used and compared, it was 

essential to obtain corrected reflectance images. Therefore, the pre-processing of 

remotely sensed images consisted in image orthorectification, radiometric calibration,  

atmospheric and topographic corrections. First of all, in order to correct for geometric 

errors and obtained a co-registered dataset, images were orthorectified starting by 

processing the higher resolution data. Therefore, initially the two August 2, 2004 

panchromatic Ikonos-2 scenes were orthorectified, using Ground Control Points 

(GCPs) derived from coloured digital orthophotos and from the available DEMs (the 

10m DEM for Monte-Coppolo and the 30m DEM for Pantano sites, respectively). 

Since detailed mathematical description of Ikonos-2 camera is not available, 

preventing the use of a rigorous relationship between object space (points on the 

ground) and image space (pixels in the image), the orthorectification process was 

accomplished through the use of the Rational Polynomial Coefficient (RPC) model, 

provided by Ikonos-2 vendor - Space Imaging – as part of the image metadata. 

References can be found in Dial & Grodecky (2004).  

Afterwards, both the 2005 panchromatic and 2004 multispectral scenes, were 

orthorectified and co-registered using GCPs derived by 2004 orthocorrected 

panchromatic images. Finally, 2005 multispectral images were orthorectified using 

2004 multispectral images as references. A nearest neighbour re-sampling algorithm 

using 1m/5m spatial resolution was used for panchromatic/multispectral Ikonos-2 data, 

respectively.  

Likewise, orthorectification of Landsat TM and ETM+ scenes was performed 

according to the same hierarchical approach. To this aim, firstly the April 21, 2000 
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panchromatic Landsat ETM+ image was orthorectified22 using GCPs extracted from the 

orthophotos and from the 30m DEM. Then, this geometrically corrected images served 

as reference to correct all multispectral images. A nearest neighbour re-sampling 

method using 15m/30m spatial resolution was adopted for Landsat 

panchromatic/multispectral data, respectively.  

Root Mean Square Errors (RMSE), all less than 1 pixel except for Ikonos 

panchromatic images, are reported in Table 4.  

 

Table 4 – RMSE (pixel unit) of orthorectification process 

frame multispectral Panchromatic  

08-02-2004 Pantano Ikonos-2 0,45 2,81 

08-02-2004  Monte Coppolo Ikonos-2   0,99 2,84 

06-22-2005 Pantano Ikonos-2   0,1 0,22 

06-22-2005 Monte Coppolo Ikonos-2   0,15 0,32 

04-21-2000 Landsat ETM 0,33 0,73 

07-21-2004 Landsat ETM 0,61 \ 

06-22-2005 Landsat ETM 0,07 \ 

05-26-2004 Landsat TM 0,44 \ 

08-30-2004 Landsat TM 0,46 \ 

05-13-2005 Landsat TM 0,1 \ 

06-30-2005 Landsat TM 0,46 \ 

06-22-2005 Landsat ETM 0.07 \ 

 

The Universal Transverse Mercator (UTM), zone 33, European Datum 1950, was the 

adopted coordinate system.  

Before performing any radiometric rectification, all images were calibrated to at-

sensor physical units by converting Digital Numbers (DNs) to Top-Of-Atmosphere 

(TOA) radiance, Lk (W/m2/sr/mm), using suitable, band-specific calibration coefficients 

(Lk= gaink *DN k+offsetk).  

In particular, since both sensors showed significant detector sensitivity changes 

with time, calibration coefficients updated for the respective image acquisition date 

                                                 
22 It was preferred to the other available ETM panchromatic images since it was acquired before the scan-
line mechanism malfunctioning occurred, therefore including all pixels in the frame (no data missing). 
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were used. Therefore, according to Space Imaging (2001) calibration coefficients 

referring to Ikonos-2 11 bit products and post February 22, 2001 image production 

(creation), were used. Whereas, with regard to Landsat TM and ETM images, 

calibration coefficients according to Chander and Markham (2003) and those included 

in the header files, were used, respectively. References of approaches to and status of 

Landsat and Ikonos data calibration can be found in Teillet (2006), Chander et al 

(2004), Roeder et al. (2005) and Pagnutti (2003). All adopted calibration coefficients 

are shown in table 5 and table 6.  

 

Table 5 – Ikonos radiometric calibration coefficients  

Ikonos-2 band (k) 11 bit, post 2/22/2001  gain 

DN* [mW/cm2 sr]-1 

1  1/728 

2  1/727 

3  1/949 

4 1/843 

 

Table 6 – Landsat TM and ETM+ calibration coefficients  

 Landsat TM Post 05/05/2003  Landsat ETM 

Band (k) Off-set Gain  Band (k) Off-set Gain 

1 -1,52 0,763  1 -6,98 0,779 

2 -2,84 1,442  2 -7,20 0,799 

3 -1,17 1,040  3 -5,62 0,622 

4 -1,51 0,872  4 -6,07 0,969 

5 -0,37 0,120  5 -1,13 0,126 

7 -0,15 0,065  7 -0,39 0,044 

 

Finally, atmospheric corrections were performed using the 6S-Second 

Simulation of the Satellite Signal in the Solar Spectrum radiative transfer code (Vermote 

et al. 1997) in order to derive atmospherically corrected surface reflectance from TOA 

radiance. The application of radiative transfer code to a specific scene and date requires 

knowledge of the atmospheric properties at the time, mainly aerosol and water vapour 

content, which are difficult to acquire even when planned, and were not available in this 
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case. As a consequence, 6S was firstly iteratively used for retrieving the aerosol optical 

depth (τ) at time of 2004 and 2005 Ikonos-2 overpass. To this purpose, per band 

reference reflectance values were provided by the ASD on ground reflectance 

measurements over the asphalted areas re-sampled to Ikonos-2 relative spectral 

response. Then, multiple runs were performed each time varying only τ�, until the best 

agreement between those ground measurements and 6S output reflectance of 

corresponding areas in the image was achieved23 (Caraux Garson and Lacaze, 2003). In 

this way, aerosol optical thickness of τ=0.222 at λ=0.550 µm (i.e., a horizontal visibility 

of approximately 25 km) and τ=0.316 at λ=0.550 (horizontal visibility of about 15 km) 

for 2004 and 2005 Ikonos-2 satellite overpass were obtained, respectively.  

Next, 6S was run using the so-retrieved τ values and providing atmospherically 

corrected Ikonos-2 images. All image processing steps, but atmospheric corrections, 

were performed using Earth Resource Data Analysis (ERDAS) Imaging 8.5 image 

processing software.  

The same approach was used to correct Landsat images. However, since the 

asphalted targets were too small for being spatially resolved at Landsat resolution, the 

reference reflectance values for Landsat scenes atmospheric characterisation were, in 

this case, provided by the atmospherically corrected Ikonos-2 images. In particular, a 

sandy area along the coast was selected since it resulted the most homogeneous and 

wide among temporally radiometrically stable targets individuated, by visual 

inspections, within the Ikonos scenes. The Landsat TM and ETM images resulted 

characterised by an optical thickness of τ=0.1951 (i.e. horizontal visibility of about 30 

km)24. 

Finally, different sun illumination conditions due to topographic effects were 

accounted for by applying a cosine-correction method25 (Teillet et al., 1982). Therefore, 

reflectance values in each pixel were divided by the corresponding26 cosine of the 

illumination angle cos(i)=cos(90-α)*cos(θ)+sin(90-α)*sin(θ)*cos(β-φ), where i=sun 

                                                 
23 Standard medium latitude summer atmosphere model and maritime aerosol model were adopted in each 
6S runs. 
24 The different optical thickness related to 2005 Ikonos and Landsat ETM  images may be explained in 
terms of a longer path through the atmosphere (and particularly through the lowest layer) the incoming 
signal to Ikonos sensor have to do with respect to the Landsat platform because of the off-nadir viewing 
angle of Ikonos. Moreover, residual differences may be due to the different acquisition time.  
25 Under a firts approximation Lambertian surface assumption. 
26 averaged over the same 12x12 m2 and 90x90 m2 windows centered on LAI field plots 
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illumination angle in relation to the normal on a pixel, α=sun elevation angle, β=sun 

azimuth angle, θ=terrain slope, φ=azimuth angle of the slope or terrain aspect. Slope 

and aspect were derived by the available DEMs. 

 

3.2 Upscaling in situ LAI measurements to satellite data  

 

The retrieval of LAI from satellite data was performed through a traditional 

statistical approach: empirical relationships established by statistically fitting field LAI 

measurements and corresponding satellite reflectance data. In particular, ordinary least 

square regressions with LAI or ln(LAI) as the dependent variable and each band or 

spectral Vegetation Indices (VIs) as the independent variable, as well as multiple 

regressions using multiple spectral bands, were performed. It must be said that models 

using a log-transformed response variable (ln(LAI)) were tested, too, to account for 

possible asymptotic nature that the LAI-radiometric data relationship may present (e.g. 

Broge and Leblanc, 2000).  

For all the tests, a probability level at p≤0.05 was considered to be significant.  

To this aim, for each plot a mean reflectance values was derived from 

atmospherically corrected images. The average for a 3x3 pixel window surrounding 

the LAI plot centre was used. The use of such mean values is a common practice in 

quantitative remote sensing studies because of the necessity to account for the (~1 

pixel) georeferencing error and related uncertainties between the actual ground 

measurements locations and its assigned positions on the image.  

It must be said that a 3x3 Ikonos pixel window, corresponding to a 12x12 m2 area, 

nearly matched the LAI measurements plot area. Whereas, a 3x3 Landsat pixel 

window corresponded to an appreciably largest surface (90x90 m2). Therefore, in 

order to compare Ikonos and Landsat observations and their effectiveness in LAI 

estimating also aggregation of Ikonos measurements on a 23x23 pixel window 

(~90x90 m2) were computed. Once more, aggregation were performed by means of 

arithmetic average in the attempt to approximate the integrated reflectance energy that 

Landsat sensors measure (Goward et al. 2003).  

Moreover, before carrying out the regression analysis and in order to assess if 

factors like year of observation, vegetation typology or site affected the LAI-spectral 
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data relationships (Turner et al. 1999, Chen et al., 2002, Davi et al., 2006) an analysis of 

the covariance (ANCOVA) of LAI was performed having as independent variables a 

radiometric variable, i.e. one-by-one some VI were tested (NDVI among others) as well 

as each individual band, the vegetation typology, and the year of observation, including 

all possible interactions.  

In particular, the significance of year_of_observation*radiometric_variable, 

vegetation_typology*radiometric_variable and 

year_of_observation*vegetation_typology*radiometric_variable interactions were 

examined in order to explore the possible dependency of the LAI-radiometric variable 

relationship on the year of observation or on the vegetation typology or on both. In 

other words, a significant interaction between the vegetation_typology and the 

radiometric_variable would suggest that the relation between LAI and the radiometric 

variable differs in the various vegetation typologies. This would imply the necessity to 

develop separate empirical relationships for each vegetation typology. Similarly, a 

significant interaction between the year_of_observation and the radiometric_variable 

would mean that the functional relationship between LAI and the radiometric variable 

depends on, and hence change with, the specific year of data acquisition. The latter 

interaction, therefore, would entail that even if using the same radiometric data source 

(i.e. satellite sensor), referring to the same study area and, roughly, period of 

observation (i.e. summer season/near-peak vegetation development) it is not possible to 

apply an empirical model developed by means of data collected in a certain year to 

radiometric observations referring to different (past or future) years. 

In general, those interactions account for possibly existing differences in 

vegetation phenological status, sun-target-sensor geometric configuration, background 

characteristics (due to different acquisitions dates) as well as in the spectral behaviour 

of different vegetation typology.  

An ANCOVA analysis was also carried out by substituting the site factor for the 

vegetation_typology one. The site factor was examined, since the two areas, although 

rather close each other, present significant geographical and ecological differences. For 

example, they are characterised by different geologic substrate and different vegetation 

typology, except for maquis, which is found within both areas. However, maquis 

presented different vegetation species/structure among the two sites and may present 



 48 48

different phenology within the two areas at the time of satellite overpass, as well. 

Furthermore, different topographic conditions – a flat terrain at Pantano area and a 

variable aspect and slope at Monte Coppolo site – may differently affect the spectral 

signal sensed by satellites.  

In particular, ANCOVA analyses of either LAI and ln(LAI) data were 

performed. Also, either high spatial resolution Ikonos-derived radiometric data referred 

to the 3x3 Ikonos pixel (12x12m2) averaging window and all available observations 

(n=110) and medium resolution ETM-derived data referred to the 3x3 ETM pixel 

(90x90m2) averaging window and n=94 observations27, were examined to this purposes. 

In all cases, the ANCOVA analyses indicated that some interactions were not 

significant (p>0.05). Consequently, the models were reduced28. Then, substantially, 

results showed that only an year effect had to be taken into account in the LAI-VI 

empirical model developing whereas, conversely, it was possible to pool data related to 

different vegetation typology and different sites.  

For example, table 7 reports results obtained for the reduced models of 

ANCOVA of ln(LAI) data having as independent variables Ikonos3x3
29

 or ETM3x3 

NDVI, respectively, the vegetation-typology and the year of data collection. Whereas, 

table 8 lists results provided by the ANCOVA analysis (same factors and their possible 

interactions, reduced models) of ln(LAI) performed using each individual band instead 

of the NDVI as radiometric variable.  

 

Table 7 -  Results of ANCOVA analysis using NDVI as radiometric variable 

radiometric data 

source 

Model df F Prob>F 

 

Ikonos3x3-NDVI 

 

NDVI 1/103 65.80 0.0001 

year 1/103 46.24 0.0001 

Vegetation 3/103 11.85 0.0001 

NDVI*year 1/103 45.66 0.0001 

 NDVI 1/87 13.26 0.0005 

                                                 
27 Since some plots had to be discarded because they were located within the ETM missed data and an 
additional one in order to avoid including water within the 90x90 m2 area. 
28 the ANCOVA was performed again by retaining only significant interactions. 
29 The subscripts 3x3 indicate the size (pixel unit) of the averaging window.  
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ETM3x3-NDVI   

 

year 1/87 9.20 0.0032 

Vegetation 3/87 7.37 0.0002 

NDVI*year 1/87 8.40 0.0047 

 

Table 8 -  Results of ANCOVA analysis using individual band as radiometric variable 

radiometric 

data source 

Model df F Prob>F 

 

 

 

Ikonos3x3-b1 

 

 

b1 1/97 18.53 0.0001 

year 1/97  33.97 0.0001 

vegetation 3/97 4.67 0.0043 

b1*year 1/97  26.26 0.0001 

b1*vegetation 3/97 5.49 0.0016 

year* vegetation 3/97 5.87 0.0010 

 

 

Ikonos3x3-b2 

 

b2 1/103 32.62 0.0001 

year 1/103 20.38 0.0001 

vegetation 3/103 7.13 0.0002 

b2*year 1/100 19.95 0.0001 

 

 

Ikonos3x3-b3 

 

b3 1/100 68.65 0.0001 

year 1/100 36.03 0.0001 

vegetation 3/100 1.05 0.3755 

b3*year 1/100 33.58 0.0001 

year* vegetation 3/100 6.62 0.0004 

 

 

Ikonos3x3-b4 

 

b4 1/100 3.13 0.0801 

year 1/100 9.32 0.0029 

vegetation 3/100 11.29 0.0001 

b4*year 1/100 8.05 0.0055 

year* vegetation 3/100 3.79 0.0128 

 

 

ETM3x3-b1 

b1 1/87 15.21 0.0002 

year 1/87 10.23 0.0019 

vegetation 3/87 16.19 0.0001 

b1*year 1/87 14.89 0.0002 
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ETM3x3-b2 

b2 1/87 9.41 0.0029 

year 1/87 5.49 0.0215 

vegetation 3/87 5.89 0.0010 

b2*year 1/87 7.54 0.0073 

 

ETM3x3-b3 

b3 1/87 9.66 0.0025 

year 1/87 3.25 0.0748 

vegetation 3/87 4.98 0.0031 

b3*year 1/87 6.75 0.0110 

 

ETM3x3-b4 

b4 1/88 4.39 0.0390 

year 1/88 2.27 0.1359 

vegetation 3/88 14.50 0.0001 

 

 

ETM3x3-b5 

b5 1/82 0.70 0.4052 

year 1/82 4.86 0.0303 

vegetation 3/82 2.26 0.0876 

b5* vegetation 3/82 2.95 0.0375 

year* vegetation 3/82 2.82 0.0438 

 

ETM3x3-b7 

b7 1/87 6.64 0.0117 

year 1/87 1.90 0.1714 

vegetation 3/87 2.86 0.0415 

b7*year 1/87 5.10 0.0264 

 

Basically, results obtained by using either individual band and NDVI showed 

the LAI-individual band relationship was not year-invariant but it was substantially 

vegetation/site-independent. The only two exceptions concerned significant interaction 

between LAI -blue Ikonos band-vegetation typology and between LAI-SWIR1 ETM 

band- vegetation typology.  

Therefore, it was established to use two datasets - one per year – in developing 

the empirical models.  

On this basis, a comparative analysis of LAI retrieving capacity between 

different spectral bands/VIs derived from different satellite sensors (Ikonos, Landsat 

ETM and TM) was carried out.  
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Results of regression analysis performed by pooling 2004 and 2005 data (general 

model) are reported, as well, for comparison purposes. It must be noted that when the 

pooled dataset was considered since two TM images per year were available the 

following three possible combination of 2004 and 2005 data were explored: 05262004 

and 05152005, 05262004 and 06302005, 08302004 and 05302005 named TM1, TM2 

and TM3, respectively. Whereas, in order to synthetically distinguish between TM 

single-year datasets of different acquisition dates they are reported in the following as 

TMM, TMA and TMJ (M/A/J subscripts indicate the month of acquisition date, 

May/August/June, respectively). It is noteworthy that possible vegetation phenologic 

differences had to be taken into account when comparing Ikonos-based and TM-based 

results whereas they were not considered affecting Ikonos vs ETM comparison since 

respective acquisition dates were within ten days in 2004 and even matched in 2005.  

Finally, the effectiveness of using high-resolution satellite (i.e Ikonos) images as 

subsampling for scaling from LAI field measurements to moderate resolution sensors 

(i.e. Landsat TM or ETM), was investigated.  

Specifically, the following two hypotheses were formulated, whose related 

quantitative results are reported in the following sections (see figure 10): 

 

Hypothesis 1: On the basis of the available data, Ikonos high spatial resolution data 

will explain more of the variability in LAI within the selected highly heterogeneous 

study area than Landsat (TM/ETM) medium resolution one; 

 

Hypothesis 2: a two-stage procedure including a first upscaling of LAI field 

measurements to high resolution data in order to produce a 4m spatial resolution LAI 

map (stage 1) to be used for the calibration of medium resolution data (stage 2) will 

outperform a direct upscaling of LAI field measurements to Landsat satellite data. 
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Figure 10 - Upscaling in situ LAI measurements to satellite data: comparison between Ikonos and Landsat 

data performances (hypothesis 1 - orange versus green arrow); comparison between direct Landsat 

calibration and a two-stage calibration procedure (hypothesis 2 - orange and blue arrows versus green 

arrow) exploiting Ikonos-derived LAI spatial distributions as intermediate stage for ETM data calibration. 

 

3.2.1. Individual spectral band analysis  

Firstly, an assessment of Landsat, TM and ETM+, and Ikonos sensor 

observations sensitivity to LAI variation on the per-spectral-band basis was carried 

out.  

To this aim, in order to make possible a comparison of results obtained using 

all available sources (Ikonos, TM and ETM) data related to plots located within areas 

of missing data of the striped ETM images were excluded from the analysis. In 

addition, one more plot was discarded since it was located very close to a river (about 

10 m) and the use of a 3x3 Landsat-pixel window would have included water. 

Therefore, new, on purpose data sets were arranged and they resulted in n=49 and 

n=45 pairs of LAI field measurements and corresponding radiometric data for 2004 

and 2005, respectively.  
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Table 9 provides a summary of regression models performance (r2) based on 

the multi-year data sets, where bandk is the k-spectral band, n is the sample size. It is 

noteworthy that generally the use of LAI/log-transformed LAI values did not make 

much difference (similar r2 and p values), though usually slightly better results were 

provided by the use of the transformed variable. Therefore, for sake of simplicity only 

the better performing models between those using LAI and those using Ln(LAI) data 

are reported, the latter in italics. In the following tables, ns indicate not significant 

relationship (at 95% probability level).  

 

Table 9 -  Performance (r2) of band-by-band regressions carried out using different sensors, multi-year 

or single-year data sets and different averaging pixel windows size 

 

acquisition dates: 
Ikonos23x23 

08022004 

06222005  

      TM 1  

05262004 

05132005  

      TM 2 

05262004 

06302005  

TM 3 

08302004 

06302005  

  ETM + 

07212004 

06222005  

Ikonos3x3 

08022004 

06222005  

pooled data set  (n=94 )      

 band 1 0.04ns 0.01 ns 0.01 ns 0.00 ns 0.01 ns 0.03 ns 

 band 2 0.15 0.01 ns 0.00 ns 0.02 ns 0.11 0.11 

 band 3 0.19 0.00 ns 0.00 ns 0.03 ns 0.15 0.25 

 band 4 0.01 ns 0.07 0.05 ns 0.00 ns 0.00 ns 0.00 ns 

 band 5 / 0.15 0.11 0.17 0.18 / 

 band 7 / 0.10 0.07 0.16 0.16 / 

 

acquisition date: 

Ikonos23x23  

08022004   

   TM M  

05262004  

TM A 

08302004   

  ETM + 

07212004  

Ikonos3x3 

08022004  

2004 data set  (n=49 )    

 band 1 0.15 0.10 0.20 0.13 0.20 

 band 2 0.34 0.35 0.32 0.31 0.50 

 band 3 0.32 0.25 0.27 0.35 0.69 

 band 4 0.04 ns 0.17 0.03 ns 0.00 ns 0.02 ns 

 band 5 / 0.24 0.31 0.31 / 

 band 7 / 0.23 0.33 0.38 / 

 

acquisition date: 

Ikonos23x23 

06222005  

   TM M  

05152005  

TM J 

30062005   

  ETM + 

06222005   

Ikonos3x3 

06222005   

2005 data set  (n=45 )    
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 band 1 0.00 ns 0.06 ns 0.03 ns 0.00 ns 0.04 ns 

 band 2 0.03 ns 0.01 ns 0.00 ns 0.03 ns 0.00 ns 

 band 3 0.05 ns 0.00 ns 0.02 ns 0.05 ns 0.02 ns 

 band 4 0.03 ns 0.02 ns 0.00 ns 0.01 ns 0.05 ns 

 band 5 / 0.09 ns 0.14 0.09 ns / 

 band 7 / 0.05 ns 0.12 0.08 ns / 

ns =  not significant at 95% probability level  

 

According to previous work (e.g. Davi et al. 2006, Soudani et al., 2006), when 

significant relationships were established LAI was, generally, positively correlated 

with nIR and negatively correlated with visible and SWIR bands.  

Also, as expected in those highly heterogeneous Mediterranean environment, 

generally regression models using Ikonos3x3 data sets, which means spectral response 

of a surface area roughly corresponding to the in situ LAI measurements sampled area, 

out performed Landsat ETM/TM as well as Ikonos23x23-based ones.  

Generally, Ikonos23x23 and ETM (nearly synchronous datasets) yielded rather 

similar results. 

Results reported in table 9 reflected what pointed out by the ANCOVA analysis, 

in terms of manifest year effect affecting LAI-individual bands relationships.  

In fact, regardless of the satellite source utilized - Ikonos, Landsat TM or ETM - 

and either using LAI or log-transformed LAI data, the use of a general model (pooled 

data set) provided either not significant or rather poor correlations (all r2<0.21). In 

particular, no relationships were found between blue or nIR band and LAI except for 

the very weak one related to TM1 data set. Furthermore, for all TM-based data sets the 

red band was not correlated to LAI, whereas Ikonos and ETM red bands were able to 

explain about 15-20% of variation of LAI. About the same performance were achieved 

by SWIR bands-based models of TM3 and ETM data sets (r2= 16÷18). 

Furthermore, considerably different performance were obtained between the 

single-year-based models. In particular, regression results obtained using 2004 data 

largely outperformed those related to 2005.  

Therefore, in order to attempt explaining the unsuccessful result obtained by 

using 2005 data, all (2004 and 2005) Ikonos-derived data were examined in terms of 

within-plot variability of spectral signal. In other words, the standard deviation of the 
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reflectance in each Ikonos band, within the abovementioned pixel windows (plot sizes), 

was computed. Then, the corresponding coefficients of variations (cv=standard 

deviation/mean) were calculated and per each band a t-test analysis was used to 

evaluate possible differences between mean cv of the two years (see table 10 and 11).  

It was shown that plots used in 2005 were characterised by significantly higher 

coefficients of variations of reflectance in all bands, except for nIR band which anyway 

was shown to be a rather useless one (see table 9), and for both window sizes. In 

particular, mean cv<10% computed on the 3x3 pixel window characterised 2004 plots 

whereas appreciably higher cv (except for nIR band) related to 2005 plots.  

Also, as expected, highest cv values were observed in the 23x23 pixel window 

of both years.  

 

Table 10 – Mean coefficient of variation (%) of Ikonos reflectance computed in 3x3 pixel window size 

Radiometric 

band 
Year 

mean 

cv  

t-Test 

t ratio df Prob<t 

band 1 
2004     0.05 

-7.27 50.05 <0.0001 
2005 0.16 

band 2 
2004     0.06 

-6.27 56.00 <0.0001 
2005 0.13 

band 3 
2004     0.08 

-4.95 54.59 <0.0001 
2005 0.17 

 band 4 
2004     0.09 

0.45 91.19 0.67 
2005 0.08 

 

Table 11 – Mean coefficient of variation (%) of Ikonos reflectance computed in 23x23 pixel window  

size 

Radiometric 

band 
Year 

mean 

cv  

 t-Test  

t ratio df Prob<t 

band 1 
2004     0.16 

-9.8 79.26 <0.0001 
2005 0.37 

band 2 
2004     0.16 

-6.26 90.62 <0.0001 
2005 0.27 

band 3 
2004     0.26 

-4.66 92.03 <0.0001 
2005 0.39 
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 band 4 
2004     0.13 

-1.67 85.47 0.0488 
2005 0.15 

 

Moreover, the coefficients of variation (cv2004plot,2005Ikonos) of reflectance 

corresponding to 2004 plot locations (coordinates) positioned on 2005 Ikonos images 

were computed. The aim was to assess if the higher radiometric heterogeneity 

obtained for plots of 2005 field survey (cv2005plot,2005Ikonos) reflected a specific 

characteristic of 2005-plots or rather whether the highest radiometric spatial variability 

characterised the whole Ikonos images (i.e. the whole area) sensed in 2005. Therefore, 

a comparison (t-test) between the coefficients of variation of reflectance extracted over 

the plots of 2004 field survey from the 2004 Ikonos images (cv2004plot,2004Ikonos) and the 

coefficients of variation of reflectance extracted over the same locations from the 2005 

Ikonos images (cv2004plot,2005Ikonos) was performed. Indeed, results similar to those 

reported in table 10 were observed, i.e. cv2004plot,2005Ikonos significantly higher than 

cv2004plot,2004Ikonos (see table 12), meaning that it was not a matter of specific locations 

of 2005-plots.  

 

Table 12 – Mean coefficient of variation (%) of Ikonos 2004 and 2005 reflectance computed in 3x3 

pixel window size centred on 2004 plot locations 

Radiometric 

band 
Year 

mean 

cv  

 t-Test  

t ratio df Prob<t 

band 1 
2004     0.05 

-9.16 61 <.0001 2005 0.14 

band 2 
2004     0.06 

-6.52 68 <.0001 2005 0.12 

band 3 
2004     0.08 

-5.09 71 <.0001 2005 0.14 

 band 4 
2004     0.09 

-0.85 93 0.196 2005 0.09 

 

Also, the effects of the different Ikonos sun-target-sensor geometries between 

the two years, mostly related  to the difference between sun and sensor-viewing 

azimuth angles (see table 3), on the highest within-plot radiometric variability 
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observed in 2005 images was investigated by comparing ETM and 30 m re-sampled 

Ikonos data. In fact, the Landsat ETM sun-target-sensor acquisition geometry over the 

same area (frame) can be considered nearly constant over time30. Therefore, due to the 

high synchronicity between Ikonos and ETM acquisition dates, by re-sampling the 

Ikonos images to the same ETM spatial resolution (30 m) the possible influence of 

Ikonos different acquisition geometry on the within-plot radiometric heterogeneity 

was examined as follows.  

Per each band, the ratios between 2004 and 2005 ETM-derived cv of 

reflectance of 3x3 pixel windows centred on 2005 plot locations 

(cv2004_ETM_2005_plot/cv2005_ETM_2005_plot), as well as the ratio between 2004 and 2005 re-

sampled Ikonos-derived cv of reflectance 

(cv2004_30m_Ikonos_2005_plot/cv2005_30m_Ikonos_2005_plot), were computed. A t-test between 

these ratios (see table 13), i.e. between cv2004_ETM_2005_plot/cv2005_ETM_2005_plot and 

cv2004_30m_Ikonos_2005_plot/cv2005_30m_Ikonos_2005_plot, revealed that the differences between 

the two sets of data were not statistically significant.  In other words, the increase of 

within-plot radiometric variability observed, in 2005, by ETM sensor was roughly the 

same observed by (re-sampled) Ikonos one. Therefore, since ETM data were 

substantially considered not affected by different acquisition geometry, it was 

concluded that the effects of  Ikonos different acquisition geometry on the highest 

spatial within-plot radiometric heterogeneity of 2005 data were negligible.  

  
Table 13 – Comparison between the ratios of within-plot coefficients of variations of reflectance 

derived from 2004 and 2005 data of either ETM and re-sampled Ikonos images  

Radiometric 

band 
Sensor 

 

cv 2004 

cv 2005 

 t-Test  

t ratio df Prob<t 

band 1 30m-Ikonos 0.6 3.8 
 

83 0.999 
ETM 1.2 

band 2 30m-Ikonos 0.8 
2.8 74 0.997 

ETM 1.2 

band 3 30m-Ikonos 0.9 
1.2 57 0.878 

ETM 1.1 

 band 4 30m-Ikonos 1.1 
0.5 83 0.300 

ETM 1 

                                                 
30 Only slightly different sun elevation angle due to the different day of the year.  
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In conclusion, the highest radiometric variability of 2005 images were 

attributed to the different period of data collection. In particular, it is likely that a 

different vegetation phenologic status characterised vegetation at time of 2005 data 

collection with respect to vegetation phenologic status of 2004. It is possible that at the 

end of May 2005 (i.e. at time of 2005 field survey) forest vegetation had not yet 

reached the peak of the phenologic cycle31 (maximum vegetation development) and 

continued growing during the period between in situ LAI measurements and satellite 

acquisition date. Therefore, phenologic changes might be occurred between in situ 

LAI measurements and image acquisition date in 2005, causing measured LAI to 

significantly differ from actual LAI values at time of satellite overpass. Conversely, 

the maximum vegetation development was reasonably reached in late June-early July, 

2004, guaranteeing the consistency between LAI measurements and actual LAI values 

at time of 2004 satellite overpass. Also, background effects, i.e. the impact of 

understory vegetation on forest canopy reflectance (Eriksson et al., 2006), could have 

been possibly higher in 2005 than in 2004. In other words, in June 2005 grass might be 

green in those areas whereas at the beginning of August32 it was mostly in a senescent 

status.  

3.2.2. Vegetation Indices (VIs) computation and LAI-VIs regression analysis 

VIs provide a widely applied, standardised approach to LAI investigation. In 

particular, the NDVI has been an extremely popular VI for biophysical parameter 

retrieval. However, since numerous investigations have shown that NDVI is not the best 

solution for LAI retrieval under all circumstances here a number of VI were computed 

and their performances compared. 

Table 14 (a) and (b) summarise formulae and references of investigated VIs.  

                                                 
31 In the case of forests and shrub-lands the main greenness peak is associated with the spring green up of 
vegetation, whereas a second peak may occur in autumn during the months of October and November 
mainly associated to the precipitation regime which allows for a larger availability of water during the 
main precipitation season. 
 
32 Ikonos images were acquired on the 2nd of August in 2004 and on the 22th of June in 2005 
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In particular, indices based on red and nIR reflectance as well as indices 

including SWIR bands (the latter obviously only for Landsat TM/ETM data) were 

tested.  

Also, soil-corrected indices using either empirically determined soil line 

(TSAVI, SAVI2, GESAVI) or pre-defined adjustment factors (SAVI, MSAVI, OSAVI) 

were used. The, soil line parameters separately derived for the two study areas were 

represented by the following equations, respectively:  

(1)    nIR=1.14*red +  0.01                    (Pantano site); 

(2)  nIR= 0.94*red + 0.07                    (Monte Coppolo site). 

Table 15 and 16 lists results obtained considering the pooled dataset and single 

year datasets, respectively. 
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Table 14 (a)  –Landsat and Ikonos-derived VI  

          

Index name Acronym Equation Reference 

Simple ratio SR nIR/red (Jordan, 1969) 

Normalized Difference Vegetation 

Index 

NDVI (nIR-red)/(nIR+red) (Rouse et al, 1973) 

Modified Simple Ratio MSR (nIR/red-1)/√ (nIR/red+1) (Chen, 1996)  

Difference Vegetation  

Index 

DVI nIR-red (Richardson et al, 1992) 

Renormalised Difference Vegetation 

Index 

RDVI  √(NDVIxDVI)  (Roujean & Breon, 1995) 

Green Normalized Difference 

Vegetation Index 

GNDVI (nIR-green)/(nIR+green) (Gitelson et al., 1996, b) 

Soil Adjusted Vegetation Index SAVI (nIR-red)(1+L)/(nIR*red*L), L=0.5 (Huete, 1988) 

Transformed Soil Adjusted Vegetation 

Index 

TSAVI (nIR-a*red-b)/ (red+a*nIR-a*b)       

a,b=soil line coefficients 

 (Baret et al., 1989) 

Soil Adjusted Vegetation Index 2 SAVI 2 nIR/(red+a/b)   (Major et al. 1990) 

Modified Soil Adjusted Vegetation 

Index 
MSAVI 

nIR+0,5-√((nIR+0,5)2-2*(nIR-red)) (Qi et al., 1994) 
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Optimised Soil Adjusted Vegetation 

Index 
OSAVI 

(nIR-red)(1+0.16)/(nIR+red+0.16) (Rondeaux et al., 1996) 

GEneralized Soil Adjusted Vegetation 

Index 
GESAVI 

nIR-b*red-a/red+0,35                        (Gilabert et al. 2002) 

Global Environmental Monitoring 

Index 
GEMI 

η*(1-η/4)-[(red-0.125)/(1-red)]   (Pinty & Vestraete, 1991) 

Wide Dynamic Range Vegetation 

Index 
WDRVI 

(c*nIR-red)/(c*nIR+red),    c=0.2 (Gitelson, 2004) 

Soil and Atmospherically resistant 

Vegetation Index 2 
SARVI 2 

2.5*(nIR-red)/(1+nIR+6*red-7.5/blue) (Huete et al. 1997) 

L=canopy background brightness correction factor; a and b are the slope and the intercept of soil line: nIR=a*red+b (a=1.1, b=0.01 for Pantano site; a=0.9, 

b=0.07 for Monte Coppolo site); η=[2*(nIR2-red2)+1.5*nIR+0.5*red)]/(nIR+red+0.5) 
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Table 14 (b)  Additional Landsat-derived VI (using SWIR bands) 

Index name Acronym Equation Reference 

Normalized Difference Water 

Index 
NDWI 

(nIR-mIR1)/(nIR+mIR1) (Gao, 1996) 

 

 

Tasseled Cap - 

Greeness Vegetation Index GVI 

TM :                                                                     

-0.2728*b1-0.2174*b2-

0.5508*b3+0.7221*b4+0.0733*b5-0.1648*b7-

0.7310 

ETM:  

-0.2728*b1-0.2174*b2-

0.5508*b3+0.7221*b4+0.0733*b5-0.1648*b7 

 

 

(Christ & Cicone, 1984)  

 

Tasseled Cap - 

Wetness 
WVI 

TM : 

0.1446*b1+0.1761*b2+0.3322*b3+0.3396*b4-

0.6210*b5-0.4184*b7-3.3828 

ETM: 

0.2626*b1+0.2141*b2+0.0926*b3+0.0656*b4-

0.7629*b5-0.5388*b7 

 

(Christ & Cicone, 1984) 
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Table 15  – Performance (r2) of VI-based regressions carried out using different sensors, pooled data sets 

and different averaging pixel windows size 

 

acquisition 

dates 

Ikonos23x23  

08022004 

06222005  

   TM 1  

05262004 

05152005  

  TM 2 

05262004 

06302005  

  TM3 

08302004 

06302005  

  ETM + 

07212004 

06222005 

Ikonos3x3  

08022004 

06222005  

pooled data set  (n=95)     

SR 0.10 0.00 ns 0.00 ns 0.05 0.12 0.08 

NDVI 0.10 0.00 ns 0.00 ns 0.04 ns 0.13 0.13 

MSR 0.10 0.00 ns 0.00 ns 0.05 s 0.13 0.09 

DVI 0.00 ns 0.06 0.04 ns 0.01 ns 0.01 ns 0.01 ns 

RDVI 0.03 ns 0.05 0.02 ns 0.03 ns 0.05 n 0.04 ns 

GNDVI 0.07 0.00 ns 0.00 ns 0.02 ns 0.08 0.06 

SAVI 0.03 ns 0.05 0.03 ns 0.02 ns 0.03 ns 0.03 ns 

TSAVI 0.04 ns 0.04 ns 0.02 ns 0.03 ns 0.05 0.05 

SAVI 2 0.04 ns 0.04 ns 0.02 ns 0.02 ns 0.05 0.08 n 

MSAVI 0.02 ns 0.05 0.03 ns 0.02 ns 0.03 ns 0.11 

OSAVI 0.05 0.04 ns 0.01 ns 0.03 ns 0.07 0.07 

GESAVI 0.16 0.00 ns 0.00 ns 0.04 ns 0.14 0.18 

GEMI 0.00 ns 0.07 0.05 0.01 ns 0.00 ns 0.01 

WDRVI 0.10 0.00 ns 0.04 ns 0.05 0.15 0.11 

SARVI2 0.03 ns 0.01 ns 0.02 ns 0.00 ns 0.00 ns 0.00 ns 

NDWI / 0.00 ns 0.01 ns 0.26 0.23 / 

TC-GVI 0.00 ns 0.06 0.04 ns 0.01 ns 0.02 ns 0.01 ns 

TC-WVI / 0.02 ns 0.04 ns 0.29 0.22 / 

ns= not significant at 95% probability level 

  

Table 16  – Performance (r2) of VI-based regressions carried out using different sensors, sinlge year data 

sets and different averaging pixel window size 

 

acquisition date: 

 

Ikonos23x23  

08022004   

   TM M  

05262004  

TM A 

08302004   

  ETM + 

07212004  

Ikonos3x3 

08022004  

2004 data set  (n=49 )    

SR  0.29 0.01 ns 0.18 0.25 0.58 

NDVI  0.26 0.02 ns 0.13 0.35 0.65 

MSR  0.30 0.02 ns 0.17 0.28 0.60 

DVI  0.02 ns 0.14 0.00 ns 0.03 ns 0.16 
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RDVI  0.11 0.10 0.04 ns 0.11 0.34 

GNDVI  0.21 0.11 0.10 0.30 0.37 

SAVI  0.08 ns 0.12 0.02 ns 0.08 ns 0.29 

TSAVI  0.12 0.10 0.04 ns 0.12 0.26 

SAVI 2  0.13 0.07 ns 0.05 ns 0.11 0.02 ns 

MSAVI  0.07 ns 0.11 0.02 ns 0.07 ns 0.08 ns 

OSAVI  0.17 0.08 ns 0.06 ns 0.17 0.44 

GESAVI  0.38 0.16 0.20 0.30 0.64 

GEMI  0.01 ns 0.11 0.00 ns 0.02 ns 0.15 

PVI  0.01 ns 0.14 0.00 ns 0.02 ns 0.12 

WDRVI  0.29 0.02 ns 0.15 0.33 0.63 

SARVI2  0.08 ns 0.10 0.02 ns 0.03 ns 0.01 ns 

NDWI   0.00 ns 0.35 0.38  

TC-GVI  0.03 ns 0.12 0.15 0.04 ns 0.12 

TC-WVI   0.00 ns 0.34 0.38  

TC-WVI  / 0.02 ns 0.00 ns 0.04 ns / 

       

 

acquisition date: 

 

Ikonos23x23 

06222005  

   TM M 

05152005  

TM A 

30062005   

  ETM + 

06222005   

Ikonos3x3 

06222005   

2005 data set  (n=46 )    

SR  0.03 ns 0.01 ns 0.01 ns 0.04 ns 0.00 ns 

NDVI  0.03 ns 0.00 ns 0.02 ns 0.04 ns 0.00 ns 

MSR  0.03 ns 0.00 ns 0.01 ns 0.04 ns 0.00 ns 

DVI  0.01 ns 0.02 ns 0.00 ns 0.00 ns 0.03 ns 

RDVI  0.00 ns 0.01 ns 0.01 ns 0.00 ns 0.01 ns 

GNDVI  0.01 ns 0.00 ns 0.00 ns 0.02 ns 0.01 ns 

SAVI  0.00 ns 0.00 ns 0.01 ns 0.00 ns 0.02 ns 

TSAVI  0.00 ns 0.01 ns 0.01 ns 0.01 ns 0.01 ns 

SAVI 2  0.00 ns 0.02 ns 0.01 ns 0.01 ns 0.01 ns 
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MSAVI  0.03 ns 0.02 ns 0.01 ns 0.00 ns 0.02 ns 

OSAVI  0.01 ns 0.01 ns 0.01 ns 0.01 ns 0.01 ns 

GESAVI  0.09 ns 0.00 ns 0.01 ns 0.08 ns 0.02 ns 

GEMI  0.01 ns 0.02 ns 0.00 ns 0.00 ns 0.03 ns 

PVI  0.01 ns 0.02 ns 0.00 ns 0.00 ns 0.03 ns 

WDRVI  0.03 ns 0.00 ns 0.01 ns 0.05 ns 0.00 ns 

SARVI2  0.01 ns 0.09 ns 0.08 ns 0.01 ns 0.05 ns 

NDWI  / 0.03 ns 0.14 0.10 ns / 

TC-GVI  0.01 ns 0.02 ns 0.00 ns 0.00 ns 0.04 ns 

TC-WVI  / 0.05 ns 0.05 ns 0.03 ns / 

ns= not significant at 95% probability level 

 

In general, the use of indices instead of individual bands didn’t provide any 

improvement when 2004 and 2005 data were pooled. TM1 and TM2 dataset-based 

regressions were even weakest than those related to individual band. Substantially, results 

for the general model were poor and only some indices provided significant correlations. 

In particular, VIs including SWIR bands, such as NDWI (e.g. ETM: r2=0.23, TM3: 

r2=0.26) and Tasseled Cap Wetness (e.g. ETM: r2=0.22, TM3: r
2=0.29), showed higher 

Pearson correlations coefficients than those based on red and nIR bands (e.g. NDVI: 

r2=0.13 for both Ikonos3x3 and ETM). 

Also, when a per year analysis was carried out, results basically confirmed what 

the analysis on individual bands had highlighted. That is, in 2004, it was possible to 

explain at least 2/3 of LAI variation by means of high resolution radiometric data (e.g. 

Ikonos3x3) as well as 1/3 of LAI variation if using medium resolution satellite data (e.g. 

Landsat ETM or Ikonos23x23), either using visible band-based indices and SWIR band-

based ones. Whereas, in 2005, no significant relationships were found, but for NDWI of 

TM3 dataset (r2=0.14) which basically performed as b5 and b7 did in individual band 

analysis.  

The same explanations addressed for individual-band analysis can be extended to 

VI-based regression results. 

In particular, the strongest relationships with LAI were provided by 2004-

Ikonos3x3–derived NDVI, GESAVI, and WDRVI (r2=0.63÷0.65) followed by MSR and 
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SR (r2=0.60 and r2=0.58, respectively). In fact, 2004-Ikonos3x3 dataset provided higher r2 

than Landsat TM/ETM or Ikonos23x23 datasets for almost all tested VI.  

With respect to Landsat ETM, TM and TMA datasets the higher r2 were found for 

indices sensible to vegetation water content, NDWI (2004: r2=0.38 and r2=0.35 for ETM 

and TMA, respectively) and TC-Wetness.  

On the other hand, for all different radiometric sources considerable differences in 

terms of performance (r2) between the various VIs’ were observed. For example, among 

Ikonos3x3 soil-corrected indices GESAVI and OSAVI provided correlation coefficients 

(r2=0.64 and r2=0.44, respectively) appreciably higher than SAVI and TSAVI (r2=0.29 

and r2=0.26, respectively) whereas not significant regressions between LAI and SAVI2 or 

MSAVI were observed. As well, DVI, GEMI, TC-GVI provided notably lowest 

correlation coefficients while a not significant relationship was observed for SARVI. 

Moreover, for all different radiometric datasets GESAVI always appreciably 

outperformed the other soil-corrected indices.  

3.2.3 Multiple band approach and LAI maps production 

The purpose of VIs is to compensate for variable background (e.g. soil and litter) 

reflectance, different illumination conditions and some forms of atmospheric attenuation 

while emphasizing vegetation spectral features (Trishchenko et al.. 2002). However, a VI 

compresses the volume of remote sensing data by a factor equal to the number of 

channels used and significantly reduces the information contained in the original data set 

(Verstraete et al.. 1996). Furthermore, univariate regressions using vegetation indices are 

not able to independently model the red and near-infrared responses. For example, if the 

red response is curvilinear and the near-infrared is not, a compromise fit is necessary. In 

other words the use of VIs would seem to unnecessarily constrain the regression analysis.  

In fact, because different biophysical mechanisms control different band responses, there 

is no reason to believe the relation of individual bands to ecological variables will 

necessarily be the same. Thus, the multiple-band regression approach through the 

decoupling of band permits the analyst to potentially discover different relationships 

between the response variable and each band (Lawrence et al. 1998).  

Therefore, a multiple least square linear regression analysis with LAI/ln(LAI) as 

dependent variable and all available spectral bands as explicative variables, was 
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computed. Only explicative variables which contribute significantly to the regression 

model, were retained.  

Also, the predictive ability and stability of the final models was assessed by means of a 

cross-validation procedure. Cross validation is a technique to estimate the forecast skill of 

a statistical forecasting model (Michaelsen, 1987). Each member of a given dataset is 

excluded in turn from the prediction algorithm process (leave-one-out procedure) and 

then predicted using the algorithm, or fit, or relationship, derived without it. This is done 

for each member (i.e. the prediction algorithm is computed n times, if n is the size of the 

dataset). This avoids separating the dataset into a calibration and test dataset, and allows 

testing the predictive ability of the algorithm on each member of the dataset. The 

procedure is repeated n times and the Pearson correlation coefficients and the root mean 

square error (RMSE) calculated between the predicted and the observed values allow to  

assess the accuracy of the model. The stability is evaluated by the coefficient of variation 

(cv) of the different slopes associated to the regression variables (Davi et al., 2006). 

On the basis of previous results concerning the ANCOVA of ln(LAI) (see section 

3.2) which showed that univariate ln(LAI)-radiometric data relationships (either those 

using a VI as radiometric variable and those using an individual spectral band) depended 

on the year of observation, even the LAI-multiple band regression was supposed to be 

dependent on the year of observation. 

Furthermore, in this case, all available LAI measurements were used33, i.e. 55 

observations per year for Ikonos-derived dataset and 49/45 for 2004/2005 ETM-derived 

dataset, respectively.  

Regressions using ln(LAI) outperformed models using LAI for both year-related 

data sets and both satellite sensors. Therefore, only models developed using log-

transformed LAI data are reported and discussed in the following. Table 17 and 18 set 

forth intercepts and coefficients and relative p-values of multivariate regression models 

using Ikonos-based 2004 and 2005 data sets, respectively.  

                                                 
33 For sake of clarity, it must be said that a multivariate analysis performed using Ikonos reduced dataset 
(including only plots available for ETM) was carried out, as well. Basically, it provided similar results (all 
bands significant, multiple r2=0.80 p<.0001 in 2004; only the last three bands significant, r2=0.37, p<.0001, 
in 2005, respectively), though obviously slightly different model coefficients were obtained. However, in 
this case, the main purpose was to work out the best empirical model in order to produce the LAI 
distribution map rather than to compare Ikonos and ETM performances. Therefore, there were not a priori 
reason to exclude any observation.  
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With regard to Ikonos and to both year datasets, either regression models and each 

model term, except for b1 in 2005, were highly significant (all band-related p-

values<0.01; overall p<0.0001). However, the relative influence of the band was 

markedly different.  

Table 17  – Multivariate model terms and relative slope and significance, Ikonos and Landsat ETM 

sensor, year 2004 

Satellite sensor Model term  estimate t  p-value| 

 

 

Ikonos3x3 

Intercept  3.41 9.38  <0.0001 

b1  -33.07 -3.77  0.0004 

b2  35.59 2.73  0.0087 

b3  -63.83 -8.26  <0.0001 

b4  2.37 3.25  0.0021 

 

Satellite sensor Model term  estimate t  p-value| 

 

ETM3x3 

Intercept  2.22 4.66  <0.0001 

b1  -37.77 -3.02  0.0042 

b4  6.02 3.89  0.0003 

b5  -10.04 -5.50  <0.0001 

 

Table 18 – Multivariate model terms and relative slope and significance, Ikonos and Landsat ETM 

sensor,  year 2005 

Satellite sensor Model term  estimate t  p-value| 

 

Ikonos3x3 

Intercept  2.49 8.56  <0.0001 

b2  30.43 2.96  0.0016 

b3  -34.57 -3.90  <0.0001 

b4  -2.55 -4.28  0.0001 

 

Satellite sensor Model term  estimate t  p-value| 

 

ETM3x3 

Intercept  2.38 9.27  <0.0001 

b1  35.64 4.07  0.0002 

b2  -35.88 -4.14  0.0002 
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For example, the red band had between 12÷20 times (depending on the year) over 

the influence of nIR band. Also, for 2004-model green and blue34 coefficients were more 

than ten times the nIR one. This outcome might be the result of the red band having a 

much lower asymptote than the near infrared band (Ripple, 1985).  

The multiple r2 were rather different among 2004 (r2=0.78) and 2005 (r2=0.33), 

whereas similar RMSE were obtained for the two years (RMSE=0.22, RMSE=0.25 in 

2004 and 2005, respectively). In other words, the relationships worked out in 2004 by 

means of the multivariate regression allowed to explain about two times more variation of 

LAI than the model derived from 2005 data.  

When regression on all six ETM reflective spectral bands against log-transformed 

LAI was performed, it resulted in best regression model including bands 1 (blue), 4(nIR) 

and 5 (SWIR1) in 2004 whereas bands 1 (blue) and 2 (green) in 2005, respectively. This 

means that a number of bands resulted not contributing at explaining LAI variations. In 

particular, in 2005, only the first two bands were retained as significant one in the 

multivariate model. Besides, high overall model significance was observed in both years 

(p<0.0001 and p<0.0005 in 2004 and 2005, respectively) though lower multiple r2 

(r2=0.46 and r2=0.27), respectively, with respect to Ikonos-related ones, were obtained. 

Respective RMSE were  0.36 and 0.28 for 2004 and 2005 models, respectively. 

With regard to Ikonos-based models, the correlation coefficients and RMSE 

between predicted and measured values provided by the cross-validation procedure were 

r2=0.70 and RMSE=0.90, respectively, for year 2004, and r2=0.36 and RMSE=1.05 for 

the year 2005. Whereas, for ETM-based regressions, r2=0.32 and RMSE=1.36 and 

r2=0.22 and RMSE=1.21 for year 2004 and 2005, respectively. Furthermore, either in 

2004 and 2005 and for Ikonos as well as ETM related data, rather low coefficients of 

variation of the coefficients (terms) of multivariate models resulted from the leave-one-

out procedure (for all model terms cv <7%) as shown in table 19.  

 

 

 

 

 

 

 

 

                                                 
34 only for 2004 dataset 
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Table 19  – Coefficients of variation per each model term coefficient (leave-one-out procedure) 

Satellite 

sensor 

year cv (%) 

intercept b1 b2 b3 b4 b5 b6 

 

Ikonos3x3 

2004 4.0 - 4.0 6.2 -2.3 7.2 / / 

2005 2.0 / 5.0 -3.6 -4.1 / / 

 

ETM 3x3 

2004 2.7 -6.6 / / 4.0 -3.6 / 

2005 1.3 3.9 -3.7 / / / / 

 

In the end, the functional relationships provided by the Ikonos-based multivariate 

regression models for the two years (i.e. those resulting to provide the highest LAI 

predictive skill among all tested empirical relationships), respectively, were used to 

produce 4m resolution35 LAI spatial distributions, see equation (1) and (2):  

(1) LAI=exp(3.41-33.07*b1+35.59*b2-63.83*b3+2.37*b4) (year 2004) 

(2) LAI=exp(2.49+30.43*b2-34.57*b3-2.55*b4)  (year 2005) 

Figure 11 and 12 show the LAI maps, for 2004 and 2005 years, respectively,  

realised by classifying LAI values into eight classes (for cartographic reasons), displayed 

over Ikonos panchromatic image background. 

Also, in figure 13 the relative percentages per each LAI class computed for the 

two study sites and the two years of observation, are reported.  

In particular, by focusing on 2004 LAI spatial distributions (much accurate and 

reliable), some interesting information can be drawn. For example, within Pantano site 

about 2/3 of the area was characterised by LAI values ranging from 0 to 3 while the 

remaining 1/3 was about almost equally distributed between the 3÷4 LAI range (18%) 

and 4÷6 one (15%). Only 2% of the territory presented high LAI values (6÷8). Whereas, 

appreciably higher LAI values characterised Monte Coppolo site, which presented LAI 

values ranging from 4 to 6 within about 1/3 of the area, from 6 to 8 and from 3 to 4 

covering 11% and 16% of the surface, respectively. This findings reflected the differences 

in LAI due to the different vegetation typologies and characteristics of the two sites, 

already partially highlighted by in situ LAI measurements results (see paragraph 3.1.1.). 

For instance, rather high LAI values (4÷8) characterised the maquis of Monte Coppolo, 

whereas the same vegetation typology present lowest LAI values (mostly 2÷4) at Pantano 

                                                 
35 Being applied on a per pixel basis 
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wherein, in fact, it is generally represented by lowest and less dense vegetation 

formations. Moreover, the deciduous hygrofilous forest of Pantano showed LAI values 

similar to those related to the deciduous forest of Monte Coppolo. Finally, it can be noted 

a forest degradation in some neighbouring areas, near the cultivated land, in terms of 

lowest LAI values.  
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Fig. 11 - IKONOS-derived LAI maps over the two study sites Pantano and Monte Coppolo, for 2004, August 2 acquisition dates. 
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Fig. 12 - IKONOS-derived LAI maps over the two study sites Pantano and Monte Coppolo, for 2005, June 22 acquisition dates.  
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Monte Coppolo - year 2005
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   (c)     (d) 

Fig. 13 – LAI values distribution for Monte coppolo and Pantano sites, in 2004 ((a) and (b)) and 2005 ((c) 

and (d)), respectively. 

3.2.4. Using Ikonos-2 data  as subsampling for upscaling LAI field measurements to 

Landsat medium-resolution 

The retrieval of land surface characteristics, such as LAI, from satellite data 

through empirical model calibrated on “point” measurements needs an appropriate 

density of ground observations. This means that the variability of the deriving products 

within a single pixel (or better a 3x3 pixel window considering also the georeferencing 

uncertainties) should be accounted for by the adopted sampling scheme (Liang, 2004 b). 

In highly heterogeneous vegetation this implies that an extremely large number of ground 

observations have to be collected, which is a time consuming, expensive and ultimately 

not always easy/possible condition to satisfy for practical/logistic constraints (e.g. 



 75 75

impenetrable areas). Particularly, the number of measurements increases as the spatial 

resolution of satellite data decrease.  

In this section a comparison between direct LAI measurements-Landsat ETM36 

data calibration and a two-stage procedure, based on the use of Ikonos images as 

intermediate calibration, as described in the following, is reported. The purpose was to 

examine the effectiveness of using a high resolution image as subsampling for upscaling 

LAI field data to a coarse resolution satellite image as an alternative to collecting an 

adequate, hence very large, number of in situ measurements theoretically necessary to 

well characterise a Landsat 3x3 pixel window.  

As sketched in a general form in figure 9 (left-hand side), Ikonos data are firstly 

used to produce a LAI map based on the best relationship established between in situ LAI 

measurements (LAImeas) and Ikonos high resolution data (stage 1). From those maps, 

mean LAI values over a 23x23 pixel window (about 90x90 m2) are calculated (LAIIkonos 

map) to be used in LAIIkonos map-Landsat ETM radiometric data empirical model developing 

(stage 2). To this aim, a set of 128 non-overlapping plots, the size of 23x23 Ikonos pixels, 

were selected within the two study areas avoiding as much as possible noise effects due to 

near edge positions. The selection of plots was supported by visual inspection of 

orthophotos and Ikonos both panchromatic and multispectral images as well as by the 

knowledge of the study sites gained during the multiple field surveys. 

However, specifically, stage 1 was here accomplished by the best performing 

models37 already provided by regression analysis shown in previous section, i.e. the 

Ikonos-derived LAI maps produced by using the multivariate regression models (see 

equation (1) and (2) within paragraph 3.2.3). As well, the statistical analysis shown in 

previous paragraph already indicated that the best empirical models38 for a direct 

upscaling of field LAI measurements to Landsat ETM data (figure 12 (b)) resulted to be 

the multivariate models. 

Therefore, in this paragraph specifically results related to stage 2 and to the overall 

performance of the two-stage procedure are examined. In particular, either univariate 

                                                 
36 Also Landsat TM data were tested but they provided even poorer results than ETM data (data not shown). 
In fact, the better performance of ETM radiometric dataset was already shown in previous sections.  
37 One model per each year of observation 
38 One model per each year of observation 
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LAI-NDVI 39 ordinary least square regressions and multivariate LAI-multiple band 

regressions were tested for Landsat ETM satellite radiometric data calibrations (stage 2). 

Also, both LAI and log-transformed LAI values were examined in regression analysis. 

Since regressions using log-transformed LAI data outperformed those using LAI only 

results relative to the former are reported.  

To sum up, two alternatives were investigated for the second stage upscaling:  

• case 1: the relationship between LAIIkonos map and Landsat ETM radiometric 

data provided by NDVI-ln(LAI) Ikonos map regression;  

• case 2: the relationship between LAIIkonos map and Landsat ETM radiometric 

data provided by multiple-band regressions.  

The effectiveness of the two-stage procedure was assessed by comparing the 

coefficients of determination (r2) related to the ln(LAImeas)-ETM multivariate regressions, 

with the product of the coefficients of determination of the two stages 

(r2
tot=r2

stage1*r
2
stage2).  

Results showed that univariate regressions performed between ETM-derived 

NDVI and corresponding ln(LAIIkonos map) data (stage 2, case 1) provided lower 

coefficients of determination (r2=0.76, RMSE=0.03 and r2=0.03, RMSE=0.06 for 2004 

and 2005, respectively) than ETM-ln(LAIIkonos map) multivariate regressions (stage 2, case 

2) for both years (r2=0.94, RMSE=0.13 and r2=0.89, RMSE=0.06, for 2004 and 2005, 

respectively). Detailed outcomes of case 2 analysis are reported in table 20 (a) and (b) for 

the two year of observation, respectively.  

 

Table 20  – Multivariate model terms, and respective slope and significance, for Landsat ETM- sensor 

Model term  estimate t  p-value| 

Intercept  3.08 27.99  <0.0001 

b1  -38.40 -12.21  <0.0001 

b3  -29.66 -7.78  <0.0001 

b4  1.91 4.03  <0.0001 

b5  -3.00 -3.06  0.0027 

(a) year 2004 

                                                 
39 The NDVI was selected (out of several tested VI in previous sections) since it resulted the best 
performing spectral vegetation indices in VI-LAI empirical model developing, as shown in paragraph 3.2.2. 
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Model term  estimate t  p-value| 

Intercept  2.42 43.89  <0.0001 

b1  3.88 3.17  0.0019 

 b2  11.53 5.47  <0.0001 

b3  -17.38 -7.14  <0.0001 

b4  -1.72 -12.15  <0.0001 

b6  -4.77 -6.33  0.0027 

(b) year 2005 

In particular, for both year datasets, either multivariate regression model and each 

model term, were highly significant (all band-related p-values<0.003; overall p<0.0001). 

Furthermore, as already resulted for direct ETM-LAImeas relationship (see paragraph 

3.2.3), different bands were retained in the model depending on the year of observation. 

Moreover, in comparison with direct ETM-LAImeas multivariate regression, a large 

number of bands were included. In particular, for 2005 dataset, direct ETM-LAImeas 

multivariate regression had resulted in a two bands model including only b1 and b2 (see 

paragraph 3.2.3) whereas all ETM bands, but b5, were included in the ETM-LAIIkonos map 

multivariate regression. As well, for 2004 dataset, with respect to results related to direct 

ETM-LAI meas the ETM-LAIIkonos map multivariate regression included the additional 

contribute of b3. Furthermore, the relative influence of each band was notably different. 

In 2004, b1 (blue) and b3 (red) had between 10÷20 times over the influence of b4 (nIR) 

and b5 (SWIR1). Whereas, in 2005, b3 (red) and b2 (green) resulted to have the higher 

sensitivity to LAI variations. 

Finally, the overall performance of the two-stage procedure for the two alternative 

models (i.e. case 1 and case 2) and the two years, resulted to be the following, 

respectively: 

1) case 1:  

r2
tot= r2stage1*r

2
stage2=0.78*0.76=0.60  (year 2004) 

r2
tot= r2stage1*r

2
stage2=0.78*0.03=0.01  (year 2005) 

2) case 2: 

  r2tot= r2stage1*r
2
stage2=0.78*0.94= 0.73  (year 2004) 

r2
tot= r2stage1*r

2
stage2=0.78*0.89=0.29   (year 2005)  
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Therefore, when compared with direct ETM-LAImeas regression analysis (r2=0.46 

and r2=0.27 for 2004 and 2005, respectively), these results showed the potentiality of 

using a high resolution satellite data as intermediate stage (stage 1) for upscaling “point”40 

field measurements to medium resolution satellite image calibration (stage 2) in 

mediterranean environment.  

Obviously, the weaker the relationship used for the first upscaling stage (stage 1) 

the poorer will be the overall result. For example, in 2005, the LAI distribution map used 

for ETM calibration derived from a model accounting for only the 33% of surface LAI 

variation (r2=0.33). Therefore, substantially, no improvement were observed by adopting 

the two-stage procedure with respect to directly performed a multivariate regression 

between field LAI measurements and ETM bands and both methods yielded 

unsatisfactory results (r2=0.29 and r2=0.27, respectively). 

Conversely, with regard to the 2004 dataset, both regression models tested for the 

second upscaling (stage 2) allowed to increase the amount of variation of LAI explained 

by means of ETM data. Namely, such improvement was of about 10% and 25% for 

NDVI-based model (r2tot=0.60) and multivariate model (r2
tot=0.73), respectively. 

Once more, with data used in this study, the use of multiple band instead of 

spectral VI (NDVI represented the best performing VI out of several tested ones) allowed 

to increase the predictive ability of empirical model. 

 

3.3 Discussion   

 

This chapter presented a quantitative analysis aimed at estimating Leaf Area Index 

(LAI) spatial distributions in Mediterranean forested areas by means of remotely sensed 

data.  

A fundamental challenge to the retrieval of useful biophysical products, such as 

the LAI, from remote sensing within Mediterranean areas is the fragmented and mixed 

environment which characterises these zones with respect to other forest ecosystem (e.g. 

those of northern latitude).  

                                                 
40 It is meant measurements having a small footprint (plot size) in order to account for the high spatial 
variability of mediterranean environment. 
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Therefore, given that older generation sensors have many known limitations with 

respect to their suitability for studying highly discretized and complex land cover, the 

need to evaluate the new generation of sensors, providing highest spatial/spectral 

resolutions is of critical importance.  

In particular, high spatial resolution permits proper (reduced) size as well as 

accurate location of calibration plots, which is a key issue when coping with high spatial 

variability and diversity.  

In this context, the utility of using Ikonos high spatial resolution images was 

investigated in order to evaluate: 

a) the performance of empirical models developed through regression analysis 

between in situ LAI measurements and Ikonos data for producing LAI spatial 

distributions of two forested Mediterranean areas (Matera Province, South of Italy); 

b) the opportunity of using high resolution satellite data, like Ikonos, as 

subsampling for medium resolution satellite data, such as Landsat TM/ETM, when LAI 

of wide areas need to be mapped. 

To this aim, two LAI field surveys were carried out in early summer 2004 and late 

spring 2005 in order to collect a certain number of in situ LAI measurements, namely 55 

plots per year were sampled within four different vegetation typologies (maquis, 

deciduous forest, live oak forest and hygrophylous forest). Besides, as synchronous as 

possible Ikonos and Landsat TM/ETM satellite images were acquired.  

With respect to the first objective and in order to assist in the selection of the best 

empirical model, the training dataset (110 pairs of ln(LAI) 41 values and corresponding 

radiometric values) was examined in order to evaluate if a general model developed 

pooling all data into a unique dataset could be used or, conversely, it would have been 

necessary to separately develop per species or per year or even per species and per year 

regression models. Therefore, an analysis of covariance (ANCOVA) of ln(LAI) having as 

independent variable the radiometric variable, the year of observation and the vegetation 

typology, and considering all possible interactions, was performed. In particular, a 

                                                 
41 In order to cope with possible radiometric signal saturation which tends to occur at the higher 

LAI values (see previous sections) the use of either LAI and log-transformed LAI data was investigated. 
Respective results showed the superior performance of empirical models developed using the log-
transformed variable. Hence, for sake of sinthesis, here it is referred only to results related to the use of the 
log-transformed variable. 
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number of radiometric variables were tested, i.e. one-by-one each individual band as well 

as several spectral vegetation indices (VIs).  

Substantially, results of ANCOVA showed that the ln(LAI)-radiometric variable 

relationship didn’t depend on vegetation typology but it considerably depended on the 

year of observation. It must be stressed that this results highlighted the utility of the 

empirical models worked out in this way for a spatial extrapolation of field LAI 

measurements, hence allowing to obtain LAI distribution maps of the study areas in the 

year of data collection. Conversely, they prevented a temporal extrapolation of the 

empirical model (i.e. the possibility to apply the empirical model to radiometric 

observations referring to year different from that used for model calibration) which would 

have enabled to monitor the LAI dynamic over the years.  

According to results provided by the ANCOVA analysis, the full dataset was 

subdivided into two subsets, each one referring to one of the year of observation, 

respectively, to be used in regression analysis.  

Then, univariate ordinary least square regressions having ln(LAI) as dependent 

variable and one-by-one each tested radiometric variable (individual band or VIs) as 

independent variable, as well as multivariate least square regressions exploring ln(LAI)-

multiple spectral band relationships, were examined. 

The statistical analysis provided three main outcomes which can be summarised as 

follows: 

• multiple-band models were found to offer substantial improvement over single-

variable models (either individual band or spectral VI); 

• the first LAI maps of the study areas were produced by means of the best 

performing models. In particular, one four-variable (all available Ikonos bands) 

model was used to extrapolate the relationship worked out to the landscape in 

order to produce the LAI maps of the two study areas in 2004; 

• empirical models were robust with respect to variations in vegetation typology and 

other characteristics of the study sites, thus highlighting the reliability of their 

spatial extrapolation to other areas; 

• empirical models were highly sensitive to conditions at time of data collection 

(e.g., differences in forest vegetation phenological status, background optical 

properties), thus limiting the possibility of their temporal extrapolation. 
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In particular, in relation to the last finding, a comparison of within-plot radiometric 

variability between Ikonos 2004 and 2005 images was performed by means of within-plot 

coefficients of variation of reflectance in each band. In this way, it was shown that a 

significantly highest within-plot heterogeneity characterised the spectral signal in 2005. 

This, in turn, highlighted the diminished suitability of 2005 radiometric data for 

developing empirical relationships between LAI measurements and satellite data, thus 

giving reason for the poor results obtained.  

Firslty, the following hypotheses were formulated to explain such a result. Firstly, 

given the early period of 2005 field survey (and related satellite data acquisition) with 

respect to 2004 one, two main effects might be assumed to significantly affect 2005 data 

while not, or only to a minor extent, 2004 ones. Specifically, it is likely that forest 

vegetation had not reach yet the phenological peak (maximum vegetation development) in 

late May 2005 (i.e. at time of 2005 field survey) and continued growing during the period 

between in situ LAI measurements and satellite acquisition date, causing measured LAI to 

significantly differ from actual LAI values at time of satellite overpass (2005, 22nd of 

June). Conversely, the maximum vegetation development was reasonably reached in late 

June-early July 2004 (i.e. at time of 2004 field survey), guaranteeing the consistency 

between LAI measurements and actual LAI values at time of 2004 satellite overpass 

(2004, 2nd of August).  

Secondly, it is possible that background effects (i.e. mainly those due to understory 

herbaceous vegetation and litter) could have been significantly different between 2005 

and 2004. For example, during June 2005 grass is mostly green in those areas and hence 

its spectral signal is more similar to that of forest vegetation than it is at the beginning of 

August42 when grass is mainly in a senescent status.  

Furthermore, although the LAI measurements footprint (sampled area) used in this 

study was rather small (about 12x12m2), i.e. ad hoc tailored to the Ikonos resolution in 

order to account for the high spatial variability present within the mediterranean areas, 

nevertheless additional regression analysis performed using either Landsat TM/ETM data 

and Ikonos data aggregated to match Landsat resolution (i.e. 23x23 Ikonos pixel 

averaging window corresponding to 3x3 Landsat pixel window were used) was carried 

out for comparison purposes. However, as expected, since 90x90m2-wide training areas 

                                                 
42 Ikonos images were acquired on the 2nd of August in 2004 and on the 22th of June in 2005 
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were in this case characterised by ground sampled surfaces of less than 2% (~12x12m2), 

poorest results were generally obtained.  

This result highlighted the need for an appropriate characterisation of the 

variability of the deriving products (e.g., LAI) within the areas (plot) used for calibration 

(i.e., usually at least a 3x3 pixel window considering the georeferencing uncertainties). 

Nevertheless, in situ LAI measurements are extremely labour-intensive, rendering their 

use for an extensive sampling rather demanding if not impractical. Moreover, it must be 

stressed that logistic constraints (e.g. impenetrable areas) may further limits the 

possibility to accomplish a suitable sampling scheme.  

Therefore, and with respect to the second objective, the study indicates an 

alternative expedient which may offer a practical means to produce LAI distribution maps 

on a regional scale or above by means of a limited number of LAI ground measurements 

using both Ikonos and Landsat satellite images. Obviously, the idea is that Ikonos images 

will cover only some percent of the area to be mapped which will be, in fact, entirely 

sensed by Landsat sensor. Therefore, field LAI data will firstly be upscaled to Ikonos 

resolution in order to produce a high resolution LAI distribution map which in turn will 

be used to calibrate the LAI-Landsat data empirical model.  

Specifically, with data used in this study, it was shown that this procedure allowed 

to increase of about 25% the amount of variation of LAI explained by means of Landsat 

ETM radiometric data directly calibrated by means of field LAI measurements.  

In conclusion, although needs to be further refined and validated, the use of 

observations at different spatial resolution (field data + Ikonos + Landsat) so as shown in 

this study can contribute to the validation of MODIS-LAI products, routinely provided as 

1-km spatial resolution data and hence not directly compatible with the scale at which 

ground measurements are usually collected, in highly fragmented and mixed 

environment. 
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4 Multitemporal analysis of spectral VI and corresponding climatic 

parameters  

Mediterranean regions constitute a transitional climate zone between arid and 

humid regions (Di Castri & Mooney, 1973) where it has been hypothesised that climate 

changes may have the most pronounced effect (Palutikof et al. 1994, Cubash et al., 1996, 

Lavorel et al., 1998).  

Indeed, there is an increasing evidence that climate change affects biological and 

ecological processes. In particular, it seems to be a main driver of changes in natural 

vegetation communities’ physiology, growth and net primary productivity. Distribution 

and abundance of either animals and plants are altered, as well as their life cycles, mainly 

as a consequence of temperature increasing.  

However, evidence of such effects has been mostly limited to northern latitude 

(Penuelas et al., 2002) where temperature is normally the most important climatic factor 

limiting plant photosynthesis (Yu et al., 2003). Here, the prevalent effect of global 

warming on vegetation seems to be an anticipation and hence a lengthen of the growing 

season, ultimately determining an increase of net primary productivity. 

Few studies have investigated the effects of climate change on the lower latitude 

forests and shrublands of Mediterranean areas where both temperature and precipitation 

play key roles in regulating plant biological processes.  

Athough Mediterranean vegetation species present different adaptive mechanisms 

to water deficit and high summer temperature, nevertheless it is not clear what might be 

the response of these species to climate change and particularly to the temperature 

increase and precipitation decrease forecasted for Mediterranean basin (IPCC, 2001, 

Palutitikof, 2002).  

 In general, plant response to changing environmental conditions is related to the 

genetically acquired adaptive strategies and acclimatation which each species has 

developed in order to survive and successfully compete within its ecological conditions 

and related variability ranges.   

 If environmental conditions change within certain limits of tolerance, plants will put 

into effect their adaptive strategies, but these strategies will differ from species to species 

and not all species are able to react with the same degree of efficiency to the same type or 

same intensity and duration of environmental stress (Pereira et al., 1995). 
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 Because of the high level of biodiversity which characterizes the vegetation 

communities of our area and therefore the different adaptive mechanisms adopted, one 

can hypothesize that on a long term basis in the Mediterranean ecosystem climate changes 

will trigger diverse or even contrasting phenomena. For example, an increase in winter 

temperatures could determine a reduction of the period of dormancy (with heightened risk 

to the plant of sudden frosts) and therefore a prolongation of the growth phase, whereas 

an increase in summer temperatures could increase water deficit impact and reduce the 

summer growth of the vegetation. At the same time, the species with a greater capacity 

for adaptation could have a competitive advantage over the others (Gratani et al., 2005), 

meaning that the more vulnerable species could modify their distributional area – 

migrating to more suitable climates.  

 Multi-temporal series of satellite data offer a powerful means to monitor 

vegetation pattern/changes (e.g. Nemani et al., 2003, Turner et al., 2005). There are series 

now covering a timespan of more than twenty years, which thus constitute a significant 

window of observation.  

In particular, they can be used to gain insight into the complex mechanisms 

controlling the response of vegetation to climate variability. It is well known that 

precipitation and temperature have an important influence on the development and 

condition of vegetation, particularly during the growth season, which determines its 

condition in all later phases. Temperature is a key factor in determining the various 

phenologic phases of plants (sprouting, gemmation, leafing, flowering, fruiting, 

senescence and winter dormancy) whereas precipitation regulates photosynthetic activity 

and the transfer of organic substances from leaves and branches to the roots (Papanastasis 

et al., 1997) and consequently the growth of the plant. 

Mostly, temporal series of satellite-derived Normalised Difference Vegetation 

Index (NDVI) have been profitably used to this purpose argueing that changes in NDVI 

reflect changes in biological activities (Li et al. 2000, Sarkar and Kafatos, 2004, Suzuki et 

al., 2006, Volcani et al., 2005, Stokli et al., 2004, Zhang and Anderson., 2004, among 

others). For example, Myneni et al. 1997 using satellite-derived series of NDVI, from 

1981 to 1991, showed evidence of an increased plant growth in the northern high latitude 

(> 40° N) associated with a lenghtening of the growing season due to warmer 

temperatures.  
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The objective of this part of the study was to perform a retrospective analysis of 

yearly vegetation productivity and corresponding climatic conditions of the two selected 

study areas (see chapter 2), in order to evaluate possible relationships between inter-

annual variation of vegetation and associated temperatures and precipitations. 

 
4.1. Materials and methods  

 4.1.1 Satellite images  

 A series of Landsat TM/ETM images from 1984 to 2005 was acquired, all referring 

to the late spring/summer period and thus relating to the seasonal peak of vegetation 

development period in the area under study (table 21).  

 The choice of Landsat sensors was made because of the need for either a sufficient 

spatial resolution allowing distinguishing the main different vegetation species in the 

study areas (Live oak forest, Maquis, Mixed broadleaf forest, Hygrofilous forest) and a 

sufficiently long image time series.  

  

Table 21 – List of Landsat images used  

 
Acquisition Date  

 
Orbit track 
(path, row)  

06/20/84 188,32 
06/13/87 188,32 
08/02/88 188,32 
05/10/89 187,32 
07/18/94 188,32 
06/19/95 188,32 
06/14/99 188,32 
08/03/00 188,32 
07/06/01 187,32 
05/26/04 188,32 

06/30/05 188,32 
 

In fact, since the two study sites are characterised by significantly different 

environmental conditions (e.g. altitude, distance from the sea) and hence ecosystems (see 

chapter 2), they were separately analysed. Furthermore, within the same study area, also 

per vegetation typology investigation were performed, in order to explore possible 

different response associated with different vegetation typology.  
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The spectral vegetation index (VI) selected for the multitemporal analysis were the 

Normalised Difference Vegetation Index (NDVI=(nIR-red)/(nIR+red)) and the 

Normalized Difference Water Index (NDWI=(nIR-SWIR)/(nIR+SWIR)).  

The first one is largely the most used spectral index for remote sensing of 

vegetation (Kawabata et al., 2001, Maselli et al., 2004, Yang et al., 1998, among others), 

and responds to changes in amount of green biomass, chlorophyll content, and canopy 

water stress (Liang, 2004, b). Whereas, the NDWI is substantially a variation of NDVI 

exploiting the short wave infrared spectral range (1.2-2.5 µm) where the radiation 

absorption due to water content is enhanced. For Landsat TM/ETM+, nIR and SWIR 

correspond to bands 4 (0.78–0.90 Am) and 5 (1.55–1.75 mm), respectively. One reason 

that the NDWI may not have received much attention until recently is that the infrequent 

temporal coverage of TM and ETM+ make it difficult to estimate the vegetation water 

content for various applications. Classic operational instruments such as the AVHRR did 

do not include a SWIR band. However, new satellite sensors such as the Moderate 

Resolution Imaging Sensor (MODIS) on NASA’s Terra and Aqua satellites now make 

such data routinely available (Jackson et al., 2004). Also, several studies have profitably 

used the NDWI derived by Landsat bands (e.g. Hardisky et al., 1983, Anderson et al., 

2004, Maki, 2004, Healey et al., 2006). 

Satellite images were preprocessed in order to obtain a co-registered dataset as 

well as a consistent radiometric scale. To this aim, firstly all frames were orthorectified 

(as described in chapter 3) then a data normalisation based on “pseudoinvariant” target 

approach (Schott et al. 1988, Furby and Campbell, 2001) was performed. 

This approach assume that there are some pixels (“pseudoinvariant” targets) in a 

satellite image whose reflectance are quite stable through time (e.g. deep water, bedrock). 

Therefore, variations of radiometric measurements of these pixels on different dates can 

be related to exogenous “noises” which change the at-satellite sensed signal, such as 

different atmospheric and illumination conditions or even sensor response drift over the 

years (see paragraph 3.1.2.1.).  

The cloud free 2004-26-05 Landsat TM was selected as reference image for both 

orthorectification and relative normalization. Therefore, it was firstly orthorectified and 

atmospherically corrected following the same procedure described in paragraph 3.1.2.1. 

Actually, since the reference image was a corrected reflectance image the performed 



 87 87

procedure allowed to obtained not only a relative normalization of image radiometry but 

also corrected surface reflectance images. 

Then, a number of pseudoinvariant pixels with variable brightness from dark to 

bright (such as a stone quarry, urban areas, lake and sea water) were selected43 and 

corresponding digital number (DN) and surface reflectance were extracted from each 

band of the image to be corrected as well as from those of the reference one, respectively. 

In fact, since the atmosphere affect differently each wavelength it was necessary to 

retrieve normalization coefficients individually per each band (k).  

Finally, per each image, per band (k) linear regressions (see equation 1) between 

the reflectance (ρk) of the reference image and corresponding digital number (DNk) of the 

image to be corrected extracted on the pseudoinvariant targets provided the two 

coefficients (ak and bk) to be used for normalizing all other pixels of the image. All highly 

significant regression were obtained, and Pearson correlation coefficients related to b3, b4 

and b5, which were the bands used to calculate the selected VIs for the multitemporal 

analysis, were all > 0.97.  

(1)   ρk= ak + bk DNk 
 

4.1.2. Climatic data 

The following climatic parameters were computed from daily measurements of 

precipitation and surface air temperature collected over the period 1983-2005 by two 

ground meteorological stations, one close to Monte Coppolo and the other to Pantano site, 

respectively: maximum, mean and minimum temperatures, total precipitation, growing 

degree days (GDD), and the ratio between cumulative precipitation and mean temperature 

(P/T). 

GDD is a widely used measurement, especially in agriculture, to estimate or 

predict the length of the various phases of crop development (Bonhomme, 2000) but also 

to study the phenologic stages of diverse natural species and their use as climatic 

indicators (Spano et al., 1999). These are usually calculated as the difference between the 

mean daily temperature and a temperature below which the process of growth and 

                                                 
43 It must be said that two sets of pseudoinvariant targets were used in relation to the two different 

satellite image frames used (path 188, row 32 and path 187, row 32, respectively). In particular, eight 
pseudoinvariant targets were found and used for the 188-32 image frame whereas only six pseudoinvariant 
targets were found  for the overalapping zone between 187-32 and 188-32 frames. 
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development  become significantly inhibited. The present analysis considers three distinct 

threshold temperatures  0, 10, and 20°C and set to zero possible negative GDD values. 

In particular, in order to explore lag and cumulative effects of precipitation and 

temperature on vegetation activities and development, mean values for daily minimum, 

mean and maximum temperature, as well as cumulative values for GDD and precipitation 

were computed for the 180, 90, 30 and 10 days preceding the date of passage of the 

Landsat satellite. Also, for the same temporal window the P/T indicators was derived 

using corresponding cumulative precipitation and mean temperature. 

It must be said that these periods were chosen with the aim of investigating which, 

if any, of them best highlighted the relationship between VI (which refers to vegetation 

peak) and climatic conditions during vegetation development. In fact, these different 

temporal windows refer to different vegetation phenological stages, which might 

differently be affected by variations of climatic parameters. Furthermore, potentially, each 

vegetation species could present a different optimal temporal window for climatic 

parameter calculation.  

Finally, it is noteworthy that since the various climatic indicators were all strongly 

correlated to mean temperature and cumulative precipitation (statistically redundant 

parameters) it was decided to report only the results relative to these two indicators.  

 

4.1.3. Statistical analyses  

Univariate ordinary least square regressions were performed between the adopted 

VIs and climatic parameters referring to the abovementioned different temporal windows. 

In particular, either per study site (a unique VI value per each study area) and per 

species (different VI for different vegetation species, in order to investigate possible 

different behaviour of the diverse vegetation typologies) analysis were carried out.  

Furthermore, given the high number of Pearson correlations computed, since per 

each VI dataset one-by-one all (namely eight) climatic parameters were tested, the related 

statistical significances were corrected according to Bonferroni procedure (Rom, 1990). 

The statistical analyses were performed using Stata 9.2 (StataCorp, 2005) 

statistical software package. 
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4.2. Results 

4.2.1. Multiannual series of climatic parameters and spectral VIs 

 
Examination of variations over the last twenty years for some climatic parameters 

revealed consistent interannual variation. Similarly, a significant interannual variation 

was evident for the VIs studied.  Figure 14 and 15 show these variations. 
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Figure 14 – Interannual climatic fluctuations - Valsinni and Policoro ground stations 
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Figure 15 – Interannual VI fluctuations observed for M.Coppolo and Pantano areas. 

 

4.2.2. Climatic parameters-VIs relationships 

At first, statistical analyses performed by using a unique, mean VI for the whole 

study area, were tested.  Results are reported in table 22. In Monte Coppolo study site 
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both NDVI and NDWI resulted inversely correlated with the mean temperature of the 

preceding 10-30 days. Also, a positive correlation between NDWI and the cumulative 

rainfall of the preceding three months (P90) was observed. Conversely, within Pantano 

area none of the relationships resulted to be significant. Afterwards, the same analyses 

were carried out on a vegetation typology basis, see table 23 and 24. 

With regard to Monte Coppolo area, by examining separately each vegetation 

community, it was highlighted that a temperature effect is particularly evident on 

deciduous forest and maquis whereas it is weak or even absent on live oak forest. Also, in 

areas covered by maquis a positive correlation between the NDWI and the cumulative 

precipitation of the last three months (P90) was observed. 

With respect to Pantano study site, once more no significant relationships  

between any of the tested climatic parameters and VIs were obtained, except for a 

positive correlation between  the NDWI and the cumulative precipitation of the last three 

months (P90). 

 
Table 22 – Results of statistical analysis between climatic parameters and VIs  for the two study areas of 

M.Coppolo and Pantano (n=number of observations, ns= not significant at 95% probability level) 

Climatic 
parameter 

 
M.COPPOLO 

 
PANTANO 

 NDVI NDWI  NDVI NDWI 

T180 

 r=-0.783 
n=8 
ns 

r=-0.831 
n=8 
ns 

 r=-0.109 
n=11 

ns 

r=-0.244 
n=11 

ns 

T90 
 r=-0.807 

n=8 
ns 

r=-0.847 
n=8 

p<0.1 

 r=-0.237 
n=11 

ns 

r=-0.224 
n=11 

ns 

T30 
 r=-0.869 

n=8 
p<0.05 

r=-0.933 
n=8 

p<0.01 

 r=-0.333 
n=11 

ns 

r=-0.326 
n=11 

ns 

T10 
 r=-0.877 

n=8 
p<0.05 

r=-0.911 
n=8 

p<0.02 

 r=-0.400 
n=11 

ns 

r=-0.409 
n=11 

ns 

P180 
 r=0.046 

n=8 
ns 

r=0.150 
n=8 
ns 

 r=0.616 
n=11 

ns 

r=0.073 
n=11 

ns 

P90 
 r=0.753 

n=8 
ns 

r=0.879 
n=8 

p<0.05 

 r=0.236 
n=11 

ns 

r=0.513 
n=11 

ns 

P30 
 r=0.425 

n=8 
ns 

r=0.560 
n=8 
ns 

 r=0.327 
n=11 

ns 

r=0.406 
n=11 

ns 

P10 
 r=0.243 

n=8 
ns 

r=0.313 
n=8 
ns 

 r=0.171 
n=11 

ns 

r=0.446 
n=11 

ns 
T= mean temperature, P= cumulative precipitations for the 180, 90, 30 e 10 day temporal windows 
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Table 23 – Results of statistical analysis between climatic parameters and VIs  for M.Coppolo study area 
per vegetation typology 

climatic 
parameter 

 M.COPPOLO 

 Deciduous forest   Live oak forest  Maquis 
 NDVI NDWI  NDVI NDWI  NDVI NDWI 

T180  
r=-0.786 

n=8; 
ns 

r=-0.859 
n=8; 

p<0.06 
 

r=-0.757 
n=8; 
ns 

r=-0.676 
n=8; 
ns 

 
r=-0.783 

n=8; 
ns 

r=-0.798 
n=8; 
ns 

T90  
r=-0.801 

n=8; 
ns 

r=-0.869 
n=8; 

p<0.05 
 

r=-0.778 
n=8; ns 

r=-0.678 
n=8; ns 

 
r=-0.809 
n=8; ns 

r=-0.816 
n=8; ns 

T30  
r=-0.860 

n=8; 
p<0.05 

r=-0.962 
n=8; 

p<0.001 
 

r=-0.823 
n=8; 
p<0.1 

r=-0.731 
n=8; ns 

 
r=-0.857 

n=8; 
p=0.052 

r=-0.880 
n=8; p<0.05 

T10  
r=-0.839 

n=8; 
p<0.1 

r=-0.875 
n=8; 

p<0.05 
 

r=-0.848 
n=8; 
p<0.1 

r=-0.764 
n=8; 
ns 

 
r=-0.890 

n=8; 
p<0.05 

r=-0.901 
n=8; p<0.02 

P180  r=-0.012 
n=8; ns 

r=0.068 
n=8; ns 

 
r=0.027 
n=8; ns 

r=0.123 
n=8; ns 

 
r=0.055 
n=8; ns 

r=0.162 
n=8; ns 

P90  r=0.673 
n=8; ns 

r=0.780 
n=8; ns 

 
r=0.746 
n=8; ns 

r=0.801 
n=8, ns 

 
r=0.794 
n=8; ns 

r=0.908 
n=8;p<0.02 

P30  r=0.385 
n=8, ns 

r=0.567 
n=8; ns 

 
r=0.332 
n=8, ns 

r=0.245 
n=8; ns 

 
r=0.441 
n=8; ns 

r=0.565 
n=8; ns 

P10  r=0.127 
n=8; ns 

r=0.105 
n=8, ns 

 
r=0.281 
n=8; ns 

r=0.406 
n=8; ns 

 
r=0.337 
n=8; ns 

r=0.457 
n=8,ns 

T= mean temperature, P= cumulative precipitations for the 180, 90, 30 e 10 day temporal windows 
 

 
Table 24 – Results of statistical analysis between climatic parameters and VIs  for Pantano study area per 

vegetation typology 

climatic 
parameter 

 

 PANTANO 

 Hygrophilous forest  Maquis 
 NDVI NDWI  NDVI NDWI 

T180 
 r=-0.136 

n=11 
ns 

r=-0.294 
n=11 

ns 

 r=-0.150 
n=11 

ns 

r=-0.458 
n=11 

ns 

T90 
 r=-0.264 

n=11 
ns 

r=-0.282 
n=11 

ns 

 r=-0.268 
n=11 

ns 

r=-0.424 
n=11 

ns 

T30 
 r=-0.364 

n=11 
ns 

r=-0.387 
n=11 

ns 

 r=-0.350 
n=11 

ns 

r=-0.479 
n=11 

ns 

T10 
 r=-0.434 

n=11 
ns 

r=-0.484 
n=11 

ns 

 r=-0.404 
n=11 

ns 

r=-0.495 
n=11 

ns 

P180 
 r=0.598 

n=11; ns 
r=0.094 
n=11; ns 

 r=0.692 
n=11; ns 

r=0.359 
n=11; ns 

P90 
 r=0.226 

n=11; ns 
r=0.433 
n=11; ns 

 r=0.337 
n=11; ns 

r=0.855 
n=11; p<0.01 

P30 
 r=0.345 

n=11; ns 
r=0.426 
n=11; ns 

 r=0.372 
n=11; ns 

r=0.638 
n=11;ns 

P10 
 r=0.168 

n=11; ns 
r=0.335 
n=11; ns 

 r=0.191 
n=11; ns 

r=0.593 
n=11; ns 

T= mean temperature, P= cumulative precipitations for the 180, 90, 30 e 10 day temporal windows 
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4.3 Discussion 

Changes in phenology (seasonal plant and animal activity driven by environmental 

factors) from year to year may be a sensitive and easily observable indicator of changes in 

the biosphere (Menzel et al., 1999).  

In this chapter, the potential of highlighting the inter-annual variation in 

Mediterranean vegetation activity and productivity using remotely sensed data, i.e. 

spectral VIs, was shown.  

In particular, with data used in this study, in years when mean temperatures were 

higher a decrease in spectral VIs was observed. This effect was particularly evident for 

some types of vegetation (maquis and deciduous forest), whereas it was limited or absent 

in others (hygrophylous and live oak forest). In areas of Mediterranean maquis vegetation 

was also sensitive to rainfall: years with more rainfall showed an increase in VIs. 

Reduced sensitivity of hygrophylous and live oak forest to interannual variations 

in precipitation and temperature probably had different explanations.  

Live oak forest is particularly well adapted to hot dry summers, which are typical 

of the Mediterranean environment. Live oak, apart from having an effective leaf defence 

mechanism for limiting evapotranspiration and consequent loss of water at high 

temperatures (Crescente and Gratani, 2002) is a slow growing species possessing a very 

deep root apparatus (Barbero et al. 1992) allowing it to supply itself with water 

independently from precipitation. These characteristics explain why in  live oak areas VIs 

showed little sensitivity to climatic parameters.   

Hygrophylous forest, on the contrary, grows in zones where the soil is almost 

constantly saturated with water. The overabundance of water can moderate the effects of 

temperature and rainfall variations over the years. 

The maquis is partly made up of evergreen sclerophyll like the live oak, which has 

leaf morphology (especially thick and tough) or ecological strategies (stomatal 

regulations, etc) which are particularly adapted to Mediterranean environments.  Some 

other species of the maquis, like semideciduous shrubs, however, show more superficial 

root apparatus and have a faster growth cycle, having adopted ecological strategies based 

on the morphological difference between winter and summer foliage (Orshan, 1963, 

Westman, 1981, Christodoulakis, 1989, Correia et al., 1992, Gratani and Crescente, 1997) 

and a shortening of the growth phase to take advantage of the most favourable period 
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(Werner et al., 1999). 

Although the Mediterranean maquis is made up of a variety of species with 

diverse adaptive mechanisms, various ecophysiological studies have shown that 

cumulative precipitation is “the factor which will most influence the response of 

Mediterranean evergreen species to water conditions on an interannual scale” (Bombelli 

and Gratani, 2005), in particular during the period of maximum photosynthesis (Gratani 

and Crescente, 1997, Gratani and Ghia, 2002). 

This peculiarity of maquis seems to be shown by the NDWI index which is 

sensitive to cumulative precipitation over the period of 180 days. The effect of 

temperature, however, was only shown to be of importance for the temporal windows of 

30-10 days, showing the relative importance of functional mechanisms to structural 

attributes. It is difficult to believe that the temperature over a period of 30 days could so 

strongly influence structural attributes of vegetation such as LAI or biomass. It is more 

likely that high summer temperatures associated with conditions of water deficit (stress) 

are compensated by a reduction in photosynthetic activity, especially in the more 

vulnerable species. 

The importance of temperature for the regulation of ecophysiological mechanisms 

is also found when we analyse deciduous forest. Here, in particular the NDWI correlated 

inversely with the mean temperature calculated for the temporal windows of 90, 30 and 

10 days, highlighting a reduction of vegetation water content (but also of  background 

humidity) when temperatures are higher. In addition the NDVI index was inversely 

correlated to the mean temperature for the 10-30 day periods, probably as a consequence 

of reduced photosynthetic activity in conditions of thermal stress. 

To sum up, the results obtained showed how it is possible to highlight the effect of 

climatic variations not only on the duration or beginning of the growth period for 

vegetation, but also on the seasonal peaks that are reached. It is also evident that while 

studies done on higher latitudes showed a positive effect of increased temperature on 

vegetation growth, our results showed a reduction of VI when mean temperatures rose. 

Therefore, although the correlation nature of the study limits our ability to 

determine causal factor, nevertheless the available data and the current knowledge of 

plant and ecosystem functioning allow to draw the following interpretations. Climatic 

variations can cause changes in the seasonal vegetation peaks measured by the satellite-
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derived VI and these changes, in water-limited Mediterranean regions, can be the 

opposite of those observed in higher latitudes. Furthermore, the study showed the variety 

of responses of Mediterranean vegetation to climatic change. Even within the same 

ecosystem different vegetation typologies showed significant diversity in their response to 

climatic variations. As a result, it is extremely difficult to make quantitative predictions 

about the possible overall response which climatic change will provoke in Mediterranean 

ecosystems. Particularly, if we consider that the observed results have been obtained with 

climatic variations which are much inferior than those expected over the next century. For 

example, according to the PRUDENCE-Prediction of Regional  scenarios and 

Uncertainties for Defining EuropeaN Climate change risks and Effect project 

(http://prudence.dmi.dk/), whose results represent an essential reference for studies 

dealing with climate change at the European/Mediterranean regional scale, an increase of 

summer temperature of 5.5 °C (±1.8 °C) and a decrease in winter precipitation of 50-100 

mm (±10 mm) within southern and western Europe may occur in the near future44  (2071-

2100) (Deque et al., 2005).  

In the long term (from decades to centuries), changing climate may affect 

productivity, via species competition, by altering species composition and, ultimately, 

ecosystem structure and functioning.  

It is noteworthy that the different structure and function of terrestrial ecosystems 

affect those physical mechanisms, such as the exchange of heat, moisture, trace gases, 

aerosol, and momentum between land surfaces and the overlying air, which may 

influence the climate system (Pielke et al., 1998). In fact, modelling as well as empirical 

studies generally indicate that decreases in vegetation increase temperature and decrease 

precipitation (Nobre et al., 1991, Bounoua et al., 2000, Buermann et al., 2001, Schwartz 

and Karl, 1990, Bastable et al., 1993), eventually amplifying and/or speeding (positive 

feed back) the climatic variations up within these areas. 

                                                 
44 Those climate scenarios were derived according to the emission scenarios A2 defined by the 

Intergovernmental Panel on Climate Change (IPCC, Special Report on Emissions Scenario, 2000 

http://www.ipcc.ch/activity/sprep.htm). However, similarly even though less prounanced climatic variations 

were forecasted if using the B2 scenario.  
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5. Conclusion  

In recent years, the use of satellite imagery in ecological research and ecosystem 

management has increased significantly. For example, 9 of 10 recent issues of the journal 

Ecological Applications contain at least one article in which satellite imagery was used to 

characterize vegetation or land cover. The widespread availability of satellite imagery and 

image processing software has made it relatively easy for ecologists to use satellite 

imagery to address questions at the landscape and regional scales. However, as often 

happens with complex tools that are rendered easy to use by computer software, 

technology may be misused or used without an understanding of some of the limitations 

or caveats associated with a particular application. The results can be disappointment 

when maps are less accurate than expected or incorrect decisions may be derived when 

they are treated as truth (Fassnacht et al., 2006). 

In particular, one of the most important biophysical parameters of vegetated 

systems is the Leaf Area Index (LAI). It can be used to infer processes (e.g., 

photosynthesis, transpiration, and evapotranspiration) and estimate net primary 

production of terrestrial ecosystems. As such, LAI is increasingly desired as a spatial data 

layer (i.e., map), to be used as input for modelling biogeochemical processes. However, 

measuring LAI on the ground is difficult and requires a great amount of labour and cost. 

Therefore, there is a clear need for methods to scale leaf area spatially and temporally 

under current conditions and environmental change scenarios. 

As a result, many studies have sought to establish relationships between LAI and 

remote sensing data. Most of these studies have relied on empirical relationships between 

the ground-measured LAI and observed spectral responses, although several have used 

canopy reflectance models. With few exceptions, such studies used medium resolution 

multispectral data, like Landsat TM or ETM+ rather than high resolution image, like 

Ikonos (Johnson et al., 2002, Colombo et al., 2003) and concerned vegetation 

communities other than mediterranean ones (Lee, 2004).  

In fact, a fundamental challenge to the retrieval of reliable vegetation-related 

information from remote sensing within mediterranean areas is the fragmented and mixed 

environment which characterises these zones with respect to other one (e.g. those of 

northern latitude).  
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Therefore, given that older generation sensors have many known limitations with 

respect to their suitability for studying highly discretized and complex land cover, the 

need to evaluate the new generation of sensors, providing highest spatial/spectral 

resolutions is of critical importance.  

On the other hand, it has been hypothesised that climate changes may have the 

most pronounced effect within the Mediterranean region, especially within the more 

vulnerable coastal areas where ecosystems are threatened by the synergistic effects of 

climate change and human disturbances.  

In this context, in this study, the utility of using Ikonos high resolution satellite 

images either for estimating the LAI spatial distribution of typical Mediterranean forests 

as well as for scaling between in situ “point” measurements and medium resolution 

Landsat data, when regional-wide LAI maps need to be produced, was quantitatively 

investigated. Furthermore, some insight into the peculiarities of Mediterranean forests 

response to possible changing climatic conditions was provided. 

To this purposes, a widely used statistical approach for modelling the relationship 

between satellite-derived radiometric variables and ground measurements of biophysical 

variables, was utilised.  

In particular, with regard to the LAI investigation, the specific selection of the best 

performing LAI-spectral data empirical model was performed on the basis of results 

provided by: a) an analysis of covariance (ANCOVA) of LAI having as independent 

variables the radiometric variables (i.e. one-by-one individual band as well as several 

spectral VIs were tested), the year of observation and the vegetation typology, and 

considering all possible interactions; b) a regression analyses between field LAI data and 

the various tested radiometric variables. Specifically, the ANCOVA analysis, performed 

using the pooled dataset (both year, all vegetation typologies) in order to explore the 

possible dependency of the LAI-radiometric data relationship on the year of observation 

and/or on the vegetation type, showed that only a year effect needed to be accounted for 

and hence a unique empirical model for all vegetation species, but different models for 

the two years of observation, had to be sought. Therefore, two separate datasets, one per 

year, were used in regression analyses. On this basis, comparison between univariate and 

multivariate least square regressions, performed between in situ LAI measurements and 

single radiometric variable (i.e. individual band or VI) and between in situ LAI 
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measurements and multiple band, respectively, showed the superior performances of the 

multiple band models, which finally were used to produce the first LAI maps for the areas 

under study.  

However, it must be stressed that with data used in this study results indicated not 

only an appreciable sensitivity of empirical models to the year of data collection in terms 

of significantly different model coefficients for the two years but also a substantially 

different performance results between the two years of investigation.  

These outcomes may be important for future investigations, as it indicate that even 

using images referring to the same areas, acquired during roughly the same season (i.e. 

for data used in this study in summer when forest vegetation phenological peak is 

supposed to be reached) of two following years, and under restricted off-nadir Ikonos 

satellite viewing angle requirements, very different results can be obtained. The last 

finding was hypothesised to be mainly related to the different period and, particularly, to 

the different phenological status characterising vegetation at time of 2005 data collection 

with respect to 2004 one. In particular, the too early period of 2005 observations could 

have possibly led: to residual vegetation growth between in situ LAI measurements and 

image acquisition date, causing measured LAI to significantly differ from actual LAI 

values at time of satellite overpass; to a higher impact of understory vegetation on forest 

canopy reflectance with respect to 2004.  

Moreover, the Ikonos-based LAI spatial distributions obtained so far offered the 

possibility to assess the effectiveness of using high resolution Ikonos data (i.e. Ikonos 

derived LAI maps) as subsampling for upscaling in situ LAI measurements to medium 

resolution Landsat data in order to limit the extensive, extremely labour-intensive ground 

sampling needed for a properly characterisation of medium resolution satellite data.  

In particular, the proposed strategy is implemented in two sequential steps. In the 

first step, a reduced number of LAI measurements are scaled to high resolution Ikonos 

data in order to produce a LAI spatial distribution which, in turn, provide the calibration 

data for the second upscaling to the medium resolution Landsat image.  

Specifically, with data used in this study, it was shown that this procedure 

allowed an increase of about 25% of the amount of variation of LAI explained by means 

of Landsat ETM radiometric data directly calibrated by means of field LAI 

measurements.  
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In conclusion, while the work carried out showed the potential of using high 

spatial resolution satellite data (e.g. Ikonos) for LAI retrieval in Mediterranean areas, it 

is clear that more research is required before LAI of these forests can be routinely 

remotely estimated with confidence. 

In particular, additional research is needed in order to effectively understand the 

sensitivity of the LAI-radiometric data relationship to the timing of data collection. A 

key issue of future studies should be to clarify whether, and under which constraints, it 

is possible to apply empirical relationships calibrated using data collected at a certain 

time point (year) to satellite data acquired in different years. In fact, in this study, 

because of the above mentioned differences in the timing of data collection (and hence 

in the vegetation phenological status) in the two years, it has not been possible to 

effectively verify the appropriateness of such a temporal extrapolation.  

As a result, the retrospective analysis we conducted was limited to qualitative 

estimates of inter-annual variability in vegetation biomass, as assessed by spectral VIs. 

Even with these limitations our analyses yielded interesting results. In particular, they 

showed that it is possible to highlight an effect of climatic variations on the late spring- 

early summer greenness peak of Mediterranean vegetation by means of remotely sensed 

data. Furthermore, they pointed out that responses to interannual variations in rainfall 

and temperature regimes depends on vegetation typology. Even within the same 

ecosystem different vegetation typologies showed significant diversity in their response 

to variations in climatic parameters. Finally, our results pointed out that in 

Mediterranean ecosystems the association between climatic variations and biomass 

seasonal peaks can differ from what is observed at higher latitudes. In fact, at higher 

latitudes a positive effect of increased temperature on vegetation growth is observed, 

whereas our results indicated a reduction of VIs when mean temperatures rose in 

Mediterranean areas, where water availability is a primary limiting factor for vegetation 

growth. 

Clearly, although the results of this exploratory study are encouraging, much work 

remains to be done in order to convert the available knowledge into quantitative and 

operative findings and, more generally, to understand the dynamics of Mediterranean 

vegetation. In fact, while remote sensing has been shown to provide an effective 

contribution in these important endeavours, it seems extremely difficult to draw general 
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conclusions and make quantitative predictions about the possible prevalent or overall 

response which the forecasted climatic change will provoke in Mediterranean ecosystems. 

All the more if we consider that the observed results, i.e. the relationships between 

vegetation productivity and cumulative temperatures and precipitations, have been 

obtained with climatic variations less extreme than those expected over the next century. 

In view of the hydric critical conditions of most Mediterranean areas resulting from the 

more recently forecasted scenarios and the observed different responses of the diverse 

vegetation typologies it is likely that the latter may alter their competitive ability and thus 

their ecology and conservation, with possible future changes in structure and functioning 

of ecosystems. 

In refining and validating results obtained so far, future applications may exploit 

the new generation of high temporal resolution sensors (i.e., MODIS) to monitor the 

greenness levels along the whole annual phenological cycle at a spatial resolution as fine 

as 250 m (Zhang et al., 2003). For example, taking advantage of its increased spatial 

resolution compared to its predecessor (i.e. the 1 km-AVHRR) MODIS observations can 

be used for evaluating the timing of peak greenness (maximum vegetation 

activity/productivity) per study sites or even per vegetation community. Also, the 

investigation should be extended to other, possibly widest areas. Larger data sets should 

be used to further explore the benefits and robustness of multivariate models, making it 

possible to use part of the data for developing the empirical relationship (training) and 

the other part for assessing the predictive ability of the model (validation). 

In general, and particularly when dealing with extensive areas, data from satellite 

images should be integrated with data from the rapidly proliferating volume of spatial 

information, available at increasingly higher spatial resolutions, e.g., DEM, soil maps, 

land cover/vegetation maps. Such approach may contributes to improving the capacity 

of information extraction from satellite data by allowing the design of algorithms that 

optimally assimilate remote sensing information (Liang 2004, Tuyl 2005). These 

additional ancillary data might also enhance our confidence in the resultant 

interpretations. In fact, the correlational nature of most analyses prevent or limit the 

assignment of causal relations between the observed phenomena, as is typical of 

experimental studies, and only allow inferential explanations. Thus, the interpretation of 

results might be strengthened by including in the analyses further environmental data 
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which are known to influence the processes under study. For example, information on 

terrain aspect and slope (DEM-derived products), as well as soil characteristics (e.g., 

depth and texture) would allow to better account for actual water availability at a 

specific location taking into account both distributed climatic data, i.e. temperature and 

precipitation, and soil water holding capacity. 

Furthermore, a more detailed knowledge of overall ecological conditions might 

facilitate the extrapolation of results obtained within a specific site to habitat 

characterised by similar conditions. 

Finally, a further step would be the implementation of scaling studies combing 

remote sensing and physiologically-based process modelling, which represent a rapidly 

evolving field. A variety of process models now exists which provide forest 

photosynthesis and primary production estimates, whose reliability obviously depend on 

the accuracy of input data. These models, applied in a spatially distributed mode, can  

assimilate a diverse assemblage of environmental data, including information on soils, 

climate, and vegetation (Turner et al., 2004) and hence might effectively 

integrate satellite-derived spatial data layer, such as LAI.  
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