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Chapter 1 
 

Introduction 
 

 

 

 

 

 

 

 

 

 

Diabetes is a serious chronic disease which causes a high rate of morbidity and mortality all 

over the world. In 2007, more than 246 million people suffered from diabetes worldwide 

and unfortunately the incidence of diabetes is increasing at alarming rates. The number of 

people with diabetes is expected to double within the next 25 years due to a combination of 

population ageing, unhealthy diets, obesity and sedentary lifestyles. It can lead to blindness, 

heart disease, stroke, kidney failure, amputations and nerve damage. In women, diabetes 

can cause problems during pregnancy and make it more likely for the baby to be born with 

birth defects. Moreover, statistical analysis shows that 75% of diabetic patients die 

prematurely of cardiovascular disease (CVD). The absolute risk of cardiovascular disease in 

patients with type 1 (insulin-dependent) diabetes is lower than that in patients with type 2 

(non-insulin-dependent) diabetes, in part because of their younger age and the lower 

prevalence of CVD risk factors, and in part because of the different pathophysiology of the 

two diseases. Unfortunately, about 9 out of 10 people with diabetes have type 2 diabetes. 

For these reasons, cardiopathes and diabetic patients need to be frequently monitored and 

in some cases they could easily perform at home the requested physiological measurements 

(i.e. glycemia, heart rate, blood pressure, body weight, and so on) sending the measured 

data to the care staff in the hospital. Several researches have been presented over the last 

years to address these issues by means of digital communication systems. The largest part of 

such works uses a PC or complex hardware/software systems for this purpose. Beyond the 

cost of such systems, it should be noted that they can be quite accessible by relatively young 

people but the same does not hold for elderly patients more accustomed to traditional 

equipments for personal entertainment such as TV sets.   
Wearable devices can permit continuous cardiovascular monitoring both in clinical settings 

and at home. Benefits may be realized in the diagnosis and treatment of a number of major 
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diseases. In conjunction with appropriate alarm algorithms, they can increase surveillance 

capabilities for CVD catastrophe for high-risk subjects. Moreover, they could play an 

important role in the wireless surveillance of people during hazardous operations (military, 

fire-fighting, etc.) or during sport activities.  

 

For patients with chronic cardiovascular disease, such as heart failure, home monitoring 

employing wearable device and tele-home care systems may detect exacerbations in very 

early stages or at dangerous levels that necessitate an emergency room visit and an 

immediate hospital admission. 

 

Taking into account mains principles for the design of good wearable devices and friendly 

tele-home care systems, such as safety, compactness, motion and other disturbance 

rejection, data storage and transmission, low power consumption, no direct doctor 

supervision, it is imperative that these systems are easy to use and comfortable to wear for 

long periods of time.  

 

The aim of this work is to develop an easy to use tele-home care system for diabetes and 

cardiovascular monitoring, well exploitable even by elderly people, which are the main 

target of a telemedicine system, and wearable devices for long term measuring of some 

parameters related to sleep apnoea, heart attack, atrial fibrillation and deep vein 

thrombosis.  

 

Since set-top boxes for Digital Video Broadcast Terrestrial (DVB-T) are in simple computers 

with their Operating System, a Java Virtual Machine, a modem for the uplink connection and 

a set of standard ports for the interfacing with external devices, elderly, diabetics and 

cardiopathes could easily send their self-made exam to the care staff placed elsewhere. 

 

The wearable devices developed are based on the well known photopletysmographic 

method which uses a led source/detector pair applied on the skin in order to obtain a 

biomedical signal related to the volume and percentage of oxygen in blood. Such devices 

investigate the possibility to obtain more information to those usually obtained  by this 

technique (heart rate and percentage of oxygen saturation) in order to discover new 

algorithms for the continuous and remote or in ambulatory monitoring and screening of 

sleep apnoea, heart attack, atrial fibrillation and deep vein thrombosis. 
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Chapter 2 
 

Diabetes and Cardiovascular Diseases 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diabetes is a serious metabolic disease which affects people of all ages and reduces both 

person’s quality of life and life expectancy. By 2025, the worldwide prevalence is projected 

to be 6.3 percent, a number very very high. The 65 percent of all deaths in developed 

countries are caused by cardiovascular disease of people with diabetes.  

 

Cardiovascular disease (CVD) is the number one cause of death worldwide [Mathers et al., 

2006; Murray et al., 1996]. It covers a wide array of disorders, including diseases of the 

cardiac muscle and of the vascular system supplying the heart, brain, and other vital organs.  

 

This chapter give a little review of diabetes and cardiovasclur diseases, starting from some 

aspect of diabetes and ending with an overview of the cardiovascular system, principles of 

electrocardiography, algorithms for automatic QRS detection, and a little overview of some 

diseases of cardiovascular system which are the main field of application of the devices and 

system developed in this thesis. 
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2.1 Diabetes 
Diabetes is a serious metabolic disease in which the body does not produce or properly use 

insulin [ADA, 2004]. Insulin is a naturally occurring hormone needed to transform sugar into 

energy required for daily life. 

Diabetes takes three major forms.  

• Type 1 diabetes results from destruction of the beta cells in the pancreas, leading to 

absolute insulin deficiency. It usually occurs in children and young adults and requires 

insulin treatment; 

• Type 2 diabetes, which accounts for approximately 85 to 95 percent of all diagnosed 

cases, is usually characterized by insulin resistance in which target tissues do not use 

insulin properly; 

• Gestational diabetes, is first recognized during pregnancy.  

Other rare types of diabetes include those caused by genetic conditions, surgery, drug use, 

malnutrition, infections, and other illnesses. 

 

The disease affects persons of all ages and reduces both a person’s quality of life and life 

expectancy and imposes a large economic burden on the health care system and on families. 

In 2003, the worldwide prevalence of diabetes was estimated at 5.1 percent among people 

age 20 to 79. By 2025, the worldwide prevalence is projected to be 6.3 percent, a 24 percent 

increase compared with 2003. The death rate of men with diabetes is 1.9 times the rate for 

men without diabetes, and the rate for women with diabetes is 2.6 times that for women 

without diabetes [Lee et al., 2000]. Premature mortality caused by diabetes results in an 

estimated 12 to 14 years of life lost [Manuel et al., 2004; Narayan et al., 2003]. 

Cardiovascular disease (CVD) causes up to 65 percent of all deaths in developed countries of 

people with diabetes [Geiss et al., 1995]. 

The World Health Organization (WHO) estimates that, in 2001, 959,000 deaths worldwide 

were caused by diabetes. More recent estimates by WHO suggest that the actual number 

may be triple this estimate [WHO, 2004]. 

 

2.1.1 Related Complications 
Diabetes-related complications include: 

• Microvascular diseases (e.g. retinopathy, blindness, nephropathy, and kidney 

failure); 

• Macrovascular diseases (coronary heart disease, stroke, peripheral vascular disease 

and lower-extremity amputation); 

• Influenza and pneumococcal infections; 

• Eye complications (e.g 39 percent of people with diabetes in India had eye-related 

complications [Rajala et al., 1998]). 
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Diabetes imposes large economic burdens on national health care systems and affects both 

national economies and individuals and their families.  

• Direct medical costs include resources used to treat the disease. They range from 2.5 

to 15.0 percent of annual health care budgets, depending on local prevalence and 

sophistication of the treatments available [IDF, 2003]; 

• Indirect costs include lost productivity caused by morbidity, disability, and premature 

mortality; 

• Intangible costs refer to the reduced quality of life for people with diabetes brought 

about by stress, pain, and anxiety. With a value of 1 representing the health-related 

quality of life without illness and 0 representing death, people with type 2 diabetes 

had a value of 0.77 in the population of the United Kingdom prospective diabetes 

study [Clarke et al., 2002]. 

 

2.1.2 Risk Factors 
Risk factors for diabetes vary by disease type: 

• Type 1 diabetes is most likely a polygenic disease, and a number of potential 

environmental risk factors have been implicated, including dietary factors, infectious 

agents, chemicals and toxins [Akerblom et al., 1998]; 

• The risk for type 2 diabetes is higher in monozygotic twins and people with a family 

history of diabetes [Rich, 1990]. This finding strongly suggests that genetic 

determinants play a role, but so far few genes have been associated with type 2 

diabetes. 

 

Environmental factors include [Qiao et al., 2004]: 

• Prenatal factors; 

• Obesity; 

• Physical inactivity; 

• Dietary; 

• Socioeconomic factors.  

Exposure to diabetes in utero increases the risk of developing type 2 diabetes in early 

adulthood [Dabelea et al., 2000].  

Sugar-sweetened beverages are associated with an increased risk of diabetes [Schulze et al., 

2004]. High intakes of dietary fiber and of vegetables may reduce the risk of diabetes [Fung 

et al., 2002; Stevens et al., 2002]. 

 

The strongest and most consistent risk factors for diabetes and insulin resistance among 

different populations are obesity and weight gain [Haffner, 1998]: for each unit increase in 

body mass index, the risk of diabetes increases by 12 percent [Ford et al., 1997]. The 

distribution of fat around the trunk region, or central obesity, is also a strong risk factor for 
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diabetes [Yajnik, 2001].  Therefore, diabetes risk may be reduced by increasing physical 

activity. Conversely, a sedentary lifestyle and physical inactivity are associated with 

increased risks of developing diabetes [Hu et al., 2003].  

 

2.1.3 Interventions and Delivery Modes 
Interventions against diabetes include those for: 

• preventing the disease; 

• detecting the disease in its asymptomatic stage; 

• managing the disease to reduce its complications. 

 

2.1.3.1 Preventing Type 1 Diabetes 
Not enough scientific evidence is available to indicate that type 1 diabetes can be prevented, 

although various interventions have been explored. Examples of tested interventions include 

eliminating or delaying exposure to bovine protein and using insulin or nicotinamide for 

people at high risk of developing the disease. 

 

2.1.3.2 Preventing Type 2 Diabetes 
Intensive lifestyle interventions involving a combination of diet and physical activity can 

delay or prevent diabetes among people at high risk [Eriksson et al., 1991; Knowler et al., 

2002; Pan et al., 1997; Tuomilehto et al., 2001]. 

 

2.1.3.3 Detecting Diabetes or Prediabetes  
The benefits of early detection of type 2 diabetes through screening are not clearly 

documented, nor is the choice of the appropriate screening test established. Questionnaires 

used alone tend to work poorly; biochemical tests alone or in combination with assessment 

of risk factors are a better alternative [Engelgau et al., 2000]. 

 

2.1.3.4 Managing Diabetes 
Short follow-up of self-management training on knowledge, frequency, and accuracy of self-

monitoring of blood glucose, self-reported dietary habits and glycemic control show high-

quality evidence of positive effects. 

 

2.1.4 Intensive Glucose Control 
The aim of intensive glucose control is to lower the glucose level of a person with diabetes to 

a level close to that of a person without diabetes. The U.K. Prospective Diabetes Study 
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clearly demonstrates that lowering glucose levels can prevent or delay long-term diabetes 

complications [UKPDS, 1998]. 

 

2.1.5 Diabetes Education 
People with diabetes play a central role in managing their disease. Thus, diabetes education 

is an integral part of diabetes care. The goal of diabetes education is to support the efforts 

of people with diabetes to understand the nature of their illness and its treatment, to 

identify emergency health problems at early, to adhere to self-care practices and to make 

necessary changes to their health habits [IDA, 2003].  

Moreover, diabetes self-management reduces medical costs for diabetes care in the short 

term. 

 

2.1.6 Quality of Diabetes Care 
The quality of diabetes care generally remains suboptimal worldwide, regardless of a 

particular country’s level of development, health care system, or population [Garfield et al., 

2003].  The Costs of Diabetes in Europe study, conducted in eight European countries, found 

suboptimal diabetes care in each country [Liebl et al., 2002]. In the United States, 

population-based surveys in the 1990s among adults age 18 to 75 with diabetes found that 

only 63 percent of them had had a dilated eye examination and only 55 percent had had a 

foot examination within the past year, 18 percent had poor glycemic control, 42 percent had 

good cholesterol control, and 66 percent had a blood pressure within the normal range 

[Saaddine et al., 2002]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



21 

 

2.2 Cardiovascular Diseases 
 

2.2.1 Overview of Cardiovascular System 

2.2.1.1 The Heart 
The human heart is divided by a muscular wall into a right side and left side, each being one 

self-contained pumping station, but the two being connected in series (Fig. 2.1): 

• the left side of the heart drives oxygen-rich blood through the aortic semilunar outlet 

valve into the systemic circulation, which carries the blood to each cell in the body 

from which it returns to the right side of the heart poor in oxygen and rich in carbon 

dioxide [Tortora et al., 1993]; 

• the right side of the heart then drives this oxygen-poor blood through the pulmonary 

semilunar (pulmonic) outlet valve into the pulmonary circulation, which carries the 

blood to the lungs where its oxygen supply is replenished and its carbon dioxide 

content is purged before it returns to the left side of the heart.  

 

 
Figure 2.1: Anterior view of the human heart showing the four chambers, the inlet and outlet 

valves, the inlet and outlet major blood vessels, the wall separating the right side from the 

left side, and the two cardiac pacing centers (the sinoatrial node and the atrioventricular 

node) [Dorf et al., 2006]. 

 

Because of the anatomic proximity of the heart to the lungs, the right side of the heart does 

not have to work very hard to drive blood through the pulmonary circulation, so it functions 
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as a low-pressure (P ≤ 40 mmHg) compared with the left side of the heart, which does most 

of its work at a high pressure (up to 140 mmHg) to drive blood through the entire systemic 

circulation to the furthest extremes of the organism [Caro et al., 1978]. 

 

Each cardiac side is divided into two chambers: a small upper receiving chamber, or atrium, 

separated by a one-way valve from a lower discharging chamber, or ventricle, which is about 

twice the size of its corresponding atrium. In order of size, the left atrium is the smallest 

chamber of the entire heart, holding at rest about 45 ml of blood and operating at pressures 

on the order of 0 to 25 mmHg. The right atrium is next (63 ml of blood and 0 to 10 mmHg of 

pressure), followed by the left ventricle (100 ml of blood and up to 140 mmHg of pressure) 

and the right ventricle (about 130 ml of blood and up to 40 mmHg of pressure).  

 

During the filling phase (diastole), the inlet valves of the two ventricles (tricuspid valve from 

right atrium to right ventricle and bicuspid or mitral valve from left atrium to left ventricle) 

are open, and the outlet valves (pulmonary and aortic semilunar valve) are closed and the 

heart can expand to its end-diastolic-volume (EDV) [Kaley et al., 1977]. During the systole, 

electrically induced vigorous contraction of cardiac muscle drives the intraventricular 

pressure up, forcing the one-way inlet valves closed and the unidirectional outlet valves 

open as the heart contracts to its end-systolic-volume (ESV). Thus the ventricles normally 

empty about half their contained volume with each heart beat, the remainder being termed 

the cardiac reserve volume. The difference between the actual EDV and the actual ESV, 

called the stroke volume (SV), is the volume of blood expelled from the heart during each 

systolic interval. The ratio of SV to EDV is called the cardiac ejection ratio [Lentner, 1980]. If 

the stroke volume is multiplied by the number of systolic intervals per minute, or heart rate 

(HR), one obtains the total cardiac output (CO): 

 

�� � �� � ��	
 � ��
                                                                                                             (2.1) 

 

2.2.1.2 The Vascular System 
The vascular system is divided by a microscopic capillary (Fig. 2.2) network into an high-

pressure upstream viscoelastic tubes that carry blood away from the heart, and a low-

pressure downstream elastic conduits that return blood back to the heart. Except for their 

differences in thickness, the walls of the largest arteries and veins consist of the same three 

distinct, well-defined, and well-developed layers. These layers are: 

• the thinnest tunica intima, a continuous lining (the vascular endothelium) consisting 

of a single layer of simple squamous endothelial cells; 

• the thickest tunica media, composed of numerous circularly arranged elastic fibers, 

especially prevalent in the largest blood vessels on the arterial side (allowing them to 

expand during systole and to recoil passively during diastole); 

• the medium-sized tunica adventitia, consisting entirely of connective tissue. 
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The largest blood vessels, such as the aorta, the pulmonary artery, the pulmonary veins, 

and others, have such thick walls that they require a separate network of tiny blood vessels 

just to service the vascular tissue itself [Chandran et al., 1992]. The thick-walled large 

arteries and main distributing branches are designed to withstand the pulsating 80 to 130 

mmHg blood pressures that they must endure. The smaller elastic conducting vessels need 

only operate under steadier blood pressures in the range 70 to 90 mmHg, but they must be 

thin enough to penetrate and course through organs without unduly disturbing the anatomic 

integrity of the mass involved.  

 

 
Figure 2.2: The cardiac microscopic capillary network. 

 

It is not surprising that, at any given instant, about two-thirds of the total human blood 

volume residing in the venous system and the remaining one-third being divided among the 

heart (6.5%), the microcirculation (7% in systemic and pulmonary capillaries), and the 

arterial system (19.5 to 20%). 

 

Using an electrical analogy, one can think of the human cardiovascular system as a voltage 

source (the heart), two capacitors (a large venous system and a smaller arterial system), and 

a resistor (the microcirculation taken as a whole). Blood flow and the dynamics of the 

system represent electrical inductance, and useful engineering approximations can be 

derived from such a simple model.  
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2.2.1.3 The Conduction System 
The conductive system of the heart is composed of specialized fibers that can be subdivided 

into excitation and conduction fiber (Fig. 2.3). It consists of the sinoatrial (SA) node, 

intermodal tracks, Bachmann’s bundle, the atrioventricular (AV) node, the bundle of His, 

bundle branches and Purkinje fibers. Cardiac cells are able to depolarize at a rate specific for 

the cell type. The intrinsic rate of AV-nodal cells is about 50 beats per minute, whereas 

Purkinje fibers depolarize at a rate of no more than 40 bpm. During normal sinus rhythm, the 

heart is controlled by the SA node having the highest intrinsic rate of 60/100 bpm, 

depending on the hemodynamic demand. The right atrial internodal tracks and Bachmann’ s 

bundle conduct the SA-nodal activation throughout the atria, initiating a coordinated 

contraction of the atrial walls. Meanwhile, the impulse reaches the AV node, which is the 

only electrical connection between atria and ventricles. The AV node introduces an effective 

delay, allowing the contraction of the atria to complete before ventricular contraction is 

initiated. Due to this delay, an optimal ventricular filling is achieved. Subsequently, the 

electrical impulse is conducted at a high velocity by the His-Purkinje system comprising the 

bundle of His, bundle branches, and Purkinje fibers. Once the bundle of His is activated, the 

impulse splits into the right bundle branch, which leads to the right ventricle and the left 

bundle branch serving the left ventricle. Both bundle branches terminate in Purkinje fibers 

[Guyton et al., 1996].   

 
Figure 2.3: The cardiac conduction system. 
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2.2.1.4 Cardiovascular Control 
Control of cardiovascular function is accomplished by mechanisms that are based either on 

the inherent physicochemical attributes of the tissues and organs themselves (intrinsic 

control) or on responses that can be attributed to the effects on cardiovascular tissues of 

other organ systems in the body (extrinsic control). For example, the accumulation of 

wastes and depletion of oxygen and nutrients that accompany the increased rate of 

metabolism in an active tissue both lead to an intrinsic relaxation of local capillary with a 

consequent reduction of the local resistance to flow and thereby allows more blood to 

perfuse the active region. On the other hand, the extrinsic innervation by the autonomic 

nervous system of smooth muscle tissues in the walls of arterioles allows the central nervous 

system to completely shut down the flow to entire vascular beds when this becomes 

necessary (such as during exposure to extremely cold environments). In addition to 

controlling the distribution of blood, physiologic regulation of cardiovascular function is 

directed mainly at four other variables:  

• cardiac output; 

• blood pressure; 

• blood volume; 

 

Cardiac output can be increased by increasing the heart rate, increasing the end-diastolic 

volume, decreasing the end-systolic volume, or doing all three things at once. Under the 

extrinsic influence of the sympathetic nervous system, HR can triple, EDV can increase by as 

much as 50% and ESV can decrease a comparable amount to about 30 to 35 ml or less.  

 

The control of blood pressure is accomplished mainly by adjusting at the arteriolar level the 

downstream resistance to flow. This effect is conveniently quantified by a fluid-dynamic 

analogue to Ohm’s famous V = R*I law in electrotechnics theory. Voltage drop V being 

equated to fluid pressure drop P, electric current I corresponding to flow and electric 

resistance R being associated with an analogous vascular peripheral resistance.  

 

The control of blood volume is accomplished mainly through the excretory function of the 

kidney. For example, antidiuretic hormone secreted by the pituitary gland acts to prevent 

renal fluid loss and thus increases plasma volume, whereas perceived extracellular fluid 

overloads such as those which result from the peripheral vasoconstriction response to cold 

stress lead to a sympathetic receptor-induced renal diuresis (urination) that tends to 

decrease plasma volume to sometimes dangerously low dehydration levels.  
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2.2.1.5 Principles of Electrocardiography 
The electrocardiogram (ECG) is the recording on the body surface of the electrical activity 

generated by the heart (Fig. 2.4).  

 
Figure 2.4: Electrical activity generated by the heart. 

 

It was originally observed by Waller in 1889 [Waller, 1889] using his pet bulldog as the signal 

source and the capillary electrometer as the recording device. In 1903 Einthoven [Einthoven, 

1903] enhanced the technology by using the string galvanometer as the recording device 

and using human subjects with a variety of cardiac abnormalities. Einthoven is chiefly 

responsible for introducing some concepts still in use today including the labeling of the 

various waves, defining some of the standard recording sites, and developing the first 

theoretical construct whereby the heart is modeled as a single time-varying dipole.  

 

In order to record an ECG waveform, a differential recording between two points on the 

body are made. Traditionally each differential recording is referred to as a lead. Einthoven 

defined three leads numbered with the Roman numerals I, II, and III.  
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Figure 2.5: Einthoven leads. 

 

They are defined as: 

 

� � 
�� � 
��                                                                                                                                   (2.2) 

 

�� � 
�� � 
��                                                                                                                                 (2.3) 

 

��� � 
�� � 
��                                                                                                                                (2.4) 

 

�� � � � ���                                                                                                                                        (2.5) 

 

where RA = right arm, LA = left arm, LL = left leg. Because the body is assumed to be purely 

resistive at ECG frequencies, the four limbs can be thought of as wires attached to the torso. 

Hence, lead I could be recorded from the respective shoulders without a loss of cardiac 

information. 

 

For 30 years the evolution of the ECG proceeded when Wilson [Wilson et al., 1934] added 

concepts of a unipolar recordings (Fig. 2.6). He created a reference point by tying the three 

limbs together and averaging their potentials so that individual recording sites on the limbs 

or chest surface would be differentially recorded with the same reference point.  
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Figure 2.6: Wilson’s central terminal and chest unipolar recordings. 

 

 
Figure 2.7: Goldberger’s augmented leads. 

 

Wilson extended the biophysical models to include the concept of the cardiac source 

enclosed within the volume conductor of the body. From the mid-1930s until today the 12 

leads composed of the 3 limb leads, 3 leads in which the limb potentials are referenced to a 

modified Wilson terminal [Goldberger, 1942] (the augmented leads (Fig. 2.7)), and 6 leads 

placed across the front of the chest and referenced to the Wilson terminal (Fig. 2.6) form the 

basis of the standard 12-lead ECG.  The voltage difference from any two sites will record an 

ECG, but it is these standardized sites with the massive 90-year collection of empirical 

observations that has firmly established their role as the standard. A typical ECG recording 

from lead II is shown in Fig. 2.8.  
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Figure 2.8: ECG lead II typical nomenclature. 

 

Einthoven chose the letters of the alphabet from P–U to label the waves and to avoid 

conflict with other physiologic waves being studied at the turn of the century. The ECG 

signals are typically in the range of 2mV and require a recording bandwidth of 0.05 to 100 

Hz. Full technical specification for ECG equipment has been proposed by both the American 

Heart Association [Bailey et al., 1990] and the Association for the Advancement of Medical 

Instrumentation [AAMI, 1993]. 

 

Other subsets of the 12-lead ECG are used in limited mode recording situations such as the 

tape-recorded ambulatory ECG (usually 2 leads) or in intensive care monitoring at the 

bedside (usually 1 or 2 leads) or telemetered within regions of the hospital from patients 

who are not confined to bed (1 lead). 

 

More recently the high resolution ECG has been developed whereby the digitized ECG is 

signal averaged to reduce random noise [Berbari et al., 1973; Berbari et al., 1977]. This 

approach, coupled with post-averaging high-pass filtering, is used to detect and quantify 

low-level signals (1.0 μV) not detectable with standard approaches.  

 

There are hundreds of interpretive statements from which a specific diagnosis is made for 

each ECG, but there are only about five or six major classification groups for which the ECG is 

used. The first step in analyzing an ECG requires the determination of the rate and rhythm 

for the atria and ventricles. Included here would be any conduction disturbances either in 

the relationship between the various chambers or within the chambers themselves. Then 
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one would proceed to identify features that would relate to the presence or absence of 

scarring due to a myocardial infarction. There may also be evidence of acute events 

occurring that would occur with ischemia or an evolving myocardial infarction.  

 

ECG signals may be corrupted by various kinds of noise. 

• power line interference; 

• electrode contact noise; 

• motion artifacts; 

• muscle contraction (electromyographic, EMG); 

• baseline drift and ECG amplitude modulation with respiration; 

• instrumentation noise generated by electronic devices used in signal processing; 

• electrosurgical noise, and other, less significant noise sources [l].  

 

Power line interference consists of 50/60 Hz pickup and harmonics which can be modeled as 

sinusoids and combination of sinusoids [2]. 

 

Electrode contact noise is transient interference caused by loss of contact between the 

electrode and skin, which effectively disconnects the measurement system from the subject. 

The loss of contact can be permanent, or can be intermittent, as would be the case when a 

loose electrode is brought in and out of contact with the skin as a result of movements and 

vibration. This switching action at the measurement system input can result in large artifacts 

since the ECG signal is usually coupled to the system. With the amplifier input disconnected, 

50 Hz interference may be significant. 

 

Motion artifacts are transient baseline changes caused by changes in the electrode-skin 

impedance with electrode motion. As this impedance changes, the ECG amplifier sees a 

different source impedance, which forms a voltage divider with the amplifier input 

impedance. Therefore, the amplifier input voltage depends on the source impedance, which 

changes as the electrode position changes. The usual cause of motion artifacts will be 

assumed to be vibrations or movement of the subject. The shape of the baseline disturbance 

caused by motion artifacts can be assumed to be a biphasic signal resembling one cycle of a 

sine wave. The peak amplitude and duration of the artifact are variables. 

 

Muscle contractions cause artifact potentials to be generated. The baseline ECG is usually in 

the microvolt range and therefore is usually insignificant. The signals resulting from muscle 

contraction can be assumed to be transient bursts of zero-mean band-limited Gaussian 

noise. The variance of the distribution may be estimated from the variance and duration of 

the bursts. 
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The drift of the baseline with respiration can be represented as a sinusoidal component at 

the frequency of respiration added to the ECG signal. The amplitude and frequency of the 

sinusoidal component should be variables. The amplitude of the ECG signal also varies by 

about 15% with respiration.  

 

When an ECG is corrupted by artifacts generated by electronic devices used in signal 

processing, the input amplifier has saturated and no information about the ECG can be 

reach. 

 

Electrosurgical noise completely destroys the ECG and can be represented by a large 

amplitude sinusoid with frequencies approximately between 100 kHz and 1 MHz. Since the 

sampling rate of an ECG signal is 250 to 1000 Hz, an aliased version of this signal would be 

added to the ECG signal. The amplitude, duration, and possibly the aliased frequency should 

be variable. 

 

2.2.1.6 QRS Detection 
The QRS complex is the most striking waveform within the electrocardiogram. Since it 

reflects the electrical activity within the heart during the ventricular contraction, the time of 

its occurrence as well as its shape provide much information about the current state of the 

heart. Moreover, it serves as the basis for the automated determination of the heart rate, as 

an entry point for classification schemes of the cardiac cycle, and often it is also used in ECG 

data compression algorithms. In that sense, QRS detection provides the fundamentals for 

almost all automated ECG analysis algorithms. 

 

Software QRS detection has been a research topic for more than 30 years. Within the last 

decade many new approaches to QRS detection have been proposed, such as algorithms 

from the field of artificial neural networks [Hu et al., 1993; Strintzis et al., 1992; Vijaya et al., 

1998; Xue et al., 1992], genetic algorithms [Poli et al., 1995], wavelet transforms [Kadambe 

et al., 1999; Li et al., 1995; Bahoura et al., 1997; Cellar et al., 1997; Crowe et al., 1992] and 

filter banks [Afonso et al., 1999]. 

 

Typical frequency components of a QRS complex range from about 10 Hz to about 25 Hz. 

Therefore, almost all QRS detection algorithms use a filter stage prior to the actual detection 

stage in order to attenuate other signal components and artifacts, such as P-wave, T-wave, 

baseline drift, and coupling noise (Fig. 2.9).  
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Figure 2.9: Common structure of the QRS detectors. 

 

Whereas the attenuation of the P- and T-wave as well as baseline drift requires high-pass 

filtering, the suppression of coupling noise is usually accomplished by a low-pass filter. The 

combination of low and high pass means effectively the application of a band-pass filter, in 

this case with cut-off frequencies at about 10 Hz and 25 Hz. 

 

2.2.1.6.1 Algorithms Based on Amplitude and First Derivative 

Let ���, ���,… , ������ represent a one-dimensional array of sample points of the 

synthesized digitized ECG. 

 

A1: Moriet-Mahoudeaux [Mahoudeaux et al., 1981]. 

An amplitude threshold is calculated as a fraction of the largest positive valued element of 

that array: 

 

���. ��.� �. � � � !"��#$      &'(      � ) * ) 8191                                                         (2.6) 

 

The first derivative .�# is calculated at each point of ��# such that  

 

.�# � ��# � � �  ��# � �     &'(      � ) * ) 819�                                                           (2.7) 

 

A QRS candidate occurs when three consecutive points in the first derivative array exceed a 

positive slope threshold and are followed within the next 100ms by two consecutive points 

which exceed the negative threshold. All data points in the ECG between the onset of the 

rising slope and before the end of the descending slope must meet or exceed the amplitude 

threshold. 

 

.�/, .�/ � �, .�/ � 0 1 0.5                                                                                                     (2.8) 

 

and 

 

.�4, .�4 � � )  �0.3     678(8 �/ � 0 ) 9 ) �: � 25                                                       (2.9) 
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��/, ��/ � �,… , ��4 � � = ���. ��.                                                                                  (2.10) 

 

A2: Fraden-Neuman [Fraden et al., 1988]. 

A threshold is calculated as a fraction of the peak value of the ECG. 

 

���. ��.� �. > � � !"��#$      &'(      � ) * ) 8191                                                       (2.11) 

 

.��# � ��# :& ��# = �     &'(      � ) * ) 819�                                                              (2.12) 

 

.��# � ���# :& ��# ) 0     &'(      � ) * ) 819�                                                           (2.13) 

 

.��# � .��# :& .��# = ���. ��.                                                                                       (2.14) 

 

.��# � ���. ��.  :& .��# ) ?@A. B7.                                                                                (2.15) 

 

The first derivative is calculated at each point of the clipped, rectified array: 

 

.0�# � .��# � � � .��# � �     &'(      � ) * ) 819�                                                 (2.16) 

 

A QRS candidate occurs when a point in Y 2 ( n ) exceeds the fixed constant threshold: 

 

.0�/ 1 0.7                                                                                                                                      (2.17) 

 

A3: Gustafson [Gustafson et al., 1977]. 

The first derivative is calculated at each point of the ECG: 

 

.�# � ��# � � �  ��# � �     &'(      � ) * ) 819�                                                        (2.18) 

 

The first derivative array is then searched for points which exceed a constant threshold: 

 

.�/  = �. �D                                                                                                                                    (2.19) 

 

Then the next three derivative values .�/ � �, .�/ � 0, .�/ � � must also exceed �. �D. 

If the above conditions are met, point i can be classified as a QRS candidate if the next two 

sample points have positive slope amplitude products: 

 

.�/ � ���/ � �E#F .�/ � 0��/ � 0 1 0                                                                           (2.20) 

 

 



34 

 

2.2.1.6.2 Algorithms Based on First Derivative Only 

B1: Menard [Menard et al., 1981]. 

The first derivative is calculated for each point of the ECG, using the formula specified by: 

 

.�# �  �0��# � 0 � ��# � � � ��# � � � 0��# � 0    &'(     0 ) * ) 81��     (2.21) 

 

The slope threshold is calculated as a fraction of the maximum slope for the first derivative 

array.  

 

�GH�I��.� �. J � � !".�#$      &'(      0 ) * ) 81��                                                      (2.22) 

 

The first derivative array was searched for points which exceed the slope threshold. The first 

point that exceeds the slope threshold is taken as the onset of a QRS candidate: 

 

.�/ 1 KL'A8��.                                                                                                                             (2.23) 

 

B2: Holsinger [Holsinger et al., 1971]. 

The first derivative is calculated for the ECG: 

 

.�# � ��# � � �  ��# � �     &'(      � ) * ) 819�                                                        (2.24) 

 

This array is searched until a point is found that exceeds the slope threshold: 

 

.�/ 1 0.45                                                                                                                                      (2.25) 

 

A QRS candidate occurs if another point in the next three sample points also exceeds the 

threshold: 

 

.�/ � � 1 0.45                                                                                                                              (2.26) 

 

or 

 

.�/ � 0 1 0.45                                                                                                                              (2.27) 

 

or 

 

.�/ � � 1 0.45                                                                                                                              (2.28) 
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2.2.1.6.3 Algorithms Based on First and Second Derivative 

 

C1: Balda [Balda et al., 1977]. 

The absolute values of the first and second derivative are calculated from the ECG: 

 

.��# � ENO"��# � � � ��# � �$     &'(      0 ) * ) 81��                                            (2.29) 

 

.��# � ENO"��# � 0 � 0��# � ��# � 0$     &'(      0 ) * ) 81��                           (2.30) 

 

These two arrays are scaled and then summed: 

 

.0�# � �. �.��# � �. �.��#     &'(      0 ) * ) 81��                                                     (2.31) 

 

This array is scanned until a threshold is met or exceeded: 

 

.0�/ = �. �                                                                                                                                     (2.32) 

 

Once this occurs, the next eight points are compared to the threshold. If six or more of these 

eight points meet or exceed the threshold, the criteria for identification of a QRS candidate 

is met. 

 

C2: Ahlstrom-Tompkins [Ahlstrom et al., 1983]. 

The rectified first derivative is calculated from the ECG: 

 

.��# � ENO"��# � � � ��# � �$     &'(      � ) * ) 81��                                            (2.33) 

 

The rectified first derivative is then smoothed: 

 

.��# � .��#P�Q0.��#Q.��#Q�
>      &'(      � ) * ) 81��                                                      (2.34) 

 

The rectified second derivative is calculated: 

 

.0�# � ENO"��# � 0 � 0��# � ��# � 0$     &'(      � ) * ) 81��                           (2.35) 

 

The rectified, smoothed first derivative is added to the rectified second derivative: 

 

.��# � .��# � .0�#     &'(      � ) * ) 81��                                                                   (2.36) 

 

The maximum value of this array is determined and scaled to serve as primary and 

secondary thresholds: 
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RS/�ES.��.� �. � � � !".��#$      &'(      � ) * ) 81��                                             (2.37) 

 

�ITH#FES.��.� �. � � � !".��#$      &'(      � ) * ) 81��                                         (2.38) 

 

The array of the summed first and second derivatives is scanned until a point exceeds the 

primary threshold. In order to be classified as a QRS candidate, the next six consecutive 

points must all meet or exceed the secondary threshold: 

 

.��/ = RS/�ES.��.                                                                                                                   (2.39) 

 

and  

 

.��/ � �, .��/ � 0,… , .��/ � U  1 K8V'*WX(YB7.                                                           (2.40) 

 

2.2.1.6.4 Algorithms Based on Digital Filters 

 

D1: Engelese-Zeelenberg [Engelese et al., 1979]. 

The ECG is passed through a differentiator with a 62.5 Hz notch filter. 

 

.��# � ��# � ��# � >     &'(      > ) * ) 81��                                                               (2.41) 

 

The differentiated, filtered data is then passed through a digital low-pass filter. 

 

.��# � .��# � >.��# � � � U.��# � 0 � >.��# � � � .��# � >                      (2.42) 

 

Two thresholds are used, equal in magnitude but opposite in polarity. The output of the low-

pass filter is scanned until a point with amplitude greater than the positive threshold is 

reached. This point is the onset of a 160ms search region. The number of alternate threshold 

crossings is used to classify the initial crossing as either a baseline shift, a QRS candidate, or 

as noise: 

 

Z& .��/ 1 21.0, [78* OIEST� SI\/H# H#OI] � /                                                                (2.43) 

 

If no other threshold crossings occur within the 160ms search region, the occurrence is 

classified as a baseline shift. Otherwise, the following three conditions are tested: 

 

1 Z& .��/ � 4 ) �21.0     &'(      � ) 9 ) 40                                                                         (2.44) 

 

2 Z& .��/ � 4 ) �21.0     &'(      � ) 9 ) 40                                                                         (2.45) 
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and 

 

.��� � ^ 1 21.0     &'(      4 ) _ ) 40                                                                                     (2.46) 

 

3 Z& .��/ � 4 ) �21.0     &'(      � ) 9 ) 40                                                                         (2.47) 

 

and 

 

.��/ � ^ 1 21.0     &'(      4 ) _ ) 40                                                                                      (2.48) 

 

and 

 

.��/ � � ) �21.0     &'(      ^ ) 1 ) 40                                                                                 (2.49) 

 

If any of the above conditions apply, the occurrence is classified as a QRS candidate. If 

additional threshold crossings occur, the occurrence is classified as noise. 

 

D2: Okada [Okada, 1979]. 

The first stage smooths the ECG using a three-point moving average filter: 

 

.��# � ��#P�Q0��#Q��#Q�
>      &'(      � ) * ) 8191                                                            (2.50) 

 

The output of the moving averaging filter is passed through a low-pass filter. 

 

.��# � �
0�Q�∑ .��^#Q�^a#P�      &'(      � ) * ) �8191 � @                                            (2.51) 

 

The difference between the input and output of the lowpass filter is squared: 

 

.0�# � �.��# � .��#0     &'(      � ) * ) �8191 � @                                               (2.52) 

  

The squared difference is filtered: 

 

.��# � .0�#b∑ .0�^#Q�^a#P� c0     &'(      � ) * ) �8191 � @                                     (2.53) 

 

A fourth array is formed using the following formula: 
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The maximum value of this array is determined and scaled to form the threshold: 

 

��.� �. �0D � � !".>�#$      &'(      � ) * ) ����� ��                                            (2.55) 

 

A QRS candidate occurs when a point in Y 4 ( n ) exceeds the threshold: 

 

Z& .>�# 1 B7.     [78*       e�� TE#F/FE]I                                                                           (2.56) 

 

Okada suggests setting m equal to three for best results. However, it was determined using 

the tuning procedure that larger values of m result in improved performance for several 

types of noise.  
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2.2.2 Sleep Apnoea 
Sleep Apnoea (SA) is a common sleep disorder characterized by brief interruptions of 

breathing during sleep, with an estimated prevalence of about 4% in men and 2% in women 

[Young et al., 1993]. It can cause a total blockage of throat’s airway (i.e. apnoea) or a partial 

blockage of the airway which reduces the amount of oxygen that is taken into the body by 

50% (i.e. hypopnoea). The amount of time in which a person stops breathing during the 

sleep is usually 10 seconds or longer and sometimes for as long as a minute [Shahar et al., 

1991]. 

 

There are two major forms of SA:  

• Obstructive Sleep Apnoea (OSA); 

• Central Sleep Apnoea (CSA). 

 

Obstructive apnoeas and hypopnoeas result from complete or partial collapse of a narrowed 

pharynx during sleep [Bradley et al., 1986] (Fig. 2.10).  

 
Figure 2.10: Obstructive apnoea. 

 

In subjects with normal pharyngeal anatomy, the partial withdrawal of pharyngeal dilator 

muscle tone that accompanies the onset of sleep is insufficient to cause pharyngeal collapse. 

However, the pharynx of patients with OSA is anatomically narrowed and highly compliant. 

In this setting, the superimposition of the normal withdrawal of pharyngeal dilator muscle 

tone at sleep onset causes the pharynx to occlude, triggering apnoea or hypopnoea 

[Remmers et al., 1978]. 

 

Treatments for obstructive sleep apnoea include Continuous Positive Airway Pressure 

(CPAP), a machine that delivers air pressure through a mask placed over the nose while 

sleeping (Fig. 2.11). With CPAP, the air pressure is somewhat greater than that of the 

surrounding air, and is just enough to keep upper airways passages open, preventing apnoea 

and snoring.  
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Figure 2.11: Continuous Positive Airway Pressure for Obstructive Apnoea Treatment. 

 

Central Sleep Apnoea, commonly referred to as Cheyne-Stokes respiration, is a form of 

periodic breathing in witch apnoeas and hypopnoeas alternate with periods of 

hyperventilation. It is usually initiated during sleep by a further acute increase in ventilation 

and reduction in arterial carbon dioxide pressure (PaCO2) because the brain fails to send the 

appropriate signals to the breathing muscles to initiate respiration [Naughton et al., 1993]. 

When PaCO2 falls below the threshold level required to stimulate breathing, the central 

drive to respiratory muscles and airflow stop, and central apnoea ensues [Bradley et al., 

1992]. 

 

SA is associated with a wide range of health implications and increased cardiovascular 

diseases and mortality. It has been linked to depression, irritability, sexual dysfunction, 

learning and memory difficulties, high blood pressure (hypertension), heart attack and 

stroke. At least 50% of patients with heart failure have OSA or CSA, responsible to the 

adverse consequences of the cardiovascular system [Sin et al., 1999]. It is important to 

notice that the effects of sleep apnoea on the cardiovascular system are not confined to 

sleep. Daytime sympathetic nervous activity and blood pressure, in fact, are increased in 

patients with OSA [Somers et al., 1995]. A continuous screening of sleep apnoea disorder is 

needed in order to have a major benefit of the treatment on cardiovascular outcomes. 

 

The gold standard in diagnosing of SA is overnight polysomnography (PSG) (Fig. 2.12). It uses 

non-invasive methods for the recording of various physiological parameters including EEG, 

ECG, EMG, nasal airflow, abdominal and thoracic movements and blood oxygen saturation 

(SpO2) [Haponik et al., 1984]. 
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Figure 2.12: Overnight Polysomnography. 

 

Fig. 2.12 shows that as a result of sleep apnoea, the oxygen level in the bloodstream falls 

and carbon dioxide which is a waste product of the body's chemical processes, accumulates. 

After a while the changes in these two chemicals in the bloodstream stimulate breathing 

again and the patient starts to make respiratory efforts. 
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2.2.3 Atrial Fibrillation 

Atrial Fibrillation (AF) is a supraventricular arrhythmia characterized by uncoordinated atrial 

activation with consequent deterioration of atrial mechanical function [Fuster et al., 2001]. 

An arrhythmia is a problem with the speed or rhythm of the heartbeat. AF occurs when 

rapid, disorganized electrical signals in the heart’s two upper chambers cause them to 

contract very fast and irregularly (Fig. 2.13). As a result, blood pools in the atria and isn’t 

pumped completely into the heart’s two lower chambers (ventricles). When this happens, 

the heart’s upper and lower chambers don’t work together as they should [Wyse et al., 

2002]. 

 

 
Figure 2.13: Comparison between a normal conduction and atrial fibrillation. 

 

There are three types of atrial classification: 

• paroxysmal atrial fibrillation: the abnormal electrical signals and rapid heart rate 

begin suddenly and then stop on their own; 

• persistent atrial fibrillation:  the abnormal heart rhythm continues until it is stopped 

with treatment; 

• permanent atrial fibrillation: the normal heart rhythm cannot be restored with the 

usual treatments; 

Both paroxysmal and persistent atrial fibrillation may become more frequent and eventually 

result in permanent AF.  

 

On the electrocardiogram, AF is described by the replacement of consistent P waves by rapid 

oscillations that vary in size, shape, and timing, associated with an irregular, frequently rapid 

ventricular response [Fuster et al., 2001] (Fig. 2.14).  
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Figure 2.14: Atrial fibrillation events in a ECG recording. 

 

AF can be isolated or associated with other arrhythmias, often atrial flutter or atrial 

tachycardia. Atrial flutter can arise during treatment with antiarrhythmic agents prescribed 

to prevent recurrent AF. Untreated, the atrial rate typically ranges from 240 to 320 beats per 

minute (bpm).  

 

The clinical risk factors for AF include advancing age, diabetes, hypertension, congestive 

heart failure, rheumatic and nonrheumatic valve disease, myocardial infarction and stroke 

[Capucci et al., 1995]. In fact, during AF, the atria don’t pump all of their blood to the 

ventricles and some blood may pools in the atria. When this happens, a blood clot (a 

thrombus) can form. If the clot breaks off and travels to the brain, it can cause a stroke    

(Fig. 2.15).  

 
Figure 2.15: Stroke caused by a clot due to atrial fibrillation disease. 
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2.2.4 Deep Vein Thrombosis and Pulmonary 

Embolism 

Thrombosis is the formation of blood clots within blood vessels. Deep Vein Thrombosis 

(DVT) is a blood clot that forms in a vein deep in the body [Abelsethe et al., 1996]. Most 

deep vein blood clots occur in the lower leg but they also can occur in other parts of the 

body (brachial vein, radial vein, ulnar vein, femoral vein, popliteal vein, peroneal vein, 

anterior tibial vein, posterior tibial vein). 

 

 
Figure 2.16: A deep vein clot in femoral vein. 

 

A DVT can occur without symptoms, but in many cases the affected extremity will be painful, 

swollen, red, warm and the superficial veins may be engorged [Levenson et al., 1990]. 

 

The gold standard in treatment of DVT is Oral Anticoagulant Therapy (OAT), also called blood 

thinner. OAT decrease the blood's ability to clot or also stop existing blood clots from getting 

bigger. However, blood thinners can't break up blood clots that have already formed (the 

body dissolves most blood clots with time). Warfarin and heparin are two blood thinners 

used to treat DVT. Warfarin is given in pill form. Heparin is given as an injection [Kazmier, 

1992].  
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The most common side effect of blood thinners is bleeding. This happens if the medicine 

thins the blood too much. People treated with blood thinners usually use regular blood tests 

to measure their blood's ability to clot. These blood tests are called PT (Prothrombin Time) 

tests (Fig. 2.17). 

 

  
Figure 2.17: Automatic measurement of PT. 

 

These tests help the doctor make sure the patient is taking the right amount of medicine.  

 

Blood clots can form in deep veins when: 

• damage occurs to a vein's inner lining. This damage may result from injuries caused 

by physical, chemical, and biological factors. Such factors include surgery, serious 

injury, inflammation, or an immune response; 

• blood flow is sluggish or slow. Lack of motion can cause sluggish or slowed blood 

flow. This may be caused after surgery,  by illnesses and in bed or travelling for a long 

time;  

• the blood is thicker or more likely to clot than usual. Certain inherited conditions 

(such as the genetic factor V Leiden), treatment with hormone replacement therapy 

or using birth control pills, increase blood's tendency to clot. 

 

A blood clot in a deep vein can break off and travel through the bloodstream. The loose clot 

is called an embolus. When the clot travels to the lungs and blocks blood flow, the condition 

is called Pulmonary Embolism (PE) (Fig. 2.18) [Tsai et al., 2002].  

 

 



46 

 

 
Figure 2.18: Pulmunary embolism. 

 

PE is a serious condition that can cause: 

• permanent damage to part of lungs from lack of blood flow to lung tissue; 

• low oxygen levels in blood;  

• damage to other organs in from not getting enough oxygen; 

• death. 
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2.2.5 Myocardial infarction or Heart Attack 

Myocardial infarction (MI), commonly known as a heart attack (HA), occurs when the blood 

supply to part of the heart is interrupted [AHA, 2006]. This is most commonly due to 

occlusion (blockage) of a coronary artery (Fig. 2.19). 

 

 
Figure 2.19: Heart Attack caused by the occlusion of the coronary artery. 

 

The resulting restriction in blood supply (ischemia) and oxygen shortage, if left untreated for 

a sufficient period, can cause damage and/or death (infarction) of heart muscle tissue. Heart 

attacks are the leading cause of death for both men and women all over the world [WHO, 

2004]. 

 

Classical symptoms of acute myocardial infarction include sudden chest pain (typically 

radiating to the left arm or left side of the neck), shortness of breath, nausea, vomiting, 

palpitations, sweating, and anxiety. Women may experience fewer typical symptoms than 

men, most commonly shortness of breath, weakness, a feeling of indigestion, and fatigue 

[Kosuge et al., 2006]. Approximately one quarter of all myocardial infarctions are silent, 

without chest pain or other symptoms.  
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Important risk factors are previous cardiovascular disease (such as angina, a previous heart 

attack or stroke), older age (especially men over 40 and women over 50), tobacco smoking, 

high blood levels of certain lipids (triglycerides, low-density lipoprotein or "bad cholesterol") 

and low high density lipoprotein (HDL, "good cholesterol"), diabetes, high blood pressure, 

obesity, chronic kidney disease, heart failure, excessive alcohol consumption, the abuse of 

certain drugs (such as cocaine), and chronic high stress levels [D’Aiuto et al., 2006]. 

Immediate treatment for suspected acute myocardial infarction includes oxygen, aspirin, 

and sublingual glyceryl trinitrate (nitroglycerin) [Pearson et al., 2003]. The patient will 

receive a number of diagnostic tests, such as an electrocardiogram, a chest X-ray and blood 

tests to detect heart muscle damage. In patients who have multiple blockages and who are 

relatively stable bypass surgery of the blocked coronary artery is an option. 
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Chapter 3 
 

Introduction to Signal Processing 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biomedical signals, like all the other electronic signals related to a phenomenon of interest, 

need to be processed in some ways in order to remove noise and in order to extract useful 

information carried by electronic waveforms. 

 

This chapter give an introduction to digital signal processing, starting from basic concept of 

noise, Fourier transform, and ending with a brief overview of digital filters. Such techniques 

era used in deep in all hardware and software developed in this thesis. 
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3.1 Noise and Random Variables 
Noise is an inherent component of most measurements. In addition to physiological and 

environmental noise, electronic noise arises from the transducer and associated electronics 

and is intermixed with the signal being measured. It is usually represented as a random 

variable, x(n). Since the variable is random, describing it as a function of time is not very 

useful. It is more common to discuss other properties of noise such as its probability 

distribution, range of variability, or frequency characteristics. While noise can take on a 

variety of different probability distributions, the central limit theorem implies that most 

noise will have a Gaussian or normal distribution. The central limit theorem states that when 

noise is generated by a large number of independent sources it will have a Gaussian 

probability distribution regardless of the probability distribution characteristics of the 

individual sources. The probability of a Gaussianly distributed variable, is specified in the 

well-known normal or Gaussian distribution equation: 
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Two important properties of a random variable are its mean, or average value, and its 

variance. The mean value of a discrete vector is evaluated as: 

 

��IE#    �i �  �j∑ �^ĵa�                                                                                                                (3.2) 

 

The sample variance k0, is calculated as shown below, and the standard deviation σ, is just 

the square root of the variance. 

 

�l mn opq     f0 � �
rP�∑ s!t � �iu0rta�                                                                                     (3.3) 

 

�vw ox mx xqln wnyo     f �  √ f0                                                                                           (3.4) 

 

When multiple measurements are made, multiple random variables can be generated. If 

these variables are combined or added together, the means add so that the resultant 

random variable is simply the mean, or average, of the individual means. The same is true 

for the variance. 

       

fi0 � �j∑ ft0ĵa�                                                                                                                                 (3.5) 
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However, the standard deviation is the square root of the variance and the standard 

deviations add as the √z times the average standard deviation. Accordingly, the mean 

standard deviation is the average of the individual standard deviations divided by √z. 

 

∑ ft � ĵa� √jfi0 � √jfi                                                                                                               (3.6) 

 

In other words, averaging noise from different sensors, or multiple observations from the 

same source, will reduce the standard deviation of the noise by the square root of the 

number of averages.  

 

��q o vw ox mx xqln wnyo     {|} �  �r∑ ft � ĵa�
�
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MSD indicates that averaging can be a simple, yet powerful signal processing technique for 

reducing noise when multiple observations of the signal are possible. Such multiple 

observations could come from multiple sensors, but in many biomedical applications, the 

multiple observations come from repeated responses to the same stimulus. In ensemble 

averaging, a group of time responses are averaged together on a point-by-point basis and an 

average signal is constructed by taking the average, for each point in time, over all signals in 

the ensemble. Two essential requirements for the application of ensemble averaging for 

noise reduction are needed: multiple observations, and a reference signal closely to the 

response.  
3.2 Transforms 

In signal processing there are waveforms, images and entities that operate on waveforms or 

images [Hubbard, 1998]. The entities can be functions that modify the data and functions 

used to analyze or probe the data. Functions that modify data are also termed operations 

or transformations. A transform can be thought of as a re-mapping of the original data into a 

function that provides more information than the original.  

 

Many of the common transforms are achieved by comparing the signal of interest with some 

sort of probing function. This comparison takes the form of a correlation (produced by 

multiplication) that is averaged (or integrated) over the duration of the waveform, or some 

portion of the waveform: 

 

~�� �  � ��]���]F]Q�
P�                                                                                                             (3.8) 

 

where x(t) is the waveform being analyzed, fm(t) is the probing function (the basis) and m is 

some variable of the probing function, often specifying a particular member in a family of 
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similar functions. For example, in the Fourier Transform fm(t) is a family of harmonically 

related sinusoids and m specifies the frequency of an individual sinusoid in that family.  

 

Since most signal processing operations are implemented using digital electronics, functions 

are represented in discrete form as a sequence of numbers: 

 

��# � "���, ��0,… , ��j$                                                                                                       (3.9) 

 

and the integral becomes summation over a finite range: 

 

~�� � ∑ ��#���#j#a�                                                                                                             (3.10) 

 

where fm(n) is a discrete version of the family of probing functions. 

  

When either x(t) or fm(t) are of infinite length, they must be truncated to fit within the 

confines of limited memory storage. The length of either function can be shortened by 

simple truncation or by multiplying the function by yet another function that has zero value 

beyond the desired length. A function used to shorten another function is termed a window 

function, and its action is shown in Fig. 3.1.  

 

 
Figure 3.1: A waveform (upper plot) is multiplied by a window function (middle plot) to 

create a truncated version of the original waveform (lower plot). 
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Figure 3.2: The most popular windows function in signal processing. 

 

Simple truncation can be viewed as multiplying the function by a rectangular window, a 

function whose value is one for the portion of the function that is retained, and zero 

elsewhere. The consequences of this artificial shortening will depend on the specific window 

function used.  

 

If a window function is used, Eq. (3.10) becomes: 

 

~�� � ∑ ��#��#���#j#a�                                                                                                  (3.11) 

 

where W(n) is the window function.  

 

If the probing function is of finite length (have finite support) and this length is shorter than 

the waveform, then it might be appropriate to translate or slide it over the signal and 

perform the comparison (correlation, or multiplication) at various relative positions between 

the waveform and probing function. This sliding comparison is given in discrete form by the 

equation: 

 

~��, ^ � ∑ ��#���# � ^j#a�                                                                                                (3.12) 

 

where the variable k indicates the relative position between the two functions. This 

approach is adopted in the filters used in the Continuous Wavelet Transform. 

 

A variation of this approach can be used for long probing functions, where the probing 

function is shortened by windowing to a length that is less than the waveform. Then the 

shortened probing function can be translated across the waveform in the same manner as a 

probing function that is naturally short. The equation for this condition becomes: 
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~��, ^ � ∑ ��#���#��# � ^j#a�                                                                                     (3.13)  
where fm(n) is a longer function that is shortened by the sliding window function W(n − k). 

This is the approach taken in the Short-Term Fourier Transform. 

 

3.3 Convolution, Correlation and Covariance 
Convolution is an important concept in linear systems theory, solving the need for a time 

domain operation equivalent to the Transfer Function. Transfer Function is a frequency 

domain concept that is used to calculate the output of a linear system to any input. 

Convolution can be used to define a general input–output relationship in the time domain 

analogous to the Transfer Function in the frequency domain.  

 

 

 

 

The input x(t), the output y(t), and the function linking the two through convolution h(t), are 

all functions of time. Hence, convolution is a time domain operation.  

 

The basic concept behind convolution is superposition. The first step is to determine a time 

function h(t) that tells how the system responds to an infinitely short segment of the input 

waveform. If superposition holds, then the output can be determined by summing 

(integrating) all the response contributions calculated from the short segments. The way in 

which a linear system responds to an infinitely short segment of data can be determined 

simply by noting the system’s response to an infinitely short input δ(t). 

 

Given that the impulse response describes the response of the system to an infinitely short 

segment of data, and any input can be viewed as an infinite string of such infinitesimal 

segments, the impulse response can be used to determine the output of the system to any 

input. The response produced by an infinitely small data segment is simply this impulse 

response scaled by the magnitude of that data segment. The contribution of each infinitely 

small segment can be summed, or integrated, to find the response created by all the 

segments.  

 

�pyoly��wnyo     .�] �  � �����] � �F� � Q�
P� � ��] � ����F�Q�

P�                          (3.14) 

 

To determine the impulse of each infinitely small data segment, the impulse response is 

shifted a time τ with respect to the input, then scaled (i.e., multiplied) by the magnitude of 

the input at that point in time.  

y(t) x(t) 
h(t) 
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For most systems h(τ) is finite, so the limit of integration is finite. Moreover, a real system 

can only respond to past inputs, so h(τ) must be 0 for τ < 0 (negative τ implies future times 

in Eq. (3.14), although for computer-based operations, where future data may be available in 

memory, τ can be negative. 

 

For discrete signals, the integration becomes a summation and the convolution equation 

becomes: 

 

�pyoly��wnyo     .�# �  ∑ ��# � ^��^ � ĵa� ∑ ��#��^ � # ĵa�                           (3.15) 

 

Correlation and Covariance connote similarity: how one thing is like another. 

Mathematically, correlations are obtained by multiplying and normalizing. Both covariance 

and correlation use multiplication to compare the linear relationship between two variables, 

but in correlation the coefficients are normalized to fall between zero and one. This makes 

the correlation coefficients insensitive to variations in the gain of the data acquisition 

process or the scaling of the variables. The operations of correlation and covariance can be 

applied to two or more waveforms, to multiple observations of the same source, or to 

multiple segments of the same waveform. 

Correlation and covariance operations can not only be used to compare different waveforms 

at specific points in time, they can also make comparisons over a range of times by shifting 

one signal with respect the other. The crosscorrelation function is an example of this 

process. The correlation function is the lagged product of two waveforms, and the defining 

equation, given here in both continuous and discrete form, is quite similar to the 

convolution equation: 
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These equations show that the only difference in the computation of the crosscorrelation 

versus convolution is the direction of the shift. In convolution the waveforms are shifted in 

opposite directions. This produces a causal output: the output function is the creation of 

past values of the input function.  

Crosscorrelation shows the similarity between two waveforms at all possible relative 

positions of one waveform with respect to the other, and it is useful in identifying segments 

of similarity. A special case of the correlation function occurs when the comparison is 

between two waveforms that are one in the same. This is termed the autocorrelation 

function and it provides a description of how similar a waveform is to itself at various time 

lags. The autocorrelation function will naturally be maximum for zero lag (n = 0) because at 

zero lag the comparison is between identical waveforms. Usually the autocorrelation is 
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scaled so that the correlation at zero lag is 1. The function must be symmetric about n = 0, 

since shifting one version of the same waveform in the negative direction is the same as 

shifting the other version in the positive direction. 

 

The autocorrelation function is related to the bandwidth of the waveform. The sharper the 

peak of the autocorrelation function the broader the bandwidth. For example, in white 

noise, which has infinite bandwidth, adjacent points are uncorrelated, and the 

autocorrelation function will be nonzero only for zero lag. 

 

 
Figure 3.3: Autocorrelation of two colored noise with different bandwidths. 

 

The crosscovariance function is the same as crosscorrelation function except that the means 

have been removed from the data before calculation. Accordingly, the equation is a slight 

modification of Eq. (3.17), as shown below: 

 

�pmyvvpyl mn opq      �H��# �  ∑ ".�^ � # � .i$"��^ � �i$ĵa�                                  (3.18) 

 

The terms correlation and covariance, when used alone (i.e., without the term function), 

imply operations similar to those described in Eqs. (16) and (17), but without the lag 

operation. The result will be a single number.  

Of particular interest is the covariance and correlation matrices. These analysis tools can be 

applied to multivariate data where multiple responses, or observations, are obtained from a 

single process. The covariance and correlation matrices assume that the multivariate data 

are arranged in a matrix where the columns are different variables and the rows are 
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different observations of those variables. In signal processing, the rows are the waveform 

time samples, and the columns are the different signal channels or observations of the 

signal. Since the diagonals in the correlation matrix give the correlation of a given variable or 

waveform with itself, they will all equal to 1, and the off-diagonals will vary between ± 1. In 

its usual signal processing definition, the correlation matrix is a normalized version of the 

covariance matrix.  

 

3.4 Fourier Analysis 
Sometimes the frequency content of the waveform provides more useful information than 

the time domain representation. The accurate determination of the waveform’s spectrum 

requires that the signal be periodic, or of infinite length, and noise-free. The problem is that 

in many biological applications only a portion of the waveform is available for analysis. 

Moreover, biosignals are often corrupted by substantial amounts of noise or artifact. If only 

a portion of the actual signal can be analyzed, and/or if the waveform contains noise along 

with the signal, then all spectral analysis techniques must necessarily be approximate. The 

various spectral analysis approaches attempt to improve the estimation accuracy of specific 

spectral features. 

 

The Fourier transform approach takes advantage of the fact that sinusoids contain energy at 

only one frequency. If a waveform can be broken down into a series of sines or cosines of 

different frequencies, the amplitude of these sinusoids must be proportional to the 

frequency component contained in the waveform at those frequencies [Boashash, 1992]. 

From Fourier series analysis, we know that any periodic waveform can be represented by a 

series of sinusoids that are at the same frequency as, or multiples of, the waveform 

frequency. This family of sinusoids can be expressed either as sines and cosines, each of 

appropriate amplitude, or as a single sine wave of appropriate amplitude and phase angle. 

Expressed as an equation, this procedure becomes: 

 

E�� �  ��� ��] pyv�0��]
� F] �

�                                                                                                 (3.19) 
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where T is the period of the waveform and m is set of integers, possibly infinite. This gives 

rise to a family of sines and cosines having harmonically related frequencies (
�
� ). 

 

Since this approach represents waveforms by harmonically related sinusoids, the approach is 

sometimes referred to as harmonic decomposition. For periodic functions, the Fourier 
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transform and Fourier series constitute a bilateral transform: the series of sine and cosine 

components can be summed to reconstruct the original waveform: 

 

��] �  E��0 � ∑ E�^ pyv�0��]
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Spectral information is usually presented as a frequency plot, a plot of sine and cosine 

amplitude versus component number, or the equivalent frequency. Rather than plot sine 

and cosine amplitudes, it is more intuitive to plot the amplitude and phase angle of a 

sinusoidal wave using the rectangular-to-polar transformation. 

Some waveforms are symmetrical or anti-symmetrical about t = 0, so that one or the other 

of the components a(k) or b(k), will be zero. Specifically, if the waveform has mirror 

symmetry about t = 0, that is x(t) = x(−t), than multiplications by a sine functions will be zero 

irrespective of the frequency, and this will cause all b(k) terms to be zeros. Such mirror 

symmetry functions are termed even functions. Similarly, if the function has anti-symmetry, 

x(t) = −x(t), a so-called odd function, then all multiplications with cosines of any frequency 

will be zero, causing all a(k) coefficients to be zero. 

 

Function type Symmetry Coefficient values 

Even x(t) = x(-t) b(k) = 0 

Odd x(t) = -x(t) a(k) = 0 

 

3.4.1 Discrete-Time Fourier Analysis 
The discrete-time Fourier series analysis is an extension of the continuous analysis 

procedure described above, but modified by two operations: sampling and windowing. The 

sampling process makes the spectra repetitive at frequencies m/T. Hence the discrete 

Fourier series of any waveform is theoretically infinite, but since it is periodic and symmetric 

about fs/2, all of the information is contained in the frequency range of 0 to fs/2 ( fs /2 is the 

Nyquist frequency). This follows from the sampling theorem and the fact that the original 

analog waveform must be bandlimited so that its highest frequency fmax is less than fs/2 if 

the digitized data is to be an accurate representation of the analog waveform. 

 

The equations for computing Fourier series analysis of digitized data are the same as for 

continuous data except the integration is replaced by summation. Usually these equations 

are presented using complex variables notation so that both the sine and cosine terms can 

be represented by a single exponential term using Euler’s identity: 

 

~�� �  ∑ ��#I��40��#
j jP�#a�                                                                                                        (3.22) 
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where N is the total number of points and m indicates the family member, i.e. the harmonic 

number. This number must now be allowed to be both positive and negative when used in 

complex notation: m = −(N/2), . . . , (N/2)-1.  

The inverse Fourier transform can be calculated as: 

 

��# �  �j∑ ~��I�P40�#���OjP�#a�                                                                                              (3.23) 

 

Applying the rectangular-to-polar transformation is also apparent that |X(m)| gives the 

magnitude for the sinusoidal representation of the Fourier series while the angle of X(m) 

gives the phase angle for this representation, since X(m) can also be written as: 

 

~�� �  ∑ ��# pyv �0��#
j � � 4∑ ��# vno�0��#

j jP�#a�jP�#a�                                                   (3.24) 

 

As mentioned above, for computational reasons, X(m) must be allowed to have both positive 

and negative values for m; negative values imply negative frequencies, but these are only a 

computational necessity and have no physical meaning.  

 

The discrete Fourier transform produces a function of m. To convert this to frequency note 

that: 

 

�� �  ��� � �
�� �

�
j�O � ��O

j                                                                                                      (3.25) 

 

where �� is the fundamental frequency, �O is the sample interval, �O is the sample 

frequency, N is the number of points in the waveform and �� � j�O is the period of the 

waveform. Substituting � � ���O the equation for the discrete Fourier transform can also 

be written as:  

 

~�� �  ∑ ��#I�P40�#���OjP�#a�                                                                                                  (3.26) 

 

which may be more useful in manual calculations. 

 

If the waveform of interest is truly periodic, then the approach described above produces an 

accurate spectrum of the waveform. In this case, such analysis should properly be termed 

Fourier series analysis, but is usually termed Fourier transform analysis. This latter term 

more appropriately applies to aperiodic or truncated waveforms. The algorithms used in all 

cases are the same, so the term Fourier transform is commonly applied to all spectral 

analyses based on decomposing a waveform into sinusoids. 
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From the discrete Fourier series equation above, the number of points produced by the 

operation is N, the number of points in the data set. However, since the spectrum produced 

is symmetrical about the midpoint, N/2 (or fs/2 in frequency), only half the points contain 

unique information. If the sampling time is Ts, then each point in the spectra represents a 

frequency increment of 1/(NTs). As a rough approximation, the frequency resolution of the 

spectra will be the same as the frequency spacing 1/(NTs) [Boudreaux et al., 1995]. 

Increasing the sample interval Ts, should improve the frequency resolution but since that 

means a decrease in fs, the maximum frequency in the spectra, fs/2 is reduced limiting the 

spectral range. One simple way of increasing N even after the waveform has been sampled is 

to use zero padding. Zero padding is legitimate because the undigitized portion of the 

waveform is always assumed to be zero. Under this assumption, zero padding simply adds 

more of the unsampled waveform. The zero-padded waveform appears to have improved 

resolution because the frequency interval is smaller. In fact, zero padding does not enhance 

the underlying resolution of the transform since the number of points that actually provide 

information remains the same. However, zero padding does provide an interpolated 

transform with a smoother appearance.  

 

3.4.2 Power Spectrum 
The power spectrum is commonly defined as the Fourier transform of the autocorrelation 

function. In continuous and discrete notation, the power spectrum equation becomes: 

 

R��� � � S����IP0����F� �
�                                                                                                     (3.27) 

 

R��� � ∑ S���#IP0�#���OjP�#a�                                                                                                  (3.28) 

 

 
Figure 3.4: Power Spectrum of a waveform composed of two sines (100Hz and 200Hz) 

sampled at 1Ksps. 
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3.4.3 Short-Term Fourier Transform: The 

Spectrogram 
Classical spectral analysis techniques represent powerful signal processing tools if one is not 

especially concerned with signal timing. They provide a complete and appropriate solution 

for waveforms that are stationary (e.g. waveforms that do not change their properties over 

the length of the analysis). Waveforms of biological origin are not stationary, and change 

substantially in their properties over time. Moreover, it is these changes with time that are 

often of primary interest. Fourier analysis provides a good description of the frequencies in a 

waveform, but not their timing. However, timing is encoded in the phase portion of the 

transform, and this encoding is difficult to interpret and recover.  

 

A time–frequency method is usually based on the slicing of the waveform of interest into a 

number of short segments and performing the analysis on each of these segments, usually 

using the standard Fourier transform. A window function is applied to a segment of data, 

effectively isolating that segment from the overall waveform, and the Fourier transform is 

applied to that segment. This is termed the spectrogram or Short-Term Fourier Transform 

since the Fourier Transform is applied to a segment of data that is shorter, often much 

shorter, than the overall waveform.  

The basic equation for the spectrogram in the continuous domain is: 

 

~�], � � � �����] � �IP4���F� Q�
P�                                                                                       (3.29) 

 

where w(t-τ) is the window function and τ is the variable that slides the window across the 

waveform x(t). 

The discrete version of the spectrogram is: 

 

~��, ^ � ∑ ��#"��# � ^IP4#�
j $j#a�                                                                                    (3.30) 

 

    
Figure 3.5: Spectrogram of a 15Hz sine before t = 1 sec and 50Hz after t = 1 sec. 
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There are two main problems with the spectrogram:  

• selecting an optimal window length for data segments that contain several different 

features may not be possible; 

• the time–frequency tradeoff: shortening the data length N, to improve time 

resolution will reduce frequency resolution which is approximately 1/(NTs).  

Shortening the data segment could also result in the loss of low frequencies that are no 

longer fully included in the data segment. Hence, if the window is made smaller to improve 

the time resolution, then the frequency resolution is degraded and vice versa. This time–

frequency tradeoff has been equated to an uncertainty principle where the product of 

frequency resolution B and time T must be greater than some minimum: 

 

�� =  �>�                                                                                                                                          (3.31) 

 

Despite these limitations, the spectrogram has been used successfully in a wide variety of 

problems, particularly those where only high frequency components are of interest and 

frequency resolution is not critical.  

 

3.5 Digital Filters 

A filter can be viewed as a linear process in which the input signal’s spectrum is reshaped in 

some well-defined manner. Filters differ in the way they achieve this spectral reshaping, and 

can be classified into two groups based on their approach. These two groups are termed 

finite impulse response (FIR) filters and infinite impulse response (IIR) filters. 

 

3.5.1 The Z-Transform 

The frequency-based analysis is the most useful tool for analyzing systems or responses in 

which the waveforms are periodic or aperiodic, but cannot be applied to transient responses 

of infinite length, such as step functions, or systems with nonzero initial conditions. These 

shortcomings motivated the development of the Laplace transform in the analog domain. 

Laplace analysis uses the complex variable O (O � k � 4�) as a representation of complex 

frequency in place of 4� in the Fourier transform.  

 

The Z-transform is a digital operation analogous to the Laplace transform in the analog 

domain, and it is used in a similar manner. The Z-transform is based around the complex 

variable �, where � is an arbitrary complex number, |�|I4�. This variable is also termed the 

complex frequency, and as with its time domain counterpart, the Laplace variable O, it is 

possible to substitute I4� for � to perform a strictly sinusoidal analysis. 
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The Z-transform follows the format of the general transform equation and is also similar to 

the Fourier transform equation: 

 

~�� � ∑ ��#�#aP� �P#                                                                                                               (3.32) 

 

where � is an arbitrary complex variable. The probing function for this transform is simply 

�P#. In any real application, the limit of the summation will be finite, usually the length of 

��#. When identified with a data sequence, �P# represents an interval shift of n samples, 

or an associated time shift of #�O seconds. This time shifting property of �P# can be formally 

stated as: 

 

����# � ^ � �P^����#                                                                                                        (3.33) 

 

For example, the time shifting characteristic of the Z-transform can be used to define a unit 

delay process �P�. For such a process, the output is the same as the input, but shifted (or 

delayed) by one data sample (Fig. 3.6). 

 

 

 

Figure 3.6: A unit delay process. 

 

3.5.1.1 Digital Transfer Function 
As in Laplace transform analysis, one of the most useful applications of the Z-transform lies 

in its ability to define the digital equivalent of a transfer function. By analogy to linear 

system analysis, the digital transfer function is defined as: 

 

��� �  ���~��                                                                                                                                     (3.34) 

 

Most transfer functions can be complicated, including polynomials of � in both the 

numerator and denominator, just as analog transfer functions contain polynomials of O: 

 

��� �  N�QN����QN0��0Q�QNj��j
�QE����QE��0Q�QE	��	                                                                                                  (3.35) 

 

While H(z) has a structure similar to the Laplace domain transfer function H(s), there is no 

simple relationship between them. For example, unlike analog systems, the order of the 

numerator N, need not be less than, or equal to, the order of the denominator D, for 

stability. In fact, systems that have a denominator order of 1 are more stable that those 

having higher order denominators.  

 

x(n-1) x(n) �P� 
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From the digital transfer function H(z), it is possible to determine the output given any input. 

In the Z-transform domain this relationship is simply: 

 

��� �  ���~�� � ~�� ∑ N�^j��^�� ��#
∑ E�G	��G�� ��#                                                                                        (3.36) 

 

The input/output or difference equation analogous to the time domain equation can be 

obtained by applying the time shift interpretation to the term �P#: 

 

.�# �  ∑ N�^��# � ^�̂a� � ∑ E�G.�# � G�Ga�                                                                   (3.37) 

 

All basic digital filters can be interpreted as linear digital processes, and, in fact, the term 

digital filter is often used interchangeably with digital systems. Filter design, then, is simply 

the determination of the appropriate filter coefficients, a(n) and b(n), that provide the 

desired spectral shaping. If the frequency spectrum of H(z) is desired, it can be obtained 

substituting � � I4�: 

 

��� �   ���
~�� �

∑ N�#I�40��#
jj��#��

∑ E�#I�40��#
j	��#��

 �  ��]�N#��]�E#                                                                              (3.38) 

 

where fft indicates the Fourier transform. 

  

3.5.2 Finite Impulse Response Filters 

Finite Impulse Response (FIR) filters have transfer functions that have only numerator 

coefficients, i.e. H(z) = B(z). This leads to an impulse response that is finite, hence the name. 

They have the advantage of always being stable and having linear phase shifts. In addition, 

they have initial transients that are of finite durations. The downside of FIR filters is that they 

are less efficient in terms of computer time and memory than IIR filters. FIR filters are also 

referred to as non-recursive because only the input (not the output) is used in the filter 

algorithm. FIR filters are also referred to as a moving average process. This term is used for 

any process that uses a moving set of multiplier weights, even if the operation does not 

really produce an average. 

The general equation for an FIR filter is a simplification of Eq. (3.37) that becomes: 

 

.�^ �  ∑ N�#��^ � #�#a�                                                                                                         (3.39) 

 

where b(n) is the coefficient function (also referred to as the weighting function) of length L, 

x(n) is the input, and y(n) is the output. This is identical to the convolution equation with the 

impulse response h(n) replaced by the filter coefficients b(n). Eq. (3.39) indicates that the 
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filter coefficients (or weights) of an FIR filter are the same as the impulse response of the 

filter. Since the frequency response of a process having an impulse response h(n) is simply 

the Fourier transform of h(n), the frequency response of an FIR filter having coefficients b(n) 

is just the Fourier transform of b(n): 

 

~�� �  ∑ N�#I�40��#
jjP�#a�                                                                                                           (3.40) 

 

The inverse operation, going from a desired frequency response to the coefficient function 

b(n), is known as filter design. Since the frequency response is the Fourier transform of the 

filter coefficients, the coefficients can be found from the inverse Fourier transform of the 

desired frequency response. 

 

3.5.3 Infinite Impulse Response Filters 

The primary advantage of Infinite Impulse Response (IIR) filters over FIR filters is that they 

can usually meet a specific frequency criterion, such as a cutoff sharpness or slope, with a 

much lower filter order (i.e., a lower number of filter coefficients). The transfer function of 

IIR filters includes both numerator and denominator terms unlike FIR filters which have only 

a numerator. The major disadvantage of IIR filters is that they have nonlinear phase 

characteristics. Since IIR filters have transfer functions that are the same as a general linear 

process having both poles and zeros, many of the concepts of analog filter design can be 

used with these filters. One of the most basic of these is the relationship between the 

number of poles and the slope, or rolloff of the filter beyond the cutoff frequency. The 

asymptotic downward slope of a filter increases by 20 db/decade for each filter pole, or filter 

order. Determining the number of poles required in an IIR filter given the desired 

attenuation characteristic is a straightforward process. 

Another similarity between analog and IIR digital filters is that all of the well-known analog 

filter types can be duplicated as IIR filters. Specifically the Butterworth, Chebyshev Type I 

and II, and elliptic designs can be implemented as IIR digital filters. Butterworth filters 

provide a frequency response that is maximally flat in the pass-band and monotonic overall. 

To achieve this characteristic, Butterworth filters sacrifice rolloff steepness; hence, the 

Butterworth filter will have a less sharp initial attenuation characteristic than other filters. 

The Chebyshev Type I filters feature faster rolloff than Butterworth filters, but have ripple in 

the pass-band. Chebyshev Type II filters have ripple only in the stop-band and a monotonic 

pass-band, but they do not rolloff as sharply as Type I. The ripple produced by Chebyshev 

filters is termed equiripple since it is of constant amplitude across all frequencies. Finally, 

elliptic filters have steeper rolloff than any of the above, but have equiripple in both the 

pass-band and stop-band. In general, elliptic filters meet a given performance specification 

with the lowest required filter order (Fig. 3.7). 
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Figure 3.7: Butterwort, Chebyshev and Elliptic frequency response. 
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Chapter 4 
 

Wearable Devices and Systems for 

Cardiovascular Monitoring 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wearable devices allow clinicians, physiologists, professional and people themselves to have 

access to more and more information from the human body trough miniature sensors placed 

in some places of interest.  

 

This chapter give an overview of wearable device used for biomedical signals monitoring and 

show the wearable device developed and realized for monitoring of certain cardiovascular 

disease, such as sleep apnoea, continuous blood pressure measurement and wavelet 

analysis of PPG signals measured in patients with heart attack, deep vein thrombosis anf 

atrial fibrillation. 
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4.1 Overview of Wearable Devices 
Wearable systems are taking more and more importance in our life. They present to us in 

numerous forms, from standalone devices like smart phones, MP3 players, Personal Data 

Assistant (PDA), mobile phones to more advanced systems offering sensing and interaction 

with the user or remote professional. Wearable sensing of human physiological signal is for 

instance performed to address health application needs as well as wellness, sports activities 

and clinicians objectives. These systems allow clinicians, physiologists, professional and 

people themselves to have access to more and more information from the human body and 

the environment. They typically rely on wireless, miniature sensors enclosed in patches or 

bandages, or in items that can be worn, such as a ring or a shirt. They take advantage of 

hand-held units to temporarily store physiological data and then periodically upload that 

data to a database server via a wireless LAN or a cradle that allow Internet connection. The 

data sets recorded using these systems are then processed to detect events predictive of 

possible worsening of the patient’ s clinical situation or they are explored to assess the 

impact of clinical interventions. 

 

4.1.1 Wearable Sensing of Physiological 

Parameters 
The early prototypes of wearable medical systems are mainly based on body-worn devices, 

which are designed to be miniaturized, integrated, networked, digitalized, and smart for e-

Health application [Poon et al., 2008]. Body-worn medical systems can typically gather data 

from sensors located only in a specific and usually relatively small body area and cannot 

fulfill, alone, all the needs for sensing, actuating, displaying, and interacting with the user. An 

alternative approach to achieve wearable monitoring is to integrate sensors in clothing 

items. Intelligent biomedical clothing [Lymberis et al., 2003] refers usually to clothes with 

sensors that are close to or in contact with the skin [Lymberis et al., 2007]. The sensors are 

either embedded in the fabric of the garment, or it is the fabric itself that is used as a sensor 

or a sensor suite [Marculescu et al., 2003; Carpi et al., 2005]. Several prototypes of wearable 

medical devices or systems are shown in Fig. 4.1. 

 

           
Figure 4.1: Examples of prototype of wearable medical devices/systems. 
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As an example of wearable systems, LifeShirt is a noninvasive, continuous ambulatory 

monitoring system that can collect data during a person’s daily routine [LifeShirt, 2008; 

Grossman, 2004]. However, it is unsuitable for lengthy continuous monitoring due to the 

cumbersome recorder and peripheral attachment to be carried around. To address the 

limitations of the first prototype developed, researchers shifted their focus on smart textiles. 

Smart textiles have become one of the thriving areas of application for materials and 

nanotechnology research for the purpose of health monitoring. Smartshirt, collects analog 

signals through conductive fiber sensors and transfers them through a conductive fiber grid 

knitted in the T-shirt [Sensatex, 2007]. 

 

Up-to-date, sensing body movements or physiological signals, particularly the ECG and 

respiration, remains the main target of a wearable device. The measurement of blood 

pressure, for example, is still a challenge for wearable device because of the conventional 

cuff-based principle utilized for blood pressure measurement. In a recent work [Zhang et al., 

2006; Chan et al., 2008] a Health-Shirt (h-Shirt) that can monitor bloos pressure cufflessly 

and continuously has been proposed. The h-Shirt is designed to simultaneously record ECG 

and PPG and uses them to estimate blood pressure with the Pulse Transit Time (PTT) 

method. ECG is captured from the two wrists, with a reference electrode placed on the 

forearm to avoid respiration induced noise. The electrodes were made of e-textile materials. 

A photoreflective sensor capture PPG from the fingertip. Fig. 4.2 shows the shirt when the 

user is measuring blood pressure and ECG continuously. 

 

 
Figure 4.2: The h-shirt prototype. 

 

Other studies performed in the area of wearable devices include:  

• a wearable physiological monitoring system for space and terrestrial applications 

named Life Guard [Mundt et al., 2005]; 
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• the Armband SenseWear wearable body monitor that has been used to study body 

movement and energy expenditure in healthy as well as subjects with chronic 

obstructive pulmonary disease [Pitta et al., 2006]; 

• the WEALTHY system that is made up of a sensorized cotton shirt that integrates 

carbon-loaded elastometer strain sensors and fabric bio-electrodes, enabling the 

monitoring of respiration, ECG, electromyogram, body posture and movement 

[WEALTHY, 2002]; 

• a textile based wearable system, MagIC, designed for unobtrusively recording 

cardiorespiratory and motion signals during daily life and in a clinical environment on 

patients with different cardiovascular conditions [Rienzo et al., 2005]; 

• the MyHeart wearable monitoring system that focuses on integration of unobtrusive 

sensors into everyday garments and miniaturized on-body electronic modules for 

data processing and storage with dedicated software for data analysis like ECG 

preprocessing and motion artifact detection, computation of heart rate and HRV 

[Pacelli et al.,2006; Lauter, 2004]; 

• ... 

 

4.2 The Developed Wearable Device 
The developed wearable device is depicted in Fig. 4.3. 

 

 
Figure 4.3: The developed wearable device: block diagram (left), PCB top view (center) and 

PCB bottom view (right).  
Battery powered for patient’s safety, the device can drive both the red and infrared emitters 

of a standard SpO2 sensor (Fig. 4.4). 
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Figure 4.4: Standard SpO2 sensors: wrapper (left), fingertip (center) and ear lobe (right). 

 

The analog signal conditioning block is composed of a single-supply two-stage inverting 

amplifier with variable gain able to converts the photocurrent coming from the SpO2 sensor 

in a voltage with a dynamic range appropriate for the A/D converter input (Fig. 4.5).  

 

 

 
Figure 4.5: Bode diagram of the analog part of the wearable device developed. 

 

The digital block is composed of a high performance and low power 16-bit digital signal 

controller (i.e. Microchip dsPIC33FJ12MC202). It controls all the blocks of the device, filters 

the PPG signal in order to remove motion and environmental artifacts, and continuously 

analyzes the digitalized version of the PPG signals in order to execute application algorithm 

and needs. 
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Through a radio frequency link in the ISM band based on a IEEE 802.15.4 transceiver at 

2.4GHz (i.e. Microchip MRF24J40), the wearable device can communicates with an internet 

gateway or with a wireless USB dongle for remote and continuous data analysis, clinical 

monitoring and alarm catch. 

 

The picture of the realized internet gateway with its block diagram are shown in Fig. 4.6 and 

Fig. 4.7 respectively.  

 

 
Figure 4.6: The developed internet gateway. 

 

 
Figure 4.7: Block diagram of the developed internet gateway. 

 

The internet gateway is mainly composed of a Microchip transceiver at 2.4GHz connected to 

an IEEE 802.3 10baseT Ethernet controller embedded in a low power microcontroller (i.e. 

Microchip PIC18F67J60). 

 

The picture of the realized wireless USB dongle with its block diagram are shown in Fig. 4.8 

and Fig. 4.9 respectively.  
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Figure 4.8: The developed wireless USB dongle. 

 

 
Figure 4.9: Block diagram of the developed wireless USB dongle. 

 

The wireless USB gateway is mainly composed of a Microchip transceiver at 2.4GHz 

connected to a USB controller embedded in a low power microcontroller (i.e. Microchip 

PIC18F4550). 
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Chapter 5 
 

Continuous Detection and Screening of 

Sleep Apnea Disease 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
As depicted in section 2.2.2, sleep apnoea is a common sleep disorder characterized by brief 

interruptions of breathing during sleep, which causes the major part of unknown death in 

healthy subjects. The 90 percent of patient with sleep apnoea don’t know to have this 

disease, because of the small number of symptoms and because the gold standard in 

diagnosing of SA is overnight polysomnography. 

 

This chapter show the biomedical system and application in which the wearable device 

developed is used for the continuous detection and screening of sleep apnoea disease at 

home thanks to a real-time algorithm based on the heart rate variability analysis. 
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5.1 Heart Rate Variability Analysis 
Heart Rate Variability (HRV) analysis is the standard to describe variations of instantaneous 

heart rate and RR intervals. It is mainly used for the non-invasive evaluation of the synergetic 

action of the two branches of the Autonomous Nervous System to maintain cardiovascular 

parameters in their optimal ranges [Levy et al., 1994]. In response of physical exercise, 

thoughts and emotions, the parasympathetic system slow HR, while sympathetic system 

accelerate it. 

 

The clinical importance of HRV became appreciated in the late 1980s, when it was confirmed 

that HRV was a strong and independent predictor of mortality after an acute myocardial 

infarction [Kleiger et al., 1987; Malik et al., 1989; Bigger et al., 1992]. With the availability of 

new, digital, high-frequency, 24-hour multichannel ECG recorders, HRV has the potential to 

provide additional valuable insight into physiological and pathological conditions and to 

enhance risk stratification.  

 

There are two main methods to perform an HRV analysis: one in the time domain and one in 

the frequency domain.  

 

In the time domain method, starting from short-term 5-minute recordings and nominal 24-

hour long-term ECG recordings, the normal-to-normal (NN) intervals (all intervals between 

adjacent QRS complexes) are determined (the so calld tachogram) (Fig. 5.1).  

 

 
Figure 5.1: Interval tachogram of 256 consecutive RR values in a normal subject at supine 

rest. 
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Simple time domain
 
variables that can be calculated include the mean NN interval,

 
the mean 

heart rate, the difference between the longest and shortest
 
NN interval, the difference 

between night and day heart rate, and
 
so forth. From a series of instantaneous heart rates or 

cycle intervals, particularly
 
those recorded over longer periods,

 
more complex statistical time 

domain measures can be calculated (Table 5.1). These variables
 
may be derived from 

analysis of the total ECG recording or may
 
be calculated using smaller segments of the 

recording period.
 
The latter method allows comparison of HRV to be made during

 
varying 

activities, for example, rest, sleep, and so on. 

 

Variable Units Description 

SDNN ms Standard deviation of all NN intervals. 

SDANN ms Standard deviation of the average of NN intervals in all 5-min segments 

of the entire recording. 

RMSSD ms The square root of the mean of the sum of the squares of differences 

between adjacent NN intervals. 

SDNN 

index 

ms Mean of the standard deviations of all NN intervals for all 5-min 

segments of the entire recording. 

SDSD ms Standard deviation of differences between adjacent NN intervals. 

NN50 

count 

 Number of pairs of adjacent NN intervals differing by more than 50 ms 

in the entire recording. 

pNN50 % NN50 count divided by the total number of NN intervals. 

Table 5.1: Time domain measures of HRV analysis. 

 

The simplest variable to calculate is the standard deviation
 
of the NN intervals (SDNN), that 

is, the square root of variance.
 
Since variance is mathematically equal to total power of 

spectral analysis,
 
SDNN reflects all the cyclic components responsible for variability

 
in the 

period of recording. In many studies SDNN is calculated
 
over a 24-hour period and thus 

encompasses short-term hear rate variations
 
as well as the lowest-frequency components 

seen in a 24-hour
 
period. As the period of monitoring decreases, SDNN estimates

 
shorter and 

shorter cycle lengths. It also should be noted that
 
the total variance of HRV increases with 

the length of analyzed
 
recording [Saul et al., 1988]. Thus, on arbitrarily selected ECGs, SDNN 

is not
 
a well-defined statistical quantity because of its dependence

 
on the length of recording 

period. In practice, it is inappropriate
 
to compare SDNN measures obtained from recordings 

of different
 
durations. On the contrary, durations of the recordings used

 
to determine SDNN 
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values should be standardized. Short-term 5-minute recordings appear to be appropriate 

options. 

 

Other commonly used statistical variables calculated from segments of
 
the total monitoring 

period include SDANN, the standard deviation
 
of the average NN intervals calculated over 

short periods, usually
 
5 minutes, which is an estimate of the changes in heart rate

 
due to 

cycles longer than 5 minutes, and the SDNN index, the
 
mean of the 5-minute standard 

deviations of NN intervals calculated
 
over 24 hours, which measures the variability due to 

cycles
 
shorter than 5 minutes. The most commonly used measures derived from interval 

differences include
 
RMSSD, the square root of the mean squared differences of successive

 

NN intervals, NN50, the number of interval differences of successive
 
NN intervals greater 

than 50 ms, and pNN50, the proportion derived
 
by dividing NN50 by the total number of NN 

intervals. All of these
 

measurements of short-term variation estimate high-frequency
 

variations in heart rate and thus are highly correlated.
  

 

In the frequency domain, the Power Spectral Density (PSD) analysis of the tachogram 

provides the basic information of how power distributes as a function of frequency.  

 

In short-term recordings, three main spectral components are distinguished [Drinnan et al., 

2000]:  

• VLF (Very Low Frequencies); 

• LF (Low Frequencies); 

• HF (High Frequencies). 

 

The variety of frequency domain measures of HRV analysis for short-term recordings are 

depicted in Table 5.2. The measurement of VLF, LF, and HF power components is usually 

made in absolute values of power but LF and HF may also be normalized relatively to the 

total power minus the VLF component. 

 

Variable Units Description Freq. range 

Total 

power 

ms² The variance of NN intervals over the temporal 

segment. 

<0.4Hz 

VLF ms² Power in VLF range. <0.04 Hz 

LF ms² Power in LF range. 0.04-0.15 Hz 

LF norm ms² LF power in normalized units. 

LF/(total power-VLF)*100 

0.04-0.15 Hz 
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HF ms² Power in HF range 0.15-0.4 Hz 

HF norm ms² HF power in normalized units. 

HF/(total power-VLF)*100 

0.15-0.4 Hz 

LF/HF  LF/HF Ratio  

Table 5.2: Frequency domain measures of HRV analysis in a short-term recording. 

 

The distribution
 
of the power and the central frequency of LF and HF are not

 
fixed but may 

vary in relation to changes in autonomic modulations of
 
heart period [Pagani et al., 1986; 

Furlan et al., 1990; Berger et al., 1986]. The representation
 
of LF and HF in normalized units 

emphasizes the controlled and
 
balanced behavior of the two branches of the autonomic 

nervous
 
system. Moreover, the normalization tends to minimize the effect

 
of the changes in 

total power on the values of LF and HF components. Nevertheless, normalized units should 

always be quoted
 
with absolute values of the LF and HF power in order to describe

 

completely the distribution of power in spectral components.
  

 

Spectral analysis also may be used to
 
analyze the sequence of NN intervals of the entire 24-

hour period.
 
The result then includes a ULF component, in addition to VLF,

 
LF, and HF 

components. Because of the important differences in the interpretation of
 
the results, the 

spectral analyses of short-term and long-term
 
ECGs should always be strictly distinguished. 

 

Methods for the calculation of PSD may be generally classified as nonparametric and 

parametric. In most instances, both methods provide comparable results (Fig. 5.2). The 

advantages of the nonparametric methods are the simplicity of the algorithm used (FFT) and 

the high processing speed, while the advantages of parametric methods are the smoother 

spectral components that can be distinguished independent of preselected frequency bands 

and easy post-processing of the spectrum with an automatic calculation of low and high-

frequency power components. 
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Figure 5.2: HRV spectra calculated by a FFT non-parametric algorithm (left plot) and by a 

parametric algorithm (right plot). 

 

Increased HF power represent too quicker changes in heart rate due to excessive 

sympathetic activity while increased LF power represent slower changes in heart rate due to 

parasympathetic activity. 

 

5.2 Detection of SA from frequency analysis 

of HRV 
Previous scientific researches have demonstrated that HRV analysis in the time and 

frequency domain [Drinnan et al., 2000] can give reasonably high detection accuracy of the 

sleep apnoea occurrence for manual and automatic screening. These results also show that 

HRV spectrum analysis give the most informative feature than the statistical method of the 

time domain method [Xu et al., 2008].  

 

Patients with sleep apnoea tend to have a spectral peak lying between 0.01 and 0.05 Hz, 

with the width of the peak indicating variability in the recurrence rate of the apnoea 

[Drinnan et al., 2000]. In this way, by a fixed threshold of 3,15 used to discriminate the ratio 

of the content of two spectral regions obtained by dividing the area under the spectral curve 

between 0.01 and 0.05 Hz by the area between 0.005 and 0.01 Hz, an automated 

classification of SA events can give an overall classification score of 90%. The block diagram 

of the algorithm of this automatic classification procedure is depicted in Fig. 5.3. 
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Figure 5.3: Automatic analysis and classification of SA events by the frequency analysis of 

HRV [Drinnan et al., 2000]. 

 

5.3 The Proposed System 
The aim of this work is to develop a wearable biomedical system capable of performing real-

time short-term HRV analysis for the continuous and real-time monitoring of the sleep 

apnoea disease at home.  

 

The proposed system is composed of two main parts hosted respectively in the Remote 

Monitoring Station (RMS) and at the patient’s home (Fig. 5.4). 

 

 
Figure 5.4: System overview for the continuous detection and screening of SA disease . 
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On the patient’s side, there are only the internet gateway for the patient’s data transmission 

to the RMS and the wearable device embedded in a comfortable glove in order to allow the 

continuous detection and screening during daily life (Fig. 5.5). 

 

 
Figure 5.5: The glove embedding the wearable device. 

 

The wearable device performs in real-time the short-term (5-min) HRV analysis from NN 

intervals measured in the PPG signal coming from a standard SpO2 wrapped sensor placed in 

one of the fingers. Fig. 5.6 shows that the detection of NN intervals from the PPG signal is 

equivalent to the traditional method based on a QRS detection algorithm from an ECG 

channel. Moreover,  the use of a standard SpO2 wrapped sensor placed in one of the fingers 

instead of the use of electrocardiogram electrodes makes the realized device patient safe, 

inexpensive and easy to use. 

 

 
Figure 5.6: NN intervals detection from lead-II ECG (A) and PPG (B). 
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Applying a fixed threshold at the frequency analysis of the heart rate variability [Drinnan et 

al., 2000], the device can continuously detect how many sleep apnoea events has been 

occurred in the previous 5-min and can activate an alarm if the number of sleep apnoea 

events per hour cross a guard level.  

 

Through the radio frequency link in the ISM band, the smart glove communicates with the 

internet gateway connected with a remote monitoring station for the continuous data 

analysis, clinical monitoring and alarm catch. 

 

On the RMS side there is only a simple PC with a TCP/IP server and a Graphic User Interface 

(GUI) (Fig. 5.7). The server receives the data stream of the patients connected and the GUI 

performs the real-time HRV analysis in both frequency and time domain in order to provide 

to a physician the best framework for the automatic and manual detection of sleep apnoea 

occurrence. 

 

 
Figure 5.7: The Graphic User Interface at the Remote Monitoring Station. 

 
In this GUI, there are: 

• a listview that lists the name and the battery level of the wearable device of all 

patients connected with the RMS; 

• a little text area that shows selected patient info, such as patient’s address, cell 

number and medicine usually taken; 

• a plot area (PPG) that plots the real time PPG signal acquired; 

• a plot area (Tachogram) that plot the short term tachogram; 
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• a plot area (PSD) that plots the power spectrum density of the short term tachogram 

acquired for the selected patient; 

• a info area with some time and frequency domain index for the last PSD for the 

selected patient. 
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Chapter 6 
 

Continuous Cuff-less Assessment of 

Blood Pressure  from PPG signals 
 

 

 

 

 

 

 

 

The importance of accurate blood pressure measurement in the diagnosis of arterial 

hypertension, and in the precise titration of antihypertensive treatment, is largely 

acknowledged in clinical practice. The relevance of this issue has recently been further 

emphasized by hypertension management guidelines [ESH, 2003].  

 

Standard Non-Invasive Blood Pressure (NIBP) monitoring in a clinical or research setting is 

often performed using techniques that evolved in the 19th century. However, traditional 

sphygmomanometry is unable to monitor the short-term dynamic variability that occurs 

with BP and cannot be used for continuous monitoring of BP.  

 

A noninvasive beat to beat measurement of BP would be extremely valuable. A number of 

approaches have been developed, including most notably finger blood-volume clamping 

[Penaz, 1969] and arterial tonometry. Although some studies have suggested that there is 

usually reasonable accuracy with these systems, the technology itself is generally expensive, 

cumbersome, and prone to movement artifact.  

 

An alternative technique involves measuring the transit time of the pulse pressure wave 

through the arterial tree, but this is an unreliable marker of beat-to-beat blood pressure 

[Payne et al., 2006]. 

 

This chapter give an overview of traditional an innovative method for non-invasive blood 

pressure measurement, and illustrate the calibration of the under research cuff-less method 

of the assessment of BP from PPG signals into the wearable device developed in this thesis. 
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6.1 Arterial Blood Pressure 
The maximum pressure is called the systolic pressure while the minimum pressure is called 

the diastolic pressure. The integral of the pressure over one cardiac cycle is called the mean 

pressure, or mean arterial pressure (MAP). The difference between the systolic and diastolic 

pressure is known as the pulse pressure. Blood pressure measurements are usually acquired 

from the arterial system and may be measured invasively and non-invasively.  

 

6.2 Classical NIBP Measurements 

6.2.1 Auscultation 
Auscultation is the blood pressure reference method for non-invasive blood pressure 

measurements [AAMI, 1992]. It requires a sphygmomanometer and a stethoscope (Fig. 6.1). 

 

 
Figure 6.1: Using sphygmomanometer and stethoscope in auscultation method. 

 

A sphygmomanometer consists of an inflatable bladder with a cuff, rubber bulb for cuff 

inflation and a manometer for pressure reading.  

 

Using this method, a clinician inflates the external cuff surrounding the tissue over the 

brachial artery until the inflated pressure is above systole. The clinician then slowly releases 

the pressure while listening for heart sounds below the level of the cuff. When the systolic 

peaks are higher than the cuff pressure, audible sounds called Korotkoff sounds are 
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generated by the flow of blood and vibrations of the vessel under the cuff. The pressure 

reading at the first detection of the Korotkoff sounds indicates systolic pressure. As the cuff 

pressure is further decreased, the Korotkoff sounds become muffled and disappear. The 

pressure reading during the transition from muffling to silence is the diastolic pressure 

[Geddes, 1970]. 

 
Figure 6.2: Cuff pressure trend in auscultatory method. 

 

6.2.2 Oscillometry 

The most widely used automatic indirect blood pressure method is oscillometry [Ramsey, 

1979]. With this method, an external cuff is inflated above the systolic pressure over the 

brachial artery. The external pressure is then slowly decreased, while measuring the 

amplitude of pressure oscillations that are created by expansion of the arterial wall during 

each beat as blood is forced through the artery. The systolic pressure is determined when 

the cuff pressure significantly increases in amplitude. The mean pressure is determined 

when the cuff pressure reaches the maximum amplitude. Because there is no clear transition 

in amplitude during diastole pressure, proprietary algorithms are used to measure diastolic 

pressure (Fig. 6.3). However, usually the diastolic pressure is determined by the last major 

oscillation. Although the mechanism behind this phenomenon of pressure amplitudes is 

unknown, the MAP measurement is very robust. However, measurement of systolic pressure 

is less robust, and measurement od diastolic pressure may be questionable, depending on 

the proprietary algorithms utilized. 

 

 
Figure 6.3: Cuff pressure trend in oscillometric method. 



 

Cuff size relative to arm cincumference affects the accuracy of noninvasive measurements 

[Van Montfrans et al., 1987]. 

precision depend on the expertise of the operator and do not allow a conti

measurement.  

 

6.3 Innovative 

6.3.1 Finapres 
In 1969, Jan Penaz of the University J.E. Purkyne in Czechoslovakia patented a continuous 

non-invasive blood pressure method that is commonly referred to as the volume clamp 

method or method of Penaz 

Karel Wesseling [Cejnar at al., 1988; Yamakoshi et al., 1983]

implementation is the basis of the Finapres (FINger Artery PRESsure) monitor manufactured 

by Ohmeda [Molhoek et al., 1984; Wesseling et al., 1990]

light from a light emitting diode is passed through a finger and detected. Simultaneously, a 

cuff is securely placed over the same finger with the cuff pressure continuously adju

maintain a constant transmural pressure across the digital arteries (

 

Figure 6.4: Finapres schema. 

 

During self calibration, the cuff pressure at which the pulsation amplitudes and therefore the 

finger blood volume are maximized is ass

which the artery is in a relaxed state and the arterial diameter is maximal.  After calibration, 

the monitor servo system attempts to control the pressure to this set point. At the set point, 

it is assumed that the transmural pressure equals zero and an approximately linear 

relationship exists between the intraarterial pressure and detected light. The systolic, mean, 

and diastolic finger pressures detected at this set point are assumed to equal the 

intraarterial radial systolic, mean and diastolic pressures. The last version of the Finapres is 
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cuff is securely placed over the same finger with the cuff pressure continuously adju

maintain a constant transmural pressure across the digital arteries (Fig. 6.4
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which the artery is in a relaxed state and the arterial diameter is maximal.  After calibration, 
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available in ambulatory version and in portable version. The ambulatory version is called 

Finometer instead the portable version is called the Portapres (Fig. 6.5). 

 

      
Figure 6.5: Finapres Finometer (left) and Finapres Portapres (right). 

 

The Finapres devices allow continuous blood pressure monitoring but it has a annoying cuff 

that not allow a long-term measurement and sometimes it not respect the AAMI 

specifications (±8 mmHg) [AAMI, 1992]. 
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6.4 Cuff-less NIBP Measurements 

6.4.1 Methods based on Pulse Transit Time 
Pulse transit time (PTT), defined as the time interval for a pressure pulse to travel from one 

arterial site to another [McDonald, 1974], is one of the proposed parameters for the non-

invasive beat to beat blood pressure estimation. PTT is usually measured as the time interval 

from the characteristic points of electrocardiogram and photoplethysmographic signal in the 

same heart cycle (Fig. 6.6).  

 
Figure 6.6: Definitions of PTT. 

 

Previous literature reported that the PTT is inversely related to blood pressure: 

 

"�yyo qw  �. , 0��U$     ��R � �N G#��
0�N

R��0 � �                                                                          (6.1) 

 

where L is the distance traveled by the pulse, b is a subject-dependent coefficient 

characterizing the artery properties, and � is the blood density. 

 

"�v�no  qw  �. , 0��U$    ��R �  � �
R��� �                                                                                (6.2) 

 

where L is a biometric parameter, typically related to the subject's body size, A is a 

sensitivity factor and B is a constant. 
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6.4.2 Methods based on PPG Signals 
PTT techniques require two independent channels to measure the time interval, which are 

less convenient to users in practical application. Moreover, relationships based on PTT are 

not reliable enough to make the PTT-based approach as a surrogate marker of SBP, and DBP 

and MBP cannot be predicted from PTT [Payne et al., 2006]. 

 

For these reasons, some works were made to estimate blood pressure by using 

photoplethysmographic signal. Several features (pulse amplitude, area, width, half width, 

systolic and diastolic time (DT), etc.)  extracted from PPG signals in time domain were 

claimed to correlate with BP [Awad et al., 2001; Teng et al., 2003]. Experimental findings of 

this method demonstrate the promise of the method for the real-time characterization of a 

patient’s vascular compliance curve using a standard sigmoidal model. Once parameterized, 

the curve can be utilized for the real-time measurement of arterial blood pressure using 

non-invasive photoplethysmographic sensor. 

 

It is well known that the arterial wall demonstrates a highly nonlinear relationship between 

vascular volume V and transmural pressure R]� [Ando et al., 1991], which is defined as the 

difference between the internal pressure R�I� ,external hydrostatic pressure R�.FSH ,and 

any additional externally applied pressure RI�]: 
 

R]� � R�I� � R�.FSH � RI�]                                                                                                        (6.3) 

 

Typically, this nonlinear relationship can be characterized by fitting a sigmoid function to 

experimentally derived pressure-volume data, 

 

RR< � 
 � N�
�QI�N0R]�                                                                                                                     (6.4) 

 

where N� and N0 are fitting parameters with units of volume and inverse pressure, 

respectively.  

 

N� � �n�R]���
                                                                                                                            (6.5) 

 

The remaining model parameter, N0, requires additional knowledge about the pressure-

volume relationship. One method for estimating this parameter is to assume that the middle 

section of the sigmoid is approximately linear, with slope N0. If valid, the value of N0 can 

then be estimated from any two points (pressures) within this linear region (Fig. 6.7). The 

main difficulty with this approach is that it appears to require knowledge of the compliance 

curve. In particular, it requires knowledge of the pressures containing the central region of 

the compliance curve.  
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Figure 6.7: Arterial compliance curves based on parameters estimated from hydrostatic 

challenge. 

 

6.5 Calibration of the PPG to BP for the 

Continuous Assessment in the Developed 

Wearable Device  
The aim of this work is the development of a wearable biomedical system for the continuous 

and real-time monitoring of blood pressure through the validation of the PPG calibration 

method. Developing such as device has the advantage to be easy to wear thanks to the use 

of a standard SpO2 sensor. Such wearable device can easily embedded ,for example, in a 

comfortable glove using a fingertip sensor or in a shoe using a standard wrapped sensor 

placed in one of the foot finger. 

 

The calibration procedure was made on five healthy volunteers wearing the device 

embedded in a comfortable cotton glove with the SpO2 standard sensor wrapped in the 

index finger. In order to calibrate the PPG signal to blood pressure, the amplitude of the PPG 

signal is measured in eight different heights for each subject and the diastolic and systolic 

value are measured with the aid of a standard sphygmomanometer. 

 

Fig. 6.8 shows the resultant plots obtained plotting the amplitude of PPG signal versus the 

measured blood pressure for every height and for every volunteer. 
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Figure 6.8: Experimental calibration of the PPG signal to blood pressure in five different 

volunteers. 

 

These experimental data confirm the standard sigmoidal model defined in Eq. (6.4). Once 

parametrized through a the calibration process illustrated above, the sigmoidal curve can be 

used to compute a real-time cuffless estimation of MBP using only a non-invasive PPG 

sensor. However, this method is subjective and the calibrations curve obtained are different 

for each volunteer. 
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Hence, is necessary a normalization of the amplitude of the PPG signals in order to obtain a 

unique calibration curve for all subjects. Fig. 6.9 shows a graph obtained normalizing the 

amplitude of the PPG signals respect to the PPG signal with the less amplitude. 

 

 
Figure 6.9: Normalized PPG versus blood pressure graph. 

 

The graph obtained shows that this normalization process don’t permit to have a unique 

objective calibration curve useful for every patient. Hence this method permit to calibrate a 

sigmoidal curve that correlate the PPG amplitude of a patient but the standardization of a 

calibration protocol is needed in order to successfully utilize such as method. Moreover, the 

calibrated sigmiodal curve is more sensible to motion artifacts, so a little shift of the SpO2 

sensor strongly influence the PPG amplitude and hence the sigmoidal curve. 
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Chapter 7 
 

Continuous Monitoring of patients 

with HA, AF and DVT through Wavelet 

Transform of PPG signals 
 

 

 

 

 

 

 

 

 

 
Due to the wide variety of signals and problems encountered in medicine and biology, the 

spectrum of applications of the wavelet transform in biomedical signal processing is 

extremely large [Aldroubi et al., 1996]. The main difficulty in dealing with biomedical objects 

is the extreme variability of the signals and the necessity to operate on a case by case basis.  

 

Wavelet analysis in biomedical signal processing ranges from the analysis of the more 

traditional physiological signals such as the electrocardiogram (ECG), to the very recent 

imaging modalities including positron emission tomography (PET) and magnetic resonance 

imaging (MRI) [Wright, 2000]. It is used usually to remove noise, artefacts, or transient 

features.  

 

This chapter show how it is possible to correlate PPG signal to heart attack, deep vein 

thrombosis and atrial fibrillation through a wavelet analysis in order to implement in the 

developed wearable device a clinical aid in the treatment of these diseases by anticoagulant 

oral therapy. 
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7.1 Wavelet Analysis 
The wavelet transform can be used as another way to describe the properties of a waveform 

that changes over time, but in this case the waveform is divided not into sections of time, 

but segments of scale [Akansu et al., 1992].  

In wavelet analysis, a variety of different probing functions may be used, but the family 

always consists of enlarged or compressed versions of the basic function, as well as 

translations. This concept leads to the defining equation for the continuous wavelet 

transform (CWT): 

 

���� � ��E, N � � ��] �
�|E|���]PNE F] Q�

P�                                                                            (7.1) 

 

where b acts to translate the function across x(t) and the variable a acts to vary the time 

scale of the probing function �. If a is greater than one, the wavelet function �, is stretched 

along the time axis, and if it is less than one (but still positive) it contacts the function. 

Negative values of a simply flip the probing function on the time axis. While the probing 

function �  could be any of a number of different functions, it always takes on an oscillatory 

form, hence the term wavelet. The * indicates the operation of complex conjugation, and 

the normalizing factor 
�
√  ensures that the energy is the same for all values of a. If b = 0, and 

a = 1, then the wavelet is in its natural form, which is termed the mother wavelet [Rao et al., 

1998].  

 

 
Figure 7.1: A Morlet mother wavelet (a = 1) with two dilations (a = 2 and 4) and one 

contraction (a = 0.5). 
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The wavelet coefficients W(a, b), describe the correlation between the waveform and the 

wavelet at various translations and scales: the similarity between the waveform and the 

wavelet at a given combination of scale and position a, b. In other words, the coefficients 

provide the amplitudes of a series of wavelets, over a range of scales and translations, that 

would need to be added together to reconstruct the original signal. From this perspective, 

wavelet analysis can be thought of as a search over the waveform of interest for activity that 

most clearly approximates the shape of the wavelet. This search is carried out over a range 

of wavelet sizes: the time span of the wavelet varies although its shape remains the same.  

 

If the wavelet function � is appropriately chosen, then it is possible to reconstruct the 

original waveform from the wavelet coefficients just as in the Fourier transform [Strang et 

al., 1997]. Since the CWT decomposes the waveform into coefficients of two variables, a and 

b, a double summation (or integration) is required to recover the original signal from the 

coefficients: 

 

��] � �
��  Q�

E a P� � ��E, N�E,N�]FEFN Q�
N a P�                                                                           (7.2) 
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P�                                                                                                                           (7.3) 

 

 
Figure 7.2: CWT of a 15Hz sine before t = 1 sec and 50Hz after t = 1 sec.  

 
Figure 7.3: Haar, Morlet, Mexican Hat and Meyer wavelet [Misiti et al., 2008].   
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Figure 7.4: Coiflet wavelets [Misiti et al., 2008]. 

 

 
Figure 7.5: Symlet wavelets[Misiti et al., 2008].  

 
Figure 7.6: Daubechies wavelets[Misiti et al., 2008].    
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Figure 7.7: Biorthogonal wavelets[Misiti et al., 2008].   
 

 

 

 

 

 



99 

 

The CWT has one serious problem: it is highly redundant. The CWT provides an oversampling 

of the original waveform: many more coefficients are generated than are actually needed to 

uniquely specify the signal. This redundancy is usually not a problem in analysis applications 

but will be costly if the application calls for recovery of the original signal. For recovery, all of 

the coefficients will be required and the computational effort could be excessive. In 

applications that require bilateral transformations, we would prefer a transform that 

produces the minimum number of coefficients required to recover accurately the original 

signal.  

 

The discrete wavelet transform (DWT) achieves this requirement by restricting the variation 

in translation and scale, usually to powers of 2. When the scale is changed in powers of 2, 

the discrete wavelet transform is sometimes termed the dyadic wavelet transform. The DWT 

may still require redundancy to produce a bilateral transform unless the wavelet is carefully 

chosen such that it leads to an orthogonal family. In this case, the DWT will produce a non-

redundant, bilateral transform [Wickerhauser, 1994]. 

 

In the DWT, a new concept is introduced termed the scaling function, a function that 

facilitates computation of the DWT. To implement the DWT efficiently, the finest resolution 

is computed first. The computation then proceeds to coarser resolutions, but rather than 

start over on the original waveform, the computation uses a smoothed version of the fine 

resolution waveform. This smoothed version is obtained with the help of the scaling 

function. In fact, the scaling function is sometimes referred to as the smoothing function. 

The definition of the scaling function uses a dilation or a two-scale difference equation: 

 

��] � ∑ √0T�#�#a P� ��0] � #                                                                                               (7.4) 

 

where c(n) is a series of scalars that defines the specific scaling function. This equation 

involves two time scales (t and 2t) and can be quite difficult to solve.  

In the DWT, the wavelet itself can be defined from the scaling function: 

 

��] � ∑ √0F�#�#a P� ��0] � #                                                                                              (7.5) 

 

where d(n) is a series of scalars that are related to the waveform x(t) and that define the 

discrete wavelet in terms of the scaling function.  

 

While the DWT can be implemented using the above equations, it is usually implemented 

using filter bank techniques. The use of a group of filters to divide up a signal into various 

spectral components is termed sub-band coding. The most basic implementation of the DWT 

uses only two filters as in the filter bank shown in Fig. 7.8. 
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Figure 7.8: Simple filter bank consisting of only two filters applied to the same waveform. The 

filters have low-pass and high-pass spectral characteristic. 

 

The waveform under analysis is divided into two components, .G��# and .���#, by the 

digital filters ���� and ����. The spectral characteristics of the two filters must be 

carefully chosen with ���� having a low-pass spectral characteristic and  ���� a high-

pass spectral characteristic. The high-pass filter is analogous to the application of the 

wavelet to the original signal, while the low-pass filter is analogous to the application of the 

scaling or smoothing function. If the filters are invertible filters, then it is possible, at least in 

theory, to construct complementary filters that will recover the original waveform from 

either of the sub-band signals, .G��# (approximation) and .���# (detail). The original 

signal can often be recovered even if the filters are not invertible, but both sub-band signals 

will need to be used. Signal recovery is illustrated in Fig. 7.9 where a second pair of filters, 

<��� and <��� operate on the high and low-pass sub-band signals and their sum is used 

to reconstruct a close approximation of the original signal. 

 

 

 

 

 

 

 

 

Figure 7.9: A typical wavelet application using filter bank containing only two filters. The 

input waveform is first decomposed into sub-bands using the analysis filter bank. Some 

process is applied to the filtered signals before reconstruction. Reconstruction is performed 

by the synthesis filter bank. 

 

The Filter Bank that decomposes the original signal is usually termed the analysis filters 

while the filter bank that reconstructs the signal is termed the syntheses filters. In some 

analysis applications only the sub-band signals are of interest and reconstruction is not 

needed, but in many wavelet applications, some operation is performed on the sub-band 

signals, .G��# and .���#, before reconstruction of the output signal. In such cases, the 

output will no longer be exactly the same as the input.  
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There is one major concern with the general approach schematized in Fig. 7.9: it requires the 

generation of twice as many points as are in the original waveform. This problem will only 

get worse if more filters are added to the filter bank. If the analysis filters are correctly 

chosen, then it is possible to reduce the length of .G��# and .���# by one half and still be 

able to recover the original waveform. To reduce the signal samples by one half and still 

represent the same overall time period, we need to eliminate every odd point. This 

operation is known as downsampling. The downsampled version of y(n) would then include 

only the samples with even indices [y(2), y(4), y(6), . . . ] of the filtered signal. 

 

If downsampling is used, then there must be some method for recovering the missing data 

samples (those with odd indices) in order to reconstruct the original signal. An operation 

termed upsampling accomplishes this operation by replacing the missing points with zeros.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: A typical wavelet application using three filters where the downsampling and 

upsamplig processes are shown. 

 

Designing the filters in a wavelet filter bank can be quite challenging because the filters must 

meet a number of criteria. The most important concern is the ability to recover the original 

signal after passing through the analysis and synthesis filter banks.  

 

A way to choose an optimal mother wavelet function is the algorithm developed in [Castro 

et al., 2000]. From the wavelet family set, the optimal mother wavelet is chosen by mean of 

best reconstruction quality and minimum coefficients obtained from the 4
th

 decomposition 

depth.  
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� � ��� ||~||0
||~T||0                                                                                                                                   (7.6) 

 

where � is the reconstruct value, ~ is the signal and ~T is the reconstructed signal. 

The minimum reconstruction value is fixed to be 99%, which guarantees the preservation of  

important signal components.   

 

7.2 Wavelet Analysis in Biomedical Signal 

Processing 
Due to the wide variety of signals and problems encountered in medicine and biology, the 

spectrum of applications of the wavelet transform in biomedical signal processing is 

extremely large [Aldroubi et al., 1996]. The main difficulty in dealing with biomedical objects 

is the extreme variability of the signals and the necessity to operate on a case by case basis. 

Often, one does not know a priori what is the pertinent information and at which scale it is 

located. Moreover, the information of interest in biomedical signals is often a combination 

of features that are well localized temporally or spatially and others that are more diffuse. 

This requires the use of analysis methods sufficiently versatile to handle events that can be 

at opposite extremes in terms of their time-frequency localization. 

Wavelet analysis in biomedical signal processing ranges from the analysis of the more 

traditional physiological signals such as the electrocardiogram (ECG), to the very recent 

imaging modalities including positron emission tomography (PET) and magnetic resonance 

imaging (MRI) [Wright, 2000]. It is used usually to remove noise, artefacts, or transient 

features.  

 

In ECG processing, the wavelet analysis is used for QRS detection [Li et al., 1995]. In heart 

sound analysis, the WT is a useful tool for the time-frequency analysis and characterization 

of the murmurs, which are primarily caused by blood flow turbulence and characteristic of 

cardiac disease such as aortic stenosis or valve defects [Khadra et al., 1991]. In Computer-

Assisted Tomography (CAT) and in Magnetic Resonance Imaging (MRI), the the wavelet 

analysis is used for image enhancement and for detection of microcalcifications in 

mammograms [Clarke et al., 1994; Qian et al., 1994; Strickland et al., 1994; Yoshida et al.,  

2001]. In functional image analysis such as PET and fMRI, the the wavelet analysis is utilized 

for investigating the neuronal activity of the brain in vivo [Ruttimann et al., 1993; Rio et al.,  

1994; Unser et al.,  1995]. 

 

In PPG wavelet analysis, Leonard et al. discovered a wavelet-based algorithm for 

identification of unwell children from pulse oximeter waveform [Leonard et al., 2004]. 

In the past the photoplethysmogram has traditionally been thought to be of no value except 

to determine if a pulse oximeter is picking up a good signal and thus giving an accurate 
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reading [Moyle, 1994]. However, other works have shown that other cardiorespiratory 

variables influence the waveform [Vegfors et al., 1994; Middleton et al., 2000].  

 

Photoplethysmogram signals were obtained from 20 children fulfilling the study entry 

criteria and from 12 children of a group control. All traces were analyzed using wavelet 

techniques, first to remove the effects of noise and drift, and then to determine the wavelet 

based features that permit separation of the control group from the unwell children. 

Maximal separation was achieved when the wavelet power across the 1 Hz frequency band 

was plotted against the entropy at the 7 Hz band (Fig. 7.11). The probability that the two 

samples come from populations that are identical is p = 0.00002. 

 

 
Figure 7.11: Scatter plot of wavelet power at 1 Hz against entropy at 7 Hz showing 

differentiation of well children from unwell children. 

 

7.3 Wavelet Analysis of Acquired PPG signals 
Using the wearable device depicted in section 4.3, the Photoplethysmogram signals were  

obtained from 27 patients with atrial fibrillation disease, 30 patients with deep vein 

thrombosis disease, 15 patient with heart attack and from 20 healthy subjects of a group 

control (mean age 40 years). The aim of this work was to discover a wavelet analysis able to 

discriminate between the PPGs of the control group and the PPGs of the patients with 
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disease. In order to exclude results in the wavelet analysis imputable to different therapies 

from the patients sets, all of these patients follow the same anticoagulant oral therapy. 

 

Starting from the PPG signals of the healthy subjects and in concordance with the Castro 

algorithm for choosing the optimal mother wavelet function (Eq. (7.6)), the optimal wavelet 

function used was the Sym7. 

 

 
Figure 7.12: PPG signal of a healthy subject acquired with the wearable device realized. 

 

The wavelet decomposition used is shown in Fig. 7.13. Using the filter coefficients for the 

Sym7 wavelet, all of PPG signals are decomposed in detail and approximation until the 

second level of filter banks. 

 

 

 

 

 

 

 

 

 

 

Figure 7.13: Wavelet decomposition used for the healthy and ill PPG signal analysis. 

 

In order to discriminate between healthy and ill PPG signals, three different parameters was 

used after the wavelet transform: 

 

�qoqm¨©     �� � �
jP�∑ ��/ � �i0j/a�                                                                                            (7.7) 

 

where � is the waveform being analyzed, N is the number of samples of �, and �i is the mean 

value of �. 
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where �� is the energy of �, ��/ is the energy of any other signal in the same set, and N is 

the number of signals in the set. 

 

�qowmy�©     �� � ∑ G#j/a� �/0                                                                                                      (7.9) 

 

where �� is the entropy of � and N is the number of samples of �. 

 

7.3.1 Analysis of Atrial Fibrillation PPG signals 

 
Figure 7.14: PPG signal of a subject with AF disease acquired with the wearable device 

realized. 

 

In spite of the PPG signal in patients with AF disease is clearly different from a PPG signal of a 

healthy subjects, plotting the energy (Fig. 7.15) or the normalized energy (Fig. 7.16) of the 

wavelet analysis at various scale of approximation versus the entropy, don’t permit to 

discriminate PPGs of patients with AF disease from PPGs of healthy subjects. 

 

 
Figure 7.15: Energy versus entropy of the DD2 level of the wavelet analysis of healthy PPGs 

and of PPGs from subjects with AF disease. 
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Figure 7.16: Normalized energy versus entropy of the DD2 level of the wavelet analysis of 

healthy PPGs and of PPGs from subjects with AF disease. 

 

7.3.2 Analysis of Deep Vein Thrombosis PPG 

signals 

 
Figure 7.17: PPG signal of a subject with DVT disease acquired with the wearable device 

realized. 

 

The PPGs acquired from patients suffering from DVT are very similar to those acquired from 

healthy subjects. The wavelet analysis don’t permit to distinguish from healthy PPGs and ill 

PPGs, although the greater part of ill PPGs are clustered (Fig. 7.18). 
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Figure 7.18: Energy versus entropy of the AD2 level of the wavelet analysis of healthy PPGs 

and of PPGs from subjects with DVT disease. 

 

7.3.3 Analysis of Heart Attack PPG signals 

 
Figure 7.19: PPG signal of a subject with HA disease acquired with the wearable device 

realized. 

 

In spite of the PPG signals in patients with HA disease are very similar to PPG signals of 

healthy subjects, the wavelet analysis permit to clearly distinguish between healthy PPGs 

and ill PPGs, simply plotting energy versus entropy of the wavelet transform of the second 

level of approximation (AA2). 
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Figure 7.20: Energy versus entropy of the AA2 level of the wavelet analysis of healthy PPGs 

and of PPGs from subjects with HA disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 

 

 

Chapter 8 
 

A DVB-T based System for Tele-Home 

Care Practice 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to reduce the costs for both the patients and the public administration, tele-home 

care systems are today often used for clinical practice. They permit to avoid the 

overcrowding of ambulatories for simple routine examinations and, in the case of chronic 

patients that must be frequently monitored, to avoid the costs and the waste of time of an 

ambulatory examination for simple physiological measurements that they could easily 

perform at home, sending the recorded data to the care staff in the appropriate 

department. However, these telemedicine systems are usually PC based or use complex 

hardware and software products. Even if such technologies are quite popular today, they are 

frequently used only by relatively young people, which are not the primary tele-home care 

target. Cardiopathic and diabetic patients need to be frequently monitored and in some 

cases they could easily perform at home the requested physiological measurements (i.e. 

glycemia, heart rate, blood pressure and body weight) sending the measured data to the 

care staff in the hospital.  

 

This chapter shows a low-cost tele-home care system based on the Digital Video Broadcast 

Terrestrial (DVB-T) technology for the remote monitoring of patients with diabetes and 

suffering from cardiovascular diseases, even exploitable by elderly people. 
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8.1 Introduction to Interactive TV 

8.1.1 Digital Video Broadcasting 
The Digital Video Broadcasting (DVB) Project is an Alliance of about 300 companies aimed to 

define the Digital Television standardization. There are different standards based on the 

transmission mean [DVB, 1999]:  

• DVB-S for Satellite; 

• DVB-C for Cable; 

• DVB-T for Terrestrial; 

• DVB-H for handheld devices. 

 

 
Figure 8.1: DVB standards over the world. 

 

These standards define the physical layer and data link layer of the distribution system. 

Devices interact with the physical layer via a synchronous parallel interface (SPI), 

synchronous serial interface (SSI), or asynchronous serial interface (ASI). All data is 

transmitted in MPEG-2 transport streams with some additional constraints (DVB-MPEG).  

 

These distribution systems differ mainly in the modulation schemes used and error 

correcting codes used, due to the different technical constraints. DVB-S uses QPSK, 8PSK or 

16-QAM. DVB-C uses QAM: 16-QAM, 32-QAM, 64-QAM, 128-QAM or 256-QAM. Lastly, DVB-

T uses 16-QAM, 64-QAM or QPSK in combination with COFDM and can support hierarchical 

modulation. 
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Figure 8.2: Scheme of a DVB-T transmission system. 
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(STB). Allowed bitrates for the transported data depend on a number of coding and 

modulation parameters: it can range from about 5 to about 32 Mbps. 

• Splitter: two different TSs can be transmitted at the same time, using a technique 

called Hierarchical Transmission (HT). It may be used to transmit, for example, a 

standard definition SDTV signal and a high definition HDTV signal on the same carrier. 

Generally, the SDTV signal is more robust than the HDTV one. At the receiver, 

depending on the quality of the received signal, the STB may be able to decode the 

HDTV stream or, if signal strength lacks, it can switch to the SDTV one. 

• MUX adaptation and energy dispersal: the MPEG-2 TS is identified as a sequence of 

data packets, of fixed length (188 bytes). With a technique called energy dispersal, 

the byte sequence is decorrelated.  

• External encoder: a first level of error correction is applied to the transmitted data, 

using a non-binary block code, a Reed-Solomon RS (204, 188) code, allowing the 

correction of up to a maximum of 8 wrong bytes for each 188-byte packet.  

• External interleaver: convolutional interleaving is used to rearrange the transmitted 

data sequence, in such a way that it becomes more rugged to long sequences of 

errors.  

• Internal encoder: a second level of error correction is given by a punctured 

convolutional code, which is often denoted in STBs menus as FEC (Forward error 

correction). There are five valid coding rates: 1/2, 2/3, 3/4, 5/6, and 7/8.  

• Internal interleaver: data sequence is rearranged again, aiming to reduce the 

influence of burst errors. This time, a block interleaving technique is adopted, with a 

pseudo-random assignment scheme.  

• Mapper: the digital bit sequence is mapped into a base band modulated sequence of 

complex symbols. There are three valid modulation schemes: QPSK, 16-QAM, 64-

QAM. 

• Frame adaptation: the complex symbols are grouped in blocks of constant length 

(1512, 3024, or 6048 symbols per block). A frame is generated, 68 blocks long, and a 

superframe is built by 4 frames.  

• Pilot and TPS signals: in order to simplify the reception of the signal being 

transmitted on the terrestrial radio channel, additional signals are inserted in each 

block. Pilot signals are used during the synchronization and equalization phase, while 

TPS signals (Transmission Parameters Signalling) send the parameters of the 

transmitted signal and to unequivocally identify the transmission cell. The receiver 

must be able to synchronize, equalize, and decode the signal to gain access to the 

information held by the TPS pilots. Thus, the receiver must know this information 

beforehand, and the TPS data is only used in special cases, such as changes in the 

parameters, resynchronizations, etc.  

• OFDM Modulation: the sequence of blocks is modulated according to the OFDM 

technique, using 2048, 4096, or 8192 carriers (2k, 4k, 8k mode, respectively). 
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Increasing the number of carriers does not modify the payload bit rate, which 

remains constant.  

• Guard interval insertion: to decrease receiver complexity, every OFDM block is 

extended, copying in front of it its own end (cyclic prefix). The width of such guard 

interval can be 1/32, 1/16, 1/8, or 1/4 that of the original block length. Cyclic prefix is 

required to operate single frequency networks, where there may exist a not 

eliminable interference coming from several sites transmitting the same program on 

the same carrier frequency.  

• DAC and front-end: the digital signal is transformed into an analog signal, with a 

digital-to-analog converter (DAC), and then modulated to radio frequency (VHF, UHF) 

by the RF front-end. The occupied bandwidth is designed to accommodate each 

single DVB-T signal into 5, 6, 7, or 8 MHz wide channels. 
 

8.1.3 Multimedia Home Platform 
The Multimedia Home Platform (MHP) defines a generic interface between interactive 

digital applications and the terminals on which those applications execute. It enables digital 

content providers to address all types of terminals ranging from low-end to high-end set-top 

boxes, integrated digital TV sets and multimedia PCs. The MHP extends the existing, 

successful DVB open standards for broadcast and interactive services in all transmission 

networks [MHP, 2008]. 

 

8.1.3.1 MHP Architecture 
The architecture of the MHP is defined in terms of three layers: 

• resources; 

• system software 

• applications.  

 

 
Figure 8.3: MHP architecture. 
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Typical MHP resources are MPEG processing, I/O devices, CPU, memory and a graphics 

system. The system software uses the available resources in order to provide an abstract 

view of the platform to the applications.  

AppIications include an application manager (also known as a "navigator") to control the 

MHP and the applications running on it. 

 

8.1.3.2 MHP System Core 
MHP is based around a platform known as DVB-J, which includes a virtual machine as 

defined in the Java Virtual Machine specification from Sun Microsystems. A number of 

software packages provide generic application program interfaces (APIs) to a wide range of 

features of the platform. MHP applications access the platform only via these specified APIs. 

MHP implementations are required to perform a mapping between these specified APIs and 

the underlying resources and system software. 

 

8.1.3.2 MHP Profiles 

The MHP specification provides a consistent set of features and functions required for the 

Enhanced Broadcast, Interactive Broadcast and Internet Access profiles.  

 
Figure 8.4: MHP profiles. 

 

The Enhanced Broadcast profile is intended for broadcast (one way) services, while the 

Interactive Broadcast profile supports additional interactive services. The Internet Access 

profile allows MHP to use the worldwide communication network provided by the Internet. 

 

 



 

8.1.4 JavaTV Xlet
JavaTV API are an extension of the Java platform designed for developers who are producing 

Java-based interactive television content. The Java TV API gives programs written in the Java 

programming language control of broadcast television receivers and set

 

An Xlet is a JavaTV application that follows a lifecycle model defined by a specific finite state 

machine (Fig. 8.5) [Calder et al., 2000]

Figure 8.5: Xlet lifecycle model.
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yet uninitialized. From here, it can be initialized or 

Paused state the Xlet is initialized and waits to become 

the required operations.  
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information of the Stream event descriptors in the stream. Stream event descriptors are 

used to provide a mechanism whereby the interactive application can respond to “events” in 

the A/V content. 

 

8.2 Others Tele-Home Care Projects in 

Literature 
The primary activity of telemedicine systems was the transmission of diagnostic medical 

images using television for medical consultation from physician to physician in remote 

places. Recently, telemedicine systems through the Internet via satellite have become a 

reality by means of high throughput mixed satellite-web communication channels. This 

section presents some home-oriented telemedicine projects making use of DVB and 

Internet, without the claim to be exhaustive. 

 

The Interactive Satellite Multimedia Information System (ISIS) project [Pierucci et al., 2000], 

realized a telemedicine system based on satellite communication for furnishing interactive 

services for residential users together with the traditional TV distribution, porting tipical 

applications developed for terrestrial network (Internet) to the satellite digital video 

broadcasting technology (DVB-S). By a dual-band terminal, connected in uplink via Eutelsat 

satellite and in downlink via the Italsat satellite, the ISIS system provides a small and low-

cost transceiver for sites not connected to the Internet or connected only in dial-up low-

speed mode (Fig. 8.6). Through his Java application for the DVB-S transceiver, called Medical 

Environment for Diagnostic Images (MEDI), the project can manage a medical image 

database for remote expert consultation and so it demonstrated the feasibility of satellite-

based interactive multimedia services for telemedicine 

purposes. 

 
Figure 8.6: ISIS architecture scheme. 
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In 2001, a multipurpose health care telemedicine system with a base unit and a mobile unit 

was developed in Greece too [Kyriacou et al., 2001]. At patient’s home, the mobile unit 

allows the transmission of vital bio-signals and static images of the patient to the base unit 

at the physician site (office or hospital). The mobile unit device is compliant with some of the 

commercial main vital signs monitor and it is able to transmit ECGs, non-invasive blood 

pressure (NIBP), body temperature, percentage of arterial oxygen saturation (SpO2) and 

heart rate. Based on the TCP/IP protocol, the communication between the two parts ensures 

safe data transmission and the possibility to use different telecommunication means (GSM 

or satellite links) (Fig. 8.7). 

 

 
Figure 8.7: Kyriacou’s architecture scheme. 

 

Launched in January 2001, the Universal Remote Signal Acquisition For hEalth (U-R-Safe) 

tele-home care project [Mailhes et al., 2003], created a mobile telemedicine system for 

home monitoring to be used by elderly peaple and disabled patients in Europe. Via short 

range Wireless Personal Area Network (WPAN), wearable ECG and SpO2 sensors are 

connected to a portable electronic device, able to send the recorded data to a remote 

central through the TCP/IP protocol and the wireless public network (GPRS, UMTS and GEO 

satellites). The portable unit is also capable of sending an alarm when patient fells sick, falls 

or pushes a button (Fig. 8.8). 

 



 

Figure 8.8: U-R-Safe architecture scheme.
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Figure 8.9: HEALTHWARE architecture scheme.

Safe architecture scheme. 

nteroperable Satellite Solution to Deploy Health Care Services Over Wide 

[Loghelongue, 2007], is an integrated project of the Aeronautics 
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ons systems and telemedicine applications. Thanks to the D

Return Channel by Satellite (DVB-RCS) technology, that offers satellite 
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consultation, second opinions and monitoring and remote assistance at home.

HEALTHWARE architecture scheme. 
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Even if these systems are very interesting, none of them owns the possibility to be used by 

untrained people to perform single exams rather then continuous monitoring, with an 

immediate visual confirmation of the quality of the signal measurement. None of them could 

be used by the patient to control his/her health state through simple measurements even 

without sending the exam to a remote care center. 

 

8.3 System Overview 
This system is conceived to keep as low as possible the costs of the extra hardware with 

respect to a minimum setup composed of a TV and a DVB-T set-top box connected to the 

telephone line. This way the usability by untrained people not accustomed to digital 

equipments but the TV set one is also preserved. A global representation of the entire 

system is depicted in Fig. 8.10. 

 
Figure 8.10: The main parts of the DVB-T based tele-home care realized system. 

 

At the patient’s home, the TV set is equipped with a standard interactive set-top box. 

Standard Multimedia Home Platform (MHP) set-top boxes are simple computers with their 

Operating System, a Java Virtual Machine and a set of standard ports for I/O interfacing, 

such as a smart card reader and an internal 56Kbps modem for pay-per-view services. From 

the patient’s point of view, the system exploits the remote control of the set-top box as 



120 

 

control input for the user, the TV screen as output for him, and the telephone line to send 

the data to a Remote Data Base (RDB). For this work, has been used a Telesystem TS7.4DT 

set-top box, with the version 21p1 of the real-time Operating System (i.e. Osmosys) and 

implementing the MHP 1.02 profile with some enhancements, primarily the addition of java 

packages for both the smart card and the internal modem management. 

 

The interactive application (Java Xlet) is loaded on the patient’s set-top box through an ether 

broadcast DVB-T transmission, while the user is watching the broadcaster’s channels. It can 

run in the set-top box thanks to the Java Virtual Machine. The Xlet mainly manages the 

acquisition and transmission to the Remote Data Base of the patient’s data, but also enables 

the visualization on the TV screen of the physician’s feedbacks from the Remote Hospital. To 

allow a secure one-to-one sensitive data transmission in a one-to-many communication 

channel, like in DVB-T broadcasting, a double key encrypting technique is implemented. In 

such a way, patients can view and read just their physician’s messages. 

 

A microcontroller-based custom Smart Card (SC), which is programmed by the Remote 

Hospital, allows an easy use of the system, providing all the necessary data to the Xlet to 

configure the framework for a specific patient. The SC stores the patient’s name and their 

personal identification code, the treating physician’s name and their identification number, a 

permission exam code, some information about the Internet Service Provider for the 

Internet access (user ID, password, telephone number), the Remote Data Base IP address 

and the private key needed to read the physician’s feedback. This way the patient does not 

have to remember any code, number, password, and different patients can share the same 

hardware platform simply inserting their personal smart card. According to the international 

recommendations about the patent’s safety, the SC also provides the Xlet with the data 

exams collected by the acquisition unit (the Base Station) through a wireless link at 2.4GHz in 

the free ISM band. Fig. 8.11 shows the picture of the first prototype of the realized custom 

smart card. It is build around a low-cost microcontroller connected through the SPI protocol 

with a Mi-Wi P2P compliant wireless transceiver. 

 

 
Figure 8.11: First prototype of the custom smart card. 



121 

 

The Base Station (BS) enables the acquisition of some physiological parameters needed for 

the monitoring of diabetic and cardiopatic patients (i.e. blood pressure, heart rate, body 

temperature, body weight and glycemia) through wired serial RS232 compliant connections 

to three commercial and certificate biomedical devices (i.e. Menarini Glucocard G+ 

glucometer, OMRON 705IT sphygmomanometer and A&D UC-321P personal precision 

electronic body scale). It is important to notice that the BS could communicate with others 

biomedical devices, depending on the application scenario. To improve patient’s safety, the 

BS is battery-powered and communicates with the Xlet running on the set-top box through a 

wireless link with the SC. In this way, the DVB-T equipment and the acquisition unit are 

wireless coupled, improving patient’s safety. From the patient’s point of view, the BS is only 

a black box with a very simple user interface: the patient has only to connect the commercial 

biomedical device to the BS and press a big button. From this point, the Xlet will do all the 

necessary to send the acquired data to the Remote DB. The SC and BS units are conceived 

taking into account the low-cost target, then resorting to a very simple and low-cost 

microcontroller, i.e. the Microchip PIC18F4620. Based on a 8-bit 10 MIPS RISC CPU, it has 

64KB of Flash memory, 4KB of RAM, 1KB of EEPROM, a hardware multiplier, 13 channel 10-

bit ADC, an USART module and a SPI/I2C controller. The wireless module used in the SC and 

in the BS is based on the Microchip MRF24J40 transceiver at 2.4GHz with a built-in ZigBee 

and Mi-Wi protocol stack.  

 

Exploiting the full potential of the DVB-T technology and of the Java Xlet application loaded 

on the patient’s set-top box, after the acquisition of the physiological parameters of interest, 

the uplink connection supported by the set-top box is used to send the exam results to a 

Remote DB for physician analysis.  

 

At the Remote Hospital, only a simple PC acting as a TCP/IP client is needed. Through the 

Internet, the physician can browse into the patient’s data for clinical examination and can 

send feedbacks directly to a specific patient using the DVB-T channel through a secure 

Internet connection with the broadcasting station.  

 

As a matter of fact, we are testing the system on the field in cooperation with a local DVB-T 

broadcaster (i.e. VIDEOLINA [VIDEOLINA]) but for our preliminary tests we also developed 

the broadcasting part. Our DVB-T broadcast system is based on the CreaTV MiniLab by 

Media Solution (Fig. 8.12). Through the JustDvb-It 2.0 software, video and audio MPEG-2 

encoded contents are multiplexed together with the Xlet application to build the Single 

Program Transport Stream (SPTS) to broadcast. A PCI card DekTec DTA-110, a multistandard 

modulator with UHF Upconverter, is coupled with a 20 dBm RF amplifier (RFbay LPA-4-14) 

for the ether transmission of the SPTS. To establish the bit rate needed to encode audio, 

video and multimedia contents in the MPEG-2 format, it is necessary to know the coding and 

modulation parameters used to transmit the SPTS. We have chosen 1/2 for the 
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convolutional rate, 16QAM for the modulation type and 1/4 of the original block length for 

the guard interval. The resulting bit rate is 9953 Kbps.  

 
Figure 8.12: The block diagram of our broadcast transmission system. 

 

Once the Xlet has been loaded on the set-top box, it starts to read the data stored in the SC. 

Without any valid smart card identification the application cannot proceed. The permission 

exam code stored in the SC is used to allow the patient to perform only some specific exams 

among those available, hence disabling all the other ones. For example, Figure 3 shows a 

screenshot of the Xlet sending two acquired glucometer measurements to the Remote DB. A 

small area on the top-right corner of the Xlet is devoted to the background TV program 

streaming. A pop-up window alerts the patient if he/she is exiting the Xlet without sending 

the results to the RDB (in this case the exam results will be lost). 

 

 

Figure 8.13: Picture of the Xlet sending two acquired glucometer measurements to the RDB. 
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8.4 Overview of the First Version of the 

System  
The first architecture of the system at patient’s home is depicted in Fig. 8.14. 

 

 
Figure 8.14: Architecture of the first version of the system at patient’s home. 

  

In this version of the system, the smart card is used only to identify the patient providing all 

the information needed to carry out the proper exams, whereas the biomedical parameters 

feed the Xlet (called MHPHomecare) through the serial RS-232 port (present only in set-top 

boxes upgradable). 

 

The microcontroller-based Base Station  is controlled by the Xlet and by the user through the 

set-top box remote control. 

 

8.4.1 Patient’s User Interface 
In this first version, the graphic user interface (GUI) of the Xlet (hereafter called 

MHPHomecare) allow the patient to easily control the acquisition process by means of the 

remote control. The user can explore the application moving through the different full-

screen frames (hereafter called FSFs), choosing among the possible options and functions by 

means of the remote control keys, as if it would be a PC keyboard. 

 

Three of the full-screen frames are generic whilst there is another FSF for each exam. The 

three generic FSFs are: 

• the primary FSF, the first FSF shown when the application is started. It waits for the 

smart card insertion in the set-top box for user authentication and then it shows the 

patient’s name (storing the other authentication data only for the transmission 

purposes), waiting for patient’s commands (Fig. 8.15); 

• the about FSF, that shows the application credits; 
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• the reduced FSF, that corresponds to the window minimization to allow the patient 

to watch a TV program while the application is running in background. 

 

 
Figure 8.15: Primary FSF. 

 

8.4.2 The First Prototypal Base Station 
A simple 3-lead ECG is used to test the whole system, so there is only another FSF (a 

screenshot of this FSF is shown in Fig. 8.16), called ECG exam. The ECG Exam FSF enables the 

ECG acquisition and shows in real-time the samples acquired from the Base Station and all 

the other information sent by it about the current exam, such as the hearth rate (in bpm) 

and a warning message in case of poor quality signal. Once the exam has been saved, from 

the same FSF it is possible to send it to the server of the RCC, to review it on the TV (with 

zoom and scroll functions), to save a new exam or to return to the primary FSF.  

 

 
Figure 8.16: The ECG exam screen of the MHPHomecare application (ECG Exam FSF).  
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The three channel electrocardiogram consists in a classical ECG amplifier coupled with a very 

simple and low cost Digital Signal Controller (DSC), i.e. the MicrochipTM dsPIC30F4013 (Fig. 

8.17). This is a 16-bit 30MIPS DSC enhanced with DSP hardware, such as a 17-bit x 17-bit 

multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40- bit bidirectional barrel 

shifter. It also provides several embedded peripherals such as a 12-bit successive 

approximation analog to digital converter, and an USART, both of them employed in this 

prototype. 

 

 
Figure 8.17: A schematic representation of the lead-I for the prototipal 3-lead ECG base 

station. 

 

The fundamental characteristics of the Base Station (frequency bandwidth, sampling 

frequency and the number of bits of the A/D converter) are chosen according to the 

recommendations of American Heart Association for standardization and specifications in 

automated electrocardiography [Bailey et al., 1990]. The ECG amplifier is a low-pass system 

with a variable gain up to 2000 and a cutoff frequency of 100 Hz. It consists of an optically 

isolated instrumentation amplifier with high CMRR connected to the wrists of the patient 

and a simple inverting operational amplifier connected to the right ankle for electromagnetic 

coupling noise rejection purpose, so that only 3 disposable (or reusable) electrodes are 

needed. The DSC is programmed to sample the ECG signal at 250 Hz, and it is interfaced 

through its internal USART to the DVB-T set-top box. According to the international 

recommendations about the patient’s safety, the physical connection between the Base 

Station and the set-top box is represented by an infrared (IR) link. The Base Station embeds a 



 

module for the IR transmission of the serial stream, whereas the set

external IR coupler connected to the RS

 

Figure 8.18: A screenshot of the p

adapter (right). 

 

In order to reduce both the residual 50/60 Hz environmental electrical noise 

implemented a digital notch filter, whereas a high

0.05 Hz) was added for the baseline drift elimination

performed in real-time on the Base Station, since the set

due to the Java VM and to the applications running on it. 

 

Figure 8.19: Results of the digital notch filter 

signal acquired by the prototypal base station

 

 

module for the IR transmission of the serial stream, whereas the set-top box exploits an 

external IR coupler connected to the RS-232 serial port (Fig. 8.18).  

    
A screenshot of the prototipal 3-lead ECG base station (left) and RS

In order to reduce both the residual 50/60 Hz environmental electrical noise 

digital notch filter, whereas a high-pass digital FIR filter (cutoff frequency 

0.05 Hz) was added for the baseline drift elimination (Fig. 8.19). All these computations are 

time on the Base Station, since the set-top box is quite slow in 

due to the Java VM and to the applications running on it.  

   
Results of the digital notch filter (left) and of the high-pass filter 

signal acquired by the prototypal base station. 
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In order to reduce both the residual 50/60 Hz environmental electrical noise the base station 

pass digital FIR filter (cutoff frequency 

. All these computations are 

top box is quite slow in processing 

 
pass filter (right) on ECG 
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On the Base Station has been also implemented a simple QRS detector algorithm based on 

amplitude and first derivative (section 2.2.1.6.1) for heart rate calculation and visualization 

on the TV screen. The RR interval measurement is performed sample by sample, and if it is 

too far from the standards a warning code is sent to the set-top box to ask the user to 

control the correct connection of the electrodes. The average heart rate is sent when the 

acquisition stops and is referred to the average RR during the acquisition window. 
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Chapter 9 
 

Concluding Remarks 
 

 

 

 

 

 

 

 

 

 

Most of the interventions to prevent and treat diabetes and cardiovascular diseases 

significantly affect the use of health services. Therefore, more effective and cheaper ways to 

prevent the major complications of diabetes and CVD are needed.  

 

Diabetes and CVD care through blood pressure control is cost saving mainly because of its 

large health benefits and relatively low intervention costs. The National Health Service 

argues strongly that newer systems of care and newer ways of thinking are needed to tackle 

complex diseases such as diabetes and CVD.  

 

The need to know the long-term effects of diabetes diseases on CVD has inclined to develop 

new system and biomedical devices for non-invasive and remote monitoring/screening of 

blood glucose and other parameters related to prediabetes, diabetes, sleep apnoea, heart 

attack, atrial fibrillation and deep vein thrombosis. 

 

The developed wearable device, battery-powered for patient’s safety, allows the continuous, 

real-time monitoring of some cardiovascular disorders, and can trigger an alarm if the state 

of the disorder can be considered dangerous. It is easy to wear and easy to use, thanks to its 

reduced dimensions and the long term battery autonomy. Moreover, through a wireless link 

with an internet module, the wearable device allows a long time continuous monitoring by a 

remote monitoring station, which can alert the physicists in case of dangerous situations. 

Thanks to the comfortable standard SpO2 sensor applied in one of the fingers, the device 

can be applied to the continuous monitoring of sleep apnoea through HRV analysis, 

continuous monitoring of blood pressure through a hydrostatic calibration of PPG signal, and 
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can aid physicians to the treatment of anticoagulant oral therapy of patients with heart 

attack through a wavelet analysis of the PPG wafeforms. 

 

The presented tele-home care system, based on a framework built around the well 

established DVB-T platform, allows remote monitoring of the patients conditions directly 

from their home, without any installation procedure. After 2012, DVB-T will be the only 

terrestrial television system in Europe, so its diffusion will be capillary, at a very low cost for 

the final user. Exploiting low-cost technologies for the acquisition unit will then lead to the 

development of a user-friendly cheap solution for tele-home care. Some strong points of the 

proposed system are: 

• low-cost, since beyond the TV set only a low cost microcontroller-based acquisition 

unit and a custom wireless smart card are required; 

• user-friendly interface, also for elderly people accustomed to TV but not to 

computers; 

• flexibility, since the functionality of the system can change exploiting the same 

platform; 

• easy maintainability, since Xlet broadcasting enables upgrade, and the smart card 

improves usability and completely avoids any installation activity at the patient’s 

home. 

The overall system has been implemented, tested and is currently used for some trials on 

the field by twenty 65 years old in average selected diabetic and cardiopathes patients. At 

the end of the trial period, each patient will fill a standard questionnaire (i.e. QUEST, Quebec 

User Evaluation of Satisfaction with assistive  Technology) in order to evaluate patient’s 

satisfaction and the related services he/she experienced. 
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