
 
 

 

 

 

 

University of Cagliari 

 
 

Philosophy Doctor 
 

Biology and Biochemistry of Man and Environment 

Cycle XXVIII 

 

 

An integrated top-down and bottom-up 

proteomic platform to reveal potential salivary 

biomarkers of the rare disorders SAPHO 

syndrome, Wilson’s disease and Hereditary 

angioedema  

 

BIO/10 

 

 

Presented by: Doctor Monica Sanna 
PhD coordinator: Professor Emanuele Sanna 
Tutor:              Professor Irene Messana 
 

  
Final exam academic year 2014 – 2015



~ 1 ~ 
 

 

 

 

 

 
Monica Sanna gratefully acknowledges Sardinia Regional Government for the 

financial support of her PhD scholarship (P.O.R. Sardegna F.S.E.  Operational 

Programme of the Autonomous Region of Sardinia, European Social Fund 2007-

2013 - Axis IV Human Resources, Objective l.3, Line of Activity l.3.1.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



~ 2 ~ 
 

Contents:  

 Abstract 4 

 Introduction 6 

 Salivary proteome 6 
 Proline-rich proteins (PRPs) 8 
 Salivary cystatins 9 
 Histatins 10 
 Statherin 10 
 α-defensins 11 
 β-thymosins 11 
 S100s 12 

 Top-down and Bottom-up integrated platforms for proteomic 
analysis  13 

 Wilson’s disease  16 

 SAPHO syndrome 18 

 Hereditary angioedema 19 

 Objectives of the study 23 

 Materials and methods 24 

 Materials 24 

 Samples 24 
 Study subjects 24 

 Wilson’s disease 24 

 SAPHO syndrome 24 

 Hereditary and idiopathic non-histaminergic angioedema 27 
 Salivary sample collection 27 

 Experimental methods 28 
 Low-resolution HPLC-ESI-IT-MS experiments 28 

 Enriched fraction preparation of S100A8 and S100A8 oxidized 
proteoforms and trypsin digestion from WD saliva samples and trypsin 
digestion 29 
 High-resolution HPLC-ESI-MS/MS experiments 29 
 Fractionation of the acidic soluble fraction of salivary proteins by 

ultrafiltration 31 
 Filter aided sample preparation (FASP) 31 
 Nano-HPLC-ESI-MS and MS/MS experiments 31 

 Bioinformatic analyses 33 

 Prediction of proteases naturally acting in saliva 33 

 Quantification 33 
 Top-down proteomics experiments 33 

 Intact protein quantification by low resolution HPLC-ESI-MS 33 

 Statistical analysis 38 
 Bottom-up proteomics experiments 39 

 Quantification of proteins by nano-HPLC-ESI-MS experiments 39 

 Results 40 

 Wilson’s disease 40 
 High-resolution top-down structural characterization of pIgR, and 

three S100A8 oxidized proteoforms 40 
 High-resolution bottom-up structural characterization of S100A8, 

S100A9 oxidized proteoforms 44 
 Protein/peptide quantification and statistical analysis 58 



~ 3 ~ 
 

 SAPHO syndrome 62 
 Protein/peptide quantification and statistical analysis 62 
 Correlations between low-resolution HPLC-ESI-IT-MS data and 

clinical and laboratory parameters 65 

 Hereditary angioedema 68 
 Protein/peptide quantification and statistical analysis 68 
 Characterization of the acidic insoluble salivary proteome and 

bioinformatic analyses 70 
 Quantification of proteins characterized by nano-HPLC-ESI-MS 

experiments and statistical analysis 74 
 Prediction of the proteases acting in saliva by the characterization of 

the salivary peptidome in the different groups 76 

 Discussion 82 

 Wilson’s disease 82 

 SAPHO syndrome 85 

 Hereditary angioedema 88 

 Conclusions 91 

 Acknowledgment 93 

 Bibliography 94 

 Publications on peer-reviewed international journals 115 

 Abstract at congresses 116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



~ 4 ~ 
 

Abstract 

Wilson’s disease, SAPHO syndrome and Hereditary angioedema are three rare 

disorders characterized by a wide  spectrum of different clinical manifestations, 

which involve several organs and apparatus, making the diagnosis extremely 

difficult. In this study, the salivary proteome and peptidome of subjects affected 

by these pathologies has been investigated using mass spectrometry, through 

an integrated top-down and bottom-up platform, and compared with groups of 

healthy controls, with the aim to assess whether qualitative and quantitative 

variations of salivary proteins and peptides could be associated to the immune 

derangement distinctive of each disease and in order to have suggestions on 

potential specific salivary biomarkers.  

The analysis of the salivary proteome from patients affected by Wilson’s disease 

allowed to characterize new oxidized proteoforms of S100A8 and S100A9 and 

two fragments of the polymeric immunoglobulin receptor named ASVD and 

AVAD. Higher levels of these proteins and peptides observed in the patients 

are most likely connected to the oxidative stress, the activation of the 

inflammatory processes, and the hepatic damage caused by the altered copper 

transport and its subsequent accumulation in the organism, which is at the 

origin of the pathology. The observed increase of the level of α-defensins 2 and 

4 may give a contribution to the development of the disease by the 

improvement of the free copper.  

The proteome of patients affected by SAPHO syndrome revealed a significant 

decrease of cystatins, histatins, and aPRPs, which are involved in the protection 

against infections, suggesting a reduced ability of these subjects to contrast 

bacteria colonization, in particular P. acnes which is a possible trigger of this 

disease. In particular, the lower levels of histatins and the higher frequency of 

S100A12 observed in patients with respect to controls, may be connected with 

the dysregulation of the innate immunity and the neutrophil response typical of 

SAPHO syndrome. Cystatin SN abundance decrease correlated with the disease 

duration, suggesting its reduced production during the chronic phase of the 
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disease, while histatins showed positive correlation with serum levels of the C 

reactive protein. 

In saliva of Hereditary angioedema patients, the increased percentage of 

peptides generated by the proteolytic cleavage by metalloproteinases indicates 

the intense metalloproteinase activity possibly connected to the activation of 

inflammatory pathways. Interestingly, in consideration of the possible role of 

cystatin B in enhancing the production of nitric oxide, and the higher salivary 

levels measured in the patients, we suggest that cystatin B may give a 

contribution to the vasodilatation and the vasopermeability responsible for the 

oedema formation, which is the main feature of this pathology.  

In conclusion, the results obtained in these studies clearly highlighted that the 

salivary proteome showed some features specific of the three pathologies. Even 

though these results have been obtained in a small cohort of patients, due to the 

difficult recruitment of subjects affected by rare disorders, and need further 

validation by using orthogonal techniques, they strongly suggest that saliva, 

with easy and non-invasive collection characteristics, could be a biofluid 

suitable for diagnostic applications. 
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Introduction 

 Salivary Proteome 

Saliva is a clear body fluid hypotonic compared to plasma composed by more 

than 99% of water, that contains significant amounts of proteinaceous material 

(including enzymes such as amylase, lysozyme, lipase, acid phosphatase, 

lactoperoxidase, superoxide dismutase, etc.; various peptide hormones), 

glycoproteins (the main constituents of the mucosal secretions), lipid (hormones 

such as testosterone and progesterone) and inorganic ions such as sodium, 

chloride, potassium, calcium, magnesium, bicarbonate, phosphate. It is secreted 

by major (parotid, submandibular and sublingual) and minor (labial, palatine, 

buccal and lingual) salivary glands. According to viscosity of their secretions, 

that is dependent from the content of mucins and lipids, salivary glands can be 

clustered in serous (parotid), mucous (minor glands), and mixed (sublingual 

and submandibular). Under resting conditions, the contribution of parotid, 

submandibular and sublingual glands to saliva accounts for about 20%, 65% 

and 7%, respectively, and less than 10% derives from numerous minor glands. 

Saliva secretion follows circadian rhythms: the minimum flow rate is observed 

in the early morning, and the maximum of secretion is reached in the afternoon, 

when the parotid gland contribution accounts for more than 50% of the total 

secretion. The term “saliva” specifically refers to the salivary gland secretion, 

while “whole saliva” or “oral fluid” are both used to indicate the complex 

solution deriving also from the contribution of gingival crevicular fluid, and 

containing non-adherent bacteria and food residues (Edgar, 1992; Humphrey & 

Williamson, 2001). Saliva is essential for the preservation and the maintenance 

of the oral health, playing a wide range of different actions. This fluid is 

necessary to lubricate mouth tissues, forming a barrier against irritant elements, 

e.g. hydrolytic enzymes produced by plaque bacteria, and substances derived 

from smoking. Mucins, complex glycosylated proteins are the main lubricating 

components for their high viscosity, great elasticity, strong adherence and they 

participate to the formation of the acquired enamel pellicle that protect tooth 
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and also support speech, mastication and swallowing (Humphrey & 

Williamson, 2001; Messana, 2008a; Nieuw Amerongen, 2002). Some salivary 

elements, i.e. statherin, histatins, cystatins and salivary proline-rich proteins, 

regulate calcium homeostasis and mobilization, allowing the equilibrium 

between demineralization and remineralization necessary for the maintenance 

of the tooth integrity (Humphrey & Williamson, 2001; Messana, 2008a). Of great 

importance is saliva antibacterial activity, in which immunologic and 

nonimmunologic elements are involved: IgA, secreted by plasma cells; IgG and 

IgM, deriving from gingival crevicular fluid; glycoproteins, statherins, 

agglutinins, histidine-rich proteins, proline-rich peptides, mucins and enzymes 

secreted by salivary glands. Lactoferrin binds ferric ions that, consequently, are 

not available for microorganism nutrition, while, among the enzymes, 

lysozyme inhibits bacterial growth with the contribution of peroxidase that 

produces thiocynate, toxic for microorganisms, thus protecting tissues from 

oxidative stress caused by oral bacteria (Edgar, 1990; Edgar, 1992; Humphrey & 

Williamson, 2001). Also mucins give their contribution in the control of 

bacterial and fungal colonization promoting benign commensal flora growth. 

On the other hand, glycoproteins, statherin, agglutinins, histatins and salivary 

proline-rich proteins are involved in a “clumping” process that reduces bacteria 

ability to adhere and colonize oral tissues (Mandel, 1989; Humphrey & 

Williamson, 2001). Finally, but not less significant, is the role of saliva in 

nutrition giving its contribution to chewing, swallowing, digestion and taste 

perception (Humphrey & Williamson, 2001; Cabras, 2012a; Melis, 2015). Salty 

taste perception depends on saliva hypotonic nature and on gustin which is 

able to bind zinc ions (Humphrey & Williamson, 2001) while lubrication of the 

food bolus, promoted mainly by mucins, enhances the swallowing (Humphrey 

& Williamson, 2001; Hatton, 1985). 

The great variety of functions in which this body fluid is involved and its role in 

the health of the oral cavity highlights the importance of a proper salivation and 

saliva composition. In the last years many studies, allowed to identify several 

different components and to characterize various classes of proteins and 

peptides. Most of them are specific for the oral cavity and belong to four main 
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families (salivary proline-rich proteins, cystatins, histatins and statherin) while 

others are common to other organs and body fluids.  

Proline-rich proteins (PRPs) represent the major fraction of salivary proteins, 

more than 60% in weight of the total salivary proteome, and they can be 

classified in acidic (aPRPs), basic (bPRPs) and basic glycosylated (gPRPs) 

(Bennick, 1982). Acidic PRPs, secreted by parotid (70%) and submandibular and 

sublingual glands (30%), are encoded by two loci PRH-1 and PRH-2 localized 

on chromosome 12p13. PRH-1 codifies for PIF-s, Db-s and Pa, PRH-2 for PRP-1 

and PRP-2 proteins. The acidic character is due to several glutamic and aspartic 

acid residues located in the first 30 amino acids. All aPRPs show a pyroglutamic 

acid residue at the N-terminus and most of them present two phosphorylated 

serine residues at position 7 and 22 although low levels of mono-

phosphorylated, non-phosphorylated and three-phosphorylated (also on serine 

17) proteoforms can be detected in whole saliva. PRP-1, PRP-2, PIF-s and Db-s 

can be cleaved giving rise to a common peptide of 44 amino acids, named P-C 

peptide, and four truncated forms named PRP-3, PRP-4, PIF-f and Db-f. Instead 

Pa forms dimers through a disulfide bridge between cysteine 103 (Azen, 1987; 

Azen, 1988; Hay, 1994; Inzitari, 2005). Basic and glycosylated PRPs, secreted 

only by parotid glands, are the expression product of four loci: PRB1, 2, 3 and 4 

located near aPRP genes. Each locus includes at least 3 alleles: S, small; M, 

medium; L, large (Lyons, 1988a; Lyons, 1988b; Maeda, 1985a; Maeda, 1985b) 

and a further allele VL, very large, has been described for PRB1, PRB2 and PRB3 

(Lyons, 1988b; Azen, 1990). These alleles encode for pre-proproteins which, 

after peptide-signal removal, undergo extensive and complete proteolytic 

cleavages before secretion, thus only fragments of the proproteins can be 

detected in saliva. Proteins and peptides deriving from PRB1 proproteins are: 

II-2 peptide (from S, M, L alleles), P-E peptides and IB-6 protein (from S allele), 

Ps-1 protein (from M allele) and Ps-2 protein (from L allele). From  PRB2 

proproteins, IB-1, P-J, P-H, P-F peptides and IB-8a protein (from L allele) have 

been characterized while PRB3 and PRB4 proproteins give rise to glycosylated 

proteins and PRP4 proproteins also to P-D peptide (from S, M, L alleles). 

Moreover, P-J, P-F and IB-8a can be further cleaved during granule maturation 
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(Lyons, 1988a; Azen, 1993; Azen, 1996; Stubbs, 1998; Chan, 2001; Messana, 2004; 

Messana, 2008b; Cabras, 2009; Cabras, 2012b; Castagnola, 2012a; Manconi, 2015; 

Messana, 2015). Acidic PRPs play a role in modulating calcium ions 

homeostasis (Bennick, 1981), are absorbed in the hydroxyapatite forming the 

acquired enamel pellicle (Moreno, 1982; Bennick, 1983a) and could be involved 

in the bacterial colonization (Gibbons, 1991). On the other hand, basic PRPs 

bind tannins preventing their absorption and toxic effect on the gastro-intestinal 

tract (Bennick, 2002) and are involved in the perception of the bitter taste 

(Cabras, 2012a; Melis 2015). Glycosylated PRPs not only play lubricating actions 

(Hatton, 1985) but it has been also observed in vitro that bacteria can use their 

glycans as a substrate for their own metabolism and growth (Rudney, 2010). 

Salivary cystatins belong to the cystatin superfamily. They are encoded by 

CST1-5 genes, located on chromosome 20p11.21, and include three different 

families. Also called stefins, cystatin A and B are proteins ca. 100 amino acidic 

residues long, without disulfide bonds, and show cytoplasmic localization. 

Cystatin B has been observed in different body fluids and it has been detected 

in human saliva as S-modified derivatives: S-glutathionylated, S-cysteinylated 

and S-S dimeric form (Bobek, 1992; Dickinson, 2002; Cabras, 2012c). Salivary 

cystatins SN, SA and S (mainly secreted by the submandibular gland) (Shomers, 

1982) as well as cystatin C and cystatin D (this last one secreted by parotid 

gland) (Freije, 1991) belong to the family 2. They are constituted by ca. 120 

amino acids and present two intrachain disulfide bonds. Cystatin S can be 

mono-phosphorylated on serine 3 (S1) or di-phosphorylated on serine 1 and  

serine 3 (S2). All of them have been found in other body fluids like urine, tears 

and seminal plasma while cystatin C has a wider extracellular distribution 

(Abrahamson, 1986; Freije, 1991; Bobek, 1992; Dickinson, 2002). The third family 

of cystatins includes low-molecular-weight kininogen (LMWK), high-

molecular-weight kininogen (HMWK) and T-kininogens: single-chain 

glycoproteins with multiple disulfide bonds found in plasma and secretions 

(Dickinson, 2002). Cystatins are inhibitor of the cysteine proteinases, thus they 

protect the oral cavity from the proteolytic action of host, bacterial, viral and 

parasitic proteinases. Furthermore, they seem to play an antibacterial and 
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antiviral action not related with proteinase inhibitory activity. They also 

showed antifungal action and the ability to modulate the immune system 

(Bobek, 1992; Gu, 1995; Blankenvoorde, 1996; Abe, 1998; Hiltke, 1999; Baron, 

1999; Ruzindana-Umunyana, 2001; Dickinson, 2002; Magister, 2013; Lindh, 

2013). Salivary cystatins also participate to the mineralization of the tooth and 

to the formation of the acquired enamel pellicle (Bobek, 1992; Dickinson, 2002). 

Cystatin SN and marginally SA are also able to control lysosomial cathepsins 

implicated in the destruction of periodontal tissues (Bobek, 1992; Baron, 1999). 

Moreover, Cystatin SA has been implicated in the induction of cytokines by 

human gingival fibroblasts (Kato, 2000).  

Histatins are low molecular weight peptides, deriving their name from the high 

number of histidine residues on their structure, secreted both by major and 

minor salivary glands. Two genes, HIS1 and HIS2, localized on chromosome 

4q13, encode respectively for histatin 1 and histatin 3 that have a similar 

sequence. Before secretion, histatin 3 is exposed to an extensive proteolytic 

cleavage, leading the formation of histatin 6 (histatin3 1/25), histatin 5 (histatin3 

1/24) and other fragments. On the other hand, histatin 1 is not cleaved and is 

mostly found phosphorylated at serine 2;  minor tyrosine-sulfated derivatives 

have been also described (Oppenheim, 1988; Castagnola, 2004; Cabras, 2007; 

Messana, 2008a; Fabian, 2012; Cabras, 2014). Histatins show antifungal activity 

(Ruissen, 2001; Diaz, 2005), inhibitory effect on several oral bacteria (White, 

2009), stimulate wound healing (Oudhoff, 2010), and they are also involved in 

the formation of the enamel pellicle and in the protection of the tooth structure 

(Humprey, 2001; Li, 2004; Yin, 2006; Vitorino, 2007; Vitorino, 2008) Histatin-

derived peptides, like histatin 5, have been demonstrated to be active against 

various microbes (Oppenheim, 1999).  

Statherin is a small peptide of 43 amino acids codified by the STATH gene 

located on chromosome 4q13.3 (Sabatini, 1987). Secreted by parotid and 

submandibular glands (Schlesinger, 1977), it is di-phosphorylated on serine 2 

and serine 3, but also mono- and non-phosphorylated isoforms of this protein 

and a cycle-statherin can been observed in low quantities (Cabras, 2006; 
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Messana 2008a). Statherin has been demonstrated to play a key role in the oral 

calcium homeostasis, having high affinity for the hydroxyapatite, in the teeth 

mineralization and in the formation of the enamel pellicle, especially the 

cyclized form (Cabras, 2006; Schlesinger, 1977). Usually included in the bPRP 

family, the P-B peptide is encoded by PROL3 which is strictly close to the 

statherin gene, suggesting a functional relationship with this protein. However, 

its role has not been defined yet (Messana, 2008a; Isemura, 2000; Inzitari, 2006). 

Other proteins and peptides not specific of saliva are generally detected in this 

body fluid, i.e. defensins, thymosins, S100 proteins, α-amylases, albumin, 

agglutinin, carbonic anhydrase, peptide hormones and immunoglobulins. Some 

of these proteins, investigated in the present study, are described below. 

α-defensins, also named human neutrophil peptides, are basic peptides rich in 

tyrosine and cysteine residues, the latter forming three disulfide bonds. DEFA1, 

DEFA3 and DEFA4 genes, located in chromosome 8p23.1, encode for α-defensin 

1, 3 and 4 respectively, while α-defensin 2 derives from a proteolytic cleavage of 

the N-amino-terminal residue of α-defensin 1 or 3 (Valore, 1992). Detected in 

saliva, these four defensins derive mainly from the gingival crevicular fluid 

(Pisano, 2005) and in particular from neutrophils. They have antimicrobial 

activity and are involved in the regulation of the cell volume, cytokine 

production (Chaly, 2000; Lehrer, 2012), chemotaxis and inhibition of natural-

killer cells (Goebel, 2000). α-defensin 4, also called corticostatin, exhibits pro-

inflammatory effects through its anti-corticotropin property, which inhibits the 

production of cortisol (Singh, 1988).  

β-thymosins are ubiquitous polar peptides, firstly isolated from calf thymus 

(Klein, 1965), which are involved in the prevention of actin filament 

polymerization, induction of metalloproteinases, chemotaxis, angiogenesis; 

inhibition of inflammation and bone marrow stem cell proliferation. They have 

been also associated to cancer and metastasis formation (Huff, 2001; 

Hannappel, 2007; Hannappel, 2010). Thymosin β4, and β4 oxidized (encoded by 

TMSB4X gene clustered on chromosome Xp22.2) and β10 (encoded by TMSB10 

located on chromosome 2p11.2) have been detected in whole saliva; they mainly 
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derive from gingival crevicular fluid (Badamchian, 2007; Inzitari, 2009; 

Castagnola, 2011a). 

S100s are a family of low molecular weight acidic proteins with two distinct 

calcium ion binding domains. 25 proteins have been identified, among them 

S100A proteins are encoded by genes located on chromosome 1q21. They have 

no intrinsic catalytic activity but, after calcium binding, structural modifications 

allow them to bind and modulate the action of other proteins. S100 proteins, 

abundant in vertebrates but completely absent in invertebrates, are 

constitutively expressed in neutrophils, myeloid cells, platelets, osteoclasts and 

chondrocytes but can be induced and overexpressed in several cell types 

(macrophages, monocytes, keratinocytes, fibroblasts) in acute and chronic 

inflammatory, and oxidative stress conditions (Edgeworth, 1991; Vogl, 1999; 

Eckert, 2004; Carlsson, 2005; Sedaghat, 2008; Lim, 2008; Goyette, 2011). It has 

been demonstrated their involvement in a wide range of intracellular and 

extracellular functions: regulation of calcium homeostasis, cytoskeletal 

rearrangement, contraction and motility, cell growth and differentiation, 

membrane organization, arachidonic acid transport, chemotaxis, apoptosis, 

promotion of wound repair, protection against microbial proliferation, control 

of ROS formation, inflammation and protein phosphorylation and secretion 

(Ravasi, 2004; Santamaria-Kisiel, 2006; Lim, 2008; Sedaghat, 2008; Thorey, 2001; 

Donato, 2003). Their activity can be altered and regulated through formation of 

homodimers and heterodimers and by numerous post translational 

modifications: phosphorylation, methylation, acetylation and oxidation that can 

change their ability to bind ions or target proteins (Lim, 2008; Andrassy, 2006; 

Zimmer, 2003). In particular, S100A8 and S100A9 act as scavengers of ROS, 

protecting tissues from the excess of oxidant (Lim, 2008; McCormick, 2005; 

Harrison, 1999). Among them, S100A7, S100A8, S100A9, S100A11 and S100A12 

were already detected in human saliva (Castagnola, 2011a). 

Today, a great number of studies on the salivary proteome have provided an 

increasingly comprehension of the composition of this biological fluid and the 

wide spectrum of functions in which salivary proteins are involved has 



~ 13 ~ 
 

stimulated research to fully understand their mechanisms of action, their 

reciprocal interaction and the relations with other components in the oral 

cavity. Moreover, the easy, rapid and noninvasive collection of saliva samples 

pushed, in the last years, many researchers to consider the possibility of using 

this biofluid for diagnostic and prognostic purposes, not only for oral diseases 

but also for systemic pathologies. Thus, several proteomic studies have been 

performed to evidence potential salivary biomarkers, and the research done 

during this PhD had this main goal. 

 Top-down and Bottom-up integrated platforms for proteomic 

analysis  

Proteomics studies on the complex human salivary proteome composition are 

mainly performed by the association of high-throughput separation methods 

with the different mass spectrometry techniques. Several proteomic platforms 

have been developed to achieve specific goals with the best results.  

Proteomic platforms can be classified in qualitative and quantitative (Nikolov, 

2012) as well as in top-down and bottom-up (Bogdanov, 2005). 

According to the purpose of the study, qualitative or quantitative platforms can 

be adopted. Qualitative analyses are carried out either to characterize the whole 

proteome and peptidome of a sample or to analyze specific protein classes, or 

post-translational modifications, or the typical set of proteins specifically 

expressed in cellular sub-compartments,  without considering their abundance. 

Conversely, quantitative platforms are employed to determine the amount of 

each protein component within and among different samples, as levels of 

proteins and/or their different isoforms can change under different 

physiological and pathological conditions.  

Top-down and bottom-up approaches differ in the protocol applied for the sample 

treatment (Fig.1). Top-down platforms analyze proteins and peptides in their 

naturally occurring form, giving particular attention to avoid, as much as 

possible, any sample alteration (Tipton, 2011). The bottom-up approach derives 

from the shot-gun strategies developed for the detection of DNA sequences in 

genomic studies and consists in the analysis of the sample digested by specific 
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enzymes, generally trypsin, which cleave proteins in correspondence of defined 

amino acidic residues. Tryptic peptides showing a primary sequence that is 

univocal for a specific protein (unique peptides) allow to deduce the protein 

presence within the original sample.  

 

Fig.1 Top-down and Bottom-up approaches.  

Both top-down and bottom-up analyses carried out by tandem mass spectrometry 

require previous separation steps, in order to reduce the high complexity of the 

mixture. Separation methods can be classified in: gel-based approaches, which 

can be applied for bottom-up analysis, such as the 2-dimensional gel 

electrophoresis (2-DE); or gel-free-based approaches, employed for top-down 

experiments, for example liquid chromatography.  

According to the temporal order between the separation step and the digestion 

process, bottom-up strategies can be further classified in break-then-sort and 

sort-then break (Han, 2008). In break-then-sort approaches, the digestion is 

carried out on the whole set of proteins present in the sample followed by high 

efficient chromatographic separations coupled to tandem mass spectrometry 

experiments. On the other hand, in sort-then break strategies, the proteome is 

submitted to the separation steps in order to select and then digest only specific 

proteins of interest further submitted to MS/MS spectrometry analyses. The 
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later approach is adopted, for example, in experiments centered on the 

phospho-proteome characterization or on the study of the less abundant 

proteins by enriched fraction preparation. 

Top-down mass spectrometry analyses of the human saliva acidic soluble 

fraction enable the simultaneous detection of all the soluble proteins and 

peptides in the sample (Castagnola, 2012b). High-resolution MS instruments 

allowed to obtain accurate structural information, as well as to identify and 

characterize different polymorphisms and several post-translational 

modifications, i.e. phosphorylation, N-terminal acetylation and oxidation 

(Messana, 2004; Inzitari, 2005; Inzitari, 2006; Messana, 2008b; Cabras, 2010; 

Cabras, 2012c; Castagnola, 2012b, Iavarone, 2013; Cabras, 2013). Of great 

interest is also the possibility to characterize the naturally occurring peptides 

generated in the sample by the action of –endo and exo-proteases (Amado, 

2010; Thomadaki, 2011). Moreover, the top-down approach allowed to establish 

the specific origin of the proteins (glandular, ductal or oral) and even to clarify 

when post-translational modifications and proteolytic cleavages occur along the 

secretory pathway (Messana, 2008b).  

Top-down proteomics allows label-free quantification of entire proteins, peptides 

and their different derivatives and fragments naturally present in the sample by 

a powerful label-free approach based on the measurement of the eXtracted Ion 

Current (XIC) peak area. This approach, avoiding the employment of labeled 

peptides, consents to perform quantification without any limitation on the 

number of the species under study (Castagnola, 2012b; Cabras, 2014). The 

relative percentages of different isoforms of the same protein in a sample can be 

calculated (Inzitari, 2005; Iavarone, 2013) and their diverse abundance, as well 

as the dissimilar patterns of protein fragmentation, can be compared in 

different samples and correlated to specific physiological states (Cabras, 2009; 

Morzel, 2012; Hardt, 2005b; Messana, 2015) or pathological conditions 

(Thomodaki, 2013; Cabras, 2010; Cabras, 2013).  

Despite the wide spectrum of applications, the top-down tandem mass 

spectrometry platform bears some drawbacks. In fact, this technique does not 

allow to characterize the intact structure of higher molecular weight or 
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glycosylated proteins, due to the complexity of MS/MS spectra, that cannot be 

automatically analyzed by available software (Meyer, 2011). 

Conversely, the bottom-up approach supported by data banks and bio-

informatics tools for automatic analysis of MS/MS data allows to characterize 

thousands of peptides in a single experiment. However, the enzymatic 

fragmentation preceding the analysis reflects on the inevitable loss of 

qualitative and quantitative information on the naturally occurring peptidome. 

In addition, post-translational modification may remain undetected by this 

approach, and determination of the abundance of different isoforms of the same 

protein within the sample may be not possible (Tipton 2011, Castagnola, 2012b; 

Messana, 2013; Cabras, 2014). 

On the basis of these considerations, the best solution to perform a deep 

characterization of the human salivary proteome and peptidome is the 

implementation of both top-down and bottom-up approaches, in order to take 

advantage of the two strategies and contemporaneously minimize their 

limitations (Cabras, 2014).  

 Wilson’s disease  

Wilson’s disease (WD) is an autosomal recessive genetic disorder of copper 

metabolism, characterized by a defective biliary excretion of copper and its 

failed incorporation into ceruloplasmin, a copper-protein with ferroxidase 

activity that normally binds 95% of blood copper (Hellman, 2002). The resulting 

excess of free copper in hepatocytes causes oxidative stress, apoptosis and 

hepatic damage. As a consequence, a massive amount of unbound copper is 

spilled into the blood and accumulated in other organs, such as brain, heart, 

kidney, and cornea, which in turn will be impaired (Ala, 2007). The pathology is 

connected to the activity of the transmembrane p-type ATPase called ATP7B. At 

low or normal copper level, the ATP7B transports copper into the trans Golgi 

compartment for its incorporation into ceruloplasmin, while at high level, 

copper is moved to be excreted with the bile (Fanni, 2005). Mutations in ATP7B 

block the transport of copper (Huster, 2003). In the European population, the 

modification H1069Q is the most common but over 350 different ATP7B 
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mutations have been identified, and are listed in the Wilson’s disease mutation 

database (http://www.wilsondisease.med.ualberta.ca/database.asp) (Bugbee 

2001). The majority of patients are heterozygous, and the distribution of the 

mutations depends on the population tested (Ala, 2007). The incidence of the 

disease is estimated from 1/30000 to 1/100000 with a carrier frequency of 1/90 

(Wu, 2015), although the incidence is varying in different populations, i.e. in 

Sardinian people is about 1/3000 live births (Gialluisi, 2013). Wilson’s disease is 

a progressive disorder with a broad spectrum of clinical manifestations: hepatic, 

neurological and psychiatric that may develop in variable way (Ala, 2007; 

Crisponi, 2012; Carta, 2012). The early diagnosis is crucial, as the disease can be 

lethal when untreated, and prevents neurological disability and liver cirrhosis 

(Gitlin, 2003). A unique diagnostic test is not available. In fact, the diagnosis, 

that is easy in patients with neurological symptoms but hard in individuals 

with liver deficiencies, is based on the evaluation of different features and on 

the recognition of typical symptoms, the later often non-specific, and confusing. 

Decreased serum ceruloplasmin, increased urinary copper excretion, elevated 

hepatic copper concentration and serum aminotransferases, and Kayser-

Fleischer rings on cornea are considered diagnostic biomarkers of the disease 

(Ala, 2007; Ferenci, 2003; Roberts, 2003). Nonetheless, 5-40% of patients exhibit 

normal ceruloplasmin levels (Steindl, 1997), the serum/urine copper levels can 

be equivocal, and aminotransferase activity cannot reflect the severity of liver 

injury (Ala, 2007). In addition, histochemical confirmation of the liver copper 

content, helpful in diagnosis, requires invasive analyses, and a negative result 

cannot exclude the pathology (Ferenci, 2005; Sini, 2013; Liggi, 2013). ATP7B 

mutation analysis is very advantageous, but systemic genetic testing is not 

routinely applied in clinical practice due to the many different mutations 

implicated. The need of novel and unequivocal diagnostic biomarkers has 

stimulated the research towards proteomics investigations on animals (Lee, 

2011; Simpson, 2004; Wilmarth, 2012), in vitro models (Roelofsen, 2004) and 

human serum (Park, 2009) of Wilson’s disease. These studies, based on bottom-

up proteomic platforms, highlighted altered levels of proteins involved in the 

oxidative stress, which is the typical feature of Wilson’s disease.  
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 SAPHO syndrome 

Synovitis, Acne, Pustulosis, Hyperostosis and Osteitis (SAPHO) syndrome is a 

rare and often unrecognized disorder characterized by cutaneous and 

musculoskeletal inflammations, which appear in variable combinations 

(Nguyen, 2012). SAPHO syndrome has been classified in the 

spondyloarthropathies (SpA) on the basis of clinicopathological features and 

similarity to psoriatic arthritis (Van Doornum, 2000). Recent evidences leads to 

consider this disorder within the spectrum of bone autoinflammatory diseases 

(Colina, 2010; Kastner, 2010). Although several studies investigated the origin of 

the disease and the relationship with mandibular osteomyelitis, the etiology, 

probably involving genetic, immunologic and infectious mechanisms, is still 

unknown (Mochizuki, 2012; Suei, 2003), The interaction between infectious 

agents (i.e. Propionibacterium acnes) and the immune system in a genetically 

predisposed subject may result in dysregulation of neutrophil responses and 

autoinflammation (Hurtado-Nedelec, 2008; Assman, 2011). First-line treatment 

is usually based on steroidal anti-inflammatory drugs (NSAIDs), systemic 

corticosteroids, bisphosphonates and synthetic disease-modifying anti-

rheumatic drugs (DMARDs), but there is no standard therapy for SAPHO 

syndrome. Biological drugs, particularly anti-tumor necrosis factor alpha (TNF-

α) and anti-interleukin-1 (IL-1) agents, have been successfully employed but 

usually reserved to resistant cases (Firinu, 2014b). Due to its rarity (estimated 

prevalence <1/10000), and features overlapping with other rheumatic and non-

rheumatic disorders, SAPHO syndrome represents a diagnostic challenge for 

clinicians (Nguyen, 2012). In particular, cutaneous manifestations may overlap 

with psoriasis or other neutrophilic dermatoses (Braun-Falco, 2011), and bone 

manifestations with SpA and infectious osteitis. To date, no reliable biomarkers 

have been available for this disease. Despite extensive bone and skin 

inflammation during exacerbations, the C reactive protein (CRP) and the 

erythrocyte sedimentation rate (ESR) are usually normal or only slightly 

elevated in less than one third of the cases. Moreover, routine laboratory means 

do not allow to detect and evaluate the low-grade inflammatory activity that 
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may persist also during remission (Colina, 2009). Therefore, it would be of 

extreme importance the identification of new laboratory biomarkers for the 

diagnosis of the disease and monitoring of its activity.  

 Hereditary angioedema 

Hereditary angioedema (HAE) is a rare autosomal dominant disease, which 

affect 1 out of 50000 individuals (Bafunno, 2014). Firstly described by Quincke 

in 1882 and fully documented by Osler in 1888 (Quincke, 1882; Osler, 1888), the 

disease is clinically characterized by recurrent episodes of nonpruritic acute 

swelling involving the face, the trunk as well as the extremities, the skin, the 

gastrointestinal mucosa and the upper respiratory tract, leading to airway 

obstruction and asphyxiation if not promptly treated (Frank, 1976; Davis, 2005; 

Zuraw, 2008; Bafunno, 2014).  

The disease is connected to mutations that can occur in SERPING1 gene or in 

FXII gene, which respectively encode for the C1 esterase inhibitor (C1-INH) and 

for the coagulation factor XII (FXII), also called Hageman factor. Alterations in 

SERPING1 gene have been detected since 90’s and nowadays an extremely 

large number of mutations are listed in a database created in 2005 by Kalmár 

(Kalmár, 2005; http://hae.enzim.hu/index.php). Alterations of this gene in 

HAE patients can determine low concentrations  of serum C1-INH (Donaldson, 

1963), or the production of a protein with defective inhibitor functions. These 

two different patterns were firstly documented by Rosen, who proposed to 

classify these patients as HAE type I and HAE type II, respectively (Rosen, 

1965; Rosen, 1971). Another type of HAE, characterized by normal C1-INH 

protein and absence of SERPING1 mutations, has been documented and 

initially named HAE type III (Binkley, 2000; Bork, 2000). Originally observed 

exclusively in women (Binkley, 2000; Bork, 2000) and correlated with high 

estrogen level conditions (i.e. pregnancy or use of exogenous estrogens) 

(Binkley, 2000; Bork 2003, Picone; 1010), this last form has been found recently 

also in male subjects (Bork, 2006; Bork, 2007; Martin, 2007; Vitrat-Hincky, 2010; 

Charignon, 2014; Moreno, 2015). Genetic studies allowed to associate HAE type 

III with mutations occurring in FXII gene (Dewald, 2006; Bork, 2011; Kiss, 2013).  
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The coagulation factor XII and the C1 esterase inhibitor are strictly connected. 

C1-INH is the main inhibitor of the classical pathway of the complement 

cascade and, in addition to its well-known ability to block the first component 

of the complement system C1 (Ratnoff, 1957; Ratnoff, 1969; Harpel, 1975), this 

protein is also able to inhibit some serine proteases acting in the kallikrein-kinin 

formation system and in the blood coagulation cascade, in particular FXII, 

which plays a central role in the activation of these pathways (Harpel, 1975; 

Schreiber, 1973a; Schreiber, 1973b; van der Graaf, 1983; de Agostini, 1984; Davis, 

1986; Salvesen, 1985). Thus, in HAE type I and II, low levels and defective 

functionality of C1-INH protein lead to an impaired inhibition of the 

coagulation factor XII. Furthermore, FXII gene mutations have been associated 

with the expression of proteins characterized by a more efficient activation 

(Dewald, 2006; Chicon, 2006; Bjӧrqvist, 2015), and different studies 

demonstrated increased prekallikrein activation in HAE patients (Shapira, 1982) 

and the presence of higher levels of the final product of the kallikrein-kinin 

pathway, the bradykinin peptide, in the region of the edema during acute 

attacks (Nussberger, 1998; Nussberger, 1999; Cugno, 2003). These evidences 

suggested that this peptide plays a main role in HAE as its overproduction 

leads to the increased vasodilatation, endothelial permeability and vascular 

leakage responsible for HAE subcutaneous and submucosal swelling (Fields, 

1983; Shoemaker, 1994; Dewald, 2006; Cichon, 2006). 

Although different genes are responsible for HAE disease, the common 

involvement of C1-INH and FXII in the kallikrein-kinin system formation 

pathway gives rise to similar clinical manifestations.  

A recent classification of different forms of angioedema proposed by Cicardi 

(Cicardi, 2014), which includes both hereditary and acquired typologies has 

been adopted in this study. HAE caused by mutations in SERPING1 and FXII 

genes are classified as C1-INH-HAE (which embraces both type I and type II) 

and FXII-HAE, respectively, while a third subgroup includes subjects with 

familial hereditary angioedema with unknown genetic mutation (U-HAE). All 

these inherited forms can be distinguished from a second group in which the 

pathology is acquired, causing C1-INH deficiency without family history (C1-
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INH-AAE) or it is triggered by treatment with inhibitors of the angiotensin-

converting-enzyme (ACEI-AAE) or else is generated by non-identified causes. 

The latter, is further divided in idiopathic histaminergic angioedema (Ih-AAE), 

in which the recurrent episodes of swelling can be blocked by continue 

histamine administration, and idiopathic non-histaminergic angioedema (InH-

AAE) which is resistant to histamine action (Cicardi, 2014).  

       

Fig.2 Classification of angioedema different forms. 

Different strategies have been developed to treat HAE, focused both on the 

control of acute swelling attacks when they manifest, and prevention of the 

number and the severity of further episodes by short and long term 

prophylaxis. Plasma purified C1-INH or the safer recombinant C1-INH 

(Ruconest®, Pharming Group and Salix Pharmaceuticals) are treatment of 

choice to contrast acute attacks, being able to replace the deficiency of the native 

protein, and thus mainly used for C1-INH-HAE. Moreover, a synthetic 

competitive antagonist of bradykinin for Bk2R receptor binding, Icatibant 

(Firazyr®, Jerini AG, Sydney, Australia) has been efficiently developed, both for 

C1-INH-HAE and FXII-HAE. A third option is the subcutaneous administration 

of Ecallantide (Kalbitor®, Dyax Corp., Cambridge, MA, USA), a recombinant 

protein which is able to inhibit kallikrein activity and thus bradykinin 

formation. For long-term cures, attenuated androgens (mainly Danazol and 

Stanozolol which increase hepatic C1-INH production) or tranexamic acid (that 
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blocks plasminogen proteolytic activity) are generally used. For U-HAE 

patients each of the previously mentioned therapies can be chosen, although an 

universal therapy is not yet available. Tranexamic acid is mainly employed for 

long-term prophylaxis of InH-AAE patients, although the response of the 

patients to the treatment is different, while In-AAE symptoms can be efficiently 

blocked by continue histamine administration. For ACEI-AAE patients, 

interruption of the ACE therapy is the first choice, but also bradykinin drugs 

can reduce the manifestations. On the other hand, plasma C1-INH and 

attenuated androgens are used for C1-INH-AAE. 

The similar manifestations of the pathology among these groups of patients and 

the unclear causes responsible for some forms of angioedema, require in-depth 

studies focalized to identify genetic or molecular differences which can be 

useful to clarify the mechanisms of the disease and to develop focused and 

efficient treatments. 
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Objectives of the study 

The main goal of this study was to assess whether the immune derangement 

observed in the three pathologies investigated could be associated to qualitative 

and quantitative variations of the salivary proteins and peptides in the patients 

with respect to control subjects to have suggestions on potential biomarkers 

selective for each condition.  
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Materials and methods 

 Materials 

All chemicals and reagents were of analytical grade and were purchased from 

Sigma Aldrich (St. Louis, MI), Merck (Darmstadt, Germany) and Bio-Rad 

(Hercules, CA). 

 Samples 

Study subjects 

The informed consent process was in agreement with the latest stipulations 

established by the Declaration of Helsinki. Ethics Committee approval was 

obtained for the study.  

Wilson’s disease 

Wilson’s disease patients were enrolled at the Hepato-Gastroenterology Service 

of the “Policlinico Universitario Monserrato”, Cagliari. The patients were 32 (42 

± 13 years old; 18 females, 14 males), the healthy control group comprised the 

same number of subjects (39 ± 14 years old; 19 females, 13 males. The diagnosis 

was based on the combination of several criteria: clinical symptoms, Kayser-

Fleisher ring, and laboratory tests. Based on clinical manifestations the patients 

were classified as hepatic (N = 23), hepatic/neurologic (N = 4), 

hepatic/psychiatric (N = 1), hepatic/neurologic/ psychiatric (N = 4). Diagnosis 

was confirmed by serum ceruloplasmin, total serum copper, cupruria baseline, 

hepatic parenchymal copper concentration following hepatic biopsy. 

Histological evaluation of grading and staging of liver fibrosis, and molecular 

biology analysis of the ATP7B gene mutations were also carried out. 

SAPHO syndrome 

10 SAPHO patients (38.0 ± 11.1 years old) with a protracted disease course, 

fulfilling criteria of Benhamou (Benhamou, 1988) were enrolled at the Internal 

Medicine and Immunology outpatients clinic of Cagliari University. 28 healthy 

females (33.5 ± 10.3 years old) were enrolled as controls.  
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Demographics, treatments and status of the disease were collected for SAPHO 

patients at the time of the study and they are listed in Table 1. 

Table 1. 

Pt  
# 

Disease 
duration 
(Years) 

Historical disease status 
Current 
treatment 

Current disease 
status 

Skin Bone Skin 
Bone 
(Site/s) 

1 27 

Hidradenitis 

suppurativa, 
psoriasis 

Sternal hyperostosis, 

Sspondylodiscitis 

Biological 

drug 
(ADAa) 

REMb 
ACTc 
(SCd) 

Partial remission 

2 8 Psoriasis 
Sternocostoclavicular 
osteitis, hyperostosis 

NSAIDse 
REM 

ACT  

(SC) 

Partial remission 

3 16 
Palmoplantar 
pustulosis 

Sternocostoclavicular 

hyperostosis and osteitis, 
zigomatic and parietal 

bone, multiple foci of 
spondylodiscitis 

Biological 
drug 

(ADA) 

ACT 

ACT  

(SC. SIf, 
Spine) 

No remission 

4 7 
Palmoplantar 

pustulosis 

Sacroiliitis, 
sternoclavicular 

hyperostosis 

Biological 
drug 

(ADA) 

REM 
ACT  

(SC, SI) 

Partial remission 

5 4 
Palmoplantar 

pustulosis 
Sternoclavicular osteitis 

Biological 

drug 
(ADA) 

REM 

ACT  

(Jaw, 
SC) 

Partial remission 

6 7 
Palmoplantar 
pustulosis 

Arthritis, synovitis, 
sternocostal hyperostosis, 

femur osteitis 

Biological 
drug 

(ADA) 

REM 
REM 

(None) 

Remission 

7 3 
Palmoplantar 

pustulosis 

Sacroiliitis, 
sternocostoclavicular 

osteitis 

Biological 
drug 

(ADA) 

REM 
ACT  

(SC) 

Partial remission 

8 2.5 None 

Sacroiliitis, 
sternoclavicular 

hyperostosis,  

clavicular edema 

Biological 
drug 

(ADA) 

- 
REM 
(None) 

Remission 

9 23 
Palmoplantar 
pustulosis 

Sternocostoclavicular 
hyperostosis and osteitis, 

sacroiliitis, femur osteitis 

NSAIDs 
ACT 

ACT  

(SC, SI) 

No remission 

10 10 Severe acne 
Arthritis (elbow, knee), 
sternocostoclavicular 

hyperostosis and osteitis 

Biological 
drug 

(ADA) 

REM 
REM 

(None) 

Remission 
aAdalimumab; bRemission; cActive; dSternocostal or sternoclavicular; eNon steroideal anti-
inflammatory drugs; fSacroiliitis. 

Microbiological cultures, performed on skin pustules from 7 patients, synovial 

fluid from 2 patients, and bone biopsy from 1 patient (#5) yielded negative 

results for P. acnes or other pathogens. All patients presented bone involvement 

with sternoclavicular osteitis and/or hyperostosis, 4/10 with sacroileitis and 

2/10 with spondylodiscitis. Skin involvement was observed in 9/10 patients: 
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palmo-plantar pustulosis in 6/9, psoriasis vulgaris in 2/9, and severe acne in 

one patient. Patient #8 was the one without cutaneous manifestations, whereas 

bone manifestations were similar to those observed in the others. Mean disease 

duration was 10.8 years ± 8.5 (SD) and patient #8 had the lowest (2.5 years). 

Blood samples with lithium heparin were also collected from SAPHO patients 

in the same day of saliva collection. The main clinical and laboratory findings 

are summarized in Table 2. 

Table 2. Clinical, laboratory and imaging findings of each SAPHO patient at 
the time of the study. 

Pt # 
Blood 
TH-17a 

Blood
TH-1b 

TH-1/TH-17 
Neutrophilia 

WBCc cells/mm3 
Neud cells/mm3 

Serum 
CRPe 

Serum 
ESRf 

1 
H 

2.91 
17.97 0.19 

N 
N 

0.39 

H 

32 
4900 

2470 

2 
N 

0.13 
4.55 0.13 

N 
N 

0.10 

N 

11 
8000 

4560 

3 
H 

3.05 
12.31 0.00 

N 
N 

0.47 

N 

10 
7200 

3900 

4 
H 

3.07 
25.19 0.24 

N 
N 

0.11 

H 
33 

 

8300 

3194 

5 
H 

2.77 
9.85 0.32 

N 
N 
0.4 

N 
18 

9400 

5640 

6 
H 

2.86 
21.29 0.10 

N 
N 
0.5 

N 
9 

10500 

6300 

7 
H 

2.1 
20.00 0.00 

N 
N 

0.24 

N 

30 
9700 

6200 

8 nd nd nd 

N 
H 

1.8 

H 

40 
7800 

3300 

9 nd nd nd 

N 
N 

0.2 

H 

55 
6200 

3521 

10 nd nd nd 

N 
H 
1.9 

N 
19 

11430 

5270 
a% TH-17 lymphocytes = CD4 + IL17 + Lymphocytes (normal range: 0.04-1.88%); b% TH-1 
lymphocytes; cTotal white cells (normal range: 4000 – 11.200/μl); dNeutrophils (normal 

range: 1800 - 7500/μl); eC reactive protein (normal range: 0-0.5); fErythrocyte sedimentation 
rate (normal range: <30); H: value higher than normal; N: normal value; nd: not determined. 
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Blood lymphocyte subsets defined as “TH-1” (CD4 + IFNγ+), “TH17” (CD4 + 

IFNγ- IL-17+), “TH1/TH17” (CD4 + IFNγ+ IL-17+) were defined by analysis of 

intracellular cytokine production using flow-cytometry, using a protocol 

previously described (Firinu, 2014a). White blood cell (WBC) counts, serum 

CRP and ESR were determined by routine methods. WBC count (mean 

8343/mm3 ± 1980 SD) was normal in all patients, CRP (mean 0.61 mg dl-1 ± 0.66) 

was above normal range in 2 patients, and ESR (24 mm h-1 ± 16.8 SD) in 4 

patients, but both were not related to disease activity status.  

Hereditary and idiopathic non-histaminergic angioedema  

A total of 37 patients affected by angioedema were recruited at the Unit of 

Internal Medicine, Allergy and Clinical Immunology of Cagliari University. On 

the basis of genetic analysis and familial information, patients were clustered 

into three subgroups:  C1-INH-HAE (6 men and 8 women, 49.1 ± 17.3 years old, 

mutation of SERPING1 gene),  FXII-HAE (1 male and 10 females, 37.82 ± 11.31 

years old, mutation of FXII gene), InH-AAE (5 men and 7 women, 41.4 ± 14.3 

years old, no mutations of SERPING1 and FXII genes). As regards InH-AAE 

patients, no heredity of the pathology was documented and any positive effect 

was observed after histamine treatment, thus they were not classified as U-HAE 

or IH-AAE. 12 out of 14 patients of the C1-INH-HAE group  were analyzed in 

the absence of symptoms (basal phase), one during an acute attack of 

angioedema (acute phase) and one in both conditions. 9 out of the 11 patients 

belonging to the FXII-HAE group were examined in basal phase, 1 in acute 

phase and 1 in both conditions. All the 12 InH-AAE patients were analyzed in 

basal phase. 31 healthy individuals (9 males and 22 females, 41.8 ± 13.0 years 

old) were enrolled as control group. 

Salivary sample collection 

Unstimulated whole saliva was collected according to a standardized protocol 

from patients and healthy controls using a soft plastic aspirator and transferred 

to a plastic tube in an ice bath. Donors did not eat or drink at least 2 h before the 

collection, which was established between 10.00 a.m. and 12.00 p.m. 

Immediately after collection, each salivary sample was diluted in 1:1 v/v ratio 
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with a 0.2% solution of 2,2,2-trifluoroacetic acid (TFA). Then the solution was 

centrifuged at 10000g for 10 min at 4°C (for Wilson’s disease study) and at 

20000g for 15 min at 4°C (for SAPHO syndrome and angioedema studies). The 

acidic supernatant was separated from the precipitate and either immediately 

analyzed by HPLC-ESI-MS apparatus (100 µl, corresponding to 50 µl of saliva) 

or stored at -80°C until low-resolution HPLC-ESI-IT-MS analysis. Also 

precipitates were stored at -80°C.  

 Experimental methods 

Low-resolution HPLC-ESI-IT-MS experiments 

Low-resolution reversed phase (RP)-HPLC-ESI-MS analysis of the acidic 

soluble fraction of whole saliva was carried out by a Surveyor HPLC system 

connected by a T splitter to a diode-array detector, and to a LCQ Advantage 

mass spectrometer (ThermoFisher Scientific San Jose, CA). The mass 

spectrometer was equipped with an electrospray ionization source (ESI) and an 

ion trap (IT). The chromatographic column was a reversed phase Vydac 

(Hesperia, CA, USA) C8 column with 5 µm particle diameter (150 x 2.1 mm). 

The chromatographic separation was carried out using eluent A (0.056% TFA 

acidic solution) and eluent B (acetonitrile/water 80:20 with 0.05% TFA). The 

gradient applied for the analysis of saliva was linear from 0 to 55% of B in 40 

min, and from 55% to 100% of B in 10 min, at a flow rate of 0.3 ml min-1. The T 

splitter addressed a flow-rate of 0.2 ml min-1 toward the diode array detector 

and 0.1 ml min-1 towards the ESI source. During the first 5 minutes of the 

analysis the eluate was not directed to the mass spectrometer to avoid that the 

high salt concentration could damage the instrument. The photodiode array 

detector was set at 214 and 276 nm. Mass spectra were collected every 3 ms in 

the m/z range 300-2000 in positive ion mode. The MS spray voltage was 5.0 kV, 

and the capillary temperature was 260 °C. MS resolution was 6000. 

Experimental mass values of each protein and peptide was obtained using the 

MagTran 1.0 software (Zhang, 1998) which automatically performs the 

deconvolution of the average ESI-MS spectra. The experimental values were 
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compared with the theoretical masses of the proteins registered at the Swiss-

Prot Data Bank (http:/us.expasy.org/tools). 

Enriched fraction preparation of S100A8 and S100A9 oxidized proteoforms 

from WD saliva samples and trypsin digestion 

Enriched fractions of S100A8 and S100A9 oxidized proteoforms previously 

uncharacterized were obtained by preparative RP-HPLC (Dionex Ultimate 3000 

instrument, ThermoFisher Scientific, Sunnyvale CA) of pools of Wilson’s 

disease saliva samples. The chromatographic column was a reversed phase 

Vydac (Hesperia, CA) C8 column with 5 µm particle diameter (250 x 10 mm). 

The solutions used for preparative RP-HPLC were the same utilized for 

analytical low-resolution HPLC-ESI-MS experiments. The gradient was linear 

from 0 to 60% B in 40 min and from 60 to 100% B in 5 min, with a flow rate of 

2.8 ml min-1. Four fractions corresponding to peaks eluting between 39 and 44 

min were collected separately and lyophilized. Each fraction was solubilized in 

100 µl of ultrapure H2O, and 1/3 of the solution was acidified with 0.2% TFA 

(1:1 v/v ratio) to be checked by low-resolution HPLC-ESI-MS. The remaining 

sample was submitted to digestion using the kit “Trypsin Singles Proteomic 

Grade” (Sigma-Aldrich) according to the manufacturer’s instructions. Digestion 

was stopped after 12 h by acidification with 0.1% TFA (final concentration), and 

the solution stored at -80 °C until the analysis by high-resolution HPLC-ESI-MS.  

High-resolution HPLC-ESI-MS/MS experiments 

High-resolution HPLC-ESI-MS/MS experiments were carried out on whole 

saliva samples and tryptic digests of enriched fractions from Wilson’s disease 

patients, with the aim to characterize S100A8 and S100A9 oxidized proteoforms 

and two fragments of the polymeric immunoglobulin receptor (pIgR). The 

instrument was an Ultimate 3000 Micro HPLC apparatus (ThermoFisher 

Scientific, Sunnyvale, CA) equipped with a FLM-3000-Flow manager module 

coupled to LTQ Orbitrap XL apparatus (ThermoFisher Scientific). The columns 

were a Zorbax 300SB-C8 column (3.5 µm particle diameter; 1.0 x 150 mm) for 

the top-down analysis, and a Zorbax 300SB-C18 column (5 µm particle diameter; 

1.0 x 150 mm) for the bottom-up. Eluents were: (eluent A) 0.056% (v/v) aqueous 
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TFA, and (eluent B) 0.05% (v/v) TFA in acetonitrile-water 80/20. For both top-

down and bottom-up analyses the gradient was: 0–2 min 5% B, 2-40 min from 5% 

to 55% B (linear), 41-43 min from 55% to 100% B, at a flow rate of 80 µL/min. 

MS and MS/MS spectra were collected in positive mode using the lock mass for 

internal mass calibration (polydimethyl cyclosiloxane, 445.1200 m/z) with the 

resolution of 60000 and 30000, respectively. The m/z range was from 600 to 2000 

in the top-down experiments, from 300 to 2000 in the bottom-up experiments. 

Tuning parameters: capillary temperature was 250 °C, and the source voltage of 

4.0 kV, capillary voltage and tube lens voltage were 37 V, and 150 V in the top-

down; 48 V and 150 V in the bottom-up experiments. In data dependent 

acquisition mode the three most abundant ions were selected and fragmented 

by using collision-induced dissociation (CID, 35% normalized collision energy 

for 30 ms, isolation width of 6-10 m/z, activation q of 0.25. The inject volume 

was 20 μl.  

Data were generated by Xcalibur 2.2 SP1.48 (Thermo Fisher Scientific) using 

default parameters of the Xtract program for the deconvolution. MS/MS data 

were analyzed by the Proteome Discoverer 1.2 program, based on Sequest 

cluster as a search engine (University of Washington, licensed to Thermo 

Electron Corp., San Jose, CA) against Swiss-Prot human proteome (September, 

2014 released; Swiss Prot human complete.fasta; 47622 non-redundant protein 

sequences). For peptide matching the limits were Xcorr scores greater than 1.5 

for singly charged ions, 2.0 and 2.5 for doubly and triply charged ions, 

respectively. Furthermore, the cleavage specificity was set to trypsin with two 

missed cleavages in the bottom-up analysis. Precursor mass search tolerance was 

10 ppm and fragment mass tolerance 0.8 Da. Target FDR was 0.01 (strict), 0.05 

(relaxed). The following modifications were searched: phosphorylation, 

acetylation, oxidation of methionine and tryptophan residues, as well as 

oxidative cysteine modifications, such as glutathionylation, cysteinylation, 

nitrosylation, sulfonic, sulfinic, and sulfenic acid. Peptide sequences and sites of 

covalent modifications were also validated by manual inspection of the 

experimental fragmentation spectra against the theoretical ones generated by 
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MS-Product software available at the ProteinProspector website 

(http://prospector.ucsf.edu/prospector/msh-ome.htm). 

Fractionation of the acidic soluble fraction of salivary proteins by 

ultrafiltration 

200 μl of the acidic soluble fraction of saliva were lyophilized, resuspended in 

100 μl of 5% acetonitrile/0.1% formic acid and then centrifuged at 10000g and 

20°C for 15 minutes using centrifugal filter units with a 50 kDa molecular 

weight cut-off (MWCO) (Vivaspin, Sartorius stedim biotech). Samples were 

stored at -80 °C until nano-HPLC-ESI-MS and MS/MS analyses. 

Filter aided sample preparation (FASP) 

Insoluble fractions obtained after whole saliva acidification and centrifugation 

were resuspended in 250μL of a urea/tiourea 2M 1% CHAPS buffer, sonicated 

for 1 minute (with an alternate cycle of 1 second of pause every 10 seconds) and 

then centrifuged at 10000g for 10 minutes at room temperature. For each sample 

total protein quantification was carried out using the RC-DC assay and 100 μg 

of protein were subjected to an endoProteoFASP (filter aided sample 

preparation) approach, which consists in the in-solution tryptic digestion of the 

sample and allows to obtain peptides for bottom-up LC-MS analysis. 30 μg of the 

tryptic digest was then loaded in a PierceTM C18 Spin Column (ThermoFisher) 

for the salts elimination. The eluate was dried in a Speed Vac, re-suspended in a 

5% acetonitrile/0.1% formic acid solution, sonicated for 3 minutes and finally 

centrifuged at 15000g for 3 minutes at room temperature. Samples were stored 

at -80 °C until nano-HPLC-ESI-MS and MS/MS analyses. 

Nano-HPLC-ESI-MS and MS/MS experiments 

Nano-HPLC-ESI-MS and MS/MS experiments were performed on the tryptic 

digests of the acidic insoluble fractions after FASP protocol and on the low-

molecular weight acidic soluble fraction (MW < 50 kDa). The eluting peptides 

were analyzed using an LXQ linear ion trap mass spectrometer. The 

chromatographic separation was carried out using eluent A (5% 

acetonitrile/0.1% TFA) and eluent B (acetonitrile/water 90:10 with 0.1% formic 

acid). The gradient employed was linear from 0% to 5% of eluent B in 10 
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minutes, from 5% to 40% of eluent B in 35 minutes, from 40% to 60% of eluent B 

in 10 minutes and finally from 60% to 90% of eluent B in other 10 minutes. The 

flow rate was 0.3 ml min-1. The first 10 minutes of the analysis were set up for 

the loop washing. LXQ settings were as follows: spray voltage, 1.8 kV; 1 

microscan for MS scans at maximum inject time 10 ms with mass range 400–

1650 m/z, 3 microscans for MS/MS at maximum inject time 100 ms with 

automatic mass range. The LXQ was operated in a data-dependent mode to 

execute top5, corresponding to one MS scan for precursor ions followed by four 

data-dependent MS/MS scans for precursor ions above a threshold ion count of 

450 with normalized collision energy value of 35%. Charge state screening was 

enabled to reject unassigned and 4+ charge states. Mass spectrometer was set to 

alternate during the entire experiment 10 μs of MS analysis and 10 μs of 

MS/MS analysis and to repeat this sequence for the three most abundant ions 

identified. Each sample was analyzed in duplicate. MS/MS data by bottom-up 

analyses were processed on Mascot software, while MS/MS data obtained by 

top-down analyses were processed on BioworksBrowser v3.0 (Thermo Fisher 

Scientific). DTA files were generated from LC-MS/MS raw files with the 

following options: precursor ion tolerance 1.5 Da, group scan 1, minimum 

group count 1, minimum ion count 20, and filtering through charge state 

analysis. The generated DTA files were searched against SwissProt protein 

database (March 2013) for Homo sapiens and its reversed-sequence version. 

Search on data obtained by bottom-up analysis of the insoluble fractions was 

prformed according the following criteria: enzyme, trypsin (KR/P); full 

enzymatic cleavage; missed cleavage sites, 2; peptide tolerance, 2.0 Da; 

fragment ions tolerance, 1.0 Da; variable modifications, carbamidomethylation 

(+57Da), methionine oxidation (+16Da), STY phosphorylation (+80Da); 

modifications per peptide, 3. The search result was filtered with Xcorr versus 

charge state (Xcorr of 1.5, 2.0 and 2.5 for +1, +2, +3 charges, respectively) and 

delta CN 0.08. Only proteins identified by at least two unique peptides and 

found in at least two different subjects were considered confident. Search on 

data obtained by top-down analyses of the soluble fractions was carried out with 

the same criteria, but excluding enzymatic cleavages and 
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carbamidomethylation and results were filtered with Xcorr versus charge state 

(Xcorr of 1.5, 2.0 and 3.0 for +1, +2, +3 charges, respectively).  

Bioinformatic analyses  

The open source software platform Cytoscape_v3.2.1 (http://www.cytoscape. 

org/) and the additional plugins ClueGO (http://apps.cytoscape.org/apps/cl 

uego) and CluePedia (http://apps.cytoscape.org/apps/cluepedia ) were used 

in order to visualize the interaction networks among the genes encoding 

proteins identified with confidence, and the biological pathways in which they 

are involved. In order to visualize only the most significant pathways, only 

pathways represented by at least 3 genes and accounting for at least the 3% of 

the total genes were selected. 

Prediction of proteases naturally acting in saliva 

The peptides naturally present in the acidic soluble fractions of saliva were 

analyzed by the Proteasix software to perform the in silico prediction of the 

proteases present in the oral cavity responsible for their generation. A database 

containing the association between proteases and cleavage sites (CS) allows to 

have suggestions on the most probable proteases responsible for the generation 

of the peptide.  

 Quantification 

Top-down proteomics experiments 

Intact protein quantification by low resolution HPLC-ESI-MS  

Proteins and peptides, previously identified and characterized in human saliva 

in our laboratory (Castagnola, 2004; Inzitari, 2005; Messana, 2008b; Cabras, 

2010; Castagnola, 2011a; Castagnola, 2012a, Castagnola, 2013), were quantified 

by the XIC procedure performed on low-resolution reversed phase (RP)-HPLC-

ESI-MS chromatograms. The typical low-resolution HPLC-ESI-MS total ion 

current (TIC) profile of the acidic soluble fraction of saliva from an healthy 

adult subject is shown in Fig.3. The elution ranges of the main classes of 

proteins and peptides, which are usually detected in saliva, are evidenced. 
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Fig.3
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Under our experimental conditions β-thymosins 4 and 10, basic PRPs, and 

histatins 3, 5 and 6 elute in the initial region of the chromatogram followed by 

histatin 1, acidic PRPs and α-defensins 1-3. In the central region, α-defensin 4, 

statherin and P-B peptide can be detected and afterwards cystatins and S100A7. 

Finally, in the last part of the chromatogram amylase and the other S100s 

proteins elute. To extract the XIC peaks, selected multiply-charged ions 

generated by the proteins/peptides at the electrospray ionization source  were 

searched in the chromatographic profile. The area of the XIC peaks is 

proportional to the protein concentration under constant analytical conditions, 

allowing to perform relative quantification of the same protein in different 

samples (Ong, 2005; Messana, 2008a). The m/z values selected to quantify 

proteins and peptides were chosen by excluding values in common with other 

closely eluting proteins (±0.5 m/z). The estimated percentage error of the XIC 

procedure was <8%. XIC peaks were considered when the signal to noise ratio 

was at least 5. Table 3 reports the Swiss-prot codes, the elution times, the 

experimental and theoretical average (low-resolution) and monoisotopic (high-

resolution) mass values (Mav., Mmonois.), and the multiply-charged ions 

utilized to selectively extract the ion current peaks used to quantify 

proteins/peptides and their derivatives. Basic proline-rich proteins were not 

evaluated due to their high variability linked to the physiological status 

(Cabras, 2009; Cabras, 2012a). 

Table 3. Proteins and peptides investigated: Swiss-prot code, elution time, 
experimental (exp.) and theoretical (th.) average and monoisotopic mass values 
(Mav., Mmonois.) and multiply charged ions used for XIC quantification are 
reported. 

Protein 
(Swiss-Prot code) 

El. time 
(min) 

Exp. Mav.   
(Th. Mav.) 

Da 

Multiply-charged ions 
selected for the XIC 

procedures  (m/z(charge)) 

Exp. Mmonois. 
(Th. Mmonois.) 

Da 

Histatin 1  

(P15515) 
23.3-23.8 

4928.2 ± 0.5  

(4928.2) 
1644.1(+3) 1233.5(+4) 

4925.22 ± 0.08 

(4925.200) 

Non-phosphorylated 

Histatin 1  

(P15515) 

23.4-23.8 
4848.2 ± 0.5  

(4848.2) 
1617.4(+3)  1213.5(+4) 

4846.25 ± 0.08 

(4846.233) 

Histatin 3   

(P15516) 
17.6-17.9 

4062.2 ± 0.4  

(4062.4) 
1355.1(+3) 1016.6(+4) 

4059.88 ± 0.07 

(4059.979) 
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Histatin 5  
(P15516) 

14.2-14.7 
3036.5 ± 0.3  

(3036.3) 
1013.2(+3) 760.1(+4) 

3034.53 ± 0.06 
(3034.522) 

Histatin 6  
(P15516) 

14.0-14.4 
3192.4 ± 0.3  

(3192.5) 
1065.1(+3) 799.1(+4) 

3190.63 ± 0.06 
(3190.623) 

Statherin 2Pa 
(P02808) 

28.9-29.5 
5380.0 ± 0.5 

(5379.7) 
1794.2(+3) 1345.9(+4) 

1076.9(+5) 
5376.5 ± 0.1 
(5376.450) 

P-B peptide 
(P02814) 

29.7-30.6 
5792.9 ± 0.5 

(5792.7) 
1932.0(+3) 1449.2(+4) 

1159.6(+5) 
5789.1 ± 0.1 
(5789.036) 

PRP-1 typeb 2P  
(P02810) 

22.9-23.6 
15515 ± 2  
(15514-

15515) 

1293.9(+12) 1194.4(+13) 
1035.3(+15) 970.7(+16) 

913.6(+17) 

15505.4 ± 0.2 
(15505.24-

15506.22) 

PRP-3 typec 2P  
(P02810) 

23.3-24.2 
11161 ± 1  
(11161-

11162) 

1595.5(+7) 1396.2(+8) 
1015.7(+11) 931.1(+12) 

859.6(+13) 

11155.1 ± 0.2 
(11155.08-

11156.06) 

P-C peptide   
(P02810) 

13.6-14.5 
4370.9 ± 0.4  

(4370.8) 
1457.9(+3) 1093.7(+4) 

4368.19 ± 0.07 
(4368.183) 

Cystatin S  

(P01036) 
37.4-38.2 

14186 ± 2  

(14185.8 ) 

1774.3(+8) 1577.2(+9) 
1419.6(+10) 1290.6(+11) 

1183.2(+12) 1092.2(+13) 

1014.3(+14) 

14176.8 ± 0.2 

(14175.81) 

Cystatin S 1P  (S1) 
(P01036) 

37.7-38.4 
14266 ± 2  
(14265.8 ) 

1784.3(+8) 1586.1(+9) 

1427.6(+10) 1297.9(+11) 
1189.8(+12) 1098.4(+13) 

1020.0(+14) 

14255.6 ± 0.2 
(14255.77) 

Cystatin S 2P (S2) 

(P01036) 
37.8-38.4 

14346 ± 2  

(14345.8 ) 

1794.3(+8) 1595.0(+9) 

1435.6(+10) 1305.2(+11) 

1196.5(+12) 1104.5(+13) 
1025.7(+14) 

14335.7 ± 0.2 

(14335.74) 

Cystatin SN  

(P01037) 
35.8-36.4 

14312 ± 2  

(14313.1) 

1790.0(+8) 1591.2(+9) 
1432.2(+10) 1302.1(+11) 

1193.7(+12) 1101.9(+13) 

1023.3(+14) 

14303.1 ± 0.2 

(14303.09) 

Cystatin SA  
(P09228) 

38.7-39.4 
14347 ± 2  
(14346.1 ) 

1794.4(+8) 1595.1(+9) 

1435.7(+10) 1305.3(+11) 
1196.6(+12) 1104.6(+13) 

1025.8(+14) 

14337.1 ± 0.2 
(14337.01) 

Cystatin A  

(P01040) 
31.3-32.1 

11006 ± 2 

(11006.5) 

1835.4(+6) 1573.4(+7) 
1376.8(+8) 1223.9(+9) 

1101.7(+10) 1001.6(+11) 

10999.7 ± 0.2 

(10999.66) 

Cystatin B-SSddimer 
(P04080) 

33.6-34.4 
22362 ± 3 
(22361.2) 

1864.4(+12) 1721.1(+13) 
1598.2(+14) 1491.8(+15) 

1398.6(+16) 1316.4(+17) 
1243.3(+18) 1177.9(+19) 

1119.0(+20) 1065.8(+21) 
1017.4(+22) 973.2(+23) 

nd 

Cystatin B-SSGe 

(P04080) 
32.5-33.1 

11487 ± 2 

(11486.7) 

1915.5(+6) 1642.0(+7) 

1436.9(+8) 1277.3(+9) 
1149.7(+10) 1045.3(+11) 

11479.6 ± 0.2 

(11479.68) 
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Cystatin B–SSCf 
(P04080) 

32.6-33.2 
11301 ± 2 
(11300.7) 

1884.5(+6) 1615.4(+7) 
1413.6(+8) 1256.6(+9) 

1131.1(+10) 1028.3(+11) 

11294.6 ± 0.2 
(11294.613) 

Cystatin C  

(P01034) 
38.2-38.9 

13343 ± 2 

(13343.1) 

1668.9(+8) 1483.6(+9) 
1335.3(+10) 1214.0(+11) 

1112.9(+12) 1027.4(+13) 
954.1(+14) 

13334.5 ± 0.2 

(13334.60) 

Cystatin C-Moxg 

(P01034) 
38.1-38.7 

13360 ± 2 
(13359.1) 

1670.8(+8) 1485.2(+9) 

1336.8(+10) 1215.4(+11) 
1114.2(+12) 1028.6(+13) 

955.2(+14) 

13354.4 ± 0.2 
(13354.59) 

α-defensin 1  

(P59665) 
24.9-25.4 

3442.1 ± 0.4  

(3442.1) 
1722.0(+2) 1148.4(+3) 861.5(+4) 

3439.53 ± 0.06 

(3439.519) 

α-defensin 2  

(P59665 and P59666) 
24.9-25.4 

3371.0 ± 0.4  

(3371.0) 
1686.5(+2) 1124.7(+3) 843.8(+4) 

3368.49 ± 0.06 

(3368.482) 

α-defensin 3  

(P59666) 
24.9-25.4 

3486.1 ± 0.4  

(3486.1) 

1744.0(+2) 1163.0(+3) 

872.5(+4) 

3483.52 ± 0.06 

(3483.509) 

α-defensin 4  

(P12838) 
27.7-28.0 

3709.3 ± 0.4  

(3709.5) 

1855.7(+2) 1237.5(+3) 

928.4(+4) 

3706.78 ± 0.06 

(3706.767) 

Thymosin β4  

(P62328) 
20.7-21.0 

4962.5 ± 0.4 

(4963.5) 

1655.5(+3) 1241.9(+4) 

993.8(+5) 

4960.51 ± 0.08 

(4960.494) 

Thymosin β4-Mox 

(P62328) 
19.0-19.2 

4979.4 ± 0.4 

(4979.5) 

1660.8(+3) 1245.9(+4) 

996.9(+5) 

4976.40 ± 0.08 

(4976.488) 

Thymosin β10 

(P63313) 
22.0-22.4 

4936.3 ± 0.4 

(4936.5) 

1646.5(+3) 1235.1(+4) 

988.3(+5) 

4933.44 ± 0.08 

(4933.530) 

S100A7 (D27) 

(P31151h) 
37.4-38.0 

11367 ± 2 

(11367.8) 

1422.0(+8) 1264.1(+9) 

1137.8(+10) 1034.4(+11) 

11360.3 ± 0.2 

(11360.53) 

S100A12  

(P80511) 
39.5-40.2 

10444 ± 2 

(10443.9) 

1306.5(+8) 1161.4(+9) 

1045.4(+10) 950.4(+11) 

10437.7 ± 0.2 

(10437.49) 

S100A8  

(P05109) 
39.1-39.7 

10833 ± 2 

(10834.5) 

1355.3(+8) 1204.8(+9) 

1084.5(+10) 985.9(+11) 

10827.8 ± 0.2 

(10827.66) 

S100A9(S)  

(P06702) 
41.3-42.0 

12690 ± 2 

(12689.2) 

1410.9(+9) 1269.9(+10) 
1154.6(+11) 1058.4(+12) 

977.1(+13) 

12681.4 ± 0.2 

(12681.29) 

S100A9(S) 
monophosphorylated 

(P06702) 

41.3-42.0 
12770 ± 2 

(12769.2) 

1419.8(+9) 1277.9(+10) 

1161.8(+11) 1065.1(+12) 

983.3(+13) 

12761.1 ± 0.2 

(12761.26) 

S100A9(S)-Mox 

(P06702) 
41.3-42.0 

12706 ± 2 

(12705.2) 

1412.7(+9) 1271.5(+10) 
1156.0(+11) 1059.8(+12) 

978.3(+13) 

12697.4 ± 0.2 

(12697.29) 

S100A9(S)-Mox 
monophosphorylated 

(P06702) 

41.3-42.0 
12786 ± 2 

(12785.2) 

1421.9(+9) 1279.5(+10) 
1163.3(+11) 1066.4(+12) 

984.5(+13) 

12777.2 ± 0.2 

(12777.25) 
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S100A9(L)-SSG 
(P06702) 

41.1-41.8 
13459 ± 2 
(13458.1) 

1346.8(+10) 1224.5(+11) 

1122.5(+12) 1036.3(+13) 

962.3(+14) 

13449.7 ± 0.2 
(13449.55) 

S100A9(L)-SSG 
monophosphorylated 

(P06702) 

41.1-41.8 
13539 ± 2 
(13538.1) 

1354.8(+10) 1231.8(+11) 

1129.2(+12) 1042.4(+13)  

968.0(+14) 

13529.3 ± 0.2 
(13529.52) 

S100A9(L)-SSG/Mox 41.0-41.6 
13475 ± 2 

(13474.1) 

1348.4(+10) 1225.9(+11)  

1123.8(+12) 1037.5(+13) 

963.4(+14) 

13465.6 ± 0.2 

(13465.55) 

S100A9(L)-SSG/Mox 

monophosphorylated 
41.0-41.6 

13555 ± 2 

(13554.1) 

1356.4(+10) 1233.2(+11) 

1130.5(+12) 1043.6(+13)  

969.1(+14) 

13545.7 ± 0.2 

(13545.52) 

S100A9(L)-SSC 

(P06702) 
41.1-41.8 

13273 ± 2 

(13271.9) 

1328.2(+10) 1207.6(+11) 

1107.0(+12) 1021.9(+13) 

949.0(+14) 

13263.5 ± 0.2 

(13263.49) 

S100A9(L)- SSC 
monophosphorylated 

(P06702) 

41.1-41.8 
13353 ± 2 

(13351.9) 

1336.2(+10) 1214.8(+11) 
1113.7(+12) 1028.1(+13)  

954.7(+14) 

13343.3 ± 0.2 

(13343.46) 

aPhosphorylation; bPRP-1 type includes the three entire isoforms PRP-1, PRP-2, and Pif-s, with a 
mass difference of 1 Da; cPRP-3 type includes the truncated isoforms PRP-3, PRP-4 and Pif-f; 
ddisulfide bridge; nd: not determined; eglutathionylated cysteine residue; fcysteinylated 
cysteine residue; gmethionine sulfoxide; hSwiss-Prot code refers to the variant E27. 

Statistical analysis 

GraphPad Prism was used for statistical analysis (the version 4.0 for Wilson’s 

disease and SAPHO syndrome studies and the version 5.0 for Hereditary 

angioedema study). A normality test was applied to calculate ranges, medians, 

means, and standard deviations of the XIC peak areas of the peptides and 

proteins. A t-test was used to compare proteins/peptides XIC peak areas 

between two different groups. Specifically, a non-parametric t-test was chosen 

if the distribution of the XIC peak areas was not Gaussian for at least one of the 

two groups (Mann-Whitney t-test), while a parametric test was employed if the 

distribution was Gaussian for both groups (Unpaired t-test). Welch’s correction 

was applied if the variance resulted significantly different between the groups. 

Statistical analysis was considered to be significant when the p value was <0.05 

(two tailed). One-way ANOVA was used to compare three or more groups. In 

particular, non-parametric tests were applied if the distribution of the data was 

not Gaussian for at least one of the groups (Kruskal-Wallis test with Dunn’s 

multiple comparison test) while a parametric test was employed if the 

distribution was Gaussian for all the groups (one-way analysis of variance with 

Tukey’s multiple comparison test).  
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Bottom-up proteomics experiments 

Quantification of proteins by nano-HPLC-ESI-MS experiments 

Abundance of the proteins identified in the acidic insoluble fractions by Mascot 

software, and considered confident according to the above reported criteria, 

was estimated for each group on the basis of the Exponentially Modified 

Protein Abundance Index (emPAI). The log2 ratio between the median emPAI 

values for each protein in any two groups was calculated to evidence 

differences. Proteins with logarithm values lower than -0.7 were considered 

significantly increased in the group in the denominator position with respect to 

the group in the numerator, while proteins with logarithm values higher than 

+0.7 were considered significantly increased in the group in the numerator 

position with respect to the group in the denominator. 
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Results 

 Wilson’s disease 

The following proteins and peptides were searched and quantified by top-down 

low-resolution HPLC-ESI-IT-MS experiments in the acidic soluble fraction of 

saliva from Wilson’s disease patients and healthy controls: histatins, salivary 

cystatins, statherin, P-B peptide, aPRPs, α-defensins 1–4, cystatins A, B, C, β-

thymosins 4 and 10, S100A7 (D27), S100A8, S100A9 (short (S) and long (L) 

isoforms), S100A12, as well as numerous their derivatives (Table 3). In addition, 

several masses not previously characterized were detected, and attributed to 

two naturally occurring fragments of pIgR and to proteoforms of S100A8 and 

S100A9 with a different degree of oxidation (Table 4). Characterization was 

performed by an integrated high-resolution HPLC-ESI-MS/MS top-down and 

bottom-up approach.  

High-resolution top-down structural characterization of pIgR, and three 

S100A8 oxidized proteoforms 

The structural characterization was performed on the acidic soluble fraction 

from patient whole saliva by high-resolution HPLC-ESI-MS/MS analysis. 

Two peptides, eluting in the region 23.4-27.0 min of the low-resolution HPLC-

ESI-MS profile of saliva, were identified as the fragment 610-648 and 623-648 of 

pIgR and respectively named AVAD and ASVD (Table 4). The identification 

was based on the high-resolution MS/MS performed on the AVAD triply-

charged ion 1278.62 ± 0.02 m/z and on the ASVD doubly-charged ion 1246.12 ± 

0.02 m/z, as shown in Fig.4 and Fig.5. 
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Table 4. Swiss-prot code, elution time, experimental (Exp.) and theoretical 
(Th.) average and monoisotopic mass values (Mav., Mmonois.), and multiply 
charged ions used for XIC quantification of ASVD and AVAD peptides, and 
S100A8 and S100A9 oxidized proteoforms.  

Protein 
(Swiss-Prot code) 

El. time 
(min) 

Exp. Mav. 
(Th. Mav.) 

Da 

Multiply-charged ions 
(m/z(charge)) 

Exp. Mmonois. 
(Th. Mmonois.) 

Da 

AVAD (pIgR fr.       
610-648 - P01833) 

25.4-25.8 
3834.4 ± 0.3 

(3834.1) 
1918.0(+2) 1279.0(+3) 

959.5(+4) 
3831.85 ± 0.06 

(3831.854) 

ASVD (pIgR fr.       
623-648 - P01833) 

25.8-26.1 
2490.5 ± 0.3 

(2490.7) 
1246.3 (+2) 831.2(+3) 

2490.23 ± 0.04 
(2489.232) 

S100A8-SO2H 39.7-40.0 
10866 ± 2 
(10866.5) 

1359.3(+8) 1208.4(+9) 
1087.7(+10) 988.9(+11) 

10859.6 ± 0.2 
(10859.65) 

S100A8-SO3H/W54ox 40.2-40.6 
10898 ± 2 
(10898.6) 

1363.3(+8) 1212.0(+9) 
1090.9(+10) 991.8(+11) 

10891.7 ± 0.2 
(10891.66) 

Hyper-oxidized 

S100A8 
39.0-39.6 

10915 ± 2 

(10914.6) 

1365.3(+8) 1213.7(+9) 

1092.5(+10) 993.2(+11) 

10907.6 ± 0.2 

(10907.63) 

S100A8-SSGa 38.1-38.4 
11140 ± 2 

(11139.8) 

1393.5(+8) 1238.8(+9) 

1115.0(+10) 1013.7(+11) 

11133.8 ± 0.2 

(11133.72) 

S100A8-SNOb 40.6-40.9 
10863 ± 2 

(10863.5) 

1358.9(+8) 1208.1(+9) 

1087.3(+10) 988.6(+11) 

10856.6 ± 0.2 

(10856.65) 

S100A8/A9-SScdimer 41.6-41.9 
23986 ± 3 
(23985) 

1600.0(+15) 1500.1(+16) 
1411.9(+17) 1333.5(+18) 

1263.4(+19) 1200.3(+20) 
1143.2(+21) 1091.2(+22) 

1043.8(+23) 1000.4(+24) 

960.4(+25) 923.5(+26) 

nd 

S100A9/A9-SSdimer 41.7-42.5 
26306 ± 3 

(26304) 

1754.6(+15) 1645.0(+16) 

1548.3(+17) 1462.3(+18) 
1385.4(+19) 1316.2(+20) 

1253.5(+21) 1196.6(+22) 

1144.6(+23) 1097.0(+24) 

1053.1(+25) 1012.7(+26) 

nd 

aglutathionylated cysteine residue; bnitrosylated cysteine residue; cdisulfide bridge; nd: not 
determined. 
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Fig.4 AVAD peptide. Annotated [M+H]+ deconvoluted spectrum of high-resolution MS/MS from 1278.62 m/z ([M+3H]3+).  
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Fig.5 ASVD peptide. Annotated [M+H]+ deconvoluted spectrum of high-resolution MS/MS from 1246.12 m/z ([M+2H]2+).
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S100A8 oxidation involved methionine 1 and 78 (M1, M78), tryptophan 54 

(W54), and cysteine 42 (C42). Three proteoforms of S100A8 showed C42 

oxidized to sulfonic acid (S100A8-SO3H). The first presented a further oxidation 

at W54 (S100A8-SO3H/W54ox), as shown by the high-resolution MS/MS 

annotated spectra reported in Fig.6A-C, while Fig.7A-C shows the MS/MS 

spectra of the other two forms, which were isobaric derivatives of S100A8-SO3H 

(Hyper-oxidized S100A8): one form was also oxidized at W54 and M78 

(S100A8-SO3H/W54ox/M78ox), the other was dioxidized at W54 (S100A8-

SO3H/W54diox). All these S100A8 proteoforms are reported in Table 4. The 

neutral loss of H2SO3 (81.97 Da) (Shetty, 2007) observed only for S100A8-

SO3H/W54ox and for S100A8-SO3H/W54ox/M78ox was in agreement with the 

presence of the sulfonic acid residue, and MS/MS data of the ion 910.56 m/z 

([M+12H]+12) confirmed the structures of the two co-eluting and isobaric hyper-

oxidized S100A8 proteoforms. Top-down high-resolution MS/MS annotated 

spectra of intact S100A8-SO3H/W54ox and hyper-oxidized S100A8 forms are 

respectively shown in Fig.6A-C and Fig.7A-C. 

High-resolution bottom-up structural characterization of S100A8, S100A9 

oxidized proteoforms  

Trypsinized enriched fractions of S100A8, S100A9 and their oxidized 

proteoforms obtained by pools of patient saliva samples were analyzed by 

high-resolution HPLC-ESI-MS/MS. The bottom-up approach allowed 

confirming S100A8-SO3H and characterizing other oxidized derivatives of 

S100A8. MS/MS sequencing of the tryptic peptides with monoisotopic [M+H]+ 

1412.68 ± 0.02 and 1540.77 ± 0.03 m/z corresponding to S100A8-SO3H fragments 

37-47, 37-48, and 36-47 (the latter two isobaric) confirmed the sulfonic acid 

modification of C42 (Table 5, Fig. 8A-C).  

One proteoform of S100A8 with C42 oxidized to sulfinic acid (S100A8-SO2H, 

10859.6 ± 0.2 Mmonois., Table 4) was confirmed by MS/MS of the tryptic 

peptide 37-47 (Table 5, Fig.9) which showed the characteristic neutral loss of 

H2SO2 (65.98 Da) (Wang, 2004). The Mmonois. 10859.6 ± 0.2 could be also in 

agreement with dioxidized derivatives of S100A8, i.e. at W54 and M1, or M78 

and M1, or W54 and M78. This possibility could not be excluded nor confirmed 
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by high-resolution MS/MS due to the separation of the modification sites in the 

tryptic peptides (Table 5). Oxidation of M1 in S100A8 was evidenced by 

MS/MS data of the tryptic peptide 1-23 (Table 5, Fig.10). Furthermore, masses 

attributable to tryptic peptides oxidized at M78 and W54, but not confirmed by 

MS/MS due to the low intensity, were also detected. The tentative attributions 

and monoisotopic [M+H]+ m/z values were: fragment 78-84 of S100A8-M78ox, 

with m/z 729.32 ± 0.01 (theor. 729.38) eluting at 20.7 min; fragment 50-56 of 

S100A8-W54ox, with m/z 838.35 ± 0.01 (theor. 838.41, 20.7 min); fragment 48-56 

of S100A8-W54ox, with m/z 1110.47 ± 0.02 (theor. 1110.59, 22.0 min).  

Glutathionylation of C42 in S100A8 (S100A8-SSG, Table 4) was demonstrated 

by MS/MS data of the 37-47 glutathionylated peptide (monoisotopic 

monocharged ion with m/z 1669.76 ± 0.03, Table 5). Fig. 11A shows the high-

resolution MS/MS of the triply-charged ion with m/z 557.26 with the 

characteristic neutral loss of pyroglutamate (129.04 Da), that confirmed the 

presence of the glutathionyl moiety.  

The monoisotopic mono-charged ions with m/z 1649.78 ± 0.03 and 1393.73 ± 0.02 

were tentatively attributed to the following fragments of C42-nitrosylated 

S100A8 (S100A8-SNO, Table 4): 37-49 (or 36-48) fragment (theor. 1649.87 m/z) 

and 37-47 fragment (theor. 1393.68 m/z).  

Cysteine 42 of S100A8 originated also a disulfide bridge with cysteine 3 of 

S100A9(L) (S100A8/A9-SSdimer, Table 4). The presence in saliva of Wilson’s 

disease patients of this covalent hetero-dimer was confirmed by high-resolution 

MS/MS of the monoisotopic doubly-charged ion with m/z 877.93 ± 0.01, 

attributed to the tryptic peptide in which peptide fragment 2-4 of S100A9(L) 

was linked to fragment 37-47 of S100A8 (Fig. 11B, Table 5). The monoisotopic 

mono-charged ion with m/z 2628.26 ± 0.04 was attributed to peptide fragment 2-

10 of S100A9(L) linked to peptide fragment 36-47 of S100A8, but not confirmed 

by MS/MS data due to its low abundance. The two peptides, with the following 

experimental monoisotopic [M+H]+ m/z values: 784.49 ± 0.01 and 1528.72 ± 0.03 

were tentatively attributed to Nα-Ac-TCK dimer (theor. 784.36 m/z), and Nα-

Ac-TCK bound to Nα-Ac-TCKMSQLER (theor. 1528.72 m/z), respectively, 

generated by S100A9(L)-SSdimer (Table 4).  
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Both the short and the long glutathionylated S100A9 proteoforms were detected 

as mono-oxidized derivatives on one of the following methionine residues: M59 

(or M63), M77 (or M81), M79 (or M83), and M90 (or M94) (Table 4), as 

confirmed by high-resolution MS/MS of the mono-oxidized tryptic peptides 

reported in Table 5 and shown in Fig.12 and Fig.13. 

Table 5.  Experimental and theoretical monoisotopic [M+H]+ mass values, 
elution time, sequence, PTMs, and m/z values selected for high-resolution 
HPLC-ESI-MS/MS analysis of the tryptic peptides obtained by digestion of 
enriched fractions of S100A8 and S100A9 oxidized proteoforms. 

Tryptic Peptides 
Exp. and (Th.) monois. 

[M+H]+ 
(Elution time, min) 

Sequence and position PTMs 

Ion selected 
for MS/MS 

analysis 
m/z  

(charge) 

S100A8 

2737.49 ± 0.04 (2737.48)         

(39.1) 

mLTELEKALNSIIDVYHKYSLIK 

1-23 
M-sulfoxide 

685.13  

(+4) 

1540.77 ± 0.03 (1540.77)         

(20.2) 

KLLETEcPQYIR 

36-47 
C-sulfonic acid 

770.89 

(+2) 

1540.77 ± 0.03 (1540.77)        
(18.5) 

LLETEcPQYIRK 
37-48 

C-sulfonic acid 
770.89  
(+2) 

1669.76 ± 0.03 (1669.76)         

(19.7) 

LLETEcPQYIR 

37-47 

C-

glutathionylation 

557.25  

(+3) 

1412.68 ± 0.02 (1412.67)         
(20.2) 

LLETEcPQYIR 
37-47 

C-sulfonic acid 
706.84  
(+2) 

1396.68 ± 0.02 (1396.68)         

(19.9) 

LLETEcPQYIR 

37-47 
C-sulfinic acid 

698.84  

(+2) 

S100A8/A9-SSdimer 

1754.86 ± 0.03 (1755.87)         

(19.5) 

LLETEcPQYIR 37-47 (S100A8) 

¦ 
Nα-Acet-TcK 2-4 (S100A9) 

C-disulfide 

dimerization 

877.93 

(+2) 

S100A9 

1630.80 ± 0.03 (1630.80)          

(37.3) 

QLSFEEFImLMAR 

73-85 
M-sulfoxide 

815.90  

(+2) 

1630.80 ± 0.03 (1630.80)          
(32.7) 

QLSFEEFIMLmAR 
73-85 

M-sulfoxide 
 

815.90  
(+2) 

1758.82 ± 0.03 (1758.82)            

(18.3) 

VIEHImEDLDTNADK 

57-72 
M-sulfoxide 

879.91  

(+2) 

3354.61 ± 0.06 (3354.61)            
(35.8) 

VIEHIMEDLDTNADKQLSFEEFI
mLMAR 

57-85 

M-sulfoxide 
839.41 
(+4) 

2191.96 ± 0.04 (2191.96)            

(12.1) 

mHEGDEGPGHHHKPGLGEGTP 

94-114 
M-sulfoxide 

731.32  

(+3) 
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Fig.6A S100A8-SO3H/W54ox. Annotated [M+H]+ and enlargement in the mass range 6949-8017 m/z of the deconvoluted spectrum of 

high-resolution MS/MS from 909.15 m/z ([M+12H]12+). 
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Fig.6B  S100A8-SO3H/W54ox. Enlargement in the mass range 2200-3842 m/z. of the annotated [M+H]+ deconvoluted spectrum of high-

resolution MS/MS from 839.29 m/z ([M+13H]13+).  
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Fig.6C  S100A8-SO3H/W54ox. Enlargement in the mass range 6938-7993 m/z. of the annotated [M+H]+ deconvoluted spectrum of high-

resolution MS/MS from 839.29 m/z ([M+13H]13+).   
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Fig.7A Hyperoxidized S100A8; S100A8-SO3H/W54ox/M78ox. Annotated [M+H]+ deconvoluted spectrum of high-resolution MS/MS 

from 910.48 m/z ([M+12H]12+). 
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Fig.7B Hyperoxidized S100A8; S100A8-SO3H/W54ox/M78ox. and S100A8-SO3H/W54diox. Annotated [M+H]+ deconvoluted spectrum 

of high-resolution MS/MS from 910.56 m/z ([M+12H]12+). The first y and b ion’s series (blue and red) are in agreement with C42- SO3H 

(+47.985 Da), W54-oxidized (+15.995 Da) and M78-oxidized (+15.995 Da) modifications. The second y and b ion’s series (green and 

pink) are in agreement with C42- SO3H (+47.985 Da) and W54-dioxidized (+31.999 Da) modifications. 
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Fig.7C Hyperoxidized S100A8; S100A8-SO3H/W54ox/M78ox. and S100A8-SO3H/W54diox. Enlargement in the range 7068-7860 m/z of 

the annotated [M+H]+ deconvoluted spectrum of high-resolution MS/MS from 910.56 m/z ([M+12H]12+).  
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Fig.8 Sulfonic acid modification of C42 of S100A8 (C42-SO3H): fragment 37-47, panel A; 37-48, panel B; 36-47, panel C. 
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Fig.9 Sulfinic acid modification of C42 of S100A8 (C42-SO2H): fragment 37-47. 
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Fig.10 Oxidation on M1 of S100A8 (M1ox), fragment 1-23. 

  

Fig.11 Glutathionylation of C42 in S100A8 (S100A8-SSG), panel A; disulfide bridge between cysteine 42 of S100A8 and cysteine 3 of 

S100A9(L) (S100A8/A9-SSdimer), panel B.
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Fig.12 Oxidation on M81 of S100A9 (M81ox): fragment 73-85, panel A; fragment 57-85, panel B.  

Oxidation on M83 of S100A9 (M83ox): fragment  73-85, panel C. 
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Fig.13 Oxidation on M63 of S100A9 (M63ox): fragment 57-72, panel A. Oxidation on M94 of S100A9 (M94ox): fragment 94-114, panel B.  
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Protein/peptide quantification and statistical analysis 

T-test was used to compare the XIC peak area of each protein/peptide 

measured by low-resolution HPLC-ESI-IT-MS in Wilson’s disease patients and 

healthy controls (Table 6).  

Table 6. XIC peak area (mean ± standard deviation (SD) and median x107) and 
frequency of pIgR fragments, α-defensins 2-4, and several proteoforms of 
S100A8, and S100A9 in Wilson’s disease patients and healthy controls. T-test p 
value obtained by comparing the two groups are also reported.  

Peptide/protein 
WD group 
Mean ± SD 

Median 
Frequency 

HC group 
Mean ± SD 

Median 
Frequency p value 

ASVD 
1.1 ± 0.6 

1.1 
30/32 

0.7 ± 0.7 
0.5 

21/32 0.02 ↑ 

AVAD 
2.4 ± 1.2 

2.2 
31/32 

1.3 ± 1.1 

1.4 
21/32 0.003 ↑ 

α-Defensin 2 
9.3 ± 11.0 

4.3 
27/32 

4.7 ± 5.1 

2.7 
25/32 0.04 ↑ 

α-Defensin 4 
2.5 ± 2.8 

1.2 
24/32 

0.8 ± 1.7 
0.01 

11/32 0.004  ↑ 

S100A9(S) 
(1P + non-P) 

27.4 ± 30.4 
14.8 

27/32 
9.6 ± 12.1 

4.5 
19/32 0.004  ↑ 

S100A9(S)-Moxa 

(1P + non-P) 

5.0 ± 8.0 

1.4 
16/32 

2.4 ± 5.0 

0.01 
9/32 ns 

S100A9(L)-SSGb 

(non-P) 

15.9 ± 19.3 

7.5 
24/32 

5.0 ± 7.6 

0.01 
15/32 0.007 ↑ 

S100A9(L)-SSCc 

(1P + non-P) 
2.3 ± 5.1 

0.01 
8/32 

0.3 ± 1.5 
0.01 

3/32 ns 

S100A9/A9-SSddimer 
1.7 ± 4.6 

0.01 
5/32 0  na 

S100A8/A9-SSdimer 
5.1 ± 13.8 

0.01 
5/32 0  na 

S100A9(L)ox tot 
28.6 ± 31.9 

18.8 
29/32 

8.9 ± 13.4 
1.9 

15/32 0.006 ↑ 

S100A8 
3.1 ± 4.7 

0.01 
15/32 

0.5 ± 1.6 
0.01 

4/32 0.01  ↑ 

Hyperoxidized S100A8 
3.0 ± 3.7 

1.6 
20/32 

0.7 ± 1.6 

0.01 
7/32 0.002  ↑ 

S100A8-SO3H/W54ox 
1.1 ± 3.2 

0.01 
11/32 

0.3 ± 0.8 

0.01 
5/32 ns 

S100A8-SSG 
0.5 ± 1.5 

0.01 
5/32 0  na 

S100A8-SNOe 
2.7 ± 9.0 

0.01 
5/32 0  na 

S100A8-SO2H 
0.3 ± 0.9 

0.01 
3/32 0  na 

S100A8ox tot 
10.4 ± 14.8 

4.3 
23/32 

0.9 ± 1.8 

0.01 
11/32 0.0003 ↑ 

amethionine sulfoxide; bglutathionylated cysteine residue; ccysteinylated cysteine residue; 
ddisulfide bridge; ns: not significant; na: not applicable; enitrosylated cysteine residue; ↑: 

increased levels in WD group. 
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No statistical differences were found in the levels of proteins and peptides 

secreted by salivary glands, such as histatins, statherin, P-B peptide, cystatins S 

and C, and aPRPs, as well as in the level of cystatin A and B. Conversely, saliva 

of Wilson’s disease patients with respect to healthy subjects showed significant 

higher levels of AVAD and ASVD pIgR peptides, and α-defensins 2 and 4 

(Table 6, Fig.14A-B).  

      

Fig.14 Distribution of the XIC peak area values of ASVD and AVAD peptides 

(A) and α-defensins 2 and 4 (B) measured in saliva from Wilson’s disease 

patients and healthy controls. Asterisk indicates statistically significant 

differences: *(p < 0.05), **(p ≤ 0.01). 

Moreover, S100A9(S), S100A9(L)-SSG, and their phosphorylated derivatives, 

S100A8 and hyper-oxidized S100A8 exhibited higher levels in saliva of patients 

with respect to controls (Table 6, Fig.15A-B). Statistical analysis was performed 
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considering the totality of non-phosphorylated and phosphorylated forms of 

short and long S100A9 and the results are reported in Table 6.  

 

Fig.15 Distribution of the XIC peak area values of S100A9(S) and S100A9(L)-SSG 

(A) and S100A8 and hyper-oxidized S100A8 (S100A8-SO3H/W54ox/W54-

ox/M78-ox or -SO3H/W54diox (B) measured in saliva from Wilson’s disease 

patients and healthy controls. Asterisk indicates statistically significant 

differences: *(p < 0.05), **(p ≤ 0.01). 

Wilson’s disease patients showed higher levels and frequencies of S100A8-

SO3H/W54ox, S100A9(L)-SSC, S100A9(L)-SSC phosphorylated, S100A9(S)-Mox 

and S100A9(S)-Mox phosphorylated with respect to controls, even though 

without a statistical significance (Table 6). In patients with high concentration of 

S100A8 and S100A9, also the following modifications were detected, even if 

sporadically: S100A8-SSG and S100A8-SNO in 5 patients; S100A8-SO2H in 3 

patients, S100A8/A9-SSdimer and S100A9(L)-SSdimer in 8 patients (Table 6). In 
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8 Wilson’s disease patients S100A8 was detected only in the oxidized forms. 

Statistical analysis highlighted significant higher levels in patients with respect 

to healthy subjects of the totality of the oxidized proteoforms of S100A8 

(S100A8ox tot), and the totality of the oxidized proteoforms of S100A9(L) 

(S100A9(L)ox tot) (Table 6, Fig.16).  

       

Fig.16 Distribution of the XIC peak area values of total S100A8ox and 

S100A9(L)ox measured in saliva from Wilson’s disease patients and healthy 

controls. Asterisk indicates statistically significant differences:                           

**(p ≤0.01), ***(p ≤ 0.001). 

A calculation of the relative abundance of the different proteoforms revealed 

that S100A8 was mainly represented by its oxidized derivatives in saliva of both 

patients and controls: 75 ± 30% in Wilson’s disease patients, 77 ± 42% in healthy 

subjects. Among the oxidized proteoforms the most abundant was the hyper-

oxidized S100A8 (WD 42 ± 40%, controls 59 ± 46%), followed by S100A8-

SO3H/W54ox (WD 12 ± 23%, controls 18 ± 32%), S100A8/A9-SSdimer (WD 11 ± 

27%), S100A8-SNO (WD 8 ± 22%), S100A8-SSG (WD 1 ± 3%), and S100A8-SO2H 

(WD 1 ± 4%).  

Both in patients and controls, S100A9(L) was detected only in the form oxidized 

at the cysteine residue: glutathionylated (WD 85 ± 16%, HC 98 ± 5%), 

cysteinylated (WD 7 ± 10%, 375 HC 2 ± 5%), and dimeric (WD 8 ± 13%). 

Conversely, S100A9(S) was prevalently detected in the non-oxidized forms in 

Wilson’s disease patients (86 ± 24%), and healthy subjects (80 ± 35%). 
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 SAPHO syndrome 

The following proteins and peptides were searched and quantified by top-down 

low-resolution HPLC-ESI-IT-MS experiments in the acidic soluble fraction of 

saliva from SAPHO patients and healthy controls: histatins, salivary cystatins, 

statherin, P-B peptide, aPRPs, α-defensins 1–4, cystatins A, B, C, β-thymosins 4 

and 10, S100A7 (D27), S100A8, S100A9 (short (S) and long (L) isoforms), 

S100A12, as well as numerous their derivatives (Table 3).  

Protein/peptide quantification and statistical analysis 

T-test was used to compare the XIC peak area of each protein/peptide 

measured by low-resolution HPLC-ESI-IT-MS in SAPHO patients and healthy 

controls. The XIC peak areas mean ± SD (x107), the frequency and the p value 

obtained on proteins showing differences between the two groups are reported 

in Table 7. 

Table 7. 

Proteins 
SAPHO patients 

mean ± SD    Frequency 
Healthy controls 

mean ± SD    Frequency 
p value 

Salivary cystatins      

Cystatin S1             60.4 ± 58.7 10/10 122.2 ± 118.6 26/28 0.04 

Cystatin SN              115.2 ± 132.4 10/10 199.1 ± 189.1 25/28 ns 

Histatins      

Histatin 1                          21.5 ± 14.1 9/10 40.8 ± 25.8 28/28 0.007 

Histatin 3                          11.1 ± 19.0 6/10 17.5 ± 16.9 18/28 ns 

Histatin 6 (1/25)                10.5 ± 16.7 8/10 15.6 ± 11.5 27/28 ns 

Histatin 5 (1/24)                26.7 ± 33.0 10/10 48.6 ± 30.8 28/28 ns 

S100A12                         3.4 ± 3.6 6/10 1.2 ± 2.6 6/28 ns 

aPRPs      

PRP-1 diphos 629.8 ± 361.5 10/10 981.0 ± 511.2 28/28 ns 

PRP-3 diphos 178.2 ± 77.2 10/10 364.9 ± 176.1 28/28 <0.0001 

P-C peptide 144.1 ± 80.2 10/10 246.1 ± 95.1 28/28 0.005 

P-B peptide 195.0 ± 115.9 10/10 304.2 ± 169.4 28/28 ns 

ns: not significant 

The results of the statistical analysis performed by excluding from the SAPHO 

group the patient #8, who unlike the others never had skin manifestations 

(Table 1), are reported in  Table 8. 
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Table 8. 

Proteins 
SAPHO patients 

mean ± SD    Frequency 
Healthy controls 

mean ± SD    Frequency 
p value 

Salivary cystatins 

Cystatin S1                 52.2 ± 55.6 9/9 122.2 ± 118.6 26/28 0.02 

Cystatin SN                 83.1 ± 90.3 9/9 199.1 ± 189.1 25/28 0.02 

Histatins 

Histatin 1                   21.1 ± 14.8 8/9 40.8 ± 25.8 28/28 0.04 

Histatin 3                          5.4 ± 6.6 5/9 17.5 ± 16.9 18/28 0.004 

Histatin 6 (1/25)                5.4 ± 5.1 7/9 15.6 ± 11.5 27/28 0.0009 

Histatin 5 (1/24)                17.0 ± 13.0 9/9 48.6 ± 30.8 28/28 0.0001 

S100A12                         3.8 ± 3.6 6/9 1.2 ± 2.6 6/28 0.04 

aPRPs 

PRP-1 diphos 535.3 ± 215.9 9/9 981.0 ± 511.2 28/28 0.0008 

PRP-3 diphos 161.2 ± 58.8 9/9 364.9 ± 176.1 28/28 <0.0001 

P-C peptide 121.4 ± 37.5 9/9 246.1 ± 95.1 28/28 <0.0001 

P-B peptide                                      167.8 ± 82.3 9/9 304.2 ± 169.4 28/28 0.003 

Among salivary cystatins, only cystatin S1 showed a significant lower level in 

the SAPHO subjects with respect to healthy controls (p = 0.04), but  exclusion of 

the patient #8 evidenced a significant lower concentration of also cystatin SN (p 

= 0.02) (Table 8, Fig.17). 

 

Fig.17 Distribution of the XIC peak area values of cystatins S1 (panel A) and SN 

(B) measured in saliva from SAPHO patients (patient #8 excluded) and healthy 

controls. Asterisk indicates statistically significant differences: *p < 0.05. 

Histatin 1 concentration (p = 0.007) was found deeply lower in saliva of SAPHO 

patients as compared with controls (Fig.18A), while the level of histatins 3, 5, 

and 6 was similar in the two groups (Table 7). Distribution of XIC peak areas 

showed that concentration of the last three peptides was extremely higher in 

patient #8 with respect to both SAPHO and control subjects. By excluding this 
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subject from the patient’s group, the level of histatins 3, 5 and 6 became 

significantly lower with respect to controls (Fig.18B-D), and the following p 

values were determined: 0.004, 0.0001, and 0.0009, for histatins 3, 5, and 6, 

respectively (Table 8). 

 

Fig.18 Distribution of XIC peak area values of histatin 1 (panel A), histatin 3 (B), 

histatin 5 (C) and histatin 6 (D)  measured in saliva from SAPHO patients 

(patient #8 excluded) and healthy controls. Asterisks indicate statistically 

significant differences: *p < 0.05; **p ≤ 0.01; ***p ≤ 0.001. 

Statistical analysis evidenced significant lower levels of diphosphorylated PRP3 

(p <0.0001) and the P-C peptide (p = 0.005) in saliva of SAPHO compared with 

the controls (Table 7). Also the levels of the P-C peptide and diphosphorylated 

PRP1 were higher in patient #8 than in the other patients. By excluding this 

subject, the level of diphosphorylated PRP1 resulted significantly different (p = 

0.0008, Table 8) in the two groups, and the p value for the P-C peptide became 

lower than 0.0001 (Fig.19A and Table 8). 
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The P-B peptide was less abundant in SAPHO patients than in controls, 

although the statistical analysis became significant only after the exclusion of 

the patient #8 (p = 0.003), as shown in Fig.19B. 

 

Fig.19 Distribution of XIC peak area values of the P-C peptide (panel A) and the 

P-B peptide (B) measured in saliva from SAPHO patiens (patient #8 excluded) 

and healthy controls. Asterisks indicate statistically significant differences:      

**p ≤ 0.01; *** p ≤ 0.001. 

S100A12 protein showed a higher frequency in the SAPHO group (6/10) with 

respect to the controls (6/28) (Table 7). The level of this protein became 

significantly higher in patients than in healthy controls by excluding the patient 

#8 (p = 0.04), as shown in Table 8. 

Correlations between low-resolution HPLC-ESI-IT-MS data and clinical and 

laboratory parameters 

The XIC peak areas of the salivary proteins/peptides quantified by low-

resolution HPLC-ESI-IT-MS experiments and showing significant quantitative 

variations between the two groups were correlated with SAPHO clinical 

laboratory parameters. A positive correlation was observed between CRP levels 

and the salivary concentration of all the histatins (p = 0.005, 0.004, 0.006, 0.006, 

for histatins 1, 3, 5, and 6, respectively; R = 0.8 for all of them, Fig. 20A-D). 

Moreover, CRP showed a negative correlation with S100A12 (p = 0.02; R = -0.7, 

Fig.20E). The cystatin SN abundance decreased in relation to the disease 

duration (p = 0.03; R = -0.7, Fig.20F). 
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Fig.20 Correlation analysis between CRP and histatin 1 (panel A), histatin 3 (B), 

histatin 5 (C), histatin 6 (D), S100A12 (E), and between cystatin SN and the 

disease duration (F) in SAPHO patients. 

By excluding patient #8, the correlations between CRP and histatins were 

confirmed (p = 0.005, 0.008, 0.01, 0.02; R = 0.9, 0.8, 0.8, 0.8, for histatins 1, 3, 5, 

and 6, respectively), as well as the correlation between CRP and S100A12 (p = 

0.04; R = -0.7), while that between cystatin SN and the disease duration 

vanished. Histatin 3 correlated negatively with the erythrocyte sedimentation 

rate (p = 0.04, R = -0.7, Fig.21A), and positively with the total white cells count 

(p = 0.04, R = 0.7, Fig.21B). Moreover, the highest levels of histatin 3 (p = 0.01, R 
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= 0.8) and 5 (p = 0.01, R = 0.8) were measured in the SAPHO patients with 

higher blood neutrophil counts (Neu) (Fig.21C-D).  

   

Fig.21 Correlation analysis between histatin 3 and ESR (panel A), WBC (B) and 

neutrophil count (C), and between histatin 5 and neutrophil count (D) in 

SAPHO patients (patient #8 excluded). 

 

 

 

 

 

 

 

 

0.00E+00

3.00E+07

6.00E+07

9.00E+07

1.20E+08

1.50E+08

1.80E+08

0 20 40 60

H
is

ta
ti

n
 3

ESR 

0.00E+00

3.00E+07

6.00E+07

9.00E+07

1.20E+08

1.50E+08

1.80E+08

2000 3000 4000 5000 6000 7000

H
is

ta
ti

n
 3

Neu

0.00E+00

7.00E+07

1.40E+08

2.10E+08

2.80E+08

3.50E+08

4.20E+08

2000 3000 4000 5000 6000 7000

H
is

ta
ti

n
 5

Neu

0.00E+00

3.00E+07

6.00E+07

9.00E+07

1.20E+08

1.50E+08

1.80E+08

4000 6000 8000 10000 12000

H
is

ta
ti

n
 3

WBC

A B 

C D 

p = 0.04 p = 0.04 

p = 0.01 p = 0.01 



~ 68 ~ 
 

 Hereditary angioedema 

The following proteins and peptides were searched and quantified by top-down 

low-resolution HPLC-ESI-IT-MS experiments in the acidic soluble fraction of 

saliva from angioedema patients and healthy controls: histatins, salivary 

cystatins, statherin, P-B peptide, aPRPs, α-defensins 1–4, cystatin B, β-

thymosins 4 and 10, S100A7 (D27), S100A8, S100A9 (short (S) and long (L) 

isoforms), S100A12, as well as several derivatives (see Table 3).  

Protein/peptide quantification and statistical analysis 

One-way ANOVA and Post-hoc Dunn’s multiple comparison test were used to 

compare the XIC peak area of each protein/peptide among the three 

angioedema groups and the control group and the results are shown in Table 9. 

Statistically significant differences were observed for S-glutathionylated 

cystatin B (cystatin B-SSG) (p = 0.0007) and S-cysteinylated cystatin B (cystatin 

B-SSC) (p = 0.003), and Post-hoc comparisons showed that both C1-INH-HAE 

and InH-AAE groups had significant higher levels of cystatin B-SSG with 

respect to the control group, while InH-AAE had higher levels of cystatin B-SSC 

compared to both healthy subjects and FXII-HAE patients (Fig.22A-B).  

Also lower levels of statherin Des-Thr42-Phe43 were observed in FXII-HAE 

patients with respect to C1-INH-HAE and control groups (p = 0.006).  

Moreover, histatin 1 and non-phosphorylated histatin 1 were significantly 

different among the groups (p = 0.04 and p = 0.01, respectively). In particular, in 

FXII-HAE patients higher levels of the two peptides were observed with respect 

to the healthy controls and increased levels of non-phosphorylated histatin 1 

were observed also as compared to C1-INH-HAE group.  

Finally, InH-AAE showed levels of S100A9(S)-Mox phosphorylated higher with 

respect to FXII-HAE group (p = 0.02). 
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Table 9.  XIC peak area means (± SD), and frequencies (Freq.) of proteins and peptides showing statistically different  
levels among C1-INH-HAE, FXII-HAE, Inh-AAE and control groups by one-way ANOVA. 

Protein name 
C1-INH-HAE FXII-HAE InH-AAE Controls        ANOVA 

Mean ± SD 
(x10^7) 

Freq. 
Mean ± SD 

(x10^7) 
Freq. 

Mean ± SD 
(x10^7) 

Freq. 
Mean ± SD 

(x10^7) 
Freq. p value 

Post-hoc Dunn’s multiple 
comparison test 

Cystatin B-SSGa 24.0 ± 16.0 13/13 14.6 ± 14.3 10/10 24.5 ± 13.5 12/12 10.4 ± 9.9 31/31 0.0007 

C1-INH-HAE > Controls ** 

InH-AAE > Controls ** 

Cystatin B-SSCb 5.3 ± 3.9 13/13 2.7 ± 2.1 10/10 7.3 ± 4.2 12/12 3.7 ± 4.4 31/31 0.003 

InH-AAE > FXII-HAE * 

InH-AAE > Controls ** 

Histatin 1 38.7 ± 39.5 11/13 52.1 ± 20.6 10/10 45.2 ± 30.2 12/12 29.5 ± 26.5 30/31 0.04 FXII-HAE > Controls * 

Non-
phosphorylated 
Histatin 1  

4.5 ± 7.3 8/13 9.3 ± 4.5 10/10 5.0 ± 4.4 9/12 4.2 ± 5.1 24/31 0.01 

FXII-HAE > C1-INH-HAE * 

FXII-HAE > Controls * 

Statherin  
Des-Thr42-Phe43 

6.5 ± 5.1 13/13 1.8 ± 1.5 10/10 5.1 ± 5.4 12/12 4.8 ± 3.7 31/31 0.006 

FXII-HAE < C1-INH-HAE ** 

FXII-HAE < Controls * 

S100A9(S)-Moxc 
phosphorylated 

0.9 ± 1.7 4/13 0.0 ± 0.0 0/10 2.3 ± 3.5 6/12 0.6 ± 1.9 5/31 0.02 InH-AAE > FXII-HAE * 

aglutathionylated cysteine residue; bcysteinylated cysteine residue; cmethionine sulfoxide.  
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Fig.22 Distribution of XIC peak area values of cystatin B-SSG (panel A) and cystatin B-

SSC (B) measured in saliva from C1-INH-HAE (circles), FXII-HAE (squares), InH-AAE 

(triangles) patients and healthy subjects (diamonds). Asterisks indicate statistically 

significant differences between pairs of groups (one way ANOVA with post-hoc 

Dunn’s multiple comparison test): *p < 0.05; **p ≤ 0.01. 

Characterization of the acidic insoluble salivary proteome and bioinformatic 

analyses 

Six available insoluble fractions obtained by treatment of whole saliva with TFA 

(3 from patients belonging to C1-INH-HAE group, 2 from patients belonging to 

FXII-HAE group and 1 from a Inh-AAE patient) were analyzed in duplicate by 

nano-HPLC-ESI-MS and MS/MS after tryptic digestion according with the 

endoProteoFASP protocol (bottom-up approach). A total of 191 distinct proteins 

were identified: 61 were common to all the three angioedema groups; 54 were 

shared between C1-INH-HAE and FXII-HAE groups; 31 between C1-INH-HAE 
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and Inh-AAE groups; and 30 between FXII-HAE and InH-AAE groups. 

Conversely, 7 proteins were specific of C1-INH-HAE group and 8 for FXII-HAE 

group (Fig.23). 

 

Fig.23 Venn diagram representing the distribution of identified proteins per 

group (C1-INH-HAE, in red; FXII-HAE, in blue; InH-AAE, in green) evidencing 

overlapped and unique proteins. 

The integrated analysis of all proteins identified in the three patient groups 

performed by Cytoscape_v3.2.1 with the additional plugin ClueGO+CluePedia, 

generated the protein-protein interaction network reported in Fig.24, consisting 

of 171 proteins, distributed in 18 clusters, connected by 714 protein-protein 

interactions. 
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Fig.24 

The most significant biological processes related to the identified proteins, 

shown in Fig. 25 with different colors according to their significance, were: 

detection of chemical stimulus involved in sensory perception of bitter taste; 

multicellular organismal and tissue homeostasis (retina and anatomical 

structure homeostasis and development); skin development (epidermal cell and 

keratinocyte differentiation); intermediate filament cytoskeleton organization; 

defense response to fungus; regulation of lipopolysaccharide-mediated 

signaling pathway; establishment of skin barrier; regulation of water loss via 

skin; protein nitrosylation; fibroblast proliferation, collagen fibril organization.  
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Fig.25 Protein interaction network generated with Cytoscape showing the most 

significant biological processes related to the identified proteins. The size of the 

rings indicates the number of proteins associate to each pathway, while 

different colors indicate the significance for each biological process represented  

(red: p < 0.05; red-purple: p < 0.005; brown: p < 0.0005). 

Fig.26 shows the identified proteins evidencing the distribution among the 

three angioedema groups. Each color identifies a specific angioedema group: 

red, C1-INH-HAE; blue, FXII-HAE; green, InH-AAE. 
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Fig.26 

Quantification of proteins characterized by nano-HPLC-ESI-MS experiments 

and statistical analysis  

Proteins which displayed significantly different abundance between pairs of the 

hereditary angioedema groups (log2 ratio between the median emPAI values of 

a specific protein in two groups lower than -0.7 or higher than +0.7) are shown 

in Fig.27. From the figure it is evident that 28 proteins showed a significant 

different level in C1-INH-HAE group with respect to InH-AAE groups, being 

10 more abundant in the C1-INH-HAE group, and 18 in the Inh-AAE group 

(Fig. 27A).  Conversely, 11 proteins were significantly more abundant and 22 

less abundant in FXII-HAE patients with respect to InH-AAE (Fig.27B). C1-
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INH-HAE group showed 18 proteins less abundant and 18 more abundant with 

respect to FXII-HAE group (Fig.27C).  

 

Fig.27 Base two logarithmic distribution of the emPAI values ratio calculated 

between pairs of angioedema groups. Comparison between C1-INH-HAE and 

Inh-AAE (panel A); FXII-HAE and Inh-AAE (panel B) and C1-INH-HAE and 

FXII-HAE (panel C). 
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In C1-INH-HAE group albumin (ALBU), amylase (AMY1) and carbonic 

anhydrase 6 (CAH6) were increased with respect to InH-AAE group (Fig.27A), 

while higher levels of cystatin A (CYTA) and salivary cystatin SN (CYTN) were 

observed with respect to FXII-HAE (Fig.27C). Moreover, lactotransferrin (TRFL) 

showed higher abundance with respect to both FXII-HAE (Fig.27C) and InH-

AAE (Fig.27A) groups. FXII-HAE group displayed increased levels of albumin 

and amylase than InH-AAE group (Fig.27B). This last protein resulted more 

abundant with respect to C1-INH-HAE group too (Fig.27C). Differences 

between these two groups were observed also for lysozyme (LYSC) and 

angiopoietin-1 (ANGP1), which showed higher levels in FXII-HAE group 

(Fig.27C). In FXII-HAE, S100A8 protein (S10A8), was increased with respect to 

the other two angioedema groups (Fig.27B-C). Similarly to C1-INH-HAE group, 

also in InH-AAE higher levels of salivary cystatin SN with respect to FXII-HAE 

group were observed (Fig.27B), while the signal recognition particle 68 kDa 

(SRP68) was increased with respect to both C1-INH-HAE (Fig.27A) and FXII-

HAE (Fig.27B) groups. 

Prediction of the proteases acting in saliva by the characterization of the 

salivary peptidome in the different groups 

The acidic soluble fraction of saliva from a subgroup of 10 patients (3 C1-INH-

HAE in basal phase, 1 in acute state and 1 in both cases; 2 FXII-HAE in basal 

condition, 1 in acute phase and 1 in both situations, and 1 Inh-AAE in basal 

phase) and 12 healthy controls were selected among the whole number of 

samples under study. The low-molecular-weight fraction (MW < 50 kDa) of 

each sample was analyzed in duplicate by top-down nano-HPLC-ESI-MS and 

MS/MS experiments. A total of 360 peptides, of which 246 different, were 

identified with confidence into the three angioedema groups and the control 

group, and their distribution can be observed in Fig.28. Only two peptides were 

common to all groups, belonging to proteins involved in the interaction with 

cytoskeletal structures, while no specific peptides were shared among the three 

angioedema groups with respect to controls. Thus, most of the identified 

peptides were exclusive for each group: 69 for C1-INH-HAE, 56 for FXII-HAE, 7 

for InH-AAE and 89 for controls.  
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Fig.28 Venn diagram representing the distribution of identified different 

peptides per group (C1-INH-HAE, red; FXII-HAE, blue; InH-AAE, green; and 

controls, orange). 

The list of the characterized peptides in each group was used to perform the in 

silico prediction of the proteases responsible for the naturally occurring 

peptidome, and thus to evidence possible differences among the three 

angioedema patient groups and the healthy controls. Fig.29-31 shows the 

percentage of peptides generated by the activity of different proteolytic 

enzymes predicted by Proteasix. From Fig.29 it is evident that different 

cathepsins (CTSB, CTSL1 and CTSS), several matrix metalloproteinases (MMPs) 

and the signal peptidase complex catalytic subunit (SEC11C) showed higher 

proteolytic activity in all the angioedema groups with respect to the healthy 

controls. On the other hand, the activity of meprin A (MEP1A and MEP1B) 

resulted higher in controls. However, it should be outlined that the robustness 

of these data is limited due to the small number of samples analysed, i.e. only 

one in the case of InH-AAE group. Moreover, the Proteasix software was 
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employed to evidence possible different proteolytic activity in saliva collected 

from C1-INH-HAE (Fig.30) and FXII-HAE (Fig.31) patients during the basal 

phase of the disease and the acute attack. The results highlighted increased 

proteolytic activities for different proteases in salivary samples collected during 

an acute attack as compared to both the basal phase and the control samples. 

Among them, matrix metalloproteinases (mainly MMP9) showed the most 

evident differences in both C1-INH-HAE (Fig.30) and FXII-HAE (Fig.31) 

groups. The disintegrin and metalloproteinase domain-containing protein 17 

(ADAM17) showed higher activity in acute samples of both angioedema groups 

with respect to basal samples and controls (Fig.30 and Fig.31). Conversely, 

inferior activity of MEP1A and kallikreins (KLK6 and KLK4 in C1-INH-HAE 

and FXII-HAE groups, respectively) was observed in patients, especially in 

their acute phase samples, as shown in Fig.30 and Fig.31). In FXII-HAE group, 

cathepsins D (CATD) and granzyme B (GZMB) displayed a decreased 

proteolytic action (Fig.31). 
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Fig.29 Percentage of peptides generated by the proteolytic activity of proteases predicted by Proteasix in the three groups of patients 

(C1-INH-HAE, red; FXII-HAE, light blue; Inh-AAE, green) and in the control group (yellow). 
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Fig.30 Percentage of peptides generated by the proteolytic activity of several proteases predicted by Proteasix in C1-INH-HAE basal 

phase (red), acute phase (brown) and control group (yellow). 
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Fig.31 Percentage of peptides generated by the proteolytic activity of several proteases predicted by Proteasix in C1-INH-HAE basal 

phase (light blue), acute phase (blue) and control group (yellow).
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Discussion 

 Wilson’s disease 

One relevant result obtained by Wilson’s disease saliva investigation concerns 

the in vivo characterization of several oxidized derivatives of S100A8, and 

S100A9. The two proteins showed different patterns of oxidation, in particular 

at the cysteine residue 42. In fact, while S100A8 was detected with C42 both 

reduced and oxidized, S100A9(L) was never detected in the reduced form. 

Moreover, S100A8 showed a major proneness with respect to S100A9(L) to the 

irreversible cysteine oxidation, and sulfonic or sulfinic acid were its main 

oxidized derivatives. On the other hand, S100A9 was detected principally 

glutathionylated and in a minor extent cysteinylated or in the dimeric form. 

S100A8 and S100A9 are the most abundant neutrophil proteins (about 45% of 

cytosolic proteins), constitutively expressed also by myeloid cells, platelets, and 

osteoclasts (Edgeworth, 1991; Goyette, 2011) and strongly induced in several 

cell types (i.e. macrophages, monocytes, keratinocytes, fibroblasts) during acute 

and chronic inflammatory status and in oxidative stress conditions (Goyette, 

2011; Carlsson, 2005). Interestingly, it has been reported that following liver 

damages, upregulated S100A8 and S100A9 induce neutrophils mobilization 

(Moles, 2014; Wiechert, 2012). In activated granulocytes and macrophages, 

S100A8 and S100A9 are involved in the activation of NADPH oxidase 2 

(Schenten, 2011; Doussiere, 2002), and thus contribute to the generation of 

reactive oxygen/nitrogen/chlorine species (ROS/RNS/RCS) with a subsequent 

progression and exacerbation of the inflammatory status. In addition to excess 

of unbound copper, different factors can be responsible for the redox unbalance 

in Wilson’s disease. In fact, Hussain et al. observed an increased expression of 

the inducible nitric oxide synthase (iNOS) (Hussain, 2000), while Ogihara et al. 

demonstrated a decreased level of plasma antioxidants (Ogihara, 1995). 

Furthermore, the decreased concentration of serum peroxiredoxin 2 isoform b 

was demonstrated in asymptomatic, early-stage patients (Park, 2009). Thus, the 

oxidative stress condition occurring in Wilson’s disease could be at the basis of 
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the high concentration of S100A8 and S100A9 proteoforms observed in our 

patients, and the up regulation of S100A8 should be responsible for the high 

levels of its oxidized forms, which however did not differ in percentage 

between patients and healthy controls. S100A8 in the form of sulfonic, or 

sulfinic acid, or oxidized at M1, M78 and W54 residues, has been already 

observed in vitro, by treating recombinant S100A8 with HOCl, as well as in vivo 

in human asthmatic sputum (Gomes, 2013), while the contemporaneous 

oxidation of C42 and the methionine residues has not been previously 

observed. The present study not only highlighted that more oxidative 

modifications can co-occur in S100A8, but also showed that the hyper-oxidized 

derivatives represented the major proteoforms of S100A8 in saliva of both 

patients and controls. Cysteine oxidation to sulfinic and sulfonic acid is 

generally considered an irreversible modification, which damages the protein. 

However, the enzymatic reversion of the sulfinic acid to the thiol form has been 

also observed (Biteau, 2003; Budanov, 2004). Reversible cysteine oxidation, such 

as glutathionylation, cysteinylation, and dimerization, can be involved in a 

variety of redox signaling/regulation events, and in the protection of critical 

cysteines from irreversible oxidative damages (Martínez-Ruiz, 2011; Hill, 2012; 

Lindahl, 2011). For instance, it has been reported that reversible cysteine 

oxidation of S100A8 and S100A9 can modulate their activity switching it from 

pro- to anti-inflammatory (Goyette, 2011; Gomes, 2013; Sroussi, 2012). In a 

previous study, it has been demonstrated in vitro that both S100A9 and S100A8 

can undergo glutathionylation via GSSG or GSNO intermediates, but only 

S100A9-SSG was detected in vivo in activated neutrophils (Lim, 2010). Thus, this 

is the first study which detected S100A8-SSG in vivo. Glutathionylation of 

S100A9 alters its capacity to form complexes with S100A8 (calprotectin), to bind 

endothelial cells, and limits neutrophil migration in inflammatory lesions. It has 

been suggested that this modification protects the protein from its oxidation to 

higher oligomers (Lim, 2010). The great sensitivity to oxidation of S100A8 and 

S100A9 is in agreement with the detection in saliva of Wilson’s disease patients 

of disulfide-linked homo-S100A9(L) and hetero-S100A8/A9(L) dimers. The 

S100A9(L)-SSdimer was previously detected in the activated neutrophils (Lim, 
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2010), and similar modifications of human S100A8, and murin S100A8 and A9 

were observed in vitro in the presence of HOCl, Cu2+ and/or H2O2 at low 

concentration (Kumar, 2001; Harrison, 1999). It has been reported that S100A8 

disulfide-linked dimers do not exhibit chemotactic action (Lim, 2009).  

AVAD and ASVD peptides were found at high concentration in almost all 

patients, while in 11/32 controls they were undetected. pIgR, a type I 

transmembrane glycoprotein playing the main role in the adaptive immune 

response on mucosal surfaces (Asano, 2011; Kaetzel, 2005), transports polymeric 

IgA across mucosal epithelial cells. It is upregulated by pro-inflammatory 

cytokines, hormones and microbial factors, through a signaling pathway 

involving toll-like receptors 3 and 4 (Kaetzel, 2005). A proteolytic cleavage 

occurring in the glycosylated extracellular portion of pIgR generates the 

secretory component (19-603 residues), which has been detected also in human 

saliva (Ramachandran, 2006). The cleavage occurs by action of unknown 

proteases, probably released by activated neutrophils (Kaetzel, 2005), and the 

highly conserved sequence 602-613 (PRLFAEEKAVAD) is believed to be the 

cleavage signal (Asano, 2011). The AVAD peptide originates by a cleavage 

occurring in this region at the level of K609, and the ASVD peptide derives 

from AVAD by the trypsin-like cleavage at R622. The cleavage releasing the C-

terminal glycine from both fragments could be made by several proteases, 

including cathepsins and matrix metallopeptidases. AVAD and ASVD peptides 

do not derive from the secretory component, and have a sequence partially 

overlapped to the transmembrane portion (639-661) of pIgR. Thus, they should 

originate by degradation of pIgR after its release from disrupted cell 

membranes. The increased levels of the AVAD and ASVD observed in our 

patients may be a consequence of an increased disruption of cell membranes, 

due to the high production of ROS characteristic of the pathology. However, it 

cannot be excluded that pIgR itself may be increased in Wilson’s disease 

patients, even though conflicting data about pIgR levels and liver diseases have 

been reported. For instance, high levels of pIgR have been associated to the 

invasion and metastasis of the hepatocellular carcinoma (Ai, 2011), while a 
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down regulation of pIgR in intestinal mucosa of animal models subsequent to 

acute liver necrosis has been observed (Fu, 2012). 

Wilson’s disease saliva was characterized by the higher concentration of α-

defensin 4 and α-defensin 2 with respect to controls. Unexpectedly, none 

variation of α-defensin 1 and 3 levels was observed, even if α-defensin 2 derives 

from their proteolytic cleavage (Valore, 1992). Besides antimicrobial activity, α-

defensins can modulate the inflammatory responses through regulation of 

cytokine production (Chaly, 2000; Lehrer, 2012). The property of corticostatin to 

inhibit cortisol production (Singh, 1988) is intriguing, since it has been 

demonstrated that in humans and in other mammals glucocorticoids induce the 

metallothioneins, which are important intracellular copper storages (Gedamu, 

1993; Miles, 2000). High levels of α-defensin 4, therefore, can indirectly down-

regulate the metallothioneins by contributing to increase the free copper, a 

feature not negligible in Wilson’s disease. From this point of view, it could be 

interesting to test metallothionein levels in a future study. 

 SAPHO syndrome 

SAPHO patients were characterized by low salivary levels of acidic PRPs. It is 

recognized that these proteins play an important role in the homeostasis of the 

calcium phosphate in the oral cavity, in the creation of a protective environment 

for the teeth, and in the modulation of the bacteria adhesion to the oral surfaces 

(Bennick, 1983b). Moreover, it has been shown that PRPs are cleaved by exo- 

and endo-proteases generating several small peptides (Messana, 2008b; Hardt, 

2005a; Sun, 2009; Helmerhorst, 2009) and it is interesting to outline the detection 

of fragments containing the GGRPQ C-terminal sequence among them 

(Helmerhorst, 2009; Drobni, 2006). Indeed, Huang et al. demonstrated that the 

selective binding of the GPPPQGGRPQ peptide inhibits colonization and 

growth of P. acnes, suggesting that these salivary peptides can participate to the 

innate immune system through the inhibition of specific microorganisms 

(Huang, 2008). Interestingly, GPPPQGGRPQ peptide matches with the 148-157 

sequence of PRP-1 and with the 26-35 sequence of the P-C peptide. Therefore, 

the lower concentration of PRP-1, P-C peptide, and PRP-3 (generated by PRP-1 
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proteolysis before secretion) in SAPHO patients may result in a reduced 

abundance of the active fragment GPPPQGGRPQ and an impaired resistance to 

colonization of P. acnes, which has been variably associated with SAPHO 

syndrome (Hayem, 2013). The isolation of P. acnes in SAPHO subjects has been 

linked to the hypothesis of this syndrome being triggered by a low-virulence 

pathogen in the initial phase,  then perpetuated by a subsequent inflammatory 

process (Hayem, 2007).  

Also salivary cystatins can suppress some viral infections (Ruzindana-

Umunyana, 2001; Gu, 1995) and cystatin SN plays a key role in controlling the 

proteolytic activity of the parasite Trypanosoma cruzi (Baron, 1999). It exhibits 

antifungal activity against Candida albicans, and candidiasis onset in 

autoimmune polyendocrine syndrome type 1 has been correlated with cystatin 

SN deficiency (Lindh, 2013). The low abundance of cystatin S1 and SN in 

SAPHO patients, demonstrated in the present study, may reflect in a reduced 

protection against microorganism infections. SAPHO patients with a shorter 

disease duration showed higher levels of cystatin SN than those with a longer 

disease duration, suggesting that cystatin SN production might decrease over 

time, during the chronic course of the disease. 

Another class of salivary proteins, playing a protective role in the mouth, is 

represented by histatins, which show inhibitory effect on several oral bacteria 

(White, 2009). Moreover, histatin-derived peptides have been demonstrated to 

be active against various microbes, such as Propionibacterium acnes (Oppenheim, 

1999). On the basis of the present data we may also speculate that histatins 

could play a role in the down-regulation of pro-inflammatory mediator 

production in SAPHO syndrome, characterized by increased concentrations of 

IL-8, IL-18, and TNF and enhanced TH-17 lymphocyte response (Hurtado-

Nedelec, 2008; Borgwardt, 2014). Indeed, histatin 3 has been observed to bind 

the heat shock cognate protein 70 (HSC70), blocking its interaction with the toll-

like receptors TLR2 and TLR4, and thus suppressing the production of 

cytokines IL-6 and IL-8 in gingival fibroblasts (Firinu, 2014a). The same 

cytokine suppression was also demonstrated for histatin 5, both in gingival 
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fibroblasts and in dendritic cells stimulated by P. gingivalis (Imamura, 2014; 

Imatani, 2000). 

The anti-inflammatory role of the histatins is also supported by the negative 

correlation found between the level of histatin 3 and ESR, the latter being a 

marker of inflammation. However, a positive correlation between salivary 

histatins and the serum CRP level, which was within the normal range in most 

of the SAPHO patients, was observed in this study. This result, is apparently in 

contrast with the anti-inflammatory role of histatins previously discussed, 

highlighting that further investigations are necessary to clarify whether and 

through which mechanisms histatins could be involved in the inflammatory 

pathways.  

CRP negatively correlated also with salivary S100A12. This negative correlation 

is in disagreement with the results reported by Pradeep et al. demonstrating 

that S100A12 positively correlated with CRP in gingival crevicular fluid and 

serum from patients with chronic periodontitis and type II diabetes (Pradeep, 

2014). However, the high abundance of S100A12 in SAPHO patients suggests a 

probable involvement of this protein in the inflammatory status typical of the 

disease. Antimicrobial and antifungal activities have been attributed to S100A12 

(Cole, 2001), it has been associated with chronic inflammatory conditions (Foell, 

2003a) such as cystic fibrosis (Lorenz, 2008), rheumatoid arthritis (Foell, 2003b), 

psoriasis (Foell, 2003b), and autoinflammatory diseases (Kessel, 2013). In 

particular, S100A12 has been found up-regulated in inflamed synovial tissue of 

patients affected by rheumatoid and psoriatic arthritis (Lorenz, 2008), and in 

saliva of HIV-1 positive patients with dysregulation of neutrophil response 

(Zhang, 2013). Interestingly, S100A12 has been shown to be a sensitive 

parameter to detect subclinical inflammation in familial Mediterranean fever 

(Kallinich, 2010). Its inflammatory properties are related to the chemoattractant 

capacity for monocytes and mast cells (Yan, 2008), to the ability to operate as a 

Damage Associated Molecular Pattern (DAMP) molecule (Foell, 2007), and to 

induce NFκB mediated expression of pro-inflammatory cytokines IL-1β, IL-18, 

IL-6 and TNF-α (Hofmann, 1999). The binding of S100A12 to TLR-4 and RAGE 

receptors on monocytes and granulocytes has been demonstrated to amplify 
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and perpetuate inflammation (Schmidt, 2001). The antagonization of IL-1β or 

TNF-α induced by these events represents an effective treatment for SAPHO 

syndrome (Firinu, 2014b). 

 Hereditary angioedema 

Increased levels of cystatin B, in particular of its S-glutathionylated derivative, 

were observed in the acidic soluble fraction of saliva from C1-INH-HAE and 

InH-AAE patients. This protein belongs to the cystatin family, inhibitors of 

cysteine proteases, mostly by interacting with the plant derived papain and the 

mammalian cathepsins B, L, S and H (Abrahamson, 1986; Turk, 1991). Cystatin 

B, that prevents the activity of cathepsin L (Ceru, 2010), shows mainly an 

intracellular localization (Abrahamson, 1986; Maher, 2014a) but it has been also 

detected in various body fluids and associated with neurodegenerative 

diseases, cancer and inflammation. For example, Cystatin B gene mutations 

have been reported to be responsible for the progressive myoclonus epilepsy of 

the Unverricht-Lunfborg type (EPM1), a degenerative disease of the central 

nervous system (Pennacchio, 1996; Lalioti, 1997; Bespalova, 1997; Joensuu, 

2007), high levels of the protein were observed in different malignant tumors 

(Feldman, 2009; Zhang, 2011), and in activated macrophages (Maher, 2014b; 

Kopitar-Jerala, 2015). In immune cells, cystatins have been reported to 

participate in the release of nitric oxide, phagocytosis, and expression of 

cytokines (Kopitar-Jerala, 2006; Maher, 2014a, Kopitar-Jerala, 2015), although its 

role is debatable. In fact, higher expression of the inducible nitric oxide synthase 

together with increased amounts of NO were observed in IFN-γ and LPS-

activated cystatin B-deficient bone marrow-derived macrophages by the 

Kopitar-Jerala group (Kopitar-Jerala, 2015). Conversely, various studies 

demonstrated the ability of cystatin B and others members of cystatin families 2 

and 3 (chicken and filarial cystatins, rat T-kininogen) to stimulate, in a 

concentration-dependent manner, the release of NO from IFN-γ activated 

murine macrophages (Verdot, 1996; Hartmann, 2002). Furthermore, it was 

demonstrated that the high and rapid NO production by the inducible NO 

synthase was not related to the inhibitory properties of cystatins (Verdot, 1996; 
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Hartmann, 2002). The role of cystatin B in NO production is interesting as this 

molecule not only directly acts against the pathogen infection (James, 1995), but 

also induces vasodilatation and inhibits platelet aggregation (Riddell, 1999). 

Thus, it might be hypothesized that the increased levels of salivary cystatin B in 

our patients could be connected to an enhanced NO release, participating, 

together with bradykinin, to the vasodilatation and the higher vascular 

permeability responsible for hereditary angioedema.  

Furthermore, recent studies demonstrated that the C1-INH protein plays anti-

inflammatory functions, not related to its protease activity, preventing the 

binding of LPS to macrophages and, consequently, preventing their activation 

(Liu, 2003). Therefore, the reduced activity of the C1 inhibitor in C1-INH 

patients may results in an impaired macrophage activation, with the production 

of higher levels of cystatin B and in the increased stimulation of nitric oxide 

formation.  

The high proteolytic activity of several matrix metalloproteinases observed in 

all the groups of angioedema patients, which increases during an acute attack of 

edema, is in agreement with the strong degradation of the extracellular matrix 

proteins (i.e. collagen, elastin, gelatin and fibronectin), which is a typical feature 

of inflammation, enhancing leukocyte migration and the vascular leak 

responsible for edema formation. Active matrix metalloproteinases are unstable 

and can cleave and inactivate themselves. This autolytic process is modulated 

and prevented by the tissue inhibitors of matrix metalloproteinases, TIMPs 

(Ochieng, 2010). Curiously, different cystatin members are able to stabilize 

metalloproteinases, protecting them from their own inactivation, without 

interfere with their enzymatic activity against their natural substrates (Ray, 

2003; Ochieng, 2010). Therefore, the higher levels of cystatin B measured in our 

patients may contribute to MMPs stability which can reflect in their increased 

proteolytic activity observed in saliva samples of angioedema patients.  

Conversely, the higher activity of cathepsins in saliva of our angioedema 

patients, apparently contrasts with the increased levels of cystatin B, which 

belong to the family of their classical inhibitors.  
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Among the proteins characterized in the acidic insoluble fraction and showing 

significant different levels in the three angioedema groups, several  proteins 

involved in inflammation are represented. Cystatin A, higher in C1-INH-HAE 

than FXII-HAE group, is involved in the skin development and cellular 

proliferation. It has been observed in psoriatic plaques of the psoriasis vulgaris, 

an inflammatory disease of the skin (Bowcock, 2001), and polymorphisms of its 

gene have been associated with atopic dermatitis (Cork, 2006; Vasilopoulos, 

2007) and exfoliative ichthyosis (Blaydon, 2011). On the other hand, S100A8 

protein, strongly expressed in activated macrophages, monocytes, keratinocytes 

and fibroblasts during inflammation and oxidative stress (Goyette, 2011; 

Carlsson, 2005), was over-expressed in FXII-HAE patients. Other proteins, 

which showed different levels among angioedema groups, play anti-microbial 

activities, i.e. cystatin SN (higher in C1-INH-HAE and InH-AAE groups), 

lactotransferrin (increased in C1-INH-HAE with respect to the other patients) 

and lysozyme (more abundant in FXII-HAE group). The bioinformatic analysis 

performed on proteins and peptides identified in the acidic insoluble fractions 

of saliva is in agreement with the significant activation of pathways involved in 

the organism response against microorganisms, in the development of the skin 

and in the extracellular matrix organization. Moreover, it is interesting to 

observe the high S-nitrosylation activity associated to the glyceraldehyde-3-

phosphate dehydrogenase (GADPH), which could be connected with a massive 

production of NO. 
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Conclusions 

Wilson’s disease, SAPHO syndrome and hereditary angioedema are 

characterized by a wide spectrum of clinical manifestations, involving different 

organs and apparatus, which can be extremely dangerous and even lead to the 

death of the patient if not immediately recognized and treated. The absence of a 

confident method of diagnosis and the overlap of some clinical symptoms with 

other similar diseases, implicate difficulty in diagnosis, which represents a 

challenge for clinicians; thus, the characterization and validation of new 

disease-specific biomarkers urges. 

Saliva investigations interestingly demonstrated that proteomic and peptidomic 

variations could be related not only to oral but also to systemic disorders 

(Grigoriev, 2003; Sayer, 2004; Vitorino, 2006; Peluso, 2007; Ohshiro, 2007; 

Castagnola, 2008; Ito, 2008; Hu, 2008; Wu, 2009; Rao, 2009; Cabras, 2010; Cabras, 

2013; Caseiro, 2013), suggesting a possible employment of this body fluid for 

diagnostic and prognostic purposes (Castagnola, 2011b; Caseiro, 2013).  

Indeed, the results obtained in this study devoted to the characterization of the 

salivary proteome of Wilson’s disease, SAPHO syndrome and Hereditary 

angioedema patients highlighted that saliva composition is affected by the 

pathology and reflects the typical features of the disorders. In particular, in 

Wilson’s disease patients the salivary proteome, characterized by high levels of 

S100A8, S100A9 and their oxidized isoforms, reflected the intense oxidative 

stress and the activation of the inflammatory processes caused by the 

accumulation of copper in the organism. In addition, the high abundance of 

corticostatin suggests new mechanisms involved in the augmented levels of free 

copper. Of particular interest is the increased concentration of pIgR fragments, 

which deserves further evaluation as possible index of hepatic damage. The 

salivary proteome of patients affected by SAPHO syndrome evidenced a 

significant reduction of cystatins, histatins, and aPRPs, which may be related to 

a reduced ability to contrast colonization from bacteria, such as P. acnes, often 

associated as possible exogenous trigger of the disease. Moreover, the high 

abundance of S100A12 in saliva of SAPHO patients encourage further studies to 
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confirm its association with the disease and to evaluate its possible application 

as salivary biomarker. The activation of the immune system is also reflected in 

saliva from all angioedema patients, by the increased abundance of several 

peptides generated by metalloproteinases. The high level of cystatin B in C1-

INH-HAE patients, could be related to the macrophage activation caused by a 

reduced C1-INH activity, and the similar cystatin B levels observed in C1-INH-

HAE and InH-AAE with respect to both FXII-HAE and control groups may 

suggest that the acquired angioedema involves mechanisms of the immune 

system more similar to the angioedema caused by SERPING1 mutations than 

angioedema related to FXII gene mutations. 

Eventhough the small number of the subjects under study, due to the rarity of 

the investigated pathologies, represents a limitation for the statistical power of 

the results, it should be outlined that the proteomic and peptidomic 

modifications with respect to controls observed in saliva of patients were 

distinctive for each disease, also reflecting the typical derangement of the 

disorder. Further studies on a larger cohort of patients to confirm the variations 

of the salivary proteome/peptidome observed and their disease-specificity as 

well as validation of the results by orthogonal methods will allow in the future 

to establish the actual applicability and the diagnostic power of a salivary test 

for these pathologies. 
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