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Abstract

Many statistical analyses aim at a causal explanation of the data. When discussing
this topic it is important to specify the exact query we want to talk about. A
typical causal question can be categorized in two main classes: questions on the
causes of observed effects and questions on the effects of observed causes. In this
dissertation we consider both EoC and CoE causal queries from a particular per-
spective that is Mediation. Mediation Analysis aims to disentangle the pathway
between exposure and outcome on a direct effect and an indirect effect arising from
the chain exposure-mediator-outcome. In the EoC framework, if the goal is to mea-
sure the causal relation between two variables when a third is involved and plays
the role of mediator, it is essential to explicitly define several assumptions among
variables. However if any of these assumptions is not met, estimates of mediating
effects may be affected by bias. This phenomenon, known with the name of Birth
Weight paradox, has been explained as a consequence of the presence of unmeasured
confounding between the mediator and the outcome. In this thesis we discuss these
apparent paradoxical results in a real dataset. In addition we suggest useful graph-
ical sensitivity analysis techniques to explain the potential amount of bias capable
of producing these paradoxical results. From a CoE perspective, given empirical
evidence for the dependence of an outcome variable on an exposure variable, we
can typically only provide bounds for the “probability of causation” in the case of
an individual who has developed the outcome after being exposed. We show how
these bounds can be adapted or improved if further information becomes available.
In addition to reviewing existing work on this topic, we provide a new analysis for
the case where a mediating variable can be observed. In particular we show how
the probability of causation can be bounded in two different cases of partial and
complete mediation.
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Introduction

Causality is a intuitive concept that we all recognize. For example, is lung cancer
caused by smoking? Was contaminated water causing cholera in London in 1854?
Can the court infer sex discrimination in a hiring process? However, statisticians
have been very careful in formalizing this concept. One reason may be the laborious
methods and definitions implemented to study causality. Another explanation
may be the complexity to translate real life problems in mathematical notations
and formulas. The first step should be to perfectly identify the causal question
of interest. This can be categorized in two main classes: questions on the causes
of observed effects and questions on the effects of observed causes. This basic
distinction, barely familiar in causal inference literature, is fundamental to identify
the correct definition of causation. To understand this distinction let us consider
the following example. An individual, called Ann, might be subjected to some
exposure X , and might develop some outcome Y . For simplicity we will refer to
X as a binary decision variable denoting whether or not Ann takes a drug and
Y an outcome variable coded as 1 if she dies and 0 if not. We will denote with
XA = {0, 1} the value of Ann’s exposure and YA = {0, 1} the value of Ann’s outcome.

Questions on the effects of observed causes, named “EoC”, are widely known
in literature. For example, in medicine, Randomized clinical trials are one of the
most rigorous design to assess the effect of a treatment in a population. In the
EoC framework we would be interested in asking: “What would happen to Ann if
she were to take the drug?” or “What would happen to Ann if she were not to
take the drug?”. From an individual to a population level, a typical EoC query will
be “Is death caused by the drug?”. On the other hand, questions on the causes
of observed effects “CoE” are quite different and more tricky: they are common
in a Court of Law, when we want to asses legal responsibility. For example, let
us suppose that Ann has developed the outcome after being exposed, a typical
question will be “Knowing that Ann did take the drug and passed away, how likely
she would not have died if she had not taken the drug?”. In contrast to EoC
queries, that are mostly adopted to infer knowledge in the whole population, CoE
questions underline a new challenging individual investigation.

In this dissertation we consider both EoC and CoE causal effects invoking
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the counterfactual framework. This method examines causality introducing a
new type of statistical variables called Potential Variables. If X is the exposure
and Y the outcome, the potential variable Y (x) will be the hypothetical value
of Y that would arise if X was set to x. According to the observed level x, the
potential variable can hypothetically incorporate information about what would
have happened to the outcome if we would observed a different value of the exposure.

Here we will focus on a particular situation of causal inference that is Medi-
ation Analysis. Mediation aims to assess the extent to which the effect of X on Y is
mediated through other pathways and to which this effect is due only by X acting
directly on Y . This method aims to disentangle the causality of X on Y on a direct
effect and an indirect effect arising from the chain exposure-mediator-outcome. In
particular, we will face different problems of Mediation Analysis to both EoC and
CoE causal questions.

Mediation Analysis for EoC questions incorporates most of the statistical lit-
erature and methods. Usually, it requires the definition of several effects capable of
measuring the direct effect of the exposure on the outcome and the indirect effect
through the mediator. However, identification of mediation effects requires strong
assumptions of no unmeasured confounding in every of these relations: exposure-
outcome, exposure-mediator and mediator-outcome. The first two assumptions can
easily be verified considering only experimental studies with randomized exposures.
The assumption of no unmeasured mediator-outcome confounding can not be
easily excluded. Assessing mediation analysis with unmeasured mediator-outcome
confounding usually leads to paradoxical results. Hernández-Diaz et al. [28]
discussed how infants born to smokers have higher risk of both low birth weight
(LBW; defined as birth weight <2500g) and infant mortality than infants born
to non-smokers, but in the LBW stratum maternal smoking appears not to be
harmful for infant mortality relatively to non-smoking. This phenomenon, known
with the name of Birth Weight paradox, has been explained as a consequence of
the presence of unmeasured confounding between the mediator birth weight and
the outcome infant mortality. In this thesis we discuss these apparent paradoxical
results studying the effect of high parity on wheezing or asthma mediated by
low birth weight. In particular, we consider two different cases of a rare and a
regular outcome. After partitioning the causal effect into a direct and indirect
effects, we examine different techniques to test the sensitivity of these paradoxical
results. In addition we suggest useful graphical sensitivity analysis techniques to
explain the potential amount of bias capable of producing these paradoxical results.
Furthermore, we implemented different Stata handwriting for this sensitivity
analysis, that will be collected in a final statistical package.

In contrast, mediation analysis in the CoE framework is a new and interest-
ing challenge in statistical theory. Definition of CoE causal effects is completely
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different from EoC questions. It invokes the Probability of Causation as given by
Dawid (2011) in [16] and also named by Pearl as Probability of Necessity [48].
Given that Ann took the drug and passed away, the Probability of Causation in
Ann’s case is defined as:

PCA = PA(YA(0) = 0 | XA = 1, YA(1) = 1)

where PA denotes the probability distribution over attributes of Ann. The
probability of causation is a fundamental measure in several fields such as epi-
demiology and in a court of law. For example, let us suppose that Ann’s children
filled a criminal lawsuit against a pharmaceutical manufacturer claiming that the
drug was the cause of her death. Using data on similar individuals, we wish to
evaluate, for this case, the probability that the outcome was in fact caused by the
exposure. Whenever the probability of causation exceeds 50%, in a civil court, this
is considered as preponderance of evidence because causation is “more probable
than not”. This is also known with the name of “balance of probability” as the
general gold standard in most civil cases. However, nowadays, causality without
ad hoc mathematical definitions and rules are widely and wrongly used in many
courthouse. Given the important implications of the probability of causation, it
is clear that we have to focus on studying methods capable of producing a more
precise estimate. From a statistical point of view, this definition underlines a
bivariate structure between two potential variables associated at the same subject.
However, only one of them will be observable while the other will be counterfactual.
For this reason, the PCA is not completely identifiable. We can at least provide
useful information on the values to which it must lie. Under appropriate assump-
tions, these bounds can be tightened if we can make other observations (e.g., on
nonexperimental cases), or measure additional variables (e.g., covariates) and even
in the case that unobserved variable confounds the exposure-outcome relationship.
In addition we propose a novel approach to bound the probability of causation in
mediation analysis. In particular, we focus on two different mechanisms of complete
and partial mediation. In the first the exposure is supposed to act on the outcome
only through the mediator, i.e. no direct effect is present. In the latter, both
direct and indirect effects are considered. We will see that, considering a complete
mediator, we always obtain smaller bounds for PCA compared with the simple
analysis of an exposure acting directly on the outcome. For the case of partial
mediation, usual assumptions of no confounding in any relationships will not be
enough to obtain smaller bounds. Here we will introduce a further hypothesis
on the bivariate distribution of the counterfactual outcome and mediator that, in
addition to univariate conditions, will produce new and interesting results.

In § 1 we review the major literature of Causality from an interventional
§ 1.2, a counterfactual § 1.3 and a decision theory § 1.6 perspectives. In § 2 we
introduce the EoC and CoE frameworks and the principal differences between these
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two methods. In § 3 we illustrate several methods to study Mediation Analysis in
the EoC framework in § 4 we apply some of these approaches to study the effect
of high parity on two different outcomes of wheezing or asthma mediated by birth
weight. In particular we will investigate the Birth Weight Paradox using data
from an Italian birth cohort called Ninfea. In addition we will introduce several
graphical techniques to test the sensitivity of the mediation effects in relation to the
paradox. In § 5 we review the literature of CoE causal questions and we introduce
new methods to study mediation in the CoE framework. Comparisons between the
methods presented in § 5 are described both theoretically and by means of some
examples. Finally, § 6 summarizes the findings of our work and describe our further
aims while in Appendix A we include a selection of the handwriting implemented
in Stata that will be collected in a statistical package.



Chapter 1

Causality

One of the most important topics in statistics is the study of the relationship
between an outcome Y and an independent variable X . When we study this
relation for continuous variables, we usually express it in terms of correlation. We
say that X and Y are perfect positively (negatively) correlated if ρ is equal to one
(minus one) and independent if equal to zero. In the main, most of the statistical
literature is dedicated to finding the best model capable of describing the data
and of easily relating X and Y . These two frameworks collapse when we consider
linear regression models, i.e. the regression coefficient of X on Y can be simply
obtained by multiplying the correlation by one over the standard deviations product.

But what happens when X causes Y ? Is correlation a meaningful measure?
It does not take into account the nature of the connection [82]. For example,
does smoking cause lung cancer? How much of this relationship is due to other
explanations or factors? Did a drug cause deaths in a specific population?
Effectively, a strong correlation between X and Y ensures a connection but does
not specify the direction. Moreover, the correlation can be due to factors other
than X and Y alone. One way to evaluate when such correlation is causal is
to consider all possible mechanisms that play a role in this relationship. The
diagrams in Figure 1.1 describe three possible mechanisms, all capable of explaining
a correlation between X and Y . The question marks in Figure 1.1b and 1.1c
encode the uncertainty of inferring causation from correlation alone, without any
knowledge of the underlying mechanisms.

X Y

(a)

X Y
?

(b)

X Y
?

(c)

Figure 1.1: Simple Pathways where (a) X and Y are associated, (b) X causes Y
and (c) Y causes X .
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Understanding these mechanisms is crucial when we talk about the effect of an
exposure (X) on a disease (Y ). In this setting, the well known Epidemiological
measures of Odds Ratio (OR), Relative risk (RR) and Hazard Ratio (HR) can be
more useful than mere correlation as they are able to quantify the exposure-disease
association.

However, most of the studies in health, social and the behavioral sciences are not
associational but causal in nature [53]. For this reason we need to define a proper
causal language.

1.1 Causality vs association

Intuitively, one can define causality between two continuous variables X and Y when
a change in X produces a change in Y . The usual measure of association, given by

ρ =
cov(X, Y )

dev(X) · dev(Y )
, (1.1)

is not sensitive in assessing causality. The correlation is a commutative measure
and situations such as 1.1b and 1.1c produce the same result. However, under
some assumptions, we will discuss how association can be viewed under the causal
inference lens.

Beyond the intuitive definition, several authors provide mathematical and
formal definitions of causality. Articulating the condition under which one variable
is considered relevant to another, we can create a diagram capable of illustrating the
relational associations between exposure and outcome. In Epidemiology we usually
depict Directed Acyclic Graph as the diagrams shown in Figure 1.1b and 1.1c. The
“directed’ element is meant to infer causation and “cyclic’ to avoid non-biological
loops since no single variable can cause itself. Pearl (2014) in [52] defines formulas
and rules to convert causal assumptions into conditional independencies implied in
a DAG. One of the first attempts to formalise causality is given by the geneticist
Sewall Wright (1921) in [82]. With his path analysis, Wright was able to quantify
causal effects linking a regression coefficient with every path in the diagram. The
Structural equation model approach (SEM) generalizes path analysis defining a
statistical model for every endogenous variable in a DAG. However, the majority
of the literature and methods of SEM are restricted to continuous outcomes while
nonparametric models can be used in order to avoid having to specify a precise
functional form. A completely different approach based on Decision Theory will
be discuss in § 1.6. The last and somewhat more tricky definition is a result
of the counterfactual semantic approach attributed to Lewis (1973) in [36] and
mathematically formulated by Rubin (1974) in [65]. When we describe causation
as changes in Y caused by changes in X , we should measure, for every instance,



1.2. DIRECTED ACYCLIC GRAPH 21

how observing or not the exposure will lead to observing or not the outcome. The
term counterfactual means that these outcomes represent situations that may not
actually occur (they may be counter to the fact situation). This problem is defined
by Holland (1986) in [30] as “the fundamental problem of causal inference”: No
man ever steps in the same river twice (Heraclitus 535-475 b.C.).
In a simple framework all these definitions should produce the same results. In
§ 1.2 we will discuss the DAG approach in greater details while in § 1.3 we will
discuss causality in terms of counterfactual variables. In § 1.6 we will introduce the
Decision theory approach to causal inference. Path Analysis will be described in
§ 3.1.1 as a particular approach to Mediation analysis.

1.2 Directed Acyclic Graph

As articulating in the previous section, when we talk about causation, introducing
a graph like Figure 1.1 is mandatory. A graph is a network composed of a set
of links each of them connecting two nodes. Nowadays graph theory is becoming
increasingly significant in a variety of fields such as engineering (logistics, networks),
computer science (algorithms, decision theory) and medicine (genomics, pathways
of an infection, correlation between drugs). In statistics, nodes usually represent
variables and links represent our knowledge of an ideal relationship between them.
Every link in a graph can be direct (for which the link will be depicted by an
arrow), undirect (no arrowhead) or bidirectional (double ended arrowheads). A
graph is called directed if all links are directed. A graph that does not contain
cycles is called acyclic.

In medicine the research interest usually lies with a particular exposure and
a particular outcome. For example:

• Knowing that Ann took a drug (exposure) and passed away (outcome), how
likely is that she would not have died if she had not taken the drug?

• Does a particular diet (exposure) influence the relapse of breast cancer (out-
come)?

• Does the measles-mumps-rubella (MMR) vaccine (exposure) cause autism
(outcome)?

Such types of relationships are always time dependent, i.e. the drug is taken
before death occurred etc.. For this reason we will consider only directed acyclic
graph also known as DAG.

Let us consider the following example [51]. Figure 1.2 describes a simple
DAG where X1 represents the season, X2 whether rain falls, X3 whether the
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sprinkler is on, X4 whether the pavement gets wet and X5 whether the pavement
would be slippery. All these variables are binary except the season X1 which can
have 4 possible values. In this DAG, the variable X5 has not child, has one parents
(X4) and three ancestors (X1, X2 and X3).

X1

X2X3

X4

X5
Figure 1.2: Example of a Directed Acyclic Graph representing dependencies between
five variables

A DAG such as the one shown in Figure 1.2 is called a Bayesian Network by
Pearl (1985) in [47]. Mostly because of the subjective nature of the information en-
coded within it and for the connection with Bayes’s Theorem. The role of Bayesian
Networks in statistical modelling is straightforward. They provide a logical dia-
gram and facilitate an optimal representation of joint distributions. To clarify the
last point, suppose we have n binary variables X1, . . . , Xn with joint distribution
P (X1 = x1, . . . , Xn = xn) that we will denote P (x1, . . . , xn). If we need to describe
P (x1, . . . , xn) for every xi = {0, 1}, we will produce 2n numbers. We can always
decompose P as the product

P (x1, . . . , xn) = P (xn|x1, . . . , xn−1) · · ·P (x2|x1) · P (x1) (1.2)

for every order of X1, . . . , Xn. For example in the DAG in Figure 1.2, considering
the natural order of the variables, we will have

P (x1, x2, x3, x4, x5) = P (x5|x1, x2, x3, x4) · P (x4|x1, x2, x3) · P (x3|x1, x2) · P (x2|x1) · P (x1).

Whenever a variable Xj is independent to some predecessors, (1.2) will lead to
a more economical joint probability function. These independent relationship can
easily be read in a directed acyclic graph (the mathematical rules are given below).
For example from the graph in Figure 1.2 we can see that whenever the pavement
is wet, it will be slippery independently by the season, the rain and the irrigation
system. We will use Dawid’s notation ⊥⊥ to denote conditional independencies
[14]. In the seasonal example, the independence of X5 from all other variables
once we know X4 will be represented as X5⊥⊥X1|X4, X5⊥⊥X2|X4 and X5⊥⊥X3|X4.

The joint probability distribution will then become
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P (x1, x2, x3, x4, x5) = P (x5|x4) · P (x4|x2, x3) · P (x3|x1) · P (x2|x1) · P (x1). (1.3)

As we can see from (1.3) every variable in a Dag depends only on its par-
ents, known as Markovian parents. Mathematically, if we have n discrete variables
X1, . . . , Xn, with joint distribution P (x1, . . . , xn), we can always decompose P as
the product

P (x1, . . . , xn) =

n
∏

i=1

P (xi|pai)

where pai denotes the parents of Xi. An elegant and feasible definition to test
graphical independence is the d-separation criterion [51].

Definition 1.2.1 (d-Separation) A path p is said to be d-separated (or blocked)
by a set of nodes Z if and only if

1. p contains a chain i→ m→ j or a fork i← m→ j such that the middle node
m is in Z, or

2. p contains an inverted fork (or collider) i→ m← j such that the middle node
m is not in Z and such that no descendant of m is in Z

A set Z is said to d-separate X form Y if and only if Z blocks every path from a
node in X to a node in Y and then X ⊥⊥Y |Z.

In Figure 1.2 rain and slippery are connected by a chain (X2 → X4 → X5),
if we know it is going to rain the pavement will be slippery, hence X2 and X5

are associated. But if we know that the pavement is wet we no longer need to
know whether it is raining. Rain and slippery will become independent because
wetness blocks the pathway (X2⊥⊥X5|X4). On the other hand sprinkler and rain
are dependent because they are both children of the season. But if we know the
season they will not be correlated anymore (X2⊥⊥X3|X5).
As a consequence of Definition 1.2.1, we call open a path that contains a confounder
or a mediator. It becomes blocked after we condition on them. A path is said
blocked if it contains a collider and it said to be opened if we condition on it.
Variables located in open paths are correlated.

In subsection 1.2 we will discuss the problem arising from conditioning on a
collider.

Another fundamental concept in graph theory is intervention. In the exam-
ple of Figure 1.2 we could consider what would have happened to the pavement if
we made sure that the sprinkler was off. This causal question involves a certain
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intervention on a variable in the model. It captures the change in the system
implied by setting the sprinkler off. In fact, we are testing the sensibility of the
system after intervening on X3. We further assume that the change is local,
affecting only its descendants. The graph can be adapted simply by applying this
intervention to the system, i.e. deleting all arrows pointing towards X3.

X1

X2X3

X4

X5
Figure 1.3: General Directed Acyclic Graph representing dependencies between five
variables after intervention on X3

The act of intervening on X3 will be described by the notation do(X3 = off)
that means setting the sprinkler off. The resulting joint probability distribution will
be

Pdo(X3=off)(x1, x2, x4, x5) = P (x5|x4) · P (x4|x2,X3 = off) · P (x2|x1) · P (x1). (1.4)

As noted by Pearl (2009) in [51] the action do(X3 = off) and the observation
X3 = off are different. In the first we are conditioning on X3 = off in a graph ob-
tained mutilating the arrow from X1 to X3 while the second means simply observing
X3 = off . This is the main difference between prediction type causal queries and
intervention type, i.e. observing and intervening.

Underling assumptions in a DAG

A DAG such as the one shown in Figure 1.2 underlines some relational assumptions
between variables. From a DAG we are able not only to deduce conditional assump-
tions but also to derive knowledge on the absence of causality. In fact, an arrow
from a variable to another means that the first may cause the second. The absence
of an arrow reflects our knowledge of no known association.

Collider Bias

There are different methods to test whether a variable is a risk factor. The most
naive is to include this variable in a model for the outcome. In this section
we will discuss why, if we are assessing causality, this method will be biased.
Definition 1.2.1 can in fact be used as a tool to decide whether or not conditioning
on a variable.
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One of the simplest example arises in the presence of a collider such as Fig-
ure 1.4a.

X Y

Z

(a)

X Y

Z

(b)

Figure 1.4: DAG illustrating the collider bias problem, which arises after condition-
ing on a collider

As previously discussed, the absence of an arrow between X and Y represents
our knowledge of no association (1.4a). From Definition 1.2.1, the path X → Z ← Y
is blocked since it contains an inverted fork. Adjusting for Z (action represented
by a box around Z) will open this pathway creating a spurious association between
X and Y . The dashed line in Figure 1.4b represents this false association. In
the example by Pearl, if we know that the pavement is wet (or slippery) we have
only two possible explanations; the sprinkler is on or it is raining. Refuting one of
them increases the probability of the other (see Figure 1.5). This is usually called
collider bias and its consequences will be discussed in detail in the following chapters.

X1

X2X3

X4

X5
Figure 1.5: DAG representing dependencies between five variables after conditioning
on X4

It is important to note that conditioning on X5 will produce the same effect as
conditioning on X4 because the latter is its descendant. This distinction is funda-
mental; assessing causality without constructing ad hoc graphs will invalidate the
analysis.
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1.2.1 Causal effects: computation and identifiability

Generalizing (1.3) to a set of n discrete variables X1, . . . , Xn, the intervention on Xi

will decompose the joint probability distribution as the product

P (x1, . . . , xn|do(Xi = xi)) =
∏

j 6=i

P (xj|paj). (1.5)

Multiplying and dividing (1.5) by P (xi|pai) we simply get a conditional proba-
bility

P (x1, . . . , xn|do(Xi = xi)) =
P (x1, . . . , xn)

P (xi|pai)

= P (x1, . . . , xn|Xi = xi, pai)P (pai). (1.6)

The joint post-intervention distribution will be the product of the (conditional)
pre-intervention distribution and the distribution of the parents of Xi not affected
by intervention. Summing equation (1.6) over X1, . . . , Xn−1 and assuming Y = Xn

will lead back to the causal effect of X on Y defined intuitively in § 1.1

P (Y = y|do(X = x)) =
∑

pax

P (Y = y|X = x, pax) · P (pax). (1.7)

Equation (1.7) produces an immediate algorithm to calculate the causal effect of
X on Y . Given a causal diagram in which all parents of X are observable we can
estimate the causal effect of X on Y from nonexperimental observations. Problems
occur when not all parents of X are observable. In the following sections we will
introduce two graphical tests to determine a sufficient set of variables capable of
estimating P (Y = y|do(X = x)).

1.2.2 Back-door Criterion

In the previous section we proved that by measuring all parents of one exposure
we are able to compute causal effect form data. However, as mentioned in sub-
section 1.2, we have to be careful about what adjust for. In this section we will
examine a well known method that can provide a sufficient set of variables capable
of identifying the causal effect of X on Y .

Definition 1.2.2 (Back-door Criterion [51]) Given a DAG G, a set of variable
Z satisfies the back-door criterion relative to (X, Y ) in G if Z satisfies the following
conditions

• no node in Z is a descendant of X;

• Z d-separates every path between X and Y that starts with an arrow pointing
into X.
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The term “back-door’ hails from the second condition, i.e. only pathways start-
ing with an arrow pointing into X are considered. For example, in Figure 1.2,
Z = {X2} satisfies the back-door criterion relative to (X3, X5) while Z = {X4} does
not. This is perhaps consistent with the collider bias rule.

Theorem 1.2.1 If a set Z satisfies the back-door criterion, the causal effect of X
on Y is identifiable and is given by

P (Y = y|do(X = x)) =
∑

z

P (Y = y|X = x, Z = z) · P (Z = z)

The proof of Theorem 1.2.1 encodes the idea that if Z satisfies the back-door
criterion relative to (X, Y ), the intervention has the same effect of conditioning on
X = x.

Then if Z satisfies Theorem 1.2.1, conditioning on Z will block the back-
door pathway from X to Y . Open paths transmit association. Let us consider
Figure 1.6a where X potentially causes Y and Z confounds the exposure-outcome
relation. If we do not adjust for Z, the causal effect will be biased by the association
between X and Y through Z. Blocking the pathway X ← Z → Y , the remaining
effect is completely causal. On the other hand, Figure 1.6b represents a situation
where X and Y are associated but the exposure does not cause the outcome. If we
do not adjust for Z, we would interpret this association as causation.

X Y

Z

(a)

X Y

Z

(b)

Figure 1.6: (a) DAG illustrating associational and causal pathway between three
variables (b) DAG illustrating only associational pathway between three variables

1.2.3 Front-door Criterion

The first condition in Definition 1.2.2 precludes situations in which back-door path-
ways are not feasible. This is perhaps one of the purpose of this dissertation.

Definition 1.2.3 (Front-door Criterion [51]) Given a DAG G, a set of variable
Z satisfies the front-door criterion relative to (X, Y ) in G, if Z satisfies the following
conditions

• Z intercepts all direct path from X to Y ;
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• there is no back-door path from X to Z;

• all back-door paths from Z to Y are blocked by X.

Thus in Figure 1.2, Z = {X4} satisfies the front-door criterion for (X1, X5) while
Z = {X3} or Z = {X2} does not.

Theorem 1.2.2 If a set Z satisfies the front-door criterion and if P (X = x, Z =
z) > 0, the causal effect of X on Y is identifiable and is given by

P (Y = y|do(X = x)) =
∑

z

P (Z = z|X = x)
∑

x′

P (Y = y|X = x′, Z = z)·P (X = x′).

In the next section we will introduce a combined method between back and
front-door criterion.

From Definition 1.2.2 and Definition 1.2.3 follow immediately that, in order to
produce unbiased causal effects, backdoor paths have to be blocked, while frontdoor
paths have to be opened.

1.2.4 do-Calculus

Pearl (2009) in [51] defines a set of rules called do-Calculus, which are capable of
identifying the causal effect from a graph G. Let us denote with X , Y , Z and W a
set of four disjoined nodes in G. With GX we will denote the graph obtained from
G intervening on X that is, a graph where all arrows pointing to X are deleted.
With GX we will denote a graph obtained from G deleting all arrows coming out
from X . For simplicity we will denote P (Y = y) as P (y) and with P (y|x̂) the effect
of the intervention do(X = x).

Theorem 1.2.3 For any disjoint set of variables X, Y , Z and W we have the
following rules

Rule 1 (Insertion/deletion of observations)

P (y|x̂, z, w) = P (y|x̂, w) if (Y ⊥⊥Z|X,W )G
X

Rule 2 (Action/observation exchange)

P (y|x̂, ẑ, w) = P (y|x̂, z, w) if (Y ⊥⊥Z|X,W )G
XZ

Rule 3 (Insertion/deletion of actions)

P (y|x̂, ẑ, w) = P (y|x̂, w) if (Y ⊥⊥Z|X,W )GXZ(W )

where Z(W ) is a set of nodes Z that are not ancestors of any node W in GX
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Corollary 1.2.1 (Pearl 2000) A causal effect q = P (y1, . . . , yk|x̂1, . . . , x̂k) is
identifiable in a model characterized by a graph G if there exists a finite sequence
of transformations, each conforming to one of the inference rules in Theorem 1.2.3,
that reduces q into a standard (i.e. hat-free) probability expression involving observed
quantities.

For example, let us consider the simplest mechanism of mediation where a graph
G contains a chain. As described by 1.7a, the independent variable affects a third
one, called Mediator, which then affects the outcome Y . From (1.7), given there is
no back-door path between X and Y , we can simply equate P (y|x̂) = P (y|x). On
the other hand, considering Theorem 1.2.3 we have

P (y|x̂) =
∑

m

P (y,m|x̂) =
∑

m

P (y|x̂, m) · P (m|x̂)

=
∑

m

P (y|x̂, m) · P (m|x) if (M ⊥⊥X)GX

=
∑

m

P (y|x,m) · P (m|x) if (Y ⊥⊥X|M)GX

=
∑

m

P (y|x,m) · P (m|x) = P (y|x). (1.8)

Then the causal effect of X on Y in Figure 1.7 is fully identifiable and is given
by (1.8).

X Y

M

(a)

X Y

M

(b)

Figure 1.7: (a) DAG G illustrating a Mediation Mechanism (b) DAG obtained by
mutilating G by all arrows coming out from X

1.3 Counterfactuals

The intuitive idea beyond causation is represented by changes in the outcome due
to changes in the exposure. To properly measure causality we should then compare
what would have happen to the outcome for different settings of the exposure.
The problem is that we can observe, for each subject, only one results from the
exposure. In this section we introduce the counterfactual framework first defined
by Neyman (1923) in his master thesis (see [72] revisited) and then extended by
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Rubin (1974) in [65].

Let us consider an individual, called Ann, that might be subjected to some
exposure X , for example, a drug, and might develop some outcome Y , for example,
mortality. We will denote with XA = {0, 1} the value of Ann’s exposure and
YA = {0, 1} the value of Ann’s outcome. We are interesting in knowing what would
happen to Ann if she were to take the drug or what would happen to Ann if she
were not to take it. This can be achieved defining a new type of variable called
potential.

Definition 1.3.1 (Potential Variable) Let us consider X the exposure of interest
and Y the outcome, Y (x) is the potential value that Y would take if X had been set
to x.

Then YA(0) is the outcome we could expect if she had not taken the drug and
YA(1) the outcome we could expect if she had taken it. The potential outcome
Y (x) is treated as an ordinary random variable with a distribution and consistent
with the usual axioms of probability and independence. It is connected to the real
outcome by a necessary condition for meaningful causal inference

Consistency condition
The potential value Y (x) must be equal to the real outcome when the exposure is
observed. Formally the consistency rule states that Y (x) = Y if X = x. In terms of
probability we have P (Y (x) = y|X = x) = P (Y = y|X = x). For binary exposure
this condition states that Yobs = X · Y (1) + (1−X)Y (0).

Let us suppose further that, unfortunately, Ann took a drug and passed
away. With this additional information, and for the consistency condition, YA(1) is
observable and is equal to one while YA(0) is unknown and counterfactual.

In general, for every subject i in a population where we collected informa-
tion on a binary exposure X and a binary outcome Y , we can construct the
Table 1.1.

For every subject i, we can define two potential outcomes {Yi(0), Yi(1)}, one
observable and one counterfactual (represented by a question mark). In an ideal
world, knowing that the first subject had been exposed to X and had developed
the outcome, we could answer the question: “What would have happened to him
if he had not been exposed?” but in the real world we can only guess it from the
data. In this section we will introduce situations in which observed data can be
used to answer this query.

Regarding Ann, if YA(0) = 0, we could conclude that Ann’s disappearance
was caused by the drug because she would not have died if she had not taken it. On
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Xi Yi Yi(0) Yi(1)
1 1 1 ? 1
2 0 1 1 ?
3 0 0 0 ?
... ... ... ... ...
n 1 0 ? 0

Table 1.1: Example of a realization of the vector of binary variables
(X, Y, Y (0), Y (1)) in a population with n subjects. Question marks correspond to
counterfactual values

the other hand, if YA(0) = 1, she would have died anyway. If for example, different
to the fact situation, YA(1) = 0 and YA(0) = 0 we could conclude that the drug has
not effect on Ann. This will lead immediately to the following definition.

In the counterfactual framework we say that there is an individual causal
effect of X on Y when the potential value of Y changes with X .

Definition 1.3.2 (Individual Causal Effect) The individual causal effect of X
on Y is defined as the difference between the outcome of the unit i under level of the
exposure x, Yi(x), and the outcome of the same unit under a different level of the
exposure Yi(x̃)

Yi(x)− Yi(x̃). (1.9)

If X is binary ICE = Yi(1)− Yi(0).

However, the ICE cannot be completely measured for the same subject i as
we saw for Ann’s case. More interesting and feasible is the average causal effect in
the whole population.

Definition 1.3.3 (Average Causal Effect) The Average Causal Effect of X on
Y is:

ACE(x, x̃) = E[Y (x)]− E[Y (x̃)] (1.10)

When X is binary ACE = P (Y (1) = 1) − P (Y (0) = 0). Hereafter we will
consider only binary variables.

But under which conditions we can infer the above quantities from the data?
And which ones will be the best substitutes? The best candidate is a measure
of the exposure-outcome association; the expected value of Y among those who
actually had the exposure x, P (Y = y|X = x). This raises the question: when does
association reflect causation?
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1.4 Experimental Studies, Nonexperimental

studies and Exchangeability

As we discussed in the previous sections, a DAG implicitly underlines assumptions.
For example, in Figure 1.2, the arrow X1 → X2 encodes the idea that the former
may cause the latter. On the other hand, the absence of an arrow from X1 to X5

reflects a prior (subjective) knowledge of no direct association.

If we believe in these assumptions, DAG such as Figure 1.2 or Figure 1.7
represents fully observable pathways in which we can infer causation from nonex-
perimental observations. However, these assumptions cannot generally be tested in
nonexperimental studies.
In the light of these considerations, experimental studies (such as Clinical Trials),
are considered the best method to infer causation. They are usually designed to test
whether a treatment affects an outcome. The main idea is randomization where
participants are randomly assigned to treatments. This intervention allows the
deletion of all arrows pointing to the exposure and hence, theoretically avoid having
to adjust for exposure-outcome confounding. In ideal randomised experiments
(if there are no issues of measurement error or loss to follow up and if they are
double bind) when studying the effect of a treatment in a population, association
reflects causation [26]. Furthermore, patients exposed and unexposed are actually
exchangeable. Exchangeability means that the effect of X on Y does not differ
with respect to the distribution of exposure-outcome confounding. A perfect
randomization ensures exchangeability.

In the counterfactual framework, the exchangeability condition states that
{Y (0), Y (1)}⊥⊥X . The potential value that Y would take under different levels of
the exposure does not depend on the observed treatment. On the other hand, if
the assignment is random, changes in Y are due only to changes in X and not from
other causes. This is why, in experimental studies, association is causation.
If the exchangeability condition holds then P (Y (x) = y) ≡ P (Y = y|X = x),
i.e. the counterfactual probability under exposure level x equals the observed
probability among those who actually received treatment x.

Despite all this qualities, nonexperimental studies are usually more common
as they are less expensive. Furthermore, randomized treatments are not always
ethical or feasible. Consider for example exposures such as heart transplantation,
birth weight or HIV status. For these reasons, one of the major goals of Causal
Inference is to define situations where nonexperimental studies can be used to infer
causation.
In this dissertation we will focus on deriving causal inference from nonexperimental
design. This is the case where the exchangeability condition does not hold.
However, we can still measure causal effects if, after taken the confounder in
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consideration, patients are exchangeable in every strata of it.

1.4.1 Conditional Exchangeability

Let Z be an exposure-outcome confounder such as in Figure 1.6a. Two patients are
said to be conditionally exchangeable in respect of treatment X if, within the strata
of Z, they are exchangeable. Restating this proposition in Dawid’s counterfactual
notation we get Y (x)⊥⊥X|Z.

If a variable Z satisfies the conditional exchangeability condition then:

P (Y (x) = y) =
∑

c

P (Y (x) = y|Z = z)P (Z = z)

=
∑

c

P (Y (x) = y|X = x, Z = z)P (Z = z) Y (x)⊥⊥X|Z

=
∑

c

P (Y = y|X = x, Z = z)P (Z = z) Consistency (1.11)

Since a confounder Z satisfies the back-door criterion, the counterfactual causal
effect embodied by equation (1.11) correspond exactly to Theorem 1.2.1.
Conditions such as exchangeability and conditional exchangeability in terms of
counterfactual cannot easily be read from complicated DAGs. Various authors
illustrated methods capable of representing potential outcomes in a graph [51] [68]
[57]. In section subsection 3.2.1 we will examine one of these methods.

1.5 G-methods

If a variable Z confounds the exposure-outcome relationship, the effect of X on
Y differs with respect to the distribution of Z. If Z is sufficient to adjust for
confounding, stratified measure such as Equation (1.11), called the standardization
formula, are preferable. In a simple case, defining a parametric model for every
endogenous variable in Equation (1.11), will lead to a correct estimation of the
causal effect. These estimates are correct if models are correctly specified and if Z is
sufficient to adjust for confounding. Robins (1986) in [60] provides a generalization
of the standardization formula for time-dependent variables (exposures, confounders
and outcomes) called g-formula. An alternative method is Inverse Probability
weighting (IPW) [31] which creates a re-weighted population in which exposed and
unexposed are then exchangeable given Z. Hernan (2010) and Robins (1986) in
[27, 60], called this two approaches, IPW and g-formula, the g-methods. The term
“g” is referred to “generalized” because, unlike regression analysis, they usually
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address many situations including time-varying variables (exposures, confounders
and outcomes).

A completely different approach is stratification which is basically a regres-
sion based method. It permits to estimate the causal effect of X on Y specifying
a regression model for the outcome on the exposure and covariates Z. If the set
Z is a sufficient set of confounding variables, the regression coefficient of X will
estimate the causal effect of the exposure on the outcome.

1.6 Decision Theory

Causal inference in the counterfactual framework requires the definition of Potential
Variables. However, as we discussed in § 1.3, these outcomes are not completely
identifiable given that we can observe only one of them for each subject. Starting
from P. Dawid [15], many statisticians reasonable believe that proper causal infer-
ence should not depend on unobservable quantities and un-testable assumptions.
Dawid (2014) in [17] addresses the question of Causality as a Decision problem.
He considered, for example, X a decision variable denoting whether or not to
take an aspirin and Y the log-time it takes for the headache disappearance. Let
us consider a new subject u60 which suffers from headache and has to choose
whether or not to take the drug. Although X is a decision variable, we can define
the probability of Y given the decision on X , i.e. P0 = P (Y = y|X = 0) and
P1 = P (Y = y|X = 1). These distributions are all that is needed to answer the
causal query. Only comparing P0 and P1 we are able to choose the decision that
will improve my outcome. Different comparisons will take into account different
aims and perspectives. For example, we can simply take the difference P1 − P0. If
we assume these distributions to follow two normal probability density functions,
we can even compare the means or the variances of these two distributions. These
comparisons can all be considered as the causal effect arising after the choice X = 1
rather than X = 0.

This method can be even formalized defining a Loss function L(Y ) such that
L(y) will be the loss that this new subject u60 will suffer if his headache lasts y
minutes.

The decision tree associated to this situation is described by Figure 1.8. At the
node v60, the subject u60 can choose between to take the drug (upper branch) or not
to take the drug (lower branch). At node v1, the outcome Y will be distributed
according to P1 while at v0, the outcome Y will be distributed according to P0.
For every possible value y of Y and nodes v0 and v1, we will have a node L(y)
corresponding to the loss associated at the different decision. Given each nodes v0
and v1, we can calculate the expected loss EP0{L(Y )} and EP1{L(Y )}. The idea
beyond this method requires that, at the decision note v60, this new subject will
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Figure 1.8: Decision Tree

choose the treatment leading to the smaller expected loss. Whatever loss function
is used, this method only invoke the distributions P0 or P1 but any counterfactual
entities.
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Chapter 2

Different Type of Causal
Questions

Establishing if an exposure potentially causes an outcome is becoming more and
more important in real life situations. Nowadays, most of epidemiological, econo-
metrics and psychological problems can be viewed into the causal inference lens.
However, behind the realistic need to confirm causes, the first and basic issue con-
sists in formulate a mathematical definition for causality. In order to solve the
problem the researcher has to perfectly identify the causal question of interest. Let
us consider again the following causal questions introduced in § 1.2:

Example 2.0.1 Knowing that Ann took a drug (exposure) and passed away (out-
come), how likely is that she would not have died if she had not taken the drug?

Example 2.0.2 Does a particular diet (exposure) influence the relapse of breast
cancer (outcome)?

Example 2.0.3 Does the measles-mumps-rubella (MMR) vaccine (exposure) cause
autism (outcome)?

A general causal query can be categorized in one of the following main classes:
question on the causes of observed effects and question on the effects of observed
causes. This basic distinction, barely familiar in causal inference literature, is
fundamental to identify the correct definition of causation.

Let us consider the situation described in the Example 2.0.1. An individual,
called Ann, had been subjected to some exposure X , and has developed some
outcome Y . For simplicity we will refer to X as a binary decision variable denoting
whether or not Ann takes the drug and Y the outcome variable coded as 1 if she
dies and 0 if not. We will denote with XA = {0, 1} the value of Ann’s exposure and
YA = {0, 1} the value of Ann’s outcome.
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This two causal questions, regarding the situation represented in Example 2.0.1,
can be simply identified as:

Effects of Causes (EoC) Ann has not taken the drug yet. What happens to Ann
if she decides to take the drug? What happens to Ann if she decides to not
take it?

Causes of Effects (CoE) Unfortunately, Ann took the drug and passed away,
how likely is that she would not have died if she had not taken the drug?

The above causal questions point out two different perspectives. The first is a
perfect decision problem: what decision will improve Ann’s survival probability?
What is the effect of X on Y ?

A more tricky situation is described by the CoE causal question because it
hides an individual problematic. Dawid et al. (2015) in [20] argue that this
approach can be considered Bayesian in several aspects mostly because of the
subjective nature of CoE questions. In this dissertation we will discuss how, this
subjected query, can be solved using the information coming from real data.

It is surprising to discover that one of the first attempt to formalize the dis-
tinction between CoE and EoC quetions goes back to 1774 and is due to Laplace
([34] and translate in English by Stingler (1986) in [35]). In his memoir, Laplace
defined the uncertainty of human knowledge as concerned with causes and events.
Considering an urn containing black and white balls, he defined a cause as the ratio
of white and black balls and an event with the usual probability notation “drawn
a white ball by chance”. If an event E can be produced by two causes C1 and
C2, he defined the uncertainty on the causes C1 of the effect E, as the probability
P (C1|E) where the cause is unknown and the event is given. On the other hand,
he defined the uncertainty on the effect of causes as the probability of the event
when the cause is given P (E|C1). Is even more surprising to discover that the
well known formulation of Bayes’ Theorem is actually due to Laplace in 1774. In
fact, Bayes’ first formulation of his famous theorem was developed to compute the
distribution (rather than talking about events) for the probability parameter of a
binomial distribution conditioning on the observations.
From Laplace’s definition, we might be tempted to relate EoC and CoE questions
via Laplace-Bayes’ Theorem. However, the distinction between Ann’s causal queries
point out a more complex situation.

Suppose that a good experimental study, in which subjects were randomly
assigned to be either exposed (X = 1) or unexposed (X = 0), tested the same drug
that Ann might take, and produced the data reported in Table 2.1.
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Die Live Total
Exposed 30 70 100
Unexposed 12 88 100

Table 2.1: Deaths in individuals exposed and unexposed to the same drug that Ann
might take

Since our analysis here is not concerned with purely statistical variation due
to small sample sizes, we take proportions computed from this table as accurate
estimates of the corresponding population probabilities (but see Dawid [20] for issues
related to the use of small-sample data for making causal inferences).
Thus we have

P (Y = 1 | X ← 1) = 0.30 (2.1)

P (Y = 1 | X ← 0) = 0.12. (2.2)

We see that, in the experimental population, individuals exposed to the drug
(X ← 1) were more likely to die than those unexposed (X ← 0), by 18 percentage
points. Throughout this section, we will use situations similar to those reproduced
in Table 2.1 to try to answer both EoC and CoE questions.

2.1 Effects of Causes

Questions on the effects of observed causes, named “EoC”, identify much of classical
statistical design and analysis as, for example, randomized clinical trials. In the
EoC framework we would be interested in asking: “What would happen to Ann if
she were to take the drug?” or “What would happen to Ann if she were not to
take the drug?”. Let us consider the information encoded in Table 2.1 where, in
a experimental population, individuals exposed to the drug were 18% more likely
to die than those unexposed. According to this results, if Ann can be considered
comparable with the individual in the experiment, taking the drug will not be the
preferable decision.

In particular, the EoC framework is interested, rather than to an individual-
level causal effect, to a population-level causal effect. Knowing the answer of
both individual EoC questions for every subject in a population, we can answer
to the more general query: “Death is effectively caused by the drug?”. In this
case, Dawid (2015) [20], the EoC causal inference is based on a simple contrast
between the two distributions P1 = P (Y = 1|X = 1) and P0 = P (Y = 1|X = 0),
i.e. the probability distributions of Y ensuing when X is set to the value 1 and
0 respectively. According to Dawid, as we have mentioned in § 1.6, assessing the
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effects of causes can be achieved in straightforward fashion using a framework
based on probabilistic prediction and statistical decision theory where the two
distributions, P1 and P0, are all that is needed to address EoC queries. He
formulated this situation as a perfect decision problem: we can compare these two
different distributions for Y , decide which one we prefer, and take the associated
decision. The perfect tool to address this type of queries can be simply defined as
the difference P (Y = 1|X = 1)− P (Y = 0|X = 0). In § 1 we introduced causality
using more complex definitions such as interventions § 1.2 and counterfactuals § 1.3.
However, in simple cases, these methods are completely equivalent. In fact, this
difference P1 − P0 coincides with the Average Causal Effects defined in Defini-
tion 1.3.3 in the counterfactual framework when the exchangeability condition holds.

In the rest of this thesis we will abandon the decision theory approach to
the counterfactual framework. In fact, this thesis is focused on studying the causal
effect of an exposure on an outcome when a third variable is involved in the pathway
as a mediator. Even if important results have been found to study mediation in a
non-counterfactual framework [22, 23], most of statistical methods and softwares
have been implemented within the counterfactual approach.

2.2 Causes of Effects

A more tricky situation is described by questions on the cause of observed effects
CoE “Unfortunately, Ann took the drug and passed away, how likely is that she
would not have died if she had not taken the drug?”. They hide an individual
problematic that we want to address using statistical data.

This kind of queries are common in a Court of Law, when we want to asses
legal (usually individual) responsibility. For instance, considering the Exam-
ple 2.0.1, where we supposed that Ann has developed the outcome after being
exposed. A typical question will be “Knowing that Ann did take the drug and
passed away, how likely she would not have died if she had not taken the drug?”.
The problem is that we know the real value of exposure and outcome for Ann and
then we can not longer base our answer on the difference P1 − P0.
In fact we can not base our approach purely on the probability distribution of
Y and X conditioned on known facts. We know the values of both variables
(Y = 1, X = 1), and after conditioning on that knowledge, there is no probabilistic
uncertainty left to work with. Nevertheless we want an answer. To answer the
CoE question: “Did the drug cause her death?” we should known what would
have happened had she not taken the drug. This circumstance is actually the
perfect situation to introduce “potential variables”, usually apply to CoE questions
instead. As described in § 1.3, in the potential notation, at any individual i,
we can associate two pair of variables Y i := (Yi(0), Yi(1)) where Y (x) denotes
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the potential value that Y would take if X had been set to x. Both potential
responses are regarded as existing, simultaneously, prior to the choice of X . For
any subject, only one of them will be observable, the other is called counterfac-
tual. In the case of Ann, we can only observe YA(1) = 1 while YA(0) will be unknown.

In this paper we aim to investigate causation for CoE queries by using the
formulation of Probability of Causation, as given by Dawid (2011) in [16] and also
named by Pearl as Probability of Necessity [48].
In terms of the triple (XA, YA(0), YA(1)), the Probability of Causation in Ann’s case
is defined as:

Definition 2.2.1

PCA = PA(YA(0) = 0 | XA = 1, YA(1) = 1)

where PA denotes the probability distribution over attributes of Ann different
from (2.1) and (2.2) which denote population probabilities.

Given the fact that Ann actually took the drug and passed away, the proba-
bility of causation defined above will provide an answer to the question: how likely
she would not have died if she had not taken the drug?

Let us consider again the data provided in Table 2.1 regarding the same drug taken
by Ann. Can the court infer that it was Ann’s taking the drug that caused her
death? More generally: Is it correct to use such experimental results, concerning a
population, to say something about a single individual? This “Group-to-individual”
(G2i) issue is discussed by Dawid (2013) in [18] in relation to the question “When
can Science be relied upon to answer factual disputes in litigation?”. In the next
sessions we will discuss how to incorporate those information when calculating the
Probability of Causation.

The bivariate potential distribution underlined in Definition 2.2.1, prohibits a
point estimation for PCA but permits useful information in the form of bounds.
In this dissertation we review the current literature of bounding the probability
of causation in a set of framework: the simple analysis of an exposure acting
on an outcome, when additional information about a pre-treatment covariate is
available and when unmeasured confounding affects the exposure-outcome relation.
In addition we we will introduce new bounds for PCA in the case of complete
mediation between exposure and outcome and in the most real situation of partial
mediation.
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Chapter 3

Mediation as EoC: methods and
historical background

Several factors can influence the presence of an outcome in a population. In § 1.2
we described one of the most popular approach to infer causation when a directed
acyclic graph, connecting the exposure to the outcome, is established. A particular
mechanisms that may link X to Y is the one arising by a chain involving a third
variable called Mediator.

In this thesis we focus on the study of the Mediation analysis approach which
investigates the mechanisms depicted in the DAG of Figure 3.1. In addition to a
direct effect of X on Y , Figure 3.1 suggests a (presumed) chain of causes where the
independent variable X affects a third one, the Mediator, which then affects the
outcome Y .

X Y

M

Figure 3.1: DAG illustrating a Mediation Mechanism between an exposure X , an
outcome Y and a mediator M

This setting is crucial in Epidemiology when the researcher wants to quantify
how much the total causal effect of X on Y is purely direct and how much is
mediated by M . Rather than suppose a unique effect from X on Y , the mediation
model disentangles the pathway in two different effects. The main goal of Mediation
analysis is to quantify how much the total causal effect of X on Y is mediated by
M . In this dissertation we will discuss different methodologies capable of measuring
distinctly this effects.

Outline an historical background for Mediation analysis is very complex and
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confusing. The major problem is the large overlaps between sources. According to
MacKinnon (2008) in [37], on of the first example of mediation hails from Aristotle
in the 3rd century BC. He identified four causes as all possible explanations
of a change, classifying the four possible answers to the fundamental question
“why?”. These four causes include: material cause, formal cause, efficient cause
and final cause. In particular, he defined an efficient cause as an agent of the
change or the thing that brings something about. For example, a father is the
efficient cause of a child and a carpenter is the efficient cause of a table. Investigat-
ing on an efficient cause of a change is actually the major goal of mediation analysis.

More recently, several authors adopt mediation to analyze the potential causal
relation between exposure and outcome. One of the first researcher that studied
mediation is MacKinnon (2009) in [38]. In this paper he presented a psychology
model for the chain arising after a stimulus: it has an effect on the organism that
will, in turn, produce a response. This is an example of a complete mediation model
because underlines a unique indirect chain where the organism mediates completely
the effect of the stimulus on the response. It can be described as the mediation
mechanism in Figure 3.1 in the presence of the blue arrow alone, i.e. the stimulus
does not affect the response directly. Other examples of complete mediation can be
found in MacKinnon (2009) in [38]: a tobacco prevention program reduces cigarette
smoking by changing the social norms for tobacco use; exposure to negative life
events affects blood pressure through the mediation of cognitive attributions to
stress. Once a true mediating process is identified, he pointed out the importance
of mediation as it can develop treatment effect improving the mediation mechanism.

In the next sections we will introduce and discuss other historical and mod-
ern approach to Mediation analysis.

3.1 Model based approach to Mediation analysis

In this section we will introduce several methods capable of measuring mediation
effects via model based computations while in the next section we will introduced
model free definitions. In addition, we will show how, in simple and linear frame-
work, these methods will lead to equivalent results.

3.1.1 Path Analysis

Several authors proposed distinct methodologies to Mediation according to the
different fields to which they had been applied. From a Philosophical to a Statistical
point of view, one historical contribution to mediation analysis came from Sewall
Wright (1921) in [82]. With his path analysis, Wright proposed to quantify causal
effects linking a regression coefficient with every path in a diagram. He then defined
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the overall effect of the exposure on the outcome as simply the product of the two
single effects of X on M and of M on X .

An equivalent approach was proposed by Baron & Kelly (1986) in [4]. Let
us consider the triangle of causes depicted in Figure 3.2 where the symbols in each
arrow correspond to a coefficient in two different models

M = i1 + aX + e1 (3.1)

Y = i2 + cX + bM + e2. (3.2)

Let us consider also the model for Y regressed on X alone

Y = i3 + c′X + e3 (3.3)

where the terms e1, e2 and e3 are the residuals uncorrelated with each other and
with X .

X Y

M

c

a b

Figure 3.2: DAG illustrating a Mediation Mechanism and its relation to the product
method

Baron and Kenny defined four steps that have to be satisfied to identify a true
mediating process.

Baron & Kenny assumptions

1. the exposure should be significantly associated to the mediator, i.e. the esti-
mate â of a in (3.1) should be statistically significant;

2. the mediator should be significantly associated with the outcome when both
exposure and mediator are controlled for, i.e. the estimate b̂ of b in (3.2)
should be statistically significant;

3. the exposure should be significantly associated with the outcome, i.e. the
estimate ĉ′ of c′ in (3.3) should be statistically significant;

4. the estimate of the coefficient relating the outcome to the exposure only, must
be bigger (in absolute value) than the estimate of the coefficient relating the
exposure to the outcome in the model with the mediator, i.e. |ĉ′| > |ĉ|.
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Baron and Kenny (1986) in [4], as suggested by Judd and Kenny (1981) in
[33], propose two different methods to calculate mediation effects, the product and
the difference methods. The first approach consists in calculating mediation effects
including equation (3.1) in (3.2)

Y = (i2 + i1b) + (c+ ab)X + (e2 + e2b).

We can then estimate the total effect of X on Y as ĉ + b̂â. Baron and Kenny
proposed to estimate the direct effect of X on Y as ĉ and b̂â as the estimated
indirect effect from which the name “Product Method” comes from. On the other
hand, comparing (3.2) to (3.3), we have that ĉ′ = ĉ+ b̂â and then ĉ′− ĉ = b̂â where
ĉ′ − ĉ is the indirect effect estimated by the “Difference method”. The equivalence
of these two methods, in terms of ordinary least square and maximum likelihood,
was shown by MacKinnon et al. (1995) in [39].

In the light of these considerations, condition (4) of Baron and Kenny states
that M can be considered a mediator if the product (or the difference) method gives
raise to an indirect effects different from zero. The situation is indeed much more
complicated then the four steps introduced by Baron and Kenny. Furthermore,
if direct and indirect effects have opposite signs, the total effect of X on Y (ĉ′)
could not be statistically significant even in the case that M is a true mediator
(see [37]). This phenomenon is called inconsistent mediation and is common in
multiple mediators model. In the next section we will show how, an estimated null
indirect effect, cannot be considered alone to conclude the absence of a mediation
mechanism.

3.1.2 Linear Structural Equation Modelling

The original Baron and Kenny approach did not have covariates, the Structural
equation model approach (SEM) generalizes path analysis defining a statistical
model for every endogenous variable in a DAG [7].

Nowadays, the SEM approach include several methods designed to cover a
large set of statistical problems such as: confirmatory factor analysis, latent
variable models and path analysis. They are frequent in psychology, widely used to
summarize latent information. This knowledge is then linked to measured variables
via multivariate models. The main idea is to test whether these hypothetical models
are consistents with the observed data. For example, we are not able to measure
concepts such as human intelligence or stress directly. Using the SEM approach we
can collect information on a set of variables capable of summarizing these latent
constructs. Let us suppose to be interested in evaluating the association between
intelligence and income. To measure human intelligence we can construct an index
based on measured variables such as the academic performance and/or the results
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of an IQ test. The SEM approach is the perfect tool to investigate these associations.

The name “Structural equation model” comes from the dual nature of this
multivariate model: a first latent model called measurement model able to define
an index for the latent variable and a structural regression model that depicts the
causal dependencies between latent and observed variables.

X Y

M

C

Figure 3.3: DAG illustrating a Mediation Mechanism with confounder C

In the simplistic case of only continuous measured variables, the SEM approach
for the diagram in Figure 3.3 will lead to the following structural regression models
[21]

M = β0 + βxX + βcC + ǫm (3.4)

Y = θ0 + θxX + θmM + θcC + ǫy. (3.5)

The error terms ǫM and ǫY have zero means and are supposed not to be correlated
with each other and with X and C. As the path analysis, including (3.4) in (3.5)
we have

Y = (θ0 + β0θm) + (θx + βxθm)X + (θc + βcθm)C + (θmǫm + ǫy) (3.6)

where θx + βxθm represents the total effect of X on Y composed by a pure
direct effect θx and an indirect effect βxθm. This is exactly a generalization of path
analysis in the presence of a set of confounders C.

Let us consider another situation where an additional variable L, called
“intermediate confounder”, confounds the mediator-outcome relation and is
affected by the exposure [21].

In the case of continuous measured variables, the SEM approach for the diagram
in Figure 3.4 will lead to the following structural regression models

L = α0 + αxX + ǫl (3.7)
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X Y

M

C

L

Figure 3.4: DAG illustrating a Mediation Mechanism with confounder C and inter-
mediate confounder L

M = β0 + βxX + βcC + βlL+ ǫm (3.8)

Y = θ0 + θxX + θmM + θcC + θlL+ ǫy. (3.9)

where additionally ǫl is supposed not to be correlated with the other error terms
and both X and C. As the path analysis, including (3.7) in (3.8) and then in (3.9)
we have

Y = (θ0 + θmβ0 + θmβlα0 + θlα0) + (θx + θmβx + θmβlαx + θlαx)X +

(θc + θmβc)C + (θmβlǫl + θmǫm + θlǫl + ǫy) (3.10)

The term θx + θmβx + θmβlαx + θlαx can then be used to estimate the total
effect of X on Y . The direct effect can be estimated using θx + θlαx and the
indirect effect using θmβx + θmβlαx. Linking every path to a coefficient, we can
see that indirect is considered every (directed) path that go through the mediator,
even the one passing over L and M consecutively. On the other hand, direct is
considered every remaining pathway not passing trough the mediator. Then, in
the simple case of continuous variables for models that do not involve interactions
and nonlinearities, to measure both direct and indirect effects we have to multiply
consecutive pathways and sum over them.

This procedure is as simple as the DAG representing the mechanisms for
which the exposure acts on the outcome. MacKinnon (2008) in [37], extends these
models to more complex situations with more than one independent variable,
mediator and outcome (path analysis models). Hayes et al. (2010) in [24], generalize
this approach defining an instantaneous indirect effect for any non-linear models
that are linear in the parameters. Muthen (2011) in [43] derives formulas to handle
mediation by a nominal variable. Traditional approach as Path Analysis may
produce flawed results when more complicated DAG, involving non-linearities and
interactions, are required. In fact, path analysis cannot be use in complicated
models since we cannot define an arrow to represent non-linearities and interactions.
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3.2 Counterfactual approach to Mediation

In § 1.3 we introduced counterfactual variables able to represent changes in the
outcome that we might not be able to observe. However, they can potentially
be measured from the data if the exposure is randomized or if the exchangeability
condition holds in every strata of the confounding. We defined the potential variable
related to Y as

Definition 3.2.1 (Potential Variable) Let us consider X the exposure of interest
and Y the outcome, Y (x) is the potential value that Y would take if X had been set
to x.

This new variable Y (x) is treated as an ordinary random variable with a
distribution that is consistent with the usual axioms of probability and inde-
pendence. It is connected to the real outcome by the consistency condition
Yobs = X · Y (1) + (1−X)Y (0) for binary exposure.
In the counterfactual notation, Mediation analysis requires the definition of a
potential variable for every endogenous entry in the DAG.

For the simple mediation mechanism in Figure 3.1 the potential variables
are:

i) M(x) the potential value that M would take if X had been set to x;

ii) Y (x,m) the potential value that Y would take if X had been set to x and M to
m;

iii) Y (x,M(x̃)) the nested counterfactual value that Y would take if X had been
set to x and M to M(x̃) that is when M arises naturally after setting X to x̃.

According to the research question of interest, mediation analysis provides
useful tools to address different type of causal questions (here we are only referring
to EoC causal questions).

If the researcher is interested in the effect of the drug in the population for every
existing pathways of drug use, the Total Causal Effect is the target. This causal
measure is the easiest to interpret, define and estimate [50]. This is also called
“Average Treatment Effect”, widely known in Clinical Studies where the exposure
is randomized and the clinician wants to calculate how being or not exposed to the
treatment will change the outcome.

In this thesis we will use the definition of mediation effects as given by Pearl
(2000) in [50].
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Definition 3.2.2 The Total Causal Effect of X on Y , for every x, x̃ is:

TCE(x, x̃) = E[Y (x)]− E[Y (x̃)]. (3.11)

The total causal effect is exactly the average causal effect defined in § 1.3. When
X is binary TCE = P [Y (1) = 1]− P [Y (0) = 0].

The TCE captures the real comprehensive effect of the exposure on the out-
come because it contrasts two hypothetical worlds, one where all subjects are
exposed to the drug and one where all subjects are not exposed to the drug.

In general rule we have that E[Y (x)] 6= E[Y |X = x] but, under some as-
sumptions, we can identify the TCE from the observed data. If C is a confounding
variable affecting all exposure, outcome and mediator, those assumptions states:

TCE identifiability assumptions

1. No Interference: it assumes no interference between units (subjects) on their
relatives outcome, i.e. no infectious diseases;

2. Consistency: the potential outcome must be equal to the real outcome when
the exposure is observed, Y (x) = Y if X = x. This assumption permits to
estimate the potential outcome’s average from the observed data E[Y (x)|X =
x] = E[Y |X = x];

3. Conditional Exchangeability (CE):

a) no unmeasured confounding on the exposure-outcome relation
Y (x)⊥⊥X|C ∀x. It means that control for C is enough to remove
the X − Y confounding, i.e. the subject in the population are
conditionally exchangeable

It is important to notice that we can never test the CE assumption. It is related
to the potential value of Y if all individuals were set to exposed and unexposed in
the same time (Y (0)⊥⊥X|C and Y (1)⊥⊥X|C). Given that only one exposure level
is observable for each individual, this is actually a missing data problem.

If the above assumptions hold, for category C, we can estimate the TCE
form the data as

TCE(x, x̃) = E[Y (x)]− E[Y (x̃)]

=
∑

c

{E[Y (x)|C = c]− E[Y (x̃)|C = c]} P (C = c)

=
∑

c

{E[Y (x)|X = x,C = c]− E[Y (x̃)|X = x̃, C = c]} P (C = c) CE(a)
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=
∑

c

{E[Y |X = x,C = c]− E[Y |X = x̃, C = c]} P (C = c) consistency of Y(x)

where with CE(a) we mean the use of assumption 3a. As we can see, for
estimating the total causal effect, the above equation simply requires a correct
measure of the associational effects E[Y |X = x, C = c] and distributions P (C = c).

An interesting example by Pearl (2001) in [50], is the case where a clinician
is testing the efficacy of a drug treatment on a disease. Let has suppose that one
possible side effect of this drug is headache. A possible mediator between the
treatment and the disease can be the use of aspirin. In fact, subjects exposed to the
drug will likely take the aspirin which in turn might have an effect on the disease.
To determine how beneficial the drug is to the population as a whole, under existing
patterns of aspirin usage, the TCE will be the right measure [50]. On the other
hand, it would be interesting to see if encourage or discourage the use of aspirin
during the treatment will affect the outcome. We might be interested in knowing
what would be the effect of the treatment on the headache if a dose of aspirin was
administrated to each patient.

This concept is measured by the following effect:

Definition 3.2.3 The Controlled Direct Effect of X on Y when M is controlled at
m is defined as:

CDE(x, x̃,m) = E[Y (x,m)]− E[Y (x̃, m)] (3.12)

This measure is able to quantify the sensitivity of Y to changes in X while
all other factors (M) are controlled. Keeping the mediator fixed to a particular
level m, the CDE is capable of measuring a direct effect of the exposure on the
outcome. It is important to notice that the CDE depends on m, i.e. if the mediator
is a variable defined by five different categories, we could define five different CDEs.

As for the TCE, the Controlled Direct Effect requires some additional as-
sumptions to be measured in nonexperimental studies:

CDE identifiability assumptions

1. No Interference: between mediator and outcome;

2. Consistency: Y (x,m) = Y when X = x and M = m;

3. Conditional Exchangeability (CE):

a) no unmeasured confounding on the exposure-outcome relation
Y (x)⊥⊥X|C ∀x;
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b) no unmeasured confounding on the mediator-outcome relation
Y (x,m)⊥⊥M |C,X ∀x,m.

If the above assumptions hold, for category C, we can estimate the CDE as

CDE(x, x̃,m) = E[Y (x,m)]−E[Y (x̃, m)]

=
∑

c

{E[Y (x,m)|C = c]− E[Y (x̃,m)|C = c]} P (C = c)

=
∑

c

{E[Y (x,m)|X = x,C = c]−E[Y (x̃,m)|X = x̃, C = c]} P (C = c) CE(a)

=
∑

c

{E[Y (x,m)|X = x,M = m,C = c]− E[Y (x̃,m)|X = x̃,M = m,C = c]} P (C = c) CE(b)

=
∑

c

{E[Y |X = x,M = m,C = c]− E[Y |X = x̃,M = m,C = c]} P (C = c) consistency of Y(x,m)

where with CE(a) and CE(b) we denote the use of assumptions 3a and 3b. In
§ 5, using the SWIGs method defined in [57], we will prove that the assumptions
CE(a) and CE(b) imply Y (x,m)⊥⊥X|C end then the third equation in the
estimation above.

However, there are situations where neither the TCE or CDE do not ade-
quately represent the target of investigation. Let us consider and example proposed
by Pearl (2001) in [50]. He considered the effect of a birth-control pill suspects of
producing thrombosis [29]. It may be claimed that the pill, reducing the number
of pregnancies, is an indirect protection for thrombosis (pregnancy is a known
risk factor for thrombosis). To investigate the beneficial effect of the pill on the
thrombosis via pregnancies rather than its direct effect, the TCE will not be
exhaustive.

The idea is to define a measure sensitive to the direct effect of the exposure
on the outcome and a measure sensitive to its effect via other consecutive pathways.
Choice among mediation effects must depend on the research question of interest.
In the situations described above, neither the TCE or the CDE are adequates. In
fact, the CDE is a measure of the direct effect of X on Y for a particular level
of the mediator. In contrast, here we would like to measure the overall direct
effect rather than fixing M to a particular level. Several authors proposed different
distinctions for direct and indirect effects [61],[50].

Reviewing Pearl (2001) in [50], the effect on the outcome directly attributable
to the exposure is achieved by the following measure:

Definition 3.2.4 The Pure Natural Direct Effect of X on Y is:

PNDE(x, x̃) = E[Y (x,M(x̃))]− E[Y (x̃,M(x̃))] (3.13)

According to Pearl (2001) in [50], Definition 3.2.4 permits to measure the direct
effect comparing the potential composite variable Y (x,M(x̃)) with Y (x̃,M(x̃))
where they both set M(x) as arising naturally on the reference value x̃. Usually
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when X is binary, x̃ = 0 and x = 1. For binary exposure, the pure natural
direct effect capture a direct measure of X on Y comparing the distribution of the
potential outcomes Y (1,M(0)) and Y (0,M(0)), when X change from exposed to
unexposed subject and the mediator is fixed to the value M(0). In the next section
(METTI QUALE) we will describes mediation effects where x̃ = 1.

For simplicity of interpretation, let us consider a binary exposure X where
x = 1 and x̃ = 0. Holding M(0) in both terms of Definition 3.2.4, the PNDE
would capture the additional change in the outcome due only to the exposition at
the drug (in respect to the unexposed).

To estimate the Pure Natural Direct Effect from nonexperimental data we
need additional assumptions [79],[54],[50]:

PNDE identifiability assumptions

1. No Interference: between exposure and mediator;

2. Consistency on M(x), Y (x,m) and Y (x,M(x)): M(x) = m when X = x,
Y (x,m) = Y if X = x and M = m and Y (x,M(x)) = Y when X = x and
M(x) = M ;

3. Conditional Exchangeability (CE):

a) no unmeasured confounding on the exposure-outcome relation
Y (x)⊥⊥X|C ∀x;

b) no unmeasured confounding on the mediator-outcome relation
Y (x,m)⊥⊥M |C,X ∀x,m;

c) no unmeasured confounding on the exposure-mediator relation
M(x)⊥⊥X|C ∀x;

d) Y (x,m)⊥⊥M(x̃)|C ∀x,m.

3.2.1 Different identifiably assumption for Natural Direct

Effects

Condition CE(d) is one of the most discussed assumptions in Causal Inference.
Here we use the identifiability assumption proposed by Pearl (2001) in [50]. It
states that, for binary exposure and within level of confounding C, the individual
counterfactual outcome Y (1, m) ∀m, does not depend on the counterfactual
variable M(0) that is the potential value of M if every subject were set to
unexposed. In other words, within level of confounding C, the counterfactual
outcome Y (1, m) is a function of only the treatment, the mediator level and some
errors Y (1, m) = f(1, m, e) but not of M(0). In the next section we will describe
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the SWIG method [57] able to represent assumptions such as CE(a), CE(b)
and CE(c) in a DAG. On the other hand, the assumption Y (x,m)⊥⊥M(x̃)|C is
referred as a cross world assumption because it relates two different hypothetical
worlds that cannot coexist together and hence, cannot be represented in a Single
World Intervention DAG. Another way to represent potential variables in a graph is
described by Pearl (2009) in [51] with the name of twin network or triple network.
Pearl (2001) in [50] proves that CE(d) assumption can be easily read from a graph
as (Y ⊥⊥M |X,C))GXM

where GXM is the graph obtained mutilating all arrows
coming out from X and M as described in § 1.2.4. It is not so easy to deduce
this connection from Pearl’s twin network method. In this section we will try to
illustrate this method using the notations defined above.

According to Shpitser et al. (2008) in [69], if the query is to represent the
value E[Y (x,m)|M(x̃) = m,C = c] defined in Definition 3.2.4, the twin network
will be composed by 3 different models, each connected to the others by latent
mechanisms U (see the triple network in Figure 3.5). The first DAG at left in
Figure 3.5 is the original model M where no intervention is made. The second
DAG is the submodel Mxm where we intervene setting X to x and M to m and
the last DAG at right in Figure 3.5 is the submodel Mx̃ where we intervene setting
X to x̃. As described by the network in Figure 3.5, there are four different latent
variables connecting each submodel: Uc connecting each confounding node C in
every submodels, Um connecting any mediator nodes, Uy connecting any outcome
nodes and Ux connecting any exposure nodes. From Figure 3.5, we can notice that
Ux is connected only with X in the original model M and not with the exposure
intervention node in Mxm and Mx̃. This is because, according to what described in
§ 1.2.4, intervention removes all incoming arrows to the node.

X Y

M

C

x Y (x,m)

m

Cxm

x̃ Y (x̃,M(x̃))

M(x̃)

Cx̃

Ux Uy

Um Uc

Figure 3.5: Triple network illustrating three different models connected by latent
variables: the original model M at left where no intervention is made; the central
submodel Mxm where the we intervene setting X to x and M to m; the submodel
Mx̃ at right where we intervene setting X to x̃.

To verify theCE(d) assumption we should list all back-door path linking Y (x,m)
to M(x̃). These are:
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1. Y (x,m)← Cxm ← Uc → Cx̃ →M(x̃)

2. Y (x,m)← Cxm ← Uc → C → M ← Um →M(x̃)

3. Y (x,m)← Cxm ← Uc → C → X → Y ← Uy → Y (x̃,M(x̃))← M(x̃)

4. Y (x,m)← Cxm ← Uc → C → Y ← Uy → Y (x̃,M(x̃))←M(x̃)

The first two back-door paths are blocked conditioning on C and the second two
are already blocked because of the colliders. In [51] Pearl (2009) explained that the
license to replace C with Cx̃ or Cxm is obtained from the third rule in Theorem 1.2.3.
Then we can easily conclude that CE(d) holds in the original model M .
However CE(d) does not hold if there is a confounding variable between mediator
and outcome that is affected by the exposure (see Figure 3.4).

X Y

M

C

x Y (x,m)

m

Cxm

x̃ Y (x̃,M(x̃))

M(x̃)

Cx̃

Ux Uy

Um

Uc Ul

L Lxm Lx̃

Figure 3.6: Triple network illustrating three different models connected by latent
variables and intermediate confounding L: the original model M at left where no
intervention is made; the central submodel Mxm where the we intervene setting X
to x and M to m; the submodel Mx̃ at right where we intervene setting X to x̃.

In the situation described by the submodel at left in Figure 3.6, listing all back-
door path from Y (x,m) to M(x̃) we can see that C is not a sufficient set of con-
founding variables.
In conclusion, we can replace Pearl’s assumption Y (x,m)⊥⊥M(x̃)|X,C with no
unmeasured intermediate confounding between mediator and outcome affected by
exposure. In the case that the no unmeasured intermediate confounding assumption
is not possible we have to refer to different conditions in order to measure direct
and indirect effects. Petersen et al. (2006) in [54], assume the following weaker
assumption to identify natural direct effects:

E[Y (x,m)− Y (0, m)|M(0) = m,C] = E[Y (x,m)− Y (0, m)|C]. (3.14)

Proving that Pearl’s assumption Y (x,m)⊥⊥M(x̃)|C implies (3.14) is straight-
forward. Petersen et al. argued that, Y (0, z) explains a lot of the variation of
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Y (x, z), suggesting that Pearl’s assumption is less reasonable.
Robins and Greenland (1992) in [61], suggest an alternative assumption on the
absence of interaction between exposure and mediator on the outcome. As we
will see later, it implies to identify the CDE with the PNDE. Especially in
Epidemiology, this assumption seems very unrealistic in many situations.

If the above assumptions hold, for category C, we can estimate the E[Y (x,M(x̃))]
form the data as

E{Y (x,M(x̃))} =
∑

m

∑

c

E[Y (x,M(x̃))|M(x̃) = m,C = c]P (M(x̃) = m|C = c)P (C = c)

=
∑

m

∑

c

E[Y (x,m)|M(x̃) = m), C = c]P (M(x̃) = m|C = c)P (C = c) consistency of Y (x,M(x))

=
∑

m

∑

c

E[Y (x,m)|C = c)]P (M(x̃) = m|C = c)P (C = c) CE(d)

=
∑

m

∑

c

E[Y (x,m)|X = x,C = c)]P (M(x̃) = m|C = c)P (C = c) CE(a) → Y(x,m)⊥⊥X|C

=
∑

m

∑

c

E[Y (x,m)|X = x,M = m,C = c)]P (M(x̃) = m|X = x̃, C = c)P (C = c) CE(b) and CE(c)

=
∑

m

∑

c

E[Y |X = x,M = m,C = c)]P (M = m|X = x̃, C = c)P (C = c) Consitency of Y(x,m) and M(x)

(3.15)

where with CE(a), CE(b), CE(c) and CE(d) we mean the use of assumptions
3a and 3b, 3c and 3d.

And

E{Y (x̃,M(x̃))} =
∑

m

∑

c

E[Y (x̃,M(x̃))|M(x̃) = m,C = c]P (M(x̃) = m|C = c)P (C = c)

=
∑

m

∑

c

E[Y (x̃,m)|M(x̃) = m), C = c]P (M(x̃) = m|C = c)P (C = c) consistency of Y (x,M(x))

=
∑

m

∑

c

E[Y (x̃,m)|C = c)]P (M(x̃) = m|C = c)P (C = c) CE(d)

=
∑

m

∑

c

E[Y (x̃,m)|X = x,C = c)]P (M(x̃) = m|C = c)P (C = c) CE(a) → Y(x,m)⊥⊥X|C

=
∑

m

∑

c

E[Y (x̃,m)|X = x,M = m,C = c)]P (M(x̃) = m|X = x̃, C = c)P (C = c) CE(b) and CE(c)

=
∑

m

∑

c

E[Y |X = x̃,M = m,C = c)]P (M = m|X = x̃, C = c)P (C = c) Consitency of Y(x,m) and M(x).

On the other hand, a measure of the indirect effect can be defined as:

Definition 3.2.5 The Total Natural Indirect Effect of X on Y through M :

TNIE = E[Y (x,M(x))]− E[Y (x,M(x̃))] (3.16)

For binary exposure, the TNIE is a comparison between the distribution of the
two potential outcomes Y (1,M(1)) and Y (1,M(0)) where the exposure is held to
x = 1 and the mediator is allowed to change from M(0) to M(1). Holding the level
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of X fixed and varying only the mediator, the TNIE captures, by definition, the
indirect effect via M .

The suffix Total refers to the decomposition of the TCE as a sum of the
PNDE and the TNIE:

Theorem 3.2.1 The Total Natural Indirect Effect of X on Y :

TNIE = TCE − PNDE (3.17)

Proof 3.2.1

TNIE = TCE − PNDE = E[Y (x)]−E[Y (x̃)]− {E[Y (x,M(x̃))]−E[Y (x̃,M(x̃))]}

= E[Y (x,M(x))]− E[Y (x̃,M(x̃))]− {E[Y (x,M(x̃))]−E[Y (x̃,M(x̃))]}

= E[Y (x,M(x))]− E[Y (x,M(x̃))]

This is a fundamental result in Mediation analysis an in particular in Epidemi-
ology. It permits to disentangle the total effect such that we can always decide
which pathway donates the major contribute. Estimation of TNIE requires the
same assumption for PNDE and identifiability is similar to what we previously
calculated.

3.2.2 Controlled Direct Effect vs Natural Direct Effect

In the previous section we illustrated how different mediation effects correspond
to different research questions. Regarding the example of Pearl (2001) in [50],
concerning the use of aspirin as a mediator between drug treatment and headache,
we said that if we are interesting of knowing what would be the effect of the
treatment on the headache if a dose of aspirin was administrated to each patient,
the CDE will be the target. On the other hand, if the goal is to measure the
overall direct effect of drug treatment on headache without fixing the mediator to
any particular level, the PNDE will provide an answer. Both these definitions are
capable of measuring the direct effect of the exposure on the outcome but they
share some differences. Even the assumptions needed to estimate both CDE and
PNDE are very different. The latter requires no intermediate confounding and
no unmeasured confounding on the exposure-mediator relation in addition to no
unmeasured confounding on the exposure-outcome relation and between mediator
and outcome that are required for CDE to be estimated.

Pearl (2001) in [50] demonstrates that, if there is not unmeasured confound-
ing between exposure and mediator, the PNDE can be simply obtained as a
weighted average of the CDEs for different values of the mediator:

PNDE(x, x̃) =
∑

m

{E[Y (x,m)]− E[Y (x̃, m)]]P (M = m|x̃) (3.18)
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with weight given by P (M = m|x̃) for every level of M .

In the case of no interaction between exposure and mediator on the out-
come, the difference E[Y (x,m)] − E[Y (x̃, m)] will be the same for different values
of m and hence PNDE would coincide with CDE from (3.18).

In the section § 3.3 we will show how, comparing the SEM approach to the
Counterfactual, this equality will be much easier to see.

3.2.3 Alternative scales

According to the different types of variables, to the different types of study design
and even purpose of the study, we can define mediation effects in alternative scales:
differences, risk ratio, odds ratio and hazard ratio. In terms of odds ratio the
mediation effects are

TCE =
E[Y (1)]/1− E[Y (1)]

E[Y (0)]/1− E[Y (0)]
(3.19)

CDE(m) =
E[Y (1, m)]/1− E[Y (1, m)]

E[Y (0, m)]/1− E[Y (0, m)]
. (3.20)

PNDE =
E[Y (1,M(0))]/1− E[Y (1,M(0))]

E[Y (0,M(0))]/1− E[Y (0,M(0))]
(3.21)

TNIE =
E[Y (1,M(1))]/1− E[Y (1,M(1))]

E[Y (1,M(0))]/1− E[Y (1,M(0))]
(3.22)

such that TCE = PNDE · TNIE. Interpretation of Equations (3.19) to (3.20)
are quite different from the effect defined in § 3.2 for the difference scale. Odds
Ratios are associational measure commonly use to measure the relation between
two variables, widely used in case-control studies [74]. An Odds Ratio (OR) relating
Y to X will measure the odds for developing the outcome in subject exposed to
X , compared to the odds for developing the outcome in subject unexposed to X .
An OR equals to one will sustain no association between exposure and outcome.
An OR bigger than one will imply that the exposure is associated with higher
odds of the outcome and smaller than one when the exposure is associated with
lower odds of the outcome. Let us consider again the example studied by Pearl
(2001) in [50] where he reflected on the effect of a birth-control pill on thrombosis,
potentially mediated by the number of pregnancies. The TCE, in the OR scale,
will then measure the odds for developing thrombosis comparing women exposed
and unexposed to the pill. A CDE(m), in the OR scale, will measure the odds for
developing thrombosis comparing women exposed and unexposed to the pill if all



3.2. COUNTERFACTUAL APPROACH TO MEDIATION 59

subject were set to have m pregnancies. The odds ratio PNDE will instead measure
the odds for developing thrombosis comparing women exposed and unexposed to
the pill, setting the number of pregnancies at the value that they would have had
if they were not exposed to the pill. The odds ratio TNIE will capture the odds
for developing thrombosis in women exposed to the drug, comparing the number of
pregnancies set at the value that they would have had if they were exposed with
the number of pregnancies set at the value that they would have had if they were
not exposed.

We can even express mediation effects in terms of conditional risk ratio, i.e.
within the observed level C = c

TCE =
P [Y (1) = 1|C = c]

P [Y (0) = 1|C = c]
(3.23)

CDE(m) =
P [Y (1, m) = 1|C = c]

P [Y (0, m) = 1|C = c]
(3.24)

PNDE =
P [Y (1,M(0)) = 1|C = c]

P [Y (0,M(0)) = 1|C = c]
(3.25)

TNIEc =
P [Y (1,M(1)) = 1|C = c]

P [Y (1,M(0)) = 1|C = c]
(3.26)

such that

TCEc = PNDEc · TNIEc. (3.27)

Different values of C will lead to different meaning of mediation effects. Inter-
pretation of Equations (3.23) to (3.24) is quite different from the effects defined in
§ 3.2 for the difference scale. First of all, Equations (3.23) to (3.24) are conditional
effects while definitions introduced in § 3.2 are marginal. However, identification
of mediation effects in terms of risk ratio requires the same assumptions of the
difference scale. By definition of conditional exchangeability given C, the simple
exchangeability assumption will hold in every strata of the confounder, i.e. the
conditional effects above are well defined and identifiable ∀ c. In particular, the
TCEc, in the risks ratio scale defined by (3.23), will measure the risk (in stratum
C = c) to develop the outcome if all subject have been exposed to the treatment
compared to a situation where all subject have not been exposed. A risk ratio
bigger than one will imply a harmful causal effect of the exposure on the outcome
(in stratum C = c) while a risk ratio smaller than one will imply a protective effect
(in stratum C = c). A risk ratio of one will imply no association. A PNDEc bigger
than one (smaller than one) will imply a harmful direct effect (a protective direct
effect) of the exposure on the outcome in stratum C = c. A PNDEc equals to one
supports evidence of no direct effect of the exposure on the outcome in stratum
C = c. Interpretation is similar for NIEc and CDEc.
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Under the assumptions stated in § 3.2, we can estimate the conditional medi-
ation effects from observed data as:

TCEc =
P [Y (1) = 1|C = c]

P [Y (0) = 1|C = c]
=

P [Y = 1|X = 1,C = c]

P [Y = 1|X = 0,C = c]
, (3.28)

CDEc(m) =
P [Y (1, m) = 1|C = c]

P [Y (0, m) = 1|C = c]
=

P (Y = 1|X = 1,M = m,C = c)

P (Y = 1|X = 0,M = m,C = c)
, (3.29)

PNDEc =
P [Y (1,M(0)) = 1|C = c]

P [Y (0,M(0)) = 1|C = c]

=

∑

m P (Y = 1|X = 1,M = m,C = c)P (M = m|X = 0,C = c)
∑

m P (Y = 1|X = 0,M = m,C = c)P (M = m|X = 0,C = c)
, (3.30)

and

TNIEc =
P [Y (1,M(1)) = 1|C = c]

P [Y (1,M(0)) = 1|C = c]

=

∑

m P (Y = 1|X = 1,M = m,C = c)P (M = m|X = 1,C = c)
∑

m P (Y = 1|X = 1,M = m,C = c)P (M = m|X = 0,C = c)
. (3.31)

3.2.4 Mediated interactive effect

The counterfactual definitions of mediation effects latently englobe an interaction
between exposure and mediator on the outcome. Depending on how this interaction
is considered, we can define supplementary definitions of mediation effects and,
hence, obtain different decomposition of the total effect. In § 3.2, we choose to
measure indirect effects comparing two hypothetical worlds: one were the mediator
arises naturally if all subject have been set to exposed and one were the mediator
arises naturally if all subject have been set to unexposed, both were the exposure
has been set to one. A different way to define the indirect effect would be setting
all subject to be unexposed.

Robins and Greenland defined this new effect as the “Pure Natural Indirect
Effect”:

PNIE = E[Y (0,M(1))]− E[Y (0,M(0))] (3.32)

Thus, exactly as we did in § 3.2, they defined the “Total Natural Direct Effect”
as
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TNDE = TCE − PNIE = E[Y (1,M(1))]− E[Y (0,M(1))], (3.33)

where we are comparing two hypothetical worlds: one were all subject have been
exposed and one where all subject have been unexposed, both with the mediator
set to the value that would have take if all subject have been set to exposed. In the
light of this considerations, the terms “total” or “pure” are referred to the different
decomposition of direct and indirect effects. According to VanderWeele (2013) in
[79], this different terminology arises on how the interaction was accounted for.

VanderWeele (2013) in [79] suggests a three-way decomposition of the total
effect into a purely direct effect, a purely indirect effect and a third effect called
“mediated interactive effect”:

TCE = PNDE + PNIE +E[Y (1,M(1)) − Y (1,M(0)) − Y (0,M(1)) + Y (0,M(0))] E[M(1)−M(0)] (3.34)

such that

TNDE = PNDE +E[Y (1,M(1)) − Y (1,M(0)) − Y (0,M(1)) + Y (0,M(0))]E[M(1) −M(0)]

TNIE = PNIE +E[Y (1,M(1)) − Y (1,M(0)) − Y (0,M(1)) + Y (0,M(0))]E[M(1) −M(0)].

Accounting for the mediated interactive effect in the indirect effect will lead to
the usual decomposition of TCE = TNIE + PNDE.

In terms of conditional relative risks we have

PNIEc =
E[Y (0,M(1))|C = c]

E[Y (0,M(0))|C = c]

TNDEc =
TCE

PNIE
=

E[Y (1,M(1))|C = c]

E[Y (0,M(1))|C = c]
.

VanderWeele suggested a three-way additive decomposition of the total effect
(in terms of conditional excess relative risk) into a purely direct excess, a purely
indirect excess and a measure of “mediated excess relative risk due to interaction”:

TCEc − 1 = (PNDEc − 1) + (PNIEc − 1) +RERImediated (3.35)

where

RERImediated =
E[Y (1,M(1))|c]

E[Y (0,M(0))|c]
−

E[Y (1,M(0))|c]

E[Y (0,M(0))|c]
−

E[Y (0,M(1))|c]

E[Y (0,M(0))|c]
+ 1.

(3.36)
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Equation (3.35) consents to evaluate the proportion of causal effect attributable
to the direct effect, a proportion of causal effect attributable to the indirect effect
and a quantity attributable to the mediated interaction.

In terms of conditional risk ratio (multiplicative scale) we have found

TCEc = PNDEc · PNIEc ·Kc (3.37)

where

Kc =
TNDEc

PNDEc
=

TNIEc

PNIEc
=

RR11

RR10 · RR01
(3.38)

and RRij = E[Y (i,M(j))|c]/E[Y (0,M(0))|c]. The term K is a measure of the
interaction in a multiplicative scale defined as the amount to which the effect of
exposure and mediator together, exceeds the effect of each considered individually
(Chapter 15 and 18 in [63]). Identifiability of PNIE and TNDE requires the same
assumptions as for PNDE and TNIE.

3.2.5 G-Computation in Mediation

Equation (3.15) correspond, in mediation analysis, to the standardization formula
defined in (1.11) for the simple case of an exposure on the outcome. Pearl in
[53, 50] called the first equation with the name of mediation formula. It additionally
requires integrating over M to obtain direct and indirect effects. In the next
section we will face a real mediation problem by using two different methods:
g-computation and a counterfactual regression based approach. In the first scenario,
we estimated mediation effects using the fully parametric implementation of Pearl’s
mediation formula which is performed in the gformula command implemented in
Stata 13 [12]. Instead of integrating analytically over M , in this package, the
gformula procedure estimates causal effects by the g-computation procedure using
Monte Carlo Simulations [60].

3.3 Counterfactual vs linear SEM

The two approach described above, of Counterfactual causal inference and Path
Analysis, aim both to measure causal effects but have some important differences.

SEM approach is more intuitive and requires only our knowledge of regres-
sion models. However, its estimands can be defined only for simple models
which are linear in the parameters. In fact, Sewall’s idea to multiply consecutive
pathways and sum over them, cannot be applied in presence of non-linearities
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and interactions. Furthermore, they are model based definitions and require a
correct specification of parameters. On the other hand, the counterfactual approach
requires the specification of a new type of variables, the Potential variables, that
are not completely observable and sometimes difficult to understand. Furthermore,
mediation counterfactual effects can be estimated if and only if some un-testable
assumptions are met. These issues are some of the reasons why, the Counterfactual
approach, is highly criticized in the literature. However, these assumptions are not
so different from SEM’s conditions: first the models have to be correctly specified
and second, all possible variables have to be measured to properly interpret the
parameters. In addition, the counterfactual approach leads to model free definition
that can be applied to any type of variable.

Despite these differences, they both aim to the same target and, in simple
situations, they produce the same results.

Let us consider the associational relation represented in the DAG in Figure 3.3 for
which we can define the following linear models:

M = β0 + βxX + βcC + ǫm

Y = θ0 + θxX + θmM + θcC + ǫy.

See [43] for more general situations. The SEM approach identifies θx + βxθm as
the total effect of X on Y composed by a pure direct effect θx and an indirect effect
βxθm.
Applying the counterfactual definitions to the model above we have, for category C:

CDE(x, x̃,m) = E[Y (x,m)]− E[Y (x̃,m)] =

=
∑

c

{E(Y |X = x,C = c,M = m)− E(Y |X = x̃, C = c,M = m)} P (C = c)

=
∑

c

{[θ0 + θxx+ θmm+ θcc]− [θ0 + θxx̃+ θmm+ θcc]} P (C = c)

=
∑

c

θx(x − x̃) P (C = c)

= θx(x− x̃)
∑

c

P (C = c)

= θx(x− x̃)

where we can directly estimate the CDE because the variables in Figure 3.3
satisfy CE(a) and CE(b). Even for direct and indirect effects, the DAG in Figure 3.3
satisfies every CE assumption required for estimation:

PNDE(x, x̃) = E[Y (x,M(x̃))]− E[Y (x̃,M(x̃))] =



64 CHAPTER 3. MEDIATION AS EOC: METHODS AND HISTORICAL BACKGROUND

=
∑

c

∫

m

{E(Y |X = x,C = c,M = m)− E(Y |X = x̃, C = c,M = m)}

fM (m|X = x̃, C = c) dm P (C = c)

=
∑

c

∫

m

[(θ0 + θxx+ θmm+ θcc)− (θ0 + θxx̃+ θmm+ θcc)]

fM (m|X = x̃, C = c) dm P (C = c)

= θx(x− x̃)
∑

c

∫

m

fM (m|X = x̃, C = c) dm P (C = c)

= θx(x− x̃)

where, for continuous mediator, we replaced the sum with an integral over M
and P (M = m|X = x̃, C = c) with fM(m|X = x̃, C = c). Then, in the case of no
interaction between exposure and mediator on the outcome, the CDE is equal to
the PNDE.

For the natural indirect effect we have:

NIE(x, x̃) = E[Y (x,M(x))] − E[Y (x,M(x̃))] =

=
∑

c

∫

m

E(Y |X = x,M = m,C = c){fM (m|X = x,C = c)− fM (m|X = x̃, C = c)}dm P (c)

=
∑

c

∫

m

(θ0 + θxx+ θmm+ θcc) {fM (m|X = x,C = c)− fM (m|X = x̃, C = c)} dm P (c)

= θm
∑

c

∫

m

m{fM (m|X = x,C = c)− fM (m|X = x̃, C = c)} dm P (c)

= θm
∑

c

{E(M |X = x,C = c)− E(M |X = x̃, C = c)} P (c)

= θm
∑

c

[(β0 + βxx+ βcc)− (β0 + βxx̃+ βcc)] P (c)

= θmβx(x − x̃)

where P (c) = P (C = c). Thus the Total Causal Effect will be simply the sum
θx + θmβx exactly as the SEM approach.



Chapter 4

Mediation as EoC: applications to
real problems

Questions on the effects of observed causes, named “EoC”, identify much of classical
statistical design and analysis as, for example, randomized clinical trials. A typical
EoC question, regarding the Example 2.0.1, could be: “What would happen to Ann
if she were to take the drug?” or “What would happen to Ann if she were not to
take the drug?”. To a population level a EoC question will be “Is death effectively
caused by the drug?”. EoC queries are usually involved in Epidemiology where we
want to assess the effect of a relevant treatment on a outcome or a disease. Perfect
randomized Clinical Trials (if there are no issues of measurement error or loss to
follow up and if they are double bind) are the best tools to infer causation for EoC
queries. Patients enrolled in a Clinical Trial are considered exchangeable in respect
to the treatment.

In section § 2 we illustrated EoC questions as merely decision problem: we
can compare the distribution of Y in subject exposed and non exposed to the
treatment and take the associated decision. However, the situation is much more
complex when dealing with real life situations. Even if in § 2.2 we assigned the
counterfactual-based approach to CoE questions, counterfactual-based definition
such as § 3.2 are naturally build for EoC queries.

In this chapter we will measure mediation effects for EoC queries using the
methods defined in § 3.2. Furthermore we will discuss the problems arising from
the interpretability of these measures.

4.0.1 NINFEA dataset

In this thesis we investigate two potential mediating mechanisms using data from
a birth cohort called Ninfea [58]. Ninfea is an Italian web-based birth cohort of
6445 pregnant women. This study started in 2005 in Turin and was successively
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extended to the rest of the country from December 2007. The main goal of the
project is to investigate the effects of several pre-natal and post-natal exposures on
later life events collecting a range of information: demographics about both parents
and child, some maternal disease before and after pregnancy, occupational factors
and some other prenatal and postnatal exposures.
Recruitment begins voluntarily during pregnancy with a first web administered ques-
tionnaire [1], with other follow up questionnaires planned at 6 and 18 months after
delivery and when the children are 4 and 7 years old.
The eligibility criteria are to know the Italian language, have access to the Internet
and know about the study([55, 56]).

4.1 Conditioning on a mediator

In § 1.2 we made aware the reader on selecting the appropriate set of covariates to
adjust for. In subsection 1.2 we saw that, adjusting for a collider in the presence
of uncontrolled confounding will open a non-causal path from exposure to outcome,
biasing the resulting estimated causal effect. When discussing mediation we have
to be very careful in order to avoid this type of bias. In fact, as we saw in § 3.2,
identifying mediation effects usually requires to condition on covariates (to obtain
total effects) and mediator (to obtain direct and indirect effects).

X Y

M

C

(a)

X Y

M

C

(b)

Figure 4.1: DAG illustrating a Mediation Mechanism affected by mediator-outcome
confounding (a) with a spurious path arising from conditioning on M

Let us consider the DAG in Figure 4.1 where the variable C is a confounder of
the mediator-outcome relation. In this DAG we can see that, conditioning on the
mediator M , will open a spurious path from the confounder C to the exposure that
could however be blocked by conditioning on C (in the model for Y that includes
M). Problems arise when the covariate C is unmeasured and we cannot condition
on it. When designing a study, the gold standard should be to draw a DAG
with all possible confounders of the exposure-mediator, exposure-outcome and
mediator-outcome relationships and include them in the data collection. However,
there are latent phenomena which cannot be measured or identified.
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One of the most recognized problem due to unmeasured confounding is the
one arising when Birth Weight partially mediates the effect of a prenatal exposure
on some outcomes. Hernndez-Diaz et al. (2006) in [28] discuss that, conditioning
on birth weight, could lead to paradoxical results. They examined how infants
born to smokers have higher risk of LBW (less than 2500g) and infant mortality
than infants born to non-smokers, but in the LBW stratum maternal smoking
appears not to be harmful for infant mortality relatively to non-smoking. When
studying neonatal Epidemiology, birth weight is often considered as a strong
predictor of infant mortality. Hernndez-Diaz et al. justify this choice because birth
weight is one of the most collected hospital data and researchers often stratify on
birth weight. They argue that this stratification is responsible of a crossover of
the birth-weight-specific mortality curves. This phenomenon, known as the Birth
Weight paradox, has been explained as a consequence of the presence of unmeasured
confounding between birth weight and infant mortality.

VanderWeele (2012) in [81] proposes birth defects, which were not controlled
for in [28], as the latent risk factor of both birth weight and infant mortality
capable of explaining this apparent paradox. In fact, for smoking mothers with
LBW children, LBW can be a consequence of both smoking or birth defects. On
the other hand, LBW infants born from non smoking mothers should be affected by
some other causes because LBW cannot be a reaction of smoking. Results obtained
without controlling for birth defects will be biased.

Moreover, these paradoxical results are not limited to the effect of smoking
on mortality. In fact, any mediation mechanism affected by unmeasured mediator-
outcome confounder might produce similar problems.
The easiest solution would be to not condition on the mediator. However, if the
goal is to measure mediation effects, we can not avoid it.

4.1.1 How to deal with the paradox

VanderWeele et al. (2012) in [81] proposed three different approaches to deal with
this phenomenon. They are: conditioning on the estimated risk of being LBW
instead of the mediator itself, conditioning on the mediator with sensitivity analysis
and conditioning on the principal stratum. In this thesis we will focus only on
the first two approaches. In particular, in the subsection 4.1.1 we will describe
the first approach which consists in conditioning on the estimated risk of being
LBW. It will be described here because it can be applied to both rare and regular
outcome. The second approach is defined for rare outcomes and will be described
in subsection 4.2.3. The third approach, conditioning on the principal stratum,
involves assessing the effect of the exposure on the outcome among the subpopulation
for whom the intermediate would be present irrespective of exposure status [81].
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Given the aims of this thesis, that is assessing mediation analysis in a counterfactual
framework, we will not further describe this method.

Conditioning on the Risk of an Intermediate

The first approach proposed by VanderWeele consists of conditioning on the esti-
mated risk of being LBW predicted by baseline covariates denoted by C and media-
tor determinants Det as described in figure Figure 4.2. With mediator determinants
we mean any factor or variable that can affect the frequency of the mediator. In
fact, these variables can predict the mediator and can be used as proxy of a latent
construct.

X Y

M

C Det

Figure 4.2: DAG illustrating a Mediation Mechanism including confounders and
mediator determinants

VanderWeele suggested to predict individuals probabilities by the following lo-
gistic model for M

logit[P (M = 1|C = c,Det = d)] = γ0 + γ′
1c+ γ′

2d.

The above model is then estimated by maximum likelihood and the parameters
{γ̂0, γ̂

′
1, γ̂

′
2} are used to calculate the predicted probabilities of being LBW ∀ c, d.

He then defined a new variable H such that H = 1 for children who have predicted
probabilities (of being LBW) above the 95th percentile, and zero otherwise:

H =

{

1 if logit−1(γ̂0 + γ̂′
1c+ γ̂′

2d) ≥ 0.95
0 otherwise

(4.1)

Other cutoff can be used for different targets. He noticed that these new variable
H is a function only of baseline covariates and mediator’s determinants. Condition-
ing on it, does not imply conditioning on the mediator and hence generating collider
bias. To assess whether the exposure is protective or harmful among the group of
infants who have a high risk to be LBW, a logistic regression model can be fitted for
the outcome on the exposure X , high risk status H , confounding variables C and
an interaction term XH :

logit[P (Y = 1|x, h, c)] = λ0 + λ1x+ λ2h + λ3xh + λ′
4c (4.2)
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Then eλ1 will be the odds ratio for the outcome comparing exposed and
unexposed low risk infants while eλ1+λ3 the odds ratio for the outcome comparing
exposed and unexposed high risk infants.

However, by this approach, we will not be able to estimate direct and indi-
rect effects. In fact, the above measure are only estimates of the total effect of the
exposure on the outcome for children at high and low risk to be LBW. Furthermore,
this methods is highly affected by the choice of conditioning variables because a
set of covariates with bigger predictive power will produce different results. In
addition, if the mediator is rare, he noticed that “these measure may not be an
accurate reflection of the effect of the exposure for whom the intermediate will in
fact develop”.

4.2 Rare Outcome

It has long been recognized that several factors can influence the presence of
asthma in childhood such as environmental, genetic or demographic factors. Neil
Pearce et al. (1998) in [46] described methods for measuring some of the major risk
factors for asthma including parity or birth order. Shaw et al. (1994) [67] showed,
in Kawerau children aged 8-13 years, a protective effect on current wheeze in those
with older children living in the same house (for 2 or more older children in the same
household, OR = 0.5, 95% CI 0.2-1.0). However is not common to find studies on
the possible causal relation of birth order on asthma in earlier childhood. One way
to evaluate when such a risk factor is causal is to identify all possible mechanisms
that take place in and around this relation. A particular role is played by Birth
Weight that should be always considered as a fundamental mechanism between
birth order on asthma. In fact, in this causal relation, birth weight usually plays the
role of mediator because it disentangles the pathway between exposure and outcome.

In the next sections we will describe the dataset and the variables included
the final DAG considered. Then, after partitioning the causal effect in a purely
direct effect from parity to recurrent wheezing and an indirect effect via birth
weight, we evaluate the compatibility of these results with the phenomenon of the
Birth Weight paradox. Furthermore we provide a plausible graphical explanation
and explore the magnitude of the potential bias with ad hoc sensitivity analysis.

Dataset description

To discuss the presence of such paradox we used the Italian NINFEA web-based
birth cohort described in § 4.0.1.

Asthma is a common disorder characterized by a various range of symptoms
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High Parity Rec. Wheezing/Astma

LBW

Mat Age Smoking
Gest. age

Child’s Year

Mat. Asthma

Figure 4.3: DAG representing the relational assumptions between high parity (≥1),
low birth weight (<2500g), recurrent wheezing or asthma up to 18 months, potential
confounders: child’s year of birth , maternal age, gestational age and maternal
smoking. Maternal asthma was considered as a risk factor for childhood asthma

such as wheezing, chest tightness, dyspnea, and/or cough. In this section we
considered recurrent wheezing up to 18 months or asthma (diagnosed by doctor)
as an appropriate outcome for childhood asthma. The outcome was defined as
recurrent wheezing (at least two episodes) or asthma up to 18 months of age. The
exposure was parity dichotomized to be zero for first child and one otherwise and
the mediator was birth weight dichotomized to be one for low birth weight infants
(birth weight less than 2500g) zero otherwise.
In order to adjust for confounding we selected a set of potential baseline variables
for the exposure-mediator, mediator-outcome and exposure-outcome associations.
These are maternal age as exposure-mediator confounder centered at 33 years old.
Child’s year of birth was considered as an exposure-outcome confounder (centered
at 2009) as proxy of the specific year’s situation such as pollution, economics etc..

There is not information about a causal relationship among parity and gesta-
tional age but significative associations are well documented [25]. This led us to
consider gestational age as a baseline mediator-outcome confounder, centered at
37 weeks to consider term and preterm infants. We further consider smoking as
a mediator-outcome confounder. Furthermore, it is well established that maternal
asthma status is significantly associated with childhood asthma [45]. To take into
account this association we considered maternal asthma as a risk factor for recurrent
wheezing and estimating a crude Odds Ratio of 1.64 (CI 95% 1.03-2.61). All these
decisions led to the final DAG represented in Figure 4.3.

Among the 4124 children participating to NINFEA (at May 2013) we selected
3392 children with complete records (regarding exposure, outcome, mediator and
covariates): 75,47% were first born while 4.70% were under weight (<2500g). The
prevalence of recurrent wheezing or asthma in the dataset was very low (5.48%).
Demographic information for this sample are encoded in Table 4.1.
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Birth Weight Parity
Overall < 2500gr ≥ 2500gr 1◦ Child 2◦ or more
(n=3392) (n=160) (n=3232) (n=2560) (n=832)
No. (%) No. (%) No. (%) No. (%) No. (%)

Rec. Wheezing
or Asthma
Yes 186(5.48) 12(7.5) 174(5.38) 99(3.87) 87(10.46)
No 3206(94.52) 148(92.50) 3058(94.62) 2461(96.13) 745(89.54)

Child Year
of Birth
2005-2006 437(12.88) 21(13.13) 416(12.87) 345(13.48) 92(11.06)
2007-2008 879(25.91) 43(26.88) 836(25.87) 691(26.99) 188(22.60)
2009-2010 987(29.10) 43(26.88) 944(29.21) 743(29.02) 244(29.33)
2011-2012 1089(32.10) 53(33.13) 1036(32.05) 781(30.51) 308(37.02)

Smoke
Yes 263(7.75) 10(6.25) 253(7.83) 222(8.67) 41(4.93)
No 3129(92.25) 150(93.75) 2979(92.17) 2338(91.33) 791(95.07)

Gestational age
(weeks)
19-23 12(0.35) 2(1.25) 10(0.31) 8 (0.31) 4(0.48)
24-28 11(0.32) 2(1.25) 9(0.28) 7(0.27) 4(0.48)
29-33 28(0.83) 15(9.38) 13(0.40) 21(0.82) 7(0.84)
34-38 602(17.75) 92(57.50) 510(15.78) 428(16.72) 174(20.91)
39-43 2737(80.69) 49(30.63) 2688(83.17) 2095(81.84) 642(77.16)
>43 2(0.06) 0(0.00) 2(0.06) 1(0.04) 1(0.12)

Maternal age
(years)
<20 4(0.12) 1(0.63) 3(0.09) 4(0.16) 0(0.00)
20-24 82(2.42) 3(1.88) 79(2.44) 73(2.85) 9(1.08)
25-29 595(17.54) 23(14.37) 572(17.70) 521(20.35) 74(8.89)
30-34 1503(44.31) 66(41.25) 1437(44.46) 1180(46.09) 323(38.82)
35-39 1004(29.60) 55(34.38) 946(29.36) 653(25.51) 351(42.19)
40-44 198(5.84) 12(7.50) 186(5.75) 123(4.80) 75(9.01)
>44 6(0.18) 0(0.00) 6(0.19) 6(0.23) 0(0.00)

Table 4.1: Distribution of recurrent wheezing or asthma, child year of birth, smoke,
maternal age at birth and gestational age by birth weight and parity in the NINFEA
sample
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4.2.1 Methods

To study the effect of high parity on recurrent wheezing or asthma when low birth
weight plays the role of mediator we used the Mediation analysis approach in the
counterfactual framework defined in § 3.2. Let us denote X the exposure high parity,
Y the outcome regarding the occurrence of recurrent wheezing or asthma and M
the mediator LBW. With c1 we meant maternal age, with C2 we meant gestational
age and smoking and with C3 we meant child’s year of birth. With A we meant
maternal asthma. Given that the outcome considered was binary, we could choose
between different scales of effect measures subsection 3.2.3. In the following we will
use risk ratios. One way to measure these conditional mediation effects consists in
estimating a regression model for every endogenous variable in the DAG [2]. For
example, for the DAG in Figure 4.3 we have the following associational models:

logit P (M = 1|x, c1, c2) = β0 + βxx+ β1c1 + β ′
2c2 (4.3)

logit P (Y = 1|x,m, c2, c3, a) = θ0 + θxx+ θmm+ θxmxm+ θ′2c2 + θ3c3 + θ4a (4.4)

If the outcome is rare in all strata of exposure, mediator and confounders, then
risk ratios approximate odds ratios [81, 78]. If the models above are correctly spec-
ified and the assumptions stated in § 3.2 hold, we can identify the CDEs from the
data as

CDEc(m) =
P (Y = 1|X = 1,M = m, c2, c3, a)

P (Y = 1|X = 0,M = m, sc2, c3, a)

=
e θ0+θx+θmm+θxmm+θ′2c2+θ3c3+θ4a

1 + e θ0+θx+θmm+θxmm+θ′2c2+θ3c3+θ4a
·
1 + e θ0+θmm++θ′2c2+θ3c3+θ4a

e θ0+θmm+θ′2c2+θ3c3+θ4a

∼=
e θ0+θx+θmm+θxmm+θ′2c2+θ3c3+θ4a

e θ0+θmm+θ′2c2+θ3c3+θ4a

= e θx+θxmm. (4.5)

Assuming a rare outcome [2], the above identification is obtained adopting the
following approximation

e θ0+θx+θmm+θxmm+θ′2c2+θ3c3+θ4a

1 + e θ0+θx+θmm+θ′2c2+θ3c3+θ4a
∼= e θ0+θx+θmm+θxmm+θ′2c2+θ3c3+θ4a.

For simplicity of notation, hereafter, we will denote
P (Y = y|X = x,M = m,C2 = c2, C3 = c3, A = a) as P (Y = y|x,m, c2, c3, a) and
P (M = m|X = x, C1 = c1,C2 = c2) as P (M = m|x, c1, c2). Under the direct and
indirect identifiability assumptions and assuming a rare outcome, we can identify
the PNDE and the TNIE as
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PNDEc =

∑

m P (Y = 1|1,m, c2, c3, a) P (M = m|0, c1, c2)
∑

m P (Y = 1|0,m, c2, c3, a) P (M = m|0, c1, c2)

=

∑

m
e θ0+θx+θmm+θxmm+θ′

2c2+θ3c3+θ4a

1 + e θ0+θx+θmm+θxmm+θ′

2c2+θ3c3+θ4a
P (M = m|0, c1, c2)

∑

m
e θ0+θmm+θ′

2c2+θ3c3+θ4a

1 + e θ0+θmm+θ′

2c2+θ3c3+θ4a
P (M = m|0, c1, c2)

∼=

∑

m e θ0+θx+θmm+θxmm+θ′

2c2+θ3c3+θ4a P (M = m|0, c1, c2)
∑

m e θ0+θmm+θ′

2
c2+θ3c3+θ4a P (M = m|0, c1, c2)

=
e θ0+θx+θ′

2c2+θ3c3+θ4a P (M = 0|0, c1, c2) + e θ0+θx+θm+θxm+θ′

2c2+θ3c3+θ4a P (M = 1|0, c1, c2)

e θ0+θ′

2
c2+θ3c3+θ4a P (M = 0|0, c1, c2) + e θ0+θm+θ′

2
c2+θ3c3+θ4a P (M = 1|0, c1, c2)

=
e θ0+θx+θ′

2c2+θ3c3+θ4a 1

1+e β0+β1c1+β′

2
c2

+ e θ0+θx+θm+θxm+θ′

2c2+θ3c3+θ4a e β0+β1c1+β′

2
c2

1+e β1c1+β′

2
c2

e θ0+θ′

2
c2+θ3c3+θ4a 1

1+e
β0+β1c1+β′

2
c2

+ e θ0+θm+θ′

2
c2+θ3c3+θ4a e

β0+β1c1+β′

2
c2

1+e
β0+β1c1+β′

2
c2

=
e θ0+θx+θ′

2c2+θ3c3+θ4a + e θ0+θx+θm+θxm+θ′

2c2+θ3c3+θ4a e β0+β1c1+β′

2c2

e θ0+θ′

2
c2+θ3c3+θ4a + e θ0+θm+θ′

2
c2+θ3c3+θ4a e β0+β1c1+β′

2
c2

= e θx
1 + e θm+θxm+β0+β1c1+β′

2c2

1 + e θm+β0+β1c1+β′

2
c2

(4.6)

and

TNIEc =

∑

m P (Y = 1|1,m, c2, c3, a)P (M = m|1, c1, c2)
∑

m P (Y = 1|1,m, c2, c3, a)P (M = m|0, c1, c2)

=

∑

m
e θ0+θx+θmm+θxmm+θ′

2c2+θ3c3+θ4a

1 + e θ0+θx+θmm+θxmm+θ′

2c2+θ3c3+θ4a
P (M = m|1, c1, c2)

∑

m
e θ0+θx+θmm+θxmm+θ′

2c2+θ3c3+θ4a

1 + e θ0+θx+θmm+θxmm+θ′

2c2+θ3c3+θ4a
P (M = m|0, c1, c2)

∼=

∑

m e θ0+θx+θmm+θxmm+θ′

2c2+θ3c3+θ4a P (M = m|1, c1, c2)
∑

m e θ0+θx+θmm+θxmm+θ′

2
c2+θ3c3+θ4a P (M = m|0, c1, c2)

=

1

1+e
β0+βx+β1c1+β′

2
c2

+ e θm+θxm e β0+βx+β1c1+β′

2
c2

1+e
β0+βx+β1c1+β′

2
c2

1

1+e
β0+β1c1+β′

2
c2

+ e θm+θxm e
β0+β1c1+β′

2
c2

1+e
β0+β1c1+β′

2
c2

=
1 + e β0+β1c1+β′

2c2

1 + e β0+βx+β1c1+β′

2
c2
·
1 + e θm+θxm+β0+βx+β1c1+β′

2c2

1 + e θm+θxm+β0+β1c1+β′

2
c2

(4.7)

When the interaction term θxm is zero, the Pure natural direct effect will be
equal to the controlled direct effect

CDEc(m) = e θx
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PNDEc = e θx
1 + e θm+β0+β1c1+β′

2c2

1 + e θm+β0+β1c1+β′
2c2

= e θx

as we intuitively described in subsection 3.2.2.

4.2.2 Mediated interactive effect

In this section we will identify the alternative mediation effects defined in § 4.2.2
for the DAG in Figure 4.3. Let us suppose that the identifiability assumptions for
natural effects are verified and that the models (4.3) and (4.4) are correctly specified,
for the three-way decomposition in (3.37) we calculated:

TNDEc =

∑

m P (Y = 1|1,m, c2, c3, a) P (M = m|1, c1, c2)
∑

m P (Y = 1|0,m, c2, c3, a) P (M = m|1, c1, c2)

∼=

∑

m e θ0+θx+θmm+θxmm+θ′

2c2+θ3c3+θ4a P (M = m|1, c1, c2)
∑

m e θ0+θmm+θ′

2
c2+θ3c3+θ4a P (M = m|1, c1, c2)

=
e θ0+θx+θ′

2c2+θ3c3+θ4a 1

1+e
β0+βx+β1c1+β′

2
c2

+ e θ0+θx+θm+θxm+θ′
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2
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2
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2c2

e θ0+θ′

2
c2+θ3c3+θ4a + e θ0+θm+θ′

2
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2
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= e θx
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2
c2

(4.8)

and

PNIEc =

∑

m P (Y = 1|0,m, c2, c3, a)P (M = m|1, c1, c2)
∑

m P (Y = 1|0,m, c2, c3, a)P (M = m|0, c1, c2)

∼=
e θ0+θ′

2c2+θ3c3+θ4a 1

1+e
β0+βx+β1c1+β′

2
c2

+ e θ0+θm+θ′

2c2+θ3c3+θ4a e β0+βx+β1c1+β′

2
c2

1+e
β0+βx+β1c1+β′

2
c2

e θ0+θ′

2
c2+θ3c3+θ4a 1

1+e β0+β1c1+β′

2
c2

+ e θ0+θm+θ′

2
c2+θ3c3+θ4a e β0+β1c1+β′

2
c2

1+e β0+β1c1+β′

2
c2

=
1 + e β0+β1c1+β′

2c2

1 + e β0+βx+β1c1+β′

2
c2
·
1 + e θm+β0+βx+β1c1+β′

2c2

1 + e θm+β0+β1c1+β′

2
c2

. (4.9)

The term K, measure of interaction in a multiplicative scale, will then be:

Kc =
TNDEc

PNDEc
=

1 + e θm+θxm+β0+βxβ1c1+β′
2c2

1 + e θm+θxm+β0+β1c1+β′
2c2
·

1 + e θm+β0+β1c1+β′
2c2

1 + e θm+β0+βx+β1c1+β′
2c2

(4.10)
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4.2.3 Results

The estimated odds ratio relating recurrent wheezing or asthma to high parity ad-
justed for maternal age, gestational age, maternal smoking, maternal asthma and
child’s year of birth was 3.22 (CI 95% 2.35-4.40). The estimated odds ratio for re-
current wheezing or asthma on low birth weight adjusted for parity, maternal age,
gestage and smoking was 1.38 (CI 95% 0.72-2.64). On the other hand the estimated
adjusted odds ratio (adjusted for maternal age) relating low birth weight on high
parity was 0.59 (CI 95% 0.39-0.90).

Figure 4.4: Estimated percentages of recurrent wheezing or asthma by birth weight
(700g categories) and parity, NINFEA sample Italy May 2013.

Figure 4.4 represents a graphical intersection between birth weight and high
parity on wheezing in the NINFEA sample: for very low birth weight children, the
outcome’s proportion (estimated by a polynomial regression model) of high parity
is smaller than for first born children.

OR (95% CI)
Normal Birth Weight (95.3%) 3.44 (2.49-4.76)
Low Birth Weight (4.7%) 1.06 (0.22-5.21)
p-value for interaction 0.154

Table 4.2: Estimated adjusted Odds Ratios of wheezing on high parity by birth
weight category

Adjusted odds ratio of recurrent wheezing or asthma for high parity stratified
by LBW are reported in Table 4.2. Interaction between high parity and low birth
weight was also considered to take in account the evidence presented in Figure 4.4.
Given that the general harmful association of high parity on recurrent wheezing
or asthma, adjusted for confounders was 3.22 (CI 95% 2.35-4.40), the results in
Table 4.6 point towards an harmful association just in the normal birth weight
group. As stressed by VanderWeele et al. (2012) in [81], even if not significant,
this apparent paradoxical difference can be interpreted as evidence of interaction
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Estimate (95% CI)
CDEc(0) 3.32 (2.43-4.53)
CDEc(1) 1.02 (0.27-3.68)
PNDEc 3.11 (2.26-4.17)
TNIEc 1.01 (0.98-1.03)
TCEc 3.14 (2.28-4.2)

Table 4.3: Mediation effects estimates for a mean individual (a child born in 2009
of 39 gestational weeks from a 33 years old mother non smoker and non asthmatic)
NINFEA sample May 2013. The effects CDE(0) and CDE(1) refer to controlled
direct effects when birth weight is set to normal birth weight and low birth weight
respectively.

between exposure and mediator which is likely to be a consequence of unmeasured
mediator-outcome confounding.

Partitioning the causal effect

In order to estimate mediation effects defined in § 4.2.1 we used the approximate
analytical formulas of Ananth and VanderWeele (2011) applied to the framework of
logistic regression when the outcome is rare [2]. The conditional mediation effects
defined in the method section are referred to a mean individual that is a child born
in 2009 of 39 gestational weeks from a 33 years old mother non smoker and non
asthmatic.
The mediation effects defined in § 4.2.1 are estimated for the NINFEA sample by
maximum likelihood estimation from the models for M and Y defined in (4.3) and
(4.4). The relevant estimates were then inserted in the formulas (3.28)-(3.31). Stan-
dard errors were obtained via 10000 bootstrap sampling using the bias-corrected
methods since there was evidence of non-normality. Results are displayed in Ta-
ble 4.3.

According to Table 4.3, there is evidence of an harmful causal association of
parity on recurrent wheezing or asthma with a risk ratio of being born as second
or more child equal to 3.14 (CI 95% 2.28-4.2). The total effect is almost entirely
attributed to the direct path, while the total natural indirect effect shows no
mediated effect via birth weight with TNIE = 1.01 (CI 95% 0.98-1.03). From
CDEs, setting each child to be normal birth weight, the direct effect of parity on
recurrent wheezing or asthma will be strong and significant. On the other hand,
setting each child to be low birth weight and hence, more at risk, the exposure does
not seem associated directly with the outcome: the exposure seems to act as a risk
factor just in the normal birth weight intervention group, what is meant to be the
least at risk. Moreover, the results shown in Table 4.3, point towards evidence of no
indirect effect form the exposure to the outcome thorough the mediator. However,
an indirect effect different from one is not required for the birth weight paradox to
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Estimate (95% CI)
TNDEc 3.22 (2.32;4.26)
PNIEc 0.98 (0.92;1.00)
Kc 1.04 (1.00;1.11)

Table 4.4: Estimation of the causal interaction between high parity and LBW on
recurrent wheezing or asthma and mediation effects estimates accounting for a me-
diated interactive effect as part of the direct effect.

arise. In fact, Hernndez-Diaz et al. (2006) in [28], exhibit different scenarios able
to exhibit these odd results. One of these is a situation where no indirect effect is
present, i.e. no arrow from the mediator to the outcome. In this dissertation we will
describe situations where the unmeasured confounding, capable of producing these
paradoxical results, might be also responsible for the indirect effect to disappear.

Another plausible explanation might be the way in which the interaction was
accounted for. In order to test this hypothesis we also decomposed the TCE as
in Equation (3.37). According to Table 4.4, there is not evidence to support this
hypothesis: not accounting for interaction in the indirect effect does not affect the
meaning of the PNIE which remains not significantly different from one.

VanderWeele’s approaches to the paradox

This practice of considering birth weight as a mediator in the causal pathway
between two variables has come under critique by various authors because it
often produces paradoxical results such as in Table 4.2 and Table 4.3. In § 4.1 we
discussed one method proposed by VanderWeele that might be capable of dealing
with this phenomenon. In this section we will apply this method to the NINFEA
dataset for the case of a rare outcome.

According to statistical (backward stepwise selection) and biological associa-
tion we selected the following set of low birth weight’s determinants (DET ):
foreign status, child’s sex, maternal eclampsia, maternal height and weight (before
pregnancy), maternal hay fever and finally maternal hypertension or preeclampsia
before or during pregnancy. The variable foreign status was coded as zero if the
country of delivery corresponded to maternal country, one otherwise. In Table 4.5
we reported the regression estimated parameters of the logistic model for LBW on
determinants DETs and confounders maternal age, smoking status and gestational
age.

The first approach proposed by VanderWeele consists of conditioning on the
estimated risk of being LBW predicted by the baseline covariates and mediator’s
determinants reported in Table 4.5. After fitting the model for M , we predicted the
probabilities of being low-birth-weight for every child in the study. Using a cut-point
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Variable OR 95% CI
Foreign status 1.98 0.94− 4.16
Sex (female) 1.96 1.37− 2.81
Eclampsia 2.58 1.15− 5.8
Height (cm) 0.95 0.93− 0.98
Weight (kg) 0.98 0.96− 1.00
Hay fever 0.5 0.26− 0.95
Hypertension/preeclampsia 3.12 1.77− 5.51

PseudoR2 0.1923

Table 4.5: Logistic regression estimated parameters for Low Birth Weight. Foreign
status was coded as zero if the country of delivery corresponded to maternal country,
one otherwise. Sex was coded as 0 for males and 1 for females.

corresponding to its 95th centile, we classified as “at risk of LBW” (denotedH) those
above this cut-point. Among the whole population, we identified 169 infants as high
risk of being LBW where 72% were first born, 36% were under weight and 7.7% were
wheezing. According to subsection 4.1.1, for low risk infants H = 0, the adjusted
odds ratio relating recurrent wheezing or asthma to high parity was 3.26 (CI 95%
2.38-4.47) while, for high-risk-infants (H = 1), we obtained 1.22 (CI 95% 0.35-4.22),
again not statistically different from one. As described in methods, these results are
not affected by collider bias (unlike those reported in Table 4.2). Nevertheless, they
point out the same conclusions. However, as described by VanderWeele, this method
is highly affected by the predictive strength of the model given that another set of
covariates, with bigger predictive power, will produce different results. Furthermore,
by this method, we will not be able to distinguish between direct and indirect effects
which could be done with the second method proposed by VanderWeele.

A possible explanation to the paradox

The previous section supports the presence of unmeasured confounding between
mediator and outcome as an explanation of the apparent no associated effect of
high parity on recurrent wheezing or asthma in the low birth weight group, the
group the should be the most at risk. It has been suggested [81, 28] that this
unmeasured common cause between mediator and outcome might likely be birth
defects or malnutrition. There variables are in fact difficult to measure and analyses
are usually not controlled for them. In the example of maternal smoking as a risk
factor for infant mortality mediated by birth weight, VanderWeele (2012) in [81]
suggests that, for smoker mothers with LBW infants, low birth weight might be a
consequence of either smoking or of a birth defect. For non smoker mothers who
give birth to LBW infants, some other causes have to be present. In fact, if LBW
is not a consequence of the mother’s smoking status, some worst risk factors have
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to operate leading the unmeasured variable U being more common in unexposed
subject. The same concept can be adopted for the causal relation of high parity
on recurrent wheezing or asthma partially mediated by LBW. Overall, high parity
is strongly and harmfully associated with recurrent wheezing or asthma. On the
other hand, stratum specific effects did show an harmful effect only in the group
that should be the less at risk while they are not associated for low birth weight
infants. This can be explained by the presence of an unmeasured variable U , birth
defects or malnutrition, more common in high parous children.

In this subsection we will describe graphically, the relational assumptions be-
tween exposure, outcome, mediator and unmeasured confounder U capable of
masking the indirect effect. The following considerations will apply only if there are
no interactions (between exposure, outcome, mediator and unmeasured confounder)
and if all relational assumptions are linear in the coefficients.

X Y

M

U

+

- +

(a)

X Y

M

U

+

- +

(b)

Figure 4.5: a) DAG figuring the unmeasured confounding U that might affect both
mediator and outcome and the conditional associations found in the NINFEA sam-
ple; b) spurious path opened after conditioning on a collider M and after the po-
tential condition on U

According to the associations found in § 4.2.3, we can draw the conditional
relations encoded in 4.5a that are: high parity is negatively associated with low
birth weight and positively associated with recurrent wheezing or asthma. The
effect of LBW on recurrent wheezing or asthma of 1.38 (expressed as an OR) given
in § 4.2.3, will be biased due to the unmeasured variable U . However, according to
the literature [8][66], low birth weight should be strongly and harmfully associated
with the outcome.

As we previously saw in subsection 1.2, conditioning on the mediator will
open a spurious path from the exposure to the outcome through U . If we could
condition on U , this bias path will be blocked. The indirect effect will then be
negative as given by the hypothetical product of the negative effect of X on M and
the positive effect of M on X (§ 3.1.1).
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Figure 4.6: DAG figuring the spurious path opened after conditioning on a collider
M when: a) U positively affects M and b) U negatively affects M

However in reality, we cannot condition on U and hence, we cannot block this
new pathway arose after conditioning on M . Let us suppose that U is positively
associated with the mediator as shown in 4.6a. From the collider bias rules, condi-
tioning on M will create a positive association between X and U , independently
from the effect of U on Y . We can define the bias affecting the indirect effect as
the positive effect arising from the product of the consecutive pathways effects
X −U → M → Y (given that indirect is considered any pathway that goes through
the mediator). Thus, the positive unbiased indirect effect should be summed to the
negative bias obtained via the spurious pathways X − U → M → Y . To mask the
indirect effect the negative bias should be as big as the unbiased indirect effect is
different from one. Let us suppose that the real effect of LBW on the outcome is
1.5, closer to those obtained in [8][66]. In a hypothetical situation, involving only
linearities and non interaction, the unbiased indirect effect of X on Y should be
closer to 0.89 leading to a bias closer to 0.13.
On the other hand, assuming a negative association between U and M such as in
4.6b, conditioning on M will open a spurious negative path from X to U . The
resulting bias affecting the indirect effect will be again positive as given by the
hypothetical product of the consecutive pathways effects X −U → M → Y . Again,
to mask the indirect effect the bias arising after conditioning on M should be closer
to 0.13. However, by this method, we are not able to distinguish between 4.6a and
4.6b but we can at least investigate on the magnitude of the bias.

It is important to notice that this type of analysis is usual in linear model
but ideally it can also work in logistic models for rare outcomes and mediator with
no interactions between any variable in the model and if all relational assumptions
are linear in the coefficients.
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Sensitivity Analysis: Rare Outcome

Conditioning on the risk of being LBW instead of the mediator itself will lead to
estimate the total effect of the exposure on the outcome for high and low risk infants.
However, if we still wish to estimate direct and indirect effects, conditioning on M
will not be unavoidable. Differently from subsection 4.2.3, here we will not assume
the absence of non-linearities and interactions between any variable in the model.
This section examines the situation in which an unmeasured variable, that affects
both mediator and outcome, may have to affect both of them to invalidate the
qualitative conclusions made on controlled and natural effects. In particular, in
this section we will describe the bias formulas for sensitivity analysis for mediation
effects introduced by VanderWeele in [78, 81]. In the first paper VanderWeele argues
that, the estimates (4.5) to (4.7), will be biased if the assumption of no unmeasured-
confounding between mediator and outcome does not hold. If the outcome is rare
in every strata of exposure X , mediator M , covariates and if we can further assume
that the outcome is rare in every strata of the unmeasured confounder, then we can
define the bias affecting the mediation effects as the ratio between the estimand and
the true effect [78]:

Bias[CDEc(m)] =

P (Y=1|X=1,M=m,C=c)
P (Y=1|X=0,M=m,C=c)

E[Y (1, m)|c]

E[Y (0, m)|c]

Bias[PNDEc] =

∑
m P (Y=1|X=1,M=m,C=c)P (M=m|X=0,C=c)∑
m P (Y=1|X=0,M=m,C=c)P (M=m|X=0,C=c)

E[Y (1,M(0))|c]

E[Y (0,M(0))|c]

Bias[TNIEc] =

∑
m P (Y=1|X=1,M=m,C=c)P (M=m|X=1,C=c)∑

m P (Y=1|X=1,M=m,C=c)P (Y=1|X=1,M=m,C=c)P (M=m|X=0,C=c)

E[Y (1,M(1))|c]

E[Y (1,M(0))|c]

Let U be a binary variable and let us suppose that the effect of U on Y is constant
across strata of X , i.e. P (Y |x,m, c, U = 1)/P (Y |x,m, c, U = 0) = γ. Furthermore,
let us suppose that there is not any other confounder between X and Y except C
and between Y and M except U , then:

Bias[CDEc(m)] =
1 + (γ − 1)P (U = 1|1, m, c)

1 + (γ − 1)P (U = 1|0, m, c)
(4.11)

where we will call pi0m = P (U = 1|0, m, c) = P (U = 1|X = 0,M = m, c) and
pi1m = P (U = 1|1, m, c) = P (U = 1|X = 1,M = m, c). The parameter γ can be
informally interpreted as the direct effect of U on Y . The hypothesis regarding
P (Y |x,m, c, U = 1)/P (Y |x,m, c, U = 0) = γ being constant across strata of X
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would hold if the unmeasured variable U would not interact (on the multiplicative
scale) with the effect of the exposure on the outcome. A further assumption,
already required for natural effect to be identified, is the absence of intermediate
confounding between mediator and outcome affected by exposure.

Once we specify the parameter γ and the hypothetical prevalence of U in
every strata of exposure, mediator and confounders, we can simply obtain an
unbiased estimator for CDE by dividing the potentially confounded estimate in
Table 4.3 by (4.11).

Here we will focus on the following research question: if we could control for
U , what degree of confounding is capable of showing a CDE(1) bigger (or at least
equal) than CDE(0)? And what will be the relative indirect effect?

For example, let us consider a severe confounding scenario where γ = 4 that
is if U = 1 were to conditionally increases the probability of recurrent wheezing
or asthma by a factor of four. The sensitivity analysis was performed setting the
prevalence of U among the population to: pi00 = 0.4, pi10 = 0.38, pi01 = 0.93 and
pi11 = 0.05 (square dots in 4.7a and 4.7b). In line with the earlier discussion of
the likely unmeasured confounder, the prevalence of U among unexposed was set
to be bigger than the prevalence of U among exposed (both in normal and low
birth weight infants). The correct (possibly unbiased if the assumed values for
these sensitivity parameters are suitable) controlled direct effect of high parity on
recurrent wheezing or asthma if we could intervene setting each child to be normal
birth weight will then be 3.37 while setting each child to be low birth weight will
be 3.44. This severe degree of confounding is consistent with the results found
by Basso et al. in [6, 5]. In 4.7a and 4.7b we plotted four possible combinations
of the probabilities pi00, pi10, pi01, pi11 for γ = 4 capable of showing a corrected
CDE(0) smaller or at least equal than CDE(1). Out of 10000 simulations, only
the four combinations described in 4.7a and 4.7b correspond to an unbiased
CDE(0) ≤ CDE(1). Here and later we will call respectively CDEb and CDEunb

the biased and the corrected (unbiased) controlled direct effect. The number
of results such that CDEunb(0) ≤ CDEunb(1) increased with the degree of the
unmeasured confounding γ (see 4.8a, 4.8b for γ = 5 and 4.8c, 4.8d for γ = 7).
However, the simulations with γ smaller than four, did not produce any solution
such as CDE(0) ≤ CDE(1).

Sensitivity formulas can be obtained also for PNDE and TNIE by assuming
further that U ⊥⊥X|C:

Bias(PNDEc) =

∑

m[1 + (γ − 1)pi1m]vmP (m|0, c)
∑

m[1 + (γ − 1)pi0m]vmP (m|0, c)
(4.12)
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Figure 4.7: Plot of the four quartet of values piij with i = 0, 1 and j = 0, 1 capable
of showing a CDE(1) bigger than CDE(0) for γ = 4 where in a) we have the values
of pi00 and pi10 and in b) we have the values of pi01 and pi11. Similar symbols
correspond to the same quartet. Only values of piij (with i = 0, 1 and j = 0, 1) that
lie below the red line will be considered (for which pi0j > pi1j with j = 0, 1)

Bias(TNIEc) =
1

Bias(PNDEc)
(4.13)

where pixm = P (U = 1|X = x,m, c) and vm = E[Y |x,m,c,U=0]
E[Y |x,m̃,c,U=0]

.

The corrected natural risk ratios can be obtained dividing the estimated risk
ratios by the bias factor (4.12) and (4.13). From Equations (4.12) and (4.13) we
can notice two important details: 1) the bias for the natural indirect effect is simply
obtained as one over the bias for the natural direct effect, i.e. once e calculate the
first we can easily obtain the latter; 2) the total causal effect is unconfounded by U

TCEc = PNDEb
c · TNIEb

c

= PNDEunb
c · Bias(PNDEc) · TNIEunb

c · Bias(TNIEc)

= PNDEunb
c · TNIEunb

c

If vm = 1 for all m, then

Bias(PNDEc) =

∑

m[1 + (γ − 1) pi1m] P (m|0, c)
∑

m[1 + (γ − 1) pi0m] P (m|0, c)

Bias(TNIEc) =
1

Bias(PNDEc)
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Figure 4.8: Plot of the combinations of values piij with i = 0, 1 and j = 0, 1 capable
of showing a CDE(1) bigger than CDE(0) for different values of γ where in a) we
have the values of pi00 and pi10 and in b) we have the values of pi01 and pi11. Only
values of piij (with i = 0, 1 and j = 0, 1) that lie below the red line will be considered
(for which pi0j > pi1j with j = 0, 1)

where P (m|0, c) is the probability of the mediator among unexposed in the
NINFEA dataset [80]. Considering the model in (4.3), the bias affecting natural
direct and indirect effects will then be

Bias(PNDEc) =
[1 + (γ − 1) pi10] + [1 + (γ − 1) pi11] e

β0+β1c1+β′
2c2

[1 + (γ − 1) pi00] + [1 + (γ − 1) pi01] e β0+β1c1+β′
2c2

Bias(TNIEc) =
1

Bias(PNDEc)
.

For γ = 4, pi00 = 0.4, pi10 = 0.38, pi01 = 0.93 and pi11 = 0.05, the corrected
direct and indirect effects for a mean individual will be
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PNDEunb
c = 3.11/

[1 + (4− 1) 0.38] + [1 + (4− 1) 0.05] 0.05

[1 + (4− 1) 0.4] + [1 + (4− 1) 0.93] 0.05
= 3.42

TNIEunb
c = 1.01 ∗Bias(PNDEc) = 0.92. (4.14)

where e β0+β1c1+β′
2c2 = 0.05 for a mean individual that is a child born of 39

gestational weeks from a non smoking mother of 33 years old.

As described in subsection 4.2.3, for the case of models with only linear rela-
tionships, the indirect effect of high parity on recurrent wheezing or asthma
through LBW (if we could condition on U such that γ = 4 and pi00 = 0.4,
pi10 = 0.38, pi01 = 0.93 and pi11 = 0.05) should be protective.

4.3 Regular Outcome

Several factors can influence the occurrence of infants wheezing. One that has
been investigated in relation to asthma is maternal parity as an indicator of
both biological and environmental exposures [46]. However, there are no studies
investigating the association between wheezing and high parity in younger children.
Several authors adopt mediation to analyze the potential causal relation between
exposure and outcome [38]. One possible key is via birth weight as this usually
increases with maternal parity and is associated with lung function.

However, as we saw in the § 4.2, studying mediating effects via birth weight
is complex. Here we will refer to a regular outcome as a not rare outcome.

In this section we investigate the potential mediating effect of birth weight
in the relation between birth order and wheezing [42] in young children using data
from the birth cohort Ninfea described in § 4.0.1.

4.3.1 Methods

We aim to estimate various measures of direct and indirect effects of an exposure,
maternal parity, onto the outcome. Wheezing was assessed at the 6-month and
the 18-month questionnaire, asking whether the child had episodes of wheezing or
whistling in the chest in the first 6 months or between 6 and 18 months of life. The
exposure was parity dichotomized to be zero for the first child and one otherwise.
The mediator, reported by the mother at the 6-month questionnaire, was birth
weight dichotomized to be one for low birth weight infants (birth weight less than
2500g) zero otherwise. Various potential confounders were considered: maternal
age for the exposure-mediator relationship, gestational age and maternal smoking
for the mediator-outcome relationship and child’s year of birth as exposure-outcome
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High Parity Wheezing

LBW

Mat Age Smoking
Gest. Age

Child’s Year of birth

Figure 4.9: DAG representing the relational assumptions between high parity (child
≥1), low birth weight (birth weight <2500g), wheezing up to 18 months of age
and potential confounders: child’s year of birth , maternal age, gestational age and
maternal smoking.

confounder as illustrated in Figure 4.9. Gestational age, also reported by the mother
at the 6-month questionnaire, was centered at 37 weeks, maternal age at 33 years
old and child’s year of birth at 2009.

Mediation analysis aims to disentangle the causal effect of an exposure on an
outcome in two different portions: the indirect and the direct effects. Differently
from § 4.2, the outcome defined as at least one episode of wheezing up to 18 months
of age is not rare. Throughout this section we will define mediation effects in the
counterfactual framework as defined in subsection 3.2.3 in terms of odds ratio. In
the light of these definitions, the PNDE will measure the direct effect attributable
to parity on wheezing via pathways not involving LBW while TNIE will capture
the effect of parity on wheezing through LBW and CDE(1) is the controlled direct
effect of high parity on wheezing if we could intervene setting each child to be low
birth weight.

Differently from § 4.2.1, the definitions (3.19) to (3.20) are marginal definitions of
mediation effects. These effects require the same identifiability assumptions defined
in § 3.2. In order to estimate these mediation effects, we used fully parametric
implementation of Pearl’s mediation formula [53, 51] which is performed in the
gformula command implemented in Stata 12 [12]. This command estimates causal
effects by the g-computation procedure using Monte Carlo Simulation [60].

Comments

This practice of considering birth weight as a mediator in perinatal epidemiology,
has come under critique by various authors because is likely to be affected by un-
measured confounding. In particular, it has been suggested that paradoxical results
might arise as a consequence of collider bias when unmeasured confounding affects
the mediator-outcome relationship (see Figure 4.10). In fact, if an unmeasured vari-
able U influences both mediator and outcome, conditioning on the first will open
a spurious path from the exposure to the outcome. VanderWeele et al. [81, 78]
proposed different approaches to deal with this phenomenon: conditioning on the
estimated risk of being LBW instead of the mediator itself as described in subsec-
tion 4.1.1 and conditioning on the mediator in combination with sensitivity analysis
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High Parity Wheezing

LBW

Mat Age Smoking
Gest. age

Child’s Year

U

Figure 4.10: DAG representing the relational assumptions between high parity, low
birth weight, wheezing, confounders and a potential unmeasured confounder U .

to examine the robustness of mediation estimands.
The first approach consists of conditioning on the estimated risk of being LBW

when fitting a model for the outcome and hence obtaining unbiased estimates of
CDE(m). These estimated risks are predicted by baseline covariatesC and mediator
determinants that we will call Det.

VanderWeele suggested to predict individuals probabilities by the logistic model
for M , P (M = 1| C = c, Det = d) and then define a new variable H such that
it is one for children who have predicted probabilities (of being LBW) above the
95th percentile, and zero otherwise. Because H is a function of determinants Det
and confounders C, conditioning on it does not imply conditioning on the mediator
and hence generating collider bias. However, this methods is highly affected
by the choice of conditioning variables and by the prevalence of the mediator.
Furthermore, it does not allow to evaluate mediation effects but only the effect of
high parity on wheezing among infants at low or high risk of being low birth weight.

The second approach addresses the problem via sensitivity analysis. Vander-
Weele in [81] and [78] defines formulas for the bias affecting the controlled
direct, the indirect and the direct effects of X in the presence of an unmeasured
mediator-outcome confounder such as U . Since these formulas are designed for rare
outcomes, they will not be discussed in this paper.

Instead, we propose Monte Carlo simulations of two different situations capa-
ble of illustrating the bias.

4.3.2 Results

The analyses below involve 3,392 NINFEA children (out of 4124 children included
in the NINFEA database version 2013.03) who have complete information on all
relevant variables. Among them, 75.5% were first born while 4.7% were under weight
(<2500g). The prevalence of wheezing was 16.6%. The odds ratio relating wheezing
to high parity adjusted for maternal age, gestational age, maternal smoking and
child’s year of birth was 2.32 (CI 95% 1.89-2.83). The odds ratio relating wheezing
to low birth weight adjusted for parity, maternal age, gestational age and smoking
was 0.94 (CI 95% 0.60-1.47). On the other hand the adjusted odds ratio (adjusted
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for maternal age) relating low birth weight to high parity was 0.59 (CI 95% 0.39-
0.90). In Table 4.6 we report the adjusted odds ratio relating wheezing to high
parity stratified by birth weight. Statistical interaction between high parity and low
birth weight was also considered.

OR (95% CI)
Normal Birth Weight (95.3%) 2.35 (1.91-2.88)
Low Birth Weight (4.7%) 1.56 (0.55-4.37)
p-value for interaction 0.4

Table 4.6: Adjusted Odds Ratios relating wheezing to high parity stratified by birth
weight category

As discussed in [81], parity seems to have a harmful effect on wheezing only for
normal-birth-weight infants. On the other hand, although there was no evidence of
effect modification in the multiplicative scale, this association was weaker and not
statistically different from one for low-birth weight infants. Basso et al. in [6, 5]
suggest that this apparent difference between CDEs may likely be a consequence of
unmeasured M − Y confounding. This situation will be analyzed in the Sensitivity
analysis section.

The estimated controlled direct effects shown in Table 4.7 point out similar
discrepancies: if each child were set to have a normal weight, the direct effect of
parity on wheezing will be particularly harmful. On the other hand, if we could set
each child to be low-birth-weight the direct effect will be towards the null. Finally
the total causal effect seems to be entirely attributed to the direct path according
to the PNDE estimate.

In this section we investigate different scenarios that might be responsible to
the apparent null association between parity and wheezing in low-birth-weight
infants and also capable of masking the indirect effect.

Furthermore, mediation estimands rely on the assumptions stated in the
methods section. In particular the assumption of no unmeasured mediator-outcome
confounding is the most relevant here because its violation seems responsible for
this paradoxical results.
To avoid the collider bias induced by such unmeasured mediator-outcome confound-
ing we selected, in the NINFEA dataset, all potential birth weight’s determinants
not directly attributable to parity, able to produce the best predictive model for M .
The predictive strength of this model was R2 = 23%. After fitting the model
for M , we predicted the probabilities of being low-birth-weight for every child
in the study. Using a cut-point corresponding to its 95th centile, we classified
as “at risk of LBW” (denoted H) those above this cut-point. Among the whole
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OR (95% CI)
TCE 2.28 (1.86-2.8)
PNDE 2.27 (1.84-2.8)
TNIE 1.00 (0.98-1.05)
CDE(0) 2.29 (1.87-2.81)
CDE(1) 1.53 (0.5-4.72)

Table 4.7: Mediation effects estimated by g-computation, NINFEA sample May
2013.

population, we identified 169 infants as high risk of being LBW where 72%
were first born, 37% were under weight and 18% had wheezing. Repeating the
analyses stratifying by H we found that, for low-risk-infants (H = 0), the adjusted
odds ratio relating wheezing to high parity was 2.39 (CI 95% 1.95-2.93) while
for high-risk-infants (H = 1) we obtained 1.20 (CI 95% 0.50-2.89), again closer
to one. As described in methods, these results are not affected by collider bias
(unlike those reported in Table 4.6). Nevertheless, they point towards the same
conclusions. However, as described by VanderWeele, this method is highly affected
by the predictive strength of the model which in this case is poor. Furthermore,
if the mediator is rare, he states that “these measure may not be an accurate re-
flection of the effect of the exposure for whom the intermediate will in fact develop”.

Another possible situation might be the presence of unmeasured confounding
between LBW and wheezing that is affected by high parity. In the next session we
will introduce some sensitivity analysis able to examine this situation.

4.3.3 Sensitivity analysis

In this section we propose Monte Carlo simulations of two alternative settings ca-
pable of illustrating the type of bias that may affect our results. The first scenario
is described by Figure 4.11 where unmeasured confounding affects the mediator-
outcome relationship.

X Y

M
U

Figure 4.11: DAG illustrating a Mediation Mechanism affected by unmeasured
mediator-outcome confounding

We generated X and U as binary independent random variables with prevalence
0.25 for X (as in the NINFEA sample) and 0.5 for U in order to investigate more
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general scenarios. The mediator M and the outcome Y were generated from the
following logistic regression models

logit(M = 1) = γ0 + γXX + γUU ;

logit(Y = 1) = β0 + βXX + βMM + βXMXM + βUU.

In order to investigate the sensitivity to the prevalence of M , γ0 was allowed
to vary in the set {−2,−1.4, 0.4, 2.2}. Here and after we will call pM the baseline
prevalence of M , i.e. the exp(γ0)/(1 + exp(γ0)). The adjusted odds ratio relating
birth weight to high parity (exp(γx)) was set to 0.4 to resemble the relational
assumptions in the dataset. The coefficients γU and βU were allowed to vary in
{−0.7, 1, 2, 3} in order to investigate both moderate and severe confounding bias
settings. The baseline prevalence of Y was maintained at 0.2 setting β0 to −1.4.
The adjusted odds ratio relating wheezing to high parity (exp(βx)) was set to 2.2.
According to [8] and [66], βM was set to 1 to investigate a harmful association
between LBW and wheezing. The term βXM was set to zero in order to study
whether the interaction shown in Table 4.6 is due only to unmeasured confounding
and not to effect modification.

For every combination of parameters γ0, γU , βU , we simulated 1000 Monte
Carlo datasets each composed of 10000 observations. For each combination we
estimated the mediation effects in two different situations: including or not U in
the g-computation formula. We called TNIEb the biased natural indirect effect
estimated not including U and TNIEunb the unbiased natural indirect effect
obtained including U in the g-computation formula. The same terminology will be
used for pure natural direct effects and controlled direct effects.

In order to quantify the confounding bias problem we defined a new parame-
ter S := γu · βu as a crude measure of the hypothetical association between U and
both M and Y . To represent how the confounding bias may affect the apparent
differences between CDEs we choose to plot two different lines, one for the mean
of CDEb(0) − CDEb(1) and one for the mean of CDEunb(0) − CDEunb(1), for
different values of S. We choose to plot the difference CDE(0)−CDE(1) to better
display and interpret the discrepancy between CDEs due to the paradox. The
value of zero will be the hypothetical cutoff, values lying over zero will corroborate
the observed paradoxical results. On the other hand, negative differences will
support the theory where the direct effect of high parity on wheezing will be
bigger if we could intervene setting each child to be LBW instead of normal
birth weight. From Figure 4.13a we can see that, for almost every degree of
confounding, the dashed unbiased line describes only null or negative differences
for which CDEunb(0) ≤ CDEunb(1). On the other hand, the solid line increases
with the degree of confounding. It is interesting to notice that, the difference
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found in the NINFEA sample (2.28 − 1.53 = 0.76) corresponds to an extreme de-
gree of confounding. This is consistent with the results found by Basso et al. in [6, 5].

To evaluate how the confounding bias may mask the indirect effect, we choose to
plot the ratio between TNIEunb and TNIEb as a measure of the bias affecting
natural indirect effects. The reason for displaying differences between CDEs and
ratios for TNIEs is to better display the paradox due to unmeasured confounding
in the first case and to display the real bias affecting indirect effects in the latter.
Figure 4.13b and 4.13c display the bias affecting natural indirect effects for different
degrees of confounding and different values of pM . As we can see from Figure
4.13b and 4.13c, the bias affecting natural indirect effects has a quadratic shape, it
increases considerably with lower level of pM and decreases for pM > 0.6. According
to Figure 4.13c, for low mediator prevalence and extreme unmeasured-confounding,
TNIEunb should exceed TNIEb by more than 20%. From these simulations we can
see that it would be possible to have an indirect effect of parity via birth weight
under certain unmeasured confounding scenarios.
The Figure Figure 4.12 deals with a more complex setting that involves an interme-
diate confounder, i.e. a confounder that lies on the causal path from X to Y . For
this setting identification of natural mediation effects is complex and required for
example the additional assumption of no average intermediate confounder mediator
interaction in their effect on Y , conditional on X and C [75].

X Y

U

M

Figure 4.12: DAG illustrating a mediation mechanism with two mediators M and
U , the first observed and the second unobserved

The binary variable X was generated as in the previous scenario. The media-
tor M , the outcome Y and the unmeasured mediator U were generated from the
following logistic regression models

logit(U = 1) = α0 + αXX;

logit(M = 1) = γ0 + γXX + γUU ;

logit(Y = 1) = β0 + βXX + βMM + βUU.

The parameter αx was allowed to vary between {−0.7, 1} to investigate different
X − U associations. We choose to maintain the other parameters equal to the
previous scenario.
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For every combination of parameters γ0, γU , βU , αX , we simulated 100 Monte
Carlo datasets each composed by 1000 observations. For each combination we
estimated the mediation effects in two different situations: including or not U in
the g-computation formula. We called NIEb the biased natural indirect effect
estimated not including U in the computation. As described in [11], we defined
NIEU , NIEM , NIEUM the unbiased indirect effects through U alone, M alone and
through both U and M respectively. We further defined the unbiased controlled
direct effect as the odds ratio

CDE(m) =
E[Y (1, U(1), m)]/1− E[Y (1, U(1), m)]

E[Y (0, U(0), m)]/1− E[Y (0, U(0), m)]

that is the direct effect of X on Y when M is controlled to a specific level m
and U arises naturally after setting X to x (one for the numerator and zero for the
denominator).

As the previous scenario, Figure 4.13d and 4.13e show the biased and unbi-
ased differences between controlled direct effects for different values of S.
As the case of one mediator, the difference between CDEs shown in the NINFEA
sample (0.76) corresponds to an extreme degree of confounding (for each combina-
tion of αx considered). The only combination compatible with these results and
capable of showing an indirect effect equal to one is αx = 1. Figure 4.13f shows
the indirect effects NIEb, NIEU , NIEM , NIEUM by pM for αX = 1, γu = 3 and
βu = 3. We can see that, for every prevalence pM , the biased natural indirect
effect seems closer to one than NIEM . In our opinion it means that, in the case
of two mediators, the real indirect effect via M alone should be smaller (and then
protective) than the biased indirect effect shown in Table 4.7. On the other hand,
for every prevalence pM , NIEU is always bigger than NIEM , i.e. the unmeasured
mediator U seems a stronger mediator than LBW alone.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: (a) Controlled direct effect difference (biased and unbiased) by unmea-
sured confounding strength S; (b) Bias affected indirect effect by pM for different
value of ORUM and ORUY ; (c) Bias affected indirect effect by pM for different value
of ORUM and ORUY ; (d) Controlled direct effect difference (biased and unbiased)
by unmeasured confounding strength (S) for αX = −0.7; (e) Controlled direct ef-
fect difference (biased and unbiased) by unmeasured confounding strength (S) for
αX = 1; (f) Indirect effects NIEb, NIEU , NIEM , NIEUM by pM αX = 1, γu = 3
and βu = 3
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Chapter 5

Mediation as CoE

Many statistical analyses aim at a causal explanation of the data. In particular
in epidemiology many studies have been conducted to understand when and if an
exposure will cause a particular disease. Even in a court of law when we want to
assess legal responsibility we usually refer to causality. But when we discuss about
this topic is fundamental to specify the exact query we want to talk about. In § 2
we mentioned the differences between questions on the causes of observed effects
and questions on the effects of observed causes. In this section we will describe a
novel method capable of measure the causal effect of X on Y , ascribing to CoE
questions, when we have additional information on a mediator.

For example, a court can claim that was Ann’s taking the drug that was the
cause of her death such as in the Example 2.0.1. This type of question is referred on
the causes of a given effects (“CoE”) and is common as allocation of responsibility.
As described in § 2.2, for CoE queries, the drug has already been taken and the
outcome observed. In this setting we are interested in answering at the following
question: given the fact that Ann actually took the drug and passed away, how
likely she would not have died if she had not taken the drug?

In this dissertation, to answer the court’s claim, we will use the Probability
of Causation (PC) as given by Dawid in [16]. Given the triple (XA, YA(0), YA(1)),
we can define the Probability of Causation in Ann’s case as:

Definition 5.0.1 (Probability of Causation)

PCA = PA(YA(0) = 0 | XA = 1, YA(1) = 1)

Where PA denotes the probability distribution over Ann. Nowadays, several
lawsuit are focused on allocation of responsibility. However, this preponderance
of evidence is usually perceived as causality even without any kind of formal
definition. If for example, the outcome was measured after being exposed to some
treatment, in a court of law this is sometimes considered as causality. Furthermore,
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in the previous section, we saw that such evidence cannot be assess using data
on single individuals. For this purpose, it seems clear that we need a formal
and mathematical definition such as Definition 5.0.1. In fact, PCA is capable of
answering this important causal question: Knowing that Ann did take the drug
(XA = 1) and the actual response was recovery (YA = 1), what is the probability
that the potential response YA(0), that would been observed had Ann not taken
the drug, would have been different (YA(0) = 0)? How are we to understand this
claim?

Let’s suppose that a good experimental study tested the same drug taken by
Ann. A possible example is reported in Table 5.1.

Die Live Total
Exposed 30 70 100
Unexposed 12 88 100

Table 5.1: Deaths in individuals exposed and unexposed to the same drug taken by
Ann

From Table 5.1 we can see that, in the experimental population, individuals
exposed to the drug (X ← 1) were 18% more likely to death versus unexposed
(X ← 0):

P(Y = 1 | X ← 1) = 0.30 (5.1)

P(Y = 1 | X ← 0) = 0.12 (5.2)

Can the court confirm that was Ann’s taking the drug that caused her death?
More important: is correct to use such experimental results, concerning a general
population, to say something about a single individual? Basically this is the
controversy discussed by Dawid et al. in [18] that is “when science is relied upon to
answer factual disputes in litigation”.

However, without any assumptions about the data generating process (mono-
tonicity and/or exogeneity), we can not provide an exact estimate for PCA but
we can at least state useful information about its limitation. In fact, to estimate
PCA from the data, we need to assess the joint distribution of (XA, YA(0), YA(1)).
However, we can never observe both Y (0) and Y (1) for the same individual hence,
we can never assess this dependence without making any further assumption. Given
the important implications of the probability of causation in real life situations,
it is clear that we have to focus on studying methods capable of producing more
precise bounds.

As discussed in § 1.3, a more feasible target would be to measure the PC in
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the whole population, instead of on a single individual. In this section we will
discuss how combine population-level information with Ann’s information to say
something on the Probability of Causation for Ann. In particular we will show how
these bounds can be improved or adapted if further information becomes available.
In § 5.1 we will review the easier situation where we have information only on
Ann’s exposure and outcome. In § 5.2 we bound the probability of causation
when we have additional information in the form of a pre-treatment covariate.
Section § 5.3 illustrates the situation in which unobserved variable confounds the
exposure-outcome relationship. Finally in § 5.4 and § 5.5 we will introduce a novel
analysis to bounds the probability of causation in two different situations: a
complete mediation mechanism and a partial mediation mechanism respectively.

5.1 Starting Point: Simple Analysis

In this section we discuss the simple situation in which we have information, as in
Table 5.1, from a randomized experimental study. We need to assume that the fact
of Ann’s exposure, XA, is independent of her potential responses Y A:

XA⊥⊥Y A. (5.3)

Property (5.3) parallels the “no-confounding” property Xi⊥⊥Y i which holds for
individuals i in the experimental study on account of randomization. We further
suppose that Ann is exchangeable with the individuals in the experiment, i.e. she
could be considered as a subject in the experimental population.

On account of (5.3) and exchangeability, the PCA in Definition 2.2.1 reduces
to PCA = P(Y (0) = 0 | Y (1) = 1), but we can not fully identify this from the data.
In fact we can never observe the joint event (Y (0) = 0; Y (1) = 1), since at least one
of Y (0) and Y (1) must be counterfactual. In particular, we can never learn anything
about the dependence between Y (0) and Y (1). However, even without making
any assumptions about this dependence, we can derive the following inequalities as
described by Dawid et al. (2015) in [20]:

1−
1

RR
≤ PCA ≤

P(Y = 0 | X ← 0)

P(Y = 1 | X ← 1)
(5.4)

where

RR =
P(Y = 1 | X ← 1)

P(Y = 1 | X ← 0)
(5.5)

is the experimental risk ratio between exposed and unexposed. These bounds
can be estimated from the experimental data using the population death rates
computed in Equations (5.1) and (5.2).

In many cases of interest (such as Table 5.1), we have
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P(Y = 1 | X ← 0) < P(Y = 1 | X ← 1) < P(Y = 0 | X ← 0).

Then the lower bound in Equation (5.4) will be non-trivial, while the upper
bound will exceed 1, and hence be vacuous.

We see from Equation (5.4) that, whenever RR > 2, the Probability of Cau-
sation PCA will exceed 50%. In a civil court this is often taken as the criterion to
assess legal responsibility “on the balance of probabilities” (although the converse
is false: it would not be correct to infer PCA < .5 from the finding RR < 2).
Since, in Table 5.1, the exposed are 2.5 times as likely to die as the unexposed
(RR = 30/12 = 2.5), we have enough confidence to infer causality in Ann’s case:
we have 0.60 ≤ PCA ≤ 1.

5.2 Additional Covariate Information

In this Section we show how we can refine the bounds of (5.4) if further information
about a pre-treatment covariate S is available. For example, S might be a gene,
possession of which enhances the dangerous effect of the exposure to the drug.
We now take the assumptions of § 5.1 to hold after conditioning on S (indeed in
cases where the original assumptions fail, it may well be possible to reinstate them
by conditioning on a suitable covariate S). In particular, XA⊥⊥Y A | SA, and
Xi⊥⊥Y i | Si: adjusting for S is enough to control for confounding, both for Ann
and in the study.

5.2.1 Fully observable

Consider first the situation where we can observe S both in the experimental data
and in Ann. In this case, the PCA should be replaced by the more specific definition

PCA = PA(YA(0) = 0 | XA = 1, YA(1) = 1, SA = sA) (5.6)

where sA is Ann’s value for S. We can apply the analysis of § 5.1, after condi-
tioning on S, to obtain the estimable lower bound

1−
1

RR(sA)
≤ PCA,

where

RR(s) =
P(Y = 1 | X ← 1, S = s)

P(Y = 1 | X ← 0, S = s)
. (5.7)
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5.2.2 Observable in data only

Even when it is possible to observe S only in the population and not in Ann, we
can sometimes refine the bounds in (5.4). Thus suppose S is binary, and from the
data we infer the following probabilities (which in particular imply the same values
as given in Table 5.1):

PA(S = 1) = 0.50

PA(Y = 1 | X ← 1, S = 1) = 0.60

PA(Y = 1 | X ← 0, S = 1) = 0 (5.8)

PA(Y = 1 | X ← 1, S = 0) = 0 (5.9)

PA(Y = 1 | X ← 0, S = 0) = 0.24.

Since we know XA = 1 and YA = 1, from Equation (5.9) we realize we can not
have SA = 0, so we must have SA = 1. Then from Equation (5.8) we see that, when
we set X to 0, we can not obtain Y = 1, so we must have YA(0) = 0. That is, in
this special case we can infer causation in Ann’s case—even though we have not
directly observed her value for S.

More generally as described by Dawid (2011) in [16] we can refine the bounds in
(5.4) as follows:

∆

P(Y = 1 | X ← 1)
≤ PC ≤ 1−

Γ

P(Y = 1 | X ← 1)
(5.10)

where

∆ =
∑

s

P(S = s)×max {0,P(Y = 1 | X ← 1, S = s)− P(Y = 1 | X ← 0, S = s)}

and

Γ =
∑

s

P(S = s)×max {0,P(Y = 1 | X ← 1, S = s)− P(Y = 0 | X ← 0, S = s)}

These bounds are never wider than those obtained from (5.4), which ignores S.

5.3 Unobserved Confounding

So far we have assumed no confounding, X ⊥⊥Y (perhaps conditionally on a
suitable covariate S), both for Ann and for the study data. Now we drop this
assumption for Ann. Then the experimental data can not be used, by themselves,
to learn about PCA = P(YA(0) = 0 | XA = 1, YA(1) = 1).
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Die Live Total
Exposed 18 82 100
Unexposed 24 76 100

Table 5.2: Observational data

We might however be able to gather additional observational data, where
there was no possibility of experimental control over subjects’ exposure, X , which
might thus be related to unobserved personal aspects affecting the response Y .
However—importantly—we now assume that the dependence between X and Y

for subjects in the sampled population is just the same as it is for Ann. Let Q
denote the joint observational distribution of (X, Y ), which is estimable from such
data. Tian and Pearl (2000) in [76] obtain the following bounds for PCA, given
both experimental and observational data:

max

{

0,
Q(Y = 1)− P(Y = 1 | X ← 0)

Q(X = 1, Y = 1)

}

≤ PCA ≤ min

{

1,
P(Y = 0 | X ← 0)−Q(X = 0, Y = 0)

Q(X = 1, Y = 1)

}

. (5.11)

For example, suppose that, in addition to the data of Table 5.1, we have obser-
vational data as in Table 5.2.

Thus

Q(Y = 1) = 0.21

Q(X = 1, Y = 1) = 0.09

Q(X = 0, Y = 0) = 0.38.

Also, from Table 5.2 we have P(Y = 1 | X ← 0) = 0.12 (so P(Y = 0 | X ← 0) =
1− 0.12 = 0.88). From Equation (5.11) we thus find 1 ≤ PCA ≤ 1. We deduce that
Ann would definitely have survived had she not taken the drug.

5.4 Complete Mediation

In this Section we present a novel analysis to bound the Probability of Causation
for a case where a third variable, M , is involved in the causal pathway between
the exposure X and the outcome Y [19, 41]. In particular, in this section, we
will focus on the case of no direct effect, as intuitively described by Figure 5.1.
Applications where this assumption might be plausible can be found in [38]. In this
paper he presented various mechanisms of complete mediation such as: a tobacco
prevention program reduces cigarette smoking by changing the social norms for
tobacco use; exposure to negative life events affects blood pressure through the
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mediation of cognitive attributions to stress. Another situation in which such an
assumption might be plausible is in the treatment of ovarian cancer, Silber et al.
(2007) in [70], where X represents management either by a medical oncologist or
by a gynaecological oncologist, M is the intensity of chemotherapy prescribed, and
Y is death within 5 years.

We shall be interested in the case that M is observed in the experimental
data but is not observed for Ann, and see how this additional experimental evidence
can be used to refine the bounds on PCA.

X M Y

Figure 5.1: Directed Acyclic Graph representing a mediator M , responding to ex-
posure X and affecting response Y . There is no “direct effect”, unmediated by M ,
of X on Y .

To formalize our assumption of “no direct effect”, we introduce M(x), the
potential value of M for X ← x, and Y ∗(m), the potential value of Y for M ← m,
where the irrelevance of the value x of X to Y ∗ encapsulates our assumption that
X has no effect on Y over and above that transmitted through its influence on
the mediator M . The potential value of Y for X ← x (in cases where there is no
intervention on M , which we here assume) is then Y (x) := Y ∗{M(x)}.

In the sequel we restrict to the case that all variables are binary, and define
M := (M(0),M(1)), Y ∗ := (Y ∗(0), Y ∗(1)), and Y := (Y (0), Y (1)). In particular,
we have observable variables (X,M, Y ) = (X,M(X), Y (X)). We denote the
bivariate distributions of the potential response pairs by

mab := P(M(0) = a,M(1) = b)

y∗rs := P(Y ∗(0) = r, Y ∗(1) = s)

yrs := P(Y (0) = r, Y (1) = s).

Then

ma+ = P(M = a | X ← 0)

m+b = P(M = b | X ← 1)

y∗r+ = P(Y = r |M ← 0)

y∗+s = P(Y = s |M ← 1)

yr+ = P(Y = r | X ← 0)

y+s = P(Y = s | X ← 1),
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where ma+ denotes
∑1

b=0mab, etc.
In addition to the assumptions of § 5.1 we further suppose that none of the causal

mechanisms depicted in Figure 5.1 are confounded—expressed mathematically by
assuming mutual independence between X , M and Y

∗ (both for experimental
individuals, and for Ann). Then, ma+, m+b, y

∗
r+, y

∗
+s, yr+, y+s are all estimable

from experimental data in which X is randomized, and M and Y are observed.

It is also easy to show the Markov property:

Y ⊥⊥X | M. (5.12)

This observable property can serve as a test of the validity of our conditions.

The assumed mutual independence implies

yrs = P(Y ∗(M(0)) = r, Y ∗(M(1)) = s)

=
1

∑

a,b=0

P(Y ∗(a) = r, Y ∗(b) = s)P(M(0) = a,M(1) = b).

This yields

y00 = m00y
∗
0+ + (m01 +m10)y

∗
00 +m11y

∗
+0

y01 = m01y
∗
01 +m10y

∗
10

y10 = m01y
∗
10 +m10y

∗
01 (5.13)

y11 = m00y
∗
1+ + (m01 +m10)y

∗
11 +m11y

∗
+1,

and

yr+ = m0+y
∗
r+ +m1+y

∗
+r (5.14)

y+s = m+0y
∗
s+ +m+1y

∗
+s. (5.15)

Suppose now that we observe XA = 1 and YA = 1, but do not observe MA. We
have

PCA =
y01
y+1

=
m01y

∗
01 +m10y

∗
10

y+1
. (5.16)

The denominator of (5.16) is P(Y = 1 | X ← 1), which is estimable from the
data.

As for the numerator, this can be expressed as

2µη + Aµ+Bη + AB = 2(µ+B/2)(η + A/2) + AB/2 (5.17)



5.4. COMPLETE MEDIATION 103

with µ = m01, η = y∗01, A = y∗+0− y∗0+, and B = m+0−m0+. Note that A and B
are identified from the data, whereas for µ and η we can only obtain inequalities:

max{0,−B} ≤ µ ≤ min{m0+, m+1}
max{0,−A} ≤ η ≤ min{y∗0+, y

∗
+1},

so that

|B/2| ≤ µ+B/2 ≤ min{1
2
(m0+ +m+0),

1
2
(m1+ +m+1)}

|A/2| ≤ η + A/2 ≤ min{1
2
(y∗0+ + y∗+0),

1
2
(y∗1+ + y∗+1)}.

(5.18)

The lower (respectively, upper) limit for (5.17) will be when µ+B/2 and η+A/2
are both at their lower (respectively, upper) limits. In particular, the lower limit for
(5.17) is max{0, AB}. Using (5.14) and (5.15), we compute AB = y+1− y1+, which
leads to the lower bound

PCA ≥ 1−
P(Y = 1 | X ← 0)

P(Y = 1 | X ← 1)
= 1−

1

RR
,

exactly as for the case that M was not observed. Thus the possibility to observe
a mediating variable in the experimental data has not improved our ability to lower
bound PCA.

We do however obtain an improved upper bound. Taking into account the
various possible choices for the upper bounds in (5.18), the upper bound for the
numerator of (5.16), in terms of experimentally estimable quantities, is given in
Table 5.3.

m1+ +m+1 ≥ 1 m1+ +m+1 < 1

y∗1+ + y∗+1 ≥ 1 m0+y
∗
0+ +m+0y

∗
+0 m1+y

∗
+0 +m+1y

∗
0+

y∗1+ + y∗+1 < 1 m0+y
∗
+1 +m+0y

∗
1+ m1+y

∗
1+ +m+1y

∗
+1

Table 5.3: Upper bound for the numerator of the PCA in complete mediation

In § 5.6 will shown that this upper bound is never greater than that in (5.4),
which ignores the mediator M , and is strictly smaller unless y∗1+ + y∗+1 ≥ 1 and
m1+ +m+1 = 1.

5.4.1 Identifiability under monotonicity

Without any assumption about the data generating process, in § 5.4 we calculated
a lower and an upper bound for the probability of causation when a mediator com-
pletely justifies the causal relation between exposure and outcome. In this section
we will show how PCA can be identify under the monotonicity assumption.
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Definition 5.4.1 (Monotonicity) A variable Y is monotonic relative to X in a
causal model, if and only if the bivariate distribution of Y (x) is monotonic in x:

P [Y (0) = 1, Y (1) = 0] = 0

For the particular case of no direct effect of X on Y , as described by the DAG
in Figure 5.1, we obtained the following result:

Theorem 5.4.1 (Monotonicity in mediation) If M is monotonic relative to X
and Y is monotonic relative to M then Y is monotonic relative to X.

Proof 5.4.1 If M is monotonic relative to X then m10 = 0. If Y is monotonic
relative to M then y∗10 = 0. Then, from (5.13), y10 will be zero.

The reverse implication is not always true.
Then if M is monotonic relative to X and Y is monotonic relative to M the Prob-
ability of Causation will be

PCA = 1−
1

RR
.

Under the monotonicity assumption we obtained a result consistent with what
Tian and Pearl (2000) found in [76]. This can perhaps be considered as a proof of
the validity of this method.

5.4.2 Example

Let us suppose that Ann’s children filled a criminal lawsuit against a pharmaceutical
manufacturer claiming that Ann died after taking one of their drugs. On the other
hand, the manufacturer claims that is a rare (binary) side effect of the drug that
cause the death rather than the drug itself. Suppose we obtain the following values
from the data:

P(M = 1 | X ← 1) = 0.25

P(M = 1 | X ← 0) = 0.025

P(Y = 1 |M ← 1) = 0.9

P(Y = 1 |M ← 0) = 0.1.

Again, these imply the values given in Table 5.1. According to the four possible
combinations in Table 5.3, we find 0.60 ≤ PCA ≤ 0.76; whereas without taking
account of the mediator we would have no non-trivial upper bound. In § 5.6 we
will compare these results with the simple analysis of X on Y and with the case of
partial mediation.
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5.5 Partial Mediation

The situation described in § 5.4 is unlikely to be true in real life situations. Directed
Acyclic Graphs such Figure 3.1, that allow both direct and indirect effects, are
more plausible and truthful. In addition, a complete mediation mechanism can be
seen as a partial mediation mechanism when no direct effect is present. In this
section we introduce new bounds for the probability of causation when a partial
mediator is involved in the causal pathway [41]. In particular we will consider
and compare two different settings: assuming usual exchangeability conditions and
assuming new bivariate exchangeability conditions.

Sections § 5.2 and § 5.3 improve the bounds for PCA if additional information
about a pre-treatment covariate S is available. A conceivable proposal, to study
PCA in mediation analysis, would be to use (5.6) and (5.10) in every strata of the
mediator instead of S. As we saw in § 1.3, where we defined mediation effects for
EoC queries, conditioning on a mediator will produce a measure of the direct effect
of the exposure on the outcome for a specific level of the mediator. We called
this effect, controlled direct effect. Thus, using equations (5.6) and (5.10) to say
something on PCA when S is a mediator between X and Y will not produce a
measure of the total effect of X on Y (as PCA does) but a measure of the controlled
direct effect between X and Y in levels of the mediator.

On the other hand, it would be interesting to study applications of Equa-
tions (5.6) and (5.10) when S is a mediator between X and Y . However, this new
bounds cannot be compared with (5.4). This would be part of our future work
about PCA in mediation analysis.

Hereafter, in this section we will consider the following notation of counter-
factual variables (consistent with the notation used in § 5.4)

1. M(x) the potential value of M when X is set to x;

2. Y ∗(x,m) the potential value of Y when X is set to x and M is set to m;

3. Y (x) = Y ∗(x,M(x)), the potential value of Y when X ; is set to x and M
arises naturally after setting X to x.

Let us suppose further the assumptions stated in § 5.1 that a good experimental
study tested the same drug taken by Ann for which Xi⊥⊥Y i and that Ann is
exchangeable with the individuals in the experiment, i.e. she could be considered as
a subject in the experimental population such that the PCA will reduce to PCA =
P(Y (0) = 0 | Y (1) = 1).
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5.5.1 Disentangling the pathway for the PC

According to the mediation effects defined in the counterfactual framework in § 1.3,
our first attempt was to define a “probability of direct causation” (PDC) and a
“probability of indirect causation” (PIC) as

Definition 5.5.1 (Probabilities of direct causation)

PDC = P [Y ∗(0,M(0)) = 0|Y ∗(1,M(0)) = 1]

and

Definition 5.5.2 (Probabilities of indirect causation)

PIC = P [Y ∗(1,M(0)) = 0|Y ∗(1,M(1)) = 1].

Although Definition 5.5.1 and Definition 5.5.2 have useful applications, disen-
tangling PCA as a combination of PIC and PDC did not give any clear solution.

P [Y (0) = 0, Y (1) = 1] = P [Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1] =

= P [Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1, Y ∗(1,M(0)) = 0] + P [Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1, Y ∗(1,M(0)) = 1] =

= P [Y ∗(1,M(1)) = 1, Y ∗(1,M(0)) = 0]− P [Y ∗(0,M(0)) = 1, Y ∗(1,M(1)) = 1, Y ∗(1,M(0)) = 0]

+ P [Y ∗(0,M(0)) = 0, Y ∗(1,M(0)) = 1]− P [Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 0, Y ∗(1,M(0)) = 1] =

= P [Y ∗(1,M(1)) = 1, Y ∗(1,M(0)) = 0] + P [Y ∗(0,M(0)) = 0, Y ∗(1,M(0)) = 1]+

− {P [Y ∗(0,M(0)) = 1, Y ∗(1,M(1)) = 1, Y ∗(1,M(0)) = 0] + P [Y ∗(0, M(0)) = 0, Y ∗(1,M(1)) = 0, Y ∗(1,M(0)) = 1]}

where we used the property
P (A = a, B = b, C = c) = P (B = b, C = c)−P (A = 1− a, B = b, C = c) for binary
variable A,B and C taking values {0, 1}. For simplicity of notation we will refer to
PC instead of PCA.

We propose to disentangle the probability of causation as

PC = P [Y (0) = 0|Y (1) = 1] =
P [Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1]

P [Y ∗(1,M(1)) = 1]
=

=
P [Y ∗(1,M(1)) = 1, Y ∗(1,M(0)) = 0]

P [Y ∗(1,M(1)) = 1]
+

P [Y ∗(0,M(0)) = 0, Y ∗(1,M(0)) = 1]

P [Y ∗(1,M(1)) = 1]

−
1

P [Y ∗(1,M(1)) = 1]
{P [Y ∗(0,M(0)) = 1, Y ∗(1, M(1)) = 1, Y ∗(1,M(0)) = 0]

+P [Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 0, Y ∗(1,M(0)) = 1]} =

= PIC + PDC ·
P [Y ∗(1,M(0)) = 1]

P [Y ∗(1,M(1)) = 1]
−

1

P [Y ∗(1,M(1)) = 1]
{P [Y ∗(0,M(0)) = 1, Y ∗(1,M(1)) = 1, Y ∗(1,M(0)) = 0] +

+P [Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 0, Y ∗(1,M(0)) = 1]}.

Unfortunately, this was not as clear as the case for EoC questions.
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5.5.2 Linear programming

Our second attempt follows the reasoning of Tian and Pearl (2000) in [76]. Given
the five variables X , Y ∗(0,M(0)), Y ∗(0,M(1)), Y ∗(1,M(0)) and Y ∗(1,M(1)) (with
i, j, k, r, s = {0, 1}), we can specify 32 parameters, each one corresponding to one of
the following joint probabilities

pijkrs = P (Y ∗(1,M(1)) = i, Y ∗(1,M(0)) = j, Y ∗(0,M(1)) = k, Y ∗(0,M(0)) = r, X = s)

which are constrained by the usual probability axioms

1
∑

i=0

1
∑

j=0

1
∑

k=0

1
∑

r=0

1
∑

s=0

pijkrs = 1.

For example for (i, j, k, r, s) = (1, 0, 1, 1, 1) and for the consistency condition on
Y ∗(x,M(x)) we have

p10111 = P(Y ∗(1,M(1)) = 1, Y ∗(1,M(0)) = 0, Y ∗(0,M(1)) = 1, Y ∗(0,M(0)) = 1, X = 1) =

= P(Y = 1, Y ∗(1,M(0)) = 0, Y ∗(0,M(1)) = 1, Y ∗(0,M(0)) = 1, X = 1)

Let’s define further the jointly distribution of Y (x,m) and the jointly distribution
of M(x), for i, j, k, r = {0, 1}

yijkr = P(Y ∗(1, 1) = i, Y ∗(1, 0) = j, Y ∗(0, 1) = k, Y ∗(0, 0) = r)

mij = P(M(1) = i, M(0) = j).

If the consistency condition holds, it easy to prove the following rules

P(Y = 1, X = 1) = P(Y (1) = 1, X = 1) =
∑

j

∑

k

∑

r

p1jkr1

P(Y = 1, X = 0) = P(Y (0) = 1, X = 0) =
∑

i

∑

j

∑

k

pijk10

P(Y = 0, X = 1) = P(Y (1) = 0, X = 1) =
∑

j

∑

k

∑

r

p0jkr1

P(Y = 0, X = 0) = P(Y (0) = 0, X = 0) =
∑

i

∑

j

∑

k

pijk00

and

P(Y (1) = 1) = P(Y ∗(1,M(1)) = 1) =
∑

j

∑

k

∑

r

∑

s

p1jkrs
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P(Y (0) = 1) = P(Y ∗(0,M(0)) = 1) =
∑

i

∑

j

∑

k

∑

s

pijk1s

P(Y ∗(1,M(0)) = 1) =
∑

i

∑

k

∑

r

∑

s

pi1krs

P(Y ∗(0,M(1)) = 1) =
∑

i

∑

j

∑

r

∑

s

pij1rs.

Suppose that we observed XA = 1 and YA = 1 but not MA. We can express the
probability of causation for Ann’s case as

PCA = P(Y (0) = 0|Y (1) = 1, X = 1) =

=
P(Y (0) = 0, Y (1) = 1, X = 1)

P(Y (1) = 1, X = 1)
=

∑

j,k p1jk01
∑

j,k,r p1jkr1
. (5.19)

The numerator above can be written as

∑

j,k

p1jk01 =
∑

jkrs

p1jkrs−
∑

j,k

p1jk00−
∑

j,k

p1jk10−
∑

j,k

p1jk11 ≤
∑

jkrs

p1jkrs = P(Y ∗(1,M(1)) = 1)

leading an upper bound for PCA equals to

PCA =
P(Y (0) = 0, Y (1) = 1, X = 1)

P(Y (1) = 1, X = 1)
≤

P(Y ∗(1,M(1)) = 1)

P(Y (1) = 1, X = 1)
. (5.20)

Let us suppose that any of the X−Y , X−M and M−Y relation are confounded
by C. Then from Equation (3.15), we can use the following decomposition

P [Y ∗(x,M(x̃)) = 1] =
∑

m

P (Y ∗(x,m) = 1|M(x̃) = m) P (M(x̃) = m)

that will produce an upper bound for PCA in complete mediation analysis

PCA ≤
P(Y ∗(1,M(1)) = 1)

P(Y (1) = 1, X = 1)
=

P(Y ∗(1, 1) = 1) P(M(1) = 1) + P(Y ∗(1, 0) = 1) P(M(1) = 0)

P(Y (1) = 1, X = 1)
.

Under the assumption of no-confounding for every causal relation in the DAG
in Figure 3.1, the above upper bound is estimable from nonexperimental data as

PCA ≤
P(Y = 1|X = 1, M = 1) P(M = 1|X = 1) + P(Y = 1|X = 1, M = 0) P(M = 0|X = 1)

P(Y = 1, X = 1)
.

(5.21)



5.5. PARTIAL MEDIATION 109

However, we do not obtain a different lower bound

PCA =
P(Y (0) = 0, Y (1) = 1)

P(Y = 1|X = 1)
=

∑

p1jk0s

P(Y = 1|X = 1)
=

=
P(Y (1) = 1)− P(Y (0) = 1) +

∑

p0jk1s

P(Y = 1|X = 1)
≥

P(Y (1) = 1)− P(Y (0) = 1)

P(Y = 1|X = 1)

= 1−
1

RR

On the other hand the numerator in Equation (5.19) can be written also as

∑

j,k

p1jk01 =
∑

pijk0s −
∑

p0jk00 −
∑

p0jk01 −
∑

p1jk00 ≤
∑

p1jk0s = P(Y ∗(0,M(0)) = 0) =

= P(Y ∗(0, 1) = 0) P(M(0) = 1) + P(Y ∗(0, 0) = 0) P(M(0) = 0) =

= P(Y = 0|X = 0,M = 1) P(M = 1|X = 0) + P(Y = 0|X = 0,M = 0) P(M = 0|X = 0).

(5.22)

Considering both Equations (5.21) and (5.22), we obtained two possible upper
bounds for PCA not different from what Tian and Pearl (2000) found in [76]

PCA ≤
min{P(Y ∗(0,M(0)) = 0),P(Y ∗(1,M(1)) = 1)}

P(Y = 1|X = 1)
.

Thus, considering an additional variable in the problem but making no any
special assumptions about the joint distribution, would not lead to more precise
bounds.

5.5.3 Bound for PC in Mediation Analysis using Copulas

Let us consider the following decomposition of PCA

PCA = P(Y (0) = 0 | X = 1, Y (1) = 1) =
P(Y (0) = 0, Y (1) = 1 | X = 1)

P(Y (1) = 1 | X = 1)
. (5.23)

Assuming only the consistency condition on Y ∗(x,M(x)) we can obtain an inter-
esting result, for the numerator above, that can be seen as a generalized mediation
formula to bivariate distributions

Definition 5.5.3 (G-formula for bivariate distributions)

P(Y (0) = 0, Y (1) = 1|X = 1) = P(Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1|X = 1)

=
1∑

m0=0

1∑

m1=0

P(Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1|M(0) = m0,M(1) = m1,X = 1)P(M(0) = m0,M(1) = m1|X = 1)

=
∑

m0

∑

m1

P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|M(0) = m0,M(1) = m1, X = 1)P(M(0) = m0,M(1) = m1|X = 1).

(5.24)
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Equation (5.24) underlines a bivariate dependence structure between two hypo-
thetical world: one where we interviewing setting each subject to be exposed and
one where we interviewing setting each subject to be unexposed. Unfortunately,
as we discussed in § 5, estimating these bivariate distributions from real data is
not possible. When considering multivariate structures and dependencies between
random variables, copula functions are among one the most exhaustive statistical
tools [9, 44, 71, 83]. Given a set of random variables X1, . . . , Xn, the joint
cumulative distribution function (CDF) FX(x1, . . . , xn) = P [X1 ≤ x1, . . . , Xn ≤ xn]
completely describe the dependencies among them. Given n CDF and given some
information on the dependencies between them, we can deduce the multivariate
CDF.

Let us consider again the random variables X1, . . . , Xn with continuous marginal
distributions Fi(x) = P(Xi ≤ x). Applying the probability integral transformation
to each component of the vector, we obtain

(U1, . . . , Un) = (F1(X1), . . . , Fn(Xn))

where each marginal has uniform distribution. The joint distribution of the n
random variables is called copula of X1, . . . , Xn.

This can be written as

C(u1, . . . , un) = C(F1(x1), . . . , Fn(xn)) = P [F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn)]

= F (x1, . . . , xn)

with xi = F−1
i (ui) for i = 1, . . . , n.

In general we have the following definition and theorem

Definition 5.5.4 A copula is the distribution function of a random variable in Rn

with uniform-(0, 1) marginals. Alternatively a copula is any function
C : [0, 1]n → [0, 1] with the following properties [73]:

1. C(x1, . . . , xn) is increasing in each component xi;

2. C(1, . . . , 1, xi, 1, . . . , 1) = xi for all i ∈ {1, . . . , n}, xi ∈ [0, 1];

3. for all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n with ai ≤ bi we have

2
∑

i1=1

2
∑

in=1

(−1)i1+...+inC(x1i1 , . . . , xnin) ≥ 0

where xj1 = aj and xj2 = bj for all j ∈ {1, . . . , n}.



5.5. PARTIAL MEDIATION 111

One of the most famous results, relative to the theory of copulas, is the following
theorem due to Sklar (1959) in [71].

Theorem 5.5.1 (Sklar 1959) Let F (x1, . . . , xn) be a joint cumulative distribution
function with marginals Fi(xi). Then there exists a copula C such that, for all real
values (x1, . . . , xn)

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

If the marginals Fi(xi) are all continuous, the copula is unique; otherwise it is
uniquely determined on range(F1) × . . . × range(Fn) which is the cartesian prod-
uct of the ranges of the marginals CDF’s. Conversely, if C is a copula and Fi(xi)
are univariate CDF’s then F (x1, . . . , xn) is a joint CDF with margins Fi(xi).

According to Theorem 5.5.1, once we know the marginal distributions Fi(xi)
and the function C, we can completely reconstruct the joint distribution F .

A fundamental result, in copula’s theory, is described by the following theorem
which defines lower and upper bounds for copulas

Theorem 5.5.2 (Fréchet-Hoeffding bounds) Let C be a multivariate copula
and X1, . . . , Xp, p random variables. For every observed value x1, . . . , xp

max{

p
∑

i=1

xi + 1− p, 0} ≤ C(x1, . . . , xp) ≤ min{x1, . . . , xp}

In terms of variables and CDF this theorem leads to the following bounds (see
Avellana in [3])

max{

p
∑

i=1

F (xi) + 1− p, 0} ≤ F (x1, . . . , xp) ≤ min{F (x1), . . . , F (xp)}. (5.25)

For p = 2 the Inequality (5.25) leads directly to the bounds for PCA in the simple
analysis framework defined by the Inequality (5.4). For conditional probabilities,
this theorem will be

Theorem 5.5.3 (Fréchet-Hoeffding for conditional probabilities) If A, B
and C are binary variable taking values {a, a′}, {b, b′} and {c, c′} then

max{F (a|c) + F (b|c)− 1, 0} ≤ F (a, b|c) ≤ min{F (a|c), F (b|c)} (5.26)

where F (a|c) = F (A = a|C = c).
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Proof 5.5.1 For the upper bound

F (a, b|c) + F (a, b′|c) = F (a|c) ⇒ F (a, b|c) = F (a|c)− F (a, b′|c) ⇒ F (a, b|c) ≤ F (a|c)

given that F (a, b′|c) ≥ 0.

For the lower bound

F (a, b|c) + F (a, b′|c) + F (a′, b|c) + F (a′, b′|c) = 1

then

F (a, b|c) = 1− F (a, b′|c)− F (a′, b|c)− F (a′, b′|c)

= 1− F (b′|c)− F (a′, b|c)

= F (b|c)− F (a′, b|c) + F (a′, b′|c)− F (a′, b′|c)

= F (b|c)− F (a′|c) + F (a′, b′|c)

= F (b|c) + F (a|c)− 1 + F (a′, b′|c).

In conclusion we will have F (a, b|c) ≥ F (b|c) + F (a|c)− 1 given that
F (a′, b′|c) ≥ 0.

Here and after we will refer to the following assumptions (named A#):

No-confounding Assumptions

1. Y (x,m)⊥⊥M |X that is no M − Y confounding (A1);

2. Y (x,m)⊥⊥X that is no X − Y confounding (A2);

3. M(x)⊥⊥X that is no X −M confounding (A3).

We can directly apply Theorem 5.5.3 to equation (5.24)

A ≤ P(M(0) = m0,M(1) = m1|X = 1) ≤ B

A = max{P(M(0) = m0|X = 1) + P(M(1) = m1|X = 1)− 1, 0}

B = min{P(M(0) = m0|X = 1),P(M(1) = m1|X = 1)}.

Under the assumption (A3), we were able to measure the above bounds from
nonexperimental data

A = max{P(M = m0|X = 0) + P(M = m1|X = 1)− 1, 0} (5.27)

B = min{P(M = m0|X = 0),P(M = m1|X = 1)}. (5.28)
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On the other hand, using Theorem 5.5.3, we obtained

C ≤ P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1, M(0) = m0, M(1) = m1|X = 1) ≤ D
(5.29)

C = max{P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|X = 1) + P(M(0) = m0, M(1) = m1|X = 1)− 1, 0}

D = min{P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|X = 1), P(M(0) = m0, M(1) = m1|X = 1)}.

Dividing the Inequality (5.29) by P(M(0),M(1)|X), we obtained bounds for the
first term in Equation (5.24)

C ′ ≤ P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|M(0) = m0,M(1) = m1, X = 1) ≤ D′

(5.30)

C ′ = max{
P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|X = 1)− 1

P(M(0) = m0,M(1) = m1|X = 1)
+ 1, 0}

D′ = min{
P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|X = 1)

P(M(0) = m0,M(1) = m1|X = 1)
, 1}.

The inequality (5.30) can be further decomposed considering again Theorem 5.5.3
for

E ≤ P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|X = 1) ≤ F

E = max{P(Y ∗(0, m0) = 0|X = 1) + P(Y ∗(1, m1) = 1|X = 1)− 1, 0} (5.31)

F = min{P(Y ∗(0, m0) = 0|X = 1),P(Y ∗(1, m1) = 1|X = 1)}.

In conclusion, according to (5.31) for the numerator and (5.28) for the denominator,
the term C ′ in (5.30) can be minimized as

C ′ ≥ max{
max{P(Y ∗(0, m0) = 0|X = 1) + P(Y ∗(1, m1) = 1|X = 1)− 1, 0} − 1

min{P(M(0) = m0|X = 0),P(M(1) = m1|X = 1)}
+1, 0}.

(5.32)
In the same way, the term D′ in the Inequality (5.30) can be maximized as

D′ ≤ min{
min{P(Y ∗(0, m0) = 0|X = 1),P(Y ∗(1, m1) = 1|X = 1)}

max{P(M(0) = m0|X = 1) + P(M(1) = m1|X = 1)− 1, 0}
, 1}. (5.33)

Given the assumptions A1, A2 and A1 and assuming consistency for every
counterfactual variables considered, the inequalities 5.32 and 5.33 can be maximized
and minimized by estimable quantities as
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C ′ ≥ max{
max{P(Y = 0|X = 0,M = m0) + P(Y = 1|X = 1,M = m1)− 1, 0} − 1

min{P(M = m0|X = 0),P(M = m1|X = 1)}
+1, 0}

(5.34)
and

D′ ≤ min{
min{P(Y = 0|X = 0,M = m0),P(Y = 1|X = 1,M = m1)}

max{P(M = m0|X = 0) + P(M = m1|X = 1)− 1, 0}
, 1}, (5.35)

considering the following identifiability rules

P(Y ∗(x,m) = 0|X = x̃) = P(Y ∗(x,m) = 0|X = x) (A2)

= P(Y ∗(x,m) = 0|X = x,M = m) (A1)

= P(Y = 0|X = x,M = m) Consistency of Y ∗(x,m)

and

P(M(x) = mx|X = x̃) = P(M(x) = mx|X = x) (A3)

= P(M = mx|X = x) Consistency of M(x).

Thus, considering the estimable bounds (5.34) and (5.35) for the first term in
Equation (5.24) and the bounds (5.27) and (5.28) for the second term, we get new
estimable bounds for PCA in partial mediation analysis.

Unfortunately, over 10000 simulations of the values included in the bounds
(5.34), (5.35), (5.27) and (5.28), none of them lead to tighter bounds than the
bounds in the inequality (5.4) for the simple case of X on Y . It seems that,
bounding the probability of causation in mediation analysis, requires stronger
conditions than the simply no-confounding assumptions and consistency to get
better bounds for PCA.

In the next sections we will test this hypothesis.

5.5.4 Bounds for PCA assuming bivariate conditions

Let us consider the following bivariate assumptions for counterfactual outcome and
mediator (named B#):

Bivariate Assumptions

1. (Y ∗(0, m0), Y
∗(1, m1))⊥⊥ (M(0),M(1))|X (B1)
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2. (Y ∗(0, m0), Y
∗(1, m1))⊥⊥X (B2)

3. (M(0),M(1))⊥⊥X (B3)

Then we can decompose the numerator of PCA

PCA = P(Y (0) = 0|Y (1) = 1, X = 1) =
P(Y (0) = 0, Y (1) = 1|X = 1)

P(Y (1) = 1|X = 1)

using the generalized mediation formula in Definition 5.5.3 and assuming condi-
tions B1, B2 and B3 as

P(Y (0) = 0, Y (1) = 1|X = 1) = P(Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1|X = 1)

=
1∑

m0=0

1∑

m1=0

P(Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1|M(0) = m0,M(1) = m1,X = 1)P(M(0) = m0,M(1) = m1|X = 1)

=
∑

m0

∑

m1

P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|M(0) = m0,M(1) = m1,X = 1)P(M(0) = m0,M(1) = m1|X = 1)

=
∑

m0

∑

m1

P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|X = 1)P(M(0) = m0,M(1) = m1) B1 and B3

=
∑

m0

∑

m1

P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1)P(M(0) = m0,M(1) = m1) B2 (5.36)

Upper Bound

Let us consider the Theorem 5.5.2 for p = 2. The joint probability of two events is
always smaller than the single probabilities, i.e. P(a, b) ≤ min{P(a),P(b)}, then

P(Y (0) = 0, Y (1) = 1|X = 1) ≤
1∑

m0=0

1∑

m1=0

min{P(Y ∗(0, m0) = 0),P(Y ∗(1, m1) = 1)}min{P(M(0) = m0),P(M(1) = m1)}.

(5.37)

This will lead to the following new upper bound for PCA in partial mediation
analysis

P(Y (0) = 0, Y (1) = 1|X = 1) ≤ min{P(Y ∗(0, 0) = 0),P(Y ∗(1, 0) = 1)} ·min{P(M(0) = 0),P(M(1) = 0)}

+min{P(Y ∗(0, 0) = 0),P(Y ∗(1, 1) = 1)} ·min{P(M(0) = 0),P(M(1) = 1)}

+min{P(Y ∗(0, 1) = 0),P(Y ∗(1, 0) = 1)} ·min{P(M(0) = 1),P(M(1) = 0)}

+min{P(Y ∗(0, 1) = 0),P(Y ∗(1, 1) = 1)} ·min{P(M(0) = 1),P(M(1) = 1)} (5.38)

Equation (5.38) underlines 64 different combinations of P(Y ∗(x,m) = y) and
P(M(x) = m). These can lead to 64 different upper bounds for PCA in mediation
analysis. The smaller probability, out of this 64 combinations, will be the designed
value to bound from above the probability of causation for Ann’s case.
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Let us consider the bound for PCA found in § 5.1 for the simple analysis of X on
Y

PC = P(Y (0) = 0|Y (1) = 1, X = 1) ≤
min{P(Y (0) = 0),P(Y (1) = 1)}

P(Y (1) = 1)
(5.39)

where

P(Y (0) = 0) = P(Y ∗(0, 0) = 0)P(M(0) = 0) + P(Y ∗(0, 1) = 0)P(M(0) = 1) (5.40)

P(Y (1) = 1) = P(Y ∗(1, 0) = 1)P(M(1) = 0) + P(Y ∗(1, 1) = 1)P(M(1) = 1) (5.41)

Comparing the above equations with (5.38), we can notice that they are a
precise combination of (5.38). Then, bounding the probability of causation in
the presence of a mediator considering only 5.40 and 5.41, will not describe every
possible combination of the 64 probabilities. Thus bounding the probability of
causation in the presence of a mediator using only the simple framework of X on
Y might lead to wider bounds.

Identifiability Assumptions
In addition to the usual consistency assumptions on every counterfactual variable
considered, to estimate the upper bound in (5.38) we need further assumptions on
no-confounding between any variable in the mediation mechanism

1. Y ∗(x,m)⊥⊥M |X that is no M − Y confounding (A1);

2. Y ∗(x,m)⊥⊥X that is no X − Y confounding (A2);

3. M(x)⊥⊥X that is no X −M confounding (A3);

such that

P(Y ∗(x,m) = y) = P(Y ∗(x,m) = y|X = x) (A2)

= P(Y ∗(x,m) = y|X = x,M = m) (A1)

= P(Y = y|X = x,M = m) Consistency on Y ∗(x,m)

and

P(M(x) = m) = P(M(x) = m|X = x) (A3)

= P(M = m|X = x). Consistency on M(x)
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Lower Bound

According to Theorem 5.5.2 for p = 2, we can obtain a lower bound for PCA in
(5.36) as

PCA = P(Y (0) = 0|Y (1) = 1, X = 1) =
P(Y (0) = 0, Y (1) = 1|X = 1)

P(Y (1) = 1|X = 1)

=

∑
m0

∑
m1

P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1)P(M(0) = m0, M(1) = m1)

P(Y (1) = 1|X = 1)

≥

∑
m0,m1

max{0,P(Y ∗(0, m0) = 0) + P(Y ∗(1, m1) = 1) − 1} ·max{0,P(M(0) = m0) + P(M(1) = m1)− 1}

P(Y (1) = 1|X = 1)
.

If max{0,P(Y ∗(0, m0) = 0) + P(Y ∗(1, m1) = 1)− 1} is zero or
max{0,P(M(0) = m0) + P(M(1) = m1)− 1} is zero, the lower bound will be zero.
Otherwise we have

PCA ≥

∑
m0,m1

[P(Y ∗(0, m0) = 0) + P(Y ∗(1, m1) = 1)− 1] · [P(M(0) = m0) + P(M(1) = m1)− 1]

P(Y (1) = 1|X = 1)

=

∑
m0,m1

{P(Y ∗(1, m1) = 1)P(M(1) = m1) + [P(Y ∗(0, m0) = 0) − 1]P(M(0) = m0)}

P(Y (1) = 1|X = 1)
+

+

∑
m0,m1

{[P(Y ∗(0, m0) = 0)− 1][P(M(1) = m1)− 1] + P(Y ∗(1, m1) = 1)[P(M(0) = m0)− 1]}

P(Y (1) = 1|X = 1)

=

∑
m0,m1

P(Y ∗(1, m1) = 1)P(M(1) = m1)

P(Y (1) = 1|X = 1)
−

∑
m0,m1

P(Y ∗(0, m0) = 1)P(M(0) = m0)

P(Y (1) = 1|X = 1)
+

−

∑
m0,m1

P(Y ∗(0, m0) = 1)[P(M(1) = m1)− 1]

P(Y (1) = 1|X = 1)
+

∑
m0,m1

P(Y ∗(1, m1) = 1)[P(M(0) = m0)− 1]

P(Y (1) = 1|X = 1)

=

∑
m1

P(Y ∗(1, m1) = 1)P(M(1) = m1)

P(Y (1) = 1|X = 1)
−

∑
m0

P(Y ∗(0, m0) = 1)P(M(0) = m0)

P(Y (1) = 1|X = 1)
+

−

∑
m0

P(Y ∗(0, m0) = 1)
∑

m1
[P(M(1) = m1)− 1]

P(Y (1) = 1|X = 1)
+

∑
m1

P(Y ∗(1, m1) = 1)
∑

m0
[P(M(0) = m0)− 1]

P(Y (1) = 1|X = 1)

=

∑
m1

P(Y ∗(1, m1) = 1)P(M(1) = m1)

P(Y (1) = 1|X = 1)
−

∑
m0

P(Y ∗(0, m0) = 1)P(M(0) = m0)

P(Y (1) = 1|X = 1)
(5.42)

where

∑

m0
P(Y ∗(0, m0) = 1)

∑

m1
[P(M(1) = m1)− 1]

∑

m1
P(Y ∗(1, m1) = 1)P(M(1) = m1)

= 0

∑

m1
P(Y ∗(1, m1) = 1)

∑

m0
[P(M(0) = m0)− 1]

∑

m1
P(Y ∗(1, m1) = 1)P(M(1) = m1)

= 0.

Identifiability Assumptions
Under the assumptions of consistency and no-confounding A1, A2 and A3 we can
estimate the lower bound in (5.42) as

PCA ≥=

∑

m1
P(Y ∗(1, m1) = 1)P(M(1) = m1)

P(Y (1) = 1|X = 1)
−

∑

m0
P(Y ∗(0, m0) = 1)P(M(0) = m0)

P(Y (1) = 1|X = 1)
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= 1−
P(Y (0) = 1)

P(Y (1) = 1)

= 1−
P(Y = 1|X = 0)

P(Y = 1|X = 1)
(A2)

= 1−
1

RR
. (5.43)

Then, again, we do not obtain a different lower bound for PCA even considering
a partial mediation mechanism. This is perhaps consistent with what we found in
§ 5.4.

5.5.5 Bounds for PCA assuming bivariate and univariate
conditions

The conditions assumed in § 5.5.4 underline a dependence structure between the
two hypothetical worlds arising after setting all patients to be exposed and all
patients to be unexposed in the same time. For example, (B3) (M(0),M(1))⊥⊥X
underlines a connection between what would have happened at the mediator if
every subject would be exposed and what would have happened at the mediator
if every subject would be unexposed relative to X . If we believe in the causal
mechanism of X on M , the bivariate distribution (M(0),M(1)) is all is needed to
infer the causation of X on M .
In fact, they imply the existence of a multivariate structure between counterfactuals
that can be considered much more realistic than the simplistic assumption of
independence.

Unfortunately, we can not evaluate any of this multivariate structure from
the data. In this section we will weaken the bivariate assumptions (B1) to (B3)
to obtain the same results found in § 5.5.4.

Let us consider the following assumptions regarding both univariate and bi-
variate potential distributions:

Bivariate and Univariate Assumptions

1. Y ∗(x,m)⊥⊥ (M(0),M(1))|X (C1);

2. Y ∗(x,m)⊥⊥X that is no X − Y confounding (A2);

3. M(x)⊥⊥X that is no X −M confounding (A3).

Note that assumption (C1) Y ∗(x,m)⊥⊥ (M(0),M(1))|X implies both
Y ∗(x,m)⊥⊥M(0)|X and Y ∗(x,m)⊥⊥M(1)|X , that is no M −Y confounding. It in-
volves a certain independence, given X , between the counterfactual values Y ∗(x,m),
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arose setting exposure and mediator to a particular value, to both counterfactual
outcomes M(0) and M(1). It can be seen as a generalization of the univariate
hypothesis Y ∗(x,m)⊥⊥M(x)|X .

Upper Bound

Using a combination of assumptions (C1), (A2) and (A3) and of Theorem 5.5.3,
we can obtain an upper bound for PCA as

P(Y (0) = 0, Y (1) = 1|X = 1) = P(Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1|X = 1)

=
1∑

m0=0

1∑

m1=0

P(Y ∗(0, M(0)) = 0, Y ∗(1,M(1)) = 1|M(0) = m0, M(1) = m1, X = 1)P(M(0) = m0, M(1) = m1|X = 1)

=
∑

m0

∑

m1

P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|M(0) = m0, M(1) = m1, X = 1)P(M(0) = m0, M(1) = m1|X = 1)

Consistency on Y ∗(x,M(x))

≤
∑

m0

∑

m1

min{P(Y ∗(0, m0) = 0|M(0) = m0, M(1) = m1, X = 1),P(Y ∗(1, m1) = 1|M(0) = m0, M(1) = m1, X = 1)}

·min{P(M(0) = m0|X = 1),P(M(1) = m1|X = 1)} Theorem 5.5.3 on Y ∗(x,M(x)) and on M(x)

=
∑

m0

∑

m1

min{P(Y ∗(0, m0) = 0|X = 1),P(Y ∗(1, m1) = 1|X = 1)} ·min{P(M(0) = m0|X = 1),P(M(1) = m1|X = 1)}.

(C1) (5.44)

Assumptions C1, A2 and A3 will be enough to estimate the above quantities
from the data, for example for P(Y ∗(0, m0) = 0|X = 1) and P(Y ∗(1, m1) = 1|X = 1)
we have:

P(Y ∗(x,m) = y|X = x̃) = P(Y ∗(x,m) = y|X = x) (A2)

= P(Y ∗(x,m) = y|X = x,M(x) = m) (C1)

= P(Y = y|X = x,M = m) Consistency of Y ∗(x,M(x))

For P(M(0) = m0|X = 1) and P(M(1) = m1|X = 1):

P(M(x) = m|X = x̃) = P(M(x) = m|X = x) (A3)

= P(M = m|X = x) Consistency of M(x)

The upper bound in (5.44), computed assuming only one bivariate condition, is
the same as the one found in (5.38) assuming three different bivariate conditions

P(Y (0) = 0, Y (1) = 1|X = 1) ≤ min{P(Y ∗(0, 0) = 0),P(Y ∗(1, 0) = 1)} ·min{P(M(0) = 0),P(M(1) = 0)}
(5.45)

+min{P(Y ∗(0, 0) = 0),P(Y ∗(1, 1) = 1)} ·min{P(M(0) = 0),P(M(1) = 1)} (5.46)

+min{P(Y ∗(0, 1) = 0),P(Y ∗(1, 0) = 1)} ·min{P(M(0) = 1),P(M(1) = 0)} (5.47)

+min{P(Y ∗(0, 1) = 0),P(Y ∗(1, 1) = 1)} ·min{P(M(0) = 1),P(M(1) = 1)} (5.48)
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Lower Bound

For the lower bound we obtained

P(Y (0) = 0, Y (1) = 1|X = 1) = P(Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1|X = 1)

=
1∑

m0=0

1∑

m1=0

P(Y ∗(0,M(0)) = 0, Y ∗(1,M(1)) = 1|M(0) = m0, M(1) = m1, X = 1)P(M(0) = m0, M(1) = m1|X = 1)

=

1∑

m0=0

1∑

m1=0

P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|M(0) = m0, M(1) = m1, X = 1)P(M(0) = m0, M(1) = m1|X = 1)

Consistency on Y ∗(x,M(x))

≥ max{0,P(Y ∗(0, m0) = 0|M(0) = m0, M(1) = m1, X = 1) + P(Y ∗(1, m1) = 1|M(0) = m0, M(1) = m1, X = 1)− 1}

·max{0,P(M(0) = m0|X = 1) + P(M(1) = m1|X = 1) − 1} Theorem 5.5.3

= max{0,P(Y ∗(0, m0) = 0|X = 1) + P(Y ∗(1, m1) = 1|X = 1) − 1}

·max{0,P(M(0) = m0|X = 1) + P(M(1) = m1|X = 1) − 1} C1 (5.49)

Assumptions C1, A2 and A3 will be enough to estimate the above quantities
from the data. The lower bound above, computed assuming only one bivariate
condition, is the same as the one found in Equation (5.43) assuming three different
bivariate conditions.

On assumption C1

Dawid (1979) in [14] and Constantinou and Dawid (2015) in [10] provide useful rules
for conditional independence such as

X ⊥⊥ Y |Z and X ⊥⊥W |Y, Z ⇔ X ⊥⊥ (W,Y )|Z. (5.50)

In terms of potential mediator and outcome this will become

Y (x,m)⊥⊥M(1)|X and Y (x,m)⊥⊥M(0)|X,M(1)⇔ Y (x,m)⊥⊥ (M(0),M(1))|X.
(5.51)

That is

B1 and Y (x,m)⊥⊥M(0)|X,M(1)⇔ C1. (5.52)

Condition Y (x,m)⊥⊥M(0)|X,M(1), that we will call D1, is not new in the
literature, is also assumed by Daniels et al. (2012) in [13]. However, this is not
weaker than D1. It still assumes a dependence between cross world counterfactuals.

5.6 Comparisons

In this section we will compare the bounds found in the simple analysis framework
§ 5.1 with those obtained considering a complete mediation mechanism in § 5.4
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and those obtained considering a partial mediation mechanism assuming both
univariate and bivariate conditions as discussed in § 5.5.5. Here we will focus on
comparing these bounds to obtain the best information from the data.

The numerator of the upper bound of PCA in the simple analysis framework
(5.4), which ignores the mediator, may be written as

min{P(Y
∗
(0, 0) = 0)P(M(0) = 0) + P(Y

∗
(0, 1) = 0)P(M(0) = 1),P(Y

∗
(1, 0) = 1)P(M(1) = 0) + P(Y

∗
(1, 1) = 1)P(M(1) = 1)}

= min{α + β, γ + δ}. (5.53)

We can see that both (5.45) and (5.46) are smaller or at least equal than α,
while both (5.47) and (5.48) are smaller or at least equal than β. So 2(α + β),
and similarly 2(γ + δ), are bigger than the sum of (5.45), (5.46), (5.47) and (5.48).
Thus the upper bound accounting for the mediator can not exceed twice that when
ignoring it. However, as we will see in the next section subsection 5.6.1, it could be
larger or smaller than that bound. On the other hand, we did not obtain a different
lower bound.

Let us consider again the generalized g-formula

P(Y (0) = 0, Y (1) = 1|X = 1)

=
∑

m0

∑

m1

P(Y ∗(0, m0) = 0, Y ∗(1, m1) = 1|M(0) = m0,M(1) = m1, X = 1)P(M(0) = m0,M(1) = m1|X = 1).

In the special case of complete mediation, the terms with m0 = m1, in the sum
above, must be 0 leading to the following upper bound

P(Y (0) = 0, Y (1) = 1|X = 1) ≤

+min{P(Y ∗(0, 0) = 0),P(Y ∗(1, 1) = 1)} ·min{P(M(0) = 0),P(M(1) = 1)}

+min{P(Y ∗(0, 1) = 0),P(Y ∗(1, 0) = 1)} ·min{P(M(0) = 1),P(M(1) = 0)}.

Under the hypothesis of no direct effect, we can always equate Y ∗(x,m) = Y ∗(m)
for every x such that Y ∗(m) = Y ∗(0, m) = Y ∗(1, m). Then, assuming a complete
mediation mechanism between X and Y , the numerator of PCA can be written as

P(Y (0) = 0, Y (1) = 1|X = 1) ≤

min{P(Y ∗(0) = 0),P(Y ∗(1) = 1)} ·min{P(M(0) = 0),P(M(1) = 1)}+

+min{P(Y ∗(1) = 0),P(Y ∗(0) = 1)} ·min{P(M(0) = 1),P(M(1) = 0)}

= min{y∗0+, y
∗
+1} ·min{m0+, m+1}+min{y∗+0, y

∗
1+} ·min{m1+, m+0}

which collects all the four different possibilities in Table 5.3. Thus, starting from
the bounds for PCA in the more general case of partial mediation, assuming no
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direct effect from X to Y , we obtained the bound for PCA in the case of complete
mediation. The bounds found in § 5.5.5 for partial mediation, are then consistent
with the bounds found in § 5.4 for complete mediation.

We can even discuss how the upper bound for PCA in a partial mediation
mechanism can be considered as the sum of an indirect measure given by the sum
of (5.46) and (5.47) and a direct measure given by the sum of (5.45) and (5.48).
In fact, equations (5.46) and (5.47), are all that is needed to construct an upper
bound for PCA in complete mediation where no direct effect is present.

Moreover, equations (5.46) and (5.47) together, do not exceed α + β. So as-
suming a complete mediation mechanism between X and Y , we never do worse
than the simple analysis of X on Y .

5.6.1 Examples

In the case of partial mediation, taking account of information of the mediator can,
but need not, yield a tighter upper bound. Thus suppose that a good experimental
study tested the same drug taken by Ann, and produced the data reported in the
tables below. In the first case, considering the mediator yields better bounds, but
in the second we do better by ignoring it.

Die Live Total
Exposed 69 31 100
Unexposed 24 76 100

Table 5.4: Deaths in individuals exposed and unexposed to the same drug taken by
Ann

Introducing M , suppose we identify the following probabilities, consistent with
the table above

P(Y ∗(0, 0) = 0) = 0.98 P(Y ∗(0, 1) = 0) = 0.165

P(Y ∗(1, 0) = 0) = 0.315 P(Y ∗(1, 1) = 0) = 0.143

P(M(0) = 0) = 0.73 P(M(1) = 0) = 0.981

We obtain: 0.65 ≤ PCA ≤ 0.81 when accounting for the mediator, and
0.65 ≤ PCA ≤ 1 when ignoring it.

On the other hand, let us consider an experimental study the data reported
in the table below

Suppose we have the following probabilities, consistent with the table above
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Die Live Total
Exposed 78 22 100
Unexposed 68 32 100

Table 5.5: Deaths in individuals exposed and unexposed to the same drug taken by
Ann

P(Y ∗(0, 0) = 0) = 0.98 P(Y ∗(0, 1) = 0) = 0.67

P(Y ∗(1, 0) = 0) = 0.09 P(Y ∗(1, 1) = 0) = 0.27

P(M(0) = 0) = 0.04 P(M(1) = 0) = 0.26

We obtain: 0.59 ≤ PCA ≤ 0.94 when accounting for the mediator, but 0.59 ≤
PCA ≤ 0.87 when ignoring it.
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Chapter 6

Conclusions and further aims

In the EoC framework, Mediation analysis in the presence of unmeasured confound-
ing is complex. We faced this problem in a real case when high parity is strongly
associated with wheezing and likely to be mediated by birth weight. Several
researchers designed methods capable of dealing with such problem. VanderWeele
proposed a method not affected by collider bias that consists in conditioning on the
estimated risk of being LBW instead of conditioning on M itself. In the dataset
analyzed, in both situations of a rare and a regular outcome, this approach led
to the same conclusions made on stratified measures. However, this method is
highly affected by the poor predictive strength of the model designed to predict
the mediator. In fact it is not simple to find, in a real case, such strong mediator’s
predictors able to avoid this issue. Furthermore, it precludes more real situations of
an unmeasured intermediate confounding that might be responsible of the apparent
paradox. Other problems may be caused may be the low prevalence of the mediator.
On the other hand, mediation effects pointed out similar conclusions: the exposure
appeared to act as a risk factor only in the normal birth weight intervention group,
what is meant to be the least at risk, while they were not statistically associated
in the low birth weight intervention group. Furthermore, in both cases, there
were not evidence of an indirect effect of the exposure on the outcome trough the
mediator. In the case of a rare outcome, there were not such evidence neither when
accounting for the mediated interactive effect in the natural direct effect rather
than in the indirect effect. In this situation we have to focus on sensitivity analysis.
For the case of a rare outcomes, the sensitivity analysis we suggested, involved a
graphical explanation of the hypothetical relational assumptions between U , M
and Y that might mask the indirect effect. In the case of only linear relationship,
we obtained a protective corrected indirect effects. However, by this method, we
were not able to assess the magnitude of the unmeasured U affecting both mediator
and outcome. We could at least state if it were protective or harmful. This can be
done considering the second sensitivity analysis techniques. Setting the parameter
γ, the hypothetical effect of U on Y , and the hypothetical prevalence of U in
every strata of exposure, mediator and confounders, we were able to answer the
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following research question: if we could control for U, what degree of confounding
is capable of showing a CDE(1) bigger (or at least equal) than CDE(0)? We
saw that, only values of γ ≥ 4 could reverse the relationship between CDEs,
that is, only considerable unmeasured confounding U would reverse this relation.
The corrected indirect effect associated to this sensitivity parameters, in line with
the previous graphical result, should then be protective. In the case of a regular
outcome, similar conclusions can be drawn from stratified OR, mediation effects and
from conditioning on the risk of an intermediate. In particular we examined, via
sensitivity analysis, two possible scenarios: un unmeasured variable U that affects
the mediator-outcome relation and an additional unmeasured intermediate variable
that is affected by the exposure. We saw that the differences between biased CDEs,
in the case of one mediator, increased with the degree of confounding. Furthermore,
when accounting for U , the corrected gap between CDEs should show a completely
different situation (only negative values) than the estimated results not accounting
for U . However, the difference found in the NINFEA dataset can only be explained
by a huge degree of confounding, that is with S bigger than 9 when each or both
γu and βu are bigger than 3. According to this result, for low prevalence of LBW,
we can not longer conclude the absence of an indirect effect via birth weight in the
case of one mediator. For the case of two mediators (one mediator of interest and
one intermediate confounder): the sensitivity analysis shown similar conclusions for
CDEs, except the results in 4.13e which are not consistent with the result found
in the Ninfea dataset. On the other hand, 4.13f pointed out a biased indirect effect
always bigger and closer to one than the indirect effect through LBW alone. In
conclusion, to reverse the relationship between CDEs and to produce the difference
found in the NINFEA sample, the bias affecting this dataset should be considerable
and perhaps unlikely. On the other hand, this severe degree of confounding is
consistent with the simulations produced by Basso et al. in [6, 5]. The graphical
sensitivity analysis that we proposed here, are a simple and useful tools capable of
investigating different paradoxical scenarios. Further extensions of this work will
include a statistical package for the sensitivity analysis proposed by VanderWeele
and graphically illustrated by our figures.

From a CoE perspective, bounding the probability of causation in Mediation
Analysis turned out to be challenging and interesting. The important implications
of PCA in real cases, encourage the researcher to focus on studying methods
capable of producing more precise bounds. In this thesis we saw that, considering
a complete mediation mechanism, we never do worse than the simple analysis of
X on Y . However, when a partial mediation mechanism disentangle the relation
between exposure and mediator, usual assumptions of no unmeasured confounding
were not enough to obtain smaller bounds. Considering an additional bivariate
assumption between potential variables, we obtained new bounds for PCA in the
case of partial mediation. In particular, we saw that bounding the probability
of causation not accounting for the mediator (as in the simple framework of X
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on Y ) will not be exhaustive of all possible scenarios and hence, might lead to
wider bounds. This bivariate hypothesis is not new in the literature and might be
connected to similar assumptions. In this particular case it requires independence
between some potential variables.

This work has several possible extensions. It could be very interesting to ap-
ply these theoretical formulas to real data combining also information on both
covariates and mediators. Another development could be to include Ann’s mediator
value in the formulation of PCA and define bounds for the “controlled probability
of causation”. Another extension that seems to be promising is to implement
different copula functions in order to obtain an exact estimate for the probability
of causation which must lie in the bounds found in this thesis.
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Appendix A

Software development

Here we report a selection of methods presented in § 4.2 and implemented in Stata
12.

*********************************************************************

*****CHAPTER:4, SECTION: 2, SUBSECTION: 3. RARE OUTCOME RESULTS******

*********************************************************************

use dataset.dta,clear

**************************Stratified OR******************************

gen xm=x*m

logit y i.x i.xm i.m anno_child mat_age gest_age smoking mat_asthma

lincom _b[1.x]+_b[1.xm]

di exp(r(estimate))

******************Partitioning the causal effects********************

set seed 12345

capture program drop direct_effect_adjusted

program direct_effect_adjusted

qui logit m x mat_age gest_age smoking

scalar beta0=_b[_cons]

scalar beta_x=_b[x]

scalar beta_1a=_b[mat_age]

scalar beta_2b=_b[gest_age]

scalar beta_2c=_b[smoking]

qui logit y x m xm anno_child gest_age smoking mat_asthma

scalar theta0=_b[_cons]

scalar theta_x=_b[x]

scalar theta_m=_b[m]
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scalar theta_xm=_b[xm]

scalar theta_2b=_b[gest_age]

scalar theta_2c=_b[smoking]

scalar theta_3=_b[anno_child]

scalar theta_4=_b[mat_asthma]

* mean children: born in 2009 with 39 weeks of gestation form a

* non-smoking mother of 33 years corresponding in the model to

* anno_child==0 (because already centered at 2009)

* mat_age==0 (because already centered at 33)

* gest_age==2 (because centered at 37)

* and smoking=0

*Mediation effects for a mean individual

scalar cde0=exp(theta_x)

scalar cde1=exp(theta_x+theta_xm)

scalar pnde=exp(theta_x)*((1+exp(theta_m+theta_xm+beta_0 ///

+beta_2b*2))/(1+exp(theta_m+beta_0+beta_2b*2)))

scalar tnie=((1+exp(beta_0+beta_2b*2))*(1+exp(theta_m+theta_xm ///

+beta_0+beta_x+beta_2b*2)))/((1+exp(beta_0+beta_x+beta_2b*2))*(1 ///

+exp(theta_m+theta_xm+beta_0+beta_2b*2)))

scalar tnde=(exp(theta_x)*(1+exp(theta_m+theta_xm+beta_0+beta_x///

+beta_2b*2)))/(1+exp(theta_m+beta_0+beta_x+beta_2b*2))

scalar pnie=((1+exp(beta_0+beta_2b*2))*(1+exp(theta_m+beta_0+beta_x ///

+beta_2b*2)))/((1+exp(beta_0+beta_x+beta_2b*2))*(1 ///

+exp(theta_m+beta_0+beta_2b*2)))

scalar tce=pnde*tnie

scalar K=tnie/pnie

scalar list

end

bootstrap direct_effect_adjusted cde0_c=cde0 cde1_c=cde1 pnde_c=pnde ///

tnie_c=tnie tnde_c=tnde pnie_c=pnie tce_c=tce1 ///

K_c=K, reps(10000) nodots

***************VanderWeeles approaches to the paradox***************

use dataset_rare.dta,clear

logit m gest_age mat_age smoking dets

predict risk, pr

centile risk,centile(95.0) ///.1370409

gen h=0

replace h=1 if risk>=.1370409
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replace h=. if risk==.

gen xh=x*h

logit y x h xh anno_child gest_age smoking

lincom _b[x]+_b[xh]

di exp(r(estimate))

****************Sensitivity Analysis: Rare Outcome*******************

*simulations

clear

set obs 10000

gen pi_00=runiform()

gen pi_10=runiform()

gen pi_11=runiform()

gen pi_01=runiform()

*the prevalence of U among unexposed was set to be bigger than the

*prevalence of U among exposed

gen rule_0=(pi_10<pi_00)

gen rule_1=(pi_11<pi_01)

foreach gamma of numlist 2 3 4 5 7{

gen bias_cde_0=((1+(‘gamma’-1)*pi_10)/(1+(‘gamma’-1)*pi_00))

gen bias_cde_1=((1+(‘gamma’-1)*pi_11)/(1+(‘gamma’-1)*pi_01))

gen cde_unb_0=3.32/bias_cde_0

gen cde_unb_1=1.02/bias_cde_1

gen diff=cde_unb_0-cde_unb_1

twoway (scatter pi_10 pi_00 if diff<=0 & rule_0==1 & rule_1==1) ///

(function x, range(pi_00) n(2)), xtitle(pi_00) ///

ytitle(pi_10) title(g=‘gamma’)

twoway (scatter pi_11 pi_01 if diff<=0 & rule_0==1 & rule_1==1)///

(function x, range(pi_01) n(2)), xtitle(pi_01) ytitle(pi_11) ///

title(g=‘gamma’)

drop bias_* cde_* diff

}

*plotted graph (4.7 and 4.8)
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gen bias_cde_0=((1+(4-1)*pi_10)/(1+(4-1)*pi_00))

gen bias_cde_1=((1+(4-1)*pi_11)/(1+(4-1)*pi_01))

gen cde_unb_0=3.32/bias_cde_0

gen cde_unb_1=1.02/bias_cde_1

gen diff=cde_unb_0-cde_unb_1

keep if rule_0==1 & rule_1==1 & diff<=0

*only 4 combinations selected

gen n=_n

twoway (scatter pi_10 pi_00 if n==1, msymbol(square)) ///

(scatter pi_10 pi_00 if n==2, msymbol(triangle)) ///

(scatter pi_10 pi_00 if n==3, msymbol(diamond)) ///

(scatter pi_10 pi_00 if n==4, msymbol(plus)) ///

(function x, range(pi_00) n(2)), xtitle(pi_00) ///

ytitle(pi_10) title(g=4) name(graph_4_1, replace)

twoway (scatter pi_11 pi_01 if n==1, msymbol(square)) ///

(scatter pi_11 pi_01 if n==2, msymbol(triangle)) ///

(scatter pi_11 pi_01 if n==3, msymbol(diamond)) ///

(scatter pi_11 pi_01 if n==4, msymbol(plus)) ///

(function x, range(pi_00) n(2)), xtitle(pi_01)///

ytitle(pi_11) title(g=4) name(graph_4_2, replace)

*bias affecting PNDE and TNIE

use "dataset_rare.dta", clear

logit m x age gest mcp_msmoke

gen p_m1=exp(_b[_cons]+_b[x]*0+_b[gest]*2)/(1+exp(_b[_cons]+_b[x]*0+_b[gest]*2))

sum p_m1 //0.05

gen p_m0=1/(1+exp(_b[_cons]+_b[x]*0+_b[gest]*2))

sum p_m0 //0.95

gen num=exp(_b[_cons]+_b[x]*0+_b[gest]*2)

sum num //0.05

di ((1+3*0.38)+(1+3*0.05)*0.05)/((1+3*0.4)+(1+3*0.93)*0.05) //0.92

di 3.11/0.91 //3.42

di 1.01*0.91 //0.92

Here we report a selection of methods presented in § 4.3 and implemented in
Stata 12.

*********************************************************************
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****CHAPTER:4, SECTION: 3, SUBSECTION: 2. REGULAR OUTCOME RESULTS****

*********************************************************************

use dataset_regular.dta,clear

******************Partitioning the causal effects********************

*gformula version 1.13

gformula y x m xm anno_child mat_age smoking gest_age, mediation ///

outcome(y) exposure(x) mediator(m) base_confs(anno_c age ///

mcp_msmoke gest) com(y:logit, m:logit) eq(y: x m xm anno_child ///

smoking gest_age, m: x mat_age smoking gest_age) derived(xm)///

derrules(xm:x*m) control(m:1) minsim obe moreMC samples(1000) ///

simulations(10000) seed(79) logOR

gformula y x m xm anno_child mat_age smoking gest_age, mediation ///

outcome(y) exposure(x) mediator(m) base_confs(anno_c age ///

mcp_msmoke gest) com(y:logit, m:logit) eq(y: x m xm anno_child ///

mat_age smoking gest_age, m: x mat_age smoking gest_age) derived(xm)///

derrules(xm:x*m) control(m:0) minsim obe moreMC samples(1000) ///

simulations(10000) seed(79) logOR

*********************************************************************

****CHAPTER:4, SECTION: 3, SUBSECTION: 3. REG. OUT. Sensitivity******

*********************************************************************

******************g-formula by hand, one mediator********************

clear

set seed 100

program drop simulations

program define simulations, rclass

version 12.0

clear

syntax [, s(integer 10) obs(integer 10000) p_x(real 0.25) ///

gamma0(real -2.9) gammax(real -0.44) gammau(real 0) ///

p_u(real 0) beta0(real -1.85) betax(real 2.16) betam(real 1.09)///

betaxm(real 1) betau(real 1)]

set obs ‘obs’

qui gen id=_n
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qui gen u=runiform()<‘p_u’

qui gen x=runiform()<‘p_x’

qui gen p_m=(exp(‘gamma0’+‘gammax’*x+‘gammau’*u)/(1+exp(‘gamma0’ ///

+‘gammax’*x+‘gammau’*u)))

qui gen m=runiform()<p_m

qui gen xm=x*m

qui gen p_y=(exp(‘beta0’+‘betax’*x+‘betam’*m+‘betaxm’*xm+‘betau’*u)/(1 ///

+exp(‘beta0’+‘betax’*x+‘betam’*m+‘betaxm’*xm+‘betau’*u)))

qui gen y=runiform()<p_y

return scalar prev_m=‘prev_m’

return scalar prev_y=‘prev_y’

preserve

expand ‘s’

sort id

qui by id:gen original=_n==1

*GFORMULA BY HAND with U: unbiased results

qui logit m x u if original==1

qui gen M_0=runiform()<(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[u]*u)))) //M(0)

qui gen M_1=runiform()<(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[u]*u)))) //M(1)

qui logit y x m xm u if original==1

*P(Y(0,0)=1)

qui gen p_Y_00=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[m]*0+_b[xm]*0*0+_b[u]*u))))

*P(Y(0,1)=1)

qui gen p_Y_01=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[m]*1+_b[xm]*0*1+_b[u]*u))))

*P(Y(1,0)=1)

qui gen p_Y_10=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*0+_b[xm]*1*0+_b[u]*u))))

*P(Y(1,1)=1)

qui gen p_Y_11=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*1+_b[xm]*1*1+_b[u]*u))))

qui egen m_p_Y_00=mean(p_Y_00) //E(Y(0,0))

qui egen m_p_Y_01=mean(p_Y_01) //E(Y(0,1))

qui egen m_p_Y_10=mean(p_Y_10) //E(Y(1,0))

qui egen m_p_Y_11=mean(p_Y_11) //E(Y(1,1))
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*P(Y(0,M(0))=1)

qui gen p_Y_0_M_0=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[m]*M_0 ///

+_b[xm]*0*M_0+_b[u]*u))))

*P(Y(1,M(0))=1)

qui gen p_Y_1_M_0=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*M_0 ///

+_b[xm]*1*M_0+_b[u]*u))))

*P(Y(1,M(1))=1)

qui gen p_Y_1_M_1=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*M_1 ///

+_b[xm]*1*M_1+_b[u]*u))))

qui egen m_p_Y_0_M_0=mean(p_Y_0_M_0) //E(Y(0,M(0)))

qui egen m_p_Y_1_M_0=mean(p_Y_1_M_0) //E(Y(1,M(0)))

qui egen m_p_Y_1_M_1=mean(p_Y_1_M_1) //E(Y(1,M(1)))

*log(TCE)=log(E(Y(1,M(1)))/1-E(Y(1,M(1))))-log(E(Y(0,M(0)))/1-E(Y(0,M(0))))

local lTCE_unb=log(m_p_Y_1_M_1/(1-m_p_Y_1_M_1)) ///

-log(m_p_Y_0_M_0/(1-m_p_Y_0_M_0))

*log(NDE)=log(E(Y(1,M(0)))/1-E(Y(1,M(0))))-log(E(Y(0,M(0)))/1-E(Y(0,M(0))))

local lNDE_unb=log(m_p_Y_1_M_0/(1-m_p_Y_1_M_0)) ///

-log(m_p_Y_0_M_0/(1-m_p_Y_0_M_0))

*log(NIE)=log(TCE)-log(NDE)

local lNIE_unb=‘lTCE_unb’-‘lNDE_unb’

*log(CDE(0))=log(E(Y(1,0))/1-E(Y(1,0)))-log(E(Y(0,0))/1-E(Y(0,0)))

local lCDE_0_unb=log(m_p_Y_10/(1-m_p_Y_10))-log(m_p_Y_00/(1-m_p_Y_00))

*log(CDE(1))

local lCDE_1_unb=log(m_p_Y_11/(1-m_p_Y_11))-log(m_p_Y_01/(1-m_p_Y_01))

drop p_Y* m_p_Y* M_*

return scalar lcde_0_unb=‘lCDE_0_unb’

return scalar lcde_1_unb=‘lCDE_1_unb’

return scalar lnde_unb=‘lNDE_unb’

return scalar ltce_unb=‘lTCE_unb’

return scalar lnie_unb=‘lNIE_unb’

*GFORMULA BY HAND without U: biased results

qui logit m x if original==1

qui gen M_0=runiform()<(1/(1+exp(-(_b[_cons]+_b[x]*0)))) //M(0)

qui gen M_1=runiform()<(1/(1+exp(-(_b[_cons]+_b[x]*1)))) //M(1)
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qui logit y x m xm if original==1

*P(Y(0,0)=1)

qui gen p_Y_00=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[m]*0+_b[xm]*0*0))))

*P(Y(0,1)=1)

qui gen p_Y_01=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[m]*1+_b[xm]*0*1))))

*P(Y(1,0)=1)

qui gen p_Y_10=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*0+_b[xm]*1*0))))

*P(Y(1,1)=1)

qui gen p_Y_11=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*1+_b[xm]*1*1))))

qui egen m_p_Y_00=mean(p_Y_00) //E(Y(0,0))

qui egen m_p_Y_01=mean(p_Y_01) //E(Y(0,1))

qui egen m_p_Y_10=mean(p_Y_10) //E(Y(1,0))

qui egen m_p_Y_11=mean(p_Y_11) //E(Y(1,1))

*P(Y(0,M(0))=1)

qui gen p_Y_0_M_0=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[m]*M_0+_b[xm]*0*M_0))))

*P(Y(1,M(0))=1)

qui gen p_Y_1_M_0=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*M_0+_b[xm]*1*M_0))))

*P(Y(1,M(1))=1)

qui gen p_Y_1_M_1=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*M_1+_b[xm]*1*M_1))))

qui egen m_p_Y_0_M_0=mean(p_Y_0_M_0) //E(Y(0,M(0)))

qui egen m_p_Y_1_M_0=mean(p_Y_1_M_0) //E(Y(1,M(0)))

qui egen m_p_Y_1_M_1=mean(p_Y_1_M_1) //E(Y(1,M(1)))

*log(TCE)=log(E(Y(1,M(1)))/1-E(Y(1,M(1))))-log(E(Y(0,M(0)))/1-E(Y(0,M(0))))

local lTCE_b=log(m_p_Y_1_M_1/(1-m_p_Y_1_M_1))-log(m_p_Y_0_M_0/(1-m_p_Y_0_M_0))

*log(NDE)=log(E(Y(1,M(0)))/1-E(Y(1,M(0))))-log(E(Y(0,M(0)))/1-E(Y(0,M(0))))

local lNDE_b=log(m_p_Y_1_M_0/(1-m_p_Y_1_M_0))-log(m_p_Y_0_M_0/(1-m_p_Y_0_M_0))

*log(NIE)=log(TCE)-log(NDE)

local lNIE_b=‘lTCE_b’-‘lNDE_b’

*log(CDE(0))=log(E(Y(1,0))/1-E(Y(1,0)))-log(E(Y(0,0))/1-E(Y(0,0)))

local lCDE_0_b=log(m_p_Y_10/(1-m_p_Y_10))-log(m_p_Y_00/(1-m_p_Y_00))

*log(CDE(1))

local lCDE_1_b=log(m_p_Y_11/(1-m_p_Y_11))-log(m_p_Y_01/(1-m_p_Y_01))

drop p_Y* m_p_Y* M_*

return scalar lcde_0_b=‘lCDE_0_b’
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return scalar lcde_1_b=‘lCDE_1_b’

return scalar lnde_b=‘lNDE_b’

return scalar ltce_b=‘lTCE_b’

return scalar lnie_b=‘lNIE_b’

end

local i=0

local drop i

foreach bu of numlist -0.7 1 2 3{

foreach gu of numlist -0.7 1 2 3{

foreach bm of numlist -0.7 1{

foreach g0 of numlist -2 -1.4 0.4 2.2{

local i=‘i’+1

local bu10=‘bu’*10

local gu10=‘gu’*10

local bm10=‘bm’*10

local g010=‘g0’*10

di

di "__________________________________________________________"

di "betam is ‘bm’; betau is ‘bu’; gammau is ‘gu’; gamma0 is ‘g0’"

di "you are at the interaction ‘i’ out of 128 "

di

simulate prev_m=r(prev_m) prev_y=r(prev_y) ///

lcde_0_unb=r(lcde_0_unb) lcde_0_b=r(lcde_0_b) ///

lcde_1_unb=r(lcde_1_unb) lcde_1_b=r(lcde_1_b) ///

lnde_unb=r(lnde_unb) lnde_b=r(lnde_b) lnie_unb=r(lnie_unb) ///

lnie_b=r(lnie_b) ltce_unb=r(ltce_unb) ltce_b=r(ltce_b), ///

reps(1000) saving(path\results_‘bu10’_‘gu10’_‘bm10’_‘g010’_‘i’,replace): ///

simulations, obs(10000) s(10) p_x(0.25) p_u(0.5) gamma0(‘g0’) ///

gammax(-.91) gammau(‘gu’) beta0(-1.4) betax(0.8) betam(‘bm’) ///

betaxm(0) betau(‘bu’)

}

}

}

}

******************g-formula by hand, two mediators*******************

set seed 100

program drop simulations2

program define simulations2, rclass

version 12.0

clear
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syntax [, s(integer 10) obs(integer 10000) p_x(real 0.25) ///

alpha0(real 0.4) alphax(real 0) gamma0(real -2.9) ///

gammax(real -0.44) gammau(real 0) gammaux(real 0) ///

beta0(real -1.85) betax(real 2.16) betam(real 1.09) ///

betau(real 1) betaxm(real 1) betaux(real 0) ///

betaum(real 0)]

set obs ‘obs’

qui gen id=_n

qui gen x=runiform()<‘p_x’

qui gen p_u=(exp(‘alpha0’+‘alphax’*x)/(1+exp(‘alpha0’+‘alphax’*x)))

qui gen u=runiform()<p_u

qui gen ux=u*x

qui gen p_m=(exp(‘gamma0’+‘gammax’*x+‘gammau’*u+‘gammaux’*ux)/(1 ///

+exp(‘gamma0’+‘gammax’*x+‘gammau’*u+‘gammaux’*ux)))

qui gen m=runiform()<p_m

return scalar prev_m=‘prev_m’

qui gen xm=x*m

qui gen um=u*m

qui gen ux2=u*x

qui gen p_y=(exp(‘beta0’+‘betax’*x+‘betam’*m+‘betau’*u+‘betaxm’*xm ///

+‘betaux’*ux2+‘betaum’*um)/(1+exp(‘beta0’+‘betax’*x+‘betam’*m ///

+‘betau’*u+‘betaxm’*xm+‘betaux’*ux2+‘betaum’*um)))

qui gen y=runiform()<p_y

return scalar prev_y=‘prev_y’

preserve

expand ‘s’

sort id

qui by id:gen original=_n==1

*GFORMULA BY HAND with U: unbiased results

qui logit u x if original==1

qui gen u_0=runiform()<(1/(1+exp(-(_b[_cons]+_b[x]*0)))) //U(0)

qui gen u_1=runiform()<(1/(1+exp(-(_b[_cons]+_b[x]*1)))) //U(1)

qui logit m x u ux if original==1

*M(X=0,U(X=0))

qui gen p_m_00=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[u]*u_0+_b[ux]*0*u_0))))

*M(X=1,U(X=1))
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qui gen p_m_11=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[u]*u_1+_b[ux]*1*u_1))))

*M(X=0,U(X=1))

qui gen p_m_01=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[u]*u_1+_b[ux]*0*u_1))))

*M(X=1,U(X=0))

qui gen p_m_10=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[u]*u_0+_b[ux]*1*u_0))))

qui egen m_p_m_00=mean(p_m_00)

qui egen m_p_m_11=mean(p_m_11)

qui egen m_p_m_01=mean(p_m_01)

qui egen m_p_m_10=mean(p_m_10)

qui logit y x u m xm ux um if original==1

*P(Y(1,U(1),M(1,U(0)) )=1)

qui gen p_Y_1110=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[u]*u_1+_b[m]*m_p_m_10 ///

+_b[xm]*1*m_p_m_10+_b[ux]*1*u_1+_b[um]*u_1*m_p_m_10))))

*P(Y(1,U(1),M(0,U(0)) )=1)

qui gen p_Y_1100=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[u]*u_1+_b[m]*m_p_m_00 ///

+_b[xm]*1*m_p_m_00+_b[ux]*1*u_1+_b[um]*u_1*m_p_m_00))))

*P(Y(1,U(1),M(1,U(1)) )=1)

qui gen p_Y_1111=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[u]*u_1+_b[m]*m_p_m_11 ///

+_b[xm]*1*m_p_m_11+_b[ux]*1*u_1+_b[um]*u_1*m_p_m_11))))

*P(Y(1,U(1),M(1,U(1)) )=1)

qui gen p_Y_1000=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[u]*u_0+_b[m]*m_p_m_00 ///

+_b[xm]*1*m_p_m_00+_b[ux]*1*u_0+_b[um]*u_0*m_p_m_00))))

*P(Y(1,U(1),M(1,U(1)) )=1)

qui gen p_Y_0000=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[u]*u_0+_b[m]*m_p_m_00 ///

+_b[xm]*0*m_p_m_00+_b[ux]*0*u_0+_b[um]*u_0*m_p_m_00))))

qui egen m_p_Y_1110=mean(p_Y_1110) //E[Y(1,U(1),M(1,U(0)) )]

qui egen m_p_Y_1100=mean(p_Y_1100) //E[Y(1,U(1),M(0,U(0)) )]

qui egen m_p_Y_1111=mean(p_Y_1111) //E[Y(1,U(1),M(1,U(1)) )]

qui egen m_p_Y_1000=mean(p_Y_1000) //E[Y(1,U(0),M(0,U(0)) )]

qui egen m_p_Y_0000=mean(p_Y_0000) //E[Y(0,U(0),M(0,U(0)) )]

*P(Y(1,U(1),0)=1)

qui gen p_c_Y_110=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[u]*u_1+_b[m]*0 ///

+_b[xm]*1*0+_b[ux]*1*u_1+_b[um]*u_1*0))))

*P(Y(0,U(0),0)=1)

qui gen p_c_Y_000=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[u]*u_0+_b[m]*0 ///

+_b[xm]*0*0+_b[ux]*0*u_0+_b[um]*u_0*0))))

*P(Y(1,U(1),1)=1)

qui gen p_c_Y_111=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[u]*u_1+_b[m]*1 ///

+_b[xm]*1*1+_b[ux]*1*u_1+_b[um]*u_1*1))))
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*P(Y(0,U(0),1)=1)

qui gen p_c_Y_001=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[u]*u_0+_b[m]*1 ///

+_b[xm]*0*1+_b[ux]*0*u_0+_b[um]*u_0*1))))

qui egen m_p_c_Y_110=mean(p_c_Y_110) //E[Y(1,U(1),0)]

qui egen m_p_c_Y_000=mean(p_c_Y_000) //E[Y(0,U(0),0)]

qui egen m_p_c_Y_111=mean(p_c_Y_111) //E[Y(1,U(1),1)]

qui egen m_p_c_Y_001=mean(p_c_Y_001) //E[Y(0,U(0),1)]

local lNIE_unb_M_110=log(m_p_Y_1110/(1-m_p_Y_1110)) ///

-log(m_p_Y_1100/(1-m_p_Y_1100))

local lNIE_unb_U_100=log(m_p_Y_1100/(1-m_p_Y_1100)) ///

-log(m_p_Y_1000/(1-m_p_Y_1000))

local lNIE_unb_UM_111=log(m_p_Y_1111/(1-m_p_Y_1111)) ///

-log(m_p_Y_1110/(1-m_p_Y_1110))

local lNDE_unb_000=log(m_p_Y_1000/(1-m_p_Y_1000)) ///

-log(m_p_Y_0000/(1-m_p_Y_0000))

local lTCE_unb=‘lNIE_unb_M_110’+‘lNIE_unb_U_100’ ///

+‘lNIE_unb_UM_111’+‘lNDE_unb_000’

local lCDE_M_0_unb=log(m_p_c_Y_110/(1-m_p_c_Y_110)) ///

-log(m_p_c_Y_000/(1-m_p_c_Y_000))

local lCDE_M_1_unb=log(m_p_c_Y_111/(1-m_p_c_Y_111)) ///

-log(m_p_c_Y_001/(1-m_p_c_Y_001))

drop u_* m_p_m_* p_m_* m_p_Y_*

drop p_Y_* m_p_c_Y_* p_c_Y_*

return scalar lCDE_M_0_unb=‘lCDE_M_0_unb’

return scalar lCDE_M_1_unb=‘lCDE_M_1_unb’

return scalar lNIE_unb_M_110=‘lNIE_unb_M_110’

return scalar lNIE_unb_U_100=‘lNIE_unb_U_100’

return scalar lNIE_unb_UM_111=‘lNIE_unb_UM_111’

return scalar lNDE_unb_000=‘lNDE_unb_000’

return scalar lTCE_unb=‘lTCE_unb’

*GFORMULA BY HAND without U: biased results

qui logit m x if original==1

qui gen M_0=runiform()<(1/(1+exp(-(_b[_cons]+_b[x]*0)))) //M(0)

qui gen M_1=runiform()<(1/(1+exp(-(_b[_cons]+_b[x]*1)))) //M(1)

qui logit y x m xm if original==1

*P(Y(0,0)=1)
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qui gen p_Y_00=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[m]*0+_b[xm]*0*0))))

*P(Y(0,1)=1)

qui gen p_Y_01=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[m]*1+_b[xm]*0*1))))

*P(Y(1,0)=1)

qui gen p_Y_10=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*0+_b[xm]*1*0))))

*P(Y(1,1)=1)

qui gen p_Y_11=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*1+_b[xm]*1*1))))

qui egen m_p_Y_00=mean(p_Y_00) //E(Y(0,0))

qui egen m_p_Y_01=mean(p_Y_01) //E(Y(0,1))

qui egen m_p_Y_10=mean(p_Y_10) //E(Y(1,0))

qui egen m_p_Y_11=mean(p_Y_11) //E(Y(1,1))

*P(Y(0,M(0))=1)

qui gen p_Y_0_M_0=(1/(1+exp(-(_b[_cons]+_b[x]*0+_b[m]*M_0+_b[xm]*0*M_0))))

*P(Y(1,M(0))=1)

qui gen p_Y_1_M_0=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*M_0+_b[xm]*1*M_0))))

*P(Y(1,M(1))=1)

qui gen p_Y_1_M_1=(1/(1+exp(-(_b[_cons]+_b[x]*1+_b[m]*M_1+_b[xm]*1*M_1))))

qui egen m_p_Y_0_M_0=mean(p_Y_0_M_0) //E(Y(0,M(0)))

qui egen m_p_Y_1_M_0=mean(p_Y_1_M_0) //E(Y(1,M(0)))

qui egen m_p_Y_1_M_1=mean(p_Y_1_M_1) //E(Y(1,M(1)))

*log(TCE)=log(E(Y(1,M(1)))/1-E(Y(1,M(1))))-log(E(Y(0,M(0)))/1-E(Y(0,M(0))))

local lTCE_b=log(m_p_Y_1_M_1/(1-m_p_Y_1_M_1)) ///

-log(m_p_Y_0_M_0/(1-m_p_Y_0_M_0))

*log(NDE)=log(E(Y(1,M(0)))/1-E(Y(1,M(0))))-log(E(Y(0,M(0)))/1-E(Y(0,M(0))))

local lNDE_b=log(m_p_Y_1_M_0/(1-m_p_Y_1_M_0))///

-log(m_p_Y_0_M_0/(1-m_p_Y_0_M_0))

*log(NIE)=log(TCE)-log(NDE)

local lNIE_b=‘lTCE_b’-‘lNDE_b’

*log(CDE(0))=log(E(Y(1,0))/1-E(Y(1,0)))-log(E(Y(0,0))/1-E(Y(0,0)))

local lCDE_0_b=log(m_p_Y_10/(1-m_p_Y_10))-log(m_p_Y_00/(1-m_p_Y_00))

*log(CDE(1))

local lCDE_1_b=log(m_p_Y_11/(1-m_p_Y_11))-log(m_p_Y_01/(1-m_p_Y_01))

drop p_Y* m_p_Y* M_*

return scalar lcde_0_b=‘lCDE_0_b’

return scalar lcde_1_b=‘lCDE_1_b’

return scalar lnde_b=‘lNDE_b’
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return scalar ltce_b=‘lTCE_b’

return scalar lnie_b=‘lNIE_b’

end

local i=0

local drop i

foreach ax of numlist -0.7 1{

foreach bu of numlist -0.7 1 2 3{

foreach gu of numlist -0.7 1 2 3{

foreach bm of numlist -0.7 1{

foreach g0 of numlist -2 -1.4 0.4 2.2{

local i=‘i’+1

local bu10=‘bu’*10

local gu10=‘gu’*10

local g010=‘g0’*10

local bm10=‘bm’*10

local ax10=‘ax’*10

di

di "__________________________________________________________"

di "betam is ‘bm’; betau is ‘bu’; gamma0 is ‘g0’; gammau is ‘gu’; alphax is ‘ax’"

di "you are at the interaction ‘i’ out of 256 "

di

simulate prev_m=r(prev_m) prev_y=r(prev_y) ///

lCDE_M_0_unb=r(lCDE_M_0_unb) lCDE_M_1_unb=r(lCDE_M_1_unb) ///

lNIE_unb_M_110=r(lNIE_unb_M_110) lNIE_unb_U_100=r(lNIE_unb_U_100) ///

lNIE_unb_UM_111=r(lNIE_unb_UM_111) ///

lTCE_unb=r(lTCE_unb) lNDE_unb_000=r(lNDE_unb_000) ///

lcde_1_b=r(lcde_1_b) lcde_0_b=r(lcde_0_b) lnie_b=r(lnie_b) ///

lnde_b=r(lnde_b) ltce_b=r(ltce_b), reps(100) ///

saving(path\results_‘bu10’_‘gu10’_‘g010’_‘bm10’_‘ax10’_‘i’,replace): ///

simulations2, obs(1000) s(10) p_x(0.25) alpha0(0.1) alphax(‘ax’) ///

gamma0(‘g0’) gammax(-.91) gammau(‘gu’) gammaux(0) ///

beta0(-1.4) betax(0.8) betam(‘bm’) betau(‘bu’) betaxm(0) ///

betaux(0) betaum(0)

}

}

}

}

}
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