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Abstract 
 
Nearly all neuronal information processing and inter-neuronal 

communication in the brain involves action potentials, or spikes, which 
drive the short-term synaptic dynamics of neurons, but also their long-
term dynamics, via synaptic plasticity. In many brain structures, action 
potential activity is considered to be sparse. This sparseness of activity 
has been exploited to reduce the computational cost of large-scale 
network simulations, through the development of "event-driven" 
simulation schemes. However, existing event-driven simulations 
schemes use extremely simplified neuronal models. Here, we design, 
implement and evaluate critically an event-driven algorithm (EDLUT) 
that uses pre-calculated lookup tables to characterize synaptic and 
neuronal dynamics. This approach enables the use of more complex 
(and realistic) neuronal models or data in representing the neurons, 
while retaining the advantage of high-speed simulation. We 
demonstrate the method's application for neurons containing 
exponential synaptic conductances, thereby implementing shunting 
inhibition, a phenomenon that is critical to cellular computation. We 
also introduce an improved two-stage event-queue algorithm, which 
allows the simulations to scale efficiently to highly-connected networks 
with arbitrary propagation delays. Finally, the scheme readily 
accommodates implementation of synaptic plasticity mechanisms that 
depend upon spike timing, enabling future simulations to explore issues 
of long-term learning and adaptation in large-scale networks. 
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1 Introduction 
 

Most natural neurons communicate by means of individual spikes. 
Information is encoded and transmitted in these spikes, and nearly all 
of the computation is driven by these events. This includes both short-
term computation (synaptic integration) and long-term adaptation 
(synaptic plasticity). In many brain regions, spiking activity is 
considered to be sparse. This, coupled with the computational cost of 
large-scale network simulations, has given rise to the “event-driven" 
simulation schemes. In these approaches, instead of iteratively 
calculating all the neuron variables along the time dimension, the 
neuronal state is only updated when a new event is received. 

 Various procedures have been proposed to update the neuronal state 
in this discontinuous way (Watts, 1994; Delorme et al, 1999; Delorme 
& Thorpe, 2003; Mattia and Del Giudice, 2000; Reutimann, et al, 
2003). In the most widespread family of methods, the neuron's state 
variable (membrane potential) is updated according to a simple 
recurrence relation that can be described in closed form. The relation is 
applied upon reception of each spike and depends only upon the 
membrane potential following the previous spike, the time elapsed, and 
the nature of the input (strength, sign). 

 ),,( ,, JtVfV ttmtm ∆= ∆−  Eq. ( 1.1 ) 

where Vm is the membrane potential, ∆t is elapsed time (since the last 
spike) and J represents the effect of the input (excitatory or inhibitory 
weight). 

This method can describe integrate-and-fire neurons and is used, for 
instance, in SpikeNET (Delorme et al, 1999, Delorme & Thorpe, 2003). 
Such algorithms can include both additive and multiplicative synapses 
(i.e. synaptic conductances), as well as short-term and long-term 
synaptic plasticity. However, the algorithms are restricted to synaptic 
mechanisms whose effects are instantaneous and to neuronal models 
which can only spike immediately upon receiving input. These 
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conditions obviously restrict the complexity (realism) of the neuronal 
and synaptic models that can be used.  

Implementing more complex neuronal dynamics in event-driven 
schemes is not straightforward. As discussed by Mattia and Del 
Giudice (2000), incorporating more complex models requires extending 
the event-driven framework to handle predicted spikes that can be 
modified if intervening inputs are received; the authors propose one 
approach to this issue. However, in order to preserve the benefits of 
computational speed, it must, in addition, be possible to update the 
neuron state variable(s) discontinuously and also predict when future 
spikes would occur (in the absence of further input). Except for the 
simplest neuron models, these are non-trivial calculations, and only 
partial solutions to these problems exist. Makino (2003) proposed an 
efficient Newton-Raphson approach to predicting threshold crossings in 
Spike-Response Model neurons. However, the method does not help in 
calculating the neuron's state variables discontinuously, and has only 
been applied to spike-response models involving sums of exponentials 
or trigonometric functions. As we shall show below, it is sometimes 
difficult to represent neuronal models effectively in this form. A 
standard optimisation in high-performance code is to replace costly 
function evaluations with lookup tables of pre-calculated function 
values. This is the approach that was adopted by Reutimann et al 
(2003) in order to simulate the effect of large numbers of random 
synaptic inputs. They replaced the on-line solution of a partial 
differential equation with a simple consultation of a pre-calculated 
table. 

Motivated by the need to simulate a large network of 'realistic' 
neurons (explained below), we decided to carry the lookup table 
approach to its logical extreme: to characterise all neuron dynamics off-
line, enabling the event-driven simulation to proceed using only table 
lookups, avoiding all function evaluations. We term this method 
EDLUT (for Event-Driven Lookup Table). As mentioned by 
Reutimann et al (2003), the lookup tables required for this approach 
can become unmanageably large when the model complexity requires 
more than a handful of state variables. Although we have found no way 
to avoid this scaling issue, we have been able to optimise the 
calculation and storage of the table data such that quite rich and 
complex neuronal models can nevertheless be effectively simulated in 
this way. 
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The initial motivation for these simulations was a large-scale real-
time model of the cerebellum. This structure contains very large 
numbers of granule cells, which are thought to be only sparsely active. 
An event-driven scheme would therefore offer a significant 
performance benefit. However, an important feature of the cellular 
computations of cerebellar granule cells is reported to be shunting 
inhibition (Mitchell & Silver, 2003), which requires non-instantaneous 
synaptic conductances. These cannot be readily represented in any of 
the event-driven schemes based upon simple recurrence relations. For 
this reason we chose to implement the EDLUT method. Note that non-
instantaneous conductances may be important generally, not just in the 
cerebellum (Eckhorn et al, 1988; Eckhorn et al, 1990). 

The axons of granule cells, the parallel fibres, traverse large 
numbers of Purkinje cells sequentially, giving rise to a continuum of 
propagation delays. This spread of propagation delays has long been 
hypothesised to underlie the precise timing abilities attributed to the 
cerebellum (Braitenberg & Atwood, 1958). Large divergences and 
arbitrary delays are features of many other brain regions, and it has 
been shown that propagation/synaptic delays are critical parameters in 
network oscillations (Brunel & Hakim, 1999). Previous 
implementations of event queues were not optimised for handling large 
synaptic divergences with arbitrary delays. Mattia & Del Giudice 
(2000) implemented distinct fixed-time event queues (i.e., one per 
delay), which, though optimally quick, would become quite 
cumbersome to manage when large numbers of distinct delays are 
required by the network topology. Reutimann et al (2003) and Makino 
(2003) used a single ordered event structure in which all spikes are 
considered independent. However, for neurons with large synaptic 
divergences, unnecessary operations are performed on this structure, 
since the arrival order of spikes emitted by a given neuron is known. 
We introduce a two-stage event queue that exploits this knowledge to 
handle efficiently large synaptic divergences with arbitrary delays. 

We demonstrate our implementation of the EDLUT method for 
models of single-compartment neurons receiving exponential synaptic 
conductances (with different time constants for excitation and 
inhibition). In particular, we describe how to calculate and optimize the 
lookup tables, and the implementation of the two-stage event queue. 
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2 Event-driven simulation based 
on lookup tables (EDLUT) 

 

2.1 Introduction 

 

Recent research projects are modelling neural networks based on 
specific brain areas. Realistic neural simulators are required in order to 
evaluate the proposed network models. Some of these models (e.g. 
related with robot control or image processing (Van Rullen et al, 1998; 
Philipona et al, 2004) are intended to interface with the real world, 
requiring real-time neural simulations. This kind of experiments 
demands efficient software able to simulate large neural populations 
with moderated computational power consumption. 

 Traditionally, neural simulations have been based on discrete time 
step (synchronous) methods (Bower et al, 1998; Delorme et al, 2003). 
In these simulations, the state variables of each neuron are updated 
every time step, according to the current inputs and the previous values 
of these variables. The differential expressions describing the neural 
model dynamics are usually computed with numerical integration 
methods such as Euler or Runge-Kutta. The precision of the numerical 
integration of these variables depends on the time step discretization. 
Short time steps are required in order to achieve acceptable precision, 
which means considerable computational power consumption by each 
neuron. Thus, simulating large neural population with adequate 
precision and detailed models using these methods is not feasible in 
real-time. 

 One alternative to avoid this problem is the use of event-driven 
simulators (also known as discrete-event simulators). Most natural 
network communication is done by means of spikes (action potentials) 
which are short and considerably sparse in time (not very frequent) 
events. If the state evolution of a neuron between these spikes is 
deterministic or the probability of all the target states is known, the 
number of neural state updates could be reduced, accumulating the 
entire computational load in the instants in which the spikes are 
produced or received by a neuron (Watts, 1994; Mattia et al, 2000). 
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 Mattia and Guidice (Mattia et al, 2000) proposed an event-driven 
scheme that included dynamical synapses. Reutimann et al extended 
this approach to include neuron models with stochastic dynamics. 

 Makino (Makino, 2003) developed an event-driven simulator which 
uses efficient numerical methods to calculate the neural states evolution 
from one discrete computed step to the next one. More concretely, the 
main contribution of this work is the development of an efficient 
strategy to calculate the delayed firing times that uses the linear 
envelopes of the state variable of the neuron to partition the simulated 
time. Contrary to this approach, we avoid this complex calculation by 
off-line characterization of the firing behaviour of the cell. 

 Recently, Reutimann et al (2003) proposed the use of pre-calculated 
lookup tables to speed up simulations to avoid on-line numerical 
calculations. We adopt this strategy in our event-driven simulator. In 
this previous approach the precalculated tables are used to store 
probability density distributions. In our approach, the entire cell model 
is computed off-line, and its behaviour is compiled into 
characterization tables. Since the cell model is computed off-line, we 
are able to simulate models of different complexities (with a constraint 
on the number of parameters defining cell dynamics). 

 The main innovation with respect to previous similar approaches 
(Watts, 1994; Mattia et al, 2000), is the use of characterization tables to 
describe the cell dynamics between input spikes. A priori, this fact 
removes the need for many of the simplifying assumptions necessary 
when the neural models are computed following simple expressions to 
achieve high computational efficiency. 

 Another important aspect, that has been included, is the synaptic 
temporal dynamics (i.e. the gradual injection/extraction of charge). The 
synaptic conductance evolution due to an input spike is not computed 
as an instantaneous jump, but as a gradual function. This is important in 
the study of neural population synchronization processes (Eckhorn et 
al, 1988; Eckhorn et al, 1990). The inclusion of temporal dynamics 
forces the implementation of a prediction and validation strategy, since 
the output spikes will not be coincident with the input events (variable 
firing delay). This introduces some more complexity in the simulation 
algorithm. 
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2.2 Simulator architecture 

 

The EDLUT simulation scheme is based on the structures shown in 
Figure 2.1, simulation is initialised by defining the network and its 
interconnections (including latency information), giving rise to the 
Neuron list and Interconnection list structures. In addition, several 
lookup tables which completely characterise the neuronal and synaptic 
dynamics are calculated: i) the exponential decay of the synaptic 
conductances; ii) a table that can be used to predict if and when the 
next spike of a cell would be emitted, in the absence of further input; 
and iii) a table defining the membrane potential (Vm) as a function of 
the combination of state variables at a given point in the past (in our 
simulations, this table gives Vm as a function of  the synaptic 
conductances and the membrane potential, all at the time of the last 
event, and the time elapsed since that last event). If different neuron 
types are included in the network, they will require their own 
characterization lookup tables with different parameters defining their 
specific dynamics. Each neuron in the network stores its state variables 
at the time of the last event, as well as the time of that event. If short or 
long-term synaptic dynamics are to be modelled, additional state 
variables are stored per neuron or per synapse. 
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Figure 2.1: Main structures of the EDLUT simulator.  
Input spikes are stored in an input queue and are sequentially inserted into 

the spike heap. The network definition process produces a Neuron List and an 
Interconnection List, which are consulted by the simulation engine. Event 

processing is done by accessing the neuron characterization tables to retrieve 
updated neuronal states and forecast spike firing times. 

When the simulation runs, events (spikes) are ordered using the 
event heap (and the interconnection list - see below) in order to be 
processed in chronological order. The response of each cell to spikes it 
receives is determined with reference to the lookup tables and any new 
spikes generated are inserted into the event heap. External input to the 
network can be fed directly into the event heap. Two types of events 
are distinguished: firing events, the times when a neuron emits a spike, 
and propagated events, the times when these spikes reach their target 
neurons. In general, each firing event leads to many propagated events 
through the synaptic connection tree. Because our synaptic and 
neuronal dynamics allow the neurons to fire after inputs have been 
received, the firing events are only predictions. The arrival of new 
events can modify these predictions. For this reason the event handler 
must check the validity of each firing event in the heap before it is 
processed. 
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2.3 Event data structure 

 

Events (spikes) must be treated in chronological order in order to 
preserve the causality of the simulation. The event handling algorithm 
must therefore be capable of maintaining the temporal order of spikes. 
To fulfil this, a spike data structure that functions as an interface 
between the source neuron events and target neurons can be used. 

 If we need to deal with only a fixed number of neuron-connection 
delays, there is the possibility that a fixed structure (called a Synaptic 
Matrix) is used for storing synaptic delays (Mattia & Del Guidice, 
2000). 

 In contrast, our simulations needed to support arbitrary synaptic 
delays. Complex data structures, such as “balanced trees”, can be used 
for this purpose, offering good performance for both sorted and 
random-order input streams. To prevent performance degradation, they 
optimize their structure after each insertion or deletion. However, this 
rebalancing process adds more complexity and additional 
computational overhead (Karlton et al, 1976). Insertion and deletion of 
elements in these structures have a computational cost of O(log(N)), 
where N is the number of events in the structure. 

Another candidate data structure is the “skip list” (Pugh, 1990), but 
in this instance the cost of the worst case may not be O(log(N)) because 
the insertion of an input stream can produce an unbalanced structure. 
Consequently, the search time for a new insertion may be longer than in 
the balanced trees. This structure offers optimal performance in 
searching specific elements. However, this is not needed in our 
computation scheme as we only need to extract the first element, i.e., 
the next spike.  

Finally, the “heap data structure” (priority queue) (Aho et al, 1974; 
Chowdhury & Kaykobad, 2001; Cormen et al, 1990) offers a stable 
computational cost of O(log(N)) in inserting and deleting elements. 
This is the best option as it does not require more memory resources 
than the stored data. This is because it can be implemented as an array, 
while the “balanced trees” and “skip lists” need further pointers or 
additional memory resources. 
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For all of these methods, the basic operation of inserting an event 
costs roughly O(log(N)), where N is the number of events in the event 
data structure. Clearly, the smaller the data structure, the less time such 
insertions will take. We explain in the next subsection the two-stage 
event handling process we have implemented in order to minimize 
event heap size while allowing arbitrary divergences and latencies. 
Compared to a method using a single event data structure, we would 
expect the event insertions to be O(log(c)) quicker, where c is the 
average divergence (connectivity). 

 

2.4 Two-stage spike handling 

 

The algorithm efficiency of event-driven schemes depends on the 
size of the event data structure, so performance will be optimal under 
conditions that limit load (low connectivity, low activity). However, 
large synaptic divergences (with many different propagation delays) are 
an important feature of most brain regions. Previous implementations 
of event-driven schemes have used a single event generation per neuron 
firing, (Reutimann et al, 2003; Makino, 2003). However, treating each 
neuron firing as a single event leads the event data structure to become 
larger than necessary. Since the order of spike arrival to target neurons 
is always known (it depends on the connection delay defined in 
Interconnection list), we know which event has to be processed first. 

We have designed an algorithm that exploits this knowledge, by 
using a multi-stage spike handling process: 

Each spike transmitted between two cells is represented internally by 
two events. The first one (the firing event) is marked with the time 
instant when the source neuron fires the spike. The second one (the 
propagated event) is marked with the time instant when the spike 
reaches the target neuron. Most neurons have large synaptic 
divergences. In these cases, when a neuron fires, the simulation scheme 
inserts into the event heap only one event in each stage, instead of one 
per output connection. 

 The output connection list of each neuron (which indicates its target 
cells) is sorted by propagation delay, see Figure 2.2. When a source 
neuron fires, only the event corresponding to the lowest-latency 
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connection is inserted into the spike heap. This event is linked to the 
other output spikes of this source neuron. When the first spike is 
processed and removed from the heap, the next event in the output 
connection list is inserted into the spike heap, taking into account the 
connection delay. Since the output connection list of each neuron is 
sorted by latency, the next connection carrying a spike can easily be 
found. This process is repeated until the last event in the list is 
processed. In this way, the system can handle large connection 
divergences efficiently. 

 

Figure 2.2: The ouput connection list. 
The output connection list of each neuron is sorted by the connection delay, 

so the next connection carrying a spike can easily be found. 

In Figure 2.3 we compare the use of one and two-stage event 
handling within our simulation scheme. Even though event heap 
operations only represent part of the total computation time, there is a 
clear benefit to using the two-stage process. For divergences of up to 
10000 - typical for recurrent cortical networks - a better than 2-fold 
improvement of total computation time is observed. 
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Figure 2.3: Two-stage spike processing 
Total computation time for processing an event (top) and size of the event 

heap (bottom) for one-stage (dashed plot) and two-stage (continuous plot) as 
functions of synaptic divergence. 

 

2.5 Simulation algorithm 

 

The basic computation scheme consists of a processing loop, in each 
iteration of which the next event (i.e., with the shortest latency) is taken 
from the spike heap. This event is extracted from the spike heap 
structure, the target neuron variables are updated (in the neuron list 
structure), and, if the affected neurons generate them, new events are 
inserted into the spike heap. Also, if the processed event is a 
propagated event, the next spike from the output connection list of the 
neuron is inserted into the heap. This computation scheme is 
summarized in Figure 2.4. It should be noted that events are inserted 
into the heap in correct temporal sequence, but only the spike with the 
shortest latency is ever extracted. 
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As our neuronal model allows delayed firing (after inputs), the 
algorithm must cope with the fact that predicted firing times may be 
modified –or even deleted– by intervening posterior inputs. 

Each neuron stores two time variables. One indicates the time the 
neuron was last updated. This happens upon reception of each input. As 
described in Figure 2.4, when a neuron is affected by an event, the time 
label of this neuron is updated to tsim if it is an input spike (propagated 
event) or to tsim+trefrac if it is an output spike (firing event), to prevent it 
from firing again during the refractory period. This is important 
because when the characterization tables are consulted the time label 
indicates the time that has elapsed since the last update. The other time 
label maintains the up-to-date firing time prediction. This is used to 
check the validity of events extracted from the central event heap. 

 Events that are superseded by intervening inputs in the neuron 
concerned are left in the event heap; they are discarded upon extraction. 
Since if they are invalid, their firing-time-prediction variable stored in 
the neuron does not match the current simulation time (this is checked 
when the event is being processed). 
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While tsim<tend 
{ 
      Extract the event with a shortest latency in the 
spike heap 

 
If it is a firing event 

If it is still a valid event and the neuron 
is not under a refractory period 

Update the neuron state (e.g. Vm, gexc, 
ginh) to the post-firing state 
Prevent this neuron from firing during 
the refractory period by updating the 
neuron time label to tsim+trefrac) 
Predict if the source neuron will fire 
again with the current neuron state 
If the neuron will fire: 

Insert a new firing event into 
the spike heap 

Insert the propagated event with the 
shortest latency (looking at the output 
connection list) 

If it is a propagated event 
Update the target neuron state (e.g. Vm, gexc, 
ginh), before the event is computed 
Modify the conductances (gexc, ginh) using the 
connection weight (Gexc,i, Ginh,i) for the new 
spike 
Update the neuron time label to tsim 
Predict if the target neuron will fire 
If it fires 

Insert the firing event into the spike 
heap with the predicted time 

Insert only the next propagated event with 
the next shortest latency (looking at the 
output connection delay table) 

} 

 
Figure 2.4: Simulation algorithm. 

This pseudo-code describes the simulation engine. It processes all the events of 
the spike heap in chronological order. 

 

2.6 Synaptic plasticity 

 

We have implemented Hebbian-like (Hebb, 1949) spike-driven 
learning mechanisms (spike-timing-dependent plasticity, STDP). The 



Event-driven simulation based on lookup tables (EDLUT) - 14 - 
 

implementation of such leaning rules is suitable because the simulation 
scheme is based on the time labels of the different events. Spike-time-
dependent learning rules require comparison of the times of  pre-
synaptic spikes (propagated events) with post-synaptic spikes (firing 
event). In principle, this requires the trace of the processed pre-synaptic 
spikes during a time interval to be kept in order for them to be 
accessible if post-synaptic spikes occur. Different definite expressions 
can be used for the learning rule (Gerstner & Kistler, 2002). The weight 
change function has been approximated with exponential expressions; 
Eq. ( 2.1 ) to accommodate the experimental results of Bi and Poo 
(1998). The computation of this learning rule, by means of exponential 
terms, facilitates its implementation in a recursive way, avoiding the 
need to keep track of previous spikes. 

 







>

<
=

−

0

0
)(

sifea

sifea
sf sb

post

sb
pre

post

pre

 Eq. ( 2.1 ) 

Where s represents the temporal delay between the post-synaptic 
spike and the pre-synaptic one (s=tpost-tpre). The aim function (Bi & 
Poo, 1998) can be calculated with Eq. ( 2.1 ) using the following 
parameters (apre=0.935, bpre= -0.075, apost= -0.326, bpost= -0.036). They 
have been approximated using the Trust-region method (Conn et al 
2000). 

The learning rules are applied each time a cell both receives and 
fires a spike. Each time a spike from cell i reaches a neuron j, the 
connection weight (wij) is changed according to Eq. ( 2.2 ), taking into 
account the time since the last action potential (AP) in the post-
synaptic neuron. This time is represented by s in Eq. ( 2.1 ). 
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Other post-synaptic spikes are not taken into account for the sake of 
simplicity, but they can be included if necessary. 

Each time cell j fires a spike, the learning rule of Eq. ( 2.3 ) is 
applied, taking into account all the pre-synaptic spikes received in a 
certain interval. 
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In order to avoid keeping track of all the pre-synaptic spikes during 
the learning window, we can rearrange the sum of Eq. ( 2.3 ), since the 
learning rule can be expressed in terms of exponentials; Eq. ( 2.1 ).  

Each time the neuron fires a spike, the learning rule is applied in 
each input connection, taking into account the previous spikes received 
through these inputs. Therefore, each weight changes according to Eq. ( 
2.4 ). 
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Where k is iterated over all N pre-synaptic spikes from cell i 
received by the neuron j in a time window. This expression can be 
rearranged as follows: 
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This expression; Eq. ( 2.5 ) can be calculated recursively 
accumulating all the multiplicative terms in an intermediate variable Aij, 
as indicated in Eq. ( 2.6 ). s is the time difference between the action 
potential of cell j and the last pre-synaptic spike received from cell i. 

 sb
ijij

preeAA +←1  Eq. ( 2.6 ) 

The learning rule is applied recursively as indicated in Eq. ( 2.7 ), 
incorporating the last pre-synaptic spike. Note that the term Aij 
accumulates the effect of all previous pre-synaptic spikes. 
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3 Neuron models 
 

3.1 Integrate-and-fire model with 
synaptic conductances 

 

In this model, neurons are single compartments receiving 
exponential excitatory and inhibitory synaptic conductances with 
different time constants. The basic electrical components of the neuron 
model are shown in Figure 2.1. The neuron is described by the 
following parameters: (1) membrane capacitance, Cm, (2) the reversal 
potentials of the synaptic conductances, Eexc and Einh, (3) the time 
constants of the synaptic conductances, τexc and τinh, and (4) the resting 
conductance and its reversal potential, grest and Erest, respectively. The 
membrane time constant is defined as τm = Cm/grest. The neuron state 
variables are the membrane potential (Vm), the excitatory conductance 
(gexc) and the inhibitory conductance (ginh). The synaptic conductances 
gexc and ginh depend on the inputs received from the excitatory and 
inhibitory synapses, respectively. 

 

Figure 3.1: Equivalent electrical circuit of a neuron. 
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gexc and ginh are the excitatory and inhibitory synaptic conductances, while grest is 
the resting conductance, which returns the membrane potential to its resting 

state (Erest) in the absence of input stimuli. 

The decision was made to model synaptic conductances as 
exponentials: 
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Eq. ( 3.1 ) 

where Gexc and Ginh represent the peak individual synaptic 
conductances and gexc and ginh represent the total synaptic conductance 
of the neuron. This exponential representation has numerous 
advantages. Firstly, it is an effective representation of realistic synaptic 
conductances. Thus, the improvement in accuracy from the next most 
complex representation, a double-exponential function, is hardly 
worthwhile when considering the membrane potential waveform (See 
Figure 3.2). 
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Figure 3.2: Membrane-potential evolution (synaptic model). 
A post-synaptic neuron receives two consecutive input spikes (top). The evolution 
of the synaptic conductance is the middle plot. The two EPSPs caused by the two 

input spikes are shown in the bottom plot. In the solid line plots, the synaptic 
conductance transient is represented by a double-exponential expression (one 

exponential for the rising phase, one for the decay phase). In the dashed line plot, 
the synaptic conductance is approximated by a single-exponential expression. 
The EPSPs produced with the different conductance waveforms are almost 

identical. 

Secondly, the exponential conductance requires only a single state 
variable, because different synaptic inputs can simply be summed 
recursively when updating the total conductance: 

 )()( _
)(

, tgeGtg previousexc
tt

jexcexc
ikepreviousspkecurrentspi −−+=  Eq. ( 3.2 ) 

(Gexc,j is the weight of synapse j; a similar relation holds for 
inhibitory synapses). Most other representations would require 
additional state variables and/or storage of spike time lists, so the 
exponential representation is particularly efficient in terms of memory 
usage. 

In our simulations, the synaptic parameters have been chosen to 
represent excitatory AMPA-receptor-mediated conductances and 
inhibitory GABAergic conductances of cerebellar granule cells (Silver 
et al, 1996; Nusser et al, 1997; Tia et al, 1996; Rossi & Hamann, 1998). 
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These are summarized in Table 3.1.  Note that different synaptic 
connections in different cells might have quite distinct parameters: 
extreme examples in the cerebellum include the climbing fibre input to 
Purkinje cells and the mossy fibre input to unipolar brush cell synapses. 

Max. 
Conductance 
(Gexc_max) nS 

Time 
Constant 
(τexc) ms 

Reversal 
potential (Eexc) 

mV 

Excitatory 
Synapse 

0-7.5 0.5 0 
Max. 

Conductance 
(Ginh_max) nS 

Time 
Constant 
(τinh) ms 

Reversal 
potential (Einh) 

mV 

Inhibitory 
Synapse 

0-29.8 10 -80 
Table 3.1: Synaptic characteristics (cerebellar granule cell). 

The first column is an estimation of the maximum cell conductance (summed 
over all synapses on the cell). The conductances of individual synapses (Gexc and 
Ginh) are not included in this table as they depend on the connection strengths 

and are therefore provided through the network definition process and synaptic 
plasticity. 

The differential equation; Eq. ( 3.3 ) describes the membrane 
potential evolution (for t≥t0) in terms of the excitatory and inhibitory 
conductances at t0, combined with the resting conductance. 
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Eq. ( 3.3 ) 

where the conductances gexc(t0) and ginh(t0) integrate all the 
contributions received through individual synapses. Each time a new 
spike is received, the total excitatory and inhibitory conductances are 
updated using Eq. ( 3.2 ). Eq. ( 3.3 ) is amenable to numerical 
integration. In this way, we can calculate Vm, gexc, ginh and firing time tf 
for given time intervals after the previous input spike. tf is the time 
when the membrane potential would reach the firing threshold (Vth) in 
the absence of further stimuli (if indeed the neuron would fire). 

3.1.1 Lookup-table calculation and optimization 

The expressions given in the previous subsection are used to 
generate the lookup tables that characterize each cell type, with each 
cell model requiring four tables: 
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- Conductances: gexc(∆t) and ginh(∆t) are one-dimensional tables 
that contain the fractional conductance values as functions of the 
time ∆t elapsed since the previous spike.  

- Firing time:  Tf(Vm,t0,gexc,t0,ginh,t0) is a three-dimensional table 
representing the firing time prediction in the absence of further 
stimuli. 

- Membrane potential: Vm(Vm,t0,gexc,t0,ginh,t0,∆t) is a four-
dimensional table that stores the membrane potential as a 
function of the variables at the last time that the neuron state was 
updated and the elapsed time ∆t. 

 

Figure 3.3, Figure 3.4 and Figure 3.5 show some examples of the 
contents of these tables for a model of the cerebellar granule cell with 
the following parameters: Cm=2pF, τexc=0.5ms, τinh=10ms, grest=0.2nS, 
Eexc=0V, Einh=-80mV, Erest=-70mV and Vth=-70mV. 

 

Figure 3.3: Synaptic-conductance updating table. 
fg(∆t); the percentage conductance remaining after a time (∆t) has elapsed since 
the last spike was received. This is a lookup table for the normalised exponential 
function. The time constant of the excitatory synaptic conductance gexc (shown 

here) was 0.5 ms and for ginh(t), 10 ms. Since the curve exhibits no abrupt 
changes in the time interval [0, 0.0375] seconds, only 64 values were used. 
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Figure 3.4: Firing-time prediction table. 
Firing time ( tf) plotted against gexc and initial V m. tf decreases as the excitatory 

conductance increases and as Vm,t0 approaches threshold. ginh = 0. 
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Figure 3.5: Membrane-potential updating table. 
Membrane potential Vm(Vm,t0, gexc,t0, ginh,t0, ∆t) plotted as a function of (A) Vm,t0 

and ∆t (gexc = ginh = 0); (B) Gexc,t0 and ∆t (ginh = 0, Vm,t0 = Erest = -70mV). The zoom 
in the ∆t axis of plot (b) highlights the fact that the membrane potential change 

after receiving a spike is not instantaneous. 

The sizes of the lookup tables do not significantly affect the 
processing speed, assuming they reside in main memory (i.e., they are 
too large for processor cache but small enough not be swapped to disk). 
However, their size and structure obviously influence the accuracy with 
which the neural characteristic functions are represented. The 
achievable table sizes (in particular the membrane potential table) are 
limited by memory resources. However, it is possible to optimize 
storage requirements by adapting the way in which their various 
dimensions are sampled. Such optimization can be quite effective, 
because some of the table functions only change rapidly over small 
domains. We evaluate two strategies: multi-resolution sampling and 
logarithmic compression along certain axes. Different approaches for 
the membrane potential function Vm(Vm,t0, gexc,t0, ginh,t0, ∆t), the largest 
table, with respect to the inhibitory conductance (ginh,t0) are illustrated 
in Figure 3.6. It can be seen that a logarithmic sampling strategy in the 
conductance dimensions is an effective choice for improving the 
accuracy of the representation of neural dynamics. For the following 
simulations we have used logarithmic sampling in the ginh and gexc 
dimensions of the Vm table (as illustrated in Figure 3.6 C). 
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Figure 3.6: Membrane potential depending on ginh coordinates. 
Each panel shows 16 Vm relaxations with different values of ginh,t0. The sampled 

conductance interval is ginh,t0 ∈∈∈∈ [0,20]nS. A) Linear approach: [0,20]nS was 
sampled with a constant inter-sample distance. B) Multi-resolution approach: 
two intervals [0,0.35]nS and [0.4,20]nS with eight traces each were used. C) 

Logarithmic approach: ginh,t0 was sampled logarithmically. 

Storage requirements and calculation time are dominated by the 
largest table, that for Vm. We shall show in the next chapter that a table 
containing about a million data points (dimension sizes: ∆t = 64, gexc = 
16, ginh = 16, Vm,to = 64) gives reasonable accuracy. In order to 
populate this table we solve numerically Eq. ( 3.3 ). This was done 
using a Runge-Kutta method with Richardson extrapolation and 
adaptive step size control. On a 1.8GHz Pentium computer, calculation 
of this table takes about 12s. The firing time table had the same 
dimensions for gexc, ginh, and Vm,to. As stated previously, the individual 
conductance lookup tables had 64 elements each. 

In principle these tables could also be based upon 
electrophysiological recordings. Since one of the dimensions of the 
tables is the time, the experimenter would only need to set up the initial 
values of gexc, ginh and Vm and then record the membrane potential 
evolution following this initial condition. With our 'standard' table size, 
the experimenter would need to measure neuronal behaviour for 64 x 
16 x 16 (Gexc, Ginh, Vm) triplets. If neural behaviour is recorded in 
sweeps of 0.5 seconds (at least 10 membrane time constants), only 136 
minutes of recording would be required, which is feasible (see below 
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for ways to optimize these recordings). Characterization tables of 
higher resolution would require longer recording times, but such tables 
could be built up by pooling/averaging recordings from several cells. 
Moreover, since the membrane potential functions are quite smooth, 
interpolation techniques would allow the use of smaller, easier to 
compile, tables.  

In order to control the synaptic conductances (gexc and ginh), it would 
be necessary to use the dynamic clamp method (Prinz, Abbott, Marder, 
2004).  With this technique it is possible to replay accurately the 
required excitatory and inhibitory conductances. It would not be 
feasible to control real synaptic conductances, though prior 
determination of their properties would be used to design the dynamic 
clamp protocols. Dynamic clamp would most accurately represent 
synaptic conductances in small, electrically-compact neurons (such as 
the cerebellar granule cells modelled here). Synaptic noise might distort 
the recordings, in which case it could be blocked pharmacologically. 
Any deleterious effects of dialyasing the cell via the patch pipette could 
be prevented by using the perforated patch technique (Horn and Marty, 
1988), which increases the lifetime of the recording and ensures that 
the neuron maintains its physiological characteristics. 

 

3.2 Integrate-and-fire model with electrical 
coupling 

 

3.2.1 Introduction 

The electrical coupling or gap junction is a connection between 
certain cell-types that let different molecules and ions, pass between 
cells. Since it allows a direct current flow between neurons, it is usually 
represented as a resistor which connects them. 

It is believed that electrical coupling facilitate synchronous firing of 
interconnected cells (Chez, 1991; Kopell and Ermentrout, 2004; Kepler 
et al, 1990; Traub et al, 2000; Draghun et al, 1998). These synapses 
characterize some extremely rapid response (through direct flow 
current).  
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The gap junctions are usually of very low conductance 
(approximately 100 pS according to Neyton and Trautmann, 1985). 
Because of that we neglect sub-threshold electrical coupling. This 
assumption directly allows the efficient simulation of electrical 
synapses on an event-driven scheme. In this way, a neuron only affects 
other cells connected by electrical synapses when an action potential is 
fired. During the action potential (1.5 ms approximately) we increase 
the membrane potentials of the connected cells by an amount that 
depends on the coupling ratio (electrical connection weight). 
Unidirectional electrical synapses have been documented (Furshpan, 
1959) therefore we implement only unidirectional coupling. 
Bidirectional coupling can be simulated defining two unidirectional 
connections. 

 

Figure 3.7: Effect produced by activity through electrical coupling. 
The upper plot show the input spikes. The middle plot illustrates the membrane 

potential evolution in the absence of electrical coupling. The bottom plot 
illustrates the spikelets produced by the electrical coupling. In fact, since the 

membrane potential of the cell is closed to the firing threshold when it receives 
the first spike through the electrical connection, it makes the neuron fire 

synchronously. 

3.2.2 Event-driven implementation 

In one possible implementation, when a neuron with electrical 
synapses fires a spike, two events are inserted into the heap:  
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- Starting event. Indicating the initial time of electrical coupling 
effect. In fact, normally no delay is introduced (although it is 
allowed by the simulation scheme) since this kind of synapses is 
characterized by their rapid response. When this event is processed 
the simulation kernel increments the membrane potential of the 
target cell by an amount that depends on the connection weight. 

- Ending event. Indicating the termination of the electrical coupling 
on the target neurons. When this event is processed the simulation 
kernel decrements the membrane potential of the target neuron in 
the amount indicated by the connection weight. 

Usually an interval of 1.5ms is leaved between the starting and 
ending events. In this way, the effect of electrical coupling is a very fast 
increment of the membrane potential of the target neurons during a 
short time interval. As commented before, the electrical coupling is 
driven by action potentials since we are neglecting sub-threshold 
electrical coupling. This implementation has been discarded because 
the large amount of generated ending events need to be stored on the 
event reordering structure since the starting event is processed, 
producing a computational bottleneck. 

Another choice that has been tested is the inclusion of a single event 
that initiates a triangular spikelet on the target neuron membrane 
potential. In order to implement this, the neuron includes a variable that 
stores the instant at which the effect finishes and the current amplitude 
of the spikelet (defined by the strength of the coupling). When the 
membrane potential is updated due to other events, these variables are 
consulted to know if there is any spikelet still present in the neuron 
membrane potential and to calculate its current amplitude (the 
amplitude of the simulated spikelet decrements linearly. See Figure 
3.7). The final membrane potential is calculated adding its current 
value and the current spikelet amplitude. See neural-population-
synchronization section for a use of this model. 

 

3.3 Cerebellar granule cell model 
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3.3.1 Introduction 

The cerebellum is a well structured neural system conformed by 
three layers: granular, molecular and Purkinje layer. The granular layer 
contains approximately 1011 granule cells (Kandel et al., 2000) that 
represent in number of neurons about half of the cells of the whole 
human brain. The granule cells receive their inputs through the mossy 
fibers. The axons of the granule cells are called parallel fibers that 
connect with different Purkinje cells. The granular layer represents a 
highly divergent structure (there are approximately 103 granule cells 
per mossy fiber). Therefore they seem to be responsible of building a 
sparse representation of the mossy fibers inputs, Marr (1969), Albus 
(1971), Coenen et al. (2001), and D’Angelo et al. (2005). But the 
dynamical properties of the cell are still under study, Magistretti et al. 
(2006), Armano et al. (2000), D'Angelo et al. (2005), Nieus et al. 
(2006), Mapelli & D'Angelo (2007), Rossi et al. (2006) and detailed 
cell models are being built to evaluate the functional role, D'Angelo et 
al. (2001) of these dynamics. The neuron models can be simulated with 
different simulators (NEURON, Hines & Carnevale (1997), Genesis, 
Bower & Beeman (1998), EDLUT, Ros et al. (2006)) at different levels 
of detail. However these simulations are not efficient enough to deal 
with large neural networks in real time. In this subsection we describe 
how a granule-cell model which presents major features that are 
considered functionally relevant (bursting, subthreshold oscillations 
and resonance) can be implemented using the event-driven lookup-
table-based simulator (EDLUT). 

 After building up cell models based on characterizing lookup tables 
we validate the model in two ways: 

- Accuracy validation. The number of samples in each dimension of 
the table can be critical to the accuracy of the table-based cell 
approach. Therefore we simulate the cell model with a classical 
numerical calculation method (Euler method with a very short time 
step) and we compare the output spike train obtained in response to 
different input spike trains with the results obtained using the 
EDLUT simulator. The comparison of the output spike trains 
obtained by the two methods is done using the Van Rossum 
distance, van Rossum (2001). 

- Functional validation. Key cell features are kept. If we want to 
abstract a cell model that includes certain cell features that are 
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considered relevant we also need to validate that the table-based 
model is able to reproduce the cell features under study. 

 

3.3.2 Model description 

A detailed Hodgkin-Huxley model, Hodgkin & Huxley (1952), of a 
granule cell defined in NEURON (with more than 15 differential 
equations describing its dynamics) was presented by D'Angelo et al. 
(2001) to reproduce in detail the cell dynamics and evaluate the 
significant variables of the model. Based on that model, Bezzi et al. 
(2004, Journal) presented a simple integrate and fire cell model that 
included dynamical properties of the granule cell. The model is based 
on two main variables: the membrane potential (Vx) and a gating 
variable that models a slow K+ current. A simple integrate and fire 
neuron with a threshold mechanism to generate spikes (with post-spike 
membrane potential repolarization) was extended to include interesting 
neural features such as subthreshold oscillations, Richardson et al. 
(2003), resonance, Izhikevich (2001) and bursting, Smith et al. (2000). 

 

Figure 3.8: Simplified-model obtaining process. 

Figure 3.8 illustrates the process from cell behaviour 
characterization based on neurophysiologic cell recordings to network 
simulations based on simplified compiled models. The simplified 
model described in Bezzi et al. (2004, Journal) is defined with the 
following equations: 
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Where V and C are the neuron membrane potential and capacitance 
respectively while IActive and ILeak are dynamic currents of the model 
defined by the following expressions: 

 )()()()( VaVVgVmVVgI NapNaKirKActive ∞−∞− −+−=  Eq. ( 3.6 ) 

 )()( AGABAAGABALeakALeakALeak VVgVVgI −− −+−=  Eq. ( 3.7 ) 

Finally we have complemented the model to include the cell 
synapses as input-driven conductances. ISyn represents the synaptic 
mediated current through the excitatory and inhibitory input driven 
conductances (gexc and ginh). 
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Excitatory and inhibitory conductances (gexc and ginh) depend on the 
value of the conductances when they were updated the last time and the 
time passed since then. Each time a new input spike is received the 
conductances are set to a specific value that depends on the synaptic 
weight (Ginh or Gexc). Synaptic conductance dynamics are modelled as 
exponential functions: 
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Eq. ( 3.10 ) 

Where t0 is the input spike arrival time and τexc and τinh are the temporal 
constants of the synaptic conductances. 
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3.3.3 Definition of model tables 

The neuron behaviour has been compiled into six tables. In order to 
use the event-driven simulator (EDLUT) the neuron state (membrane 
potential, synaptic conductances and other variables such as the gating 
variable n) need to be defined as functions of the neuron state at the 
instant in which it was updated the last time. Since it is an event-driven 
scheme the neuron state is updated each time that an event is produced 
(output spikes) or an input event is received (input spikes). 

 The model has been compiled into the following tables: 

- One table of five dimensions for the membrane potential, 
Vm=f(∆t, gexc_0, ginh_0, n0, V0). 

- One table of five dimensions for the gating variable, n=f(∆t, gexc_0, 
ginh_0, n0, V0). 

- Two tables of two dimensions for the conductances, gexc=f(∆t, 
gexc_0), ginh=f(∆t, ginh_0). 

- Two tables of 4 dimensions for the firing prediction , tf=f(gexc, ginh, 
n0, V0) and tf_end=f(gexc, ginh, n0, V0). 

For each dimension we used a different number of samples 
(indicated into parentheses): ∆t(44), gexc0(10), ginh0(10), n0(18) and 
V0(30). Therefore the larger tables require 237106 samples 
(approximately 9.04MB). The whole cell model requires 487106 
samples (19.04MB). Once the characterizing tables are compiled using 
Runge-Kutta method (Cartwright & Piro, 1992), numerical calculation 
is not required during network simulations. Then we evaluate the 
accuracy of the model and also validate its key features (bursting, 
rhythmic subthreshold oscillations and resonance). 

 

3.3.4 Experimental results 

Here we show some illustrative simulations in which the cell 
behaviour of the model described in NEURON is compared with the 
behaviour of the model compiled into tables and simulated with the 
EDLUT, Ros et al. (2006). The model can reproduce synaptic 
activation of a granule cell. Activation of 1 and 2 synapses makes 
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subthreshold EPSPs which, in the immediately subthreshold region, 
become slower due to activation of persistent Na current. Activation of 
3 synapses elicits a spike, which occurs with shorter delay by activating 
4 synapses (Figure 3.9 A). Inhibitory synapses can reduce the EPSP 
and prevent firing (Figure 3.9 B). All these properties are typical of 
granule cells (e.g. D'Angelo et al. (2005)). If we focus on evaluating the 
dynamics of the cell model, we must consider: oscillatory, resonance 
and bursting behaviours. 
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Figure 3.9: Synaptic activation of the modeled granule cell. 
A) Membrane potential evolution when receiving a spike through 1, 2, 3 or 4 

excitatory synapses (conductance of each synapse 0.5nS). B) Membrane potential 
evolution when receiving a spike through an excitatory synapse or through an 
excitatory synapse and an inhibitory synapse (conductance of the excitatory 

synapse 1.5nS, conductance of inhibitory synapse 0.5nS and 1.0nS). 

Since the simulation results generated with EDLUT require updating 
the neuron state variables (retrieving their values from the LUTs) only 
in certain simulation instants (that is, the simulation on EDLUT jumps 
in time from one instant to the next one driven by input and output 
neural events), these instants are marked with "X" on the plots. 

 

3.3.4.1 Subthreshold Rhythmic Oscillations 

The membrane potential evolution in the absence of high input 
activity from other cells shows a rhythmic oscillatory behaviour (Figure 
3.10). This oscillatory state makes the neuron more sensitive to input 
activity depending on the phase of this activity with regard to the phase 
of the oscillation. Moreover, the coupling of those oscillations with the 
spiking mechanisms constitutes the base of the resonance behaviour. 
As shown in Figure 3.10 this feature has been captured into the 
characterizing tables in which the EDLUT simulator is based and 
therefore both implementations (on NEURON and on EDLUT) 
produce equivalent subthreshold oscillatory behaviours. 
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Figure 3.10: Subthreshold oscillations of the membrane potential. 
A current of 4pA current is injected during 500ms. A) Simulation with 

NEURON of the simplified model Bezzi et al. (2004, Journal). B) Equivalent 
simulation with EDLUT represented into a behavioural lookup table. 

In Figure 3.11 it is shown how with specific synaptic weights only 
excitatory spikes received in certain periods produce output spikes. 
This depends on the exact timing of these spikes with respect to the 
subthreshold oscillations of the membrane potential (therefore stimulus 
selection depending on the stimulus phase). 
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Figure 3.11: Simulation of subthreshold oscillations with EDLUT. 
Subthreshold oscillations occur in response to input spike trains (neuron state 

variables are updated only at times marked with a cross). A) Subthreshold 
oscillations of the membrane potential produced by input spike trains. B) 

Selection depending on the stimulus phase: The first three doublets are received 
in the same phase of the membrane-potential oscillation (when the neuron is 

more resistant to fire), the last three doublets are received in a phase in which 
the neuron is more susceptible to fire. 

3.3.4.2 Bursting behaviour 

The bursting behaviour of the granule cells seems to play an 
important role in reliably transmitting significant stimuli. The effect of 
short spike bursts (two or three spikes) into the target Purkinje cells is 
significantly higher than single spikes, Coenen et al. (2007). In Figure 
3.12 it is shown how the cell model is able to produce short bursts in 
response to intense input activity. If a delay is introduced between 
excitation and inhibition spike trains, the second spike in the output 
doublets is specifically prevented (Figure 3.13). 
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Figure 3.12: Simulation of bursting behaviour with EDLUT. 
Triplets in response to input spike trains of 95 Hz. 
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Figure 3.13: Spike suppression. 
A) Simulation with EDLUT of doublets in response to 100Hz spike trains 

through 3 excitatory synapses of 0.5nS. B) The second spike of each output 
doublet is suppressed due to the activation of the inhibitory synapse 

(conductance 5.0nS) with a spike train of 100Hz delayed 1ms. 

3.3.4.3 Resonance behaviour 

In Figure 3.14 A it is shown how injecting oscillatory currents (4-
6cos(ω)pA) that match the resonance cell frequency (10Hz) produces 
output spikes while injecting oscillatory input currents at other 
frequency (1Hz) does not produce any output spike. 

 Figure 3.14 B shows the maximum membrane-potential (vm) 
depolarization when injecting the same oscillatory currents as before. 
Figure 3.14 shows the output-spike bursting frequency (fspk) in response 
to the same input current. In Figure 3.14 D it is shown that this effect 
can be also observed when input spike trains of a certain frequency 
(resonance) produce significantly higher responses. Therefore when the 
input spike train tunes the inherent temporal dynamics of the cell it 
generates more active responses. 
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Figure 3.14: Resonance behaviour. 
A) Time-driven simulation of non-resonant frequency filtering. B) Time-driven 

simulation showing the maximum depolarization of the membrane potential 
depending on the input-current frequency (action-potential generation 

mechanism disabled). C) Time-driven simulation showing the output bursting 
frequency depending on the input-current frequency. D) Simulation with 

EDLUT of input-burst selectivity depending on quiescent period. 
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3.3.5 Accuracy validation 

In this subsection we evaluate the accuracy of the model captured on 
lookup tables that are used in the EDLUT approach. For this purpose 
we run some reference simulations using intensive numerical 
calculation (Euler method with a very short integration time constant; 
0.5µs) with the original differential equations of the simplified model 
Bezzi et al. (2004, Journal). After this, we perform the same 
simulations in the EDLUT. Finally we compare the output spike trains 
obtained by the two approaches calculating the van Rossum distance 
(van Rossum, 2001) normalized by the number of spikes (as a measure 
of the distance between two spike trains). In this way we measure the 
difference between the EDLUT output spike train and the one obtained 
with the original model (using intensive calculation method). 

 To make the accuracy evaluation more informative we use three 
100Hz input spike trains (Poisson distribution with 0.8 standard 
deviation). The results are shown in Figure 3.15. The curve shown in 
Figure 3.15 A represents the Van Rossum distance (with a time 
constant of 10ms), between the reference output spike trains obtained 
using Euler integration method with a very short time step (0.5µs) and 
other spikes trains generated by simulations done with longer time 
steps. The EDLUT simulator, using the lookup tables described in 
previous subsection, achieves 0.184 of accuracy (normalized Van 
Rossum distance). Figure 3.15 B illustrates how the output spike train 
calculated with Euler integration method highly depends on the time 
step. EDLUT tables emulate the cell behaviour obtained with the Euler 
calculation with a short time constant (0.5µs). 
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Figure 3.15: Accuracy comparison. 
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A) Normalized van Rossum distance for the EDLUT output train and a 
simulation using Euler integration with different t ime steps. B) Output trains 

produced by EDLUT and Euler simulations of 0.5µs and 0.6µs. 

3.3.6 Conclusions 

Since EDLUT simulator performance (computation speed) does not 
depend on the network size but on the network activity, this simulator 
is specifically appropriate for neural structures with sparse coding. This 
is the case of the granular layer, Smith et al. (2000). This computing 
performance can be exploited to address massive studies about how 
different input patterns or connecting weights affect the network 
behaviour. For instance to study different levels of inhibition provided 
by the Golgi cells Forti et al. (2006), Philipona & Coenen (2004) or 
which input codes (through the mossy fibers optimize the information 
transmission in this layer D'Angelo et al. (2005), Coenen et al. (2007), 
Bezzi et al. (2006), Bezzi et al. (2004, Meeting). 

Cell dynamics are usually neglected in large-scale simulations. 
However specific network simulations can be addressed to evaluate the 
impact of the cell temporal dynamics (oscillatory, bursting and 
resonance) in the network behaviour, as these biological properties may 
represent also a computational key factor to take into account. At the 
input stage of the cerebellum these properties could be involved in 
learning as in network oscillations at theta frequency. 

 

3.4 Hodgkin and Huxley model 

 

In order to further validate the simulation scheme, we have also 
compiled into tables the Hodgkin & Huxley model (1952) and 
evaluated the accuracy obtained with the proposed table-based 
methodology. Table 3.2 shows the differential expressions that define 
the neural model. We have also included expressions for synaptic 
conductances. 

( ) ( ) ( )( ) mlmlNamNsKmK
m CVVgVVhmgVVngI

dt

dV
−−−⋅⋅⋅−−⋅⋅−= 34  



Neuron models - 43 - 
 

( )( )nn
dt

dn
nn ⋅−−⋅⋅= βαφ 1  ; ( )( )mm

dt

dm
mm ⋅−−⋅⋅= βαφ 1  ; 

( )( )hh
dt

dh
hh ⋅−−⋅⋅= βαφ 1  

( ) 111.0exp

1.001.0

−+⋅
+⋅

=
m

m
n V

Vα  ; ( ) 15.21.0exp

5.21.0

−+⋅
+⋅

=
m

m
m V

V
α ; ( )mh V⋅⋅= 05.0exp07.0α  

( )80exp125.0 mn V⋅=β  ; ( )18exp4 mm V=β  ; ( ) 131.0exp

1

++⋅
=

m
h V

β  

( ) 103.63 −= Tφ  
( ) ( )inhminhexcmexc EVgEVgI −⋅−−⋅−=  

exc

excexc g

dt

dg

τ
−=  ; 

inh

inhinh g

dt

dg

τ
−=  

Table 3.2: Hodgkin and Huxley (1952) model equations. 
The first expression describes the membrane potential evolution. The differential 
equations of n, m and h govern the ionic currents. The last two expressions of the 

table describe the input driven currents and synaptic conductances. The 
parameters are the following: Cm=1µF/cm2, gK=1 mS/cm2, gNa=120 mS/cm2, 
gl=0.3 mS/cm2, VNa=-115 mV, VK=12 mV, Vl=-10.613 mV and T=6.3ºC. The 

parameters of the synaptic conductances are the following: Eexc=-65 mV, Einh=15 
mV, τexc=0.5 ms and τinh=10 ms. 

Interfacing the explicit representation of the action potential to the 
event-handling architecture, which is based upon idealized 
instantaneous action potentials, raises a couple of technical issues. The 
first is the choice of the precise time point during the action potential 
that should correspond to the idealized (propagated) event. This choice 
is arbitrary; we chose the peak of the action potential. The second issue 
arises from the interaction of this precise time point with discretization 
errors during updates close to the peak of the action potential. As 
illustrated in Figure 3.16, a simple-minded implementation can cause 
the duplication (or by an analogous mechanism, omission; Figure 3.17) 
of action potentials - a significant error. This can happen when an 
update is triggered by an input arriving just after the peak of the action 
potential (and thus after the propagated event). Discretization errors can 
cause the prediction of the peak in the immediate future, equivalent to a 
very slight shift to the right of the action potential waveform. Since we 
have identified the propagated event with the peak, a duplicate action 
potential would be emitted. The frequency of such errors depends upon 
the discretization errors and thus the accuracy (size) of the lookup 
tables and upon the frequency of inputs near the action potential peaks. 
These errors are likely to be quite rare, but, as we now explain, they can 
be prevented. 
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Figure 3.16: Output-spike duplication due to discretization errors. 
Discretization errors could allow an update shortly following an action 

potential peak to predict the peak of the action potential in the immediate future, 
leading to the emission of an erroneous duplicate spike. (The errors have been 

magnified for illustrative purposes.) 
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Figure 3.17: Output-spike omission due to discretization errors. 
Discretization errors could allow an update shortly before an action potential 

peak to set the membrane potential to a value slightly after the peak of the action 
potential, leading to the omission of a correct output spike. 

We now describe one possible solution (which we have 
implemented) to this problem (see Figure 3.18). We define a "firing 
threshold" (θf; in practice -10mV). This is quite distinct from the 
physiological threshold, which is more negative. If the membrane 
potential exceeds θf, we consider that an action potential will be 
propagated under all conditions. We exploit this assumption by always 
predicting a propagated event if the membrane potential is greater than 
θf after the update, even if the "present" is after the action potential 
peak (in this case emission is immediate). This procedure ensures that 
no action potentials are omitted, leaving the problem of duplicates. 
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We also define a post-emission time window. This extends from the 
time of emission (usually the action potential peak) to the time the 
membrane potential crosses another threshold voltage, θf_end. This time, 
tf_end, is stored in the source neuron when the action potential is emitted. 
Whenever new inputs are processed, any predicted output event times 
are compared with tf_end and only those predicted after tf_end are 
accepted. This procedure eliminates the problem of duplicate action 
potentials. 

 

Figure 3.18: Prevention of erroneous spike omission and duplication. 
Once the neuron exceeds θf, a propagated event is ensured. In this range, updates 

that cause the action potential peak to be skipped cause immediate emission. 
This prevents action potential omission. Once the action potential is emitted 

(usually at tf), the time tf_end is stored and no predicted action potential 
emissions before this time are accepted. This ensures that no spikes are 

propagated more than once. 
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In order to preserve the generality of this implementation, we chose 
to define these windows around the action potential peak by voltage 
level crossings. In this way the implementation will adapt automatically 
to changes of action potential waveform (possibly resulting from 
parameter changes). This choice entailed the construction of an 
additional large lookup table. Simpler implementations based upon 
fixed time windows could avoid this requirement. However, the cost of 
the extra table was easily borne. 

We have compiled the model into the following tables: 

- One table of seven dimensions for the membrane potential, 
Vm=f(∆t, gexc_0, ginh_0, n0, m0, h0, V0). 

- Three tables of seven dimensions for the variables driving ionic 
currents, n=f(∆t, gexc_0, ginh_0, n0, m0, h0, V0), m=f(∆t, gexc_0, ginh_0, 
n0, m0, h0, V0), h=f(∆t, gexc_0, ginh_0, n0, m0, h0, V0). 

- Two tables of two dimensions for the conductances, gexc=f(∆t, 
gexc_0), ginh=f(∆t, ginh_0). 

- Two tables of 6 dimensions for the firing prediction , tf=f(gexc, ginh, 
n0, m0, h0, V0) and tf_end=f(gexc, ginh, n0, m0, h0, V0) . With θf=-0.01V 
and θf_end=-0.04V. 

An accurate simulation of this model (as shown in Figure 3.19) 
requires approximately 6.15 Msamples (24.6 MB using 4-byte floating 
point data representation) for each seven-dimension table. We use a 
different number of samples for each dimension: ∆t(25), gexc_0(6), 
ginh_0(6), n0(8), m0(8), h0(8) and V0(14). The table calculation and 
compilation stage of this model requires approximately 4 minutes on a 
Pentium IV 1.8 Ghz. 

 

3.4.1 Accuracy 

Figure 3.19 shows an illustrative simulation of the Hodgkin and 
Huxley model using the table-based event-driven scheme. Note that the 
simulation engine is able to accurately jump from one marked instant 
(bottom plot) to the next one (according to either input or generated 
events). The membrane potential evolution shown in the bottom plot 
has been calculated using numerical method (continuous plot) and the 
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marks (placed onto the continuous trace) have been calculated using the 
event-driven approach. We have also included the generated events 
using numerical calculation (vertical continuous lines) and those 
generated by the table-based event-driven approach (vertical dashed 
lines). 

 

Figure 3.19: Event-driven simulation of an H&H model neuron. 
Note that in order to facilitate the comparison of the plots with the ones of other 
models, the variable (V) has been calculated using the following expression V=(-

Vm-Vrest)/1000 with Vrest=65 mV. 

In order to evaluate the model accuracy we have adopted the same 
methodology described in the accuracy-and-speed section; we have 
simulated a single cell receiving an input spike train using numerical 
calculation to obtain a reference output spike train. Then, we have used 
the proposed table-based event-driven approach to generate another 
output spike train. The accuracy measurement is obtained calculating 
the van Rossum (2001) distance between the reference and the event-
driven output spike trains. We have used a randomly generated test 
input spike train of average rate 300 Hz with a standard deviation of 0.7 
and a uniform synaptic weight distribution in the interval [0.1,1] 
mS/cm2. Using the table sizes mentioned above, the van Rossum 
distance (with a time constant of 10 ms and the normalization 
mentioned in the accuracy-and-speed section) between the reference 
spike train and that obtained with the proposed method is 0.057 (in the 
same range as the Rossum distances obtained when comparing other 
simpler neural models, see Table 4.1). In fact, in order to obtain a 
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similar accuracy using Euler numerical calculation a time step shorter 
than 65 µs is required. 

4 Simulation accuracy and speed 
 

To evaluate the performance of the implementation, in terms of 
accuracy and speed, and compare with other simulation methods, we 
have used the basic integrate-and-fire neuron model to make the 
corresponding measurements. 

 

4.1 Simulation accuracy 

 

An illustrative simulation is shown in Figure 4.1. A single cell with 
the characteristics of a cerebellar granule cell receives excitatory and 
inhibitory spikes (upper plots). We can see how the membrane 
conductances change abruptly due to the presynaptic spikes. The 
conductance tables emulate the excitatory AMPA-receptor-mediated 
and the inhibitory GABAergic synaptic inputs (the inhibitory inputs 
have a longer time constant). The conductance transients (excitatory 
and inhibitory) are also shown. The bottom plot shows a comparison 
between the event-driven simulation scheme, which updates the 
membrane potential at each input spike (these updates are marked with 
an x) and the results of an iterative numerical calculation (Euler method 
with a time step of 0.5 µs). This plot also includes the output spikes 
produced when the membrane potential reaches the firing threshold. 
The output spikes are not coincident with input events, although this is 
obscured by the time scale of the figure. It is important to note that the 
output spikes produced by the event-driven scheme are coincident with 
those of the Euler simulation (they superimpose in the bottom plot). 
Each time a neuron receives an input spike, both its membrane 
potential and the predicted firing time of the cell are updated. This only 
occurs very rarely, as the spacing of the events in the event-driven 
simulation illustrates. 
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Figure 4.1: Single-neuron simulation. 
Excitatory and inhibitory spikes are indicated on the upper plots. Excitatory and 

inhibitory conductance transients are plotted in the middle plots. The bottom 
plot is a comparison between the neural model simulated with iterative 

numerical calculation (continuous trace) and the event-driven scheme, in which 
the membrane potential is only updated when an input spike is received (marked 

with an "x"). 

It is difficult to estimate the appropriate size of the tables for a given 
accuracy. One of the goals of this simulation scheme is to be able to 
simulate accurately large populations of neurons, reproducing faithfully 
phenomena such as temporal coding and synchronization processes. 
Therefore, we are interested in reproducing the exact timing of the 
spikes emitted. In order to evaluate this, we need a way to quantify the 
difference between two spike trains. We used the van Rossum (2001) 
distance between two spike trains. This is related to the distance 
introduced by Victor and Purpura (1996; 1997), but is easier to 
calculate, with Eq. ( 4.1 ), and has a more natural physiological 
interpretation (van Rossum, 2001). 
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In Eq. ( 4.2 ), H is the Heaviside step function (H(x)=0 if x<0 and 
H(x)=1 if x≥0) and M is the number of events in the spike train. In Eq. ( 



Simulation accuracy and speed - 51 - 
 

4.1 ), the distance D is calculated as the integration of the difference 
between f and g, which are spike-driven functions with exponential 
terms, as indicated in Eq. ( 4.2 ). Note that the resulting distance and, 
indeed, its interpretation, depends upon the exponential decay constant, 
tc in Eq. ( 4.2 ), whose choice is arbitrary (van Rossum, 2001). We used 
tc = 10ms. The distance also depends upon the number of spikes in the 
trains. For this reason, we have chosen to report a crudely-normalised 
version D2(f,g)tc/M. Two trains differing only by the addition or 
removal of a single spike have a normalized distance of (1/2 M). Two 
trains differing only by the relative displacement of one spike by δt 
have a normalized distance of (1-exp(-|δt|/tc))/M. 

In order to evaluate the accuracy of the EDLUT method and 
evaluate the influence of table size, we computed the neural model 
using iterative calculations and the EDLUT method and then calculated 
the distance between the output spike trains produced by the two 
methods.  

Figure 4.2 illustrates how the accuracy of the event-driven approach 
depends on the synaptic weights of each spike, in an example using a 
Poisson input spike train. We plot as a function of synaptic weight the 
normalized van Rossum distance between the output spike trains 
calculated with the Euler method and obtained with EDLUT. Spikes 
with very low weights do not generate output events (either in the 
event-driven scheme or in the numerical computation one). Conversely, 
spikes with very large weights will always generate output events. 
Therefore, the deviation between the event-driven and the numerical 
approach will be low in both these cases. However, there is an interval 
of weights in which the errors are appreciable, because the membrane 
potential spends more time near threshold and small errors can cause 
the neuron to fire or not to fire erroneously. In general, however, a 
neuron will have a spread of synaptic weights and is unlikely to show 
such a pronounced error peak. Action potential variability in sub-
threshold states is also seen in biological recordings (Stern et al, 1997), 
therefore a certain level of error may be affordable at a network scale. 
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Figure 4.2: Simulation error depending on synaptic weights. 
The accuracy of the event-driven simulation depends on the weights of the 

synapses, with maximal error (normalized van Rossum distance) occurring over 
a small interval of critical conductances. All synaptic weights were equal. 

The accuracy of the event-driven scheme depends on the sampling 
resolution of the different axes in the tables. We varied the resolution of 
various parameters and quantified the normalized van Rossum distance 
of the spike trains produced, with respect to the 'correct' output train 
obtained from an iterative solution. The axes of the Vm and tf table were 
varied together, but the conductance lookup tables were not modified. 
Effective synaptic weights were drawn at random from an interval of 
[0.5, 2] nS, thus covering the critical interval illustrated in Figure 4.2. 
From Figure 4.3 we see that using a proposed initial table dimensions, 
the accuracy of ∆t and gexc are critical, but the accuracy of the event-
driven scheme becomes more stable when table dimensions are above 
1000 K samples. Therefore, we consider appropriate resolution values 
are the following: 16 values for gexc,t0 and ginh,t0, 64 values for ∆t and 64 
values for Vm,t0. These dimensions will be used henceforth for this 
neuron model. 
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Figure 4.3: Simulation error depending on table size. 
The accuracy of the event-driven approach depends on the resolution of the 

different dimensions, and therefore on the table sizes. To evaluate the influence 
of table size on accuracy, we ran the simulations with different table sizes. For 

this purpose, we chose an initial Vm table of 1000 K samples (64 values for ∆t, 16 
values for gexc,t0, 16 values for  ginh,t0 and 64 values for Vm,t0). We then halved the 

size of individual dimensions, obtaining tables of size 500 K samples and 
250 K samples from the original table of 1000 K samples. Finally, we doubled the 

sampling density of individual dimensions to obtain the largest tables of 
2000 K samples. For each accuracy estimation, we used an input train of 100 
excitatory and 33 inhibitory spikes (which generates 26 output spikes when 

simulated with iterative methods and high temporal resolution). 
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Figure 4.4: Output spike trains for different table sizes. 
The first two plots represent the excitatory and inhibitory spikes. The E plots are 
the output events obtained with numerical iterative methods with different time 

step resolutions (Euler method with 0.5 µs and with 2 µs). The other plots 
represent the outputs generated with the event-driven scheme using different 
table sizes: small (S) of 500 K elements, medium (M) of 1000 K elements and 

large (L) of 2000 K elements. The subscripts indicate which dimension resolution 
has been doubled (or halved) from the Medium (M) size table. 

Illustrative output spike trains for different table sizes, as well as the 
reference train, are shown in Figure 4.4. The spike trains obtained with 
the iterative method and the event-driven scheme are very similar for 
the large table with increased resolution in ∆t. A spurious spike 
difference is observed in the other simulations. Doubling the resolution 
in dimensions other than ∆t does not increase the accuracy significantly 
in this particular simulation. We can also see how the spike train 
obtained with the small tables is significantly different. 

 

4.2 Simulation speed 
 

With EDLUT, as described, the simulation time is essentially 
independent of the network size, depending principally on the rate of 
events that need to be processed. In other words, the simulation time 
depends on the network activity, as illustrated in Figure 4.5. 
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Figure 4.5: Computation time. 
This figure represents the time taken to simulate 1 second of network activity on 
a Pentium IV (1.8 GHz) computer. Global activity represents the total number of 

spikes per second in the network. The network size did not have a significant 
impact on the time required. The time was almost linear with respect to network 

activity. The horizontal grid represents the real-time simulation limit, i.e. one 
second of simulation requiring one second of computation time. 

 

The present implementation allows, for instance, the simulation of 
8·104 neurons in real time with an average firing rate of 10 Hz on a 
1.8 GHz Pentium IV platform. This implies the computation at a rate of 
8·105 spikes/second as illustrated in Figure 4.5. Large numbers of 
synaptic connections of single neurons are efficiently managed by the 
two-stage strategy described in Figure 2.4. The size of the event queue 
is affordable, even in simulations with neurons with several thousands 
of synapses each.  

The number of synapses that the simulation engine is able to handle 
is limited by memory resources. Each neuron requires 60 Bytes and 
each synapse 52 Bytes. Therefore, a simulation of 8·105 neurons 
consumes about 46 Mbytes and a total of 62·106 connections consumes 
about 3 Gbytes.  
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In order to illustrate the potential of the EDLUT method we have 
compared the performance of this computation scheme with other 
methods (see Table 4.1). We have implemented three alternative 
strategies: 

- Time-driven iterative algorithm with a fixed time step (TD-FTS). We 
have used the Runge-Kutta method with a fixed time step.  

- Time-driven iterative algorithm with variable time step (TD-VTS). 
We use the Runge-Kutta method with step doubling and the 
Richardson extrapolation technique (Cartwright and Piro, 1992). In 
this case, the computational accuracy is controlled by defining the 
“error tolerance”.  In this scheme, the iterative computations are done 
with time step sizes that depend on the smoothness of the function. If 
a calculation leads to an error estimation above the error tolerance 
the time step is reduced. On the other hand, if the error estimation is 
below this threshold the time step is doubled. This scheme is 
expected to be fast when only smooth changes occur in the neuronal 
states (between input spikes). Even though this method is time 
driven, its computation speed depends on the cell input in the sense 
that the simulation passes quickly through time intervals without 
input activity and when an input spike is received the computation 
approach reduces the time step to simulate accurately the transient 
behaviour of the cell. A similar simulation scheme with either global 
or independent variable time-step integration has been adopted in 
NEURON (Hines & Carnevale, 2001; Lytton and Hines, 2005).  

- Pseudo-analytical approximation (PAA) method. In this case we 
have approximated the solution of the differential equations that 
govern the cell. In this way we can adopt an event-driven scheme 
similar to that proposed in Makino (2003) and Mattia & Del Giudice 
(2000), in which the neuron behaviour is described with analytical 
expressions. As in Makino (2003), the membrane potential is 
calculated with the analytical expression and the firing time is 
calculated using an iterative method based on Newton-Raphson. 
Since the differential equations defining the cell behaviour of our 
model have no analytical solution, we need to approximate a four-
dimensional function. Even using advanced mathematical tools this 
represents a hard task. The accuracy of this approach depends 
significantly on how good this approximation is. In order to illustrate 
the complexity of the complete cell behaviour it is worth mentioning 
that the expression used was composed of 15 exponential functions. 
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As shown in Table 4.1, even this complex approximation does not 
provide great accuracy, but we have nevertheless used it in order to 
estimate the computation time of this event-driven scheme.  

- Event-driven based on Lookup tables (EDLUT). This is our 
approach, in which the transient response of the cell and the firing 
time of the predicted events are computed off-line and stored in 
lookup tables. During the simulations each neuronal state update is 
performed by taking the appropriate value from these supporting 
tables. 

  
Normalized 
 van Rossum 

distance 

Comput. 
time (s) 

Time step 
(s) 

  

56·10-5 0.061 0.286 
43·10-5 0.033 0.363 

Time driven with 
fixed time step 

(TD-FTS) 
34·10-5 0.017 0.462 
Error 

tolerance 
  

68·10-5 0.061 0.209 
18·10-5 0.032 0.275 

Time driven with 
variable time step 

(TD-VTS) 
2·10-5 0.017 0.440 

Pseudo analytical 
approximation 
method (PAA) 

 0.131 0.142 

Table size 
(x106 samples) 

  

1.05 0.061 0.0066 
6.29 0.032 0.0074 

Lookup-table-
based event-driven 
scheme (EDLUT) 

39.32 0.017 0.0085 
Table 4.1: Performance evaluation of different methods. 

Accuracy vs. computing time trade-off. We have focused on the computation of a 
single neuron with an input spike train composed of 100 seconds of excitatory 

and inhibitory input spikes (average input rate 200 Hz) and 100 seconds of only 
excitatory input spikes (average input rate 10 Hz). Both spike trains had a 
standard deviation of 0.2 in the input rate and random weights (uniform 

distribution) in the interval [0,0.8] nS for the excitatory inputs and [0,1] nS for 
the inhibitory inputs. 

In order to determine the accuracy of the results, we obtained the 
“correct” output spike train using a time driven scheme with a very 
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short time step. The accuracy of each method was then estimated by 
calculating the van Rossum distance (van Rossum, 2001) between the 
obtained result and “correct” spike train.  

In all methods except the pseudo-analytical approach, the accuracy 
vs. computation time trade-off is managed with a single parameter 
(time step in TD-FTS, error tolerance in TD-VTS, and table size in 
EDLUT). We have chosen three values for these parameters that 
facilitate the comparison between different methods, i.e., values that 
lead to similar accuracy values. It is worth mentioning that all methods 
except the time-driven with fixed time step require a computation time 
that depends on the activity of the network.  

Table 4.1 illustrates several points: 

- The computing time using tables (EDLUT) of very different sizes is 
only slightly affected by the memory resource management units.  

- The event-driven method based on analytical expressions is more 
than an order of magnitude slower than EDLUT (and has greater 
error). This is caused by the complexity of the analytical expression 
and the calculation of the firing time using the membrane potential 
expression and applying the Newton-Raphson method. 

- The EDLUT method is about 50 times faster than the time-driven 
schemes (with an input average activity of 105 Hz). 

 

4.3 Discussion and conclusions 

 

A method for efficiently simulating large scale realistic neural 
networks has been implemented. Since most information transmission 
in these networks is accomplished by the so called action potentials, 
events which are considerably sparse and well-localized in time, it has 
been possible to dramatically reduce the computational load through 
the application of the event-driven simulation schemes. 

Some complex neuronal models require the neural simulators to 
calculate large expressions, in order to update the neuronal state 
variables between these events. This requirement slows down these 
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neural state updates, impeding the simulation of very active large 
neural populations in real-time. Moreover, neurons of some of these 
complex models produce firings (action potentials) some time after the 
arrival of the presynaptic potentials. The calculation of this delay 
involves the computation of expressions that sometimes are difficult to 
solve analytically. To deal with these problems, our simulation method 
makes use of precalculated lookup tables for both, fast update of the 
neural variables and the prediction of the firing delays, allowing 
efficient simulation of large populations with detailed neural models. 

The proposed method efficiently splits the computational load into 
two different stages: 

- Off-line neuronal model characterization. This preliminary stage 
requires a systematic numerical calculation of the cell model in 
different conditions, to scan its dynamics. The goal of this stage is 
to build up the neural characterization tables. This can be done by 
means of a large numerical calculation and the use of detailed 
neural simulators such as NEURON (Hines and Carnevale, 1997) 
or GENESIS (Bower and Beeman, 1998). In principle, this could 
even be done by compiling electrophysiological recordings (as 
described).   

- On-line event-driven simulation. The computation of the simulation 
process jumps from one event to the next, updating the neuron 
states according to pre-calculated neuron characterization tables and 
efficiently managing newly produced events. 

Mattia & Del Giudice (2000) used a cell model whose dynamics are 
defined by simple analytical expressions and Reutimann et al (2003) 
extended this approach by including stochastic dynamic. They avoided 
numerical methods by using a pre-calculated lookup tables. In this case, 
provided that the reordering event structure is kept of reasonable size 
(in those approaches large divergent connection trees may overload the 
spike reordering structure), the computation speed of these schemes is 
likely to be comparable to our approach, since the evaluation of a 
simple analytical expression and a lookup table consultation consume 
very little time.  
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5 Neural population 
synchronization 

 

5.1 Introduction 
 

There are many examples of electrical coupling between inhibitory 
neurons in the nervous system (Gibson et al, 1999; Long et al, 2004; 
Mann-Metzer and Yarom, 1999). Furthermore, electrical coupling has 
been proven to be an effective synchronization mechanism (Kopell et 
al, 2004; Kepler et al, 1990; Traub et al, 2000; Draghun et al, 1998). 

 Here we want to evaluate the simulation of electrical coupling 
within an event-driven scheme. For this purpose, we simulate a neural 
network of 100 cells receiving spikes at an average rate of 200 Hz with 
a standard deviation of 0.1 through excitatory synapses. These input 
spikes encode a constant bias and a random component. The cells are 
interconnected with inhibitory synapses and electrical coupling with an 
all-to-all topology. The network consists of 100 neurons with 100 input 
excitatory synapses (one per cell), 10000 inhibitory synapses and 
10000 electrical connections. We have used neurons that intend to 
emulate cerebellar interneurons (Ros et al, 2005), using the following 
characterization parameters: membrane capacitance Cm=30 pF; time 
constants of the excitatory and inhibitory synapses τexc=0.5ms and 
τinh=2ms; resting conductance Grest=0.2 nS; excitatory and inhibitory 
reversal potentials Eexc=0 V and Einh=-80 mV; resting potential Erest= -
70 mV; firing threshold Vth=-60 mV. This cell profile has been used to 
extract the characterization tables through intense numerical calculation 
using the SRM model (Gerstner et al, 2002) before the event driven 
simulation. The computing scheme processes everything in real-time 
(i.e. the computation time is much shorter than the simulated time; 1 
second of simulation takes about 0.4 seconds). Since no numerical 
calculation is required during the event-driven simulation.   

 

5.2 Results 
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In Figure 5.1 we show the obtained synchronization histograms 
using inhibition and electrical coupling. These results show the key 
phenomena obtained in detailed simulation (Kopell and Ermentrout, 
2004) using a network of quadratic integrate-and-fire neurons (Latham 
et al, 2000); when using electrical coupling and inhibitory synapses, the 
synchronization was created quickly and multiple clusters of cells were 
not been observed (see Figure 5.1 C). 

This validates our electrical coupling approach for this kind of 
simulations and proves event-driven simulation scheme to be an 
efficient tool to study this kind of processes or to apply them in neural 
network running in real time. 
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Figure 5.1: Neural-population synchronization histograms. 
A) Only electrical coupling of coefficient 0.02. B) Only inhibitory synapses 
Ginh=1.65nS. C) Inhibitory synapses (Ginh=1.65 nS) and electrical coupling 

(coefficient of 0.02), there is no neuron firing asynchronously almost since the 
beginning. (The frequency is higher in A because there is no inhibition). 
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6 Cerebellum model simulation 
 

6.1 Introduction 
 

Although the cerebellum architecture has been studied for more than 
one hundred years (Ramón y Cajal et al., 1995; Golgi, 1967), its 
functional role is still an open topic. The cerebellum plays a major role 
in coordinated and accurate movements (Schweighofer et al., 1998a,b; 
Ito, 2001; Spoelstra et al., 2000; Arbib et al., 1995; Eskiizmirliler et al., 
2002). It is thought to be an essential computing tissue for our daily 
manipulation tasks. Its regular topology has inspired many artificial 
neural network models in the past decades (Kettner et al., 1997; 
Schweighofer et al., 1998a; Medina et al., 1999) Furthermore, there are 
many research groups modelling in detail its cells (D'Angelo et al., 
1995b; Bezzi et al., 2004; Steuber et al., 2004) in order to elucidate the 
specific computations that take place at each part of the cerebellum 
architecture. 

 In the robotic field there have been great advances (mainly in 
industrial applications). But most of the industrial robots use stiff joints 
and high-gain close-loop control. They are able to perform accurate 
trajectory-following adopting online close-loop error correction 
schemes. This strategy becomes possible due to the outstanding 
processing speed of current circuits that are able to calculate errors and 
deliver feedback correction signals on a millisecond time scale. On the 
other hand, biological systems suffer from delays in sensorimotor 
pathways up to several hundreds of milliseconds. This makes it 
impossible to apply online close-loop error correction strategies 
without having predictor modules able to abstract the kinematics and 
dynamic models of the platform. This becomes even more difficult 
because biological systems are based on joints with variable stiffness 
(agonist and antagonist muscle actuation) and low-gain control 
schemes. This is important because the dynamic model of the platform 
(for instance an arm-hand system) is likely to be significantly modified 
when manipulating objects of different weights. There are plenty of 
challenges in robotics such as the development of accurate low-gain 
control schemes for robotic platforms of several degrees of freedom 
(DOF) and non-stiff joints. The movement of stiff joints highly 
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facilitates control since it reduces (or even avoids) the necessity of 
dynamic models of the whole system. On the other hand, accurate 
control of stiff joints does not take advantage of the robot dynamics, 
wasting energy and therefore reducing the autonomy of the robot 
platform. 

In this section, we try to emulate the learning strategy followed by 
biological systems to control low-gain, non-stiff robot platforms in the 
presence of sensorimotor pathways with delays of hundreds of 
milliseconds. More concretely, we study how a cerebellum model can 
abstract dynamics models of the robot platform in order to facilitate 
control by predicting and correcting errors in the motor space. 

Fot this, we use a neural network modelling the cerebellum based on 
integrate-and-fire spiking neurons with conductance-based synapses. 
The neuron characteristics are derived from detailed models of the 
different cerebellar neurons. 

The main plasticity in the cerebellar model is at the parallel fiber to 
Purkinje cell connections whose spike-time-dependent plasticity 
(STDP) is driven by the inferior olive (IO) activity, which encodes an 
error signal (using a novel probabilistic low-frequency model). We 
demonstrate the model for robot control in a target position reaching 
task. We evaluate the model performance relative to the dynamic model 
of the robot platform. Furthermore, we test how the system learns in a 
non-destructive way to reach different target positions (therefore 
abstracting a global dynamic model). To test the system's ability to self-
adapt to different dynamical models, we present results in which the 
dynamics of the robotic platform changes significantly (friction and 
load carrying). 

 

6.2 Cerebellar model 
 

We simulated the cerebellum spiking neural model with EDLUT 
simulator (the event-driven simulator based on lookup tables described 
before; (Ros et al., 2006)) This software is particularly suited for a 
cerebellar model in which sparse activity is expected (Coenen et al., 
2001; Schweighofer et al., 2001) in the numerous neurons of the 
granular layer (approximately 1011 granule cells (Kandel et al., 2000)) 
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allowing real-time simulation of large-scale spiking neural networks. 
The EDLUT environment facilitates a direct interface to real robot 
platforms. 

Lasting functional changes at a synaptic level can be driven by the 
coincidence of multiple signals at a single synaptic site (Brown et al., 
1990). Long-term depression of the parallel fiber input to cerebellar 
Purkinje cells is a form of synaptic plasticity that can last from hours to 
days (Ito et al., 1982) and is thought to underlie several forms of 
associative motor learning (Mauk et al., 1998). 

In the cerebellar model that we present, long-term depression (LTD) 
is induced by coincident activation of parallel fiber (PF) and climbing 
fiber (CF) synaptic inputs (see the learning-rules subsection below). 

 Previous modelling of cerebellar involvement in learning movement 
includes smooth pursuit eye movement learning of Kettner et al. 
(Kettner et al., 1997). In that work, the cerebellar nuclei cells were not 
implemented in the model, and analog units, not spiking neurons were 
used. Schweighofer et al. (Schweighofer et al., 1998a) proposed a 
model of the cerebellum focusing on the learning of the inverse 
dynamics of a two-link six-muscle arm model. Parallel fiber-Purkinje 
cell (PF-PC) LTD was biologically inspired, but long-term potention 
(LTP) was not and implemented as a weights normalisation process. 
Moreover, learning was performed over short trials only (less than 500 
ms) and not continuously as in our contribution. 

 A few cerebellar models for eyelid conditioning have used spiking 
neurons (e.g. (Medina et al., 1999; HofstÄotter et al., 2002). Learning 
was based on spikes coincidences between neurons, but none used the 
same probabilistic low-frequency firing of the inferior olive in their 
learning rules. 

 We simulated the cerebellum spiking neural model (Boucheny et 
al., 2005; Arnold., 2001; Ros et al., 2006; Huang et al., 1998) with 
approximately 2100 units: 112 mossy fibers (MF), 2000 granule cells 
(GR) with their axons as parallel fibers (PF), 5 Golgi cells (GC), 32 
inferior olive (IO) climbing fibers (CB), 32 purkinje cells (PC) and 16 
deep cerebellar nuclei (DCN) cells. 

 Mossy fibers are implemented as leaky integrate-and-fire neurons. 
Their input current was determined by a radial basis function (RBF) of 
one of the sensory variables (target position or velocity) (Figure 6.1). 
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The RBF centers were evenly distributed across the sensory 
dimensions, and their variance were chosen to ensure small responses 
overlap from consecutive mossy fibers. 

 

Figure 6.1: Encoding of mossy fibers. 
The analog to spikes transformation for driving the mossy fibers uses 

overlapping radial basis functions (RBF). The example here makes reference to 
encoded joint variables (see Figure 6.9). 

The inferior olive (IO) neurons synapse onto the Purkinje cells and 
contribute to direct the plasticity of PF-PC synapses. These neurons, 
however, fire at very low rates (less than 10 Hz), which appears 
problematic to capture the high-frequency information of the error 
signal of the task being learned. This apparent difficulty may be solved 
by their irregular firing (Kuroda et al., 2001; Schweighofer et al., 
2004), which we exploit by statistically sampling the entire range of the 
error signal over multiple trials. This irregular firing was implemented 
using a Poisson model for spike generation. 

 Error correction is accomplished by changes in the activity of 
Purkinje cells that in turn influence the activity of the deep cerebellar 
nuclei cells (Purves et al., 2001), which afterwards is translated into 
analog torque correction signals for the robot. 
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6.3 Neuron models 
 

To simulate the spiking neurons of this cerebellar model, we use the 
integrate-and-fire model with synaptic conductances described in the 
corresponding previous section. Modifying the neuron model parameter 
(Cm, τexc, τinh, grest, Eexc, Einh, Erest and Vth), different neuron types 
(granule cell, Purkinje cell and Golgi cell) have been characterized 
according to neurophysiological characterization studies (D'Angelo et 
al., 1995a,b; Maex et al., 1998; Barbour, 1993; Solinas et al., 2003). 
This neuron model is a modified version of the Spike-Response-Model 
(SRM) (Gerstner et al., 2002) widely used in the literature (Eckhorn et 
al., 1990; Schoenauer et al., 2002; Shaefer et al., 2002) to study, for 
example, temporal coding issues (Eckhorn et al., 2004).  

 In our model, the inferior olive cells transmit the error signal using 
probabilistic low-rate spikes. Mossy fibers carry sensorimotor signals 
encoded into rate coded spike trains (activity 0-100 Hz). And deep 
cerebellar nuclei cells provide spike trains which encode corrective 
motor torque signals. 

 

6.4 Cerebellum model topology 

 

The model reproduced the cerebellum's different functional and 
topological features (Andersen et al., 1992; Kandel et al., 2000): sparse 
coding at the parallel fibers (Coenen et al., 2001; Schweighofer et al., 
2001), converging topology into Purkinje cells, Purkinje cell receiving 
a dedicated "teaching climbing fiber" from the inferior olive, inhibition 
to the granule cells from collector Golgi cells, etc. (see Table 6.1 and 
Figure 6.2) 

Cell type Number Afferents from Efferents to 

Granule 2000 4 mossy fibers 
5 Golgi 

32 Purkinje 
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Golgi 5 1000 granule 2000 granule 

Purkinje 32 
1500 granule 

1 climbing fiber 
4 DCN neurons 

Table 6.1: Connectivity table of the cerebellar cells. 

 

Figure 6.2: Cerebellum model diagram. 
Inputs about the movement (desired arm state and target information) are sent 
(upward arrow) to the two layers of mossy fibers (MF): distance to the target 

and its absolute position in the experimental field (θtarg) and cartesian (dtarg) 
and coordinates and desired positions (θ) and speeds (‘θ) of the shoulder (s) and 

elbow (e) joints along the trajectory. This information is conveyed to the two 
layers of granule cells (GR, 1000 neurons per layer), and to the deep cerebellar 
nuclei cells (DCN). Purkinje cells (PC), DCN and inferior olive neurons (IO) are 

divided into 4 functional arrays, guided from the cerebellar microzones 
organisation, corresponding to the two commanded joints, in an agonist-

antagonist scheme. The 32 PC receive excitatory inputs from all the joints-
related GR (ascending axons that maintain the cells in a state of excitability) and 

from all parallel fibers PF with a probability pPC-PF = 0.8, and a learning 
connection from IO in a one-to-one scheme. In turn, the DCN receive two 

inhibitory connections from PC of the same microzone. The teaching signal is 
processed by the IO cells (downward arrow top). The DCN firing rates are 

interpreted as predictive positive (+) and negative (-) torque corrections (τ) for 
the shoulder (s) and (e) at the output of the cerebellum (downward arrow 
bottom). The numbers in brackets indicate the number of cells per layer. 
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6.5 Cerebellar Learning Rules 

 

We have implemented learning at the parallel fibers to the Purkinje 
Cells connections (indicated by a ellipse in Figure 6.2) (Ito, 2001). The 
parallel fibers bring in the sensorimotor information and the Purkinje 
cells drive the cerebellum output through the deep-cerebellar-nuclei 
cells. The weight adaptation is driven by the activity generated by the 
inferior olive (IO), which encodes an error signal into a low frequency 
probabilistic spike train (from 0 to 10 Hz, average 1 Hz) (Kuroda et al., 
2001; Schweighofer et al., 1998b). 

 We have modeled the inferior olive cell responses with a 
probabilistic Poisson process: given the error signal e(t) and a random 
number η(t) between 0 and 1, the cell fired a spike if e(t) > η (t), 
otherwise it remained silent (Boucheny et al., 2005). In this way, on 
one hand, a single spike reported accurately timed information 
regarding the instantaneous error; and on the other hand, the 
probabilistic spike sampling of the error ensured that the whole error 
region was accurately represented over trials with the cell firing at most 
10 spikes per second. Hence, the error evolution is accurately sampled 
even at low frequency. The histogram of the inferior olive output spikes 
reproduces the error signal temporal trace; see Figure 6.3 for an 
example. This firing behavior is similar to the ones obtained in 
physiologial recordings (Kuroda et al., 2001). 
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Figure 6.3: Inferior-olive probabilistic encoding of the error. 
A) example of the error to be encoded. B) probabilistic firing of an inferior olive 
cell to the error in “A" (see text). C) mean firing rate of the cell averaged over all 
trials in “B". Notice that the maximum firing rate is close to 10 Hz. The smooth 

curve shows the normalized input current to the cell related to the error 
amplitude. Notice how the cell never fires quite at the same moment relative to 

the error, but encodes it nevertheless. 

The long term potentiation (LTP) implemented at the parallel fiber 
to Purkinje cell synapses was a non-associative weight increase 
triggered by each granule cell spike (Eq. ( 6.1 )). The long term 
depression (LTD) was an associative weight decrease triggered by 
spikes from the inferior olive (Eq. ( 6.2 )). This model of LTD uses a 
temporal kernel (Figure 6.4), which correlates each spike from the 
inferior olive with the past activity of a granule cell (Lev-Ram et al., 
2003) and shows a peak at 100 miliseconds (Kettner et al., 1997; 
Spoelstra et al., 2000; Raymond and Lisberger, 1998). 
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Figure 6.4: Spike Time Dependent Plasticity. 
Kernel used for granule cell (GR) and Purkinje cell (PC) synaptic long-term 

depression, corresponding to the solution of a second order differential system. 
The kernel is convolved with the spike train of the afferent PF (all spikes emitted 
for t < 0). This provides a measure of past PF activity setting the eligibility of the 

synapse to depression when the inferior olive (IO) neuron afferent to the PC 
emits a spike (t = 0). 

 

LTP: )()( 00 tt GRαδω =∆  Eq. ( 6.1 ) 

LTD: ( ) ( )∫ ∞−
−−=∆∀ IOt

GRIOii dttttKtw δ)(, 0  Eq. ( 6.2 ) 

The network maximizes learning (LTD) at synaptic sites in which 
the input parallel fiber delayed activity is highly correlated with the 
error signal from the inferior olive. Hence, this kernel produces a 
predictive corrective output in the network that helps the control task in 
the presence of significance transmission delays. 

The teaching signal relies on the motor error, namely the 
discrepancy between the desired state of the joints at time t and the 
actual one. The error for each joint, respectively es and ee, is computed 
as the sum of the position and velocity errors, weighted by coefficients 
Kp = 10 and Kd = 23 (same for each joint). The signals are delayed in 
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order to align them in time, as the desired command at time t is applied 
at time t + δ1 and the joint state at time t + δ1 is sensed by the system at 
time t + δ1 + δ2. Hence, the error signal for joint i at time t is given by: 
ei(t) = Kp(θi,des(t- δ1- δ2)-θi(t- δ2)) + Kv(‘θi.des(t- δ1-δ2)-‘θi(t-δ2)). 

 Physiologically, the time-matching of the desired and actual joint 
states can be understood by the fact that the trajectory error would be 
detected at the level of the spinal cord, through a direct drive from the 
gamma motoneurons to the spinal cord (Contreras-Vidal et al. (1997); 
Spoelstra et al. (2000)). 

 The error signal e is used to compute the value of the input current 
to each IO cell. Smoothing is performed using a sigmoid, and inhibition 
of IO cells by DCN neurons is taken into account within a formal 
scheme. The positive part of the error signal for joint i, [ei]

+ is related to 
an error in the corresponding agonist muscle, and the negative part [ei]

- 
to an error in the antagonist muscle. If we denote τ

+
i,c the corrective 

torque command computed by the cerebellum for agonist muscle i at 
time t-δ1-δ2, then the input current I+

i to IO cells within the microzone 
i+ is given by: 

If [ei]
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If ([ei]
->0 & τ+i,c>0.2 τi,cmax) then 0=+

iI  

Else 15.0=+
iI  

The three equations above correspond to the case when the 
corresponding cerebellar output undershoots, overshoots or equals the 
output required for adapted motor correction, respectively. The second 
equation is the one taking into account formally DCN-IO inhibition and 
can interpreted as follows: if a non-negligible correction was output to 
agonist muscle i (DCN neurons output) whereas the movement required 
a positive correction for the antagonist muscle (error signal), then the 
unwilled correction should be reduced (inhibition of IO by DCN 
neurons depending on the opposite error signal). The error currents are 
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normalized by esmax = 1000 and eemax = 600 for the shoulder and the 
elbow, respectively. 

 

Figure 6.5: Input current to inferior olivary cells . 
Each olivary cell is related to the agonist muscle i and its firing is dependent on 
the error signal for this muscle (see text). This reflects the influence of the deep 
cerebellar nuclei feedback on the inferior olive together with an effector arm 

system made of agonist and antagonist muscle pairs. The left side of the vertical 
line is for an error on the antagonist muscle, whereas the right side is for the 

agonist muscle. The rule states that for an error on the antagonist muscle (left 
part), if the torque τ+

i,c > 0.2 τi,cmax, then the IO current I+
i = 0 (bottom line), 

otherwise I+i = 0.15 (top line). 

 

6.6 Robot Platform 
 

The robotic platform is a two-DOF arm (Figure 6.6 B). The two 
joints were not stiff (compliant) and the motors applied low forces. The 
platform allowed continuous measurements of the position of each 
joint. A pen or a weight could be attached to the arm's ending to change 
its dynamics.  
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Figure 6.6: Experimental robot platform. 
A) Representation of the arm in simulation. Each white point represents a target 
position (0-7) along a circle. B) Two degrees of freedom (DOF) robotic arm used 

in the experiments. The motors have no gears and therefore are non-stiff low 
torque motors with nonlinearities difficult to control. 

The control system was simulated on computer. To relieve the 
computer from interface computation and permit real-time 
communication with the robot, an FPGA-based board contained 
position acquisition modules and motor-driver controller circuits. The 
controller modules translated the motor-torque commands from the 
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computer into continuous signals using pulse-width modulation 
(PWM). The PWM signal was supplied to the motors by a current-
driver circuit (see Figure 6.7). 

 

Figure 6.7: Complete hardware system. 
EDLUT simulates the cerebellum on a PC which communicates through a 

TCP/IP connection with the robot-interface software module in which does the 
rest of the processing (see Figure 6.9). In turn, the PC where the robot-interface 

module is run, is connected with an FPGA board which generates the signals 
applied to the motors and transforms the position-sensor signals into coordinate 
values. The FPGA board is connected to a custom-made interface board which 

drives the motors and adapts signal voltage levels. 

The software architecture is divided into two modules; EDLUT and 
the robot-interface module (see Figure 6.8). These modules can be run 
on the same computer or each one on one computer. This allows us to 
share the computation load. In this experiment they were run on the 
same computer. 
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Figure 6.8: Software architecture. 
Both modules interchange spike packets each millisecond through a TCP/IP 

socket. 

6.7 Experimental Results 

The spiking neurons of the cerebellar network are simulated using 
the table-based event-driven simulation scheme (EDLUT) and the 
plasticity for this model has also been developed to allow an efficient 
calculation which permits online real-time simulation with learning. 

The control system was first tested in simulations, then run on the 
experimental robotic setup (Figure 6.6). Starting from a central 
position, the robotic arm performs straight movements to reach one of 
the different targets equally set on a circle (radius of 20 cm). The 
movements were performed at high speed (T = 0.5 seconds for each 
complete movement) to check the ability of the cerebellum to abstract 
the robot platforms dynamics. 

To interact in real-time, the robot platform communicated with the 
EDLUT simulator every millisecond. At every time step the sensory 
data (robot joints position) was translated into spike trains transmitted 
through the mossy fibers. The cerebellar output spike trains were 
translated into torque correction signals (outputs of the deep-cerebellar-
nuclei cells) and the error signal was transformed into a probabilistic 
low frequency spike train (inferior olive cell probabilistic model). 
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 The simulations were run on a Pentium IV 2.8 GHz. There were 
2100 neurons in the network for approximately 52 000 synaptic 
connections. During one second of simulation, the cerebellar network 
received an average of 395 spikes, delivered 405 output spikes, and 
processed 935 801 events. Under these conditions the simulator ran in 
real-time the full network and the input-output transformations. 

 Considering the duration of motor execution (T = 0.5 s) relative to 
the time delays in corticospinal loops (up to 300 ms), we made the 
assumption that each reaching movement was performed in open-loop 
(no high-level motor correction were applied while reaching the target). 
Corrective commands to compensate for dynamic perturbations were 
computed only by the cerebellar model. 

 A movement was separated in two phases: 

- Open-loop movement phase: A movement lasted Tmove = 500 ms. 
The torque command applied to each articulation i was the sum of 
the cerebellar correction (τi,c) and the ith torque (τi), computed by a 
basic inverse dynamics model according to the desired kinematic 
trajectory (Figure 6.9). These two commands were sent to the limbs 
with a delay of δ1 = 50 ms. 

- Post-movement phase: It was set to a duration of Tpost = 0.2 s. Its 
goal was to stop the movement of the arm, independently of its 
position relative to the target. The torque applied to each joint 
corresponds to the non delayed output of a derivative controller 
with a null-desired velocity: τi = Kvstopθi with Kvstop=10. The lack of 
delay in such a command in a human arm control model can be 
explained by a different motor strategy, consisting for example in a 
high level co-contraction command of the antagonist muscles 
controlling an articulation. 

The architecture of the model for the generation of accurate fast arm 
reaching movements is illustrated in Figure 6.9. A minimum jerk model 
(Flash et al., 1985) was used to compute the desired smooth trajectory 
of the arm end-point towards the target at (OX, OY). The desired 
trajectory was expressed in Cartesian coordinates and transformed into 
joint coordinates by the inverse kinematics module. To solve the 
redundancy problem in the coordinates transformation, the robotic arm 
position was set to always be in a biological plausible posture, e.g that 
the angle between the two links of the limb were to remain positive. 
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Figure 6.9: Diagram of the arm-movement control system. 
The cerebellum acts as a predictive corrective module in the control loop. A 

desired smooth trajectory toward the target was computed in Cartesian 
coordinates and transformed into joint coordinates. These desired arm states 

were used at each time step to compute a crude torque command and to update 
the predictive corrective command of cerebellum. The cerebellum command 

included information about the context of the movement. The two torques, crude 
and corrective torques, were summed to control the arm movement with a delay 
of δ1 = 50 ms. In turn, the error of the resulting trajectory was sensed at the level 
of the limb and sent back to the system with a delay of δ2 = 50 ms. This error was 
transformed to compute the cerebellum training signal by inferior olive neurons. 

During the open-loop period of the movement, the torque commands 
sent to the joints were the sum of the output of a crude inverse dynamic 
controller and of the anticipative corrective cerebellar output. These 
torques were sent to the limb with a time delay δ1 = 50 ms. 

The error in the execution of movement was computed at the level 
of the arm, and sent back to the system with a delay of δ2 = 50 ms. It 
was mainly used to determine the teaching signal conveyed by the 
inferior olive to the cerebellum to produce anticipative motor 
corrections. The error signal was composed of an angular position error 
and an angular velocity error for each articulation. 

Finally, the cerebellar neural network received non delayed desired 
trajectory and movement context, and its output participated to the 
construction of the teaching signal with a delay of δ3 = 100 ms. 
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The inverse dynamics module was based on simplistic assumptions, 
such as mass homogeneity along the limbs and friction factor to 
compensate roughly for friction torques that reached 17 Ncm for the 
shoulder motor and 3 Ncm for the elbow. Other sources of dynamical 
perturbations, such as the forces exerted by the wires on the arm, were 
negligible compared to friction. 

 After defining an acceptable crude controller, we verified the 
repeatability of the movements and therefore of the errors of the crude 
controller. Indeed, the role of the cerebellum was to learn the 
anticipative corrections required across repeated trials of the same task. 
If the dynamics perturbations moving the arm to the desired paths 
varied too much across different trials under the same context 
(manipulating the same object) then no improvements could have been 
expected for the proposed control/correction scheme. 

 The model learned effectively and concurrently different target 
trajectories (Figure 6.10). An example shows the movement in x-y 
coordinates before and after learning (Figure 6.11). The cerebellum 
corrections build up over trials to compensate for the movement errors 
(Figure 6.12). 
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Figure 6.10: Target reaching experiments. 
A) Trajectory followed by the arm's ending. B) Average distance error computed 
over all trajectories when learning 1, 2, 3 or 4 different trajectories. C) Distance 

error of the target No. 6 trajectory when learnt conjointly with 1,2, 3 or 4 
different trajectories. 
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Figure 6.11: Target reaching example. 
Desired and actual arm ending position along the x and y axes A) before learning 
and B) after learning. Three trials (3 seconds) are shown. The curve part of the 
trajectory shows the open-loop movement. The movements to reset the trials are 

not shown; this explains the abrupt vertical lines. 

 

 

Figure 6.12: Corrective torques applied by the cerebellum. 
Cerebellar torque contributions to target reaching experiments over the first 300 
trials. Cerebellar torque increases as the system learns A) at the elbow and B) at 

the shoulder. Each trial lasted one second. 

We also performed experiments where the dynamics of the arm was 
change either by a load of 500 g added to the end of the two-joint arm 
or by modifying the friction of the arm by inserting the end of the arm 
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into a sand pool (see Figure 6.13). The results of the cerebellum-driven 
improved trajectories are show in Figure 6.14. 

 

Figure 6.13: Arm in the sand-pool context. 
The arm’s end is introduced into a sand pool to increase the friction during the 
movements. Note that since the arm’s end displaces the sand on the pool in each 
movement trial, the friction is modified between trials. This makes the learning 

task more difficult. 
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Figure 6.14: Arm trayectory when learning in different contexts. 
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The cerebellum learns to compensate for the dynamics changes of the arm. A) A 
0,5 Kg was added at the end of the robotic arm. B) Friction was increased by 
inserting the end of the robotic arm into a sand pool. Notice how the robot 

movements meant to be along the x-axis are actually along the y-axis before 
learning. 

The evolution of the error as the object/context was changed is 
shown in Figure 6.15. The cerebellum network learned the new context 
every time it was changed. It also appeared to adapt more rapidly to the 
no-load condition over time, although a more detailed analysis is 
needed to confirm this. Note that the load, no-load condition was not 
explicitly encoded here, hence the system could not switch immediately 
to the right conditions without an adaptation period first. 

 

Figure 6.15: Temporal adaptation. 
Error evolution as the task was changed from manipulating a 0.5 kg load to 

manipulating no load. 

These experimental results show that the control system with the 
cerebellum model can learn to compensate for dynamics perturbations 
caused by different contexts: friction or load changes that significantly 
alter the robot arm inertial moments. We have shown how the spike-
time dependent plasticity (STDP) rule works as a temporal kernel filter 
relating the activity from the inferior olive (error dependent) with the 
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sensorimotor inputs received through the granule cells. This scheme is 
able to construct predictive dynamic corrections for fast reaching 
movements. A residual average distance error can be noticed even after 
the learning has stabilised. This error could be attributed to some 
system limitations but also to the fact that we are dealing with a real 
robot which responds differently over time. For instance, over trials, the 
robot's motors increase considerably their temperature. This prevents 
the cerebellar model from adapting completely to the robot response, 
unless a richer and more complete sensorimotor context were made 
available. However the goal of this work was not to focus on designing 
a high performance control scheme but rather to evaluate an adaptive 
and robust working hypothesis based on a specific physiologically-
relevant cerebellar network that runs and learns in real time. The 
obtained performance fulfils this requirement although deeper studies 
on complementary mechanisms will be studied in the future to evaluate 
how the control strategy can take full advantage of further biologically 
plausible features of the system. 

 

6.8 Discussion 
 

We have simulated a complete physiologically-relevant spiking 
cerebellar model in real time, and evaluated its potential role in 
generating predictive corrective actions towards accurate control in fast 
robotic reaching movements. 

Whereas with previous simulators many computing hours would 
have been required to simulate a spiking cerebellar model learning to 
correct trajectories, with the current simulator, learning takes place in 
less than a real hour to achieve acceptable performance levels allowing 
the real-time control of a robot. 

 This performance is achieved even with the physiologically realistic 
firing of the inferior olive restricted to less than 10 Hz. To the best of 
our knowledge, this is the first time that such performance is obtained 
in a complete action-perception loop using a real robot. This indeed 
suggests that one of the tasks of the inferior olive is to sample non-
deterministically the input signals it receives to provide over time a 
complete representation of that signal to plasticity mechanisms at the 
Purkinje cells. Moreover, the results show that little destructive 
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interference occurred in learning the same task in different 
sensorimotor contexts, namely different overall target trajectories. 

 The robot arm we have used for the experiments has two non-stiff 
joints controlled with low torque motors. In order to accurately control 
this platform it is necessary to build a predictive dynamics model of the 
arm. The cerebellum network essentially fulfils this purpose. 

 Moreover, we implemented the delays in the sensorimotor pathways 
to evaluate the predictive strategy tested in this work. We implemented 
a STDP kernel filter that correlates the activity from the inferior olive 
(encoding the error using a probabilistic model) with the sensorimotor 
activity received through the parallel fibers. The correlation is done at 
the parallel fibers to Purkinje cells synaptic connections. 

 The experimental results show how the cerebellum-based system is 
able to adapt dynamically to different contexts. Future work will test 
sensorimotor encoding strategies to learn multiple models and context 
switching mechanisms to choose optimal control action with minimal 
delay and relearning. 
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7 Discussion and conclusions 
 

We have presented an event-driven network simulation scheme 
based on pre-calculated neural characterization tables. The use of such 
tables offers flexibility in the design of cell models while enabling 
rapid simulations of large-scale networks. The main limitation of the 
technique arises from the size of the tables for more complex neuronal 
models.  

The aim of our method is to enable simulation of neural structures of 
reasonable size, based on cells whose characteristics cannot be 
described by simple analytical expressions. This is achieved by 
defining the neural dynamics using pre-calculated traces of their 
internal variables. 

The proposed scheme represents a simulation tool that is 
intermediate between the very detailed simulators, such as NEURON 
(Hines and Carnevale, 1997) or GENESIS (Bower and Beeman, 1998), 
and the event-driven simulation schemes based on simple analytically-
described cell dynamics (Delorme et al 1999, Delorme and Thorpe 
2003). The proposed scheme is able to capture cell dynamics from 
detailed simulators and accelerate the simulation of large-scale neural 
structures. The approach as implemented here allows the simulation of 
8•104 neurons with up to 6•107 connections in real time with an average 
firing rate of 10 Hz on a 1.8 GHz Pentium IV platform.  

It is difficult to make a precise performance comparison between our 
method and previous event-driven methods, since they are based on 
different neuron models. Nevertheless, we have evaluated different 
computational strategies to illustrate the potential of our approach. 

The method has been applied to simulations containing one-
compartment cell models with exponential synaptic conductances (with 
different time constants) approximating excitatory AMPA receptor-
mediated and GABAergic inhibitory synaptic inputs. The inclusion of 
new mechanisms, such as voltage-dependent channels is possible. 
However it would require the inclusion of new neural variables and 
thus new table dimensions. Although very complex models may 
eventually require lookup tables that exceed current memory capacities, 
we have shown how even a modest number of table dimensions can 



Discussion and conclusions - 89 - 
 

suffice to represent quite realistic neuronal models. We have also 
evaluated several strategies for compressing the tables in order to 
accommodate more complex models. Furthermore the proposed table-
based methodology has been used to simulate the Hodgkin & Huxley 
model (1952). 

The present event-driven scheme could be used for multi-
compartment neuron models, although each compartment imposes a 
requirement for additional (one to three) dimensions in the largest 
lookup table. There are two ways in which multi-compartment neurons 
may be partially or approximately represented in this scheme. After 
preliminary studies, using suitable sampling schemes in order to 
achieve reasonable accuracy with a restricted table size, we can manage 
lookup tables of reasonable accuracy with more than seven dimensions. 
Therefore we can add two extra dimensions to enable two-compartment 
simulations. Quite rich cellular behaviour could be supplied by this 
extension. More concretely, we plan the addition of a second electrical 
compartment containing an inhibitory conductance. This new 
compartment will represent the soma of a neuron, while the original 
compartment (containing both excitatory and inhibitory conductances) 
will represent the dendrites. The somatic voltage and inhibitory 
conductance require two additional dimensions in the lookup table. 
With this model, it would be possible to separate somatic and dendritic 
processing, as occurs in hippocampal and cortical pyramidal cells, and 
implement the differential functions of somatic and dendritic inhibition 
(Pouille and Scanziani, 2001; Pouille and Scanziani, 2004) (note that 
most neurons do not receive excitation to the soma). 

If individual dendrites can be active and have independent 
computational functions (this is currently an open question), it may be 
possible to approximate the dendrites and soma of a neuron as a kind of 
two-layer network (Poirazi et al, 2003), in which dendrites are actually 
represented in a manner similar to individual cells, with spikes that are 
routed to the soma (another cell) in the standard manner. 

We have embedded spike-driven synaptic plasticity mechanisms in 
the event-driven simulation scheme. For this purpose, we have 
implemented learning rules approximated by exponential terms that can 
be computed recursively using an intermediate variable. Short-term 
dynamics (Mattia & Del Guidice, 2000) are also easy to include in the 
simulations. They are considered important in the support of internal 
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stimulus representation (Amit, 1995; Amit & Brunel, 1997a; Amit & 
Brunel, 1997b) and learning. 

Finally, we have used our method to simulate biologically-relevant 
neural networks. When simulating population synchronization, we have 
observed how the obtained results are equivalent to those used with 
more complex neural models and slower simulation methods. We have 
also simulated a complete spiking cerebellar model which effectively 
learns to improve the trajectory of a robotic arm in real time and 
different contexts. 

In summary, we have implemented, optimized, and evaluated an 
event-driven network simulation scheme based upon prior 
characterization of all neuronal dynamics, allowing simulation of large 
networks to proceed extremely rapidly by replacing all function 
evaluations with table lookups. Although very complex neuronal 
models would require unreasonably large lookup tables, we have 
shown that careful optimization nevertheless permits quite rich cellular 
models to be used. 
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