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Abstract

Nearly all neuronal information processing andrmeuronal
communication in the brain involves action potdstiar spikes, which
drive the short-term synaptic dynamics of neurbus also their long-
term dynamics, via synaptic plasticity. In manyibrstructures, action
potential activity is considered to be sparse. Ep@rseness of activity
has been exploited to reduce the computationalafdatge-scale
network simulations, through the development oetewdriven™
simulation schemes. However, existing event-drisiemulations
schemes use extremely simplified neuronal modedse Hve design,
implement and evaluate critically an event-drivegoathm (EDLUT)
that uses pre-calculated lookup tables to chaiaeteynaptic and
neuronal dynamics. This approach enables the uswid complex
(and realistic) neuronal models or data in repriéasgithe neurons,
while retaining the advantage of high-speed sinutaiWe
demonstrate the method's application for neurontagang
exponential synaptic conductances, thereby implémgshunting
inhibition, a phenomenon that is critical to cedlutomputation. We
also introduce an improved two-stage event-queg@i#thm, which
allows the simulations to scale efficiently to Higloonnected networks
with arbitrary propagation delays. Finally, the ecte readily
accommodates implementation of synaptic plastmiéchanisms that
depend upon spike timing, enabling future simuteito explore issues
of long-term learning and adaptation in large-scavorks.
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1 Introduction

Most natural neurons communicate by means of iddadi spikes.
Information is encoded and transmitted in theskespiand nearly all
of the computation is driven by these events. Trtghides both short-
term computation (synaptic integration) and longrt@daptation
(synaptic plasticity). In many brain regions, spikiactivity is
considered to be sparse. This, coupled with thepcdational cost of
large-scale network simulations, has given risthéo‘event-driven”
simulation schemes. In these approaches, insteiéeratively
calculating all the neuron variables along the tdimeension, the
neuronal state is only updated when a new evertaved.

Various procedures have been proposed to updateetironal state
in this discontinuous way (Watts, 1994; Delormealeti999; Delorme
& Thorpe, 2003; Mattia and Del Giudice, 2000; Rewann, et al,
2003). In the most widespread family of methods,rteuron’s state
variable (membrane potential) is updated accortbragsimple
recurrence relation that can be described in clés®d. The relation is
applied upon reception of each spike and depenigsupon the
membrane potential following the previous spike, time elapsed, and
the nature of the input (strength, sign).

Vm,t = f (\/m,t—At lAtl'J) Eq ( 1.1 )

where \, is the membrane potentidl is elapsed time (since the last
spike) and J represents the effect of the inputi{@wory or inhibitory
weight).

This method can describe integrate-and-fire neuamiasis used, for
instance, in SpikeNET (Delorme et al, 1999, Delo&riehorpe, 2003).
Such algorithms can include both additive and rplidtative synapses
(i.e. synaptic conductances), as well as short-tarthlong-term
synaptic plasticity. However, the algorithms argtnieted to synaptic
mechanisms whose effects are instantaneous areitomal models
which can only spike immediately upon receivinguh hese
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conditions obviously restrict the complexity (reat) of the neuronal
and synaptic models that can be used.

Implementing more complex neuronal dynamics in edeiven
schemes is not straightforward. As discussed byidMand Del
Giudice (2000), incorporating more complex modelguires extending
the event-driven framework to handle predicted epithat can be
modified if intervening inputs are received; thehaus propose one
approach to this issue. However, in order to prestre benefits of
computational speed, it must, in addition, be gmesb update the
neuron state variable(s) discontinuously and atedipt when future
spikes would occur (in the absence of further ingekcept for the
simplest neuron models, these are non-trivial ¢atmns, and only
partial solutions to these problems exist. Maki®@03) proposed an
efficient Newton-Raphson approach to predictingshold crossings in
Spike-Response Model neurons. However, the metbhed dot help in
calculating the neuron's state variables discontisly, and has only
been applied to spike-response models involvingssoinexponentials
or trigonometric functions. As we shall show belaws sometimes
difficult to represent neuronal models effectivalythis form. A
standard optimisation in high-performance code iseplace costly
function evaluations with lookup tables of pre-cdd¢ed function
values. This is the approach that was adopted biifiRann et al
(2003) in order to simulate the effect of large f@ns of random
synaptic inputs. They replaced the on-line solutba partial
differential equation with a simple consultationagpre-calculated
table.

Motivated by the need to simulate a large netwdrkealistic’
neurons (explained below), we decided to carryidbkup table
approach to its logical extreme: to characterisaalron dynamics off-
line, enabling the event-driven simulation to pextesing only table
lookups, avoiding all function evaluations. We tetis method
EDLUT (for Event-Driven Lookup Table). As mentionby
Reutimann et al (2003), the lookup tables requioedhis approach
can become unmanageably large when the model crityplequires
more than a handful of state variables. Althoughhaxee found no way
to avoid this scaling issue, we have been ablgtionise the
calculation and storage of the table data suchohigé rich and
complex neuronal models can nevertheless be efédgtsimulated in
this way.
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The initial motivation for these simulations wakaye-scale real-
time model of the cerebellum. This structure cargajery large
numbers of granule cells, which are thought to tilg sparsely active.
An event-driven scheme would therefore offer aifigamt
performance benefit. However, an important featdirde cellular
computations of cerebellar granule cells is rembttebe shunting
inhibition (Mitchell & Silver, 2003), which requisenon-instantaneous
synaptic conductances. These cannot be readilgsepted in any of
the event-driven schemes based upon simple recgrretations. For
this reason we chose to implement the EDLUT methiade that non-
instantaneous conductances may be important ggneral just in the
cerebellum (Eckhorn et al, 1988; Eckhorn et al,)99

The axons of granule cells, the parallel fibremyérse large
numbers of Purkinje cells sequentially, giving fise continuum of
propagation delays. This spread of propagationyddias long been
hypothesised to underlie the precise timing abgitttributed to the
cerebellum (Braitenberg & Atwood, 1958). Large dgences and
arbitrary delays are features of many other bragions, and it has
been shown that propagation/synaptic delays atiearparameters in
network oscillations (Brunel & Hakim, 1999). Prews
implementations of event queues were not optimigetiandling large
synaptic divergences with arbitrary delays. MaftiBel Giudice
(2000) implemented distinct fixed-time event que(ies, one per
delay), which, though optimally quick, would becomsete
cumbersome to manage when large numbers of distatays are
required by the network topology. Reutimann e28l03) and Makino
(2003) used a single ordered event structure ichvail spikes are
considered independent. However, for neurons \aitipel synaptic
divergences, unnecessary operations are performédsostructure,
since the arrival order of spikes emitted by a gimeuron is known.
We introduce a two-stage event queue that explugsknowledge to
handle efficiently large synaptic divergences veithitrary delays.

We demonstrate our implementation of the EDLUT rodtfor
models of single-compartment neurons receiving egpbal synaptic
conductances (with different time constants foitexion and
inhibition). In particular, we describe how to aakte and optimize the
lookup tables, and the implementation of the tvamstevent queue.
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2 Event-driven simulation based
on lookup tables (EDLUT)

2.1 Introduction

Recent research projects are modelling neural m&sAmased on
specific brain areas. Realistic neural simulatoesraquired in order to
evaluate the proposed network models. Some of theskels (e.g.
related with robot control or image processing (Vaulen et al, 1998;
Philipona et al, 2004) are intended to interfacéhhe real world,
requiring real-time neural simulations. This kirfcegperiments
demands efficient software able to simulate larg@ral populations
with moderated computational power consumption.

Traditionally, neural simulations have been basediscrete time
step (synchronous) methods (Bower et al, 1998; et al, 2003).
In these simulations, the state variables of eaciian are updated
every time step, according to the current inputstae previous values
of these variables. The differential expressiorscdbing the neural
model dynamics are usually computed with numerrdalgration
methods such as Euler or Runge-Kutta. The precisidime numerical
integration of these variables depends on the $i®ye discretization.
Short time steps are required in order to achieeetable precision,
which means considerable computational power copiamby each
neuron. Thus, simulating large neural populatiothedequate
precision and detailed models using these metlsodstifeasible in
real-time.

One alternative to avoid this problem is the usevent-driven
simulators (also known as discrete-event simulatdfest natural
network communication is done by means of spikesqa potentials)
which are short and considerably sparse in time\exy frequent)
events. If the state evolution of a neuron betwbese spikes is
deterministic or the probability of all the targgtites is known, the
number of neural state updates could be reducedpadating the
entire computational load in the instants in whioh spikes are
produced or received by a neuron (Watts, 1994;iMattal, 2000).
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Mattia and Guidice (Mattia et al, 2000) proposedaent-driven
scheme that included dynamical synapses. Reutimalnextended
this approach to include neuron models with stanhdynamics.

Makino (Makino, 2003) developed an event-drivanigator which
uses efficient numerical methods to calculate #h@al states evolution
from one discrete computed step to the next on@eMoncretely, the
main contribution of this work is the developmeht efficient
strategy to calculate the delayed firing times tisds the linear
envelopes of the state variable of the neuron titjoa the simulated
time. Contrary to this approach, we avoid this claxgalculation by
off-line characterization of the firing behaviourtbe cell.

Recently, Reutimann et al (2003) proposed theotipee-calculated
lookup tables to speed up simulations to avoidim@humerical
calculations. We adopt this strategy in our eventesh simulator. In
this previous approach the precalculated tablessed to store
probability density distributions. In our approatte entire cell model
is computed off-line, and its behaviour is compileit
characterization tables. Since the cell model mmated off-line, we
are able to simulate models of different complesitjwith a constraint
on the number of parameters defining cell dynamics)

The main innovation with respect to previous samdpproaches
(Watts, 1994; Mattia et al, 2000), is the use @fralsterization tables to
describe the cell dynamics between input spikesriéxi, this fact
removes the need for many of the simplifying assionp necessary
when the neural models are computed following stngxpressions to
achieve high computational efficiency.

Another important aspect, that has been includeitie synaptic
temporal dynamics (i.e. the gradual injection/ectiom of charge). The
synaptic conductance evolution due to an inputes@kiot computed
as an instantaneous jump, but as a gradual fundtloa is important in
the study of neural population synchronization psses (Eckhorn et
al, 1988; Eckhorn et al, 1990). The inclusion ohp®ral dynamics
forces the implementation of a prediction and \atlwh strategy, since
the output spikes will not be coincident with theut events (variable
firing delay). This introduces some more complexityhe simulation
algorithm.
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2.2 Simulator architecture

The EDLUT simulation scheme is based on the strastshown in
Figure 2.1, simulation is initialised by definirgetnetwork and its
interconnections (including latency informationiyigg rise to the
Neuron list and Interconnection list structuresadidition, several
lookup tables which completely characterise theomal and synaptic
dynamics are calculated: i) the exponential deddlgesynaptic
conductances; ii) a table that can be used to grddind when the
next spike of a cell would be emitted, in the aloseof further input;
and iii) a table defining the membrane potentia))¥s a function of
the combination of state variables at a given pioitihe past (in our
simulations, this table gives,\as a function of the synaptic
conductances and the membrane potential, all atrtieeof the last
event, and the time elapsed since that last evéniijferent neuron
types are included in the network, they will requtineir own
characterization lookup tables with different paesens defining their
specific dynamics. Each neuron in the network stdsestate variables
at the time of the last event, as well as the winat event. If short or
long-term synaptic dynamics are to be modelleditiaé| state
variables are stored per neuron or per synapse.
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Figure 2.1: Main structures of the EDLUT simulator.

Input spikes are stored in an input queue and areegjuentially inserted into
the spike heap. The network definition process pragces aNeuron List and an
Interconnection List, which are consulted by the simulation engine. Eveé
processing is done by accessing the neuron charattation tables to retrieve
updated neuronal states and forecast spike firingrnes.

When the simulation runs, events (spikes) are edlasing the
event heap (and the interconnection list - seeveilo order to be
processed in chronological order. The responsadi eell to spikes it
receives is determined with reference to the lodkibes and any new
spikes generated are inserted into the event liedprnal input to the
network can be fed directly into the event heapo Types of events
are distinguishediring events, the times when a neuron emits a spike,
andpropagated events, the times when these spikes reach thgatta
neurons. In general, each firing event leads toynpaopagated events
through the synaptic connection tree. Because ymapdic and
neuronal dynamics allow the neurons to fire aft@uis have been
received, the firing events are only predictionse &rrival of new
events can modify these predictions. For this nedlse event handler
must check the validity of each firing event in tieap before it is
processed.
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2.3 Event data structure

Events (spikes) must be treated in chronologicd¢om order to
preserve the causality of the simulation. The ehandling algorithm
must therefore be capable of maintaining the tealpwder of spikes.
To fulfil this, a spike data structure that funcisoas an interface
between the source neuron events and target necaorise used.

If we need to deal with only a fixed number of reuconnection
delays, there is the possibility that a fixed dinoe (called a Synaptic
Matrix) is used for storing synaptic delays (Ma&idel Guidice,
2000).

In contrast, our simulations needed to suppoitrarly synaptic
delays. Complex data structures, such as “balaimeed”, can be used
for this purpose, offering good performance forhbsdrted and
random-order input streams. To prevent performalecgadation, they
optimize their structure after each insertion detien. However, this
rebalancing process adds more complexity and additi
computational overhead (Karlton et al, 1976). Itisarand deletion of
elements in these structures have a computatiasaiot O(log(N)),
where N is the number of events in the structure.

Another candidate data structure is the “skip I{§tigh, 1990), but
in this instance the cost of the worst case mayadd(log(N)) because
the insertion of an input stream can produce amalamiced structure.
Consequently, the search time for a new insertiag be longer than in
the balanced trees. This structure offers optiredigpmance in
searching specific elements. However, this is eeded in our
computation scheme as we only need to extracirgteefement, i.e.,
the next spike.

Finally, the “heap data structure” (priority que@a&ho et al, 1974;
Chowdhury & Kaykobad, 2001; Cormen et al, 1990¢fa stable
computational cost of O(log(N)) in inserting andati@g elements.
This is the best option as it does not require moeenory resources
than the stored data. This is because it can blemgmted as an array,
while the “balanced trees” and “skip lists” needer pointers or
additional memory resources.
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For all of these methods, the basic operation géritmg an event
costs roughly O(log(N)), where N is the number\drgs in the event
data structure. Clearly, the smaller the data siracthe less time such
insertions will take. We explain in the next sultigetthe two-stage
event handling process we have implemented in dodeinimize
event heap size while allowing arbitrary divergenaged latencies.
Compared to a method using a single event datetstay we would
expect the event insertions to be O(log(c)) quickérere c is the
average divergence (connectivity).

2.4 Two-stage spike handling

The algorithm efficiency of event-driven schemepatels on the
size of the event data structure, so performantidwioptimal under
conditions that limit load (low connectivity, lovetivity). However,
large synaptic divergences (with many differentgagation delays) are
an important feature of most brain regions. Previouplementations
of event-driven schemes have used a single eveeraggon per neuron
firing, (Reutimann et al, 2003; Makino, 2003). Haweg treating each
neuron firing as a single event leads the evera skaticture to become
larger than necessary. Since the order of spilkeahito target neurons
is always known (it depends on the connection de&iyned in
Interconnection list), we know which event has to be processed first.

We have designed an algorithm that exploits thm\Kadge, by
using a multi-stage spike handling process:

Each spike transmitted between two cells is reptegeinternally by
two events. The first one (thieing event) is marked with the time
instant when the source neuron fires the spike.sEigend one (the
propagated event) is marked with the time instant when the spike
reaches the target neuron. Most neurons have sgyrgetic
divergences. In these cases, when a neuron firesjmulation scheme
inserts into thevent heap only one event in each stage, instead of one
per output connection.

Theoutput connection list of each neuron (which indicates its target
cells) is sorted by propagation delay, see Figuze\®hen a source
neuron fires, only the event corresponding to thveekt-latency
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connection is inserted into the spike heap. Theneis linked to the
other output spikes of this source neuron. Whetitsiespike is
processed and removed from the heap, the next evémoutput
connection list is inserted into the spike heap, taking into acttie
connection delay. Since tlvetput connection list of each neuron is
sorted by latency, the next connection carryingikescan easily be
found. This process is repeated until the last ewvetine list is
processed. In this way, the system can handle aogeection
divergences efficiently.

NEURON LIST OUTPUT INTECONNECTION
LIST

Type | State | Outp.
conn.

Sour. | Targ. | Delay
0 2 0.5
0 3 0.6

-

~

¥
T

1 100 0.1

\/‘ 1 98 3

Figure 2.2: The ouput connection list.
The output connection list of each neuron is sortelly the connection delay,
so the next connection carrying a spike can easibe found.

In Figure 2.3 we compare the use of one and twgestaent
handling within our simulation scheme. Even thoaghnt heap
operations only represent part of the total comprdime, there is a
clear benefit to using the two-stage process. k@rgences of up to
10000 - typical for recurrent cortical networks better than 2-fold
improvement of total computation time is observed.
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Computational time consumed by an event

—— Two stage processing ]
0.8 One stage processing —
206 |
E |
- 04 [ T |
0.2 T i Y S
10° 10° 10* 0
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° % 4|| — Two stage processing
g £ 107 One stage processing . ]
[
cg O |
c
£g |
(] 0 - . - -
h 10° 10° g 5

10
number of output connections

Figure 2.3: Two-stage spike processing
Total computation time for processing an event (topand size of the event
heap (bottom) for one-stage (dashed plot) and twdagye (continuous plot) as
functions of synaptic divergence.

2.5 Simulation algorithm

The basic computation scheme consists of a progeksop, in each
iteration of which the next event (i.e., with tHe#gest latency) is taken
from the spike heap. This event is extracted froendpike heap
structure, the target neuron variables are updatdtie neuron list
structure), and, if the affected neurons genehamt new events are
inserted into the spike heap. Also, if the procésseent is a
propagated event, the next spike from the outpahection list of the
neuron is inserted into the heap. This computatareme is
summarized in Figure 2.4. It should be noted thahts are inserted
into the heap in correct temporal sequence, byt thiel spike with the
shortest latency is ever extracted.



Event-driven simulation based on lookup tables (BD)L -12 -

As our neuronal model allows delayed firing (aftgruts), the
algorithm must cope with the fact that predicteoh§j times may be
modified —or even deleted— by intervening postenputs.

Each neuron stores two time variables. One indicidue time the
neuron was last updated. This happens upon recepttieach input. As
described in Figure 2.4, when a neuron is affebedn event, the time
label of this neuron is updated tg,tif it is an input spike (propagated
event) or todnttrerrac If it is an output spikefiring event), to prevent it
from firing again during the refractory period. $h$ important
because when the characterization tables are ¢edgtk time label
indicates the time that has elapsed since theipakite. The other time
label maintains the up-to-date firing time prediati This is used to
check the validity of events extracted from thetarevent heap.

Events that are superseded by intervening inputse neuron
concerned are left in the event heap; they areadisd upon extraction.
Since if they are invalid, their firing-time-pretimn variable stored in
the neuron does not match the current simulatioe {ihis is checked
when the event is being processed).
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Wi | e tsi m<t end

{
Extract the event with a shortest latency in the
spi ke heap

If it is a firing event
If it is still a valid event and the neuron
is not under a refractory period
Update the neuron state (e.d. Vi Gexc
Oinn) to the post-firing state
Prevent this neuron fromfiring during
the refractory period by updating the
neuron time |label to tgutt efrac)
Predict if the source neuron will fire
again with the current neuron state
If the neuron will fire:
Insert a new firing event into
t he spi ke heap
Insert the propagated event with the
shortest latency (Il ooking at the output
connection list)
If it is a propagated event
Update the target neuron state (e.9. Vm Jexc
Oinn), before the event is conputed
Modi fy the conductances (gexc, Jinn) USinNg the
connection weight (Guci, Gnni) for the new
spi ke
Update the neuron tine label to tgny
Predict if the target neuron will fire
If it fires
Insert the firing event into the spike
heap with the predicted tine
Insert only the next propagated event with
the next shortest latency (looking at the
out put connection delay table)

Figure 2.4: Simulation algorithm.
This pseudo-code describes the simulation engine.pgrocesses all the events of
the spike heap in chronological order.

2.6 Synaptic plasticity

We have implemented Hebbian-like (Hebb, 1949) sgiteen
learning mechanisms (spike-timing-dependent plagtiSTDP). The
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implementation of such leaning rules is suitablegse the simulation
scheme is based on the time labels of the differeants. Spike-time-
dependent learning rules require comparison ofithes of pre-
synaptic spikes (propagated events) with post-gymapikes (firing
event). In principle, this requires the trace & pnocessed pre-synaptic
spikes during a time interval to be kept in orderthem to be
accessible if post-synaptic spikes occur. Diffedsfinite expressions
can be used for the learning rule (Gerstner & Krst2002). The weight
change function has been approximated with exp@aiexpressions;
Eq. ( 2.1) to accommodate the experimental resfilBs and Poo
(1998). The computation of this learning rule, byams of exponential
terms, facilitates its implementation in a recuesivay, avoiding the
need to keep track of previous spikes.

“bpyes -
a,.e " if s<0
f)=1 " s Eq.(2.1)
A post if s>0

Wheres represents the temporal delay between the posipsign
spike and the pre-synaptic ors= {**-t"®). The aim function (Bi &
Poo, 1998) can be calculated with Eq. ( 2.1 ) usiiegfollowing
parametersafe=0.935,bye= -0.075,850¢= -0.326,by04= -0.036). They
have been approximated using the Trust-region ndef@Gonn et al
2000).

The learning rules are applied each time a cel beteives and
fires a spike. Each time a spike from g¢ettaches a neurgnthe
connection weightw;) is changed according to Eq. ( 2.2 ), taking into
account theime since the last action potential (AP) in the post-
synaptic neuron. This time is represented byEq. (2.1).

Wi < Wy + A

where Eq.(2.2)
Aw; = w; F(s)

Other post-synaptic spikes are not taken into awicimu the sake of
simplicity, but they can be included if necessary.

Each time cel] fires a spike, the learning rule of Eq. (2.3) is
applied, taking into account all the pre-synappi&ss received in a
certain interval.
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Wi« Wy +Aw

where

Dy =" wy f(si)
k

In order to avoid keeping track of all the pre-gytmaspikes during
the learning window, we can rearrange the sum of R® ), since the
learning rule can be expressed in terms of expasenEq. ( 2.1 ).

Eq. (2.3)

Each time the neuron fires a spike, the learnihgisuapplied in
each input connection, taking into account the iprev/spikes received
through these inputs. Therefore, each weight cteageording to Eq. (
2.4).

N
Wi — W +z = W (1+ Zapreeb’”es‘] Eq. (2.4)
k=1
Wherek is iterated over all N pre-synaptic spikes frort ce
received by the neurgnrin a time window. This expression can be
rearranged as follows:

Wi — W + W (1+ Apre (ebpresl b"' ebpreSz (b-" ebprESN )))))

W o« W +W L+ a ebpres.l +ebpres.l+bpre32 + +ebpre31+---+bpreSN
ij ij ij pre

Eq.(2.5)

This expression; Eq. ( 2.5 ) can be calculatedreaoely
accumulating all the multiplicative terms in aneimhediate variabléy;,
as indicated in Eq. ( 2.6 ). s is the time diffeebetween the action
potential of celj and the last pre-synaptic spike received fromicell

Ay <1+ Ajebp'es Eq. (2.6)

The learning rule is applied recursively as indidain Eq. ( 2.7 ),
incorporating the last pre-synaptic spike. Noté tha termA;
accumulates the effect of all previous pre-synagjikes.

Wi — Wy +Aw
where Eq. (2.7)

S
Aw; V"Ilapre( . A‘i)
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3 Neuron models

3.1 Integrate-and-fire model with
synaptic conductances

In this model, neurons are single compartmentsviece
exponential excitatory and inhibitory synaptic coohnces with
different time constants. The basic electrical congnts of the neuron
model are shown in Figure 2.1. The neuron is desdrby the
following parameters: (1) membrane capacitangg,(£) the reversal
potentials of the synaptic conductances. &1d E, (3) the time
constants of the synaptic conductanegg.andtinn, and (4) the resting
conductance and its reversal potentiak: gnd Ees:, respectively. The
membrane time constant is definedas C./gest The neuron state
variables are the membrane potential)Mhe excitatory conductance
(dexo and the inhibitory conductance{f. The synaptic conductances
Oexc aNd @n depend on the inputs received from the excitahoy
inhibitory synapses, respectively.

Vm
Grest| dinh()] Fexc(t)
Cm
= Erest Einh Eexc
1 1 +
Y - -|-

Figure 3.1: Equivalent electrical circuit of a neuon.



Neuron models -17 -

Oexc @nd gy are the excitatory and inhibitory synaptic conducances, while g is
the resting conductance, which returns the membranpotential to its resting
state (Eesy) in the absence of input stimuli.

The decision was made to model synaptic conductaase
exponentials:

gexct - Gexc [e‘(t‘to)/fexc ’ t2'[0

Eq. (3.1)

)= 0 , 1<ty
Oinh \t) = Ginh &‘(t_to)/rinh , tZtO

where Gy and Gy, represent the peak individual synaptic
conductances and,gand g, represent the total synaptic conductance
of the neuron. This exponential representationngserous
advantages. Firstly, it is an effective represémmadf realistic synaptic
conductances. Thus, the improvement in accuracy fh@ next most
complex representation, a double-exponential fongiis hardly
worthwhile when considering the membrane potemiateform (See
Figure 3.2).
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T T T
g
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3
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o 1.5 . . .
=
® ‘- —— 2 exXp. approx.
g r I S R 1 exp. approx. |1
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—— 2 eXp. approx.
rrrrrrrr 1 exp. approx.
1 1

Mem. pot. (mV)
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(o))
a

“ | | 1
0 0.002 0.004 0.006 0.008 0.01 0.012
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Figure 3.2: Membrane-potential evolution (synaptianodel).

A post-synaptic neuron receives two consecutive inpspikes (top). The evolution
of the synaptic conductance is the middle plot. Thivo EPSPs caused by the two
input spikes are shown in the bottom plot. In the @lid line plots, the synaptic
conductance transient is represented by a double-panential expression (one
exponential for the rising phase, one for the decaghase). In the dashed line plot,
the synaptic conductance is approximated by a singdexponential expression.
The EPSPs produced with the different conductance aveforms are almost

identical.

Secondly, the exponential conductance requires @sipgle state
variable, because different synaptic inputs carpbirbe summed
recursively when updating the total conductance:

tl)remwp“(E)gexc_ previous(t) Eq. (3.2)

Jexc t) = Gexc,j + e_(tcu”e"ts"ike_
(Gexc,jis the weight of synapse j; a similar relationdsolor
inhibitory synapses). Most other representationslevcequire
additional state variables and/or storage of spike lists, so the
exponential representation is particularly effitisnterms of memory
usage.

In our simulations, the synaptic parameters haes lshosen to
represent excitatory AMPA-receptor-mediated coraluos and
inhibitory GABAergic conductances of cerebellarrgri cells (Silver
et al, 1996; Nusser et al, 1997; Tia et al, 199%9R& Hamann, 1998).
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These are summarized in Table 3.1. Note thatréifitesynaptic
connections in different cells might have quitdidi parameters:
extreme examples in the cerebellum include thelshgnfibre input to
Purkinje cells and the mossy fibre input to unipdliaush cell synapses.

Excitatory Max. Time Reversal
Synapse Conductance Constant potential (Eexo)
(Gexc may NS (Texd MS mV
0-7.5 0.5 0
Inhibitory Max. Time Reversal
Synapse Conductance Constant potential (Einn)
(Ginh_max) NS (Tinn) Ms mV
0-29.8 10 -80

Table 3.1: Synaptic characteristics (cerebellar gnaule cell).

The first column is an estimation of the maximum ck conductance (summed
over all synapses on the cell). The conductancesiodividual synapses (Gy.and
Ginn) are not included in this table as they depend otine connection strengths
and are therefore provided through the network defnition process and synaptic
plasticity.

The differential equation; Eq. ( 3.3 ) describes tembrane
potential evolution (foritty) in terms of the excitatory and inhibitory
conductances ag,tcombined with the resting conductance.

av, —(t= e
Cm7m = gexc(to)e (1) ree (Eexc _Vm)+ Ginh (tO)e (o)t (Einh _Vm)+Gr$t (Erﬂ _Vm)

ot Eq. (3.3)

where the conductancegdto) and gn(to) integrate all the
contributions received through individual synap&esch time a new
spike is received, the total excitatory and inluityitconductances are
updated using Eq. ( 3.2). Eq. ( 3.3 ) is amentblamerical
integration. In this way, we can calculatg, \ex Gnh and firing time ¢
for given time intervals after the previous inppike.t; is the time
when the membrane potential would reach the fitlmgshold (\,) in
the absence of further stimuli (if indeed the neunmuld fire).

3.1.1 Lookup-table calculation and optimization

The expressions given in the previous subsectieused to
generate the lookup tables that characterize egttype, with each
cell model requiring four tables:
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- Conductances:gexc(At) andginn(At) are one-dimensional tables
that contain the fractional conductance valuesiastions of the
time At elapsed since the previous spike.

- Firing time: Ti{(Vm0,9exc10:0inht0) IS @ three-dimensional table
representing the firing time prediction in the abseof further
stimuli.

- Membrane potential: Vi(Vm0,9exc.10,0inh.10,At) is a four-
dimensional table that stores the membrane potasia
function of the variables at the last time thatrleeron state was
updated and the elapsed tirite

Figure 3.3, Figure 3.4 and Figure 3.5 show somenpies of the
contents of these tables for a model of the celabglanule cell with
the following parameters: &2pF,tex=0.5ms1inn=10ms, @s=0.2nS,
Eex=0V, Enn=-80mV, Ees=-70mV and \4=-70mV.

100

90
80
70
60
50

40

Conductance (%)

30
20
10

At (ms)

Figure 3.3: Synaptic-conductance updating table.
f4(At); the percentage conductance remaining after a timgt) has elapsed since
the last spike was received. This is a lookup tabfer the normalised exponential
function. The time constant of the excitatory synagic conductance gy (shown
here) was 0.5 ms and forg(t), 10 ms. Since the curve exhibits no abrupt
changes in the time interval [0, 0.0375] seconds;lg 64 values were used.
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No fire ——
1.5
0.5
0.08

2

9exc tg (S) 6

Figure 3.4: Firing-time prediction table.

Firing time (t;) plotted against g,. and initial V.. t; decreases as the excitatory

conductance increases and asm\p approaches threshold. g, = 0.

A

f

/
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) 0.02 \ , e,

Jexctg (nS)

0

Figure 3.5: Membrane-potential updating table.

Membrane potential Vi(Vm o, Gexeto Gnn o, At) plotted as a function of (A) Vo
and 4t (Gexc = Gnh = 0); (B) Gexcro@nd At (Ginh = 0, Vinto = Erest = -70mV). The zoom
in the At axis of plot (b) highlights the fact that the membane potential change
after receiving a spike is not instantaneous.

The sizes of the lookup tables do not significaaffgct the
processing speed, assuming they reside in main nygiine., they are
too large for processor cache but small enougthe@atvapped to disk).
However, their size and structure obviously infleethe accuracy with
which the neural characteristic functions are repnéed. The
achievable table sizes (in particular the membpatential table) are
limited by memory resources. However, it is posstol optimize
storage requirements by adapting the way in whielr vvarious
dimensions are sampled. Such optimization can ke gffective,
because some of the table functions only changelyapver small
domains. We evaluate two strategies: multi-resotusampling and
logarithmic compression along certain axes. Diffiéagpproaches for
the membrane potential function¥ m 0, Gexc.to Gnh.tor At), the largest
table, with respect to the inhibitory conductangg, (o) are illustrated
in Figure 3.6. It can be seen that a logarithmmo@ang strategy in the
conductance dimensions is an effective choicenimroving the
accuracy of the representation of neural dynankiosthe following
simulations we have used logarithmic sampling endh, and gxc
dimensions of the )table (as illustrated in Figure 3.6 C).
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Vm (mV)

Vm (mV)

0 0.02 0.04 0.06 0.08 0.1

At (s)

0 0.02 0.04 0.06 0.08 0.1
At (s)
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Vm (mV)

0 0.02 0.04 0.06 0.08 0.1
At (s)

Figure 3.6: Membrane potential depending on g, coordinates.
Each panel shows 16 \ relaxations with different values of gy, . The sampled

conductance interval is g O [0,20]nS. A) Linear approach: [0,20]nS was

sampled with a constant inter-sample distance. B) Mti-resolution approach:

two intervals [0,0.35]nS and [0.4,20]nS with eightraces each were used. C)
Logarithmic approach: ginn o Was sampled logarithmically.

Storage requirements and calculation time are dat@ghby the
largest table, that for Y We shall show in the next chapter that a table
containing about a million data points (dimensi@es:At = 64, Gx: =
16, gnn = 16, Vin 1o = 64) gives reasonable accuracy. In order to
populate this table we solve numerically Eq. ()3.Bhis was done
using a Runge-Kutta method with Richardson extiapm and
adaptive step size control. On a 1.8GHz Pentiumptaen, calculation
of this table takes about 12s. The firing time eaivhd the same
dimensions for g Gnn, @and 1. AS Stated previously, the individual
conductance lookup tables had 64 elements each.

In principle these tables could also be based upon
electrophysiological recordings. Since one of timeshsions of the
tables is the time, the experimenter would onlydn®eset up the initial
values of g« gnnh and i, and then record the membrane potential
evolution following this initial condition. With austandard' table size,
the experimenter would need to measure neuronahialr for 64 x
16 X 16 (Gxe, Ginny Vi) triplets. If neural behaviour is recorded in
sweeps of 0.5 seconds (at least 10 membrane tingacas), only 136
minutes of recording would be required, which @sible (see below
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for ways to optimize these recordings). Characiion tables of
higher resolution would require longer recordinges, but such tables
could be built up by pooling/averaging recordingsri several cells.
Moreover, since the membrane potential functioesgaiite smooth,
interpolation techniques would allow the use of kenaeasier to
compile, tables.

In order to control the synaptic conductanceg.@nd @), it would
be necessary to use tthgamic clamp method (Prinz, Abbott, Marder,
2004). With this technique it is possible to repdacurately the
required excitatory and inhibitory conductancesvduld not be
feasible to control real synaptic conductancesjghqorior
determination of their properties would be useddsign the dynamic
clamp protocols. Dynamic clamp would most accuyatepresent
synaptic conductances in small, electrically-comp&tirons (such as
the cerebellar granule cells modelled here). Synaoise might distort
the recordings, in which case it could be blockedrmacologically.
Any deleterious effects of dialyasing the cell tha patch pipette could
be prevented by using tiperforated patch technique (Horn and Marty,
1988), which increases the lifetime of the recogdand ensures that
the neuron maintains its physiological charactesst

3.2 Integrate-and-fire model with electrical
coupling

3.2.1 Introduction

The electrical coupling or gap junction is a conimechbetween
certain cell-types that let different molecules &k, pass between
cells. Since it allows a direct current flow betweeeurons, it is usually
represented as a resistor which connects them.

It is believed that electrical coupling facilitatgnchronous firing of
interconnected cells (Chez, 1991; Kopell and Ermoert 2004; Kepler
et al, 1990; Traub et al, 2000; Draghun et al, )99%Bese synapses
characterize some extremely rapid response (thrdirght flow
current).
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The gap junctions are usually of very low conducéan
(approximately 100 pS according to Neyton and Treurin, 1985).
Because of that we neglect sub-threshold electcmapling. This
assumption directly allows the efficient simulatioinelectrical
synapses on an event-driven scheme. In this wagueon only affects
other cells connected by electrical synapses wheacaon potential is
fired. During the action potential (1.5 ms approaiely) we increase
the membrane potentials of the connected cellsgnaount that
depends on the coupling ratio (electrical connecieight).
Unidirectional electrical synapses have been dooweade(Furshpan,
1959) therefore we implement only unidirectionaligiing.
Bidirectional coupling can be simulated definingtunidirectional
connections.

T : T T T T T - T
" : — through excitatory synapse
i . -- through electrical coupling
En : ]
E :
= :
£ H
1 1 1 i 1 1 1
-0
=
£
= E REL a
== 65
=
o
=
70 1 1 1 1 1 1 1 =
'ED T T T T T T T
5
£
= E REL a
= 65
=
)
= i\
70 1 1 1 T T T
il 0.005 0.01 0.015 0.0z 0.025 003 0.035

Time ()

Figure 3.7: Effect produced by activity through eletrical coupling.

The upper plot show the input spikes. The middle @it illustrates the membrane
potential evolution in the absence of electrical epling. The bottom plot
illustrates the spikelets produced by the electrical coupling. In fact, sine the
membrane potential of the cell is closed to the fing threshold when it receives
the first spike through the electrical connectionjt makes the neuron fire
synchronously.

3.2.2 Event-driven implementation

In one possible implementation, when a neuron elglatrical
synapses fires a spike, two events are insertechetheap:
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- Starting event. Indicating the initial time of diecal coupling
effect. In fact, normally no delay is introducetti{augh it is
allowed by the simulation scheme) since this kihgymapses is
characterized by their rapid response. When tresiteg processed
the simulation kernel increments the membrane piadesf the
target cell by an amount that depends on the caoiomeaeight.

- Ending event. Indicating the termination of thectdeal coupling
on the target neurons. When this event is processesimulation
kernel decrements the membrane potential of tlyetareuron in
the amount indicated by the connection weight.

Usually an interval of 1.5ms is leaved betweenstiagting and
ending events. In this way, the effect of electrazaupling is a very fast
increment of the membrane potential of the targetrons during a
short time interval. As commented before, the eleatcoupling is
driven by action potentials since we are neglecsimgrthreshold
electrical coupling. This implementation has bemcalded because
the large amount of generated ending events neleel $tored on the
event reordering structure since the starting eseptocessed,
producing a computational bottleneck.

Another choice that has been tested is the inaglusi@ single event
that initiates a triangulapikelet on the target neuron membrane
potential. In order to implement this, the neunociudes a variable that
stores the instant at which the effect finishes taedcurrent amplitude
of thespikelet (defined by the strength of the coupling). Whea th
membrane potential is updated due to other evidrdse variables are
consulted to know if there is asgikelet still present in the neuron
membrane potential and to calculate its currentliémde (the
amplitude of the simulategbikelet decrements linearly. See Figure
3.7). The final membrane potential is calculatedimaglits current
value and the currespikelet amplitude. See neural-population-
synchronization section for a use of this model.

3.3 Cerebellar granule cell model
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3.3.1 Introduction

The cerebellum is a well structured neural systenfarmed by
three layers: granular, molecular and Purkinjedaybe granular layer
contains approximately 1bgranule cells (Kandel et al., 2000) that
represent in number of neurons about half of thie oéthe whole
human brain. The granule cells receive their inglutsugh the mossy
fibers. The axons of the granule cells are calk@lel fibers that
connect with different Purkinje cells. The grand&rer represents a
highly divergent structure (there are approximaféR/granule cells
per mossy fiber). Therefore they seem to be resplensf building a
sparse representation of the mossy fibers inpudsy 4969), Albus
(1971), Coenen et al. (2001), and D’Angelo et2006). But the
dynamical properties of the cell are still underdst Magistretti et al.
(2006), Armano et al. (2000), D'Angelo et al. (2p0%ieus et al.
(2006), Mapelli & D'Angelo (2007), Rossi et al. () and detailed
cell models are being built to evaluate the funwiaole, D'Angelo et
al. (2001) of these dynamics. The neuron modeldeasimulated with
different simulators (NEURON, Hines & Carnevale 4I® Genesis,
Bower & Beeman (1998), EDLUT, Ros et al. (2006))lifferent levels
of detail. However these simulations are not efitienough to deal
with large neural networks in real time. In thidsection we describe
how a granule-cell model which presents major ieatthat are
considered functionally relevant (bursting, subshied oscillations
and resonance) can be implemented using the evieendookup-
table-based simulator (EDLUT).

After building up cell models based on charactegZookup tables
we validate the model in two ways:

- Accuracy validation. The number of samples in edioension of
the table can be critical to the accuracy of tietdoased cell
approach. Therefore we simulate the cell model withassical
numerical calculation method (Euler method witheayshort time
step) and we compare the output spike train obdameesponse to
different input spike trains with the results ob&d using the
EDLUT simulator. The comparison of the output spileens
obtained by the two methods is done using the Viass&m
distance, van Rossum (2001).

- Functional validation. Key cell features are képtve want to
abstract a cell model that includes certain caltdees that are
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considered relevant we also need to validate Heatable-based
model is able to reproduce the cell features ustigty.

3.3.2 Model description

A detailed Hodgkin-Huxley model, Hodgkin & Huxle¥952), of a
granule cell defined in NEURON (with more than ifedential
equations describing its dynamics) was presentdd' Aggelo et al.
(2001) to reproduce in detail the cell dynamics evnaluate the
significant variables of the model. Based on thatlat, Bezzi et al.
(2004, Journal) presented a simple integrate aactéll model that
included dynamical properties of the granule célie model is based
on two main variables: the membrane potentig) @hd a gating
variable that models a slow Kurrent. A simple integrate and fire
neuron with a threshold mechanism to generate syfikith post-spike
membrane potential repolarization) was extendeddade interesting
neural features such as subthreshold oscillatRifiardson et al.
(2003), resonance, Izhikevich (2001) and burst8mith et al. (2000).

Cormplex cell Simplified |85 ~ Cormpiled
rmodel cell madel implementation
Cell recordings MNELRCH NELRCIMN of the simplified
Patch clamping =15 coupled -' 4 differential -‘ cell model
differential equations EOLUT
equations BLUTS
Single-cell Single-cell Small-scale Large-scale
characterization simulation network network
simulations simulations

Figure 3.8: Simplified-model obtaining process.

Figure 3.8 illustrates the process from cell betwawi
characterization based on neurophysiologic cetindings to network
simulations based on simplified compiled modelse $implified
model described in Bezzi et al. (2004, Journadleiined with the
following equations:

dv
CE:gK—dow(V _VK)n(V’t)+IActive+|Leak_|5yn Eq. (3.4)

00

dn_n-n
dt T

Eq. (3.5)

n
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Where V and C are the neuron membrane potentiatapalcitance
respectively while dcive and |eak are dynamic currents of the model
defined by the following expressions:

I pctive = Fk—ie V =Vi )M, (V) + 9oy V =Via)a, (V) Eq.(3.6)

I Leak — gLeakA(V _VLeakA) + gGABA—A(V _VGABA—A) Eq. (3.7)

Finally we have complemented the model to incluratedell
synapses as input-driven conductancgsrépresents the synaptic
mediated current through the excitatory and inbityiinput driven
conductances (g and g).

Iwn = (V _Vexc)gexc(t) + (V _Vinh)ginh (t) Eq- ( 3.8 )

dgexc - — gexc . dginh - — ginh
dt r,. dt T

exc

Eq. (3.9)

Excitatory and inhibitory conductancesgnd g.n) depend on the
value of the conductances when they were updatetash time and the
time passed since then. Each time a new input spileceived the
conductances are set to a specific value that disp@mthe synaptic
weight (Gnn Or Gexd. Synaptic conductance dynamics are modelled as
exponential functions:

()_ 0 , 1<ty
gexct - G @—(t—to)/rexc ’ tZtO

exc

Eqg. (3.10)

)= 0 , <ty
Oinn\t) = Ginh @‘(“to)/rinh , tZtO

Where ¢ is the input spike arrival time angl. andtin, are the temporal
constants of the synaptic conductances.
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3.3.3 Definition of model tables

The neuron behaviour has been compiled into sies$aln order to
use the event-driven simulator (EDLUT) the neurates(membrane
potential, synaptic conductances and other vaigadiieh as the gating
variable n) need to be defined as functions ohigron state at the
instant in which it was updated the last time. 8iii¢gs an event-driven
scheme the neuron state is updated each timertleateat is produced
(output spikes) or an input event is received (irgmikes).

The model has been compiled into the followindesb

- One table of five dimensions for theembrane potential
Vm=f(At, Gexc_a Gnh_o No, Vo).

- One table of five dimensions for tgating variable, n=f(At, Gexc o
ginh_Ol rb! VO)

- Two tables of two dimensions for thenductances gex=f(At,
gexc_(), gnn=F(At, gnh_O)-

- Two tables of 4 dimensions for thang prediction , t=f(Jexc, Gnh
No, Vo) and 1 end=f(Jexc: Gnh, Mo, Vo).

For each dimension we used a different number ropses
(indicated into parenthesed{(44), gx.d10), gnno(10), n(18) and
Vo(30). Therefore the larger tables require 237 106pbas
(approximately 9.04MB). The whole cell model reggid87106
samples (19.04MB). Once the characterizing tablesa@ampiled using
Runge-Kutta method (Cartwright & Piro, 1992), nuicalrcalculation
is not required during network simulations. Thenewvaluate the
accuracy of the model and also validate its ketufes (bursting,
rhythmic subthreshold oscillations and resonance).

3.3.4 Experimental results

Here we show some illustrative simulations in whticé cell
behaviour of the model described in NEURON is comagavith the
behaviour of the model compiled into tables andusted with the
EDLUT, Ros et al. (2006). The model can reprodyceptic
activation of a granule cell. Activation of 1 andyhapses makes
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subthreshold EPSPs which, in the immediately sebktiold region,
become slower due to activation of persistent Neect. Activation of

3 synapses elicits a spike, which occurs with natelay by activating
4 synapses (Figure 3.9 A). Inhibitory synapsesrednce the EPSP
and prevent firing (Figure 3.9 B). All these prajpes are typical of
granule cells (e.g. D'Angelo et al. (2005)). If fweus on evaluating the
dynamics of the cell model, we must consider: tstoity, resonance
and bursting behaviours.
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Figure 3.9: Synaptic activation of the modeled gramle cell.

A) Membrane potential evolution when receiving a sige through 1, 2, 3 or 4
excitatory synapses (conductance of each synapsery). B) Membrane potential
evolution when receiving a spike through an excitaty synapse or through an
excitatory synapse and an inhibitory synapse (condiance of the excitatory
synapse 1.5nS, conductance of inhibitory synapses@S and 1.0nS).

Since the simulation results generated with EDLBduire updating
the neuron state variables (retrieving their values the LUTS) only
in certain simulation instants (that is, the sintiolmon EDLUT jumps
in time from one instant to the next one driveririput and output
neural events), these instants are marked withotXthe plots.

3.3.4.1 Subthreshold Rhythmic Oscillations

The membrane potential evolution in the absendegtt input
activity from other cells shows a rhythmic osciigt behaviour (Figure
3.10). This oscillatory state makes the neuron rserssitive to input
activity depending on the phase of this activityhwegard to the phase
of the oscillation. Moreover, the coupling of thaseillations with the
spiking mechanisms constitutes the base of theneeme behaviour.
As shown in Figure 3.10 this feature has been cagtinto the
characterizing tables in which the EDLUT simula®based and
therefore both implementations (on NEURON and o BD)
produce equivalent subthreshold oscillatory behagio
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Figure 3.10: Subthreshold oscillations of the memlane potential.
A current of 4pA current is injected during 500ms.A) Simulation with
NEURON of the simplified model Bezzi et al. (2004ournal). B) Equivalent
simulation with EDLUT represented into a behaviourd lookup table.

In Figure 3.11 it is shown how with specific synapteights only
excitatory spikes received in certain periods poedoutput spikes.
This depends on the exact timing of these spikés mespect to the
subthreshold oscillations of the membrane pote(iti@refore stimulus
selection depending on the stimulus phase).

A .

Input
{syn: 0.7n3 0.5ms)
]
=
T
1

0 0.05 0.1 0.15 0z 0.25 0.3 0.35 0.4 0.45

W ()
o
=
T




Neuron models -35-

o

input
{syn: 0.7nS 0.5ms)

0 0z 0.4 0.6 n.a 1 12 1.4 16 18

input
(syn: 0.4nS 0.5ms)
=
o
=
T
I

| | | | I | | | |
a 0.z 0.4 0.6 0.8 1 12 1.4 16 18
Tirme ()

Figure 3.11: Simulation of subthreshold oscillatios with EDLUT.
Subthreshold oscillations occur in response to infspike trains (neuron state
variables are updated only at times marked with awss). A) Subthreshold
oscillations of the membrane potential produced binput spike trains. B)
Selection depending on the stimulus phase: The firthree doublets are received
in the same phase of the membrane-potential oscitlan (when the neuron is
more resistant to fire), the last three doublets a received in a phase in which
the neuron is more susceptible to fire.

3.3.4.2 Bursting behaviour

The bursting behaviour of the granule cells seenmay an
important role in reliably transmitting significastimuli. The effect of
short spike bursts (two or three spikes) into #rget Purkinje cells is
significantly higher than single spikes, Coenealef2007). In Figure
3.12 it is shown how the cell model is able to pr@ short bursts in
response to intense input activity. If a delayntsaduced between
excitation and inhibition spike trains, the secgpdke in the output
doublets is specifically prevented (Figure 3.13).
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Figure 3.12: Simulation of bursting behaviour withEDLUT.
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Figure 3.13: Spike suppression.

A) Simulation with EDLUT of doublets in response to100Hz spike trains
through 3 excitatory synapses of 0.5nS. B) The sewbspike of each output
doublet is suppressed due to the activation of thahibitory synapse
(conductance 5.0nS) with a spike train of 100Hz d&yed 1ms.

3.3.4.3 Resonance behaviour

In Figure 3.14 A it is shown how injecting oscitday currents (4-
6cos()pA) that match the resonance cell frequency (1(#agiuces
output spikes while injecting oscillatory input cemts at other
frequency (1Hz) does not produce any output spike.

Figure 3.14 B shows the maximum membrane-potefviia)
depolarization when injecting the same oscillatargrents as before.
Figure 3.14 shows the output-spike bursting fregyéf,) in response
to the same input current. In Figure 3.14 D ithewn that this effect
can be also observed when input spike trains efi@io frequency
(resonance) produce significantly higher respornBlestefore when the
input spike train tunes the inherent temporal dyicaraf the cell it
generates more active responses.
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Figure 3.14: Resonance behaviour.

A) Time-driven simulation of non-resonant frequencyfiltering. B) Time-driven
simulation showing the maximum depolarization of tie membrane potential
depending on the input-current frequency (action-ptential generation
mechanism disabled). C) Time-driven simulation shoimg the output bursting
frequency depending on the input-current frequencyD) Simulation with
EDLUT of input-burst selectivity depending on quiesent period.
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3.3.5 Accuracy validation

In this subsection we evaluate the accuracy ofitbdel captured on
lookup tables that are used in the EDLUT appro&ohthis purpose
we run some reference simulations using intensivearical
calculation (Euler method with a very short intdigna time constant;
0.5us) with the original differential equations of thienplified model
Bezzi et al. (2004, Journal). After this, we penfidihe same
simulations in the EDLUT. Finally we compare thepui spike trains
obtained by the two approaches calculating theR@ssum distance
(van Rossum, 2001) normalized by the number ofesp{s a measure
of the distance between two spike trains). In Wway we measure the
difference between the EDLUT output spike train Hr&lone obtained
with the original model (using intensive calculatimethod).

To make the accuracy evaluation more informatieeuse three
100Hz input spike trains (Poisson distribution WitB standard
deviation). The results are shown in Figure 3.1% Gurve shown in
Figure 3.15 A represents the Van Rossum distanite &time
constant of 10ms), between the reference outpkégmins obtained
using Euler integration method with a very sharndistep (0.ps) and
other spikes trains generated by simulations dattelanger time
steps. The EDLUT simulator, using the lookup talolescribed in
previous subsection, achieves 0.184 of accuraayn@a@ed Van
Rossum distance). Figure 3.15 B illustrates howotlitput spike train
calculated with Euler integration method highly eie@s on the time
step. EDLUT tables emulate the cell behaviour olet@iwith the Euler
calculation with a short time constant (@s}.
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A) Normalized van Rossum distance for the EDLUT ouiut train and a
simulation using Euler integration with different time steps. B) Output trains
produced by EDLUT and Euler simulations of 0.jus and 0.us.

3.3.6 Conclusions

Since EDLUT simulator performance (computation spe®es not
depend on the network size but on the network igtithis simulator
is specifically appropriate for neural structuraghvgparse coding. This
Is the case of the granular layer, Smith et al0(@0This computing
performance can be exploited to address massidesstabout how
different input patterns or connecting weights etftbe network
behaviour. For instance to study different levélgbibition provided
by the Golgi cells Forti et al. (2006), Philiponaenen (2004) or
which input codes (through the mossy fibers optenize information
transmission in this layer D'Angelo et al. (2005penen et al. (2007),
Bezzi et al. (2006), Bezzi et al. (2004, Meeting).

Cell dynamics are usually neglected in large-ssatilations.
However specific network simulations can be addréss evaluate the
impact of the cell temporal dynamics (oscillatdsyysting and
resonance) in the network behaviour, as thesedigabproperties may
represent also a computational key factor to tak@®account. At the
input stage of the cerebellum these propertiesdcoelinvolved in
learning as in network oscillations at theta fretgrye

3.4 Hodgkin and Huxley model

In order to further validate the simulation scheme,have also
compiled into tables the Hodgkin & Huxley model 529 and
evaluated the accuracy obtained with the propcsald-based
methodology. Table 3.2 shows the differential egpi@ns that define
the neural model. We have also included expres$mrs/naptic
conductances.

av,,
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at
= gila, a-n)- 5, )

g o 001V, +01 . 01N, +25
" exp(01V,, +1)-1 " " exd01lV,, +25)-1

P = 0125330V /80) ; By =XV /18) 1 = v +3)+1

;ay, = 007(exg 005V,

o= 3(T -63)/10

I ==OQexc [(Vm - Eexc)_ginh [(Vm - Einh)
dgexc - _ gexc . dginh - _ ginh

dt Toc dt Tinn

Table 3.2: Hodgkin and Huxley (1952) model equatian
The first expression describes the membrane poteafievolution. The differential
equations ofn, m and h govern the ionic currents. The last two expressianof the
table describe the input driven currents and synapt conductances. The
parameters are the following: G,=1pF/cn?, gc=1 mS/cnf, gy.=120 mS/cr,
9=0.3 mS/cm, Vyn,=-115 mV, k=12 mV, V,=-10.613 mV and T=6.3°C. The
parameters of the synaptic conductances are the foWing: E¢~=-65 mV, E,,=15
mV, Tex=0.5 ms andr;,,=10 ms.

Interfacing the explicit representation of the actpotential to the
event-handling architecture, which is based upealided
instantaneous action potentials, raises a cougiecbhical issues. The
first is the choice of the precise time point dgrthe action potential
that should correspond to the idealized (propagateent. This choice
Is arbitrary; we chose the peak of the action paiermhe second issue
arises from the interaction of this precise timepwith discretization
errors during updates close to the peak of themagotential. As
illustrated in Figure 3.16, a simple-minded implertation can cause
the duplication (or by an analogous mechanism, sions Figure 3.17)
of action potentials - a significant error. Thi;jideppen when an
update is triggered by an input arriving just aftex peak of the action
potential (and thus after the propagated evengcrgtization errors can
cause the prediction of the peak in the immediatieré, equivalent to a
very slight shift to the right of the action potehivaveform. Since we
have identified the propagated event with the paalyplicate action
potential would be emitted. The frequency of suchre depends upon
the discretization errors and thus the accuraag)sf the lookup
tables and upon the frequency of inputs near ttierapotential peaks.
These errors are likely to be quite rare, but, asiaw explain, they can
be prevented.
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Figure 3.16: Output-spike duplication due to discrézation errors.
Discretization errors could allow an update shortlyfollowing an action
potential peak to predict the peak of the action peential in the immediate future,
leading to the emission of an erroneous duplicatg@ie. (The errors have been
magnified for illustrative purposes.)
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Figure 3.17: Output-spike omission due to discret&tion errors.
Discretization errors could allow an update shortlybefore an action potential
peak to set the membrane potential to a value sligly after the peak of the action
potential, leading to the omission of a correct opiut spike.

We now describe one possible solution (which weshav
implemented) to this problem (see Figure 3.18).d&%ne a "firing
threshold" ¢;; in practice -10mV). This is quite distinct froimet
physiological threshold, which is more negativehé membrane
potential exceedd, we consider that an action potential will be
propagated under all conditions. We exploit thsuasgption by always
predicting a propagated event if the membrane pates greater than
0r after the update, even if the "present” is afterdction potential
peak (in this case emission is immediate). This@udare ensures that
no action potentials are omitted, leaving the peobbf duplicates.
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We also define a post-emission time window. Thigeas from the
time of emission (usually the action potential peakthe time the
membrane potential crosses another threshold wRag.+ This time,
ti ena IS Stored in the source neuron when the actidenpial is emitted.
Whenever new inputs are processed, any predictpdibevent times
are compared with thngand only those predicted aftegtqare
accepted. This procedure eliminates the probledupficate action
potentials.
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Figure 3.18: Prevention of erroneous spike omissiacand duplication.

Once the neuron exceed&, a propagated event is ensured. In this range, uptes
that cause the action potential peak to be skippethuse immediate emission.
This prevents action potential omission. Once thection potential is emitted

(usually at tf), the time tf_end is stored and no pedicted action potential
emissions before this time are accepted. This enggthat no spikes are
propagated more than once.
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In order to preserve the generality of this implatagon, we chose
to define these windows around the action potepgak by voltage
level crossings. In this way the implementation atlapt automatically
to changes of action potential waveform (possibbuiting from
parameter changes). This choice entailed the aarigin of an
additional large lookup table. Simpler implemeraas based upon
fixed time windows could avoid this requirement.wéver, the cost of
the extra table was easily borne.

We have compiled the model into the following table

- One table of seven dimensions for thembrane potential
szf(Atl %XC_O gnh_O, rbl rrb) Il.bl VO)'

- Three tables of seven dimensions forihdables driving ionic
Currents) n:f(At, %XC_O gnh_O; rb) rrbl rbl VO)I m:f(At, %XC_O gnh_O;
nO! rrbl rbl VO)! h:f(At’ %XC_O gnh_O, rb! rrbl rb! VO)

- Two tables of two dimensions for thenductances gex=f(At,
gexc_(), gnn=F(At, gnh_O)-

- Two tables of 6 dimensions for thang prediction , t=f(Jexc, Gnh

nO! rrbl rbl VO) and I_end:f(QEXC! gnh’ rb! rrbl rb! VO) . Wlth ef:-ooj-v
andef_end:'o.04v.

An accurate simulation of this model (as showniguFe 3.19)
requires approximately 6.15 Msamples (24.6 MB udifigyte floating
point data representation) for each seven-dimensigle. We use a
different number of samples for each dimensitii25), gy (6),
Oinh_o(6), No(8), My(8), hy(8) and \b(14). The table calculation and
compilation stage of this model requires approxatyad minutes on a
Pentium IV 1.8 Ghz.

3.4.1 Accuracy

Figure 3.19 shows an illustrative simulation of Hedgkin and
Huxley model using the table-based event-driverseh Note that the
simulation engine is able to accurately jump frome onarked instant
(bottom plot) to the next one (according to eitimng@ut or generated
events). The membrane potential evolution showherbottom plot
has been calculated using numerical method (comtimplot) and the
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marks (placed onto the continuous trace) have balenlated using the
event-driven approach. We have also included therg¢ed events
using numerical calculation (vertical continuouseh) and those
generated by the table-based event-driven appir@actical dashed
lines).

Gexc
(mSfcm?)
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Figure 3.19: Event-driven simulation of an H&H modé neuron.
Note that in order to facilitate the comparison ofthe plots with the ones of other
models, the variable (V) has been calculated usinije following expression V=(-
Vm-V0es)/1000 with Vies=65 mV.

In order to evaluate the model accuracy we havetaddhe same
methodology described in the accuracy-and-spedisewe have
simulated a single cell receiving an input spileetiusing numerical
calculation to obtain a reference output spikentr&hen, we have used
the proposed table-based event-driven approacartergte another
output spike train. The accuracy measurement eirmdd calculating
the van Rossum (2001) distance between the refei@mt the event-
driven output spike trains. We have used a randgmaherated test
input spike train of average rate 300 Hz with aadéad deviation of 0.7
and a uniform synaptic weight distribution in tinéerval [0.1,1]
mS/cnf. Using the table sizes mentioned above, the vasiRn
distance (with a time constant of 10 ms and thenatization
mentioned in the accuracy-and-speed section) bettheereference
spike train and that obtained with the proposechotis 0.057 (in the
same range as the Rossum distances obtained wimngracng other
simpler neural models, see Table 4.1). In facbrder to obtain a
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similar accuracy using Euler numerical calculatotime step shorter
than 65 ps is required.

4 Simulation accuracy and speed

To evaluate the performance of the implementatioterms of
accuracy and speed, and compare with other simalatethods, we
have used the basic integrate-and-fire neuron ntodebke the
corresponding measurements.

4.1 Simulation accuracy

An illustrative simulation is shown in Figure 4A single cell with
the characteristics of a cerebellar granule cekirges excitatory and
inhibitory spikes (upper plots). We can see howrtieenbrane
conductances change abruptly due to the presyrspkes. The
conductance tables emulate the excitatory AMPApteremediated
and the inhibitory GABAergic synaptic inputs (timhibitory inputs
have a longer time constant). The conductancei@atss(excitatory
and inhibitory) are also shown. The bottom plotvgsi@a comparison
between the event-driven simulation scheme, whpttates the
membrane potential at each input spike (these apdat marked with
an x) and the results of an iterative numericatwaltion (Euler method
with a time step of 0.5 us). This plot also inclsidee output spikes
produced when the membrane potential reachesrthg threshold.
The output spikes are not coincident with inputrgsgalthough this is
obscured by the time scale of the figure. It isam@nt to note that the
output spikes produced by the event-driven schameancident with
those of the Euler simulation (they superimposiébottom plot).
Each time a neuron receives an input spike, bettmémbrane
potential and the predicted firing time of the @t updated. This only
occurs very rarely, as the spacing of the eventisarevent-driven
simulation illustrates.
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Figure 4.1: Single-neuron simulation.

Excitatory and inhibitory spikes are indicated on tie upper plots. Excitatory and
inhibitory conductance transients are plotted in tle middle plots. The bottom
plot is a comparison between the neural model simaled with iterative
numerical calculation (continuous trace) and the esnt-driven scheme, in which
the membrane potential is only updated when an inpuspike is received (marked

with an "x").

It is difficult to estimate the appropriate sizetloé tables for a given
accuracy. One of the goals of this simulation sahento be able to
simulate accurately large populations of neuroggraducing faithfully
phenomena such as temporal coding and synchramzatocesses.
Therefore, we are interested in reproducing thetekaing of the
spikes emitted. In order to evaluate this, we reeeay to quantify the
difference between two spike trains. We used tmeR@ssum (2001)
distance between two spike trains. This is rel&dettie distance
introduced by Victor and Purpura (1996; 1997),ibwgasier to
calculate, with Eq. (4.1 ), and has a more nafingkiological
interpretation (van Rossum, 2001).

D*(f.q), = [ 1))~ o]t £, (41)
M
f(t)= z Ht -t )e_(t_ti)/tc Eq. (4.2)

In Eq. (4.2 )H is the Heaviside step functioH(x)=0 if x<0 and
H(xX)=1 if x>0) and M is the number of events in the spike trimrEq. (
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4.1), the distancP is calculated as the integration of the difference
between f and g, which are spike-driven functionts wxponential
terms, as indicated in Eq. ( 4.2 ). Note that #slting distance and,
indeed, its interpretation, depends upon the expiaielecay constant,
tcin EQ. (4.2 ), whose choice is arbitrary (van ws, 2001). We used
tc: = 10ms. The distance also depends upon the nushlerkes in the
trains. For this reason, we have chosen to repamidely-normalised
versionD(f,g),/M. Two trains differing only by the addition or
removal of a single spike have a normalized digtaid1/2M). Two
trains differing only by the relative displacemehbne spike byt

have a normalized distance of€dp(-|ot|/tc))/M.

In order to evaluate the accuracy of the EDLUT rodtand
evaluate the influence of table size, we computedheural model
using iterative calculations and the EDLUT methad then calculated
the distance between the output spike trains pesiby the two
methods.

Figure 4.2 illustrates how the accuracy of the &deiven approach
depends on the synaptic weights of each spike) example using a
Poisson input spike train. We plot as a functiosyfaptic weight the
normalized van Rossum distance between the oupike gains
calculated with the Euler method and obtained WiEH.UT. Spikes
with very low weights do not generate output evdeither in the
event-driven scheme or in the numerical computatiog). Conversely,
spikes with very large weights will always generatput events.
Therefore, the deviation between the event-drivehthe numerical
approach will be low in both these cases. Howewerge is an interval
of weights in which the errors are appreciableabse the membrane
potential spends more time near threshold and smalfs can cause
the neuron to fire or not to fire erroneously. Bngral, however, a
neuron will have a spread of synaptic weights anehiikely to show
such a pronounced error peak. Action potentiakmlity in sub-
threshold states is also seen in biological reogl{Stern et al, 1997),
therefore a certain level of error may be affordadtla network scale.
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Figure 4.2: Simulation error depending on synaptiaveights.
The accuracy of the event-driven simulation dependsn the weights of the
synapses, with maximal error (normalized van Rossurdistance) occurring over
a small interval of critical conductances. All synatic weights were equal.

The accuracy of the event-driven scheme dependseosampling
resolution of the different axes in the tables. Waged the resolution of
various parameters and quantified the normalizedR@ssum distance
of the spike trains produced, with respect to ¢beréct’ output train
obtained from an iterative solution. The axes ef\¥ and { table were
varied together, but the conductance lookup talbbre not modified.
Effective synaptic weights were drawn at randonmfian interval of
[0.5, 2] nS, thus covering the critical intervaddiitrated in Figure 4.2.
From Figure 4.3 we see that using a proposed litéiide dimensions,
the accuracy okt and gy are critical, but the accuracy of the event-
driven scheme becomes more stable when table diomsnsre above
1000 K samples. Therefore, we consider appropreselution values
are the following: 16 values fogg wand gnwo, 64 values font and 64
values for \;, 0. These dimensions will be used henceforth for this
neuron model.
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Figure 4.3: Simulation error depending on table sie.

The accuracy of the event-driven approach dependsidhe resolution of the
different dimensions, and therefore on the table ges. To evaluate the influence
of table size on accuracy, we ran the simulationsith different table sizes. For

this purpose, we chose an initial ) table of 1000 K samples (64 values fait, 16
values for gy 10 16 values for gnp and 64 values for \, ). We then halved the
size of individual dimensions, obtaining tables ofize 500 K samples and
250 K samples from the original table of 1000 K sapies. Finally, we doubled the
sampling density of individual dimensions to obtairthe largest tables of

2000 K samples. For each accuracy estimation, weadsan input train of 100

excitatory and 33 inhibitory spikes (which generate 26 output spikes when

simulated with iterative methods and high temporakesolution).
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Figure 4.4: Output spike trains for different table sizes.

The first two plots represent the excitatory and imibitory spikes. The E plots are
the output events obtained with numerical iterativemethods with different time
step resolutions (Euler method with 0.5 us and wit2 us). The other plots
represent the outputs generated with the event-dren scheme using different
table sizes: small (S) of 500 K elements, medium {Mf 1000 K elements and
large (L) of 2000 K elements. The subscripts indi¢a which dimension resolution
has been doubled (or halved) from the Medium (M) gie table.

lllustrative output spike trains for different tatdizes, as well as the
reference train, are shown in Figure 4.4. The spias obtained with
the iterative method and the event-driven schemeeny similar for
the large table with increased resolutiominA spurious spike
difference is observed in the other simulationsuldimg the resolution
in dimensions other thakt does not increase the accuracy significantly
in this particular simulation. We can also see hlogvspike train

obtained with the small tables is significantlyfeient.

4.2 Simulation speed

With EDLUT, as described, the simulation time isesgially
independent of the network size, depending prifigiga the rate of
events that need to be processed. In other wdrdsimulation time

depends on the network activity, as illustrate&igure 4.5.
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Figure 4.5: Computation time.

This figure represents the time taken to simulate $econd of network activity on
a Pentium IV (1.8 GHz) computer. Global activity rgoresents the total number of
spikes per second in the network. The network sizgid not have a significant
impact on the time required. The time was almost fiear with respect to network
activity. The horizontal grid represents the real-tme simulation limit, i.e. one
second of simulation requiring one second of compation time.

The present implementation allows, for instance,dimulation of
8-10 neurons in real time with an average firing rété@®Hz on a
1.8 GHz Pentium IV platform. This implies the cortgtion at a rate of
8-10 spikes/second as illustrated in Figure 4.5. Langmbers of
synaptic connections of single neurons are efftopjananaged by the
two-stage strategy described in Figure 2.4. The sizhe event queue
is affordable, even in simulations with neurondwgéveral thousands
of synapses each.

The number of synapses that the simulation engiaéle to handle
Is limited by memory resources. Each neuron requéfeBytes and
each synapse 52 Bytes. Therefore, a simulationldf &eurons
consumes about 46 Mbytes and a total of 62cbBnections consumes
about 3 Gbytes.



Simulation accuracy and speed - 56 -

In order to illustrate the potential of the EDLUethod we have
compared the performance of this computation scheitieother
methods (see Table 4.1). We have implemented #itemative
strategies:

- Time-driven iterative algorithm with a fixed timeep (TD-FTS). We
have used the Runge-Kutta method with a fixed stee.

- Time-driven iterative algorithm with variable tirseep (TD-VTS).
We use the Runge-Kutta method with step doublirjtha
Richardson extrapolation technique (Cartwright Bird, 1992). In
this case, the computational accuracy is contrdiiedefining the
“error tolerance”. In this scheme, the iteratieenputations are done
with time step sizes that depend on the smoothofebe function. If
a calculation leads to an error estimation aboeeetinor tolerance
the time step is reduced. On the other hand, iethar estimation is
below this threshold the time step is doubled. Bolseme is
expected to be fast when only smooth changes act¢he neuronal
states (between input spikes). Even though thisoaeis time
driven, its computation speed depends on themelitiin the sense
that the simulation passes quickly through timerwvels without
input activity and when an input spike is receitteel computation
approach reduces the time step to simulate actythtetransient
behaviour of the cell. A similar simulation schemi¢éh either global
or independent variable time-step integration heentadopted in
NEURON (Hines & Carnevale, 2001; Lytton and Hin2@05).

- Pseudo-analytical approximation (PAA) method. lis ttase we
have approximated the solution of the differerg@liations that
govern the cell. In this way we can adopt an edgivien scheme
similar to that proposed in Makino (2003) and Ma&i Del Giudice
(2000), in which the neuron behaviour is descrivétl analytical
expressions. As in Makino (2003), the membraneryiates
calculated with the analytical expression and ihied time is
calculated using an iterative method based on New@phson.
Since the differential equations defining the belhaviour of our
model have no analytical solution, we need to axiprate a four-
dimensional function. Even using advanced mathealaivols this
represents a hard task. The accuracy of this apprepends
significantly on how good this approximation is.drder to illustrate
the complexity of the complete cell behaviour itMgrth mentioning
that the expression used was composed of 15 expahimctions.
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As shown in Table 4.1, even this complex approxiomatioes not

provide great accuracy, but we have nevertheless iign order to
estimate the computation time of this event-driseheme.

- Event-driven based on Lookup tables (EDLUT). Thisurr
approach, in which the transient response of theand the firing
time of the predicted events are computed off-éind stored in
lookup tables. During the simulations each neurstak update is
performed by taking the appropriate value from ¢h&sgpporting

tables.
Normalized Comput.
van Rossum time (s)
distance
Time step
Time driven with (s)
fixed time step 56-10° 0.061 0.286
(TD-FTS) 43-10° 0.033 0.363
34-10° 0.017 0.462
Error
Time driven with tolerance
variable time step 68-10° 0.061 0.209
(TD-VTS) 18-10° 0.032 0.275
2:10° 0.017 0.440
Pseudo analytical
approximation 0.131 0.142
method (PAA)
Table size
Lookup-table- | (x10° samples)
based event-driven 1.05 0.061 0.0066
scheme (EDLUT) 6.29 0.032 0.0074
39.32 0.017 0.0085

Table 4.1: Performance evaluation of different methds.

Accuracy vs. computing time trade-off. We have focsed on the computation of a
single neuron with an input spike train composed 0100 seconds of excitatory

and inhibitory input spikes (average input rate 200Hz) and 100 seconds of only

excitatory input spikes (average input rate 10 Hz)Both spike trains had a

standard deviation of 0.2 in the input rate and ramlom weights (uniform
distribution) in the interval [0,0.8] nS for the excitatory inputs and [0,1] nS for
the inhibitory inputs.

In order to determine the accuracy of the resuléespbtained the

“correct” output spike train using a time driverheme with a very
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short time step. The accuracy of each method wasdhktimated by
calculating the van Rossum distance (van Rossufi)4fetween the
obtained result and “correct” spike train.

In all methods except the pseudo-analytical apgrodhe accuracy
vs. computation time trade-off is managed withreyle parameter
(time step in TD-FTS, error tolerance in TD-VTSddable size in
EDLUT). We have chosen three values for these peatensithat
facilitate the comparison between different methads, values that
lead to similar accuracy values. It is worth memitig that all methods
except the time-driven with fixed time step requareomputation time
that depends on the activity of the network.

Table 4.1 illustrates several points:

- The computing time using tables (EDLUT) of veryfelient sizes is
only slightly affected by the memory resource mamagnt units.

- The event-driven method based on analytical exjmesss more
than an order of magnitude slower than EDLUT (aasl greater
error). This is caused by the complexity of thelyieal expression
and the calculation of the firing time using themfiane potential
expression and applying the Newton-Raphson method.

-The EDLUT method is about 50 times faster thartithe-driven
schemes (with an input average activity of 105 Hz).

4.3 Discussion and conclusions

A method for efficiently simulating large scale listic neural
networks has been implemented. Since most infoomatansmission
in these networks is accomplished by the so caltgidn potentials,
events which are considerably sparse and welliloedin time, it has
been possible to dramatically reduce the computatimad through
the application of the event-driven simulation soks.

Some complex neuronal models require the neurallators to
calculate large expressions, in order to update¢eonal state
variables between these events. This requiremewssiiown these
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neural state updates, impeding the simulation of aetive large
neural populations in real-time. Moreover, neurohsome of these
complex models produce firings (action potentiatsne time after the
arrival of the presynaptic potentials. The caldolabf this delay
involves the computation of expressions that samegtiare difficult to
solve analytically. To deal with these problems, imulation method
makes use of precalculated lookup tables for Hat,update of the
neural variables and the prediction of the firiredagys, allowing
efficient simulation of large populations with diétd neural models.

The proposed method efficiently splits the compatet! load into
two different stages:

- Off-line neuronal model characterization. This pnéhary stage
requires a systematic numerical calculation ofcdémodel in
different conditions, to scan its dynamics. Thel gdahis stage is
to build up the neural characterization tablessTain be done by
means of a large numerical calculation and theofisietailed
neural simulators such as NEURON (Hines and Categ%897)
or GENESIS (Bower and Beeman, 1998). In princifties could
even be done by compiling electrophysiological rdows (as
described).

- On-line event-driven simulation. The computatiornhe simulation
process jumps from one event to the next, updatiagheuron
states according to pre-calculated neuron chaiaatem tables and
efficiently managing newly produced events.

Mattia & Del Giudice (2000) used a cell model whdgeamics are
defined by simple analytical expressions and Reartimet al (2003)
extended this approach by including stochastic oyaaThey avoided
numerical methods by using a pre-calculated lodkbfes. In this case,
provided that the reordering event structure ig képeasonable size
(in those approaches large divergent connectias tneay overload the
spike reordering structure), the computation spéedese schemes is
likely to be comparable to our approach, sinceetreduation of a
simple analytical expression and a lookup tablesatiation consume
very little time.
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5 Neural population
synchronization

5.1 Introduction

There are many examples of electrical coupling betwinhibitory
neurons in the nervous system (Gibson et al, 1989 et al, 2004;
Mann-Metzer and Yarom, 1999). Furthermore, eleatiwoupling has
been proven to be an effective synchronization raeisim (Kopell et
al, 2004; Kepler et al, 1990; Traub et al, 2000adhun et al, 1998).

Here we want to evaluate the simulation of eleatrcoupling
within an event-driven scheme. For this purposesiwvailate a neural
network of 100 cells receiving spikes at an averagg of 200 Hz with
a standard deviation of 0.1 through excitatory pges. These input
spikes encode a constant bias and a random comipdinencells are
interconnected with inhibitory synapses and eleatrcoupling with an
all-to-all topology. The network consists of 10Qurans with 100 input
excitatory synapses (one per cell), 10000 inhigisynapses and
10000 electrical connections. We have used neuhatsntend to
emulate cerebellar interneurons (Ros et al, 20@5hg the following
characterization parameters: membrane capacitape80pF; time
constants of the excitatory and inhibitory synapsgs0.5ms and
Tinhk=2MS; resting conductanceg.=0.2 nS; excitatory and inhibitory
reversal potentials&=0 V and E,,=-80 mV; resting potential &z -
70 mV; firing threshold W=-60 mV. This cell profile has been used to
extract the characterization tables through intenseerical calculation
using the SRM model (Gerstner et al, 2002) befoeeetent driven
simulation. The computing scheme processes evagithireal-time
(i.e. the computation time is much shorter thansihaulated time; 1
second of simulation takes about 0.4 seconds)eSinmumerical
calculation is required during the event-drivengismtion.

5.2 Results
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In Figure 5.1 we show the obtained synchronizatistograms
using inhibition and electrical coupling. Theseutesshow the key
phenomena obtained in detailed simulation (Kopadl Brmentrout,
2004) using a network of quadratic integrate-angl+fieurons (Latham
et al, 2000); when using electrical coupling anubitory synapses, the
synchronization was created quickly and multiplestérs of cells were
not been observed (see Figure 5.1 C).

This validates our electrical coupling approachthes kind of
simulations and proves event-driven simulation swhéo be an
efficient tool to study this kind of processes@apply them in neural
network running in real time.
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Figure 5.1: Neural-population synchronization histgrams.

A) Only electrical coupling of coefficient 0.02. BOnly inhibitory synapses

Ginn=1.65nS. C) Inhibitory synapses (,=1.65 nS) and electrical coupling
(coefficient of 0.02), there is no neuron firing aschronously almost since the

beginning. (The frequency is higher in A because #re is no inhibition).
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6 Cerebellum model simulation

6.1 Introduction

Although the cerebellum architecture has been stufdir more than
one hundred years (Ramén y Cajal et al., 1995;iGH$7), its
functional role is still an open topic. The ceréloel plays a major role
in coordinated and accurate movements (Schweigletofar, 1998a,b;
Ito, 2001; Spoelstra et al., 2000; Arbib et al.93.9Eskiizmirliler et al.,
2002). It is thought to be an essential computisgue for our daily
manipulation tasks. Its regular topology has iregbimany artificial
neural network models in the past decades (Keéhat., 1997,
Schweighofer et al., 1998a; Medina et al., 1999jHesmore, there are
many research groups modelling in detail its d@g\ngelo et al.,
1995b; Bezzi et al., 2004; Steuber et al., 2004y der to elucidate the
specific computations that take place at eachqgidhe cerebellum
architecture.

In the robotic field there have been great advaifcainly in
industrial applications). But most of the indudtri@bots use stiff joints
and high-gain close-loop control. They are ablpadorm accurate
trajectory-following adopting online close-loop @rcorrection
schemes. This strategy becomes possible due tute@anding
processing speed of current circuits that are @béalculate errors and
deliver feedback correction signals on a millisettime scale. On the
other hand, biological systems suffer from delaysensorimotor
pathways up to several hundreds of millisecondss firtakes it
impossible to apply online close-loop error cor@tistrategies
without having predictor modules able to abstraetkinematics and
dynamic models of the platform. This becomes evererdifficult
because biological systems are based on jointsuaitlble stiffness
(agonist and antagonist muscle actuation) and lawv-gontrol
schemes. This is important because the dynamic Inobtlee platform
(for instance an arm-hand system) is likely toigaificantly modified
when manipulating objects of different weights. fehare plenty of
challenges in robotics such as the developmentafrate low-gain
control schemes for robotic platforms of severagrdes of freedom
(DOF) and non-stiff joints. The movement of stdfrjts highly
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facilitates control since it reduces (or even aspitie necessity of
dynamic models of the whole system. On the othedhaccurate
control of stiff joints does not take advantagehef robot dynamics,
wasting energy and therefore reducing the autonointlye robot
platform.

In this section, we try to emulate the learningtetgy followed by
biological systems to control low-gain, non-stifbot platforms in the
presence of sensorimotor pathways with delays nflteds of
milliseconds. More concretely, we study how a cellem model can
abstract dynamics models of the robot platformrateoto facilitate
control by predicting and correcting errors in thetor space.

Fot this, we use a neural network modelling theloellum based on
integrate-and-fire spiking neurons with conductabased synapses.
The neuron characteristics are derived from detarledels of the
different cerebellar neurons.

The main plasticity in the cerebellar model isheg parallel fiber to
Purkinje cell connections whose spike-time-depenhpksticity
(STDP) is driven by the inferior olive (10) actiyjtwhich encodes an
error signal (using a novel probabilistic low-freqey model). We
demonstrate the model for robot control in a tapgeition reaching
task. We evaluate the model performance relatitke¢aynamic model
of the robot platform. Furthermore, we test howsistem learns in a
non-destructive way to reach different target poss (therefore
abstracting a global dynamic model). To test tistesy's ability to self-
adapt to different dynamical models, we presenilte# which the
dynamics of the robotic platform changes signiftba(friction and
load carrying).

6.2 Cerebellar model

We simulated the cerebellum spiking neural modéh &EDLUT
simulator (the event-driven simulator based on lgotables described
before; (Ros et al., 2006)) This software is patédy suited for a
cerebellar model in which sparse activity is expddCoenen et al.,
2001; Schweighofer et al., 2001) in the numerousores of the
granular layer (approximately Hyranule cells (Kandel et al., 2000))
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allowing real-time simulation of large-scale spifineural networks.
The EDLUT environment facilitates a direct integéo real robot
platforms.

Lasting functional changes at a synaptic levellwadriven by the
coincidence of multiple signals at a single syragite (Brown et al.,
1990). Long-term depression of the parallel filbgrut to cerebellar
Purkinje cells is a form of synaptic plasticity tltan last from hours to
days (Ito et al., 1982) and is thought to undeséieeral forms of
associative motor learning (Mauk et al., 1998).

In the cerebellar model that we present, long-téepression (LTD)
is induced by coincident activation of paralleleitd{PF) and climbing
fiber (CF) synaptic inputs (see the learning-rdelssection below).

Previous modelling of cerebellar involvement iarling movement
includes smooth pursuit eye movement learning dfriee et al.
(Kettner et al., 1997). In that work, the cerelratlaclei cells were not
implemented in the model, and analog units, ndisgineurons were
used. Schweighofer et al. (Schweighofer et al. 8299roposed a
model of the cerebellum focusing on the learninthefinverse
dynamics of a two-link six-muscle arm model. Paldiber-Purkinje
cell (PF-PC) LTD was biologically inspired, but tpterm potention
(LTP) was not and implemented as a weights norai#dis process.
Moreover, learning was performed over short traadly (less than 500
ms) and not continuously as in our contribution.

A few cerebellar models for eyelid conditioningzbaused spiking
neurons (e.g. (Medina et al., 1999; HofstAottealgt2002). Learning
was based on spikes coincidences between neumansoie used the
same probabilistic low-frequency firing of the inte@ olive in their
learning rules.

We simulated the cerebellum spiking neural moBelgcheny et
al., 2005; Arnold., 2001; Ros et al., 2006; Huanhgle 1998) with
approximately 2100 units: 112 mossy fibers (MFQ@Q@ranule cells
(GR) with their axons as parallel fibers (PF), Sdgboells (GC), 32
inferior olive (10) climbing fibers (CB), 32 purkja cells (PC) and 16
deep cerebellar nuclei (DCN) cells.

Mossy fibers are implemented as leaky integratefaa neurons.
Their input current was determined by a radial basnction (RBF) of
one of the sensory variables (target position tworgy) (Figure 6.1).



Cerebellum model simulation - 66 -

The RBF centers were evenly distributed acrossdinsory
dimensions, and their variance were chosen to erssuall responses
overlap from consecutive mossy fibers.

desired trajectory
in joint coordinate
B,.. 0

des des

cirrent

inpurt variable

[ha®  [ha®

Mossy fibers |||' 1l |||': 1l ||.'|' Il Population coding

Figure 6.1: Encoding of mossy fibers.
The analog to spikes transformation for driving themossy fibers uses
overlapping radial basis functions (RBF). The examie here makes reference to
encoded joint variables (see Figure 6.9).

The inferior olive (I0) neurons synapse onto thekPye cells and
contribute to direct the plasticity of PF-PC syregpslhese neurons,
however, fire at very low rates (less than 10 Majich appears
problematic to capture the high-frequency informatf the error
signal of the task being learned. This appareficdify may be solved
by their irregular firing (Kuroda et al., 2001; Sakighofer et al.,

2004), which we exploit by statistically samplifgetentire range of the
error signal over multiple trials. This irregulaiirig was implemented
using a Poisson model for spike generation.

Error correction is accomplished by changes iratttevity of
Purkinje cells that in turn influence the activitfythe deep cerebellar
nuclei cells (Purves et al., 2001), which aftervgadtranslated into
analog torque correction signals for the robot.
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6.3 Neuron models

To simulate the spiking neurons of this cerebetiadel, we use the
integrate-and-fire model with synaptic conductaraescribed in the
corresponding previous section. Modifying the neummdel parameter
(Crny Texo Tinhy Gress Eexe Einhy Erestand My,), different neuron types
(granule cell, Purkinje cell and Golgi cell) haweeb characterized
according to neurophysiological characterizatiass (D'Angelo et
al., 1995a,b; Maex et al., 1998; Barbour, 1993irfaslet al., 2003).
This neuron model is a modified version of the $glesponse-Model
(SRM) (Gerstner et al., 2002) widely used in tieréiture (Eckhorn et
al., 1990; Schoenauer et al., 2002; Shaefer €2@02) to study, for
example, temporal coding issues (Eckhorn et a04p0

In our model, the inferior olive cells transmigetlrror signal using
probabilistic low-rate spikes. Mossy fibers carepsorimotor signals
encoded into rate coded spike trains (activity 0-B@). And deep
cerebellar nuclei cells provide spike trains whacitode corrective
motor torque signals.

6.4 Cerebellum model topology

The model reproduced the cerebellum's differenttional and
topological features (Andersen et al., 1992; Kamdi@ll., 2000): sparse
coding at the parallel fibers (Coenen et al., 2@hweighofer et al.,
2001), converging topology into Purkinje cells, IBoje cell receiving
a dedicated "teaching climbing fiber" from the mde olive, inhibition
to the granule cells from collector Golgi cells;.€see Table 6.1 and
Figure 6.2)

Cell type Number Afferents from | Efferents to
5 Golgi
Granule 2000 4 mossy fibers
32 Purkinje
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Golgi 5 1000 granule | 2000 granule

1500 granule
Purkinje 32 4 DCN neurons
1 climbing fiber

Table 6.1: Connectivity table of the cerebellar céd.

teaching signal

-~
0000
Parallel fibers
Inferior-olive neurons
NG
Plastic ' Pyrkinje dells )
% , synapses
"/ L4 | .3 Connections:
es,d es,d ae,d ee,d .
1201 /A [120] 1201 /\ [20] Excitatory —
Mossy fibers Inhibitery —@ Deep cerebellar nuclei cells
desired trajectory Teaching —4 motor torque
in joint coordinates corrections

Figure 6.2: Cerebellum model diagram.

Inputs about the movement (desired arm state and tget information) are sent
(upward arrow) to the two layers of mossy fibers (MF): distance to the target
and its absolute position in the experimental field0targ) and cartesian (dtarg)
and coordinates and desired position®] and speeds @) of the shoulder (s) and
elbow (e) joints along the trajectory. This informdion is conveyed to the two
layers of granule cells (GR, 1000 neurons per laygrand to the deep cerebellar
nuclei cells (DCN). Purkinje cells (PC), DCN and iferior olive neurons (10O) are
divided into 4 functional arrays, guided from the @rebellar microzones
organisation, corresponding to the two commanded jats, in an agonist-
antagonist scheme. The 32 PC receive excitatory in{s from all the joints-
related GR (ascending axons that maintain the celis a state of excitability) and
from all parallel fibers PF with a probability ppc.pe= 0.8, and a learning
connection from IO in a one-to-one scheme. In turrthe DCN receive two
inhibitory connections from PC of the same microzoa. The teaching signal is
processed by the 10 cells (downward arrow top). Th®CN firing rates are
interpreted as predictive positive (+) and negativé-) torque corrections ) for
the shoulder (s) and (e) at the output of the cereium (downward arrow
bottom). The numbers in brackets indicate the numbeof cells per layer.
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6.5 Cerebellar Learning Rules

We have implemented learning at the parallel fiberthe Purkinje
Cells connections (indicated by a ellipse in Figbu@) (Ito, 2001). The
parallel fibers bring in the sensorimotor infornoatiand the Purkinje
cells drive the cerebellum output through the deeqebellar-nuclei
cells. The weight adaptation is driven by the atgtigenerated by the
inferior olive (10), which encodes an error sigimdab a low frequency
probabilistic spike train (from 0 to 10 Hz, averdgkelz) (Kuroda et al.,
2001; Schweighofer et al., 1998b).

We have modeled the inferior olive cell responsils a
probabilistic Poisson process: given the erroraig(t) and a random
numbem(t) between 0 and 1, the cell fired a spike if e(t) (t),
otherwise it remained silent (Boucheny et al., 300bthis way, on
one hand, a single spike reported accurately tim@dmation
regarding the instantaneous error; and on the oidued, the
probabilistic spike sampling of the error ensuiteat the whole error
region was accurately represented over trials thighcell firing at most
10 spikes per second. Hence, the error evolutiagdsrately sampled
even at low frequency. The histogram of the infeoidve output spikes
reproduces the error signal temporal trace; seer€ig.3 for an
example. This firing behavior is similar to the srabtained in
physiologial recordings (Kuroda et al., 2001).
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Trial

Mean firing rate

25 3

Figure 6.3: Inferior-olive probabilistic encoding o the error.
A) example of the error to be encoded. B) probab#itic firing of an inferior olive
cell to the error in “A" (see text). C) mean firing rate of the cell averaged over all
trials in “B". Notice that the maximum firing rate is close to 10 Hz. The smooth
curve shows the normalized input current to the célrelated to the error
amplitude. Notice how the cell never fires quite athe same moment relative to
the error, but encodes it nevertheless.

The long term potentiation (LTP) implemented atpheallel fiber
to Purkinje cell synapses was a non-associativgiwaicrease
triggered by each granule cell spilesy( ( 6.1 ). The long term
depression (LTD) was an associative weight decregggered by
spikes from the inferior oliveHg. ( 6.2 ). This model of LTD uses a
temporal kernel (Figure 6.4), which correlates esgke from the
inferior olive with the past activity of a granutell (Lev-Ram et al.,
2003) and shows a peak at 100 miliseconds (Kegtnai:, 1997;
Spoelstra et al., 2000; Raymond and Lisberger, 1998
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Figure 6.4: Spike Time Dependent Plasticity.

Kernel used for granule cell (GR) and Purkinje cell(PC) synaptic long-term
depression, corresponding to the solution of a sewd order differential system.
The kernel is convolved with the spike train of theafferent PF (all spikes emitted
for t < 0). This provides a measure of past PF adfity setting the eligibility of the
synapse to depression when the inferior olive (IQ)euron afferent to the PC
emits a spike (t = 0).

LTP: Aaw(t,) = ad(t,) Eq. (6.1)
LTD: 0, AW(t,), = =Kt —t,0 )0 (t)et Eq. (6.2)

The network maximizes learning (LTD) at synapttesin which
the input parallel fiber delayed activity is highdgrrelated with the
error signal from the inferior olive. Hence, thisrkel produces a
predictive corrective output in the network thaljpisethe control task in
the presence of significance transmission delays.

The teaching signal relies on the motor error, rigitihe
discrepancy between the desired state of the jairtisne t and the
actual one. The error for each joint, respectieglynd g, is computed
as the sum of the position and velocity errorsghvtsd by coefficients
Kp =10 and i = 23 (same for each joint). The signals are delaye
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order to align them in time, as the desired comnarione t is applied
at time t +5; and the joint state at time tt is sensed by the system at
time t +3; + 6,. Hence, the error signal for joint i at time gigen by:
&(t) = Kp(0i dedt- 61~ 32)-0i(t- 62)) + Ky(' i dedt- 61-62)-* 0i(t-52)).

Physiologically, the time-matching of the desiestl actual joint
states can be understood by the fact that thectamjeerror would be
detected at the level of the spinal cord, througirect drive from the
gamma motoneurons to the spinal cord (Contrerasd\étdal. (1997);
Spoelstra et al. (2000)).

The error signal e is used to compute the valubefnput current
to each 10 cell. Smoothing is performed using ansigl, and inhibition
of 10 cells by DCN neurons is taken into accourttwm a formal
scheme. The positive part of the error signal dantji, [g]" is related to
an error in the corresponding agonist muscle, hadegative part
to an error in the antagonist muscle. If we dendigthe corrective
torque command computed by the cerebellum for agomiscle i at
time t-51-8,, then the input current;lto 10 cells within the microzone
i" is given by:

| =015+ 08

If [ei] >0 then 1+ exp108 4 4

i,cmax

+

If ([e|]->0 & T+iic>0.2'|:i‘cma)) then |'+ = O

Else | =015

The three equations above correspond to the case thike
corresponding cerebellar output undershoots, ovetshor equals the
output required for adapted motor correction, respely. The second
equation is the one taking into account formallyND{O© inhibition and
can interpreted as follows: if a non-negligiblereation was output to
agonist muscle i (DCN neurons output) whereas tbeement required
a positive correction for the antagonist muscleofesignal), then the
unwilled correction should be reduced (inhibitidd®© by DCN
neurons depending on the opposite error signaf.€ffor currents are
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normalized by gnax= 1000 and & ,.x= 600 for the shoulder and the
elbow, respectively.

o 1 T

T
[er>0 [B17>0 _ euensasescest
()
l...
L]
08 o .
L]
L]
L[]
L]
06 ° .
L]
L]
[ ]
L]
L)
04 o .
]
L]
L]
L
..
(]
02 To <02T, ° .....,.- i
T\,C+ >0'2'T‘vcmax+
0
1 1

S/Smax

Figure 6.5: Input current to inferior olivary cells.
Each olivary cell is related to the agonist muscleand its firing is dependent on
the error signal for this muscle (see text). Thisaflects the influence of the deep
cerebellar nuclei feedback on the inferior olive tgether with an effector arm
system made of agonist and antagonist muscle pairBhe left side of the vertical
line is for an error on the antagonist muscle, wharas the right side is for the
agonist muscle. The rule states that for an errormthe antagonist muscle (left
part), if the torque 1*; ¢ > 0.27; cmax then the 10 current 1"; = 0 (bottom line),
otherwise I'; = 0.15 (top line).

6.6 Robot Platform

The robotic platform is a two-DOF arm (Figure 6.6 Bhe two
joints were not stiff (compliant) and the motorgpkgd low forces. The
platform allowed continuous measurements of théipasof each
joint. A pen or a weight could be attached to th's ending to change
its dynamics.
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Figure 6.6: Experimental robot platform.

A) Representation of the arm in simulation. Each whe point represents a target
position (0-7) along a circle. B) Two degrees ofdedom (DOF) robotic arm used
in the experiments. The motors have no gears andéhefore are non-stiff low
torque motors with nonlinearities difficult to control.

The control system was simulated on computer. Tieveethe
computer from interface computation and permit-teaé
communication with the robot, an FPGA-based boardained
position acquisition modules and motor-driver coltér circuits. The
controller modules translated the motor-torque camas from the
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computer into continuous signals using pulse-widtdulation
(PWM). The PWM signal was supplied to the motoralmurrent-
driver circuit (see Figure 6.7).

reconfigurable
motor torque  circuit (FPGA)
f .

=0 spike = commands il
B . = R—— |
Ot il z joint angular [ ENEE

| | i | | position
== D — +
serial
TPC/HP .
cerebellar model cerebellum-robot I(rggrzfg;l)e
simulation interface T
motor position
force J [ variation
(PWM) (pulses)
shoulder
i motor and sensor
eloow interface

Figure 6.7: Complete hardware system.

EDLUT simulates the cerebellum on a PC which communpates through a
TCP/IP connection with the robot-interface softwaremodule in which does the
rest of the processing (see Figure 6.9). In turnhé PC where the robot-interface

module is run, is connected with an FPGA board whit generates the signals
applied to the motors and transforms the position-snsor signals into coordinate
values. The FPGA board is connected to a custom-madnterface board which
drives the motors and adapts signal voltage levels.

The software architecture is divided into two mesg/EDLUT and
the robot-interface module (see Figure 6.8). Tmesdules can be run
on the same computer or each one on one compdtisrallows us to
share the computation load. In this experiment these run on the
same computer.
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Figure 6.8: Software architecture.
Both modules interchange spike packets each millisend through a TCP/IP
socket.

6.7 Experimental Results

The spiking neurons of the cerebellar network areigted using
the table-based event-driven simulation scheme (EDland the
plasticity for this model has also been develogeallbw an efficient
calculation which permits online real-time simubatiwith learning.

The control system was first tested in simulatiadhen run on the
experimental robotic setup (Figure 6.6). Startirggf a central
position, the robotic arm performs straight moveta¢o reach one of
the different targets equally set on a circle @adf 20 cm). The
movements were performed at high speed (T = 0.&nskscfor each
complete movement) to check the ability of the bellem to abstract
the robot platforms dynamics.

To interact in real-time, the robot platform comruated with the
EDLUT simulator every millisecond. At every timeptthe sensory
data (robot joints position) was translated intikerains transmitted
through the mossy fibers. The cerebellar outpltespiains were
translated into torque correction signals (outpdlithe deep-cerebellar-
nuclei cells) and the error signal was transforiméal a probabilistic
low frequency spike train (inferior olive cell pratilistic model).
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The simulations were run on a Pentium IV 2.8 GHzere were
2100 neurons in the network for approximately 50 8@naptic
connections. During one second of simulation, greloellar network
received an average of 395 spikes, delivered 4@auospikes, and
processed 935 801 events. Under these conditiersrtulator ran in
real-time the full network and the input-outputiséormations.

Considering the duration of motor execution (T.5 §) relative to
the time delays in corticospinal loops (up to 3(),rwe made the
assumption that each reaching movement was pertbimepen-loop
(no high-level motor correction were applied whigaching the target).
Corrective commands to compensate for dynamic geations were
computed only by the cerebellar model.

A movement was separated in two phases:

- Open-loop movement phase: A movement lastege E 500 ms.
The torque command applied to each articulatioas e sum of
the cerebellar correction; () and the'l' torque ¢), computed by a
basic inverse dynamics model according to the éegdimematic
trajectory (Figure 6.9). These two commands weng teethe limbs
with a delay ob; = 50 ms.

- Post-movement phase: It was set to a durationgf30.2 s. Its
goal was to stop the movement of the arm, indepahdef its
position relative to the target. The torque appt@dach joint
corresponds to the non delayed output of a devieatontroller
with a null-desired velocityt; = Kystofi With Kysiog=10. The lack of
delay in such a command in a human arm control icadebe
explained by a different motor strategy, consisforgexample in a
high level co-contraction command of the antagomisscles
controlling an articulation.

The architecture of the model for the generatioacniurate fast arm
reaching movements is illustrated in Figure 6.9mikimum jerk model
(Flash et al., 1985) was used to compute the adksir®oth trajectory
of the arm end-point towards the target at,(Oy). The desired
trajectory was expressed in Cartesian coordinatégransformed into
joint coordinates by the inverse kinematics modiitesolve the
redundancy problem in the coordinates transformatlte robotic arm
position was set to always be in a biological plalesposture, e.g that
the angle between the two links of the limb werestoain positive.
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Figure 6.9: Diagram of the arm-movement control sytem.
The cerebellum acts as a predictive corrective model in the control loop. A
desired smooth trajectory toward the target was comuted in Cartesian

coordinates and transformed into joint coordinatesThese desired arm states
were used at each time step to compute a crude targ command and to update

the predictive corrective command of cerebellum. Ta cerebellum command
included information about the context of the moverant. The two torques, crude
and corrective torques, were summed to control tharm movement with a delay
of 8, = 50 ms. In turn, the error of the resulting trajectory was sensed at the level
of the limb and sent back to the system with a dejaof 6, = 50 ms. This error was
transformed to compute the cerebellum training sigal by inferior olive neurons.

During the open-loop period of the movement, thigue commands
sent to the joints were the sum of the output ofuae inverse dynamic
controller and of the anticipative corrective ceslédr output. These
torques were sent to the limb with a time délay 50 ms.

The error in the execution of movement was compatete level
of the arm, and sent back to the system with aydsfla, = 50 ms. It
was mainly used to determine the teaching signaveyged by the
inferior olive to the cerebellum to produce antatipe motor
corrections. The error signal was composed of gulan position error
and an angular velocity error for each articulation

Finally, the cerebellar neural network received delayed desired
trajectory and movement context, and its outpuii@pated to the
construction of the teaching signal with a delagf 100 ms.
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The inverse dynamics module was based on simpéssamptions,
such as mass homogeneity along the limbs anddmni¢tictor to
compensate roughly for friction torques that redche Ncm for the
shoulder motor and 3 Ncm for the elbow. Other sesiaf dynamical
perturbations, such as the forces exerted by theswain the arm, were
negligible compared to friction.

After defining an acceptable crude controller,weefied the
repeatability of the movements and therefore ofetiners of the crude
controller. Indeed, the role of the cerebellum weakearn the
anticipative corrections required across repeatals of the same task.
If the dynamics perturbations moving the arm todbsired paths
varied too much across different trials under tme context
(manipulating the same object) then no improvemenidd have been
expected for the proposed control/correction scheme

The model learned effectively and concurrentlyedént target
trajectories (Figure 6.10). An example shows theentent in x-y
coordinates before and after learning (Figure 6.Thg cerebellum
corrections build up over trials to compensateliermovement errors
(Figure 6.12).
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Figure 6.10: Target reaching experiments.

A) Trajectory followed by the arm's ending. B) Average distance error computed
over all trajectories when learning 1, 2, 3 or 4 dferent trajectories. C) Distance
error of the target No. 6 trajectory when learnt canjointly with 1,2, 3 or 4
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Figure 6.11: Target reaching example.
Desired and actual arm ending position along the and y axes A) before learning
and B) after learning. Three trials (3 seconds) arshown. The curve part of the
trajectory shows the open-loop movement. The movemss to reset the trials are
not shown; this explains the abrupt vertical lines.
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Figure 6.12: Corrective torques applied by the cetaellum.
Cerebellar torque contributions to target reachingexperiments over the first 300
trials. Cerebellar torque increases as the systeredrns A) at the elbow and B) at
the shoulder. Each trial lasted one second.

We also performed experiments where the dynamitsechrm was
change either by a load of 500 g added to the étitedwo-joint arm
or by modifying the friction of the arm by inseithe end of the arm
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into a sand pool (see Figure 6.13). The resulte@terebellum-driven
improved trajectories are show in Figure 6.14.

Figure 6.13: Arm in the sand-pool context.
The arm’s end is introduced into a sand pool to inease the friction during the
movements. Note that since the arm’s end displacése sand on the pool in each
movement trial, the friction is modified between tials. This makes the learning
task more difficult.
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The cerebellum learns to compensate for the dynansachanges of the arm. A) A
0,5 Kg was added at the end of the robotic arm. Bjriction was increased by
inserting the end of the robotic arm into a sand pol. Notice how the robot
movements meant to be along the x-axis are actualong the y-axis before

learning.

The evolution of the error as the object/contexs wlaanged is
shown in Figure 6.15. The cerebellum network lediihe new context
every time it was changed. It also appeared totadape rapidly to the
no-load condition over time, although a more dethdnalysis is
needed to confirm this. Note that the load, no-loaadition was not
explicitly encoded here, hence the system couldwith immediately
to the right conditions without an adaptation perfiost.
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Figure 6.15: Temporal adaptation.
Error evolution as the task was changed from maniplating a 0.5 kg load to
manipulating no load.

These experimental results show that the contsiksy with the
cerebellum model can learn to compensate for dyceperturbations
caused by different contexts: friction or load apasthat significantly
alter the robot arm inertial moments. We have shbaw the spike-
time dependent plasticity (STDP) rule works asnapteral kernel filter
relating the activity from the inferior olive (errdependent) with the
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sensorimotor inputs received through the granuls.CEhis scheme is
able to construct predictive dynamic correctionsfést reaching
movements. A residual average distance error canotieed even after
the learning has stabilised. This error could bébated to some
system limitations but also to the fact that wedealing with a real
robot which responds differently over time. Fortamee, over trials, the
robot's motors increase considerably their tempegafl his prevents
the cerebellar model from adapting completely ortbbot response,
unless a richer and more complete sensorimotoegbntere made
available. However the goal of this work was notacus on designing
a high performance control scheme but rather ttuat@an adaptive
and robust working hypothesis based on a spedifysiplogically-
relevant cerebellar network that runs and learnmsahtime. The
obtained performance fulfils this requirement alifjlo deeper studies
on complementary mechanisms will be studied irfulére to evaluate
how the control strategy can take full advantagidher biologically
plausible features of the system.

6.8 Discussion

We have simulated a complete physiologically-ret¢\spiking
cerebellar model in real time, and evaluated itemtal role in
generating predictive corrective actions towardsieate control in fast
robotic reaching movements.

Whereas with previous simulators many computingsewuld
have been required to simulate a spiking cerebeltatel learning to
correct trajectories, with the current simulategrhing takes place in
less than a real hour to achieve acceptable peafucenlevels allowing
the real-time control of a robot.

This performance is achieved even with the phgsiichlly realistic
firing of the inferior olive restricted to less tha0 Hz. To the best of
our knowledge, this is the first time that suchfpenance is obtained
in a complete action-perception loop using a rekbt. This indeed
suggests that one of the tasks of the inferiorealévto sample non-
deterministically the input signals it receivegptovide over time a
complete representation of that signal to plastigciechanisms at the
Purkinje cells. Moreover, the results show théelidestructive
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interference occurred in learning the same taskfiarent
sensorimotor contexts, namely different overalyéartrajectories.

The robot arm we have used for the experimentsvi@ason-stiff
joints controlled with low torque motors. In orderaccurately control
this platform it is necessary to build a predictilygamics model of the
arm. The cerebellum network essentially fulfilssthurpose.

Moreover, we implemented the delays in the sensuor pathways
to evaluate the predictive strategy tested inwugk. We implemented
a STDP kernel filter that correlates the activityn the inferior olive
(encoding the error using a probabilistic modelkhwihe sensorimotor
activity received through the parallel fibers. Tdogrelation is done at
the parallel fibers to Purkinje cells synaptic cections.

The experimental results show how the cerebellaset system is
able to adapt dynamically to different contextstuire work will test
sensorimotor encoding strategies to learn multipbelels and context
switching mechanisms to choose optimal controbactvith minimal
delay and relearning.
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7 Discussion and conclusions

We have presented an event-driven network simulaoheme
based on pre-calculated neural characterizatidedabhe use of such
tables offers flexibility in the design of cell meld while enabling
rapid simulations of large-scale networks. The nianitation of the
technique arises from the size of the tables farenaomplex neuronal
models.

The aim of our method is to enable simulation afrakstructures of
reasonable size, based on cells whose charaaierstnnot be
described by simple analytical expressions. Thaigeved by
defining the neural dynamics using pre-calculatades of their
internal variables.

The proposed scheme represents a simulation tabisth
intermediate between the very detailed simulasush as NEURON
(Hines and Carnevale, 1997) or GENESIS (Bower amehizan, 1998),
and the event-driven simulation schemes basedngpleianalytically-
described cell dynamics (Delorme et al 1999, Detand Thorpe
2003). The proposed scheme is able to capturelgedimics from
detailed simulators and accelerate the simulatfdarge-scale neural
structures. The approach as implemented here atlwvsimulation of
8+10" neurons with up to 6I@onnections in real time with an average
firing rate of 10 Hz on a 1.8 GHz Pentium IV platfo

It is difficult to make a precise performance comgan between our
method and previous event-driven methods, singedhebased on
different neuron models. Nevertheless, we haveuevadl different
computational strategies to illustrate the poteéwtiaur approach.

The method has been applied to simulations comigione-
compartment cell models with exponential synapticduictances (with
different time constants) approximating excitatBiMPA receptor-
mediated and GABAergic inhibitory synaptic inpulbe inclusion of
new mechanisms, such as voltage-dependent chasmelssible.
However it would require the inclusion of new ndwariables and
thus new table dimensions. Although very complexiet® may
eventually require lookup tables that exceed cumemory capacities,
we have shown how even a modest number of tablerdiions can
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suffice to represent quite realistic neuronal medéle have also
evaluated several strategies for compressing tiiesan order to
accommodate more complex models. Furthermore thy@oped table-
based methodology has been used to simulate thgkio& Huxley
model (1952).

The present event-driven scheme could be useduti-m
compartment neuron models, although each compatim@oses a
requirement for additional (one to three) dimensionthe largest
lookup table. There are two ways in which multi-g@artment neurons
may be partially or approximately represented is sitheme. After
preliminary studies, using suitable sampling schemerder to
achieve reasonable accuracy with a restricted sabé we can manage
lookup tables of reasonable accuracy with more feaen dimensions.
Therefore we can add two extra dimensions to ertaldecompartment
simulations. Quite rich cellular behaviour coulddugpplied by this
extension. More concretely, we plan the additioa sécond electrical
compartment containing an inhibitory conductandes hew
compartment will represent the soma of a neurorlgwhe original
compartment (containing both excitatory and inlityitconductances)
will represent the dendrites. The somatic voltage iahibitory
conductance require two additional dimensions énldlokup table.
With this model, it would be possible to separataatic and dendritic
processing, as occurs in hippocampal and cortigr@mpidal cells, and
implement the differential functions of somatic atehdritic inhibition
(Pouille and Scanziani, 2001; Pouille and Scanz2004) (note that
most neurons do not receive excitation to the soma)

If individual dendrites can be active and have petelent
computational functions (this is currently an ojpgestion), it may be
possible to approximate the dendrites and somanefieon as a kind of
two-layer network (Poirazi et al, 2003), in whichndirites are actually
represented in a manner similar to individual ¢elish spikes that are
routed to the soma (another cell) in the standaadmer.

We have embedded spike-driven synaptic plasticéghmnisms in
the event-driven simulation scheme. For this pugpag& have
implemented learning rules approximated by expaakt@rms that can
be computed recursively using an intermediate bis&Short-term
dynamics (Mattia & Del Guidice, 2000) are also e@msinclude in the
simulations. They are considered important in thgpsrt of internal
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stimulus representation (Amit, 1995; Amit & Brun&§97a; Amit &
Brunel, 1997b) and learning.

Finally, we have used our method to simulate biicklty-relevant
neural networks. When simulating population synolration, we have
observed how the obtained results are equivalethioge used with
more complex neural models and slower simulatiothods. We have
also simulated a complete spiking cerebellar madeth effectively
learns to improve the trajectory of a robotic ammaal time and
different contexts.

In summary, we have implemented, optimized, anduetad an
event-driven network simulation scheme based upian p
characterization of all neuronal dynamics, allowsigulation of large
networks to proceed extremely rapidly by replaatigunction
evaluations with table lookups. Although very coexpheuronal
models would require unreasonably large lookupetgble have
shown that careful optimization nevertheless permpitite rich cellular
models to be used.
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