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Preface

In ordinary thermodynamics fluids are studied through the system of equa-
tions constituted by the conservation laws of mass, momentum and energy,
closed by the Navier-Stokes and Fourier equations. This system is valid to
describe situations in which field are smooth. When step gradients or rapid
changes occurs they are no more adequate to describe the physical situation.
To overcome this difficulty, Liu and Miiller proposed a new approach
to thermodynamics, in which further variables and balance equations are
considered and the closure is given by imposing the galilean relativity and the
entropy principle. The new theory is called “Extended Thermodynamics”.
Very important contributes to it has been given by Ruggeri. For example,
the general structure of the system has been considered, looking in parti-
cular what happens when a change of frame occurs. Moreover, it has been
shown that a particular set of independent variables can be chosen such that
the system converts into a symmetric hyperbolic one with all the important
mathematical properties as the well posedness of the Cauchy problem and
the continuous dependence on initial data but especially the fact that the
velocities of propagation of shock waves are finite. To solve equations, finding
the exact solutions was very hard; so, recently, Pennisi and Ruggeri proposed
a new methodology to impose the galilean relativity principle that overcomes
these difficulties and leads to more elegant equations, easier to solve.
During this three years I have worked in the direction of proving that
the new methodology can be applied to the many moments case, to mate-
rials different from ideal gases and also in the relativistic case and non only
in the classical one; furthermore I have been able to find the exact solutions
for many of these problems. This will be the subject of the following chapters.

The first chapter is a brief introduction on Extended Thermodynamics.

In chapter 2 I will show the new methodology to close the system, recently
proposed by Pennisi and Ruggeri, and we will see some applications as the 5,
the 13 and the 14 moments case for ideal gases. The last of these is a model
obtained by Pennisi and myself.



In chapter 3 we will see a further application of the new methodology to
cases with more complex fluids.

In chapter 4 we will see the results of my publications regarding the case
with an arbitrary but fixed number of moments for ideal gases and I will also
show what happens when we consider its subsystems.

In chapter 5 we will analyze my results for the case with an arbitrary but
fixed number of moments but in a relativistic context and I will also show
what happens when we consider its subsystems.

In chapter 6 we will do the non relativistic limit of the relativistic equations.
In chapter 7 we will consider a new kind of system of balance equations that
is suggested from the non relativistic limit of the relativistic case.
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Chapter 1

Extended Thermodynamics

1.1 The balance equations

The aim of Extended Thermodynamics is to determine N variables Fj, ;.
with n=0, ..., N, called moments, in all points of the body and at all times.
In order to achieve this objective, we need field equations, that generally are
based on balance equations of mechanics and thermodynamics.

Let’s consider a material volume V with fixed surface 0V that moves with
velocity v.

av

Let’s consider now a generic quantity ¥ referred to a property of the body,
such that its macroscopic contribute for the volume V is

Uy = V.
V(t)

If the volume changes in time and we want to evaluate the rate of change we
must do the derivative with respect to time. We have

d .
— dvV = div v)d
dt/mwv /wawv)v,
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v Ot v Ot Jav

The change could be due to an escape of material out of the surface, or to a
inner source or to an incoming quantity of material trough the surface. If we
call ¢; the flux out of the surface, ¢ the inner production and S the supply
from outside we have that

v Ot oV oV v v

In local form the balance equation becomes

o O(v; + &)

—_— = S. 1.1
The conservation laws of mass, momentum and energy are special cases of the
equation above and can be obtained by identifying quantities as suggested

in the following table

v (0 O o S
Mass F 0 0 0
Momentum F; —1ij 0 i

N-order moment | Fj Fi iy | Sivin | Siv.in

10N

where t;; is the stress tensor, f; is the specific body force, g; is the heat flux
and r is the radiative supply.

If we substitute the elements of a row with the corresponding in the balance
equation (1.1) we obtain

OF;, i,  OFy ik
+
ot 8xk

If we consider the index n going from 0 to a fixed value N, eq. (1.2) converts
into the following system of quasi-linear partial differential equations:

OF + 0;F; =0
OF; + 0;Fyr =0 (1.3)
atﬂl...iN + aZlesz = Sil...iN

We can see that the flux in the first equation is the independent variable in
the second equation. The same thing happens for all equations except for the

2



last, so that Fj,..;, remains unknown and the system is not closed. In the
contest of Extended Thermodynamics the closure of the system is obtained
by imposing the entropy principle and that of galilean relativity. We will see
it in details in the following sections.

1.2 The entropy inequality

From now on let’s call u the vector that includes all the independent variables.
The entropy principle requires that the entropy inequality

hy=%2>0

holds for all “thermodynamical process” , i.e. for every solution of the sys-
tem of balance equations (1.3). When A=0, hi{‘ is the partial derivative with
respect to time of the entropy density h°, while, when A=1,2,3, hﬁ is the
partial derivative with respect to space of the entropy flux h’. X is the en-
tropy production.

The quantities appearing in the equation above are all functions of the inde-
pendent variables u.

Furthermore h° must be a concave function, i.e.

0?h°
oudu

In [1] Liu proved that there exist A, functions of the independent variables,
called “Lagrange Multipliers”, such that the following conditions are equiv-
alent

~ negative defined, (1.4)

hiy >0
for every thermodynamical process.

(1.5)

hﬁ—A~(Fﬁ—H) >0
for every value of the independent variables.

By using the chain rule for the derivation of composite functions the inequa-
lity (1.5) can be written in the form

A A
<8h AL OF

ou ou

Such inequality must hold for all u, in particular, for all u 4. So it follows

that if we want that the inequality isn’t violated for some value of u 4, all
their coefficients must be equal to zero, i.e.

Oh# OF4

AT

ou Ju

)'U,A—FA-HEO.

and A-II>0. (1.6)



Eq. (1.6)s is called residual inequality. Eq. (1.6); can be written also as
dh = A - dF4. (1.7)

What said until now is independent from the choice of u. Without loosing
of generality we can choose u = F°  and, by putting it into eq. (1.7), for
A =0, we have

ohY

A

Ju
that, after a further differentiation, becomes

9’h’  OA

oudu Ou’

We notice that g—ﬁ is negative defined (because the left hand side satisfy the
condition (1.4)) and symmetric, so the functions that renders the change of
variables from u to A is locally and globally invertible and we can take A as
independent variables.

To make the calculation simpler it is convenient to introduce

A =A-F4—pA (1.8)

that is called potential. In this way eq. (1.7) converts into

dh'* = F4 - dA,
from which
@h/A
F4 = : 1.
A (1.9)
By putting the above equation into (1.8) it follows that
8h/A
= —h"+ A : 1.1
+ A (1.10)

So all the costitutive functions FA(A) and h*(A) can be obtained from
h'4(A), that’s why it is called “potential”.
There remains the further inequality

S =A-TI(A) >0, (1.11)

that says that the entropy production Y is a non-negative function.
It is possible to prove (see [2]) that conditions (1.9), (1.10) and (1.11) are
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necessary and sufficient. Moreover, from the integrability condition for A4,
given by eq. (1.9) we have that

or
OA

must be symmetric.

Let’s recall that the hyperbolic system (1.3) is also symmetric if we choose
the Lagrange Multipliers as independent variables. This special role played
by the Lagrange multipliers (or “main field”) has been found by Ruggeri and
Strumia in [3]. This is a generalization of the symmetric hyperbolic systems
studied by Friendrichs in [4].

1.3 The Galilean relativity principle

Let’s study now the behavior of the constitutive quantities appearing in the
balance equations and in the supplementary entropy law when we consider
a change of frame.

In classical (non relativistic) thermodynamics we can consider three different
type of change of frame:

Rotation of coordinates  z] = O;;z;, =t
Galilean transformations z} = O;;z; + cit, =t (1.12)
Euclidean transformation z} = O;;(t)z; + bi(t), t*=t.

(2

A quantity is named tensor of order A if its components in two different
frames are related by the following equation

TM< :Ollj10

1192...74

Tj1js..jn-

TAJA (1'13)
Obviously, scalars and vectors are included because they are tensors of order
0 and 1 respectively.

In the case of Euclidean or Galilean transformation they are called objective
and Galilean tensors respectively. In case of rotation of coordinates they are
called only tensors.

The velocity v; transforms according to the following rules

v = O;5v; for rotations,
v = 040 + ¢ for Galilean transformations,
vf = 0;;(t)v; + O;(t)z; + bi(t) for Euclidean transformations,

obtained by taking the derivative with respect to time of eqs. (1.12); so
velocity is a tensor, neither Galilean nor objective.



In general the vector u of the independent variables may have between its n
components some functions of the velocity v; of the particles. The remaining
(n-3) variables are postulated to be Galilean tensors, and are called “non
convective part” of u and will be indicated with w. So w represents that
(n-3) components of u which aren’t the velocity.

The presence of the velocity v; can be noticed easily in the fluxes F? and A,
that, by separating the convective and the non convective parts, appear as
follows:

F' = F%'+G,
' = h%' 4 ¢, (1.14)
where G' and ¢’ are the non convective fluxes.

This doesn’t mean that F°, G?, IT or A", ¢’ and ¥ are necessarily independent
of v;, in fact we can write the constitutive equations as

FO=FO(v,w), G' = G'(v,w),
I =TI(v,w), R = ho(v, w), (1.15)
' = hi(v,w), Y =%(v,w),

If egs. (1.15) are the constitutive equations in a particular Galilean frame,
in an other frame they will be

F* = FO(v*, w*) G* = Gi(v*,w*),
H* ( ,W*), h*() — hO<V*7W*),
©* = hi(v*,w*), ¥ =X(v,wh).

The Galilean relativity principle says that the field equations must have the
same form in all Galileanly equivalent frames (i.e. frames related by Galilean
transformations).

It follows that the constitutive functions are invariant, while both their values
and the values of their variables can change. In fact the field equations can’t
have the same form in all Galileanly equivalent frames if it don’t happens
before for the constitutive functions.

The Galilean relativity principle imposes that balance equations and entropy
law must have the same form in two galilean equivalent frames, i.e.

OF° (v, w) N OF (v, w)v' + G'(v,w)

II(v,w) = 5 o (1.16)
converts into
FO * * FO * *), 0% - *
H(V*’W*):a (V,W)+a (v, w*)o + G'(v*, w") (117)

ot* ox* ’

)



and

OR(v,w)  Oh°(v,w)v' + o'(v,w
S(v, w) = (675 Lt )am@( ) (1.18)

converts into

. . 8h0(V*,W*) 8h0(v*’w*)vi* —f—gDZ(V*,W*)
B(viwh) = ot* * ox* '

(2

(1.19)

Ruggeri, in [5], studied the Galilean invariance through the decomposition of
quantities into their internal and non-convective parts.
We said that the (n-3) fields w are components of a Galilean tensor. If
O;; = d;; we have that w = w* and

0 0 0 0 0

and =

9zt O o~ ot 0w

So eq. (1.19) becomes

OR°(v + ¢, w) N IR’ (v + ¢, w)v' + @' (v + ¢, w)

Y(v+c,w) = g o

(1.20)

that must be equivalent to eq. (1.18).
Comparing eqgs. (1.18) and (1.20) we have

RO(v +c,w) = h'(v,w),
Pvtew) = ¢'v,w),
YX(v+cew) = XE(v,w).

That equations must hold true for every v e c¢. So h°, ¢* and ¥ must be
independent from v, i.e.

h = ho(w)> Soi = @i(w)v E=3%(w). (1.21)
Analogously we can write (1.17) as

OF(v + ¢, w) N OF'(v +c,w)v' + G(v + ¢, w)

II(v+c,w) = T oz, ;

(1.22)

that must be equivalent to eq. (1.16). We can’t compare directly the two
equations because they are system and not single equations. The system
preserve the Galilean invariance even if densities, fluxes and productions
depend on velocity although they depend in a certain way.



The equivalence between (1.16) and (1.22) must be linear. So there exists a
non singular matrix X(c) of order n x n such that

Fé(v +c,w) = X(C)FOKV, w),
G'(v+c,w) = X(c)G'(v,w),
II(v+c,w) = X(c)II(v,w).

This must be true for every choice of v e ¢, in particular when v = 0 and Vc

Fe,w) = X(QF(0,w).

Gile.w) = X(c)G(0,w),

M(c,w) = X(c)TI(0,w), (1.23)
)

where F°(0, w), G'(0, w) and TI(0, w) represents quantities calculated in the
frame where the body is at rest. We will call them “internal quantities” and
we will write them as FO, G¢ and 3, so that eq. (1.23) converts into

Fle,w) = X(©F(w)
G'(c,w) = X(c)G'(w),
M(c,w) = X(c)II(w). (1.24)

Before putting the above decomposition into the field equations (1.16), let’s
recall some properties of the matrix X:

0X

5 (v) = A"X(v) = X(v)A", (1.25)
v,
where
. 0X
A= Ov, (0),
and
A"A® = A°A", (1.26)

See [5] for details.
By using the above properties and the material temporal derivative

i_0. .0
dt ot U’aa:i’
we have:

dFO - o Ov; G odv, -, 0v, -
—_— " +G' —II; =0.
x{ LR s +A{F axz} } 0

8



So we have obtained an alternative form of the balance equations

dE o0 | 0G!

. dv A0V N
o= A" FO L i r — I

This last equations is easier to handle than (1.16). Once A" is known, even
X(v) it is, so only the internal quantities FO, G’ and II remains as consti-
tutive functions and v is no more a variable.

Let’s apply the decomposition also to the the entropy inequality; in particu-
lar we want to separate internal and non-convective parts.

Remember that from (1.21) it follows that A% = h?, ¢ = ¢i, ¥ = ¥ and, by
using egs. (1.14) and (1.24), eq. (1.7) can be wrote as

{dhO = Ad(XF) per A=0,
d(h%* + ') = Ad[X(FO%' + Gi)] per A=i.
Now, from (1.25) we have

dX = XA'dv,,
so that he last two equations become

dh® — AXdF® = AXA'Fdv,,
dp' — AXdG' = (AXA"Gi— [hy — AXF)§")dw,.

This equations must hold for every value of dv, so

dn’ = AXdF°,

AXA'F® = 0,
dgt = AXdG',
AXA'Gi = [hy— AXF?)6"". (1.27)

Furthermore h°, O, ¢ and G' don’t depend on v, so from (1.27) 5 it follows
that AX don’t depend on v too. If we write

~

A = AX, (1.28)

where A are called “internal Lagrange multipliers”, eq. (1.27) becomes

dh’ = AdF°,
AATF? = 0,
dot = AdGY,
AA'Gi = [hg— AF")6" (1.29)



Finally, by using (1.24)3 and (1.28), eq. (1.11) can be wrote as
AII > 0. (1.30)

Egs. (1.29) and (1.30) represent the restriction imposed to the system by the
entropy inequality, after having divided the contribution of the non convective
parts and of the velocity. These equations contain only internal quantities.
Eq. (1.29),3 stand for eq. (1.6);, while (1.30) substitutes eq. (1.6)2; egs.
(1.29), 4 are additional conditions deriving from the relativity principle.

Eq. (1.29); can be named Gibbs equation of the extended thermodynamics
and it is useful to determine the value of the Lagrange multipliers at equili-
brium. Moreover there are analogous conditions, see (1.29)3, for the entropy
flux.

Before concluding this section I want only show how the matrix X is in
detail:

1 0 0 0 0
Uk, 52;1 0 0 0
Uk, Uk 20 kllvkz) 5(hkll 5222) 0
Uky Uk Uk 30 (¢, k2 Vka) BO(L Ohvk,)  Opiopzope 0
Vg Vky * Vi, (?)68611’0]62 "'Uk'n) 0
: : : 0
Vi1 Vky *** Vkyn (7)5?];11)162’0/6”) 5/’;11522252g

(1.31)

A complete and general procedure to prove that the form of the matrix is
the above one can be found in [5]. After having split each tensor into its con-
vective and non-convective parts, we have that some non-convective tensor
are functions of other non-convective one; restrictions on their generality is
imposed by eq. (1.13) which must be satisfied both by the functions and also
by their arguments. How to impose these restrictions is explained in [6], [7],
[8], [9], [10], [11], [12],

By applying this method to a general tensorial density we find

!
Fii=) (2) FlarinVin o -~ Vi) (1.32)
h=0

The same decomposition can be applied to G* and II. In every case with a
physical meaning F e F* are the mass and momentum densities, while %Fkk
is the energy density, so the non-convective flux G and the internal part of
F* disappears because don’t exist fluxes of mass and the momentum density
doesn’t have a part independent of velocity. Moreover 11, II;, I, are all
zZero.

10



1.4 The 13 moments case

Let’s consider now the particular case of Extended Thermodynamics of mono-
atomic gases, viscous and heat conductor with 13 moments. This has been
the first case that have been studied (see [13]). The 13 moments are

F=p mass density,
F; = pv; momentum density,

: 1.
F; flux momentum density, (1.33)
5 Fops flux energy density.
The appropriate balance equations are:
OF | OFy _
ot t o, =0
9 0
ory | b _ g (1.34)
o' B o
7 ik __
ot T a?; = Sppis

where all the tensors are symmetric and S;; has zero trace because the trace
of eq. (1.34)3 is the conservation of energy. To close the system we need
constitutive relations for the quantities

F<ijk>7 Fppik7 S<ij> and Sppi7 (135)

where F;j;~ is the traceless part of Fjjj.
In Extended Thermodynamics the constitutive quantities (1.35) everywhere
and in each instant depend on the values of (1.33) in that point and time, so
that we have
Fojrs = Foyjes (F, Fiy Figy Fopi),
Fppilc = Fppik(F7 E; Eja Fppi)?
Scij> = S<ij>(FaE>Ej7Fppi)7

~

Sppi = Sppi(Faﬂanv ppi)~ (136)

If we know the constitutive functions F. <ijk> through §<ppz-> it is possible to
eliminate Fjjk>, Fppik, S<ij> € Sppi by using eq. (1.36), obtaining a quasi-
linear system of partial differential equations. The entropy inequality

O Ohs _

2 >0 (1.37)

11



must be satisfied for each thermodynamical process, i.e. for every solution of
the field equations. The entropy density and the entropy flux are constitutive
quantities:

h = h(F, F, Fy, Fy),

The entropy density is a non-convective quantity, while the flux can be de-
composed into an internal and a convective part, as follows

In such a way the entropy inequality can be wrote as follows:

h\°®  Oy;
0 Ox;

where the dot stands for the Lagrangian derivative 2 + v,z2 and (1.34);

or
has been used. ’
This inequality must hold for each Euclidean frame so that h e ¥ must be
objective scalars while ¢; must be an objective vector.

1.4.1 The Lagrange multipliers.

By introducing the Lagrange multipliers A the entropy inequality converts
into

oh  oh OF  OF, OF,  OFy
an N i I ] _
ot " o, (8t+8wk> 1(at +axk)
OF;;  OF; OF,pi  OF ik
_ A J ik _ g VA PP poik o )
s (B G~ S ) — s T+ T = ) 20,

according to Liu’s theorem; the Lagrange multipliers are function of F, Fj,
F;, e Fp,; in a way that depends on the material. If we consider the con-
stitutive relations (1.36) and (1.38) for h, h;, Feijr> € Fppik, we obtain an
expression that is linear with respect to the derivatives

OF OF, OF, OF,, OF OF, 0F; OF,,

8t7 at, ot ’ ot ’(%k’axk’ (%k’ 0xk .

The inequality must hold for arbitrary values of that derivatives, so that their
coefficients must be zero. So that we obtain

dhy = AdF, + NidFiy + AijdFiji, + Appid Fogir, (1.40)

12



plus the residual inequality
E - AUS<U> + AppiSppi Z O (141)

that represents the non negative entropy production.
By applying eq. (1.24) to our quantities we obtain the following decomposi-
tion into convective and non-convective parts (The quantities p... stands for

F = p
F; = +pv;
Iy = Pij + +pv;v;
Fije = pijr H3pajory + +pvvop (1.42)
Fopij = Popij  +40Gip05  +6p@upvy) +pv7viv;
S<ij> = S<ij>
Sppi =  Sppi +23<ip>vp
p...and s..., h and ¢, are galilean tensors, so their components in two

frames are linked by the following relations

_ *
pi1i2...in - Oiljl e Oinj’ﬂpjle---jn’
—_— . . . . . N *
Sivig.in, 01131 OW?L Sj1j2wGn
h = h*,
E3
or = Okjp; (1.43)

Let’s impose that p..., s..., h and ¢, be objective tensors and not only galilean,
so they satisfy eq. (1.43) for an Euclidean transformation like this

1.4.2 The Galilean Relativity principle

Let’s consider now eq. (1.40). From egs. (1.39) and (1.42) we now explicit
the dependence of F and h; on velocity. By putting them on eqgs. (1.40),
after long calculations we have:

dh = Adp + Nijdpij + Aggidpppis
der = +Ndpy + )\ijdpijk + )\qqidpppiky (144)

AP+ Aqgqi(2pit + pppdic) = 0,
2M 5Pk + Aqqi(2pitk + Ppprdic) = (B — Ap — XijPijAqqiPppi ) Otk (1.45)

13



where the new quantities A have been used. They represent the internal part,
not depending on velocity, of the Lagrange multipliers. They can be obtained
by the previous A through:

A= A+ A+ Aoy + Appivtos,
N = A+ 20505 4 A (V305 + 20,01),
Nij = Nij + Appe30edi),
Api = Appi- (1.46)

as shown in the previous section.

From eq. (1.44) we can see that A\, \;; e Ay are partial derivatives of the
objective scalar h with respect to the objective quantities o..., so also they
must be objective tensors. From (1.44) follows also that )\; is an objective
vector. For the same reasons the A... must be isotropic functions of p, p;;,

Pppi-

1.4.3 The scalar and the vector potential

Let’s suppose that p, pik, pppi are independent variables through the Lagrange
multipliers A, Aij, Appi-
Let’s define the scalar and the vector potential 2’ and hj, as follows:

N = —h+Xp+ AijPij + AggiPppis
hy = —or+ AijPijk + AqqidPppik- (1.47)

In such a way we can rewrite eqs. (1.44) and (1.45), as

dh' = pdA+ prsddrs + Popnggns

Ipij Ipik
dh;c = |:)‘qqeaeia_)\]:| d\ + |:prsk + /\qqeaeiaTm d/\rs +
dpi
+ | Pppnk T )‘qqeaei Pik d)\qqna (1.48)
OAggn
2/\tjpjk + Aqu(Z,Oitk + pppk&t) = —hlétk. (149)

At has been eliminated by using eq. (1.45); and the new tensor

1
Qe = E(Qpei + ppp(sei) (150)

has been inserted.

14



1.4.4 Equilibrium

The Lagrange multipliers are a very important mathematical feature to solve
thermodynamical problems but they can’t be easily measured except for their
values at equilibrium.

Equilibrium is defined as the process in which:

1. Productions s<;;~ and s,y are equal to zero,

2. 5<ij> and spy; near this process are invertible with respect to A.;;~ and

il

3. Near this process the entropy production have a proper relative mini-
mum at equilibrium.

From eq. (1.41) and condition 1 it follows that the entropy production have
a minimum at equilibrium, and its value is 0.

Condition 3 requires that this value is also a proper relative minimum. By
taking A, Ay, S<ij> ed sy, as independent variables it follows that, at equi-
librium, the partial derivatives of ¥ with respect to s<;;~ and s, must be
zero, so the following necessary conditions hold

Aeij> B = 0,
Agi B =0, (1.51)

where E stands for equilibrium. What about the other Lagrange multipliers?
After defining the internal energy

Oii = 20¢ (1.52)

we have, from eq. (1.44);

2

By comparing it with the Gibbs equation we find that

g 31
Ao = 2 i lp= ==, 1.54
T 5=357 (1.54)
where T is the absolute temperature and
h
g=—ec—T2E L PE (1.55)
P 0

15



is the chemical potential.
Egs. (1.51) and (1.54) give the value at equilibrium of all Lagrange multipli-
ers. Blending together egs. (1.53) and (1.54) we have

1 g

Leaving the noisy calculations we say only that taking as variables T and z
with z = T% the solution of the condition above is given by
2

C”L_E:§/(ﬂ'_§£> de (1.57)

0 2 z 322

where F(z) is an arbitrary function and ( is a constant. Now it is possible to
find the value of £ that is

SR o (1.58)

1.4.5 Determination of the potential at equilibrium

The potentials A’ and hj, defined by eq. (1.47), are isotropic scalars and
vectorial functions of A, A;; e A,i. Let’s write their polynomial representation
(by using the representation theorems) up to third order with respect to
equilibrium:

B = hp+ s Acijs> + hoAppidgg +
FRA cins Acnis Acjis + PyAckisAppeAgqj + O(4),
h;g - Sol)\ppk + 802/\<ke>/\ppe- (159)

All coefficients A'... e ... are functions of (1.54). From eq. (1.48);, by using
egs. (1.54) and (1.55), after soma algebra, we obtain

on’ oh! h'
p = a = PE — ﬁ/\<ij> <ij> P /T)‘ppz)\qqz + O( )
1 on’' 8h’1 2 h’
3 = o, T3 81/T)\<”>>\<”> T3 61/TAP”M‘1‘” +0(3),
on’ , , 1
P<ij> = B = 2R Acijs + 3hs(Acins Acijs — §>\<ln>)‘<ln>6ij) +
<1)>
+ hil)‘qq<i)‘j>pp + 0(3)7
o'
,Oppi — a)\— — Qh;)\ppz + 2h£1)‘<ik>>\kpp + 0(3) (160)
ppi
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From eq. (1.60); 2 we see that the density p and the pressure p = 1p,, differ
from their values at equilibrium pg and pg to within second order terms.
Thanks to eq. (1.60), eq. (1.50) gives

1
Qe; = ;(4h/1)\<ei> + 5pE561) -+ 0(2) (161)

that permits to obtain (1.48),, and by using (1.59),, also:
0 0 on,
0= (% - 5pT> Agahs + (ﬁ - 10%% - 4h’1T> Acuis Aggt + O(3)
0= P<rsk> + 0(2)

8901 / 25p2T 8902 / p 8h/1
fry — _— _— — 1 B — —
0 (81/T ha + 35 P Apph + o1/T hy 0pa1/T A<tie> Appi

T

4 2
O = (QOQ — ghlz — 10]—;]1/1) . ()\qqs(skr + )\qqréks — §>\qq85'rs> —+ 0(2)

Pppnk = Spl(gnk + 902)\<nk;> + 0(2) (162)
Thanks to (1.61) the trace of (1.49) is
on' on' on'
2k 2\ BA\gi=——— = =3I, 1.63
<kj> a>\<k;j> + . 8)\” + “ a>\<ill> ( )

that is a partial linear differential equation. To solve it we do a change of
unknown function (from A’ to H ) and of independent variables, such that

h/ == )\l;§H(>\7 )\[_11>\<k’j>7 AlzﬁAill)‘

Substituting it into eq. (1.63), we obtain Basz[z = 0. So, the general solution
of (1.63) is
_3 _3
B = Xy HOW AT Ao Ay M) (1.64)

At equilibrium the above equation is certainly satisfied by our results, be-
cause conditions have yet been imposed at equilibrium, although with other
variables. It remains to impose it far from equilibrium, but before it, let’s
consider the traceless part of (1.49), i.e.

1
0= 2(h/1 +pT>>\<tk> + <4h/1T + Bhg) ' ()‘<tj>)\<jk> - §A<mn>)‘<mn>6tk> +

18
+ (Eh’QT + hg) Agg<kAtspp + O(3).
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from which we have

4
= —pT?
3P

hy and  h) =

18

— T,

(1.65)

From these and (1.62); 3, we have, for the derivatives of the variables of ¢,
and o

dp1 1 . 25p°T
- p ) - h2 - 5 _
dg/T 01/T 2 p
dpa 2 o ) p°T?
— —14pT = I, + 45 . 1.66

while, from (1.62)4 and (1.65)3 we obtain
5

4

9

2

p*T

2
T
<¢2+107> and  H, b

(m + 107> T. (1.67)

R, =
By eliminating h} and A/ from (1.66) and by using (1.67) it is possible to
obtain

01 i 0o /T

o Dpi 5 0ps/T
dg/T ~ 14 9g/T "

1/T ~ 14 91T’

that can be integrated giving

On the other hand we have, from (1.66) and (1.57)

01 7
—— = J0I?F
0
ag“/); = —14T3F(z)  or by (1.58)
/
8501 _ 5T% FF 7
0z z
8501 9 FF/
— = —147> . 1.68
0z z (1.68)
By integrating we have
FF’
o = 5T5</ dz+c>+0,
z
FF’
gy = —14T: </ dz—i—c) . (1.69)
z
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In this way all coefficients of A" are known from eq. (1.65), (1.67) and (1.58)
thanks to (1.68)

25F2(z) 35 FF’
o oy |22 )99 I
g - [BEQ_B (1, ]
/ 4, o
F? FF’
W, = T= {—45 z(z)+63 (/ . dz+c>]. (1.70)

It is easy to verify that these functions satisfy automatically condition (1.64).
Let’s notice that all the coefficients of A'... and ¢... that determine the po-
tential are known except for the function F(z), that is known explicitly in
particular cases.

1.4.6 Determination of the constitutive functions.

For the constitutive functions appearing in the balance equations we have

P<rsk> — O<2)7

FF’
Pppnk = |:5T; </ s dZ+C) +C:| 5nk —

FF
— 1472 </ dz + c) Acnis + O(2),

z
S<ij> = S)‘<ij>+0(2)7
Sopi = Ay + O(2). (1.71)

We can use egs. (1.60), (1.70) and (1.65) to substitute in (1.71) the La-
grange multipliers with the starting variables p.;;~ and p,,;, because, until
the second order terms O(2),

\ 1 1
<1y> 2pTIO<zj> QT%F(Z)
1 1
Appi = 577 Pppi = ; ,
" 215" T ST 7 ([ P dz 1 o))

P<ij>;
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So the constitutive relations (1.71) can be written as

p<iji> = O(2),
7 FF’ T FF’
Pppnk = |:5T2 </ . dz + C) + C:| 51']' + 7} (/ 2 dz + C) P<ij> + 0(2)7

P<ij> + 0(2)7
t
T 7 ([ EE g 4 o))

S<ij> =

S
2T F(Z)

P + O(2). (1.72)

Sppi

For the entropy flux and density we recall that, from eq. (1.47) we have
ho= —=h'+Xp+ Nijpij + AgqiPppis
hi = =%k + Xijpiji + ApidPppi-

Thanks to (1.59), (1.57), to the coefficients (1.69) and (1.70), we have until
the second order terms,

3 Iy P<ij>P<ij>
h — — _ d _|_ _#_
g [2/ ( z 322) : C] AT3F(z)

B PrpiPqqi
1072 F(2)[~5TF/z +TT/F(2) ([ Tdz + ¢)]
11 2 1 1 (1.73)
Pr = T 2pppk’ 5 TgF(Z) P<kj> ZPPPJ‘ :

Egs. (1.72) and (1.73) are the final results obtained from the entropy princi-
ple. We conclude noticing that p<ijk>, pppnk, h and ¢ are fully determined
except for the constants ¢, C and ¢, as we know the function F(z). This de-
termines the thermal equation of state and can be known from experiments
or from statistical mechanics. These results have been obtained for the first
time by Liu & Miiller in [13].

1.5 The kinetic approach

Kinetic theory allow us to find the following solution for our problem:

N

B = /F <Z )\il,,,incil . ci"> dc,
n=0
N

Y- /F <Z Nij i, L ci"b> cdec,
n=0
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that depends on an single variable arbitrary function F(x). This quantities
satisfy all the property that a solution must satisfy. By deriving the relations
before, we have

Oh'° ' i ; Oh/in
D i —/Fc ...c"de = EIV

11...0n—1

that coincides with eq. (1.9).
Recall that, in the kinetic theory, moments are defined as

Fi 4, = /mcil s Cz'nf(X> C, t)dca

where the distribution function f(x,c,t) describes the density of molecules
in the point x, at time t with velocity c.

Furthermore they satisfy the condition that the flux in a balance equation
must be the independent variable in the following equation, as in (1.3).
Concerning the concavity of h’° we can notice that the first element of the
quadratic form () = dAdu is

N 2
Q= /F” . (Z i L ci"> dc
n=0

that is negative defined, as we assume F"(z) < 0.

Even wrote in such way our quantities respect the galilean invariance but
we will not report the proof because it is present in literature and is not the
matter of this work.

1.6 The subsystems

Sometimes to describe a physical situation a lot of variables are necessary,
for example when rapid changes in its characteristics or step gradients occur.
Instead, where conditions are smoother it can be described sufficiently well
by using less variables and equations.

Recently Boillat & Ruggeri [14] found important results on subsystems ob-
tained after reducing the number of equations, as the fact that subsystems
inherit symmetry, hyperbolicity and the fact that the domain of the charac-
teristic speeds of the subsystem is included in that of the main system.
Let’s suppose that some between the n components of mean field, that of
the Lagrange multipliers A(2”), be constant. In this way a corresponding
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number of balance equations is too big. Let’s see how to eliminate the su-
perfluous equations.
Remember that the main system have the following shape

(g§>A:II (1.74)

(remeber egs. (1.3) and (1.9)).

It is not restrictive to suppose that the vector A, that have n components,
can be divided into 1 with (n-m) components and L with m components.
Furthermore it is non restrictive to divide the vector production Il, that have
n components, into p with (n-m) components and P with m components. So
even the system (1.74) can be divided into two partial systems:

A 1A
(8h$?D)A:P@J) and (QZ%&B)A:p@J)(L%)

Obviously there are 2™ — 2 possibilities for such decomposition if we exclude
the trivial cases m=0 e m=n.

Let’s suppose now that the m-n components of 1 are constant, i.e. 1 =1¥ =
const. So we can ignore system (1.75), and we consider only system (1.75);
to determine L. Let’s write it as follows:

52 h’A(L, l*)
OLOL

and call it “main subsystem”. The field components survived to the restric-

tion are called “main field components”. The definition of main subsystem

can be generalized to the case where the vector 1* isn’t constant but it is

function of #”. In such case the subsystem depends explicitly on x”; see

Boillat & Ruggeri [14].
The symmetric system (1.76) is also hyperbolic; in fact the quadratic form

L, =P(L,I% (1.76)

82 h/O
Q= SAIA OAOA
was negative defined. But it can be written as
82 h/O 82 h/O 82 h/O
Q= 8L8L5L5L + 28L81(5L51 + 101 0l1o1

and @) < 0 every time that 0L and 1 aren’t all equal to zero.
In particular, for 61 = 0 we have

82 h/O

Lo L

Q=
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negative defined. Furthermore we saw that h'4 restricted to the subsystem
is h'A(L,1%), i.e the restriction of A" to [*. The same thing happens for the
entropy density h4; in fact eq. (1.10) applied to the subsystem, i.e. with L
instead of A, gives

9 h/A
oL

while, if we apply it to the whole system and then we calculate it in 1 = 1%,
we find

= W4 4+ L (1.77)

ah/A ah/A
oL 1 ol =i+

AL, = —W4 + L

Exploiting 2’4 and putting that expression into eq. (1.77) we find

8h/A
Ol =+

ht = hA(L, 1) = 1F
It follows that the solution of the main subsystem (1.76) satisfy a balance
equation like Ei‘ =Y, with

L) = RALY) -1

and (L) = L-P(L,1%).

OHALL)
ol 1=1*,

That’s why we call, 2 and © “sub-entropy flux” and “sub-entropy produc-
tion” respectively.

Moreover it is not restrictive to suppose that the sub-entropy production is
non negative. In such a way we will have the entropy inequality for the sub-
system.

Let’s prove now that system (1.76) is symmetric and hyperbolic.

If we consider the subsystem (1.76) we can see that the symmetry of coef-
ficients matrices is guaranteed by their Hessian character. The concavity of
R'O(A) with respect to A imply the concavity of h/°(L,1*) with respect to L.

And, since h"°(L,1*) is concave in L, so is the sub-entropy 7’ with respect to
%. In order that the subsystem inherits symmetry, hyperbolicity and
all the other properties it is necessary that the subsystem is a main one, i.e.
the constraints must be on the Lagrange multipliers. Boillat & Ruggeri gave
in [14] an example in which the hyperbolicity was lost when a component of
the field vector u rather then A was constrained.

The requirement of Galilean invariance permits to generate a particular or-

der for the n equations of the main system and a ceratin simplification of the
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matrix X(v) that describes the change of components between two different
frames. Without reporting all the noisy calculations we can say only that,
after ordering the system we can eliminate one equation after the other star-
ting from the end of the system and requiring at each step that the residual
system is galilean invariant. In such a way we obtain a matrix X lower tri-
angular, in which all the entries up on the main diagonal are zero.

So we have a good criteria to order the system: move the equations in a
way that the last equation/s can be removed without loosing the galilean
invariance for the remaining system.

This methodology will be used in the following chapters to obtain, for e-
xample, the 13 moments case as a subsystem of the 14 moments one, or the
subsystem with N-1 fields instead of N for the case with an arbitrary but
fixed number of variables.
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Chapter 2

The new methodology

In the previous chapter we have seen how the closure of the system of balance
equations can be obtained by imposing the entropy principle and that of
Galilean relativity.

By using the mean field as independent variables, the entropy principle is
equivalent to some conditions on entropy density h and entropy flux ¢ ; after
that, it gives the constitutive functions. But when we impose the objectivity
principle too, the calculations become much complicated because the non
convective components of the mean field aren’t independent (in particular
M),

Here we want to show how the new methodology proposed by Pennisi
and Ruggeri in [15] enable to avoid these difficulties by considering all the
Lagrange multipliers as independent variables. After that, they substitute
in the results the value of \! implicitly defined by considering the derivative
of h' with respect to A/ equal to zero and they arrive to the same results
obtained with the other methodology but with easier calculations.

2.1 Comparison between different methods

Let’s consider the case with an arbitrary but fixed number of moments, whose
appropriate equations are:

O F" + 0, FAF = pA, (2.1)

After the insertion of the Lagrange multipliers, the equations describing the
entropy principle are:

dh = MadF? 5 doF = M\gdFAF  X\4PA > 0. (2.2)
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A stands for i - - - 7, and n goes from 0 to a fixed N.
Let us compare now 3 ways to impose the entropy principle and that of ma-
terial objectivity. We shall refer to the following table.

Entropy principle Material Objectivity

P4 =2 A A FO =0

Ak — %ﬁ A AT‘AC FCk + Kok =0
mA:% S\AATACmCIO

9% — A 4 B with A £ 4 Aa ATAomCk 4 sk =

A A
'gﬁf :% withn =0, -~ , N —1
k
Symmetry of aj\a_Hk_
11"'1N ~
Ay A 28 —
8)\9;

OH _ S 3% % - Ay ATA, OHE kr —
o5 = 0 defines A = Mi(A My, o+, Aiyiy) A A e G5 T HO 0

B and ¢'* are H and H* calculated in

\the above value of the function \;.

Let us consider firstly the second row. It is possible to change independent
variables, from F4 to m#, v* with the law

FA=X2@m? |, m' =0,

where X4 5(¥) is the matrix (1.31).

The material objectivity imposes that h, ¢* — hov* and m*~* are tensorial
functions of m? and don’t depend on v;. Now, by defining Ay = XB4\5 and
using the property

0X4p
ov,

the two equations in the second column of the table express the fact that A
and ¢* — hv* don’t depend on v;. If we change again independent variables,
from @, m® to ¥, A (except for 5\1), what remains of the entropy principle
is expressed in the first column, with

= ABXC = XBoAC (2.3)

W=XAm*—h and ¢* = m™ — (¢ — w").

From the second of these it follows that m® ** doesn’t depend on v;, so we
don’t have to impose it.
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Let consider now the first row. If we change independent variables, from F4
to A4, the entropy principle becomes expressed by the 2 equations in the first
column, with

W =XaF*—h and ¢ = AP — g%

Moreover, as consequence of eq. (2.3), the egs. in the second row, second
column of the table can be rewritten also in the form in the first row, second
column.

Therefore, the first and second row of the table are two equivalent ways to
impose the same conditions, because from the first row immediately follows
the second one, also the fact that h, ¢* — hv* and m®** don’t depend on
v;, when we take v’ and m” as independent variables.

Now let’s explain what the third row contains. Let H and H* be fun-
ctions of all A4 (included 5\1) satisfying the conditions of column 1 and
2, with H a convex function. After that, let us define the function ); =
5\1(5\, 5\112'2 ceey ;\11ZN> from gi = 0; well, \; and the functions H and H*
calculated on such expression of i satisfy exactly the conditions in row 2 of
the table, which restrict );, &’ and ¢'*.

In fact, by using the chain rule for the derivation of composite functions, we
have:

) o
oW _oH OH 9\ _ 4

O Oda O\ O
The equation above defines m#, and it is equivalent to the first equation in
the second row and first column of the table. With the same procedure it is
possible to prove that the first equation in the second column is equivalent
to the respective in the second row.

Let’s consider the second equation in row 2, column 1, distinguishing the
cases withn=2,--- N —1,n=0,n= N, ie., respectively

dg'™ OH" OH" N
M oAy O\ s

OH  OH O\ e ON
= = + = . = =1m +m"—— 3
OAar,  ONi OAa W
a¢™  oH* Lot o\
O\ o\ O\ O\
OH OH 0N . .0\
- 4+ — ~ = +m =
5&; O OA " X
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od*  oH* OH* O\

V) VR Vi ) Ve
OH* 9H 9N\, OHF ., O\
J— + m .

- x + — T — < =,
OAa ONip OAa OAa OAa
So the second equation in row 2, column 1 is proved with
k
mi1i2~--iNk _ AaH
0)\,-”-2...1N

which is symmetric, as requested.
It remains now to prove the second equation in row 2, column 2 of the table.
It follows from

oOH*” 0OH

—_— = — = ka

OA¢  OXck
as it can be seen from the first equations in row 2 and 3, column 1, and from
the fact that

A6 =0 forC =igig---iy.

This follows from

_{ 0 if AFiviyeiy o ogra _ <8X§>
— , A = ,
vs=0

A —
X 1 if A:ilig"'ZN (%T

1182t N

so that

A
AT — (M) =0.
1112 1N avr _—

We note that the first 4 equations in row 3 of the table, are nothing more
than the compatibility conditions between the eqgs. in the row 1, except that
now H, H*, mP and A4 replace I/, ¢'*, F4 and \4 respectively.

We have proved that the three different methods are equivalent, so they leads
to the same result: they unable us to find the expressions of the potentials

h' and @'*.
After that, from
oh'
FA = o (2.4)

we can find Ay = M4(FP), and then these are substituted in 4/, ¢’* and
Fiv-ink to find the constitutive functions

Wo=n [ (FP)]
¢lk — ¢/k [)\A (FB>} ’
ik _ piveink [Aa (FB” ‘

28



Substituting F'Z = XZ4(7)m®, in these eqs., they become
=HW{\[FP (m©,0)]}, (2.5)
9= Do [ ()]}
Firink — pivisk {3 TFB (€ §)]) |
We want to calculate these in @ = 0; but, firstly, let us note that
W= MFY—h=\m*—h=1
§F = AAFAR g = d g (FAF 4 XA mPF) — ¢ =
= damoF + AamAF — ¢F =
= dam®F 4 ¢F — ot = Wb+ @
from which it follows that &/, ¢'*, FB and Fiti~v* calculated in @ = 0 become

W, ¢ mB and m™ Nk respectively. Therefore, egs. (2.5) calculated in @ = 0
become

=k D]}
¢* =™ {Aa[m"]},

vk o inink {/\A [mB]}

and the functions A4 [m®] are the solutions of (2.4); ie., F* = gf;, but
calculated in @ = 0; in other words they have to be obtained from
on’ ,
mA = o with m'=0,

so obtaining the last 2 propositions in row 3 of the table.

e [t is important to note that with this method, what we have done for
egs. (1), can be done also for whatever of its subsystems.

e We see also that we can consider directly the problem

A_ 8;1/ N A C
m _aj\A )\AAT cm :O;

ok “
% :mAk >\A ATAC ka+h/§kr =0
A

in all the independent variables A 4, and with all its compatibility conditions,

but m’ = 0 doesn’t mean that /' doesn’t depend on /\z, it is simply the rela-

tlon which will give, in the next step, /\ in terms of the other \,. Similarly,

m' = 0 doesn’t mean that qb'k doesn’t depend on ); it has to be considered
oh' __ 0¢'*

simply as an equivalent way to consider the condition T o
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2.2 The 13 moments case

Let’s see the application of the new methodology to the 13 moments case,
described by the system (1.34).

In order to exploit the entropy principle and that of material objectivity with
the present approach, we have to consider the egs.

TR R TR
m = a—A, m' = a—A, m" = aA , mi = aA , (2.6)
o\ O\ ONij O\iy

a2 00 09y 09t 09

ox TN ON;j oy
R ]AZ/ R }AL/ R ]Al/ h/ '
0 - )\Ja—A + 2)\Z]a—A + )\ill ZL + aT(Srs(S; 5
o\ 8)\2 6)\2] a)\rs
Uk Uk A/k 2k
0 = 0¢™ + 2N 0 + N (b + 8? Ors0% | + hé’“ (2.7)
3/\ a)\z a/\z] )\rs

So we have to consider the egs. (2.7) and the compatibility conditions be-
tween egs. (2.6), i.e

aﬁ/ B aqglz aﬁ/ B aqglz 8” B aé/z

= = = (2.8)
o\ OA Ny O\ i O
09i _ 0, 00" _

To impose all these conditions, let us consider the Taylor’s expansmn of (b”
around the state of equilibrium, where /\ =0, )\zll =0, )\jk = )\uéjk, which
we will indicate with the index “c”; we find

le"'i g1dgkihykehe (33 N Y 3
Z Z p! qlrl Pqﬂ“ g ! " ()\7 All) : Azl e )\Zijﬂl s A]qll .

n=1 p+q+r=n

“ 1. “ 1z
()\klhl - _)\llgklhl) e ()\krhr - _)\ll(skrhr) ) (29)

3 3
with
(Zsﬁ;;ipjl"'jqklhl"'krhr — - — — an¢:l — = (210)
a)\“ c a)\ng)\ﬂll st aA‘qulaAklhl ct aAkrhr c
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because of the symmetry of eq. (2.8); we can exchange the index 7 in the
tensor (2.10) with whatever of the indices ¢ - - - i,; the same thing can be
done also with the indexes j;---j, and ky---k, or hy---h,, thanks to egs.
(2.8)5; and (2.8), respectively. So i can be exchanged with whatever of the
indexes and ¢y, »7t Ik ki i s completely symmetric tensor. Moreover
it depends only on the scalars 5\, 5\”, so it is zero if p + ¢ + 2r + 1 is odd,
while it is of the type

i dakihckehe — g (N Ag) 8t ) (2.11)

p7q7r

if p+¢+2r+1iseven. So it is determined except for scalar functions.
The same result can be achieved also for A'; its Taylor’ s expansion around
the equilibrium state “c” is

~ ~ ~

. > 1 AP
L = Z Z Rt ipitigkihykehy ()\ ’ )\”)/\i1 - )\z‘p)\jlll .. /\qul .

lglyl P47
70 ptatren piqir!
A 1. R 1.
)\klhl - §)\ll(5k1h1 T /\kThT - g/\ll(skwhr ) (2'12)
with
piveipitdokihakehe [ I — - (2.13)
P ONiy -+ O, Ny -~ ONjuO Ny - O, )

The derivatives of eq. (2.8); with respect to Ak and with respect to Ay are

8Zil/ aQQE/i ‘ 825/ B 8%5”

ONONe ONONk ONOMs ONON

and the derivative of (2.8), with respect to M 1S
0N 0%
D ONONa
Thanks to (2.8)45, it follows

0%/ 0%/ 0N’
MO ONOdgu OO
from which we obtain that hbir/t Je¥thkrhe 46 o symmetric tensor with

respect to every couple of indices, and it depends only on scalars, so it is
zero if p + g + 2r is odd, while it is of the type

pit-ipdv gk kehe hp’w(j\’ j\”)(g(iliz oo §Frhr) 7 (2.14)

p7q7r
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if p+ g+ 2r is even. So it is determined except for scalar functions too.
These properties don’t exhaust the consequences of eqs. (2.7) and eq. (2.8)
but it is easier now to impose them.

After some algebra (see Appendix of [15] for details) conditions (2.7) and
(2.8) convert into

p+q+2 O
r = 3 < 5
Poa pH+q+2r+29)0 Orao
p+q+1 O
hpor = 3" —hy a0, 2.15

so that the unknown ¢, ,, and h,,, are determined in terms of ¢, 0 and
hpqo. We will determine these last functions by the use of the following
infinite matrix

hOOO ¢010 h020 ¢030 h040 ¢050 h060
¢100 hllO ¢120 h130 ¢140 h150 ¢160
hQOO ¢210 h220 ¢230 h240 ¢250 h260 (216)
¢300 h310 ¢320 h330 ¢340 h350 ¢360 :

h400 ¢410 h420 ¢430 h440 ¢450 h460

In particular, starting from an arbitrary function ilo,g(j\), the functions 7107(1(5\)
(with g even) are obtained from eq.

ds: 81(¢—1) 5 .5 <
= = 2T 942 — g, 2.1
a)\ho,q(A) 3 i1 (9¢" — 1)ho,g—2(A) (2.17)

except for a family of constants arising from integration. After that, the
elements in the first line of the matrix, but in column odd, are determined
by
PP ENNESINE V2= |
hogo = hog\) (i)~ 2 . (2.18)
The elements in the first line of the matrix, but in column even, are deter-
mined by

2 1 - NP
———hoi 1 (AN)(Ay)” 2+, 2.19
s (00 4 (2.19)
where ¢; is another family of constants arising from integration. In this way,
all the elements in the first line of the matrix are determined. Those of the
other lines are expressed as

h 9 J 82h Y j odd (2.20)

1,j,0 = 9= ——=-10,j-1,0 J odaaq, :
T 42

Po,j0 =
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—— - — Viand jeven , (2.21)
P4+ 1NN,

hijo = 7l
l

j+1 o .
i+J + 298612930 TDR 0

i jo = 30T/ Vjeven and i odd, (2.22)

B, o= 3z t2 o
2,7, -

\ ———=h1;0 Vjandiodd, 2.23
i+j+1 3)\(171)/23)\};—1/2 150 V) (2.23)

|+ 2 ot
J hi;0 Vjodd andi> 2 even. (2.24)

ij0 = 32— - ~
Cb,],() Z‘|“]‘|‘28/\(i_2)/28)\;l/2 1

Now, if we use the method described in the last 2 lines of row 3 of the table,
we find the solution of the problem of row 2. Truncating it up to fourth order
with respect to equilibrium, we find the results already present in literature
[13], [16] which are limited to this order.

In the following section we will use an iterative procedure to give another
proof of the equivalence of the two methodology. I have published it in [17]

2.2.1 The iterative procedure

First of all it is necessary to rewrite equations in the second row of the table
in a more explicit way in order to make the treatment simpler. Remembering
that m; = 0, the first column is

~ ~ i a_ﬁ/ ~
m— ,m = OW 1™ =%, " L mit = o (2.25)
o\ (9)\,J m<vz = 8;\8<hrs> 5215j> a)\ill
oA oA
o ~ 8" rk O\, 1
6@?”“ _ mrk% ki o J 9N oxg T 3T
O\ ON;j (af\% — ok ) §S369> + Lkl §id = sk
<rs> <rs>
- .
007 e O ik (2.26)
O\ O
while the second column is
<O . on'  on .
0 - )\j—A + >\ill 2? + T(STS(S;- y
3/\ a/\z] a>\rs
0 = 25\ijmik + S\ill (Qmikj + mklléij) + iLl(Sf (2-27)
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Firstly we notice that the two results coincide at thermodynamical equili-
brium. In fact egs. (2.25) calculated in this state become:

O Ol
m:a—;\oamzzzaTlol,me:O,mm:O

because A and Ay are the only variables at equilibrium and there are no
linear terms in 7/, for the representation theorems. Similarly eqs. (2.26);5
amount to identities, eq. (2.26)3 to m;j; = 0, while eq. (2.26)4 gives Mgy
at equilibrium, without conditions on ¢*. Finally eq. (2.27); becomes an
identity and eq. (2.27), yields %X;lm”df +0+0+ %(5]’? = 0. Integrating this
last equation we find

which coincides with eq. (19) of [13]. So the two approaches coincides at
thermodynamical equilibrium, because they give the same result for % and
¢ (which is zero).

Let us suppose now to know B and (ZS”“ up to order N, with respect to
equilibrium.

Equation (2.27); at order n and for n = 0,1,..., N gives \; at order n (we
know everything except \; that we can obtain from the equation).

The trace of eq. (2.27)y yields

< ON . on’ < On .
0=2)\; 5\ + 2)\<ij>A— +3\iy— + 3n

u <ij> ill

which is a partial differential equation for X , whose solution is

~_3

N _3 ~ A ~ A~ ~A_3
W= H ()\, Acim it Ak, )

Equation (2.27), is

A\

p
[y

2. 0h ., - 2. Oh .
0= <—/\”6A +h>5§+2i)\<]’k>+—)\” Aa 51n<](5§>

30N O\ 3 <rs>
(o8t ok oh ok AT
Lohy (20 O 0N 9 ook i 5<ig7>
8/\<rs> 8/\ll a)\<7"s> a)\<bc> 8/\<7"s>
. o . 5. b
—|—2)\<ij>A—(ST<Z(5§> + —)\jllA—
<rs> 3 kil
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Its symmetric trace-less part, at order N, needs the knowledge of I , é’k and
A; up to order N (which we already have) except for the overbraced term (in
which A" appears at order N+1); than we use this equation to obtain this
term, i.e.,

NZH
2. 0 N .
N\ — oIgk>
3 <rs>

N+l N+1 o .
from which we can obtain h except for an arbitrary function h* (X, Ay,

The integrability condition between (2.26); and (2.26)s, is

(NI

).

om™* o\, om™ 0N, L Lom
Oy 0N 0N O\ 3 A

or

T S S W R
N2 0N OMpdAcaps ¢ 0 0N 9NN O\ ONDAcaws ¢ T DN 30NNy
The terms of this equation are known at order N except for the last one
(remember that A\, = 0 at order 0) which we then obtain from this equation,

N«‘,/»l
: 9% h
e S
~ 52 N+1 . o ,_3
. . .. B N 3
Calculating this expression in A.,,~ = 0 we find O h* (A A, ?). In-

N+1

0 *

which doesn’t depend on \;;; but this function is 0 because it doesn’t depend

. . N+1

on A..s~ and on A\;; so that it is of order 0, while h* is of order N+1. So
N+l . . .3 . N+1

we have found % h* (A, AN, ?). Integrating with respect to A we find hx

N+1 . . 3 N+1
except for a function A*™* (\jyA,?); because h*™* is of order N+1 we have

. c a o3
tegrating with respect to \;; we find (A, AiuAy; ) except for a function

h** = N+1 2 +1 (228)

N+1 0 if N+1 is odd,
c ()\Z,”;\mj\l—l?))NT if N+1 is even.

N+1 . . N+1 . .
So h** has been found except for a constant of integration ¢ which arises

only when N+1 is even.
Now we already know the solutions of our equations obtained with the second
approach which we call b/ and ¢. If I/ coincides with b/ up to order N,
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and ¢'* coincides with ¢ also up to order N, we have found that W and h'
coincides also at order N+1, except for a function like (2.28); but also A}

has been determined except for a function like (2.28) with arbitrary constant

+1 N+1 . N+1  N+1 .. 2
¢ 1, instead of ¢ . So it suffices to choose ¢ ;= ¢ to make coincide h

and h) also up to order N+1. At the other hand M ana V¢ 11 are both
N+1

arbitrary constant and than it is not necessary to do any choice: K and
N+1

h 1 coincides at all.

After that, eq. (2.27); at order N+1 gives \; at this order.

Let’s now turn our attention to ¢'* and consider eq. (2.26)y and (2.26)s;
they define m“* and m™", but the symmetry conditions have to be satisfied:

A/k < [ T
[ 0T (afl gae I 5;a5£k>>] 6567 + Lol o

a)\<rs> 8)\<rs> a)\ll 8)\<bc> 3 )\k]ll
ook [ o o O
07 ([ Oh gtk ¢ oraok> ) =24 =0 . (2.29)
O\ Oy OAcbe> O\
N+1 N+1
These, at order N, give -2 a)\ 5<Z]53> and gf] as function of known quanti-
<rs> 1]l
N+1

ties; because also q@llk satisfies these same conditions, substituting from (2.29)
the corresponding quantities with ¢} instead of ¢'*, we find

oplk oYtk

e W s —g, 0T (2.30)
a)‘<rs> a)\i]ll

N+1 N+1

with F =¢'* — ¢
Now, because ¥* is of order N+1, it can be expressed in the form

N+1
k kaibi...arbrcy...c _\ A A A
Yh = " pfmbrearbreren i} s A arbes At ey 1l (2.31)

r=0

ka1by...arb : 3 3
with gy TIN5 tensor depending only on A and Ay.

Eq. (2.31) doesn’t change if we put @Z)fplql"'prqr(cl"'CN“‘T)PZEEF.. Porbr) i
stead of pp™ P @rlre NI where Pibi — ,(,f’é V) — 20,0 and the sym-
metrization is done treating a;b; as a single index. In other words we can
still keep eq. (2.31) but with pebrarbret Nt Gmetric with respect to

two generic indexes ¢; and ¢;, which remains the same exchanging any two
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couples of indexes a;b; and a;b;, and that gives 0 when we contract it with V
da;p;- After that egs. (2.30) become
T@Z)Lki]j@b”'“’“b’"cl'“CN“*T =0 forr=1,.N+1

klalb1a2b2...arbrc1...CN+1—r [k ’L] _ _
Py O, 0ey,, , =0 forr=0,..N

kaibiagbsa...arbrcy...c PR . .
In other words ¢, 71272 PN g g tensor symmetric with respect to
V couple of its indexes, so that

wkalblagbg...a,«brq...cN+1,T — 0 o lf N-I' iS Odd,
" Ur( A, Ny)otkargbraz | gen—ren—ri1) if Nor is even.
(2.32)

Now, if 7 > 1 eq. (2.32) contracted with 64,4, gives

{0 if Nr is odd,
0= =

=0
—N+3+T (ka? b2a3 CN—TCN—T+1) ] 1 wT‘
Yr 071207250 if N-r is even.

SO ¢fa1b1a2b2...arbrcl...CN_H_T _ O lf r 2 1.
Thanks to this results, eq. (2.31) becomes

0 if N is odd,
oA, Ap) AR (A ATt H

if N is even.

k kCl...CN+1 N N o
Pr =1 Al Aeyall = {

Now, eq. (2.26); is

O _OW N 0N 0N
N Oy O dws ¢ 0N
Dy
Because A, = 0 at order 0 = 8;’; is function of known quantities, so that

% = 0; consequently, we have that 1y doesn’t depend on \. Now we
can repeat a e considerations from the beginning of this section unti
peat all th iderati f the beginning of thi ti til

eq. (2.29), but with N+1 instead of N and noticing that the results don’t
N+1

change if we add at ¢ a term like (M) AP A A7)
N+2 N+2

h =h.

Let’s pass to eq. (2.26)a,, i.e.

N
2

. Then we find that

ans’k _ 6{1’ OMe N f?h' s<r i OA L on’
a)\ll a)\ll a)\ll 6’)\<ab>

T

DT

a “b
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N+1
N

which, at the order N+1 gives aa(if\k as function of known quantities = we
12
N+1 N+1
have that % = 0; in other words vy is a constant. So ¢* and ¢}* differ
i

N+1
for the term o AFE( N, AT! )% (present only when N is even); but in ¢* were

already present a term like this with an arbitrary constant coefficient. So
N+1 N1
we can affirm, without loss of generality, that ¢'* :qbllk. This completes the
A N+1 N1
proof that h' = hy and ¢*=¢}F.

2.3 The 14 moments case

In [18] I have applied the new methodology to the 14 moments model. We
have also shown that the 13 moments case can be obtained from the present
one by using the method of subsystems. Let’s report here a part of the paper.
The 14 moments model was firstly investigated by Kremer [19], up to second
order with respect to equilibrium; here we want to exploit it up to whatever
order. The appropriate balance equations for this model read:

OF + O F* =0

atFij + akFZ]k — P<ij>

O, Fill 4 g, Filtk — pill

atFiill 4 akFiillk — Piill’ (233)
where the independent variables are F', F?*, Fi [Fi#l [l which are sym-
metric tensors. See also ref. [2] for further details. The right hand sides
of eqs. (2.33)12 are zero, such as the trace of that in eq. (2.33); for the
conservation laws of mass, momentum and energy. As usual, we have to
add the entropy law and to impose the galilean relativity to close the system
(2.33). By introducing the Lagrange multipliers, the entropy principle for
these equations is

dh = AF + NdF" + \jdF7 + X\jyd F™ + \jiyd F™

dpF = NF* + NdF* + N\jjd F*9 4+ \yyd FF" 4 \jyyd P

o = A\ P<97 4+ Xy P 4 Ny P > 0. (2.34)
and the potential have the following form

W = XF 4+ NF' 4+ N F7 + Mg F" + Xy F™ — h

Qb/k _ )\Fk + /\szZ + )\iij’ij + /\illeill + /\iilleiill _ Qbk (235)
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By differentiating eqs. (2.35) and using eqgs. (2.34); 2 we obtain
dh' = Fd\ + F'd\; + F9d\; + F"d\y + F™d\y
dp™ = FrdX + FMdX; + FFdX; + FF" g + F*"dXg.  (2.36)

2.3.1 The Galilean relativity principle and the entropy
principle

We know that, if we have a change of Galileanly equivalent frames with
relative velocity v, the densities convert as:

FF=m
EF, = m; + my;
Fij = m; + 2mgvj) + mu;
Fy = ma + myui + 2myv + mao* + 2myue; + moy;
Fun = mgn + 4mygv; + 2mgo? + dmgvo + dmgope® + mot; (2.37)

here the m_ are the tensors corresponding to F' in the second reference
frame. Moreover we have

Fk = ka+mk

Fi, = Fog +mix +my;
Fijr = Fijop + myp + 2myvy) + mgvv;
Fur = Fyve + mak + muuvi + 2mpgop + myo® 4 2mgoe; + mo®o;
Faw = Fiuuve + maus + 4mpvs + 2mgv? + dmivv; + dmggoo? + mgo?
h = h
o = hup + o". (2.38)

The first two of these, as the trace of the third and fourth ones, are identities,
while what remains is the transformation law of the dependent variables.
Substituting the relations above into eq. (2.34); and defining

5\ =\ + )\ivi + )\ij'Uz'Uj + /\ippUQUZ‘ + /\ppqu4
P = )‘z + 2)‘ijvj + 2)‘jppvjvi + )\ippvz + 4)‘ppquzvi
ij = Aij T AppUnd; + 2Aipp0; + 2)‘ppqu2(5zq + 4XppaqViV;

PSS Y

5‘ill = Aipp T 4 AppgqVi
)‘ppqq = Appqq (2-39)
we have
dh = Adm + Ndm; + Nijdmg; + Nudmag + Nindmg,. (2.40)
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For eq. (2.38)¢ we note that eq. (2.40) is the counterpart of eq. (2.34); in the
second frame; this allows us to see that egs. (2.39) are the transformation
rules for the Lagrange multipliers.

Similarly, by substituting eqs. (2.38) in eq. (2.34),, we find

dggk = ;\dmk + S\zdmkl + S\ijdmkz-j + ;\illdmkill + j\iilldmkiill (241)

which is the counterpart of eq. (2.34), in other frame.
The counterparts of eqs. (2.35) in the second frame are

o= m\+ mzj\z + mijj\z'j + millj\ill + miillj\iill —h
élk = mkj\ + mkij\i + mkijj\ij + mkillj\ill + mkiillj\iill - ék; (2.42)
differentiating them and using egs. (2.38)g7, (2.40) and (2.41) we obtain
respectively

dﬁ, = mdj\ + mZdS\Z + mijdj\ij + mmdj\m + miilldj\ii”,
Ao = mpd\ + mpd\; + mkijd;\ij + mind i + Mygndiin.
Taking their derivatives with respect to the various components of the main
field we have

on' on’' on’' on’' on'
m=—=, My=——7, My =7, Myu=_—7—, Myu = ),

0)\ 8)\2 8)\13 8)\2“ 6’)\““
k aj\ ) ki 85\1 9 kij @S\U ) kill a;\i” ) kiill a;\iill .
(2.43)

Comparing the correspondent terms in the two rows of eq. (2.43) we obtain
the following compatibility conditions:

on' 4™ on’' _ og'* on' _ o'k 5

V) ) VORI ) V) VR Vi

A/k] A/ A/k‘ A’k:]

¢A =0, ?h = %55, a‘? =0. (2.44)
a)\z‘[j Ok O a)\ll[i

By substituting h, , ¢* and ¢* from eqs. (2.35)1, (2.42)1, (2.35)s, (2.42),
into eqs. (2.38).7, these become

W="n, ¢*=3¢*+ " (2.45)

where (2.38);_5 and (2.39) have been used. )
Now, from eqs. (2.45) we see that i/ and ¢'* are composite functions of A’
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and ¢'* and of eqs. (2.39); but A’ and ¢'* depend only on A, \;, Nijs ity i
and not on vy,. In other words, the derivative of ' and ¢'* with respect to

vp, through the above mentioned composite functions, must be zero, i.e.

on'

av =0= mj\h + 2mi5\ih + ;\ipp (m”cSih + Zmih) +4mh”5\ppqq (246)

h

agb k 00— N h 3 N

av =0= mk)\h—l—kal)\z +)\z'pp (mk”@- + 2mmh) +4mkh”)\ppqq+5hh (247)
h

where (2.43) and (2.39) have been used.

The entropy principle and that of material objectivity reduce in imposing
eqs. (2.46), (2.47) and (2.44). We want to impose these conditions up to
whatever order with respect to thermodynamical equilibrium. As said in
chapter 1, this is defined as the state where all the components of the main
field, except A and )\Zj = )\”61], amounts to zero. To avoid an excessive
quantity of indexes, we will do later the expansion with respect to )\ppqq. The
expansion of the tensor (]3% with respect to the other variables is

00 00 0o 1
i 9i1-ipg1jgk1hl e krh 'R \
o= > D ) par X Ny A N

p=0 ¢q=0 r=0 p'q'r'
. 1. )
(Aklhl - §>\ll5kz1h1) ()\k’ he = —)\zz5k hy ) (2.48)
il G 3 )

aP+Q+T¢ 4
== — — - . (2.49)
8)\i1 s 8)\ipa)\jlll s a)\qula)\klhl .- -8AthT cq

Now, from the compatibility conditions (2.44),, (2.44)s and (2.44), we see
that we can exchange the index i respectively with each other index taken
from iy ---4p, j1,---jg and hy---h, or ky---ky, so Zg}lp]lm]qklhlmkrm is a

symmetric tensor with respect to any couple of indexes.

jir -ipj1---jqkiha-ky h
Moreover ¢pg, "7t 7T depends only on scalars, so that
krhy kb : .
g Jakihkebe g if p+q+2r+1 is odd
ii1-+% kihi--krhy NN B . .
g I dakah = D (A Aty Appgg )0 -+ - 8% if p+q+2r+1 is even,

(2.50)
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so that ¢y, PP i known except for a scalar function.
Similarly, for the tensor A’ we have

oo oo X

W= ZZqulrl Akt ke X N N N
p=0 ¢g=0 r=0
. 1. A 1.
Nerh — 5/\zz5k1h1 R I Y g)\llékrhr (2.51)
with — Rgipiddkihebehe (ROR) X ) =

3p+q+rh/
= — — — - . (2.52)
8)\1-1 s 8)\ip8)\j1” e Gqulla)\klhl e a)\hrkr eq

Taking the derivatives with respect to S\jll of the compatibility conditions
(2.44); and (2.44), and using (2.44)g we see that we can exchange every in-
dex taken from ji,---j, with each other. Similarly, taking the derivative of

eq. (2.44); with respect to A5 and using eq. (2.44)4 we see that we can

exchange every index taken from 4,--- ,4, with each other. Consequently,
SRS SRR Sy S A S . . .
g Pt IR g A symmetric tensor with respect to any couple of in-

dexes; moreover it depends only on scalars, so that

g — if p+q-+2r is odd
h;lq”bpjl Jgk1h1-krhy hp o ()\ )\llv /\ppqq)(suzz e ke p+q+2r is even.
(2.53)

In other words, also h, 2/t 7am M i 4e known except for a scalar function.
) p7Q7

We want to avoid to use egs. (2.49) and (2.52) in the sequel. To this end we
note that we can consider

grratrp/
iy 0N, O+ - ONjuO Ny = - DNk
gpratr 'k

iy 0N, ONji -+ ONjuO Ny - O

and

depending on j\ab as composite functions through 5\<ab> = (5i 5j 15” 5ab) /\
and /\” With this in mind let us take their derivatives with respect to )\ab,

after that contract them with d,, and calculate the result at equilibrium; we
find

i1++ipJ1--ggkihi--krhrab o a iok1hy-krhy (2 54)
D,q,r+1 a D,q,T )
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iil"'ipjl“'jqklhl‘“krhrab o a AR ]1 ] kihi-krh
and ¢, .11 Oab = 3——@p 7 i (2.55)
l

An interesting consequence of eq. (2.54) can be observed as follows.
Let us take the derivative of ' with respect to A;; taking into account that

S o
Aij = 3Au0ij + Acij>:

ah/ oo 00 1 ahzl rzpjl Jgki1h1---krhy R o R
o 22 s o iyt A A A
1] r=
. 1< < 1«
(Aklhl - g)\llaklfn) (Akrm - g)\lzékmr) dij +

r A N
E:E i1ipg1jgkihi-krh S T
+ I lrlhpqrp ! " T/\ "')‘Zp)‘h” /\Jq“

A 1+ N 1. L 1 .
(Aklhl - g)\ll%hl) (/\krlhrl - g)\ll&c”h”) (%% - §5hrkr5”) ,

which, by using eq. (2.54), becomes

a]/:’/ o0 o0 oo

_ Z piipdvedekihackeheabs N8

o\ pq'rl?) Pt abstiy P
i =0

~

. . . . 1- 3
gt Ajglt (/\klhl - g/\zz(%hl) (Ak,«hr - g)wf%hr) oY +

oo 0 X

z ~ipg1-jokih1-krhr R i\

p=0 ¢=0 r=1

N 1- A 1. .
()\klhl - g)w%hl) (Akrlhrl - gAllélehr1> Ohyk, |07 +
z ip jqk1h1--krhr 'R A
+ ZZZ 1 gt} A N A
p=0 ¢=0 r=1 pq

) . . 1. o
(Aklhl - §>\u5k1h1) <)\kr1hr1 - §>\zz5kuhr1> 1 O%,

We note that the term in square brackets amounts to zero as can be easily
proved by substituting r=R+1 in the second sum. What remains can be
written as

o' on
ONij  OAaijs
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where the derivative in the right hand side has been taken without conside-
rmg that the components of )‘<w> aren’t independent because restricted by

)‘<m>5 J = (). Proceeding similarly with <;5 'k and using eq. (2.55) we find that
aqg’k B a&’k
My Dheyjs

After that, we see that eq. (2.49) and (2.52) become consequences of egs.
(2.48) and (2.51) so that they can be forgotten. But, instead of them, we
have to impose egs. (2.54) and (2.55).

Expliciting eq. (2.54) by means of eq. (2.53) we have

p+q+2r+10h,q,
p+q+2r+3 9\,

hpgri1 = ) (2.56)

from which

1 0h
hy gy = 37— 24T 240 (2.57)
- p+q+2r+1 9

as it can be seen by using the iterative procedure.
Similarly, expliciting eq. (2.55) by means of eq. (2.50), we have

PH+q+2r+20¢,,,
rl = LA 2.58
from which
, Ptqt2 0"¢pq0
Ppgr =3 = (2.59)
pHag+2r+2 9Ny
that can be proved using the iterative procedure.
If we introduce the quantities
kpg = hpgo %f p+q %s even (2.60)
kpq = ®pgo if p+qis odd,

we note that A/ and (ﬁlk are known if we know all the terms of the infinity
matrix £, 4; so our aim is to find k,,. We have also to impose the compati-
bility conditions (2.44) and the conditions (2.46) and (2.47) expressing the
Galilean relativity principle.

Let us begin by investigating the conditions (2.44).
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2.3.2 Exploitation of the conditions (2.44)

Now let’s impose conditions (2.44) on our tensors. We notice that equa-
tions (2.44),6 are already satisfied because the tensors gy, #/" 7tk hkr

are symmetric, so there remains to impose eqs. (2.44)1 23 5.

e Eq. (2.44),, by using (2.48), (2.50), (2.52) and (2.53), becomes

OPp,q,r
ptlar = ap)l\q’ (2.61)
which, for r=0 reads
9¢
i = =228 (2.62)

and, for the other values of r is consequence of (2.57), (2.59), (2.62). This
last one, by using (2.60), can be written also as

Ok
kpi14 = ﬁ with p4+q+1 even. (2.63)

In other words, the elements with p+q+1 even of the matrix k,,,, can be
expressed in terms of that of the same column but previous row.

e Let us impose now eq. (2.44),, using eqs. (2.48), (2.50), (2.52) and
(2.53); we obtain

Ppgr41 = Ppi1,q,r (2.64)
which, by using eqs. (2.57) and (2.59) is equivalent to

p+q+10h,q0

= - 2.65

¢p+1,q,0 p+q+3 O\ ( )
and this, by using (2.60), becomes
p+q+10ky,, .

k = — with p+q even. 2.66

p+1.q P+q+3 O\ ( )

Using (2.63) or (2.66) we can express all the elements of the matrix k,, in
terms of those in the same column and previous row. Iterating this procedure
each element can be expressed in terms of the elements in the first row of the
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matrix. In fact joining eqgs. (2.63) and (2.66) we obtain

;

k,,=35-¢L 0o L with p and g even
P,q p1+q+1 95, BONE 0,g p q )
p—1 .
kp,=2372 a2 p_a1p —7r ko With p and q odd,
gl . 2L
b ogn o EOAE (2.67)
kp,=32-42 _ % L with p even and q odd
P Pt 23 BoAE 0 P q ;
ptl 1 or .
k,,=3"% —4F —k with p odd and g even.
P.q a2 g3 PR 3Byt 0 p q

\

e Finally, let us consider eqs. (2.44)35. Using egs. (2.48), (2.50), (2.52)
and (2.53) they become respectively

ptq+2r+4

h = r 2.68
D,q+1, p+ q T 27,, + 2¢p7% +1 ( )

and

Ohypgr _ptaq+2r+3
ey PHa+2r+1

Dp.g+1,r- (2.69)

By using egs. (2.57), (2.59) and finally (2.60) the above equations transform
respectively into

ok
kpgi1 =3—2%  with p+q+1 even (2.70)
Oy
and
p+q+1 0k, .
k = —— with p4+q+1 odd. 2.71
p,q+1 P+qg+3 aAaabb ( )

In other words with eqs. (2.70) and (2.71) each element of the matrix k,,
can be written in terms of the element in the same row and previous column.
But we already know, by eqgs. (2.67), each row of the matrix &, , in terms of
the first one; so we have to investigate the compatibility of these two results.
By substituting eqs. (2.67) into eqs. (2.70) and (2.71) we obtain a series of
equations for the first row of the matrix k, 4, i.e.,

(

kog+1 = 3%]{:0,(1 q odd,
2
) 2%% 0,9 — é%k?o,qﬂ q even, (2.72)
G+3 Dbt ko,q = ko,q+1 q even,
\ 85‘a8abb 8_85\ 0. = 3%”]‘50,%1 q odd,
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and other equations which are consequences of these last ones. Now egs.
(2.72); and (2.72)3 give each element kg, in terms of kg, i.e.,

g 1 01 .
ko, = 32 —koo with q even (2.73)

q +1 aj\l%l aj\gabb

1 8‘1
-1  g+1L
4+295,7 05,
Through these two equations is possible to express a generic element in the
first row in terms of the first element in the same first row of the matrix.
Eq. (2.72)54 remain to be imposed. The first one of these with q=0 and by
use of (2.73) reads

ko, =3"7 koo with q odd. (2.74)

0? o 0
9" ko = ———kop, (2.75)
oN2 ON O aatt

which is a condition on k. After that eq. (2.72), for the other values of g
is a consequence of eq. (2.75).
At last, eq. (2.72), with use of (2.73) and (2.74) becomes equivalent to its
value for q=1, i.e.,

ok o?

0= 7.2 k0,0;

I
ON20 N aavh ONONZ .

which is eq. (2.75) differentiated with respect to j\aabb; so it is sufficient to
impose eq. (2.75).

We can now substitute eqs. (2.73) and (2.74) into eqgs. (2.67) which now
become

( pta g opta .
kp,=372 ko.o with p and q even
P AR S VT W e P a ’
ptq— p+q .
kpg =3 L T 2 koo with p and q odd,
7 +q-1 PR 93, T 0 08T
ptq— p+q .
kpg =3 L 5 = 2 —1 koo with p even and q odd,
7 +at+1 PRt ox, " 8)‘73/\aabbT ’
pta 1 orta .
kyp, =3 -k with p odd and q even
, Tqr1 0,0 p q .
\ P pHa+2 Ay %BAT 8)\aabb§

(2.76)
In this way all the elements of the matrix £, , are determined in terms of kg

which is restricted, until now, only by eq. (2.75). Another restriction will be
found in the next section.
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2.3.3 Exploitation of the conditions (2.46) and (2.47)

There remains now to impose eqgs. (2.46) and (2.47), but we can see that
(2.46) is a consequence of (2.47) and (2.44). In fact

e the derivative of (2.46) with respect to Ai is equal to the derivative of
(2.47) with respect to A, thanks to (2.43), (2.44),,

e the derivative of (2.46) with respect to Ay, is exactly the derivative of
(2.47) with respect to Ay, thanks to (2.43), (2.44)a 1,

e the derivative of (2.46) with respect to PYRT exactly the derivative of
(2.47) with respect to A4, contracted after derivation by d4p, thanks to
(2.43), (2.44)3.9,

e the derivative of (2.46) with respect to ;\kkll is exactly the derivative of
(2.47) with respect to Ay, contracted after derivation by d;, thanks to
(2.43), (2.44)5.

Consequently, eq. (2.46) needs to be imposed only for A = 0, Aap = 0,
A = 0 and Ay = 0, and in this case it is an identity. So it remains to
impose only eq. (2.47). To this end it is useful to use the identity

or (X@) 5\ 8r+1¢/k
aj\kzlhl e aj\krhr Y 85\z Y 85\i85\k1h1 ... aj\krhr
ar¢’k
T(Sj(k'l S 3 ?
8)\h1 (9)\k2h2 e a)\krhr)

whose proof can be found in the Appendix of [15] and holds also if, in our
case, qb 'k depends on the further independent variable /\aabb

Let us take now the derivative of eq. (2.47) with respect to ;\i1-~-5\,»p,
)‘ml )\Jqll, )\klhl )\k n,.- 1f we calculate it at equilibrium and we use egs.

(2.49) and (2.52) we obtam

0 O ginkisegahibyhok, +25\” b g dahi ek

POhir = oA pLar p+1,q,r
hikg--hrkr)kii-ipji--jq khii-ipji---jqh1k1--hrkr
+ 2T(5h(kf1 ¢p+1,q,r71 + 2q¢p,q717r+1 +
jojg ki --iphy k1 kyab Q Kiv-+ipj1-jqhha k1 hoky
+ qéh(jl p,q—1,r+1 5ab + 4)\aabb¢p,q+17r +
+ hgq ;pjl Jghiki- hrkrahk} 0. (2'77)

To evaluate this condition it will be useful to do the following considerations:
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1) Let ¢ be a symmetric tensor; it is easy to prove that

6h(i1 i2"'ipj1"'jqel"'esk) _ p 6h(i1 i2---’ip)j1---jq61---esk+
v ptqg+s+1 4
q h(j1, /g2 jq)i1-ipe1---esk
—5 J1,/4J2°°Jq)t1 "lp€1 s +
ptqg+s+1 v

n S (5h(61¢82~~€s)i1'"ipj1"’jqk +
ptqgt+s+1

1

- hkwil”'ipjl"'jqel"'es )
pt+qg+s+1

2) Moreover we have

q + p —+ 2r + 35(j2-'-jqk’il"'iphlk1"'thT).

j2...jqki1~~~iph1k1~~-hrkrab(5
q+p+2r+1

p7q_17r+1

ab — ¢p,q71,r+1

3) Finally, we can express everything in terms of the scalar h,,, using the

following relations:
%Qspfl,q,r = hp,q,r from €q. ( )
¢p+1,q,r—1 = hp,q,’r‘v ¢p+1,q,r = hp,q,r-i—l from €q. ( )
Opg—1r41 = i—igigziéhp,q,r from eq. (2.68),
(2.69)

o — ptgf2r+l 0
P,q+1,r P+q+2r+3 Ogapy, POT

from eq.
All these results allow to rewrite eq. (2.77) as

o 24 .
0= h}hq,?“(p Tq+or+ 1)6h(ll5l2~..hrkrk) + g)\llékml”'hrkrhpqr—i-l +

p+q+2r+ 16khi1"'hr PH+q+2r+10hyg, §hkir-hrkr
p—|—q—}-27“—|—3 p+Q+2T+3a>\aabb

+2q b hp,q,r + 45‘&&61)

where the notation §¢1¢2¢2s = §lere2 ... §e2s-1€25) hag heen used; the result is
equivalent to

AR
0 = (p + q + 2r + 1)hp7q,7" + _)\llhp,q,r‘-i-l +

2 1 oh
p+Q+ T 2thqr+4)\aabb PAT .
p+q+2r+3 aabb

This equation, by using egs. (2.57) and (2.60), becomes

a" ortt . 0" ok
0= (p+3¢g+2r+3 ko + 2 Ky g+ 4Naa —24
( )8)\” P UWosr 1 8)\” P, bb " O\t

with p+q even. We note that if this relation holds until a fixed r taking its
derivative with respect to A; we obtain that it holds also with r+1 replacing
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r. Therefore, it suffices to impose this relation for the lower value of r, i.e for
r=0. In this case it becomes

0 8k
0= (p + 3q + 3)]€pq + 2)\” 8)\ k‘pq + 4)\aabb P (278)

i aabb
with p+q even.
Let us firstly analyze the case with p and q even. Putting eq. (2.67); into
(2.78) we have

oP ortt « o’ 0k
0=(p+3¢+3) Ko,q + 2\ e} kO,q + A gavh—5— b
OAZOAE O\ ONZONE Doty

We note that if this relation holds until a fixed p taking its derivative with
respect to Ai and then with respect to >\ we obtain that it holds also with
p+2 replacing p (p must be even). Therefore, it suffices to impose this
relation for the lower even value of p, i.e for p=0.

In this case it becomes

0 ok
0 = (3¢ + 3)kog + 2M——kog + 4\ aapp——2L, (2.79)
(9>\” aabb
that is (2.78) calculated in p=0.
By using eq. (2.73) we see that eq. (2.79) becomes
01 Tt 01 Ok
0:(3q+3>—A2k00+2)\ll 2+1 71 k00+4>\aabb ~4 .4 8)\00.
a)\ll a)\aabb a)\ll a)\aabb a)\ll a)\ abb ccg99

We note that if this relation holds until a fixed q taking its derivative with
respect to 5\” and then with respect to j\aabb, we obtain that it holds also
with q+2 replacing q (q must be even). Therefore, it suffices to impose this
relation for the lower even order of q, i.e for q=0. In this case it becomes

0 ok
0_3%0+2m5—mm+4M@b 00 (2.80)

i aabb

that is (2.78) calculated in p=0, q=0.
There remains the case with p and q odd. We will see that it will give only
identities. In fact, putting eq. (2.67), into (2.78), this becomes

P

0 = (p+3q+3) Ai Ap+1k07q+
ON,Z ON"T
ap+1 o ok
T 2)\” =1y wp1 04 + 4 Aaabh = L
03T Tloant O3 T ONE Odaaty



We note that if this relation holds until a fixed p taking its derivative with
respect to A and then with respect to /\ we obtain that it holds also with
p+2 replacing p (p must be odd). Therefore, it suffices to impose this relation
for the lower odd value of p, i.e p=1. In this case it becomes

0 0? . 02k

0= (3¢ +4)—ko, + 2) ko,q + 4 aabp———. 2.81

( 1 ) 8}\ 0 " o3oN, (9/\(9/\1 0 q " >\aabb ( )
This relation, by using eq. (2.74) becomes

s 0
0 = (3q+4)— ~koo +
ON2 ON2
. g+l a . 01 Pk
+ 2)\ll =1, . arl % k0,0 + 4)\aabb ~a—1  gFl 0.0
05,7 oAz, 0N ONg? DNz, PccagON

We note that if this relation holds until a fixed q, taking its derivative with
respect to )\ll and then with respect to )\aabb, we obtain that it holds also
with q+2 replacing q (q must be odd). Therefore, it suffices to impose this
relation for the lower odd value of q, i.e q=1. In this case it becomes

0? . 0? . Pk
= 77/6070 + 2)\“?]{3&0 + 4/\ppqq%,
OND N g ONONIONpag 070N2,

which is a consequence of (2.80) because it is its second derivative with
respect to A and j\ppqq. In this way, we have seen that the conditions (2.46)
and (2.47) give only the restriction (2.80) for ko and many identities.

So we have that every element of the matrix k,, can be expressed
as function of ky, and this is restricted only by eqs. (2.75) and
(2.80).

Let us conclude by exploiting these conditions and let us do it by using the
expansion of ky around the state with jxppqq =0, i.e.,

koo_z s (0 ) N (2.82)

Using (2.82), eq. (2.75) becomes

oOks _ Ok (2.83)
mfl X '

while eq. (2.80) transforms into

[e.9]

1 <, N 1 Ok, <, 1 .
0= 3zogks/\ppqq+2)‘”z 5! 0)\ )‘ppqq 42 (s—1)! —k /\ppqq

s=0 =1
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{3my+2ﬁu ko — () for s=0,

o]
oA
3ks + 2Ny 8;\% +4sky =0 for s > 1;
1

1o}
but the relation for s=0 is contained in the other equation, so that they can
be written as

< Ok,
(3 -+ 48)l€s + 2)\”§A =0 Vs 2 0,

i

whose solution is
ke =X, 7 k(M) (2.84)
This allows to rewrite eq. (2.83) as

6E8+1 7 9
o =Ry (3 495+ 4s). (2.85)

In this way we have found that fkvg(;\) is an arbitrary single-variable function,

while the other functions kgi1(A) are determined by (2.85), except for a
numerable family of constants arising from integration.

2.3.4 The 13 moments model as a subsystem of the 14
moments one

To verify that the 13 moments case is a subsystem of the 14 moments one
we will show that the relations obtained in the previous section for the scalar
functions jy, are satisfied by the value of kg, found here but considering
Appgg = 0. Firstly we have to rewrite the expressions of kg ,. Substituting eq.
(2.82) into eq. (2.73) we have

o 1 SN 108k, 08N
kogy = 32 Z_' 2Aﬂ Aippqq —
grlzs NG OAppag
1 103k q Q-
= 3% ———2s8(s—=1) (s — =+ 1) Appgs
q+-1;£;8'aA£ 2
If we calculate this for prqq = 0, only the term for s =  remains, so our
relations become
a 1 a%kg .
koq =32 —2  with q even.
qg+1 O\2
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Substituting eq. (2.82) into eq. (2.74), still making the previous considera-
tions, we have

1 (9(1%116%1

kog=372 — with q odd.
) + 2 P Aty
Now using egs. (2.84) we obtain

q q ~A_ 3+3q o

35,14%1 (—3)2n(B+2¢,3¢+ 1)\, 2 kg for q even,

ko = (2.86)

a1 g—1 ~_443q

37;3 (=3) % n(5+2¢,3¢+2)\, * ka1 for q odd.

where n(a,b) = a(a —2)(a —4)--- (b+ 2)b.
Comparing this result with the corresponding one for hg,o and ¢g 40 (i.e.
egs. (2.18) and (2.19)), we find that they are the same, except for identifying

g

»

~ ~

Ty (A) = (—g) q%”(?’ +24,3q + Dy (V) (2.87)

and for setting ¢, = 0.

It is easy to verify that with ffVL()’q given by eq. (2.87), the condition (2.17)
becomes exactly the present eq. (2.85), except for substituting q=2s+2, and
viceversa. All the other results for the 13 moments model, can be obtained
by substituting S\aabb = 0 in the present ones except for the new restriction
cq = 0.

In other words, for the 13 moments model, the solution was found except
for two families of constants, one arising from integration of eq. (2.17) and
another constituted by the constants ¢, appearing in eq. (2.19). This second
family of constants doesn’t appear if the 13 moments model is obtained as a
subsystem of the 14 moments one.

2.3.5 The comparison with the kinetic approach

The solution of our conditions proposed by the kinetic approach, see [2] and
[20], is

no = /F()\ + i+ Nije'd 4+ Niuc'c® + Aaanpc?)derdeades

gzﬁlk = /F()\ + N+ )\Z-jcicj + A€ + Aaanct)Fdeydeydes,
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(where F is related with the distribution function at equilibrium), and it is
easy to see that it satisfies the conditions (2.44), (2.46), (2.47). We can now
see that it is a particular case of our general solution. In fact egs. (2.49) and
(2.52) now become

p?q”r

ii1-ipj1jokihakehe /F(p+q+r)()\ + l)\”g + Aaansc?)
3
et Lot L quCQthl Ckl .. ChTCdecldCQdC&
i1-ipgrjokihy - kehe (p+q+r) - 2 4
P = F (A + 3)\”6 + Aaanc’)
AL et quc2qch1ck1 . Chrckrd01d02d03,

and it is easy to see that eqgs. (2.54) and (2.55) are satisfied.
Egs. (2.50) and (2.53) hold with

4 o0 1
gbp,q,r - P+q +7T2T T / F(p+q+r)()\ + g)\ucQ + )\aabbc4)cp+3q+2r+3dc’
0
om ~ plorar) 1y 2 4\ p+3q+2r+2
hpar = ST F (A + 5)‘”‘3 + XaanpC) P de.
0

Egs. (2.57) and (2.59) are consequences of these. The definitions (2.60) now
become
A
Cptgq+1

4 > 1
kp,q = ]T’/T_‘_Q / F(IH‘Q)()\ + g)‘”CQ + /\aabbc4)cp+3q+3dc if p+q is odd.
0

e 1
kp.g / FOra(\ 4 5)\1102 + Aaanpct )T de i ptq is even,
0

From these it follows
oo 1
koo = 47T/ FA+ 5)\1102 + AaanC*)Ede
0

and it is not difficult to see that eqs. (2.75) and (2.76) are satisfied.
Proof of eq. (2.80) needs an integration by parts, as follows

o0 2 o0 (o)
0= 3/ Fctde + 5/\”/ F'étde + 4)\aabb/ F'cbde =
0 0 0

= 3/ Fc2dc+/ — | lde = 3/ Fclde + |F03‘ —/ 3Fc*de
0 0 de 0 0 0

which is satisfied because

lim Fc® = 0.

C— 00
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We can now see that eq. (2.82) holds with
o 1
ks = 47T/ FO\+ g)\”c2)c4s+2dc,
0

of which eq. (2.83) is an easy consequence.

_1
By using the change of the integration variables ¢ = n)\;?, we obtain eq.
(2.84) with

- o0 1
ks = 471'/ FO\+ §n2)7745+2dn. (2.88)
0

Proof of eq. (2.84) needs two integrations by part, as follows

d ~ o 1
_k,s — 4 F(s+2) Y 2 4s+6d —
It W/o (A + 3" )n n

o0

1
47TF(3+1) ()\ + 5772) gn4s+5

+
0

ee 1
o / 671'(45 + 5)F(8+1)()\ + §772)7748+4d77 _
0

[e.e]

+
0

1,3
= ‘—Gﬂ(éls +5)FE (X + 5772)5774”3

o 1
— / —97(4s + 5)(4s + 3) FO (A + 5772)774S+2d77 =
0
9 -
= 1(48 +3)(4s + 5)ks.

Consequently, the kinetic approach suggest to take
~ 00 1
W) = a7 [ O+ gy,
0

which is only a change from our arbitrary function EO(A) to the arbitrary
function F; moreover it considers only a particular solution of the eqs. (2.85),
ie., eq. (2.88). In this way the numerable family of arbitrary constants
arising from integration of eq. (2.85) doesn’t appear in the kinetic approach.
Then the macroscopic approach here considered is more general than the
kinetic one.
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Chapter 3

Dense gases and
macromolecular fluids

In previous chapters we have considered ideal gases but this case doesn’t take
into account the interactions between atoms and molecules. In this chapter
we will apply the methodology described in the previous chapter to less
restrictive model describing more complex fluids. In particular we will find
the solutions of interesting models as that for dense gases and macromolecular
fluids with 13 and 14 moments.

3.1 The 13 moments case

For dense gases and macromolecular fluids the symmetry of system (1.34) is
lost, so that the appropriate equations are

OF + O F,=0,

OF;, + 0:Gix, =0,
0Ly + OGiji = Poijs
oFu + OGuw = P, (3.1)

with Fj; = Fj;, Gijr = G, P<ij> = P<ji~, and this last tensor, with P;; are
the production terms. If we consider also the conditions G, = Fi, Giy = Fi
we came back to the case of ideal gases.

The entropy law reads

dh = XF + NdF; + \jdF7 + \ydF™"
dor = MFy + NdGi + NijdGij + AudGo, (3.2)
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plus the residual inequality which we leave out for the sake of brevity.
By taking A, A;, \ij, Aiy as independent variables, and defining the potentials

h = A+ NF' + X\ F7 + Ay F'" — b, (3.3)
O = A+ NG + NijGiji + \uGak — o

egs. (3.2) become

oh . Oh . Oh oh,
= B — ? — 1) — qll —
F E% F on F g’ F B (3.4)
Opp  Oh 9oy Oy, O
O\ ONE’ G, = oN; Gijk = N’ G, = Oy (3.5)

In order to impose the principle of material objectivity, let us consider the
following change of independent variables

F = m
F, = muy;
Fij = muvw; +my;
Fu = ma + muv; + 2mav + mvy; (3.6)

and of constitutive functions

Gik = Mmu;vg + Mzk , (37)
Gij = Fijor + 20 My + Mgy
Gue = Fuvp + 02 My, + 200, My, + v; My, + 20, Mg, + Moy, -

The principle of material objectivity implies that h, ¢ — hvg, Mg, My,
My, M; don’t depend on v;. Imposing this condition for h and ¢ — hvy, we
obtain

F)\a + 2)\ia}7@' + )\ill(ﬂléia + 2F1ia) ) (38)
0 = Fida+ 2XMaGir + Ni(Guidia + 2Giar) +
+ AF+NE+NjEFyj+ NuFiuy — h)oga ;

where egs (3.2) have been used. The independence of M, Mk, My, M;
on v; follows as consequence. In fact, eqs. (3.2) now become

dh = Mdm+ N\.dmi; + Mdma (3.9)

J

d(gbk — hvk) = )\ZIszk + )\Z]dM”k + Az{lldMillk

J
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with

Moo= X+ N+ Ajvos + Agogo?
)\I = /\z + 2/\aiva + /\illv2 + 2/\allvavi ’

)\ZI] = )\ij + Aallvaéij + 2)\”(1'1)]') s
from eq. (3.9); we see that A', AL, A, don’t depend on v; (because 9% = X’

but h and m don’t depend on v;, similarly for the others); but eq. (3 8)1 can
be written also as

0 = mAL+ Xy (mubia + 2mia) | (3.10)
so that also A/ doesn’t depend on v;. By defining i’ and ¢}, from

ho= XNm+ Xmg; + Nyma — B
or — hvy = A My, + N Mg + Ny My — &,

the egs. (3.9) become

dh' = md\" +myd\]; + mayd\],
dgfy = Muyd\ + Mijpd\] + MydA},

from which by taking A, A}, A, as independent variables, it follows

on’ on’' on’'
_ _on o 11
m on M AL My AL (3.11)
o, oN 0, oA o4, oAl
= Muovr 0 = Mo + Mgy, 7 = Mo + M-
oA N DAL oA Tk By oA

moreover, the sum of eq. (3.8);, pre-multiplied by —uvg, and of eq. (3.8);
becomes

0 — QAZIaMlk + A{ll(Mllkéia —|— 2Miak) —|— hléka 5 (312)
or, by using (3.11)46,

ON . OM

o9,
all 8>\I ij 2)\"”87 !

alla)\[

/
0= {2\, — M M, + A ki -+ 20D, gfl’f + 1/ Okq

(3.13)
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From this relation we see that M, doesn’t depend on v;; let us prove this by
the iterative procedure on the order respect to the state with AL, = 2\[d,q,,

AL~ =0, M, = 0. Equation (3.13) at the order N gives
N-1 N-
2 O oA
g/\{z (Ma)™ + > (M) [2)\71;1 - )\ium ij QA{ZZW
q=0 ij ia

as a function of quantities not depending on v;. (here (---)¢ denotes the
expression of (---) at the order q). For example, for N = 0, we obtain that
MY, doesn’t depend on wv;; by assuming, via the iterative procedure, that
also (M;)? satisfies this property for ¢ < N — 1, it follows that also (Mg, )Y
satisfies it. After that, (3.11)g7s show that also M;jx, My, and M; don’t
depend on v;. In this way we have proved that entropy principle and the
principle of material objectivity amount simply to conditions (3.11)4, (3.10)
and (3.12).

In order to solve the conditions (3.10)-(3.12), let us firstly consider another

mathematical problem: we look for two functions A*(A', A/, A, A};) and
Or(N, AL, A, Aly) that satisfy the subsequent
oh* oh* oh*
_ Lo = 3.14
S VA ) VA Y (3.14)
99}, oh*  09;, 09} 99},
fry fry i s _— = MZ 5 —_— = M’L 5 315
N N oA SV VA v B
oh* oh* oh* oh*
0 = A4 225 M, + MG 0rs0ia + 2557 3.16
ON a+ a)\;r za+ 1ll(8)\7{5 + a)\j[@)’ ( )
00k 1 59k 1 \1 9% 99},
0 = Ay +2 Nig + N ( 57 0r50ia + 2 h*kq -
oot 2 e NGy 0ndia + 255 ) 0Dy

After that, we consider \! implicitly defined by the equation 0 = g%. Well,
h* and ¢; calculated in this value of A/ are exactly the functions i/ and
@ (respectively) satisfying the eqgs. (3.10)-(3.12). So let us begin with the
mathematical problem (3.14)-(3.16).
We look for a solution, of the conditions (3.15);-(3.16), of the type

925]: = (b(li + ¢8k(A{7 /\i[ju Afll? )\p{pqq) (317)
where h* and ¢{ are the functions W and QSA/’“ of chapter 2 satisfying egs. (2.6)
and (2.7).
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But all relations are certainly satisfied if ¢3; = 0, because in this case they
are nothing else than the corresponding ones in ideal gases. There we have
found the solution (3.17) with ¢f, = 0. Obviously, eq. (3.17) satisfies the
conditions (3.16), iff

0 = %ﬁofﬂ (gﬁ(}’f gf(}ka 5; )Am, (3.18)

let us impose this with an expansion with respect to the state s where \! = 0,
Ao =0, A}, = 0. The symbol ¢{* denotes the expression of ¢, of order N
with respect to this state. Obv1ously, we have ¢Jr = 0 because at the order
0, ¢5, may depend only on A,. We shall see that, by imposing eq. (3.18) at
order N, we find (;SN 1 except for terms not depending on A! which, on the
other hand , can be also found with the representation theorems. In fact, eq.
(3.18) at the order zero gives

1 9%

0= 3 d O

from which ¢; doesn’t depend on A!. But we have already seen that ¢9; = 0
so that up to the order 1, we have that ¢, is given by

(1)2 = f1<)‘{l))‘£lla (3-19)

with f; arbitrary function. Eq. (3.18) at the order 1 is

o2 Ol a9}, o
. I I k k r S I
0 = )‘ll a)\[ 2)\<m>z% + <2a/\<rs> 5<15a> +5 )‘lIl 5“1 )‘ill

from which
(2)2 = f2(>\ ))\<kz>>\zll7 (320)
with fy arbitrary function. Eq. (3.18) at the order 2 is
a¢0k I 8(]5 a¢0k r S a(bOk;
0 = _)‘ll a)\[ +2)\<za> a/\l + a>\j<rs>5<15a> a)\l]l 52@ >‘zll
from which
. 3
o = _EfZ()‘lIl) YA A (f2 + 15 ) (AL THEAL) My +
+ [fs(Azsz L) + f4()‘zlz)(tr(>‘l<rs>) )} Mt + s (AL s )2 AL

(3.21)
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with f3, fi, f5 arbitrary function. Eq. (3.18) at the order 3 gives
4x 3

ok = _§f5()‘lll)71()‘I<rs>)‘7{ll>‘£ll))‘£ + (3.22)
3 _ _
+ 3 L2+ 15 M) 2 = (Afa+ )07 - L AL A +
3 _
+ (DB = LA AN AL e AL+

2
1
+ §(f5 - 15f§)(A{Z)_l()\i)\ill))\ikw)\i” + terms not depending on \;

and so on.

3.2 The 14 moments case

The appropriate equations for this model are

hF + 0OpF,=0,

OF; + OGy =0,
OiFi; + OhGijp = Peij>
OFu + kG = P,
O Fun + Gk = P, (3.23)

where F', I}, Fi;,Fy, Fiy are the independent variables and they are com-
pletely symmetric tensors. P.jj~, Py, Py are the productions and they are
completely symmetric too. Gix,Gijk, Giuk, Giur are the constitutive func-
tions and are symmetric with respect to all indexes except for the index k.
The tensors G... and F... are related by the following law

A we already now, the entropy law is equivalent to the assumption of the
existence of the Lagrange multipliers A, A;, A, Ay, A such that
dh = AdF + NdF; + AjjdF7 + Agd F™ + Ayyd F™
dor, = AdFy, + NdGip + NijdGiji + Nind G + Niind G,
plus the residual inequality that we will not consider in this treatment.

Under a change of Galileanly equivalent frames the independent variables
satisfy the conditions above

n

n
Fiig.in = Z<k>m(iliz.“ikvim...in) (3.25)

k=0
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that , in our particular case becomes

F
F;
F.
Fu
Fiin

m, (3.26)
muv; + m;,

Mmu;v; + Myj + 2mvy) ,

ma + muvi + 2mav + motv; + miv? 4+ 2mv

4 2 2
My + mu” + dmvv° 4 2my;v° + dmgvv, + dmgg vy,

while for the constitutive functions holds

Gk
Gijk
Gk

Gk

-

+
+

muvg + mivg + Myv; + My

MUV + MUk + 2mGui vy + Mypvjvy + 2My vy + My,
miavs + myvive + 2mavv + motve + mvtos, +
2mvovg + Miv® + 2Myeo + Mygv; + 2Mgv, +
Myviv® + My,

Mk + mutvg + dmvv2og 4+ 2mavty, + dmgvoy +
dmgguve + Mot + 4AM00% + 2M0* + 4AMpvo; +

4 Miagvr + Mg

see [21] for details. The new variables m, m;, m;;, m;; and M, M;, M;;,

M1, satisfy the same symmetry property of F;

and Gy, . ; r respectively.

1--~in

If we put the equations for independent variables and constitutive functions
into egs. (3.25) they become

dh =
+
+

d(bx)

with

Adm + )\del + )\ijdmij + )\mdmm +
Niandmyiy + (Nim 4 2 ;m; + X jymydi; +
2)\]'”77%3' + 4)\ppqqmm)dvi (327)

+ + + +

)\ill =

Niill

(Adm + Nidm; + Aijdmi; + Nipdmay

Nty )vg + Ad My, 4 Nid My, + Ngd My, +

Aind Mk + Niaud My, + (Am + \imi + Ajymg;

ittt + AppaqMuiin ) Viedv; + (N My, + 25 My,

Nipp Mk + 2N ipp Mtk + 4\ ppgg Mink ) dvy, (3.28)

A+ Nv; + Aoy + Agviv® + Appqu4 g

A 4 203505 4+ Aanv® + 28005 + A0 ppgqviv?

Aij 4 Mnppvndis + 2 (ippvj) + 40 ppequ;vi + 200?05
Nipp + 40\ ppppv

A

Prp9q
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By imposing that h, ¢ — hvi, M, Miji, My, M; don’t depend on velocity

we obtain
oh
ov;
A(¢* — huy,)
ov;

In such a way eqs.

= 0= m)\z + 2)\7;jmj + )\ipp(muéhj + 2mz]) + 4)\ppqqmm
= 0= Mk)\z + 2Mjk)\lj + Mllk)\z'pp + 2Milk)\lpp +
+ Appgg M + 0. (3.29)

(3.27) and (3.28) becomes respectively:

dn'
doy,
with ¢f = ¢y, — hvg. If we define

Adm + Nidmy; + Agdmy + Nigdmag + Nindmeg
MM, + Nid Mg, + Ngd Mg, + Nind Mg 4 Appagd Miiug

M4 Nimyg 4+ Nama + Nigmag + Nimay — b
AM, + XMy, + N Mg + XNinMayg + Nppgg Miink — O

h/
O
egs (3.30) becomes

dn’
do},

from which, by taking A', A[,Al; AL, as independent variables and by taking

the partial derivatives with respect to them, it follows

mdX + m;d\; + midXg + migd g + mandNag
My dX 4+ MidX; + MyrdXig + MiggdXig + MiiedAppgq

_on o on’ o oh'
™oy M T o M T o
il — a)\illv il — 8)\1‘1‘11 3
(3.30)
I N S
k a)\ 5 ik a)\l> ilk a)\il’
olo 9},
My, = ) dillk = 7 :
11k B =g (3.31)

Remembering that My = my it is possible to compare the corresponding
terms obtaining the following compatibility condition:

o), on’
B)) N

(3.32)
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So, to solve our problem we have to find A’ and ¢j, such that they satisfy
equations (3.29), (3.30) and (3.32). To this end we look for a solution of the

type
h/ = /f(/\ + )\ici + )\ijcicj + )\illcicg + )\ppllc4)dg,
o, = bop + (gk()\, iy Nijs Nitls Appil) s
Pox = /f(- -+ )exd, (3.33)

where ¢; are the integration variables in the phase-space. _
It is easy to see that all our conditions are satisfied if ¢, = 0, because in
this case b’ and ¢} are the corresponding ones for ideal gases and with the
kinetic approach. For this reason we call the present solution a ”kinetic type”
solution. Obviously (3.33) satisfy the present conditions iff

¢, 06, 06, 09,
2)\276_; + )\jll (a)\—kérsdij + Qa)\_k) + 4>‘ppqqﬁ = 0. (3'34)
J rSs 1) ?

We want to find the expression of aﬁc up to third order with respect to ther-
modynamical equilibrium. By using the representation theorems we have

G = aXi+bAyA; + AL+ dhip + edhi; + FAL

where a, b, ¢, d, e, f are all scalar functions of the Lagrange multipliers to
which we can apply newly the representation theorems. Finally we have that

O = Ai[a1+ a2dppgg + A3 Appeg” +

asdeijsAcijs + asApAp + asApudpu + ardpApu] +

AckjsAj[b1 + D2 dppag] + c1hcknsAcnjsAs +

[dl + d2Appgq + d3/\ppqq2 + dadcijsAcij> + dsAphp +

de Apy Apir + d'?)\p)\pll] Akt + [61 + 62)\ppqq] At A<ik> +
JidcrnsAcni>Aju (3.35)
with a; ... fi are functions of /\zIz-

Starting from eq. (3.35) we can consider the different order with respect to
equilibrium. At zero order eq. (3.35) becomes:

+ o+ + + 1

o = 0 (3.36)
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To determine ¢~’f, (;;’2“, <;§’§ we must put the expression of ¢* into eq. (3.34)
finding:

Doy, 3¢k Do,
9 9
i g, +AJ”{ i T 2o 12 5”53”
O B
+ 5 Wi 35@51]} b+ Doy = 0 (3.37)

into which we put the expression of ¢y, found in (3.35) and we cut at different
orders. Let’s start by considering eq. (3.37) at order 0

2
§>\zz5kia1(>\zz) =0
that gives a; = 0, so, from (3.35) we find
o = Nudi(\) (3.38)

where d; is an arbitrary function of \;.
Going on in an similar way we find, for order 1:

2AppaqOik (%)\ll@ + 2d1) + g)\ll/\<ik>b1 =0
that brings to
%)\”ag +2d, = 0,
by = 0
from which we can find a. From eq. (3.35) at order 2 we find:

5 = Me@aAppgqg + MdaNppgq + NinA<ik>e1 (i)
(3.39)

where ds, e, are arbitrary functions of \;.
Finally we consider order 2 finding:

1 1
0 = 2)\ppqq25ik (g)\”ag + 2d2) + 2)‘<ik>)‘ppqq (g)\ubg + 2@1 + (12> +

2 2 2
+ _>\ll6ija4>\<ij>)‘<ij> + 5)\ll5z‘ka5)\ Ap + §All5ik)\pll)\plla6 +

3
2
+ 3>\1151k)\p”)\pa7 + /\ll(sngk/\ as + )\uélpAp”)\km +
2 4
+ 3Alléz])\<kh>)‘<hj>cl + 3 )\zz5zp)\kzz>\pud5 + 3 /\zz5zp)\kzz)\pzzd7 +

1
+ §5ip)\jll5jkel)\pll + §5ik>\jzz€1)\jll - géij)\kllel)\jll +

1 1 1
+ §5jk;)\jll€1)\ill + §5ik/\jll61/\jll - §5ij)\kzz€1)\ju + 50;j A judi A
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from which

1 1

g)\llag +2dy = 0 5)\”[)2 +2e1+a, =0

2 2 2 2

g)\llaﬁ -+ 561 =0 g)\lld7 + 5d/1 + 561 = 0, (340)

that allow us to determine as, as, a4, ag, dr.
as = a5 = ay = ¢ = dj are all equal zero.
From eq. (3.35) at order 3 we obtain:

gz§’§ = /\k(a:&/\f,pqq + a6>\pll)\pll) + )‘<kj>>‘j/\ppqu2 + (3'41)
+ /\kll(dg)\Q + d4)\<ij>>\<ij> + dG)‘pllAPll + d7>‘pll)‘p) +

pprqq
+ A Acib> AppggC2AjuA<kh> Achjs> f1

where ds, dy, dg, ea, fi are arbitrary functions of \;.

3.2.1 The 13 moments case as subsystem of the 14 mo-
ments one

The 13 moments case can be obtained as subsystem of the present one by
taking A} = 0.

In fact, by substituting A} . = 0 into eqs. (3.36), (3.38), (3.39) and (3.41)
we find, respectively:

o5 = 0,
oF = Madi(An),

¢5 = AinA<ikse1( M),
¢~k = agApuApu Ak + dadcijs Acijs Aen + de ApuApu M +
+ drApudp Ak + Njud<knsA<nis fi.
They coincides with egs. (3.19), (3.20) and (3.21) for the 13 moments case,
except for the following identifications:

d
as = —6/\—2 with dy arbitrary function of \;
7
d
ay = —6)\—1 with dy arbitrary function of \;
7
ag = —6;—1 with e; arbitrary function of \j
7
, 2 3 ) ) .
d; = (=bd} — §el)ﬁ with d; and e; arbitrary function of \;.
7
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Chapter 4

The many moments case

In this chapter we will consider the macroscopic approach to Extended Ther-
modynamics with an arbitrary but fixed number of moments, and in parti-
cular we will find the expression of the constitutive functions appearing in
the balance equations up to whatever order with respect to thermodynamical
equilibrium.

4.1 The balance equations

The balance equations of this Extended Thermodynamics with an arbitrary
number of moments are

atFil..‘in + akFulnk — SZ fOI' n = 07 Ce 7N7 (41)

1..%n

where N and M are two given numbers such that M < N, M + N odd, and
we call F' the tensor £, ;. when n=0.

The entropy principle for this system, by using Liu’s theorem ensures the
existence of the Lagrange Multipliers \;, ;, with n =0,--- N such that

dh = )\,lendF”l"
dh* = X, dF*Fin (4.2)

where h is the entropy density and A* its flux.

Now in eq. (4.1), the various tensors are symmetric and F;, ;. x and S;, iy
are supposed to be functions of the previous one, in order to obtain a closed
system. In particular F', F}, Fy;, Fy; denote the densities of mass, momentum,
energy, and energy flux respectively. In this way eqs. (4.1) for n = 0,1, and
the trace of egs. (4.1) for n=2 are the conservation laws of mass, momentum
and energy; obviously to this end it is necessary to assume that S=0, S; =0
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and Sll =0.

Eq. (4.1) can be rewrote in a more compact form using a 4-dimensional
notation in a space that we suppose to be Euclidean (nothing will change if
the space is pseudo-Euclidean with -+++ signature, so we have chosen the
simpler case).

In particular, let us define the symmetric tensors Mt “~N+1 and SN as
follows:

1. the Greek indexes go from 0 to 3,
2. Mu-n0-0 = . for n=0,...,N+1

1..%n

In that way the balance equations (4.1) can be simply wrote as
aaMOqu...OlN — Sal.‘.a]\]’ (43)

where 0, for a = 0 means the partial derivative with respect to time.
The entropy principle for this equations converts into

AH® = Lo,y dMOV7ONE Lo 0 847708 > () (4.4)

where L,..q, are the Lagrange Multipliers, H" is the entropy density and
H'? its flux. Let’s introduce the potentials

H'® = —H" + L.y MV (4.5)

and take the Lagrange Multipliers as independent variables. In this way eq.
(4.4); becomes dH'® = M®oNedL, . from which

OH -+
Merez-anN+1 — 4.6
8Lo¢1...aN ( )

In this way the tensors appearing in the balance equations (4.3) are found as
functions of the parameters L,, ., called also mean field, as soon as H ‘o g
known. Obviously Lg, .« is symmetric. By substituting (4.6) into eq. (4.3)
this takes the symmetric form

O?H'on+1
Oan..Lg ...
3Lﬁ1.--5NaLa1-..aN N+1-B1 BN

— §oaan

)

so that hyperbolicity is ensured provided that H'® is a convex function of
the mean field. By eliminating these parameters from eqs. (4.6) we obtain
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Fi, .iy,, again, as function of ¥, F}, ..., F}, ;. If we want a model in which
some among eqs. (4.1) is present only by means of one of its traces, it can
be obtained from the present model with the method of the subsystems [2].
Note that eq. (4.6) for ajas...any1 = i1...i37,410...0 and for ayas...an; =
11...1,0...07,,41 gives respectively

H’O H’n+1
F, s g _9 (4.7)

1.inintl 1.inintl
L Lll---'Ln

11 dnfntl

as in the 3-dimensional notation.
So, to impose eq. (4.6) we have to find the more general expression of H o
such that M*1*2-2N+1 jg symmetric. We will refer to this as “the symmetry
condition”.

4.2 The Galilean relativity principle

Now we impose also the principle of galilean invariance. This has been ex-
ploited in [1], [2], [5], [22] for a generic system of balance laws; here we
will apply these results to our system, taking care of converting them in the
present 4-dimensional notation, so obtaining further conditions. To impose
this principle, it is firstly necessary to know how our variables transform un-
der a change of Galileanly equivalent frames > and ¥’. This problem has
been studied by Ruggeri in [5] and we have only to write its results in our
4-dimensional form. This is easily achieved in the kinetic model because the
kinetic counterpart of M1 N+1 g

MO -aN+1l — /fcal <o Nt e (4'8)

with ¢ = 1, dc = dctdcdc® and f is the distribution function. Consequently,
in X' we have

mozl...aN+1 — /fc’oq . c’aNJrldcl

and, if v' is the constant velocity of each point of ¥/ with respect to 3, we
have ¢* = ¢® 4+ v®, with v° = 0. It follows that

N+1
Qr..oNf1 N+1 (01 @iy @it1--ON+1)
M = . vt m *
2
=0
or

RN+l
MO -oNtL Z ( . ) /U(Oél.'.,UaimaiJrl~--O¢N+1)51...,Bitﬂ1“'tﬁi (4'9)
=0
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with t, = (1,0,0,0) for our previous notation. We obtain the transformation
of Me1--ax0 (which was the initial independent variable) multiplying eq. (4.9)

by tay,, so finding
Mozl...oeNO _ Xglll.....gzj\]]v (Q)mﬁl..ﬂNO (410)
with
NN
Xgroon =" ( ) ) gy b0 MG (4.11)
i=0

N +1 ‘
where we have taken into account of v = 0, of the identity ( j_ ) N]\ﬁ? =

and that the term with i=N+1 gives a null contribution. Comparison

i
between (4.10) and (4.11) with (4.9) shows that X3! 4 could be obtained

from Xgllv"'.g]y;l simply replacing N+1 with N. From eq. (4.11) it follows also
Xg11~.~igz\lrvﬁg - X&i::%]z\\fftﬂ)va + X€11.~.:%11\\rr 63)' (4'12)

Similarly, H* transforms according to the rule
H® = h%® + h*, (4.13)

of which H° = h° is a component.

Egs. (4.9) and (4.13) have been obtained with the kinetic model only for
the sake of simplicity; it is obvious that they hold also in the macroscopic
case. The transformation rule of the Lagrange multipliers can be obtained
now from (4.4); with o =0, i.e.

dh® = dH® = Lo,y dM® N0 = Loy XG0 5N dm N0

where (4.13) and (4.10) have been used. In other words we have

dh® = 1, dmPr N0 (4.14)
with
lay.an = Xar o Lgy oy
i.e.
YN
. ( Z, )t(al...taivﬁl...vﬁiLaiHmaN)gl“ﬂi. (4.15)
=0
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A consequence of this result can be obtained from (4.5) with @ = 0 and

written in the frame Y, i.e., B0 = —h% + Iy, .0y m® N0 it follows dh'® =
m NGl oy from which
On'°
mogmaNO _ (416)
Dl o

as in X. Moreover, from (4.5), (4.13), (4.9), (4.12), (4.15) and again (4.5)
and (4.13) it follows

/

0
H® = —h%* = B + Layay X1 mgnsm o one
= —ho* —ho+ lgl..,ﬁNmﬁlmﬂNOUa + l/gl...gNm’glmﬁNa

i.e.,
H' = h% 4+ p@ (4.17)

which is similar to (4.13).

We are now ready to consider the Galilean relativity principle. It imposes
that the following diagram is commutative

N aq...0xN
Layay . Ly = XE1ON Lo

MBLBN+1 (Lal_”aN)

!

H'(Lg )

||
XJr o (X an L o) mSoNe (X8 L, ay)
Uatéhlé(' o ) + hla(' o ) hl(s(X'?ll-::"?NNLal"'aN)

In other words, we must have

/

H*(Layay) = Uatéhlé(XalmaN () Layay) + (XN (v) Loy -an)

M-YN Y- YN
B1...0 ..o
Mﬁl BN+1 (Lal"‘a’N) = X511...5NN+t1 (Q)mdl 6N+1 (X’Yll...’yNN (Q)LOCIOCN) (418)
Eq. (4.18),, by using eqgs. (4.12) and (4.16) becomes
Mﬁr-ﬂNOé _ Xaﬁll‘:...dﬁNdel..-éNOUa +Xl§511.:£\71\7m51---61va _

_ BBy on"°

a B1.--BN,  d1Opa
= — v+ X m
61...(5]\] 8[51“.61\7 (51...51\]
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Now the derivative of (4.18); with respect to L7~ is

oH'® oh'° oh'®
_ Mﬁl“'ﬁz\la _ B1--BN B1--BN
0+ G X5

OLB1BN =v ol YIN (v).

VYN

It follows that eq. (4.18)9, holds iff

O ooy 516
N — irdna x BBy
al%_._w Y1 YN Y1 YN
i.e.
e
e 90 (4.19)
Oy

which is the counterpart of eq. (4.6) in the frame 3.

There remains to impose eq. (4.18);.

It becomes an identity when calculated in v = 0 (see eqs. (4.17) and (4.11)
to this regard) so that it holds iff its derivative with respect to v; is satisfied,
ie.,

0
0— Oh® 0Oly,..\y for a = 0,
8[71...% @Uj
, R Ol ..
0= pose 4 OnT Owow 0,1,2,3. (4.20)
J 8[71...71\] an

The second of this has been obtained by taking into account also eq. (4.20);;
on the other hand, this is included in (4.20)y with @ = 0. Eq. (4.20), by
using eq. (4.15)3 now becomes

O«

N
/ N
0 s E ; Ie] Bi— )
4 6j 6la1...aN i—1 ( { > L t(al'“taiv v 1L0‘i+1--~aN)ﬁl-~ﬂi—lj =0.

We remove the symmetrization with respect to a; - - - an which is not neces-
o'«
Blay .o
reason we can exchange «; and ay and then reintroduce the symmetrization

with respect to ay...an_1, obtaining so

sary because of the contraction with which is symmetric; for the same

o a O = N\ . |
hoéj +t —Z( . >z-t(al...tai_lv’gl...Uﬁﬁ‘lLaimaN1)/31._ﬂilj:0.

an
aloq...oq\z i t
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We replace i with i+1 and we have
oh'®
t

an
Oloy  an

0 s
h 765 +
N-1
< i1 ) i+1)- t(oq-~-taivﬁl‘--UﬁiLoci_;,_l...aN,l)ﬁl...ﬁij =0

=0
or
0 S
h°6; +8lal oy -
N—1 N -1 )
Z N < i ) . t(al...taivﬁl...’UﬁlLai+1._.aN71)ﬁl._./@ij = 0. (421)

But, by using eq. (4.15) we have

. (N .
( . > tjt(al .- -tai_lvﬁl .- -U’glLai...aN_l)gl.,.ﬁi +

aan_1] i

@
Il
-

=

|
z ==

[y

—1 (N .
- N ( i ) t(oq o 'taivﬂl o 'UﬁzLOAiH-"aN—l)jﬁl"-ﬁi

)

N -1 .
- ( 7 ) oy taivﬁl v 'UﬁzLaiJrl-"OéNq)jﬁl-"ﬁi (4'22)

=2

Il
o

because t; = 0. This allows to rewrite eq. (4.21) as

Oh'®

0= B,0% + N——tanlay. a1 (4.23)
Ny con

Until now we have obtained that the entropy principle jointly with the
galilean relativity principle amounts to say that

1. egs. (4.6) are invariant under changes of galileanly equivalent observers
(see eq. (4.19)),

2. the further condition (4.23) must hold.

For the sake of completeness, we note that eq. (4.18); might be satisfied also
with H* and h?, i.e.
HY (L, oay) = 05 (XOUON Lo o) + RO(XOON L o).

Y1 YN Y1 YN

But this is a consequence of (4.18) as it can be seen running over backwards
the above passages which allowed to obtain eq. (4.17) from eq. (4.13).
Moreover, in [1] and [5] it has be proved that the conditions here obtained
are the same of the following approach:
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1. consider egs. (4.9), (4.13) and (4.17) but with v; = £, instead of an
arbitrary constant v;; in this way m® ¥+ h® and h'® become the
non-convective parts of M1 ox+1 H* and H'®, respectively,

2. impose the conditions (4.19) and (4.23) but considering I,...,, inde-
pendent variables,

3. consider eqs. (4.19) with o = 0 and m™? as definition of I,,...,, =

Ly (MO 9N0) “and substitute this in the expressions of m'N+1,

/ . . . .
h* and h® so obtaining the closure in terms of the non-convective
quantities m@1on0,

In any case, we have to impose (4.19) and (4.23); in other words we have
to find the quadri-vector h'®¥+! such that the right hand side of eq. (4.19)
is symmetric and for which eq. (4.23) holds; after that eq. (4.19) gives
mPr-ByBy+1 - In this way we will find the required closure satisfying the
entropy principle and that of galilean relativity. This will be done in the
next section.

4.3 Exploitation of the conditions (4.19) and
(4.23)

We want now to impose eqs. (4.19) and (4.23) up to whatever order with
respect to thermodynamical equilibrium. This is defined as the state where

1
lﬁr--ﬂN = )‘tﬁﬁ otgy g)\llh(ﬁlﬁ2tﬁ3 oty (4'24)

hOldS, with h,g7 = 5,37 - t/gtfy = dzag(O, 1, 1, 1),
A=th BN Ny = N hP1B2 03 PN 4.95
- U B8N =19 T B1BN - ( . )
We can consider the Taylor expansion for h'®
/ =1 ~ ~
Be = ZEAQBI...Blel..'lBIw (4.26)
k=0
with

- 1
Lor-py = lprpy = Mg+ Loy — gAuhsigtes - v, (4.27)
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ak h/a

AaBl---Bk —_
<(9ZB1 - Olp,

) (4.28)
eq

where the multi-index notation B; = 3} - -- 3" has been used. Thanks to eq.
(4.19) we can exchange « with each other index taken from those included
in any B;. So it is possible to exchange every index with all the others, i.e.,
AaBiBr is symmetric with respect to any couple of indexes. We note that

there are 2 compatibility conditions between eqs. (4.26) and (4.28); they
okn'
dlp,ln,

of ZB, A, A, and take the derivatives with respect to g, ...3,, calculating the
result at equilibrium; we find

can be obtained as follows: let us consider the tensor as function

AaB1-'~Bkﬁl"'5N — ak+1ha~ al’Yl“"‘/N +
Olp, -+ - 0lp,Oly, ...qy . Olg,..ox
N < akJrlh’a > O\ N ( ak+1h’a ) 8)\”
8[31 cee alBk@)\ eq 8l,31...@N 8lBI s alBkﬁ/\” eq 6l@1...gN'

If we multiply this by g, - --ts, and by hg,,ts, - - - 15, We find, respectively

N N

22

AaBlmBkﬂlnﬂNhﬂlﬁztﬁs o 'tﬁN = 3%14&31“8}67

{ AcBu-Bibrbugy gy = D faBi-By (4.29)

where we have taken into account that from egs. (4.25) and (4.27) it follows

5

22 — B 4PN OAu _ (N) h(ﬂ152t[33 .. _tﬁN)
Ola,..5x Olg,...5x 2
Oy Bi. .. BN _ 4Br. . 4B
awi...ﬁz - ggll"'gvﬁ) Ay ey
1 /N
B 5 (2) h(5152tﬁ3 o 'tﬁN)h(’Yl“rzt’Ys o 't‘YN)7
from which
oA O\
tg, - tg, =1 h tg.---tg, =0
alﬁl---ﬁN B1 BN 81/31“.@\] 8182083 BN
0/\” a>\ll
tg, - tg, =0 h tg. - tgy, =3
alﬁl---ﬁN B1 BN 81/31“.@\] 818283 BN
Oy ., .
Nt it =0 TN ot et = ()
alﬁy-ﬂz\z B BN alﬁlm,@z\r B1B8203 BN



It will be useful in the sequel to note a consequence of the condition (4.29).
By using also eq. (4.26) we have

oh'® > 1
(k—1)!

OCBI"'Bk—l'Yl""YNlBl . lBk—l

Alg,...3y
1...gb~) —tﬁl---tﬁ’vtm---tw +

1 TN

M I

N
- 2) 1Pyl 'tﬁN)h("ﬂwt%* o 't’YN)>
1 /0 ~ ~
+ E ﬁAaBl.”Bk> lBl "'lBkt/Bl __,tﬁN +
k=0 "
0

NE

il
o

1 5 5
H (aT”AaBl...Bk> lBl L. lBkh(5152t53 .. _tﬁN) (];7) —
1

OIBI"'kalﬂl"'BN[B .
1

. 'lkaw

NE

p (k—1)!
where conditions (4.29) have been used in the last passage. So we have
proved that derivation of eq. (4.26) with respect to ls,..s, is equivalent
to its derivation with respect to [ﬂl...gN, but considering independent the
components of this tensor, except for the symmetry. Proceeding with the
subsequent derivatives and calculating the result at equilibrium, we find eq.
(4.28). In other words we can forget eq. (4.28) but we have to retain egs.
(4.29). We have then to transform eqs. (4.19), (4.23) and (4.29) in conditions
for the tensor A*B1Br: the above mentioned symmetry of this tensor ensures
that eq. (4.19) is satisfied. Before imposing eqs. (4.23) and (4.29), we note
that the most general expression for a symmetric tensor depending on the
scalars A, \; and on t* is

2]

A2 aNE+ Z (Nl;;- 1) gk725(A7 )\ll)h(alaz Co. pQ2s—102spQst1 tOcNk.H)
s=0

(4.30)

where the binomial factor has been introduced for later convenience. Thanks
to this, eqs. (4.29) become

_ 0
Gk+1,2s = Fx9k,2s

for s =0, , [M5H] (4.31)
Gk+12s+2 = %3%91@25-
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There remains to consider eq. (4.23); thanks to eq. (4.26), (4.24) and (4.30),
its value at equilibrium is

2
0= goo + 5)\1191,2

which, thanks to eq. (4.31)q, becomes

2 0
0= —ANi——Go.0-
Jo,o + 3 o 90,0

Its solution is
_3
Jo,o = /\” 2GO,OO‘% (4.32)

with G o(A) an arbitrary single variable function.

But eq. (4.23) is equivalent to its value at equilibrium, and to its 7 deriva-
tives with respect to I, calculated at equilibrium, for all values of r. The r'"
derivatives of eq. (4.23) with respect to Ip, is

"W, ot

0 = §*——— " L N taylaran_1j
D Ol Ol Bl Ol Ol PN i
e Ol s
+ Nrt O'h s (4.33)

N Ny, Oy, Oy,

where the indicated symmetrization is treated as the multi-index B; was a
single index. The eq. (4.33) can be easily proved with the iterative procedure.
Now we have to calculate this expression at equilibrium. Let us evaluate each
single term of this relation.

e Thanks to egs. (4.26) and (4.24), we have for the first term

o h'ht
R e R
j (3131...35&)6(1 J p

e The second term at equilibrium, thanks to eq. (4.24), is

ar—i—lh’a )
N A
( D, - Ol Dy g V' 0N1T )

1. 2
an'g ﬁhj(altm ot

The symmetrization in the right hand side can be omitted because the term
is contracted with a symmetric tensor. Now we use eq. (4.30). We see that

—_ NAaBl---BTal---aNt )\”

an_1)

7



the terms containing the factor t** gives zero contribute, so that the above
expression can be written as

[N(rgl)Jrl]
Z Nir+1)+1 2s
£ 9r+1,2s 9 —N(T T 11

1
porlaz ||| pozs—1azsgassin .taN<r+1)ta)taN . g)\ll2hja1ta2 cet

aN-—1

where the indexes in B;--- B, and ay are included into the «;; after the
contraction with ¢,, - - - t,, this expression becomes

[252]
Z (A];Zjll) g)\llgr-;-mshgw Ce 2102502541 L fINTHL4Q)
s=1

where the indexes v represent By --- B,.
e Let us evaluate now the contribute of the last term in eq. (4.33), i.e.

NT’t arh’a alal'"aN_ﬂ —
o 810‘1"'a1\78l31 e alB'r‘—l eq alBT
= Nty ABr-Broonan g0 -1y, 0%)

anN—1"%

B (BT BT
_ NTtaNAaaNBI Br_1(5] 51\771th)
where we have exploited B, = 3] - - - 8. We can now prove that

Nt o' Ol
N \ Oy i, Ol ), Ol

is symmetric with respect to two generic indexes 37 and ﬂ;, with s <t =
1,---,r. In fact it can be written as

- orh'e Oy j
>~ Niay -
P Olay.-anOlp, -+ Olg, ,Olp, - 0lg, OB

kots kAt .
By-Bj,_1Bpii--By (5. 6% B%)
— Z NtaNAaaN 1Br_1Bg11 (B1 ﬂN,lth 4
k=1, ,r

+Ntoy AcanBiBs1Bot1--Bi—1 {8y Bep1+Br (87 By h]@fv) +

Nt ACNBrBact B85 BuyaBeos By Br(Pf-Bhy_y %)
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The first of these terms is clearly symmetric with respect to 57 and 6;, while
the sum of the last two is

S
taNAOtOéNBl“'Bs—1Bs+1"'Bt—lﬁf"ﬂi'“ﬁﬁvBH—l“'Brﬁf"ﬂf,lﬁﬂl"‘515\7hf¢ +

s s ¢
+taNAaaNBl"'Bsflﬁf"'ﬁf"'615VB5+1"‘Bt—lBtJrl"'Brﬁ{"'ﬁ;i,lﬁ,tﬁLlﬁ}fV hfk +

+terms like ¢, AO‘O‘Nﬁf"ﬂltﬂ'"h'j

that is obviously symmetric with respect to 8§ and fL.

Consequently our tensor is symmetric with respect to every couple of indexes
taken between Bj --- B,, so that it can be expressed as

Nt AN G578 i) —

—
w|Z
5

95 (];/::) gmsha(w L P2 Y2s 2s 4 ,terhJYNrH)

I
ilng

ﬁ
w2
3

+ (N?“ _ 23) (g{:) gr725tahhﬂ3 L PSSR L t]vwh}mﬂ) (4.34)
s=0

Here we have calculated firstly taNAo‘aNﬁ%'"ﬁll\f'"ﬁf"'ﬁfrvfl by using eq. (4.30)
and then distinguishing the terms in which « is index of an h from those in
which it is an index of a t'; finally we have multiplied the result times h}N T
and symmetrized with respect to 7o - - Y1

Until now we have finished to evaluate the three terms of eq. (4.33) calculated
at equilibrium; so it becomes

25)
2
s=1
by Nr+1\ 2
+ Z Gri12s (28 o > §)\”h§’72 c RY2s=12s Y2541 L _tVNr-HtOé) +
s=1

+ Z 28 (J;[Sr) gT,QshOé(,YQ . h7257172st'\/25+1 . t’YNTh;/NT-‘—l) +
s=0

4 (NT' . 25) (25) gr’ZStah(’yz’Ys o R2sY2s Y2842 L fINY h}Nr+l) _
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Nr

2

—
—

Z(Nr + 1) <];;T) gn%h(a’m o RY2s—1V2Zs Y2541 L L t'erh’jYNrJrl) +
s=0
L] Nr+1)\ 2
+ — (28 + 1 ) §>‘llgr+1,2$+2h§.72 e h"125+1W25+2t’725+3 . -t’YNT“tO‘) (4'35)

where in the second term we have changed the summation index s according
to s=S+1.

Note that this equation is automatically symmetric. In [34] was proved that

88?;“ = 0 is an identity for the case of 13 moments; here we find that this

property is valid also for an arbitrary number of moments.
So we have proved that eq. (4.33) amounts to

Nr Nr+1)\ 2 )
0= (N?” + 1) (2 ) 9r2s + (28 + 1) g)\ll‘gr+1723+2 , 1.e.,

1 Nr
9r.2s + )\ll o 1 9r+1,2s42 = 0 fors= 07 ) |:_:| .

4.
3 "2s+1 2 (4.36)

Consequently, all our conditions are equivalent to the scalar eqs. (4.31),
(4.32) and (4.36) which are constraints on the scalars g, o5 of the expansion

(4.30). It remains to exploit them. For s = 0,---, [2] we can substitute
Gr+1,2s+2 from eq. (4.31) into eq. (4.36)2 which now becomes

2 0

A .25 ros = 0 4.37

9 +3lla)\”92 + Gr2s = (4.37)
whose solution is

_2s+3 N
Gr2s = )‘ll ? GT,QS(A) for s = Oa T |:7T:| . (438)
In this way eq. (4.31)y is exhausted, except for s = % but only for the

case with Nr odd.
If Nr is even eq. (4.38) holds for all g, 5, while if N7 is odd the validity of
eq. (4.38) is not still proved for g, n,+1. But for Nr odd we can use egs.

(4.31) with k =7, s = M e,

A =
{ anIr.Nr+1 = Gr+1,Nr+1 (4.39)

o) _ Nr+41
W gr,NT-l—l — Nr+2 3gr+1,N7’+3~

In the right hand sides we can use eq. (4.38) because M < [N(T“ } and

Nrets < [N (r+1) } hold, except for the trivial cases N=1,2. In this way the
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system (4.39) becomes

__ Nr+44
é%gr,Nr-i-l =N 2 Gy, Nr+1(A) (4.40)
Nr+6 .
a%”g'r,N'r—&—l Nrigé)\ ° G7‘+1,N'r+3(/\)-
The integrability conditions for this system gives
, -3
r+1,Nr+3 — T(NT + 2)Gr+1,Nr+1- (4.41)
After that the system (4.40) can be integrated and gives
_ Nr+4
Grnesr =Ny 2 Grnes1t(A) + v, (4.42)
with
G _o2 1 G (4.43)
r,Nr+1 — 3 Nr + 2 r+1,Nr+3, :

while ¢, yy41 1S an arbitrary constant arising from integration. So eq. (4.38)
is a valid solution also in the case Nr odd and s = ¥ ’”QH except to add the
arbitrary constant ¢, ny41.

Now we can see that this constant doesn’t occur in eq. (4.31); (because
the right hand side is differentiated, while in the left hand side and in the
case N(k+1) odd, we have 2s < 2 [¥EE] from which 25 < N(k + 1) + 1).
Nor it occurs in eqs. (4.32), (4.38), (4.41), (4.43) and (4.36) (the proof for
this last equation amounts to verify that [N ’"} < [N TH} for Nr odd and

(] +1< [M} for N(r+1) odd; obviously, in both of them we have

N odd. If r is odd too, we have to verify only the first one, i.e. % < %,

which is an identity; if r is even, we have to verify only the second one, i.e.
1< NEIDHL which is true, at least for N > 1).

On the other hand, the contribute of this constant to the tensor A2 *Nk+1
is hlorae ... pan N 1) Ck,Nk+1, as it can be seen from eq. (4.30).

The contribute of all these constants to &' follows from eq. (4.26) and reads

oo

Z ( C2r+1,N(2r+1)+1

r=0

ha(ﬁ}. hﬁN 1By .. .hﬂ%‘lﬁf..-hﬁ%—ﬁ%).zﬁ%_,ﬁ}v-..zwﬂ%, (4.44)

where we have put k = 2r + 1.
It is easy to verify that this additional term satisfies identically the symmetry
conditions for eq. (4.19) and (4.23) (in fact t,, is contracted with an h*V,
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for this additional term). In other words, we can assume eq. (4.38) for all
gras (also for s = [%]), except that, in the case with N odd, we have to
add to h'® the additional term (4.44).

Let’s then substitute from eq. (4.38) into eq. (4.31); and (4.36); so they
become

Nk +1
Gk‘-l—l,Qs = G;C,Qs fOl“ S = O, Ty |: 2+ :| ) (445)
2s+1 N
GT+1’25+2 = —3 S;_ Gr725 fOl" S = 0, e |:7’f’:| . (446)
But this last equation holds also for s =0, -, [N g“}; this is obvious when

Nr is even, while it is just eq. (4.43) when Nr is odd (remember that we have
eq. (4.43) only for the case with Nr odd).

After that, we see that eq. (4.32) is contained in (4.38) for r=s=0, while eq.
(4.41), by using eq. (4.43), becomes G'y v, 1 = Gri1,n041 Which is just eq.
(4.45) with k=r and s = [¥2!] (remember that eq. (4.41) holds only for Nr
odd).

There remain eqs. (4.45) and (4.46). To this end, let us define H, s from

G = (‘—3) 2s)! (4.47)

2 ) 2551777
In this way eqs. (4.45) and (4.46) become

3

— N 1
Hr+1,s+1 = Hr,87 H;“,s = THT+1,S for s = 0, |: rr

] . (4.48)

Eq. (4.48); suggests to define H, 4 also for s > [%] In fact, let h be

N(r+h)+1 s—Nr
[%} ( 2Nr1]): e

can define H,s = H,ypsyp. In this way eq. (4.48); holds for all r and s.
Regarding eq. (4.48), we have

a number such that s + h < for example, h = [

-3 -3
/ / .
Hr,s = Hr—l—h,s—i—h - 9 Hr+h+1,s+h = 9 Hr+1,s;

in other word, also (4.48), holds for all r and s.
After that,

e if » > s we have

—2\"7° d""5Hyo
Hrs — Ilp—50 — \ 5 —_— 4.4
’ o ( 3 > AN (4.49)
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e if r < s we have

H,, = Hy,_,. (4.50)

In this way H, ; is known except for H .
On the other hand, it is easy to see that (4.49) and (4.50) satisfy eq. (4.48);.
Regarding (4.48),, we see that

e if r>s = r+12>s, we have to use eq. (4.49) for both sides of eq.
(4.48)5 and it becomes an identity,

e if r = s—1, we have to use eq. (4.50) for the left hand side of eq. (4.48)
and eq. (4.49) for the right hand side. The result is H), = 5> Hyy,

e if 1 < s — 1, we have to use eq. (4.50) for both sides of eq. (4.48)y
which becomes Hy, ,= _73H07S_T_1.

In conclusion, Hy is arbitrary and Hy , is defined by

-3
Hém == 7]?07;0_17 (451)

except for a constant arising from integration. after that, eq. (4.49) and
(4.50) give all the other functions H, ;.

4.4 The kinetic approach

Let us now search a solution, for conditions (4.19) and (4.23), of the form

he = /F <l51...ﬁNc/61 . c/ﬁN> cedd (4.52)

where F is an arbitrary single variable function; it is related to the distribu-
tion function, but this relation doesn’t affect the following considerations, so
that we choose to omit it.

The symmetry for the left hand side of eq. (4.19) is certainly ensured; re-
membering that ¢® = 1, eq. (4.23) becomes

0= /% [F (lgl...chlﬂl . -CIBN> cla] dc (4.53)

which is certainly true. The expansion of eq. (4.52) with respect to equili-
brium is

Z k'/ ()\+ LW ) N T
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where eqs. (4.25), (4.27) and the multi-index notation have been used. Then
we have obtained eq. (4.26) with

AaBl---Bk B o* BoB1--By
n oN,
1 o /
BeBiBr — /F {)\ + g)\zzclz] ccPr..cPrdd. (4.54)

It is easy to verify that eqs. (4.29) are satisfied with this expression. The
integral in eq. (4.54)s can be calculated with a well known procedure. To
reach faster the result, let us consider the tensor

Bﬂl“ﬁSﬁs_H“ﬂThgll .. hgitﬁm ceetg, =

1 / ’
/F [A + gAl,ca] PPl

The above tensor depends only on scalar quantities and is symmetric, so it
is equal to

0 if s is odd,
gs()\, )\ll)h('Yl’YQ e h'stl"/s) if s 1S even.

To know g4(A, Ay) it suffices to multiply both members by A, -+ Ry, o,
obtaining

o) 1 , T 27
/ F [)\ + g)\”ca} cst? (/ sin Qdﬁ) (/ dgb) dc = gs(\, \p)(s+1)
0 0 0

where we have changed the integration variables according to the rule
’ . !/ . . ’
cl'=(sinfcosg, c¢?=csinfsing, c¢®=c cosb

c € [0, +o0], 0 € [0, 7], ¢ € [0, 2x].
We obtain

47
s+ 1

s+3

2 Gs(N)

o 1 / _
gs()‘v )‘ll) = / F |:/\ + g)\llcl2:| CS+2dCI = (All)
0

with

AT o 1
GS()\) = s 1 \/0 F |:)\ + g’f}2:| 778+2d77, n=v /\”C/. (455)
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For the sequel it will be useful to note that

, Ar [ d 1,3
= $ d —_ =
G(A) 8+1/ {dn [A+377Hn ny

_ 47r—/ [/\ +3m } nhdn — —;s )G (4.56)

provided that Fn**! is infinitesimal for 1 going to infinity. After that, we
have

B — Bﬁlﬂz"-ﬁr (h’Yl —i—f; t'}’l) (h‘gz —|—t52ty2) . (hg; 4 ngTt%) —

- Z ( ) Bﬁl ﬂr ’ h% s+1 gt 'tﬁv-t%) =
s=0
[5]

(M1

r (7172 Y2q—172q $72q+1 Yr) s
- 2q PR PR 102 Gy (A).
q=0
This allows to rewrite eq. (4.54) as
AaB1~-~Bk _ akBaBl...Bk _
ONk
2]
Z (kN + 1> pnz L prza-1v2a 2041 tkata)Al_l@Ggfz)(A)'
29
q=0

This result confirms eq. (4.30) also in the kinetic case, but with gy 25(A, Aiy) =

/\l_lﬁGgZ)()\), and it is easy to see that these functions gy o5 satisfy eq. (4.31),
as consequence of eq. (4.56). Also eqs. (4.38) and (4.42) are confirmed, with
Gras(A) = G\, ¢ nr+1 = 0. In this way we see that the additional term
(4.44) is not present in the kinetic approach. Moreover, the matrix H, ,
defined in eq. (4.47) becomes, in this approach

-2 " 255! (r)
H,,=|—
T, |: 3 :| (28)!G2S (A)7

and eq. (4.51) becomes a consequence of eq. (4.56). But the constants
arising from integration of eq. (4.51) are not present in the kinetic approach,
because all the functions G4(\) are defined by (4.55) in terms of the single
variable function F.
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4.5 On subsystems

We aim to obtain now the model with N-1 instead of N through the method
of subsystems. To this end we firstly need the relation between the 4-
dimensional Lagrange multipliers and the 3-dimensional ones. The first of
these are defined by eq. (4.4), from which we obtain

dH® = 1N dME oy = 107 AMEP N g5 Gaysy =

= l?\lflmaNdM]%fﬂlnﬂN<ha151 + ta1t51> e (hOtNﬁN + tOthﬁN) =

N
=) (N) [1-arr 1N g gaie-BrbrerBy

r
r=0

halﬂl T harﬁrtar-u te 'taNtﬁr-H e tﬁN -

N
_ § : N ajigr
r=0

with )\ﬁ'--jr - (7" ) l?\? e hoéljl T harjrtarH “rtay
and  F = MO IR g g (4.57)

Eq. (4.57); gives the 3-dimensional Lagrange multipliers in terms of the 4-
dimensional ones. We have introduced the index N to remember that we are
considering the model with N as maximum order of moments. In this way it
will be distinguished from that with N-1 instead of N.

The inverse of eq. (4.57); is

IGFON = NG g = IO (RO g ) - (RGN 4+ 1NV, ) =
N
N By « Qs 40 o
- Z (S> l% ’ ﬁNhgll'”hﬁst et N)tﬁs+1"'tﬁN -
5=0
N
_ Z )\5\?1~~o¢5tas+1 . tOJN)‘ (458)
5=0

The model with N-1 instead of N can be obtained as subsystem of the above
one by taking

)\7\[1...0”\, _ 0,
)\(]le...as _ )\?\/};'1&3 for s = 0’ ce ’N — 1. (459)
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We have now to express these relations in terms of the 4-dimensional La-
grange multipliers; to this end we see that

N-1
l?\éfl...aN — Z )\S\O;i~i~065t0¢5+1 . taN), (460)
s=0
while eq. (4.57)1, with N-1 instead of N, is

— N_l Q1O Ol 10N —
)\ﬁir = ( . ) [t ON e Bty L (4.61)

Then, by substituting eq. (4.61) in eq. (4.60) we find

N-1 N -1
l?\[[l...aN _ Z t(aSJrl . taNhgll . hg:)l?\;;i'ys')/s-ﬁ—y“’YNflt’YSJrl e t'YNfl < s )
s=0
from which
l?\é[lwaN — l](\?i'l"aNfltaN)’ (462)
because
l?\éfl;“laN_ltaN _ l}}’v}_l’}’N—ltaN(hgéll + talt’Yl) Ce (h/'\a/]]v\rill + taNilt’YN—l) =
N-—1
N - 1 ceeYgoor _ o Qg « « «
_ Z ( . ) l’le—l’Y v 1h(711 .. h%t%ﬂt AEERS A N-1)poN
s=0

Now, from eq. (4.24), we have

S 1
IV = ANt gA”h(amtO‘S cogoaN-1),

This and eq. (4.24) yield

JorTON l(al"'aN—ltaN)
N eq. N-1 eq. )

that is, eq. (4.62) holds also when we calculate it at equilibrium. The
deviation of eq. (4.62) from its value at equilibrium is

i?\é[l...aN _ Z’](\?éi.l..aN_ltaN); (463)

in other words, eq. (4.62) holds when we substitute the Lagrange multipliers
with their deviation with respect to equilibrium. We can now substitute eq.
(4.63) into eq. (4.26); in this way we find the counterpart of (4.26) with N-1
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instead of N. To this end we have to contract an index of each By,--- , By
with a ¢; in other words, we have to contract the expression (4.30) with
tagn_tyers **laniss- 1t I8 easy to verify that in this way eq. (4.30) remains
unchanged except that now N-1 replaces N; obviously this is true also for g o5

where s now goes from 0 to [%} . This property is transferred to Gy, o5

for eq. (4.38) and to H, ; for eq. (4.47). But H,, is defined by eqgs. (4.49)
and (4.50) in terms of Hy, which are determined by eq. (4.51). Therefore,
the family of constants arising by integrating eq. (4.51), is inherited also by
the subsystem.

We have only to notice that from eq. (4.50) it follows that Hg, is useful
for H,,, which, for eq. (4.47) is useful for G, (1p). It follows that Hy, is

. (N—1)r+1 . (N—=3)r+1
present in the subsystem when r 4+ p < [T]? that is p < [T]v

(N—2)r+1
2

fixed value of p, it is always possible to find r such that both of the previous
inequalities are satisfied. The only difference is that in the subsystem, Hy
occurs only in terms of higher order with respect to equilibrium, than in
the initial system. This is true, provided that N > 3, that is if neither the
system, nor the subsystem are the 10 moments model.

But what happens to the other family of constants, that is for the supple-
mentary term (4.44)7

If N is even, the model has not this term and, consequently, it cannot be
inherited by the subsystem.

If N is odd, this term is present; but when we substitute eq. (4.62) in (4.44)
we obtain zero because each ¢, is contracted with a projector A~. We expected
this result because, with N odd, we have N-1 even in which case the term
(4.44) is not present. We may conclude that the other family of constants, or
the supplementary term (4.44), disappears in the subsystem. Only the other
family of constants is inherited.

This can be seen also from the following viewpoint: the family of constants
arising from integration of eq. (4.51), in the case N=3, will perpetuate also
for the subsequent values of N; equivalently, we can say that the closure in
the model with a generic N > 3 is exactly determined in terms of that with
N=3, except for the supplementary term (4.44).

while for the initial system was useful when p < Now, for a
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Chapter 5

The Relativistic E.T. : The
many moments case

The first paper on Relativistic Extended Thermodynamics has been pro-
duced by I-S. Liu, I. Miiller and T. Ruggeri [35]. It was obtained with 14
independent variables satisfying the following system of quasi-linear partial
differential equations

Ve =0, 0,T’=0,  0,A*" =0, (5.1)

and then by imposing the entropy principle and the relativity principle.

V' is the particle flux vector, 7% is the energy-momentum tensor and A*5%7
represents the tensor of fluxes. Let’s consider the counterpart of the above
variables in statistical mechanics. They are defined as moments of the dis-
tribution function f(x%,p*),

Ve = / fpedpP, T = / fp*pPdP, AP = / foepPprdP,  (5.2)
where p® is the four-momentum of the particle so that we have p®p, = —m?
and dP = /— g% is the invariant element of the momentum space; m
is the particle mass. From eqgs. (5.2) the following “trace condition” holds:

A gs = —m?Ve, (5.3)

The closure proposed is covariant, complete, and the resulting system is
hyperbolic. Here the exact general solution for the many moments case
is found, satisfying all these conditions up to whatever order. Extension to
very many moments is needed in order to improve on the results of ordinary
thermodynamics, as shown in [2], page 197. The present results are included
in [23]; its title is suggested by one of the possible physical applications, the
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study of electron beams, as in [24] and [25] for the 14 moments case. However,
the treatment is general and the result can be applied to every fluid.

For the case with many moments we have to choose an even number M and
an odd number N; after that the equations are

aaAocal...oqu — Iocl...on’
{ (5.4)

aaBaOtl...aN — Iozl...aN .

Equations involving lower order tensors are already included in (5.4) because
of the following trace conditions (5.5).

All the tensors appearing in the above equations are symmetric and M+N
is odd in order to obtain independent equations. The counterparts of these
variables in statistical mechanics are

Acor-am /fpapoq . ‘paMdP, Boal-an /fpapal . ~paNdP,

from which the trace conditions follows

2AO¢O¢1...O¢M_2 Acor-am

—m Ganr—1anms

gOthloéN' (55)

Let us define the maximum trace of a tensor as the trace of the trace ... of
the trace of this tensor, so many times as possible. The maximum traces of
Tor-on and of I**N are zero, so that the maximum traces of egs. (5.4) are
the conservation laws of mass and of momentum-energy.

Now there are less independent components in the eqgs. (5.4) than in the
variables A*¥1*M and BN g0 that relations between these variables
are needed. We will investigate the “closure problem” by using the proce-
dure used for the macroscopic approach, so we impose the supplementary
conservation law

_mQBaal...aN,g — Baa1...aN

Ouh® =0 >0, (5.6)

that must hold true for all the solutions of the system (5.4). It amounts in
assuming the existence of the Lagrange Multipliers Ay, ...q,, and fiq,...ay, such
that

AD® = Aoy AT 4 oo dBOON (5.7)

)\almaM[ozl...aM + ,Ulal---aN[almaN Z O,

where h* is the entropy-(entropy flux) 4-vector.
We introduce now the potential

h’a — _po + /\almaMAaoq..-aM + ,ualnuNBaalmaNa (58)
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and take the Lagrange Multipliers as independent variables. In this way eq.
(5.7)1 becomes

dh’a _ Aaal...aMd)\almaM —|—Baa1"'aNd/La1...aN,

from which

_OhT - peeex o M7 (5.9)
OAXay oy Oltayan

Acor-am

In this way the tensors appearing in the balance equations (5.4) are found
as functions of the parameters A\, o,, and fla, .oy, &S soon as h'® is known.
So it remains to find the exact general expression for h'® such that both
members of eq. (5.9) are symmetric and, as usual, we will find them through
their Taylor expansion with respect to equilibrium.

5.1 Definition of equilibrium and properties

Equilibrium is defined as the state described by the independent variables A
and i, such that

M

)‘51"~ﬁM = Ag(ﬂlﬁQ o 'gﬁM—lﬁM)(_mz) z,
o\ N1
BBy = H(B19B285 " * 'gﬁN—lﬁN)(_m ) 2, (510)
from which it follows
M — 1)” alo a a M
A EM -+ 2)!!)\041"‘041\19 1. g M=t M(_m2) 2,
N N
flo = 8 0z g2t (—?) T (5.11)

ml’baal"'aN—lg

The physical meaning of this definition is evident when we substitute eqgs.
(5.10) into eq. (5.7)1; by using also the trace conditions (5.5), eq. (5.7);
becomes

dh® = AdA® + 1o, dB*™

which is still eq. (5.7);, but in the case M=0, N=1, i.e. in the case we

consider only the conservation laws of mass and of momentum-energy.

It is also evident that eqs. (5.11) are identities if M=0, N=1. (Use firstly
: : _ (M)

the identity (M — 1! = 5757).

Egs. (5.9) now become

_one on'

Boor —
o’ Olhay

AOL

91



and the symmetry condition on the second of these is surely satisfied; in fact,
from the representation theorems [36], [37] we have that

R = H(A )" (5.12)

with v = /—pu®u, and H (A, ) is an arbitrary function. It follows

« a (0%
10H
= o e Hy (5.14)

which is surely symmetric.

We stress now that the function H(\,~y) has to be arbitrary, if we want that
our equations may be applied to all materials. In fact, eqs. (5.12)-(5.14) and
eq. (5.8) yield

h® = —nsu®,  AY =nu®, B = eu*u” + ph®? (5.15)
with
u® = M—, hoP = ¢°f L u*u®  (projector), p=H (pressure),
Y
OH OH
n=Yay (particle density), e=—H — 7% (energy density),
oOH
§=—A\— ’yg—; (entropy density). (5.16)
o

From (5.16) it follows d (%) + pd (%) = %Yds which, compared with the Gibbs
relation

Tds = d (3> +pd (1) (5.17)

n n

identifies v as %, with 7" the absolute temperature. Now (5.16)4 can be used
to change variables from v, A to 7, p; by substituting its solution A = A\(~, p)
into eqs. (5.16)35 we obtain the state functions n = n(vy,p) and e = e(7, p).
Vice versa, if these state functions are assigned, by substituting p from (5.16)4
into (5.16)3 5, these become

OH 1
o anH
R vn[% (A7),
oH 1 1
T —;e[%H(Aﬁ)] - ;H(/\ﬁ) (5.18)
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which are differential equations for the determination of the function H (X, ).
Therefore, if we want that our field equations may be used for all materials,
i.e., for all possible state functions n = n(vy,p) and e = e(y,p), then the
function H(A,~) must be arbitrary.

Note also that the integrability condition for eqs. (5.18) is (e 4+ p)n, —yn, =
ne,. But this is not a new condition on the state function because it is the
same integrability condition for the equations

s 0 (e> n 0 (1 d 0s 0 <e> n J (1

— =7 |- — | = an — =y— (= — | -

dp 78}9 n Pyp@p n 0y 787 n P oy \n
which are equivalent to the Gibbs relation reported above in eq. (5.17).

We conclude this section showing that an expression for A’ at equilibrium is

’

h = /F(A,uup”)p“dp (5.19)

where the function F(X,Y) is related to the distribution function at equilib-
rium by
O RX.Y) = fy(X,Y) (5.20)
X ) — Jegq 5 . .
The expression (5.19) will be useful in the sequel and is equivalent to (5.12)
with
Ar 5 [T h2
H\~y)=——m F(X\,ym cosh p) sinh” p dp. (5.21)
v 0
which gives the relation between H and F.
It follows that F(X,Y) is arbitrary, because H(\,~) is arbitrary, and (5.19) is
the most general expression for A’ at equilibrium. A particular case follows
from (5.20) and from

=

WX, Y) =
FulX.¥) =
which is the Jiittner distribution function at equilibrium (see [38] and [39]),
where k is the Boltzmann constant, the upper and lower signs refer to
Fermions and Bosons, respectively, h is the Plank’s constant and w is equal
to 2s+1 for particles with spin %
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5.2 The entropy principle

To impose eqs. (5.9) we have to find the most general expression of h'® such
that the left hand sides are symmetric. We will refer to this as “the symmetry
condition”. An exact particular solution of this condition is

hlla - /F()\al...aj\{pal"'paM7 /’LﬂlﬁNp/BlpﬂN>padP7 (522)

as it can be easily verified, where the function F(X,Y) has been determined
in the previous section (egs. (5.18) — (5.21)) in terms of the state functions
at equilibrium. This solution is more general than the corresponding one in
the kinetic approach [40], where the particular case F(X,Y) = F(X +Y) is
considered, but it is not still the most general one. We aim here to find this
most general solution.

To this end let us note that the symmetry condition for egs. (5.9) reads

on'le 0, on'le 0:

OAayJag--an Ohar)ag-—an

if we subtract from these their expressions with A;® instead of h'®, we find

/[a /[a
0ART _oar® (5.23)

aAal}OQ"'aM aua1]o¢2~~-aN

with AR'® = h'® — h .
But in the previous section we have found that (h®)., is the most general
expression for (h'®).,, so that we have

(AR'®),, = 0. (5.24)

In this way, we have now to find the most general solution of egs. (5.23) and
(5.24), after that we will have

R =R+ Ah. (5.25)

To exploit eqgs. (5.23) and (5.24), let’s firstly consider the Taylor expansion
of AK'® around equilibrium:

’ > 1 QA N N ~ ~
AR = Z Wch:lgl ApB1 Bk)\Al "')\Ah/LBH By (526)
hk=0 """

where the multi-index notation A; = a4, -+ ,,, B; = o, -+, has been
used, and, moreover

CaAl'"AhBl'"Bk _ ( O TEAR @ )
h,k 8>\A1 ...8)\AhaluBl 8#’Bk cq.

(5.27)
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and

/\ﬁl"ﬂM - /\Bl"ﬂM — A 9162 " 'gﬁMﬂﬁM)(_mQ) 2 . (5 28)
Z]'/gl'”ﬁN = UBBy T M(B198285 " 'gﬁN—lﬁN)(_m2>_ 2,

denote the deviation of the Lagrange multipliers from their value (5.10) at
equilibrium. Note also that their traces are zero, as consequence of eq. (5.11).
Because of the symmetry shown by eqs. (5.23) it is possible to exchange the
index o with each other index taken from those included in A; or B; and
moreover each A; can be exchanged with each other A; or B,.. So the tensor
C} % 1s symmetric with respect to every couple of indexes.

otk AR«
OAay 0, Oup, Oup,

Let’s consider depending on \,,...5,, as a composite fun-

ction through X%WM and \; after that let us take its derivative with respect
to Ay,..q,, and calculate the result at equilibrium. We obtain

aA1-ApB1--Br A aAr--Ap BBy
adr-Anii BB, _ 90k Mo IChi o\

C - ~ =
e a)‘ﬁl“ﬁM /\Wl"'VM OA )\"/1""YM

Aq--ApBy--B
aca 1 hD1 k
R,k

= " <ggl .. .ggg) _ g(”/wz .. -gW*”M)gglgz OB Bas
a)‘ﬂl"'ﬁM
aAi-Ay By By
(M _ 1)” achﬂk 9(71“/2 . 97M717M)2(M _ 1)!! (_mQ)%
(M +2)!! O\ (M + 1)!! ’
(5.29)
where (5.11); and (5.28); have been used.
Multiplying both sides by gy,~, - * Gya; 194 We Obtain
aoaAln'AhBl-“Bk
QA7 Ay ~q -~y By B h,k M

Ch+11,k e kg'n’yz U Gymavm T O\ (_mQ) z. (530)

Similarly, let’s consider a,\Al...g,’\j:ngj.. Priz, depending on fiyy,...yy_, as a com-

posite function trough fiy,,..,y , and pg; after that let us take its derivative
with respect to fiy,..4y_, and calculate the result at equilibrium. We obtain

Aqi--A; B1--B
COC 1 hD1 k
R,k

QA Ay By B e
CO‘AI"'AhBl"'Bk+1 _ aCh,kl e auﬂﬁl---ﬁN—l 9 a,uﬂ
hk+1 = +

a/jﬁﬁl"ﬂz\rq Hoyryy -y —1 a:uﬁ Hoyyy oy 1

Aq-ApBi--B
aca 1 hD1 k
Rk

aﬁﬁﬂ p ggyggi . ggx:) _ g((gg%’m . g’ﬂ\l—z’ﬂ\f—l)gﬁlﬁ2  GBn sy 1)
1--BN-1
aAq--Ap By By
8 N” ) i aCh,k g(’Yg’yl"/Q . 97N727N71)8 N” (_m2>%
(N +3)! O G N 130 ,
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where (5.11); and (5.28)2 have been used.
Multiplying both sides by g,+, - = Gyy_syn_, We Obtain

A A BBy,
ach k -1

Ivive " " Gyn—2yn—1 T : (_mQ)T'

g
(5.31)

CaA1"'AhBl'"Bkﬁ"/l'"’YN—l
h,k+1

So, from eq. (5.27) we have obtained the compatibility conditions (5.30) and
(5.31).

Let’s proof the vice versa, i.e., that eq. (5.27) is a consequence of all the
other equations. To this end it is firstly useful to show a property of Ah'®.
If we take its derivative with respect to A,,...,,, we obtain, with passages like
that used in eq. (5.29), that

8Ah’°‘ B i 1 302121 -ApBji--By, O\ X }\V . .
8/\%..-%1 B —0 o\ a/\’71~--'yM Aq A By LB,
h Y ~ ~ 0)\A
+ hlk|cg£1 -Ap B Bk)\ “AA_ 1By ’uBka)\ hoo_
i} “YM
h;zéO
- Z h'k'CQAl A Bk)\ )‘Ah71ﬁ31 T 'ﬁBkgr()Zl . gg%) =
h,k=0
h£0
N
s

where we have used eq. (5.30). So we have proved that derivation of eq.
(5.26) with respect to A,,..,,, is equivalent to its derivation with respect to
Ay

With analogous passages, but by using eq. (5.31), it is possible to prove that
derivation of eq. (5.26) with respect to ji,,..,y is equivalent to its derivation
with respect to fiy, ...,y -

We are now ready to prove that eq. (5.27) is a consequence of the other
equations. To this end, let us take the h'" derivative of eq. (5.26) with respect
t0 Ayy.yy,, then its k™ derivative with respect to ji,..,, and calculate the
result at equilibrium; by using eqs. (5.30), (5.31) and the above mentioned
property , we obtain eq. (5.27). In other words we can forget eq. (5.27) and
retain only egs. (5.30) and (5.31).

So it remains to solve egs. (5.30) and (5.31) in the unknown symmetric
tensors Cf'y..

We notice that both sides in equation (5.30) and the left-hand side of eq.
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(5.31) are symmetric; then we have to impose that the right hand side of
this last one is also symmetric. In other words, both the tensors Cj ;. and
their derivatives with respect to pg are symmetric. The tensors satisfying
this property are elements of a family F which will be characterized in the
following section. Moreover, interesting properties of this family F will be
shown and they are useful to exploit our egs. (5.30) and (5.31). The effective
exploitation will be accomplished in section 5.4 for the case N = 1 and in
section 5.5 for the case N > 1. We complete the present section simply
reporting the results.

For the case N > 1, they are

[Mh+é\fk+1]
O;ilk...a]bfh+kN+l — Z C(:,,/Cg(OqOQ . ga2571a28,ua25+1 . Malwh+Nk+1), (532)
s=0
with
ne L) [Meea]) ! |
* s! (Mh+ NE+1— 2s)!
]t{h+k(évfl)72 N
7767Mh7(N+1)k+23 . Z [Mh + k(N — 1> + 142 [5“ !
— —_ — 91N
g [AM + k(N — 1) —2q — 2]!!
Mh+(N+1)k
o Nt g dP e agn (q +2+ S>! 1)?
(_m ) 3 kT35 4, [ [ ,
d\" (g + 2). V2
(5.33)
and cg , = ¢k 4(A) restricted only by ¢y = cx—1,,forg=0,---, [Mh+(k_12)(N_l)_2].
For the case N = 1, and consequently k=0, the results are
a1 AMht1l Z Ch (araz || ags 1azsua23+1 L luaMh+1), (534)
with
Mh M=
Oh —  oMh-2s (434! 1 o —6—Mh+2s Z (Mh+DU
B sl (Mh+1-—2s)! = (Mh —2q —2)!!
(—mQ)%hdhCh’q. (g+2+ 7" =)t (1) (5.35)
d\" (g +2)! v ) '
and ¢4 = cp () restricted only by ¢y = cp_14 for g =0, -, w
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5.3 On the family F and its properties

Let us characterize now the family F of tensorial functions of a scalar A and
of a time-like 4-vector f1g, which are symmetric together with their derivative
with respect to pg.

We will prove now that

Proposition 1 FEach element of the family F can be written as

3]
G ) = ) GLAY)G N o o) (5.36)
s=0

with the scalars @7 satisfying the condition

9¢; 1 no_ _ n
> ;28+(n—23—|—2)(n—23—|—1) ".=0 fors-l,---[i]. (5.37)

(Note that among the terms ¢2 we may call leading term the one with the
highest value of s, i.e. ¢’[lﬂ]. Once the leading term is known, we can find all

the other terms present in eq. (5.36) thanks to eq. (5.37)).

Proof. From the representation theorems we know that eq. (5.36) is the
most general expression of a symmetric tensorial function depending on A
and pg. Taking into account that % = —%, the derivative of ¢p** (A, ug)
with respect to pg is

]

B

a¢a1--~an

5 a¢? u_ﬁg(maz . ga2371a2syj0¢2s+1 . "uocn) +
Hp

oy v

Il
== 1]

— W
SEE

+ (bgg(amzz . ga2371azsljla25+1 . Manflgan)ﬂ(n . 28) (538)
s=0

To be symmetric, the expression above must be equal to its symmetric part
with respect to aq - - -, 3, i.e. to

Z _%lg(alaz .. gO2s102s O2s 11 ,Uanllﬁ) +

— Ovy
[5]+1

+ (bg_lg(o‘”"? .. ,gazsfmzsuazswl . ,Iuanﬂﬂ) (n — 928+ 2) —
S=1

98



sy =35

_8¢>’;1 _9 2\ ™ (1o ||| a2s—1@2s a2st1 . ,,0n,,B)
+ 877+01 s+2)00 1|9 g p o

ool 1 n
= I e gty (=2 [B]) g g
v oy 2 2
[5]
ol 2s
_ s _ 2 2 n 5(011 L. qQ2s—2025—1 ,, Q25 | an)
+ 2 R +(n—2s+2)py_, 1Y g It I
n+1-—2s
(cnan ||| ja2s—102s,,Q25+1 _ . . ,,0n),,B
P g [ ft u],

where in the second row we have substituted s = .S — 1. In the third row we
have reported the term coming from the first row with s=0, and that from
the second row with S = [g} +1; in the fourth row the remaining terms from
first and second row.

Comparing the result with eq. (5.38), we obtain

Z _%lg(oaaz .. _gazs—lazsuazsﬂ .. -ua") =

—0 v
051 or .y AT oo

_ —pO O —+(n—2s4+2)¢7

oy 7" §: 0y

n+1-—2s

(craz |, e2s—102s , Q2st1 | .. ,,Qn)

1 9 H H

¢Z(n — 28)9'6((11 e ga25a2s+lﬂa25+2 R ILLOZn) —

2s+ 2 Blar
+1

. ,gazsazs+1uazs+2 . ,’uan)

ORIy

+ S-‘rl (bn
> |- T

where we have considered s = S + 1 and then S = s in the last term.

So we have

097 1 n
s~ 9 -9 N(n — 2 D™ , =0 f S T
fys+(n s+2)(n s+ 1), or s , [ }
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and

8¢8+1
oy v

—(25s4+2)+ (n—2s)(n—2s—1)¢L =0 fors:(),---[n;ﬂ.

We can see that the second of these equations coincides with the first one.
So the characteristic condition for F is the above reported eq. (5.37).

This completes the proof of Proposition 1. m

It will be useful for the sequel to note that, thanks to (5.37), eq. (5.38)
becomes

dpmen N, o A2sm102s ¢
o= > O g e gttty (5.39)
g s=0
with
ntl _10%¢
150, 5.40
Qutt =2 (n =25 +2)¢t, fors=1,--- [H]. .

This allows to prove the following

Proposition 2 [f 9" € F., it follows that also 5= ¢ F.

Proof. Because of eq. (5.39), to demonstrate the theorem it will be sufficient
to prove that eq. (5.37) holds true also with n+1 instead of n, i.e.

¢n+1
vy

n+1

—25+(n—2s+3)(n—2s+2)¢"" =0 fors=1,- {
v

] . (5.41)

For s=1, thanks to (5.40), it becomes

%Eﬁ(m 1)+ (n+ n (—1) a—i =0

Oy 72 v

that is identically satisfied.
Instead, for s = 2,- -+, [%}], thanks to (5.40),, it becomes

0P 1 2sn+1
oy v 2s

n+1
2(n 2s+4)¢7 5 =0

(n—23+2)—|—(n—25—|—3)(n—23+2)2

that is eq. (5.37) with s-1 instead of s, after having divided it for 2s-2. m
It is also important the following

Proposition 3 [f¢p@r -+t € F | then ¢* " € F exists such that p*1 "+t =
Bgo1"an

auan+l ’
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Proof. In fact the integrability condition for the problem
Do a¢a1-~~an71[an

is - =90
aILLan-‘,-l aua'rH»l]

POl —

which is surely satisfied because ¢**» € F and, consequently, it and its
derivative with respect to p,,,, are symmetric.

We note also that, if qgal"'o‘” is a particular solution of this problem, then the
general one is

gor-an — g1 4 (A)g(®102 . grn-1en) if 1 s even,
| pren if n is odd,

with ¢()\) a scalar function. m

Proposition 4 [fp®t "+ € F | then ¢ € F exists such that g n+r =
67'¢0¢1”'an

8'u‘c“n+ln.uan+'r .~

Moreover, if ¢*1 " 1s a particular solution of this problem, then the general

one 1s

( ~ r—1 .
¢a1~~-an + Zz[:?) ] d)i(A)g(alaQ e gan+2i_1an+2z)ﬂan+1 © Moo
if n is even,
PO =
- r—2 ,
¢al~~~an + Zz[:?) ] ¢i<)\)g(a1a2 e gan+2ian+2z+1)ﬂan+1 © Hangait
[ 4f n is odd,

with ¢;(\) scalar functions.

Proof. We can prove this proposition with the iterative procedure.

It holds for r=1 for the Proposition 3.

Let us assume now that it holds for » = 7 and prove that it is satisfied also
when r =7+ 1.

If poron+r+1 € F we can apply this proposition with n+1 instead of n and
7 instead of r. Then we have that ¢p®* 1 € F exists such that

87 Q1--On41
porranire — ¢ (5.42)

a:uozn-ﬂ e a:uoén+7+1 .
But, for the first part of Proposition 3 we have that ¢“*" € F exists such
that o1 on+1 = 8;"11 ™ which, substituted in (5.42) gives

Hap 41

aFJrl ¢oz1---an
poranirit | (5.43)
JUNPREE aﬂan+?+1

101



So the existence of solutions has been proved.
If p*1 %" is a particular of these solutions, we have

8?+1(Za1man
a:uozn-u e a:uoén+7+1 ’
which, together with eq. (5.43) implies
a" 0 ~
{ (¢a1...an B ¢a1...an)] _o.
alu’oénJrl e alu’Othr? aMOén+F+1
By applying the second part of this Proposition 4, we conclude that

qbal"'oénJr?Jrl —

(Zl[:?] ai()\)g(alfm .. .gan+2ian+2i+1)_
/’Lan+2 T /’Lan+2i+1 lf n+1 IS even,

0

T (prren — $a1-~~an) _
aluawr?+1 <

21[?2] 6@,()\)9(041042 .. .gan+2i+1an+2i+2),
\/'I’Cln+2 T /’Lan+2i+2 1f n+1 1S Odd

This relation can be integrated and gives

( =17 _
Zz[:% ] qbi(/\)ﬁg(“m .. ,gan+2ian+2i+1)luan+1 o oii

goran _ Joaan _ if n is odd,

2[7] ¢ ( >22+29 e 'gan+2i+1an+2i+2):uan+1 “ Homgoite
\—i—ﬁbo( )gleraz ... gan—1an) if 1 is even.

So we have obtained the second part of this proposition, with 7 + 1 instead
of r, and

- 1 e
HN) = {%2\2}2\3; i 2 12 ijr; (For this case we have put i=I-1).
This completes the proof of Proposition 4. m
Proposition 5 If p*1 € F, then ¢p* 2 € F exists such that
PTG g = OO (5.44)

Moreover, its leading term is

g2 —o(nt3-[242 ])(n—i-l )(n+2) {/qﬁ" 2(n+3-[m42]) - Ly 4 72 ()

(32 [2£2] 32

(5.45)

with ¢7[L%] leading term of ¢* %" and f["LfQ] an arbitrary function.
2
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Proof. Because of ¢p*1*n+2 ¢ F_ it has the form (5.36) with coefficients
satisfying eq. (5.37) and n+2 instead of n, i.e.,

¢a1~--an+2()\7 Mﬁ) _ Z ¢g+2(}\’ ,y>g(a1a2 . ,gazsﬂagsumsﬂ . ',U,a""'Q)

with
n+21 2
8? ~25+(n—2s+4)(n—25+3)¢" 2 =0 fors=1,- [n%— } (5.46)
v

Let’s substitute this expression of ¢®*+2 in the left hand side of eq. (5.44)
and explicit the symmetrization, so obtaining

¢041 ©Qp42

gan+1an+2 -
=+
2

— E : +2 5-102s  O2s " =
_ oI, ’7)9<a1a2 R 1 e
s=0

n+2
_ n+2 (28 + 2) (a1 .. qQ2s-30Q2s—2, Q2s—1  Qp)
Z o et m+D)? g 8 e

=

2s(n —2s + 2)
n+2 A 9 (a1 ||| jQ2s—3Q2s—2,, Q2s—1 . ,,Qn)
+ 51 P (A7) it mtD? g f pem +

(3]
(n+2—-2s)(n+2—2s—1)
4 n-+2 )\’ .
;¢s (A7) CEDICES)
g(a1a2 . _ga2571a2s'u0425+1 . 'uan) (_72)‘

Blending the first two sums and putting S=s-1 we obtain

[5]
a1 Qp 42 n+2 S + 1)(” — 5+ 2)
¢ gan+1an+2 Z { s+1 n + 2) (TL 4 1) +

(()n—|—1—28)
(n+1)

(n+2—2;)
(n+2)

¢Z+2(_,Y2> }g(omm . ga23—1a25ua23+1 .. -/La").
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With the use of this expression and of eq. (5.36) for ¢ eq. (5.44)
becomes

(3]
o (s+1)(n—s+2) 2 o (M +2—2s5)(n+1—2s)
Z{Mﬂ (n+2)(n+1) =) (n+2)(n+1) }

s=0
g(a1a2 . QQQS—IOCQSMOCQS+1 . Z ¢n (G go- 1a29ua28+1 . ‘Ham‘
l.e.
o = o+ D - s +2) +
S (n i 2)( ) s+1
+ ") (n+2—-28)(n+1— 23)], (5.47)

fors=0,---, [g}
If we use egs. (5.37) and (5.46), this expression becomes

0Py 1 ¢?I§
5= (n+2)(n+1>[ oA 2 s+ 2)
+a_g¢12(_ 2)(n — 2s)(n — 1 — 25)} (5.48)
0y 7 '

that is eq. (5.47) with s+1 instead of s, derivated with respect to v and with
another use of eq. (5.46). So we have proved that if eq. (5.47) holds true
for a particular value of s, it will hold true also for all lower values of s; so it
suffices to impose eq. (5.47) for the bigger value of s, i.e.,

2

n 2|3 2 N2 n 0 n+2
PR e e O E RN o B

where eq. (5.46) has been used. The general solution of this equation is
reported in eq. (5.45). m
It will be useful also the following

Proposition 6 If the leading term of ¢p*+ " is ¢[n] = f(\)y26+) with p a

non negative integer, then the leading term of ¢ n
15

gan72r+lan72r+2 e ganflan

n—2r _ (2 [nTH}_?r_]')” —2(34+p)
o) = erpmogy W
n(z ”;1} —27‘—2—2]),2[”—2}_1} —4—2p) (5.50)
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where, if a < b, n(a,b) denotes the product of all even numbers between a
and b, while if a = b+ then n(a,b) = 1.

Proof. Let us prove eq. (5.50) with the iterative procedure.

In the case r=0 it is an identity.

Let us assume that eq. (5.50) holds up to the integer r and let us prove it
with r+1 instead of r.

Let us distinguish the cases with n odd and with n even; for the first one, by
applying eq. (5.49) with n-2r-2 instead of n, we obtain

(n—2r —2)!
nll '

| 8
n—2r—2 n—2r n—2r
—2r—3 — - 27 + —2r— + Y ~— —2r— -
n 22r 3 n 2 |:(n 3) n 227" 1 9’}/ n 227‘ 1:|

fOn(n—=1—=2p—2r,n—3—2p)y > (n —2r +3 — 6 — 2p)
that is eq. (5.50) with r+1 instead of r.

In the case with n even, by applying eq. (5.49) with n-2r-2 instead of n, we
obtain

e = T {(”_2”2) i+ _M 2] -
(n—2r —3)!

(=l FOI(n —2 = 2p — 21,0 — 4 — 2p)y 23+ (1 — 2 — 4 — 2p)
n — 1

that is eq. (5.50) with r+1 instead of r.
]

Proposition 7 If ¢***m € F with leading term f(\)y~ 3+p), with p a non

negative integer such that p < m — [2} —lorp>m— [3} — 2, then
paamtz e F ewists such that ¢t omamiiGmiGmide—1Gmide g e
gocm+2r—1ocm+2r - ¢a1---am.
Moreover the leading term of ¢* = *m+2r 4g

(m2r)t  (2[3)"  (@m-2[F]-2p-4)! a3

Ay~
m! (2 [m} —1—27“)!! (2m—2[%]—|—2r—2p—4)!!
_|_Zf” Ay 2(Bmbic[2]) (5.51)

with fi,(X) arbitrary functions.

Proof. Let us prove this proposition with the iterative procedure.
It is easy to verify that eq. (5.51) holds for r=0.
Let us assume that it holds up to the integer r and prove that it holds also
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with r+1 instead of r.
Then we have to face the problem

QL Am Qm 1 Qm+2° Om4-2r+10m+2r+2 Y cY e
(b e " e e gam+1am+2 gam+2r+lam+2r+2 - ¢ ” (552)
By defining

¢a1mam+2T = ¢a1"‘am+2ram+2r+1am+2r+2gam+2r+1am+2’r+27 (553)

the problem (5.52) becomes that of the present proposition, which we have
assumed holding. Therefore, the leading term of ¢® =+ is (5.51) and
it remains to face only the problem (5.53); by applying Proposition 5 with
n=m+2r we find that the leading term of @@t *m+2r+2 ig

,2(3+m+2r,[m+§r+2]) (m + 2r + 1)(m + 2r + 2)

ry m T
2[5

(2m —2[2] —2p — 4)!!
(2m —2[2] +2r —2p—4)!!

()\)772p+2m+47“72[W]71 +

e(m+2r+1)(m+2r+2)
9 |:m+§r+2:| ’

3 fur (W By + Tttd ()

=0
(m+2r)!  (2[Z])! (2m —2[2] —2p — )l
m!(2[2] +2r)! (2m — 2 [2] +2r — 2p — 4)!!
1 o ’"Zf (m+2r+1)(m+2r+2) 1
“op+ 2m + A — 2 [mz2] ! — il 2 [mi2riz] 2r — 2i

7_21 2m— 6+2[ > ] + fm+2r+2 ( )(m + 2r + 1)(m +2r + 2) 7—2(m+2r+3—[%])

[m+2r+2] ) [m+§7“+2:|

that is eq. (5.51) with r+1 instead of r and

(m+2r+1)(m+2r+2) 1 .
F fir=—5 ros) 55 for i=0, ... -1,
iyr+l = m+2r+2 (m+2r+1)(m+2r+2) .
f{w] (A) RS for i=r.
2 2

This completes the proof. m
We conclude this section with the

Proposition 8 Ifn is an even number, the tensor gl®1¢2 ... gon-10n) Han i1
La, belongs to F and, moreover,

(a1 an—10m) Q1o a2 1025 02541 Qnp—r)
g g T g ¢sr9 A U
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(5.54)

with
1 r§1,3:[";’”},
o 0 r<1,0<s<[%7] -1,
sr T rl(n—r)! s+r—2 n n—r
(2s+2r—n)!!(2s)ﬁ(n—r—2s)!(n—1)!! <_ 2) Porz 2’ 7 =T <s< [ 2 }’
0 r>2,0<s<%-r—L
(5.55)

Proof. It is easy to note that the above tensor is an element of F because
it and its derivative with respect to us are manifestly symmetric.

Let us prove (5.55) with the iterative procedure.

It is easy to verify that it holds when r=0.

When r=1 it is a consequence of

(a1 |

g _ganqan)lua _ g(a1a2 . ‘ganq)anua — g(a1a2 . gan73an72uan71).

(5.56)

When r=2, by using eq. (5.56) we have

gleroz o genen) g, =
1 alo a a «a a «a «a «a a
n_l |:g( 1 2.-_9 n—3 n_2)/.1/ n—1 _|_<n_2)g n—l( 1...g n—4 n—Su n—2):| /’Lan—l
—~2 n—2
_ - ;)/ 1g(a1a2 . gan—san—Q) _'_ — 1 alag . gan—5an—4luom—suan72)

from which (5.54) and (5.55) with r=2.

Let us assume now that our proposition holds up to a fixed integer r and let
us prove that it holds also with r+1 instead of r. By multiplying eq. (5.54)
times ft,_, we find

(a1a2 e ganilan)uanfr e ILLan =
[#z5]-
_ Z 751;17125 + 2g(a1a2 L. giEs—1a2s aeshL L Iuan—r—l) +
5o n—r

77"

S =1 — 25
+ Z — g(oqocz . ga2371a2sua2s+1 . ‘#anfrfl)(_,}/?)’
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where, in the first summation, we have put s=S+1.
It follows (5.54) with r+1 instead of r and

n—r 2s42 2 in—rn—r—2s _ n—r] __
(bSJrl,T nr ) Psr Tap for s = 0, [ 2 :| L,
1 and s = [”;T} when r even,
s,r+1 =
2 in—rn—r—2s f _ n—r—1 h dd
— YV " Ps I or s = 3 wnen r o .

n—r

We have taken into account that n-r-2s=0 when s = [ 5

By using this result and eq. (5.55) we have that

] and r is even.

eFor 0 < s<2Z—r—2 both¢" 7 and ¢"  are zero, from which ¢" 7% = 0.
2 s+1,r S, s,r+1

e For s =% —r—1, we have ¢7," = 0 and ¢, 17" = —(n_Q(f:Qgi(lgl!_l)!!.
efbors=24—r--, [”;T} — 1 and for s = [”;T} in the case r even we
have

1 (r+1)!(n—r—1)

_ (_72)s+r+1—g'
s+l (2s4+2r+2—n)ll 2s)!! (n—r —1—-28)! (n— 1!

n—r—1
2

n—r— ! (n—r—1)! r+1
and r odd we have $7r+11 - (r—1)1§ 2n£r—1)!! )(n—l)!! (—y2) 5

e For s =

In this way we have obtained (5.55) with r+1 instead of r as we desired
to prove. m

5.4 The case N=1.

When N=1 only equation (5.30) with k=0 has to be exploited.
We prove now that it amounts to giving the following expression for the
leading term of C@414n

Mh—2
d d"ch (N (1N (Mh+1)!
Cch,  — 6 oMy h,q 4
= ;< )= \32) Gih—2q- 2
M(h—-1)—2

with Ch,g = Ch—1,4 for q= O’ S %

M(qg—1 Mh — 2
and Chg forq= (q2 >,- B are arbitrary functions of .

(5.57)
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Let us prove this with the iterative procedure.

It holds for h=0, because in its right hand side there are no terms, and its
left hand side is zero for egs. (5.24) and (5.26).

Let us apply now the Proposition 7 to eq. (5.30) with k=0, r = %, m=Mh+1.
We find that

Mh—2

- d"*le,(N) (1\?  (Mh+ 1)
Ol =" L (¥ Tl (1)
(h+1) g Xt \22 ) (Mh —2q—2)!!
M 2
[M(h—f—l)—f—l]! (Mh)” (Mh—?q—Q ” —i—Zf M’}/ 3+h1\4+z)
(Mh+ 1) [M(h+ DN Mh+1)—2q—

which is eq. (5.57); with h+1 instead of h (ch+1,q = ¢pq has to be used),

i=q— Mb

. Chyq for g =0,---, [ME=2],
ht1,g = \ [M(h+1)—2q—2]!! M . M(h+41)—2
o [ [1(\4(J;z+)1)f1]!!] (—m2) 2 (A+1) g—Mh M for ¢ = Mh;"' a_( ; :
with f7 u o defined by 40 TV AR
We note that from eq. (5.57)s it follows
M(h—j)—2
Ch,g = Ch—jgq for q= 07 s % (558)

Also this relation can be proved with the iterative procedure. It holds when
j=0. From (5.58) and (5.57)y it follows c¢p, = ch_jq = Chj_1,4 fOr ¢ =
0,--- ,w that is eq. (5.58) with j+1 instead of j, as we desired to
prove.

Let us search now the other coefficients C”. To this end, it is better to prove
firstly that from eq. (5.37) with n=Mh+1 it follows

GV (g s! (Mh+1—2s)! a"
s (s =) (Mh+1-=2s+2r)!0(y?)"
Let us prove this with the iterative procedure.

It holds for r=0. Let us assume that it holds up to the index r. From eq.
(5.37) with n=Mh+1 and s-r instead of s, we find

pMhL, (5.59)

GMIHL —2s5+2r L ¢Mh+1
s—r—1 ~ (Mh+3 —2s+2r)(Mh+ 2 —2s+2r) 0y
1 8
T Mh+1 _
(s —=7) (Mh+3—2s+2r)(Mh +2 — 25+ 2r) 8(7?) o
= (—4)*! s! (Mh+1—2s)! o+t M+

(s —=r—=1)!(Mh+3—2s+2r)0(72)r+17°
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where in the last passage eq. (5.59) has been used. In this way we have
proved that (5.59) holds when r+1 replaces r; this completes the proof of eq.
(5.59) and we use now it to find C".

If we write eq. (5.59) with s = &lh and r = s — s*, jointly to eq. (5.57), we
find that

(M ) ]\/11-5—2

_h ! 1 M

Ch — (—g)5h—s"12 o2\ ¥R

e = (=) (s (Mh+1—25) &= (=m’)

dhch,q()\) (Mh + 1)” _ %h—s* (q + 2+ %h — 3*)‘ i Q+3+%h78*
d\v (Mh —2—2g)!! (g +2)! ~?

that is, the above mentioned eq. (5.35).

5.5 The case N > 1

In this case we have to impose eqgs. (5.30) and (5.31). But it will be firstly use-
ful to transform them into more easy equations. To this end we may use the
notation B; = qy, -+ - a,_, (similar to the already used multi-index notation
B; = «;, - - - ) and Proposition 4; we obtain that the tensor D,i“:l"'AhBl'“B’“
exists, such that

~ ~ ak ~ o~
CaA1---Ahﬁ1B1'"[3kBk —— 7  poAr-ApBieBy (5.60)
hik Opg, - Opg, "

After that eq. (5.31) becomes

ak+1 ~ o~
DOéAr"AhBl"'Bk’Y1""YN—1 .
h,k+1 Ivive IyN—2vN-1

Ops, -+ - O Opg

k+1 ~ o
_ 0 DaAl"'AhBl"'Bk(_m2)¥'

OpsOpp, -~ g, "

For the Proposition 4 with n=hM+k(N-1)+1 the general solution of this
equation is

DZ‘,II::I.AhBl.'.Bkvl...7N7197172 U OyN N1 T Dlozé,llilmAhBlmBk(_m%%
(5] o
+ Z Qﬁi’h,k()\)g(‘)‘Al"‘AhBl"‘BkahMJrk(N—l)+2"'ahM+k(N71)+2i) .
=0
Hopnrprin—1y+2 " Hopnprv—1)+242:° (561)
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Let us transform now the unknown tensors D, into the tensors Ej ., ac-
cording to the following rule

Ay-ApBy+B Ay-ApBy+B
Dl(j,kl hb1- D :El?,kl hbrbr

[%°]

2

+ Z @ij hk()\)g(aAl"'Ahél"'EkahM+k(N—1)+2"'O‘hM+k(N71)+2i) .
=0

Hapniev—1)+2 " Hapairv—1)4242i° (5.62)

with 1; 1 (A) defined with the iterative method by

¢i,h,0 = 07
Ying = 0,
[Mh+ k(N — 1) 4 2i + 4]!!
wi,h,k—H =

[hM + (k+ 1)(N — 1) 4 2i + 4)!!
[hM+(k:+1)(N—1)+2i+1]!!( gy N1 )
[hM + k(N — 1) + 2i + 1]1! k(=) 2+ Gin
-2
in the case k even and i =0, - - - ,kT
and in the case k odd and 7 =0, - - - ,%

[Mh+ k(N — 1) 4 2i + 4]
[hM + (k+ 1)(N — 1) 4 2i + 4)!!
[hM + (k+ 1)(N — 1) + 2 + 1]!!
[hM + k(N — 1) + 2i + 1]1! Dk

—1
in the case k odd and 7 = k—

wi,h,k+l =

We note that also £ € F.
Thanks to this transformation, eq. (5.61) becomes

oAy ApBi By N1 _ graA;-ApBy-By, 2\ N1
Eh,k—l—l Iyive " 9NN = Eh,k (_m ) 2. (563)

Let us note how many 4-vectors p,, intervene in the second term in the right
hand side of (5.62); they are 2i +1 < 2 [£2] +1 <k — 2+ 1 < k; therefore
eq. (5.61), substituted in (5.60) transforms it into

~ ~ k ~ ~
Codv- A BBy _ 9 oA AnBrBy
hok hok .

- 5.64
Opug, + - Opg, (5:64)
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Egs. (5.63) and (5.64) substitute now egs. (5.60) and (5.61); consequently,
these last one can now be left out!
Eq. (5.64) with k=0 now yields

O = prgr-n (5.65)

which is restricted by eq. (5.30) with k=0. After that eq. (5.63) will give,
with an iterative procedure, E}’ . Let us firstly deduce, from this proce-
dure, some properties.

6
Property 1 The leading term ofE,%h"'A’L 08 (%) multiplied by a polynomial

i the variable 7%

Proof. This property is evident from eq. (5.57). m

o 6
Property 2 The leading term of E,?’Zh"'AhBI"'B’“ 8 G) multiplied by a poly-

nomaal in the variable 7%

Proof. Let us prove this with the iterative procedure.

It holds when k=0, for property 1.

Let us assume it up to the index k. From eq. (5.63), by applying Proposition
7 with m=Mh+(N-1)k+1, r = %, we find that property 2 holds also when
k+1 replaces k.

This completes its proof. m

By substituting now eq. (5.64) into eq. (5.30), this last one becomes

8k
0= — -
a:uﬁ1 ce 8Mﬁk
A1 Ap B Bpmivz Y —17M 2\ M4 9 aAy-ApBy-+By,
[Ehﬂ,k: G " Grag s — (—M7) 2 5Eh,k

For Proposition 4 with n=Mh+(N-1)k+1, r=k, it follows that

A1 Ap By Biyiy2 - yM—17M 2\ M 0 aAy-ApBiBy _
Eh—i—l,k; Iviva " Gvm—1vm — (_m ) 2 5Eh,k -
k-2
[%32] o
o QA Ay By By an;
= Y d(A)getr B e ani )y (5.66)
=0

where the notation g® @2 = g(®102 ... g@2n-1920) hag heen used.
But, for the above property 2, jointly with the Propositions 6 and 8, we have

6
that the left hand side of eq. (5.66) has a leading term of the type (%)
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multiplied by a polynomial in the variable 7%, while its right hand side has a
leading term polynomial in 72. It follows necessarily that both these leading
terms are zero; in other words, both sides of eq. (5.66) are zero. In particular,
from the left hand side we obtain

aAy+ApBr B2 yM—17M _ 2
Eh+1,k Ivive " Gyp—ivme = (_m ) O\

Therefore, we have to impose only eqgs. (5.63) and (5.67); after that, the
tensor Cﬁ?l'“AhBl“'B"‘ defined by eq. (5.64) is the more general solution of

eq. (5.30) and (5.31).

5.5.1 A consequence of eqs. (5.63) and (5.67)

We will see now that, as a consequence of eqs. (5.63) and (5.67), we may
find the leading term of E,Ol‘”ljl"'AhBl"'Bk except for a set of arbitrary functions
of the single variable A. This result is the subsequent (5.71).

To this end let us firstly prove that

(N-Dk—2
B =1 3 o e o2 ()

(5.68)

where the last N-1 functions ¢, , are arbitrary functions of A and the remain-
der are

Ck,q = Ck—1,q- (569)

Let us prove it with the iterative procedure.

It holds when k=0, because in this case the right hand side has no terms,
while the left hand side is zero for egs. (5.65) with h=0, (5.24) and (5.26).
Let us apply Proposition 7 to eq. (5.63) with h=0, r = %, m=k(N-1)+1.
We find that

(N—1)k—2
041 6N 1\ [(N = D)k +1]!
Ei =0 q; o (?) [EN . 1))k: - 2;}!! (V= 1)k — 2q] -
At (N —DE+1+ N 1]t [(NV —1)KJ!
e (N=Dk+11 [(N=Dk+N—1]!

2
+ Z fi’N—l ()\)77[64”6(]\771)4’21].

2
1=0

(N — 1)k — 2 — 2]!
(N —1)(k+1)—2q— 2!
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Then we have found eq. (5.68) with k+1 instead of k, i = ¢ — k™5 and

Chyq forg=0,---, (N_é)k_z,
Chtlq = [(N=1)(k+1)—2g—2]!! N1
Jomwizr v St (—mt) T G
for ¢ = (N;l)k’ . (Nfl)(2k+1)f2.
This completes the proof.
It will be useful in the sequel also the
C(N=1)(k—i)—2

Property 3 cpq = cip_igq forq=0,-- 5

Proof. Let us prove this with the iterative procedure.
It is obvious when i=0.
From eq. (5.69) with k-i instead of k, we have

.forqzoj...w

1. |
Now, from eq. (5.63) it follows

. So the property is valid also when i+1 replaces

aAyApByByy _ A1 ApBrBy By By - 2\~ (N-1)
By = B o Bk+1gBk+2< m”) ’

and so on, until

aAyApByBy OéAl'“AhEI"‘Ek§k+1"'§k+Mh _ B 2
Ey % = By IBrir " 'gBk+Mh(_m )

_(N—1)Mh
2
By applying h times eq. (5.67), the above equation becomes
Ay --ApB-B
Eh,kl rB1+By _

h SO
0 EaA1mAhBl"'Bk'Yl""Y]Mh(N—Q)

(N—2)Mh
9\ N —2)Mh
ONE 0,k+Mh Jvive " 9vmn(N=2) -1 VMR (N=2) (_m ) 2

(5.70)
In this way all the £}, are determined in terms of Eg.
From egs. (5.70), (5.68) and Proposition 6 with n=Mh+(N-1)k+1+4Mh(N-2)
and r = 2 h(N — 2) we find that

(N=1)(k+Mh)—2
2

h q
phk _ 6 o\ Nt an Ay ping (1
Mhe(N—D)k — ) <_m ) N \ 5
2
q=0

(N —1)(k+Mh)+ 11! [Mh+ (N — 1)k + 1]!
(N —1)(k+ Mh) —2q — 20 [(Mh + k)(N — 1) + ]Il

k(N —1)+ Mh —2q,(Mh+k)(N — 1) — 2 — 2¢|.
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This expression can be simplified because, for ¢ > w we have Mh +

(N—=1k—2¢ <0, (Mh+k)(N —1) —2—2¢q > 0, so that at least one,
among the factors intervening in (- -- ,---), is zero. Then we can restrict to

Mh+k(N—1)—
2

the values with ¢ < 2 and, consequently,

hk .
EMh+(N71)k -
2

(N—1)k+Mh—2
2

Y (_m2)%k+”§hM 1\ [Mh+ (N -1k +1]!
! A" (N — 1)k+Mh—2q—2]!!'

(5.71)

72

q=0

This agrees with the above used property 2.

5.5.2 Equivalence of egs. (5.63) and (5.67) with eq.
(5.71)

The result (5.71) has been proved as a consequence of egs. (5.63) and (5.67).
We prove now the vice versa, i.e., that egs. (5.63) and (5.67) become identities
when eq. (5.71) is used.

Let us begin with eq. (5.63): For the Proposition 6 with n=hM+(k+1)(N-
1)+1 and 7 = &, and (5.71), the leading term of the left hand side of eq.
(5.63) is

(N=1)(k+1)+Mh—2
6 Z (N —=1)(k+1)+ Mh+ 1) () S e 2
por (N —1)(k+1) + Mh —2q — 2)!!

dhckJrlJrMh’q i 1 [(N— 1)]€+Mh+ 1]”
d\M v/) [(N—=1)(k+1)+ Mh+1)!!
n(Mh+ k(N —1) —2¢, Mh+ (k+ 1)(N — 1) — 2 — 2q).

~

If g > MHENZD o have hM + k(N — 1) —2¢ < 0, hM + (k + 1)(N — 1) —
2—2q >0, so that n(--- ,---) = 0; therefore we can limit to values with a <

w — 1 and the above leading term becomes equal to the right hand

side of eq. (5.71) pre-multiplied by (—m?)%- (use the property (5.69) with

Mh+k(N-1)-2

k+1+Mh instead of k, i.e., cxr140hg = Chyrrng for g =0,--- | 5 <

(N—-1)(k+14+ Mh) —2).

Therefore, eq. (5.63) is an identity.

Let us now prove the same thing for (5.67): For the Proposition 6 with
n=M(h+1)+k(N-1)+1 and r = 2 and (5.71), the leading term of the left

2
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hand side of eq. (5.67) is
(N—1)k+M(h+1)—2
,7—6 i (N—-1k+Mh+1)+ 1)1 2 N1 M)
g (N —=1k+ M(h+1)—2q— 2!

dh+lck+Mh+M,q i 1 [(N — 1)l€ + Mh + 1]”
PP ) [(N—Dk+ M(h+ 1)+ 10
n(Mh+ k(N —1)—2¢, M(h+ 1)+ k(N —1) — 2 —2q).

When ¢ > w we have n(---,---) = 0 so that there remain terms
with ¢ < w, which is the right hand side of eq. (5.71) multiplied

by (—m2)% and derived with respect to A (use cximning = Chtmng for
q=20,--- ,w which holds for property 3 written with i=M and
k+Mh+M instead of k because Mh+ k(N —1)—2 < (N —1)(k+ Mh) —2).

Therefore, eq. (5.67) is an identity.
5.5.3 Determination of the tensor C’g‘ﬁlmAhBl'"B’“
After having imposed egs. (5.63) and (5.67), let us now impose eq. (5.64)

for the determination of the tensor C’,‘f‘,?l"'A"B 1B To this end, let us firstly

note that from eq. (5.40), with n odd and s = 2! we find that the leading
g1 -on .
o I

7%11: % (5.72)

term of

From eq. (5.40)y with n+1 instead of n and s = ”TH we find that the leading
agd)&lman .
Oug, Opg, 15

n+2 .., n+20 ,

term of

n+2
n+l — 2
2

n—1 = n—1

7’L—|—1 2 Y 3_’}/ 2

where in the last passage eq. (5.72) and eq. (5.37) with n+1 instead of n

and s = ”TH have been used.

If 7_, depends on y by means of 42, it follows that ¢".17 also depends on 7
2 2

by means of v? and is

0

n+2 n

=20+ D0k 573
It follows that

ni2r o oye(mA20) 0T

n+22r—1 - ( 2) 'rl,' 8(72)7. anl (574)



(In fact, it holds for r=0. Let us assume that it holds up to an integer r. Eq.
(5.73) with n+2r instead of n becomes

n42r+ 21 g

+2r42 _ +2r r1 "
¢Z+2:+1 - 2(71—1—27“—1—2) ¢7:L+2r 1 (_2) n! a(,y2>r+1¢n;1

)

where (5.74) has been used. The result is again (5.74) but with r+1 instead
of r; this completes the proof).
From eq. (5.72), with n+2r instead of n, and for eq. (5.73), it follows

(n+2r)lt o"
n!l O(?)"

This result and eq. (5.73) give

Pt = (=2

QSTZ

1.

(n+2[g])n ol
nl! 5(72)[2] =

n
n

gy = (-2

This relation, with n=Mh+k(N-1)+1, and eq. (5.71) allows to obtain from
eq. (5.64) that the leading term of C;i!]?ln.AhBl-an s

Mh+k(N—1)—2

bk o[k —6—2[E - (hM + k(N —1) + 1+ 2 [E])1
ot = 2lfly7eld qzo [hM + k(N — 1) —2¢ — 2]!!
2y N1 MTdth+th(Q+2+[ DU/
G I o W) (;) . (5.75)

This result allows to determine the other coefficients C"*,
To this end, it will be useful to note firstly that, from eq. (5.37) with
n=Mh+Nk+1 it follows

s! (Mh+ NE+1— 2s)! o

(s =) (Mh+ Nk +1—2s+2r)1 0(72)" ;- (5.76)

¢?77" = (_4)T

(In fact, this relation holds for r=0. Let us assume that it also holds up to
an index r; from eq. (5.37) with n=Mh+Nk+1 and s-r instead of s we find
that

n =25+ 2r 1 o .,
sl (Mh 4+ NE+3—2s+2r)(Mh+ Nk +2—2s+2r)dy *"
=—4(s—r) ! 9 n
(Mh+ Nk+3—2s+2r)(Mh+ Nk+2—-2s+2r)0(y?)"*"
s! (Mh+ NE+1—2s)! o+t

— (_4)7"+1

(s—r—1!(Mh+ Nk+3—2s+2r)! 9(v? )T+1¢5
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where in the last passage eq. (5.76) has been used. The result is eq. (5.76),
with r+1 instead of r, and this completes its proof.).

Eq. (5.76) with s = [MMENEEL] and r = s — s*, jointly with eq. (5.75) shows
that

|:Mh+éVk+l}! (Mh—|— Nk+1-2 [Mh+éVk+1])!
s*! (Mh+ Nk +1—2s*)!

Mh+Nk+1]_s*
2

ok = (—a)l

mhtk(N—1)—2 i
i (Mh+k(N_1)+1_2[5})'<_m2)%k+%dhck+M}%q
(Mh - k(N — 1) —2¢ = 2)! N
Mh+é7\ik+1]_s* (q + 2+ [%} + [%] — 3*)!
(a+2+[3])!

(2)[5]

(g+2+ [E])!

|
!
( L )H‘”’*[’S]*[M”Skﬂ]s*

;
from which the above reported eq. (5.33), taking into account that

| —

(Mh—{—N/{:—Fl—Q{M})

{0! =1 ifkisodd,
2

1'=1 if kis even,

and moreover, that [MAtNEtL] 4 [A] — —Mh+(év+1)k.

5.6 The subsystems

5.6.1 The Subsystems of type 1

The method of subsystems presented in the book [2] can be applied to our
case as described in the sequel.
From eq. (5.7) with

1
Hay-ay = _ﬁu(a1-~~aN,2.gaN,1aN) (577)

and using the trace condition (5.5); we obtain dh® = A,,..q, dA*~*M +
Py o, B *N=2 which is again (5.7) but with N replaced by N-2. But
we can obtain a similar model also by starting from the beginning with N-2
instead of N. Let us now compare the two resulting models. We will refer
to this as “subsystems of type 1”7. The other type will be considered in the
following subsection. The results of the first type will be published in [41].
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From eqs. (5.115) and (5.77) we have

NI o -
mﬂaal”'aNng 102 .. .gaN72aN,1(_m2) =1 _

(N —2)!! . o .
muaal...a]v_gg 1 2,..g N—4 N_3<_m2) ol

Mo = 8

ie. eq. (5.11) with N-2 instead of N, so u, remains the same even in the
subsystem. Thanks to eq. (5.77), eq. (5.22), the particular solution, becomes
J FQar o P™ D™, g, gy PP .pPV=2)p*d P, i.e. that with N-2 instead of
N. What about the general solution?

For this kind of subsystem eq. (5.28); remains the same, while eq. (5.28),
becomes

1 N-1

~ 2\ —
Hpy-Bn = _ﬁlu(ﬁl”'ﬁN—%gﬁN—lﬁN) = H(B19B285 " 'gﬂN—1ﬁN)(_m ) 2

1 _
_ﬁ'u(ﬁl'“ﬁN—QgﬁN—lﬂN)

where we have used eq. (5.28), with N-2 instead of N. But in eq. (5.26)
fig, ...y multiply a symmetric tensor so we can drop the symmetrization. So,
defining B; = Elﬁz ~N—10; n, the tensor C’,?",jl"'AhBl"'B’“ of the subsystem is

027121-'-14;31& N-1B1 N-BrBr N-108k Ngﬁ1 B B viBe N(_m2)—k. We can

apply prOpOSition 6 with n:hM+kN+17 era p=q+ [%] ) and use €q. (575)7
finding that the leading term of C’?";‘ln.AhBl..‘Bk S
Mhth(N-1)-2

K] g ofk 2 (hM + k(N — 1) +2 [E] + 1)1 N3, M
ol]y-6-2[3] Z (hM+k(N—1)—2q2_2)u o\ N3y,

q=0

d"erining (a+2+ [5])! (1>q (2 [RMERNH2] 1 o)1 < |:h]\4_|_k;]\/'+2]
!

o G \3) P :

M N +2
2 af] -or- a2 [MHEE o [1]). 579

But [MMEEN2] _ K] — LI 4 k(N — 1) + 2], so if MAEHV=8=2 1 4 < ¢ <
MAMEU=2 then hM + k(N —3) —2g < 0 and hM + k(N —1) =2 —2¢ > 0
Mh+k(N—3)—2

so N(...,...) = 0 and we can restrict to values with ¢ < 5

and eq.
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(5.78) becomes
Mh+k(N—-3)—2 )
o[4]~6-2[] i (hM + k(N —3) + 2 [5] + 1)!!
7 (hM + k(N —3) — 2¢ — 2)!!

q=0
(_m2)¥k+%hdhck+2ﬂz,q (Q+2+ [g})' l q’ (579)
d\ (g +2)! v
i.e. eq. (5.75) with N-2 instead of N.
N -3
gl =car, forg=0, ke = L (5.80)
The restriction c,i\{q 2= 12 for ¢ =0, (k — 1) — 1, is respected?

For such values of q we can apply eq. (5.80) with k-1 instead of k, i.e. cﬁq =

ckN_Lq forq=0,--- (k—l)%—l, and this is true for ¢ = 0, - - - (k—l)%—l.
We want prove that all c]k\f , bresent in the model with N intervene also in the
model with N-2.

For Property 3 with k-+i instead of k we have Cﬁri,q = cﬁq forq=0,--- W,
from which, for such values of q and for eq. (5.80) we have C{X g = cn +12q

provided that ¢ < (k + 2)% — 1. Now, exists a value of i such that
k%—l < (k+i)%—1?

Yes, it is sufficient take ¢ = [NQ—ES] + 1 and this is possible when N > 5.
Instead, if N=3, in the case N-2 instead of N we mustn’t develop with re-

spect to 11, so only the case k=0 have sense; so the result (5.79) coincide with
(5.57), with

Mh — 2
c,llvq = cﬁﬂw forq=0,---, 5 (5.81)
This satisfy the restriction
Mh—-1)—2
c,lw = c,llflyq forq=0,---, %, (5.82)

in fact with such values of q we can apply eq. (5. 81) with h-1 instead of h
and eq. (5.82) becomes ¢}, , = cM h1),q f0r ¢ =0, w, and this is
certainly respected for property 3 w1th Mh instead of k and i=M, N=1 or 3,
valid for ¢ = 0,--- M (h—1)—1 and so we can apply it for¢g =0, - - - ,w.
And which ¢} , intervene in the model with N=1 instead of 37

From property 3 with k+1 instead of k and N=3 we have ¢}, , = ¢}, for

q=0,---,k—1. Torender ¢}, , = ¢ , = i, We have to search the values

of i and h such that k+i=Mh and k—1 < W (that is the highest admissible
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value of q in C,IL q). The second of the condition above have certainly solutions,
for example h = [%} +1. Once taken this value for h, also the other condition
above have solution, i.e. i=Mh-k. Obviously, this can be done except for the
case M=0. So we can conclude that the family of arbitrary single variable
functions, arising from integration, is preserved in the subsystem except for
the case M=0, N=3 that is when the subsystem is constituted only by the
conservation laws of mass and momentum-energy.

5.6.2 The Subsystems of type 2

Let us consider now the subsystem obtained by using

1
)\al"'al\/l = _W)\(al“'alw—anM—laNI) (583)

and the trace condition (5.5);.

Let us now compare it with the model which can be obtained by starting
from the beginning with M-2 instead of M. The results will be published in
[42]

From eqgs. (5.11;) and (5.83) we have

M — 1)l . _ .
)\ = QM)\QT"O‘MQ a2 g M-—1 M(—mQ) L _
M —3)!! )
Qu)\al"'a]\472gala2 Y ga‘[\473a1\472(_m2)¥7

(M)

ie. eq. (5.11); with M-2 instead of M, so A remains the same even in the
subsystem.
Thanks to eq. (5.83), eq. (5.22), the particular solution, becomes

/ FQayang D™ D™, iy o 0PN -2)pd P,

i.e. that with M-2 instead of M. For this kind of subsystems eq. (5.28),
remains the same, while eq. (5.28); becomes

~ 1 yo

/\ﬁ1~'ﬁM = _ﬁ)\(ﬁl"'ﬁ]\/f—ZgﬁM—lﬁM) - )‘g(ﬂlﬂz o 'gﬁM—1ﬁM)(_m ) 2=
1 ~

_W)\(/Bl"'ﬁlw—%gﬁM—lﬁM)

where we have used eq. (5.28); with M-2 instead of M. But in eq. (5.26)
g,y 1s multiplied by a symmetric tensor, so in the previous relation we can
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eliminate the symmetrization. So, by defining ;L from A; = Zlﬁz M—10i
the tensor Cﬁ“zl"'AhBl"'Bk of the subsystem is

Ay ApB1BiBi m—18i vBr v—18n M 2\—h
Ch,k 98; m—18i v """ 9Bn v-18n M(_m )

(5.84)
The Subcase N > 3

Let’s apply proposition 6 with n=hM+kN+1, r:l}, p=q+ [g} and the use
of eq. (5.75); we find that the leading term of C’,i‘gl"'AhBl"'B’“ is

Mhtk(N—1)—2 <hM+k(N—l)+1+2[§] ) "
S === I

N—-1 M

byl Y (WM (N = 1) —2g — )11

q=0
d"ceramng (@ +2+ [5])! (1N Q[M5] - 20+ D! hM + kN
d\" (a+2)! \*/)  ([M5¥]+)! 2
k hM + kN k
Coh—2g—2 | 2] o |MEEEN Y o gy [E]).
2 2 2
But [BLEEN] _ [£] | MMOSD g, o GBI 4y < g <
MATHNZD=2 e have h(M — 2) + k(N — 1) — 2¢ < 0 and kM + k(N —
1) =2 —2¢ > 0, so that n(..., ...) = 0, so we can limit to the values
qg=20,---, (M_2)h+§(N_1)_2 the summation in the equation above that be-

comes eq. (5.75) with M-2 instead of M provided that ckMJ:(]QW_Q)hq = it Mhg

forqg=0,- (M_z)h+§(N_1)_2. This last relation, with h=0, becomes cﬁ{ﬁ =
Ck:q for ¢ = 0,--- ,MN_—QU_Q. So, not only condition c%q’Q = 024 12 for
q=0,---, W — 1 remains satisfied, but all the c%k intervene (and

they all intervene also in the terms with h=0).

The Subcase N =1

Let’s apply proposition 6 with n=hM+1, r=h, p=q, and with the use of eq.
(5.57), and we find that the leading term of C’%‘l A i

Mh2

- Z 2 pdieng (1N (Mh+ 1)1 (Mh+1-2h)!
d\r \32) (Mh—2q—2)Il " (Mh+ 1)l

(hM—2h—2q,hM—2—2q).
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But, for W—H <qg< W we have hM —2h—2q < 0 and hM —2—2q >
0, so that n(..., ...) = 0, so we can limit to the values ¢ =0, - | % the
summation in the equation above that becomes eq. (5.57) with M-2 instead

of M provided that

M —2)h —2
Cha = Cha q=0,- (+ (5.85)
The restriction cﬁ/’[q_Q = chM_ _I’Qq is satisfied for ¢ = 0, - - ,w. Such

values of q admit to apply eq. (5.85) even with h-1 instead of h, so that the

restriction mentioned above becomes cp, = ¢}’ ; because that is satisfied

_ M—2)(h—1)—2
M]; 2 % because

forq=20,--- is certainly satisfied for ¢ = 0,-- -,
(M=2)(h=1)=2  Mh=2
2 — 2

We have that all the c%q of the model with M intervene also in the model

with M-2. In fact, let is j = [32%5] + 1, from eq. (5.58) with h+j instead

of h we have ¢ Mh—2

htig = c%q for ¢ =0,---,%5==, and, for such values of q and
thanks to eq. (5.85) we have c%q = ch]\ﬂfq provided that M’;_z < (M_Q)(Qh+j)_2,
that is true.

Obviously, this can be done except for the case M=2. But, if M=2, N=1 we
have that the subsystem is constituted only by the conservation laws of mass
and momentum-energy. So we have found that only in this case the family

of arbitrary single variable functions is not preserved in the subsystem.
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Chapter 6

The non-relativistic limit of
Relativistic E.T.

The non-relativistic limit of Relativistic Extended Thermodynamics with 14
moments can be found in paper [43] by Dreyer and Weiss (see also [2]), which
has been widely appreciated. In particular it suggest a particular structure
for the classical counterpart of the theory, in particular that developed by
Kremer, instead of the previous one with 13 moments. Here we extend
their methods for the case with many moments following the macroscopic
approach. Also our results predict a particular structure for the classical
counterpart with many moments, that will be described in the following
chapter. It is noteworthy that in this structure the independent variables are
moments of increasing orders; the highest of these is even, as in the kinetic
approach. The results are published in [44] and [45].

We consider system (5.4) and the trace conditions (5.5) and we will see that
the non-relativistic limit of egs. (5.4) has the form

(6.1)

{ O, Fivis 4§ Firisk — pir-is

i1+ ir€1€1 "€ N4 M—1-2r € N4 M—1—2r i i
OtF r + = r€N+ 3 T + aszl.--zrkewr-- — Q’Ll"'lr

for0 <s< N—-1,0<r<M-—1 When M =2, N =3, eqgs. (5.4)
are the pertinent equations of the 14-moments theory of relativistic extended
thermodynamics [35] and eqs. (6.1) are the corresponding equations for the
non-relativistic approach [46]. We note that the highest order of moments,
among the independent variables, is M + N — 1, which is always even; this
confirms the same property obtained by the kinetic approach in order to have
integrability, i.e., that the integrals involved must be convergent.
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6.1 Suggestions from kinetic theory

Because the form of equations (5.4) is suggested from the kinetic theory of
gases, it is not restrictive to deduce from this theory the orders of greatness
of the moments and productions with respect to c. Meanwhile, we obtain this
information also for the entropy and entropy-flux tensor A®. In particular,
we have

Acr-an — j‘ f(x,u’po’pi)pal . _paN dpld%deS

~ . 1 243 p (62)
he = [ GLf (", p°, p) | p -t

where [ is the relativistic distribution function, (u) = (1 - Z—j) is the

N[

Lorentz factor, p* = mou* = (moy(u)c, moy(u)u') is the relativistic momen-
tum particle and G a suitable function of f.
By changing the integration variables from p’ to u!, we see that the Jacobian

of the transformation is J = ‘gf:j

= ‘mw(u)tsij +moz—juiuj) = mygy° and
the above integrals (6.2) transform into
N—s
0...0 N+2 N—s—1Fpit..is 10 3 My
Aog...as e — mo + c —S— Fﬂ]l\}...ls7 h — m0h7 hz — 7(251

with

Fipete = / Py e du, b = / G(PPdu, ¢' = / G/ u'du.
(6.3)

Now egs. (5.4) can be written as $09,A%2-N 4 g Akez-on = [o2-ax which
can be written for as...axy = 4;...750...0 and becomes the first of the
following equations

{ @ﬁ;\}mis + 8kﬁ]]f]i1"'is — Pirvis for0<s< N —1 (6.4)

@fj}[”'” + akﬁfjl"'” = 15]’\}“ for0<r<M-1
with

Ditowis_ o0 ~N=2 ~N+s+2 7i1...is0..0  Piteir_ , —M~2 —M+r+2 fi1...ir0...0
Pt=mg e Iy , Py ir=my c Iy

and, obviously, eq.(6.4)y is the counterpart of eq. (5.4)y, where B™*M is
defined in the same way as A"“N. Similarly, the entropy law d,h%* = o
becomes

Oh + 0t = s = mg3co .
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Eqgs. (6.4) are still relativistic, although expressed in 3-dimensional form.
Their limits as ¢ — oo don’t give independent equations, because from
eq. (6.3) it follows that lim, . F}\}“ = lim.__. Fﬁ“ In other words,
F ]’\}“ — ﬁ]’\/}“ is higher order infinitesimal with respect to ¢!, so that we
have to find a suitable linear combination of eqgs. (6.4) and multiply the
result by an appropriate power of ¢, before taking the limit. This will be

done in the next section.

6.1.1 A new form for the system (6.4).

Let us consider the numbers
+m —h)!
b (1) () I v on N - A 2n o 2n 2
= o () Sy n n2h-2)
(6.5)
where 7)(a, b) denotes the product of all odd numbers between a and bif a < b,

while it is 1 if a > b; moreover n = [%], m = [@} Obviously,
b, = 1.

Proposition 9 : The numbers defined by eq. (6.5) satisfy the equations

Z bhrCntjh = 0jmi1by, forj=1,... . m+1 (6.6)
h=0
with
1
chzﬁn(N—M—Qh—l—ZN—M), (6.7)
' n! m!
b, =(—-1)" N—-M-2nN—M+2 )
(=1) (n+m+1)!(n+m)!n( " +2m)
(6.8)
Let us also consider the numbers
inf{k,[M=5="]}
Ay = — Z bprCr—p, for k=0,..., [N_Ql_’"] ) (6.9)

h=0

After that, let us consider the following linear combination of F ﬁ“'““ and of
ﬁ]i\}"'isa:

[]Wflf'r}

L 2

11 1rA€1€1° e Np M —1—2r E N+ M —1—2r i1 ire1er-eqeq —

F 2 = § by Fyy T T (27 T4
q=0
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N—-1—r
[ 21 ! i1 ipe1e1epepa 1 My N_1-2r
D ap FyTT (%) - (—2¢%)  ® (6.10)

p=0 "

where the index a has to be omitted if it is zero. Note that this tensor has
N+ M—-1—r> N —1 indices (if a = 0) so that there is no possibility of
confusing it with F ]Z\}“ The corresponding linear combination of eqs. (6.4)
gives egs. (6.1)2, while eq. (6.1); is eq. (6.4); except that now the index N
has been omitted. Obviously, we also define

[]\/1—21—7‘]
éil...ir :bi Z bqr(_2cg)wﬁ]z“/l[...irelel...eqeq_i_
T =0
]_ [N7217T} N+M-—-1-2 2
+ r
D o (6.11)
r =0

where the property [M5="] + [M5=r] = NEMZ5=2 hag been used (it is a

consequence of the fact that N + M is odd). The interesting thing, which
we now prove, is that

. T5i11rQE€1€1 ENLM—1-2r ENFM—1-2 ; ; N+M 1-2r
limF CRE 2 T:/fu“ ceutut(u?) T 2 du, (6.12)

C— 00

. C e . i1°ira€1€1 e Nf M—1—2r E N+ M—1-2 .
and we indicate this limit by F T 7 ; moreover, u® is

lifa=0,isufif a = k and f = lime_.oom3f, as in [2] (in the sequel the
factor m3 does not affect the results, so we will omit it). To prove eq. (6.12),
we see that (6.10), by means of (6.3) gives

~i1---’ira6161---6N+M,1,2 EN+M—1-2 1 NA+M—-1-2r [~ : .

F 2 - 2 r:—(—QCQ) 2 f N+4, i1 e quua
T

[M 1— 7] [N 1— r]

yr Z byr(u Z apr (W?)P(—2¢*) 77| du. (6.13)

By inserting the expansion of

= (1-8)
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into the expression between square brackets it becomes

[co + e (—2) L+ Ch(uz)h(_202>_h} :

[]\/172177“}

2
bor + iy (—26%) T - b <%)

oo inf{k,[M5=]) [(F=5="]

2 k 2 k
Z z% bhrCr—n (—1;02) + Y ag (_u262> :

k=0

Now, the tensor for k < [F==] disappears for eq. (6.9), while those with

[0+ 1 < b < [P51] + [M5E] = m + n disappear for egs. (6.7) with

j =k —n (note that 1 < 5 < m). It remains to consider the terms with
k =m +n + 1 and those of higher order, i.e.,

m

—men= m+n 1

h=0

Inserting this result in eq. (6.13), using eq. (6.7) with j = m+1, and taking
the limit as ¢ — 00, we obtain eq. (6.12). This completes the proof.
In order to prove the properties (6.7) and (6.8), we first state the following

Lemma 1 For every k € [0,m — 1] we have Y ;. (—1)" (Zj) hF = 0.

Proof. We proceed with the iteration method with respect to k. The pro-
perty is true when k = 0 because, in this case, the first member corresponds
o (—1+1)™ = 0. If we assume that it is true up to a fixed integer k < m—2,
we have

o () -Eer () e G-

h=1 h=1

n Sy (" )=,

s=0

h=

where in the third passage we have put h=s+1. =
Now we consider the following functions

flnom N =M, j) =3 (~1)" <7;:> (n+m—h)!_(n+)!

— n! (n+j—h)!
(N —M—2n,N—M—2n+2h—2)-
(N =M —2n—2j+2h+2,N—M—2n—2j+2m) . (6.14)

It is easy to prove the following
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Proposition 10 : "f(n,m, N — M,1) =0.”
Proof. We have

f(n,m,N—M,l):(n;;l)!n(]\f—M—2n,N—M—2n—2j+2m)-
= h(m)\ (n+m—h)!
2 (D () G

where the factor 37, (—1)" TZ ((7;1?__:))!! is equal to zero both for the

(n+m—h)!
(n+1—h)!

previous lemma and because of is a polynomial of degree m — 1 in

the variable h. m
Proposition 11 f(n,1,N — M,j) = —0;2(N —M +2) forj=1,2.

Proof. We obtain f(n,1,N — M,j) = (n+1)(N—-M —2n—2j+2) —
(N—M—=2n)(n+j)=(N—-M-—2)(1—j), with easy calculations. m

Proposition 12 For every j =1,...,m,m+ 1, we have
fn,m,N—M,j) = 08;min(N—M+2,N—M+2m)(—1)" m!

Proof. We proceed with the iteration method with respect to m. The pro-
perty is true when m = 1 as consequence of the proposition 2. For m > 2 we
have

(n+7)

fn,m,N — M, j) — hriom

flnyom,N —M,j—1) =

=Zm:(—1)h (T,'Z)("er_h)!(N—M_2n+2h—2)...(N—M—2n)-

Pt n!

!
M(N—M—2n—2j—|—2m)...(N—M—2n—2j—|—2h+2)— .
(n+j—h)!

(n+3)!

(N-M—-2n—-2j+2m+2)...

:mzl(_l)h <7Z> (mzh)! .

h=0

(n+j—m)(n+j—h—1)!

(N =M —2n—2j + 2h +4)

(n+J)!
(n+j—m)(n+j—h)
(N—M—2n—2j+2m)...(N =M —2n—2j +2h+4) - [(n—kj—m)-

(N—M—2n+2h—2)...(N—M—2n)

(N—M—2n—2j+2h+2)—(n+j—h)(N—M—2n—2j+2m+2)] -
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m—1
= 3" (-1 <m}:1> (m"z h) (n(—;Tzl_)!h)!(n—l—1)(N—M—2n+2h—2)...
h=0

(n+7)! .

g —m(n g ¥ M2 am).
(N—M—-2n-2j+2h+4)[(N—-M+2)(h—m)] =
O U ) N L N N
=y WM+ [t L= LN =M +2,5 1)

(N—-M —2n)

:_mmW_Mu)aj1,m(N—M+4)(N_M+6)...
n+1

(N =M +2m) (-1)" H(m —1)! = P p—

5j_1,m(N—M+2>(N—M-|—4)...
(N — M +2m)(=1)"m!

forj=2,....,m,m+ 1.

This relation, when j = 2 and using proposition 1, gives us f(n,m, N —
M,2) = 0. If we proceed in the same way for the next indexes until j = m,
we find, always, f(n,m, N — M,j) = 0. Instead, when 7 = m + 1 the last
relation allow us to write f(n,m, N —M,m+1) = (N — M +2)(N — M +
4)-...- (N =M +2m)(—1)"m!, so the proof is complete. m

Corollary 1

Proof. We observe that first and second member in this equation are poly-
nomial of degree m in j (for the first member it is consequence of the fact
that (n(iji)}:), =(n+j)(n+j—1)...(n+j—h+1) and this expression has
degree h in j while n(N — M —2n —2j +2h +2,N — M — 2n — 2j + 2m)
has degree m — h in j). Moreover these members give the same results in the
m + 1 different values j =1,...,m + 1.

Now we can prove the property 1: to this end it suffices to substitute eq.
(6.5) in the left-hand side of eq. (6.6) and to use the definition (6.14); after
that the identity

s = (N — M — 20— 2j + 2m + 2, N — M) has
to be used and the proposition 3 to be applied. m

6.2 The mass, momentum and energy con-
servation

In this section will be shown how the relativistic conservation laws of mass,
momentum and energy are transformed in their classical counterparts, by u-
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sing the linear combination described in the previous section and then taking
the limit for ¢ — oo. In order to describe the result, we consider egs. (5.4)
and (6.1) for 0 < s < N—1and 0 <r < M — 1. If we start considering only
egs. (5.4); with N even, we obtain only the equation (6.1); with clirglo P=0

(mass conservation) and lim P% = ( (momentum conservation), but loosing

CcC—00

energy conservation.

Instead, if we consider also eq. (5.4)z, obviously for M odd, we can prove that
P is infinitesimal, obtaining in this way energy conservation. Similarly, if we
consider only eq. (5.4); with N even, we obtain only eq. (6.1); with Clggo P =

0 (mass conservation), but losing momentum and energy conservation. The
presence of eq. (5.4)y with M odd affects also the productions in eq. (5.4);

we will see that, always as a consequence of eq. (5.4)s, also P and
P% are infinitesimal and by this fact we obtain the momentum and energy
conservation. Thus, in a relativistic approach, egs. (5.4); and (5.4)y cannot
be neglected.

6.2.1 The case with N odd and M even

Obviously, in this case is included the 14-moments one. The maximal trace
of eq. (5.4); gives the mass conservation law; let us express it in terms of the
tensor p't-ts:

_ ros..an _
0=1Iy Jasas---Jan_1an =

= I]O\LIQWQN(hOQ% - tozztas)"'(haNan - tathaN) =

i

|
[+

N-—1
h ra2...a0
< Z )(_1) IN2 Ntaztas"'t012hta2h+1ha2h+2042h+3"‘haNqOéN =

i
Ly

0..0ere1...eN_1-2nEN-1-2h

(1) Iy P

I
VR
‘2
RNl
N———

2
- s
I
o

1561616 N—1_2h€N—1—2h
) (_1)hmé\f+202h IP N-1-2hON_1-32h

>
Il
=)

[+
R
o

which can be multiplied by ¢~V and gives

N-3
P _ i (%) (_1> h+12\7+1 CQh7N+1P6161...6N71,2h6N71,2h (615)
h
h=0
whose non-relativistic limit is
lim P=0 (6.16)
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which is the mass conservation law for system (6.1). Similarly, the maximal
trace of eq. (5.4)3 gives momentum and energy conservation in the relativistic
context. It reads: 0 = 137" Gagau---Gan_1a, Which, with calculations similar
to the ones above, becomes

2h
M—-2

e
2 <_M—2> L a20...0e1e1 e p2_onenm—2-on
2 2

0=>Y [ 2 )(=1"y,

h=0 h

from which, for as = 0 and ay = 7; respectively, we obtain

M—2
M-—4 [ 2222 €1€1...6 M—2-2h € M—2—2h
_ 2 2 __1\h+ M=2 op4+2—M 2 2
Py = =302 (=" e P
h
M—2 ;
. M—4 =< t1€1€1...€ M —2-2h € M—2—2h
i1 2 2 _1\h+M=2 opto-M 2 T 2
Py==>12 (-1) 2 C P

h
(6.17)

Let us now consider the expression (6.11) of Q"% with r = 2, and let us
compute its trace, thus obtaining:

M—4
2
2 _N+M-3 1 2\ — €1€1...€g€Eq¢E 1€ 1
(2R = Y b (2Pt
2
q=0
N-3

4 ap2(_202)—p Pelel...epepeerleerl

&=
(7

=]

iS]

whose non-relativistic limit is 0 = (b2)_1(bogﬁj\?el + age P 8161), where an

overlined term denotes its non-relativistic limit. By using the property agy =
—bgo, We obtain

€1€e1

Py

=P (6.18)
Note that, in the case M = 2, there isn’t the term on the left hand side
of eq. (6.18), so that this equation is P " = 0. In other words, we have
energy conservation for eq. (6.1);. Let us also consider the expression (6.11)

of Qi with r = 0; by writing explicitly the terms with ¢ = 0, p = 0 and
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using the expressions (6.17); and (6.15) of Py, and P we obtain:
g p (
M—4

1 1 N+M-—1 2 M=2 M—2
— Q=——1b > ( 2 _ )R 2k =M
cN+M-3 bo 00( ) < h ( )

M—2

€1€1...e \[—2_2h € M —2-_2h 1 2 N+M—1-2q
] e i g\ MM o129 5 94 perer.eqeq
P, +b0 E byo(—2) CEEN Y Sy +

1 < N4M_1-2p o o, 0o o0 1 N+M-—1
b—oz::%o(—Q) R “’+b—0aoo(—2) 2

2 N-—1
5 N+1 _ €1€1...6 N—1-2h EN—1—-2h
( 2 ) (_1)h+ 5 CQh N+3P N=R=2h BN _1—2h

h=0 h
whose non-relativistic limit is
M 2 ]. N+M—-1 M—37 €1e1 N+M-3— eje;
0=——5—7bo(=2) 2 (=1)" Py —blo( 2) 2 Py
2 b bo
1 —3—e1€e1 1 — N - ]. —_175 €1€1
+-—a10(— 2)N+12W P + —ago(— 2)N+12M - (—)NtP T
bo bo 2

which, by using eq. (6.18), becomes

0= [boo(M —2)(—=1)M=? + big + a1 + age(N — 1)(=1)"] Py,
that is
0=[(M-=2)(-D)" > +byg— (N = M) —byo— (N - 1)(-D)"] P
In this way we have obtained energy conservation for the system (6.1). It
remains to prove momentum conservation. To this end, let us consider the

expression (6.11) of Q%" with r = 1; by writing explicitly the term with
¢ = 0 and using the expression (6.17)y of Py}, we obtain

€1€el 75 €1€1

P

M-2
2
Qll( )M _ bl Z bql(_202)—qP]i}[6161...eqeq
(i
N3
l Z ppl161€1 .ep€p +
by =0
M—4
1 2 M—2 M—2 i1€1€1...6 M—2-2h € M—2—2h
30 2 —1 2 cC P Tz 5
b hz_o ( ) »
whose non-relativistic limit is 0 = iam]_a ’1; but ag; = —boy = —1, 50 that it

remains P = 0, i.e. momentum conservation for the system (6.1).
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6.2.2 The case with N even and M odd

Egs. (6.15) and (6.17) still hold, but after exchanging M and N, P and Py,
Pjl and P | ie.,

=

q1—

w

2 M-1 €1€1...e pf— 1= 2h € M—1—2h
== M+1 L EM—1=2h
PM _ IQI >( 1)h+ 2h M—HP 2
h=0
N—4
2 _
¥ h+ 2h+2 N f1€1---€ N—2-—2h 2 2h € N—2—2h 2 2h
P = _§ h (—1) P
h=0
N—4
2 N-—-2
. —_— 11€1€1...6 N—2 2h EN_2-_2h
pr— oY () g st o1y

>
I
o

The non-relativistic limit of (6.19)s3 can be quickly computed and equals

P =0, P" = 0, i.e., we have mass and momentum conservation for the
system (6.1). It remains to prove energy conservation. Now the passages
after eqs. (6.17) and until eq. (6.18), of the previous section, can be adapted
also to the present case (there is only to substitute the upper values of ¢ and
p with 23 and ¥4 respectively), so that eq. (6.18) still holds in the present
case. Now the expressmn of Q%% with r=0, by exploiting the terms with
q=0, p=0 and using egs. (6.19); 2, gives

1\41

Q(_QC )7N 21\/IJr3 Z bqo 20 +1P]‘c;el..48qeq +

N-—2
1 2
2\—p+1 peje;...epe
o E apo(—2¢") PP PeP —
0 p=1
M—

o1 b 2 @ ( 1) CLET-C M1 _2h € M_1_2h
- +
by h

w

>
[e=]

2
I

whose non-relativistic limit is

€1€1...€ N—2-2h € N—2—2h
2 2

1 M —1 N -2 — eren
O = b |:b10 -+ ajp — 2b00 (—1)M72 —+ 2@00 (—1)N73 P =
0
1 —-— e1e€e ]. —-— e1e
™ [bio— (N — M) —byg+M—1+N-2|P"" =—2M - 3]P "
0 0
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from which P ““" = 0, i.e. we have energy conservation for the system (6.1).
In this way all our aims have been accomplished.

6.3 The Einstein’s relativity principle

It is well known that, in the relativistic context the relativity principle isn’t
imposed by separating variables into convective and non convective parts,
but by imposing that the costitutive functions satisfy particular conditions;
likely to this, the present considerations show that the same results are ob-
tained also in the classical context. The result is achieved by taking the
non-relativistic limit of Einstein’s Relativity Principle. This fact furnishes
further arguments on the naturalness of the work [15]. In particular we
will exploit the consequences of the Einstein’s relativity principle for the
entropy-(entropy flux) tensor h* and for A**2~on = BY*2-aM: we will see how
they translate into the Galilean’s relativity principle when ¢ goes to infinity.

6.3.1 The classical limit of Einstein’s relativity princi-
ple

Let us denote with I4 a set of independent variables for the system (6.1) and
with I5(14) their expressions after a Lorentz transformation. The Einstein’s
relativity principle for A% imposes that both ways in the following diagram
give the same result,

lA Pg’ o l,B(lA)
he /
hDé
h(la)
|
PR [l(14)] ) P, he' [l (1a)]

ie. he(la) = PohY[l)5(14)] or, for a =0,1,2,3

171/ v "1/
moh(la) = ymgh'[l3(1a)] + 7;m3¢ Hsa)]

3
my 1

3
(La) = y=mih [l (La)] + 76 =26 Up (1)
3 3 3

U (1) = T2 [p(1a)] (L) = L6l (La)]
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For the sake of simplicity, the particular Lorentz transformation

vy &£ 00

yv
o - Y 0 0
Fo = 0 0 10
0 0 01

has been used. If we multiply these relations by mg?, mg®c, mg2e, mg°c

respectively, and then take their limits as ¢ — oo, we obtain

h(la) = KlIpa)], (1) = ™ lp(1a)]  with ¢* = ¢ — . (6.20)

We have now to impose the Einstein’s relativity principle also for the func-
tions AY“2%N and B**2“M; for the first of them it imposes that both ways in
the following diagram give the same result

pY
la - - U5(la)
Aqoz..an
AQo2..aN (lA) Aa’ag...ag\,
[
P Prp . Py A% o[l (1) Po | aoosoiy (1, (14)]

tmmAmWWZ%%@%MwMM

or, with acsay = 41...4,0...0, and using the identities

i

. (%
Py = Pooa+Pios,  Po=v
and P! = 5“ +— £ %7
Ail...ir()...()(l ) — [ 250/ + 511 _i_/y_Z% 5j1_ .
A -’V c Ji 7—’_1 c2 a/1_

i 2 i 1
N i VTV e | [ 0 1 Jri1
T oy, <5j" " y+1 2 ) % 750‘,”1 Vi O 41

750 + UJN(S]N:| Aa’l...a;a;_‘_l...a;\,[llB(lA)] _
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- a ; 2 glatiy. . 2 ir)y,.
" 1) (i1 la [ gla+l v Vjai1 5“) Y ovTg, .
2 (a) <c (O (]a+1+7+1 2 | o5 +7+1_02
-r N—r—b
rYN_T Z (N b_ T) (l) Uj +b+1"'UjNA/O'“Oj“*l"'jro"-ojr+b+1---jN
C T

b=0
from which

r 2 tat1n,.
i1y Z T\ _at+N—r (i ia [ sia vTOUTTYg,
F]Vl (lA) e (a) ,y +N U( 1‘,.1) (d?aii + ,y + 1 62] +1)

a=0

. 2 fUi"‘)fU . -r N _ /- .. .
5ir) 4 Y i\ r o 2N+2r+2b), v et tedrirser 0N
Jr 2 b Jr4+b+1°"YINT N :
v+1 ¢ —

(6.21)

We can notice that the exponent of ¢ is even and is —2(N —r — b) < 0; so
that, at the limit as ¢ — oo, only the terms with b=N-r remain, i.e.

Fir(la) = Z (2) v(il...viaFJI\?"*l"'ir)

a=0

or, for s=r-a, F]z\}erA) _ Z (T) Fl’éuzs [llB(lA)]'Uis_‘-l.--'UiT)

s
s=0
This can be written also as

r

Fiein(ly) = S X @F S fl(1)] for r=0, N-1 (6.22)

s=0

. iv-ie [T s is, is ir)
with lel,,,js = (s) 0 ”'5st o

J1

Similarly for B**>-“M we find (eq. (6.21) with M instead of N)

r . 2 Ta+1qy.
i1...1 r — i i a Y Vjat1
Friitr(ly) = atM—ry, (i1 yia (5? 1y +) 6.23
a (L) ;}(a>7 darr TN 2 ( )
) 2 i), M-r M — .. o .
(6;:) + 71 1 - CQUJT> . < b T) 072M+2T+2bvjr+b+1"'UjMFJ\jaH'”]T]TMH.“]M :

b=0

Let us now consider egs. (6.10), into which we substitute eq. (6.21) and

: 11°ir€1e1 " E N4 M-1-2r EN4 M—1-2r . Ii oo i
(6.23) finding F 2 z in terms of [yt IrirtbrtIN
and F]l\i['a+1'-~jrjr+b+l--~jM.

In the resulting expression, we substitute F' Z/\Z““"'mr“’“”'jM firstly obtained
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i1:ir€1€1 "€ Nf M —1-2r € N4t M—1—2r
2 p)

from egs. (6.10) written in 3'; in this way we find F'

. G eird "i1-ire1€1 e Ny M—1—2r € Nb M —1—2r
in terms of Fy*™ /I and of F 2 7 ; finally,

we do the limit as ¢ — oo and we find

N-1
i1ir€1€1 e Ny M—1-2r EN4+M—1-2r it (2 TG Gk
F : P = Y@ F T

h=0
M-1 S
i eed o g J1 T JE1€1 € Np M —1-27 € N+ M —1—2
i1 i _
E Z o (0)F 2 z for r=0,..., M-1, (6.24)
n=r
with
. h—k
inf{h,r} [ 2 ]

TREY
Y}l'"jh - 2 : E
k=sup{0,h— N—M+1+2r} p1:sup{0,h—k—N+M2_l_2’"}
N+M—-1-2r

(7“) oh—k=2p1 ( 2 )!
k pil(h =k —2p)! (B2 4y — b+ k)

(i1 U ) Bhot1 ir)
5(]‘1 o '(5ij U T Vg 'Ujh—zpl 5jh—2p1+1jh—2p1+2 T 5jh—1jh)

(UQ) N+M2—1—2r+p1_h+k

9

N+M—1-n—k
r e
lelr — Z Z r QM+N—1-n—k—2p1
J1 " n k

k=sup{0,2r—n} plzsup{& % —ﬂ—k+7’}

(N+M2—1—2r)|

p!(M+N—=1—n—k=2p)! (—r+p +k— =L 4 )l

5((;1 . 5§:Uik+1 e fUi"‘)

Wy

Ujyq *° '/UjN+M717n72p1
2\ g N+M-1

N+M—n—2p  IN+M—n—2p1+1 6jn—1jn)(v ) Pt 2

For the sake of brevity we leave the transformation of the productions which,

on the other hand, is obvious. We notice that as independent variables [, we
o i1 ciplil e d N M —1—2r LN M —1—2r .

can take Fil-is qnd fo I AEMELERe M2 4 bhis case egs. (6.22) and

(6.24) give l4 = la(l’3) while the same equations with s+1 and r+1 instead of

s and r give conditions on the costitutive functions, besides that for h and *.

Alternatively, we can take as independent variables the lagrange multipliers
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defined by

N—1
dh — Z/\j idF“ lg—i- Zlh . l ireiel.. €N+zv12—1—2r€N+M2—1—2r
1...2s 1--
s=0
N-1 M-1 L
_ )\;k/ dFjl .Jn + Z ,U] " F31~~~Jn6161~~~€N+M271727;6N+M;172n
1 1.
h=0 n=0
(6.25)
with
N-1 N—
*! . * i1...05 o ]
/\Jl Jn Z)‘n X]l Jh + E :'uh s ]1 ]h E : J1~--thh+1---Js
s=h

inf{h,r} [h2k]

pintt pds 4 Mz_:l Z Z (;) oh—k—2p1

r=0 k=sup{0,h—N—M+1+42r} plzsup{o,h—k— N+M2—1—2r}
(RtMotory)

pil(h — k= 2p)! (BEEAA=20 4 gy — B+ k)

o\ NAEM_1-2r o pop
vijrl"'Ujh72p15jh72p1+1jh72p1+2"'djh*ljh)(fu ) 2 (6'26)

Pk+1 Dr, * o
v U ey e (G

and

[N+M—21—n—k]

n r
) Z =2 2 2 ;
Fiji.gy = 'un Jl Jn k
r=0 k=sup{0,2r—n} plzsup{o’%_n_k_;’_r}

(N+M2—1—27‘)!

p!(M+N—-1—n—k=2p)! (—r+p +k— =L 4 )l
(0?) TR S e

0.

.]N+I\/Ifnf2p1jN+M77]72p1+l"'5jn71j7]) (627)

2M+N717777k:72p1

/“ka+1...p,~(j1..jk Ujk+1 . “UJN+M—1—n—2p1

In the following subsection we will see what happens if we take these as
independent variables.
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6.3.2 The Galilean relativity principle in terms of the
Lagrange multipliers

From eqgs. (6.26) and (6.27) we have that
ONY

# = (h+ 1A gy for h <N —2
h+1
O /
% = (M - 1)Mj(j1...jM_25j1\4—1jJM T 5jN—2jN71)
J
+ (N M + 1):“(]1 M- 15]Mjbl+1 e '5J'N71)J"
o, y
#jj = (0= DG, ju2%n-1w)
1
+ (N+M+1-=2n)ug, ;. 0; for1<n<M-—1
ou*
while 22 — o
8vj
By defining
ho= N FUet gy e
,&kz _ )\;kl i Fn sk +,Uz1 i szl Areiel.. _¢k

we obtain that (6.20) holds also if A and ¥ are substituted by A and *
respectively, i.e.,

h(la) = W I(La)] , ¥"(1a) = ™ [ls(1a)).

These become identities if calculated for v = 0 so that they are equivalent to
their derivatives with respect to v; i.e.,

N-2

h on’ ,
h + 1 e — A\ */— [(M - 1)/1“*“ dM— 6jM71jA/I e
hzzg )\]1 Jn J1---JnJ 8A]1 N JIL---JM—2
M- ~/
6jN—2jN—1 + (N - M + 1)“;1...jM_15jnfjnf+1 o ]N 1j] Z
_ 11 Ay
|:(7a - 1) /’6]7,1 Ap— 2674" 1% (N + M + 1 - 270 luzl Ap—1 Z'r]:| (628)
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=z

-2

o'k o'k ¥
h=0 (h ' 1>8>\§1---jh )\jlmjhj * a/\;l...jN—l [<M B 1>ij1"'jM_26jA{71kM o
M—1 n
o o'*
5.7‘N—2‘7.N71 + (N - M+ 1):uj1...jM,15ijM+1 U 6]'N—1ji| + Z our )
—1 51000

r

/

(= 1) i B+ (N M T =200, 65| + W85 =0 (6.29)

But from eq. (6.25) we also have

8h il...irelel...eN_;,_M_l_Q,«eN_;,_M_l_g,« ah
2 2 ==

O} 7 N aﬂ;.,.u

11...15s

FZ'14..7,'S —

so that eq. (6.22) and (6.24) follow as a consequence of (6.28). Similarly, if
the entropy principle holds, we also have

i kiy..ir€1€1..e Ny M—1-2r EN4M—1-2
d¢k —\F dFu...ZSk +,U/* dF 3 r 5 r

11...15s 1.0

from which it follows

Fh...isk _ aﬁgk 7 Fil---irelel---eN+A{27172r6N+A{27172r _ 3&“
a)\:lzs a/’b;kl’br
so that eqs (6.22) and (6.24) with s+1 and r+1 instead of s and r respectively,
follow as consequence of eq (6.29). Consequently, only conditions (6.28) and
(6.29) have to be imposed.

6.4 The system of balance equations

It has been shown that the non-relativistic limit of Relativistic Extended
Thermodynamics suggests to consider the balance equations (6.1), that we
write now in the following simpler way

O, Fiin 4 9 Fkain — puain for n=0. ... N
{ h + Ok O, e A (6.30)

O Fivir 4 gGFir = Qi for r=0, ..., M.

where N and M are two integers such that N > M and N + M is an odd
number. They are evolution equations for moments of order n=0,..., N and
suitable traces of some equations for moments of higher order. We want now
exploit the Galilean relativity principle for this new system and extend to it
the new methodology found by Pennisi and Ruggeri in [15] for a less general
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case.
The kinetic counterpart of the variables appearing in this system is

Fll-..zn — /fczl .. C'Lndg
Fkll.nzﬂ = /fck 21 “ .. Clndg
- . NAMA41-2r
Fil [ /fC“ . .. “ ) 2 dc

NAMA41-2r

Gkh"-ir — /kaC“ A Ci’"(C2)fdQ, (631)
from which we see that

e All the tensors are symmetric,

o [Fivin for n=0,..., N-1 is differentiated with respect to time in the subse-
quent equation,

hd FjlmiM - FkilmiN6kiM+1(5iM+2iM+3 U 6'L‘N71iN7

Y F):l'l'r — Gkil'--ir+15kiT+l for ]:‘:07‘”’1\/1—17 (632)
e G* is completely free.

The last 4 of the above conditions are called compatibility conditions.
From eqgs. (6.31) we see also that if we consider two galileanly equivalent
frames we have that the transformations for the various tensors are

n

FZlZn — ZXH Zn( )F]l “Jh

J1Jh
h=0

Fjl""b'l Zyu zr F]l Jh+Zle Zr FJl Jp

J ]h JiJp
N+1
G = SR S0 6 (o
p=r
with
i1in n (% T in
X = (h ) 0jy -+ 0ot ) (6.34)
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Jidn

P?l...iT+1

g

Q

h

01l
J1Jp+1

i1y
Zjl"'jp

2. 2

@Zsup{h—%,o} qlzsup{(),h_w_qz}

(N+M;—1—2r)!

@!(h—q —2¢) (@ + ¢ —h+ W)'
U2>41+Q2—h+w 2h—q1—2q2

lnf{ [%]’W} inf{r,h—2q2} ( r )

q1

V(a " Vi gy 24

Y 5(2'1 - 5;;111 vl L. gir)

Jh—a1-2a2+1Jh—a1~2a2+2 Jh—q1—1Ih—a1 " n—qq +1 )

mf{[z]g;l—w} i T e
q?‘:sup{h_%—l,o} qlzsup{O,h—W—QQ} o

(N+M;-1—2r>!

@!(h — ¢ — 22)!(q1 + go — h + DEMH=2EY)

UQ)ql—‘,-qQ_hJ'_WQh_ql_QqQ

U(]l e /Ujh—ql—2q2
-0 (in e (Si,‘“)vifzﬁl oLt

Jh—q1—2¢2+1Jh—qq —2q9+2 Jh—q1—1Ih—q1 “Jh—qy 41 in

; N+M+2-p] N+M41-2 )
inf { [ FHAGER] NEMELZ20 L 0 ) N M4+2—p—2g5} o
' )

. > L

go=NEMAL_ ar=sup{0, MM g 4140}
(N+M+172r)'
— 5 )
N+M+3+2r
R (N+M+2-—p—q —2¢) (g +q¢+p— —55)]
2\q1+qa+p— NEMESR2 ON LN 42 pogi—2g2,
(U ) 2 2 V(5 VN M 42— gy 205
(st"'M"'s_p_ql_2q2jN+M+4—P—Q1—2qz o '6jp—q1jp—q1+1
(1 lay gy 41 iry1)
Jp—a1+2 1)V v

inf{[N""]VI;‘l—p],NJrM;l—Qr}

inf{r,N+M+1—p—2q2} (
70 )

N+M+1
go=DtMEL_, q1=sup{ 0, NEMEL_p_g iy

(N+M2+172r)|

IN+M+1—p—q —2¢p) (1 +¢+p— N+M2+1+2r)!
(UZ)Q1+Q2+I)*W2N+M+17p7q172q2v

q1

(g1 " UjN+M+17p7q1—2q2

5jN+M+2_p_‘11_2q2jN+M+3—P—fI1—2q2 o '5jp—ql—1jp—tn
(i1 5iq1 gy 41 ir)
N .« e U q1 el T .
Jp—q1+1 Jp)
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In order to find the tensors (6.34) let us firstly consider the tensor
Hil...ir _ /fcil . Cir(CQ)adg —

T
|
E g (T) /fc/(il PN C/i‘H rUiCI1+1 PN ,U'ir) @
lga! — — |
1 lgs! (a !
=0 gotaa<ar q 3'qs! ( ¢ — q3)
'2\a2943 .'j '3 2\a—q2—qs J ./
(co)B2Be? ..l vy (07)*T TR

_ Z (7“) al o0
Jea @) @lgs! (o — g2 —g3)!

(q1,92,93

2\a—q2—q3 fy'e1e1-eqyeqy 1 dag (11 gy gyigqr+1 .. L oyir) gy Loy
(’U ) H 92€q2 a3 a1 qy'ar Vi v, UJQ3 (635)

where we have used the relation ¢ = ¢ + v' between galileanly equiva-
lent frames, also the binomial and trinomial rules for powers; moreover,
Z(ql,qz,qg)e A means that the summation have to be done with respect to
every tern of indexes (q1, g2, ¢3) belonging to the set

A= (Q1aQQaQ3)30§Q1§7‘70SQ27()SQ3>C]2+C]3§a .

With the following change of index from g3 to h, defined by q3 = h — g1 — 2o,
the set A converts into

A’Z{(qh%h) 1 OSQI§T70§927QI+2(]2§h7h_QI_QQSOé}-

Let us now transform suitably A’. The lth, 3th apd 4th inequalities defining
it are:

0<q <, @1 < h —2q, h—qg—a<qg. (6.36)

The compatibilities between 1t and 2th, 1t and 3th, 9th and 3th of these
are

0<h—2¢, h—q@—-—a<r, h—q¢g-—a<h-2¢,

or, by adding also the remaining oth inequality which defines A/,

IN

h
7 {—} : h—a—r<qg, ¢ < a, 0 < . (6.37)

5 <
After that, egs. (6.36) become
sup{0,h —q —a} < q <inf{r,h — 2} .
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The compatibility conditions between eqs. (6.37) are

h
h—a—rﬁ[i}, 0<h, h—a—r<a.
The first of these is a consequence of the others; in fact, from the 3th one we

have h < 2a +r < 2« + 2r from which the 1th one follows when h is even.
In the other case, h odd, we have still A < 2a + 2r, as above, but it implies
h < 2a+ 2r — 1 because h is odd; therefore the 11 follows also in this case.
Therefore, of the above relations it remains 0 < h < 2a + 7.

After that eqs. (6.37) become

sup{O,h—a—r}ngginf{{g] ,a}.

2atr  nf{[3]e} inf{rh—2q:}
Consequently, Z becomes Z Z Z
(41,92,q3) €A h=0 g2=sup{0,h—a—r} qr=sup{0,h—g2—a}

Let now 8 and M be arbitrary integers such that 0 < 3 < 2a+r. We can

split S22*F in 529 and in fo:g:l In the first of these we use the change

of index (from h to p) defined by h = §+ M + 1 — p and it becomes

M inf{[EHH=L] o} inf{r,B+M+1—p—2qs}

2 2. 2

p=F+M+1-2a—7 go=sup{0,6+M+1—p—a—r} qr=sup{0,f+M+1-p—a—g2}

Consequently, eq. (6.35) becomes

=YY >

h=0 g2=sup{0,h—a—r}  q=sup{0,h—g2—a}

B an{ [%],a} inf{r,h—2q2} ( r )

al Qh—fh—?(n (UQ)a+q2—h+q1
@!(h—q —2¢) (a+q¢p —h+q)!
Hlelel“‘eqzeqzjl"‘jhfq172q2 (i1°+iqy viq1+1 . Uir)yjl . Ujh7q172q2
M i"f{ [%] ’O‘} inf{r,8+M+1—p—2q2}
,
P> )3 > (1)

p=B+M+1-2a—r go=sup{0,84+M+1—p—a—r} g=sup{0,+M+1—p—a—q2}
a!

RB+FM+1—-p—q —2¢) (a+q@+q—5-M-—1+p)!

25+M+1*p*Q1*QQQ Hlelel"'€q2€q2j1"'jﬁ+M+lfp7q172q2 (il"'iql rUiq1+1 e UZT)

V1 Vg atst o1 209 (U2>a+q2+Q1+p—ﬁ—M—1 ] (6.38)
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From the definition (6.35) of H " and from (6.38),

e For a =0,r=mn € [0,N], B =n, we obtain (6.33); with (6.34);.

eFora=0,r=N+1, =N +1, we obtain (6.33); for n = N + 1, with
(6.34);.

e For o = MHMAL=2 e € [0, M, 3 = N, we obtain (6.33), with (6.34)s5.

e Let us ﬁrstly erte (6.35) and (6.38) with r + 1 instead of r; after that,

substitute o = W, r € [0, M], B = N+1, so obtaining (6.33)3 with

(6.34)374.

This results are very interesting: if we call I the variables occurring in eq.

(6.30), and I’ their counterparts in the other frame, we have found that I are

expressed in terms of I’ and no other moment has slipped in their relation!

This fact confirms that our equations are the physically correct ones.

From egs. (6.33) the following properties hold

Fk:llzn . ,UkFil---zn ZX“ ln k_]l"'jh

J1- Jh

Gkin-ir UkF:1-~~zr Zyn ’LT FRivn + Z Zi1 lr G kv (6.39)

JiJn JiJp

9 X’Ll’Ln _ {O for H:h7
Qui~ I (h+ I)X;i ;”] for n=h-+1,...,N.
9 G1ie (h' + )Y;le JZ;:J for b = 0’ Y N= 1’
avj T (N + 1)2(1]11 Z;M(SJM+1JM+2 T 5jN—2jN—15ij) for h = N.
5 0 for r=p,
Dz = o= Do 2, + (N M3 -2) Z5 b,

for r=0, ... , p-1

The entropy principle for our system (6.30), with usual passages, is equivalent
to assume the existence of Lagrange Multipliers \;,..;, and p;,..;. such that

dh = Ny dF 4 A
dd)k = )\il...indFkilmi” + /Lil...deGkil"'iT

plus a residual inequality.
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6.4.1 The first method

Let’s impose now the galilean relativity principle to our system by using

the classical methodology. We have to decompose the quantities into their
convective and non-convective parts. In order to do it we define

) F

v = — 6.40

- (6.10)

and we use eq. (6.33), where the quantity v is defined in (6.40) and isn’t

more the relative velocity between two frames. Moreover F', F.-+ and G -

are all non-convective quantities.
From eqs. (6.33); and (6.40) we have that

Ft=0. (6.41)
The decomposition of h and ¢ is
h=h o =" + ho* (6.42)

where 1/ and ¢'* are non-convective quantities, i.e. they don’t depend on
velocity.
By substituting eqs. (6.31); into eq. (6.39);, we obtain

N
11 n a 11ln
dh = Z )\il"'in Z Xh JhdF e + dvj{ Z )\“ in ( X]l ]h)
h=0

n=0 h=0 =
o ANy (0
i +Z/‘Lil"'ir [Z (av Y;%ll Jz}:> Flaiin _|_Z (8_1; ]Zi ;;)
r=0 p=r J
M N
Fy } + Zu{ SOV dF Z 2y dE JP}(6.43>
r=0 h=0 p=

The galilean relativity principle imply that the coefficient of dv?/ must be
equal to zero; so, by exchanging the order of summations, it remains

M
Z [Z Ny X510 D i, Y35 | AF I 4
r=0

h=0

M

S e A,

p=0 r=0
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Similarly, by substituting eqs. (6.32)12 in (6.39)2 and by using also eq.
(6.42)2, eq. (6.39)2 becomes

N
dp"* + ohdh + hdv® =) Niyq, [VAEY o Pyt

n=0

M
+ Zﬂil-m

r=0

VRAF 4 FE At 4

JiJh

ZXH in ki1 dn
hi

Zyzl s ka1~~~jh+zzn ir 1 R +

J1Jh JiJp

n ale “in / ' M
Z)‘“ an g thkh...]h + ZM“Z
r=0
N 8 11 iy 11 iy
JiJjn F’kj1 jh_'_ Jl JpG/kjl -Jp )
[z ks S

It follows
dh = Ny dF7Ig AR
e 'k -ej 'y
o = N, dF gyl A, (6.44)
N-1 .
(h + 1))‘;1 JhJFﬂm]h + (N + 1):u/(j1~-~jM5jM+1jM+2 T 5ijN+1)FJ1m]N5;NH ’
h=0
M
+Z [ 'LLJJ1 “Jp— 25317 1Jp (N +M+3— 2p)u;’1"'1p716jpj F*Jlmjp =0
p=1
N-1
(h + 1))‘;1 ]h]Fjl Jhk (N + 1)M/(j1---j1v15jM+1jM+2 e 6ijN+1) '
h=0
i JNk5JN+1_|_Z Y +(N+M—|—3—2)'~ 0
'uJJl jp—2YIp—1Jp D MJ1'"Jp71 JIpJ
M
Gk 4 Z N i 27l Flie h] 5t = 0, (6.45)
r=0

N M
. / 1 In ( ZT
with N = > et X 4> iy, Y
p
M;l"'jp = Zluil"er;i Z, (6.46)
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Eqs. (6.45) express the condition that h and ¢'* don’ t depend on the velocity
v’. From eq. (6.44), in the independent variables F'/v"7» and F,”*"7" we find

oh oh
/ . / .
Njvwin = paian o h AL Hiveio = g prinio
which imply that X} ., for h # 1, and “;‘1--7;, are non-convective quantities.
Eq. (6.46), for h=1 defines X’ . But we see in eq. (6.45); that \;F" appears
for h = 0 and can be obtained from this equation in terms of quantities which
are already proved to be non-convective, so that also )\;- is non-convective too.

Let’s define now h and 5’“ from

7 / T / L P
ho= —h N, FOvi gyl s
oF = —gF N, FIR gy Gk
Eqgs. (6.44), with v, X', A} ..., Ab 0, and 14},...;, as independent variables
becomes dh = F’jl"'ihd)\;i-..jh + F»:jlmjpd“;‘l...jp
d¢k - Fn.%hkd/\;r"jh + Ghm]pkd/”b;l'"jp’

which, taking into account also eq. (6.41), are equivalent to

oh 09" /10X
=5 v TN (647)
. h oF 0 ON I
o = 8;? A a§¢ = ija)\i, o pah e forn =2, N
J1Jn J1Jn J1°Jn
o h o o ON, i
Flivin — aj. . 85/? - = ij—au,’ F— o GIIE for p=0,... M.
J1Jp J1Jp JiJp

By using the above equations, the conditions (6.32) and eqs. (6.45) become

00k Oh O\
ON ON ON

ook oh N, oh

_ + for h=2,...,N-1

IO A DY

o (o an ox
ou' - oN CON. ON 5ij+15jM+2jM+3 © Oy i

Hojyejing JiJN Jk JiiN

Oh _( ogF  oh 0N,
8”3'1-~jr au;1'~'jr+1 8/\;]6 @'u;'r“jr-u

> Okj, for r=0,...,M-1
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ook on 0N

(9)\’ “JN aX 8)\;1] N
aa[k aﬁ oN,
= for p=0,...,M
a’u;ﬂ"'jp aX (3 ;1] “Jp
N-1 ~ ~
oh oh
(h+1)>‘;1 tha/\/ + ;W
h=2
oh
+(N + 1)/“l’l(j1"'j1u§jM+le+2 o 5]N,]N+1 7 5]'N+1 +
a)\Jl JN
M ~
oh
+ Z [ MJ]l Jp— 25]17 1Jp + (N +M+3 - 2p)u;1"'jp715jpj:| a/— =0
=1 Fjy g
N o~ ~ ~
1(h + 1N, i Oh _0X; won O
h=2 Jrind a)\zl “Jh a/\;k a)\;1 “Jn 7 8)\/
Op* oh 3/\/- N1
+(N + 1>ljl/(j1"'jl\15jM+1jM+2 LR 5ijN+1 (a)\gl jN a)\;k 0)\31 JN 5“77]\7"" +
+ Z |: MJJl “Jp— 25Jp 1Jp + (N +M+3— 2p)u‘;l"'jp715jpj:| :
O oh X, -
\ow -~ ov op + hé™ =0 (6.48)
Fjy gk Oy,

So we have to find the functions }Nl, gk and A, depending on X', X} . ... |
N i ,u;r,_jp subject to the above restrictions. After that the costitutive
functions are given by (6.47)4 for n = N and by (6.47)g.

6.4.2 The second method

We want now to simplify egs. (6.48), by extending to our balance equations
the new method already showed in the previous chapters for less general
cases. To this end, let us consider the following mathematical problem: Find

the functions H and H* of the variables )\;1 i with h=0,...N and p;,..;,
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with p=0,...,M subject to the following restrictions:

OHF o0H
; - for h=0,...,N-1
8)\J1 “Jh a)\Jl “Jjnk
o0H OHF
8,1/- . a)\/ 5ij4+15jM+2jAl+3 T 5jN—1jN
J1dm J1iN
oH OH*
- = Okjr,, for r=0,....M-1
a'ujl---jr aﬂgl---jrﬂ
OH
a)\;l] “IN
OH
~0 (6.49)
a’“ﬂ] Jp
N-1
oH oH
<h + 1))\;1 “Jhd a)\/ <N + 1>M/(j1"'jM5jM+1jAI+2 o 5.7N]N+1 8/\’ 5J‘N+1
h=0 J1-Jh J1IN
M
o0H
+ Z [ 'ujjl “Jp— 25317 1Jp (N +M+3— 2p)ﬂ;1"'jp—16jpj T =0
p=1 J1Jp
N—-1
OH" OHF .
(h + ))‘;1 “Jni a)\/ + (N + I)Ml(jlij(SjMJrle+2 o 5]N]N+1 8/\/—5J'N+
h=0 J1Jh J1JN
OH*
+Z [ ’uJJl J 25]10 1Jp (N +M+3 - 2]3),&;1“.]- —1(5ij Y
. ’ Wiy,
+H(5’” =0
After that we define
)‘; = )‘;()‘Ia )‘j1j27 T 7)‘]'1---3'1\77“;1...]'?)7
implicitly defined by
OH
v - (6.50)
J

If we call h and qz/k the functions H and H* calculated for such value of Al it is
easy to prove that, as consequence, they satisfy eqs. (6.48) and, consequently,
they are the same functions of the first method. Uniqueness of the solution
can also be proved. In such a way we have proved the equivalence of the two
methods also for this new kind of system, as done in chapter 2 for the 13 and
14 moments case.
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