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Abstract

Advanced hydrometeorological forecasting systems for streamflow predictions
include the combined use of meteorological and hydrological models as well
as of downscaling models and data assimilation systems. To account for the
different sources of uncertainty involved in such complex schemes, ensemble
forecasting technique has been recently adopted.

Precipitation input forecasts are a fundamental component in
spatially-distributed forecasting systems. Nevertheless, the rigorous
assessment of this source of uncertainty and its propagation into hydrological
response have been so far barely investigated. In this work, we focus on
hydrometeorological systems aimed at predicting floods in basins with short
response time and we propose a systematic verification framework to evaluate
(i) the uncertainty associated to ensemble precipitation forecasts and (ii) its
propagation into hydrological response.

For this purpose, we preliminary design a forecasting system that starts
from information at coarse scale provided by Numerical Weather Prediction
(NWP) models and uses a precipitation downscaling model to generate an
ensemble of spatiotemporal precipitation fields at high resolution, which are
in turn utilized as meteorological forcing for a fully-distributed hydrological
model.

In the first part of the work, a new verification method is proposed
to test the consistency (i.e. ensemble and observation are drawn from
the same distribution) of high-resolution precipitation fields forecasted by
calibrated downscaling models. The method is based on a generalization
of the verification rank histogram and tests the exceedance probability of a
fixed precipitation threshold calculated from the observed or ensemble fields.
The verification procedure is applied in numerical hindcasting experiments
carried out in controlled conditions using the STRAIN (Space Time
RAINfall) downscaling model and assuming no uncertainty in the coarse
scale information provided by NWP models. Results permit us to conclude
that: (i) ensemble members generated using model parameters estimated on
the observed event are overdispersed; (ii) the adoption of a single calibration
relation linking model parameters and coarse meteorological observable
can lead to the generation of consistent ensemble members; (iii) when a
single calibration relation is not able to explain observed events variability,
storm-specific calibration relation should be adopted to return consistent
forecasts.



Results of the first part of the study are then used to test how
uncertainty and eventual deficiencies of ensemble precipitation forecasts
affect hydrological response. Numerical hindcasting experiments are
conducted again in controlled conditions by applying the proposed
hydrometeorological system coupling the STRAIN precipitation downscaling
model and the tRIBS (TIN-based Real Time Basin Integrator) distributed
hydrological model. Uncertainty associated to basin initial state and
hydrological model parameterization and structure has not been taken into
account. The test basins are the Baron Fork (OK, USA) and 14 nested
sub-catchments, allowing evaluation of uncertainty propagation for a wide
range of catchment size (from 0.78 to 808 km2). The STRAIN downscaling
model is applied in several events to generate (i) consistent, (ii) overdispersed
and (iii) underdispersed ensemble precipitation hindcasts, which are in
turn utilized to force the tRIBS hydrological model. Consistency of the
simulated ensemble hydrographs is evaluated, in the three cases, by means
of a rigorous verification procedure ad-hoc developed and based again on
the rank histogram. Results show that running the tRIBS model with
either consistent or overdispersed or underdispersed precipitation leads to
consistent ensemble streamflow irrespective of the basin size. This implies
that basins play an important role as powerful spatio-temporal integrators
of precipitation variability, at least for limited simulation time periods (1-2
days).

In conclusion, uncertainty assessment in ensemble hydrometeorological
forecasting systems is a cutting-edge research topic, but few studies have
so far proposed systematic verification methodologies, especially for the
hydrological variables. The originality of this work stems from (i) the
development of a rigorous verification framework for ensemble outputs
produced in different steps of the forecasting systems and (ii) the analysis
of a great number of events that allows drawing statistically significant
conclusions. This research has considered only uncertainty of precipitation
input; thus, future investigations should be devoted to the evaluation of the
other sources of uncertainty and of their reciprocal interaction.
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Chapter 1

Introduction

Hydrometeorological predictions are extremely important for support
decisions in civil protection and water resources management. Operational
agencies require forecasts to adopt the necessary measures to protect people
and properties in case of flood occurrence and water managers to plan
allocation of water resources. For example, in case of an intense storm,
operational agencies would like to know which areas may be flooded, while
water managers would like to acquire information about the possible amount
of flow arriving to a reservoir and exceeding its capacity, in order to optimize
the water volume to be released and save as much resource as possible.
Clearly, the larger the forecast lead time, the easier and more appropriate
the decisions.

As a consequence, researchers of meteorological and hydrological scientific
communities, water managers and users are addressing their efforts on the
development of sophisticated hydrometeorological forecasting systems for
streamflow predictions. The hydrometeorological forecasting schemes firstly
proposed in literature and adopted by operational centers are deterministic:
a single ’best’ meteorological input is produced and used to force the
hydrological model which returns a single ’best’ forecast without any
confidence level. Therefore, in this context, support for decision process
is limited.

The dramatic growth in computational power has suggested the
opportunity to adopt ensemble forecasting in hydrometeorological systems
to account for uncertainty and formulate probabilistic hydrological forecasts
(Schaake et al. 2007). Ensemble forecasting technique has been originally
developed in applied meteorology (Lorenz 1963) to deal with and predict
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uncertainty of Numerical Weather Prediction (NWP) models. Ensemble
forecasting comprises multiple (typically between 5 and 100) runs of
NWP models which differ in the initial conditions and/or the numerical
representations of the atmosphere. Subsequently, the technique has also
been utilized by hydrologists in order to account for the different sources of
uncertainty that are mainly due to data (input and output), state variable,
parameterization and model structure.

Advanced ensemble hydrometeorological forecasting systems include the
combined use of meteorological and hydrological models as well as of
statistical downscaling models, land-surface models and data assimilation
systems. The integrated use of all or part of such tools allows the simulation
of ensemble of weather-climate forcing and land-surface states which are used
respectively as inputs and initial conditions of hydrological models for the
generation of streamflow ensemble.

The development of this complex forecasting systems involving several
sources of uncertainty has determined the need for an accurate verification of
the outputs produced in all the internal steps. At the moment, a consistent
and systematic research effort has been devoted by atmospheric scientists
to verification of NMP model forecasts (e.g., Murphy & Winckler 1987,
Anderson 1996, Hamill & Colucci 1997, 1998, Wilson et al. 1999, Ebert
& McBride 2000, McBride & Ebert 2000, Wilks 2001, 2004, Grimit et al.
2006), while few studies have been performed to develop specific verification
techniques for hydrometeorological systems and, especially, for hydrological
outputs (Welles et al. 2007). In most cases, the verification of ensemble
hydrometeorological forecasts has been limited to the qualitative comparison
between the observed and the ensemble hydrographs using simple scalar
measures for few events. Such approaches are not able to provide an accurate
and statistically based verification. By limiting the verification to streamflow
hydrographs, the uncertainty of internal steps cannot be evaluated. Further,
when a scarce number of events is used, it is not possible to infer information
about system performances in other conditions. Finally, the lack of a
rigorous statistical framework prevents assessing if the ensemble forecasts
and observations are equally likely from the statistical point of view.

Notable exceptions are the studies of Georgakakos et al. (2004), Carpenter
& Georgakakos (2004) and Franz et al. (2003), who proposed a rigorous
statistical characterization of the uncertainty of ensemble streamflow, by
means of methods commonly used for verification of meteorological forecasts
(Wilks 2006). Nevertheless their applications were not aimed at predicting
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floods through a hydrometeorological forecasting system: the former two
studies were focused on the assessment of the uncertainty due to different
input parameters of hydrological models, whereas the latter one analyzed
the statistical properties of the U.S. National Weather Service ensemble
streamflow predictions for water supply forecasting.

Precipitation input forecasts represent a source of uncertainty whose
rigorous and systematic assessment has been so far scarcely investigated even
if it is fundamental in spatially-distributed forecasting systems. Knowledge is
further more limited regarding its propagation into hydrological response. In
this work we have focused on ensemble hydrometeorological schemes aimed
at predicting flood in basins with short response time and we have developed
specific verification methods (i) to characterize uncertainty of precipitation
ensembles used as forcing for the hydrological model, and then (ii) to evaluate
how and if this uncertainty affects hydrological response.

For purpose of this study, we have preliminary designed a
hydrometeorological scheme that starts form coarse information provided by
NWP models and couples in cascade a statistical model for precipitation
downscaling and a fully-distributed hydrological model. Given the
complexity and high non-linearity of the processes involved, other sources of
uncertainty, such as information at coarse scale provided by meteorological
models, basin initial state and hydrological model parameterization and
structure, have not been taken into account.

Setup of hydrometeorological schemes is highly dependent on the
spatiotemporal scales solved by NWP and hydrological models. When
hydrologic predictions are required in large-size basins (∼ 10,000 km2)
with a high response time, output of Global Circulation Models (GCM),
characterized by a resolution of approximately 40 km, can be directly coupled
to hydrological models. The development of hydrostatic and non-hydrostatic
Limited Area Model (LAM), utilizing GCM outputs as boundary conditions
and initial states, has allowed hydrological modeling in watersheds with
smaller sizes (e.g., Verbunt et al. 2007). Nevertheless, these spatiotemporal
scales does not allow flash-flood prediction in catchments with small area (<
100 km2) and response time.

Precipitation downscaling models can then be used within the forecasting
system to bridge the scale gap between the coarse scales resolved by
meteorological models and the finer ones required by hydrological modeling.
Starting from information at a coarse scale, downscaling models are able to
produce, with minimal computational effort, an ensemble of high resolution
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spatiotemporal precipitation fields that are statistically coherent with the
large-scale condition. In particular, operational use of downscaling models is
realized by means of calibration relations linking their few parameters with
one or more meteorological observable at coarse scale, provided presumably
with low uncertainty by meteorological models. For instance, the Convective
Available Potential Energy (CAPE) or the precipitation volume at the large
scale have been adopted in previous works by Over & Gupta (1994, 1996),
Perica & Foufoula-Georgiou (1996), Deidda (2000), Deidda et al. (2004), to
calibrate parameters of different downscaling models.

Physically based, distributed hydrologic models can in turn offer distinct
advantages over conceptual, lumped models (i.e., models treating the
watershed as a single unit) used widely for flood forecasting, once operational
techniques mature. Furthermore, physically based models are distinguished
from conceptual models, even if both are distributed in nature, by their
capability to represent hydrologic processes at scales ranging from the
hillslope to the river basin. In recent years, there has been a significant
improvement in the inputs to distributed models, including digital elevation
models (DEMs), land surface parameter maps, and hydrometeorological
data, which are used to parameterize physically based equations at individual
basin locations. In distributed models, basin runoff response can vary
within the watershed according to the temporal and spatial variability in
rainfall, surface properties, and antecedent wetness (Ivanov et al. 2004a,b,
Vivoni et al. 2005). In particular, runoff generation via multiple physical
mechanisms can be captured in a high level of detail over a complex watershed
surface. This capability permits simulating basin conditions traditionally
excluded from operational flood forecasts, including discharge forecasts at
interior stream locations, time series of runoff generation at particular sites,
and spatiotemporal fields of hydrologic response (e.g., soil moisture, runoff
mechanisms, and recharge).

Uncertainty associated to precipitation forecasts provided by downscaling
models and its propagation into hydrological response has been assessed
by means of two verification methods, ad hoc developed for precipitation
and streamflow ensembles, respectively. Both methods are based on a
generalization of a graphical technique adopted in applied meteorology,
the research field that has so far addressed a significant research effort to
develop specific verification methods for ensemble models. The technique,
known as Verification Rank Histogram (VRH) and proposed independently
by Anderson (1996), Hamill & Colucci (1997), Talagrand et al. (1997), tests
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consistency hypothesis (Anderson 1997), that is the degree to which the
observed state is a plausible member of the forecast ensemble, of single scalar
(i.e. one dimensional) outputs.

The first verification method proposed in this work tests ensemble
precipitation forecasted by downscaling models. The single scalar variable
for which consistency is evaluated is the exceedance probability of a fixed
precipitation threshold i∗, calculated from each spatiotemporal precipitation
field. This selection was motivated by several reasons: (i) each downscaled
precipitation field is a multi-variate variable with high dimensionality, so that
a full verification of such ensemble members is challenging; (ii) the purpose of
downscaling models is the statistical characterization of precipitation at high
resolution and (iii) the precipitation exceedance probability as the predictand
variable satisfies the requirement for verifying the statistical properties of the
precipitation field and can be calculated and tested for different values of
the threshold; (iv) the method does not make any reference to the internal
generation mechanism of the downscaling model and, thus, is applicable to
different kinds of model.

The verification method is developed and applied using a multifractal
downscaling model of precipitation, known as Space Time RAINfall
downscaling model (STRAIN), proposed by Deidda et al. (1999) and refined
in Deidda (2000). Nevertheless, the study results are general enough to
be considered valid also for other downscaling models. Three hindcasting
experiments are carried out on synthetic spatiotemporal precipitation fields
that are then verified through the proposed procedure. The experiments
permit investigating two key-aspects of downscaling model: (i) the effect of
sampling variability on parameter estimation from the observed precipitation
fields and (ii) downscaling model performances when calibration relations are
used to interpret the spread of parameter estimates.

In a subsequent part of the work, results obtained by analyzing
uncertainty of precipitation input have been used to evaluate how this
uncertainty and possible deficiencies of downscaled precipitation fields affect
hydrological response and overall performances of the hydrometeorological
system. In particular, we have tried to understand which is the dominant
role played by the basins, which are characterized by two opposite response
mechanisms with respect to precipitation spatiotemporal variability. On one
hand, basins separate the different runoff components and act as a non-linear
filter emphasizing intermittency characteristics of precipitation. On the
other hand, they act as complex integrators of precipitation in space and
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time mitigating the spatio-temporal precipitation variability. Vegetation, soil
texture, aquifer and basin geomorphometric characteristics play an important
role within these opposite mechanisms.

A verification method based on the VRH has been developed to test
consistency of streamflow ensemble. The method requires the definition of a
fixed verification time length, dependent on the basin response time, where
the accumulated streamflow at different durations can be calculated and
utilized as single scalar metrics for VRH construction.

Numerical hindcast experiments have been then carried out in controlled
conditions by applying a hydrometeorological system coupling the STRAIN
downscaling model with the fully-distributed hydrological model known as
TIN-Based Real Time Basin Integrator (tRIBS). The target basin has been
the Baron Fork, located in Oklahoma (USA) and 14 nested sub-basins
(areas ranging from ∼0.8 to 800 km2). The possibility for testing multiple
interior locations has been provided by the capability of the distributed
model to provide time series of runoff in every desired sites. Experiments
have been setup to investigate the following questions: (i) Which are
the characteristics of ensemble streamflow simulated by the hydrological
model when precipitation ensemble forcing are consistent or characterized
by deficiencies? (ii) Is propagation of rainfall input uncertainty affected by
catchment scale? (iii) Which is the role played by the basins? Do they
emphasize precipitation variability or do they act as complex integrators?

The thesis is organized as follows. In chapter 2, the hydrometeorological
forecasting system designed to test uncertainty propagation of precipitation
input, is illustrated in all its steps. First, NWP models are briefly described;
second, the statistical downscaling and multifractal theory together with the
STRAIN model are reminded highlighting the aspects useful to understand
the verification procedure for precipitation ensemble; finally, characteristics
of the tRIBS distributed hydrological model are illustrated. Chapter 3
provides a review of ensemble forecasting techniques and of the main
verification methods currently used in applied meteorology to test ensemble
outputs, with particular regard to the VRH. The uncertainty assessment
of precipitation input is discussed in detail in chapter 4, illustrating the
verification method for precipitation ensemble forecasted by downscaling
models and the three hindcasting experiments. Effects of uncertainty and
deficiencies of ensemble precipitation input into hydrological response are
analyzed in chapter 5, describing the verification procedure for ensemble
streamflow and the numerical experiments based on the application of
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the hydrometeorological system to the Baron Fork and nested sub-basins.
Finally, conclusions are provided in chapter 6.
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Chapter 2

Hydrometeorological System
Coupling a Precipitation
Downscaling Model and a
Distributed Hydrological Model

The chapter illustrates the hydrometeorological forecasting system designed
to evaluate the propagation of precipitation input uncertainty into
hydrological response. Fig. 2.1 shows a scheme illustrating the system. For
each event, ensemble streamflow forecasts are obtained through three steps
in cascade. Precipitation maps provided by Numerical Weather Prediction
(NWP) models are first used to determine precipitation accumulated in a
coarse spatiotemporal domain L × L × T containing the study watershed
(1st step). Subsequently, the statistical downscaling model provides an
ensemble of spatiotemporal rainfall fields at a scale λ × λ × τ suitable for
hydrological modeling (2nd step). These high resolution fields are utilized to
force the distributed hydrological model which in turn furnishes an ensemble
of hydrographs (3rd step).

The object of the thesis is focused on the uncertainty assessment of the
hydrological part of the forecasting system (i.e. 2nd and 3rd steps), while
no uncertainty has been associated to the coarse scale precipitation derived
from NWP models (1st step).

The chapter is organized as follows. A short description of NWP models
is provided in section 2.1. The aim of section 2.2 is to briefly describe some
theoretical aspects and applications of precipitation downscaling models and
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Figure 2.1: Scheme of a hydrometeorological forecasting system starting from
coarse information provided by NWP models and coupling a precipitation
downscaling model with a distributed hydrological model.
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to clarify how the verification procedure developed in chapter 4 can be applied
on the ensemble outputs provided by such models. The specific downscaling
model, known as STRAIN, used to test the verification procedure is also
introduced. Finally, section 2.3 contains a description of the main features
of the TIN-bases Real Time Basin Simulator (tRIBS), the distributed
hydrological model used in the designed forecasting system.

2.1 Numerical Weather Prediction Models

Numerical Weather Prediction (NWP) models use mathematical models of
the atmosphere to predict the weather. They start from the observation of
the atmosphere at a given time and use the equations of fluid dynamics and
thermodynamics to estimate the state of the fluid at some time in the future.
Since these equations are differential and non-linear, their solution can be
only approximated by means of numerical methods, which change for the
different models: global models often use spectral methods for the horizontal
dimensions and finite difference methods for the vertical dimension, while
regional models usually use finite-difference methods in all three dimensions.

Atmospheric processes can be described in detail or simplified using
parameterizations. Given the high computational effort required in the
first case, a greater detail is used especially in scientific applications while
parameterizations are adopted for operational purposes.

Models are initialized using observed data from radiosondes, weather
satellites, and other instruments. The irregularly-spaced observations are
processed by data assimilation and objective analysis methods, which
perform quality control and obtain values at locations usable by the model’s
mathematical algorithms (usually an evenly-spaced grid). The data are then
used in the model as the starting point for a forecast. Commonly, the set
of equations used is known as the primitive equations. These equations are
initialized from the analysis data and rates of change are determined. The
rates of change predict the state of the atmosphere a short time into the
future. The equations are then applied to this new atmospheric state to find
new rates of change, and these new rates of change predict the atmosphere
at a yet further time into the future. This time stepping procedure is
continually repeated until the solution reaches the desired forecast time. The
length of the time step is related to the distance between the points on the
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computational grid. Time steps for global climate models may be on the
order of tens of minutes, while time steps for regional models may be a few
seconds to a few minutes.

As proposed by Lorenz (1963), it is impossible to definitely predict
the state of the atmosphere, owing to the nonlinear nature of fluid
dynamics. Furthermore, existing observation networks have limited spatial
and temporal resolution, which introduces uncertainty into the true initial
state of the atmosphere. To account for this uncertainty, stochastic or
ensemble forecasting is used, involving multiple forecasts created with
different model systems, different physical parameterizations, or varying
initial conditions.

The spatial and temporal scales provided by NWP models with a
good confidence level, are strictly related to the validity range of the
approximations made to solve the equations, to availability and precision of
initial observations and boundary conditions as well as to the computational
demand. For example, General Circulation Model (GCM) of the European
Center for Medium-Range Weather Forecast (ECMWF) furnishes forecast
at spatial resolution of 40 km (http://www.ecmwf.int/index forecasts.html)
with a lead time of 10 days for the deterministic forecast and an ensemble
of 51 forecasts to ten days at 80 km resolution (the so called Ensemble
Prediction System). These resolutions allow hydrological modeling to be
roughly carried out only over large basins (size > 10,000 km2) with a
significant number of grid-points of the meteorological model domain falling
inside the basin. However, these large-size basins are very few all over the
world. To obtain higher resolutions, national and local meteorological centers
have developed the nested models known as Limited Area Models (LAM),
which are in most cases based on the hydrostatic approximation and utilize
the GCM outputs as boundary conditions and initial states. In principle,
this kind of models can be run even up to 10 km, a resolution that can
result however too coarse for hydrological applications in catchments with
short concentration time. Other LAM models based on the non-hydrostatic
hypothesis can solve scales of 250 m, but require observations that, in
practice, are not available at this resolution.

Finally, we highlight that uncertainty associated to the products provided
by NWP models increases, in general, as the spatiotemporal resolutions
increase. However little research has analyzed and exactly quantified this
relation that is very important to establish if and at which scales downscaling
models may be used in cascade to NWP models within a hydrometeorological
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system.

2.2 Precipitation Downscaling Model

2.2.1 Statistical Downscaling and Multifractal Theory

A general downscaling scheme can be summarized as follows. Suppose that a
precipitation measure µ(D) or its probability distribution PD(µ) in a domain
D in <3 (where two dimensions are in space and one in time) is observed or
simulated by a NWP model. The aim of a downscaling scheme is to determine
the probability distribution PδD(µ) of the measure µ(δD) over a finer region
δD by analyzing and then reproducing statistical properties of the measure
µ observed over different scales between D and δD. In a hydrometeorological
forecasting system, the domain D is a coarse spatiotemporal region (see
large cube in Fig. 2.2) at which NWP models provide forecasts with low
uncertainty, while the domain δD is a fine spatiotemporal region (smaller
cubes of Fig. 2.2) required by a hydrological model.

Characterization of precipitation statistical properties at different scales
has been carried out through multifractal theory (e.g. Lovejoy & Mandelbrot
1985, Schertzer & Lovejoy 1985, Gupta & Waymire 1993, Over & Gupta 1996,
Perica & Foufoula-Georgiou 1996, Deidda 2000). This approach requires the
presence of scale-invariance laws defined as:

< [µ(δD)]q > ∼= δζ(q)· < [µ(D)]q > (2.1)

where < · > denotes an average operator and q is a real number. If
equation (2.1) is verified over a range of scales, the measure µ is said
to be scale-invariant and if the exponent ζ(q) is a non-linear function of
q, the measure is multifractal. If space-time precipitation fields display
scale-invariant and multifractal properties, they can be modeled by means
of a stochastic multiplicative cascade dependent on a few parameters.
To investigate precipitation scale-invariance, we have to assume relations
between statistically coherent scales in space and time (i.e. space-time
self-similarity or self-affinity) and on the possible presence of spatial
heterogeneities induced for example by orographic constraints.

Let us first discuss the case of rainfall fields displaying homogeneous
properties in space. Self-similarity (or scale isotropy) represents the simplest
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Figure 2.2: A spatiotemporal downscaling scheme, where precipitation values
are represented with cubes in a three-dimensional domain (x, y refer to space
and t to time). For each downscaling level, precipitation is multiplied by 8
random generators η of STRAIN model.
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circumstance where the scaling law (2.1) holds true in multidimensional
regions. In such situation, a linear relationship λ = Uτ is assumed to
hold between coherent space scales λ and time scale τ where the same
statistical properties may be observed (Deidda 2000, Deidda et al. 2004). The
scale-independent parameter U allows transferring the statistical properties
observed at space scales λ to coherent time scales τ = λ/U . We can therefore
analyze rainfall variability in isotropic and homogeneous three-dimensional
regions, where space-time scale-invariance can be investigated by introducing
the following measure:

µi,j,k(λ) =
∫ xi+λ

xi

dx
∫ yj+λ

yj

dy
∫ tk+λ/U

tk

dt r(x, y, t) (2.2)

where r(x, y, t) is the rainfall rate in (x, y) location at time t, and indexes i,
j and k identify the spatial and temporal position of each subregion λ×λ×τ
in the grid partition.

As a result, in our downscaling problem, a rainfall volume µ(D) is known
over an area L × L and is accumulated over a time T = L/U . Our aim
is to predict the probability distribution P (µ(λ)) of the measure (2.2) over
smaller subregions λ×λ× τ , where λ < L and τ < T . Scale-invariance (2.1)
should be investigated in a wide range of space scales λn = Lb−n

s and time
scales τn = λn/U = Tb−n

t , with a common branching number in space and
time (bs = bt), where the integer n refers to the fragmentation level. Thus
equation (2.1) can now be rewritten in terms of the partition function Sq(λ):

Sq(λ) = < µi,j,k(λ)q > ∼ λζ(q) (2.3)

where < · > denotes an ensemble average over all the boxes λ×λ×τ , indexed
by i, j and k in the λ-partition. Multifractal exponents ζ(q) can be estimated
plotting Sq(λ) versus λ in a log-log space.

In the more general case of self-affine measures, scale-invariance laws can
be investigated under anistropic space-time transformations: λ −→ λ/bs,
τ −→ τ/bt, where the branching number bs in space now differs from
the temporal branching bt. This approach, known as Generalized Scale
Invariance (G.S.I.) (Lovejoy & Schertzer 1985, Schertzer & Lovejoy 1985),
characterizes the degree of anisotropy by the scaling anisotropy exponent
H relating branching numbers as bt = b(1−H)

s . Scale invariance can thus
be investigated in such self-affine measures by introducing in equation (2.2)
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a scale parameter Uλ = UL ·
(

λ
L

)H
, implying that the linear relationship

between coherent space and time scales does not hold: τ = λ/Uλ ∝ λ(1−H).
This general approach also contains the self-similar case for H = 0 (implying
bs ≡ bt and U constant).

The verification procedure proposed in chapter 4 to test consistency of
ensemble precipitation fields generated by downscaling models, requires to
calculate the Empirical Cumulative Density Function of each rainfall field at
high resolution. We highlight that in case of spatial homogeneity both the
simpler self-similar or the more general self-affine transformations assume
that probability distribution of rainfall rates is the same in each subregion
λ × λ × τ , regardless the grid-cell position in space and/or in time. Thus,
although the grid partitioning is slightly different for the self-similar and the
self-affine cases, the verification procedure can be applied merging all the
rainfall values observed or generated on all the λ× λ× τ grid-cells.

On the other hand, if rainfall fields display spatial heterogeneity, the
probability distribution of rainfall rates in subregions λ× λ× τ may depend
on the spatial location. Thus, in principle, the verification procedure should
be applied separately by merging together rainfall rates observed or generated
at different times in each spatial verification location. In the case that spatial
heterogeneity is only due to differences in the spatial rainfall mean, observed
fields may be homogeneized by means of a modulating function (Badas et al.
2006) and the verification procedure may be applied by merging rainfall rates
in all the λ× λ× τ grid-cells as in the homogeneous case.

2.2.2 The STRAIN Multifractal Downscaling Model

Whatever the scale transformation rule holds for analyzed rainfall field, the
scale-invariance analysis provides a set of multifractal exponent ζ(q) that
can be used to estimate parameters of the adopted downscaling model. In
this work, we apply the STRAIN (Space Time RAINfall) downscaling model
(Deidda et al. 1999, Deidda 2000) to test the verification procedure proposed
in chapter 4 in a homogeneous and scale-isotropic framework, but the method
may be also applied in case of heterogeneity and self-affinity, according to the
transformations previously described. The model is based on a log-Poisson
generator η = eAβy where β is a parameter, y is a Poisson random variable
with mean c and A = c(1 − β) is a renormalization constant. The model
provides theoretical value for the multifractal exponent ζ(q) that allows
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simulating the multifractal properties in real-world precipitation events. The
expression ζ(q) in a d-dimensional domain (d = 3 in a spatiotemporal
domain) is given by:

ζ(q) = d · q − c
q(1− β)− (1− βq)

log 2
(2.4)

Equation (2.4) is used to estimate the parameters c and β for each observed
event. In recent studies using radar data, the STRAIN model was calibrated
and applied to reproduce observed scale-invariant properties (Deidda 2000,
Deidda et al. 2004). These studies revealed that β can be assumed constant
as e−1, while c was found to decrease as the mean precipitation rate at
the coarse scale increases. This behavior was interpreted by the following
relationship:

c(R) = c∞ + a · e−γ·R (2.5)

where R is the precipitation rate at the coarse scale L × L × T and c∞,
a and γ are the parameters of the non-linear equation. Based on the mean
precipitation rate R at the large scale L×L×T obtained from a NWP model
output, this relation can be used to estimate c. After parameter estimation,
the STRAIN model can generate an ensemble of precipitation fields at high
resolution λ× λ× τ , which represents the equiprobable small scale scenarios
corresponding to the same coarse scale condition, as depicted in Fig. 2.2.

2.3 The tRIBS Distributed Hydrological

Model

The hydrological model used in this study as part of the proposed
hydrometeorological system is the TIN-based Real-time Integrated Basin
Simulator (tRIBS), a continuous, physically-based, fully-distributed model
designed for hydrologic research and forecasting. The model explicitly
considers spatial variability in precipitation fields, land-surface descriptors
and is capable of resolving basin hydrologic response at very fine temporal
and spatial scales. For example, it can be forced with precipitation inputs
with a time step of 15’ and has computational time steps of 3.75’ and 30’ for
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Figure 2.3: Scheme of the domain representation adopted in the TIN-based
Real-Time Integrated Basin Simulator (tRIBS) hydrological model,
including the parameterized hydrological processes and spatially-distributed
meteorological forcing.

the subsurface unsaturated and saturated zones, respectively. tRIBS includes
parameterizations of rainfall interception, evapotranspiration, infiltration
with continuous soil moisture accounting, lateral moisture transfer in the
unsaturated and saturated zones, and runoff routing (see Fig. 2.3 for a
scheme). The model computational basis, structure, and description of
processes parameterizations are given in full detail in Ivanov et al. (2004a).

In this section, we first describe the model domain representation and
then we provide an outline of the processes parameterization, highlighting
the aspects that make the model suitable to be used in a forecasting system.
A summary of model parameters is shown in Table 2.1, derived from Ivanov
et al. (2004b). The table shows, for each parameter, the units and, as an
example, the range of values assumed in a specific application where the
model was successfully calibrated and verified in the Baron Fork basin (OK,
USA).
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Parameter Parameter
Symbol Description Units Range Source

Vegetation Properties
p free throughfall coefficient - 0.3-0.95 literature
S canopy capacity mm 0.8-1.2 literature

K canopy drainage rate coefficient mm h−1 0.1-0.25 literature

g canopy drainage exponent mm−1 3.2-4.3 literature
a surface albedo - 0.13-0.20 literature

Hv vegetation height m 0.1-13.0 literature
Kt optical transmission coefficient - 0.55-0.75 calibration

rs average canopy stomatal resistance s m−1 70-115 calibration
ν vegetation fraction - 0.1-0.65 calibration

Soil Hydraulic and Thermal Properties

K0n saturated hydraulic conductivity mm h−1 0.5-30.0 calibration
θs saturation soil moisture content - 0.3 0.4 literature
θr residual soil moisture content - 0.05 literature
λ0 pore distribution index - 0.60 2.0 literature
Ψb air entry bubbling pressure m -0.4 to -0.1 literature

f conductivity decay parameter m−1 0.40.9 calibration
ar anisotropy ratio - 200900 calibration
n total porosity - 0.4 0.5 literature

ks volumetric heat conductivity J m−1 s−1 K−1 0.31.0 literature

Cs soil heat capacity J m−3 K−1 1,200,000 literature

Channel and Hillslope Routing Parameters
ne Mannings channel roughness - 0.3 calibration
αB channel width area coefficient - 2.33 calibration
βB channel width area exponent - 0.542 calibration
cv hillslope velocity coefficient - 25 calibration
r hillslope velocity exponent - 0.4 calibration

Table 2.1: The tRIBS model parameters and their respective ranges used to
simulate the hydrologic response in an application on the Baron Fork basin
(OK, USA). From Ivanov et al. (2004a).

2.3.1 Model Domain Representation

A catchment is represented in tRIBS through a Triangulated Irregular
Networks (TIN) consisting of elevation, channel, and basin boundary nodes
(Vivoni et al. 2004). TINs are a piece-wise linear interpolation of a set of
points, sampled from a digital elevation model (DEM), resulting in triangular
facets of varying size. The triangulation represents topographically complex
surfaces that include hillslopes, valleys, floodplains and ridges. A multiple
resolution approach is adopted in the model to represent the complexity
of topography (Vivoni et al. 2004). The stream network is composed of
a set of channels ranging from headwater tributaries to large, meandering
rivers. The channel cross section is established through geomorphic relations
to contributing area (Ivanov et al. 2004a). The soil profile and shallow
aquifer are bounded by a spatially distributed bedrock assumed to be an
impermeable surface.
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2.3.2 Precipitation Interception

The Rutter canopy water balance model (Rutter et al. 1971, 1975) is used.
Canopy water dynamics is species dependent such that the parameters vary
for different vegetation types.

2.3.3 Surface Energy Balance and Evapotranspiration

Short wave and long wave radiation components are simulated accounting
for geographic location, time of year, aspect and slope of the element surface
(Bras 1990). The combination equation (Penman 1948, Monteith 1965),
gradient method (Enthekhabi 2000), and force-restore (Lin 1980, Hu & Islam
1995) method are used to estimate the latent, sensible, and ground heat
fluxes at the landsurface. An optimum is sought in terms of the soil surface
temperature that leads to the energy balance in the equation:

Rn −G = λE + H (2.6)

where Rn is the net radiation, λE, H and G are the latent, sensible and
ground heat fluxes. Total evapotranspiration (ET) is determined from
moist bare soil, intercepted water and plant transpiration based on soil and
vegetation parameters that include vegetative fraction (v), surface albedo
(a), canopy height (Hv), stomatal resistance (rs) and an optical coefficient
(Kt), in addition to atmospheric conditions (e.g., air temperature, relative
humidity, pressure, wind speed) and solar radiation.

2.3.4 Coupled Unsaturated and Saturated Dynamics

Basin hydrologic response requires an appropriate depiction of the two-way
interaction between surface and subsurface processes. The model accounts
for moving infiltration fronts, water table fluctuations and moisture losses
due to evapotranspiration and groundwater drainage. Each element consists
of a sloped column of heterogeneous, anisotropic soil with an exponential
decrease in saturated hydraulic conductivity (Beven 1982).

Ksi(z) = Koi e−fz (2.7)

where Ksi(z) is the saturated hydraulic conductivity at depth z in the
normal or parallel directions (i = n or p), Koi is the saturated hydraulic
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conductivity at the soil surface (z=0), and f is a hydraulic conductivity
decay parameter. A kinematic approximation for unsaturated flow is used to
compute infiltration and propagate moisture fronts in the soil column (Cabral
et al. 1992, Garrote & Bras 1995, Ivanov 2002). The unsaturated moisture
profile is determined from hydrostatic equilibrium using the Brooks & Corey
(1964) parameterization as:

θ(z) = θr + (θs − θr)

[
Ψb

z −Nwt

]λ0

(2.8)

where θ(z) is the soil moisture at depth z, θr and θs are the residual and
saturation soil moisture contents, Nwt is the depth to the local water table,
Ψb is the air entry bubbling pressure and λ0 is the pore-size distribution index
(Ivanov et al. 2004a).

Coupled to the vertical dynamics is lateral moisture redistribution in
the vadose zone and shallow aquifer driven by gradients in surface and
groundwater topography. In the unsaturated zone, horizontal flow between
contiguous elements is computed over the saturated wedge and along the
steepest direction. In the shallow aquifer, a quasi three-dimensional model
based on the Dupuit-Forchheimer approximation redistributes groundwater
from recharge zones to discharge areas. Lateral exchanges between elements
are controlled by hydraulic gradient as:

QS = T w tan βw (2.9)

where QS is the groundwater outflux, w is the flow width, tan βw is the local
water table slope and T is the depth averaged aquifer transmissivity:

T =
arKon

f
[e−fNwt − e−fD] (2.10)

where D is the bedrock depth and ar is the anisotropy ratio (Kop/Kon).
Water table dynamics are computed from groundwater fluxes, vertical
recharge and exfiltration. Overall, the water table position anchors the soil
moisture profile and determines regions of saturation prior to a storm.
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2.3.5 Runoff Production

The coupled nature of the unsaturated and saturated processes results in a
robust set of runoff mechanisms. Four basic runoff types are simulated in the
tRIBS model: infiltration-excess runoff (RI) (Horton 1933), saturation-excess
runoff (RS) (Dunne & Black 1970), groundwater exfiltration (RG) (Hursh &
Brater 1941), and perched return flow (RP ) (Weyman 1970). Total runoff
(R) is composed of the four production mechanisms:

R = RI + RS + RP + RG (2.11)

where RI + RS and RP + RG are the surface and subsurface components.
Infiltration and saturation-excess runoff are rapid surface responses as
infiltration is limited by soil conditions, while perched return flow and
groundwater exfiltration are slower mechanisms as subsurface flow delays
the response to rainfall.

2.3.6 Hillslope and Channel Flow Routing

Runoff generated at each element is routed across an individual hillslope
overland flow path and then through the channel network. The hillslope
paths are defined over the edges of the triangular facets that connect a node
to the closest downstream stream node (Tucker et al. 2001). A nonlinear
relation is used to determine velocity over a hillslope path (Ivanov et al.
2004a):

vh = cv

(
Q

Ah

)r

(2.12)

where vh is the hillslope velocity, Ah is the upslope contributing area, Q is the
discharge at the downstream channel node, and r and cv are spatially-uniform
parameters of the velocity relation. Thus, overland travel time (th = lh/vh)
is a function of discharge (Q) and hillslope path length (lh). Overland flow
from multiple hillslope nodes serves as lateral inflow into a kinematic wave,
one-dimensional routing scheme solved in the channel network (Ivanov et al.
2004a). Channel travel time (tc = vc/lc) depends on the channel link distance
(lc) and the discharge (Q = vcAc) through each link. For a wide, rectangular
channel (Ac = bH), discharge for each link is:
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Q =
1

ne

S
1
2 H

5
3 b (2.13)

where ne is the Manning coefficient, S is the channel slope, b is the channel
width, and H is the water depth. As overland travel time is faster than
groundwater pathways, the partitioning of precipitation into surface and
subsurface flow is critical for determining the basin response.

2.3.7 Simulation Capabilities and Model Output

The tRIBS model provides outputs ranging over a variety of spatial and
temporal scales.

Point scale

At the smallest spatial scale, the Voronoi element, evolution of all
the hydrological state variables can be obtained: rainfall interception,
evaporation from the canopy, evolution of the infiltration fronts, dynamics
of subsurface fluxes in the unsaturated and saturated zones, soil moisture
conditions, runoff generation, and evapotranspiration. Analysis of these
dynamics is extremely important for verifying the general physical soundness
of the model performance as well as for calibrating parameters of certain
hydrological processes.

Hillslope Transect Scale

A group of Voronoi cells forming a hillslope transect can be selected based
on the drainage directions connecting the contiguous cells. Time-varying
cross-sectional profiles of the hydrological variables can thus be obtained.
If field or experimental information about temporal dynamics of the soil
moisture and groundwater along the hillslope is available, the pertinent model
parameters can be adjusted.

River Reach Scale

The catchment channel network can be represented with a sufficiently high
accuracy by a union of segments connecting the stream nodes (Vivoni et al.
2004). For each node of the channel network, the time-series of streamflow
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are provided. This offers the flexibility of tracking the spatial variability
of runoff conditions in the catchment. As opposed to semidistributed
modelling approaches that pre-define points of interest by partitioning the
main catchment into nested sub-basins, the approach in tRIBS provides
hydrologic prediction at any point of the channel network. This makes the
use of tRIBS model into forecasting systems attractive, since a single model
run can furnish hydrological predictions in all the sub-basins, allowing the
complete definition of flood risk within the basin.

Basin Scale

The capability for reproducing internal variation of hydrologic response is
among the essential features offered by distributed models. tRIBS produces
spatial maps of all the major hydrological state variables (energy and water
fluxes, canopy state, soil moisture conditions, runoff generation, etc.) at a
specified temporal resolution. In addition to instantaneous basin states, the
model generates frequency distributions and their moments for a number of
hydrological variables, thus providing integral representation of site specific
properties.



Chapter 3

Ensemble Forecasting
Technique and Forecast
Verification

The chapter is organized as follows. Section 3.1 illustrates the ensemble
forecasting technique as it has been developed and applied in atmospheric
science. In section 3.2, the main verification methods for ensemble forecasts
are reviewed. After reminding the basic concepts of forecast verification
(subsection 3.2.1), the classical methods used to verify probabilistic forecasts
are described (subsection 3.2.2). Then, the consistency hypothesis and
the ensemble dispersion are introduced as they are properties tested by
verification methods specifically developed for ensemble model outputs
(subsection 3.2.3). Finally, one of these methods, the Verification Rank
Histogram, that has been widely utilized for the studies described in the
next chapters, is illustrated in detail (subsection 3.2.4).

Most part of this chapter is based on the exhaustive review of the
verification techniques in atmospheric science provided by Wilks (2006).

3.1 Ensemble Forecasting Technique

Ensemble forecasting is a technique originally developed in atmospheric
science to deal with and predict the uncertainty associated to meteorological
models. This method has also been recently used in hydrology to provide
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probabilistic streamflow predictions (e.g., Ferraris et al. 2002, Franz et al.
2003, Verbunt et al. 2007) and to test uncertainty of hydrological models
parameters or radar rainfall input (Georgakakos et al. 2004, Carpenter &
Georgakakos 2004, Vrugt et al. 2005).

Atmospheric processes exhibit variations and fluctuations that are
irregular and, consequently, weather forecast is uncertain. In order to
deal quantitatively with uncertainty it is necessary to employ the tools of
probability, which is the mathematical language of uncertainty.

The progress of science and the parallel advent of supercomputers has
allowed the development of sophisticated models representing physics of
the atmosphere and used routinely for forecasting its future evolution. In
their usual forms these models are deterministic: they do not represent
uncertainty. Once supplied with a particular initial atmospheric state
(winds, temperature, humidities, etc.) and boundary forcings (notably
solar radiation, sea surface and land conditions) each will produce a single
particular result. Rerunning the model with the same inputs will not change
that result.

If the description of physical processes and boundary conditions and
the collection of data representing the initial atmospheric states were
perfect, these model could provide forecast with no uncertainty. But this
does not happen at least for two reasons. First of all, even though the
models give good approximations to atmospheric behavior, they are not
complete and true representations of the governing physics. An important
and essentially unavoidable cause of this problem is that some relevant
physical processes operate on scales too small to be represented explicitly
by these models and some approximations result using only the large-scale
information. For example, the problem of forecasting precipitation at high
resolution in space and time is still unresolved because of the incapability
of representing precipitation physical mechanisms at these small scales.
Statistical downscaling models can be used to overcome this problem, starting
from large-scale information provided by meteorological models.

Secondly, if all the relevant physics could somehow be included in the
atmospheric models, however, we still not escape the uncertainty because
of what has come to be known as dynamical chaos. According to this
phenomenon, discovered by Lorenz (1963), the time evolution of a nonlinear,
deterministic dynamical system depends very sensitively on the initial
conditions of the system. If two realizations of such a system are started
from two only very slightly different initial conditions, the two solutions
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will eventually diverge markedly. For the case of atmospheric simulation,
imagine that one of these systems is the real atmosphere and the other
is a perfect mathematical model of the physic governing the atmosphere.
Since the atmosphere is always incompletely observed, it will never be
possible to start the mathematical model in exactly the same state as the
real system. So even if the model is perfect, it will be still impossible
to calculate what the atmosphere will do indefinitely far into the future.
Therefore, deterministic forecasts of future atmospheric behavior will always
be uncertain and probabilistic methods will always be needed to describe
adequately that behavior (Wilks 2006).

Numerical Weather Prediction (NWP) models are the mainstay of
weather forecasting. These models exhibit the property that solutions started
from only slightly different initial conditions will yield quite different results
for projections sufficiently far into the future (weeks for synoptic scale and
shorter periods for mesoscale scales). In order to deal with the sensitivity
to initial conditions, the so called stochastic dynamical approach can be
adopted. Conventional deterministic forecast use the governing equations
to describe the future evolution of a single initial state that is regarded as
the true initial state. The idea behind stochastic dynamic forecast is to
allow the deterministic governing equations to operate on the probability
distribution describing uncertainty about the initial state of the atmosphere.
The resulting model solutions provide the probability distributions describing
uncertainty about the future state of the atmosphere. In addition, since
governing equations do not provide a perfect description of the processes, they
lead to a further contribute to uncertainty. The visualization of the initial
state and forecast probability distributions is achieved through the concept
of phase space, which is a geometrical representation of the hypothetically
possible states of a dynamical system, where each of the coordinate axes
pertains to one of the forecast variable of the system.

The practical solutions to the analytic intractability of stochastic
dynamical equations is to approximate these equations using Monte-Carlo
methods, as proposed by Leith (1974) and now called ensemble forecasting.
Fig. 3.1 illustrates the nature of ensemble forecasting in an idealized two
dimensional phase space. The ensemble forecast procedure begins by drawing
a finite sample from the probability distribution describing the uncertainty
of the initial state of the atmosphere (the small ellipse). Imagine that 8
members (dots) of this distribution surrounding the single best initial value
(circled X) in phase space are picked randomly. Collectively, these points are
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Figure 3.1: Schematic illustration of the basic concepts in ensemble
forecasting plotted in terms of a two dimensional phase-space. The initial,
an intermediate and the final time of the forecast are represented through
ellipses. A total of eight ensemble members and one single best analysis of
the initial state has been run sampling from the probability distribution of
initial state (the smallest ellipse). Their evolution in time is depicted by
means of dashed lines for the eight members and the heavy solid line for the
single best analysis. The last ellipse provides the probability distribution of
future time uncertainty. From Wilks (2006).



3.1 Ensemble Forecasting Technique 29

called the ensemble of the initial conditions and each represents a plausible
initial state of the atmosphere consistent with the uncertainty in observation
and analysis. The evolution of the single best forecast in the phase space,
through an intermediate and then a final forecast projections, is represented
by the heavy solid lines. However, the position of this point in phase space
at the initial time represents only one of the many plausible initial states,
which sample the probability distribution for states of the atmosphere at
the initial time. The Monte-Carlo approximation to a stochastic dynamic
forecast is constructed by repeatedly running the NWP model, once for each
member of the initial ensemble. The trajectories through the phase space are
only modestly different at first, indicating that all nine NWP integrations are
producing fairly similar forecasts at the intermediate position. Accordingly,
the probability distribution describing uncertainty about the state of the
atmosphere at the intermediate projection would not be a great deal larger
than at initial time. However, between the intermediate and the final
projections the trajectories diverge markedly, with three (including the mean
value of the initial distribution) producing forecasts that are similar to each
other, and the remaining six members of the ensemble predicting rather
different atmospheric states at that time. The underlying distribution of
uncertainty that was fairly small at the initial time has been stretched
substantially, as represented by the large ellipse at the time of the final
projection. The dispersion of the ensemble members at that time allows
the nature of that distribution to be estimated, and is indicative of the
uncertainty of the forecast, assuming that the NWP model includes only
negligible errors in the representations of the governing physical processes.
If only the single forecast started from the best initial condition had been
made, this information would have not been available.

Given the high computational time required by running the NWP for
each ensemble member of the initial state, the choice of good initial state
members is crucial. Without describing in detail the theory behind the
choice of these members, here we say that three operational methods for the
generation of medium-range initial condition ensembles have been developed
in the most important meteorological offices all over the world. The U.S.
National Centers for Environmental Prediction (NCEP) and the European
Centre for Medium-Range Weather Forecasts (ECMWF) seek directions of
rapid error growth in selective sampling procedures, known as the bred-vector
perturbation method (Toth & Kalnay 1993) and the singular-vector
technique (Molteni et al. 1996), respectively. The Meteorological Service
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of Canada (MSC) uses the Monte Carlo like perturbed-observation approach
(Houtekamer et al. 1996), in which the model physics parameterizations vary
as well.

In case of precipitation fields predicted by downscaling models, the notion
of ensemble is slightly different from the one commonly used in atmospheric
science. In fact, downscaled precipitation fields are not the output of a
model where initial conditions have been perturbed, but they represent a
set of statistical realizations of future precipitation corresponding to the
same initial condition at the coarse scale. Obviously, this initial condition
should be affected by a low level of uncertainty, being, in a certain sense,
a deterministic quantity; otherwise, additional uncertainty is added to the
forecasts.

3.2 Verification of Ensemble Forecast

3.2.1 Basic Concepts of Forecast Verification

Forecast verification is the process of assessing the quality of the forecasts.
This process has been more rigorously developed in atmospheric sciences and
only recently it has become the object of systematic studies in hydrology.

All the verification techniques involve measures of the relation between
forecasts and the corresponding observation(s) of the predictand. They all
study the joint distribution of forecasts and observation (Murphy & Winckler
1987). In practical settings, both the forecasts and observations are discrete
variables (or continuous variables that are rounded to a finite set of values).
Denote the forecast by yi, which can take on any of the I values y1, y2, . . . , yI ,
and the corresponding observation as oj, which can take on any of the J values
o1, o2, . . . , oJ . Then the joint distribution of the forecasts and observations is
denoted by

p(yi, oj) = Pr{yi ∩ oj} i = 1, . . . , I; j = 1, . . . , J. (3.1)

This is a discrete bivariate probability distribution function, associating a
probability with each of the I × J possible combinations of forecast and
observation.

In order to allow the use of the joint distribution, which can be very
complicated also in the simplest case I = J = 2, the definition of conditional
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probability is used to factorize equation (3.1) in two possible ways that are
informative about different aspects of the verification problems. The first is
called the calibration-refinement factorization (Murphy & Winckler 1987):

p(yi, oj) = p(oj | yi) · p(yi) i = 1, . . . , I; j = 1, . . . , J. (3.2)

One part of this factorization consists of a set of the I conditional
distributions, p(oj | yi), each of which consists of probabilities for all the
J outcomes oj, given one of the forecast yi. That is, each of this conditional
distribution specifies how often each possible weather event occurred on those
occasions when the single forecast yi was issued, or how well each forecast
yi is calibrated. The other part of this factorization is the unconditional
(marginal) distribution p(yi), which specifies the relative frequencies of use of
each of the forecast values yi, or how often each of the possible forecast values
were used. This marginal distribution is sometimes called the predictive
distribution, or the refinement distribution of the forecasts.

The other factorization of the joint distribution of forecasts and
observations is the likelihood-base rate factorization (Murphy & Winckler
1987)

p(yi, oj) = p(yi | oj) · p(oj) i = 1, . . . , I; j = 1, . . . , J. (3.3)

Here the conditional distributions p(yi | oj) express the likelihood that each of
the allowable forecast values yi would have been issued in advance of each of
the observed weather event oj. The unconditional distribution p(oj) consists
simply of the relative frequencies of the J weather events oj in the verification
data set. This distributions is called the sample climatology.

As mentioned before, the use of this distribution can be very difficult also
in the simplest circumstance of I = J = 2. Therefore, it is traditional to
summarize forecast performance using one or several scalar (one dimensional)
verification measures. Clearly, these scalar measures do not provide a full
picture of the joint distribution and capture only some of its properties. In
the following list, the main properties or attributes of forecast quality are
described:

1. Accuracy refers to the average correspondence between individual pairs
of forecasts and the event they predict. Scalar measures of accuracy
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are meant to summarize, in a single number, the overall quality of a
set of forecasts.

2. Bias measures the correspondence between the average forecast and
the average observed value of the predictand.

3. Reliability pertains to the relationship of the forecast to the average
observation, for specific values of the forecast. In other words,
reliability measures summarize the I conditional distributions p(oj | yi).

4. Resolution refers to the degree to which the forecasts sort the observed
events into groups that are different from each other. It is related to
reliability since it provides a measure of the properties of p(oj | yi), but
it differs from reliability because it pertains to the differences between
the conditional averages of the observations for different values of the
forecast.

5. Discrimination is the converse of resolution, in that it pertains to
differences between the conditional averages of the forecasts for different
values of the observation. Measures of discrimination characterize
the conditional distributions of the forecasts given the observation
p(yi | oj).

6. Sharpness or refinement is an attribute of the forecast alone and
characterizes the unconditional distribution of the forecasts p(yi).
Sharp forecast are frequently much different from the climatological
value of the predictand. They are accurate only if they also exhibit
good reliability.

A last concept that it is worthy to mention is the forecast skill, which
refers to the relative accuracy of a set of forecasts with respect to some set of
standard control, or reference, forecasts. Common choices for the reference
forecasts are the climatological values of the predictand, the persistence
(values of the predictand in the previous time period), or random forecasts
(with respect to the climatological relative frequencies of the forecast events
oj). Forecast skill is usually presented as a skill score, which is interpreted as
a percentage improvement over the reference forecasts. In generic form, the
skill score for forecasts characterized by a particular measure of accuracy A,
with respect to the accuracy Aref of a set of reference forecasts, is given by:
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SSref =
A− Aref

Aperf − Aref

× 100% (3.4)

where Aperf is the value of the accuracy measure that would be achieved by
perfect forecasts. If A = Aperf the skill score attains its maximum value
of 100%. If A = Aref then SSref = 0%, indicating no improvement over
the reference forecasts. If the forecast being evaluated are inferior to the
reference forecasts with respect to the accuracy measure A, SSref < 0%.

3.2.2 Verification of Probabilistic Forecasts

The verification techniques described in this section are referred to the
simplest circumstance of probability forecasts in relation to dichotomous
predictand which are limited to J = 2 possible outcomes. The forecast
values for the predictand can instead assume a number I > 2 values (i.e.
probabilities). In theory any real number is an allowable probability forecast,
but in practice, the forecast usually are rounded to one of a reasonably small
number of values.

When an ensemble model provides values for a continuous predictand
(e.g. temperature or precipitation depth), it is possible to achieve this
situation by introducing a threshold in the observation: if the observation is
greater or smaller than the threshold, then o1 = 1 or o2 = 0 respectively.
The probability yi can be instead calculated as follows. The Empirical
Cumulative Density Function (ECDF) of the ensemble sample is built with
a plotting position formula and the exceedance probability of the considered
threshold is determined and then rounded to the closest yi (i = 1, . . . , I).
For example, our predictand can be: precipitation higher than 0.2 mm h−1

and the ensemble model provides the set of values in mm h−1 0, 0, 0, 0.3,
0.35, 0.4, 0.7, 0.8, 0.9, 1. If we observe a precipitation of 0.1 mm h−1, we
have yi = 0.7 (the exceedance probability of 0.2 mm h−1 within the ensemble
sample) and oi = o2 = 0.

The Brier Score

The most common scalar measure for verification of probabilistic forecasts is
the Brier Score (BS). The Brier Score is essentially the mean squared error
of the probability forecasts, considering that observation is o1 = 1 if the
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event occurs and o2 = 0 is it does not occur. The score averages the squared
differences between pairs of forecast probabilities and the subsequent binary
observations:

BS =
1

n

n∑

k=1

(yk − ok)
2 (3.5)

where the index k denotes a numbering of the n forecast-event pairs. BS is
included in the interval [0, 1] and is negatively oriented, with perfect forecast
exhibiting BS = 0.

Skill score of the form (3.4) are computed for the Brier Score, leading to
the Brier Skill Score:

BSS =
BS −BSref

0−BSref

= 1− BS

BSref

(3.6)

since BSperf = 0.
An instructive algebraic decomposition of the Brier Score has been derived

by Murphy (1973) and is related to the calibration-refinement factorization
3.2 of the joint distribution of forecast and observation.

Let be Ni the number of times each forecast yi, ranging from y1 = 0 to
yI = 1, is used in the collection of forecast to be verified. The total number
of forecast event pairs is simply the sum of these subsample sizes:

n =
I∑

i=1

Ni (3.7)

The marginal distribution of the forecasts consists of the relative frequencies:

p(yi) =
Ni

n
(3.8)

Since the observed event is dichotomous, a single conditional relative
frequency defines the conditional distribution of observations given each
forecasts yi and can be expressed as the ratio between the number of ok

falling in the class i (where ok = 1 if the event occurs or ok = 0 if it does
not) and the number of times that the forecast value was equal to yi:
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ōi = p(o1 | yi) =
1

Ni

∑

k∈Ni

ok (3.9)

The sample climatology can be expressed by:

ō =
1

n

n∑

k=1

ok =
1

n

I∑

i=1

Niōi (3.10)

After some algebra, the Brier Score in equation (3.5), can be expressed
in terms of the sum of three quantities:

BS =
1

n

I∑

i=1

Ni(yi − ōi)
2 − 1

n

I∑

i=1

Ni(ōi − ō)2 − ō(1− ō) (3.11)

The three terms are know as reliability, resolution and uncertainty,
respectively. Since BS is negative oriented, the forecaster would like the
reliability to be as small as possible, while the resolution to be as large as
possible.

For forecast that are perfectly reliable, when y = yi the correspondent
event is observed (i.e. ok = 1) and yi = ōi. Therefore, the reliability term is
zero. In a real reliable forecast, the relative frequency ōi should assume small
values when yi is close to 0, large values when yi is close to 1 and values close
to 0.5 when yi is close to 0.5.

The resolution term measure the distance between the relative frequency
of the forecast and the climatology. Thus, if the forecast sort the observation
into subsamples having substantially different relative frequencies than the
overall sample climatology, the resolution term will be large.

The uncertainty term depends only on the observations and is not affected
by the forecasts. It has minima in 0 and 1, when the climatological
probability is 0 or 1, and a maximum when the climatological probability
is 0.5.

The Reliability Diagram

The reliability diagram is a graphical device that shows the full distribution
of forecasts and observations for probability forecasts of a binary predictand,
in terms of the calibration-refinement factorization (3.2).
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We remember that we are considering dichotomous predictand and the
observation can be o1 = 1 or o2 = 0, while yi can assume a number I of
discrete values.

The first element of a reliability diagram is a plot of the calibration
function, with yi in abscissa and the corresponding p(o1 | yi) in ordinate. Fig.
3.2a shows five characteristic forms of this portion of the reliability diagram,
which allows immediate diagnostic of unconditional and conditional biases
eventually showed by the forecast. The center panel shows a well-calibrated
forecast, where yi ≈ p(o1 | yi) apart from sampling variability.

The top and the bottom panels shows the typical pattern of unconditional
biases. In the top panel, yi is always greater than p(o1 | yi), meaning that
forecasts are overestimating probabilities of the predictand (overforecasting
or wet bias). On the contrary the bottom panels shows a typical pattern of
underforecasting or dry bias.

The deficiencies indicated in the left and the right panels are more difficult
to be understood and indicate conditional biases. In these cases, the bias
depends on the value of the forecasts themselves. In the left panel (good
resolution, underconfident), there are overforecasting biases associated with
smaller forecast probabilities and underforecasting biases associated with
larger forecast probabilities and the opposite happens in the right panel
(poor resolution, overconfident). In this last case, the values p(o1 | yi) do
not depend so much on the forecasts and are all near the climatological
probability, revealing poor resolution. Conversely, the model verified in
the left panel provides a good resolution because it is able to identify
subsamples of forecast occasions for which the outcomes are quite different
from each other. Nevertheless, the forecast are not well calibrated, because,
for example, no events has occurred for y = y1 or y = yI .

An additional help to better understand the terms underconfident and
overconfident is furnished by the second part of reliability diagram: the
plot of the refinement distribution p(yi) (Fig. 3.2b). This plot reflects the
overall confidence of the forecaster. Forecasts that do not deviate too much
from their average exhibit low confidence, while forecasts spread around their
average and assuming too frequently extreme values exhibit high confidence.
This last circumstance produces forecasts as depicted in the right panel of
Fig. 3.2a: for high values of yi, we observe less event than expected (and
p(o1 | yi) is not close to 1), while, on the contrary, for lower values of yi we
observe more events than expected (and p(o1 | yi) is not close to 0). However,
the forecast can judge the confidence of the forecast only after the inspection
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Figure 3.2: Example characteristics forms for the two elements of the
reliability diagram. Panel a: calibration functions, showing p(o1 | y), as
functions of the forecast y. Panel b: Refinement distribution, p(y), reflecting
aggregate forecaster confidence. From Wilks (2006).
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of the calibration function for the same forecasts.

The ROC Diagram

The ROC (Relative Operating Characteristics) diagram is a
discrimination-based graphical forecast verification display, although unlike
the reliability diagram it does not provide a full representation of the joint
distribution of forecasts and observations.

In order to illustrate the ROC diagram, it is first necessary to introduce
the 2 × 2 contingency table. This table refers to the simplest dichotomous
situation in which I = J = 2. In such a case we have I = 2 possible forecasts
y1 and y2 if the event will occur or will not. Similarly, we have J = 2
outcomes: the event occurs (o1 = 1) or the event does not occur (o2 = 0).
Referring to Fig. 3.3a, the event was successfully forecast to occur a times out
of n total forecasts. These a forecast-observation pairs are usually called hits.
Similarly, on b occasions, called false alarms, the event was forecast to occur
but did not. There also c occasions, called misses, where the events occurred
when the model predicted that they would have not occurred. Finally, on d
circumstances, called correct rejection, the event was predicted not to occur
and it effectively did not. The relative frequencies a/n, b/n, c/n and d/n are
the estimates of the joint probabilities p(y1 ∩ o1), p(y1 ∩ o2), p(y2 ∩ o1) and
p(y2 ∩ o2), respectively (Fig. 3.3b).

Two quantities used in the ROC diagram can be calculated from the
contingency table. The first one if the hit rate:

H =
a

a + c
(3.12)

representing the ratio of correct forecasts to the number of times this event
occurred. It also represents the conditional frequency p(y1 | o1).

The second quantity is the false alarm rate:

F =
b

b + d
(3.13)

representing the ratio of false alarms to the total number of nonoccurrences
of the event o1. It also represents the conditional frequency p(y1 | o2).
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Figure 3.3: Contingency table in the simplest circumstance where I = 2 and
J = 2. From Wilks (2006).
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Probabilistic forecasts can be transformed into a categorical yes/no
dichotomous forecasts defined by some probability thresholds and the
contingency table above described can be built. In case of the ROC diagram,
the thresholds are usually chosen equal to each of the values yi. Then
(I − 1) 2× 2 contingency tables can be built: a yes forecast is imputed if the
probability yi is above the considered threshold and a no forecast is imputed
if the probability yi is below the threshold. ROC diagram is constructed
by evaluating each of these (I − 1) contingency tables using the hit rate H
(equation 3.12) and the false alarm F (equation 3.13). The resulting (I − 1)
points (Fi, Hi) are then plotted and connected with line segments to each
other and to the points (0, 0) corresponding to never forecasting the event,
and (1, 1) corresponding to always forecasting the event.

Fig. 3.4 shows two examples of ROC diagram. The upper left corner
represents a perfect forecast system where there are no false alarms and
only hits. The closer the point is to this upper left corner the higher
the skill. The lower left corner, where both hit and false alarms rate are
zero, represents a system which never warns of an event. The upper right
corner, represents a system where the event never occurs. A perfect forecast
model exhibits always F = 0.0 and H = 1.0, so its ROC diagram is made
of two line segments: the vertical left boundary and the horizontal upper
boundary. Conversely, a forecast model with bad performance, for example
a model providing random forecasts, is characterized by Fi = Hi and the
ROC diagram is given by the 1:1 line (dotted line). ROC curves for real
forecasts generally fall between these two extremes (heavy solid lines). The
better the forecast, the closer the ROC curve to the upper-left corner.

It can be convenient to summarize the ROC diagram through a scalar
measure, given by the area A under the ROC curve. A perfect model has
Aperf = 1 while random forecasts will have Arand = 0.5. The skill score of
ROC diagram can then be calculated as:

SSROC =
A− Arand

Aperf − Arand

=
A− 1/2

1− 1/2
= 2A− 1 (3.14)



3.2 Verification of Ensemble Forecast 41

Figure 3.4: Example of two ROC diagrams. From Wilks (2006).

3.2.3 Consistency Hypothesis and Ensemble
Dispersion

A consistent research effort has been focused by the meteorologic scientific
community to verify the goodness of ensemble forecast. An important
property for which verification methods have been developed is the
consistency of the ensemble (Anderson 1997), which is the degree to which
the observed state is a plausible member of the forecast ensemble.

Referring to meteorological models, if the initial state members have been
chosen as a random sample from the initial-condition uncertainty Probability
Distribution Function (PDF), and if the forecast model contains an accurate
representation of the physical dynamics, the dispersion of the ensemble
forecast represents a random sample from the PDF of forecast uncertainty.
In this ideal situation, the true state of the atmosphere would be just
one of the ensemble members and should be statistically indistinguishable
from the forecast ensemble. Referring to precipitation downscaling models,
consistency would also occur in the ideal situation where the model provides
the exact probability distribution of precipitation at high resolution from
which the observation is drawn.

These circumstances where the actual future atmospheric state or the
future rainfall scenario behave like random draw from the same distribution
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that produced the ensemble is called consistency of the ensemble.
Ensemble forecasts are probability forecasts that are expressed

as a discrete approximation of a full forecast PDF. According to
this approximation, ensemble relative frequency should estimate actual
probability. Probability forecasts can be obtained for simple predictands,
such as continuous scalar (e.g., temperature or precipitation at a single
location), or discrete scalars (possibly constructed by thresholding a
continuous variable, e.g., zero precipitation vs nonzero precipitation at a
single location); or quite complicated multivariate predictands such as entire
fields (e.g., the joint distribution of 500 mb heights at the global set of
horizontal gridpoints). In any of these cases, the probability forecast from
an ensemble will be good if consistency condition has been met and the
observation is statistically indistinguishable from the ensemble.

A necessary condition for ensemble consistency is an appropriate degree
of ensemble dispersion. If the ensemble dispersion is consistently too small,
then the observation will be often an outlier in the distribution of the
ensemble members, implying that ensemble relative frequency will be a poor
approximation to probability. This condition of ensemble underdispersion
is illustrated hypothetically in Fig. 3.5a. If the ensemble is consistently
too large, as in Fig. 3.5c, then the observation may too often be in the
middle of the ensemble distribution, leading again to a poor approximation
of probability. If the ensemble distribution is appropriate, as illustrated by
the hypothetical example in Fig. 3.5b, then the observation may have an
equal chance of occurring at any quantile of the distribution that is estimated
by the ensemble.

Once probability forecasts are estimated from a forecast ensemble by
adopting a plotting position rule, the appropriateness of these probability
assignments can be investigated through techniques of forecast verification
for probabilistic forecasts. The main verification methods for probabilistic
prediction been previously summarized in section 3.2.2. However, additional
verification tools have been developed specifically for ensemble forecasts,
many of which are aimed at testing the consistency hypothesis. The most
commonly used technique is the Verification Rank Histogram.

3.2.4 The Verification Rank Histogram

The Verification Rank Histogram (VRH) is a graphical tool used for a single
scalar or univariate predictand. The underlying idea of VRH is rather
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Figure 3.5: Histogram of hypothetical ensembles producing a continuous
scalar, y, exhibiting relatively (a) too little dispersion, (b) an appropriate
degree of dispersion, and (c) excessive dispersion, in comparison to a typical
observation o. From Wilks (2006).

simple. Let S be the univariate variable to be forecasted. For each event,
the ensemble model provides Nens forecasts S1, S2, . . . , SNens , to predict the
corresponding observation Sobs. If forecasts and observations are drawn from
the same distribution, the rank of Sobs within the sorted vector S containing
S1, . . . , SNens and Sobs assumes equally likely the values 1, 2, . . . , Nens + 1.
Therefore, if Nev events are analyzed and ranked, the histogram built with
these ranks should be uniform. Any departure from uniformity should only
be due to sampling variability.

Special rules are used for assigning ranks when many ensemble members
have the exact same value as the verification, as may occur, for example, with
no precipitation forecast and none observed. Hamill & Colucci (1997, 1998)
analyzed this problem and proposed to assign to the observation a random
rank between the first and the last rank of the subsample made of ensemble
members and observation with the same value.

If the VRH is not uniform, the assumptions underlying the ensemble
forecasts have not been met. Fig. 3.6 shows the possible patterns of the VRH,
where Nens = 8. In each histogram, the horizontal dashed line represents the
mean of a uniform distribution for that number of sample (i.e. = (Nens +
1)−1). Positive or negative unconditional biases produce overpopulation of
the lowest or highest ranks and the resulting histogram are shown in the
upper and in the lower panel (overforecasting and underforecasting bias,
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respectively). An excess of dispersion (overdispersion) implies overpopulation
of the middle ranks (left panel of Fig. 3.6): the observation is located more
frequently in the middle of the ensemble members, like depicted by Fig.
3.5c, and it very rarely falls in the extremes. Conversely, a lack of variability
(underdispersion) determines U-shaped histograms (right panel of Fig. 3.6).
In this case, the ensemble members tends to be too much like each other and
different from the observation, which occupies more frequently the extreme
ranks, as in Fig. 3.5a.

Particular care should be made to interpretation of VRH, since a uniform
rank histogram is a necessary but not sufficient condition for consistency.
Indeed, as shown by Hamill (2001), the same histogram shape can be
obtained by combining the effects of different ensemble model deficiencies,
making the diagnosis of ensemble forecasts characteristics difficult. Hamill
(2001) showed this effect by means of numerical experiments where he
adopted normal distributions with different mean and standard deviation to
simulate the truth and the ensemble model characteristics. He showed, for
example, that if the true is drawn by a normal distribution with mean 0 and
standard deviation 1 (N(0, 1)) and the ensemble members are drawn with
equal likelihood from either normal distributions N(−0.5, 1), N(+0.5, 1) and
N(0, 1.3), the resulting VRH is uniform even if the ensemble is not consistent.
For further examples and consequent discussion illustrating this important
point, the reader is referred to Hamill (2001).

The VRH provides a measure of reliability or conditional bias of the
forecast and, in this sense, it has connection with the calibration function
p(oj | yi). We have previously shown that the use of a threshold allows the
probability yi (i = 1, . . . I) and the correspondent observation oj (j = 1, 2) to
be computed for each event from the set of ensemble forecasts S1, . . . , SNens .
Repeating this calculation for all the events, we can calculate the relative
frequencies p(yi) and the conditional frequencies p(o1 | yi) (i = 1, . . . , I) and
then plot the reliability diagrams. A correspondence one-to-one can be made
between the shapes of the histogram illustrated in Fig. 3.6 and the shape of
the reliability diagrams shown in Fig. 3.2. When ensemble overforecasting
is detected, the ensemble are too frequently centered above the verification
with a majority of members above the given threshold more frequently than
the observation is above that threshold. The opposite happens for the
underforecasting deficiency.

In underdispersed ensembles, most or all the members will fall too
frequently on one side or the other of the threshold defining a dichotomous
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Figure 3.6: Example of Verification Rank Histogram (VRH) constructed
from an ensemble with size Nens = 8. The typical patterns of
uniformity, overforecasting and underforecasting bias, overdispersion and
underdispersion are shown. The horizontal dashed line in each histogram
is the mean of the uniform distribution, equal to (Nens + 1)−1. From Wilks
(2006).
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event. The result is that probability forecast will be excessively sharp
and the observation will use extreme probabilities too frequently. The
probability forecast will be overconfident and the conditional event relative
frequencies are less extreme than the forecast probabilities. On the other
hand, overdispersed ensembles will rarely have most members on one side
or the other of the event threshold and the probability forecast derived
from them will rarely be extreme. These probability forecasts will be
underconfident and the conditional event relative frequencies tend to be more
extreme than the forecast probabilities.

The VRH does not provide a full evaluation of forecast performance,
since it does not account for all the elements of the joint distribution of
forecast and observation. In particular, it is not able to give information
about the refinement or sharpness of ensemble forecasts, but it indicates
only if the forecast refinement is appropriate relative to the degree to which
the ensemble can resolve the predictand.

Applications of the VRH to meteorological model outputs are provided
by Hamill & Colucci (1997, 1998) who tested the reliability of single scalar
outputs predicted by Eta-RSM short range model.

In this work, the VRH has been used as the basis to develop specific
verification methods to test consistency of two ensemble outputs of a
hydrometeorological system: (i) precipitation fields generated by downscaling
models and (ii) hydrographs outputted by hydrological models.



Chapter 4

Precipitation Downscaling
Model Verification

The chapter is devoted to the assessment of uncertainty associated to
ensemble precipitation forecasts produced by downscaling models. A
verification method aimed at testing consistency of downscaled precipitation
ensemble is first described in detail and then applied in three numerical
hindcast experiments where the STRAIN multifractal downscaling model is
used. Experiments allow testing the working of the verification procedure and
drawing general conclusions about downscaling model performances when
different calibration modes are adopted.

The chapter is organized as follows. In section 4.1, we propose the
verification procedure: the determination of the precipitation exceedance
probability of downscaled rainfall fields is first described, followed by the
description of how the Verification Rank Histogram (VRH) is built for the
exceedance probability; finally, we discuss the presence of randomly assigned
ranks that artificially affect histogram shape and propose a graphical method
for their interpretation. In section 4.2, we describe the three hindcast
experiments and illustrate results, while in section 4.3 we discuss conclusions.
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4.1 Methods

4.1.1 Construction of Rank Histograms to Test
Precipitation Exceedance Probability

Let us consider a spatiotemporal precipitation field at fine resolution λ×λ×τ
included in a coarse domain L×L×T , as depicted in (Fig. 4.1a). Assuming
isotropy in space and time, the exceedance probability S(i∗) = Pr{I > i∗}
of a fixed threshold i∗ can be calculated from the entire set of the M high
resolution precipitation values in each λ×λ×τ grid-cell. S(i∗) can be derived
by the Empirical Survival Function (ESF ) (Evans et al. 2000) of the rainfall
rates ij in each grid-cell j, (j = 1, . . . , M), without reference to their position
in the cube. The ESF can be estimated using the ranks of the order statistics
i(j) as the complement of the Empirical Cumulative Frequency F (i(j)):

S(i(j)) = 1− F (i(j)) = 1− j − 0.5

M
j = 1, . . . , M (4.1)

where F (i(j)) is estimated through Hazen plotting position formula. As
shown in Fig. 4.1b, the exceedance probability S(i∗) corresponding to a
generic precipitation threshold i∗ is computed by linear interpolation of the
two closest values of S(i(j)), when i(1) ≤ i∗ ≤ i(M), while it is set to 1 or 0
when i∗ is smaller than i(1) or greater than i(M). In the case of heterogeneous
rainfall fields which cannot be homogeneized by a modulating function, the
ESF should be built only with rainfall rates in the verification location.

The construction of a VRH for the exceedance probabilities of a fixed
threshold i∗ is straightforward. For each event to be forecasted, (Nens + 1)
ESFs can be built, (i.e. Nens from the ensemble members and 1 from the
observed or verification event). The correspondent (Nens + 1) exceedance
probabilities of the selected threshold i∗, S1(i

∗), S2(i
∗), . . . , SNens(i

∗) and
Sobs(i

∗), can be calculated and sorted in increasing order in a vector indicated
with S. Finally the position of Sobs(i

∗) in the vector S is tabulated. This
procedure is repeated for all the Nev events obtaining Nev ranks. In previous
applications, the VRH is constructed by plotting the integer ranks from 1 to
(Nens + 1). Here, we modify this approach by introducing a normalized rank
r defined as the Empirical Cumulative Frequency of Sobs(i

∗) in the sample S,
estimated using Hazen plotting position formula:
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Figure 4.1: Panel a: spatiotemporal grid of a high resolution precipitation
field (observed or simulated). Panel b: determination of the exceedance
probability S(i∗) from the Empirical Survival Function built with the entire
set of precipitation rates ij, (j = 1, . . . , M) at the fine scale λ× λ× τ (case
of spatial homogeneity).
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r =
p− 0.5

Nens + 1
(4.2)

where p is the position of Sobs(i
∗) within the sample S. The use of this

plotting position formula assures that the probability values assigned to the
normalized rank are uniformly distributed in the interval (0, 1) regardless
Nens. This modification does not lead to conceptual difference with the
standard procedure and it allows keeping track of portion of the VRH that
has been randomly assigned, according to the graphical method proposed in
the following subsection.

From a fixed precipitation threshold i∗, it is possible to build a VRH
testing the exceedance probability of that threshold. The procedure can
be repeated to test several precipitation thresholds of interest in the
hydrometeorological forecasting system.

4.1.2 Rank Assignment and Histogram Interpretation

For high values of the threshold i∗, it is possible that the exceedance
probabilities for the observed event and for one or more ensemble members
are equal to zero. In such a case, the position p of Sobs(i

∗) in the vector S
is randomly assigned. When this occurs for several events, the VRH will be
populated by many random values and its shape will be artificially affected,
disguising the presence of model forecast deficiencies, if present. Therefore,
in this subsection, we first discuss whenever the position p of Sobs(i

∗) can be
unequivocally or randomly assigned and then we propose a graphical method
providing guidance for histogram interpretation.

The unequivocal or random assignment for the position p is illustrated in
Fig. 4.2, where each panel compares the ESF of the observed precipitation
field (in black) with the ensemble ESFs of synthetic fields (in gray) predicted
by downscaling models with different forecast skills. An important issue that
affects the determination of p is the value of i∗, which can be smaller or
greater than the maximum observed precipitation value. For this reason the
six panels are divided into two groups (left and right panels) where different
precipitation thresholds i∗a and i∗b are used:

1. In panels a, b and c, the precipitation threshold i∗a is smaller than
the maximum observed precipitation value, so that Sobs is always
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greater than 0 and its position p within the vector S is unequivocally
determined in all the 3 cases. In particular, in panel a, Sobs is included
between Smin and Smax, which are the minimum and maximum
exceedance probabilities of the ensemble members (i.e. 1 < p <
(Nens + 1) ). In panels b and c, Sobs occupies the first and the last
position in the sorted vector S (i.e. p = 1 and p = (Nens + 1) ).

2. In panels d, e and f, the precipitation threshold i∗b is greater than the
maximum observed precipitation value, so that Sobs is always equal to
0. In this case, if one or more exceedance probabilities of the ensemble
members are also equal to 0, the position p in S is randomly assigned
following a similar approach as in Hamill & Colucci (1998). In order to
better illustrate this, let us indicate with N0 the number of ensemble
ESFs for which the exceedance probability is 0. In panel d, N0 = Nens

and S is a sequence of zero values. The position p of Sobs in vector S
takes randomly one of the integer values 1, 2, ..., (Nens + 1). In panel e,
1 ≤ N0 < Nens, so that S contains a sequence of (N0+1) elements equal
to zero and (Nens − N0) values greater than 0. The position p of Sobs

is again randomly assigned, but within the limited number of integers
1, 2, . . . , N0 + 1. Finally, in panel f, N0 = 0 and Sobs is unequivocally
placed in the first position of S, being the only element equal to zero.

Note that the position may also be randomly assigned in the cases depicted in
panels a, b and c when Sobs > 0 and other ensemble exceedance probabilities
have the exact value as Sobs (Hamill & Colucci 1998), but this rarely occurs
and thus does not affect the shape of the resulting histograms. For this
reason, we do not consider random assignments occurring when Sobs > 0.

We remark that for small values of i∗, the ranks are usually unequivocally
determined as in Fig. 4.2a, b and c. As the threshold i∗ increases, the chance
of encounter Sobs = 0 and some Sj = 0 in the ensemble members increases
(Fig. 4.2d and e). Thus, depending on N0 values, a smaller or larger portion
in the left side of the VRH will be randomly populated, making the detection
of model forecast deficiencies more difficult. Therefore, it is convenient to
store the occurrence of unequivocal and random assignments for the whole
set of Nev events used to verify the model.

For this purpose, we can associate to the VRH the Empirical Cumulative
Density Function (ECDF ) of a variable r̃k calculated for each forecasted
precipitation event k = 1, . . . , Nev and defined as:



52 Precipitation Downscaling Model Verification

0

1

observed

ensemble

0

1

observed

ensemble

1

observed

ensemble

i [mm h-1]

i [mm h-1]

i [mm h-1]

i
a
*

1
−

F
(i

) 
   

S
-- -

1
−

F
(i

) 
   

S
-- -

1
−

F
(i

) 
   

S
-- -

S
max

S
min

S
max

S
min

S
max

S
min

= 0

1

observed

ensemble

1

observed

ensemble

0

1

observed

ensemble

1
−

F
(i

) 
   

S
-- -

1
−

F
(i

) 
   

S
-- -

1
−

F
(i

) 
   

S
-- -

i [mm h-1]

i [mm h-1]

i [mm h-1]

S
max

= 0

S
min 

= 0

S
max

S
min

= 0

S
max

S
min

S
obs

> 0

S
obs

> 0

S
obs

> 0

i
a
*

i
a
*

i
b

*

i
b

*

i
b

*

S
obs

= 0

S
obs

= 0

S
obs

= 0

c)

b)

a) d)

e)

f )

Figure 4.2: Determination of the position p of the observed exceedance
probability Sobs within the vector S containing Sobs and the ensemble
exceedance probabilities Sj (j = 1, . . . , Nens) sorted in increasing order. Each
panel shows the Empirical Survival Function (ESF ) of the same observed
event (in black) forecasted by different downscaling models (whose ESFs
are plotted in gray). Panels are divided into two groups: (i) in panels a,
b and c, Sobs > 0 and p is always unequivocally assigned; (ii) in panels
d, e and f, Sobs = 0. If a number N0 ≥ 1 of Sj are also equal to 0, p is
randomly determined among the integers 1, . . . , (N0 + 1) (panels d and e,
where N0 = Nens and 1 ≤ N0 < Nens respectively). If N0 = 0 (panel f),
p = 1.
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r̃k =





0 Sobs(i
∗) > 0

or(
Sobs(i

∗) = 0 and N0 = 0
)

(N0 + 1)− 0.5

Nens + 1
Sobs(i

∗) = 0 and 1 ≤ N0 ≤ Nens

(4.3)

The variable r̃k is set to 0 when the rank is determined in unequivocal way:
this happens either if Sobs(i

∗) > 0 irrespective of the values of the ensemble
members (Fig. 4.2a, b and c) or if Sobs(i

∗) = 0 and all the exceedance
probabilities of the ensemble members are non zero, thus N0 = 0 (Fig. 4.2f).

On the contrary, r̃k assumes a positive value when Sobs(i
∗) = 0 and

there is at least one ensemble member with a zero exceedance probability
of precipitation (1 ≤ N0 ≤ Nens), so that a random assignment occurs (Fig.
4.2d and e). In this case, r̃k is defined as the cumulative frequency of the
(N0 + 1)th- zero value in vector S, since, accordingly to equation (4.2), the
normalized rank r will be randomly determined within the interval (0, r̃k).
As r̃k increases, the interval (0, r̃k) becomes wider until it reaches the whole
range (0, 1).

The ECDF of the sample r̃1, r̃2, . . . , r̃Nev provides a graphical summary
of how the normalized rank has been assigned on the entire set of Nev

precipitation events. Fig. 4.3 shows how the ECDFs of r̃k may change
as the precipitation threshold i∗ increases. For lower values of i∗, no random
assignment occurs, thus all the r̃k are equal to 0 and the ECDF represents an
impulse concentrated on 0 (case A). As i∗ increases, part of the ranks may be
randomly assigned and the ECDF contains some of the r̃k values equal to 0
and the others greater than 0 (cases B and C). In particular, in ECDF B, the
normalized ranks are randomly assigned in intervals (0, r̃k) with r̃k < 1, while
in ECDF C there are also some r̃k = 1, meaning that the corresponding ranks
are randomly assigned in the whole interval (0, 1). If i∗ further increases, all
the Nev ranks may be randomly determined and the corresponding r̃k result
always greater than 0 (cases D and E). ECDF D refers to the situation where
part of the ranks are randomly assigned in intervals (0, r̃k) with r̃k < 1 and
part in the whole interval (0, 1), while ECDF E represents the extreme case
where all the ranks are randomly determined in the interval (0, 1). Although
the VRH is populated only by uniformly distributed random values, this last
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Figure 4.3: Possible behaviors of the Empirical Cumulative Density Function
of the variable r̃k (k = 1, . . . , Nev) calculated applying the verification
procedure for increasing precipitation thresholds i∗ (from left to right).

case indicates that precipitation values at the fine scale greater than or equal
to the threshold i∗ do not represent critical situation (i.e. a zero exceedance
probability) for the available observations and ensemble members.

The use of ECDFs of r̃k permits us to evaluate how much the shape of
the histogram depends on real model forecast characteristics and how much
it is artificially affected by random assignment. VRHs and ECDFs of r̃k

obtained for the different thresholds should be interpreted together to better
detect forecast deficiencies, if any. This aspect is illustrated in the following
section, where the verification procedure is applied and tested on synthetic
precipitation fields generated by the STRAIN multifractal model.

4.2 Numerical Hindcast Experiments

The verification procedure is applied on three series of experiments based
on space-time rainfall events generated by the STRAIN model under
controlled conditions, with the aim to better understand and correctly
interpret the verification results and to evaluate its capability in detecting
downscaling model deficiencies when different calibration approaches are
adopted. Hindcast experiments are carried out in the following way. First, we
generate a set of Nev precipitation events applying the STRAIN model with
selected values of the c and β parameters. Although synthetically generated,
the Nev events are assumed as ’observed events’ and then used to estimate
STRAIN parameters to be adopted in the hindcasting phase.

In Experiment 1 (Constant Parameters), the ’observed events’ are
generated with the constant parameters c0 and β0 with the aim of
analyzing the influence of intrinsic model sampling variability in parameters
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estimation. In Experiment 2 (Single Calibration Relation), ’observed events’
are generated from a calibration relation between STRAIN parameters and
precipitation rate at the coarse scale, like those presented in previous works
and previously mentioned in the paper. Finally, Experiment 3 (Multiple
Calibration Relations) is built by mixing ’observed events’ coming from two
different calibration relations, with the aim to mimic the case of events
originated from different meteorological conditions.

4.2.1 Experiment 1: Constant Parameters

Experiment 1 allows us to show how the ensemble downscaled fields can be
affected by overdispersion if intrinsic model sampling variability is not taken
into account in parameters estimation.

A set of Nev = 400 high resolution precipitation events are generated
through a Monte Carlo approach by downscaling a coarse precipitation rate
of 1 mm h−1 over 5 downscaling levels with fixed values of STRAIN model
parameters c0 = 0.7 and β0 = e−1. Thus, each event is drawn from the same
distribution and the downscaling levels vary, for example, from a coarse scale
with L = 128 km and T = 5 h and 20 min to a fine scale with λ = 4 km
and τ = 10 min (Deidda et al. 2004). These 400 events are assumed to be
the set of ’observed events’. Subsequently, we do not assume any knowledge
of the method used to generate these ’observed events’ and we use them
first to calibrate STRAIN parameters for the hindcasting phase and then as
verification for the ensemble hindcasting members.

The STRAIN parameters are estimated for each ’observed event’ in the
following way. First, we compute partition functions Sq(λ) with equation
(2.3) for different λ scales and q moments. Secondly, sample multifractal
exponents ζ(q) are estimated by the slope of the linear regression between
log Sq(λ) and log λ, for each moment q. Finally, the c parameter is estimated
by fitting equation (2.4) to sample multifractal exponents ζ(q), while the β
parameter is kept constant at e−1 (Deidda 2000, Deidda et al. 2004).

Let cest
k be the estimate of the c parameter on the k-th ’observed event’.

Because of sampling variability, the 400 different cest
k estimates result in a

Gaussian-like distribution around a mean value cmean close to c0 (i.e. a
quasi-unbiased estimator).

In order to show the importance of accounting for intrinsic model
sampling variability, two approaches called ’event-based’ and ’mean-based’
calibration modes for determining the downscaling parameters are compared.
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The ’event-based’ calibration mode is derived from the notion that c should
be estimated from the same ’observed event’, since, at first sight, this appears
the most obvious approach to simulate each event. As a result, for each event
k, the parameter cest

k is used to generate the ensemble members. Note that
this calibration mode can only be used for hindcasts. If a forecast is required,
cest
k is unknown and the parameter should be determined from past events. In

contrast, the ’mean-based’ calibration mode is based on the average behavior
of the entire set of events using the same parameter cmean and thus it is
suitable for forecasts.

In both cases, Nens = 100 ensemble members are simulated to hindcast
each ’observed event’ (total of 40,000 synthetic fields for each approach) and
VRHs are constructed for thresholds 10, 15, 20, 25, 30, and 35 mm h−1

(selected to span the potential range of ECDFs of r̃k behavior). Results are
shown in Fig. 4.4 and 4.5 for the ’event-based’ and ’mean-based’ calibration
modes, respectively. Each panel contains the VRH for a precipitation
threshold, plotted using 10 bins to group the 400 ranks, and the respective
ECDF of r̃k. To distinguish between true deviations from uniformity and
sampling variations, the 5%, 25%, 50%, 75% and 95% quantiles of a uniform
distribution are plotted using horizontal lines.

The following results can be summarized for the ’event-based’ calibration
mode (Fig. 4.4). For the lowest threshold (i∗ = 10 mm h−1), the ECDF of r̃k

is concentrated on zero implying ranks have been unequivocally determined,
while the histogram is more populated in the middle ranks (i.e. overdispersed
forecasts). As the precipitation threshold increases (i∗ = 15, 20 mm h−1),
the number of non-zero r̃k values increases leading to random assignments
in the interval (0, r̃k), where 0 < r̃k ≤ 1. The small ranks in the histograms
are artificially more populated, but overdispersion is still visible. When i∗

further increases, (i∗ = 25, 30 mm h−1), both the number and magnitude of
non-zero r̃k values increase so that several ranks are randomly assigned and
the interval length (0, r̃k) becomes wider. This implies that even the high
ranks are randomly populated. As extreme case, when the i∗ is higher than
observed and synthetic precipitation (i∗ = 35 mm h−1), the standardized
ranks are all randomly assigned in the interval (0, 1) leading to a uniform
histogram.

In Fig. 4.5 results are shown for the verification of ensemble members
generated with the ’mean-based’ calibration mode. In this case, the VRHs
are uniform despite the expected sampling variability, whatever the value of
the precipitation threshold i∗. This means that the consistency condition is
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respected.
The effects of overdispersion and uniformity in the histograms resulting

respectively from the ’event-based’ and ’mean-based’ calibration modes can
be explained as follows. The consistency condition requires that, for every
predicted event, observations and forecast ensemble behave like random
draws from the same distribution. This requirements is satisfied in the
’mean-based’ mode because ensemble members are generated using the
parameter cmean which is close to c0 (used to generate the ’observed events’).
In this situation, the ESFs of the ’observed events’ are placed equally likely
as the ensemble hindcasts, leading to uniform VRHs for the exceedance
probabilities.

When ensemble members are generated using the parameter cest
k

(’event-based’ calibration mode), the consistency condition is not respected
because ensemble and observations belong to different distributions and an
effect of overdispersion is produced. This effect is explained by a ’centering’
of the variability around the event k. Thus, the ESF of the observed event k
is placed in the center of the ensemble hindcast ESF s and the probabilities
of exceedance occupy intermediate positions. For this reason, even if we were
able to know the value of cest

k in a forecasting framework, results show that
the best choice is to generate the ensemble members using cmean.

In conclusion, we highlight the importance of interpreting the VRHs
looking also to the ECDF of r̃k. In fact, in the ’event-based’ hindcasts, when
the lower thresholds are analyzed, the histogram shape is not artificially
affected (most of r̃k = 0) and overdispersion can be detected. As
the threshold increases, the histograms shape becomes more uniform and
overdispersion cannot be easily detected. In such cases, the ECDF of r̃k

informs us that the uniform shape has been artificially caused by random
assignments of the rank.

4.2.2 Experiment 2: Single Calibration Relation

Experiment 2 is aimed at showing how calibration relations between model
parameters and a meteorological observable at coarse scale can take into
account model sampling variability leading to consistent ensemble members.

In this case, we generate a set of ’observed events’ with different
intermittency properties, adopting the calibration relation between STRAIN
parameter c and precipitation rate at the coarse scale R provided by equation
(2.5). For purpose of this study, we select a calibration relation found to be
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Figure 4.4: Experiment 1, ’event-based’ calibration mode. Verification Rank
Histograms of exceedance probabilities are built for i∗ = 10, 15, 20, 25,
30 and 35 mm h−1 and plotted using Nbins = 10 bins to group the 400
ranks. The horizontal lines represent the 5%, 25%, 50%, 75% and 95%
confidence intervals of a uniform distribution. In each panel the ECDF of
r̃k is associated to each rank histogram. The histograms corresponding to
the lower thresholds (panels a, b and c), where the ECDF of r̃k reveals
that most part of the ranks has been unequivocally determined, shows an
effect of overdispersion. When i∗ increases (panels d and e), the number
and magnitude of non-zero r̃k values increase and the histograms become
artificially more uniform. As extreme case, when the precipitation threshold
is higher than observed and ensemble precipitation values (panel f), all the
ranks are always randomly assigned in the interval (0, 1) and the histogram
is drawn from a uniform distribution.
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Figure 4.5: Experiment 1, ’mean-based’ calibration mode. All the histograms
result uniform, whatever the value of the precipitation threshold i∗. As a
result, ensemble consistency is achieved.
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Figure 4.6: Relation between STRAIN parameter c and coarse rain rate
R. The dashed black line represents the calibration relation c = c(R), dots
represent the parameters cest

k estimated on each event and the solid black line
is the calibration relation c = ccal(R).

valid by Deidda et al. (2004), where c∞ = 1.1, a = 0.85 and γ = 1.35.
Parameter β was found to be fairly constant at e−1. This calibration relation
c = c(R) is plotted in Fig. 4.6 through a dashed black line. In this
experiment, the set of ’observed events’ is generated using the calibration
relation, in the following way. First, 400 precipitation rates at the coarse
scale Rk (k = 1, . . . , 400) are randomly drawn, in an interval included
between 0.25 and 5 mm h−1, from an exponential distribution fitted to the R
values analyzed by Deidda et al. (2004) to mimic the occurrence of observed
large-scale events. Then, the set of parameters ck = c(Rk) is calculated using
equation (2.5) and used to generate 400 high resolution precipitation events
through STRAIN model with 5 downscaling levels.

As Experiment 1, given the ’observed events’, we attempt to calibrate
STRAIN parameters that will be used in the hindcasting phase, assuming no
knowledge about their origin. For this purpose, parameter c is estimated on
each observed event k. In Fig. 4.6, the 400 cest

k estimates are plotted versus
the Rk of the correspondent k-th event through dots. Because of intrinsic
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model sampling variability, each cest
k estimated on the event k is different

from the parameter ck = c(Rk) used for the generation of the event k itself.
In particular, cest

k estimates result in a Gaussian-like distribution around ck.
The set of 400 cest

k is then used to fit equation (2.5), obtaining the parameters
c∞ = 1.1, a = 0.82 and γ = 1.29. This new calibration relation, c = ccal(R),
plotted in Fig. 4.6 with a black solid line, is very close to the calibration
relationship c = c(R) used for the generation of the ’observed events’.

In Experiment 2, hindcasts of the 400 observations are carried out
according to the ’event-based’ and ’mean-based’ calibration modes. In
addition, we test the ’functional-based’ calibration mode, where the ensemble
members hindcasting each event k are generated using the parameter value
ccal
k = ccal(Rk). In all modes, 100 ensemble members are generated to

hindcast each observation and VRHs of the exceedance probabilities are then
constructed for precipitation thresholds i∗ = 50, 75, 100, 150, 250 and 500
mm h−1 (selected to obtain all the possible ECDF of r̃k behaviors). Results
are shown in Fig. 4.7, 4.8 and 4.9 for the ’event-based’, ’mean-based’ and
’functional-based’ calibration modes, respectively.

Results for the ’event-based’ calibration mode (Fig. 4.7) display similar
behavior as detected in Experiment 1 (overdispersion), due to the same
’centering’ effect. In the ’mean-based’ calibration mode (Fig. 4.8), the
histograms for the lower thresholds (i∗= 50, 75 and 100 mm h−1) are more
populated in the lowest and in the highest ranks (U-shaped), revealing an
effect of forecast underdispersion. The histograms shape for the higher
thresholds (i∗ = 150, 250 and 500 mm h−1) is affected by randomly assigned
ranks. Finally, the ’functional-based’ calibration mode results (Fig. 4.9)
display uniform histogram shape for every precipitation thresholds and the
consistency condition is respected.

The effect of underdispersion for the ’mean-based’ calibration mode
implies that ensemble members are more frequently close to each other and
distant from the observation. Indeed, the sampling variability of STRAIN
model with a single parameter cmean is not able to fully explain the variability
of the 400 ’observed events’. As a result, the ESF of several ’observed events’
will result far away from the corresponding set of ensemble hindcasting ESF s.

In contrast, when the parameter ccal
k is used to generate the ensemble

members (’functional-based’ calibration mode), the consistency condition is
achieved because observations and ensemble belong to the same distribution.
In fact, the new calibration relation c = ccal(R) is very close to c = c(R) used
to generate the ’observed events’, implying ccal

k ≈ ck, for each k-th event.
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Figure 4.7: Experiment 2, ’event-based’ calibration mode. In the histograms
correspondent to the lower precipitation thresholds (panels a, b and c), an
effect of overdispersion is detected, while, for the higher thresholds (panels d,
e and f), the ECDFs of r̃k reveal that most of the ranks have been randomly
determined and thus the histograms are artificially uniform.

In summary, this synthetic experiment was set to mimic the observed
link between downscaling model parameters and coarse scale rainfall rates.
In this case, the ’functional-based’ calibration mode was the only one able to
capture downscaling model sampling variability and to generate consistent
ensemble members.

4.2.3 Experiment 3: Multiple Calibration Relations

Precipitation events can have different physical origins (e.g. convective or
stratiform) and, in principle, one could expect that different calibration
relations should be determined. Therefore, Experiment 3 was designed to
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Figure 4.8: Experiment 2, ’mean-based’ calibration mode. The histograms
corresponding to the lower thresholds (panels a, b and c), where the ECDF
of r̃k reveals that most of the ranks has been unequivocally determined, show
an effect of underdispersion. As i∗ increases the shape of the histograms are
artificially more uniform (panels d, e and f).
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Figure 4.9: Experiment 2, ’functional-based’ calibration mode. The
histograms are uniform, for all precipitation thresholds i∗. As a result,
ensemble consistency is achieved.
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analyze the working of the VRH in this scenario. The set of ’observed
events’ is generated starting from two different calibration relations c =
c1(R) and c = c2(R), both described by equation (2.5) with parameters
c∞ = 1.13, a = 0.88, γ = 1.49, and c∞ = 0.90, a = 0.55, γ = 1.00
(Fig. 4.10). We selected these calibration relations to mimic different
precipitation mechanisms. However, this selection is used only to explain
the potential impact of multiple relationships and the values selected for c∞,
a, and γ are not representative of real climatologies as studies investigating
this phenomenon have not been yet conducted. A total of 400 ’observed
events’ is generated using STRAIN model with 5 downscaling levels starting
from 400 precipitation rates at the coarse scale Rk drawn by the same
exponential distribution simulating the large-scale events occurrence adopted
in Experiment 2. The set of 400 parameters c is here determined by
introducing 200 Rk values in calibration relationship c = c1(R) and the other
200 Rk in calibration relationship c = c2(R).

Assuming a no a-priori knowledge of the method used to generate the
set of ’observed events’, we then use these events to calibrate STRAIN
parameters for the subsequent hindcasting phase, adopting the ’event-based’,
’mean-based’ and ’functional-based’ calibration modes.

In the ’event-based’ calibration mode, we adopt the parameters cest
k

estimated in each event k, to generate the set of ensemble hindcasts. The
values cest

k are plotted versus Rk in Fig. 4.10 using circles and asterisks for
events generated by relations c = c1(R) and c = c2(R). In the ’mean-based’
calibration mode, each ’observed event’ is hindcasted using the mean value
cmean of the 400 cest

k estimates. In the ’functional-based’ calibration mode, we
interpret the behavior of the estimates cest

k with respect to R by estimating
only a single calibration relationship c = ccal(R), which ignores differences
in precipitation type. This relation is then used to determine the set of 400
parameters ccal

k = ccal(Rk) for the generation of the ensemble members (solid
line in Fig. 4.10).

For each calibration mode, 100 ensemble members are produced to
hindcast each observation and VRHs of the exceedance probabilities are
constructed for the same precipitation thresholds tested in Experiment 2.
Results of the verification procedure for the ’event-based’ and ’mean-based’
calibration modes (not shown) are very similar to those obtained in the
second experiment.

Results of the ’functional-based’ are shown in Fig. 4.11. Histograms for
low i∗, whose shape is not affected by random assignment of the ranks, are
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Figure 4.10: Variation in calibration relations with precipitation type.
Dashed and dashed-dotted lines represent c = c1(R) and c = c2(R) used to
generate 400 ’observed events’ (200 events for each relation). Parameters cest

k

are plotted with circles and asterisks if the correspondent ’observed events’
come from c = c1(R) (type 1 events) and c = c2(R) (type 2 events). The
solid black line represents the calibration relation c = ccal(R), which ignores
differences in precipitation type.
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Figure 4.11: Experiment 3, ’functional-based’ calibration mode. Histograms
corresponding to the lower thresholds (panels a, b and c), where the ECDF
of r̃k reveals that most part of the ranks has been unequivocally determined,
show an effect of underdispersion. As i∗ increases the shape of the histograms
are artificially more uniform (panels d, e and f).

more populated in the lowest and the highest ranks (U-shaped), revealing an
effect of underdispersion. In particular, the ’observed events’ from calibration
relations c = c1(R) and c = c2(R) cause a population mainly of high or low
ranks, since the observed ESF is placed far away from the ensemble ESFs.
Therefore, a downscaling model adopting the ’functional-based’ calibration
mode based on a single relation, is not able to fully interpret the proper
variability of events drawn by different calibration relations.

In the case that different precipitation mechanisms lead to different
calibration relations, ensemble consistency should be reached by classifying
the available ’observed events’ according to their physical origin (e.g.
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stratiform or convective or on the basis of the synoptic pattern), and then by
estimating different calibration relations able to simulate the variability of
each family of events. Each ’observed event’ should be then forecasted using
the storm-dependent calibration relation.

4.3 Discussion and Conclusions

A verification method for ensemble precipitation fields generated by
downscaling models has been presented. The method is based on the VRH
and tests consistency of the exceedance probability of a fixed precipitation
threshold i∗. Once i∗ has been fixed, the exceedance probabilities of ensemble
members and observation are calculated for each event, the rank of the
observation is tabulated and the VRH is built. For high values of i∗, several
ranks may be randomly assigned affecting the shape of the VRH. Therefore,
a graphical method accounting for random assignments of the rank has been
also developed.

The verification procedure has been applied on three series of numerical
experiments, using the STRAIN downscaling model, with the aims of (i)
testing how the verification procedure works and (ii) evaluating downscaling
model deficiencies when different calibration modes are adopted to estimate
model parameters. The analysis of the results of the three experiments permit
us to draw the following conclusions:

1. If we consider a hindcast framework and we generate the ensemble
members adopting the parameter cest

k estimated on the event k to be
hindcasted (at a fist sight, the best possible solution), the model returns
overdispersed forecasts. This is due to the fact that model sampling
variability is not accounted for in parameter calibration producing a
centering of ensemble members around the observation.

2. The intrinsic variability of downscaling model when a single parameter
value cmean (averaged of the estimates cest

k ) is used, may not be able to
capture the variability of observed events and underdispersed forecasts
are produced.

3. The use of a calibration relation linking model parameter with
meteorological observable at coarse scale may allow model sampling
variability to be taken into account leading to consistent members.
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4. When precipitation events depend on different physical origins (i.e.
convective or stratiform) or are generated by different synoptic
conditions, a single calibration relation may not be able to explain
the variability of the entire set of events and thus may return
underdispersed forecasts. In order to reach consistency, in such a
situation, it would be necessary first to classify the events according to
their physical origin and then to estimate storm-dependent calibration
relations.
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Chapter 5

Uncertainty Propagation Into
Hydrological Response

In chapter 4 we showed how downscaling models can be used to generate
consistent ensemble precipitation forecasts through calibration relations
between model parameters and coarse meteorological observable. We
also showed that if other calibration modes are adopted to select model
parameters, overdispersed or underdispersed forecasts are instead produced.
In this chapter the STRAIN downscaling model is coupled with the tRIBS
distributed hydrological model to analyze how uncertainty and possible
deficiencies of downscaled precipitation fields affects hydrological response
and performances of hydrometeorological forecasting systems.

Given the complexity and high non-linearity of the processes involved,
the study has been focused only on the uncertainty caused by precipitation
predictions, while all the other sources of uncertainty of the forecast system,
such as coarse precipitation uncertainty, basin initial state and hydrological
model parameterization and structure, have not been taken into account.

Hindcast experiments have been carried out in controlled conditions, with
the same philosophy adopted in chapter 4, applying the hydrometeorological
system described in chapter 2 over the Baron Fork basin (Oklahoma, USA), a
sub-basin of the Arkansas Red River basin (Fig. 5.1). Sets of spatiotemporal
precipitation fields covering several summer periods have been first generated
through the STRAIN downscaling model with selected values of parameters
c and β (i.e. known statistical and intermittency properties). These fields
have been assumed as ’observed’ precipitation input and used to force
the tRIBS model. The resulting hydrographs have been considered in
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Figure 5.1: Location of the study basin Baron Fork. Left panel: Baron Fork
basin position in relation to the Arkansas Red River basin. Right panel:
Baron Fork basin boundaries with the two nested sub-basins Peacheater
Creek at Christie and Baron Fork at Dutch Mills boundaries, including
stream network, U. S. Geological Survey streamflow gages and Westville
weather station.

turn as ground-truth and utilized for the hydrological verification phase.
Subsequently, once the ’observed’ precipitation and streamflow database have
been built, performances of the forecasting system have been verified in
several hydrometeorological events by forcing the tRIBS model with ensemble
hindcasts of consistent, overdispersed and underdispersed precipitation fields.
To test if and how the hydrological response is affected, an event-based
verification procedure for ensemble hydrographs based on the Verification
Rank Histogram (VRH) is proposed and applied.

The chapter is organized as follows. Section 5.1 illustrates the study basin
and how the ’observed’ precipitation and streamflow database have been
generated. In section 5.2, the verification method for ensemble streamflow
is illustrated. Hindcast experiments are described in section 5.3, while
discussion of results is presented in section 5.4.
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5.1 Study Area and ’Observed’ Database

Generation

5.1.1 Study Basin and Spatial Attributes
Representation

The target basin of the study is Baron Fork at Eldon (Oklahoma, USA). Basic
topographic and hydrologic characteristics for this catchment and two nested
sub-basins Peacheater Creek at Christie and Baron Fork at Dutch Mills,
monitored by United States Geological Survey (USGS), are summarized in
Table 5.1, based on Slack et al. (2001), USGS streamflow, and USGS DEM
data.

Basin/USGS gauge # A H/CvH L SL SA P Q
[km2] [m]/[-] [km] [m km−1] [m km−1] [mm] [mm cm−1]

Baron Fork at Eldon (USGS
0719700)

808.39 346/0.462 65.2 4.35 15.3 1130 371/9.43

Sub-basin Peacheater Creek
at Christie (USGS 07196973)

65.06 328/0.352 18.1 6.74 11.7 368/0.75

Sub-basin Baron
Fork at Dutch Mills (USGS
07196900)

106.91 408/0.559 17.8 8.26 20.8 388/1.29

Table 5.1: Basic topographic and hydrologic characteristics of the test basin
Baron Fork and of two nested sub-basins monitored by USGS. Symbols:
A, basin drainage area; H, basin mean elevation ([m] above NGVD29);
CvH , coefficient of variation of elevation as a ratio of standard deviation
to the difference between the mean and minimum elevation of the basin; L,
maximum distance of channel flow; SL, average slope of the longest channel;
SA, average slope of channel drainage network; P , mean annual precipitation;
Q, mean annual flow. From Ivanov et al. (2004b).

The terrain of Baron Fork catchment is characterized by gently rolling
relief at the basin headwaters and quite rugged terrain in its lower areas.
The watershed has significant vegetation cover: about 52% of the area is
occupied by deciduous and evergreen forests, 46% is occupied by croplands
and orchards. The surface soil texture is primarily silt loam (94%) and fine
sandy loam (6%).

Land-surface characteristics (topography, landuse/ vegetation and soils)
describing the interior watershed structure, has been represented in tRIBS
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model computational domain through an irregular spatial discretization
based on TINs (see also section 2.3.1). Topography for the test basin was
derived from USGS 30 m DEM (Fig. 5.2a) using the hydrographic TIN
procedure described in Vivoni et al. (2004). The approach provides high
resolution in areas with significant elevation gradient. River floodplains,
resolved at a high detail, were also integrated into the TIN terrain models.
Through the TIN implementation, the quantity of computational elements
was significantly reduced. Compared to the 30 m resolution DEM, the
amount of computational elements was 7.22% (64,836 nodes) of the original
number of grid cells and the equivalent grid cell sizes, i.e. the pixel size in the
grids with the same number of computational elements, is correspondingly
112 m (Fig 5.2b). A comparative analysis of the TIN accuracy relative to
the highest DEM available was conducted by Vivoni et al. (2004).

Information about landuse, vegetation cover, and soils is required for
proper parameterization of energy and water fluxes at the land-surface.
Spatial heterogeneity of these properties in tRIBS is accounted for by
assigning the relevant landuse/soil texture type to the nodes of the
computational domain. The USGS Land Use and Land Cover (LULC)
data were used in the current study to represent landuse and vegetation
cover (Fig. 5.3). Soil Conservation Service (SCS) State Soil Geographic
Database (STATSGO) soils provides soil characteristic for all U.S. territory.
Nevertheless, since the STATSGO data showed essentially homogeneous soil
texture types in the study basin, spatial non-uniformity of soil hydraulic
properties that can affect the infiltration regime was obtained following an
alternative approach. Vegetation and landuse classes were combined to
define grassy, forested, and urbanized sites that were used as a surrogate
representation of soils spatial variability (Ivanov et al. 2004b).

5.1.2 Generation of ’Observed’ Precipitation Database

As first step of the study, a database of ’observed’ spatiotemporal
precipitation series with know statistical properties has been synthetically
generated and used as meteorological forcing for the hydrological model.
The STRAIN downscaling model (see section 2.2) has been utilized for
this purpose, starting from precipitation values at the coarse scale obtained
by radar estimates provided by NWS Next-Generation Weather Radar
(NEXRAD) system of the Arkansas Red River Forecasting Center (ABRFC)
during 9 years (1997-2005). Generation of ’observed’ data is based on some
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Figure 5.2: Panel a: U.S. Geological Survey 30-m digital elevation model
(DEM) for Baron Fork basin. Panel b: Terrain representation using a TIN
derived from the 30-m DEM shown in panel a, where the higher triangle
density corresponds to more rugged topography (Vivoni et al. 2004).
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Figure 5.3: Spatial distribution of land cover within the basin (deciduous,
evergreen and mixed forest, croplands, and urban).

preliminary hypotheses. First of all, the existence of scale invariance laws
has been assumed between the coarse scales L = 256 km, T = 16 h and the
fine scales λ = 4 km, τ = 15′, implying that temporal and spatial scales have
been homogeneized by a velocity parameter U = 16 km h−1. Then, it has
been chosen to focus the analysis only on summer period (June, July and
August) in order to simulate events that have been likely caused by similar
meteorological signatures. Thus, it has been assumed that a single calibration
relation c = c(R) exists between coarse precipitation rate R and STRAIN
parameter c, provided by equation 2.5 with parameters c∞ = 0.675, a = 0.907
and γ = 0.764. These values were estimated in a previous application on
radar data by Deidda (2000) for events in the same hypothesized range of
scales. Parameter β was kept constant to e−1.

We highlight that the assumptions mentioned above have not been verified
through real data collected in this location (also because no radar data at
15’ temporal resolution were available), but that they have been made only
with the aim of creating a precipitation database with known intermittency
and statistical properties, allowing uncertainty evaluation within the forecast
system to be better controlled. Nevertheless, we remember that Deidda
(2000) and Deidda et al. (2004) found the presence of scale invariance laws
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in the same and in a very similar range of scales on real radar data of different
locations.

Fig. 5.4 illustrates the database generation steps:

1. An area of L = 256 km × L = 256 km centered on Baron Fork
basin (in Universal Transverse Mercator, UTM, coordinate system)
has been first identified (panel a). Subsequently each summer of years
l = 1997, . . . , 2005 has been divided into consecutive T =16-hour long
events with a total of 138 events per summer starting from June, 1st at
00:00 UTC and ending at September 1st at 00:00 UTC. The observed
precipitation rates Ri,l (i = 1, . . . , 138) at the coarse scale L×L×T have
been then extracted for each event from NEXRAD database of ABRFC.
Processes of weather radar data consisted of coordinate transformations
from the Hydrologic Rainfall Analysis Project (HRAP) to the UTM
coordinate system and selection of data corresponding to the geographic
extent of the spatial coarse scale L× L.

2. For each 16-hour long event i in year l, STRAIN parameter ci,l = c(Ri,l)
has been determined by means of the calibration relation 2.5 and
utilized to generate one synthetic field at resolution 4 km × 4 km ×
15’ (panel b). No downscaling has been performed if Ri,l = 0 and zero
precipitation at the finest resolution has been assumed throughout the
16 hours.

3. As a result, for each year l, the ’observed’ database has been built by
concatenating the downscaled fields coming from R1,l, R2,l, . . . R138,l.
For example, panel c shows the spatial fields at resolution of 4 km
of the first two and the last 15’ time intervals for the 16-hour long
event starting in June 21st 2000 at 00:00 UTC (i.e. the rainfall fields
downscaled from R31,2000).

To further illustrate the generation procedure, Fig. 5.5 shows, in the
top panel, the time series of the Ri,2000 coarse precipitation rates (time step
∆t = 16 hours), and, in the bottom panel, the time series of the Mean Areal
Precipitation (MAP) over Baron Fork basin for the correspondent downscaled
fields (∆t = 15′). A zoom on one of the 16-hour long event is also shown in
the right part of the figure for both the coarse and the downscaled rainfall.

As last point of precipitation database generation through STRAIN
model, the ’observed’ spatiotemporal fields have been converted as ASCII
grid (ESRI, 1992) to be inputted to tRIBS model.
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Figure 5.4: Generation of ’observed’ precipitation database. Panel a:
NEXRAD radar estimates are used to obtain precipitation values Ri,l

averaged in the shaded area of 256 km × 256 km over Baron Fork basin and
along each i = 1, . . . , 138 consecutive 16-hour long interval covering summers
of years l = 1997, . . . , 2005. Panel b: parameter ci,l = c(Ri,l) is obtained
using calibration relation 2.5 with parameters c∞ = 0.675, a = 0.907 and
γ = 0.764. Panel c: example of precipitation spatial fields at high resolution
(4 km, 15’) obtained by downscaling R31,2000.
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Figure 5.5: Example of ’observed’ precipitation database for summer 2000.
Top panel: time series of Ri,2000 (i = 1, . . . , 138). Bottom panel: time
series of the Mean Areal Precipitation (MAP) over Baron Fork basin
calculated from each precipitation fields at high resolution downscaled from
the correspondent coarse value Ri,2000.

5.1.3 Generation of ’Observed’ Streamflow Database

The database of ’observed’ precipitation grids at resolution 4 km, 15’
of summers 1997-2005 have been used to force the tRIBS distributed
hydrological model, which returned streamflow values assumed as ground
truth and then used for verification in the subsequent hindcast phase.

Since the tRIBS model has the capability of reproducing multiple flood
forecasts across a range of nested basin scales, hydrographs have been
simulated at the outlet and at 14 nested sub-basins ranging in area from 0.78
to 808 km2. Characteristics of nested sub-basins and outlet are summarized
in Table 5.2 while their location is shown in Fig. 5.6. These interior locations
have been selected basing on a study by Vivoni et al. (2006), who evaluated
the influence of catchment scale and forecast lead time on the predictability
of flood events through the combined use of radar nowcasting and the tRIBS
distributed hydrological model. One of the goals of this study is therefore to
further investigate and deepen results found by Vivoni et al. (2006).

Again, to preserve a better control on the simulations, simplifying
assumptions have been made on the initial condition and the physical and
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Figure 5.6: Boundaries and outlets of Baron Fork basin and the 14 nested
sub-basins listed in Table 5.2.

hydrological parameterization of the catchment. In particular, hydrological
model parameters have been considered always fixed for all the summers
and the same initial ground water table position has been assumed at the
beginning of each summer. Model parameters (listed in Table 2.1) have been
selected according to baseline simulations for the Baron Fork basin over a
7-yr period (1993-2000) reported by Ivanov et al. (2004b). In addition, in
order to obtain reliable parameter values for the specific period of the year
here analyzed, a manual calibration experiment on summer 2000 has been
carried out using multiple-gauge observations at the outlet Eldon and at two
nested locations Peacheater Creek and Dutch Mills. Following the calibration
strategy suggested by Ivanov et al. (2004a), a nested calibration experiment
has been carried out forcing the model with NEXRAD precipitation data (4
km, 1h) and tuning model parameters of each sub-basin (e.g. soil, aquifer,
and channel properties) prior to calibrating the overall watershed response.
Only minor modifications have been made to the baseline calibrations.
Results of the calibration experiment, shown in Fig. 5.7, reveal good
model performances for the three stations. This provides confidence in the
distributed hydrological model as a numerical laboratory and its capability
for streamflow prediction in gauged basins. Performance at the gauged sites
is also sufficiently accurate to test the model capabilities in forecast mode at
ungauged sites in the watershed.
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Figure 5.7: An excerpt from the run of summer 2000 illustrating simulation
skills of the tRIBS model at the outlet Eldon and nested locations Peacheater
Creek and Dutch Mills after parameter calibration.
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A L S Dd Tc

Basin [km2] [km] [m km−1] [km−1] [h]
1 108.23 25.73 6.06 0.9895 5.78
2 1.41 2.59 34.01 0.8264 0.51
3 2.67 4.52 21.44 0.7701 0.93
4 12.14 8.06 14.94 0.8059 1.67
5 65.06 19.90 9.26 0.8293 4.03
6 610.60 50.33 6.81 0.8355 9.26
7 450.26 40.01 8.11 0.8352 7.25
8 365.25 35.03 9.09 0.8209 6.27
9 182.91 29.78 9.49 0.8230 5.44
10 106.91 18.64 13.41 0.8370 3.32
11 49.07 12.72 19.10 0.8692 2.16
12 21.18 9.03 24.92 0.8700 1.50
13 4.29 3.53 51.27 0.7720 0.55
14 0.78 1.33 112.77 0.3033 0.19

15 (outlet) 808.39 67.26 5.47 0.8630 12.59

Table 5.2: Baron Fork sub-basins characteristics: area (A), maximum
distance to the sub-basin outlet (L), relief ratio (S), drainage density (Dd);
time of concentration (Tc) from Kirpich (1940): Tc = 0.000325 L0.77 S0.385,
where units are L [m] and S [m m−1].

With the aim of preserving the real climatology of area and season,
hourly meteorological data: air and dew point temperature, cloudiness, wind
speed and atmospheric pressure collected by Westville station (Fig. 5.6)
belonging to the Oklahoma MESONET network, have been utilized in tRIBS
to compute the surface energy fluxes and evaporation potential.

Example of the hydrographs obtained forcing tRIBS model with
’observed’ precipitation are shown in Fig. 5.8 for summer 2000 at the
outlet and Peacheater Creek and Dutch Mills sub-basins. Comparison
among the calibrated hydrographs of Fig. 5.7 (the black ones) and the
’observed’ hydrographs of Fig. 5.8 reveals good agreement between their
shapes (apart for two missed peaks in Peacheater Creek). However, the
’observed’ streamflow values of Fig. 5.8 systematically underestimate the
correspondent calibrated hydrographs of Fig. 5.7. This is likely due to a
deficiency of the adopted calibration relation in reproducing intermittency of
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Figure 5.8: An excerpt from the run obtained forcing tRIBS with ’observed’
precipitation data (4 km, 15’) of summer 2000, for the outlet Eldon and
nested locations Peacheater Creek and Dutch Mills.

high-resolution precipitation fields.
Nevertheless, we highlight once again that generation of ’observed’

hydrographs was not made to simulate the USGS streamflow measures,
but with the only purpose of having more control while testing uncertainty
propagation in the hydrometeorological system.
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5.2 A Method to Verify Consistency of

Ensemble Streamflow

Before describing the numerical experiments carried out to evaluate
uncertainty propagation in a hydrometeorological system, a methodology
based on the VRH (illustrated in section 3.2) is proposed in this section to test
consistency of ensemble streamflow with respect to the observed hydrograph.
Although developed to test hydrometeorological forecasts, the verification
procedure has more general validity and may be used whenever ensemble
streamflows are produced. For example, it can be used to test consistency of
ensemble hydrographs simulated with the purpose of evaluating uncertainty
of hydrological model parameters or basin initial state.

The procedure is illustrated in Fig. 5.9. Suppose to know the time
series of duration Thydro for the observed and Nens ensemble streamflow.
The method requires first to fix a time interval Tver to identify the events
where ensemble and observed streamflow values will be postprocessed and
the rank of the observation will be calculated. Panel a shows the observed
time series of duration Thydro where Nev time intervals of duration Tver have
been selected.

Panel b shows observed and ensemble hydrographs within a generic
event k belonging to these Nev events of duration Tver. From each time
series, it is possible to extract a specific metric Qm such as the maximum
accumulated streamflow at different time durations. Specifically, Nens values
Qm

j (j = 1, . . . , Nens) of the metric are extracted from the ensemble members
and one, Qm

obs, from the observation.
Subsequently, the vector Qm

1 , . . . , Qm
Nens, Q

m
obs is sorted in increasing

order obtaining the vector Qm
(1), . . . , Q

m
(Nens+1) and the Empirical Cumulative

Distributive Function (ECDF) of this vector is built by means of Hazen
plotting position formula (panel c). If p is the position of Qm

obs in the sorted
vector, the rank rk of Qm

obs is given by p−0.5
Nens+1

.
The described procedure can be repeated for each event and the VRH

can be populated by Nev ranks. Consistency implies a uniform histogram;
otherwise, deficiencies may be detected.
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Figure 5.9: Ensemble streamflow verification method. Panel a shows a time
series of observed streamflow with duration Thydro and Nev time intervals
of length Tver selected throughout the series. Panel b shows observed and
Nens ensemble hydrographs for a generic event k of length Tver, from which
Nens metrics Qm

j and the observed Qm
obs are calculated. Panel c contains

the Empirical Cumulative Density Function of the vector Qm
(1), . . . , Q

m
(Nens+1)

returning the rank rk of Qm
obs.
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5.3 Evaluation of Uncertainty Propagation in

a Hydrometeorological System

The propagation of uncertainty and/or deficiencies of ensemble precipitation
fields into hydrological response has been tested by means of three hindcast
experiments. Each experiment consists of applying the hydrometeorological
system to produce ensemble streamflow hindcasts for Nev = 100 precipitation
events selected among the ’observed’ precipitation database. For each
event, starting from information at the coarse scale, ensemble precipitation
hindcasts are first generated by the STRAIN model according to a
specific calibration mode, producing either consistent or overdispersed or
underdispersed precipitation fields. These fields are then used in cascade
to force the tRIBS model and the resulting ensemble streamflows are
postprocessed together with the correspondent observation (furnished by the
’observed’ hydrographs database) using the verification procedure described
in the previous section.

5.3.1 Choice of Tver and Event-Based Experiments
Setup

Hindcast experiments have been setup according to an event-based approach
aimed at applying the ensemble streamflow verification method. As already
mentioned, the use of the verification procedure requires to preliminary fix
the duration Tver of the event where the rank is calculated and the time
length of each ensemble precipitation member used to force the hydrological
model. Provided that our purpose is to evaluate uncertainty propagation of
precipitation forecasts covering T hours, the value of Tver should be large
enough to contain the hydrological effect caused by rainfall events occurring
within T . In order to account for the effect of rainfall predicted in the last
hours of T , Tver should include the entire duration T of the downscaled event
plus the basin response time, which is the time-lag between precipitation
storm and streamflow occurrence for that basin. This last time interval is
related to the catchment scale and characteristics and can be empirically
estimated by the basin concentration time Tc (reported in Table 5.2 for the
outlet and 14 sub-basins here analyzed). As a consequence, Tver should be
at least equal to (T + Tc).
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It is worthy to notice that, in theory, the basin response time is not a
fixed parameter but it also depends on the initial state of the basin. In
general, for a wet basin, we expect smaller response time and viceversa in
case of a drier basin. In our study we do not account for variation of Tc with
the basin conditions and we have assumed a constant value approximated
with Tc. However, we acknowledge that specific analysis accounting for this
aspect should be carried in future works.

The value assumed by Tver determines the minimum duration required
to the simulated hydrograph. As a result, the time length of precipitation
ensemble used to force the hydrological model needs to be equal to or greater
than Tver. Since we test a wide range of basin scales with different Tc (ranging
from 0.2 to 12.6 hours), we should in principle identify different values for
Tver in each sub-basin and, consequently, different durations of the input
precipitation ensemble. However, the value of Tver in the case of the basin
outlet is surely greater than all the possible (T +Tc) of the nested sub-basins
and can be adopted as the only fixed value used to apply the verification
procedure for all the catchment scales.

Selection of Tver and of precipitation input duration used in our
experiments have been made considering two possible approaches. As a first
option, we could set Tver = (T + Tc) in the basin outlet and force the tRIBS
model with downscaled precipitation fields for the first T hours and then add
other Tc hours of zero rainfall (zero padding).

The second approach, that we preferred and adopted, is derived from
the following operative consideration aimed at utilizing all the available
information at the coarse scale provided by NWP models. Each prediction
furnished by these models has a forecast lead time, let say Tmeteo, which can
be larger than T . Starting from NWP model output, we can calculate the
mean precipitation value in the coarse spatial domain L×L km2 for a number
M of subsequent T -hour long periods, obtaining the values R1, R2, . . . , RM .
These values can be in turn separately downscaled and the resulting high
resolution precipitation fields can be concatenated covering a duration of
M × T hours. In our exercise, T = 16 and Tc = 12.59 hours for the Baron
Fork outlet, implying Tver ≥ 28 hours. For purpose of this study, every
ensemble precipitation member used as input for tRIBS has been built by
downscaling two consecutive coarse precipitation values and Tver has been set
equal to the entire duration of the precipitation forecast (i.e. Tver = 2T = 32
hours).

Fig. 5.10 illustrates the event-based approach adopted in the experiments.
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Figure 5.10: Setup of the event-based hydrological simulations. Panel a: the
tRIBS is forced with observed precipitation up to t∗, the time when coarse
scale information R1 and R2 are provided, and with two consecutive synthetic
precipitation fields downscaled from R1 and R2 using STRAIN parameters
c1 and c2. Panel b: ensemble and observed hydrographs in the interval Tver

used to calculate the rank of the observation according to the verification
procedure for ensemble streamflow.
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The tRIBS model is forced with ’observed’ precipitation up to t∗, the time
when coarse rainfall forecast (in our case, hindcast) is provided (panel a).
Subsequently, two consecutive precipitation values R1 and R2 at the coarse
scale are extracted, and the corresponding STRAIN model parameters c1 and
c2 are determined according to a specific calibration mode. Parameters c1

and c2 are used to downscale precipitation in the time intervals [t∗, t∗ + T ]
and [t∗ + T, t∗ + 2T ], respectively; finally, the two synthetic spatiotemporal
fields are concatenated. Ensemble rainfall fields of duration 2T , each made
of two T hour-long downscaled fields, are generated and used to force the
tRIBS model, which in turn produces the ensemble hydrographs shown in
panel b. Observed and ensemble streamflow values within Tver = 2T are then
used to apply the proposed verification procedure to test ensemble streamflow
consistency. We remember once again that in this exercise, we have assumed
no uncertainty in the coarse precipitation values R1 and R2 and therefore
we do not use NWP model products and use instead the NEXRAD radar
estimates upscaled to the coarse scale resolution.

The adoption of this event-based approach has some implications.
Assuming that Tc represents exactly the basin response time, streamflow
values contained in Tver can be generated by precipitation events observed
in [t∗ − Tc, t

∗] and by precipitation events forecasted in the first or/and
in the second downscaling time intervals [t∗, t∗ + T ] and [t∗ + T, t∗ + 2T ]
respectively. In particular, the larger the basin response time, the smaller the
influence of the second downscaled event. If R1 and R2 were extracted from
NWP forecasts, they would be characterized by different uncertainty levels
because forecast skill of meteorological models varies with time (Golding
1998). As a consequence, uncertainty of hydrological response would include
the combined effect of two kinds of uncertainty associated to coarse scale
information. However, in our study we do not account for uncertainty in the
coarse scale information and examine streamflow values whose uncertainty
depends only on the characteristics of precipitation fields simulated by the
downscaling model, which are in turn related to the calibration mode used
to select the parameters. Thus, if the same calibration mode is utilized
to generate both synthetic fields corresponding to R1 and R2, the resulting
ensemble hydrographs depend only on the same type of uncertainty.
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5.3.2 Hindcast Experiments

Three hindcast experiments have been carried out in ’controlled conditions’
using ’observed’ precipitation and streamflow database as verification. Every
experiment has been conducted on Nev = 100 events according to the
approach depicted in Fig. 5.10. In each event, the two coarse rainfall R1

and R2 have been set equal to two consecutive precipitation values Ri,l and
Ri+1,l, respectively, selected among the 138 × 9 precipitation values used to
build the ’observed’ database. Events were selected in order to mimic the
occurrence of large-scale event. In this way, we did not focus only on those
events generating storms and then flood in the study basin, but we evaluated
performances of the forecasting system in all the possible situations regarding
precipitation and flood occurrence/non occurrence in the basin starting from
the only information at the coarse scale.

STRAIN model parameters c1 and c2 have been selected in each
experiment according to the same calibration mode and a different mode has
been adopted in the three experiments to produce ensemble precipitation
hindcasts with different characteristics. In particular, the ’functional-based’,
’event-based’ and ’mean-based’ calibration modes, illustrated in section 4.2.2,
have been utilized to generate consistent, overdispersed and underdispersed
precipitation ensemble in experiments called CONS, OVER and UNDER,
respectively.

A procedure analogous to the one described in section 4.2.2 has been
followed to determine STRAIN parameters in the three calibration modes.
A total of Nev = 100 high resolution precipitation ’observed’ events,
corresponding to the coarse values Ri,l selected in the experiments, have
been used to estimate the calibration relation linking STRAIN parameter
c and coarse scale rainfall R, assuming a no a-priori knowledge about
how these events have been generated. Fig. 5.11 shows the calibration
relation c = c(R), given by equation 2.5 with c∞ = 0.675, a = 0.907 and
γ = 0.764 and utilized to generate the ’observed’ fields (dashed line). Grey
asterisks represent the 100 parameters cest

i,l estimated on the observed events
coming from the correspondent selected Ri,l, while the black line is the new
calibration relation c = ccal(R) fitted on the cest

i,l . It is apparent that the two
calibration relations are very close to each other.

In all the experiments, Nens = 50 synthetic precipitation fields have been
generated to hindcast each event. In experiment CONS, STRAIN parameters
of the two consecutive downscaled fields have been set to c1 = ccal(Ri,l)
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and c2 = ccal(Ri+1,l); in experiment OVER, c1 = cest
i,l and c2 = cest

i+1,l,
while in experiment UNDER, the mean value cmean of the cest

i,l has been
always adopted. Consistency, overdispersion and underdispersion of the
synthetic fields generated according to the ’functional-based’, ’event-based’
and ’mean-based’ calibration modes have been verified through the graphical
method for precipitation ensemble described in chapter 4. The resulting
VRHs are shown in panels a, b and c of Fig. 5.12 for the three cases.

Subsequently, for a given experiment, the tRIBS model has been forced in
the Nev = 100 events by the ensemble precipitation hindcast and Nens = 50
hydrographs have been outputted at the 15 locations in each event. This has
resulted in (Nens = 50) × (Nev = 100) × (Nexp = 3) = 15, 000 hydrological
simulations requiring a significant computational effort for which a Linux
cluster with 64 processors has been used. A capability of tRIBS model that
has enormously reduced the time required by the simulations, is the so called
RESTART option, which allows the user to save the simulation state at a
given time, t∗ in our case, and then to run Nens Tver hour-long simulations
including only synthetic precipitation, instead of running each simulation
starting from the beginning of the summer.

The verification procedure for ensemble streamflow has been applied to
test consistency of the hydrological response in all the nested sub-basins,
selecting the accumulated streamflow at durations 1, 16 and 32 hours (Q1h,
Q16h,Q32h) as metrics used to determine the rank of the observation. The
resulting VRHs for experiments CONS, OVER and UNDER are reported
in Fig. 5.13, 5.14 and 5.15, respectively. For sake of clarity, each figure
shows results only for basins 13, 9, 7, 6 and 15 (see Table 5.2), whose sizes
span the entire range of basin scale and each column refers to a specific
metric. In every histogram, the 100 ranks are grouped in 10 bins and the
5%, 10%, 25%, 50%, 75%, 95% quantiles of a uniform distribution are plotted
using horizontal lines. Results reveal that, in all the VRHs, hypothesis of
uniformity cannot be discarded, implying that consistency is achieved, in all
the experiments, for all the basins and the metrics.
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Figure 5.12: Verification Rank Histograms constructed, according to the
verification method described in chapter 4, from rainfall ensembles used to
force the tRIBS model in the three hindcast experiments. Panel a: consistent
ensembles generated with the ’functional-based’ calibration mode. Panel
b: overdispersed ensembles generated with the ’event-based’ calibration
mode. Panel c: underdispersed ensembles generated with the ’mean-based’
calibration mode.
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Figure 5.13: Experiment CONS: Verification Rank Histograms built from
the ensemble streamflows obtained forcing the tRIBS model with consistent
precipitation ensemble. Results are shown for basins 15, 6, 7, 9 and 13
covering the entire range of basin scales and for the metrics Q1h, Q16h and
Q32h. Consistency is achieved in all the cases.
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Figure 5.14: Experiment OVER: Verification Rank Histograms built for the
ensemble streamflows obtained forcing the tRIBS model with overdispersed
precipitation ensemble. Consistency is achieved in all the cases.
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Figure 5.15: Experiment UNDER: Verification Rank Histograms built for the
ensemble streamflows obtained forcing the tRIBS model with underdispersed
precipitation ensemble. Consistency is achieved in all the cases.
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5.4 Results and Discussion

Analysis of the VRHs obtained applying the hydrological verification
procedure in the three hindcast experiments, permits us to conclude
that running the tRIBS model with either consistent or overdispersed or
underdispersed precipitation always leads to consistent ensemble streamflow.

This result can be further investigated by comparing, in each event,
the values of the ranks calculated in the three experiments. Fig. 5.16
contains 5 panels, relative to the basins 15, 6, 7, 9 and 13, showing the
ranks of the metric Q1h obtained from ensemble hydrographs produced by
experiments CONS, OVER and UNDER, plotted versus the logarithm of
coarse precipitation value of the first downscaled field R1 = Ri,l, which
has in general the largest influence in streamflow generation. For sake of
clarity, only 10 events spanning the range of values of Ri,l are shown, but
analysis carried out on the other events and metrics provides similar results.
Inspection of Fig. 5.16 suggests that: (i) there is no relationship between the
ranks and the coarse precipitation of the first downscaled field for any of the
experiments; (ii) for a given event, the ranks are always very close one each
other, indicating that the ECDFs of the metric are very similar in all the
three experiments. In particular, if we calculate in each event the absolute
difference between the two farthest ranks, we obtain an average value of
approximately 0.09 in all the basins, meaning that the three ranks very often
fall in the same bin of the respective VRH. An example of the ECDFs of the
metric Q1h is reported in Fig. 5.17 for the event with R1 = 1.86 mm h−1

and for the basins 13, 7 and 15. The three lines are always very close to each
other implying similar values for the ranks of Qobs.

Additional analyses have been focused on ensemble dispersion, which
has an influence on ensemble consistency and refers to the distribution
of ensemble members irrespective of the correspondent observation. In
particular, we have studied how dispersion of ensemble precipitation varies
with the catchment scale and the calibration modes and how it affects
dispersion of the correspondent ensemble streamflow. For this purpose,
we have defined and extracted one metric from each member of ensemble
precipitation (a spatiotemporal field with time length Tver), and another
metric, dependent on the first one, from each member of ensemble streamflow
(a time series of duration Tver). For a given sub-basin and experiment,
we could then build the two empirical probability distributions for the two
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Figure 5.16: Ranks of Q1h obtained from ensemble streamflows produced
by consistent (asterisk), overdispersed (square) and underdispersed (circle)
precipitation ensembles in 10 events at basins 13, 9, 7, 6 and 15.

0 4.5 . 104
0

0.2

0.4

0.6

0.8

1

0 200 . 104 0 200 . 104
Q

obs
Q

1h

F
(Q

1
h

 )
 

Q
obs

Q
1h

Q
obs

Q
1h

Exp CONS

Exp OVER

Exp UNDER

Basin 13 (4.29 km2) Basin 7 (450.26 km2) Basin 15 (808.39 km2)

Figure 5.17: Empirical Cumulative Density Functions of the metric Q1h ([m
3 h−1]) obtained from the ensemble streamflows produced by experiments
CONS, OVER and UNDER. Panels from the left to the right are referred to
the sub-basins 13, 7 and 15 with increasing area. The ranks of Qobs for the
three experiments always assume very similar values.



5.4 Results and Discussion 99

metrics and analyze their dispersion.
The first metric has been selected as follows. For a sub-basin of size A, we

have considered the rainfall values of each Tver-hours long ensemble member
falling over the Baron Fork basin and determined the maximum precipitation
accumulated over 1 hour in a square of size S [km], where S is multiple of the
spatial fine scale resolution and comparable with the square root of A (i.e.
S × S ≈ A). In particular, we have analyzed basins 13, 9, 7, 6 and 15 (see
Tab. 5.2) with respective areas A = 4.29, 182.91, 450.26, 610.06 and 808.39
km2, implying the corresponding spatial scales S = 4, 12, 20, 24 and 28 km.
The second metric has been instead extracted from the ensemble streamflow
obtained in each sub-basin and has been set equal to the hourly maximum
streamflow Q1h within the time length Tver.

In summary, for each experiment and sub-basin and for a given event, we
have extracted Nens = 50 hourly precipitation maxima at scale S and the
corresponding Nens = 50 hourly streamflow maxima Q1h. From these two
samples, we have built the empirical probability distributions and we have
measured their dispersion by means of the Coefficient of Variation (CV),
which is the ratio between the standard deviation and the average of the
sample. As a result, from each experiment we have obtained Nev = 100 CVs
characterizing dispersion of ensemble precipitation and the correspondent
Nev = 100 CVs characterizing dispersion of the ensemble streamflow.

Fig. 5.18 and 5.19 illustrate results for precipitation and streamflow
respectively. Panel a of both figures shows the average < CV > of the
CVs calculated from the Nev events plotted versus the basin size (which is
represented by S × S or A in the two figures) for the three experiments
CONS, OVER and UNDER. Panel b focuses instead on the Nev values of
the CV calculated for sub-basin 7 (A = 450.26 km2 and S × S = 400 km2)
and shows the distribution of the relative frequency of their occurrence in the
three experiments. Sub-basin 7 has been chosen as an example but similar
behaviors have been detected in the other sub-catchments.
Results of Fig. 5.18 and 5.19 reveal that:

• For all the experiments, the < CV > of precipitation maxima is almost
constant for all the sub-basins, meaning that dispersion of ensemble
precipitation does not change with catchment size (panel a of Fig.
5.18).

• In contrast, < CV > of Q1h decreases with basin scale, implying a
much higher ensemble dispersion for the smaller basin (panel a of
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Figure 5.18: Dispersion of ensemble precipitation hindcasting each event,
measured by the CV of the Nens = 50 hourly precipitation maxima at spatial
scale S [km]. Panel a shows, for each experiment, the average < CV > of
the Nev = 100 CVs at spatial scale S versus the corresponding area S × S.
Panel b reports the distributions of the relative frequency of occurrence for
the Nev CVs obtained in the case S × S = 400 km2.
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Figure 5.19: Dispersion of ensemble streamflow, measured by the CV of the
Nens = 50 Q1h. Panel a shows, for each experiment, the average < CV >
of the Nev = 100 CVs for sub-basins 13, 9, 7, 6 and 15 of Tab. 5.2 versus
the respective area A [km2]. Panel b reports the distributions of the relative
frequency of occurrence for the Nev CVs obtained for basin 7.
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Fig. 5.19). This implies that sensitivity of the basins to differences
in precipitation input increases as their size decreases and resulting
streamflow ensemble are characterized by higher uncertainty.

• In the case of ensemble precipitation, the < CV > for experiments
CONS and OVER is almost the same in each catchment, while it
always assumes the highest value for experiment UNDER (panel a
of Fig. 5.19). Further, panel b of Fig. 5.18 reveals that the
distribution of the Nev CVs obtained for experiment UNDER are more
concentrated around the mean, while experiments CONS and OVER
return more spread values of CV with larger standard deviations. This
is explained considering that parameter c of STRAIN model directly
controls the CV of the synthetic fields: the CVs of underdispersed
precipitation fields assume a more constant value throughout the Nev

events because the same parameter cmean has always been adopted,
while CVs of consistent and overdispersed ensembles are characterized
by more variability since they have been produced using different values
of c in each event.

• Conversely, the < CV > of streamflow ensemble obtained from the
three experiments, are almost equal in each sub-basin (panel a of Fig.
5.19) and panel b of Fig. 5.19 shows that even the distributions
of the relative frequencies of the Nev CVs in a given sub-basin are
very close one each other. This implies that the basins act as filters
for precipitation fields with different characteristics, returning similar
behavior for dispersion of ensemble hydrographs in all the cases.

The study described in this chapter aimed at assessing propagation
of uncertainty of precipitation input into hydrological response, has two
important implications:

1. The first implication is hydrological and is related to the role played
by the basins, which are characterized by two opposite response
mechanisms with respect to precipitation spatiotemporal variability.
On one hand, basins separate the different runoff components and
act as a non-linear filter emphasizing intermittency and multifractal
characteristics of precipitation. On the other hand, they act as
complex integrators of precipitation in space and time mitigating
the spatio-temporal precipitation variability. Vegetation, soil texture,
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aquifer and basin geomorphometric characteristics play an important
role within these opposite mechanisms. Results achieved in this study
for the Baron Fork basin have revealed that, for simulations covering
limited periods of 32 hours, the second mechanism is dominant and the
basin behaves like a powerful spatio-temporal integrator. This behavior
has been detected not only for the larger scales (i.e. ∼ 103 km2) but
also for the smallest ones covered by a single radar pixel (∼ 16 km2).

2. The second implication is instead related to downscaling model
calibration. We demonstrated how calibration relations linking
downscaling parameters and coarse meteorological observable can be
able to account for intrinsic variability of model parameters and lead
to the generation of consistent ensemble fields. The study carried
out in this chapter, hypothesizing the existence of a single calibration
relation, has revealed that ensemble streamflow produced by consistent
precipitation are consistent too. Further, it has shown that consistency
of ensemble hydrographs can be achieved also when the hydrological
model is forced by precipitation fields affected by underdispersion or
overdispersion deficiencies. This suggests a certain flexibility in the use
of downscaling model in forecasting system, because even a calibration
returning precipitation ensembles that are not perfectly consistent,
situation that can likely occur when real-world data are used, can lead
to the simulation of consistent ensemble streamflows. However, this
aspect requires a specific and careful evaluation, case by case, regarding
both the downscaling model and the characteristics of the basin where
hydrological predictions are made.



Chapter 6

Conclusions

Ensemble forecasting technique has been originally developed in meteorology
and more recently adopted in hydrology to account for the different sources
of uncertainty, mainly due to data (input and output), state variable,
parameterization and model structure.

In the last years, ensemble technique has also been used to
provide probabilistic predictions in hydrometeorological forecasting systems,
which are extremely important for civil protection and water resources
management. Advanced hydrometeorological systems for ensemble
streamflow forecasts are based on schemes that include the combined use
of meteorological and hydrological models as well as downscaling models
and data assimilation systems. The complexity of such schemes requires the
creation and testing of rigorous verification methods to evaluate the sources
of uncertainty involved.

Assessment of precipitation forecast uncertainty and its propagation
into hydrological response is fundamental in spatially-distributed forecasting
systems, but is has been so far barely analyzed. In this work we have proposed
systematic verification methods to evaluate propagation of precipitation
input uncertainty within a hydrometeorological forecasting system for flood
prediction in catchments with short response time.

For purpose of this study, we have designed a forecasting system that
starts from output at coarse scale provided by NWP models and couples
in cascade a precipitation downscaling model with a fully distributed
hydrological model. Given the complexity and high non-linearity of the
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processes involved, the study has been focused only on the hydrological
part, including precipitation downscaling model and distributed hydrological
model. No uncertainty has been instead associated to output at the coarse
spatiotemporal scale provided by NWP models.

Precipitation downscaling models start from coarse scale information,
furnished presumably with low uncertainty by NWP models, and provide
ensembles of spatiotemporal precipitation fields at high resolution. A
particular class of statistical downscaling models is based on the multifractal
theory and are able to reproduce observed intermittency and small scale
variability. Their operation is usually assured by calibration relations linking
their few parameters with a coarse meteorological observable or predictant,
such as the mean rainfall rate.

Physically based, distributed hydrological models can in turn offer
advantages over conceptual, lumped models, widely used for flood
forecasting, since they are able to capture hydrological processes in a wide
range of scales. In addition, they have the capability of simulating discharge
forecasts at interior locations, time series of runoff generation at particular
sites and spatiotemporal fields of hydrological response.

A first part of the study has been devoted to uncertainty characterization
of ensemble precipitation fields forecasted by precipitation downscaling
models. For this purpose, we have proposed a verification procedure based
on the generalization of the verification rank histogram (VRH), a graphical
device used in applied meteorology to test the consistency hypothesis
(i.e. ensemble and observation are drawn from the same distribution) of
univariate variables. Since downscaling models reproduce the probability of
precipitation at high resolution, they cannot be verified in a deterministic way
but should be tested by evaluating their ability in reproducing the statistical
behavior of precipitation. Therefore, the univariate variable adopted here is
the probability of exceedance of a fixed precipitation threshold i∗ calculated
from each spatiotemporal field.

The generalization of verification rank histograms has been performed as
follows. First, a precipitation threshold i∗ is fixed. Then, for each event,
the exceedance probabilities of i∗ are calculated for the Nens ensemble and
the observed fields and the position p of the observed exceedance probability
is found. Finally, the rank histogram is built with the normalized ranks
r, defined as the cumulative frequency of p computed for each verification
event. The procedure is repeated for different values of i∗, spanning a
range interesting for hydrometeorological applications. As i∗ increases, the
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observed and ensemble exceedance probabilities can be equal to zero in
a certain number of verification events, so that the ranks are randomly
assigned. As a consequence, the histogram shape becomes artificially
uniform, making the detection of model forecast deficiencies more difficult.
To avoid possible erroneous evaluation of model performances, we have
introduced a graphical method based on the interpretation of the ECDF
of a variable r̃k accounting for random assignment.

The verification procedure has been applied and tested using the STRAIN
downscaling model. The model depends on two parameters c and β and is
able to simulate homogeneous precipitation fields in a self-similar framework.
Three numerical experiments have been carried out in controlled conditions
according to the following approach. STRAIN model has been first used to
generate ’observed events’ with selected values of parameters c and β. These
’observed events’ have been used to calibrate STRAIN parameter assuming
a no a-priori knowledge of the method used to generate them. Finally,
each ’observed-event’ has been hindcasted using STRAIN according to three
calibration modes for parameters determination: ’event-based’, ’mean-based’
and ’functional-based’. Results of the three experiments permit us to derive
the following conclusions relative to the first part of the work:

1. If we consider a hindcast framework and we generate the ensemble
members adopting the parameter cest

k estimated on the same event k
to be hindcasted (at a first sight, the best possible solution to simulate
the observed event), the model returns overdispersed forecasts. This
is due to the fact that model sampling variability is not accounted for
in parameters calibration and a centering of ensemble members around
the observation is produced.

2. The intrinsic variability of downscaling model when the average of the
estimates cest

k is used, may not be able to capture the variability of
observed events and underdispersed forecasts are produced.

3. The use of a calibration relation linking model parameter with a
meterological observable at coarse scale may allow model sampling
variability to be taken into account leading to consistent members.

4. When observed events display a large variability that a single
calibration relation is not able to explain, underdispersed forecasts are
produced. For example, this variability can be due to different physical
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origins or different synoptic conditions generating the events. In order
to reach consistency, it would be necessary first to classify the events
according to their physical origin and then to estimate storm-dependent
calibration relations.

We remark that systematic analyses of the effects of precipitation type
on scale-invariance statistical properties have not been yet conducted. We
believe that this can be an interesting topic for future research and the
proposed verification method can be an useful tool to assess the need for
single or multiple calibration relations.

We also highlight that the verification method, tested with a homogeneous
and isotropic model, can be applied whatever the downscaling method used
since the method does not refer to the generation mechanism of the model. A
slight modification needs to be adopted only in case of a downscaling model
reproducing spatial heterogeneity, because, in this case, the analysis should
be carried out in each location rather than in the entire spatial domain.

In a second part of the study, we have used results of the previous
part to analyze how uncertainty and deficiencies of ensemble downscaled
precipitation forecasts affect hydrological response. A verification method
based again on the VRH has been first developed to test consistency of
streamflow ensembles. The method requires the fixation of a verification
time length, dependent on the basin response time, where a certain metric is
extracted from ensemble and observed hydrographs and then used to build
the VRH.

Three numerical hindcast experiments have been then carried out
applying the hydrometeorological system coupling the STRAIN precipitation
downscaling model and the tRIBS distributed hydrological model in the
Baron Fork basin and 14 nested sub-basins (areas ranging from 0.78 to 808
km2). Hindcast experiment have been conducted in controlled conditions, to
assure an easier control and assessment of uncertainty propagation. First, a
database of ’observed’ precipitation fields covering several summer periods
have been generated through the STRAIN model with selected values of
parameters c and β (i.e. known statistical properties). For this aim, existence
of scale invariance laws has been assumed in a range of scales found in
past applications on real data, and a single calibration relation linking
coarse rainfall and STRAIN parameters has been adopted. To preserve
climatology of the studied area and period of the year, the precipitation
values at the coarse scale used in the generation have been extracted from
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the radar estimates of the NEXRAD network. The ’observed’ precipitation
have been utilized to force the tRIBS hydrological model. Since uncertainty
of hydrological model parameters has not been taken into account, tRIBS
has been calibrated in one summer and the resulting parameter values have
been kept fixed in all the model runs for all the summers. The simulated
hydrographs have been considered as ground truth and used as verification
for the three hindcast experiments.

Subsequently, we have assumed a no a-priori knowledge about the
origin of precipitation and streamflow ’observations’ and produced Nens

ensemble streamflow hindcasts for Nev precipitation events selected among
the ’observed’ database. An event-based approach has been setup to permit
application of the proposed verification procedure in all the sub-basins.
For each event, starting from information at the coarse scale, ensemble
precipitation hindcasts have been first generated by the STRAIN model
according to a specific calibration mode: the ’functional-based’, ’event-based’
and ’mean-based’ calibration modes have been adopted to produce consistent,
overdispersed and underdispersed precipitation hindcasts, respectively, in the
three experiments. These fields have been then used in cascade to force the
tRIBS model and the resulting streamflow ensembles at the 15 locations
have been utilized together with the correspondent observation (furnished
by the ’observed’ hydrographs database) to build the VRH according to the
proposed verification procedure.

Inspection of the VRHs for the three experiments shows that running
the tRIBS model with either consistent or overdispersed or underdispersed
precipitation always leads to consistent ensemble streamflow, irrespective of
the basin scale.

Additional analyses have been focused on ensemble dispersion, which
refers to the distribution of ensemble members without considering the
corresponding observation. In particular, we have studied how dispersion
of ensemble precipitation varies with the catchment scale and the calibration
modes and how it affects dispersion of the correspondent ensemble
streamflow. For this purpose, we have defined two metrics, related one
each other, and calculated from each member of precipitation and streamflow
ensemble, respectively: (i) the maximum hourly precipitation value in an area
comparable to the size of the analyzed basin; (ii) the correspondent maximum
hourly accumulated streamflow. Thus, for each event, we have built the
empirical probability distribution functions for the two metrics extracted
from the Nens members of ensemble precipitation and streamflow and we have
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measured their dispersion using the Coefficient of Variation (CV). Analyses
carried out for the three experiments and for different catchment sizes, shows
that:

• Dispersion of ensemble precipitation does not change with catchment
scale, while, in contrast, dispersion of ensemble streamflow is higher for
the smallest basin and decreases as basin area increases. This means
that sensitivity of basins to differences in precipitation input is higher as
their size decreases and resulting streamflow ensemble are characterized
by a bigger level of uncertainty.

• For a given basin, underdispersed ensemble precipitation are
characterized by a very similar level of dispersion in all the Nev events
(i.e. the Nev CV are very close to their mean value), while the
degree of dispersion has a larger variability (i.e. the Nev CV have
higher standard deviation) in the case of consistent and overdispersed
ensemble. In contrast, these effects are not present anymore in the
ensemble streamflow, whose dispersion results very similar in all the
three cases.

In light of the analyses and preliminary considerations made in the
second part of the study aimed at assessing propagation of uncertainty into
hydrological response, two main conclusions can be drawn:

1. For the Baron Fork and its nested sub-basins and for simulations
covering limited time period (32 hours), the basins always behave
as complex integrators of precipitation in space and time, mitigating
precipitation intermittency. Thus, ensemble precipitation input with
different characteristics lead to the same characteristic for ensemble
streamflow (i.e. consistency).

2. A certain flexibility in the use of downscaling models within forecasting
systems is suggested. In fact, even if downscaling models calibration
does not lead to perfectly consistent members, consistent ensemble
streamflow may be however produced when the downscaled rainfall
forecasts are used as forcing for the hydrological model. Nevertheless,
this effect requires to be verified and confirmed with further
investigations on real data and on basins with different characteristics.
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Finally, we remark that, at our knowledge, this is one of the first studies
that try to verify performances of a hydrometeorological forecasting system
using a rigorous and systematic framework over a great number of events,
causing or not a flood, instead of analyzing just few test cases for which no
statistically significant conclusion can be drawn.
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