
Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Simulation and identification
of gene regulatory networks

Andrea Pinna

Advisors: Alberto de la Fuente
Nicola Soranzo
Carla Seatzu

Curriculum: ING-INF/04 Automatica

XXVI Cycle
March 31st, 2014

Acknowledgments

Compiling a list of people to whom I am particularly grateful for their essential support dur-
ing these years of struggles with genes, genotypes, phenotypes, markers, transcription fac-
tors, etraits and alike is, possibly, an even more daunting task!

I will start with my supervisors: Alberto, Nicola and Carla have been generous teachers and
invaluable advisors, even and above all remotely through emails and Skype conversations –
Alberto left CRS4 in 2012! Moreover, I guess that Nicola has been the person with which I
shared the most time in the same room during these years... weird!

I also thank all the colleagues that, in one way or another, consciously or inadvertently
showed me positive advices or avoidable bad examples, significant knowledge and forget-
table boring-as-hell blathers: every little bit helps!

Other, and too many to be singularly mentioned, colleagues at CRS4 made our free lunches –
otherwise awful and unhealthy – cheerful and noisy, with talks of dental examinations, fatty
donkey challenges, seasonal niggard rankings, detailed soccer statistics and spoiled movie
summaries. Thanks for these lighthearted but influential instants!

To all, friends and foes, thanks for having been a substantial part of the path towards another
academic title and relevant life experience!

Thanks to my parents, for they uninterrupted support, confidence and love!
Thanks to Carlino, because he could not have got a doctorate degree earlier than me!

And thanks to Camilla, the one who shares her life with mine! ♥

i

Abstract

Gene regulatory networks are a well-established model to represent the functioning, at gene
level, of utterly elaborated biological networks. Studying and understanding such models
of gene communication might enable researchers to rightly address costly laboratory ex-
periments, e.g. by selecting a small set of genes deemed to be responsible for a particular
disease, or by indicating with confidence which molecule is supposed to be susceptible to
certain drug treatments.

This thesis explores two main aspects regarding gene regulatory networks: (i) the simu-
lation of realistic perturbative and systems genetics experiments in gene networks, and (ii)
the inference of gene networks from simulated and real data measurements. In detail, the
following themes will be discussed: (i) SysGenSIM, an open source software to produce gene
networks with realistic topology and simulate systems genetics or targeted perturbative ex-
periments; (ii) two state of the arts algorithms for the structural identification of gene net-
works from single-gene knockout measurements; (iii) an approach to reverse-engineering
gene networks from heterogeneous compendia; (iv) a methodology to infer gene interac-
tions from systems genetics dataset.

These works have been positively recognized by the scientific community. In particular,
SysGenSIM has been used – in addition to providing valuable test benches for the devel-
opment of the above inference algorithms – to generate benchmark datasets for interna-
tional competitions as the DREAM5 Systems Genetics challenge and the StatSeq workshop.
The identification methodologies earned their worth by accurately reverse-engineering gene
networks at established contests, namely the DREAM Network Inference challenges. Results
are explained and discussed thoroughly in the thesis.

iii

Contents

1 Introduction 1
1.1 Simulation of systems genetics experiments . 2
1.2 Identification of gene regulatory networks . 3
1.3 Side projects . 5

2 Simulation of gene expression data 7
2.1 Modeling of gene regulatory networks . 8
2.2 Simulating the transcriptome to evaluate inference algorithms 10

2.2.1 Introduction . 10
2.2.2 Gene network simulators . 12
2.2.3 Discussion . 17

3 Simulating systems genetics data with SysGenSIM 21
3.1 Introduction . 21
3.2 Network topology . 23
3.3 Phenotype data . 25
3.4 Genetic data . 25
3.5 Experimental perturbations . 26
3.6 Gene expression dynamics . 27
3.7 Genotype effects on expression dynamics . 28
3.8 Output files and figures . 29
3.9 Future development . 29

4 Benchmark datasets 31
4.1 DREAM5 Systems Genetics challenge dataset . 31

4.1.1 Simulation of genotype and gene expression datasets 32
4.1.2 Predictions and scoring metrics . 33

4.2 StatSeq benchmark dataset . 34
4.2.1 Description of the systems genetics dataset 34
4.2.2 Algorithms in SysGenSIM . 37

4.3 Pula-Magdeburg single-gene knockout benchmark dataset 40
4.3.1 Generation of networks . 41
4.3.2 Model dynamics . 42

5 Identification of gene regulatory networks 43

v

vi CONTENTS

6 Inference from single-gene knockout datasets 47
6.1 From knockouts to networks . 47

6.1.1 DREAM4 In Silico Network challenge . 48
6.1.2 Methods . 49
6.1.3 Results . 52
6.1.4 Discussion . 57

6.2 Reconstruction of large-scale regulatory networks 58
6.2.1 Introduction . 59
6.2.2 Methods . 61
6.2.3 Results and discussion . 67
6.2.4 Conclusion . 81

7 Inference from heterogeneous datasets 85
7.1 Elucidating transcriptional regulatory networks 85

7.1.1 Introduction . 86
7.1.2 Methods . 86
7.1.3 Results . 90

7.2 Wisdom of crowds for robust gene network inference 93

8 Inference from systems genetics datasets 97
8.1 Methods . 97
8.2 Results . 100

8.2.1 Performance at the DREAM5 Systems Genetics challenge 100
8.2.2 Performance with the StatSeq benchmark datasets 103
8.2.3 Performance with a yeast dataset . 104

8.3 Discussion . 105

9 Side projects 109
9.1 DREAM6 parameter estimation challenge . 109

9.1.1 Submitted estimation technique . 109
9.1.2 Network topology and parameter estimation 111

9.2 Orione, a web-based framework for NGS analysis in microbiology 112
9.2.1 Features and methods . 113
9.2.2 Functionalities . 113

10 Concluding remarks 117

Bibliography 119

List of Figures

2.1 Transcription of DNA into mRNA . 7
2.2 An example of a biochemical network . 8
2.3 Graph representation of a gene network . 9
2.4 Double-blind performance assessment of network inference methods 11
2.5 Distributions of the gene expression values, means and variances 18
2.6 Overview of tested properties and corresponding areas of expression data analysis 18

3.1 Gene network panel from SysGenSIM’s graphical user interface 24
3.2 Genotype panel from SysGenSIM’s graphical user interface 25
3.3 Some of the output figures produced by SysGenSIM 29

4.1 Diagram for quantitative trait loci (QTL) analysis . 32
4.2 Model representing the topology of the artificial networks 35

6.1 Feed-forward loop in a 3-gene motif . 51
6.2 Down-ranking of unnecessary feed-forward edges 51
6.3 Distribution of the mean absolute deviation for three knockout datasets 54
6.4 Effect of the down-ranking algorithm on DREAM4 networks 56
6.5 A perturbation graph and its transitive reduction computed with TRANSWESD . . 63
6.6 Performance of the PGnew methodology in DREAM4 networks 70
6.7 Robustness of TRANSWESD and LTR variants in DREAM4 networks 70
6.8 Performance and robustness of the PGnew methodology on SysGenSIM’s network 1 72
6.9 Performance and robustness of the PGnew methodology on SysGenSIM’s network

11 . 73
6.10 Performance and robustness of the PGnew methodology on SysGenSIM’s network

21 . 74
6.11 Average performance of TRANSWESD and LTR variants on the SysGenSIM datasets 76
6.12 Performance of TRANSWESD and LTR variants on the SysGenSIM datasets 78
6.13 Performance of the novel inference techniques on the S. cerevisiae dataset vali-

dated against four silver standards . 80
6.14 Example of a (true) graph and its (perfect) perturbation graph representing the

transitive closure . 82

7.1 Increase of the AUC scores in DREAM5 networks . 91
7.2 Evaluation of the DREAM5 Network Inference methods 95

8.1 AUPR score averaged by the RAGNO techniques on DREAM5 networks 104

vii

viii LIST OF FIGURES

8.2 Comparison of performances by RAGNO techniques on the StatSeq datasets (n =
1000) . 105

8.3 Comparison of performances by RAGNO techniques on the StatSeq datasets (n =
5000) . 106

8.4 Average AUPR scores by RAGNO techniques on StatSeq networks 107

9.1 Overall schema of the main Orione functionalities 114

List of Tables

3.1 Example of user-defined genetic map . 26

4.1 Topological characteristics of the in silico networks 35
4.2 Values of SysGenSIM’s optional parameter settings used to generate the datasets . 36
4.3 SysGenSIM’s settings applied to each network . 37

6.1 Sample of gene expression knockout data . 49
6.2 Performances of the four considered confidence matrices on the DREAM3 networks 53
6.3 Effect of the down-ranking algorithm on larger DREAM3 networks 53
6.4 Performance of the four confidence matrices on additional in silico data 55
6.5 Effect of the down-ranking algorithm on additional in silico data 55
6.6 Performances of the four confidence matrices on the DREAM4 networks 55
6.7 Effect of the down-ranking algorithm on the DREAM4 networks 56
6.8 Performance of the inference algorithms on the DREAM4 networks 68
6.9 Noise configurations in simulated datasets . 75
6.10 Performance of the inference algorithms on the SysGenSIM networks 76
6.11 Statistics on edges from the inferred SysGenSIM networks 77

7.1 Comparison of the inference techniques on DREAM5 networks for approach 1 . . 92
7.2 Comparison of the inference techniques on DREAM5 networks for approach 2 . . 92
7.3 Comparison of the inference techniques on DREAM5 networks for approach 3 . . 93

8.1 Performance of the RAGNO techniques in DREAM5 sub-challenge A1 101
8.2 Performance of the RAGNO techniques in DREAM5 sub-challenge A2 102
8.3 Performance of the RAGNO techniques in DREAM5 sub-challenge A3 102

ix

Chapter 1

Introduction

During the three-year term of the PhD studies I have conducted the related research activ-
ity mainly at the Bioinformatics Laboratory of the Center for Advanced Studies, Research
and Development in Sardinia (CRS4) under the supervision and partnership of dr. Alberto
de la Fuente and dr. Nicola Soranzo, and under the guidance of professor Carla Seatzu from
the Department of Electric and Electronic Engineering (DIEE) at the University of Cagliari
(UNICA).

The fundamental themes of the above-mentioned collaborative research have been the
study of models for the simulation of systems genetics experiments, and the development of
algorithms and methodologies for the identification of gene regulatory networks. Such top-
ics, which constitute the first two parts of the thesis, are heavily interlinked since synthetic
datasets of biological experiments are necessary – due to the uncertainty on real gene regu-
latory networks – to develop inference algorithms and compare their performances. A third
section describes other side activities that have been nevertheless integral part of the PhD
studies.

In particular, a definition of gene regulatory networks and a brief introduction to applica-
tion tools for the simulation of gene expression data is given in Chapter 2, while our software
SysGenSIM is presented in Chapter 3 and the datasets produced as benchmarks for the eval-
uation and comparison of inference algorithms are extensively described in Chapter 4. An
overview of reverse-engineering techniques for gene regulatory networks is given in Chap-
ter 5, while the inference algorithms we developed are presented in Chapter 6 (from datasets
of single-gene knockout and knockdown), in Chapter 7 (from heterogeneous compendia),
and in Chapter 8 (from systems genetics data). Finally, other activities to a less extent related
to the previous, as the estimation of model parameters in gene networks and the processing
and analysis of next generation sequencing data, are debated in Chapter 9. Some recapitula-
tory remarks are given in Chapter 10. The contents of all these topics are briefly introduced
in the following paragraphs.

1

2 CHAPTER 1. INTRODUCTION

1.1 Simulation of systems genetics experiments

The open source MATLAB package SysGenSIM [16, 136] has been developed to simulate sys-
tems genetics experiments in model organisms with the aim of evaluating and comparing
statistical and computational methods for the analysis of systems genetics data. In fact,
the central goal of systems biology is the understanding of biological networks: this can be
achieved by inferring causal networks from observations on a perturbed biological system.
Several methodologies have been proposed to identify biological networks whose nodes rep-
resent e.g. phenotypes, DNA variants, etraits and other omics variables (e.g. Bayesan net-
works, differential equation models, structural equation modeling, co-expression networks);
on the other hand, assessing strengths and weaknesses of such methods is a tough task
unless their performances are fairly evaluated and compared. SysGenSIM therefore allows
for the simulation of synthetic datasets meant to be used for training and evaluating algo-
rithms and techniques for the inference of networks from systems genetics data. Benchmark
datasets have been simulated and employed for the DREAM5 Systems Genetics challenge
and for the StatSeq COST action. Our group is also preparing a review about gene expression
simulators of large-scale gene regulatory networks [161].

SysGenSIM

Given a population of individuals, SysGenSIM simulates steady-state gene expression val-
ues based on a gene network topology and on the individuals’ genotypes, using nonlinear
ordinary differential equations. The mathematical model displays two main features of bio-
chemical kinetics: saturation and cooperativity. Most of the equation parameters can be
set according to pre-selected common distributions in order to facilitate the customization
of the simulated experiments, e.g. the values of the biological variances can be regulated to
obtain the desired heritability level of expression traits. An efficient implementation of the
steady state solver allows for a quick data generation thanks to a decomposition of the un-
derlying gene network in acyclic and cyclic components: this approach is efficient due to the
sparse topology of the gene networks, which can be generated by SysGenSIM to reproduce
observed characteristics of biochemical networks like e.g. clustering, degree distributions,
motif occurrences. Genetic data produced by SysGenSIM are currently limited to inbred
line cross employed in real systems genetics experiments in model organisms and plants,
but the simulation of human genotype data is going to be implemented in the near future
thanks to an ongoing collaboration with the Virginia Bioinformatics Institute. Last but not
least, macroscopic phenotypes can be added to the network by also specifying the genes that
affect and that are affected by the phenotypes themselves.

DREAM5 Systems Genetics challenge

The main objective of the Dialogue for Reverse-Engineering Assessments and Methods is
to catalyze the interactions between experiment and theory in the area of cellular network
inference and quantitative model building in systems biology. Our group co-organized the
DREAM5 Systems Genetics challenge [2], which consisted of two sub-challenges, namely
DREAM5 SysGenA based on in silico data and designed to elucidate causal network models
among genes, and DREAM5 SysGenB based on experimental data on soybean and designed
to predict complex phenotypes from a combination of genetics and expression data. We pro-

1.2. IDENTIFICATION OF GENE REGULATORY NETWORKS 3

duced the datasets for the in silico challenge were the 16 participant teams were requested to
infer the 15 networks by providing for each a list of edges sorted according to the confidence
assigned by their reverse-engineering algorithm. The datasets associated to the networks
consisted of genotype and gene expression values computed for 100, 300 or 999 individuals,
to further evaluate the strength of the inference techniques with respect to the size of the
population.

StatSeq benchmark dataset

During a workshop organized by the Genetical Genomics working group of the StatSeq COST
action, the problem of evaluating and comparing the several techniques for the inference of
gene networks from high-throughput next generation sequencing data has been thoroughly
discussed. To this aim, we published the so-called StatSeq benchmark dataset [135] to in-
vestigate the performances of inference algorithms for systems genetics data simulated over
various network and population sizes, marker distances, and heritability levels. The identi-
fication techniques proposed by the workshop participants are described in [44].

Pula-Magdeburg single-gene knockout benchmark dataset

A recent update of SysGenSIM introduced the possibility to simulate experimental pertur-
bations (i.e. single-gene knockout, knockdown and over-expression experiments) besides
the systems genetics experiments. A collection of single-gene knockout datasets has been
produced as a genome-scale benchmark for the network inference algorithms described in
detail in [132]. The compendium consists of 270 datasets simulated from 30 different 5000-
gene networks according to nine different parameter settings. The networks show a similar
modular structure but different connectivity, i.e. their average node degrees differ signifi-
cantly (from about 7500 to 12500 edges) in order to evaluate the performances of the algo-
rithms over the sparsity of the networks besides the different conditions of biological vari-
ance and measurement noise.

1.2 Identification of gene regulatory networks

As previously mentioned, the inference of intracellular networks is one of the key challenges
of computational and systems biology. Several methods have been proposed and are cur-
rently presented, which can be categorized according to the formalism and principle used
for inferring the network: sparse regression, correlation-based techniques, z-score, mutual
information, Bayesian networks, Gaussian graphical models, random forest, differential equa-
tions and Petri networks are some of the approaches proposed in literature. We presented
some inference techniques for gene regulatory networks applicable to single-gene perturba-
tion datasets, to heterogeneous gene expression compendia, and to systems genetics experi-
ments, whose effectiveness has been validated at international challenges and through their
application on established benchmark datasets.

4 CHAPTER 1. INTRODUCTION

Inference from single-gene knockout datasets

One of the challenges proposed at the DREAM4 initiative demanded the participants to
reverse-engineering a set of five 100-gene regulatory networks given the simulated gene
expression value of each gene after separately performing the single-gene knockout and
knockdown perturbations for the other genes of the network. We proposed a technique
whose final purpose is the removal of the incorrectly predicted indirect edges: (i) an initial
prediction of the network is obtained by assigning to each possible edge (i , j) a confidence
score consisting in the deviation from the mean of the expression of gene j after the knock-
out of gene i ; (ii) given a threshold value, the edges whose confidence exceeds such limit
are selected to build a so-called perturbation graph G P ; (iii) an acyclic graph G A is obtained
by condensing the perturbation graph G P , i.e. its nodes are the strongly connected compo-
nents of the perturbation network G P ; (iv) the edges of G P are removed if they connect two
different nodes of G A and if there is a path of length at least 2 between the above nodes of
G A; (v) the prediction list is created by sorting all the possible edges according to the con-
fidence score cited in (i) with the exception of those still in G P whose score is increased
to ensure them a ranking higher than the edges deemed unessential. This algorithm [134],
called down-ranking of feed-forward loops, was awarded the 1st place at the DREAM4 In Sil-
ico Network challenge by achieving a better overall score than other 18 participant teams.
The technique has been significantly improved after a collaboration with the “Analysis and
Redesign of Biological Networks” group of the Max Planck Institute, which ranked 3rd at the
same DREAM4 challenge. The new methodology [132] improves the previous algorithms
by (i) using novel statistical criteria for deriving a high quality perturbation graph from the
experimental data and (ii) applying local transitive reduction to remove indirect edges. The
technique has been successfully evaluated on the DREAM4 datasets, on the Pula-Magdeburg
benchmark and on a yeast compendium of real knockout experiments, and its performances
considerably exceeded those by previous state of the art inference algorithms.

Inference from heterogeneous datasets

The DREAM5 Network Inference challenge allowed the researchers to propose methodolo-
gies to be employed in the task of inferring gene regulatory networks from heterogeneous
microarray datasets. One sub-challenge is based on a simulated dataset, while three other
are dedicated to experiments performed on real microorganisms: each compendium con-
sisted of steady state or time series of gene expression values simulated or measured un-
der several known experimental conditions, like single- or multiple-gene deletions or over-
expressions, drug applications, environmental perturbations, and their combinations. In or-
der to exploit the different types of information included in such mixed datasets, we applied
three different approaches to as many subsets of data: (i) on gene-perturbative experiments,
potential targets are identified by computing the deviation due to the perturbation; (ii) on
steady-state measurements, a confidence score to all potential edges is assigned through full
order partial correlation analysis; (iii) on experiments featuring drug perturbations, another
confidence score is assigned to edges after a co-deviation analysis. The results of the three
approaches have been combined according to a weighted average, whose coefficients had
been estimated by trials with comparable datasets simulated by an early stage version of Sys-
GenSIM. The performance of our methodology was awarded with the 2nd position overall in
the real networks sub-challenge, and in particular with the 1st place for the identification of

1.3. SIDE PROJECTS 5

the S. cerevisiae network. A paper describing the technique has been submitted [160]. More-
over, our contribution has been included in the DREAM5 community paper [111] where it
has been observed that integrating the predictions from multiple inference methods shows
robust and high performance across different datasets.

Inference from systems genetics datasets

We developed a technique for the identification of gene regulatory networks from systems
genetics experiments, namely genotype and gene expression measurements [133]. The in-
ference methodology is based on three main steps: (i) provide an accurate initial confidence
score for all the possible edges in the network; (ii) select the edges satisfying certain statis-
tical conditions to build the perturbation graph; (iii) perform a transitive reduction of the
perturbation graph to remove the edges whose effect is identified as indirect. The algorithm
performs excellently on the DREAM5 Systems Genetics datasets, and yields scores compara-
ble with the best methodologies presented in [44] when applied to the StatSeq benchmark.

1.3 Side projects

I have been involved in other research activities, in particular the estimation of parameters
in models of gene regulatory networks, the wrapping of Galaxy tools for the analysis of Next
Generation Sequencing data, and the development of a computational pipeline for the au-
tomated processing of Next Generation Sequencing data.

Estimation of model parameters

We took the opportunity to study the problem of estimating the kinetic parameters of given
models of gene regulatory networks by participating to the DREAM6 Estimation of Model Pa-
rameters challenge, whose goal is the development of optimization methods for the estimate
of parameters in the modeling of biological systems. The participants were provided with the
full regulatory interaction topology for three small gene networks and were requested to esti-
mate the value of the unknown parameters given a dataset of time-series measurements and
the possibility to purchase, given a fixed budget, additional experimental data from a broad
assortment. By using a customized version of SysGenSIM we simulated all types of chal-
lenges data with the known equations and topologies, and with randomly assigned values
in place of the unknown parameters. This enabled us to evaluate optimization algorithms
with different purchasing schemes to finally select a common strategy for all three models:
unfortunately our approach performed badly compared to the best methodologies. Anyway,
this work contributed to the DREAM6 community paper [121].

Next Generation Sequencing data analysis with Orione

Recently I have been involved in a new project: the development of Orione, a Galaxy-based
framework designed to build complex and reproducible workflows for the analysis of Next
Generation Sequencing microbiology data [39]. The platform allows the researchers to tackle
with large-scale datasets, to conduct their own analysis using and interconnecting different
software packages, and to easily assembling reproducible analysis workflows. In particular,

6 CHAPTER 1. INTRODUCTION

I have been responsible for the implementation of several tools in Orione through XML and
Python wrappers: BLAT, Glimmer, Edena, SEQuel, Merlin, Mach, Pedstats, Beagle, PLINK,
MetaGeneMark, MetaVelvet, and others. Most of these tools have already been released to
the official Galaxy Tool Shed repository.

Automated processing of Next Generation Sequencing data

The genotyping platform at CRS4 has a theoretical maximal throughput capacity of nearly 1
TB per day of raw Next Generation Sequencing data. The goal is to fully automate the pro-
cess of transforming the above-mentioned raw data into aligned and recalibrated data which
can be outright analyzed with the software tools provided by Orione or promptly dispatched
to the customer. Such automated processing involves several communicating tools, such
as e.g. RabbitMQ to manage messages between applications, iRODS and OMERO to allow
for the traceability of datasets and operations, Galaxy to run the single steps of the process
through the cluster via Sun Grid Engine, Hadoop and Seal to handle the distributed compu-
tation of large files. In general, the processing of Next Generation Sequencing data is one
of the key problems for bioinformatics: such issues have been discussed at a recent SeqA-
head workshop meeting. My contribution to this activity is still negligible and it will not be
included in the next chapters.

Chapter 2

Simulation of gene expression data

Living organisms are composed by basic biological units called cells, where all vital functions
take place and the genetic information – to regulate such functions – is contained. Deoxyri-
bonucleic acid, also known as DNA, is the molecule encoding the above-mentioned genetic
instructions, i.e. during the process of transcription (see Figure 2.1) the DNA sequence of
guanine, adenine, uracil and cytosine is copied into a complementary sequence of ribonu-
cleic acid (RNA), a sub-category of which, the messenger RNA (mRNA), is then involved in
the synthesis of proteins in a process called translation. Finally, proteins perform most of
the functions needed in living organisms, e.g. catalysis of chemical reactions, transmission
of signals between cells, protection, support and movement of tissues.

The functioning of each cell can be modeled through a so-called biological system, i.e.
a collection of the interactions occurring between the molecules of the cell. The biologi-
cal system might be thoroughly described as a whole, but such level of detail would lead to
absurdly complex models, whose practical study would be unattainable. Therefore, a sim-
plified model representing the cell functions, employed in most chapters of this thesis, is
described in Section 2.1, and an overview1 of the available software for the simulation and

1The review [161] is currently in preparation.

Figure 2.1: Transcription of DNA into mRNA.

7

8 CHAPTER 2. SIMULATION OF GENE EXPRESSION DATA

the study of cell activities in given in Section 2.2.

2.1 Modeling of gene regulatory networks

In real biochemical networks, genes do not directly interact with each other: in fact, gene
activation and inhibition processes are e.g. triggered by proteins, which are in turn products
of genes; gene activity is also regulated by metabolites (Figure 2.2).

Figure 2.2: An example of a biochemical network. Molecular constituents (nodes of the
network) are organized in three levels: mRNAs, proteins, and metabolites (from [32]).

On the other hand, a network consisting of only genes is obtained by removing proteins
and metabolites from the model of biological network while turning the indirect interactions
between genes (e.g. with proteins and/or metabolites as intermediate molecules) into direct
influences (Figure 2.3). Gene networks are then representations of biological systems that do
not explicitly include other molecules beside genes and their interactions, i.e. are abstract
models of gene communication with nodes representing the gene activities, and directed
edges representing causal influences. The causal influence of gene A on gene B could be,
in fact, due to the transcription activation of gene B by the protein product of gene A upon
binding to gene B ’s promoter sequence (as in a transcription factor–target relationship), but
also be due to more complicated processes, such as gene A encoding a metabolic enzyme
producing a metabolite which in turn regulates the transcription of gene B . These detailed
biochemical events are hidden to the observed set of variables (gene expression levels) and
their effects will merely result in an observable causal effect A → B . Undirected edges in

2.1. MODELING OF GENE REGULATORY NETWORKS 9

gene networks are present due to unmeasured confounding variables. Gene networks are
context specific: the regulatory structure among genes depends on the developmental stage,
cell type, environment, genotype and disease state. For a comprehensive discussion on the
nature of gene networks please refer to [43].

Figure 2.3: Graph representation of the gene network. The graph corresponds to the bio-
chemical network in Figure 2.2 (from [32]).

An advantage of gene networks is given by the enormous availability of gene activity2

measurements, that largely exceeds that of protein and metabolite profiles because of the
relative ease and unified way to measure RNA levels; this disproportion will be further in-
creased due to the appearance of gene expression measurements techniques based on novel
sequencing technologies, e.g. [176]. The choice of the gene regulatory network model is also
extensively supported and motivated [32]: (i) gene networks provide a large-scale but con-
cise representation of the cell functions; (ii) gene expression levels can be quantified and
analyzed to identify interactions and then reverse-engineering the network; (iii) newly iden-
tified interactions may help researchers to address their expensive studies and experiments;
(iv) group of genes may be discovered to be linked to the expression of a particular phe-
notype, e.g. a disease; (v) understanding the topology of gene networks might explain the
robustness of living organisms.

Therefore, the concept of gene network is of high importance for the purpose of describ-
ing the regulatory networks inside living cells. As a precise definition of gene networks is
missing in current literature we here provide (one possible) formal definition.

Definition. A gene network is a mixed graph G := (V ,U ,D) over a set V of nodes, corre-
sponding to gene activities, with unordered pairs U , the undirected edges, and ordered pairs
D, the directed edges. A directed edge di , j from vi to v j is present if and only if a causal effect
runs from node vi to v j and there exist no nodes or subsets of nodes in V that are intermedi-
ating the causal influence (it may be mediated by hidden variables, i.e. variables not in V). An
undirected edge ui , j between nodes vi and v j is present if and only if gene activities vi and
v j are associated by other means than a direct causal influence, and there exist no nodes or
subsets of nodes in V that explain that association (i.e. it is caused by a variable hidden to V).

In the following of this manuscript, we will mostly refer to a gene regulatory network as a
directed graph G representing through edges (i , j) the causal interactions between the gene
activities of genes i and j , i.e. the nodes. The graph is signed when the gene-gene influences

2Synonyms for gene activity are mRNA concentrations and gene expression levels.

10 CHAPTER 2. SIMULATION OF GENE EXPRESSION DATA

can be modeled as positive (activation) or negative (inhibition) edges. Moreover, a weight
Wi , j is assigned to edges when the strength of the interactions is depicted. A convenient
representation of gene regulatory network is through the so-called (weighted and signed)
adjacency matrix A or the even more compact list of edges (particularly advantageous due
to the huge sparsity of such networks). Therefore, in this thesis we concentrate uniquely on
the simplified model of gene regulatory networks above defined, unless otherwise specified.

2.2 Simulating the transcriptome to evaluate algo-
rithms for the inference of gene regulatory net-
works

Elucidating the structure of biomolecular networks continues to be a main challenge in
modern biology. Many algorithms have been proposed for gene regulatory network infer-
ence from gene expression data, and new ones are being proposed at a high rate. Validation
of these algorithms is of utmost importance, before they can be confidently applied to bio-
logical datasets. Simulated benchmarks provide a way to thoroughly evaluate and compare
different approaches. However, these benchmarks are useful only if the simulated data re-
alistically represents real biological data. Here, we review software that has been developed
to simulate gene expression data using gene regulatory networks for the purpose of network
inference algorithm verification. We highlight how each of these software programs incor-
porates biological realism.

2.2.1 Introduction

Living cells can be abstracted as biomolecular networks in which nodes represent biomole-
cules, such as genes, proteins and metabolites, and edges represent causal effects between
them. Gene networks are a subset of such networks, specifically focusing on the causal
regulatory effects between the expression levels of genes. Inferring such networks from
gene expression measurements is one of the main activities in modern post-genomic bi-
ology, and many algorithms for this purpose have been proposed [32, 111]. Unfortunately,
often algorithms are presented without a thorough evaluation or the results are highly bi-
ased [31, 127]. The need for unbiased evaluation of algorithms in computational biology is
now internationally widely recognized and gave rise to projects such as DREAM [111, 112]
and IMPROVER [120] (see also an international study of algorithms for gene regulatory net-
work inference from systems genetics data [44]).

Ideally, real biological data is used in benchmarking studies. However, biological net-
works are largely unknown [167]. This severely limits the use of real biological benchmarks.
For simple organisms some bronze standard networks have been defined [111], but it is not
well known how incomplete and reliable these are (hence these are called bronze standards
instead of gold standards). Only for simulated data the true complex system underlying
the data is known. Using simulated data to evaluate algorithms is a common practice in
many research areas and indeed has been widely used by the gene regulatory network infer-
ence community. Figure 2.4 demonstrates the mechanism of algorithm verification by the
DREAM project. In early papers on gene regulatory network inference dating back to the

2.2. SIMULATING THE TRANSCRIPTOME TO EVALUATE INFERENCE ALGORITHMS 11

Figure 2.4: Double-blind performance assessment of network inference methods. (A, B)
From a set of in silico benchmark networks (the so-called gold standards), steady-state and
time-series gene expression data was generated and provided as a community-wide reverse
engineering challenge. (C, D) Participating teams were asked to predict the structure of the
benchmark networks from this data. They were blind to the true structure of these networks.
(E) The submitted predictions were evaluated, blind to the inference methods that produced
them. This allowed for a double-blind performance assessment (from PNAS [112]).

year 2000, simulated data were used to evaluate the algorithms [171, 158, 46]. However, data
were simulated with the same equations as were used in the inference and/or the test net-
works were very small. While it is of course interesting by itself, to see whether the systems
underlying the data can be identified using the same model as was used for data generation,
it is more of mathematical interest than it is of biological interest. It was only in 2003 that
Mendes and colleagues suggested simulating large networks with gene expression dynamics
governed by biochemically realistic equations (e.g. displaying saturation and cooperativity)
for evaluation purposes [119]. After that, several programs have been developed with the
same goal in mind: generating biologically realistic in silico data.

Here we briefly review eight programs for gene expression simulation using gene regula-
tory networks for the purpose of inference algorithm evaluation.

12 CHAPTER 2. SIMULATION OF GENE EXPRESSION DATA

2.2.2 Gene network simulators

GRENDEL

GRENDEL [76] is an open and extensible software toolkit for the generation of random gene
regulatory networks according to user-defined constraints on the network topology and ki-
netics. It simulates the state of each regulatory network under various user-defined con-
ditions (the experimental design) and produces simulated gene expression data, including
experimental noise at a user defined level. This toolkit is distributed under a GPL license
and is written in C++. It makes use of some external library, like Boost and Xerces, which
have been included in the software sources. A concise text file with a description of how to
use this tool is provided with the sources but a more detailed description of the parameters
would be more useful.

The artificial networks generated by GRENDEL are continuous-time dynamical systems
with three independent types of molecular species: mRNA, proteins and environmental
stimuli. Generated genes can be over-expressed or knocked-out. The network generation
involves two modular steps: topology generation and kinetic parametrization. The topol-
ogy generation step defines the reagents, catalysts and products of each reaction providing
a directed graph (with exponential in-degree and scale-free out-degree nodes distribution)
where nodes represent signals and genes; in the kinetic parameterization are chosen the pa-
rameters for the linear differential equation that determine the concentration of each pro-
tein

dpi

dt
= TPi ·mi −DPi ·pi (2.1)

where pi is the protein, mi is the mRNA, TPi is the protein’s translation rate constant and
DPi is the the degradation rate constant, and each mRNA

dmi

dt
= Si (R)−DMi ·mi (2.2)

where DMi is the degradation rate constant of the mRNA, R is a vector of regulator concen-
tration and Si maps regulator concentrations to the transcript rate of gene i , reproducing
the Hill kinetics. After generating a network, GRENDEL exports it in SBML in order to easily
allow the further simulation with an external tool like COPASI [80, 118] or SOSlib [14]; the
last one is present in the software sources of GRENDEL and allows to deterministically in-
tegrating the ODEs that define the dynamical system obtaining noiseless expression data.
Simulated experimental noise can finally be added to the data according to a log-normal
distribution, with user-defined variance.

The novelty of the GRENDEL kinetic model lies in its use of more realistic parameters:
in fact, the parameter selection process begins by randomly pairing each gene in the syn-
thetic network with a real gene from S. cerevisiae; the synthetic network’s gene is assigned
the translation rate, protein decay rate, mRNA decay rate and mRNA transcription rate of
the real gene, which are available from high-throughput studies. In this way the generated
networks should behave on the same timescale as a real biological system.

2.2. SIMULATING THE TRANSCRIPTOME TO EVALUATE INFERENCE ALGORITHMS 13

SynTReN

SynTReN [170] creates synthetic transcriptional regulatory networks and produces simu-
lated gene expression data that approximates experimental data. Several user-definable pa-
rameters adjust the complexity of the resulting dataset with respect to the structure learning
algorithm. SynTReN is distributed with an academic license and is written in Java. It pro-
vides a very simple GUI with a default initial value for each parameter and offers also the
possibility of using the command line.

The data generation process is composed of three essential steps: in the first step a net-
work topology is selected from a known biological source network (E. coli or S. cerevisiae),
in the second step the transition functions and their parameters are assigned to the edges in
the network and in the third step the mRNA expression levels for the genes in the network are
simulated under different conditions. After optionally adding noise, a dataset representing
normalized and scaled microarray measurements is obtained. Generated networks cannot
be large: 400 genes is the limit. This method offers a valid alternative over generating net-
works using random graph models. However, using previously characterized transcriptional
regulatory networks as a source of synthetic network topologies implies a dependency on
available knowledge about these networks. Obviously not all the interactions are known and
some described interactions might be false positives. Moreover E. coli and S. cerevisiae net-
works might be biased towards well studied pathways.

The choice of equations based on Michaelis-Menten and Hill kinetic equations to model
regulatory interactions allows a variety of interaction types likely to occur in real biologi-
cal systems, ranging from a nearly linear behavior to very steep interactions. Although in
genuine networks all dynamic interactions are coupled, in the second step of the data gen-
eration process it has been assumed that the steady-state kinetics of the complete network
of uncoupled equations are comparable to those of the coupled set of equations. Moreover
all individual transcription rates are assumed to be in a steady-state regime. Several param-
eters controlling the gene network generation and sampling process are user-definable in
order to generate datasets of increasing level of difficulty; this allows thorough benchmark-
ing of inference algorithms, while low level parameters like kinetic parameters or enzyme
kinetic equations are automatically chosen from predefined distributions.

GeneNetWeaver

GeneNetWeaver [153] is an open source toolbox for gene subnetwork extraction, expression
data generation and performance profiling of reverse engineering methods. The software is
written in Java and can be run either as a standalone program or through a web interface
directly from the GeneNetWeaver homepage. Unlike most other gene network simulators,
GeneNetWeaver does not generate topologies from scratch, but extract subnetworks from
known biological networks, like the E. coli an S. cerevisiae transcriptional networks. Each
subnetwork is grown from a source node by iteratively selecting one of the neighbors of
the subnetwork which leads to the highest network modularity. In this way, the extracted
networks preserve important properties of the original network such as degree distribution,
network motifs and functional annotation. The subnetworks can be visualized with an em-
bedded viewer.

14 CHAPTER 2. SIMULATION OF GENE EXPRESSION DATA

Expression datasets for both mRNAs and proteins can then be generated using an ex-
tracted subnetwork as the topology for transcriptional regulations. Transcription and trans-
lation are modeled with nonlinear ODEs based on a thermodynamic approach which can
express transcription factor binding cooperativity and synergistic interaction. The resulting
system of ODEs can be integrated either deterministically or stochastically (i.e. using chem-
ical Langevin equations [67] to simulate molecular noise) to produce steady states or time
series. A wide range of experiments can be simulated, like gene knockouts, knockdowns,
and multifactorial perturbations (which mimic individual differences as small random vari-
ations in the basal activation of all genes). Various models for the measurement noise are
also implemented.

Finally, GeneNetWeaver offers some useful tools to evaluate network predictions from
inference methods, like the standard precision-recall (PR) and receiver operating charac-
teristic (ROC) curves, and a network motif analysis which profiles the performances of a
method in the inference of network motifs. The software is updated with frequent releases,
while the website features a complete user manual, a video tutorial and a bug tracker. In
summary, GeneNetWeaver is a complete and powerful suite of tools for gene network sim-
ulations which has already proven its usefulness to network inference researchers. In fact,
it has been used to generate the in silico datasets for the Network Inference challenges of
DREAM3, DREAM4 and DREAM5 competitions.

RENCO

REgulatory Network generator with COmbinatorial control (RENCO) [145] is a small com-
mand line program for the generation of gene networks and ODEs describing the corre-
sponding mRNA and protein expression dynamics. In RENCO each gene encodes for exactly
one protein, proteins interact to form protein complexes, and the transcription of each gene
can be combinatorially activated or repressed by various protein complexes. The program
can create protein interaction networks with undirected scale-free topology [26], and tran-
scriptional networks connecting proteins to genes with genes having exponential in-degree
distribution. Alternatively, both networks can be imported from tab-separated text files.

The ODE for a mRNA or a protein is, as usual, the difference between its synthesis and
degradation rates. Protein synthesis rate is directly proportional to the corresponding mRNA
concentration. For mRNAs instead, the combinatorial regulation of transcription is expressed
as a weighted sum of the contributions given by all possible combinations of protein com-
plexes regulating a gene. The contribution of each set of protein complexes is instead the
product of the activating or repressing effects due to the complexes belonging to this set.
Finally, the effect of a protein complex is modeled with a typical Michaelis-Menten kinetics,
where the substrate concentration is the product of the concentration of the proteins form-
ing the complex. RENCO writes the computed equations to an SBML file, which can then be
simulated with external software, e.g. COPASI [80, 118]. This tool has clearly some interesting
features, like the explicit modeling of protein expression and protein complexes, combinato-
rial regulation of transcription, and SBML support. Unfortunately, it is quite limited in scope
and has seen no further development after paper publication.

2.2. SIMULATING THE TRANSCRIPTOME TO EVALUATE INFERENCE ALGORITHMS 15

Netsim

Netsim [51] is a full-featured simulator of gene network topologies and gene expression data,
implemented as an R package and completely configurable with a GUI. Networks can be
generated according to the classic random, scale-free and geometric topologies, but Net-
sim offers also a novel directed hierarchical graph, called modular topology model (MTM),
which exhibits three important characteristics found in real transcriptional networks: scale-
free out-degree distribution, small-world property (i.e. low average path length), and high
clustering coefficient (independent of the number of nodes). To build an MTM network,
three flexible module structures of given average clustering coefficient are randomly repli-
cated at all levels of a hierarchical structure. The user can customize many parameters of
an MTM network like the total number of nodes, the power law exponent for the out-degree
distribution, the maximum number of nodes of modules and their average clustering coeffi-
cient.

Another original feature of Netsim is the use of Boolean fuzzy logic to express the vari-
ous types of biological interactions among the transcription regulators of a same gene. To
this intent, first the expression level of each gene regulator is normalized between 0 and 1,
then these values are randomly combined in a target function by using four rules formalizing
cooperative, synergistic, negative and competitive regulations. For example, a cooperative
effect is expressed as the minimum of the values of the gene regulators, while a negative
regulation as 1 minus the value of the regulator. Gene expression profiles are generated by
solving a system of ODEs in which the dynamics of each gene is calculated as the difference
between its transcription and degradation rates. In particular, transcription depends on the
previously described target function, optionally modulated by a sigmoidal function in or-
der to implement saturation effect and activation threshold. Initial conditions and various
equation parameters can be defined by the user. A few experimental setups can also be sim-
ulated, like gene knockouts and external stimuli to genes.

After running a simulation, the gene network structure can be visualized as a graph, and
the expression time series can be easily plotted. Netsim is undoubtedly a complete and user-
friendly package which, beyond the standard features, also pushes the state of the art with
the new MTM topology and the use of fuzzy logic for regulatory interactions.

GreenSim

GreenSim [60] generates large, genome-size networks with biologically realistic structural
characteristic and second order nonlinear regulatory functions. GreenSim, distributed un-
der a GPL license, is a collection of MATLAB functions, so it works within all operating sys-
tems that support MATLAB. Unfortunately it lacks a GUI, and the employment of the scripts
is not immediate for an inexperienced MATLAB user. On the other hand, a manual is pro-
vided. Its most important functions are genNetwork.m and genSample.m. The first func-
tion generates directed networks characterized by exponential in-degree and scale-free out-
degree node distributions. This is done by a novel generative method based on half-edges.
Moreover, nodes are modularly distributed in the network. The network structure includes
cycles and the following motifs: auto-regulatory, cascade, convergence, feed-forward. Such
motifs are over-represented in gene regulatory networks compared to random graphs with

16 CHAPTER 2. SIMULATION OF GENE EXPRESSION DATA

the same degree distributions. Generated networks can be quite large (more than the stated
104 nodes). The user can set the size of the network and the only parameter in the exponen-
tial distribution. No other algorithms to generate networks are offered to the user.

Gene expression data are produced by genSample.m through a nonlinear second order
set of functions. In fact, the gene expression is updated as:

Y (t +1) = Y (t)+ f (Y (t)) = Y (t)+A · (Y (t)−T)+ε (2.3)

where A is a weighted adjacency matrix that specifies the functional relationships of genes as
linear differential equations, T represents the base expression level for mRNA degradation,
and ε is the biological noise. The user can only specify the maximum regulatory influence
that genes can have on others (i.e. the weights in A), and the standard deviation of the Gaus-
sian noise. The outputs are the simulated time series for each gene of the network. Simula-
tion is extremely slow when using nonlinear dynamics for large networks, probably because
the code is not optimized. GreenSim, as already said, can simulate the biological (value)
noise. Moreover, it can take into account the spot noise (when a time point in a time series
is missing) and the span noise (a contiguous subset of time points is missing) issues. This
is quite realistic since mRNA measurements are frequently somehow lost or missing. More-
over, GreenSim provides a set of functions to calculate the network statistics, to save and
load GreenSim data, and to write data to text file. Finally, scripts are provided to assure that
networks and samples are good enough (but they obviously slow down the performances).

GeNGe

The web application GeNGe [72] is a framework for the automatic generation of gene regu-
latory networks that can be used as valid benchmarks for reverse engineering methods. The
user can select amongst several network topologies. Moreover, they can load their own net-
work, create a new one, or modify an existing one. This is relevant for comparing the network
behavior when the topology is slightly modified. Then, the user selects the kinetic for mRNA
transcription, mRNA degradation and protein degradation. Finally, the user selects whether
to perform global and/or local perturbations, as noise, single or multiple knockdowns with
custom degree of knockdown (from 0% to 100%). Other parameters that can be set are the
initial value of the variables and the kinetic parameters (singularly for each gene). The sim-
ulation is then executed and data (network, time series of mRNA and proteins, simulation
and kinetic parameters, report file) can be downloaded.

Unfortunately the software is not downloadable, and computational performances can-
not be compared to those of other simulation software. The web application is neat and
user-friendly, but it reacts a bit slowly to users’ actions. Moreover, after the simulation starts,
it is not clear when the results are ready and how much time is needed to perform the calcu-
lations. It is also unclear whether the application is still maintained and/or supported.

SysGenSIM

SysGenSIM [136] is a software package to simulate systems genetics experiments in model
organisms, for the purpose of evaluating and comparing statistical and computational meth-
ods and their implementations for analyses of systems genetics data (e.g. methods for ex-
pression quantitative trait loci (eQTL) mapping and network inference). SysGenSIM allows

2.2. SIMULATING THE TRANSCRIPTOME TO EVALUATE INFERENCE ALGORITHMS 17

the user to select a variety of network topologies, genetic and kinetic parameters to simu-
late systems genetics data (genotyping, gene expression and phenotyping) with large gene
networks with thousands of nodes. The effects of the genotypes on the gene expression dy-
namics is modeled with special parameters as thoroughly explained later in Section 3.6.

In addition to systems genetics data, SysGenSIM can simulate experiments according to
a systematic single-gene knockout screen, and has recently been extended to simulate data
for differential networking. The software is encoded in MATLAB, and a user-friendly graphi-
cal interface is provided. SysGenSIM is available for download [16].

SysGenSIM can easily generate data for very large networks: in fact, due to a highly ef-
ficient implementation to solve for steady states, The software is able to generate data with
networks of 10000 nodes with the nonlinear dynamical model (about two minutes per steady
state using a single 2.5GHz core). This is because SysGenSIM decomposes the network into
acyclic and cyclic parts. Then, it solves for steady-state values of genes in the acyclic parts
analytically very quickly, and only deal with the genes in the cyclic components numeri-
cally by using the function ode45 in MATLAB. The decomposition of the network in acyclic
and cyclic components increases the computational efficiency substantially, because cyclic
components usually make up a relatively small part of biological networks [107, 108].

2.2.3 Discussion

Here, we reviewed the available software programs to simulate gene expression data for gene
regulatory network inference algorithm evaluation. We highlighted the pros and cons of each
of these tools, and we put emphasis on the biological realism of the data. Obviously, it is im-
possible to take into account each and every detail of true data, but we have seen how these
programs advanced upon earlier simulations. Much could be further improved.

Topological properties of the networks can be perfectioned by including as many as the
properties observed in real biological networks. It has been observed that gene regulatory
networks have scale-free out-degree and exponential in-degree distributions. Also it has
been observed that biological networks are highly modular. Many other topological fea-
tures of biological networks are known, which could be incorporated in the benchmark net-
works [131].

Distributional properties of simulated gene expression data can be improved as to match
better the ones that are observed in real data. It has been observed that gene expression
means and variances distribute roughly according to a power law. Benchmark datasets could
be approved by being generated with similar distributions. Figure 2.5 shows some distribu-
tions for real data of Arabidopsis thaliana (left) and their counterparts in data simulated with
SysGenSIM (right). As can be seen, the distributions match quite well. Still, parameter values
could be adjusted to improve the match. An interesting recent paper proposes a kind of Tur-
ing test for simulated gene expression data [110]. The authors suggest certain measures and
tested them for three of the above described simulators. Figure 2.6 shows the results of their
comparison with E. coli and S. cerevisiae gene expression data. In addition of the properties
listed in Figure 2.6 for the Turing test, there are lots of additional possibilities. Simulated
benchmarks should always pass these tests as much as possible for them to be useful in ge-

18 CHAPTER 2. SIMULATION OF GENE EXPRESSION DATA

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

10
3

10
4

Values

F
re

q
u
e
n
c
y

Gene expression distributions

Expression values

Variances

Means

Figure 2.5: Distributions of the gene expression values, means and variances. Comparison
between real A. thaliana measurements (left, from [180]) and data simulated with SysGen-
SIM (right).

Figure 2.6: Overview of tested properties and corresponding areas of expression data anal-
ysis. Expression analyses were performed to compare four real and three in silico expression
compendia. For each type of analysis, figures in [110] use in silico data of a different simu-
lator. Additional analyses were performed across all simulators, and corresponding results
are shown in the heat map on the right. In the heat map, different analyses (rows) compare
various pairs of E. coli and S. cerevisiae datasets based on histogram overlaps. The heat map
depicts the extent to which dataset properties are shared across compendia. Overlaps are
shown in units of row-wise standard deviation. In case of the three simulators, the average
overlap to the four real expression compendia is shown (from [110]).

2.2. SIMULATING THE TRANSCRIPTOME TO EVALUATE INFERENCE ALGORITHMS 19

nomic research.

With this review we hope to have given the reader a better idea of which simulator to
choose for evaluation studies. We think that it is probably the best to use more than one and
test algorithms on a variety of simulated data. Several internationally used benchmarks are
already available, such as the ones of the DREAM, simulated with GeneNetWeaver [8], and a
suite of benchmarks generated with SysGenSIM [15].

Chapter 3

Simulating systems genetics data
with SysGenSIM

SysGenSIM is a software package, presented in [136], originally intended to simulate systems
genetics experiments in model organisms, for the purpose of evaluating and comparing sta-
tistical and computational methods and their implementations for analyses of systems ge-
netics data, as e.g. methods for expression quantitative trait loci (eQTL) mapping and net-
work inference. SysGenSIM allows the user to select a variety of network topologies, genetic
and kinetic parameters to simulate systems genetics data (genotyping, gene expression and
phenotyping) with large gene networks with thousands of nodes. The software is encoded in
MATLAB, and a friendly graphical user interface is provided.

3.1 Introduction

The central goal of systems biology is to gain a predictive, system-level understanding of bi-
ological networks. This entails inferring causal networks from observations on a perturbed
biological system. An ideal experimental design for causal inference is randomized, multi-
factorial perturbation [58]. The recognition that the genetic variation in a segregating pop-
ulation represents randomized, multifactorial perturbation [84, 85] gave rise to genetical
genomics and systems genetics, where a segregating or genetically randomized population
is genotyped at (many) DNA variants, and is profiled for (disease) phenotypes of interest,
genome-wide gene expression and potentially other omics variables (epigenomics, micro-
RNA expression, proteomics, metabolomics, etc.). Systems genetics experiments and stud-
ies enable us to elucidate the genetic control of gene expression (and other omics vari-
ables) [35, 89, 150], to annotate DNA polymorphisms implicated in previous genome-wide
association studies (GWAS) for particular diseases and to infer key control genes and path-
ways causally underlying a disease or biomedical trait of interest [143, 148].

Many statistical and computational methods are being developed for the analysis of sys-
tems genetics data. An important component of any systems genetics analysis is the quan-
titative trait locus (QTL) mapping of all expression traits (etraits) and other omics traits if
available. It is well known that the etraits of groups of genes share common regulators (DNA

21

22 CHAPTER 3. SIMULATING SYSTEMS GENETICS DATA WITH SYSGENSIM

variants), which are more easily identified when associated with a group of etraits rather
than with individual etraits. Several approaches to associating DNA variants with groups of
etraits have recently been proposed, e.g. [38, 97, 130, 173, 185]. A major goal of systems ge-
netics studies is to reconstruct a causal network whose nodes are the phenotypes, the etraits
(and potentially other omics variables) and the DNA variants. Methods proposed to achieve
this goal include Bayesian networks [186], differential equation models [23, 46], structural
equation modeling [101, 103] and undirected dependency graph or co-expression network
with edge orientation using DNA variants as causal anchors [21, 126]. While multiple meth-
ods for QTL mapping of etraits (omics variables) and for causal network inference are avail-
able, at the present time not much is known about the strengths and weaknesses of all of
these proposed methods and whether or when some methods perform better than others.
However, researchers increasingly realize that thorough verification of algorithms in bioin-
formatics and (genetical) systems biology is required. In fact, several international compe-
titions are organized on an annual basis to compare computational methods for systems
biology and genetic analysis. These include the Dialogue for Reverse Engineering Assess-
ments and Methods (DREAM) project with its reverse-engineering challenges [17, 164, 165],
for which SysGenSIM has been used to produce the systems genetics challenges in 2010,
and the Genetic Analysis Workshops [9, 40], which compare analysis tools relevant for cur-
rent analytical problems in genetic epidemiology, statistical genetics and genetical systems
biology.

The availability of realistically simulated (artificial) datasets, which are generated under
a set of assumptions most relevant to real systems genetics data, is of utmost importance
for the verification of algorithms for systems genetics data analysis. Several systems ge-
netics papers use simulations which are typically simplistic and not general, e.g. [103, 185,
186]. Other more general software packages have been developed for simulating gene ex-
pression data with network models for gene network inference algorithm evaluation (e.g.
ABIOCHEM [119], GeneNetWeaver [114, 153] and Ingeneue [117]), but experimental designs
are restricted to time-series and steady-state measurement after environmental or kinetic
parameter perturbations, and single-gene perturbation experiments. These and other exist-
ing packages do not permit the simulation of systems genetics data, in particular the inte-
gration of DNA variation, transcriptomics, epigenomics, etc. This is the reason why we have
developed and continue to develop SysGenSIM to simulate systems genetics data.

The above features are still maintained in the current release of the software, and are
moreover supported by the newly implemented capability of reproducing experimental per-
turbations, i.e. single-gene knockout, knockdown, and over-expression experiments. Such
data can be of great use for the evaluation of algorithms for the inference of gene networks,
as demonstrated in [134, 132, 160, 44] where our in silico data turned out as valuable bench-
marks for testing the developed inference algorithms. Moreover, thanks to an ongoing col-
laboration with the Virginia Bioinformatics Institute, the simulation of gene expression data
given real or in silico human genotypes is being currently implemented in SysGenSIM. The
produced datasets are used to develop analysis techniques for explaining the genetic basis
of variation in complex traits.

The software is presented as a MATLAB toolbox complete with a graphical user inter-
face, that has been recently updated from one large window into six compact panels, each

3.2. NETWORK TOPOLOGY 23

dedicated to a particular section of the simulation process:

I selection of the simulation type, and number of total runs;

I generation of the gene network;

I definition of the genetic experiments;

I definition of the gene perturbation experiments;

I selection of the model parameters;

I selection of the output files and figures.

The first panel allows the user to select the desired simulation type between the two pos-
sible choices systems genetics and experimental perturbations. Moreover, the num-
ber of replicates of the entire experiment can be augmented in order to replicate the simu-
lation (from the network generation to the output selection) a desired number of times by
keeping the same configuration of SysGenSIM settings. This feature allows the user to e.g.
simulate similar datasets in order to verify and reproduce the result of a certain analysis per-
formed on the data.

3.2 Network topology

The precise topological structure of genotype-gene-phenotype networks is largely unknown.
Multiple studies (protein interaction, metabolomic, transcriptomic, etc.) provide evidence
for topologies that are scale-free, hierarchical and modular. Many algorithms to generate
(or grow) networks in silico have been proposed, each reproducing particular characteristics
observed in biomolecular networks (such as clustering, degree distributions, motif occur-
rences, etc.), but none can generate networks displaying all observed topological properties
simultaneously.

SysGenSIM provides the users with several choices to generate directed gene networks,
including the following topology models:

I random [56] and random acyclic, with equiprobable edge directions;

I scale-free [25], with hub’s edges generally directed outward; these networks are gen-
erated by sampling the out-degree sequence from a power law, and then randomly
connecting the nodes;

I small-world [179], with user-specified rewiring probability;

I EIPO, which stands for exponential in-degree and power law out-degree distributions,
which is of particular interest as these distributions have been observed in real gene
networks [70]; these networks are generated by sampling the in- and out-degree se-
quences from the distributions of interest and subsequently the nodes are connected
according to their degrees;

I EIPO modular, which is similar to the EIPO but consists of modules (genes clustered
into densely connected components) which is also an often observed property of bio-
logical networks [26, 75]; these networks are created by generating a number of EIPO

24 CHAPTER 3. SIMULATING SYSTEMS GENETICS DATA WITH SYSGENSIM

modules and then by connecting them through edge rewiring (with a probability spec-
ified at parameter rewiring probability);

I random modular, which are generated in the same way, but starting with random
modules instead of EIPO modules.

SysGenSIM also allows the user to input the network structure as inferred from an actual
dataset in the form of a (signed) edge list, e.g. to reproduce the gene expression of a real net-
work under particular experimental settings.

Moreover, the users can select from the graphical user interface (see Figure 3.1) the pa-
rameters to specify:

I the size of the network, i.e. the number of nodes (genes);

I the average degree, i.e. the average number of neighbors of a node in the networks.
For the modular networks, a single, average degree common for all the modules can
be specified, or an array of average degrees, one entry for each module of the network;

I the signs of the edges, determining which regulatory effects are activating or inhibit-
ing;

I the sign probability, i.e. the probability for an edge to have a positive sign;

I the module sizes, applicable only when a modular topology has been selected;

I the rewiring probability, i.e. the probability of rewiring edges after the initial cre-
ation of a regular ring lattice [68].

Figure 3.1: Gene network panel from SysGenSIM’s graphical user interface.

3.3. PHENOTYPE DATA 25

3.3 Phenotype data

The user can select one or more continuous macroscopic phenotypes which will be added
as nodes to the gene network (see the lower part of Figure 3.1). As genes can be causal or
reactive to the phenotype(s) [149], the user can select the number of genes which directly af-
fect a phenotype and the number of genes which are directly affected by a phenotype. Inputs
and outputs of the phenotype node are randomly selected from the gene network. Currently,
a phenotype is modeled with Equation 3.1 where its expression nonlinearly depends on its
input genes and additional biological variability.

3.4 Genetic data

In terms of the type of the segregating population of individuals for which the systems ge-
netics data are generated, SysGenSIM is currently limited (see Figure 3.2) to an inbred line
cross commonly employed in real systems genetics experiments in model organisms (e.g.
mouse) and plants: Recombinant Inbred Lines (RIL) created by selfing or brother-sister
matings from two inbred parental lines.

Figure 3.2: Genotype panel from SysGenSIM’s graphical user interface.

In an RIL population, each DNA variant has two genotypes. SysGenSIM simulates geno-
type data at all functional (gene) and measured (marker) DNA variants according to a ran-
domly generated genetic map based on user-specified parameter values (e.g. chromosome
number, number of genetic markers per chromosome with constant or normally distrib-
uted pair-wise distance among DNA variant locations in centimorgan1) or based on a

1A centimorgan (cM) is a unit used to measure genetic linkage. One centimorgan equals a 1% chance that

26 CHAPTER 3. SIMULATING SYSTEMS GENETICS DATA WITH SYSGENSIM

Table 3.1: Example of user-defined genetic map.

Chromosome Markers cM
C1 M1 M2 5.1
C1 M2 M3 4.9
C1 M3 M4 3.5
.
C2 M21 M22 4.9
C2 M22 M23 7.2
.

C21 M2341 M2342 1.1
C21 M2342 M2343 3.7
.

C21 M2507 M2508 3.9

(real) map provided by the user (e.g. in Table 3.1). The user can choose between the mapping
functions of Haldane [73] or Kosambi [93] to convert map distances to recombination rates
in the generation of genotypes at linked loci. The user can choose between placing one
marker in perfect linkage with each functional polymorphism (in this case the number of
markers is equal to the number of genes, i.e. the network size) or generating a (sparser)
marker map first and then placing functional variants randomly throughout the genome (at
minimum distance of 100 kb; see Section 3.7).

With regards to human data, SysGenSIM can now simulate gene expression data when
provided with an appropriate heterozygous genotype matrix, e.g. produced by [182].

3.5 Experimental perturbations

Experiments in which the expression of some genes is perturbed can be simulated by Sys-
GenSIM. In particular, the available experimental perturbations are:

I knockout, where nko experiments (each involving a different gene) simulating single-
gene deletions are performed;

I knockdown, where nkd experiments (each involving a different gene) simulating single-
gene knockdown are performed;

I over-expression, where noe experiments (each involving a different gene) simulat-
ing single-gene over-expressions are performed;

I mixed perturbations, where ntot = nko +nkd +noe single-gene experiments of the
three types above are performed.

The multiplicative coefficients (see Section 3.6) that affect the expression of the perturbed
genes are sampled from a uniform distribution defined by the user-defined intensity range.

a marker on a chromosome will become separated from a second marker on the same chromosome due to
crossing over in a single generation.

3.6. GENE EXPRESSION DYNAMICS 27

Genes undergoing systematic perturbations can be selected according to four choices:

I all genes, where all the n genes of the network are subjected to the selected pertur-
bation;

I only TFs, where only the genes with at least one outgoing edge (transcription factors)
undergo the selected perturbation;

I by percentage, where only a certain proportion (from 0 to 100%) of genes withstands
the selected perturbation;

I by indexes, where only the specified genes (according to their indexes chosen from
{1,2, . . . ,n}) will be subjected to the selected perturbation.

The above settings allowed us to simulate the datasets used to assess the performance of our
inference algorithms for the DREAM challenges, and might then be useful to perform similar
analyses for the development of techniques for the identification of gene networks.

3.6 Gene expression dynamics

Steady-state gene expression traits are simulated for a population of individuals, based on a
gene network topology and the individuals’ genotypes at a set of genome-wide DNA variants,
using nonlinear ordinary differential equations (ODEs). The rate law used in SysGenSIM for
transcription is not based on any explicit biochemical mechanism, but it displays two main
features of biochemical kinetics: saturation and cooperativity [119]. We assume that mRNA
decay is a first order process. The ODE for gene i is:

dGi

dt
= Z c

i ·Vi ·ϑsyn
i · ∏

j∈Ri

1+ A j ,i

G
h j ,i

j

G
h j ,i

j + (K j ,i /Z t
j)h j ,i

−λi ·ϑdeg
i ·Gi (3.1)

where Gi is the mRNA concentration of gene i , Vi is its basal transcription rate and λi is the
degradation rate constant. The G j are the mRNA concentrations of genes j ∈Ri which have
directed edges into node i , i.e. Ri is the set of regulators of gene i . K j ,i is a Michaelis con-
stant (representing the concentrations of input gene j at which its effect on the transcription
rate of gene i is half of its maximum effect), h j ,i is a cooperativity coefficient and A j ,i is an
element of matrix A encoding the signed network structure (A j ,i = −1 for inhibitor, A j ,i = 1

for activator, A j ,i = 0 for no effect). The parameters ϑsyn
i and ϑdeg

i represent non-genetic in-
ternal biological noise in the transcription and degradation rates, respectively; their values
are sampled from normal distributions with mean 1 and user-specified standard deviations
prior to the calculation of each steady state. Z c

i and Z t
j are parameters which incorporate

effects of DNA variants (see Section 3.7 for details). After generating a network topology
(Section 3.2), the nonlinear equations are formulated according to this topology, encoded
in matrix A. Kinetic parameters Vi , K j ,i , h j ,i and λi are initialized by sampling values from
certain distributions2 to generate a set of base parameter values, i.e. the genetic background
of the organism. The gene expression variability among individuals in the population results

2Uniform, (truncated) Gaussian or Gamma with default or user-specified parameter values.

28 CHAPTER 3. SIMULATING SYSTEMS GENETICS DATA WITH SYSGENSIM

from different genotypes (values of the Z c
i and Z t

j parameters) and additional biological fluc-

tuations (represented by the noise parameters ϑsyn
i and ϑdeg

i).

After setting the values of all parameters Z c
i and Z t

j according to the genotypes of an in-

dividual in the population, a value for the biological noise terms ϑsyn
i and ϑ

deg
i is sampled,

and the steady-state mRNA concentrations are calculated. This process is repeated for all in-
dividuals in the population. Finally, normally distributed multiplicative experimental noise
is added to each mRNA concentration at a user-specified level, resulting in a set of expres-
sion values for all genes in the system and all individuals. The values for parameters ϑsyn

i

and ϑ
deg
i , and the experimental noise level can be chosen such that the distribution of es-

timated heritabilities of the etraits3 is close to those found in real data. For example, in our
previous work [103] the simulated expression traits had an average heritability of 56%, close
to what was observed in a yeast systems genetics experiment [33]. Due to a highly efficient
implementation to solve for steady states, SysGenSIM is able to efficiently generate data with
networks of 10000 nodes with the nonlinear dynamical model (∼ 2 minutes per steady state
using a single core of an AMD Opteron X2380 QuadCore, 2.5 GHz). This approach will be
described in detail elsewhere, but essentially we solve for steady-state values of genes that
are not involved in any cycle very quickly and analytically, while we only deal with the cyclic
components of the network numerically by using the function ode45 in MATLAB. The de-
composition of the network in acyclic and cyclic components increases the computational
efficiency substantially, because cyclic components usually make up a relatively small part
of biological networks [107, 108].

3.7 Genotype effects on expression dynamics

We currently assume that each gene in the network has a single functional DNA variant. The
variant is located either in the gene’s promoter region affecting its own transcription rate
(cis-variant with, for example, Z c

i = 1 for one genotype and Z c
i = 0.75 for the other; reduced

Z c
i reflects a less efficient transcription process), or in the coding region of a regulatory gene

altering the strength of its regulatory effect (trans-variant for which a reduced Z t
j reflects a

less potent inhibitor/activator). Promoter variants modify the kinetics of recruitment of the
transcriptional machinery to the promoter sequence, which affects the efficiency of tran-
scription, so a change in Z c

i results in a change of the basal transcription rate of Gi . A trans-
effect occurs through changes in the kinetic properties of the product of the gene containing
the polymorphism in its coding region.

Because we do not explicitly include proteins in our networks, we model these kinetic
changes by their effect on the transcription rates of the target genes, by altering their Michaelis
constant. The protein products of allelic variants of G j may have reduced or increased
strength through adjustment of Z t

j . The probabilities of a locus acting in cis or in trans can

be set by the user, as well as the allelic values of Z c
i and Z t

j .

3Steady-state variances simulated without biological (ϑsyn
i andϑdeg

i) and experimental noise divided by the
steady-state variances simulated with these noise terms.

3.8. OUTPUT FILES AND FIGURES 29

0 5 10 15
10

0

10
1

10
2

10
3

Log−Lin node in−degree distribution

In−degree

F
re

q
u
e
n
c
y

Average in−degree = 2.48

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Log−Log node out−degree distribution

Out−degree

F
re

q
u
e
n
c
y

Average out−degree = 2.48

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

10
3

Values

F
re

q
u
e
n
c
y

Gene expression distributions

Expression values

Variances

Means

Figure 3.3: Some of the output figures produced by SysGenSIM. Network node in- and out-
degree distributions (left) and simulated gene expression distributions (right).

3.8 Output files and figures

SysGenSIM’s users can select which simulated data output to file or figure. As an example,
genotype, gene expression and phenotypematrices can be produced. The network struc-
ture can be output by selecting edge list, and the genetic map can be selected as output
as well. A Pajek network file [27] can be produced to visualize the network and perform
some network analyses. The module list contains lists of genes pertaining to each module.
The topological properties file provides some standard topological information, for ex-
ample the in- and out-degree of each node, the network component each node belongs to
(strongly connected, in- or out-component, tendrils or tubes) and other indexes.

In genotype information all the available information about the DNA variants is pro-
vided, including the chromosome number and location, and for functional variants the trans
or cis status, the value of the corresponding Z parameter and which genotype (parental ori-
gin) was assigned the Z = 1 value. The perturbation list enumerates the experiments,
described with their perturbation type and involved gene. Finally, the simulation summary
file contains the chosen values of all simulation parameters, to eventually later reproduce a
similar simulation.

The distributions of in- and out-degree and of gene expression (see Figure 3.3) are
some of the output figures produced by SysGenSIM, together with the distributions of the
kinetic parameters, of heritability, and the gene-gene correlations.

3.9 Future development

SysGenSIM is a work in progress with many possible future developments. Of highest pri-
ority are improvements to the simulation of the continuous phenotype nodes (e.g. realistic
heritabilities, numbers and sizes of QTLs, numbers of causal and reactive modules), the in-
clusion of discrete (disease) phenotype data, and extensions of the simulation of genotype
and steady-state data to other types of inbred line crosses and to human cohorts and case-

30 CHAPTER 3. SIMULATING SYSTEMS GENETICS DATA WITH SYSGENSIM

control designs.

To keep pace with recent and future real systems genetics experiments and studies, we
plan to extend the simulation of genotype data from bi-allelic DNA variants (single nucleotide
polymorphisms) to copy number variation and to incorporate epigenomics data (e.g. DNA
methylation sites) and microRNAs into the gene networks. Given the general systems ge-
netics simulation methodology described in this article and the existence of simulators for
genome-wide association studies (HapSample [182] and genomeSIMLA [53]), these exten-
sions are actually quite straightforward.

Furthermore, to ensure that the simulated data display known characteristics of real sys-
tems genetics data, such as distributions of means, variances and heritabilities of etraits and
correlations among etraits, we will continue to estimate the values of such parameters from
real systems genetics data and utilize the results from similar studies in the literature. Fi-
nally, we continue to implement additional topology models for the generation of gene net-
works (with emphasis on hierarchical modularity and scale-free out-degree and exponential
in-degree distributions).

Chapter 4

Benchmark datasets

Datasets produced by SysGenSIM has been employed as benchmarks for the assessment of
network inference algorithms in international challenges (DREAM and StatSeq initiatives in
Sections 4.1 and 4.2) and for the testing and development of in-house methodologies pre-
sented in scientific journals (see Chapters 6, 7 and 8 for details about the techniques and
their performances).

4.1 DREAM5 Systems Genetics challenge dataset

DREAM is the acronym for Dialogue for Reverse Engineering Assessments and Methods, an
international initiative whose objective is “to catalyze the interaction between experiment
and theory in the area of cellular network inference and quantitative model building in sys-
tems biology” [17]. We were invited to organize the DREAM5 Systems Genetics challenge,
whose goal is the creation of models with biological interpretation, i.e. reverse-engineering
gene networks from systems genetics data.

From previous DREAM challenges, especially both the DREAM3 [138, 112] and DREAM4
In Silico Network challenges, it has become unambiguously clear that systematic perturba-
tions (e.g. experimental gene knockouts and knockdowns) and measurements of responses
greatly contribute to establish the directed structure of gene networks. However, large scale
systematic knockouts may be unrealistic or unfeasible for many cell types and even impos-
sible for some organisms. Systems genetics experiments, as considered here, could provide
an alternative. In systems genetics [85], in fact, a segregating or genetically randomized pop-
ulation is genotyped for many DNA variants, and profiled for phenotypes of interest, gene
expression, and potentially other omics variables (e.g. protein expression, metabolomics,
DNA methylation; see Figure 4.1).

Genetic polymorphisms, which are naturally present in populations, act as multifactorial
genetic perturbations that could be used to elucidate causal links between genes. For exam-
ple, if the mean expression levels of gene B are significantly different between two groups
of individuals, one with one genetic variant of gene A and the other with another genetic
variant of gene A, this observation is highly indicative for a causal regulatory effect A → B .

31

32 CHAPTER 4. BENCHMARK DATASETS

Figure 4.1: Diagram for quantitative trait loci (QTL) analysis. Expression profiling in com-
bination with molecular marker analysis of a segregating population makes it possible to use
QTL analysis for identification of influential genes and gene products (from [85]).

Recently, multiple approaches have been applied to systems genetics data in order to eluci-
date gene networks; see [143].

4.1.1 Simulation of genotype and gene expression datasets

Due to the lack of a reliable experimentally determined gold standard network, this chal-
lenge is based on synthetic systems genetics data [103] simulated with SysGenSIM [136]
through the dynamical model described in Equation (3.1). We set the values of parame-

ters Z c and Z t to either 1 or 0.75 depending on the binary genotype value. ϑsyn
i and ϑ

deg
i

represent fluctuations in the transcription and degradation rates, respectively, and are sam-
pled from a normal distribution before the calculation of the steady state. All other pa-
rameters remain fixed throughout the generation of a dataset: for simplicity we have set
Vi = K j i = λi = 1. The value of cooperativity coefficients h j i is set to 1, 2 or 4 with probabili-
ties 0.6, 0.3 and 0.1, respectively.

In these simulations we consider data from Recombinant Inbred Lines (RILs), i.e. a set of
homozygous lines derived from a cross between two genetically diverse inbred parent lines,
through inbreeding for multiple generations. Each of these RILs is homozygous for the allele
of one of the parents, and each RIL has inherited different combinations of parental alleles:
the RILs constitute a genetically randomized population. In other words, the gene expres-
sion pattern of each RIL is the result of a different multifactorial genetic perturbation.

We proposed three sub-challenges, each with 5 different networks, and each network
with different RIL populations of size: p = 100 (sub-challenge 1), p = 300 (sub-challenge 2)
and p = 999 (sub-challenge 3). The genotyping and gene expression challenge data for the
in silico RILs populations have been produced under these assumptions:

4.1. DREAM5 SYSTEMS GENETICS CHALLENGE DATASET 33

I a set of 15 gene networks with size n = 1000 were generated with modular EIPO topol-
ogy, and the dynamical model was defined according to each network structure;

I for each of the networks we generated the genotypes of a population of p RILs, where
each RIL is represented as a vector of binary genotype values (0/1), one for each of
1000 homozygous genes;

I for all networks, 20 chromosomes with 50 genes each were considered. The 0/1 values
in the genotype vectors for each RIL were sampled with correlations between adjacent
positions on the chromosomes (mimicking the genetic linkage phenomenon); no rela-
tionship between network positions of genes and their locations on chromosomes was
assumed;

I each gene was assumed to have a single (functional) genetic variant, either in the
gene’s promoter region (leading to a cis-effect on its expression rate) with probability
0.25 or in the gene’s coding region (leading to trans-effects on its targets) with proba-
bility 0.75;

I steady state gene-expression levels for all RILs were calculated after adjusting the Z
parameters according to the corresponding genotype vector, and setting the values for

ϑ
syn
i and ϑdeg

i ;

I simulations were performed using the set of deterministic ordinary differential equa-
tions (3.1);

I finally, simulated experimental noise was added to the steady state values.

For each network we provided two files, i.e. the n × p matrices of gene expression and of
genotype values. These data are still available for download at [15].

4.1.2 Predictions and scoring metrics

The DREAM5 Systems Genetics challenge is aimed at identifying the best approaches for
gene network inference from systems genetics data for varying sample sizes, in particular
considering the p ¿ n problem where the number of observations p (number of RILs) is less
than the number of variables n (number of genes).

In order for this challenge to yield light on the performance of the algorithms under dif-
ferent data sizes, participants were strongly encouraged to submit predictions to the three
sub-challenge. However, predictions to only one or two of the three sub-challenges were ac-
cepted. Participants were required to submit their predictions for each network, i.e. a ranked
list of directed regulatory interactions A → B ordered according to the assigned confidence,
from the most reliable (first row) to the least reliable (last row) prediction.

The results were scored using the area under the Precision versus Recall (PR) curve for
the whole set of link predictions for a network. For the first k predictions (ranked by score,
and for predictions with the same score, taken in the order they were submitted in the pre-
diction files), precision is defined as the fraction of correct predictions to k, and recall is the
proportion of correct predictions out of all the possible true connections. Also the area un-
der the Receiver Operating Characteristic (ROC) curve was evaluated. The precise scoring
system is described in [165]. Teams were ranked according to their overall performance over
the five networks of each challenge.

34 CHAPTER 4. BENCHMARK DATASETS

4.2 StatSeq benchmark dataset

In this section, the in silico systems genetics dataset, used as a benchmark in [44], is de-
scribed in detail, in particular regarding its simulation by SysGenSIM. Morever, the algo-
rithms underlying the generation of the gene expression data and the genotype values are
fully illustrated.

The presented benchmark dataset is meant to be used for training and evaluating algo-
rithms and techniques for the inference of networks from systems genetics data. The goal is
to find which methodologies exhibits the best overall network inference performance, and to
analyze their performances under particular conditions (i.e. population size, large or small
marker distances, high or low heritability, network size).

Section 4.2.1 describes how the dataset has been generated by means of SysGenSIM1,
a MATLAB toolbox for simulating systems genetics experiments in model organisms [136].
Detailed information is provided about the topology of the gene networks and the settings of
the simulator used to produce the genotypes and the gene expression data. In Section 4.2.2,
the algorithms employed to obtain the networks and genetic data are thoroughly explained.

4.2.1 Description of the systems genetics dataset

The Systems Genetics benchmark is a collection of 72 in silico datasets generated from nine
artificial gene networks of different size. In the following, details on the in silico networks
and on the configurations of SysGenSIM employed to produce the data are provided.

In silico networks

The systems genetics experiments have been simulated using nine different artificial gene
networks. These networks have been generated using SysGenSIM with parameters chosen
to produce the following topological properties:

I three networks for each of the sizes n = {100,1000,5000}, in the following referred to
with the self-explanatory labels 100-{1,2,3}, 1000-{1,2,3}, and 5000-{1,2,3};

I exponential in-degree and power law out-degree (EIPO) distributions for the nodes;

I average node degree2 K ' 6;

I size of the largest strongly connected component (subnetwork) equal to at least 20%
of the network nodes (n = 100), 15% (n = 1000), and 10% (n = 5000).

Some other topological characteristics of the nine networks are summarized in Table 4.1,
where for each of the networks the number of edges, the size of the largest strongly con-
nected component (LSCC), the number of nodes in the in- and in the out-components3,

1SysGenSIM 1.0.2, version released on May 8th, 2012. More information is available in the online manual
at [16] or in Chapter 3.

2The average number of both ingoing and outgoing edges for a node: K = Kin +Kout.
3Respectively, all the nodes from which the LSCC is reachable and that are not reachable from the LSCC,

and all the nodes reachable from the LSCC but from which the LSCC cannot be reached.

4.2. STATSEQ BENCHMARK DATASET 35

Table 4.1: Topological characteristics of the in silico networks.

Size Network label Edges LSCC In- Out- Tendrils Tubes
100 100-1 285 21 25 18 30 6
100 100-2 304 26 7 63 4 0
100 100-3 296 34 9 57 0 0

1000 1000-1 3149 165 71 660 96 8
1000 1000-2 2881 162 58 648 108 23
1000 1000-3 3038 150 106 563 158 23
5000 5000-1 14678 528 224 3498 657 93
5000 5000-2 15672 526 233 3580 595 66
5000 5000-3 15270 598 231 3660 480 31

LSCCIN-component OUT-component

Disconnected components

Tubes

Tendrils

Tendrils

Figure 4.2: Model representing the topology of the artificial networks.

and the number of nodes amongst tendrils4 and tubes5 are shown. Network 1000-2 has one
isolated node. Figure 4.2 shows a representation of such network topology.

Simulation of datasets

In order to provide a wide range of scenarios, datasets were simulated by combining the nine
topologies with eight different parameter settings for a total of 72 datasets. The eight param-
eter settings resulted from a combination of two average marker distances d = {1 cM,5 cM},
two median heritability values H (high ' 0.8 and low ' 0.4) and two population sizes m =
{300,900}. Simulations have been run with SysGenSIM’s optional parameter settings set as
described in Table 4.2. By keeping most of the parameters fixed, each dataset has been sim-
ulated according to the setting configurations summarized in Table 4.3, i.e. only the marker
distance, the biological variance and the population size have been manipulated.

4Nodes from which the LSCC cannot be reached, and that cannot be reached from the LSCC itself.
5Nodes connecting the in- to the out-component, and not belonging to the LSCC.

36 CHAPTER 4. BENCHMARK DATASETS

Table 4.2: Values of SysGenSIM’s optional parameter settings used to generate the
datasets.

Settings Selected value
Network topology EIPO
Network size {100,1000,5000}
Edge sign assignment Node-wise
Edge sign probability 0.5
Average node degree 6
Marker positions Generate
Gene positions At markers
Mapping function Haldane
RIL type Selfing
Number of chromosomes {5,25,25}
Markers per chromosome N({20,40,200},2)
Marker distances {N(1,0.2),N(5,1)}
Cis-effect % 25
Genotyping error % 5
Z lower 0.5
Z upper 0.8
Basal transcription rate Constant
B.t.r. parameters [1,-]
Interaction strength Constant
I.s. parameters [1,-]
Hill cooperativity coefficient Gamma
H.c.c. parameters [1,1.67]
Basal degradation rate Constant
B.d.r. parameters [1,-]
Transcription biological variance Gaussian
T.b.v. parameters [1, {0.1,0.25}]
Degradation biological variance Gaussian
D.b.v. parameters [1, {0.1,0.25}]
Expression measurement noise Gaussian
E.m.n. parameters [1,0.1]
Number of phenotype nodes 0
Population size {300,900}
Number of experiments 1

4.2. STATSEQ BENCHMARK DATASET 37

Table 4.3: SysGenSIM’s settings applied to each network.

Configuration Marker distance Biological variance Heritability Population size
1 N(5,1) N(1,0.1) ' 0.8 300
2 N(5,1) N(1,0.1) ' 0.8 900
3 N(5,1) N(1,0.25) ' 0.4 300
4 N(5,1) N(1,0.25) ' 0.4 900
5 N(1,0.1) N(1,0.1) ' 0.8 300
6 N(1,0.1) N(1,0.1) ' 0.8 900
7 N(1,0.1) N(1,0.25) ' 0.4 300
8 N(1,0.1) N(1,0.25) ' 0.4 900

For each of the 72 datasets, the following four components were made available, the first
two for data analysis (network inference) and the other two for algorithm evaluation pur-
poses:

Gene expression matrix A n ×m matrix containing gene expression measurements. Entry
(i , j) is the simulated steady state expression value of gene i in individual j .

Genotype matrix A n ×m matrix of genotype values {0,1}. Entry (i , j) is the genotype value
of gene i in individual j .

Heritability The median value of the heritability.

Edge list A signed list of edges encoding the direct interactions between the nodes of the
network.

4.2.2 Algorithms in SysGenSIM

This section is dedicated to the detailed description of the most relevant algorithms under-
lying the whole simulation process: the procedure to build the EIPO in silico networks, the
simulation of the genotypes, and the equation modeling the evolution of the gene activity.

Generation of EIPO networks

The algorithm generates a network with exponential in-degree and power law out-degree
node distributions6, requiring the user to only specify the size n and the desired average de-
gree Kd . Subsequently, the inverse scale parameter of the exponential distribution7 is set to
λ= 1/Kd , while the exponent γ in the power law distribution8 is found after a quick iterative
search. The algorithm works as follows:

1. Set λ= 1/Kd defining the exponential distribution.

6In-degree and out-degree refer to the number of ingoing and outgoing edges of a node in a graph, respec-
tively.

7The probability density function of an exponential distribution is f (x;λ) =λe−λx for x ≥ 0.
8The power law distribution is described by the probability density function f (x;γ) = x−γ, for x ≥ 0.

38 CHAPTER 4. BENCHMARK DATASETS

2. Find γ and hence the power law distribution according to the desired average degree
Kd .

3. Calculate the discrete probabilities Pin and Pout from the two distributions, respec-
tively, for each possible degree K , i.e. from K = 0 to K = n−1 (a node can maximally be
linked to all the remaining n −1 nodes).

4. Initialize the adjacency matrix A to zero.

5. Sample the in- and out-degree arrays Kin and Kout from the respective distributions,
i.e. according to the probabilities Pin and Pout. The i -th entries of the arrays Kin and
Kout represent, respectively, the number of ingoing and outgoing edges for node i . The
sampling is performed until the following conditions are met:

I K i
in +K i

out > 0,∀i , i.e. all nodes are connected to the rest of the network through
at least one (ingoing or outgoing) edge.

I
∑

i K i
in ≥∑

i K i
out ' n ·Kd , to assure9 that all the outgoing edges from Kout can reach

a node in Kin.

6. Sort the nodes with K i
out > 0 (i.e. with at least one outgoing edge) by descending out-

degree in list Nout.

7. Then, for each node i in the ordered list Nout:

a) Place the nodes j with positive in-degree K j
in in set Nin.

b) Remove, if included, node i from Nin.

c) If |Nin| < K i
out then go back to step 5, else connect node i with K i

out randomly
selected nodes from Nin.

d) Decrease by 1 the in-degree of the nodes that have been just connected to node
i .

e) Update the adjacency matrix A with the new edges.

After the procedure has been performed for all nodes in Nout, the network is complete and
exhibits exponential in-degree and power law out-degree distributions with average degree
K ' Kd .

Simulation of the genotypes

SysGenSIM simulates genotype data according to a user-defined or to a randomly gener-
ated genetic map based on the number of chromosomes in the genome and the number of
genetic markers per chromosome with constant or normally distributed pair-wise distance
among DNA variant locations. Map distances are converted to recombination rates for the
generation of genotypes at ordered linked loci through the Haldane [73] or Kosambi [93]
mapping functions. Markers can be either placed in perfect linkage with each functional
polymorphism, or a marker map can be generated and then the functional variants ran-
domly placed throughout the genome.

9The condition is requested in the continuation of the algorithm.

4.2. STATSEQ BENCHMARK DATASET 39

The genotype data for the benchmark datasets have been generated by the following al-
gorithm:

1. Sample the number of markers for the ncr chromosomes according to the size of the
network n and the selected distribution of markers per chromosome.

2. Then, for each chromosome h in the genome:

a) Generate the marker distances d by sampling the values according to the selected
distribution (N (1,0.1) or N (5,1)).

b) Map the functional polymorphisms at markers.

c) Convert10 the distances d to recombination rates r and compute the probabil-
ity11 pk of no recombination between any adjacent markers k and k +1.

d) Generate the genotype vector for the entire chromosome Xh as:

i. Randomly set X1 to 0 or 1 with equal probability.

ii. Sample u from a standard uniform distribution, set Xk = Xk−1 if u < pk and
otherwise set Xk = 1−Xk−1.

3. Combine all Xh into one single genotype vector X.

4. The allelic effects, see Equation (4.1), of the cis (c) and trans (t) variants are generated
as follows:

a) For variant i (variant is synonymous with gene here as each gene is only allowed
to have a single functional variant in cis or trans), set Zi = 1. Sample u from a
standard uniform distribution and if u > 0.5, sample Zi from the uniform distri-
bution [Z l , Z u].

b) Randomly select n ·pcis genes i to have a cis variant and set Z c
i = Zi .

c) For the remaining genes j having a trans variant, set Z t
j = Z j .

5. A pre-specified number (proportion) of genotyping errors are added by changing ran-
domly selected entries of the genotype vector X from 0 to 1 or vice versa.

The procedure is repeated for all the individuals m, while the conversion vector B is kept
constant for the whole population.

Simulation of the gene expression data

For all the individuals, SysGenSIM computes the solution of a system composed of n differ-
ential equations, one for each gene i :

dGi

dt
=Vi Z c

i ϑ
syn
i

∏
j∈Ri

1+ A j i

G
h j i

j

G
h j i

j +
(
K j i /Z t

j

)h j i

−λiϑ
deg
i Gi (4.1)

10According to Haldane: r = 0.5(1−e−0.02d).
11For recombinant inbred lines generated by selfing inbred line cross: p = 1/(1+2r).

40 CHAPTER 4. BENCHMARK DATASETS

where Ri is a set containing the indexes of all regulators (both activators and inhibitors) j of
gene i ; Gi is the gene expression of gene i , Vi is its basal transcription rate and λi its degra-
dation rate constant. K j i is the interaction strength of G j on Gi , h j i is the Hill cooperativity
coefficient, and A j i is an element of the adjacency matrix A encoding the signed network

structure. Finally, the parameters ϑsyn
i and ϑ

deg
i represent the biological variances in the

synthesis and degradation processes of gene i , while Z c
i (cis-effect) and Z t

i (trans-effect) in-
corporate the effects of DNA polymorphisms in the model.

Except for the case of a constant, the distributions from which the model parameters p
are sampled are defined by two parameters a and b. The possible distributions are listed
below:

Constant p = a, where a is a real number.

Uniform distribution p = a+ (b−a)%u , where a and b are the lower and upper limits of the
uniform distribution [a,b], and %u is a random number sampled from the standard
[0,1] uniform distribution.

Normal distribution p = a +b%n , where a is the mean and b the standard deviation, and
%n is a random value drawn from the standard normal N (0,1) distribution. In the very
unlikely (by choice of parameters a and b) case of p < 0, then p = 0 is forced to avoid
negative parameters.

Gamma distribution To guarantee a positive value for the parameters, a gamma distribu-
tion is the best choice. Parameters are randomly sampled from a Gamma distribution
with density function:

Gamma(a,b) = 1

baΓ(a)
xa−1e−x/b (4.2)

where Γ(·) is the gamma function, and a and b are the shape and scale parameters,
respectively. The exponential distribution is a special case of the gamma distribution
with a = 1.

4.3 Pula-Magdeburg single-gene knockout bench-
mark dataset

We used SysGenSIM [136] to generate 30 realistic genome-scale networks and to simulate
single-gene knockout experiments under different noise conditions. This benchmark has
been used for the verification of network inference techniques [132].

The whole dataset consists of:

I 30 networks, composed each by 5000 genes, of which:

– 10 networks have about 7500 edges (average degree K = 1.5);

– 10 networks have about 10000 edges (average degree K = 2);

– 10 networks have about 12500 edges (average degree K = 2.5).

4.3. PULA-MAGDEBURG SINGLE-GENE KNOCKOUT BENCHMARK DATASET 41

I For each network, 5000 single-gene knockout experiments have been simulated under
nine different noise conditions by the possible combinations of:

– biological synthesis and degradation variances12 sampled from distributions N (1,0.025),
N (1,0.050), N (1,0.100);

– experimental noise13 sampled from N (1,0.025), N (1,0.050), N (1,0.100).

Therefore a grand total of 270 different networks (30 topologies with nine different noise
configurations) with simulations of single-knockout experiments have been produced to be
used as realistic and genome-scale benchmark datasets for testing inference methodologies
under different conditions of edge density, biological variance, and multiplicative measure-
ment noise. All datasets can be freely downloaded [15]; for each network the following files
are available:

I a list of unsigned edges encoding the directed interactions in the 5000-gene network;

I the wild-type gene expression values Gwt (one file for each of the nine noise configu-
rations);

I the matrix of expression values Gko computed after the single-gene knockout of all
genes in the network (one file for each of the nine noise configurations).

Some details about the production of the datasets are given in Sections 4.3.1 and 4.3.2.

4.3.1 Generation of networks

The gene networks have been generated in order to have a topology similar to those found
in certain organisms, i.e. a modular structure with node degree distributions of exponential
and power law behavior for, respectively, the number of ingoing and outgoing edges14. In
particular, each network is constituted by:

I 10 modules of 100 genes,

I 8 modules of 250 genes,

I 2 modules of 500 genes,

I 1 module of 1000 genes.

The produced networks are represented as directed and signed graphs by a signed adjacency
matrix A. An edge (i , j) symbolizes an activating relationship between gene i and gene j
when A(i , j) = 1, or an inhibiting relationship when A(i , j) = −1. If A(i , j) = 0, no direct in-
fluence exists from gene i to gene j . Each node of the networks has been randomly selected
to have all its outgoing edges either positive or negative.

12Respectively parameters ϑsyn and ϑdeg in Equation (4.3).
13Parameter ν in Equation 4.3.
14SysGenSIM users can generate similar networks by running the software with the EIPO modular option

selected.

42 CHAPTER 4. BENCHMARK DATASETS

4.3.2 Model dynamics

The following equation explains the synthesis and degradation processes that regulate the
gene activity. The solution of the system composed by n first order nonlinear ordinary dif-
ferential equations, one equation for each gene of the network, is a set of n steady state gene
expressions:

dGi

dt
=Vi Ziϑ

syn
i

∏
j∈Ri

1+ A j i

G
h j i

j

G
h j i

j +K
h j i

j i

−λiϑ
deg
i Gi (4.3)

where Ri is a set containing the indexes of all regulators (both activators and inhibitors) j
of gene i ; Gi is the mRNA concentration (gene activity or gene expression) of gene i , Vi is
its basal transcription rate, while λi is its degradation rate constant. K j i is the interaction
strength of G j on Gi , h j i is the Hill cooperativity coefficient, and A j i is an element of the

matrix A encoding the signed network structure. Finally, parameters ϑsyn
i and ϑdeg

i represent
the biological variances in the synthesis and degradation processes of gene i , while Zi sets to
zero the transcription rate in case of knockout of gene i . Each steady-state gene expression
value is then multiplied by experimental noise νi .

In particular:

I parameters Vi , λi and K j i are constant for each gene or edge, and are set equal to 1;

I parameters h j i are sampled from a gamma distribution with shape parameter a = 1
and scale parameter b = 1.67; values are increased by 1 in order to have them larger
than 1;

I parameters Zi are always equal to 1, except in case of knockout of gene i when Zi = 0;

I biological variances ϑsyn
i , ϑdeg

i and the experimental noise νi are sampled from Gaus-
sian distributions with meanµ= 1 and standard deviationσ= {0.025,0.050,0.100}; any
very unlikely negative value is set to zero.

Chapter 5

Identification of gene regulatory
networks

Gene regulatory networks have been defined in Chapter 2, and an overview of techniques
and methodologies for the structural inference of such networks is presented in the follow-
ing paragraphs in order to introduce and to position in their own appropriate scope of appli-
cation the algorithms we developed to reconstruct the topology of gene regulatory networks,
thoroughly explained in Chapters 6, 7 and 8, and respectively dedicated to the inference of
networks from (i) single-gene knockout experiments; (ii) heterogeneous datasets; (iii) sys-
tems genetics observations.

Overview of network inference techniques

Reverse engineering is an interesting area of research currently receiving a lot of attentions
from the Systems Biology community. In fact, reconstructed biomolecular networks may al-
low researchers to understand the molecular basis of complex traits and diseases [148], as
well as the discovery of direct drug targets [50]. The data-driven inference of intracellular
regulatory networks, in particular of those involved in gene regulation, remains to be one
key challenge of computational and systems biology. Many methods for this daunting task
have been proposed and new methods are appearing at a high rate [116, 65, 23, 155, 47, 111].

The different inference methodologies can be categorized based on the model formal-
ism and the principle used for deriving interactions in a regulatory network: sparse regres-
sion [168], correlation-based approaches [45, 142, 152], z-score [138], ANOVA-based anal-
ysis [94], mutual information [36, 178, 115], Bayesian networks [62, 61], Gaussian graph-
ical models [37], random forest [82], differential equations [125, 49, 46, 64], reaction net-
works [54] and Boolean networks [19, 146]. One final output of all these approaches is the
reconstructed network topology, typically given as a (signed or unsigned, directed or undi-
rected) graph. Recent efforts have shown that combining several of the aforementioned
methods often outperform all single approaches [111].

Depending on the available measurements, different inference techniques can be em-

43

44 CHAPTER 5. IDENTIFICATION OF GENE REGULATORY NETWORKS

ployed. In case of experiments without targeted perturbations (observational studies, such as
gene expression data collected over a group of similar individuals, typically done in the con-
text of a disease) the expression profiles can be analyzed to build a undirected graph whose
nodes are the genes, and whose edges represent the presence of significant associations.
Without targeted perturbations it is not generally possible to infer directions of the edges.
A wide variety of techniques for constructing such undirected co-expression networks has
been proposed, typically based on marginal associations, conditional associations or infor-
mation theory. Under some assumptions it is theoretically possible to decide the orientation
of the edges using this type of data [129, 162], but unfortunately these assumptions (such
as acyclicity of the network and absence of confounding factors) are very unlikely to be met
in the present context. On the other hand, targeted perturbations (e.g., systematic single-
gene gene knockouts, over-expressions) are needed to enable causal inference, and the re-
construction of the directed structure of gene networks. Many techniques for constructing
gene networks have been proposed of which the most popular techniques are based on ordi-
nary differential equations or Bayesian networks. A wide range of network inference meth-
ods have been developed to address this challenge, from those exclusive to gene-expression
data [47, 112] to methods that integrate multiple classes of data [24, 141, 98, 113].

Verification of network inference algorithms

These approaches have been successfully used to address many biological problems [62,
115, 50, 57], yet when applied to the same data, they can generate disparate sets of predicted
interactions [47, 112]. The rigorous evaluation and comparison of the large number of infer-
ence methods before one can put confidence in the results of their application is ascertained
to be of utmost importance [164, 163], and the need for the verification of computational
systems biology methods is now recognized worldwide. Understanding the advantages and
limitations of different network inference methods is critical for their effective application
in a given biological context. Notably, the Dialogue on Reverse Engineering Assessment and
Methods (DREAM) project organizes international gene regulatory network inference chal-
lenges and evaluates the solutions submitted by participating research groups in a trans-
parent manner [17, 112, 111]. This way a collaborative-competition is established in which
complicated problems are addressed as a community rather than individual laboratories, as
also shown by IMPROVER [120, 122]. Recently, it was demonstrated that such community
efforts were fruitful for the inference of an improved gene regulatory network of Escherichia
coli and the inference of a novel gene regulatory network for the bacterium Staphylococcus
aureus [111].

The performance of these techniques can then be evaluated and compared by applying
different inference methods to the data obtained from biomolecular networks of which the
structure is assumed to be known a priori, i.e. gold standard networks [23, 159, 57]. However,
real world biomolecular networks are mostly unknown. Even the most studied biomolecu-
lar networks are not only plagued by false positives, but suffer even worse from false neg-
atives: they are largely incomplete [167]. Consequently such networks cannot be deemed
as totally reliable benchmarks to compare inference algorithms. Therefore, it has been sug-
gested to use data simulated with dynamical models of gene networks, i.e. in silico data. In

45

this case the underlying networks are precisely known and thus allow for thorough evalua-
tion and comparison of reverse-engineering algorithms [119, 138]. Obviously, the relevance
of evaluations on in silico data strongly depends on the realism of the simulation system,
e.g. the network topology, the type of mathematical model, the type of kinetic functions,
the noise model, etc. Verification of inference methods requires benchmark datasets [120].
Benchmarking on real biological data is challenging as true biological networks are largely
unknown [167]. The availability of realistically simulated datasets is therefore of utmost im-
portance for the verification of these methods. Only for simulated data can we be certain
about the true complex system underlying the data. Simulated data has been used to val-
idate methods, but typically the data was generated with small networks (containing 10-
100 genes) [46, 90] and with the same models as used by the inference [171, 158]. The step
to more realistic benchmark data was made in [119], generating simulated gene expression
data using equations based on enzyme kinetics (for use of these data in method evaluations,
see e.g. [45, 159]). As regulatory network inference methods are typically applied to genome-
wide data, a necessary next step is to perform evaluations also on genome-scale, as we did
in [132] (see Section 6.2).

Chapter 6

Inference from single-gene
knockout datasets

Two of our most relevant works in the field of gene network inference from single-gene
knockout datasets are presented in this chapter: the algorithm for the down-ranking of feed-
forward loops [134] for which we have been awarded the 1st place in the DREAM4 In Silico
Network challenge, and its evolution in a more accurate technique [132] developed through
a profitable collaboration with the “Analysis and Redesign of Biological Networks” group of
the Max Planck Institute in Magdeburg.

6.1 From knockouts to networks: establishing di-
rect cause-effect relationships through graph
analysis

Reverse-engineering gene networks from expression profiles is a difficult problem for which
a multitude of techniques have been developed over the last decade. The yearly organized
DREAM challenges allow for a fair evaluation and unbiased comparison of these methods.
Here we propose an inference algorithm that combines confidence matrices, computed as
the standard scores from single-gene knockout data, with the down-ranking of feed-forward
edges. Substantial improvements on the predictions are obtained after the execution of
this second step. In particular, our algorithm was awarded the best overall performance at
the DREAM4 In Silico 100-gene Network sub-challenge, proving to be effective in inferring
medium-size gene regulatory networks. This success demonstrates once again the decisive
importance of gene expression data obtained after systematic gene perturbations and high-
lights the usefulness of graph analysis to increase the reliability of inference.

The outline of the paper is the following: we first describe the DREAM4 In Silico Network
challenges, then explain the inference algorithm we developed and applied to the DREAM
4 data, followed by a description of the gene network simulator we developed to generate
additional synthetic networks and data. Then, we show the results of evaluations of variants
of our algorithm on both the DREAM3 in silico benchmarks and the additional simulated

47

48 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

datasets. Then, we show results of re-analysis of the DREAM4 in silico benchmarks, which
we were able to perform after the gold standard networks were released. We conclude with a
discussion of the method, data and future steps to be made.

6.1.1 DREAM4 In Silico Network challenge

The Dialogue for Reverse Engineering Assessments and Methods (DREAM) is an interna-
tional initiative with the aim of evaluating methods for biomolecular network inference in an
unbiased way [164, 163]. Evaluations proceed through organized competitions on a yearly
basis in which teams from all over the world participate. For the 4th edition of DREAM in
2009, the organizers proposed three different challenges. Our team participated in the sec-
ond one, the In Silico Network challenge, which asked to infer gene networks from simu-
lated data. The challenge was, in turn, divided into three sub-challenges, respectively named
InSilico_Size10, InSilico_Size100, and InSilico_Size100_Multifactorial.

These sub-challenges differ, as their names suggest, in the network size and the type of
data provided. In the first sub-challenge the participants had to predict the topology of five
10-gene networks, and were provided with steady state gene expression levels from wild-
type, knockouts, knockdowns, multifactorial perturbations, and time series data. The sec-
ond sub-challenge concerns instead five 100-gene networks, with the same type of available
data except the multifactorial perturbations. The third sub-challenge involves five other 100-
gene networks provided with multifactorial perturbations data only. The contestants were
challenged to predict the network structures underlying the above data, i.e. assigning a level
of confidence for the presence of each possible edge.

We here provide a brief description of the available data provided to the DREAM4 par-
ticipants. The number of genes in the network is denoted by n. The wild-type file contains
the n steady-state levels of the unperturbed network. The knockout data (see an example in
Table 6.1) consist of n rows with n steady-state values, each obtained after deleting one of
the n genes. The knockdown data are similar to the above, but are obtained by halving the
transcription rate constant of one gene at a time instead of setting it to zero. The multifac-
torial perturbations data consist of steady-state levels of small fluctuations of the values of
all transcription rate constants simultaneously. The time series file contains trajectories of
gene activity levels starting from the wild-type steady state to a perturbed state, and from
the perturbed state back to the wild-type state upon removing the perturbations.

The network topologies to be inferred were generated by the organizers by extracting
10- or 100-node subnetworks from transcriptional regulatory networks of E. coli and S. cere-
visiae, with preferential selection of parts containing cycles (but no self-interactions).

The challenge description mentioned also that the data was simulated through a dynam-
ical model describing both independent and synergistic gene regulation, which included
both gene and protein expression (but only the gene expression data was provided to the
partecipants). Internal noise was modeled through stochastic (Langevin) differential equa-
tions, and measurement noise was added to the simulated gene expression levels. Networks
and data were generated by the GeneNetWeaver 2.0 software [114], which was published
only after the DREAM4 conclusion.

6.1. FROM KNOCKOUTS TO NETWORKS 49

Table 6.1: Sample of gene expression knockout data. This is an example of the provided
knockout data, related to an example 5-gene network. The first row contains the wild-type
(unperturbed) gene activities, while the others contain the gene activities due to the knock-
out of the gene indicated on the left. A knocked-out gene has null expression. Data are
affected by noise, but certain relationships are apparent: G1 is likely to be regulated by (or at
least downstream of) G2, since the steady state value of G1 responds strongly to perturbing
G2; in fact, G2

1 = 0.68 noticeably differs from Gwt
1 = 0.14.

G1 G2 G3 G4 G5

Gwt 0.14 0.89 0.01 0.87 0.14
G1 0.00 0.96 0.00 0.86 0.06
G2 0.68 0.00 0.04 0.90 0.05
G3 0.17 0.86 0.00 0.88 0.02
G4 0.13 0.86 0.08 0.00 0.09
G5 0.12 0.78 0.09 0.91 0.00

6.1.2 Methods

Algorithm

The aim of these challenges is the prediction of the (directed and unsigned) network struc-
tures. How can we infer such gene regulatory networks? While the time-series data could be
used for this purpose, the lack of protein measurements will make it difficult to infer relation-
ships between gene activities from time dynamics: the protein dynamics will cause delays
between the gene expression dynamics. Therefore, we resorted to the steady state levels, in
particular to the knockout datasets, where the perturbations and the relative responses are
stronger.

From this kind of data it is very easy to infer a so-called causal influence network: genes
whose steady state values change as a result of a single-gene knockout are likely to be down-
stream of the perturbed gene [174, 154]. Most causal relationships (both activating and in-
hibiting) due to the knocked-out gene could be immediately recognized from the data table
(e.g. Table 6.1), unless the influence is particularly weak and then overwhelmed by noise,
or its effect is mitigated by other connections. This approach will not infer spurious rela-
tionships between co-regulated genes, which is instead a well-known problem of algorithms
based on expression similarity (e.g. correlation) [45].

However, some of the edges of a causal influence network may be indirect, i.e. mediated
by other (measured) gene activities [174]. The remaining task is thus to distinguish direct
from indirect relationships. To accomplish this, we developed an algorithm consisting of
two main steps: through statistical measures, a first estimate of the confidence of each pos-
sible edge is obtained directly from the available knockout data; then, by down-ranking the
feed-forward edges, a refined prediction is given.

In the first step we quantify the importance of the responses of the gene activities toward
single-gene perturbations and so how likely it is for each gene to be downstream of the per-
turbed genes. Let Gwt be the vector of wild-type gene expression, and let G i be the vector
of gene activity steady-states obtained by knocking out gene i . To obtain the initial predic-
tions, we evaluated four possible different confidence matrices W in which elements W (i , j)

50 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

reflects the confidence in the existence of the edge i → j :

Deviation matrix, WD The confidence of edge (i , j) is simply estimated by the absolute value
of the deviation from wild type of the expression of gene j after the knockout of gene
i : WD

i , j = |G i
j −Gwt

j |. The larger the deviation the higher the confidence we have that
G j is downstream of the perturbed Gi .

Normalized deviation matrix, WND As the absolute values of the steady state gene activi-
ties vary drastically (e.g. Gwt

2 = 0.89 and Gwt
3 = 0.01 in Table 6.1) it might be more ap-

propriate to consider the relative deviations. Each column of the deviation matrix is
normalized by the corresponding wild type: WND

i , j = WD
i , j /Gwt

j .

Z-score on deviation matrix, WZD A more statistically motivated measure is the z-score; it
indicates how many standard deviations σ an observation is far from the mean µ of a
whole set of measurements. In this case, for each gene j we calculate µ j and σ j using
the deviations from wild type after each knockout (WD·, j):

WZD
i , j =

WD
i , j −µ j

σ j
(6.1)

Z-score on raw data matrix, WZR As both G i
j and Gwt

j are noisy values, it may be better to
consider raw expression values rather than deviations from the steady state values
(subtracting a noisy value from another noisy value results in a even noisier value).
Therefore, for each gene j we calculate µ j and σ j using the steady-state values after
each knockout (G ·

j):

WZR
i , j =

G i
j −µ j

σ j
(6.2)

Once a first prediction of the network has been calculated with one of the above meth-
ods, the second step of the inference algorithm comes into play. The logic behind this second
step is also plain and simple. First, based on a threshold value on the derived confidence ma-
trix, a network is obtained. This network contains edges which represent causal influences
between the genes, which may be direct or indirect. The true network is thus embedded in
this initial causal influence network and could be derived by removing edges (edges can not
be added as they create causal influences not supported by the perturbation experiments).
We recognize that certain edges can be removed without removing the causal influences: the
edge from gene A to gene C could be removed if there is at least one additional path from
gene A to C in the network [174]. The additional path(s) could explain the causal effect of
gene A on C and therefore we have reduced confidence in the existence of the direct edge
from A to C . Figure 6.1 provides an example of a feed-forward loop from which an edge
could be removed. Our down-ranking algorithm systematically checks for paths through the
initial networks and recognizes which edges can be removed (potentially indirect) and which
edges can not be removed (these must be direct as removing them would result in a network
missing one or more of the observed causal influences). Note that cyclic components in
the networks are fully connected, as each gene in a cycle has a causal influence on all other
genes in the cycle. Determining which edges in a cyclic component can be removed without
removing causal paths depends on the order in which the edges are removed. Therefore, we

6.1. FROM KNOCKOUTS TO NETWORKS 51

Figure 6.1: Feed-forward loop in a 3-gene motif. The edge between gene A and gene C
might be erroneously predicted as the causal effect of gene A on gene C , which could in
principle be explained by the indirect path through gene B .

Figure 6.2: Down-ranking of unnecessary feed-forward edges. The thick rings highlight the
strongly connected components of N . The dashed edge is removed from the network.

decided not to touch any of the edges in cyclic components. We emphasize that we do not
believe that the sparsest network possible is most biologically realistic. In fact, it is widely
recognized that biomolecular networks are enriched in feed-forward loops [123]. However
the absolute frequencies of their occurrence in the networks is much lower than that of the
linear path motif (A → B → C). Therefore, it is reasonable to assume that down-ranking
these edges improves the reliability of the network inference.

The second step of our algorithm proceeds in the following way (Figure 6.2):

1. Use a threshold value t for the edge confidence (selected after several test simulations,
as explained in the Results section) to extract a directed network N from one of the
above mentioned matrices W.

2. Calculate the condensation of network N , i.e. the acyclic network formed by contract-
ing each strongly connected component of N into a single vertex.

3. Obtain the subnetwork N ′ from N by deleting any edge such that:

I its endpoints belong to two different strongly connected components Ci and C j ,
and

I there is a path of length at least 2 between Ci and C j in the condensation of N .

4. For all the remaining edges in network N ′, increase their corresponding weight by
max(i , j)∈N \N ′ Wi , j , in order to ensure them a ranking higher than all the unessential
edges, i.e. the edges in N \N ′.

In silico data simulation

To be able to thoroughly evaluate and fine-tune the parameters of our algorithm we gener-
ated in silico data using our simulator developed in MATLAB.

52 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

In our model, the following nonlinear ordinary differential equation describes the evolu-
tion of the gene expression G j :

dG j

dt
= Z j V j

n∏
i=1

1+ Ai , j
G

hi , j

i

G
hi , j

i +K
hi , j

i , j

−λ jϑ j G j (6.3)

G j is the gene activity (gene expression level, mRNA concentration) of gene j , V j is its basal
transcription rate, while λ j is its degradation rate constant. Ki , j is the interaction strength of
Gi on G j , hi , j is the Hill cooperativity coefficient, and Ai , j is an element of the matrix A en-
coding the signed network structure (a positive sign corresponds to an activating regulation,
while a negative one to an inhibition). Finally, ϑ j represents the biological variance (sam-
pled from a normal distribution with µϑ = 1 and standard deviation νϑ = 0.1), while Z j is
responsible for eventually knocking-out gene j . In our simulations, random networks were
generated by the Erdős-Rényi algorithm [55], with various average degrees. Edge directions
and signs were assigned randomly with uniform probability. Parameters Z j , V j , Ki , j , hi , j , λ j

and G j (0) were all set equal to 1. We then calculated the wild-type steady state. To simulate
the single-gene knockout experiments we initialize G j (0) = Gwt

j and set Z j = 0 in the j -th per-
turbed experiment in order to simulate the knockout of gene j ; obviously Zk 6= j = 1 since we
only simulated single-gene knockout experiments. These simulations resulted in datasets
similar to the ones provided in the DREAM4 challenges.

Evaluation

Method effectiveness are evaluated through the calculations of the Area Under the Receiver
Operating Characteristic Curve (AUC(ROC)) and the Area Under the Precision versus Recall
Curve (AUC(PvsR)) in the same way as is done by the DREAM organizers to evaluate the
submitted networks [159, 138].

6.1.3 Results

In order to make informed decisions on the choice of the weight matrices to use and to
fine-tune the threshold value for the second step of our algorithm, we practiced first on the
DREAM3 benchmarks [114] and then on the additional datasets generated using our own
network structures and dynamical model.
Then we show a re-analysis of the DREAM4 benchmarks, which were made available by the
organizers after the competition.

Practice on the DREAM3 benchmarks

The DREAM3 In Silico Network challenge in 2008 was very similar to the DREAM4 one. Here
too gene networks of different sizes (10, 50, and 100 genes) had to be inferred using steady
states from wild-type, knockdown and knockout perturbations, and time series data. The ki-
netic equations were also similar, though in DREAM3 a deterministic model was used while
in DREAM4 a stochastic one.

In order to choose which, amongst the confidence matrices WD, WND, WZD and WZR,
gives the most reliable initial network prediction, tests were performed on the DREAM3

6.1. FROM KNOCKOUTS TO NETWORKS 53

Table 6.2: Performances of the four considered confidence matrices on the DREAM3 net-
works. Average AUC(ROC) and AUC(PvsR) for the five networks of three different sizes from
the DREAM3 In Silico benchmarks, calculated through the confidence matrices WD, WND,
WZD and WZR. The best value of each row is highlighted.

N. genes WD WND WZD WZR

AUC(ROC) 10 0.8194 0.7741 0.7837 0.7901
50 0.8444 0.8389 0.8769 0.8875

100 0.8515 0.8454 0.8736 0.8799
AUC(PvsR) 10 0.7028 0.5619 0.5991 0.6732

50 0.5396 0.4579 0.6224 0.6160
100 0.5637 0.4616 0.6200 0.6143

Table 6.3: Effect of the down-ranking algorithm on larger DREAM3 networks. Average
AUCs for the 50- and 100-gene networks from the DREAM3 In Silico challenge after the appli-
cation of the down-ranking algorithm on matrices WZD and WZR with 8 different thresholds
t . Setting t = 0 corresponds to not applying the down-ranking. The best value of each row is
highlighted.

n W t = 0 t = 1 t = 1.5 t = 2 t = 2.5 t = 3 t = 3.5 t = 4
AUC(ROC) 50 WZD 0.8769 0.8769 0.8766 0.8767 0.8773 0.8773 0.8772 0.8770

WZR 0.8875 0.8853 0.8885 0.8884 0.8881 0.8878 0.8877 0.8875
100 WZD 0.8736 0.8736 0.8735 0.8733 0.8735 0.8739 0.8738 0.8737

WZR 0.8799 0.8799 0.8793 0.8804 0.8804 0.8802 0.8801 0.8800
AUC(PvsR) 50 WZD 0.6224 0.6224 0.6176 0.6175 0.6411 0.6412 0.6377 0.6303

WZR 0.6160 0.5835 0.6669 0.6666 0.6555 0.6461 0.6352 0.6259
100 WZD 0.6200 0.6200 0.6181 0.6111 0.6222 0.6511 0.6456 0.6387

WZR 0.6143 0.6143 0.6039 0.6622 0.6603 0.6502 0.6410 0.6326

benchmarks. We initially considered both the knockout and knockdown data, but since our
algorithm consistently gave better results on the knockouts (data not shown), we will here
further consider only the knockout steady states.

By applying the aforementioned inferring techniques on these data, the matrices WZD

and WZR yielded the best results for the 50- and 100-gene networks, respectively for the
AUC(PvsR) and for the AUC(ROC). On the other hand, a simple ordering of the edges based
on the deviation from the wild type (i.e. matrix WD) gave the best results for the small 10-
gene networks for both the evaluation measures AUC(ROC) and AUC(PvsR). The results are
shown in Table 6.2. Then, given the confidence matrix W, the down-ranking algorithm pro-
duces the modified matrix W∗ as described in the Methods section. The result of this down-
ranking step depends on the chosen value for the threshold t . Therefore, we performed test
runs at different values of t to establish the value for which the best AUCs were obtained
(Table 6.3). We here report only the results on the larger networks as the down-ranking
step had almost no effect on the reliability of the small networks. This indicates that our
down-ranking approach is beneficial only for larger networks. Negligible differences in the
AUC(ROC), but more substantial improvements in the AUC(PvsR) measures were obtained
for WZD and WZR, with the latter slightly exceeding the former performances. In particular,
the AUCs peak for t = 2 while down-ranking WZR, and for t = 3 in WZD (100-gene networks).

54 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Wild−type level

M
e

a
n

 a
b

s
o

lu
te

 d
e

v
ia

ti
o

n
 f

ro
m

 w
t

DREAM3

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Wild−type level

M
e

a
n

 a
b

s
o

lu
te

 d
e

v
ia

ti
o

n
 f

ro
m

 w
t

DREAM4

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Wild−type level

M
e

a
n

 a
b

s
o

lu
te

 d
e

v
ia

ti
o

n
 f

ro
m

 w
t

SysGenSIM

Figure 6.3: Distribution of the mean absolute deviation for three knockout datasets. Each
point is the mean absolute deviation of the expression of a gene j with respect to its wild type
Gwt

j , calculated as 1
n−1

∑
i 6= j |G i

j −Gwt
j |, obviously excluding the knockout of gene j from the

averaged values. Our in silico knockout data (right) qualitatively resembles the distribution
of the five DREAM4 InSilico_Size100 knockout datasets (middle), in contrast to those
from the five DREAM3 InSilico_Size100 knockout datasets (left).

These tests suggested that using either matrix WZD or WZR in combination with t = 2 are the
best choice. However, while the DREAM3 benchmarks are of great value, there were some
notable differences between the DREAM3 and DREAM4 networks and data. All the networks
in DREAM3 were acyclic, while the networks considered in DREAM4 do contain cycles.

Furthermore, the variance in the DREAM3 knockout data drastically differed from those
in the DREAM4 knockout data. In the previous edition the mean deviation in each gene
was uniform, while in the DREAM4 data it seemed proportional to the gene activity wild-
type level (Figure 6.3). The same pattern can be observed in our self generated in silico data
(Figure 6.3). So, by using our simulator, we can verify the previous choices for the confi-
dence matrix and the threshold value on a much larger number of datasets than the DREAM3
benchmark (thus preventing overtraining), and on data which should be more similar to the
DREAM4 ones.

Practice on additional in silico data

We performed further testing on our own simulated in silico knockout data. We generated
1000 100-gene networks with Erdős-Rényi topology with average degrees k̄ ∈ {2,3,5}1. The
AUCs for the various confidence matrices are shown in Table 6.4, emphasizing that the z-
score applied on the raw data (WZR) clearly appears to be the most effective method to obtain
a first prediction of the network from knockout data. This choice is also supported by the test
on the DREAM3 benchmarks. In a similar fashion, we applied the down-ranking algorithm
on matrix WZR, showing that a small improvement on the AUCs (especially with the PvsR
one) can be obtained with threshold t = 2 (Table 6.5), again in concordance with what we
observed for the DREAM3 benchmarks.

DREAM4

After the extensive tests described above, we decided to base our predictions for the DREAM4
In Silico Network challenge on the z-score on raw data confidence matrix (WZR), post-processed

1DREAM3 100-gene networks have the average degree k̄ ranging from 1.2 to 5.5.

6.1. FROM KNOCKOUTS TO NETWORKS 55

Table 6.4: Performance of the four confidence matrices on additional in silico data. Aver-
age AUCs for 1000 100-gene Erdős-Rényi networks with average degree k̄ ∈ {2,3,5} calculated
through the confidence matrices WD, WND, WZD and WZR. The best value of each row is high-
lighted.

k̄ WD WND WZD WZR

AUC(ROC) 2 0.8763 0.8829 0.9276 0.9328
3 0.8223 0.8449 0.8910 0.8972
5 0.7325 0.7751 0.8155 0.8209

AUC(PvsR) 2 0.3055 0.3839 0.5909 0.6041
3 0.2602 0.3809 0.5383 0.5519
5 0.2119 0.3513 0.4500 0.4588

Table 6.5: Effect of the down-ranking algorithm on additional in silico data. Average AUCs
for 1000 100-node Erdős-Rényi networks, generated with average degree k̄ ∈ {2,3,5}, after the
application of the down-ranking algorithm on matrix WZR with 6 different thresholds t . The
best value of each row is highlighted.

WZR (t = 0) t = 1.5 t = 1.75 t = 2 t = 2.25 t = 2.5
AUC(ROC) 0.8317 0.8315 0.8317 0.8317 0.8317 0.8317
AUC(PvsR) 0.5913 0.5793 0.5892 0.5962 0.5954 0.5948

Table 6.6: Performances of the four confidence matrices on the DREAM4 networks. Av-
erage AUC(ROC) and AUC(PvsR) for the five 100-gene networks from the DREAM4 In Silico
benchmarks, calculated through the confidence matrices WD, WND, WZD and WZR. The best
value of each row is highlighted.

WD WND WZD WZR

AUC(ROC) 0.7844 0.7927 0.8275 0.8297
AUC(PvsR) 0.2610 0.2786 0.3710 0.3602

with the down-ranking algorithm using threshold t = 2. Our submission as Team ALF was
the best performer at the sub-challenge 2 (100-gene networks), ranking first among 19 par-
ticipants. Interestingly, now that the gold standard networks have been published, we dis-
covered that our choice for the confidence matrix was in fact good (see Table 6.6), but even
better predictions would have been obtained by selecting t = 2.5 as the threshold for the
down-ranking algorithm. Nevertheless, the improvement in the AUC(PvsR) obtained with
the selected t = 2 has been considerable for networks 1 and 5, as shown in Figure 6.4 and
in Table 6.7, compared to those from WZR. It should also be noticed that the the average
node degrees in the DREAM4 networks are smaller (1.8 ≤ k̄ ≤ 2.5) than those in DREAM3
and our simulated networks: a better estimation of the optimal threshold might have been
obtained if our test networks had an average degree in the same range of the DREAM4 net-
works. Furthermore, we simulated data with networks generated with the Erdős-Rényi al-
gorithm, which have significantly different topology than those used in DREAM4. Also, note
that the performances on the DREAM4 benchmarks are much more sensitive to the value of
t then we observed in the tests of our in silico data. Obviously this is due to the fact that we

56 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

Table 6.7: Effect of the down-ranking algorithm on the DREAM4 100-gene networks. Aver-
age AUC(PvsR) values for the 100-gene networks from DREAM4 In Silico challenge after the
application of the down-ranking algorithm on matrix WZR with 8 different thresholds t . The
best value of each row is highlighted.

WZR (t = 0) t = 1 t = 1.5 t = 2 t = 2.5 t = 3 t = 3.5 t = 4
Network 1 0.4928 0.4928 0.4847 0.5361 0.6590 0.6428 0.6225 0.5715
Network 2 0.3880 0.3880 0.3880 0.3771 0.4144 0.4125 0.4052 0.3886
Network 3 0.3816 0.3816 0.3834 0.3898 0.4115 0.4048 0.3939 0.3895
Network 4 0.3684 0.3684 0.3684 0.3494 0.4433 0.4338 0.4144 0.3841
Network 5 0.1703 0.1703 0.1697 0.2133 0.2008 0.1902 0.1782 0.1845

0 1.5 2 2.5 3

0.5

0.55

0.6

0.65

Network 1

Down−ranking threshold

A
U

C
(P

v
s
R

)

0 1.5 2 2.5 3

0.38

0.39

0.4

0.41

Network 2

Down−ranking threshold

A
U

C
(P

v
s
R

)

0 1.5 2 2.5 3

0.38

0.385

0.39

0.395

0.4

0.405

0.41

Network 3

Down−ranking threshold

A
U

C
(P

v
s
R

)

0 1.5 2 2.5 3

0.35

0.4

0.45

Network 4

Down−ranking threshold

A
U

C
(P

v
s
R

)

0 1.5 2 2.5 3

0.17

0.18

0.19

0.2

0.21

Network 5

Down−ranking threshold

A
U

C
(P

v
s
R

)

+8.78%

+33.76%

−2.81%

+6.80%

+2.15%

+7.84%

−5.16%

+20.33%

+17.91%

+25.25%

Figure 6.4: Effect of the down-ranking algorithm on DREAM4 networks. In each of the five
plots, the bars show the values of the AUC(PvsR) for one of 100-gene networks from DREAM4
after the application of the down-ranking algorithm on matrix WZR with 5 different threshold
t . In the small boxes the most significant differences with respect to the threshold t = 0 are
shown.

6.1. FROM KNOCKOUTS TO NETWORKS 57

used a large ensemble (1000 networks) over which the performances were averaged, but it
also indicates that the DREAM4 benchmarks consist of a set of networks with widely varying
topologies.

6.1.4 Discussion

We described an algorithm to infer gene regulatory networks from expression data, that
proved to be effective by best performing at the DREAM4 In Silico Network challenge in the
100-gene networks sub-challenge. The proposed technique combines the advantages of the
standard score in highlighting the deviation from the mean after a gene knockout, with the
down-ranking algorithm that reduces the confidence initially predicted to unnecessary feed-
forward edges.

Our algorithm is substantially different from the techniques used by the best performer
teams of previous DREAM In Silico Network challenges. In particular, for DREAM2 the win-
ning approach was fitting ordinary differential equation (ODE) models [71, 154]; for DREAM3,
instead, the best method was based mainly on finding significant deviations from wild type
in knockout data (so using the same primary source of information of our algorithm), but
also applied ODE models on the time series for additional predictions [183].

To see how methods based on ODEs would perform on the DREAM4 data, we analyzed
them with one of the best performer algorithm [154] for the DREAM2 In Silico Network chal-
lenges. The predictions of this algorithm on the DREAM4 100-gene networks was very poor
(average AUC(ROC) = 0.5722, AUC(PvsR) = 0.0313). Note that in DREAM2 there was no noise
added to the in silico data, while for DREAM4 both biological and experimental noise were
present. Since the internal noise is propagated through gene relationships, its effect on large
networks make sophisticated models (like ODEs) much less reliable than our method based
on simple cause-effect logic and graph inspection.

Further improvements of the performance of our algorithm may be obtained by study-
ing the possible relationships between the selected threshold t and other parameters, like
the network average degree and size, the noise on the knockout data, and so on. Moreover,
other subnetwork structures (e.g., fan-in, fan-out, and cascade motifs [112]2) are poorly pre-
dicted even by the best algorithms, and so a lot of improvements can be done on these is-
sues. Finally, also the rest of the available data from the DREAM challenges (knockdowns,
time series, multifactorial) may be used to refine the network prediction, but the gain would
probably be small, as already shown by the DREAM3 best performer [183].

It has become unambiguously clear that systematic perturbations (e.g. experimental gene
knockouts) are needed to establish the directed structure of gene networks. However, sys-
tematic single-gene knockouts imply experimental requirements which are unrealistic and
these experiments infeasible (and unethical) for many organisms. It is unlikely that data
such as considered here will become available from real experiments. Fortunately, systems
genetics experiments may provide an alternative. In systems genetics experiments a popu-
lation under study is genotyped and gene expression profiled are simultaneously collected

2In [112], the motif we refer to as feed-forward loop is called cascade.

58 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

(possibly even including metabolomics and proteomics data [63]). It has been demonstrated
that causal links in gene networks can be elucidated based on these data (see [103, 143] for
reviews). Genetic polymorphisms, naturally present in the populations, act as genetic per-
turbations: if the gene activity of a gene B is affected by a polymorphism inside another gene
A, this is highly indicative for a causal effect A → B . In fact Liu et al. [103] proposed a very
similar strategy as the one outlined in this paper: first creating a causal influence network
(but based on systems genetics data instead of knockout data like is done here) and subse-
quent sparsification of this network to retain only the edges corresponding to direct causal
influences. In that approach each edge in the initial network was statistically tested for being
supported by the data, while we were here not able to do so based on the data considered
here. Down-ranking edges based on our simple graphical inspection is very useful in the
context of systems genetics data as it will provide the sparsest network supporting the causal
influences. This then allows methods like the one of Liu et al. approach to statistically iden-
tify the networks best supported by the data by adding edges, rather than removing edges
from the causal influence network. Heuristic model search algorithms are strongly depen-
dent on a good initial guess in the network space: we argue that networks which result from
the algorithm described in this paper will provide a better initial guess than the initial causal
influence network, as gene networks are known to be sparse. In this sense, the resulting
networks from our approach here should not be seen as the final prediction, but rather as
inputs to more sophisticated methods involving thorough statistical testing. Nevertheless,
as evidenced by its winning performance over 18 other participating teams in the DREAM4,
this method can be considered state of the art on its own.

6.2 Reconstruction of large-scale regulatory net-
works based on perturbation graphs and tran-
sitive reduction: improved methods and their
evaluation

The data-driven inference of intracellular networks is one key challenge of computational
and systems biology. As suggested by recent works, a simple yet effective approach for re-
constructing regulatory networks comprises the following two steps. First, the observed ef-
fects induced by directed perturbations are collected in a signed and directed perturbation
graph (PG). In a second step, Transitive Reduction (TR) is used to identify and eliminate
those edges in the PG that can be explained by paths and are therefore likely to reflect indi-
rect effects.

In this work [132] we introduce novel variants for PG generation and TR leading to signif-
icantly improved performances. The key modifications concern: (i) use of novel statistical
criteria for deriving a high-quality PG from experimental data; (ii) the application of local
TR which allows only short paths to explain (and remove) a given edge; and (iii) a novel
strategy to rank the edges with respect to their confidence. To compare the new methods
with existing ones we not only apply them to a recent DREAM network inference challenge
but also to a novel and unprecedented synthetic compendium consisting of 30 5000-gene
networks simulated with varying biological and measurement error variances resulting in a

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 59

total of 270 datasets. The benchmarks clearly demonstrate the superior reconstruction per-
formance of the novel PG and TR variants compared to existing approaches. Moreover, the
benchmark enabled us to draw some general conclusions. For example, it turns out that
local TR restricted to paths of only length 2 is often sufficient or even favorable. We also
demonstrate that edge weights are highly beneficial for TR whereas edge signs are of minor
importance. We explain these observations from a graph-theoretical perspective and dis-
cuss the consequences with respect to a greatly reduced computational demand to conduct
TR. As a realistic application scenario we use our framework for inferring gene interactions
in yeast based on a library of gene expression data measured in mutants with single knock-
outs of transcription factors. The reconstructed network shows a significant enrichment of
known interactions, especially within the 100 most confident (and for experimental valida-
tion most relevant) edges.

This paper presents two major achievements. First, the novel methods introduced herein
can be seen as state of the art for inference techniques relying on perturbation graphs and
transitive reduction. The second main result of the study is the generation of a new and
unprecedented large-scale in silico benchmark dataset accounting for different noise levels
and providing a solid basis for unbiased testing of network inference methodologies.

6.2.1 Introduction

In this paper we revisit two related gene network inference methods: down-ranking of feed-
forward loops (DR-FFL [134]) and TRANSitive reduction for WEighted Signed Digraphs (TRAN-
SWESD [91]). Both approaches were successfully employed (ranked 1st and 3rd, respec-
tively) in the DREAM4 In Silico 100-node Network challenge. In this challenge, the task was
to reverse engineer gene networks from (simulated) steady-state and time-series data. DR-
FFL and TRANSWESD share a common core as they both try to infer a minimal regulatory
graph that can explain the gene expression changes observed in perturbation experiments.
In particular, both methods apply the principle of transitive reduction to identify and elim-
inate edges reflecting indirect effects. Since both DR-FFL and TRANSWESD were ranked
high, their underlying inference strategy could provide a generally promising approach for
gene network inference.

Network reconstruction methods based on transitive reduction usually involve three steps
of which the last can be seen as optional:

Step 1 (Generation of a perturbation graph): A perturbation graph G P is generated from
the perturbation data, i.e., a directed edge from a node i to a node j (i → j) is included in
G P if a perturbation in i changed the level of j significantly (significance to be measured
by a certain criterion). Sometimes, the edges are also labeled by a sign and might also get a
weight indicating their confidence or likelihood.

Step 2 (Transitive reduction): As an edge in the perturbation graph may reflect a direct
but also an indirect effect between two nodes, the goal of the second step – the transitive
reduction – is to identify and eliminate indirect effects in G P yielding the final reconstructed
graph G T . As a general rule for transitive reduction, an edge introduced due to indirect ef-
fects is detected by searching for alternative paths in G P which could induce the same net

60 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

effect as this edge. We say that such a path explains the edge and the latter is then removed.

Step 3 (Edge sorting): Normally one would consider all edges contained in G T as the
true edges. In an optional third step, all edges of the reconstructed graph G T are ranked in
a list according to a given confidence score for each edge. For certain applications it might
be useful to augment this list also by edges (together with their confidence values) not con-
tained in G T (i.e., edges which were not contained in G P or which were removed from the
latter when computing the transitive reduction G T). In this way we get an ordered list of all
potential pairwise interactions according to their confidence score.

These three steps are common to all approaches using transitive reduction (abbreviated
by TR in the following) but different variants may arise (i) by using different approaches to
derive the perturbation graph (abbreviated PG) in Step 1 or (ii) by considering different cri-
teria a path must fulfill in order to explain a given edge in Step 2, or (iii) by different edge
sorting schemes to be used in Step 3. For example, DR-FFL [134] uses a z-score-based strat-
egy to generate the PG and does not consider edge signs in the TR step when searching for
valid paths that can explain certain edges. In contrast, TRANSWESD [91] generates the PG
by selecting edges that satisfy two distinct statistical conditions whereas the actual TR pro-
cedure accounts for edge signs and also edge weights when searching for suitable paths that
can explain a given edge.

In the present study, we propose and test novel variants for each of the three steps men-
tioned above, i.e., for PG generation, for TR, and for edge sorting. As one major outcome,
we present particular combinations of PG generation and TR strategies which yielded supe-
rior results in diverse benchmark tests outperforming by far the two original approaches. As
benchmarks we used not only the DREAM4 In Silico Network challenge but also a novel and
unprecedented synthetic compendium consisting of several realistic 5000-gene networks
simulated with varying biological and measurement error variances resulting in a total of 270
datasets. In both benchmarks we focus on perturbations induced by single gene knockouts.
Such experiments can be realistically carried out at genome-scale at least in some model
organisms (see, for example, [181, 52, 81, 140]). As a realistic application scenario we use
our framework for inferring gene interactions in yeast Saccharomyces cerevisiae based on a
library of gene expression data measured in mutants with single knockouts of transcription
factors [140]. The reconstructed network shows a significant enrichment of known interac-
tions, especially within the (most relevant) edges identified with highest confidence.

The results of the benchmarks do not only demonstrate the relative performance of the
different approaches but also enable us to draw some general conclusions. For example, it
turns out that when pruning the PG by TR, it is often sufficient or sometimes even favorable
to restrict the search on paths with a length of only 2. We also demonstrate that edge weights
are highly beneficial for TR whereas edge signs are of minor importance (a finding which
was also recently reported in [30]). We give an explanation for these observations from a
graph-theoretical perspective.

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 61

6.2.2 Methods

We start with a brief description of the original TR methods DR-FFL and TRANSWESD which
inspired the novel inference algorithms presented herein. Afterwards we introduce the new
variants for PG generation, TR, and edge sorting. For the PG generation algorithms, we as-
sume that we are given the following input variables (for a network of n genes):

I a 1×n row vector Gwt containing the (possibly preprocessed) wild-type gene expres-
sion data

I the n × n matrix Gko containing the (possibly preprocessed) measured steady-state
gene expression levels after perturbing/knocking-out each single gene. The element
Gko(i , j) stores the gene expression level of gene j after perturbing gene i .

These input variables directly correspond to the datasets provided in the DREAM4 challenge
and in our novel compendium of simulated large-scale networks (described below).

Down-ranking of feed-forward loops (DR-FFL)

The DR-FFL algorithm described in [134] used the following strategies for the three steps:

Step 1 (PG generation): In a preprocessing step, a confidence weight is assigned to each
possible edge i → j of the network by computing the absolute value of the standard z-score
zi j . The latter quantifies the difference between the expression Gko(i , j) of gene j under
knockout/perturbation of gene i and its mean µ j , normalized by the standard deviation σ j :

zi j =
Gko(i , j)−µ j

σ j
. (6.4)

Mean µ j and standard deviationσ j are computed on all available expression measurements
of gene j , including the wild-type Gwt(j). Then, the PG G P is obtained by selecting all those
edges whose |zi j | is larger than a given threshold β. We then denote the PG generated by the
original DR-FFL method by PG1.

Step 2 (TR): DR-FFL circumvents possible problems arising in TR of cyclic graphs by al-
lowing only those edges to be removed that connect nodes from different strongly connected
components (a strongly connected component in a directed graph is a maximal subgraph in
which for each ordered pair of nodes a path exists connecting these nodes). DR-FFL uses
unsigned and unweighted TR, i.e., an edge i → j is removed from G P if i and j are from dif-
ferent components and if there is an alternative path connecting i and j without using edge
i → j .

Step 3 (Edge sorting): The confidence weights |zi j | of the remaining edges in the graph
G T obtained after TR are increased by a constant offset such that all edges in G T are ranked
higher than all other potential edges (not contained in G T). The latter are listed below the
edges of G T according to their confidence weight computed in Step 1.

62 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

TRANSWESD

TRANSWESD (TRANSitive reduction for WEighted Signed Digraphs) was introduced in [91]
with the goal to generalize and improve previous TR approaches [169, 174, 86] to make it
amenable for the reconstruction of large biological networks.

Step 1 (PG generation): TRANSWESD constructs the PG G P via two thresholds: an edge
i → j is introduced in G P if (i) a measure similar to the z-score |zi j | used by DR-FFL exceeds
a given threshold β and (ii) if the absolute change of the state of node j when perturbing i
exceeds a certain minimal deviation γ, i.e. if | Gwt

j −Gko
i j |> γ. Each edge i → j gets a sign

si j = sign
(
Gwt

j −Gko
i j

)
indicating whether the changes in i and j have the same direction

(positive sign) or not (negative sign). In addition, a weight wi j is assigned to each edge i → j
quantifying its uncertainty or behavioral distance (i.e., a large weight indicates a low confi-
dence of this edge). Accordingly, TRANSWESD uses wi j = 1−|ci j | with ci j being the condi-
tional correlation coefficient between genes i and j which is computed from all experiments
except those where gene i was directly perturbed. More specifically, herein the conditional
correlation coefficient ci j is defined as the Pearson correlation coefficient computed from all
measurements of nodes i and j (columns in Gwt and Gko) except in the experiments where
j was knocked-out. The PG generated by the original TRANSWESD procedure is denoted by
PG2.

Step 2 (TR): A particular feature of TRANSWESD is that it can deal with signed and weight-
ed PGs and that cycles are allowed. The TR rule is as follows: An edge i → j with sign si j and
weight wi j is removed if there is an alternative path Pi j (i =⇒ j) which connects i and j and
fulfills the following requirements: (i) Pi j is simple, i.e., it does not contain a cycle; (ii) Pi j

does not involve edge i → j ; (iii) the overall sign of Pi j (obtained by multiplying the signs
of all its edges) is the same as si j ; and (iv) the maximum weight of all edges on path Pi j

(denoted by wmax(Pi j)) fulfills
wmax(Pi j) <α ·wi j . (6.5)

The confidence factor α is typically chosen close (but smaller) than unity; the default value
used by Klamt et al. [91] is 0.95. With α < 1 it is ensured that all edges in the path Pi j have
a higher confidence than the edge i → j . However, in some cases it can nevertheless be ad-
vantageous to use also α> 1. If a path Pi j with the four required properties exists in the PG,
then the observed effect of i upon j is considered to be explained (induced) by path Pi j . All
edges i → j in the PG fulfilling these conditions are considered to be (potentially) removable
and are collected in a set R. If the graph is acyclic, TR is simple and unique and all poten-
tially removable edges in R can be deleted immediately. The situation is more complicated
in cyclic graphs: the result of TR can become non-unique, depending on the order of edge
removals. TRANSWESD uses a reasonable rule to resolve non-uniqueness: it removes the
edges of R iteratively starting with the highest weight (lowest association) first. As a second
problem in cyclic graphs, it may then happen that a formerly removable edge in R becomes
non-removable because certain paths may have been interrupted by preceding deletions of
other removable edges. Even worse, an edge might still potentially be removable but its elim-
ination would lead to the interruption of a path that was required to explain an edge already
removed in a previous iteration (see the example below). It is therefore necessary to explic-
itly test, in each iteration, whether upon removal of the next edge of R all edges originally

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 63

A D

B

C E

Reconstructed graph

Transitive Reduction

by TRANSWESD

A
0.35

D

B

C

0.3

E

0.4

0.2

0.250.6

0.5

0.8

Perturbation graph

Figure 6.5: Example of a perturbation graph and its transitive reduction computed with
TRANSWESD. A given signed and weighted perturbation graph (left) and its transitive re-
duction as computed by TRANSWESD (right).

contained in the PG G P are still explainable by the remaining graph (otherwise this edge has
to be reinserted). This may require extensive shortest path calculations.
Therefore, to reduce the computational effort in large-scale cyclic graphs, TRANSWESD pro-
vides two parameters (path_exact and full_check) to allow for the (optional) use of ap-
proximate solutions which may drastically reduce the required computation time. Since
computing the shortest path of a given sign in cyclic signed digraphs is an NP-complete (and
thus delicate) problem, starting TRANSWESD with path_exact = 0 enforces the use of ap-
proximate path calculation algorithms which have been shown to produce no or only few
errors in large-scale biological networks [91, 92]. The full_check= 0 option can be used to
suppress recomputation of shortest path lengths after deleting an edge (thus assuming that
the relevant path lengths will not change). To our experience from numerous tests, there are
usually only minor effects on the reconstruction quality when using this simplification. As
we deal herein only with large-scale networks, we used path_exact= full_check= 0 in all
calculations.
We illustrate the approach with the example shown in Figure 6.5. The graph on the left-hand
side displays a hypothetical cyclic PG with its edge weights and signs. Using the standard
confidence factor of α= 0.95, in principle, three edges could be identified as indirect effects
as for each of them a suitable explaining path would exist. This concerns the edge A → C
(explained by path A → B →C and alternatively also by path A → D → B →C both fulfilling
the sign and weight conditions), the edge A → B (explained by path A → D → B) and the
edge D → B (explainable by the path D a E → C a B). These three edges form the set R of
potentially removable edges. According to the rules, TRANSWESD removes first edge A →C
as it has the largest weight (lowest confidence). In the second iteration, A → B can be safely
removed. Now the algorithm has to stop even though the edge D → B is still explainable by
the path given above. If we removed this edge, no positive path from A to B and from A to
C would remain in the graph, i.e., the originally observed influence of A on B and C would
not be captured anymore. This example shows that TRANSWESD may keep an edge in the
graph, even if there is an explaining path for it. The resulting graph G T for this example is
shown on the right-hand side of Figure 6.5. (Note: with full_check = 0 the edge D → B
would be (wrongly) removed additionally whereas path_exact= 0 had no effect).

64 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

Step 3 (Edge sorting): TRANSWESD ranks the edges according to their weights computed
in Step 1: edges with highest confidence (lowest weights) are placed first. Edges retained in
G T are put first followed by edges that were contained in the PG G P (but removed during
TR). The last group comprises all other pairwise interactions; their order is also determined
by the conditional correlation coefficient ci j .

Novel variants

DR-FFL and TRANSWESD were successfully applied and highly ranked in the DREAM4 net-
work reconstruction challenge. However, when we compared and mixed both methods (e.g.,
by replacing Step 1 of TRANSWESD with Step 1 of DR-FFL) we realized that even better ap-
proaches, in particular for Step 1 (PG generation) and Step 2 (TR), might exist. In the follow-
ing we describe several new variants focusing on those which in the benchmarks performed
significantly better than the original DR-FFL and TRANSWESD versions (see Results section).

Perturbation graph The novel PG generation procedure delivers:

I The signed and directed PG G P itself.

I A matrix Wt containing the weights of the edges in G P to be used by the transitive
reduction algorithm. The element W t (i , j) contains the weight of the edge i → j in
G P ; it is set to ∞ if the edge was not included in the PG.

I A matrix Wr containing the confidence weights for all possible interactions (i , j) to be
used in the edge ranking procedure in Step 3. In contrast to Wt , this matrix contains a
weight for all pairs (i , j) (except for i = j as we exclude self-loops), even if i → j is not
contained in G P .

A key difference of the novel PG algorithms compared to the strategies used by DR-FFL and
TRANSWESD is that different edge weights are used for TR and for edge sorting. Moreover,
the selection of candidate edges and the calculation of edge weights are based on (combi-
nations of) correlation and z-score measures. In detail, the following calculations are per-
formed:

1. Compute the n × n conditional correlation matrix C from the expression measure-
ments Gwt and Gko .

2. Use Gko to compute the n ×n z-score matrix Z comprising the z-score values of all
(potential) edges.

3. Compute the n ×n matrix Zc as the z-score calculated on the absolute value of the
entries of the conditional correlation matrix C, and add a (minimal) offset to obtain
positive values: Zc > 0.

4. Build the PG by defining the following set of edges:

I S 1 comprises all node pairs (i , j) for which |Z (i , j)| >β.

I S 2 comprises all node pairs (i , j) for which |C (i , j)| > γ.

I S 3 is the set of all node pairs (i , j) whose z-score and correlation values have
opposite sign: C (i , j) ·Z (i , j) < 0.

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 65

I B =S 1∩S 2∩S 3 is the set of node pairs (i , j) satisfying the three previous con-
ditions.

I Z p is the set of node pairs (i , j) with positive z-score value.

I Z n is the set of node pairs (i , j) with negative z-score value.

I E p =Z n ∩B is the set of positive edges of the PG.

I E n =Z p ∩B is the set of negative edges of the PG.

I G p = E p ∪E n =B yields the PG.

5. Compute the ranking weight matrix by normalizing Wr = |Z|+Zc between 0 and 1.

6. Compute the weight matrix Wt to be used for transitive reduction in TRANSWESD as
Wt = 1−Zc .

Using this scheme, the PG is built by selecting all edges where (i) the z-score exceeds a given
threshold β, (ii) the conditional correlation exceeds another threshold γ, and (iii) the signs
of z-score and conditional correlation are opposite. The latter condition is justified because
a positive z-score for the edge (i , j) is computed when the deletion/decrease of i (due to
knockout or knockdown) yields an increase in the activity of j which should corresponds to
a negative correlation between i and j . The same correspondence exists between negative
z-score and positive correlation. Obviously, measurement noise may invalidate the truth of
these statements, thus we only keep edges that are consistent with respect to this sign rule.
With the rule described above, the positive edges contained in E p stem from a negative z-
score and the negative edges contained in E n from a positive z-score. In the following we
denote the PG generated by the above procedure PGnew.

The weights W r (i , j) used for edge ranking take equally-weighted into account (i) the
absolute value of the standard z-score (Equation (6.4)) of the deviations induced by the per-
turbation in i and (ii) the z-score of the deviations of the conditional correlation between i
and j relative to the averaged conditional correlations related to gene j . As far as we know, a
z-score of conditional correlations has not yet been used in the context of network inference,
however, the ranking weights introduced above proved to be optimal in the benchmarks de-
livering an edge sorting of high quality. Below we show that the new PG generation approach
in combination with the proposed ranking scheme may already deliver a valuable approxi-
mation of the network itself but can often be further improved by TR techniques. Regarding
the weights to be used for TR (Wt), benchmark tests showed us that it is beneficial to use only
the z-score of the conditional correlation coefficients.

Transitive reduction Identifying and pruning edges representing the indirect interactions
in G P finally yielding G T is the central goal of transitive reduction. We here present some
novel and generalized variants of TR inspired from the original versions of DR-FFL and TRAN-
SWESD.

We observed that the TR used by TRANSWESD (see Step 2 of TRANSWESD described
above) can be generalized in multiple ways:

I One may consider unweighted TRANSWESD by setting α=∞ in the weight rule (6.5).

66 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

I One may consider unsigned TRANSWESD by setting all edge signs in G P to “+”. In
this case, the algorithm becomes simpler (polynomial instead of NP-complete) as the
calculation of shortest paths does not need to distinguish between positive and nega-
tive paths. It is then, however, still important to keep the weights to avoid non-unique
results in cyclic networks.

I When searching for a suitable path Pi j that can explain a certain edge i → j , one may
restrict the search on paths involving not more edges than a predefined number L.
In this way one would manifest the expectation that observed indirect effects can be
traced back to short paths.

With these generalizations we introduce the notation TRANSWESDS,W,L to specify the cho-
sen TR variant: S ∈ {u,s} indicates whether the signed (s) or unsigned (u) TR version is used;
W ∈ {u,w} specifies either the unweighted (u) or weighted (w) version; and L specifies the
maximal path length allowed. Accordingly, the original TRANSWESD version corresponds
to TRANSWESDs,w,∞. We also observe that TRANSWESDu,u,∞ mimics TR used by DR-FFL
when removal of edges within one and the same component would be blocked. However,
we soon realized that the unweighted variant of TRANSWESD does not perform very well, in
particular when combined with the full_check= 0 option (see above). We therefore do not
analyze the unweighted version in detail but keep the notation for consistency with respect
to the following variant.

In addition to the modified version of TRANSWESD, we introduce a related but different
strategy which we call local transitive reduction (LTR). There are two key differences: only
paths of length 2 are considered as possible explanations for indirect effects and an alter-
native condition on the edge weight is introduced replacing rule (6.5). The LTR algorithm
considers an edge i → j potentially removable if three criteria are fulfilled: (i) existence of a
feed-forward loop, i.e. {i → j , i → k,k → j } ∈ G P ; (ii) sign consistency, i.e. si j = si k · sk j ; and
(iii) the weight condition:

α ·Z c
i j ≤ Z c

i k ·Z c
k j , (α> 0). (6.6)

Recall that we introduced Zc as the z-score of the correlation coefficients and that the rela-
tion to the edge weight Wt which we use for modified TRANSWESD is thus simply Zc = 1−Wt .
Therefore, the smaller Z c

i j the higher the confidence that the path i → k → j can explain the
edge i → j (thus, a large weight is here associated with high confidence).
Analogously as described for TRANSWESD, to deal with non-uniqueness, the potentially re-
movable edges are iteratively deleted according to the edge weights (lowest confidence first)
and for each edge to be removed it is checked, whether all edges originally contained in G P

are still explainable by a 2-path in the remaining graph (otherwise this edge is kept).

Although LTR is also a weighted and signed TR variant, it is considerably simpler than
TRANSWESD as it uses a simple triangle rule which is much easier to check than searching
for suitable paths. For this reason, in contrast to TRANSWESD, we can easily use the ex-
act variant with path_exact= full_check= 1 in large-scale networks. As will be shown in
the Results section, despite its simplicity, LTR yielded excellent performance in the bench-
marks. For LTR we also tested different variants, including the unweighted (condition (6.6)
is dropped by setting α= 0), the unsigned and the unsigned/unweighted version (in the lat-
ter, only the 2-path i → k → j must exist to render edge i → j removable, irrespective of

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 67

edge signs and weights). We introduce a similar notation as for TRANSWESD: LTRS,W indi-
cates whether edge signs (S ∈ {u,s}) and weights (W ∈ {u,w}) are considered or not; the length
parameter L becomes obsolete as it is fixed to 2.

Edge sorting We use a simple edge ranking procedure which is similar to the strategy used
by DR-FFL and (original) TRANSWESD. Note that all n(n − 1) potential edges (except self-
loops) are included into this list, also those that were not contained in the PG G P or that
were removed during TR. The position of each edge is determined by the ranking weights
stored in Wr (see above): edges with highest ranking weights are put first. To ensure that
edges contained in the final graph G T are really ranked higher than all other edges, an offset
is added to the weight of all edges in G T .

6.2.3 Results and discussion

In the following we present performance results of the new PG generation algorithm in com-
bination with the modified TRANSWESD and the new LTR technique for subsequent tran-
sitive reduction. We used two different case studies for benchmarking: (i) the datasets of
the DREAM4 InSilico_Size100 network inference challenge, and (ii) a novel large-scale
synthetic compendium consisting of 30 5000-gene networks simulated by SysGenSIM [136]
with different connectivities and noise levels. The DREAM4 benchmark also enables a com-
parison of the performances of the new approaches with its inspiring original techniques
DR-FFL and (old) TRANSWESD. Generally, in the case of the two in silico datasets (where
the gold standard is known) the goodness of the predictions are evaluated based on the es-
tablished Area Under the Curve (AUC) measures of ROC (Receiver Operating Characteristic)
and PR (Precision-Recall) curves. The AUPR is the most informative (and the only shown)
performance measure for the case studies in this paper due to the sparsity of gene networks
implying large AUROC values differing only insignificantly for the different methods.

Performance on DREAM4 networks

In the DREAM4 InSilico_Size100 network reconstruction challenge [1, 112], simulated steady-
state measurements of the expression of each gene in the wild-type as well as in the single-
gene knockout and single-gene knockdown mutant were provided for 5 different in silico
networks (100 nodes each) from which the networks had to be reconstructed. We only make
use of wild-type and knockout data as they directly support the generation of the PG (knock-
down data can, in principle, further improve the results; see below). For assessing the quality
of reconstructed networks, an evaluation script is available at the DREAM website [4] which
computes an overall score obtained from the geometric mean of p-values calculated for the
AUPR and the AUROC measures from all 5 reconstructed networks.

We considered predictions by several combinations of the original as well as of the new
PG generation and TR methods. The methods’ parameters were chosen according to previ-
ously used values (e.g., α) or according to preliminary tests. Importantly, one and the same
parameter set was used for all five networks, i.e., no optimization was conducted for every
single network. The DREAM4 evaluation script was used to compute the respective overall
scores which are summarized in Table 6.8. We recall that the combined use of the unsigned
and z-score-based PG1 with DR-FFL [134] originally obtained the best score (71.59) for the

68 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

Table 6.8: Performance of the inference algorithms on the DREAM4 networks (100 nodes).
The table summarizes the performance (overall score, true positives (TPs), false positives
(FPs) and false negatives (FNs)) of the different PG generation and TR algorithms when
applied to the DREAM4 networks together with the displayed (optimal) parameters. The
last column TP100 shows the average number of TPs within the first 100 top-ranked (recon-
structed) edges. As a comparison, the scores of the 5 best-performing algorithms within the
challenge are shown. PG2∗ denotes PG2 computed with a minor bug in the original imple-
mentation.

DREAM4 best performers Score
Team 395 (PG1 + DR-FFL) 71.5889
Team 296 71.2970
Team 515 (PG2∗ + TRANSWESDs,w,∞) 64.7150
Team 466 63.4060
Team 549 63.1050
Inference algorithm β γ α Score Edges TPs FPs FNs TP100

PG1 2.00 - - 70.3495 349.4 103.4 246.0 101.4 58.0
PG1 + DR-FFL - - - 71.5889 267.4 83.6 183.8 121.2 62.4
PG1 + TRANSWESDu,w,∞ - - 0.95 73.0444 305.2 97.4 207.8 107.4 60.8
PG1 + TRANSWESDu,w,2 - - 1.50 65.7845 103.0 9.8 93.2 195.0 53.6
PG1 + LTRu,u - - - 79.7428 261.2 92.4 168.8 112.4 72.2
PG1 + LTRu,w - - 0.15 79.1609 262.0 92.8 169.2 112.0 72.2
PG2 2.60 0.05 - 65.8012 398.2 98.0 300.2 106.8 58.2
PG2 + DR-FFL - - - 64.2614 372.8 94.4 278.4 110.4 58.0
PG2 + TRANSWESDu,w,∞ - - 0.95 65.6504 256.6 86.0 170.6 118.8 64.4
PG2 + TRANSWESDs,w,∞ - - 0.95 66.0970 260.8 86.8 174.0 118.0 66.6
PG2 + TRANSWESDu,w,2 - - 1.50 66.5562 224.0 81.0 143.0 123.8 64.2
PG2 + TRANSWESDs,w,2 - - 1.50 68.1534 249.2 84.4 164.8 120.4 67.0
PG2 + LTRu,u - - - 65.4214 253.0 82.2 170.8 122.6 64.6
PG2 + LTRs,u - - - 67.7407 274.0 86.4 187.6 118.4 66.6
PG2 + LTRu,w - - 0.15 67.2567 271.4 85.6 185.8 119.2 66.0
PG2 + LTRs,w - - 0.15 68.5959 288.2 88.4 199.8 116.4 67.2
PGnew 2.00 0.00 - 81.7594 250.2 99.6 150.6 105.2 66.6
PGnew + DR-FFL - - - 80.3085 179.8 82.0 97.8 122.8 66.2
PGnew + TRANSWESDu,w,∞ - - 0.95 85.3288 179.2 90.2 89.0 114.6 72.0
PGnew + TRANSWESDs,w,∞ - - 0.95 85.7898 183.0 92.0 91.0 112.8 72.8
PGnew + TRANSWESDu,w,2 - - 1.50 88.0570 147.6 86.0 61.6 118.8 72.6
PGnew + TRANSWESDs,w,2 - - 1.50 88.5728 150.4 87.8 62.6 117.0 72.8
PGnew + LTRu,u - - - 88.2217 166.8 91.8 75.0 113.0 74.2
PGnew + LTRs,u - - - 88.6350 169.4 93.4 76.0 111.4 75.2
PGnew + LTRu,w - - 0.15 88.5203 168.4 92.8 75.6 112.0 75.0
PGnew + LTRs,w - - 0.15 88.8005 169.8 93.8 76.0 111.0 75.8

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 69

DREAM4 challenge, while the coupling of PG2 and (original) TRANSWESD was ranked third
with a score of 64.71 (see [91]). Although we used here only the knockout data (in [91] both
knockout and knockdown data were used for computing the correlation coefficents) the re-
sults presented in Table 6.8 are slightly better (66.10) by fixing a small bug in the computation
of PG2.

The DREAM4 best overall score of 71.59 is already exceeded by just applying unsigned
TRANSWESDu,w,∞ or unsigned and unweighted LTRu,u to the unsigned perturbation graph
PG1. This supports the statement in [153] about the weakness of the original DR-FFL algo-
rithm, where transitive reduction is applied only to edges between but not within strongly
connected components of the PG. In fact, both TRANSWESDu,w,∞ and especially LTRu,u/w

improve the score of PG1 significantly up to 79.74.
Regarding the results for PG2 originally used by the TRANSWESD method in [91] we observe
that the quality (score) of the PG is lower than for the simple z-score PG1. Although all tested
TR techniques (except DR-FFL) can improve the score, it remains below the performance
results obtained for the z-score approach PG1.

Next we tested the performance results of the TR techniques in PGnew where we also ap-
plied the new edge sorting scheme and sorting weights. As a first observation, a notable
quality improvement is obtained by the novel PGnew alone achieving a score of 81.76 which
is markedly higher than the scores obtained by PG1 and PG2, even after TR. A somewhat
unexpected result was that the γ threshold for the conditional correlation coefficients was
virtually not required as its optimal value turned out to be 0. However, in other tests de-
scribed below, using a non-zero value for this threshold in combination with β (for the z-
score) turns out to be beneficial. We also analyzed the robustness of the quality of PGnew

and its edge ordering with respect to the chosen threshold parameters β and γ: Figure 6.6
displays the overall score of PGnew when varying the threshold parameters showing that it is
(i) higher than the previous winning score (71.59), (ii) higher than PG1, and (iii) higher than
PG2 – even for the complete space of meaningful parameter values scanned. Hence, a rea-
sonable robustness of the quality of PGnew with respect to the two threshold parameters can
be concluded. We then applied the TR techniques to PGnew which increase the scores up
to 88.80, thus well above the best score recorded at the DREAM4 challenge. Regarding the
different TRANSWESD variants, we see that the signed version (85.79) is only slightly bet-
ter than the unsigned variant (85.33) whereas local TRANSWESD, which takes only paths of
length 2 into account, results in a further significant improvement of the score (88.57). In
line with these observations, unsigned and signed LTR differ only marginally whereas signed
and weighted LTRs,w produces the best overall results, not far from the unweighted variant.
Recall that TRANSWESDs,w,2 and LTRs,w differ essentially only by condition (6.5) vs. (6.6).
Although the results of both local variants are comparable, it seems that the rule used by
LTR can better predict true indirect effects. Generally, Table 6.8 shows that all TR techniques
work well by strongly decreasing the number of false positive edges (FPs) with only a slight
decrease in number of true positives (TPs). Apparently, the best ratio is obtained by local TR
variants (i.e., by LTR and TRANSWESDs,w,2). We also noticed that the (average) enrichment
of TPs under the first 100 reconstructed edges in the sorted edge list (column TP100 in Ta-
ble 6.8) is especially large confirming the potential of our methods: it reaches 66.6 for PGnew,
72.8 for TRANSWESDs,w,2 and even 75.4 for LTRs,w. Hence, there is a high probability that
top-ranked edges correspond to true interactions – a desirable property when validating the

70 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

1
1.5

2
2.5

3
3.5

0

0.05

0.1

0.15

0.2

0.25
45

50

55

60

65

70

75

80

85

Beta

Comparison of perturbation graph performances

Gamma

S
c
o
re

PG
1

PG
2

PG
new

50

55

60

65

70

75

80

Figure 6.6: Performance of the PGnew methodology in DREAM4 networks (100 nodes). The
overall score of PGnew is consistently higher than the scores achieved by the DREAM4 win-
ning submission (71.59, not shown), by PG1 (70.35; does not depend on any parameter), and
by PG2 for the complete space of meaningful parameter values (β,γ).

0.5 0.6 0.7 0.8 0.9 1
81.5

82

82.5

83

83.5

84

84.5

85

85.5

86

86.5
TRANSWESD vs Perturbation graph

Alpha

O
v
e

ra
ll

s
c
o

re

Perturbation graph

TRANSWESD
u,w,inf

TRANSWESD
s,w,inf

0 0.2 0.4 0.6 0.8 1
81

82

83

84

85

86

87

88

89
LTR vs Perturbation graph

Alpha

O
v
e

ra
ll

s
c
o

re

Perturbation graph

LTR
u,u

LTR
s,u

LTR
u,w

LTR
s,w

Figure 6.7: Robustness of TRANSWESD (left) and LTR (right) variants in DREAM4 net-
works. The overall scores achieved after TR with TRANSWESD·,w,∞ or LTR·,· are consistently
higher than the score obtained by PGnew for a large range of meaningful values of the confi-
dence factor α. TRANSWESD·,·,2 was not included because of its different operating range of
values.

edges experimentally.

Figure 6.7 demonstrates that TRANSWESD (left) and LTR (right) are also fairly robust with
respect to the confidence factor, as the score of the perturbation graph PGnew is highly im-
proved by both methods for a broad range of meaningful values of α. In this context it is
also of interest that unweighted LTR yielded very good predictions even without the need to
specify any further parameter (as necessary for weighted LTR and TRANSWESD).

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 71

We summarize that the best-ranked algorithms of the DREAM4 competition are signifi-
cantly outperformed by our new methods for PG generation, TR, and edge sorting. We no-
ticed that also other recently published network inference techniques applied to the DREAM4
networks [175, 30] reported lower predictions. For example, the highest overall score in [175]
is 81.10 obtained by using both knockout and knockdown datasets whereas a score of 73.33
was achieved in [30] by CUTTER-W, an approach similar to unsigned (and weighted) TRAN-
SWESD. Moreover, if we also include knockdown data in our analysis (for calculating the
conditional correlation coefficients), the scores in Table 6.8 grow up by approximately 3-4
points each, reaching a top of 92.03 with PGnew + LTRs,w. As expected, this confirms that an
increase of the number of measurements corresponds to an improvement of the prediction.
However, most of the information is already provided by the knockout experiments.

Performance on SysGenSIM datasets

In order to provide an even more exhausting and more realistic test scenario for the devel-
oped inference algorithms, the software SysGenSIM [136] was used to create a new collection
of synthetic gene networks and to simulate knockout experiments under different connec-
tivities and noise conditions. SysGenSIM is able to generate large networks with a topology
similar to those observed in real organisms, i.e., with a modular structure featuring exponen-
tial and power law behavior for the in- and out-degree distributions of nodes [70]. The gen-
erated 30 in silico networks have a considerable (close to genome-scale) size of 5000 nodes
each. One third of them has a low average degree (about 7500 edges, i.e. K ' 1.5), 10 net-
works have a mean average degree (about 10000 edges, i.e. K ' 2), while the last third of
the networks exhibits the largest average degree (about 12500 edges, i.e. K ' 2.5). Finally,
using equations of biochemical kinetics where the degradation rate of gene expression is
represented by a first order process and the transcription rate exhibits the essential features
of cooperativity and saturation [119], single knockout experiments have been simulated for
all the genes of each network with SysGenSIM’s default kinetic parameters under 9 differ-
ent combinations of noise conditions (for technical details see [136]). In fact, SysGenSIM
allows for the selection of the standard deviationσϑ of the Gaussian distribution from which
the biological synthesis and degradation variances, are sampled (parameters ϑsyn and ϑdeg

in Equation (3.1)) as well as the standard deviation σν of the Gaussian distribution from
which the experimental noise ν is sampled. As possible values for both standard deviations
we considered {0.025,0.05,0.1}, yielding a total of 9 combinations summarized in Table 6.9.
Therefore a grand total of 270 different networks (30 topologies with 9 different noise con-
figurations) with simulations of single-gene knockout experiments have been produced, the
goal being the testing of the inference methodologies under different conditions of edge den-
sity, biological variance, and multiplicative measurement noise.

Due to the superior performance of PGnew we present results only for this PG. Figure 6.8
exemplifying displays the performance of PGnew for the 9 different noise configurations of
network 1 (connectivity K ' 1.5) in dependency of a wide range of (β,γ) parameters (exam-
ples for K ' 2 and K ' 2.5 are shown in Figures 6.9 and 6.10). The novel PG generation
algorithm exhibits reasonable robustness with respect to both noise and threshold parame-
ters. In fact it works decently with the same β and γ as used for the DREAM4 networks (for
the optimal value, γ needs to be slightly raised from 0.00 to 0.05), while the procedures for

72 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

K
 =

 1
.5

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

1
−

L
L

 [
0

.0
2

5
,

0
.0

2
5

]

G
a

m
m

a

AUPR

0
.6

7

0
.6

8

0
.6

9

0
.7

0
.7

1

0
.7

2

0
.7

3

0
.7

4

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

K
 =

 1
.5

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

2
−

L
M

 [
0

.0
2

5
,

0
.0

5
0

]

G
a

m
m

a

AUPR

0
.5

6

0
.5

8

0
.6

0
.6

2

0
.6

4

0
.6

6

0
.6

8

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

K
 =

 1
.5

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

3
−

L
H

 [
0

.0
2

5
,

0
.1

0
0

]

G
a

m
m

a

AUPR

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

K
 =

 1
.5

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

4
−

M
L

 [
0

.0
5

0
,

0
.0

2
5

]

G
a

m
m

a

AUPR

0
.6

2

0
.6

3

0
.6

4

0
.6

5

0
.6

6

0
.6

7

0
.6

8

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

K
 =

 1
.5

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

5
−

M
M

 [
0

.0
5

0
,

0
.0

5
0

]

G
a

m
m

a

AUPR

0
.5

9

0
.6

0
.6

1

0
.6

2

0
.6

3

0
.6

4

0
.6

5

0
.6

6

0
.6

7

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

K
 =

 1
.5

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

6
−

M
H

 [
0

.0
5

0
,

0
.1

0
0

]

G
a

m
m

a

AUPR

0
.4

6

0
.4

8

0
.5

0
.5

2

0
.5

4

0
.5

6

0
.5

8

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

K
 =

 1
.5

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

7
−

H
L

 [
0

.1
0

0
,

0
.0

2
5

]

G
a

m
m

a

AUPR

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

K
 =

 1
.5

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

8
−

H
M

 [
0

.1
0

0
,

0
.0

5
0

]

G
a

m
m

a

AUPR

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

K
 =

 1
.5

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

9
−

H
H

 [
0

.1
0

0
,

0
.1

0
0

]

G
a

m
m

a

AUPR

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

Figure 6.8: Performance and robustness of the PGnew methodology applied to the 9 noise
configurations of network 1 in the SysGenSIM dataset. The AUPR scores of PGnew are fairly
robust for a large range of meaningful parameter values β and γ. The picture shows the
performance of the inference of network 1 (containing about 7500 edges) with respect to the
9 different noise conditions.

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 73

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

1

K

 =
 2

.0

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

1
−

L
L

 [
0

.0
2

5
,

0
.0

2
5

]

G
a

m
m

a

AUPR

0
.5

8

0
.5

9

0
.6

0
.6

1

0
.6

2

0
.6

3

0
.6

4

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

1

K

 =
 2

.0

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

2
−

L
M

 [
0

.0
2

5
,

0
.0

5
0

]

G
a

m
m

a

AUPR

0
.5

0
.5

2

0
.5

4

0
.5

6

0
.5

8

0
.6

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

1

K

 =
 2

.0

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

3
−

L
H

 [
0

.0
2

5
,

0
.1

0
0

]

G
a

m
m

a

AUPR

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

1

K

 =
 2

.0

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

4
−

M
L

 [
0

.0
5

0
,

0
.0

2
5

]

G
a

m
m

a

AUPR

0
.5

1

0
.5

2

0
.5

3

0
.5

4

0
.5

5

0
.5

6

0
.5

7

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

1

K

 =
 2

.0

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

5
−

M
M

 [
0

.0
5

0
,

0
.0

5
0

]

G
a

m
m

a

AUPR

0
.4

9

0
.5

0
.5

1

0
.5

2

0
.5

3

0
.5

4

0
.5

5

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

1

K

 =
 2

.0

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

6
−

M
H

 [
0

.0
5

0
,

0
.1

0
0

]

G
a

m
m

a

AUPR

0
.3

9

0
.4

0
.4

1

0
.4

2

0
.4

3

0
.4

4

0
.4

5

0
.4

6

0
.4

7

0
.4

8

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

1

K

 =
 2

.0

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

7
−

H
L

 [
0

.1
0

0
,

0
.0

2
5

]

G
a

m
m

a

AUPR

0
.2

8

0
.3

0
.3

2

0
.3

4

0
.3

6

0
.3

8

0
.4

0
.4

2

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

1

K

 =
 2

.0

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

8
−

H
M

 [
0

.1
0

0
,

0
.0

5
0

]

G
a

m
m

a

AUPR

0
.2

8

0
.3

0
.3

2

0
.3

4

0
.3

6

0
.3

8

0
.4

0
.4

2

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 1

1

K

 =
 2

.0

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

9
−

H
H

 [
0

.1
0

0
,

0
.1

0
0

]

G
a

m
m

a

AUPR

0
.2

4

0
.2

6

0
.2

8

0
.3

0
.3

2

0
.3

4

0
.3

6

0
.3

8

0
.4

Figure 6.9: Performance and robustness of the PGnew methodology applied to the 9 noise
configurations of network 11 in the SysGenSIM dataset. The AUPR scores of PGnew are
fairly robust for a large range of meaningful parameter values β and γ. The picture shows
the performance of the inference of network 11 (containing about 10000 edges, i.e. K ' 2)
with respect to the 9 different noise conditions.

74 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 2

1

K

 =
 2

.5

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

1
−

L
L

 [
0

.0
2

5
,

0
.0

2
5

]

G
a

m
m

a

AUPR

0
.4

8

0
.4

9

0
.5

0
.5

1

0
.5

2

0
.5

3

0
.5

4

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 2

1

K

 =
 2

.5

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

2
−

L
M

 [
0

.0
2

5
,

0
.0

5
0

]

G
a

m
m

a

AUPR

0
.4

0
.4

2

0
.4

4

0
.4

6

0
.4

8

0
.5

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 2

1

K

 =
 2

.5

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

3
−

L
H

 [
0

.0
2

5
,

0
.1

0
0

]

G
a

m
m

a

AUPR

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 2

1

K

 =
 2

.5

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

4
−

M
L

 [
0

.0
5

0
,

0
.0

2
5

]

G
a

m
m

a

AUPR

0
.4

3

0
.4

3
5

0
.4

4

0
.4

4
5

0
.4

5

0
.4

5
5

0
.4

6

0
.4

6
5

0
.4

7

0
.4

7
5

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 2

1

K

 =
 2

.5

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

5
−

M
M

 [
0

.0
5

0
,

0
.0

5
0

]

G
a

m
m

a

AUPR

0
.4

1

0
.4

2

0
.4

3

0
.4

4

0
.4

5

0
.4

6

0
.4

7

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 2

1

K

 =
 2

.5

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

6
−

M
H

 [
0

.0
5

0
,

0
.1

0
0

]

G
a

m
m

a

AUPR

0
.3

2

0
.3

3

0
.3

4

0
.3

5

0
.3

6

0
.3

7

0
.3

8

0
.3

9

0
.4

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 2

1

K

 =
 2

.5

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

7
−

H
L

 [
0

.1
0

0
,

0
.0

2
5

]

G
a

m
m

a

AUPR

0
.2

4

0
.2

6

0
.2

8

0
.3

0
.3

2

0
.3

4

0
.3

6

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 2

1

K

 =
 2

.5

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

8
−

H
M

 [
0

.1
0

0
,

0
.0

5
0

]

G
a

m
m

a

AUPR

0
.2

4

0
.2

6

0
.2

8

0
.3

0
.3

2

0
.3

4

0
.3

6

1
.5

2

2
.5

0

0
.0

5

0
.1

0
.2

0
.4

0
.6

0
.8

B
e

ta

N
e

tw
o

rk
 2

1

K

 =
 2

.5

N

o
is

e
 c

o
n

fi
g

u
ra

ti
o

n
:

9
−

H
H

 [
0

.1
0

0
,

0
.1

0
0

]

G
a

m
m

a

AUPR

0
.2

2

0
.2

4

0
.2

6

0
.2

8

0
.3

0
.3

2

Figure 6.10: Performance and robustness of the PGnew methodology applied to the 9 noise
configurations of network 21 in the SysGenSIM dataset. The AUPR scores of PGnew are
fairly robust for a large range of meaningful parameter values β and γ. The picture shows
the performance of the inference of network 21 (containing about 12500 edges, i.e. K ' 2.5)
with respect to the 9 different noise conditions.

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 75

Table 6.9: Noise configurations in simulated datasets. Columns σϑ and σν show the values
of the standard deviations of the Gaussian distributions with µ= 1 from which the biological
variances ϑsyn and ϑdeg and the measurement error ν were sampled in SysGenSIM. Each
configuration is also represented by a 2-character string, indicating the intensity levels (low
(L), medium (M), high (H)) of the biological variance (first letter) and of the measurement
error (second letter), respectively.

Configuration Label σϑ σν
1 LL 0.025 0.025
2 LM 0.025 0.050
3 LH 0.025 0.100
4 ML 0.050 0.025
5 MM 0.050 0.050
6 MH 0.050 0.100
7 HL 0.100 0.025
8 HM 0.100 0.050
9 HH 0.100 0.100

PG1 and PG2 would need a more extensive re-tuning of the parameters to obtain reasonable
results (not shown).

The effect of the TR algorithms applied to PGnew (Tables 6.10 and 6.11, Figure 6.11) be-
comes more heterogeneous and differentiated compared to the DREAM4 networks. First of
all, we observe that the unweighted versions of LTR decrease in all cases the quality of the
perturbation graph PGnew whereas weighted LTR and (non-local versions of) TRANSWESD
improve it – partially significantly – in all scenarios (with one minor exception). This demon-
strates that weighted TR can be highly beneficial. However, local TRANSWESDs,w,2, which
was comparable with LTR in the DREAM4 networks, achieves similar unfavorable results for
these large and noisy networks as unweighted LTR. This confirms again that rule (6.6) seems
to be better suited for local TR than rule (6.5). Furthermore, the quality of the PG as well
as the relative improvement by the (weighted) TR techniques depends substantially on the
magnitude of the noise level both with respect to AUPR and in the number of TPs and FPs.
An interesting observation can be made regarding the effect of biological variance on the
reconstruction quality: it appears that moderately increased (medium) biological noise is
advantageous in case of high measurement noise for all K ’s (see Figure 6.11, Table 6.10 and
Tables T1 and T2 in Additional File 1). Thus, higher biological noise may help to uncover
true perturbation effects under high uncertainty of measurements. It can also be noticed
that, in general, TRANSWESDs,w,∞ and LTRs,w achieve similar superior AUPR performance,
but by different means as manifested in Table 6.11 the LTR technique prunes the edges of the
PG more generously than TRANSWESDs,w,∞, resulting in a better reduction of false positive
edges, but at the same time in an undesired higher decrease of true positives. Finally, we can
confirm a result from the DREAM4 benchmark: signed (weighted) LTR and TRANSWESD
achieved always better AUPR scores than their unsigned versions (except in one case) but
only to a very small extent. This important observation are discussed in more detail in the
Conclusion section. Finally, Figure 6.12 also indicates how the precision of PGnew and the ef-
fectiveness of TR decrease when the network connectivity (average node degree K) increases.

76 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

LL LM LH ML MM MH HL HM HH
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Noise configurations

A
U

P
R

Average performance and comparison of PG vs TRANSWESD vs LTR

PG

new

TR
uw

TR
sw

LTR
uu

LTR
su

LTR
uw

LTR
sw

Figure 6.11: Average performance of TRANSWESD and LTR variants on the SysGenSIM
datasets. Parameters used to obtain the perturbation graph were β= 2.0 and γ= 0.05, while
α = 0.95 and α = 0.15 were selected for the TRANSWESD and LTR variants, respectively.
AUPR scores are averaged across the 30 networks (10 networks for each of the three aver-
aged node degrees considered) simulated with the same noise configuration. The efficacy of
transitive reduction changes with the noise levels.

Table 6.10: Performance of the inference algorithms on the SysGenSIM networks. Each
score is the mean of the AUPR computed for the 10 networks with K ' 1.5 simulated ac-
cording to the same noise configuration. Thresholds used by the inference algorithms are
β = 2.0 and γ = 0.05 for generating PGnew, α = 0.95 for TRANSWESD·,w,∞, α = 1.50 for
TRANSWESD·,w,2 and α = 0.15 for LTR·,w. Analogous performances for K ' 2 and K ' 2.5
are shown in Tables T1 and T2 in Additional File 1.

Noise configuration
Inference algorithm 1 - LL 2 - LM 3 - LH 4 - ML 5 - MM 6 - MH 7 - HL 8 - HM 9 - HH
PGnew 0.7388 0.6835 0.5159 0.6735 0.6622 0.5850 0.5141 0.5218 0.4835
PGnew + TRANSWESDu,w,∞ 0.7695 0.6906 0.5141 0.6921 0.6778 0.5921 0.5192 0.5269 0.4868
PGnew + TRANSWESDs,w,∞ 0.7702 0.6910 0.5142 0.6923 0.6780 0.5922 0.5192 0.5269 0.4868
PGnew + TRANSWESDu,w,2 0.7335 0.5825 0.5041 0.6471 0.6410 0.5650 0.4963 0.5115 0.4737
PGnew + TRANSWESDs,w,2 0.7354 0.5929 0.5042 0.6478 0.6417 0.5653 0.4965 0.5116 0.4739
PGnew + LTRu,u 0.7561 0.6320 0.5114 0.6701 0.6583 0.5783 0.5093 0.5209 0.4816
PGnew + LTRs,u 0.7570 0.6390 0.5115 0.6705 0.6587 0.5784 0.5094 0.5210 0.4818
PGnew + LTRu,w 0.7737 0.7051 0.5285 0.6898 0.6751 0.5924 0.5196 0.5291 0.4880
PGnew + LTRs,w 0.7742 0.7057 0.5285 0.6900 0.6753 0.5925 0.5196 0.5291 0.4880

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 77

Table 6.11: Statistics on edges from the inferred SysGenSIM networks. The number of
edges in the perturbation graph and the number of FPs and TPs are shown in the table. The
relative reduction of these measures (edges, TPs and FPs) in the graphs obtained after apply-
ing the different TR techniques compared to the PG is also displayed. These averaged statis-
tics are computed from the analysis of the graphs obtained after inferring the 30 SysGen-
SIM networks simulated according to configuration 1 (LL). Thresholds used are β= 2.0 and
γ = 0.05 for generating PGnew, α = 0.95 for TRANSWESD·,w,∞, α = 1.50 for TRANSWESD·,w,2

and α= 0.15 for LTR·,w. Analogous tables for the other 8 configurations (2, . . . , 9) are shown
in Tables T3–T10 in Additional File 1.

K ' 1.5 K ' 2 K ' 2.5
Inference algorithm Edges TPs FPs Edges TPs FPs Edges TPs FPs
PGnew 14353 6239 8114 20477 7422 13055 27496 8258 19239
PGnew + TRANSWESDu,w,∞ -15.6% -0.6% -27.2% -15.7% -2.0% -23.5% -14.9% -3.5% -19.8%
PGnew + TRANSWESDs,w,∞ -15.4% -0.4% -26.8% -15.2% -1.6% -22.9% -14.4% -3.0% -19.3%
PGnew + TRANSWESDu,w,2 -37.5% -16.0% -54.0% -42.8% -25.0% -52.9% -46.7% -33.1% -52.5%
PGnew + TRANSWESDs,w,2 -37.2% -15.7% -53.9% -42.4% -24.2% -52.7% -46.1% -31.8% -52.2%
PGnew + LTRu,u -32.1% -9.7% -49.3% -35.3% -15.1% -46.8% -37.7% -19.8% -45.3%
PGnew + LTRs,u -31.9% -9.5% -49.2% -35.0% -14.6% -46.6% -37.4% -19.2% -45.2%
PGnew + LTRu,w -29.7% -5.8% -48.2% -30.6% -7.8% -43.6% -28.6% -8.9% -37.1%
PGnew + LTRs,w -29.6% -5.7% -48.1% -30.5% -7.5% -43.5% -28.5% -8.5% -37.0%

Moreover, the superiority of weighted vs. unweighted TR can again clearly be seen.

Application to a realistic yeast knockout dataset

The ultimate test for our reverse-engineering algorithm would be the application to a genome-
scale real-world dataset of single-gene perturbation (e.g., knockout) experiments. Few such
datasets are available. The most suitable for our purpose is the S. cerevisiae transcription
factor knockout expression compendium of Hu et al. [81] where the expression of n = 6253
genes was measured after single knockouts (or knockdowns) of m = 269 transcription factors
(TFs) being the most important regulators in yeast. Herein we refer to the revised dataset
provided by Reimand et al. [140] where the original raw data of Hu et al. were reanalyzed
with more sophisticated statistical techniques from the BioConductor package [66] leading
to an increased informative content of the microarray measurements.

The processed data of Reimand et al. (available at [3]) consists of three matrices of size
m ×n:

I L contains the log-fold change values for all genes across all knockout experiments;

I P includes the p-values for differential expression;

I A is the signed adjacency matrix (we can consider it as the reconstructed graph by
Reimand et al.) whose entries A(i , j) correspond to (inferred) edges with a p-value of
P (i , j) < 0.05.

Our goal was to re-process the log-fold change values in order to apply our network inference
algorithm and to produce a ranked list of edges. For comparing our reconstructed network
with the predicted network of Reimand et al. we need a gold standard. However, as a reliable
gold standard for gene regulation in S. cerevisiae is still not available (otherwise we would

78 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

1
.5

2
2

.5
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

AUPR

P
G

 v
s
 T

R
A

N
S

W
E

S
D

 v
s
 L

T
R

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

1
−

L
L

 [
0

.0
2

5
,

0
.0

2
5

]

P

G
n
e
w

T
R

u
w

T
R

s
w

L
T

R
u
u

L
T

R
s
u

L
T

R
u
w

L
T

R
s
w

1
.5

2
2

.5
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

AUPR

P
G

 v
s
 T

R
A

N
S

W
E

S
D

 v
s
 L

T
R

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

2
−

L
M

 [
0

.0
2

5
,

0
.0

5
0

]

P

G
n
e
w

T
R

u
w

T
R

s
w

L
T

R
u
u

L
T

R
s
u

L
T

R
u
w

L
T

R
s
w

1
.5

2
2

.5
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

AUPR

P
G

 v
s
 T

R
A

N
S

W
E

S
D

 v
s
 L

T
R

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

3
−

L
H

 [
0

.0
2

5
,

0
.1

0
0

]

P

G
n
e
w

T
R

u
w

T
R

s
w

L
T

R
u
u

L
T

R
s
u

L
T

R
u
w

L
T

R
s
w

1
.5

2
2

.5
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

AUPR

P
G

 v
s
 T

R
A

N
S

W
E

S
D

 v
s
 L

T
R

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

4
−

M
L

 [
0

.0
5

0
,

0
.0

2
5

]

P

G
n
e
w

T
R

u
w

T
R

s
w

L
T

R
u
u

L
T

R
s
u

L
T

R
u
w

L
T

R
s
w

1
.5

2
2

.5
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

AUPR

P
G

 v
s
 T

R
A

N
S

W
E

S
D

 v
s
 L

T
R

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

5
−

M
M

 [
0

.0
5

0
,

0
.0

5
0

]

P

G
n
e
w

T
R

u
w

T
R

s
w

L
T

R
u
u

L
T

R
s
u

L
T

R
u
w

L
T

R
s
w

1
.5

2
2

.5
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

AUPR

P
G

 v
s
 T

R
A

N
S

W
E

S
D

 v
s
 L

T
R

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

6
−

M
H

 [
0

.0
5

0
,

0
.1

0
0

]

P

G
n
e
w

T
R

u
w

T
R

s
w

L
T

R
u
u

L
T

R
s
u

L
T

R
u
w

L
T

R
s
w

1
.5

2
2

.5
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

AUPR

P
G

 v
s
 T

R
A

N
S

W
E

S
D

 v
s
 L

T
R

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

7
−

H
L

 [
0

.1
0

0
,

0
.0

2
5

]

P

G
n
e
w

T
R

u
w

T
R

s
w

L
T

R
u
u

L
T

R
s
u

L
T

R
u
w

L
T

R
s
w

1
.5

2
2

.5
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

AUPR

P
G

 v
s
 T

R
A

N
S

W
E

S
D

 v
s
 L

T
R

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

8
−

H
M

 [
0

.1
0

0
,

0
.0

5
0

]

P

G
n
e
w

T
R

u
w

T
R

s
w

L
T

R
u
u

L
T

R
s
u

L
T

R
u
w

L
T

R
s
w

1
.5

2
2

.5
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

AUPR

P
G

 v
s
 T

R
A

N
S

W
E

S
D

 v
s
 L

T
R

N
o

is
e

 c
o

n
fi
g

u
ra

ti
o

n
:

9
−

H
H

 [
0

.1
0

0
,

0
.1

0
0

]

P

G
n
e
w

T
R

u
w

T
R

s
w

L
T

R
u
u

L
T

R
s
u

L
T

R
u
w

L
T

R
s
w

Figure 6.12: Performance of TRANSWESD and LTR variants on the SysGenSIM datasets.
Parameters used to obtain the perturbation graph were β = 2.0 and γ = 0.05, while α = 0.95
and α= 0.15 were selected for the TRANSWESD and LTR variants, respectively. AUPR scores
are averaged across the 10 networks generated with the same K and simulated with the same
noise configuration. The efficacy of transitive reduction changes with the connectivity of the
network and with the noise levels.

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 79

not need our inference methods), so we made use of four published silver standard networks
comprising well-known interactions or edges (between TFs or from TFs to other genes) with
high probability:

1. SS1: is a collection of found chip-chip results and motifs from 162 TFs [87] (size of
silver standard network: 162 TFs × 6253 genes).

2. SS2: is a subset of the binding sites from SS1 which are also in nucleosome-depleted
regions (a specific yeast environment of optimal growth conditions: targets are most
likely to be active during optimal growth because they are located in open chromatin
regions and therefore accessible for TF binding) [87] (size of silver standard network:
159 TFs × 6253 genes).

3. SS3: the silver standard network by Luscombe [106] contains known regulatory inter-
actions between 142 TFs and 3459 targets compiled from the results of genetic, bio-
chemical and ChIP (chromatin immunoprecipitation)-chip experiments (size of silver
standard network: 142 TFs × 3459 genes).

4. SS4: it contains interactions between 114 TFs and 5667 targets and was used as a ref-
erence network for a sub-challenge of the DREAM5 competition [111] (size of silver
standard network 114 TFs × 5667 genes).

In order to obtain a gene expression matrix G exploitable by our inference algorithm, we “in-
verted” the log-fold change values to obtain G(i , j) = 2L(i , j) for all the possible edges. In this
way, expression values larger than 1 represent an increase of the gene expression of j after
the knockout of i (i.e., i is a inhibitor of j), and vice versa a positive regulation for values
smaller than 1.

As for the synthetic datasets, the gene expression matrix G served then as input to pro-
duce the perturbation graph PGnew and the weight matrices Wr and Wt , all of size m×n. The
transitive reduction techniques TRANSWESD and LTR were then applied to PGnew and the
resulting edges for each method were sorted according to our ranking scheme. This sorted
edge list was delivered as output (prediction) of our procedure. We performed the whole
inference process by employing the same parameters used for the simulated networks, i.e.
β= 2.00, γ= 0.05,α= 0.95 for TRANSWESD,α= 1.50 for local TRANSWESD, andα= 0.15 for
LTR.

A (predicted) confidence-sorted edge list was also obtained for the original dataset of
Reimand et al. by re-sorting the absolute values of the log-fold changes in L according to
the adjacency matrix A, which is then used as a reference to assess the performance of our
inference algorithms.

Afterwards we evaluated all predictions against the 4 silver standards. To allow for a fair
scoring, only common nodes from silver standard networks and prediction lists were taken
into consideration, i.e. if edge (i , j) is in the prediction list but either node i or j is not in
the silver standard, then the edge is not scored. On the other hand, if node k belongs to the
silver standard but was not included in the microarray dataset, then all ingoing and outgoing
edges of k were removed from the silver standard. Accordingly, the size of the silver standard

80 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

0 100 200 300 400 500
0.018

0.0185

0.019

0.0195

0.02

0.0205

0.021

Number of edges considered

A
U

P
R

AUPR for SS
1

Reimand

PG
new

TRANSWESD
s,w,inf

LTR
u,u

LTR
s,w

0 100 200 300 400 500
0.0128

0.013

0.0132

0.0134

0.0136

0.0138

0.014

0.0142

0.0144

0.0146

Number of edges considered

A
U

P
R

AUPR for SS
2

Reimand

PG
new

TRANSWESD
s,w,inf

LTR
u,u

LTR
s,w

0 100 200 300 400 500
0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

Number of edges considered

A
U

P
R

AUPR for SS
3

Reimand

PG
new

TRANSWESD
s,w,inf

LTR
u,u

LTR
s,w

0 100 200 300 400 500
5.5

6

6.5

7

7.5

8

8.5

9
x 10

−3

Number of edges considered

A
U

P
R

AUPR for SS
4

Reimand

PG
new

TRANSWESD
s,w,inf

LTR
u,u

LTR
s,w

0 100 200 300 400 500
0

20

40

60

80

100

120

Number of edges considered

N
u
m

b
e
r

o
f
tr

u
e
 p

o
s
it
iv

e
s

True positives for SS
1

Reimand

PG
new

TRANSWESD
s,w,inf

LTR
u,u

LTR
s,w

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

Number of edges considered

N
u
m

b
e
r

o
f
tr

u
e
 p

o
s
it
iv

e
s

True positives for SS
2

Reimand

PG
new

TRANSWESD
s,w,inf

LTR
u,u

LTR
s,w

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Number of edges considered

N
u
m

b
e
r

o
f
tr

u
e
 p

o
s
it
iv

e
s

True positives for SS
3

Reimand

PG
new

TRANSWESD
s,w,inf

LTR
u,u

LTR
s,w

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

Number of edges considered

N
u
m

b
e
r

o
f
tr

u
e
 p

o
s
it
iv

e
s

True positives for SS
4

Reimand

PG
new

TRANSWESD
s,w,inf

LTR
u,u

LTR
s,w

Figure 6.13: Performance of the novel inference techniques on the S. cerevisiae dataset
validated against four silver standards. The plots show the AUPR and the number of true
positive edges computed for the 500 best-ranked edges against four silver standard networks
(see text for explanations). Parameters used to infer the networks are β= 2.0 and γ= 0.05 for
the PG, α= 0.95 for TRANSWESD and α= 0.15 for LTR.

SS3 reduced from 142×3459 to 122×3444 and of SS4 from 114×5667 to 108×5469.

For each of the four silver standards, Figure 6.13 shows the AUPR and the number of true
positive edges (TP) computed for an increasing number of edges selected from top of the
ordered edge lists as given by (1) Reimand’s predictions, (2) the perturbation graph PGnew,
(3) TRANSWESDs,w,∞, (4) LTRu,u, and (5) LTRs,w. Generally, the results of our methods (2)-(5)
with respect to the four different silver standard networks appear to be satisfactory, though
with different measure for the four silver standard networks. It is apparent that our meth-
ods work especially well within the 100-200 top-ranked edges where all of the inferred net-
works (2)-(5) show better agreement with the silver standards than the interactions found by
Reimand. Even the PG itself performs quite well and better than Reimand’s in this region. All
variants of TR show positive effects but not among the top-ranked edges because these are
immune against pruning (accordingly, for these edges, the results of PGnew is identical with
the TR methods). We observe that unweighted and unsigned LTRu,u performed best for this
dataset. However, one should keep in mind that no tuning or adaptation of the parameters
has been performed which could prevent a better result for the weighted versions.

When increasing the number of considered edges to 500, it appears that Reimand’s net-

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 81

work becomes better and better eventually, in some cases, getting higher overall agreement
with the silver standards than our methods. However, we argue that for practical applica-
tions (e.g. validation of edge candidates) the first 100 edges are the most important ones. In
this region, given the silver standards, our approach seems to work most efficient yielding
high statistical significance: for the four silver standard networks we obtained [42, 27, 31, 20]
TPs in the network reconstructed with LTRu,u yielding corresponding p-values of [6.31·10−46,
6.68 ·10−28, 3.93 ·10−33, 6.79 ·10−25], based on the hypergeometric distribution. These values
are very similar for the other four PG/TR-based methods. It is most likely that the number of
TPs is even larger given the high probability that not all interactions might be contained in
the silver standards. Our prediction list might thus provide useful targets for validations. A
list of the 300 first identified edges (with highest confidence) and a comparison with the four
silver standards can be found in the Additional File 2.

6.2.4 Conclusion

We presented novel algorithms for the inference of gene regulatory networks from system-
atic perturbation experiments. These algorithms support the reconstruction of regulatory
networks via three steps: (i) PG generation, (ii) TR to remove edges representing indirect ef-
fects in the PG, and (iii) sorting of edge candidates. We presented new variants for all of these
three steps whose combined use yielded superior results over previous methods when tested
with standardized benchmark scenarios.

Regarding the PG, it proved advantageous to identify, weight and sort candidate edges by
a mixture of two measures, one being the standard z-score of deviations, the other one the z-
score of conditional correlation coefficients. In particular, the latter was highly informative
for edge pruning by TR whereas a combined weight of both z-scores proved beneficial for
edge sorting. With the new candidate edge selection and edge sorting schemes, we observed
that the PG alone (without TR) achieved a reconstruction quality that is far above the re-
sults of previous methods after TR. Importantly, the quality of the PG appeared to be robust
against larger variations in the two required threshold parameters. In this regard, one aspect
for future work is to develop algorithms for automatic thresholding, that is to estimate the
threshold parameters from the data.

We proposed new variants of TR and, based on unbiased in silico benchmarks, compared
them with the original versions of the algorithms. Several key observations could be made:

1. The DR-FFL method [134] was inferior to all other TR methods tested which led us to
the conclusion that TR should be employed not only between but also within cyclic
structures. The winning performance of the original DR-FFL in the DREAM challenge
can mainly be attributed to its PG which is in parts similar to the one used by PGnew.

2. We found that explicitly accounting for edge signs almost always improves the results
in terms of AUPR but only to a very minor extent. While this is in agreement with the
observations made in [30], we give here an extended explanation for this unexpected
result. Generally, neglecting the edge sign can only be harmful during TR, if the true
network contains a negative feed-forward loop (FFL). As an example, Figure 6.14 (left)
shows a hypothetical interaction graph containing one such negative FFL between

82 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

A

B

C

D

E

Single Perturbation

Experiments

(True) Interaction graph

A

B

C

D

E

+/−

Perturbation graph

Figure 6.14: Example of a (true) graph and its (perfect) perturbation graph representing
the transitive closure. An interaction graph (left) and its (expected) perturbation graph
which forms the transitive closure of the original graph (right).

node A and E (consisting of a positive path and a negative edge from A to E). If we
now assume that all nodes are perturbed in single perturbation experiments we would
get, in the ideal case, a PG as shown in Figure 6.14 (right; weights not considered here).
This PG corresponds to the transitive closure of the original graph, in which each node
i induces a significant effect on another node j if there is an edge or path from i to j
in the true graph. What we can now see is that each edge contained in the PG but not
in the true graph (reflecting thus an indirect effect) is part of a positive FFL consisting
of this edge and a path of the same sign. This happens because all these edges will
have the same sign as the path they were induced from. Hence, if we compute the TR
within the unsigned version of this PG (e.g., by neglecting the signs in the TR step or by
setting all signs to “+”) all edges that stem from indirect effects and span one branch
of the induced FFLs would still correctly be removed.

Regarding the original negative FFL included in the true graph (Figure 6.14, left), we
cannot be sure which sign it will get in the PG as there is a positive path as well as a
negative edge from A to E and, hence, the direction of change in E when perturbing
A cannot be predicted uniquely. Only if the overall effect of A on E measured dur-
ing perturbation of A is negative (i.e., the true edge of A to E is dominating over the
positive path from A to E), it may happen that it will be falsely removed during TR if
edge signs are neglected. However, when using edge weights for (weighted) TR, it is
rather unlikely that the path from A to E fulfills the rule (6.5) or, for a 2-path used by
LTR, rule (6.6) since the measured overall effect from A to E turned out to be negative,
hence, the path seems to have a low potential to transduce an effect from A to E . Thus,
it is unlikely that the true edge A a E would be falsely removed.

To summarize this aspect, there is a low probability that (weighted) TR removes a
true edge within a negative feed-forward loop and neglecting edge signs in TR will
therefore have only minor impact on the reconstruction quality. This has important
consequences since then the computationally expensive search for the shortest sign-
consistent paths (an NP-complete problem) can be safely turned into a simple search

6.2. RECONSTRUCTION OF LARGE-SCALE REGULATORY NETWORKS 83

for a shortest (unsigned) path connecting a given pair of nodes (a polynomial prob-
lem). Thus, when applying TRANSWESD to the 5000-nodes networks, we may then use
an exact (path_exact= 1) instead of an approximate (path_exact= 0) sub-algorithm
for computing shortest signed path. In contrast, full_check = 0 is still required for
TRANSWESD in large networks.

3. With LTR and TRANSWESDs,w,2 we considered local variants of TR removing an edge
only if there is an explaining path of length 2. Whereas TRANSWESDs,w,2 performed
well for the DREAM challenge but unfavorable for the SysGenSIM data, weighted LTR
yielded superior performance in almost all benchmark tests and only (signed or un-
signed) TRANSWESD applied to all paths could deliver comparable results. We can
thus first conclude that using the multiplicative rule (6.6) is better suited than the max
rule (6.5) when focusing on short paths. However, it remains still paradoxical why TR
restricted to paths of length 2 should be sufficient. This can once more be illustrated
by Figure 6.14. If we again assume that the true graph induces a complete PG (i.e., the
transitive closure of the true graph as shown on the right-hand side of Figure 6.14) then
we can indeed recognize that there is always a 2-path that can, in principle, explain an
edge from an indirect effect (e.g., edge A → E is explained by the 2-path A → B → E).
Hence, in principle, all false positive edges could be identified and removed explaining
why LTR exhibits good behavior. However, one has to keep in mind that 2-paths may
contain edges that are themselves indirect effects (as B → E in the example above),
hence, the order of edge removal might then become crucial. Here, the strategy to cut
lowest-confidence-edges first worked apparently well in the benchmarks.

Again, showing that local TR based on 2-paths does not lead to lower performance has
important consequences, as we can then restrict the search on simple triangles whose
detection is computationally easier than detecting paths of arbitrary length. In fact,
unsigned (signed) LTR required in the average only 8 (9) seconds in networks with 5000
nodes whereas TRANSWESD (in approximation mode!) needed 150 (260) seconds.

4. The SysGenSIM benchmark showed that edge weights really matter to obtain good
results with LTR. Since (signed or unsigned) local LTR and unsigned TRANSWESD are
computationally feasible in 5000-nodes networks and as they achieved superior results
in all benchmarks (outperforming the winning methods of the DREAM4 challenge by
far) these techniques appear to be well-suited for the reconstruction of large-scale reg-
ulatory networks in the particular case of a fully perturbed experimental framework,
i.e. when single-gene knockout experiments are performed for all the genes.

5. Applied to a realistic application scenario with gene expression data from yeast mu-
tants with single knockouts of transcription factors we could demonstrate that our
approach delivers a high enrichment of known interactions especially within the top-
ranked edge candidates. With this property, our method holds great potential to iden-
tify true unknown gene interactions that can subsequently be validated in experiments.

We noticed that LTR shares some similarities with ARACNE presented in [115]. ARACNE
also eliminates an edge in a feed-forward loop consisting of three edges (so-called triplets)
if a certain weight condition is fulfilled. However, there are several key differences since
ARACNE only operates on undirected and unsigned graphs and uses different weights based

84 CHAPTER 6. INFERENCE FROM SINGLE-GENE KNOCKOUT DATASETS

on mutual information.

A potential weakness of our PG- and TR-based methods is the requirement to perturb
each node in the network at least once. At a genome-scale level, such datasets are (still) avail-
able only for a small number of organisms. On the other hand, one might focus on smaller
subnetworks where all nodes can be perturbed. Furthermore, if m nodes out of n nodes can
be perturbed in a network, we can use the information of the corresponding m perturbation
experiments to (i) infer the complete subnetwork containing only the m perturbed nodes
and (ii) to infer edges leading from the m perturbed nodes to the n −m unperturbed nodes.
In the latter, TR cannot work effectively (no edge will be removed since only single edges
and no paths between these nodes exist) meaning that some of the (false positive) edges in
the PG reflecting indirect edges cannot be identified as such. However, the provided output
might still have its own value and indicate direct or indirect functional relationships. In fact,
we employed this approach for the yeast knockout dataset where only TFs were knocked-out.

We also emphasize that perturbation graphs (as a requirement for applying TR) could
also be constructed by other approaches than systematic knockouts of all genes. One exam-
ple are genetical genomics data containing gene expressions measurements from naturally
occurring multifactorial perturbations (polymorphisms). As an example for using PG- and
TR-based methods based on genetical genomics data see [59].

As an important side results of our study, we have generated new and unprecedented
large-scale benchmark datasets that, in contrast to comparable simulations, account for dif-
ferent noise levels. We think that these datasets, which can be downloaded from [15], are
generally useful for unbiased testing of network inference methodologies complementing
other available in silico benchmarks.

List of abbreviations used

PG - Perturbation Graph
TR - Transitive Reduction
LTR - Local Transitive Reduction
DR-FFL - Down-Ranking of Feed-Forward Loop
FFL - Feed-Forward Loop
TRANSWESD - TRANSitive reduction for WEighted Signed Digraphs
TP - True Positive
FP - False Positive
FN - False Negative

Chapter 7

Inference from heterogeneous
datasets

The inference of whole gene networks from a dataset of single-gene knockout experiments
is not a viable option yet, due to practical difficulties: real datasets are, in fact, composed by
microarray measurements originated from the most diverse experiments and laboratories.
In this chapter, we present in Section 7.1 the technique to infer transcriptional regulatory
networks from such heterogeneous datasets that we developed for the DREAM5 Network In-
ference challenge [160], and in Section 7.2 a summary of the ensuing community paper by
the DREAM5 organizers is given, where the inference algorithms and the network predic-
tions by all 29 participants to the challenge are deeply analyzed and combined to obtain a
robust community prediction [111]. We appear, being part of the so-called DREAM5 consor-
tium, as authors of this community paper.

7.1 Elucidating transcriptional regulatory networks
from heterogeneous gene expression compen-
dia

Elucidating the wiring pattern of biomolecular systems continues to be a main challenge in
Systems Biology. Many algorithms have been proposed for e.g. transcriptional regulatory
network inference, but little is known about their strengths and weaknesses. Validation is
of utmost importance and is the main goal of the DREAM project. The DREAM5 Network
Inference challenge allows researchers to propose reverse-engineering algorithms to be em-
ployed in the stimulating task of inferring transcriptional regulatory networks from microar-
ray datasets.

The DREAM5 Network Inference challenge provided compendia of gene expression pro-
files from a variety of experiments on several organisms. Here, a method using a combina-
tion of different inference approaches applied to different subsets of data is presented. The
technique allows for a wise selection of the proper algorithm for the analysis of a particular
type of data and underlying experiment.

85

86 CHAPTER 7. INFERENCE FROM HETEROGENEOUS DATASETS

The proposed approach proved to be reliable in reverse-engineering transcriptional reg-
ulatory networks from real expression compendia, ranking in 2nd position when considering
the prediction of real networks (sub-challenges 3 and 4) only, and obtaining the best perfor-
mance in the yeast sub-challenge. This emphasizes the need to account for the experimental
design in network inference approaches, instead of blindly applying methods on the entire
dataset.

7.1.1 Introduction

This paper describes a thorough analysis of a transcriptional regulatory network inference
approach on an internationally recognized benchmark: the DREAM5 Network Inference
challenge. The paper first illustrates in detail the above challenge, and then the proposed
reverse-engineering algorithm is described. Each step in the approach is thoroughly eval-
uated. To this aim, in silico data have been produced using a modified version of SysGen-
SIM [136]. Finally, the results obtained at the challenge are examined.

The DREAM5 Network Inference challenge consists of four sub-challenges, one ded-
icated to data simulated using GeneNetWeaver [114, 153], and three concerning data of
real microorganisms (Staphylococcus aureus, Escherichia coli, Saccharomyces cerevisiae, un-
veiled after the submission deadline only) and related experimental microarray compendia.
Each dataset consists of three files containing the gene expression data, the description of
the experimental setup, and the genes acting as transcription factors.

Expression data: a m ×n matrix of gene expression values, with m the number of chips in
the dataset, and n the number of genes in the network.

Chip features: the description of the experimental conditions under which the gene expres-
sion values of each row have been measured, such as the list of applied drugs or the
environmental perturbations, the list of transcription factors that have been deleted
or over-expressed, and the measurement time instants in case of time series.

Transcription factors: a list of genes acting as transcription factors.

Through analysis of these datasets, the participants are challenged to provide a list of tran-
scription factor → target directed interactions sorted according to the assigned confidence,
for each network. Predictions will be then scored according to the values of AUC(ROC) and
AUC(PvR) [138, 112]. Interactions in S. aureus are not evaluated due to the lack of a reliable
gold standard of the microorganism in literature. This challenge thus resulted in the first
community effort to infer the unknown transcriptional regulatory network of S. aureus [111].

7.1.2 Methods

In order to exploit the different types of information included in these mixed datasets, three
distinct approaches are applied to subsets of data, and their partial results are then com-
bined into a final prediction.

The first approach is about studying the deviation from the wild-type of the gene expres-
sions after gene-specific perturbations, i.e. knockouts and over-expressions. The second ap-
proach considers all the steady state data and calculates partial correlations, while the third

7.1. ELUCIDATING TRANSCRIPTIONAL REGULATORY NETWORKS 87

approach investigates the experiments concerning drug perturbations and other perturba-
tions not considered before. Different versions of each of these approaches have been tested,
in order to identify those providing the best predictions on a suite of training data, simulated
by mimicking the chip features of the challenge compendia. The selection of the individual
approaches is followed by the search for an optimal combination of the three approaches to
obtain the final prediction of the network.

Approach 1: perturbation-response analysis

We identified experiments in which wild-type and knockout and/or over-expression of tran-
scription factors are measured. We used steady state data, but also the time series data from
which we considered the first (unperturbed) and last (perturbed) time-point. To identify the
potential targets T j of perturbed TFi , we calculated for all target genes (including other TFs)
the normalized deviation (superscript indicates the perturbation):

RTFi→T j =
TTFi

j −TWT
j

TWT
j

(7.1)

In addition we employed double knockouts and/or over-expressions: to gain more confi-
dence in TFi → T j we calculated (when possible):

RTFi→T j =
TTFi ,TFk

j −TWT
j

TWT
j

−
TTFk

j −TWT
j

TWT
j

(7.2)

The double knockout and/or over-expression can have extra information for TFi → T j how-
ever the response to the double perturbation might be explained by the effect of TFk , so this
must be subtracted. In some cases TFk was not perturbed and then we simply used:

RTFi→T j =
TTFi ,TFk

j −TWT
j

TWT
j

(7.3)

Large values might be due to the TFk perturbation, but we accept making some mistakes as
a trade-off for also identifying real targets of TFi . In case of triple knockouts, we proceeded
in a similar way. Finally, we define the score S1

i j as the confidence in TFi → T j , obtained by
averaging the RTFi→T j values from single, double and triple knockout and/or over-expression
experiments.

Approach 2: full order partial correlation analysis of steady state data

The second approach processes the information provided by the steady state experiments.
All the time series chips are removed by the studied dataset to obtain a matrix Gss of steady
state gene expression measurements only. Then, full order partial correlation [152], com-
puted through the GeneNet R package [151] (available for download at [7]), is applied to
matrix Gss.

The score S2
i j (confidence in the interaction between transcription factors i and target j)

is then the absolute value of the full order partial correlation ωTFi ,T j . The full order partial
correlation approach was selected after evaluating a variety of approaches, such as plain
Pearson correlation, first order partial correlation [45], the CLR algorithm [57] and several
scaled versions (see Table 7.2), because of its superior performance.

88 CHAPTER 7. INFERENCE FROM HETEROGENEOUS DATASETS

Approach 3: co-deviation analysis of aspecific perturbation data

The third approach is applied to the matrix containing the gene expression of chips featur-
ing drug perturbation experiments or non-TF single gene perturbations. The goal is to check
whether a target T j is consistently subject to large deviations in expression when transcrip-
tion factor TFi makes large deviations too. The algorithm underlying the approach follows.

1. Gene expression values are converted into a z-scores matrix Z.

2. Then, for each transcription factor i :

a) The data are split into two subsets according to a threshold d : one group of ob-
servations DH

i with Zi > d (TFi is high) and another group of observations DL
i

with Zi <−d (TFi is low).

b) The potential targets T j of TFi are identified by performing for each T j a two-
sided t-test to check whether its mean in DH

i is significantly different from its
mean in DL

i .

3. The confidence in each TFi → T j interaction S3
i j is then the absolute value of the t-

statistic ti j (test performed for T j when datasets are formed based on deviation of TFi).

Poorer performances were obtained when analyzing the same dataset with different tech-
niques, such as ranking based on p-value of t-test, Pearson correlation, and different values
of the threshold d (see Table 7.3).

Combining the approaches

Each of the three approaches independently scores the interactions between transcription
factors and targets. Individual predictions are combined into a final sorted list of interac-
tions by means of a simple weighted sum of the scores. In particular, when approach 1 is
applicable (i.e. if at least one experiment where the only perturbation is the knockout and/or
over-expression of TFi is available), then the overall score of the interaction TFi → T j is:

Si j = a ·S1
i j +b ·S2

i j + (1−a −b) ·S3
i j (7.4)

Otherwise:
Si j = c ·S2

i j + (1− c) ·S3
i j (7.5)

The values of the weights a, b, and c are obtained through an optimization process aimed
to maximize the AUC(ROC) and AUC(PvR) values computed by inferring the networks from
the simulated datasets.

Simulation of synthetic datasets

To train our approach, we evaluated it on a large set of simulated data generated with a
modified version of the SysGenSIM software [136]. Gene expression data are simulated with
the aim of reproducing the experiments described in the chip features files provided by the
DREAM5 organizers. Artificial gene networks were of the same sizes as used in the challenge.
An accurate simulation of the experiments might allow for an effective testing and selection
of the inference algorithms. Several typologies of experiments are proposed in the four com-
pendia, and are described below.

7.1. ELUCIDATING TRANSCRIPTIONAL REGULATORY NETWORKS 89

Gene knockout: one or more genes (transcription factors and/or targets) are deleted.

Gene over-expression: one or more genes are up-regulated.

Perturbation: a drug or an environmental disturbance is applied to the experiment.

Steady states: observations are measured when the gene activity is deemed constant.

Time series: observations are taken when the gene expression is still varying from the initial
wild-type due to any perturbation.

Most of the experiments consists of combinations of more than one of the previous pos-
sibilities, i.e. a microarray experiment could comprise the knockout of two genes and the
over-expression of a third one, and at the same time undergo a drug perturbation.

Before explaining the simulation process, a clear definition of the terms chip, experiment,
sub-experiment and repeat is given.

Chip: contains the microarray measurements from a single experiment, i.e. a row of n gene
expression values.

Experiment: comprises all the chips from the same experiment, i.e. the chips undergoing
the same experimental settings as defined by the authors of the challenge.

Sub-experiment: is defined for time series only. It indicates all the chips sharing estab-
lished characteristics and belonging to the same experiment (i.e., an experiment may
contain two time series sub-experiments: one is a wild-type time series, the other is a
perturbed time series).

Repeat: is defined for time series only. It indicates the measurements belonging to the same
repeat in a sub-experiment (a sub-experiment, in fact, may contain two or more repeat
time series, i.e. time series with the same exact characteristics; the only distinct param-
eter among repeats is δ, as it will be afterwards explained). A repeat corresponds to a
time series, and each of them needs to be simulated independently.

For each chip, gene expression values are simulated by solving the system of n ordinary dif-
ferential equations, with n the number of genes in the network:

dGi

dt
= ζiτiδ

syn
i ϑ

syn
i Vi

∏
j∈Ri

1+ A j i

G
h j i

j

G
h j i

j + (K j i /π j)h j i

−δdeg
i ϑ

deg
i di Gi (7.6)

Some parameters are common to all the experiments featured in a single dataset, other are
shared by chips belonging to the same experiment, and other characterize the single steady
state chip or the chips related to the same time series. The following paragraphs explain how
the simulation of the different microarrays has been set.

Dataset parameters: the indexes of all regulators (both activators and inhibitors) j of gene
i are contained in the set Ri ; Gi is the mRNA concentration (gene activity) of gene i ,
Vi is its basal transcription rate, while di is its degradation rate constant. K j i is the
interaction strength of G j on Gi , h j i is the Hill cooperativity coefficient, and A j i is an

90 CHAPTER 7. INFERENCE FROM HETEROGENEOUS DATASETS

element of the matrix A encoding the signed network structure. For simplicity, param-
eters Vi , K j i , and di were kept constant, and set equal to 1. Cooperativity coefficients
h j i are set to 1, 2, or 4 with probabilities 60%, 30%, and 10%, respectively. The ele-
ments of the adjacency matrix are A j i = 1 when gene j is an activator for gene i , or are
A j i = −1 when gene j is an inhibitor for gene i ; A j i = 0 otherwise, i.e. when a direct
regulation from gene j to gene i does not exist. The above parameters are set once,
and are used to simulate all the chips of the current dataset.

Experiment parameters: biological variancesϑsyn andϑdeg are both sampled from the Gaus-
sian distribution N (1,0.1), and are constant for all the chips belonging to the same
experiment.

Chip parameters: each single chip differs from the others by parameters ζ, π, δsyn, δdeg and
τ. Parameter ζ is different from 1 in case of knockout and/or over-expression (i.e.,
ζi = 0 if gene i is knocked-out, and ζ j = 5 if gene j is over-expressed), while π en-
ables for drug perturbations of about 10% of targets, and is sampled from N (1,0.4);
δsyn and δdeg, sampled from N (1,0.025), represent stochasticity in both transcription
and degradation rates; τ, sampled from N (1,0.1), gives variability in time series simu-
lations. Then, measurement noise ε is added to the gene expression values.

7.1.3 Results

The section displays the performance of the proposed inference technique in the DREAM5
Network Inference challenge, showing in particular how the goodness of the predictions in-
creases with the combination of the approaches. Moreover, details are provided about the
selection of the inference techniques with the assistance of the simulated datasets. The pre-
dictive performance of the inference algorithms is evaluated by computing the Area Under
the Receiver Operating Characteristic Curve and the Area Under the Precision versus Recall
Curve of the networks, respectively shortened to AUC(ROC) and AUC(PvR), as already done
in previous DREAM competitions.

Performance in DREAM5 Network Inference challenge

The here described methodology showed to be performing well in the inference of transcrip-
tional regulatory networks from real expression compendia, ranking 2nd overall in the real
networks sub-challenge (networks 3 and 4), and 1st overall with respect to the prediction of
the S. cerevisiae network. Particularly relevant is the improvement of the AUC scores due to
the sequential combination of the approaches, as shown in Figure 7.1, where the score by
approach 2 alone is compared with the scores by the combination of approaches 2 and 3,
and of approaches 1, 2 and 3. Such results confirm that the combination of different infer-
ence techniques, especially in the analysis of heterogeneous compendia, is indeed effective,
provided a correct subdivision of the data.

Practice on Synthetic Data

The simulated data are a collection of 40 datasets corresponding to the simulation of as
many networks. For i ∈ {1,2,3,4}, 10 networks have been generated with the size of chal-

7.1. ELUCIDATING TRANSCRIPTIONAL REGULATORY NETWORKS 91

2 2+3 1+2+3

65

66

67

68

69

70
Network 1

Approaches

A
U

C
(R

O
C

)

+3.20%

+4.06%

2 2+3 1+2+3

12

13

14

15

16

17

18

Network 1

Approaches

A
U

C
(P

v
R

)

+38.17%

+5.19%

2 2+3 1+2+3
57.5

58

58.5

59

59.5

60

Network 3

Approaches

A
U

C
(R

O
C

)

+2.05%

+2.28%

2 2+3 1+2+3

7.7

7.8

7.9

8

8.1

8.2

Network 3

Approaches

A
U

C
(P

vR
)

−3.27%

+6.75%

2 2+3 1+2+3
53

53.1

53.2

53.3

53.4

53.5

53.6

53.7

53.8

53.9

Network 4

Approaches

A
U

C
(R

O
C

)

+1.24%

+0.35%

2 2+3 1+2+3
2.66

2.68

2.7

2.72

2.74

2.76

2.78

2.8

Network 4

Approaches

A
U

C
(P

vR
)

+1.12%

+3.70%

Figure 7.1: Increase of the AUC scores in DREAM5 networks. The AUC(ROC) and AUC(PvR)
scored by approach 2 are compared with those obtained by combining approaches 2 and 3,
and approaches 1, 2 and 3, respectively for the in silico (top), E. coli (center) and S. cerevisiae
(bottom) networks.

92 CHAPTER 7. INFERENCE FROM HETEROGENEOUS DATASETS

Table 7.1: Comparison of the inference techniques on DREAM5 networks for approach
1. Normalized deviations (1.A) strongly outperforms non-normalized deviations (1.B). Net-
work 2 does not have any suitable chip to be included in the subset.

Network 1 Network 3 Network 4
Approach AUC(ROC) AUC(PvR) AUC(ROC) AUC(PvR) AUC(ROC) AUC(PvR)

1.A 89.05 8.52 91.62 6.99 80.15 13.58
1.B 70.74 2.56 70.65 1.69 61.35 2.95

Table 7.2: Comparison of the inference techniques on DREAM5 networks for approach 2.
Technique 2.CLRC yields a random prediction. Other algorithms have similar decent perfor-
mances, while full order partial correlation (2.FPC) allows for a more accurate prediction of
the interactions.

Network 1 Network 2 Network 3 Network 4
Approach AUC(ROC) AUC(PvR) AUC(ROC) AUC(PvR) AUC(ROC) AUC(PvR) AUC(ROC) AUC(PvR)

2.FPC 78.97 11.02 74.04 2.50 80.72 5.62 79.01 3.58
2.C 76.03 7.75 65.64 1.17 74.23 2.81 71.70 1.53

2.ZC 76.09 8.87 65.69 1.16 74.36 3.38 71.74 1.62
2.CLRC 50.01 1.07 47.80 0.39 49.74 0.36 49.03 0.23
2.CLRZ 75.16 8.02 64.57 1.11 73.33 3.19 70.82 1.52

2.PC 72.51 7.63 64.33 1.15 71.43 3.74 69.20 1.81
2.ZPC 65.85 7.54 54.83 1.05 63.64 3.32 59.9 1.56

lenge network i , and experiments have been simulated according to the chip features file of
compendium i and to the dynamical model (7.6).

Regarding the first approach, the performances of the deviations normalized by the wild-
type (1.A) proved to be arguably better than the deviations with no normalization (1.B), as
established in Table 7.1. The inference methodologies compared for the selection of the sec-
ond approach are applied to a subset of chips corresponding to steady state experiments.
The full order partial correlation (2.FPC) performed extremely good compared to Pearson
correlation (2.C), Pearson first order partial correlation (2.PC), z-score computed on Pearson
correlation (2.ZC) and first order partial correlation (2.ZPC), and Context Likelihood of Relat-
edness (CLR) applied to Pearson correlation (2.CLRC) and to z-score computed on Pearson
correlation (2.CLRZ). Scores are shown in Table 7.2. The third approach (Table 7.3) consid-
ers chips with perturbations triggered by drugs or due to the knockout or over-expression of
non-TF genes. T-test statistic (3.TT) provides more precise predictions than p-value (3.PV)
and Pearson correlation (3.C). After the approaches have been individually selected, the
synthetic datasets allowed for an estimate of the weights for combining the approaches by
means of an optimization process. By maximizing the AUC(ROC) and AUC(PvR), the values
of the weights and have been set to a = 0.4 and b = 0.5 in (7.4), and c = 0.8 in (7.5).

Here, we presented a method for transcriptional regulatory network inference from gene
expression compendia, based on dividing the compendia in similar datasets and analyzing
these datasets individually with distinct approaches, and combining their results into a fi-
nal prediction. The idea behind this method is that one has to account for the experimental
setup when analyzing data, to extract as much useful information as possible. Different sta-

7.2. WISDOM OF CROWDS FOR ROBUST GENE NETWORK INFERENCE 93

Table 7.3: Comparison of the inference techniques on DREAM5 networks for approach 3.
The presented methodologies are compared according to the employed threshold d . For
large thresholds (d > 1) predictions become random guesses. T-test gives more precise pre-
dictions than p-value and Pearson correlation.

Network 1 Network 2 Network 3 Network 4
Approach d AUC(ROC) AUC(PvR) AUC(ROC) AUC(PvR) AUC(ROC) AUC(PvR) AUC(ROC) AUC(PvR)

3.TT 66.93 2.85 59.78 0.56 67.29 1.36 61.26 0.35
3.PV 0.5 66.89 1.46 59.43 0.50 66.81 0.52 60.56 0.25
3.C 67.79 1.83 59.42 0.49 66.40 0.61 61.09 0.29

3.TT 63.20 2.26 56.08 0.46 63.27 0.98 58.32 0.27
3.PV 1.0 46.82 0.78 55.97 0.37 62.08 0.29 57.30 0.19
3.C 64.87 1.23 56.52 0.40 63.27 0.41 58.35 0.21

3.TT 53.65 1.32 50.24 0.45 54.32 0.57 51.99 0.24
3.PV 1.5 51.19 0.53 49.66 0.31 50.34 0.20 50.90 0.15
3.C 58.07 0.81 53.70 0.37 56.73 0.28 53.86 0.18

tistical techniques require different assumptions. When applying a particular technique, one
must try to consider data for which these assumptions are, at least approximately, valid. In-
deed, we have shown that our approach based on this idea was successful, as evidence by its
performance in the DREAM5 Network Inference challenge.

7.2 Wisdom of crowds for robust gene network in-
ference

The DREAM5 community paper [111] is a high quality work resulted from the effort by the
organizers of the Network Inference challenge, which analyzed and compared the perfor-
mances of several network identification techniques, developed a community methodology
to infer real networks, and validated some of these interactions. Here, we merely report the
abstract of the paper and an interesting composition showing the performance of the sub-
mitted techniques compared with the community approach (see Figure 7.2).

Abstract

Reconstructing gene regulatory networks from high-throughput data is a long-standing chal-
lenge. Through the Dialogue on Reverse Engineering Assessment and Methods (DREAM)
project, we performed a comprehensive blind assessment of over 30 network inference meth-
ods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and in silico mi-
croarray data. We characterize the performance, data requirements and inherent biases of
different inference approaches, and we provide guidelines for algorithm application and
development. We observed that no single inference method performs optimally across all
datasets. In contrast, integration of predictions from multiple inference methods shows ro-
bust and high performance across diverse data sets. We thereby constructed high-confidence
networks for E. coli and S. aureus, each comprising ' 1700 transcriptional interactions at a
precision of ' 50%. We experimentally tested 53 previously unobserved regulatory interac-

94 CHAPTER 7. INFERENCE FROM HETEROGENEOUS DATASETS

tions in E. coli, of which 23 (43%) were supported. Our results establish community-based
methods as a powerful and robust tool for the inference of transcriptional gene regulatory
networks.

7.2. WISDOM OF CROWDS FOR ROBUST GENE NETWORK INFERENCE 95

Figure 7.2: Evaluation of the DREAM5 Network Inference methods. Inference methods
are indexed according to Table 1 in [111]. The technique we presented in Section 7.1 is
method 3 amongst the Meta approaches. (a) The plots depict the performance for the in-
dividual networks (area under precision-recall curve, AUPR) and the overall score summa-
rizing the performance across networks. R, random predictions; C, integrated community
predictions. (b) Methods are grouped according to the similarity of their predictions via
principal-component analysis. The second versus third principal components are shown;
the first principal component accounts mainly for the overall performance (see Supplemen-
tary Note 4 in [111]). (c) The heat map depicts method-specific biases in predicting network
motifs. Rows represent individual methods and columns represent different types of regula-
tory motifs. Red and blue show interactions that are easier and harder to detect, respectively.

Chapter 8

Inference from systems genetics
datasets

This chapter describes RAGNO [133], i.e. a Reconstruction Algorithm for Gene Networks
from multi-Omics data; in this particular case, the -omics in the acronym1 actually corre-
sponds to genotype and gene expression data measurements. After statistically analyzing
the data, the methodology yields a sorted list of edges, i.e. it ranks all the possible edges of the
gene regulatory networks according to the computed confidence. Scoring the possible edges
of a gene network allows for identifying with a higher degree of certainty which are the most
probable existing regulatory interactions between genes. The identification technique per-
forms quite well on established systems genetics synthetic datasets [15], already employed
as benchmarks in the DREAM5 Systems Genetics challenge [2] and in the book [44] to eval-
uate and compare several inference algorithms. Its application on a real genotyping and
expression yeast dataset yields some valuable insights and might suggest connections be-
tween genes not yet investigated experimentally.

The hereafter introduced inference methodology starts by providing an accurate initial
confidence score for all the possible edges in the gene network. Then, according to the value
of basic statistical measures, a subset of edges is selected in order to build the correlation
graph, which is finally reduced by pruning the edges whose effect between genes is identi-
fied as indirect. As shown in the following, the output network contains a large fraction of
correctly predicted gene connections amongst the first hundreds of edges, thus proving the
goodness of the algorithm.

8.1 Methods

Identifying the directed structure of a gene regulatory network from a set of observational
data is a challenging task, which could be however assisted by the introduction of genetic
markers into the inference process. In the considered datasets, in fact, the expression of a
gene Yi is directly linked to the value of genotype Xi , while e.g. the expression Y j is highly
correlated with X j . If a connection exists between genes i and j , then the correlation be-

1Ragno is the Italian word for spider.

97

98 CHAPTER 8. INFERENCE FROM SYSTEMS GENETICS DATASETS

tween the respective mRNA activities is expected to be large2. Unfortunately, this does not
allow to assign a direction to the edge: is gene i regulating gene j , or vice versa? An answer
to a such dilemma might be obtained by computing the correlation between the genotype
values and the expression measurements: if the association between the genetic marker of
gene i and the expression of gene j is large, then it is highly probable that gene i regulates
gene j ; vice versa, if the correlation between the genotype of gene j and the activity of gene
i is large, then the edge j → i might actually exist.

The presented technique avails itself of the above reasoning as its starting point. Indeed,
the complete algorithm consists of four steps, namely (i) the initial sorting of all possible
edges by computing correlation matrices subject to z-score scaling, (ii) the construction of
the correlation graph GC containing the most relevant edges, (iii) the transitive reduction
of GC into G T to remove unessential connections, and (iv) the production of a sorted list of
edges.

The datasets required to run the algorithm are simply the genotype matrix X and the as-
sociated gene expression matrix Y, whose sizes are both m ×n, being m the number of indi-
viduals in the population and n the number of genes in the network. Therefore, the generic
row i of the matrices contains the genotype values or expression measurements for the n
genes of individual i , and the column j stores the genotype or the expression values of gene
j for all the m individuals of the population. The particular datasets employed in this analy-
sis consists of simulated genotype and gene activity for a population of haploid individuals,
and therefore the genotype matrix X contains only the genotype markers Xi , j = {0,1}. The
four steps of the algorithm are thoroughly described below.

Step 1: initial sorting of all possible edges. Pearson correlation is computed between
the columns of Y to obtain the n ×n matrix Cy y , whose entries Cy y (i , j) represent the cor-
relation amongst the expression values of genes i and j . By computing the same Pearson
correlation between matrices X and Y we obtained the cross correlation between genotype
and gene expression values Cx y . The entry (i , j) of this matrix represents the correlation be-
tween the genotype values of gene i and the gene expression values of gene j .

We computed the z-score on the columns of these matrices (after removing their main
diagonal), i.e. gene-wise, to obtain Zy y as the z-score matrix of Cy y , and Zx y as the z-score
matrix of Cx y . In particular, an entry Z (i , j) is the z-score value of the i -th entry of the j -th
column of C.

By adding together the absolute values of the above two matrices, we obtain a new matrix
R containing the confidence score for each possible edge of the network: R = |Zy y | + |Zx y |.
This allows for a better initial sorting of the edges, and a fair assignment of confidence val-
ues. The choice of Zy y with respect to Cy y is due to the better scoring of edges, that might be
explained by the EIPO topology – which in turn attempts to replicate topologies observed in
real gene networks – used to generate the gene networks in SysGenSIM. Coefficients of Zy y

are computed column-wise on Cy y because correlations on columns are more significant

2The correlation between the expression measurements of two genes might be large even if the genes are
not directly linked, e.g. when the genes have a common regulator.

8.1. METHODS 99

than correlations on rows, i.e. in general the number of genes with significant correlation
coefficients Cy y (i , j) amongst their input edges is larger than the number of genes with sig-
nificant correlation coefficients Cy y (i , j) in their output edges. On average, columns of Cy y

have correlation coefficients more significant than rows, i.e. the few input edges stand out
more than the (larger number of) output edges amongst the n correlation coefficient entries.

Step 2: construction of correlation graph. The correlation graph GC is built by se-
lecting the edges (i , j) – amongst all possible edges of the network – that satisfy two con-
ditions: (i) the absolute value of gene-gene correlation is larger than a certain value, i.e.
|Cy y (i , j)| >ϑ; (ii) the value of genotype-gene expression correlation is larger than the corre-
lation of the symmetric edge plus a threshold, i.e. Cx y (i , j) > Cx y (j , i)+σ (for positive edges)
or Cx y (i , j) < Cx y (j , i)−σ (for negative edges). This allows for differentiating between pos-
itive and negative edges of the correlation graph. Both threshold parameters σ and ϑ are
chosen between 0 and 1.

Step 3: transitive reduction. The correlation graph undergoes a transitive reduction pro-
cess that removes unnecessary edges, i.e. the edges that are not necessary to explain regu-
lation or inhibition between nodes, given the existence of other paths that explain such de-
pendencies. By applying the local transitive reduction (LTR) approach recently presented
in [132], a further refinement of the gene network might be obtained by down-ranking the
edges in GC but not in G T . In particular, the signed and weighted configuration of LTR can
definitely improve the AUPR scores computed after Steps 1 and 2, as shown in Section 8.2.

Step 4: edge sorting. This step simply provides an edge list by ranking the edges accord-
ing (i) to their group (first the edges in G T , then the remaining connections not included in
G T) and, (ii) internally to each group, to their confidence score R computed in Step 1. This
last step is optional, but it is needed to compute e.g. the AUROC and AUPR scores. Else, G T

itself might be considered as a reasonable estimate of the gene network.

The RAGNO algorithm to infer a gene network from genotype and gene expression data
is detailed as follows:

1. Define the input datasets:

I Define X as the m×n matrix containing the genotype values of the dataset. Entry
X (i , j) contains the genotype value for gene j in individual i .

I Define Y as the m×n matrix containing the gene expression values of the dataset.
Entry Y (i , j) contains the gene expression value measured for gene j in individual
i .

2. Compute the Pearson correlation matrices:

I Compute the n×n matrix Cy y by calculating Pearson correlation between columns
of Y. Entry Cy y (i , j) = Cy y (j , i) is the Pearson correlation coefficient computed
between columns i and j of Y. The main diagonal is set to zero.

I Compute the n×n matrix Cx y by calculating Pearson correlation between columns
of X and Y. Entry Cx y (i , j) is the Pearson correlation coefficient computed be-
tween column i of X and column j of Y. The main diagonal is set to zero.

100 CHAPTER 8. INFERENCE FROM SYSTEMS GENETICS DATASETS

3. Compute the z-score matrices:

I Compute the n ×n matrix Zy y by calculating the z-score on matrix Cy y . Entry
Zy y (i , j) is then the deviation of Cy y (i , j) from the mean of column j of Cy y .

I Compute the n ×n matrix Zx y by calculating the z-score on matrix Cx y . Entry
Zx y (i , j) is then the deviation of Cx y (i , j) from the mean of column j of Cx y .

4. Compute the n ×n confidence matrix R = |Zy y |+ |Zx y |.
5. Build the correlation graph:

I Select the edges (i , j) whose gene-gene correlation is larger than a certain thresh-
old ϑ, and store them in set Et : |Cy y (i , j)| >ϑ.

I Select the edges (i , j) for which their cross-correlation is significantly larger than
that of the opposite edge (j , i) by a thresholdσ, and store them in set Es : |Cx y (i , j)| >
|Cx y (j , i)|+σ.

I Define the correlation graph as GC = Et ∩Et .

I Define the set of positive edges of the correlation graph GC as those associated
with a positive correlation: Cy y (i , j) > 0.

I Define the set of negative edges of the correlation graph GC as those associated
with a negative correlation: Cy y (i , j) < 0.

6. Perform transitive reduction on the correlation graph GC according to the LTR algo-
rithm, using the normalized matrix R as weight matrix and α as threshold in case of
inference with a weighted variant of the technique. The obtained reduced graph is G T .

7. Generate the output list by inserting first the edges in G T sorted according to their
weight in matrix R, and then the other edges still according to their weight in R.

8.2 Results

The inference technique has been successfully applied to the simulated datasets of the DREAM5
Systems Genetics A challenge [2] and to the recently published StatSeq benchmarks [135].
Both datasets have been produced with SysGenSIM [136], and are available for download
at [15]. Moreover, the identification of transcriptional interactions in yeast from a real dataset
is verified against a silver standard network.

8.2.1 Performance at the DREAM5 Systems Genetics challenge

One of the challenges proposed at the fifth edition of the well-known DREAM project in-
volved the inference of gene networks from (real and synthetic) systems genetics data. The in
silico sub-challenge requested to reverse-engineer 15 networks, all of size n = 1000 but with
a different number of available individuals (p = {100,300,999}) and with increasing node av-
erage degree.

The scores obtained by inferring with RAGNO the networks from the DREAM5 Systems
Genetics A datasets are quite large, as shown in Tables 8.1, 8.2 and 8.3, and the performance

8.2. RESULTS 101

Table 8.1: Performance of the RAGNO techniques in DREAM5 sub-challenge A1 (100 RILs).

Network Method AUROC AUPR TPs FPs ToP1000

100-1

R 0.838 0.188 - - 396
R+GC 0.838 0.216 530 1741 466
R+G T 0.838 0.207 494 1666 438

Vignes (DREAM5) 0.754 0.085 - - -
Vignes et al. 0.750 0.074 - - -
Flassig et al. 0.843 0.247 - - -

100-2

R 0.816 0.154 - - 418
R+GC 0.816 0.181 666 2078 491
R+G T 0.816 0.178 630 1976 484

Vignes (DREAM5) 0.718 0.060 - - -
Vignes et al. 0.713 0.054 - - -
Flassig et al. 0.821 0.203 - - -

100-3

R 0.794 0.148 - - 456
R+GC 0.794 0.171 762 2402 534
R+G T 0.794 0.167 716 2274 524

Vignes (DREAM5) 0.696 0.053 - - -
Vignes et al. 0.694 0.045 - - -
Flassig et al. 0.802 0.186 - - -

100-4

R 0.781 0.135 - - 473
R+GC 0.781 0.146 764 2477 524
R+G T 0.781 0.143 707 2320 507

Vignes (DREAM5) 0.676 0.054 - - -
Vignes et al. 0.671 0.046 - - -
Flassig et al. 0.788 0.158 - - -

100-5

R 0.774 0.143 - - 527
R+GC 0.775 0.151 880 2610 583
R+G T 0.774 0.146 808 2458 559

Vignes (DREAM5) 0.670 0.054 - - -
Vignes et al. 0.666 0.044 - - -
Flassig et al. 0.781 0.158 - - -

would have been awarded with the 1st place due to the infinite overall score obtained for the
three sub-challenges (explained by the infinite values computed for the AUROC scores; any-
way, the AUPR scores are substantially larger than those by the challenge participants: 161.8,
160.7 and 192.4 instead of 81.9, 89.4 and 140.6 by the best performer [172] for A1, A2 and A3,
respectively). The tables show, for each of the 15 networks, the AUROC and AUPR scores
for the three steps of the algorithm, the number of true positive (TP) and false positive (FP)
edges in the correlation graph GC and in the transitive reduced graph G T , and the number
of true positive edges amongst the best 1000 predicted edges (column ToP1000, sorry for the
wordplay). The threshold parameters are set to σ = 0.15, ϑ = 0.25, α = 0.6 to infer all net-
works, i.e. the selection of parameters has not been optimized to maximize the score for the
single networks.

Besides the rows for methods R, R+GC and R+G T , two more contain the AUROC and
AUPR values scored by Vignes and colleagues: rows labeled with Vignes (DREAM5) show the
performance officially registered at the DREAM5 challenge, while those labeled with Vignes
et al. show the scores published in [172] after minor corrections in the implementation of
the inference algorithm. Another row exalts the performance of the technique developed
by Flassig et al. [59], that is by far the most accurate in reverse-engineering the networks,
excelling in particular with the availability of RILs. The several combinations of inference
techniques presented in [18] perform better than the DREAM5 winner, but it is not clear
whether these algorithms would top the performance of RAGNO (the values of AUROC and
AUPR are not shown numerically, only in form of comparative bar plots).

102 CHAPTER 8. INFERENCE FROM SYSTEMS GENETICS DATASETS

Table 8.2: Performance of the RAGNO techniques in DREAM5 sub-challenge A2 (300 RILs).

Network Method AUROC AUPR TPs FPs ToP1000

300-1

R 0.920 0.305 - - 526
R+GC 0.921 0.365 670 417 654
R+G T 0.921 0.368 660 358 657

Vignes (DREAM5) 0.855 0.211 - - -
Vignes et al. 0.845 0.248 - - -
Flassig et al. 0.927 0.475 - - -

300-2

R 0.882 0.220 - - 519
R+GC 0.882 0.270 699 425 663
R+G T 0.882 0.271 680 402 661

Vignes (DREAM5) 0.793 0.144 - - -
Vignes et al. 0.779 0.175 - - -
Flassig et al. 0.892 0.356 - - -

300-3

R 0.875 0.220 - - 553
R+GC 0.876 0.268 816 581 701
R+G T 0.876 0.269 780 479 703

Vignes (DREAM5) 0.786 0.141 - - -
Vignes et al. 0.774 0.159 - - -
Flassig et al. 0.890 0.316 - - -

300-4

R 0.859 0.193 - - 553
R+GC 0.859 0.233 832 456 721
R+G T 0.859 0.236 796 359 739

Vignes (DREAM5) 0.759 0.132 - - -
Vignes et al. 0.739 0.141 - - -
Flassig et al. 0.873 0.292 - - -

300-5

R 0.841 0.190 - - 573
R+GC 0.841 0.229 908 484 745
R+G T 0.841 0.231 877 416 756

Vignes (DREAM5) 0.737 0.113 - - -
Vignes et al. 0.719 0.131 - - -
Flassig et al. 0.854 0.291 - - -

Table 8.3: Performance of the RAGNO techniques in DREAM5 sub-challenge A3 (999 RILs).

Network Method AUROC AUPR TPs FPs ToP1000

999-1

R 0.952 0.324 - - 543
R+GC 0.953 0.407 660 213 672
R+G T 0.953 0.410 642 156 668

Vignes (DREAM5) 0.933 0.358 - - -
Vignes et al. 0.902 0.482 - - -
Flassig et al. 0.969 0.630 - - -

999-2

R 0.923 0.259 - - 563
R+GC 0.923 0.313 800 530 683
R+G T 0.923 0.315 779 461 688

Vignes (DREAM5) 0.885 0.258 - - -
Vignes et al. 0.845 0.364 - - -
Flassig et al. 0.942 0.468 - - -

999-3

R 0.906 0.241 - - 580
R+GC 0.906 0.297 844 356 749
R+G T 0.906 0.296 817 315 755

Vignes (DREAM5) 0.844 0.195 - - -
Vignes et al. 0.808 0.292 - - -
Flassig et al. 0.926 0.442 - - -

999-4

R 0.893 0.223 - - 598
R+GC 0.893 0.267 912 385 774
R+G T 0.893 0.268 889 307 788

Vignes (DREAM5) 0.821 0.183 - - -
Vignes et al. 0.784 0.260 - - -
Flassig et al. 0.915 0.378 - - -

999-5

R 0.876 0.216 - - 627
R+GC 0.876 0.261 916 259 827
R+G T 0.876 0.261 889 209 837

Vignes (DREAM5) 0.813 0.178 - - -
Vignes et al. 0.768 0.244 - - -
Flassig et al. 0.898 0.373 - - -

8.2. RESULTS 103

In sub-challenge A1, the 1000-gene networks are inferred with the worst accuracy due to
the limited number of RILs (a population of only p = 100 individuals). The scores by RAGNO
are improved by ranking with highest priority the edges in the correlation graph, while the
transitive reduction appears detrimental for the accuracy of the prediction. This can be ex-
plained by a sub-optimal choice of the threshold parameters (σ,ϑ) for the selection of the
edges to be included in the correlation graph, where the number of FPs is about three times
larger than the number of TPs: larger values of σ and θ would have prevented the inclusion
of several FPs into GC , and this would have thus helped the process of transitive reduction.

The improvement on the predictive performance after applying transitive reduction is fi-
nally significant on sub-challenges A2 and A3 (p = 300 and p = 999, respectively), in contrast
with respect to sub-challenge A1. The edges assembling the correlation graph are chosen
with better accuracy (the number of TPs is even larger than the number of FPs), and there-
fore the process of transitive reduction is less heavily hampered by the presence of too many
distracting (false) edges. According to Tables 8.2 and 8.3, in general the decrease in TPs from
GC to G T is moderate with respect to the decrease of FPs, and simultaneously the percent-
age of TPs amongst the top ranked edges increases.

For all the networks the change in the AUROC score from RAGNO to GC and to G T is
negligible because the correlation graph and the transitive reduction relocate only few edges
(about 1 thousand) compared to the number of possible edges in the networks (nearly 1 mil-
lion), while the improvement in the AUPR is significant (about 20%) for the upraising of true
edges and the downgrading of false edges in the top positions on the prediction list.

The beneficent effect of selecting particular edges into a correlation graph is undeni-
able when looking at the surfaces plotted in Figure 8.1, where the AUPR scores obtained by
ranking the edges in the correlation graph before the other are larger than those scored by
sorting the edges according uniquely to the confidence expressed in R. In fact, the precision
increases for a wide combination of parameters σ and ϑ, i.e. a reasonable choosing of the
thresholds (e.g. σ = 0.1 and ϑ = 0.2) will always lead to an improvement of the network re-
construction with respect to the output yielded by the confidence matrix R, which might be
significant when the threshold selection is optimal.

8.2.2 Performance with the StatSeq benchmark datasets

The StatSeq datasets [15] have been simulated to provide a varied benchmark to test how
the inference of gene networks is conditioned by relevant features as the number of obser-
vations, the genetic linkage, the heritability, and the network size. For detailed information
on the 72 syntethic datasets, see Section 4.2.

The application of the RAGNO algorithm on these benchmarks produces, in general, sat-
isfactory results that are comparable with the best performances of the competition – in
particular for sizes 1000 and 5000, and especially in configurations 1 (large marker distance,
high heritability, small population), 3 and 7 (low heritability and small population), as shown
as an example in the comparative plots of Figures 8.2 and 8.3, where the RAGNO technique is
compared with the three best overall performing algorithms by Huynh-Thu et al. [83], Heise

104 CHAPTER 8. INFERENCE FROM SYSTEMS GENETICS DATASETS

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5

0.12

0.13

0.14

0.15

0.16

0.17

0.18

Theta

AUPR averaged on networks of sub−challenge A1

Sigma

RAGNO−PG

RAGNO

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Theta

AUPR averaged on networks of sub−challenge A2

Sigma

RAGNO−PG

RAGNO

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Theta

AUPR averaged on networks of sub−challenge A3

Sigma

RAGNO−PG

RAGNO

Figure 8.1: AUPR score averaged by the RAGNO techniques on the networks of the
DREAM5 Systems Genetics sub-challenges A1, A2 and A3. The figures show the recon-
struction performance of methods R (AUPR = [0.1536,0.2252,0.2525]) and R+GC for thresh-
old parameters (σ,ϑ) ∈ [0.05,0.5] in the three DREAM5 Systems Genetics sub-challenges.
The best scores (AUPR = [0.1752,0.2855,0.3396]) are obtained for [(σ = 0.15,ϑ = 0.30), (σ =
0.10,ϑ= 0.15), (σ= 0.05,ϑ= 0.10)].

et al. [77] and Sambo et al. [147]. Analogously to the DREAM5 benchmarks, the surface
plots in Figure 8.4 show how easily the correlation graph allows for an improvement of the
AUPR scores (left), while the effect of the transitive reduction might be detrimental when too
many edges are removed (e.g. forα< 0.5) or slightly positive when the threshold is tightened
(right).

8.2.3 Performance with a yeast dataset

A greatly challenging application of the algorithm involves the identification of the gene net-
work representing a real-world organism from experimental data. We tested our approach
by analyzing genotype and gene expression data measured in a cross between two strains of
Saccharomyces cerevisiae [33, 34, 166]. The dataset consists of 5736 gene expression levels3

measured for p = 112 segregants, i.e. individuals. Each gene has been related to its closest
marker (amongst a set of 2956 markers), in order to complete the associated genotype ma-
trix. Some genotype values are missing, and thus substituted with a NaN value in X. Both
genotype and gene expression matrices X and Y have size 112×5670, i.e. p ¿ n. Evaluation
of the inference methodology is not forthright because the gene network of yeast is still un-
known, yet the organism has been studied enough to compile reliable but incomplete silver
standard networks. We then quantified the performance of the reverse-engineering tech-
nique by comparing the results with the 114×5667 yeast network used as a reference at the
DREAM5 Network Inference challenge. The inference algorithm yields a score for each pos-
sible edge of a 5670×5670 matrix, but only the edges within its intersection with the silver
standard, a 112×5418 network, can be evaluated.

The complete RAGNO algorithm has been applied to the input datasets. The confidence
score matrix R already ranks 16 true edges amongst its most confident 100 edges; after re-
arranging the edges following the correlation graph procedure, the number of true edges
amongst the top-100 increase to 20 with (σ = 0.15, ϑ = 0.25) and even to 23 with (σ = 0.30,

3The expression of 33 genes is measured twice, therefore the number of genes represented with a single
expression level is n = 5670.

8.3. DISCUSSION 105

Low High

15

20

25

30

A
U

P
v
R

Change in heritability averaged on networks of size 1000 (configurations 3 and 1)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Low High

20

25

30

35

40

A
U

P
v
R

Change in heritability averaged on networks of size 1000 (configurations 4 and 2)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Low High

8

10

12

14

16

18

20

A
U

P
v
R

Change in heritability averaged on networks of size 1000 (configurations 7 and 5)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Low High

10

15

20

25

30

35

A
U

P
v
R

Change in heritability averaged on networks of size 1000 (configurations 8 and 6)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Small Large

10

15

20

25

30

A
U

P
v
R

Change in marker distance averaged on networks of size 1000 (configurations 5 and 1)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Small Large

10

15

20

25

30

35

40

A
U

P
v
R

Change in marker distance averaged on networks of size 1000 (configurations 6 and 2)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Small Large

10

15

20

25

A
U

P
v
R

Change in marker distance averaged on networks of size 1000 (configurations 7 and 3)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Small Large

20

25

30

35

40

A
U

P
v
R

Change in marker distance averaged on networks of size 1000 (configurations 8 and 4)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

300 900

15

20

25

30

35

40

A
U

P
v
R

Change in population size averaged on networks of size 1000 (configurations 1 and 2)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

300 900

15

20

25

30

35

40

A
U

P
v
R

Change in population size averaged on networks of size 1000 (configurations 3 and 4)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

300 900

10

15

20

25

30

A
U

P
v
R

Change in population size averaged on networks of size 1000 (configurations 5 and 6)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

300 900

10

15

20

25

30

35

A
U

P
v
R

Change in population size averaged on networks of size 1000 (configurations 7 and 8)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Figure 8.2: Comparison of performances by RAGNO techniques on the StatSeq benchmark
datasets (n = 1000). The plots show the change in AUPR scores when two variables are
fixed and the other one – heritability (left), marker distance (center), population size (right)
– changes.

ϑ = 0.30). Transitive reduction is not particularly effective, and the related improvements
(if any!) are negligible. With regards to the AUPR computed by considering all the possible
edges, it nearly doubles the score by the random prediction (from ' 0.006 to ' 0.011).

8.3 Discussion

We have presented a straightforward yet effective algorithm for the reconstruction of gene
regulatory networks from genotype and gene expression measurements. The approach ranks
itself amongst the top performing techniques within this particular area in the larger field of
network inference methodologies, by proving its strength in the identification of gene net-
works after analyzing established benchmark datasets, as those released to the community
at international projects such DREAM and StatSeq.

106 CHAPTER 8. INFERENCE FROM SYSTEMS GENETICS DATASETS

Low High

10

15

20

A
U

P
v
R

Change in heritability averaged on networks of size 5000 (configurations 3 and 1)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Low High

20

25

30

35

A
U

P
v
R

Change in heritability averaged on networks of size 5000 (configurations 4 and 2)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Low High

4

6

8

10

12

14

16

18

A
U

P
v
R

Change in heritability averaged on networks of size 5000 (configurations 7 and 5)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Low High

10

15

20

25

30

A
U

P
v
R

Change in heritability averaged on networks of size 5000 (configurations 8 and 6)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Small Large

10

15

20

A
U

P
v
R

Change in marker distance averaged on networks of size 5000 (configurations 5 and 1)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Small Large

10

15

20

25

30

35

A
U

P
v
R

Change in marker distance averaged on networks of size 5000 (configurations 6 and 2)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Small Large

5

10

15

20

A
U

P
v
R

Change in marker distance averaged on networks of size 5000 (configurations 7 and 3)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Small Large

10

15

20

25

30

35

A
U

P
v
R

Change in marker distance averaged on networks of size 5000 (configurations 8 and 4)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

300 900

15

20

25

30

35

A
U

P
v
R

Change in population size averaged on networks of size 5000 (configurations 1 and 2)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

300 900

10

15

20

25

30

35

A
U

P
v
R

Change in population size averaged on networks of size 5000 (configurations 3 and 4)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

300 900

10

15

20

A
U

P
v
R

Change in population size averaged on networks of size 5000 (configurations 5 and 6)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

300 900

5

10

15

20

25

30

A
U

P
v
R

Change in population size averaged on networks of size 5000 (configurations 7 and 8)

Sambo et al.

Huynh−Thu et al.

Heise et al.

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Figure 8.3: Comparison of performances by RAGNO techniques on the StatSeq benchmark
datasets (n = 5000). The plots show the change in AUPR scores when two variables are
fixed and the other one – heritability (left), marker distance (center), population size (right)
– changes.

8.3. DISCUSSION 107

0
0.1

0.2
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4

0.15

0.2

0.25

0.3

Theta

AUPR averaged on size=5000 and configuration=2

Sigma

RAGNO−PG

RAGNO

0 0.2 0.4 0.6 0.8 1
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Alpha

A
U

P
R

AUPR averaged on networks with size=5000 and configuration=2

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

0
0.1

0.2
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Theta

AUPR averaged on size=5000 and configuration=6

Sigma

RAGNO−PG

RAGNO

0 0.2 0.4 0.6 0.8 1

0.08

0.09

0.1

0.11

0.12

0.13

Alpha

A
U

P
R

AUPR averaged on networks with size=5000 and configuration=6

RAGNO (R)

RAGNO (PG)

RAGNO (LTR)

Figure 8.4: Average AUPR scores by RAGNO techniques on StatSeq networks for configu-
rations 2 and 6. AUPR scores averaged on StatSeq networks of size n = 5000 and simulated
according to configuration 2 and 6 for R and R+GC (left). AUPR score averaged on the same
StatSeq networks with correlation graph computed for parameters σ = 0.15 and ϑ = 0.25,
and transitive reduction applied with thresholds α ∈ [0.05,0.95] (right).

Chapter 9

Side projects

This chapter collects two works partially associated with the topics previously presented,
where we mostly dealt with the simulation and the structural identification of gene regula-
tory networks. In fact, in Section 9.1.2 a community-based research [121], where the results
and methods of the DREAM6 Estimation of Model Parameters and the DREAM7 Network
Topology and Parameter Inference challenges are analyzed by a panel of organizers, is briefly
summarized. Our team only participated to the DREAM6 challenge by submitting a below-
the-average estimate of the small biological network parameters (see Section 9.1.1), and we
are therefore credited as authors amongst the DREAM 6&7 Parameter Estimation consor-
tium. Section 9.2 contains the paper [39], by our Bioinformatics group at CRS4, describing
the Galaxy platform Orione [12] and the several microbiology tools there implemented and
freely available to researchers.

9.1 DREAM6 parameter estimation challenge

In Section 9.1.1 we describe the technique we developed to estimate the parameters and to
predict the outcomes of applied perturbations in systems biology models at the DREAM6 Es-
timation of Model Parameters challenge. Moreover, the organizers of the competition thor-
oughly examined the methodologies and their performances to compile a community ap-
proach for the estimation of gene regulatory network kinetics: this achievement is concisely
recapitulated in Section 9.1.2.

9.1.1 Submitted technique at the DREAM6 Estimation of Model
Parameters challenge

We studied the problem of estimating the kinetic parameters of given models of gene regu-
latory networks by participating to the DREAM6 Estimation of Model Parameters challenge,
whose goal was therefore the development of optimization methods for the estimate of pa-
rameters in the modeling of biological systems. The participants were provided with the
full regulatory interaction topology for three small gene networks and were requested to es-
timate the value of the unknown parameters given a dataset of time-series measurements
and the possibility to purchase, given a fixed budget, additional experimental data from a

109

110 CHAPTER 9. SIDE PROJECTS

broad assortment. By using a customized version of SysGenSIM [136] we simulated all types
of challenge data with the known equations and topologies, and with randomly assigned
values in place of the unknown parameters. This enabled us to evaluate optimization algo-
rithms with different purchasing schemes to finally select a common strategy for all three
models: unfortunately our approach performed badly compared to the best methodologies,
but still yielded an adequate prediction.

We applied our strategy as follows. First, we started out by simulating data with the given
equations for all 3 models, using randomly assigned parameters values. In particular we
generated all types of data that can be purchased and the time courses with the same pertur-
bation as we are requested to predict. This enabled us to evaluate alternative optimization
algorithms (Nelder-Mead, trust-region-reflective, CoByLa, simulated annealing, genetic al-
gorithms) with different data purchasing schemes. After thorough simulation studies we
decided to use a common strategy for all three models, as detailed in the following ordered
list.

1. Estimation of protein degradation rate constants: we purchased one or more Gene
Deletion Experiments in combination with protein time series of the protein encoded
by the deleted gene. Since initial mRNAs are set to zero, the protein of the deleted gene
will display simple first order decay, so that the protein degradation rate constants can
be relatively easily estimated. We used nlinfit in MATLAB to find the best value for
the protein degradation rate constants by fitting the following analytical function to
the protein time series: p(t) = p(0) · ep_degradation_rate·t with p(0) the initial concentra-
tion of the protein. Once a good estimate of the protein degradation constant has been
obtained we can use this value for the protein degradation rate constants of all pro-
teins in the model (as they were set equal as mentioned in the challenge description).
For model 1 and 2 we purchased two Gene Deletion Experiments to obtain better esti-
mates, while for model 3 only gene 1 can be used since it is the only one with p(0) > 0.

2. Estimation of ribosome binding strengths: we purchased high-quality wild type mRNA
time series. We also purchased wild type time series for all proteins. For some proteins
we purchased two wild type time series to get better estimates in the light of the noise.
Also we selected the second protein in the pair purchased after Gene Deletions (Step
1) to be unaffected by the deletion, so we could use it as a wild type series replicate
too. From these time series we estimated the ribosome binding strengths by fitting
the following analytical function to the wild type mRNA and protein time series (using
nlinfit):

p(t) = rbs_strength· pp_mRNA(t)

p_degradation_rate
+p(0)− rbs_strength ·pp_mRNA(t)

p_degradation_rate
ep_degradation_rate·t

(9.1)
We fixed the protein degradation rate constants to the values obtained in Step 1, so
that only the ribosome binding strengths had to be optimized.

3. Estimation of promoter strength of gene 1: in each of the three models, gene 1 re-
ceives no inputs from other genes, therefore its mRNA time course depends only on its
promoter strength and degradation rate constant. Since the value of the degradation
rate constant was provided in challenge description, we used nlinfit to estimate only

9.1. DREAM6 PARAMETER ESTIMATION CHALLENGE 111

the promoter strength by fitting the following analytical function to the high-quality
wild type mRNA time series:

pp1_mRNA(t) = pro1_strength · (1−e t) (9.2)

given that the initial concentration of the mRNA pp1_mRNA(0) = 0 and the degrada-
tion rate constant is equal to 1.

4. Fixing some Binding affinity (Kd) and Hill coefficient (h) parameters: through our
simulation studies we clearly saw large improvements when a set of Kd and h were
known, so we purchased 3 Gel Shift Experiments (giving 3 pairs of Kd and h) for each
model. For model 1 and 2 we purchased parameters appearing in the equations of the
genes encoding the proteins for which we needed to make time series predictions. For
model 3 we performed several fits before deciding which parameters to purchase.

5. Estimation of promotor strengths using forced inputs: for the genes for we have pur-
chased the Kd and h we need to estimate only promotor strength. In this case we
decouple their equation from the global model by fitting its inputs by a polynomial
and replace these state variables by the polynomial function (similar to the approach
we have applied to the 5-gene network inference challenge in DREAM2 [154] and then
optimize the promotor strength independent of all other parameters in the model.

6. Global optimization: we used all parameters estimated (and purchased) in Steps 1-5
to create an initial estimation vector x0, with the remaining promoter strengths and Kd

initialized to 1 and h initialized to 2. Then we performed a series of global parameter
optimizations to fit the wild type mRNA and protein time series. In particular, we al-
ternated fmincon and genetic algorithms in MATLAB, always using as starting point
the best fit of the previous optimization. fmincon was used to reach rapidly a local op-
timum, while ga was added for its ability in escaping the local optimum by mutations
and recombinations. For all optimizations we fixed the purchased parameters, and
also forced the other parameters between lower and upper bounds: between 1 and
4 for the h parameters, between 10−6 and 103 for the other ones. We used as fitness
function the sum of the absolute values of the differences between the measured data
points and the corresponding values calculated by solving the model ODEs for the es-
timated parameters. We continue the series of optimizations until the decrease in the
fitness function is smaller than 0.5 in the last 10 optimizations.

7. Final predictions: the last best fit in Step 6 for the model parameters were submitted
and used to calculate the submitted protein time series predictions, again by solving
the model ODEs.

9.1.2 Network topology and parameter estimation: from ex-
perimental design methods to gene regulatory network
kinetics using a community based approach

The summary of the community paper [121], to which we contributed as members of the
DREAM 6&7 Parameter Estimation consortium, is reported in the following.

112 CHAPTER 9. SIDE PROJECTS

Background

Accurate estimation of parameters of biochemical models is required to characterize the dy-
namics of molecular processes. This problem is intimately linked to identifying the most
informative experiments for accomplishing such tasks. While significant progress has been
made, effective experimental strategies for parameter identification and for distinguishing
among alternative network topologies remain unclear. We approached these questions in an
unbiased manner using a unique community-based approach in the context of the DREAM
initiative (Dialogue for Reverse Engineering Assessment of Methods). We created an in sil-
ico test framework under which participants could probe a network with hidden parameters
by requesting a range of experimental assays; results of these experiments were simulated
according to a model of network dynamics only partially revealed to participants.

Results

We proposed two challenges; in the first, participants were given the topology and under-
lying biochemical structure of a 9-gene regulatory network and were asked to determine its
parameter values. In the second challenge, participants were given an incomplete topology
with 11 genes and asked to find three missing links in the model. In both challenges, a bud-
get was provided to buy experimental data generated in silico with the model and mimicking
the features of different common experimental techniques, such as microarrays and fluores-
cence microscopy. Data could be bought at any stage, allowing participants to implement an
iterative loop of experiments and computation.

Conclusion

A total of 19 teams participated in this competition. The results suggest that the combi-
nation of state of the art parameter estimation and a varied set of experimental methods
using a few datasets, mostly fluorescence imaging data, can accurately determine parame-
ters of biochemical models of gene regulation. However, the task is considerably more diffi-
cult if the gene network topology is not completely defined, as in challenge 2. Importantly,
we found that aggregating independent parameter predictions and network topology across
submissions creates a solution that can be better than the one from the best-performing
submission.

9.2 Orione, a web-based framework for NGS analy-
sis in microbiology

End-to-end NGS microbiology data analysis requires a diversity of tools covering bacte-
rial resequencing, de novo assembly, scaffolding, bacterial RNA-Seq, gene annotation and
metagenomics. However, the construction of computational pipelines that use different
software packages is difficult due to a lack of interoperability, reproducibility, and trans-
parency. To overcome these limitations we present Orione, a Galaxy-based framework con-
sisting of publicly available research software and specifically designed pipelines to build
complex, reproducible workflows for NGS microbiology data analysis. Enabling microbiol-
ogy researchers to conduct their own custom analysis and data manipulation without soft-
ware installation or programming, Orione provides new opportunities for data-intensive

9.2. ORIONE, A WEB-BASED FRAMEWORK FOR NGS ANALYSIS IN MICROBIOLOGY 113

computational analyses in microbiology and metagenomics.

Application of Next Generation Sequencing (NGS) in microbiology is becoming a com-
mon practice with a profound impact on research, diagnostic and clinical microbiology [104].
Recent applications include genomic sequencing, differential transcription analysis, variant
investigation, as well as metagenomics studies. Major challenges include draft assemblies
finishing followed by reliable genome annotation or robust dissection of microbial com-
munities including those associated with human health and disease. Furthermore, there
is an increasing need to process and present data in a fashion that is transparent and repro-
ducible and to provide analysis frameworks that are usable and cost-effective for biomedical
researchers.

To address these challenges, we developed Orione, an online framework for integra-
tive analysis of NGS microbiology data. Orione is based on Galaxy [69], an open platform
for reproducible data-intensive computational analysis utilized in many diverse biomedi-
cal research environments. Orione is the first freely available platform that supports the
whole life cycle of microbiology research data from production and annotation to publi-
cation and sharing. Other commercial alternative exists (e.g. CLC Genomics Workbench
by CLC Bio), but Orione is unique in transparently combining the most used open source
bioinformatics tools for microbiology. Orione is currently applied to a variety of microbi-
ological projects including bacteria resequencing, de novo assembling and microbiome in-
vestigations, see [10] for a list. Furthermore, Orione is part of an ongoing project to integrate
Galaxy with: Hadoop-based tools to provide scalable computing [99]; a specialized version
of OMERO [20] to model biomedical data and the chain of actions that connect them; and
iRODS [139] to efficiently support inter-institutional data sharing. This infrastructure is al-
ready used in production at CRS4 for the automated processing of sequencing data [137] and
for quality control in gene therapy applications [28].

9.2.1 Features and methods

Orione consists of best-of-breed NGS bioinformatics tools covering end-to-end data analy-
sis for bacterial resequencing, de novo assembly, scaffolding, bacterial RNA-Seq, gene an-
notation, metagenomics and metatranscriptomics. Publicly available research tools were
integrated under the open source Galaxy framework with pipelines and workflows newly de-
veloped by our group for ready-to-go microbiological analysis. While several of the tools for
NGS microbiology data analysis were already available in Galaxy, a significant effort was re-
quired to expand the Galaxy functionalities with new features such as SSPACE [29], SSAKE [177],
SOPRA [42], SEQuel [144], EDGE-pro [109], Glimmer [48], and Prokka [13]. We refer to the
Supplementary information for a description of the complete set of Orione tools and work-
flows.

9.2.2 Functionalities

Orione complements the flexible Galaxy workflow environment, allowing microbiologists
without any specific hardware or informatics skill to consistently access a set of NGS data
analysis tools and conduct reproducible data-intensive computational analyses from quality

114 CHAPTER 9. SIDE PROJECTS

control to microbial gene annotation. Figure 9.1 illustrates an overall schema of the main
Orione functionalities that are described in detail in the following paragraphs.

Figure 9.1: Overall schema of the main Orione functionalities. Boxes represent collections
of tools performing specific tasks.

Preprocessing, quality control and trimming. The fundamental step before any NGS anal-
ysis is the quality control of reads and their trimming. To cope with with long reads and
paired-end technology, FastX [6] and FASTQC [5] were complemented with specifically de-
veloped tools (see also workflow #1 in the Supplementary information).

Reads mapping. Mapping is a key step in many NGS applications from bacteria resequenc-
ing to variant calling. The most widely used aligners are integrated in Orione, including
BWA [100], Bowtie1 [96], Bowtie2 [95], SOAP [102], MOSAIK [11]. We further added BLAT [88],
SHRiMP [41], LASTZ [74] and BFAST [79] for use with long reads from 454 Roche.

De novo assembly. De novo assembly produces contigs without the aid of a reference genome.
Different methods, either based on a de Bruijn graph (Velvet [184], ABySS [157], SPAdes [22])
or on a greedy approach (SSAKE, Edena [78]) are available in Orione.

Scaffolding. After mapping, contigs are ordered and oriented to produce even longer se-
quences called scaffolds, exploiting the mate pair/paired-end information. Orione includes
the most established scaffolders such as SSAKE, SSPACE, SEQuel, and SOPRA.

Post assembly, contigs statistics, (multi) aligning, and variant calling. This section of Ori-
one includes tools we have developed covering task such as genome-scale alignment, high
quality contigs extraction, statistics over contigs or draft genomes (N50/NG50 values, con-
tigs length distribution, high/low quality regions/gaps in draft genomes).

Annotation. Annotation is the process of identifying meaningful biological information
from sequences. Glimmer and tRNAscan-SE [105] were wrapped into Orione together with
the Prokka pipeline, enabling easy Genbank/DDJB/ENA submission.

RNA-Seq. We integrated EDGE-pro tool for bacterial RNA-Seq analysis. Since EDGE-pro re-
quires genome annotation files, we developed an accessory tool (Get EDGE-pro files) which
retrieves them directly from the NCBI RefSeq repository.

Metagenomics and other tools. We added to the standard Galaxy metagenomics pipeline
MetaPhlAn [156], and MetaVelvet [124]. The MetaGeneMark [187] annotation tool has been
added for gene prediction in metagenomic sequences and a workflow has been developed

9.2. ORIONE, A WEB-BASED FRAMEWORK FOR NGS ANALYSIS IN MICROBIOLOGY 115

for (bacterial) metatranscriptome analysis. We complete this section with instruments for
data filtering, conversion and taxonomy abundance displaying into the Krona visualizer [128].

Chapter 10

Concluding remarks

The projects described in this thesis allowed me to investigate several issues in bioinformat-
ics topics of current interest, while still employing methodologies and techniques borrowed
from information engineering, as e.g. system modeling and simulation, network identifica-
tion, graph theory, scientific programming.

Thanks to a mixture of hard work, obstinacy, excellent advising and above all good luck,
I have been able to substantially contribute to certain aspects of bioinformatics, below sum-
marized.

I The development of SysGenSIM, a software to generate gene networks and efficiently
simulate systems genetics and systematic perturbative experiments. The toolbox pro-
duces datasets for the purpose of evaluating and comparing e.g. methodologies to per-
form eQTL mapping and algorithms to infer gene networks. SysGenSIM is available as
an open source software and it is still maintained and updated.

I The release of benchmark datasets to the scientific community for the evaluation and
verification of gene network inference techniques. International competitions (as the
DREAM5 challenge and the StatSeq workshop) have been organized to this aim – using
SysGenSIM’s datasets as benchmark. Works presenting network identification tech-
niques, developed and verified using these benchmarks, have been and are currently
being published by peer-reviewed journals. SysGenSIM can be then considered as a
valuable instrument for the realistic simulation of such particular types of biological
systems and genetic experiments.

I The implementation of algorithms for the accurate identification of directed gene in-
teractions from data generated by different types of experiments. One of the devel-
oped inference techniques proved itself particularly effective in the analysis of simu-
lated and even incomplete real datasets of single-gene knockout experiments. Another
technique, based on multiple approaches singularly applied on subsets of data, proved
to be reliable in reverse-engineering transcriptional regulatory networks from real and
heterogeneous expression compendia. A third algorithm effectively identifies interac-
tions in gene networks from genotyping and expression data. These methodologies,

117

118 CHAPTER 10. CONCLUDING REMARKS

applied on realistic datasets, might help scientists in addressing their decisions when
performing in vivo research.

Besides the mere scientific contributions, I truly benefited from the participation to in-
ternational conferences and meetings, and thrived in collaborating with researchers from
established centers as Max Planck Institute and Virginia Bioinformatics Institute.

Future developments, besides the further improvement of the presented methods, might
include the application of the inference algorithms on novel experimental datasets from real
organisms and the actual finding of true but yet undiscovered gene interactions. Another
possibility is the implementation of the simulation software and the identification tech-
niques into a Galaxy platform, e.g. one specifically dedicated to systems biology. This would
allow the immediate utilize of such powerful tools – but still demanding for inexperienced
computer users – to biologists and physicians.

Finally, an official organism for the verification of gene network inference techniques
should be established to develop shared strategies, as e.g. the type of biological datasets to
be used as benchmarks, or the measures to fairly evaluate the proposed methodologies.

Bibliography

[1] DREAM4 In Silico Network challenge. http://wiki.c2b2.columbia.edu/dream/
index.php/D4c2. [cited at p. 67]

[2] DREAM5 Systems Genetics challenge. http://wiki.c2b2.columbia.edu/dream/
index.php/D5c3. [cited at p. 2, 97, 100]

[3] E-MTAB-109: transcription profiling of yeast transcription factor knockout com-
pendium. http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-109.
[cited at p. 77]

[4] Evaluation script for the DREAM4 In Silico Network challenge. http://wiki.c2b2.
columbia.edu/dream/results/DREAM4. [cited at p. 67]

[5] FASTQC. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
[cited at p. 114]

[6] FASTX-Toolkit. http://hannonlab.cshl.edu/fastx_toolkit. [cited at p. 114]

[7] GeneNet. http://strimmerlab.org/software/genenet. [cited at p. 87]

[8] GeneNetWeaver benchmarks. http://gnw.sourceforge.net/dreamchallenge.
html. [cited at p. 19]

[9] Genetic Analysis Workshop. http://gaworkshop.org. [cited at p. 22]

[10] Microbiology projects using Orione. http://ncbi.nlm.nih.gov/bioproject/
?term=CRS4. [cited at p. 113]

[11] MOSAIK. http://github.com/wanpinglee/MOSAIK. [cited at p. 114]

[12] Orione. http://orione.crs4.it. [cited at p. 109]

[13] Prokka. http://vicbioinformatics.com/software.prokka.shtml. [cited at p. 113]

[14] SOSlib. http://www.tbi.univie.ac.at/~raim/odeSolver. [cited at p. 12]

[15] SysGenSIM benchmarks. http://sysgensim.sourceforge.net/datasets.html.
[cited at p. 19, 33, 41, 84, 97, 100, 103]

[16] SysGenSIM website. http://sysgensim.sourceforge.net. [cited at p. 2, 17, 34]

119

http://wiki.c2b2.columbia.edu/dream/index.php/D4c2
http://wiki.c2b2.columbia.edu/dream/index.php/D4c2
http://wiki.c2b2.columbia.edu/dream/index.php/D5c3
http://wiki.c2b2.columbia.edu/dream/index.php/D5c3
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-109
http://wiki.c2b2.columbia.edu/dream/results/DREAM4
http://wiki.c2b2.columbia.edu/dream/results/DREAM4
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://hannonlab.cshl.edu/fastx_toolkit
http://strimmerlab.org/software/genenet
http://gnw.sourceforge.net/dreamchallenge.html
http://gnw.sourceforge.net/dreamchallenge.html
http://gaworkshop.org
http://ncbi.nlm.nih.gov/bioproject/?term=CRS4
http://ncbi.nlm.nih.gov/bioproject/?term=CRS4
http://github.com/wanpinglee/MOSAIK
http://orione.crs4.it
http://vicbioinformatics.com/software.prokka.shtml
http://www.tbi.univie.ac.at/~raim/odeSolver
http://sysgensim.sourceforge.net/datasets.html
http://sysgensim.sourceforge.net

120 BIBLIOGRAPHY

[17] The DREAM project. http://the-dream-project.org. [cited at p. 22, 31, 44]

[18] Marit Ackermann, Mathieu Clément-Ziza, Jacob J Michaelson, and Andreas Beyer.
Teamwork: improved eQTL mapping using combinations of machine learning meth-
ods. PLoS ONE, 7(7):e40916, 2012. [cited at p. 101]

[19] Tatsuya Akutsu, Satoru Kuhara, Osamu Maruyama, and Satoru Miyano. Identification
of genetic networks by strategic gene disruptions and gene overexpressions under a
boolean model. Theoretical Computer Science, 298(1):235–251, 2003. [cited at p. 43]

[20] Chris Allan, Jean-Marie Burel, Josh Moore, Colin Blackburn, Melissa Linkert, Luca
Lianas, Simone Leo, Gerard J Kleywegt, Gianluigi Zanetti, Jason R Swedlow, et al.
OMERO: flexible, model-driven data management for experimental biology. Nature
Methods, 9(3):245–253, 2012. [cited at p. 113]

[21] Jason E Aten, Tova F Fuller, Aldons J Lusis, and Steve Horvath. Using genetic markers
to orient the edges in quantitative trait networks: the NEO software. BMC Systems
Biology, 2(1):34, 2008. [cited at p. 22]

[22] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin,
Nikolay Vyahhi, Glenn Tesler, Max A Alekseyev, Pavel A Pevzner, et al. SPAdes: a new
genome assembly algorithm and its applications to single-cell sequencing. Journal of
Computational Biology, 19(5):455–477, May 2012. [cited at p. 114]

[23] Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, and Diego
di Bernardo. How to infer gene networks from expression profiles. Molecular Systems
Biology, 3(1), 2007. [cited at p. 22, 43, 44]

[24] Ziv Bar-Joseph, Georg K Gerber, Tong Ihn Lee, Nicola J Rinaldi, Jane Y Yoo, François
Robert, D Benjamin Gordon, Ernest Fraenkel, Tommi S Jaakkola, Richard A Young,
et al. Computational discovery of gene modules and regulatory networks. Nature
Biotechnology, 21(11):1337–1342, 2003. [cited at p. 44]

[25] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999. [cited at p. 23]

[26] Albert-László Barabási and Zoltan N Oltvai. Network biology: understanding the cell’s
functional organization. Nature Reviews Genetics, 5(2):101–113, 2004. [cited at p. 14, 23]

[27] Vladimir Batagelj and Andrej Mrvar. Pajek – program for large network analysis. Con-
nections, 21(2):47–57, 1998. [cited at p. 29]

[28] Alessandra Biffi, Eugenio Montini, Laura Lorioli, Simone Leo, Gianluigi Zanetti, Elia
Stupka, Alessandro Aiuti, Maria Sessa, Luigi Naldini, et al. Lentiviral hematopoi-
etic stem cell gene therapy benefits metachromatic leukodystrophy. Science,
341(6148):1233158, 2013. [cited at p. 113]

[29] Marten Boetzer, Christiaan V Henkel, Hans J Jansen, Derek Butler, and Walter
Pirovano. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 27(4):578–
579, 2011. [cited at p. 113]

http://the-dream- project.org

BIBLIOGRAPHY 121

[30] Dragan Bošnački, Maximilian R Odenbrett, Anton Wijs, Willem Ligtenberg, and Pe-
ter Hilbers. Efficient reconstruction of biological networks via transitive reduction on
general purpose graphics processors. BMC Bioinformatics, 13(1):281, 2012. [cited at p. 60,

71, 81]

[31] Anne-Laure Boulesteix. Over-optimism in bioinformatics research. Bioinformatics,
26(3):437–439, 2010. [cited at p. 10]

[32] Paul Brazhnik, Alberto de la Fuente, and Pedro Mendes. Gene networks: how to put
the function in genomics. TRENDS in Biotechnology, 20(11):467–472, 2002. [cited at p. 8,

9, 10]

[33] Rachel B Brem and Leonid Kruglyak. The landscape of genetic complexity across 5,700
gene expression traits in yeast. Proceedings of the National Academy of Sciences of the
United States of America, 102(5):1572–1577, 2005. [cited at p. 28, 104]

[34] Rachel B Brem, John D Storey, Jacqueline Whittle, and Leonid Kruglyak. Genetic
interactions between polymorphisms that affect gene expression in yeast. Nature,
436(7051):701–703, 2005. [cited at p. 104]

[35] Rachel B Brem, Gaël Yvert, Rebecca Clinton, and Leonid Kruglyak. Genetic dissec-
tion of transcriptional regulation in budding yeast. Science, 296(5568):752–755, 2002.
[cited at p. 21]

[36] Atul J Butte and Isaac S Kohane. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. In Pacific Symposium on
Biocomputing, volume 5, pages 418–429, 2000. [cited at p. 43]

[37] Julien Chiquet, Yves Grandvalet, and Christophe Ambroise. Inferring multiple graphi-
cal structures. Statistics and Computing, 21(4):537–553, 2011. [cited at p. 43]

[38] Hyonho Chun and Sündüz Keleş. Expression quantitative trait loci mapping with
multivariate sparse partial least squares regression. Genetics, 182(1):79–90, 2009.
[cited at p. 22]

[39] Gianmauro Cuccuru, Massimiliano Orsini, Andrea Pinna, Andrea Sbardellati, Nicola
Soranzo, Antonella Travaglione, Paolo Uva, Gianluigi Zanetti, and Giorgio Fotia. Ori-
one, a web-based framework for NGS analysis in microbiology. Bioinformatics, 2014.
[cited at p. 5, 109]

[40] L Adrienne Cupples, Joseph Beyene, Heike Bickeböller, E Warwick Daw, M Daniele
Fallin, W James Gauderman, Saurabh Ghosh, Ellen Goode, Elizabeth Hauser, Anthony
Hinrichs, et al. Genetic Analysis Workshop 16: strategies for genome-wide association
study analyses. In BMC Proceedings, volume 3, page S1. BioMed Central Ltd, 2009.
[cited at p. 22]

[41] Matei David, Misko Dzamba, Dan Lister, Lucian Ilie, and Michael Brudno. SHRiMP2:
Sensitive yet practical short read mapping. Bioinformatics, 27(7):1011–1012, 2011.
[cited at p. 114]

122 BIBLIOGRAPHY

[42] Adel Dayarian, Todd P Michael, and Anirvan M Sengupta. SOPRA: scaffolding algo-
rithm for paired reads via statistical optimization. BMC Bioinformatics, 11:345, 2010.
[cited at p. 113]

[43] Alberto de la Fuente. What are gene regulatory networks? In Handbook of research on
computational methodologies in gene regulatory networks, chapter 1, pages 1–27. IGI
Global, Hershey, PA, USA, 2010. [cited at p. 9]

[44] Alberto de la Fuente. Gene network inference – verification of methods for systems ge-
netics data. Springer, 2014. [cited at p. 3, 5, 10, 22, 34, 97]

[45] Alberto de la Fuente, Nan Bing, Ina Hoeschele, and Pedro Mendes. Discovery of mean-
ingful associations in genomic data using partial correlation coefficients. Bioinformat-
ics, 20(18):3565–3574, 2004. [cited at p. 43, 45, 49, 87]

[46] Alberto de la Fuente, Paul Brazhnik, and Pedro Mendes. Linking the genes: inferring
quantitative gene networks from microarray data. TRENDS in Genetics, 18(8):395–398,
2002. [cited at p. 11, 22, 43, 45]

[47] Riet De Smet and Kathleen Marchal. Advantages and limitations of current network
inference methods. Nature Reviews Microbiology, 8(10):717–729, 2010. [cited at p. 43, 44]

[48] Arthur L Delcher, Kirsten A Bratke, Edwin C Powers, and Steven L Salzberg. Identifying
bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 23(6):673–679,
2007. [cited at p. 113]

[49] Patrik D’haeseleer, Xiling Wen, Stefanie Fuhrman, and Roland Somogyi. Linear mod-
eling of mRNA expression levels during CNS development and injury. Pacific Sympo-
sium on Biocomputing, 4(1):41–52, 1999. [cited at p. 43]

[50] Diego di Bernardo, Michael J Thompson, Timothy S Gardner, Sarah E Chobot, Erin L
Eastwood, Andrew P Wojtovich, Sean J Elliott, Scott E Schaus, and James J Collins.
Chemogenomic profiling on a genome-wide scale using reverse-engineered gene net-
works. Nature Biotechnology, 23(3):377–383, 2005. [cited at p. 43, 44]

[51] Barbara Di Camillo, Gianna Toffolo, and Claudio Cobelli. A gene network simulator
to assess reverse engineering algorithms. Annals of the New York Academy of Sciences,
1158(1):125–142, 2009. [cited at p. 15]

[52] Elie Dolgin. Mouse library set to be knockout. Nature, 474(7351):262–263, 2011.
[cited at p. 60]

[53] Scott M Dudek, Alison A Motsinger, Digna R Velez, Scott M Williams, and Marylyn D
Ritchie. Data simulation software for whole-genome association and other studies
in human genetics. In Pacific Symposium on Biocomputing, pages 499–510, 2005.
[cited at p. 30]

[54] Markus Durzinsky, Annegret Wagler, Robert Weismantel, and Wolfgang Marwan. Au-
tomatic reconstruction of molecular and genetic networks from discrete time series
data. BioSystems, 93(3):181–190, 2008. [cited at p. 43]

BIBLIOGRAPHY 123

[55] Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathematicae Debre-
cen, 6:290–297, 1959. [cited at p. 52]

[56] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publications
of the Mathematical Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.
[cited at p. 23]

[57] Jeremiah J Faith, Boris Hayete, Joshua T Thaden, Ilaria Mogno, Jamey Wierzbowski,
Guillaume Cottarel, Simon Kasif, James J Collins, and Timothy S Gardner. Large-scale
mapping and validation of Escherichia coli transcriptional regulation from a com-
pendium of expression profiles. PLoS Biology, 5(1):e8, 2007. [cited at p. 44, 87]

[58] Ronald A Fisher. The arrangement of field experiments. In Breakthroughs in Statistics,
pages 82–91. Springer, 1992. [cited at p. 21]

[59] Robert J Flassig, Sandra Heise, Kai Sundmacher, and Steffen Klamt. An effective
framework for reconstructing gene regulatory networks from genetical genomics data.
Bioinformatics, 29(2):246–254, 2013. [cited at p. 84, 101]

[60] Christopher Fogelberg and Vasile Palade. GreenSim: a network simulator for com-
prehensively validating and evaluating new machine learning techniques for network
structural inference. In Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE Inter-
national Conference on, volume 2, pages 225–230. IEEE, 2010. [cited at p. 15]

[61] Nir Friedman. Inferring cellular networks using probabilistic graphical models. Sci-
ence, 303(5659):799–805, 2004. [cited at p. 43]

[62] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using Bayesian net-
works to analyze expression data. Journal of Computational Biology, 7(3-4):601–620,
2000. [cited at p. 43, 44]

[63] Jingyuan Fu, Joost JB Keurentjes, Harro Bouwmeester, Twan America, Francel WA Ver-
stappen, Jane L Ward, Michael H Beale, Ric CH De Vos, Martijn Dijkstra, Richard A
Scheltema, et al. System-wide molecular evidence for phenotypic buffering in Ara-
bidopsis. Nature Genetics, 41(2):166–167, 2009. [cited at p. 58]

[64] Timothy S Gardner, Diego di Bernardo, David Lorenz, and James J Collins. Inferring
genetic networks and identifying compound mode of action via expression profiling.
Science, 301(5629):102–105, 2003. [cited at p. 43]

[65] Timothy S Gardner and Jeremiah J Faith. Reverse-engineering transcription control
networks. Physics of Life Reviews, 2(1):65–88, 2005. [cited at p. 43]

[66] Robert C Gentleman, Vincent J Carey, Douglas M Bates, Ben Bolstad, Marcel Dettling,
Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry, et al. Biocon-
ductor: open software development for computational biology and bioinformatics.
Genome Biology, 5(10):R80, 2004. [cited at p. 77]

[67] Daniel T Gillespie. The chemical Langevin equation. The Journal of Chemical Physics,
113(1):297–306, 2000. [cited at p. 14]

124 BIBLIOGRAPHY

[68] Michelle Girvan and Mark EJ Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.
[cited at p. 24]

[69] Jeremy Goecks, Anton Nekrutenko, James Taylor, and The Galaxy Team. Galaxy:
a comprehensive approach for supporting accessible, reproducible, and transpar-
ent computational research in the life sciences. Genome Biology, 11(8):R86, 2010.
[cited at p. 113]

[70] Nabil Guelzim, Samuele Bottani, Paul Bourgine, and François Képès. Topological
and causal structure of the yeast transcriptional regulatory network. Nature Genetics,
31(1):60–63, 2002. [cited at p. 23, 71]

[71] Mika Gustafsson, Michael Hörnquist, Jesper Lundström, Johan Björkegren, and Jesper
Tegnér. Reverse engineering of gene networks with LASSO and nonlinear basis func-
tions. Annals of the New York Academy of Sciences, 1158(1):265–275, 2009. [cited at p. 57]

[72] Hendrik Hache, Christoph Wierling, Hans Lehrach, and Ralf Herwig. GeNGe: system-
atic generation of gene regulatory networks. Bioinformatics, 25(9):1205–1207, 2009.
[cited at p. 16]

[73] John BS Haldane. The combination of linkage values and the calculation of distances
between the loci of linked factors. Journal of Genetics, 8(29):299–309, 1919. [cited at p. 26,

38]

[74] Robert S Harris. Improved pairwise alignment of genomic DNA. PhD thesis, Pennsyl-
vania State University, 2007. [cited at p. 114]

[75] Leland H Hartwell, John J Hopfield, Stanislas Leibler, and Andrew W Murray. From
molecular to modular cell biology. Nature, 402:C47–C52, 1999. [cited at p. 23]

[76] Brian C Haynes and Michael R Brent. Benchmarking regulatory network reconstruc-
tion with GRENDEL. Bioinformatics, 25(6):801–807, 2009. [cited at p. 12]

[77] Sandra Heise, Robert J Flassig, and Steffen Klamt. Benchmarking a simple yet effective
approach for inferring gene regulatory networks from systems genetics data. In Gene
Network Inference, pages 33–47. Springer, 2013. [cited at p. 104]

[78] David Hernandez, Patrice François, Laurent Farinelli, Magne Østerås, and Jacques
Schrenzel. De novo bacterial genome sequencing: millions of very short reads as-
sembled on a desktop computer. Genome Research, 18(5):802–809, 2008. [cited at p. 114]

[79] Nils Homer, Barry Merriman, and Stanley F Nelson. BFAST: an alignment tool for large
scale genome resequencing. PLoS ONE, 4(11):e7767, 2009. [cited at p. 114]

[80] Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia Simus,
Mudita Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer. COPASI – a complex
pathway simulator. Bioinformatics, 22(24):3067–3074, 2006. [cited at p. 12, 14]

[81] Zhanzhi Hu, Patrick J Killion, and Vishwanath R Iyer. Genetic reconstruction of a
functional transcriptional regulatory network. Nature Genetics, 39(5):683–687, 2007.
[cited at p. 60, 77]

BIBLIOGRAPHY 125

[82] Vân Anh Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, and Pierre Geurts. Infer-
ring regulatory networks from expression data using tree-based methods. PLoS ONE,
5(9):e12776, 2010. [cited at p. 43]

[83] Vân Anh Huynh-Thu, Louis Wehenkel, and Pierre Geurts. Gene regulatory network
inference from systems genetics data using tree-based methods. In Gene Network In-
ference, pages 63–85. Springer, 2013. [cited at p. 103]

[84] Ritsert C Jansen. Studying complex biological systems using multifactorial perturba-
tion. Nature Reviews Genetics, 4(2):145–151, 2003. [cited at p. 21]

[85] Ritsert C Jansen and Jan-Peter Nap. Genetical genomics: the added value from segre-
gation. TRENDS in Genetics, 17(7):388–391, 2001. [cited at p. 21, 31, 32]

[86] Sema Kachalo, Ranran Zhang, Eduardo Sontag, Réka Albert, and Bhaskar DasGupta.
NET-SYNTHESIS: a software for synthesis, inference and simplification of signal trans-
duction networks. Bioinformatics, 24(2):293–295, 2008. [cited at p. 62]

[87] Noam Kaplan, Irene K Moore, Yvonne Fondufe-Mittendorf, Andrea J Gossett, Desiree
Tillo, Yair Field, Emily M LeProust, Timothy R Hughes, Jason D Lieb, Jonathan Widom,
et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature,
458(7236):362–366, 2008. [cited at p. 79]

[88] W James Kent. BLAT – the BLAST-like alignment tool. Genome Research, 12(4):656–664,
April 2002. [cited at p. 114]

[89] Joost JB Keurentjes, Jingyuan Fu, CH Ric De Vos, Arjen Lommen, Robert D Hall,
Raoul J Bino, Linus HW van der Plas, Ritsert C Jansen, Dick Vreugdenhil, and Maarten
Koornneef. The genetics of plant metabolism. Nature Genetics, 38(7):842–849, 2006.
[cited at p. 21]

[90] Boris N Kholodenko, Anatoly Kiyatkin, Frank J Bruggeman, Eduardo Sontag, Hans V
Westerhoff, and Jan B Hoek. Untangling the wires: a strategy to trace functional in-
teractions in signaling and gene networks. Proceedings of the National Academy of
Sciences, 99(20):12841–12846, 2002. [cited at p. 45]

[91] Steffen Klamt, Robert J Flassig, and Kai Sundmacher. TRANSWESD: inferring cel-
lular networks with transitive reduction. Bioinformatics, 26(17):2160–2168, 2010.
[cited at p. 59, 60, 62, 63, 69]

[92] Steffen Klamt and Axel von Kamp. Computing paths and cycles in biological interac-
tion graphs. BMC Bioinformatics, 10(1):181, 2009. [cited at p. 63]

[93] Damodar D Kosambi. The estimation of map distances from recombination values.
Annals of Eugenics, 12(1):172–175, 1943. [cited at p. 26, 38]

[94] Robert Küffner, Tobias Petri, Pegah Tavakkolkhah, Lukas Windhager, and Ralf Zim-
mer. Inferring gene regulatory networks by ANOVA. Bioinformatics, 28(10):1376–1382,
2012. [cited at p. 43]

[95] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2.
Nature Methods, 9(4):357–359, 2012. [cited at p. 114]

126 BIBLIOGRAPHY

[96] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome. Genome
Biology, 10(3):R25, 2009. [cited at p. 114]

[97] Su-In Lee, Dana Pe’er, Aimée M Dudley, George M Church, and Daphne Koller. Identi-
fying regulatory mechanisms using individual variation reveals key role for chromatin
modification. Proceedings of the National Academy of Sciences, 103(38):14062–14067,
2006. [cited at p. 22]

[98] Karen Lemmens, Tijl De Bie, Thomas Dhollander, Sigrid C De Keersmaecker, Inge M
Thijs, Geert Schoofs, Ami De Weerdt, Bart De Moor, Jos Vanderleyden, Julio Collado-
Vides, et al. DISTILLER: a data integration framework to reveal condition dependency
of complex regulons in Escherichia coli. Genome Biology, 10(3):R27, 2009. [cited at p. 44]

[99] Simone Leo, Luca Pireddu, and Gianluigi Zanetti. SNP genotype calling with MapRe-
duce. In Proceedings of The Third International Workshop on MapReduce and its Ap-
plications, MapReduce ’12, pages 49–56, New York, NY, USA, 2012. ACM. [cited at p. 113]

[100] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009. [cited at p. 114]

[101] Renhua Li, Shirng-Wern Tsaih, Keith Shockley, Ioannis M Stylianou, Jon Wergedal,
Beverly Paigen, and Gary A Churchill. Structural model analysis of multiple quanti-
tative traits. PLoS Genetics, 2(7):e114, 2006. [cited at p. 22]

[102] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. SOAP: short oligonu-
cleotide alignment program. Bioinformatics, 24(5):713–714, 2008. [cited at p. 114]

[103] Bing Liu, Alberto de la Fuente, and Ina Hoeschele. Gene network inference via struc-
tural equation modeling in genetical genomics experiments. Genetics, 178(3):1763–
1776, 2008. [cited at p. 22, 28, 32, 58]

[104] Nicholas J Loman, Chrystala Constantinidou, Jacqueline ZM Chan, Mihail Halachev,
Martin Sergeant, Charles W Penn, Esther R Robinson, and Mark J Pallen. High-
throughput bacterial genome sequencing: an embarrassment of choice, a world of op-
portunity. Nature Reviews Microbiology, 10(9):599–606, September 2012. [cited at p. 113]

[105] Todd M Lowe and Sean R Eddy. tRNAscan-SE: A program for improved detection of
transfer RNA genes in genomic sequence. Nucleic Acids Research, 25(5):955–964, 1997.
[cited at p. 114]

[106] Nicholas M Luscombe, M Madan Babu, Haiyuan Yu, Michael Snyder, Sarah A Teich-
mann, and Mark Gerstein. Genomic analysis of regulatory network dynamics reveals
large topological changes. Nature, 431(7006):308–312, 2004. [cited at p. 79]

[107] Hong-Wu Ma and An-Ping Zeng. The connectivity structure, giant strong compo-
nent and centrality of metabolic networks. Bioinformatics, 19(11):1423–1430, 2003.
[cited at p. 17, 28]

BIBLIOGRAPHY 127

[108] Avi Ma’Ayan, Guillermo A Cecchi, John Wagner, A Ravi Rao, Ravi Iyengar, and Gustavo
Stolovitzky. Ordered cyclic motifs contribute to dynamic stability in biological and
engineered networks. Proceedings of the National Academy of Sciences, 105(49):19235–
19240, 2008. [cited at p. 17, 28]

[109] Tanja Magoc, Derrick Wood, and Steven L Salzberg. EDGE-pro: Estimated degree of
gene expression in prokaryotic genomes. Evolutionary Bioinformatics Online, 9:127–
136, 2013. [cited at p. 113]

[110] Robert Maier, Ralf Zimmer, and Robert Küffner. A Turing test for artificial expression
data. Bioinformatics, 29(20):2603–2609, 2013. [cited at p. 17, 18]

[111] Daniel Marbach, James C Costello, Robert Küffner, Nicole M Vega, Robert J Prill,
Diogo M Camacho, Kyle R Allison, Andrea Pinna, Nicola Soranzo, Vincenzo De Leo,
Alberto de la Fuente, Manolis Kellis, James J Collins, Gustavo Stolovitzky, et al. Wis-
dom of crowds for robust gene network inference. Nature Methods, 2012. [cited at p. 5, 10,

43, 44, 79, 85, 86, 93, 95]

[112] Daniel Marbach, Robert J Prill, Thomas Schaffter, Claudio Mattiussi, Dario Floreano,
and Gustavo Stolovitzky. Revealing strengths and weaknesses of methods for gene
network inference. Proceedings of the National Academy of Sciences, 107(14):6286–
6291, 2010. [cited at p. 10, 11, 31, 44, 57, 67, 86]

[113] Daniel Marbach, Sushmita Roy, Ferhat Ay, Patrick E Meyer, Rogerio Candeias, Tamer
Kahveci, Christopher A Bristow, and Manolis Kellis. Predictive regulatory models in
Drosophila melanogaster by integrative inference of transcriptional networks. Genome
Research, 22(7):1334–1349, 2012. [cited at p. 44]

[114] Daniel Marbach, Thomas Schaffter, Claudio Mattiussi, and Dario Floreano. Generat-
ing realistic in silico gene networks for performance assessment of reverse engineering
methods. Journal of Computational Biology, 16(2):229–239, 2009. [cited at p. 22, 48, 52, 86]

[115] Adam Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Ric-
cardo Dalla Favera, and Andrea Califano. ARACNE: an algorithm for the reconstruction
of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics,
7(Suppl 1):S7, 2006. [cited at p. 43, 44, 83]

[116] Florian Markowetz and Rainer Spang. Inferring cellular networks – a review. BMC
Bioinformatics, 8(Suppl 6):S5, 2007. [cited at p. 43]

[117] Eli Meir, Edwin M Munro, Garrett M Odell, and George Von Dassow. Ingeneue: a versa-
tile tool for reconstituting genetic networks, with examples from the segment polarity
network. Journal of Experimental Zoology, 294(3):216–251, 2002. [cited at p. 22]

[118] Pedro Mendes, Stefan Hoops, Sven Sahle, Ralph Gauges, Joseph Dada, and Ursula
Kummer. Computational modeling of biochemical networks using COPASI. In Sys-
tems Biology, pages 17–59. Springer, 2009. [cited at p. 12, 14]

[119] Pedro Mendes, Wei Sha, and Keying Ye. Artificial gene networks for objective compar-
ison of analysis algorithms. Bioinformatics, 19(suppl 2):ii122–ii129, 2003. [cited at p. 11,

22, 27, 45, 71]

128 BIBLIOGRAPHY

[120] Pablo Meyer, Leonidas G Alexopoulos, Thomas Bonk, Andrea Califano, Carolyn R Cho,
Alberto de la Fuente, David de Graaf, Alexander J Hartemink, Julia Hoeng, Nikolai V
Ivanov, et al. Verification of systems biology research in the age of collaborative com-
petition. Nature Biotechnology, 29(9):811, 2011. [cited at p. 10, 44, 45]

[121] Pablo Meyer, Thomas Cokelaer, Andrea Pinna, Nicola Soranzo, Alberto de la Fuente,
et al. Network topology and parameter estimation: from experimental design methods
to gene regulatory network kinetics using a community based approach. BMC Systems
Biology, 8(1):13, 2014. [cited at p. 5, 109, 111]

[122] Pablo Meyer, Julia Hoeng, J Jeremy Rice, Raquel Norel, Jörg Sprengel, Katrin Stolle,
Thomas Bonk, Stephanie Corthesy, Ajay Royyuru, Manuel C Peitsch, et al. Industrial
methodology for process verification in research (IMPROVER): toward systems biology
verification. Bioinformatics, 28(9):1193–1201, 2012. [cited at p. 44]

[123] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal Ayzen-
shtat, Michal Sheffer, and Uri Alon. Superfamilies of evolved and designed networks.
Science, 303(5663):1538–1542, 2004. [cited at p. 51]

[124] Toshiaki Namiki, Tsuyoshi Hachiya, Hideaki Tanaka, and Yasubumi Sakakibara.
MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from
short sequence reads. Nucleic Acids Research, 40(20):e155, 2012. [cited at p. 114]

[125] Sven Nelander, Weiqing Wang, Björn Nilsson, Qing-Bai She, Christine Pratilas, Neal
Rosen, Peter Gennemark, and Chris Sander. Models from experiments: combinatorial
drug perturbations of cancer cells. Molecular Systems Biology, 4(1), 2008. [cited at p. 43]

[126] Elias Chaibub Neto, Christine T Ferrara, Alan D Attie, and Brian S Yandell. Inferring
causal phenotype networks from segregating populations. Genetics, 179(2):1089–1100,
2008. [cited at p. 22]

[127] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. The self-assessment trap:
can we all be better than average? Molecular Systems Biology, 7(1), 2011. [cited at p. 10]

[128] Brian D Ondov, Nicholas H Bergman, and Adam M Phillippy. Interactive metagenomic
visualization in a web browser. BMC Bioinformatics, 12:385, 2011. [cited at p. 115]

[129] Rainer Opgen-Rhein and Korbinian Strimmer. From correlation to causation
networks: a simple approximate learning algorithm and its application to high-
dimensional plant gene expression data. BMC Systems Biology, 1(1):37, 2007.
[cited at p. 44]

[130] Elena Parkhomenko, David Tritchler, and Joseph Beyene. Genome-wide sparse canon-
ical correlation of gene expression with genotypes. In BMC Proceedings, volume 1,
page S119. BioMed Central Ltd, 2007. [cited at p. 22]

[131] Enrico Pieroni, Sergio de la Fuente van Bentem, Gianmaria Mancosu, Enrico Capo-
bianco, Heribert Hirt, and Alberto de la Fuente. Protein networking: insights
into global functional organization of proteomes. Proteomics, 8(4):799–816, 2008.
[cited at p. 17]

BIBLIOGRAPHY 129

[132] Andrea Pinna, Sandra Heise, Robert J Flassig, Alberto de la Fuente, and Steffen Klamt.
Reconstruction of large-scale regulatory networks based on perturbation graphs and
transitive reduction: improved methods and their evaluation. BMC Systems Biology,
7(1):73, 2013. [cited at p. 3, 4, 22, 40, 45, 47, 58, 99]

[133] Andrea Pinna, Carla Seatzu, and Alberto de la Fuente. RAGNO: reconstruction algo-
rithm for gene networks from multi-omics data. In Methods in Molecular Biology.
Springer, 2014. [cited at p. 5, 97]

[134] Andrea Pinna, Nicola Soranzo, and Alberto de la Fuente. From knockouts to net-
works: establishing direct cause-effect relationships through graph analysis. PLoS
ONE, 5(10):e12912, 2010. [cited at p. 4, 22, 47, 59, 60, 61, 67, 81]

[135] Andrea Pinna, Nicola Soranzo, Alberto de la Fuente, and Ina Hoeschele. Simulation
of the benchmark datasets. In Gene Network Inference, pages 1–8. Springer, 2013.
[cited at p. 3, 100]

[136] Andrea Pinna, Nicola Soranzo, Ina Hoeschele, and Alberto de la Fuente. Simulat-
ing systems genetics data with SysGenSIM. Bioinformatics, 27(17):2459–2462, 2011.
[cited at p. 2, 16, 21, 32, 34, 40, 67, 71, 86, 88, 100, 110]

[137] Luca Pireddu, Gianmauro Cuccuru, Luca Lianas, Matteo Vocale, Giorgio Fotia, and Gi-
anluigi Zanetti. Automated and traceable processing for large-scale high-throughput
sequencing facilities. EMBnet.journal, 19(A):23–24, 2013. [cited at p. 113]

[138] Robert J Prill, Daniel Marbach, Julio Saez-Rodriguez, Peter K Sorger, Leonidas G Alex-
opoulos, Xiaowei Xue, Neil D Clarke, Gregoire Altan-Bonnet, and Gustavo Stolovitzky.
Towards a rigorous assessment of systems biology models: the DREAM3 challenges.
PLoS ONE, 5(2):e9202, 2010. [cited at p. 31, 43, 45, 52, 86]

[139] Arcot Rajasekar, Reagan Moore, Chien-Yi Hou, Christopher A Lee, Richard Marciano,
Antoine de Torcy, Michael Wan, Wayne Schroeder, Sheau-Yen Chen, Lucas Gilbert,
Paul Tooby, and Bing Zhu. iRODS primer: integrated rule-oriented data system.
Synthesis Lectures on Information Concepts, Retrieval, and Services, 2(1):1–143, 2010.
[cited at p. 113]

[140] Jüri Reimand, Juan M Vaquerizas, Annabel E Todd, Jaak Vilo, and Nicholas M
Luscombe. Comprehensive reanalysis of transcription factor knockout expression
data in Saccharomyces cerevisiae reveals many new targets. Nucleic Acids Research,
38(14):4768–4777, 2010. [cited at p. 60, 77]

[141] David J Reiss, Nitin S Baliga, and Richard Bonneau. Integrated biclustering of hetero-
geneous genome-wide datasets for the inference of global regulatory networks. BMC
Bioinformatics, 7(1):280, 2006. [cited at p. 44]

[142] John Jeremy Rice, Yuhai Tu, and Gustavo Stolovitzky. Reconstructing biological net-
works using conditional correlation analysis. Bioinformatics, 21(6):765–773, 2005.
[cited at p. 43]

[143] Matthew V Rockman. Reverse engineering the genotype–phenotype map with natural
genetic variation. Nature, 456(7223):738–744, 2008. [cited at p. 21, 32, 58]

130 BIBLIOGRAPHY

[144] Roy Ronen, Christina Boucher, Hamidreza Chitsaz, and Pavel Pevzner. SEQuel: im-
proving the accuracy of genome assemblies. Bioinformatics, 28(12):i188–i196, 2012.
[cited at p. 113]

[145] Sushmita Roy, Margaret Werner-Washburne, and Terran Lane. A system for generating
transcription regulatory networks with combinatorial control of transcription. Bioin-
formatics, 24(10):1318–1320, 2008. [cited at p. 14]

[146] Julio Saez-Rodriguez, Leonidas G Alexopoulos, Jonathan Epperlein, Regina Samaga,
Douglas A Lauffenburger, Steffen Klamt, and Peter K Sorger. Discrete logic modelling
as a means to link protein signalling networks with functional analysis of mammalian
signal transduction. Molecular Systems Biology, 5(1), 2009. [cited at p. 43]

[147] Francesco Sambo, Tiziana Sanavia, and Barbara Di Camillo. Integration of genetic
variation as external perturbation to reverse engineer regulatory networks from gene
expression data. In Gene Network Inference, pages 107–118. Springer, 2013. [cited at p. 104]

[148] Eric E Schadt. Molecular networks as sensors and drivers of common human diseases.
Nature, 461(7261):218–223, 2009. [cited at p. 21, 43]

[149] Eric E Schadt, John Lamb, Xia Yang, Jun Zhu, Steve Edwards, Debraj GuhaThakurta,
Solveig K Sieberts, Stephanie Monks, Marc Reitman, Chunsheng Zhang, et al. An inte-
grative genomics approach to infer causal associations between gene expression and
disease. Nature Genetics, 37(7):710–717, 2005. [cited at p. 25]

[150] Eric E Schadt, Stephanie A Monks, Thomas A Drake, Aldons J Lusis, Nam Che, Veronica
Colinayo, Thomas G Ruff, Stephen B Milligan, John R Lamb, Guy Cavet, et al. Genetics
of gene expression surveyed in maize, mouse and man. Nature, 422(6929):297–302,
2003. [cited at p. 21]

[151] Juliane Schäfer, Rainer Opgen-Rhein, and Korbinian Strimmer. Reverse engineering
genetic networks using the GeneNet package. Journal of the American Statistical Asso-
ciation, 96:1151–1160, 2001. [cited at p. 87]

[152] Juliane Schäfer and Korbinian Strimmer. An empirical Bayes approach to inferring
large-scale gene association networks. Bioinformatics, 21(6):754–764, 2005. [cited at p. 43,

87]

[153] Thomas Schaffter, Daniel Marbach, and Dario Floreano. GeneNetWeaver: in sil-
ico benchmark generation and performance profiling of network inference methods.
Bioinformatics, 27(16):2263–2270, 2011. [cited at p. 13, 22, 69, 86]

[154] Alan Scheinine, Wieslawa I Mentzen, Giorgio Fotia, Enrico Pieroni, Fabio Maggio,
Gianmaria Mancosu, and Alberto De La Fuente. Inferring gene networks: dream
or nightmare? Annals of the New York Academy of Sciences, 1158(1):287–301, 2009.
[cited at p. 49, 57, 111]

[155] Thomas Schlitt and Alvis Brazma. Current approaches to gene regulatory network
modelling. BMC Bioinformatics, 8(Suppl 6):S9, 2007. [cited at p. 43]

BIBLIOGRAPHY 131

[156] Nicola Segata, Levi Waldron, Annalisa Ballarini, Vagheesh Narasimhan, Olivier Jous-
son, and Curtis Huttenhower. Metagenomic microbial community profiling using
unique clade-specific marker genes. Nature Methods, 9(8):811–814, 2012. [cited at p. 114]

[157] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM Jones,
and İnanç Birol. ABySS: a parallel assembler for short read sequence data. Genome
Research, 19(6):1117–1123, 2009. [cited at p. 114]

[158] V Anne Smith, Erich D Jarvis, and Alexander J Hartemink. Evaluating functional
network inference using simulations of complex biological systems. Bioinformatics,
18(suppl 1):S216–S224, 2002. [cited at p. 11, 45]

[159] Nicola Soranzo, Ginestra Bianconi, and Claudio Altafini. Comparing association net-
work algorithms for reverse engineering of large-scale gene regulatory networks: syn-
thetic versus real data. Bioinformatics, 23(13):1640–1647, 2007. [cited at p. 44, 45, 52]

[160] Nicola Soranzo, Andrea Pinna, Vincenzo De Leo, and Alberto de la Fuente. Elucidating
transcriptional regulatory networks from heterogeneous gene expression compendia.
Submitted to PLoS ONE, 2014. [cited at p. 5, 22, 85]

[161] Nicola Soranzo, Andrea Pinna, Vincenzo De Leo, and Alberto de la Fuente. Simulating
the transcriptome for the evaluation of gene regulatory network inference algorithms.
In preparation, 2014. [cited at p. 2, 7]

[162] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, prediction, and search,
volume 81. The MIT Press, 2000. [cited at p. 44]

[163] Gustavo Stolovitzky, Pascal Kahlem, and Andrea Califano. The challenges of systems
biology community efforts to harness biological complexity. Annals of the New York
Academy of Sciences, 1158(1):ix–xii, 2009. [cited at p. 44, 48]

[164] Gustavo Stolovitzky, Don Monroe, and Andrea Califano. Dialogue on reverse-
engineering assessment and methods: the dream of high-throughput pathway infer-
ence. Annals of the New York Academy of Sciences, 1115(1):1–22, 2007. [cited at p. 22, 44,

48]

[165] Gustavo Stolovitzky, Robert J Prill, and Andrea Califano. Lessons from the DREAM2
challenges. Annals of the New York Academy of Sciences, 1158(1):159–195, 2009.
[cited at p. 22, 33]

[166] John D Storey, Joshua M Akey, and Leonid Kruglyak. Multiple locus linkage analysis of
genomewide expression in yeast. PLoS Biology, 3(8):e267, 2005. [cited at p. 104]

[167] Michael PH Stumpf, Thomas Thorne, Eric de Silva, Ronald Stewart, Hyeong Jun An,
Michael Lappe, and Carsten Wiuf. Estimating the size of the human interactome. Pro-
ceedings of the National Academy of Sciences, 105(19):6959–6964, 2008. [cited at p. 10, 44,

45]

[168] Robert Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996. [cited at p. 43]

132 BIBLIOGRAPHY

[169] Achim Tresch, Tim Beissbarth, Holger Sültmann, Ruprecht Kuner, Annemarie Poustka,
and Andreas Buness. Discrimination of direct and indirect interactions in a net-
work of regulatory effects. Journal of Computational Biology, 14(9):1217–1228, 2007.
[cited at p. 62]

[170] Tim Van den Bulcke, Koenraad Van Leemput, Bart Naudts, Piet van Remortel, Hongwu
Ma, Alain Verschoren, Bart De Moor, and Kathleen Marchal. SynTReN: a generator
of synthetic gene expression data for design and analysis of structure learning algo-
rithms. BMC Bioinformatics, 7(1):43, 2006. [cited at p. 13]

[171] Eugene P van Someren, Lodewyk FA Wessels, and Marcel JT Reinders. Linear mod-
eling of genetic networks from experimental data. Proceedings of the International
Conference on Intelligent Systems for Molecular Biology, 8:355–66, 2000. [cited at p. 11, 45]

[172] Matthieu Vignes, Jimmy Vandel, David Allouche, Nidal Ramadan-Alban, Christine
Cierco-Ayrolles, Thomas Schiex, Brigitte Mangin, and Simon de Givry. Gene regula-
tory network reconstruction using Bayesian networks, the Dantzig selector, the LASSO
and their meta-analysis. PLoS ONE, 6(12):e29165, 2011. [cited at p. 101]

[173] Sandra Waaijenborg, Philip C Verselewel de Witt Hamer, and Aeilko H Zwinderman.
Quantifying the association between gene expressions and DNA-markers by penal-
ized canonical correlation analysis. Statistical Applications in Genetics and Molecular
Biology, 7(1), 2008. [cited at p. 22]

[174] Andreas Wagner. How to reconstruct a large genetic network from n gene perturba-
tions in fewer than n2 easy steps. Bioinformatics, 17(12):1183–1197, 2001. [cited at p. 49,

50, 62]

[175] Yali Wang and Tong Zhou. A relative variation-based method to unraveling gene regu-
latory networks. PLoS ONE, 7(2):e31194, 2012. [cited at p. 71]

[176] Zhong Wang, Mark Gerstein, and Michael Snyder. RNA-Seq: a revolutionary tool for
transcriptomics. Nature Reviews Genetics, 10(1):57–63, 2009. [cited at p. 9]

[177] René L Warren, Granger G Sutton, Steven JM Jones, and Robert A Holt. Assembling
millions of short DNA sequences using SSAKE. Bioinformatics, 23(4):500–501, 2007.
[cited at p. 113]

[178] John Watkinson, Kuo-ching Liang, Xiadong Wang, Tian Zheng, and Dimitris Anastas-
siou. Inference of regulatory gene interactions from expression data using three-way
mutual information. Annals of the New York Academy of Sciences, 1158(1):302–313,
2009. [cited at p. 43]

[179] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-world networks.
Nature, 393(6684):440–442, 1998. [cited at p. 23]

[180] Marilyn AL West, Kyunga Kim, Daniel J Kliebenstein, Hans van Leeuwen, Richard W
Michelmore, RW Doerge, and Dina A St Clair. Global eQTL mapping reveals the
complex genetic architecture of transcript-level variation in Arabidopsis. Genetics,
175(3):1441–1450, 2007. [cited at p. 18]

BIBLIOGRAPHY 133

[181] Elizabeth A Winzeler, Daniel D Shoemaker, Anna Astromoff, Hong Liang, Keith Ander-
son, Bruno Andre, Rhonda Bangham, Rocio Benito, Jef D Boeke, Howard Bussey, et al.
Functional characterization of the S. cerevisiae genome by gene deletion and parallel
analysis. Science, 285(5429):901–906, 1999. [cited at p. 60]

[182] Fred A Wright, Hanwen Huang, Xiaojun Guan, Kevin Gamiel, Clark Jeffries, William T
Barry, Fernando Pardo-Manuel de Villena, Patrick F Sullivan, Kirk C Wilhelmsen,
and Fei Zou. Simulating association studies: a data-based resampling method for
candidate regions or whole genome scans. Bioinformatics, 23(19):2581–2588, 2007.
[cited at p. 26, 30]

[183] Kevin Y Yip, Roger P Alexander, Koon-Kiu Yan, and Mark Gerstein. Improved recon-
struction of in silico gene regulatory networks by integrating knockout and perturba-
tion data. PLoS ONE, 5(1):e8121, 2010. [cited at p. 57]

[184] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 18(5):821–829, 2008. [cited at p. 114]

[185] Wei Zhang, Jun Zhu, Eric E Schadt, and Jun S Liu. A Bayesian partition method
for detecting pleiotropic and epistatic eQTL modules. PLoS Computational Biology,
6(1):e1000642, 2010. [cited at p. 22]

[186] Jun Zhu, Pek Yee Lum, John Lamb, Debraj GuhaThakurta, Steve W Edwards, Rolf
Thieringer, Joel P Berger, Min Shung Wu, John R Thompson, Alan B Sachs, and Eric E
Schadt. An integrative genomics approach to the reconstruction of gene networks in
segregating populations. Cytogenetic and Genome Research, 105(2-4):363–374, 2004.
[cited at p. 22]

[187] Wenhan Zhu, Alexandre Lomsadze, and Mark Borodovsky. Ab initio gene iden-
tification in metagenomic sequences. Nucleic Acids Research, 38(12):e132, 2010.
[cited at p. 114]

List of thesis-related publications

Published works

I Andrea Pinna, Nicola Soranzo, Alberto de la Fuente (2010). From knockouts to networks: estab-
lishing direct cause-effect relationships through graph analysis. PLoS ONE, 5(10), e12912.

I Andrea Pinna, Nicola Soranzo, Ina Hoeschele, Alberto de la Fuente (2011). Simulating systems
genetics data with SysGenSIM. Bioinformatics, 27(17), 2459-2462.

I Daniel Marbach, James C Costello, Andrea Pinna, et al. (2012). Wisdom of crowds for robust
gene network inference. Nature Methods, 9, 796-804.

I Andrea Pinna, Sandra Heise, Robert J Flassig, Alberto de la Fuente, Steffen Klamt (2013). Re-
construction of large-scale regulatory networks based on perturbation graphs and transitive re-
duction: improved methods and their performance. BMC Systems Biology, 7:73.

I Andrea Pinna, Nicola Soranzo, Alberto de la Fuente, Ina Hoeschele (2013). Simulation of the
benchmark datasets. In Gene network inference – verification of methods for systems genetics
data. Springer.

I Pablo Meyer, Thomas Cokelaer, Andrea Pinna, et al. (2014). Network topology and parame-
ter estimation: from experimental design methods to gene regulatory network kinetics using a
community based approach. BMC Systems Biology, 8:13.

I Gianmauro Cuccuru, Massimiliano Orsini, Andrea Pinna, et al. (2014). Orione, a web-based
framework for NGS analysis in microbiology. Bioinformatics.

Submitted works

I Nicola Soranzo, Andrea Pinna, Vincenzo De Leo, Alberto de la Fuente (submitted). Elucidating
transcriptional regulatory networks from heterogeneous gene expression compendia.

I Nicola Soranzo, Andrea Pinna, Vincenzo De Leo, Alberto de la Fuente (in preparation). Simu-
lating the transcriptome for the evaluation of gene regulatory network inference algorithms.

I Andrea Pinna, Carla Seatzu, Alberto de la Fuente (in preparation). RAGNO: reconstruction
algorithm for gene networks from multi-omics data.

135

136 BIBLIOGRAPHY

Conference posters

I Groningen (2009). SysGenSIM: simulating large systems genetics datasets for the evaluation of
analysis methods.

I DISC PhD School (2011). Structural identification of gene regulatory networks from gene ex-
pression datasets.

I FEBS-SystemsX-SysBio (2011). Elucidating transcriptional regulatory networks from heteroge-
neous gene expression compendia.

I StatSeq meeting (2013). Simulating systems genetics with SysGenSIM.

I FEBS-SystemsX-SysBio (2011). Differential networking studies of microRNA regulation.

I RECOMB Systems Biology Conference (2011). Simulating large systems genetics datasets for
the evaluation of analysis methods.

I Galaxy Community Conference (2013). Engaging Galaxy in microbiology.

I Galaxy Community Conference (2013). Microbiome profiling on a Galaxy-based framework for
microbiology.

	Introduction
	Simulation of systems genetics experiments
	Identification of gene regulatory networks
	Side projects

	Simulation of gene expression data
	Modeling of gene regulatory networks
	Simulating the transcriptome to evaluate inference algorithms
	Introduction
	Gene network simulators
	Discussion

	Simulating systems genetics data with SysGenSIM
	Introduction
	Network topology
	Phenotype data
	Genetic data
	Experimental perturbations
	Gene expression dynamics
	Genotype effects on expression dynamics
	Output files and figures
	Future development

	Benchmark datasets
	DREAM5 Systems Genetics challenge dataset
	Simulation of genotype and gene expression datasets
	Predictions and scoring metrics

	StatSeq benchmark dataset
	Description of the systems genetics dataset
	Algorithms in SysGenSIM

	Pula-Magdeburg single-gene knockout benchmark dataset
	Generation of networks
	Model dynamics

	Identification of gene regulatory networks
	Inference from single-gene knockout datasets
	From knockouts to networks
	DREAM4 In Silico Network challenge
	Methods
	Results
	Discussion

	Reconstruction of large-scale regulatory networks
	Introduction
	Methods
	Results and discussion
	Conclusion

	Inference from heterogeneous datasets
	Elucidating transcriptional regulatory networks
	Introduction
	Methods
	Results

	Wisdom of crowds for robust gene network inference

	Inference from systems genetics datasets
	Methods
	Results
	Performance at the DREAM5 Systems Genetics challenge
	Performance with the StatSeq benchmark datasets
	Performance with a yeast dataset

	Discussion

	Side projects
	DREAM6 parameter estimation challenge
	Submitted estimation technique
	Network topology and parameter estimation

	Orione, a web-based framework for NGS analysis in microbiology
	Features and methods
	Functionalities

	Concluding remarks
	Bibliography

