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Abstract. 
 
 
Radar systems are well known since the end of world war II and are widespread.  

The basic concept of radar is relatively simple: the system uses the propagation characteristics of 

electromagnetic waves and works by radiating electromagnetic energy in the space and detecting 

the echo reflected by the objects (named “target”). The information related to the target is available 

in the echo signal: the range, or distance, to the target is found from the time it takes for the radiated 

energy to travel to the target and back; the angular location is detected using narrow beam width 

directive antennas (i.e. reflector antennas). The ability to discern about the nature and size of the 

target depends on the radar resolution which is related to the bandwidth and to the electrical size of 

the antenna. 

The physical principles of radar are suitable also to the weather radars, used to detect the 

precipitations at long distance, where the "object of interest” (the target) are the particles of rain and 

clouds. The detection of these objects involves radar operating at multiple frequencies located in S 

and C bands, where the wavelength (from 15 to 3.75 centimeters) is comparable to the size of 

hydrometeors. 

Radar systems  use  directive antennas, such as mechanically steered parabolic reflector antennas 

and planar phased arrays.  Aim of these antennas is to concentrate the energy in a narrow beam 

width of about 1° or 2°. This characteristic not only concentrates the energy on the target itself, but 

also  permits a measure of its direction. 

In this work we have studied the substitution of reflector horn feeds with printed log-periodic planar 

feeds in order to obtain the same performance of the horn antennas, but with considerable 

advantages in terms of weight and cost. The design of log-periodic feeds has been focused on the 

feed antenna network, and their possible improvements with respect to the state-of-the-art.  

In the first chapter, a general description of radar systems is given, introducing the Probert-Jones 

equation for meteorological target. The second and third chapter provide a brief description of 

antennas concepts and an introduction to reflector antennas. 

The chapter four is fully dedicated to reflector horn antennas and printed microstrip feed with a 

brief description of the state-of-art.  

Finally, in chapter five, three printed log-periodic feed for reflector antennas are presented. The first 

structure is a printed log-periodic array (LPDA) operating over the C, X and Ku bands. The antenna 

feeding structure consist of two coaxial cables, in order to realize an infinite balun which provides 

the required broadband input matching. The second coaxial cable mirrors the first one, connected to 
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the antenna input, and is capable of both stabilizing the antenna phase center and improving the 

radiation pattern. Both the simulated and measured results have show that the LPDA can be 

successfully user as a wide band feed for reflector antennas. 

The second feed consists of a LPDA operating between 3 and 6 GHz, and fed with a coplanar 

waveguide. The structure has been designed starting from Carrel’s theory, optimized using CST 

MICROWAVE STUDIO 2012 and then realized. The comparison between simulated and measured 

results shows that the proposed antenna can be used as feed for reflector broadband applications in 

the whole operating frequency band,  with a very good input matching and a satisfactory endfire 

radiation pattern. 

The results obtained with these two printed LPDA provided the starting point for the design of a 

high gain “V-shaped” log-periodic feed for weather radar applications, operating in S and C band 

and fed by the dual coaxial cable configuration. The developed feed provides very good input 

matching and a symmetric radiation pattern both in E-plane and H-plane, with a reasonable gain 

over the whole operating bandwidth. This feed may be recommended for usage in weather radar 

systems having a transmitting power less than 400 KW, allowing a discrete operational range. 
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Chapter 1. 

Radar Systems  
 
 
1.1 Introduction [3]. 

 
The basic concept of radar is relatively simple: the system uses the propagation 

characteristics of electromagnetic waves and works by radiating electromagnetic 

energy in the space and detecting the echo reflected by the objects (named 

“target”).  

The information related to the target is available in the echo signal: the range, or 

distance, to the target is found from the time it takes for the radiated energy to 

travel to the target and back; the angular location is detected using narrow beam 

width directive antennas. The ability to discern about the nature and size of the 

target depends by the radar resolution which is related to the bandwidth and to the 

electrical size of the antenna. The radar is an active device, able to detect 

electrically small objects at near or far distances, and, unlike the optical and 

infrared sensors, it does not depends on the weather conditions.   

From an historic point of view, the first radar types were bi-static devices with 

two different antennas: one transmitting the signal in the surrounding space and 

the other one receiving the echo from the target. The distinction between 

receiving and transmitting antenna was overcome with the mono-static radars, 

where the same antenna works both in transmitting and receiving mode: for this 

reason, the mono-static radar system is equipped with a decoupling and protection 

system which processes the received and transmitted signals.  

The various parts of a radar system are shown in figure 1.1: the duplexer is the 

device which allows to employ a single antenna both in transmission and 

reception. The emitted radar signal is usually a repetitive train of short pulses 

radiated into surrounding space by the antenna.  

Reflecting objects (the targets) intercept and re-radiate a portion of the radar 

signal, a small amount of which is returned in the direction of the transmitting 
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station. The returned echo signal is collected by the radar antenna and amplified 

by the receiver, that allows also to “clean” the received signal by the noise. 

Afterwards, the output of the receiver is electronically processed in order to 

automatically recognize the presence of targets. 

 

 

 

 

Figure 1.1. Radar block diagram. [3] 

 

A radar generally determines the location of a target in range and angle (2D 

radars),  and the echo signal can provide information about the nature of the 

target.  

The output power coming from the transmitter is radiated into space by a directive 

antenna: mechanically steered parabolic reflector antennas and planar phased 

arrays both find wide application in radar systems. Aim of the antenna is to 

concentrate the energy in a narrow beam width of about 1° or 2°. This 

characteristic not only concentrates the energy on the target itself, but also  

permits a measure of its direction.  

The shape of the radiated beam (figure 1.2) depends on the type of radar: tracking 

radars are characterized by a pencil beam, air surveillance radars have instead a 

fan-shaped beam generated by mechanically rotating reflector antennas.  
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                       (a) 

 

 

                                                                                                 (b) 

 

       (c)                                                              (d)      

  

Figure 1.2. (a) Parabolic antenna radiation pattern, (b) Horizontal cross section 

of a real measured radiation pattern of a parabolic antenna in logarithmic scale, 

(c)  Air surveillance radar radiation pattern, (d) reflector antenna for air 

surveillance radar [5].  

 

Although it is  possible to employ antennas with mechanical movement both in 

elevation and rotation, most of widespread civilian air surveillance radars 

(primary radars) can detect the azimuth and range coordinates only. The 

acquisition of the target’s height (elevation angle) is performed by a secondary 

system (named “secondary surveillance radar”) which operates jointly with the 

primary radar and involves the active cooperation of the target transponder.   
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In early radar systems, separate height finding antennas with mechanical rocking 

motion in elevation were used to determine the third coordinate: more recent 

three-dimensional (3D) military radars use a single antenna to detect all three 

coordinates (figure 1.3). 

 

                    

(a)                                                               (b)  

 

Figure 1.3. (a) ASC-Signal 2D S-Band air surveillance radar, (b) BAE-Thales 

S1850M L-Band 3D air surveillance radar. 

 

The size of a radar antenna depends both on the frequency and on its location (on 

the ground or on a moving vehicle): at low frequencies, physically large antennas 

are easy to produce because the mechanical and electrical tolerances are 

proportional to the wavelength. In the UHF band, the dimensions of a large 

antenna may be of 30.5 meters or more, whereas in the upper frequencies (such as 

X band) an antenna of 3 or 6 meters is considered large.  

Although there have been microwave antennas with beam widths as small as 

0.05°, radar antennas rarely have beam widths less than about 0.2°. 
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1.2.Radar equation [1][3][8]. 
 
The performance of radar systems can be described by the radar equation: this 

expression allows to compute the range of a radar in terms of target 

characteristics, involved power levels, and antenna gain (for a more accurate 

description of the antenna parameters, see chapter 2).  

Let us consider now a generic bi-static radar system: if PT is the transmitting 

power and GT is the gain of the transmitting antenna, the Poynting vector incident 

on a generic object, placed at distance RT, is given by: 

 

    O
T

TT
object S

R

GP
S =

⋅
=

24π
                                                   (1.1) 

 

 

 

 

Figure 1.4. Determination of radar equation [1]. 
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If the object is able to absorb and re-radiate the power in the surrounding space, 

using the expression (1.1) we have: 

 

                                                    
OOOT

OOO

PP

SAP

⋅=
⋅=

η
                                                   (1.2)  

 

Where AO is the effective area of the object, POT is the re-radiated power and ηO 

take into account the losses due to the power absorption by the object. If we 

consider  a receiving antenna with effective area AR placed at distance RR from the 

object, the received power will be: 

 

                                        (1.3) 

 

  

Where GO is the gain of the re-transmitting object.  

In order to take into account the effects due to de-polarization of the receiving and 

transmitting antennas, the previous expressions (1.2) can be rewritten as: 
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Where T

O

pA is the effective area of object related to the polarization of transmitting 

antenna, and R

O

pG is related to the fraction of the power transmitted by the object 

in the polarization of the receiving antenna.  

By substituting equations (1.4) into equation (1.3) we get: 

 

                     (1.5) 
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The term α is named “radar cross section” of the target and is strictly related to 

physical and electromagnetic properties of the object: 

                     

                                                 (1.6)             

 

Using the equation (1.6),  the expression (1.5) becomes: 

 

                                               (1.7) 

 

In the mono-static radar, where a single antenna works both in transmission and 

reception, taking into account the relations:    

 

 

 

 

 

and   A=(λ2/4π)G , equation (1.7) can be rewritten as: 

 

                             (1.8) 

 

 

From this equation, it is possible to compute the maximum radar range RMAX as: 

 

                              (1.9) 

 

 

Where SMIN is the receiver minimum detectable signal. 

Despite these equations are simple to calculate once know the radar equation, the 

determination of the maximum range RMAX is not immediate: as a matter of fact, 

expressions (1.9) are useful for a rough computation of the range performance and 

do not give realistic results. There are at least two major reasons why the simple 

TR p
OO

p
O AG ησ =

σ
π

⋅
⋅

=
224 RT

RTT
R RR

AGP
P

AAA

GGG

RRR

RT

RT

RT

==
==
==

( ) σ
λπ

σ
π

λ ⋅
⋅

=⋅
⋅

=
42

2

43

22

44 R

AP

R

GP
P TT

R

( ) MIN

T

MIN

T
MAX S

AP

S

GP
R

⋅
⋅=

⋅
⋅=

2

2

3

22
4

44 πλ
σ

π
σλ



18 
 

form of the radar equation does not predict with enough accuracy the range of 

actual radars: first, it does not include the various losses that can occur in a radar; 

second, the target radar cross section σ and the minimum detectable signal SMIN 

are statistical in nature. 

For present purposes, we will consider only the characteristics of SMIN, which is a 

statistical quantity, and, to be reliably detected by the system, it must be 10 or 20 

dB larger than noise.  The minimum detectable signal can also be expressed as the 

signal-to-noise ratio required for reliable detection times the receiver noise which 

is related to the thermal noise produced by an ideal receiver. 

In general, the thermal noise can be expressed as BTK ⋅⋅ , where K is the 

Boltzmann’s constant, T is the temperature and B is the receiver bandwidth; 

taking into account these considerations, it is possible to express the receiver 

noise as the product of the thermal noise by the receiver noise figure FN relative to 

a reference room temperature T0=290K: at this temperature the product 0TK ⋅  is 

equal to 4*10-21 W/Hz. Therefore, the minimum detectable signal SMIN can be 

written as: 

 

                                           (1.10) 

 

Sometimes, the factor nFT0  is replaced with TS, the system noise temperature. A 

more precise expression of (1.10) allow to express SMIN as a function of the signal-

to-noise energy ratio E/N0. For a rectangular pulse of width τ, the signal power is 

E/τ, and the noise power is N0B, where N0 is the noise energy, and B is the 

receiver bandwidth. With these assumptions equation (1.10) becomes: 

 

                                         (1.11) 
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By substituting into equation (1.9) we obtain:   

 

                                       (1.12) 

 

 

Where τ⋅= TT PE is the energy contained in the transmitted signal waveform. 

Equation (1.12) allow then to calculate the maximum range of a radar equipped 

with A effective area antenna illuminating a target with σ radar cross section. 

In radar applications, where the tracking is the primary function, the previous 

equation becomes: 

 

                                         (1.13) 

 

 

In this expression t0 is the interval of time where the radar tracks continuously the 

target, and 0/ tEP TAV = is the average power employed by the system.  

Thus, a long range tracking radar requires high values of average power PAV, high 

values of t0 (time on target), and, independently of system frequency that does not 

enter explicitly in the determination of equation (1.13), the radar antenna must 

have both large electrical and physical size. 

Since it is easier to mechanically move a small antenna than a large one, the 

tracking radars usually operate at high frequencies, in order to utilize small 

aperture antennas with high gain and adequate AG ⋅  product. Tracking radars are 

usually designed to obtain a good angular accuracy, which is achieved with 

antennas having a high gain G (narrow beam widths), and high values of ratio  

0/ NE (large effective areas A).  
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1.3. Radar frequency bands  [3]. 
 

According with the assertions of the previous paragraphs, any device which 

employs the electromagnetic energy to locate a target using the reflected echo can 

be considered a radar. From a generic point of view, there are no limitations 

regarding the operating frequency bands: historically, radar devices have been 

developed to operate at frequencies from a few megahertz up to a dozen of 

gigahertz. 

The basic operating principles are the same at any frequency, even though the 

system implementation is widely different and depends on the frequency itself.  

In table 1.1 a subdivision of electromagnetic spectrum according with the 

standard radar frequency letter band nomenclature is shown: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1: Radar frequency bands. [3] 

 

This subdivision is universally employed in radar applications and derives from 

the code letters (P, L, X and K) born during World War II for secrecy purpose. 



21 
 

After the end of war,  these designations remained and other  letters were added to 

indicate new regions of the electromagnetic spectrum. 

The letters are an useful way to specify the operating radar band without using the 

exact values of frequencies: this is an important practical feature, particularly in 

military applications. 

In the third column of table 1.1, the specific radar frequencies allowed for ITU 

Region 2 (North and South America) are shown: as apparent, only a part of 

various bands is reserved for radar applications. In other ITU Regions (Region 1: 

Africa, Europe and North Asia; Region3: South Asia and Oceania) the distribution 

of radar frequencies is virtually the same. 

 

HF Band (3 to 30 MHz). 

Historically it was the first frequency band used in radar applications.  

The air surveillance radar grid installed by Great Britain during the World War II 

operated at these frequencies. 

Despite the achieved results, the radars working at HF band have several 

disadvantages. Since the antenna beam width  is directly proportional to the 

wavelength, and inversely proportional to the size of antenna itself, in order to 

obtain a narrow radiated beam a HF radar antenna must be very large.  

Furthermore, we have at least two other main problems related to HF band: first, 

the high level of noise due to the back ground affects the target detection 

capability of the system; second, some objects appear very small compared with 

the HF wavelength, and, with respect to microwave frequencies, their radar cross 

section might be reduced.  

Currently, this frequency band is used only in the OTH (Over The Horizon) 

Radar: as a matter of fact, at these frequencies the refraction of the 

electromagnetic waves by the ionosphere allows to obtain ranges from 900 to 

3500 kilometers, and to detect aircrafts and other targets beyond the horizon. This 

property makes of the HF region of spectrum quite attractive for the radar 

observation of areas not practical with a conventional microwave radar.  
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VHF Band (30 to 300 MHz). 

The radars operating at this frequency band were developed during the years of 

World War II, and represented  the best of first-generation radar systems until the 

advent of microwave radars.  

Similar to shortwave radars (HF), the 30-300 MHz band allows to handling high 

transmitting power; for this reason, the operating features are similar to those 

described in HF systems: narrow radiated beam and large antennas.   

In this frequency range, the performance is not affected by the reflections from 

rain and the techniques used to reduce the target radar cross section (stealth 

techniques) are quite ineffective.   

As the HF band, a very interesting feature of these radar operating at relatively 

low frequencies is the possibility to increase the maximum range of detection up 

to twice: when a signal is transmitted with horizontal polarization over a good 

reflecting surface (such as the sea), the constructive interference between the 

direct and reflected wave from the surface can result in a substantial increase in 

the maximum range against aircraft. 

The VHF band is a good frequency band for cheap radars and for long-range 

radars, such as those for the detection of satellites, but in spite of its many 

attractive features, there have not been many applications of radar in this 

frequency range because its limitations and the high external noise do not always 

counterbalance its advantages. 

 

UHF band (300 to 1000 MHz). 

Many features related to previous radars classes, such as the low impact of rain on 

the received signal, are suitable in the UHF band.  

In these frequency ranges, however, the effects of thermal noise are weaker and it 

is possible to obtain radiated beam narrower than the VHF band. 

The UHF band is useful to realize long distance surveillance radars with 

sufficiently large antennas, employable to detect extraterrestrial targets, such as 

spacecrafts and ballistic missiles. 
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L band (1 to 2 GHz). 

The L band is mainly employed for the land-based long-range air surveillances 

radar (ARSR): at these frequencies, where the external noise is low, it is possible 

to achieve good range performances (typical ARSR radar have a maximum range 

of about 400 kilometers), and high power with narrow beam width antennas. 

 In L band also operate military 3D radars such as the SMART-L, but they also 

are at S band (such as AN/SPY-1 passive electronically scanned system)  

 

S band (2 to 4  GHz). 

In the S band operate some air surveillance radars (figure 1.5) such as the TASR-

2020S, but the characteristic of long range is more difficult to achieve than at 

lower frequencies, because the echo due to the rain can significantly reduce the 

maximum range.  

The S band is also employed in long-range weather radars for an accurate estimate 

of rainfall rate, and in medium range air surveillance applications, such as the 

ASR airport surveillance radar found at air terminals. The narrower beam widths 

at this frequency can provide good angular accuracy and resolution, and make it 

easier to reduce the effects of hostile main-beam jamming that might be 

encountered by military radars. Long-range airborne air surveillance radars, such 

as AWACS (Airborne Warning and Control System) also operate in this band. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. TASR-2020S S-band air surveillance radar 
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C band (4 to 8  GHz). 

The C-Band can be described as a compromise between the S and X band, though 

it is difficult to make long air surveillance radars at this or higher frequencies. The 

C-band is used to design long-range precision instrumentation radars for missiles 

accurate tracking, and to design both multifunction phased array air defense radars 

and medium-range weather radars (figure 1.6). 

 

 

Figure 1.6. ASC SIGNAL C-band weather radar.  
 

X band (8 to 12.5  GHz). 

In the X-Band operate military weapon control radar systems and devices for civil 

applications. Other equipments working at these frequencies are shipboard 

navigation radars, Doppler Navigation radars and devices employed by the police 

to detect the speed of cars. 

X-Band radars are characterized by convenient size, and are thus of interest for 

applications where mobility and light weight are important, and long-range is not 

such as high resolution radars: as a matter of fact, at these frequencies it is 

possible to achieve narrow beam widths with relatively small-size antennas. 
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Ku, K, Ka bands (12.5 to 40  GHz). 

Not many radar applications work at these frequencies, because we have 

limitations due to rain clutter and high attenuation by the atmosphere. However, 

even if it's difficult to generate and radiate power in this region of the 

electromagnetic spectrum, these frequencies are of interest because of the wide 

bandwidths and narrow beam widths that can be achieved with small apertures: an 

example of device operating in this band are the Ku band high resolution radars 

for the location and control of ground traffic at the airports. 

 

Millimeters Wavelenghts (above 40 Ghz). 

This band is characterized by high attenuation and by high clutter due to the rain. 

The exceptionally high attenuation caused by the atmospheric oxygen absorption 

line at 60 GHz precludes serious applications in the vicinity of this frequency 

within the atmosphere. Therefore, the 94 GHz frequency region (3 millimeters 

wavelength) is generally what is thought of as a "typical" frequency representative 

of millimeter radar: an example is the "mini-radar" developed in the 2001 for the 

ground traffic control at airports. 

The millimeter-wave region is more likely to be of interest for operation in space, 

where there is no atmospheric attenuation, and for short-range applications within 

the atmosphere, where the total attenuation is not large and can be tolerated. 
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1.4. A brief summary on some radar systems [3][4][5]. 
 

The various radar systems may be classified into several types according with 

their use.  

A very important category is the air traffic control radar used in civilian and 

military applications. Depending on their operating distance we can distinguish: 

 

• The “en-route” radars operating in L band for the long-distance control of 

aircraft (the maximum range achievable by these radars is up to 450 

kilometers). 

• The Air Surveillance Radars (ASR) used for the identification and the 

determination of aircraft approach sequence by the air traffic security 

operators. 

• The Precision Approach Radars (PAR) employed to guide the aircraft to 

safe landing in zero visibility approaching condition (figure 1.7). 

• The Surface Movement Radars (SMR) operating in the land traffic control 

in the airport surface. 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. TC-Z precision approach radar RP-5 GI. 
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Common military radar systems are all the devices mounted aboard of the military 

ships such as: surface search radars, air search radars, height finding radars and 

various fire control radars. 

The primary function of a surface radar is the detection and determination of 

accurate range and bearings of surface targets and low flying aircraft, while 

maintaining a 360° search for all target within line-of-sight distance from the 

radar antenna.   

The purpose of the air search radar (figure 1.8) is nearly the same of the previous 

type: its main function is exclusively the determination of range and bearings of 

aircraft targets; jointly with the air search radar, the height finding radar, which 

calculate more accurately all the space coordinates of target, is typically used. 

 

 

 

 

 

 

 

 

 

                                 (a)                                                     (b)  

              

Figure 1.8. (a) THALES LW-08 surface surveillance radar, (b) ITT EXELIS 

AN/SPS 48 3D air search radar. 

 

The main difference between these two systems is the higher operating frequency 

of height finding radar in addition to the higher power output and much narrower 

vertical beam width. 

Finally, the fire control radars (missile and gun control radar) provide information 

used to guide the weapons of a ship to a target. These radars work at a higher 

operating frequency, and employ  a dish-shaped antenna to produce circular 
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beams (figure 1.9). In most recent military ships, their task is achieved (especially 

with regard the missiles control) by modern multifunction radar, such as the   

EMPAR.  

(a)                                                         (b) 

Figure 1.9. (a) AN/SPG-62 fire control radar, (b) EMPAR multifunction radar. 

 

The technical features of surveillance radar are suitable to another class of radar 

systems: the weather radars. The main difference consists in the characteristics of 

the observed target: in navigation and air surveillance radars, the target can be a 

ship, a plane or a more generic flying object. Once detected, the target is 

completely described by its range, speed, angular position and physical 

characteristics related to its radar cross section.  

In the weather radar,  the shape of “object of interest” is considerably different: 

the particles of rain and clouds are much fluid than a generic moving target and 

their velocity is normally considerably lower with respect to a plane or other 

flying machine.  

The detection of snow, particles of rain and clouds involves weather radar 

operating at multiple frequencies located in S and C bands, where the wavelength 

(from 15 to 3.75 centimeters) is comparable to the size of hydrometeors. Since the 

attenuation increases with decreasing wavelength, the S band radars are the most 
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suitable for tropical regions and areas where hurricanes, tornadoes and cyclones 

are more likely. The S-band radar, however, are related with structural problems: 

the antenna size is proportional to the wavelength, and it follows that, to obtain a 

narrow beam width, large reflectors are necessary.  

To achieve a high maximum range (more than 600 kilometers), radar weather 

system ground based are required to handle high transmitted power (up to 800-

900 kilowatts). Nevertheless, high sensitive receivers are required to detect and 

identify the atmospheric disturbance, because the received echo due to rain 

particles is weak with respect to macroscopic objects. 

                            

 

 

Figure 1.10.  DWSR-8500S S-band weather radar 

 

Weather radar operating at smaller wavelengths (K or X band) designed for 

different purposes are also used in meteorological applications: good results in 

clouds detections could be achieve by radar working in K band. In most cases, 

however, at these frequencies the atmospheric absorption can significantly reduce 

the system performances. 
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1.5. The radar  equation for meteorological targets [3][5] . 
 

In the weather radar electromagnetic description, the received power 

backscattered from distributed targets (the hydrometeors) can be derived from the 

general radar equation: 

 

                                (1.14) 

 

Where β is a constant related to radar system parameters (transmitting power, 

antenna gain, operating wavelength), R is the range and σ is the radar cross 

section. 

In the determination of the radar cross section for meteorological targets, the 

equation (1.14) differs from the one used for point targets. A more generic 

expression of σ can be obtained using the radar reflectivity in units of cross-

sectional area per unit volume: 

 

                                            (1.15) 

 

In equation (1.15), N is the number of scatterers per unit volume, and σi is the 

backscattering cross section of the ith scatterer: in the characterization of weather 

phenomena, these scatterers can take a variety of form such as water droplets, ice 

crystals, hail and snow.    

If we consider the backscattered energy  from a generic spherical drop, using the 

Rayleigh approximation [6], an expression of the  ith scatterer can be written as:  

 

                                               (1.16) 

 

Where Di is the diameter of the ith drop and K is a quantity related to the drop 

complex index of refraction. From L to X radar bands |K|2, is equal to about 0.93 

for water particles and 0.2 for ice.    
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Using  (1.16), from (1.15) we have: 

 

 

                                             (1.17) 

 

 

Introducing the radar reflectivity factor, defined as: 

  

                                                     (1.18) 

 

equation (1.17) becomes: 

 

                                                  (1.19) 

 

Now, if the scatterers fill the radar beam, an approximation of the sample volume 

V is given by [6]: 

 

                                                 (1.20) 

 

Where θ and  φ are the azimuth and elevation beam widths, c is the light velocity 

and τ is the radar pulse width.   

Substituting equations (1.20), (1.15) and (1.16) into equation (1.14), we obtain: 

                                  

        (1.21) 

 

 

The term β’  expresses the dependence of the received power by radar system 

parameters. From the previous equation, the received power PR is proportional to 

Z (radar reflectivity factor), and inversely proportional to R2. 

In applications, however, the use of equation (1.21) for the calculation of Z can 

lead to errors due to a not uniform antenna gain over the bandwidth. To avoid this 
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problem, we can assume a Gaussian shape for the antenna beam, and, introducing 

a correction factor, we can write the received power as [7]: 

                                                     

                                     (1.22) 

 

 

This equation can be rewritten as: 

 

                                    (1.23) 

 

 

Expression (1.23) allows to measure the reflectivity factor Z when the assumption 

of Rayleigh approximation is valid, and the scatterers are in either ice or water 

phase.  

Due to high values of Z factor, often a logarithmic scale is introduced: 

 

 

 

Typical values of Z in non precipitating clouds are less than -40 dBZ. In case of 

rain Z may range from about 20 dBZ to as much as 60 dBZ, with values of 55 or 

60 dBZ in case of thunderstorms. Severe hailstorms may produce Z values higher 

than 70 dBZ. 

Operational radars are generally designed to detect Z values ranging from 10 to 60 

dBZ, while research applications usually aim for the maximum possible range. 
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Chapter 2. 

Antenna Basic Concepts 
 
 
2.1. Introduction [1]. 

 
An Antenna is commonly defined as a “Device, generally rod-shaped, used for 

radiating or receiving electromagnetic waves”.  This definition, however, is 

generic and influenced by the shape of the first antenna types, which consisted of 

metal wires or rods. Actually, according with the specific applications, the 

antennas have different shapes and sizes. A more precise definition (IEEE 

Standard Definition of Term for Antennas; IEEE Std. 145-1983) describes the 

antenna as “a means for radiating or receiving radio waves”: as a matter of fact 

the antenna is a transducer placed between the free space and a transmission line 

(a coaxial structure or waveguide) used to carry the electromagnetic energy from 

the source to the antenna and vice versa. 

When an antenna radiates in the space, it is “in transmitting mode”; a typical 

example of transmitting antennas are the television repeaters. Conversely, if an 

antenna receives the electromagnetic radiation, it is “in receiving mode”: an 

example of these antennas are the radio telescope large parabolic antennas.  

All antennas can be used both in transmission and reception: typical examples are 

the mono-static RADAR antennas and the mobile phone antennas.  

The behavior of antennas in two operating modes is equal, due to reciprocity 

theorem therefore, in all the theoretical discussions we will consider the antennas 

“in transmission mode”.  

From an “electric” point of view, an antenna can be defined through a 

transmission line Thevenin equivalent scheme (figure 2.1), where ZC is the 

characteristic impedance of the transmission line and ZA is the antenna complex 

impedance defined as:  

 

( ) ARLA jXRRZ ++=                                          (2.1) 
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Figure 2.1. Transmission-line Thevenin equivalent scheme of antenna [1]. 

 

In equation (2.1), RL is a resistance that identifies the antenna dielectric losses, Rr 

is the antenna radiation resistance and the imaginary term XA is the reactance 

associated with the antenna radiation.  

In ideal conditions, where all the devices are without losses, the energy of the 

generator signal should be transferred to the radiation resistance; in a real system, 

if we neglect the internal generator impedance and the reflection losses, the 

maximum power is transferred to the antenna under conjugate matching 

conditions. 
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2.2 Antenna Radiated Field and Radiation Pattern [1][3] . 

 

An antenna is, a device able to radiate electromagnetic power in the space; it is 

therefore useful to introduce an appropriate coordinate system which allows to 

determine the fields produced by the antenna.  

Considering a generic antenna, we will use  a spherical coordinates system with 

origin placed in the center of symmetry of the antenna itself in order to locate a 

point in the space. A generic point (figure 2.2) is identified by the radius R and by 

angles φ (which identifies the elevation plane) and θ  (which identifies the 

azimuth plane). In this coordinates system, a surface element is described by:  

 

ϕθθ ddrdA ⋅⋅= sen2 .                                        (2.2) 

 

 

 

Figure 2.2.  Spherical coordinate system [1]. 
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In order to determine the electromagnetic field radiated by the antenna, we will 

consider the antenna as a set of elementary dipoles, and the total field as a sum of 

each single source contribution. 

 Let Q be a generic point placed far away by the generic source (figure 2.3), far 

enough that the phase delay due to any element of antenna can be neglected;  the 

total electric field is given then by the equation: 
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Figure 2.3. Antenna total field computation 

 

In the equation (2.3), )(ˆ0 PIII ⋅=  is the antenna current distribution, λ is the 

operating wavelength, and the quantity between brackets is the “effective height” 

of antenna. 

Closely related to the determination of  the antenna electromagnetic field is the 

radiation pattern. The antenna radiation pattern (figure 2.4) is a three-dimensional 

plot of electromagnetic energy radiated in the space by the antenna, and provides 

a graphical representation, in the selected coordinate system, of field spatial 
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distribution and of the radiation properties of antenna (power flux density, 

directivity and field polarization). More frequently two-dimensional plots are 

employed for a more simple representation: these plots are cuts of the 3D pattern 

in a given reference axis of antenna.  

A more generic pair of orthogonal principal planes is frequently employed: these  

planes for a generic antenna are called E-Plane (plane of electric field vector E) 

and  H-plane (plane of magnetic field H). 

 

 

 

Figure 2.4. Antenna radiation pattern [1]. 

 

A radiation pattern can be isotropic, directional and omni-directional. The first 

term is related to an ideal antenna without losses which radiates in the same way 

in all directions, the second is referred to a real antenna where the properties of 

transmission or reception are stronger in some directions than others, while the 

latter denotes an antenna with a non directional radiation pattern in a given plane 

of space and directional in any plane horizontal to it. 
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As shown in figure 2.4, various parts of a radiation pattern are referred to as 

“ lobes”, which may be sub-classified into major (or main), minor, side, and back 

lobes. 

The main lobe contains the direction of maximum irradiation: an antenna has one 

or more main lobes; in the radar antennas the main lobe has circular cross section 

and we refer to it as “pencil beam”. The lobe located at 180° from the main lobe is 

defined as “back lobe”. 

The main beam angular extent is one of the main features of antenna itself. A 

quantity related to it is the half-power beamwidth, that occur at 3 dB to maximum 

and measures the resolution of an antenna: in radar applications, two identical 

targets having the same range are said to be “resolved in angle” if separated by 

the half power beamwidth.    

A large number of minor lobes exists outside the main lobe region: the lobes near 

the main beam are called “side lobes”, and are commonly expressed by the 

highest peak level with respect to the maximum of the main lobe. In radar 

systems, the presence of side lobes in the radiation pattern can be a source of 

problems because the energy radiated by the antenna aims also in different 

directions with respect to the main lobe. For example, if a radar antenna is 

designed to detect low flying aircraft targets, the side lobes can receive strong 

echoes by the ground (named “clutter”) which may blind the weaker echo coming 

from the target with a low radar cross section.  

In order to avoid these problems, the requested side lobes for radar antennas must 

be as low as possible. The optimum side lobe level depends on specific 

application, and side lobes level of 20 dB below the maximum are acceptable for 

most applications: a typical reflector antenna with a horn feed has a first side lobe 

23 or 28 dB below the maximum. 
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2.3. Antennas principal parameters [1]. 

 

In this section we will describe some of the quantities used in the analysis and 

synthesis of antennas. 

From  a source point of view, an antenna can be considered as a resonator (more 

or less ideal) where a large part of  power dissipated in the resistance of the 

resonator is radiated into space. In general, once selected the antenna operating 

frequency, its length (or its spatial dimensions) is determined using a multiple of 

the wavelength λ: for example, the length of a dipole antenna is usually set equal 

to λ/2. 

A very important parameter for an antenna is its radiated power. Let us consider 

the expression of the Poynting vector S for a generic point located at great 

distance from the source: 
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where h(θ,ϕ) is the effective height introduced in the equation (2.3); this 

parameter is characteristic for each antenna and allows to determine both the 

radiated field and the amplitude of radiated power. Using equation (2.4) we 

obtain: 
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Where the integration operation is extended to the whole space. Starting from this 

expression, if we consider that an antenna is an electric circuit, the antenna input 

power can be expressed by a sum of two terms: the radiated power in the space 

(calculated by the previous equation) and the power dissipated in the antenna 

itself: 
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DRADIN PPP +=                                              (2.6) 

 

For an ideal lossless antenna, the dissipated power PD is equal to zero and 

PD=PIN.   

 

A parameter related to the effective height of antenna is the effective area, given 

by: 
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In addition to losses due to dissipated power, it is necessary to consider the 

reflected power from the antenna itself: a measure of this effect is the reflection 

coefficient Γ. If ZA is the input impedance of the antenna and ZC is the impedance 

of the feed line, the expression of the reflection coefficient is: 
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The parameter Γ  is equal to zero only if the antenna is matched with its feed line.  

A parameter related to the reflection coefficient is the standing wave ratio (SWR), 

which measures the amplitude of the reflected wave by the antenna. The SWR is 

given by: 

 

Γ−
Γ+

=
1

1
SWR                                                        (2.9) 

 

The minimum value of SWR occurs when Γ=0 (SWR=1).  

One of the most relevant parameter of an antennas is the directivity. The 

directivity, according with the IEEE Standard definitions of Terms of Antennas, 
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can be defined as “the ratio of radiation intensity in a given direction from the 

antenna to the radiation intensity averaged over all directions. The average 

radiation intensity is equal to the total power radiated by the antenna divided by 

4π. If the direction is not specified, the direction of maximum radiation intensity is 

implied”.  

The directivity is therefore a measure of the capability of an antenna to 

concentrate the radiated power in a certain direction, and according with the 

previous definition, its mathematical expression is: 
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High values of directivity imply that the antenna radiates principally  in a 

relatively small area of space. 

In general, since the radiated power is not easily controllable, in equation (2.10)  

the parameter normally used to describe the radiation properties of the antenna is 

the gain,  obtained by substituting in the equation (2.10) the radiated power PRAD 

with  the input power PIN: 
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The gain and the directivity of an antenna are related by the expression:  

 

( ) ( )ϕθηϕθ ,, DG ⋅=                                           (2.12) 

 

Where  0≤η≤1 is the antenna efficiency and take in to account the effect of non-

ideality of the antenna itself. 

If the antenna is without losses, η=1, and the gain coincides with directivity.  
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High-gain antennas (with highly directional main beam) are used in RADAR and 

radio-astronomy applications to focus a large part of radiated power in a given 

area of space. 

A simpler expression of (2.11), which allows to calculate the gain starting from 

the effective height and the input impedance of an antenna, is: 
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Using (2.7) and (2.13), it is possible to obtain a relation between the gain and the 

effective area: 
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Another very important parameter that characterizes the antennas is the 

bandwidth. The bandwidth of an antenna is defined  [1] as “the range of 

frequencies within which the performance of antenna, whith respect to some 

characteristic, conforms to a specific standard”. 

This parameter can be expressed as the range of frequencies (centered on a center 

frequency which usually is the antenna resonance frequency) where the 

characteristics, such as input impedance, shape, width  and direction of the 

irradiated beam, polarization , side lobe level, gain and efficiency of irradiation, 

do not vary significantly with respect to the center frequency. Since the various 

parameters that characterize  an antenna do not necessarily have the same 

frequency behavior, this definition of bandwidth is not “unique”. 

In general, the bandwidth is usually expressed as the ratio between the  highest 

and lowest operating frequency: for example, a bandwidth of 10:1 indicates that 

the highest frequency of operation is 10 times larger than the lowest one. 
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2.4. Examples of type of antennas [1]. 

 

In this section we describe a brief overview of various types of antennas. 

The famous and familiar antennas, are undoubtedly the  wire antennas. As a 

matter, wire antennas are widespread: thus are employed in cars, in buildings, in 

aviation and in many other areas. Wire antennas may assume different 

configurations such as dipole, loop and  helix antennas (figures 2.5): these devices 

are the easiest radiating elements to fabricate, and their performance depends only 

by the length and thickness of the wire. 

 

 

 

Figure 2.5. Example of wire antennas . 

 

In industry and in aerospace applications, aperture antennas are widely used  

(figure 2.6). These devices, obtained by truncated waveguides, are employed in  

high frequency bands and they can be covered with dielectric material,  in order to 

protect them by atmospheric agents. 
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Figure 2.6. Example of aperture antennas . 

 

A very important antenna family is the group of microstrip patch antennas (figure 

2.7), that may assume many different shapes. This kind of devices became very 

popular in the 70s, thanks to their widely use in space and astronautic 

applications. 

Today, due to their interesting characteristics of radiation, and to the facility of 

manufacturing, the patch antennas are employed in a large number of areas,  

including also aeronautics  and mobile communications. 

 

 

 

 

Figure 2.7 Example of  rectangular microstrip patch antennas with coaxial 

probe. 
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In many applications, the request is to obtain high gain and particular 

characteristics of radiation not  achievable with a single radiating element.  

 A solution to this problem are the arrays: they consist of group of several single 

antennas (figure 2.8), suitably disposed, and that allow to obtain high gain ad 

desirable radiating beam shape. 

 

 

 

Figure 2.8. Example of array antennas 
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2.5. Radar antennas examples [3] . 

 

 The radar devices are grouped in two main categories: the “search or surveillance 

radar”, where the coverage of a wide space region is ensured by a quick and rapid 

rotation of an antenna with a characteristic fan shaped beam  (figure 2.9) ; and the 

“tracking RADAR”, that follows the target once it has been detected. 

 

Figure 2.9. Fan beam example. 

 

The high gain and the narrow beam width required for radar antennas is achieved 

by phased arrays and reflector antennas: in the phased arrays the number of 

elements and their mutual coupling allow to obtain a narrow beam width (figure 

2.10). In the surveillance RADAR the coverage of wide angular regions is 

performed by changing the beam direction using the array feeding network.  
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Figure 2.10. Phased array radar antenna. 

 

On the other hands, in the reflector antennas (figure 2.11) the principles of 

geometrical and ray optics are employed to obtain high gain while the mechanical 

rotation of the antenna provides the coverage of the space region surrounding the 

antenna. 

 

 

 

Figure 2.11. Rotating reflector radar air surveillance antenna. 
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Chapter 3. 

Reflector Antennas 
 
 
3.1 Introduction [1][2] . 

 
The reflector antennas may exhibit a wide variety of shapes and feed systems, 

depending on their applications. Reflector antennas have been employed since the 

discovery of electromagnetic waves (Hertz, 1888). During the World war II, the 

birth of RADAR applications for aerial target detection, resulted in a huge 

progress of reflector design and analysis techniques. 

In the ‘60s, the massive satellite communications and the requirement of high 

antenna performance and gain, led to achieve many kinds of reflector antennas. 

Although many geometrical configurations are possible (i.e. plane reflector, 

corner reflector), the most popular shape is the family of curved reflectors. 

The best known antenna curved reflector consists of a parabolic conducting 

surface (figure 3.1)  with vertex V (symmetric point of surface), diameter d and 

focal length f ,  illuminated by a device (the feed) placed in the focus F: the feed is 

usually located in front of the dish, and this configuration is knows as front fed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Parabolic front-fed configuration. 
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With this configuration, it is possible to achieve radiated fields with high gain and 

minimum beam width. 

If the size of the dish is greater than the operative wavelength, the feed can be 

considered as a point source for the paraboloid. By geometrical optics 

considerations, a beam of ray originated by a point source placed in the focus, 

after reflection from the parabolic surface emerges as a plane wave, identified by 

a parallel beam with the same direction of the reflection surface axis. We refer to 

this parallel ray formation as “collimated”. The term “collimation” is also 

employed to describe the highly directional characteristic of antennas.  

However, especially in radar systems, the reflector outline can vary depending on 

the requirements (figure 3.2): the oblong reflector (named also “orange peel”)  is 

employed if the azimuth and elevation beam width requirements are different 

(figure 3.2b); the offset configuration (described later) is used to avoid the 

blockage losses (figure 3.2c). Finally, the corners of most paraboloidal reflectors 

are rounded (figure 3.2d), mitered (figure 3.2e) or stepped (figure 3.2f) in order to 

minimize the area of the antenna and the torque required to turn the antenna. 

 

 

Figure 3.2. Paraboloidal reflector outline [3]. 
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3.2 Reflector Analysis: physical optics approximation [1][2] . 
 

In this sections the radiated electric field of a reflector antenna will be calculated 

using some physical optics considerations. The determination of the radiation 

characteristics (gain, efficiency, polarization, pattern, etc.) of each reflector 

antenna requires the evaluation of the current on the reflector surface induced by 

the feed.  Considering a generic conducting surface, the current density, named Js, 

can be expressed by the equation:  

 

( )refincnns HHiHiJ +×=×=                                           (3.1) 

 

where Hinc and Href are the incident and reflected components of the magnetic 

field and in is a unit vector normal to the surface. 

If the overall size of the reflector and its radius of curvature  are large compared to 

the wavelength of the incident wave, it is possible to estimate the reflector surface 

with an infinite plane surface (this condition is locally met for a parabola). 

Therefore, using the method of images, we have: 

 

refnincn HiHi ×=×                                                (3.2) 

 

Thus, replacing in equation (3.1)  

 

( ) incnrefnrefincns HiHiHHiJ ×=×=+×= 22                   (3.3) 

 

The approximation of physical optics is very accurate at the center of the reflector 

surface and it is useful in the computation of the main lobe and first side lobes of 

the antenna radiation pattern. 

Let R be the reflection matrix for a generic plane wave incident on the reflector 

surface with arbitrary polarization and (x, y, z) a set of rectangular coordinates 

with z axis orthogonal to reflector. The equation (3.3) can be rewritten as: 
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It is possible to define the R matrix by the product of the surface impedance 

matrix Z, related to the electric properties of the reflector surface, and the 

impedance wave matrix W , that characterizes the incident wave direction: 

 

( ) ( )ZWZWR +⋅+= −1                                         (3.5) 

 

If S is the Pointing vector of the incident field on the reflector surface, the W 

matrix can be written as: 

 

( )
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                                   (3.6) 

 

Generally, the reflector surface is made of conductive material, and this allows to 

write the Z matrix as the null matrix if the material is perfect electric conductor. 

On the other hand, if the material is a good conductor,  the Z matrix is given by: 

 

( ) Ij
K

Z ⋅+= 1
2ξσ

                                             (3.7) 

 

Where K is related to the incident wave, ξ is the characteristic impedance of air 

and σ is the material conductivity. 

This technique allows to determine accurately the reflector far-field, and is 

suitable for any reflector shape (even grid reflectors).  

Despite its flexibility, the physical optics approximation is computationally heavy; 

less accurate results, but expressed in analytical form, can be obtained by using 

the geometric optics approximation.  
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3.3 Reflector Analysis: geometric optics approximation. [2] 

 

The radiated field of reflector antennas can be evaluated analytically by using 

geometric optics approximation. This approach is suitable because the reflectors 

are usually large in terms of wavelength. Taking into account the ray optics 

theory, it is possible to consider the electromagnetic field locally as a plane wave 

that travel in straight line inside a homogeneous media. In presence of obstacles 

the plane wave is reflected or refracted according to Snell’s law. It is also possible 

to consider the power of the electromagnetic wave as flowing in a flux tube where 

the electric and magnetic fields are mutually orthogonal to the rays. When the 

wave is reflected by a perfectly conducting plane surface, the power of the 

reflected and incident wave is the same. The fields E and H travel inside the flux 

tube and, in absence of refraction, their polarization and orientation do not 

change.  

Let g(ϑ,φ) be a conical flux tube with origin in the focus of the reflector (figure 

3.3). The quantity  g(ϑ,φ) (where ϑ is the angle with respect to the normal n of the 

reflector, and φ is the rotation angle around its axis) represents the amplitude of 

the Poynting vector travelling towards the dish, while the ratio g(ϑ,φ)/r2 is the 

power  per unit area radiated by the feed. The incident power in an angular sector 

of the reflector can be written as: 

  

( ) ( ) ( ) ϕθθϕθϕθϕθθϕθ ddg
r

g
ddrP ⋅⋅=⋅⋅= sin,

,
sin,

2
2              (3.8) 

 

After the reflection over the surface of the dish, the incident rays emerge as a 

cylindrical flux tube; since the reflected power is equal to the incident power on 

the reflector surface, starting from equation (3.8) we find that: 

 

( ) φθθφθρφθϕθ ddgddrP ⋅=⋅⋅⋅ sin),(sin,  

 

Where dρ is the width of the reflected flux tube on the aperture surface. 
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Figure 3.3 Paraboloidal reflector antenna [2]. 

 

The previous equation can be rewritten as 

 

( ) ( )
ρ
θφθϕθ

d

d

r
gP ⋅= 1

,,                                         (3.9) 

 

Eq. (3.9) represents the power density per unit area on the aperture surface.  

If f  is the reflector focal length, the profile of the dish is described by: 

 

θcos1

2

+
⋅= f

r                                           (3.10) 

 

By replacing the expression ρ=rsinϑ in equation (3.10), we obtain: 
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And hence: 
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Equation (3.12) shows that the field distribution on the aperture surface depends 

both on the feed radiation pattern and on geometric considerations. According 

with the above equations, the directivity of the antenna is maximum when the 

incident power on the reflector surface P(ϑ,φ) is constant. This implies that g(ϑ,φ) 

must be proportional to 4cos4(ϑ/2). 

In order to obtain a uniform illumination for the reflector surface, the feed power 

pattern should be: 

 

( )









≥

≤≤








=

2
0

2
0

2
sec

,

4

ψθ

ψθθ

ϕθg                             (3.13) 

 

Where ψ is the overall angular aperture of the reflector (figure 3.4). 
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Figure 3.4: Angular aperture of reflector. 

 

Equation (3.13) describes an ideal and unfeasible condition, although much effort 

has been dedicated to design feed with power pattern as similar as possible to 

these characteristics. 
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3.4 Reflector analysis: performance and gain losses [2]. 

 

In real operating conditions, a part of the radiated field coming from the feed is 

not intercepted by the reflector. This degradation of the antenna performance, 

named “spill-over loss”, (figure 3.5) is due to a not-ideal feed radiation pattern, 

and can be expressed by the efficiency factor ηs: 
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Figure 3.5. Spill-over loss [3]. 

 

Where Df  is the directivity of the feed.  

The spill-over loss can be reduced using reflector having  a high angular aperture 

and a low illumination at its edges.  
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Another term describing the non-ideality effects is the aperture efficiency: 

 

D
RR

Aeff
A ⋅







==
2

2 2π
λ

π
η                                      (3.15) 

 

The aperture efficiency is always smaller than 1 and can be expressed as a product 

of two terms taking into account the losses due to non uniform illumination of the 

reflector surface (1-ηi) and the non constant phase of the aperture field (1-ηp).   

The behavior of the efficiency ηA is dual with respect to ηS efficiency: high values 

of ηA require reflectors with small  values of  angular aperture ψ and  high 

illumination at the dish edges. In order to maximize the reflector efficiency, it is 

therefore necessary a compromise between these two situations, aiming to obtain 

an optimal distribution of the feed power radiation g(ϑ,φ).  

A good approximation of g(ϑ,φ) is given by the following expression: 
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Where n≥0 is an integer number; for high values of n, the feed radiation pattern 

appears to be very narrow. 

In the equation (3-16) the product 2(n+1) is a normalization factor chosen to 

make the total power radiated by the feed equal to 4π. Using this expression of 

g(ϑ,φ) to calculate the efficiency of the reflector ηAηS, we obtain that the minimum 

value of the reflector efficiency is independent of n and is equal to 0.8 (figure 

3.6). Regardless the feed employed, the optimal g(ϑ,φ) requires  a tapered field 

pattern with a power level at the edges 10 dB smaller than the one at the center. 
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Figure 3.6. Reflector efficiency [2]. 

 

An additional gain loss factor in the front-fed reflector antenna configuration is 

the presence of a “shadow zone” (named blockage) in the center of the radiated 

field area of the reflector, due to the feed position and its supports.  

The scattering caused by the presence of the feed involves both the increase of the 

cross-polar component of the radiated field and side-lobes. Consequently, this 

phenomenon pulls down the reflector efficiency; this is a critical factor in those 

systems (i.e radar) designed to have low side-lobes level (less than 30 dB) and 

reduced cross-polar field component. 

Taking into account all the loss factors, the gain of the antenna can be expressed 

as:  

 

MASBX DG ηηηη=                                               (3.17) 

 

Where ηx  and  ηB are the efficiencies related to the cross-polar component and to 

the blockage. The DM term represents the maximum directivity for the structure,  

obtained when the effective area of the reflector is equal to its physical area: 
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π ⋅==⇒⋅=                        (3.18) 

 

Using equations (3.17) and (3.18), it is possible to compute the reflector diameter 

as a function of the desired gain and operating frequency. 

The cross-polarization efficiency depends by the feed and its manufacturing 

processes, while the blockage efficiency can be increased by using the “off-set” 

configuration (figure 3.7). 

In this configuration, only a portion of the paraboloid surface is metalized: a 

circular section of dish is removed from the reflective surface in order to locate 

the focus outside of  the main lobe of reflector.  

 

Figure 3.7. Off-set Configuration. 

 

This configuration allows an increase of ηB up to 100%, because it avoids the 

reflected rays to collide with the feed and its supports. In the off-set reflector 

configuration, in order to keep away losses due to the spill-over, the feed should 

be directed exclusively toward the metalized area of the dish (figure 3.8). 
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Figure 3.8.  Feed Positioning in the off-set configuration. (a) Incorrect position. 

(b) Correct position. 

 

This expedient, therefore, allows to remove the feed and its supports from the 

maximum irradiation area. The disadvantage is due to the increasing of the cross-

polar component of the radiated field: in the off-set systems, this component is 

around -25 dB, and this value can be too large for some radar applications. 
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3.5. Dual reflector configurations [2] . 

 

The front-fed configuration has some disadvantages: the transmission line 

connecting the feed and the receiving/transmitting antenna equipments placed 

below or behind the dish is typically too long; this may not be tolerable in low-

noise applications, where the losses of transmission lines compromise the quality 

of the received signal. 

Typically, in antennas for radio-astronomy and satellite communications, the 

front-fed configuration is not used. The radiation pattern of large number of feed 

systems has side lobes that do not go to zero at the edge of the reflector; when the 

reflector is pointed in the direction of the sky, the feed is pointed in the direction 

of the ground, receiving also the thermal noise coming from the soil, reducing the 

system sensitivity.  

These problems can be avoided using a configuration known as Cassegrain feed 

system (figure 3.9). With this configuration, it is possible to obtain a parallel beam 

of rays by using two reflectors: the first (or main reflector) is a parabola and the 

latter is a hyperbola, named sub-reflector.  

In the Cassegrain system the feed is not placed in the focus of the main reflector 

but, along its axis, generally near the vertex: providing that the primary and 

secondary reflectors are respectively a parabola and a hyperbola, the rays reflected 

by the primary reflector are converted in parallel rays, likely if these rays come 

from the focal point of the main reflector. 
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Figure 3.9: Cassegrain fed system [2]. 

 

 

 

In the Cassegrain configuration the transmitting and receiving equipment can be 

placed behind the primary reflector, making the system relatively more accessible 

for maintenance. 

In the Gregorian configuration, the sub-reflector is elliptic and placed in such a 

way that one of the two ellipsoid foci coincides with the focus of the primary 

reflector (the paraboloid), the feed is instead disposed in the other ellipsoid focus 

(figure 3.10). 
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Figure 3.10. Gregorian fed system. 

 

In this system the rays reflected by the dish appear to be parallel: as a matter of 

fact, by conics properties, each ray having origin in the feed and reflected on the 

sub-elliptic reflector passes through the focus of the main reflector.  

The Cassegrain and Gregorian reflector configurations are widely employed in 

radio astronomy applications and allow therefore to reduce the spill-over losses.   

Despite these advantages, the dual reflector configuration show manufacturing 

problems and also an increment of blockage losses and cross-polar component.  
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3.6. Short description of shaped beam reflectors [3]. 

 

The search rotating RADAR antennas are characterized by a narrow beam in the 

azimuth plane and by a shaped beam in the elevation plane. These features allow 

to easily distinguish between two near targets, and to obtain an uniform coverage 

at constant altitude.  

The easiest way to achieve a shaped beam is to employ multiple feeds positioned 

on the focal plane of the reflector (figure 3.11b) or a single feed locate in a 

different location from the focus of the reflector (figure 3.11a). 

 

 

 

 

Figure 3.11. Shaped beam reflectors [3]. 

 

As a matter of fact, the phase of the reflected rays depend on the position of the 

feed: with these two arrangements, the rays coming on the antenna aperture will 

have different phases, allowing to achieve a beam with specified shape.  

Most shaped reflectors avoid the blockage losses placing the feed outside the 

focus position: an example of shaped reflector with offset fed is the ASR-9 
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RADAR antenna (fig. 3.12). In this device, the elevation shaping, the azimuth 

beam skirt and side-lobes are strictly controlled using a CAD design process.  

 

 

 

Figure 3.12. ASR-9 shaped beam radar antenna. 

 

An alternative way to obtain a shaped beam keeping the single fed configuration 

(with or without offset) is to shape the reflector (figure 3.13): starting from the 

desired beam configuration, it is possible, with numerical techniques to modifies 

the reflecting dish surface, in order to achieve the desired radiated beam. 

 

 

Figure 3.13. Reflector shaping [3]. 
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3.7. Short description of parabolic cylinder reflectors [3] . 

 

The parabolic cylinder reflector antenna is an alternative configuration for the 

parabolic reflector, widely used in RADAR applications. In this configuration, the 

reflecting surface is a portion of inner lateral surface of a cylinder, and the focus is  

the axis of the cylinder.  In applications, the sources employed to illuminate the 

reflector surface are linear and usually consist of linear dipoles, linear arrays or 

slotted waveguides.  

The equation of reflector shape in rectangular coordinates is: 

 

f

y
z

4

2

=                                                   (3.19) 

Where f is the focal length. 

In figure 3.14 a typical geometry of a cylinder reflector is shown: 

 

Figure 3.14. Cylinder reflector geometry [3]. 

 

In most cases, the feed line is placed in the focal line F-F’  , although offset 

configuration are possible in order to avoid blockage losses. Depending of 
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applications, this reflector configuration allows to obtain a steerable or shaped 

beam in the elevation or azimuth plane with modest cost. 

An example of parabolic cylinder reflector antenna for RADAR applications is 

shown in figure 3.15. 

 

 

 

 

Figure 3.15. AN/TPS-63 radar antenna. 
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Chapter 4. 

Feed for reflector antennas. 
 
 
4.1 Introduction [2]. 

 
As mentioned in chapter 3, parabolic reflector antennas are widely used in radio-astronomy 

applications, communications, remote sensing and radar.  

A critical point in the design of reflector antennas is the choice of the feed: as a matter of fact, the 

feed must be a point source radiator, because the reflecting surface of the dish converts incoming 

plane waves into spherical fronts centered at the focus and vice-versa. The feed must also provide 

an adequate illumination of the reflector with minimum spill-over and cross-polarization, and it 

must also be able to handling the average power levels required by the system without break-down.  

For these reasons, open rectangular or circular waveguides are frequently used as the primary feed 

to illuminate a reflector antenna. 

 

4.2 Open Waveguides Feeds [2]. 
 
Let us consider an electromagnetic field propagating inside a rectangular waveguide (figure 4.1) of 

dimensions axb : if we “cut” the waveguide with a transverse plane, the field radiates in the space 

through the aperture. 

 

 

 

 

 

 

 

 

 

Figure 4.1. Open rectangular waveguide [2]. 

 

The dominant propagating mode in the rectangular waveguide is the TE10 (transverse electric) 

mode; placing the origin of the coordinate system in the center of the aperture, the x component of 

the magnetic field and the y component of the electric field are given by: 
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(4.1) 

   

 

 

If we neglect the reflected dominant mode and the small amplitude higher mode excited in the open 

end of the waveguide, and suppose that outside the aperture both the x and y component of the field 

are negligible on the z=0 plane, the equation (4.1) may be considered to specify the aperture fields 

on the z=0 plane.  

In practice, this approximation provides a reasonably good estimate of the main lobe. In 

applications where waveguides are utilized as feed for reflector antennas, these assumptions are 

usually acceptable because  we focus on the characteristics of the main lobe.  

The field radiated by the aperture can be evaluated considering the magnetic current Ms on the open 

end of the waveguide: 

 

(4.2) 
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Using the field equivalence principle, it is possible to compute the radiated far field in the yz and xz 

plane (Eθ and Eφ component respectively) which are proportional to:  
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Using equations (4.1), (4.2), (4.3), (4.4), after some considerations the power radiated by the open 

waveguide can be written as the maximum of the Poynting vector: 
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(4.5) 

 

Where 
10

10 Z

ωµβ =  

Starting from this expression we find that the directivity of the structure is equal to: 

 

(4.6) 

 

 

By replacing ab with πr2, equation (4.6) provides a good estimate of the directivity for the circular 

truncated waveguide.  

Typical values of directivity for the truncated waveguides are very low (usually about 4 dBi) 

because they depend by the physical dimensions, much smaller than the wavelength.  
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4.3. Horn Feeds [2]. 

The solution to obtain high values of directivity in equation (4.6) is to modify the sizes a and b in 

order to increase the product ab. For this reason, and in order to avoid the problems due to 

reflection, the width a is tapered to a΄ (with a΄>a) by flaring the waveguide in the H-plane. The 

obtained structure, shown in figure 4.2, is called H-Plane horn.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. H-Plane horn [2]. 

 

The field propagating inside the horn and coming from the input waveguide is a cylindrical wave 

with a circular constant-phase front, and it is nearly in-phase with the aperture field if the flare angle 

ψ is small. If the phase error does not exceed ±π/4 at the side of the aperture, the gain and the 

radiation pattern are very close to the values obtained for a constant-phase aperture field. By 

referring to figure 4.2, the condition on phase error can be expressed as: 

 

(4.7) 

 

After some considerations, equation (4.7) gives: 

 

 

(4.8) 
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Plotting the previous equation as a function of a΄/λ0, we obtain that it is possible to achieve large 

apertures, and consequently high gains, if the values of the flare angle ψ are small (figure 4.3), 

resulting in very long and bulky horns. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Flare angle ψ as a function of ratio á/λ0. [2]  

 

The directivity of an H-plane horn antenna is given by the expression: 

 

(4.9) 

 

The value of the gain for this structure is almost equal to the directivity, due to very small losses 

and reflections of waveguide structures. By analyzing the effects of the phase error on the antenna 

gain, it is found that, for a fixed length, the maximum gain is obtained by increasing the aperture 

width a΄ until a phase error of around 3/4π occurs.  

It is also possible to obtain an E-Plane horn (figure 4.4), by increasing the height b of the waveguide 

instead of the width a. 

 

 

 

 

 

 

 

Figure 4.4. E-Plane horn [2]. 
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The theoretical considerations regarding the directivity of the E-plane horn are the same of the H-

plane horn, providing to replace in equation (4.9) b and a΄ with b΄ and a respectively.  

For an E-Plane horn, it is possible to achieve the maximum gain by increasing b΄ until a phase error 

of π/2 occurs.  

By comparing the E-Plane and H-plane horn we notice that the tolerable phase error for the H-plane 

horn is larger: as a matter of fact, in the H-plane the aperture field goes to zero at both sides of the 

aperture, while for the E-plane horn the aperture field is constant in the E-plane. 

A further increase of gain for these structures it is possible by using the pyramidal horn: in this 

device, shown in figure 4.5, the waveguide is flared both in E-plane and H-plane, acting on a and b 

sides at the same time.    

 

 

 

 

 

 

 

 

Figure 4.5. Pyramidal horn [2]. 

 

For a pyramidal horn of fixed length, the maximum gain is obtained by increasing the flare angles 

to allow a phase error of around  3π/4 and π/2 in the H-plane and E-plane respectively. The 

directivity of pyramidal horns is expressed by: 

 

(4.10) 

 

Due to their characteristics of radiation (reasonable gain, low cross-polar component of radiated 

field, low reflection coefficient), horn antennas are widely used as feed for reflector antennas. In the 

last years a large number of technical papers ( i.e. [9] - [13]) and book chapters ([1], [14] - [17]) are 

dedicated to design and improve the radiation characteristics of the horn antennas. 

 

 

 

 

baD ′′⋅=
0

4.6

λ



74 
 

 

4.4. Microstrip printed feeds. 

Microstrip printed antennas, with their small weight and size, low cost and ease of fabrication and 

integration with other devices, represent an alternative to feed reflectors. Despite these advantages, 

single microstrip antennas are not widespread in reflector applications, due to their high level of 

cross polarization in the radiated field and to the difficult in shaping their radiation pattern [14].  

To overcome these problems, an array configuration can be used: in [18] and [19] a series of 2x2 

patch array are used to feed reflectors and, with an adequate element spacing, a good gain and a -20 

dB side lobe level are obtained.  

 

 

 

 

 

 

 

 

 

Figure 4.6. 2x2 printed patch array feed [19]. 

 

Small linear arrays are also employed [20] in a multifunctional reflector antenna system.  

   

 

 

 

 

 

 

 

Figure 4.7. Stacked patch antenna [21]. 

 

In [21] a broadband stacked patch antenna is used to feed an ellipsoidal reflector, obtaining a gain 

of 18.1 dB. The stacked configuration in microstrip patch arrays is useful in reflector feeds for 

space-craft applications, where the low cost and reduced sizes are desirable characteristics: in [22], 
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an hexagonal array of seven elements and a square array of nine elements are presented, with results 

similar to an horn feed operating in the same frequency band with a gain of 15 dBi and a -20 ÷ -25 

dB side lobe level.  

Multilayered patch arrays are also employed in the design of dual polarized reflector feeds [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Dual polarized suspended patch array [23]. 

 

In reflector antennas operating in modern communications systems and in some radar applications 

(i.e. weather radar), in addition to constraints regarding the high gain and low side lobe level, the 

requirement of wide operating band is very important [24]: in telecommunication system broadband 

characteristics allow to carry a greater amount of information with high data rate; in weather radar 

the heterogeneity of hydrometeors requires that the antenna operates at different frequencies. All of 

these applications involve reflector antennas with feeds capable to operate in a broad frequency 

range: the log-periodic dipole arrays (LPDA), with their very large bandwidth (up to a decade) and 

their reasonable gain, are excellent candidates for broadband reflector feed systems [25].  

In the last years, a large number of LPDA (wired or printed) feeds have been proposed, and their 

characteristics as feed have been extensively investigated by Duhamel and Ore in [26].    

Due to their asymmetric radiation pattern, in order to obtain a symmetrical radiated field, often a 

LPDA feed consists of two or more antennas: in [27] and [28] feeds based on two LPDA with a 

wide operating bandwidth (from 1 to 10 or 20 GHz) have been proposed. 

Multiple log periodic antennas also allow to design feeds operating at different polarization: in [29], 

a cryogenically cooling feed system for the VLBI (Very Long Baseline Interferometry 2010) and 
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SKA (Square Kilometers array) is able to receive both the dual linearly and circularly polarized 

field [30]. 

Another LPDA feed for the dual-reflector antenna of US-SKA is proposed in [31]. 

 

 

 

Figure 4.8. Multiple log periodic antennas feed [29]. 
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Chapter 5. 

Printed Log-Periodic Feeds  
 
 
5.1. Introduction. 

 
A printed log periodic feed is a broadband directional antenna, whose properties are regularly 

repetitive as a logarithmic function of the excitation frequency. Even the length and spacing of the 

elements of a log-periodic antenna increase logarithmically from one end to the other. This kind of 

antenna is useful in all the applications requiring a wide range of frequencies to be covered with a 

reasonable gain. The log-periodic concept has been implemented using different elements, but the 

most popular, by far, is the log-periodic dipole array (LPDA) [32]. In an LPDA, alternating 

elements must be driven with 180° of phase shift from one to another. This phase shift, in a wire 

LPDA, is normally implemented by connecting individual elements to the wires of a balanced 

transmission line in an alternate way. LPDAs using cylindrical dipoles have been proposed by Du 

Hamel in the 1957 [32]. They are extensively used as wideband antennas, and their design can be 

performed following the suggestions given by Carrel and Isbell [33]–[35]. Wire LPDAs can be 

designed with a bandwidth up to a decade, and with a typical gain around 10 dBi in air [36], and 

realized at VHF and UHF frequencies, with a standard and cost-effective technology. 

Unfortunately, such advantages are lost in the SHF band, where the dipoles become so short and 

tiny that they can be realized only by specialized technologies [37]. 

On the other hand, printed LPDAs are very promising, due to their low production cost and weight. 

However, their realization can be difficult since all elements must be fed (and with alternate sign) 

by a paired strip (PS) [38]. Therefore, an appropriate feeding network must be designed in order to 

excite each element with the requested phase. As a matter of fact, the design and modeling of this 

feeding network has been the most critical task in the different printed LPDAs that have been 

proposed in the literature [39]–[43]. 

The feeding network can be divided into two parts: the printed dipoles feeding line, and the external 

feeding structure. In the antenna simulation, the LPDAs external feeding is modeled as a differential 

port placed at the narrow end of the antenna, providing the necessary wideband matching. However, 

this is an ideal device because it does not physically incorporate the actual external feeding line and 

the geometry of the SMA connector. In practice, the wideband matching of a LPDA can be obtained 

with an infinite balun [44]. In the wire LPDA antennas employed for TV receivers, this infinite 

balun is realized with a coaxial cable passed through one of the antenna booms and connected to the 

narrow side of the antenna. In the printed LPDA this infinite balun has been obtained soldering the 
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outer conductor of a coaxial cable to the bottom layer of the LPDA, and connecting the inner 

conductor to the top layer of the antenna using a via-hole inside the substrate [45]. This allows an 

antenna with a reasonably large matching and gain bandwidth, but destroys the antenna symmetry. 

In this chapter we will propose two new methods to overcome the problems due to the printed log 

periodic feeding network: in paragraph 5.2 we will show [46] that the insertion of an additional 

mirror coaxial cable, soldered in the top layer of the array, allows to obtain not only an excellent 

input matching and a very good radiation pattern over the whole frequency band, but also the 

stabilization of the antenna phase center; after these considerations, in paragraph 5.3 [47], because 

the additional coaxial cable  is not simple to realize since printed LPDAs at microwaves frequencies 

can be very small, a fully planar feeding network without any shorting pins is proposed. These two 

solutions have been tested in the design of two printed LPDA antennas operating respectively in the 

range 4-18 GHz and 3-6 GHz. Both the proposed configurations have been employed as feeds for 

reflector  antennas. The obtained results provided the starting point for the design of a high gain 

log-periodic feed for weather radar applications, operating in S and C band and described in 

paragraph 5.4.  

All the proposed structures have been designed and optimized using CST Microwave Studio 2012, 

a general-purpose software for the 3-D electromagnetic simulation of microwave components. The 

analysis of the performance of the reflector configurations have been performed using TICRA 

GRASP 8W, an integrated tool for reflector antenna analysis.  
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5.2. Design of printed log periodic array working in C, X and Ku band. 
 

The concept of log-periodic wire-antennas is applied to microstrip printed technology, to get the 

antenna layout shown in figure 5.1. The array dipoles are fed (in an alternate way) with two 

microstrip lines printed on the opposite sides of a dielectric slab (as in Figure 5.2a). As a 

consequence, the standard approach for the design of LPDAs proposed by Carrel [33] can be used, 

but with some modifications. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Antenna layout: dark lines on the upper side of the dielectric slab, transparent ones on 

the bottom. LF=56.92mm. 

 

Starting from the required bandwidth (4-18 GHz), and following the design rules given in [33], we 

get the following antenna parameters: number of dipoles N = 15, aperture angle 2α = 30°, log-

period τ = 0.85 for an average directivity of 8.5 dB. The wideband matching of the printed LPDA is 

obtained with an infinite balun, realized with a coaxial cable. The outer conductor of the coaxial 

cable is soldered to the bottom layer of the LPDA, and the inner conductor is connected to the top 

layer of the antenna using a via-hole inside the substrate. 

In order to improve the antenna performances, an additional mirror coaxial cable, soldered in the 

top layer of the array, can be used. We have selected the characteristic impedance of the feeding 

line equal to 50 Ω, so as to obtain an easy matching with the coaxial cable. Since the feeding line 

(figure 5.2a) has an anti-symmetric field configuration, its corresponding width can be computed by 

inserting a dummy ground plane in the middle of the substrate (figure 5.2b) [48, 49]. 

As a consequence, we can simply design a 25 Ω standard microstrip (with h=2 slab thickness) and 

evaluate its corresponding width W  by assuming a quasi-static propagation. 
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Figure 5.2. (a) Section of the antenna feeding line. (b) Equivalent circuit for the computation of the 

line parameters. 

 

Since the printed LPDA lies on a dielectric substrate, the geometric parameters of this antenna 

cannot be computed as in the case of a standard wire-LPDA [33], which radiates in free space. In 

our prototype we have used a Arlon AD 250 substrate (with εr = 2.5 and h = 0.51 mm), for which 

the width of the 50 Ω feeding lines is W = 1.91 mm. For this specific substrate, the resonant length 

2LN of the largest dipole (see Figure 5.1) at the lowest operating frequency (4 GHz) is computed by 

using CST Microwave Studio, and is equal to 14.665 mm. The length of the other dipoles is 

computed according to: 

 

(5.1) 

 

Now, we must compute the width WN of the largest dipole. Let us consider the following 

expression: 

 

(5.2) 

 

Which was derived by Carrel [35] as the average characteristic impedance of a cylindrical dipole, 

wherein an is the radius of the dipole, and Ln its half-length. We select the radius an of the largest 

dipole in order to give a 50 Ω average characteristic impedance. Then, we compute WN by the 

requirement of equivalent perimeter [50]: 
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The width of the others dipoles (see figure 5.1 and equation 5.4) are summarized in table 5.1, and 

their spacing  are computed  accordingly to [33]. 

 

(5.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1. Geometry of the designed printed LPDA. 

 

The coupling between the coaxial feeding network and the radiating dipoles degrades the antenna 

matching, especially in the upper frequency band, where the dipoles are very small. In order to 

improve the antenna performances at high frequencies, a further dipole is inserted immediately 

before the dipole 1, with the same width and length, and with a spacing equal to the one between 

dipole 1 and dipole 2. The inclusion of this further dipole does not imply any change in the overall 

size of the antenna, but is able to lower the return loss below -10 dB in the whole operating 

bandwidth, as we will show later. 

However, the a-symmetric fed configuration due to single coaxial cable utilized, shows a significant 

drift of the phase center with the frequency. Therefore, to overcome this problem, the insertion of 

an additional mirror coaxial cable, soldered in the top layer of the array, has been investigated. The 

simulations have shown that the latter has significantly better radiation performances, and therefore 

the designed antenna has been manufactured with the mirror coaxial cable (see figure 5.3). Figure 

5.4 shows both the simulated and measured frequency responses of the input reflection coefficient. 
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We have found that the additional mirror coaxial cable does not modify the antenna input matching, 

therefore this case is not reported in figure 5.4. As apparent, the broadband specification between 4 

and 18 GHz is fulfilled with a good agreement between simulation and measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Photo of 4-18 GHz LPDA antenna. (a) Front. (b) Back. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

Figure 5.4. Reflection coefficient of the 4-18 GHz  LPDA antenna. 
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In figure 5.5 the antenna gain  (evaluated by CST) with respect to frequency is reported, both for the 

configuration with or without mirror coaxial cable. The antenna gain is quite stable over the 

required bandwidth.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.  Gain of the 4-18 GHz  LPDA antenna. 

 

The phase center variation as a function of the frequency is computed by using CST Microwave 

Studio and is reported in figure 5.6, where Delta is the distance between the phase center and the 

origin O of the coordinate system in Figure 5.1. The comparison with the feeding configuration 

using a single coaxial cable is also shown. Using a single coaxial cable in the implementation of the 

feeding network, the phase center remains almost constant in the frequency band 5.5-11.25 GHz, 

wherein it varies from 30 mm to 50 mm (with a maximum variation equal to ±10 mm, i.e., ±0.25 λ0, 

being λ0 = 40 mm the free-space wavelength at the center frequency of 8.375 GHz). From the results 

shown in figure 5.6, it appears that the presence of the mirror coaxial cable allows to stabilize the 

phase center up to 13 GHz. As a matter of fact, in the configuration with the mirror coaxial cable 

the phase center is stable in the frequency band 4.25-13.25 GHz, with a relative bandwidth greater 

than 100%, with a maximum variation equal to 28 mm. It is worth noting that, if we limit ourselves 

to a 30% smaller frequency band, namely 4.25-10.75 GHz, the phase center variation halves to 15 

mm. 
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Figure 5.6. Variation of phase center. 

 

In figures 5.7 and 5.8, the simulated and measured E-Plane and H-Plane radiation patterns are 

reported, respectively.  

 

Figure 5.7. Simulated and measured E-plane far field. 
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Figure 5.8. Simulated and measured H-plane far field. 

 

The comparison between the simulated far field of the configuration with and without the mirror 

coaxial cable shows that the last configuration allows a significant improvement on the radiated 

field, which is in this case more symmetrical and with a lower side lobe level. The measured far 

field pattern, reported only for the configuration with the mirror coaxial cable, is in very good 

agreement with the simulations. 

After these considerations, the configuration with mirror coaxial cable has been employed as feed 

for a parabolic reflector with d=8 m diameter, in order to obtain a 47 dBi gain at 4 GHz.  

As mentioned in chapter 3, all parabolic dishes have the same curvature, but some are shallow 

dishes while others are much deeper, and more are like a bowl. A convenient way to choose the size 

of the dish is the desired gain (see equation 3.18) and the f/d (focus to diameter) ratio (see chapter 

3), which is related to the feed beamwidth and to the angular reflector aperture: as f/d becomes 

smaller, the feed pattern illuminating the reflector surface becomes broader.  

A way to match the feed pattern radiated field with the angular aperture ψr is described by equation 

[51]: 
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In equation (5.5), by setting the diameter d of the reflector, it is possible to achieve the optimal f/d 

by imposing the angular aperture ψr equal to 10 dB feed beamwidth [52].  

 

Frequency (GHz) E-Plane 3dB Beamwidth (degree) H-Plane 3dB Beamwidth (degree) 

4 68.4 118.5 

8 66.4 113.3 

11 60.7 94.3 

14 55.5 85.3 

18 54.6 82.6 

   

Mean value 61.12 98.8 

MT 80  

 Table 5.2. 3dB 4-18 GHz printed LPDA feed beamwidth. 

 

In our case (see table 5.2), for the 4-18 GHz LPDA printed feed, the beamwidth of E-plane and H-

plane radiated field is different (see figures 5.7 and 5.8), and choosing the angular aperture ψr equal 

to 10 dB feed beamwidth will result in a not satisfactory illumination of the reflector surface, 

especially in the central region. Therefore, the f/d ratio is computed by choosing ψr equal to mean 

value MT of 3 dB antenna beamwidths in E-plane and H-plane. As indicated in table 5.2,  ψr is equal 

to 80°, and from equation (5.5) the corresponding value f/d is equal to 0.678. 

According with the obtained f/d ratio, the focal length f for a 8 meters diameter reflector is equal to 

5.244 meters. In figures 5.9-5.13 the θ=0° normalized simulated radiated far field cuts for such 

reflector antenna at 4, 8, 11, 14, 18 GHz are shown. The result obtained exhibit a side lobe level 

equal to about -17 dB and a good gain (see table 5.3) over the whole operating bandwidth, allowing 

the use of 4-18 GHz LPDA printed feed with mirror coaxial cable in reflector antennas for wide 

band communication systems.    

Frequency Gain 

4 46.72 

8 53.35 

11 56.30 

14 58.03 

18 60.76 

 

Table 5.3. Reflector antenna gain.  
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 Figure 5.9. 4 GHz reflector radiated far field.  

 

 

 

Figure 5.10. 8 GHz reflector radiated far field. 
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Figure 5.11. 11 GHz reflector radiated far field. 

 

 

Figure 5.12. 14 GHz reflector radiated far field. 
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Figure 5.13. 18GHz reflector radiated far field. 
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5.3. Design of a printed log periodic array with CPW feed line working in S and C band. 
 

The feeding technique described in previous paragraph is not simple to realize since printed LPDAs 

at microwave frequencies can be very small, and the coaxial cable can affect the radiation pattern. 

To overcome such problems, the solution is a fully planar feeding network without any shorting 

pins. Thus, we present in this section a new feeding technique, based on a coplanar waveguide 

(CPW) cut into one of the paired strip while the other paired strip is floating. Some preliminary 

results on the same topic have been presented (for the first time, to the best of our knowledge) in 

[52], but without any experimental verification. 

 

 

Figure 5.14. (a) 3-6 GHz Antenna Layout (top layer) not in scale. LF=117.15 mm, LH=22.97, 

LE=26.44. (b) Coplanar waveguide transverse section at the input port: a = 1.05, b = 1.5 mm, c = 

3.9. (c) Coplanar waveguide view at the via-hole section. (d) Top view of the coplanar waveguide, 

at the via-hole section, for the configuration with CPW ground lines left open. 

 

Coplanar waveguides have already been employed to feed printed antennas [53]–[55]. In this 

section we will create a sort of “flat” coaxial cable in one of the LPDA layers and a balun at its end. 

The balun is obtained using a via-hole between the CPW and the strip on the other side of the slab 

and an “open” termination of the two ground conductors of the CPW. In this way, the backward 

waves have an opposite current on the two sides of the PS, thus exciting only the correct mode, and 

so correctly feeding the dipoles. Moreover, we have found that no air-bridges are required on the 
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CPW, so that the realization is fully planar, but for the via-hole. Therefore, our solution fully shares 

all the advantages of the printed technology. 

The dipoles of the printed LPDA, shown in figure 5.14, are alternately connected on the two lines of 

the paired strips, fed by a coplanar waveguide printed within one strip. The structure is very close to 

a standard (namely, wire) LPDA, and therefore the standard strategy to design an LPDA can be 

used [33], though with some modifications.  

The design specifications of the proposed LPDA antenna are its operating bandwidth (3-6 GHz) and 

directivity. The design parameters are the spacing factor σ (see [33]) and the log-period τ (see figure 

5.14(a)  and equation (5.1)) which are selected by using Carrel design curves for the specified 

bandwidth and directivity [33]. 

In our case, we require an average directivity of 9 dBi in the bandwidth 3-6 GHz, therefore we set 

the log-period and the spacing factor to the values of τ = 0.88 and σ = 0.16, respectively.  

The number N of elements of the LPDA antenna, is given by the expression [33]: 

 

 

(5.6) 

 

 

Wherein B is the operating bandwidth, and BAR is the bandwidth of the active region. In our case 

 

(5.7) 

 

 

(5.8) 

 

 

(5.9) 

 

Where α is the log-periodic antenna aperture angle, so that N = 10.53. Since N must be integer, we 

need 11 elements in order to fulfill the requirements on directivity and bandwidth.  

We have chosen the characteristic impedance of CPW feeding line equal to 50Ω, so as to obtain an 

easy matching with the standard SMA connectors.  
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Choosing ARLON AD450 as dielectric substrate, a low-loss material (whose dielectric loss tangent 

is δ = 0.0035) with a dielectric permittivity εr = 4.5 and a thickness of 1.524 mm, the CPW 

parameters are computed using the following design equations [52][56] and imposing Z0 = 50Ω. 

 

 (5.10) 

 

 

Where:  

 

 

(5.11) 

 

 

 

(5.12) 

 

 

 

(5.13) 

 

 

 

(5.14) 

 

The term η0 = 377Ω in (5.10) is the characteristic impedance of free space, t = 0.035 mm is the 

thickness of metallizations and K(k1), K(k2) are complete elliptic integral of the first kind where the 

integration parameters k1 and k2 depend by CPW parameters (i.e: a, b, c). Choosing the total width c 

of the CPW feeding line equal to the width of paired strips corresponding to an equivalent 

impedance of 50Ω, the resulting CPW parameters are a = 1.05 mm, b = 1.5 mm, c = 3.9033 mm. 

The length LN  and the width WN of the largest dipole, in this case have been evaluated using a more 

efficient cut-and try procedure on CST microwave studio [57] obtaining  LN = 17.5 mm and  WN = 

2.87 mm. 
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The length and widths of the other dipoles are computed by using the expressions (5.1) and (5.4). In 

table 5.4, the geometry of the dipoles (see figure 5.14) is reported: the spacing SN are computed in 

according to [33].  

 

 

Table 5.4. Geometry of the designed printed LPDA. 

 

The aim of coplanar waveguide is to implement a flat coaxial cable as feeding network of a printed 

log-periodic antenna. Therefore, the central conductor of the coplanar waveguide must be 

connected, through a via hole, to the bottom layer of paired strips (as indicated in figure 5.14), so 

that a single progressive wave propagates on the paired strips itself toward the largest dipole. In this 

way, the CPW termination acts as a balun, as long as the two ground lines of the CPW end abruptly 

(as in Fig. 5.14(d)). The starting length LH of the final termination of the CPW [see Fig. 1(a)] has 

been chosen equal to half a wavelength at the central frequency of 4.5 GHz. This value has been 

then optimized, and the best input matching has been obtained for LH = 22.97 mm. 

The LPDA antenna has been manufactured (figure 5.15) and fully characterized. In figure 5.16 the 

simulated and measured frequency responses of the input reflection coefficient are shown, and the 

broadband input matching specification between 3 and 6 GHz is fulfilled, with a very good 

agreement between simulation and measurement. As a matter of fact, the input matching range 

extends well beyond 6 GHz, and the 10-dB antenna bandwidth approximately extends from 2.5 to 

7.5 GHz, as shown in figure 5.16. On the other hand, the antenna gain rapidly decreases, and the 

radiated far-field pattern deteriorates out of the design bandwidth (3–6 GHz). 
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Figure 5.15. Photograph of the LPDA antenna: (a) front; (b) back. On the back side, there is no 

connection between the SMA connector and the strip. 

 

 

Figure 5.16. Reflection coefficient of the 3-6 GHz LPDA antenna. 
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In figure 5.17, the antenna gain (both evaluated by CST and measured) as function of the frequency 

is reported. The antenna gain is quite stable over the required frequency range, with an average 

value equal to 6.85 dB. On the other hand, it drops to about 4 dB at 2.5 and 6.5 GHz. 

 

Figure 5.17. Gain of the 3-6 GHz LPDA antenna. 

 

 

 

 

Figure 5.18. Simulated and measured E-plane and H-plane radiation pattern of the 3-6 GHz LPDA 

antenna. 
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Figure 5.18 reports the simulated and measured E-plane and H-plane radiation patterns. The cross-

polar component is not shown since it is always below 25 dB with respect to the co-polar 

component of the radiated field. The measured far-field pattern is in very good agreement with the 

simulations, showing the endfire behavior in the whole operating frequency band. 

Therefore, the proposed LPDA can be successfully used as a broadband antenna in the frequency 

range 3–6 GHz, with a relative bandwidth greater than 33%. 

This LPDA antenna has been used as feed for a reflector antenna: also in this case, the choice of an 

optimal f/d ratio, due to the strong asymmetry of the radiated fields in E-Plane and H-Plane, has 

been performed by the mean value 3dB feed beamwidth in E-Plane and H-Plane (see paragraph 

5.2).  

Frequency  

(GHz) 

E-Plane 3dB 

Beamwidth (degree) 

H-Plane 3dB 

Beamwidth (degree) 

3 65.9 90.5 

4 56.7 73.4 

5 57.5 74.3 

6 55 70 

   

Mean value 58.77 77.05 

MT 67.91  

Table 5.5. 3dB 3-6 GHz printed LPDA feed beamwidth. 

 

Setting the diameter of the reflector equal to 8 meters, in order to obtain a gain of 45 dBi at 3 GHz, 

and using the MT value indicated in table 5.5, by equation (5.5) we obtain the focal length of the 

reflector f = 6.551 m. 

In figures 5.19-5.22 the θ=0° normalized simulated radiated far field cuts for such reflector antenna 

at 3, 4, 5, 6 GHz are shown. The result obtained exhibit a side lobe level equal to about -17 dB and 

a good gain (see table 5.6) over the whole operating bandwidth, allowing the use of 3-6 GHz LPDA 

printed feed with coplanar waveguide in reflector antennas for wide band communication systems.    

Frequency Gain 

3 44.03 

4 47.36 

5 49.68 

6 50.91 

Table 5.6. Reflector antenna gain 
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Figure 5.19. 3 GHz reflector radiated far field. 

 

 

Figure 5.20. 4 GHz reflector radiated far field. 
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Figure 5.21. 5 GHz reflector radiated far field. 

 

 

Figure 5.22. 6 GHz reflector radiated far field. 
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5.4. “V” Shaped S-C band log-periodic feed for weather radar applications. 

 

In this section the design of a high gain feed for weather radars applications is presented. 

The choice of the frequency range is one of the main features of weather radars: the S-band (2.7-3.0 

GHz) is well-suited for detecting heavy rains at very long ranges (up to 300 kilometers); usually, 

the S-band weather radars are typically employed in severe weather regions, where extreme 

rainfalls pose a challenge to precise measurements and long range surveillance [3]. The C-band 

(5.4-5.8 GHz) represent instead a good compromise between range and cost of the system and 

provides the detection of rain up to 200 kilometers. Weather radars also operate in X-band (9.3-9.5 

GHz) but, due to high attenuation of the hydrometeors at these frequencies, they are used only for 

detection of storm at short range (up to 70 kilometers).  

The S and C band are therefore the most widely used in long range weather radars, and, for this 

reason, we introduce the design of a high gain printed log periodic feed able to work both in S and 

C band. 

 The concept of log-periodic printed antennas described in the previous paragraph is applied to two 

different groups of dipoles designed to operate each in a specific frequency band, in order to get the 

feed shown in figure 5.23. 

 

 

 

Figure 5.23. S-C band feed layout. 

 

This solution allows to obtain a log periodic antenna with a reduced size, operating only in the 

range 2.7-3.0 GHz and 5.4-5.8 GHz instead of a complete printed LPDA array working between 2.7 

and 5.4 GHz.  

For each group, the number of dipoles and the scaling factor τ must be defined. Even though both 

parameters can be different for each group of dipoles, as a design rule we choose to use the same 

values for both groups [41].  
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As mentioned in previous paragraphs, the number of dipoles of each group is determined by the 

design specifications (i.e. the bandwidth and directivity requirements). In our case, for the proposed 

printed LPDA feed, we require an average directivity of 12 dBi (the maximum directivity available 

in the Carrel design curves), and therefore we set the log period τ and the spacing factor σ of both 

groups of dipoles to the value τ = 0.97 and σ = 0.185.  

The chosen dielectric substrate is the TACONIC TSM-DS3, a material developed for high power  

applications [59], with low losses (dielectric loss tangent δ = 0.0011) and a dielectric permittivity  

εr=3. The substrate thickness and metallizations are respectively h = 0.887 mm, t = 0.070 mm.  

In order to tolerate the high power levels required by a weather radar system (i.e. [60], [61]), the 

feeding network selected for the feed is the dual coaxial cable configuration described in paragraph 

5.2: as a matter of fact, the CPW feeding technique allows a  more simple realization with low cost, 

compact size and is easy to connect with the SMA connectors  but, due to dielectric breakdown of 

the air between the metallic strips, it is capable to handle only low power levels.  

The characteristic impedance Z0 of the printed feeding lines (paired strips) of the two groups of 

dipoles has been selected in order to obtain an easy matching with the UT-085 coaxial cables [64] 

employed : by choosing  Z0 = 50Ω we obtain (see paragraph 5.2) W = 2.8864 mm.  

The number N of elements of each group of dipoles is computed by using expressions (5.6)-(5.9); 

starting from the required bandwidths, we get: number of dipoles N = 12, aperture angle 2α = 4.65°. 

The length LN,ab and the width WN,ab (where a, b indicate respectively the group of dipoles working 

in S and C band) of the longest dipole of each group have been evaluated using the cut-and-try 

procedure described in paragraph 5.3, obtaining Ln,a = 20.74 mm, Wn,a = 3.09 mm and                                   

Ln,b = 9.50 mm and Wn,b = 1.92 mm. 

The length and widths of the other dipoles of each group are computed by using expressions (5.1) 

and (5.4). In table 5.7 the geometry of the dipoles (see figure 5.23) is reported.  

The length of the final termination LH of the paired strips has been chosen equal to half a 

wavelength at the highest operating frequency (i.e. LH = 25.85 mm). 

In figures 5.24 and 5.25 the reflection coefficient for each group of dipoles is reported. In order to 

improve the performance of S-band dipole group, a further dipole is inserted immediately before the 

dipole 1, with the same width and length and with spacing equal to the one between dipole 1 and 

dipole 2 of the S-band dipole group [46],[65]. As mentioned in paragraph 5.2, this solution is able 

to lower the reflection coefficient below -10 dB in the whole operating bandwidth.   

In figure 5.26 the reflection coefficient for the complete antenna is shown: in order to obtain a good 

input matching both in S and C band, we performed simulations varying the distance d between the 

two groups of dipoles from 11.28 mm to 33.86 mm. As reported in figure 5.26, the best S11 is 
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obtained for d = 11.28 mm. the final geometry of the whole antenna (figure 5.27) is reported in 

table 5.7. 

 

 

Table 5.7. Geometry of S-C band printed LPDA feed. 

 

 

Figure 5.24. S band dipoles group reflection coefficient. 
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Figure 5.25. C band dipoles group reflection coefficient. 

 

Figure 5.26.  S-C band feed reflection coefficient as a function of d parameter. 
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Figure 5.27. Complete S-C band feed. 

 

The feed gain, evaluated by CST and shown in figure 5.28, is quite stable in both the operating 

frequencies with an average value equal respectively to 11.6 dBi in the S-band and 9.43 dBi in the 

C-Band.  

 

 

Figure 5.28. S-C band feed gain. 
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Figure 5.29. S-C band feed E-plane and H-plane radiation patterns. 
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In figure 5.29 the simulated E-plane and H-plane radiation patterns are reported: it is well know 

[26] that the radiation pattern in the H-plane of log-periodic antennas (wired or printed) is much 

more wider than in E-plane. This aspect can adversely affect the efficiency of a reflector antenna: to 

avoid the problem, in order to obtain a symmetrical radiated field both in E-plane and H-plane, a 

feed configuration with two S-C band printed LPDA antennas (figure 5.30)  is introduced [62] [27]. 

 

 

 

Figure 5.30. “V” Shaped S-C band log-periodic feed. 

 

The obtained feed includes an additional design parameter: the angle ψ between the two printed 

LPDA antennas. This parameter is related to the H-plane beamwidth, which decreases rapidly with 

increasing ψ [26]: if ψ is much less than α, a sacrifice in gain occurs (due to a broadened H-plane 

beamwidth); if ψ is much greather than α, unsatisfactory front-to-back ratio has been found to 

occur.  

A design principle for the correct choice of ψ angle is described in [63]: in case of a unidirectional 

log-periodic array, the optimal value of ψ angle is comprised between 0.8*2α and 1.2*2α.  

In order to obtain both a good input matching and a symmetric beamwidth in E-plane and H-plane, 

we performed simulations varying ψ from 3.72° to 5.64° and with simultaneous excitation of the 

two antennas. A summary of the results is displayed in figure 5.31: as easily observed, the best 

input matching is obtained for ψ = 3.762°.  
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Figure 5.31. “V” Shaped S-C band reflection coefficient as a function of ψ angle. 

 

In figure 5.28 is reported the gain for the structure with ψ = 3.762° compared with the single 

antenna configuration. As expected, the V-shaped configuration allow to obtain an improvement in 

the symmetry of E-plane and H-plane radiation pattern (see figure 5.32),  and an increase of gain in 

the overall operating bandwidth.  

After these considerations, the proposed structure can be successfully used as feed for a reflector 

antenna in the 2.7-3.0 GHz and 5.4-5.8 GHz frequency range. Using a 9 meters diameter reflector, 

in order to select the optimal f/d ratio, the 10 dB feed beamwidths and the side lobe level are 

reported in table 5.8. 

 

Table 5.8.  “V” Shaped S-C band feed gain and 10 dB beamwidth. 
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Figure 5.32. “V” Shaped S-C band radiation patterns. 
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The focal length f = 5.1255 has been obtained by equation (5.5) by substituting ψ = 90°.  

In the figures 5.33-5.38 are reported the simulated θ = 0° cuts of the radiated far field of the 

reflector antenna, at 2.7, 2.8, 3.0, 5.4, 5.6, 5.8 GHz. The results shows side lobe level equal to -30 

dB in the S-band and -25 dB in the C-band and a good gain (see table 5.9) in the whole operating 

bandwidth. 

 

Frequency (GHz) Gain (dBi) 

  

2.7 46.47 

2.8 46.99 

2.9 47.19 

3.0 47.25 

  

5.4 50.74 

5.5 51.58 

5.6 52.12 

5.7 52.19 

5.8 52.24 

 

Table 5.9. S-C band reflector antenna gain. 

 

Finally, we calculated the theoretically minimum range for a weather radar system equipped with a 

reflector antenna having a 9 m diameter and fed by the “V-shaped” printed log periodic feed.  

The theoretically minimum range can be evaluated by using the Probert-Jones equation (1.23):  

 

 

  

 

Where R is the range of target, H = cτ, and L is the total  loss factor of a radar system: typically    

L= 21.1 dB [66]. 

Because of the large range of magnitudes involved in the (1.23), it is convenient to employ the 

logarithmic units and write the equation (1.21) in this form [67]: 
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 (5.15) 

 

Where θRAD is the 3 dB beamwidth in radians and PMDS is the minimum discernible signal: typical 

radar values [66] lie in the range of -104 dBm to -115 dBm [60].  

By substituting in equation (5.15) G = 46.47 (gain at 2.7 GHz), θ = φ = 0.95° (reflector radiated 

field beamwidth at 3 dB), K2=0.93, H = 3.3 µsec [60], λ = 0.112 m (wavelength at 2.7 GHz), Z = 20 

dBz (typical value of reflectivity for rain), PT = 320 KW  and   PMDS = -115 dBm we obtain R = 

371.67 Km. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.33. 2.7 GHz reflector radiated far field. 
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Figure 5.34. 2.8 GHz reflector radiated far field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.35. 3.0 GHz reflector radiated far field. 
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 Figure 5.36. 5.4 GHz reflector radiated far field. 

 

 
  

Figure 5.37. 5.6 GHz reflector radiated far field. 
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Figure 5.38. 5.8 GHz reflector radiated far field. 
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Conclusions. 
 

 

In this Phd thesis a study of  new feeding techniques for the log-periodic printed feeds has been 

presented. The first proposed technique has been applied to a printed LPDA operating over the C, X 

and Ku band and has been analyzed using CST MICROWAVE STUDIO 2012: the antenna is fed 

using two coaxial cables, which provide the required broadband input matching, stabilize the 

antenna phase center, and improve the far field pattern when compared with an antenna fed with a 

single coaxial cable. The second proposed technique, based on a coplanar feeding waveguide, is 

able to avoid manufacturing problems due to the soldering, typical of the coaxial cable 

configuration, allows to obtain a simple realization, with low cost and compact size, and is easy to 

connect with the external SMA connectors. 

Finally, a “V-Shaped” S-C band printed log-periodic feed has been designed. In the 2.7-3.0 GHz 

and 5.4-5.8 GHz frequency bands, the developed feed provides a S11 < -10 dB and a symmetric 

radiation pattern both in E-plane and H-plane, with a gain greater than 10.5 dBi over the whole 

operating bandwidth. This feed may be recommended for usage in weather radar systems having a 

transmitting power less than 400 KW, allowing a discrete operational range. 
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