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Synopsis 

Eliciting preferences for goods not exchanged in a market or yet to be exchanged. Obtaining the 

value of each of the relevant characteristics the good is decomposed into. This is what the 

researcher can achieve by means of choice experiments. These consist in presenting a series of 

choice tasks to the respondents, who are in turn asked to choose their preferred option.  

Once decided to carry out a choice experiment, the researcher has to invest a lot of time and effort 

in two main aspects: the experimental design and model estimation. With respect to the latter, an 

increasing number of econometric models is available for practitioners, who have to take the 

responsibility of selecting the best model for the data at hand. In chapter 1 we present the results of 

a Monte Carlo analysis through which the performances of a series of tests for nested and non-

nested models are compared, so to provide the researchers with more guidance on model selection. 

 The choice modeling literature has widely acknowledged the respondents might use different 

decision processing strategies whilst making their choice. This has a huge impact on the way we 

formulate the econometric models.  Building on the previous literature on attribute non-attendance, 

in chapter 2 we focus on the possibility that what a respondent has indicated as ignored might have 

been instead simply less important, making use of stated attribute importance’s statements. 

Eventually, in the empirical application presented, the information regarding the most important 

attribute allows to reach the best model in terms of goodness of fit and sample prediction. 

Whilst setting up the experimental design the researcher has to give reasons to explain why a given 

number of attributes, levels, alternatives and choice tasks have been chosen, besides the 

experimental design’s strategy itself. Designing a choice experiment implies deciding how complex 

each choice task is going to be. Many studies have investigated how error variance and monetary 

valuations are affected by varying the levels of task complexity. However, there is not a common 

definition of what task complexity is. Hence, in chapter 3, a definition is provided, along with a 

systematic literature review on the issue, calling for a greater deal of task complexity’s awareness. 
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Chapter 1: A Monte Carlo analysis of the performance of selection criteria and tests 

for Choice Experiments models 
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A Monte Carlo analysis of the performance of selection criteria and tests for 

Choice Experiments models
* 

 

Abstract 

 The increased interest in modeling preference heterogeneity in Choice Experiments (CE) data has 

promoted the use of choice models within the family of Logit Mixture models. However, 

researchers have scarce guidance on how to select the appropriate model. A Monte Carlo study is 

set up to analyze the performance of different information criteria and tests used to discriminate 

between models, either nested or non-nested. In particular, within non-nested models, four criteria 

and three tests are assessed, all of them based on the Kullback-Leibler Information Criterion 

(KLIC): the AIC, AIC3, CAIC and BIC information criteria, and the tests for non-nested models 

proposed by Vuong, Horowitz and Ben-Akiva and Swait. Our results indicate that some criteria 

(especially CAIC) work better than others; and that, when feasible, information criteria should be 

complemented by the Vuong test, which has a low power, but it virtually never selects the wrong 

model, while both the Horowitz and the Ben-Akiva and Swait tests too often provide wrong 

indications. The paper concludes with a CE application dealing with public acceptance of wind 

farms, where the indications drawn from the Monte Carlo analysis are used to inform model 

selection.  

Keywords: Choice Experiments Models · Information Criteria · Model Selection · Monte Carlo Analysis · 

Tests 

 

 

*
This work is the result of the collaboration with Elisabetta Strazzera (University of Cagliari) and Silvia Ferrini 

(University of Siena). Preliminary results have been presented at the International Choice Modeling Conference, 

Sydney 2013 (Strazzera et al. 2013). 
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Abbreviations 

AIC  Akaike Information Criterion 

AIC3     Akaike Information Criterion with 3 as penalizing factor                                    

BAS  Ben-Akiva and Swait 

BIC   Bayesian Information Criterion 

CAIC   Consistent Akaike Information Criterion 

CE  Choice Experiments 

CL   Conditional Logit 

CV  Contingent Valuation 

DGP  Data Generating Process 

HOR  Horowitz 

LC  Latent Class 

LR  Log-likelihood Ratio 

MSC  Model Selection Criteria 

RPL  Random Parameters Logit 

RPL_LN Random Parameters Logit, 5 parameters log-normally distributed, one fixed 

RPL_N  Random Parameters Logit, 5 parameters normally distributed, one fixed 

RPL_M  Random Parameters Logit, 3 parameters normally distributed, 2 log-normally distributed, one fixed 

RUM   Random Utility Model 

KLIC   Kullback-Leibler Information Criterion 

1. Introduction 
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Choice Experiment models have proved to be a powerful tool to assess market and non-market 

values in marketing research and in many fields of applied economics: transport, health, tourism 

and environmental economics.  The microeconomic foundation for these models is provided by the 

Random Utility Model (RUM), which gives rise to different econometric specifications according 

to the assumptions made by the researcher for the random distribution of the utility function. The 

Conditional Logit (CL) model (McFadden 1974), also referred to as the Multinomial Logit (MNL) 

model
1
, is typically the baseline specification employed in applications, but it relies on an 

assumption of homogeneity of preferences which can often be seen as too stringent. To some 

extent, this assumption can be relaxed still using a CL specification, through an “observed” 

heterogeneity approach, i.e. by interacting individual characteristics (socioeconomic, demographic, 

psychometric covariates) with the attributes of the choice alternatives; however, this approach may 

be unsatisfactory, since it often leaves a large amount of heterogeneity unexplained. More complex 

models in the broad class of Logit Mixture models have been proposed in order to improve the fit of 

the data and the understanding of preference heterogeneity: among them, the Random Parameters 

Logit (RPL), also called Mixed Logit model (Revelt and Train 1998; Train 1998; McFadden and 

Train 2000; Train 2003), and the Latent Class (LC) model (Swait 1994; Bhat 1997) have gained 

wide popularity within the community of CE practitioners.  

Failure to properly account for heterogeneity in preferences may have a consequence on the welfare 

estimates.  A meta-analysis conducted by Martinez-Cruz (2013) over 20 empirical studies, indicates 

that the CL specification consistently yields lower estimates than models allowing for 

heterogeneity. The author confirms this result through a Monte Carlo analysis, showing that the CL 

produces downward biased estimates, although relatively more efficient than the unbiased estimates 

obtained from correctly specified heterogeneous models. This somehow contrasts with Provencher 

and Bishop (2004), who find that the CL model does better in out-of-sample forecasts than models 

designed to capture preference heterogeneity.   The issue surely needs further examination, but 
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besides the problem of the validity of welfare estimates there are other reasons for being interested 

in a correct specification of the heterogeneity of preferences, and to understand how preferences are 

distributed across the population: for example, this may help a finer tuning of marketing strategies, 

or a better comprehension of different standpoints across the population interested in a public 

project. 

Since the “true” data generating process is obviously unknown to the researcher, a viable strategy to 

find the correct (or at least the most satisfactory) model for the choice data at hand is to perform a 

specification search. Greene and Hensher (2003, p. 698) support this view: “We encourage a 

greater effort to compare and contrast such advanced models as one approach to searching for 

rules on stability in explanation and prediction”. But after estimating and comparing different 

models, the problem is how to select the “best” specification. The tools available to the researcher 

for model selection vary according to the statistical structure of the models to be compared. In 

particular, a distinction must be made for cases in which: a) the CE models to be compared are 

“regularly” nested, i.e. one model can be obtained from the other after restrictions in the interior of 

the parameter set; b) the models are nested but the restriction parameters lie in the boundary of the 

parameter space; c) the models are strictly non nested, i.e. no model can be obtained from the other 

after restrictions in the parameter set. 

When the models are “regularly” nested the testing procedure is straightforward, since classical 

testing procedures can be adopted. For example, in the case of CL and RPL models, a Likelihood 

Ratio (LR) test can be used to assess whether the RPL is a significant improvement over the 

restricted CL model, since the CL can be obtained from a given specification of a RPL by 

appropriate restrictions. This test can be applied in addition to the t-test on the significance of the 

standard deviations parameters, to test the joint significance of the estimated standard deviation 

coefficients. Alternatively, Wald or Lagrange Multiplier (LM) tests can also be applied, as 

discussed in Section2 below.  
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If the comparison is between models for which the conventional testing procedures cannot be 

applied, model selection is more problematic. In particular, when the models are nested, but the 

parameters of the restrictions to be tested are on the boundary of the parameter space, the standard 

regularity conditions for classical testing procedures do not hold. In the context of CE models, this 

is typically the case of comparison between LC models with different numbers of segments (which 

include the CL model as a degenerate mixture model with one segment only). For example, a two-

class LC model is obtained by constraining one latent class probability in the three-class LC model 

to zero, i.e. at the boundary of the probability parameter space. In this case, classical statistical tests 

for comparison of models are not available, since the regularity conditions for the tests to be chi-

squared distributed are not satisfied. A testing procedure has been proposed by Lo et al. (2001), 

based upon the test for overlapping models constructed by Vuong (1989) to confront adjacent latent 

class models (i.e. models with K and K+1 segments). However, Jeffries (2003) shows that the Lo-

Mendell-Rubin test cannot be considered a valid instrument to detect the correct number of 

segments because the assumptions made by Vuong for comparison of overlapping models do not 

hold in this case; the author supplements his theoretical analysis with a Monte Carlo study, which 

supports the result.  

Empirical applications of LC models, commented in the next section, generally use model selection 

criteria (MSC) based on the Kullback-Leibler Information Criterion (KLIC) to decide on the 

number of segments. The information criteria denote a penalized likelihood function, i.e. the 

estimated likelihood with a penalty term, which is a function of the number of parameters and/or the 

number of observations. The criteria most commonly applied in this context are: AIC (Akaike 

1973), BIC (Schwartz 1978), CAIC (Bozdogan 1987), and AIC3 (Bozdogan 1994), which are 

characterized by different penalty terms. The criteria are described in Section 3 of this paper. These 

MSC can be, and in fact are, used for comparison also between strictly non nested models, such as 

RPL and (non degenerate) LC models, or between RPL models with different parameters 

distributions.  
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Several problems can be associated with the use of MSC. One issue is that different criteria often 

diverge in their indications, so that the applied researcher is still left without guidance on the 

decision.  Thus, it would be useful to know whether some criterion is more reliable than others, so 

that in case of divergence the researcher can make a safer decision. A second problem of the MSC 

is that, as noted by Vuong (1989), they select one model deterministically, so, when feasible, a 

testing approach could be preferred since it recognizes the probabilistic nature of the data. The point 

has also been raised by Spanos (2010, p.205):  

“…the Akaike-type model selection procedures invariably give rise to unreliable inferences because: 

a) they ignore the preliminary step of validating the prespecified family of models, and b) their 

selection amounts to testing comparisons among the models within the prespecified family but 

without ‘controlling’ the relevant error probabilities”. 

 While point a) raised by Spanos may hold even when a testing approach is adopted (and, as  

recalled by Ortùzar et al. 2012, the issue of model validation should deserve more attention in CE 

estimation practice, point b) is addressed by using a testing approach. Louviere et al. (2000, p. 275) 

put forward the need of further research on testing between non nested models for choice data and 

recently Hensher et al. (2012, p.365) re-confirm the importance of this research. 

In this paper, we contribute to the literature on model selection methods for CE models, and we 

examine the reliability of available tests for discriminating between CE models, either nested or 

non-nested.  

 

A Monte Carlo analysis is carried out to evaluate the performance of different tests and criteria for 

model selection focusing on common models used in CE applications: CL, RPL and LC 

specifications. The paper aims at verifying: 

  whether, in model selection, some information criterion may be preferred to others;  

 whether some test performs better than others in selecting between non nested models,  
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 whether it is useful to adopt a testing approach to confront non nested models.  

Specifically, we analyze the performance of the AIC, AIC3, CAIC and BIC model selection 

criteria; and three tests, based on the KLIC, for strictly non nested models: the Vuong (1989), the 

Horowitz (1983) and the Ben-Akiva and Swait (1986). Furthermore, we will analyze the 

performance of the LR test in discriminating between the CL and RPL nested models.  

The paper is outlined as follows. The second section briefly reviews the instruments used in the 

literature for model selection between CE models. Section three describes the Monte Carlo design, 

the models and selection criteria and tests analyzed in the study; section four presents the results; 

section five illustrates how these findings can be used to guide model selection in a typical case 

study for environmental decision making. Conclusions are provided in the last section. 

 

2. Model selection in CE studies 

 

The issue of model selection has received scarce attention in CE modelling. With the only exception 

of the study by Mariel et al. (2013) which will be discussed below, we are not aware of 

methodological studies specifically designed to study the performance of model selection methods 

in this field. Therefore, we will examine results obtained for classes of models which are to some 

extent related to those employed in CE studies.  

 

For instance, the issue of the detection of the correct number of segments in mixture models has 

been explored in marketing studies. Tuma and Decker (2013) review several simulation studies that 

analyze the performance of alternative model selection criteria on Finite Mixture Models (FMM), a 

broad class of models that includes very different mixture specifications, ranging from partial least 

squares to multilevel latent class models, and find that in most cases the “best” criterion for 
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determining the number of segments is AIC3. Among them, the study by Andrews and Currim 

(2003) deals with a finite mixture Logit model that is close enough to the structure of the LC 

models employed in CE applications. Their Monte Carlo analysis is designed to test the 

performance of 7 model selection criteria (among them AIC, AIC3, CAIC, BIC) in retaining the 

correct number of segments in a mixture model for multinomial choice data. They find that AIC 

often either underestimates or overestimates the number of segments, and that both CAIC and BIC 

perform worse than AIC3; though, in contrast with AIC3, CAIC and BIC never overestimate the 

number of segments (holding the principle of parsimony, overestimation is deemed worse than 

underestimation). This result is confirmed for finite mixture normal models by Brochado and 

Martins (2006): while AIC and AIC3 often overestimate the number of segments, the number of 

overestimations by BIC and CAIC is negligible. In addition, Andrews and Currim (2003) find that 

the performance of CAIC and BIC considerably improves when the number of observations 

increases, in accordance with their characteristic of consistency. This feature is particularly 

important, since most CE studies, especially in environmental literature, as shown in Table A in 

Appendix, are characterized by larger data sets than those employed in the simulation studies 

surveyed by Tuma and Decker.  

Table A summarizes recent studies published in main environmental economics journals
2
 and 

shows that in empirical CE applications the AIC criterion is still the criterion most commonly used 

to determine the number of segments in LC model specifications. In several applications AIC is 

complemented with BIC (Kanchanaroek et al. 2013; Nguyen et al. 2013; Strazzera et al. 2012; 

Hidrue et al. 2011), sometimes with AIC3 (Thiene et al. 2012; Borg and Scarpa 2010), or CAIC 

(Thiene et al. 2012; Meyerhoff et al. 2010). Hynes et al. (2008, p.1020) refer to conclusions drawn 

by Andrews and Currim (2003) to point out that “it is unrealistic to assume that one segment-

retention criterion is best for mixtures of all types of distributions in all situations”, and conclude 

that it is better to use different criteria to decide on the number of segments in LC models for CE 

data. It would be useful to shed some light on the performance of different selection criteria in the 
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context of finite mixture Logit models typically used in CE applications, so that practitioners, 

knowing the relative strengths and weaknesses of each criterion, can make a more informed 

decision.  

 

The comparison between RPL and CL models is quite common in the reviewed literature and is 

usually based on the t-statistic tests of the deviation of the random parameters. Some studies report 

the log-likelihood ratio (LR) test (Birol et al. 2006; Gracia et al. 2009; Kataria 2009; Abdullah and 

Mariel 2010; Kosenius 2010; Van Loo et al. 2011; Gelo and Koch 2012).  An alternative test for 

nested models, rarely applied in the literature, is the Lagrange Multiplier (LM) test proposed by 

McFadden and Train (2000). Mariel et al. (2013) compare the performance of the LM and the t-

statistic tests in selecting the correct specification for the attribute coefficients of the RUM model in 

a Monte Carlo study.  Their results indicate that the LM test has good properties in terms of 

empirical size, while the t-statistic has higher empirical size, though it also shows higher power. 

The authors warn “against a straightforward and regrettably widely used selection of random 

parameters in an RPL model based on t-statistics of their deviations without deeper study based on 

an alternative test procedure” Mariel et al. (2013, p.56). It would be interesting to have also some 

indications on the performance of the LR test in this setting. 

 

The comparison between LC and RPL models is usually made through MSC, but a testing approach 

has also been taken in some recent studies. In particular, the Ben-Akiva and Swait (1986) test has 

been employed in several applications (e.g. Birol et al. 2006; Colombo et al. 2009; Shen 2009; 

Brouwer et al. 2010; Kosenius 2010). Burton and Rigby (2009) apply the Clark (2003) test, which 

is a variant of the Vuong (1989) test for non-nested models
3
. The Vuong test has been applied in 

Contingent Valuation studies (e.g. Czajkowski and Scasny 2010; Glenk and Fischer 2010; Genius 

and Strazzera 2011; Halkos and Jones 2012); however we are not aware of any application in CE 

studies, the only exception being Czajkowski et al. (2009), who mention that this test was used 
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along with other selection methods, although they do not give specific information on the results of 

the testing procedure. Given that the distributional properties of the Clark test are unknown, while 

the Vuong test is known to be a consistent test, we will explore how it works for CE applications, 

characterized by larger data sets than typical CV applications.  

Another category of CE non nested models is RPL models with different distributions specified for 

the random parameters. Generally the Normal distribution is used when there is no a priori sign 

restriction (Shen 2009) and the symmetry assumption is reasonable (Hess 2010), otherwise a Log-

normal distribution is the preferred candidate. Alternative specifications for the random parameter 

distributions are Uniform and Triangular. A simple strategy to select the distribution of a random 

parameter is to look at fit improvement, as in Hynes et al. (2008), but a testing approach can also be 

adopted: for example, Fosgerau and Bierlaire (2007) propose a semi non parametric test, but also 

the tests for non-nested models mentioned above could be used, hence it is useful to see how these 

tests work in this context. 

In conclusion, a simulation study explicitly designed for CE models would give useful guidance to 

practitioners for selection between models commonly applied in CE studies. This is what we are 

describing in the following sections. 

 

3. Methods 

 

3.1 The Monte Carlo Design 

 

A Monte Carlo analysis was carried out to assess the performance of different methods in 

discriminating between alternative estimators. We simulated individuals’ choices using the frame of 

a CE study conducted to assess the social acceptability of wind farms in Sardinia, Italy (see section 

5 in this paper for details). The study is a typical CE application for eliciting environmental 

preferences. Two unlabelled options are characterized by six attributes: four attributes with three 



18 
 

levels, one with two and the monetary attribute with four levels (see Table B in Appendix for 

details). Each respondent values six choice sets resulting from the blocking of a   -efficient design 

(see Strazzera et al. 2012 for details). The study sample size was 432 individuals for 2592 choices.  

The Monte Carlo exercise uses the same design and sample size of the case study, and simulates the 

choice data considering different data generation processes (DGP); alternative estimators are then 

applied to the simulated data.  The code for the analysis, including algorithms for estimation of the 

CL and LC models, has been written by the authors in GAUSS Aptech programming language, 

while for estimation of the RPL model we used the GAUSS routine made available by K. Train 

(1999)
4
.  

The method consists in simulating respondents’ choices by first specifying the utility components, 

and applying different error terms based on different distributional assumptions. The application 

involved comparisons of two alternative scenarios, hence two utility functions are specified for each 

choice situation, and the simulated choice is assigned to the alternative which provides the highest 

level of utility, in line with the RUM theory (McFadden 1974).  

Specifically, the two utilities are specified in the following way: 

                          (1) 

                          (2) 

where     is the utility of individual i,    is the     matrix of regressors (k attributes) and     the 

random component drawn from a given distribution, attached to alternative 1; analogously    , 

   and     with respect to alternative 2. Finally     is the     vector of coefficients, which differ 

depending on the DGP as shown in Table 1. Hence, the choice is assigned to alternative 1 (2) if and 

only if         (       ). The error terms have been specified as Gumbel distributions; all 

simulations have been conducted using a Lower variance scenario (Gumbel standard deviation =2) 

and a Higher variance scenario (Gumbel standard deviation = 3). 
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Several DGPs are considered in turn, and the first scenario is the one with no significant 

heterogeneity in preferences. In particular, we set the utility parameters as fixed coefficients, and 

the error terms are identically and independently Gumbel distributed.   

Under this setting, the probability that individual i chooses alternative 1 (alternative 2 otherwise), is 

given by: 

                                            (3) 

This is the Conditional Logit Model DGP. 

In order to consider situations in which heterogeneity is present, we use the Random Parameters 

Logit and the Latent Class models. Both estimators account for heterogeneity, since it is relaxed the 

CL assumption that the parameters are fixed and equal for all individuals. In a nutshell, the 

difference between the RPL and the LC model is that the former assumes that the parameters are 

random variates that follow a continuous distribution, while the latter assumes that the distribution 

is discrete, with same utility parameters within classes, but that differ across classes.  

Considering the RPL specification first, the utility depends also on a random component included in 

the parameters. Hence the coefficient     in equations (1) and (2) is specified as follows: 

     
 
                (4) 

where   stands for the population mean and     is an error term, which is the same across choice 

situations for each individual. In the experiments using RPL NORMAL DGP, it is constructed as  

                       (5) 

where     is distributed as a Normal (0,1), and   is a scale parameter different for each random 

coefficient, as reported in Table 1. For the RPL LOGNORMAL DGP the error term is constructed 

similarly, replacing     by          . 
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In our experiments we set five attributes to be randomly distributed, while the cost parameter is kept 

fixed.  Equations (1) and (2) become: 

       
 
                         (6) 

       
 
                .        (7) 

Turning to the LC models, in this study we consider two LC DGP scenarios, namely with two and 

three classes, where in both cases we assign individuals to a class depending on a covariate    

(    vector). Specifically, heterogeneity is modeled as follows. First, for each individual we set: 

                       (8) 

where    are errors drawn from a logistic distribution and    is a scalar. Then, we set an indicator 

function which groups individuals into the two (or three) classes depending on the values of   . 

Finally, depending on which class the individual belongs to, a set of coefficients      is assigned to 

the attributes as well as the error terms      , which are drawn from a Gumbel distribution. 

Therefore in this setting the utility functions are specified as follows: 

                              (9) 

                   .           (10) 

Summarizing, we designed four different data generating processes (DGP): CL, RPL, and LC with 

two and three classes. For the RPL model, we set five attributes to be normally or log-normally 

distributed, while the sixth attribute, the price, was fixed. Within the LC context, we segmented 

respondents into groups depending on a covariate. We then estimate, for each DGP, the four models 

described: in this way we will always have a comparison of a model closer to the true against a 

misspecified model. Table 1 shows the coefficients which enter the utility function for each DGP in 

the study. 
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3.2 Model Selection  

In this section we briefly review some model selection criteria and tests based on the Kullback-

Leibler (1951) Information Criterion
5
, drawing largely from Genius and Strazzera (2001).  

Given the true conditional density, unknown to the researcher, and defined as: 

                            (11) 

The researcher will specify a given parametric model defined as follows: 

                                 (12) 

Hence, the KLIC can be defined in the following way: 

Table 1. Data Generating Process: Parameters and Regressors 

DATA GENERATING PROCESS 
  Coefficients CL RPL LC-2 classes

a
 LC-3 classes

b
  Regressors  Levels 

   
Class1  Class2 Class1 Class2  Class3 

     0.34 0.52 -0.88 2.8 0.88 2.8 0.12    1-2-3 

   0.47 0.55 -1.5 3.9 1.5 1.9 0.13    1-2-3 

   0.33 0.2 1.4 -2.5 1.4 -2.5 4.4    0-1 

   0.09 0.77 -0.29 3.8 -0.29 1.8 -1.18    1-2-3 

   0.16 0.35 0.05 4.39 0.05 0.39 -2.21    0-1-2 

   1.16 2.25 0.2 5.3 0.69 5.3 9.85     0-.1-.3-.5 

   

 
0.68 

          

 
0.166 

          

 
0.51 

          

 
0.77 

            0.35           
  

   
  

0.4 0.4 
     
     

 

 

1-2-3a 
1-2-3-4b 

Average class 
probabilities 

    0.501 0.499 0.36 0.452 0.188 

    
aDGP LC-2 calsses. bDGP LC-3 classes. 

 



22 
 

                        
        

       

          
        (13) 

Given this measure of proximity, we can compare pairs of competing parametric models, 

characterized by underlying conditional densities. Furthermore, (17) can be approximated by the 

following measure (Gourieroux and Monfort 1995): 

    
                 

                         (14) 

In comparing two models, for example f and g, equation (18) reduces to a log-likelihood ratio since 

the term                  drops, therefore we would have: 

                                                     (15) 

When considering two competing nested models, respectively having    and    as maximum 

likelihood estimators, the log-likelihood ratio test of the two models is given by: 

                                                        (16) 

Under the null hypothesis, (16) follows a chi-square distribution (and some regularity assumptions, 

see Wooldridge (2010, p.428)) with degrees of freedom given by the difference between the number 

of parameters in the two models considered. In our study we employ this test to discriminate 

between Nested models: the RPL and the CL model (the latter nested in the former).  

For comparison of “boundary” nested models (LC models with different numbers of segments) and 

of strictly non-nested models, we will use the following MSC: AIC (Akaike 1987), AIC3 

(Bozdogan 1994), BIC (Schwartz 1978) and CAIC (Bozdogan 1987), which are defined as follows: 

                                    (17) 

                                    (18) 
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                                           (19) 

                                         (20) 

where p indicates the number of parameters and n the number of observations. For each pair of 

models under comparison, each MSC will indicate the preferred model on the basis of the highest 

penalized log-likelihood.  

In addition, for strictly non nested models we adopt a testing approach, still based on the KLIC. In 

particular, the Vuong test indicates whether the two competing models are equally close to the true 

model, where the KLIC provides a measure of distance.  

Specifically, the Vuong null hypothesis postulates that models f and g are equivalent: 

          
         

  

         
  
             (21) 

whereas the alternatives are that the model f is better than g (22) or vice versa (23): 

          
         

  

         
  
   , or          (22) 

          
         

  

         
  
             (23) 

where    and    stand for the pseudo-true values. Therefore this test allows the researcher to 

discriminate between two non-nested models in a testing framework, whose output might be: i) 

selecting model f; ii) selecting model g; iii) not selecting any model. Having shown the hypothesis 

to be tested, the Vuong test statistic is: 

 
  

                        (24) 

where LR has been defined in (15) and    is: 
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       (25) 

Vuong shows that under the null hypothesis, the test in (24) converges in distribution to a standard 

normal. Moreover, the author indicates that the same distributional assumption holds when the LR 

in (24) is adjusted with a penalization terms, as those presented in (17)-(20).  

Alternatively, it is possible to apply the test proposed by Horowitz (1983), where the following 

adjusted log-likelihood ratio index was proposed to compare two non-nested models f and g: 

  
    

               –      

          
          (26) 

Under the null hypothesis that the model with lower ρ is the true model, the bound specified in (27) 

holds: 

     
    

                                (27) 

Finally, Ben-Akiva and Swait (1986) propose a variant of the Horowitz test. Define            as 

the equal probabilities sample log-likelihood. Compute for each model, f and g, the Akaike adjusted 

likelihood ratio index given by: 

  
    

                  

          
          (28) 

and analogously compute   
  (K is the number of parameters). Define z the positive difference 

between   
  and   

 ; then, under the null hypothesis that f is the true model, the probability that the 

difference is greater than or equal to z is bounded as follows: 

     
    

                                      (29) 

where 
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            (30) 

and   is the standard normal cumulative distribution function.  

In this study we analyze the performance of MSC and tests summarized in Table 2. According to 

the nature of the relationship between models (Nested, “Boundary” Nested or Non Nested models) 

different tests and MSC will be used.   

 

 

4. Results 

 

The design of the Monte Carlo analysis involved 1000 replications per DGP. The results will be 

described by a set of Figures where different selection methods are contrasted. In some exercises 

(especially when the LC models are involved) the optimization algorithm failed to converge, and 

the corresponding replications had to be discarded: details about discharged values for model 

estimated for a specific DGP will be reported underneath the figures below. The assessment will 

always involve a pair-wise comparison between a correctly specified model and a misspecified 

model. The blue color in the graphs is used for correct indications given by a specific selection 

method; the red color stands for wrong indications; the purple color indicates cases in which the 

Table 2. Models relation and MSC and Tests 

  
Model Selection Criteria BAS

a 
Hor

b 
V

c 
LR 

 
AIC AIC3 CAIC BIC     AIC AIC3 CAIC BIC  

Nested Models  
(RPL vs CL)           

● 

Non Nested models 
(LC vs RPL) 

● ● ● 
 

● ● ● ● ● ● 
 

“Boundary”  Nested 
models 
(CL vs LC 2 vs LC 3 ) 

● ● ● ● 
      

 

Note: a) BAS is for Ben-Akiva and Swait; b) Hor for Horowitz; c) V is for Voung. 
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Vuong test does not provide any indication.  A summary chart of comparisons is provided in Table 

3. 

 

The discussion of results begins with the assessment of MSC and tests in selection of strictly non 

nested models characterized by different statistical structures (RPL and LC); afterwards, we will 

examine the performance of MSC in discriminating between “boundary” nested models, in the 

category of LC models (CL and LC with 2 and 3 classes); then we will compare the MSC and 

testing approach for selecting between RPL models with different distributions for the random 

parameters, to finish off with the analysis of the performance of the likelihood ratio test in selecting 

between the nested CL and RPL models.  

Figures 1, 2, 3 and 4 report comparisons of non-nested models, RPL and LC, by means of MSC and 

tests. Figure 1 considers the DGP LC-2 classes and the comparison of the LC-2 classes model with 

the RPL. All Model Selection Criteria and tests indicate correctly the true model in both the lower 

and higher variance settings.  

A similar positive result is obtained in the case of lower variance for the DGP LC-3 classes. 

However, when the higher variance scenario is considered, results are less encouraging. The CAIC 

and BIC MSC criteria often select the wrong model, while the Vuong test is unable to discriminate 

between models. On the contrary, the AIC and AIC3 criteria and the BAS and Horowitz tests 

perform well.  

Table 3. Summary of comparisons 

 Data generation process 

 CL RPL LC-2 classes LC-3 classes 

 

Models 
comparison 

CL-LC 2 (Figure 5) RPL-LC 2 (Figure 3) LC 2-CL (Figure 7) LC 3-CL (Figure 8) 

CL-LC 3 (Figure 6) RPL-LC 3 (Figure 4) LC 2-LC3 (Figure 9) LC 3-LC 2 (Figure 10) 

CL-RPL (Table4) RPL-CL (Table 4) LC 2-RPL (Figure 1) LC 3-RPL (Figure 2) 
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Fig. 2. DGP Latent 3 Classes: Latent 3 Classes vs Random Parameters Logit.

Note: N. of valid replications 787

 
 Note: N. of valid replications 430 

AIC AIC3 CAIC BIC BAS HOR V_AIC V_AIC3 V_CAIC V_BIC 

LC3 100 100 100 100 100 100 100 100 100 100 

RPL 0 0 0 0 0 0 0 0 0 0 

Equivalent             0 0 0 0 

0% 
20% 
40% 
60% 
80% 

100% 

Fig. 2a. Lower variance scenario 

AIC AIC3 CAIC BIC BAS HOR V_AIC V_AIC3 V_CAIC V_BIC 

LC3 85.35 80.47 36.28 45.59 89.4 88 0 6.4 0.3 0 

RPL 14.65 19.53 63.72 54.41 10.6 12 0 0 3.7 0 

Equivalent             100 93.96 96 100 

0% 
20% 
40% 
60% 
80% 

100% 

Fig. 2b. Higher variance scenario 

Fig. 1. DGP Latent 2 Classes: Latent 2 Classes vs Random Parameters Logit.

Note: N. of valid replications 746 

 

Note: N. of valid replications 824 

AIC AIC3 CAIC BIC BAS HOR V_AIC V_AIC3 V_CAIC V_BIC 

LC2 100 100 100 100 100 100 100 100 100 100 

RPL 0 0 0 0 0 0 0 0 0 0 

Ho not rejected             0 0 0 0 

0% 
20% 
40% 
60% 
80% 

100% 

Fig. 1a. Lower variance scenario 

AIC AIC3 CAIC BIC BAS HOR V_AIC V_AIC3 V_CAIC V_BIC 

LC2 100 100 100 100 100 100 100 100 100 100 

RPL 0 0 0 0 0 0 0 0 0 0 

Ho not rejected             0 0 0 0 

0% 
20% 
40% 
60% 
80% 

100% 

Fig 1b. Higher variance scenario 
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It can be observed that in this case the number of discarded replications is quite high, since in many 

cases the estimation algorithm for the LC-3 classes model failed to converge. This leaves us with a 

smaller number of valid replications for this exercise, although still comparable with other Monte 

Carlo studies in this field
6
. It seems that the high variance of the error term induces a variability of 

the choice data that confounds the three classes segmentation, so that the LC-3 classes model is 

either unable to fit the data (it does not converge) or, if it does, the fit is not as good, and the 

difference between the two competing models is not so substantial, as it was in the low variance 

scenario.    

From Figure 3 appears that the BAS and the Horowitz tests select the latent class models also when 

the DGP is RPL, hence giving a wrong indication. The low power of the Vuong test is seen again in 

these experiments, with some exceptions when the test uses the CAIC penalization. It is noteworthy 

that the Vuong test never selects the misspecified model, although too often it fails to reject the null 

hypothesis of no significant difference between the two specifications.  
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The MSC work well when the RPL DGP is built with lower variance, although the AIC3 and 

especially the AIC give often the wrong indication in the higher variance setting. The CAIC and 

BIC criteria seem the most efficient even with higher variance. In this comparison, the BAS test is 

the worst method mirrored by the Horowitz test which performs slightly better. The Vuong test 

penalized by CAIC is the most promising in its category. 

The bad performance of the BAS and Horowitz tests is again confirmed by the results reported in 

Figure 4. In this case we compare the RPL and the LC model with 3 classes when the DGP is the 

RPL. In both the lower and the higher variance context the two tests almost always select the wrong 

model. The AIC is quite unsatisfactory too, while the BIC and CAIC criteria always select the 

correct model. It is interesting to note that in this case also the Vuong test, using the CAIC 

penalization works very well; the Vuong test with other corrections is less powerful, but again it 

never selects the wrong model.  

Fig. 3. DGP RPL: Random Parameters Logit vs Latent 2 Classes 

Note: N. of valid replications 954 

 
 Note: N. of valid replications 892 

AIC AIC3 CAIC BIC BAS HOR V_AIC V_AIC3 V_CAIC V_BIC 

RPL 87.9 95.8 99.8 99.6 66 74 0 1.6 48.8 0 

LC2 12.1 4.2 0.2 0.4 34 26 0 0 0 0 

Equivalent             100 98.4 51.2 100 

0% 
20% 
40% 
60% 
80% 

100% 

Fig. 3a. Lower variance scenario 

AIC AIC3 CAIC BIC BAS HOR V_AIC V_AIC3 V_CAIC V_BIC 

RPL 50.44 66.92 99.55 99.1 21.1 38.5 0 0 29.24 0.2 

LC2 49.56 33.08 0.45 0.9 78.9 61.5 0 0 0 0 

Equivalent             100 100 70.76 99.8 

0% 
20% 
40% 
60% 
80% 

100% 

Fig. 3b. Higher variance scenario  
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A comparison most commonly seen in the environmental literature (see Table A in Appendix) is 

between the CL and LC models. These comparisons are presented in Figures 5 to 8. In this case the 

tests for non-nested models cannot be applied and hence only MSC are reported. Results show that 

when the DGP is CL, especially the CAIC and BIC criteria, but also the AIC3, work very well. 

However, in the comparison of CL with the LC-2 classes the AIC points in several cases to the 

misspecified model.  

 

 

 

Fig. 4. DGP RPL: Random Parameters Logit vs Latent 3 Classes 

Note: N. of valid replications 934 

 
 Note: N. of valid replications 892 

AIC AIC3 CAIC BIC BAS HOR V_AIC V_AIC3 V_CAIC V_BIC 

RPL 70.33 95.8 100 100 8 22.8 0 9.1 100 67.5 

LC3 29.67 4.2 0 0 92 77.2 0 0 0 0 

Equivalent             100 90.9 0 32.5 

0% 
20% 
40% 
60% 
80% 

100% 

Fig 4a. Lower variance scenario 

AIC AIC3 CAIC BIC BAS HOR V_AIC V_AIC3 V_CAIC V_BIC 

RPL 57.7 91.4 100 100 1.5 14 0 8.2 99.7 67.4 

LC3 42.3 8.6 0 0 98.5 86 0 0 0 0 

Equivalent             100 91.8 0.3 32.6 

0% 
20% 
40% 
60% 
80% 

100% 

Fig 4b. Higher variance scenario 



31 
 

 

 

All criteria instead discriminate very well between the correctly specified CL model and the 

misspecified LC-3 classes model, both in the lower and in the higher variance scenario. 

 

 

 

 

 

The same clear-cut situation is seen in Figure 7 where the correctly specified LC-2 classes is 

confronted with the CL model.  

Fig. 6. DGP CL: Conditional Logit vs Latent 3 Classes 

 
                    Note: N. of valid replications 652  Note: N. of valid replications 671 

 

  

AIC AIC3 CAIC BIC 

CL 99.7 100 100 100 

LC3 0.3 0 0 0 

0% 

20% 

40% 

60% 

80% 

100% 

Fig. 6a. Lower variance 

MSC_AIC MSC_AIC3 MSC_CAIC MSC_BIC 

CL 99.7 100 100 100 

LC3 0.3 0 0 0 

Fig. 6b. Higher variance 

Fig. 5. DGP CL: Conditional Logit vs Latent 2 Classes 

 
                      Note: N. of valid replications 652  Note: N. of valid replications 671 

 

  

AIC AIC3 CAIC BIC 

CL 70.1 95.5 100 100 

LC2 29.9 4.5 0 0 

0% 

20% 

40% 

60% 

80% 

100% 

Fig. 5a. Lower variance scenario  

AIC AIC3 CAIC BIC 

CL 69.9 95 100 100 

LC2 30.1 5 0 0 

Fig. 5b. Higher variance scenario 
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Figure 8 reports the DGP LC-3 classes: in the lower variance setting the LC model is easily selected 

over the CL model. Conversely, in the higher variance setting the CAIC and BIC are dominated by 

the other two criteria, since they choose in the vast majority of cases the CL model, i.e. they do not 

recognize the segmentation. This outcome is consistent with what described in Fig. 2b (DGP LC-3, 

comparison of LC-3 classes model with RPL): just as in that case, the LC-3 estimator does not 

provide a very good fit to the data, probably because the error disturbance blurs the segment 

separation, and the comparative advantage of the correct model in terms of KLIC is slight. In this 

situation the CAIC and BIC select the most parsimonious model, while AIC3 and AIC select the 

correct specification.  

Fig. 7. DGP Latent 2 Classes: Latent 2 Classes vs Conditional Logit  

 
                              Note: N. of valid replications 746   Note: N. of valid replications 824 

 

  

AIC AIC3 CAIC BIC 

LC2 100 100 100 100 

CL 0 0 0 0 

0% 

20% 

40% 

60% 

80% 

100% 

Fig. 7a. Lower variance scenario 

AIC AIC3 CAIC BIC 

LC2 100 100 100 100 

CL 0 0 0 0 

Fig. 7b. Higher variance scenario 
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The relative performance of the MSC dramatically changes in the next exercises when the 

comparisons are between the LC-2 and LC-3 classes: Figures 9-10 report these comparisons. When 

the DGP is LC-2 (Figure 9), either in the lower and higher variance scenario, the AIC and AIC3 

almost always select the wrong model, while BIC and especially CAIC perform very well.   

 

When the DGP is LC-3 (Figure 10), all criteria seem to work nicely in the lower variance setting, 

while in the higher variance setting the BIC and the CAIC underestimate the number of segments, 

respectively, in the 13% and 20% of cases. The tendency by AIC and AIC3 to overfit, and by CAIC 

and BIC to underfit the number of segments (especially when the choice data are more “noisy”) 

Fig. 9. DGP Latent 2 Classes: Latent 2 Classes vs Latent 3 Classes 

 
                              Note: N. of valid replications 746   Note: N. of valid replications 824 

 

  

AIC AIC3 CAIC BIC 

LC2 6.3 17.15 82.7 77.6 

LC3 93.7 82.85 17.3 22.4 

0% 

20% 

40% 

60% 

80% 

100% 

Fig. 9a. Lower variance scenario 

AIC AIC3 CAIC BIC 

LC2 1.69 8.25 91.5 85.67 

LC3 98.31 91.75 8.5 14.33 

Fig. 9b. Higher variance scenario 

Fig. 8. DGP Latent 3 Classes: Latent 3 Classes vs Conditional Logit  

 
                              Note: N. of valid replications 787   Note: N. of valid replications 430 

 

  

AIC AIC3 CAIC BIC 

LC3 100 100 100 100 

CL 0 0 0 0 

0% 

20% 

40% 

60% 

80% 

100% 

Fig. 8a. Lower variance scenario 

AIC AIC3 CAIC BIC 

LC3 84.5 77 12.8 20.7 

CL 15.5 23 87.2 79.3 

0% 

20% 

40% 

60% 

80% 

100% 

Fig. 8b. Higher variance scenario 
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confirms previous results by Andrews and Currim (2003) and Brochado and Martins (2006), as 

discussed in Section 2.  

 

 

The comparisons examined so far involved pairs of models, non-nested and “boundary” nested, 

characterized by different number of parameters. We have seen that in case of discrepancy, AIC and 

AIC3 tend to select the richer model, while BIC and CAIC select the more parsimonious 

specification; in comparing non nested models, the BAS and Horowitz tests resemble the AIC and 

AIC3 patterns, but with worse performance; while the Vuong test is most often unable to 

discriminate between models, even though when it does it is practically sure that it gives the correct 

indication.  

Now we will compare non nested models with equal number of parameters. In this case, there is no 

difference among the MSC, and also the BAS and Horowitz tests reduce to the same formula. In 

particular, we contrast different specifications of the RPL model (Figures 11-13) where the five no 

price attributes are treated as random distributions while the price parameter is always kept fixed. 

Three scenarios are considered for this comparison. First, we consider the DGP RPL with normally 

distributed (RPL_N) parameters and we contrast the correct specification with that of a RPL model 

with parameters specified as log-normally distributed. Then we generate data from a DGP RPL 

Fig. 10. DGP Latent 3 Classes: Latent 3 Classes vs Latent 2 Classes 

 
                              Note: N. of valid replications 787   Note: N. of valid replications 430 

 

  

AIC AIC3 CAIC BIC 

LC3 100 100 99.6 99.75 

LC2 0 0 0.4 0.25 

0% 

20% 

40% 

60% 

80% 

100% 

Fig. 10a. Lower variance scenario 

AIC AIC3 CAIC BIC 

LC3 99.77 99.07 79.54 86.75 

LC2 0.23 0.93 20.46 13.25 

Fig 10b. Higher variance scenario 
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model with log-normally distributed (RPL_LN) parameters, estimating the correct model and a RPL 

normally distributed parameters. Finally, we set the DGP so that three parameters are normally 

distributed and two are log-normally distributed (DGP mixed), estimating the correct model (i.e. 

RPL Mixed) and two RPL models, with respectively 5 normal and 5 log-normal random 

parameters.  

Figure 11 reports the DGP RPL normal with comparison between RPL normal and log-normal or 

mixed normal and log-normal. Figure 11a and 12a show that the MSC select the correctly specified 

models in most comparisons between the Normal and the Log-normal specification.  

 

 

 

 

When the comparison involves the Mixed specification model (Figure 11b and 12b) the 

performance of MSC declines although they are still preferable to the BAS/ Horowitz test. As 

regards the Vuong test, again in the majority of cases it cannot discriminate between models, even 

though, consistently with what previously noticed, it never selects the wrong model.   

Fig. 11. DGP RPL_N: DGP RPL_N vs DGP RPL_LN and RPL_M 

  
                              Note: N. of valid replications 955   Note: N. of valid replications 932 

 

  

MSC BAS/HOR Vuong 

RPL_N 89.4 82.3 8.5 

RPL_LN 10.6 17.7 0 

Equivalent 0 0 91.5 

0% 

20% 

40% 

60% 

80% 

100% 

Fig 11a. RPL_N vs RPL_LN 

MSC BAS/HOR Vuong 

RPL_N 77.6 62.8 1.6 

RPL_M 22.4 37.2 0 

Equivalent 0 0 98.4 

Fig. 11b. RPL_N vs RPL_M 
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In Figure 13 we examine the case of DGP RPL mixed. The results echo previous MSC and tests 

performance: MSC select the correct specification more often than the BAS/HOR tests, and the 

Vuong test is generally unable to discriminate between models.  

These results seem to suggest that the standard practice of choosing the distributional specification 

on the basis of improvements in the log-likelihood values is well supported. 

 

 

Finally, we report results of the analysis of the LR test performance in discriminating between 

nested models: the RPL and CL (see Table 2). It can be observed that when the DGP is CL the 

Fig. 13. DGP RPL_M: DGP RPL_LN vs DGP RPL_N and RPL_M 

  
                              Note: N. of valid replications 507   Note: N. of valid replications 507 

 

  

MSC BAS/HOR Vuong 

RPL_M 78.9 55 0.2 

RPL_LN 21.1 45 0 

Equivalent 0 0 99.8 

0% 

20% 

40% 

60% 

80% 

100% 

Fig. 13a. RPL_M vs RPL_LN 

MSC BAS/HOR Vuong 

RPL_M 88.95 78.3 15.77 

RPL_N 11.05 21.7 0 

Equivalent 0 0 84.23 

0% 

20% 

40% 

60% 

80% 

100% 

Fig. 13b. RPL_M vs RPL_N 

Fig. 12. DGP RPL_LN: DGP RPL_LN vs DGP RPL_N and RPL_M 

  
                              Note: N. of valid replications 955   Note: N. of valid replications 932 

 

  

MSC BAS/HOR Vuong 

RPL_LN 94.1 90.6 27.4 

RPL_N 5.9 9.4 0 

Equivalent 0 0 72.6 

0% 

20% 

40% 

60% 

80% 

100% 

FIG. 12a. RPL_LN vs RPL_N 

MSC BAS/HOR Vuong 

RPL_LN 69.6 53.8 0.8 

RPL_M 30.4 46.2 0 

Equivalent 0 0 99.2 

FIG. 12b. RPL_LN vs RPL_M 
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percentage of rejection of the null (CL) is smaller than the size of the test. When the DGP is RPL, 

the LR test leads to selection of the correctly specified model over the CL almost in every 

comparison when the DGP is lower variance; however the power of the test decreases sensibly in 

the experiment with higher variance.  

 

 

 

5. Empirical study 

 

In this section we report an illustrative environmental economics CE study, where the MSC and 

tests previously analyzed can be implemented. The survey is detailed in Strazzera et al. (2012) and 

refers to a study on public acceptance of wind energy projects. Respondents, interviewed face-to-

face by trained enumerators, valued six pairs of wind projects characterized by different plant 

locations, public benefits, ownership of the plant and private benefits in the form of energy bill 

savings. The designed attributes are reported in Table B in Appendix. 

The aim of the study was to inform decision-making on the factors that may promote or hinder 

public acceptance of green energy projects, with a special attention on taking into account 

individuals’ preference heterogeneity. Therefore different model specifications were estimated: the 

Table 4. Log-likelihood ratio tests CL versus RPL, % RPL is preferred   

DGP Level of significance Low variance High variance 

RPL
a
 

α=10% 100 87.66 

α=5% 99.89 78.47 

α=1% 99.47 59.3 

CL
b
 

α=10% 3.37 1.93 

α=5% 0.76 0.74 

α=1% 0.15 0 
a
RPL DGP:  lower variance: 954 valid replications; higher variance: 892 valid replications.  

b
CL DGP: lower variance: 652 valid replications; higher variance: 671 valid replications. 
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CL model, the RPL with different distributional specifications for the random parameters, and 

several latent class models (LC with 2, 3, 4 classes, with and without covariates in the class 

probability model).  The empirical data supports a LC model with four covariates in the segment 

membership probability model, which was selected through LR and Wald tests, and up to four 

segments. The LC models estimated on the empirical data are richer than the simple models used in 

our simulations, but what is most relevant for extrapolation of the Monte Carlo analysis results is 

that the statistical structure of the models is the same. Table 5 reports results for the best 

specifications of each model.  

 

Table 5. Conditional Logit, Random Parameters (Normal) Logit and Latent class models  

Variable CL RPL LC 4 

 
Coeffs 

(Std.Err) 
Coeffs 

(Std.Err) 
St.dev 

(Std.Err) 
Coeffs_Cl1 

(Std.Err) 
Coeffs_Cl2 

(Std.Err) 
Coeffs_Cl3 

(Std.Err) 
Coeffs_Cl4 

(Std.Err) 

Beach SI 
0.340***    
(0.027) 

0.523***     
(0.052) 

0.523***     
(0.074) 

0.965***   
(0.219) 

2.337***   
(0.821) 

0.365***   
(0.130) 

0.065   
(0.062) 

Beach MC 
0.476***      
(0.034) 

0.680***     
(0.067) 

0.798***     
(0.080) 

2.034***    
(0.324) 

0.589*   
(0.321) 

0.368***   
(0.135) 

0.245***   
(0.091) 

Arch_site 
0.339***     
(0.046) 

0.560***    
(0.080) 

0.768***    
(0.120) 

1.188***  
(0.311) 

-0.597   
(0.591) 

-0.104   
(0.217) 

0.671***  
(0.107) 

Property 
0.090***     
(0.030) 

0.173***     
(0.051) 

0.342***     
(0.105) 

-0.0638  
(0.174) 

0.521*  
(0.279) 

-0.222  
(0.152) 

0.300*** 
(0.079) 

Services 
0.162***    
(0.028) 

0.204***     
(0.043) 

0.365***     
(0.080) 

0.122 
(0.123) 

0.254 
(0.175) 

0.832***  
(0.203) 

-0.017  
(0.069) 

Bill saving 
1.677***     
(0.145) 

2.276***     
(0.216) 

 0.473 
(0.896) 

3.297**  
(1.504) 

5.554***  
(1.209) 

1.120***  
(0.301) 

 
 

 
 

Class Probability Model 
 

 
 

 

Constant 
 

 
 -0.764   

(0.842) 
-2.321**   
(1.077) 

-1.008   
(1.137) 

0 

ID_SI Beach 
 

 
 -0.073  

(0.225) 
0.921***  
(0.303) 

0.574*  
(0.304) 

0 

ID_MC Beach 
 

 
 0.558**  

(0.227) 
-0.283   
(0.277) 

-0.980***   
(0.328) 

0 

Consumerists 
 

 
 0.051   

(0.214) 
0.357   

(0.267) 
1.189***   
(0.351) 

0 

Local Devoted 
 

 
 -0.381*   

(0.217) 
-0.338   
(0.270) 

-0.831***   
(0.295) 

0 

Average class 
probability 

 
 

 
0.272 0.156 0.142 0.43 

Log likelihood -1583.85 -1514.75 -1435.28 

LL(0) -1796.63 -1796.63 -1796.63 

Pseudo R2 0.118 0.156 0.201 

Sample size 432 

Observations 2592 

*** 1% significance; **5% significance; *10% significance 
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The baseline model is the CL, reported in the second column of the table: the model fit seems 

satisfactory, since all parameters are significant at 1% level, and the Chi-square test (not reported) 

indicates that the full model is better than the null. Now, we want to see whether the assumption of 

homogenous preferences of the CL model is tenable. Hence, we estimate a RPL model, and allow 

for heterogeneous preferences for all attributes, with the exclusion of the monetary attribute: the 

estimates of the utility coefficients and the standard deviation parameters are reported in columns 3 

and 4 of the table. The examination of the significance of the standard deviation parameters (in this 

case all of them are significant at 1% level), suggests that there is indeed preference heterogeneity 

across individuals. In addition, we apply the LR test to check whether the RPL is significantly better 

than the CL model. The null hypothesis that the restricted specification (CL) is the true model is 

rejected at α=1% significance level, hence the RPL is preferred to the CL model. We may also want 

to compare the CL model versus the Latent Class models. In this case, we base our judgment on 

MSC. From the results of the Monte Carlo study, we learn that when the DGP is LC, either 2 or 3 

classes, all penalization criteria work equally well, whereas when the DGP is CL, the CAIC and 

BIC are preferable. In Figure 14 the CL is compared with three LC models and the RPL model: the 

CL has the worst (highest) value for all penalization criteria.  

 

 

Fig. 14. The performance of MSC in the empirical study 
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Clarified that the CL can be discarded, the researcher is left with the task of selecting the “best” 

specification among our competing models. Among the set of LC models, the LC-4 classes is 

selected by the MSC with AIC, AIC3 and BIC penalizations, whereas the CAIC points towards the 

LC-3 classes. In the comparison of LC models with the RPL model, we use the tests for non nested 

models in addition to the MSC for model selection; Table 6 summarizes main results. 

 

 

Comparing with MSC the LC models with the RPL we find that AIC and AIC3 point toward the 

LC-4 classes whereas CAIC and BIC favor the RPL. The BAS and Horowitz test indicate that the 

LC-4 and LC-3 are significantly better than the RPL, while the latter is significantly better than the 

LC-2 classes. The Vuong test indicates that 1) the RPL is selected with the CAIC correction over 

the LC-2 classes, while the other penalizations do not discriminate; 2) RPL and LC-3 classes are 

valued equivalent by all penalizations; and finally, the RPL is chosen over the LC-4 classes by the 

CAIC penalization at α=1% significance level and by the BIC at α=5%. 

Summing up, the LC-4 classes model is selected by the AIC and AIC3 MSC, and by the Horowitz 

and the Ben-Akiva and Swait tests; while the RPL is selected by the CAIC and BIC MSC, and by 

the Vuong-CAIC and BIC.   

Table 6. RPL versus LC models, indications from MSC and Tests  

Models Model Selection Criteria BAS
a
 Horowitz

a
 Vuong

a
 

  AIC AIC3 CAIC BIC     AIC AIC3 CAIC BIC 

RPL     ● ●     ● ● ● ● 

LC-4 ● ●     ● ● ● ●   
 RPL     ● ●     ● ● ● ● 

LC-3 ● ●     ● ● ● ● ● ● 

RPL ● ● ● ● ● ● ● ● ● ● 

LC-2             ● ●   ● 

 Note: a) is for α=5% 
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The results of the Monte Carlo study have shown that for competing models with different number 

of parameters, if the models are relatively close in terms of fit there will be discrepancy between the 

MSC: BIC and CAIC tend to choose the most parsimonious model, while AIC and AIC3 tend to 

choose the richer model. Although CAIC and BIC always gave correct indications in the lower 

variance scenarios, this was not true in some of the experiments with high variance disturbances. 

Since in empirical applications we do not know the true DGP, we still are left with uncertainty on 

what to choose. The indications by the BAS and the Horowitz tests seem not reliable, given their 

general bad performance in our Monte Carlo study; however we have seen that the Vuong test, 

although often inconclusive, virtually never selects a wrong model, and if it gives an indication, it 

can be quite safely trusted.  Hence, our model selection procedure indicates that the RPL model 

should be preferred to the CL and the LC specifications applied in this research.  

 

6. Conclusions 

 

The paper contributes to the discussion about the model selection criteria and tests for choice 

experiment data. A Monte Carlo analysis was designed to study the performance of model selection 

methods in comparing commonly used CE models: Conditional Logit, Random Parameters Logit 

and Latent Class. The attention is focused on some model selection criteria and tests that are based 

on the Kullback-Leibler Information Criterion. Some of these methods are popular in the 

environmental economics literature: the AIC, AIC3, CAIC and BIC MSC and the Ben-Akiva and 

Swait test; in addition, we include in the analysis also the Horowitz and the Vuong tests, which are 

rarely seen in choice experiment applications, but that could be useful in testing non nested models 

like Random Parameters Logit models vs Latent Class models.  
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Our results show that the MSC have different performances in different scenarios, but in general we 

could see that the AIC criterion, which is still the most common selection method employed in 

empirical applications, is outperformed by other criteria in almost all exercises. The BIC and 

especially CAIC outperform the other two criteria in all lower variance scenarios; however, in the 

case of DGP LC-3 classes with higher variance the opposite holds:  the BIC and CAIC wrongly 

select the more parsimonious model (the bad performance is particularly serious when the LC-3 

classes model is compared to the CL). It is possible that in this setting, the error term added to the 

three classes model makes the segmentation more “fuzzy”, so that a simplified model (RPL or CL) 

is evaluated by the parsimonious criteria CAIC and BIC as fitting the data better than the correctly 

specified LC-3 classes model. This finding is noteworthy, since Keane and Wasi (2013, p.1043) 

argue that “the number of segments identified by LC, and how sharply they differ, is a good 

preliminary diagnostic to use to determine the complexity of heterogeneity in a dataset”. Depending 

on the criterion used, it may happen that the number of segments is heavily overestimated (by AIC 

and AIC3) or underestimated (by BIC and CAIC).  Summing up, the results of our Monte Carlo 

study indicate that CAIC and BIC have similar properties, and the same holds for AIC3 and AIC; 

and that in general CAIC proved to be the most reliable criterion, and AIC the worst.  

 

The performance of the tests in selecting between non nested models is quite disappointing. The 

BAS and the Horowitz tests are always outperformed by the MSC, and in general they make too 

often the wrong decision, especially in the exercises with RPL DGP; both tests seem quite 

unreliable, but the BAS test is even worse than the Horowitz.  The performance of the Vuong test is 

also very unsatisfactory, since in most cases it cannot discriminate between models. On the other 

hand, and consistently with previous findings, it virtually never gives a wrong indication; hence, in 

spite of its very low power, it is worthwhile to apply this test to select between competing non 

nested models, since in the lucky event that it is able to discriminate between models we can be 

quite confident that it gives the correct indication.   
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The LR test works very well in selecting between the RPL and CL models in the lower variance 

setting, while in the high variance setting the power of the test declines, and the CL is mistakenly 

selected against the RPL in a significant number of comparisons (this situation resembles that of the 

CAIC and BIC criteria in selecting between LC-3 classes and CL models in the higher variance 

scenario, although it is certainly less serious); the empirical size of the test is always smaller than 

the nominal size. Since the t-statistic test on the standard deviation coefficients of the RPL have 

been shown by Mariel et al. (2013) to have higher empirical size than nominal, it would seem that a 

LR test can be used as a convenient complement to the check of standard deviation significance to 

inform a better model selection decision between these two models.  

In conclusion, this study points out the importance of complementing the practitioner’s own 

judgment with the appropriate MSC or test to select the preferred specification. While we cannot 

suggest generalizing the results of our Monte Carlo analysis to models characterized by different 

statistical structures, we believe that our results shed some light on pros and cons of model selection 

procedures currently available for practitioners in the CE field.  

In addition, our findings encourage researchers in designing further simulation studies for 

improving knowledge on the performance on model selection criteria and tests. To better 

understand the role of MSC and tests in selecting choice experiment models within the family of 

estimators considered in this paper, we suggest that further research be devoted to MSC and tests 

when the number of parameters, number of alternatives, number of respondents etc. vary 

systematically according to a specific study design. Finally, as more complex estimators are 

proposed and applied in the CE field, further studies should be designed to account for these 

different model structures.  
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Notes 

1Originally, the term Multinomial Logit was referred to models where the choice is conditional on socio-economic covariates and 

Conditional Logit to models conditioning on attribute covariates. In practice, the models are statistically equivalent, and the terms are 

used interchangeably. 

2Papers selected among the top tier journals, from 2009 onwards, considering applied studies only. 

3The Vuong test is characterized by good empirical size but low power (i.e. it rarely chooses the wrong model, but it often cannot 

discriminate between models): see Genius and Strazzera (2002) and Clark (2007); while the Clark test has been shown to have higher 

power, but at the price of selecting more often the wrong model (Clark 2007). 

4elsa.berkeley.edu/Software/abstracts/train0296.html 

5General reference on information measures can be found in Gourieroux and Monfort (1995). 

6For example, Brochado and Martins (2006) and Mariel et al. (2013) use 500 replications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

TABLE A. CE studies quoted in Section 2 

Reference Journal Alternatives Attributes 

N. Levels              

(N. attributes) 

N. choice 

sets 

Sample 

size Obs. 

Models 

Estimated 

Model Selection 

Methods 

Nested models 

Amador et al. (2013) EnE 3 5 3(4) 2(1) 9 376 3384 CL/PML-EC AIC/BIC/CAIC/R2 

Czajkowski et al. (2013) REnE 3 3 3(2) 2(1) 6 311 1371 CL/G-MNL AIC/LL/ R2 

Lanz and Provins (2013) ERE 3 (1 status quo) 4 3(4) 5(1) 4 106 424 CL/RPL AIC/ R2/SD 

Nguyen et al. (2013) EcE 2 4 3(3) 2(1) 6 1014 6084 CL/RPL LR/SD/AIC/BIC 

Zander et al. (2013) EcE 3 (1 status quo) 6 3(3) 2(2) 5(1) 6 200 1194/1248 

 

RPL/S-MNL/G-

MNL LL/R2/AIC 

Duke et al. (2012) EcE 4 (1 status quo) 5 2(3) 4(1) 5(1) n.a. 664 3280 CL/RPL LR 

Gelo and Koch (2012) EcE 3 (1 status quo) 4 2(2) 4(1) 5(1) 4 600 2400 CL/RPL LR/SD 

Kawata and Watanabe (2012)  EcE 3 (1 opt out) 3 3(2) 5(1) 3 700 2100 CL/RPL LR 

Achtnicht (2011) EcE 2 7 3(4) 4(1) 2(2) 12 379 4548 CL/RPL LR/SD 

Adamowicz et al. (2011) JEEM 4 or 5 3 or 5 4(2) or 4(4) 5(1) 4 

 

1219 4876 CL/RPL SD 

Grisolia and Willis (2011) AppEcon 5 7 2(1) 3(1) 4(3) 5(2) 12 332 3984 CL/RPL SD/ R2 

Juutinen et al.(2011) EcE 3 5 3(4) 5(1) 4 473 1892 CL-RPL SD 

Onozaka and McFadden (2011) AJAE 3 (1 opt out) 5 2(2) 3(3)  8 629/554 5032 /4432  CL/RPL LR/SD 

Susaeta et al. (2011) EnE 2 3 6(2) 4(1) 6 182 1092 CL-RPL LR/SD 

Ward et al. (2011) EnE 4 (1 opt out) 6 4(4) 2(2) 14 388 4732 CL-RPL LR 

Van Loo et al. (2011) FQP 3 (1 opt out) 2 3(1) 4(1) 12 976 11712 CL/RPL LR 

Abdullah and Mariel (2010) EP 3 (1 opt out) 4 5(1) 2(1) 4(2) 4 202 808 CL/RPL LR 

Borg and Scarpa (2010) ECE 3 (1 opt out) 9 or 6 3 9 or 8 86/ 198 2193/5346 CL/RPL AIC/AIC3/BIC  
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TABLE A. Continued 

Jensen et al. (2010) EnE 4 8 5(1) 4(2) 3(1) 2(4) 14 914 12796 CL-RPL LR 

Kosenius (2010) EcE 3 (1 opt out) 5 7(1) 3(4) 6 726 3946 CL/RPL LR 

Westerberg et al. (2010) EcE 3 (1 status quo) 6 6(1) 3(5) 9 90 810 CL/RPL SD 

Dimitropoulos et al. (2009) EP 3 (1 opt out) 5 2(3) 4(2) 8 212 1696 CL/RPL LR/SD 

Gracia et al. (2009) FQP 3 (1 opt out) 4 2 4 400 3200 CL/RPL LR 

Kataria (2009) EnE 3 (1 opt out) 5 2 (1) 3(3) 7 (1) 4 568 2222 CL/RPL LR 

Shen (2009) AppEcon 3 5 2 8 467/453 3736/3624 CL/RPL LL 

Birol et al. (2006) EcE 3 (1 opt out) 5 2(3) 4(2) 8 407 3256 CL/RPL LR 

Greene and Hensher (2003) TR B 4(1 status quo) 6 4 16 274 4384 CL/RPL LR/LL 

Boundary nested models 

Czajkowski et al. (2013) REnE 3 3 3(2) 2(1) 6 311 1371 CL-LC AIC/LL/R2 

Kanchanaroek et al. (2013) EcE 3 (1 opt out) 6 2(4) 4(2) 10 272 2720 CL/LC AIC/BIC/ R2 

Nguyen et al. (2013) EcE 2 4 3(3) 2(1) 6 1014 6084 CL/LC AIC/BIC/ R2 

Garrod et al. (2012) EcE 2 5 2 4 1397 4720 CL/LC AIC 

Gelo and Koch (2012) EcE 3 (1 status quo) 4 2(2) 4(1) 5(1) 4 600 2400 CL/LC LR 

Hensher et al. (2012)a TR 3 / / 16 / / CL/LC  BIC 

Strazzera et al. (2012) EP 2 6 2(1) 2(4) 5(1) 6 432 2592 CL /LC AIC/BIC/ R2 

Thiene et al. (2012) JFE 3 (1 opt out) 5 7(1) 2(1) 3(3) 6 306 1836 CL/LC AIC/AIC3/BIC/CAIC 

Hidrue et al. (2011) REnE 

4 (1 status quo & 

1 opt out) 6 8(1) 4(5) 2 3029 6058 CL/LC AIC/BIC 

Borg and Scarpa (2010) EcE 3 (1 opt out) 9 or 6    3 9 or 8 86 /198 2193/5346 CL/LC  AIC/AIC3/BIC 

Brouwer et al. (2010) LE 3(1 status quo) 4 2(1) 3(1) 4(1) 6(1) 4 

 

619 2476 LC AIC/BIC 

Dietz and Atkinson (2010) LE 4(1 status quo) 4 

3(2) 2(1) 9(1) or 

(2(2) 3(1) 9(1) 10 

 

231 or 

237 

2310 or 

2370 LC AIC/BIC/ R2 

Meyerhoff et al. (2010) EP 3 5 5(1) 3(4) 5 708 3540 CL/LC AIC/BIC/CAIC 
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TABLE A. Continued 

Kosenius (2010) EcE 3 (1 opt out) 5 7(1) 3(4) 6 726 3946 CL/LC AIC/BIC 

Burton and Rigby (2009) ERE 3 4 7(1) 3(1) 4(2) 9 608 5472 CL/LC 

AIC/AIC3/BIC 

CAIC 

Colombo et al. (2009) AgE 3 (1 status quo) 6 3(5) 6(1) 6 300 1187 LC AIC/CAIC 

Shen (2009) AppEcon 3 5 2 8 467/453 3736/3624 CL/LC AIC/CAIC 

Shen and Saijo (2009) JEnvM 4 6 n.a. 6 600 3600 CL/LC AIC/AIC3/BIC 

Hynes et al. (2008) AJAE / 6 / / 279 / CL/LC 

AIC/AIC3/BIC 

crAIC 

Birol et al. (2006) EcE 3 (1 opt out) 5 2(3) 4(2) 8 407 3256 CL/LC  AIC/BIC 

Greene and Hensher (2003) TR B 4 (1 status quo) 6 4 16 274 4384 CL/LC  LL 

Boxall and Adamowicz (2002) ERE 6 (1 status quo) 5 4 8 620 4892 LC  AIC/BIC 

Non nested models 

Broch and Vedel (2013) ERE 3 (1 status quo) 4 3(4) 6 853 5053 RPL/LC AIC/BIC/ R2 

Czajkowski et al. (2013) REnE 3 3 3(2) 2(1) 6 311 1371 G-MNL/LC AIC/LL/ R2 

Gelo and Koch (2012) EcE 3 (1 status quo) 4 2(2) 4(1) 5(1) 4 600 2400 RPL/LC LL 

Hensher et al. (2012)
a
 TR 3 / / 16 / / LC/RPL/G-MNL BIC 

Keane and Wasi (2012)
b
 JAE / / / / / / 

LC/RPL/G-

MNL/MM-MNL BIC 

Tesfaye and Brouwer (2012) EcE 3 (1 opt out) 6 

2 (1) 3(1) 4(1) 5(1) 

6(1) 9 750 6750 RPL/LC AIC/BIC/ R2 

Borg and Scarpa (2010) EcE 3 (1 opt out) 9 6    3 9 86 198 2193/5346 RPL/LC AIC/AIC3/BIC  

Brouwer et al. (2010) LE 3(1 status quo) 4 2(1) 3(1) 4(1) 6(1) 4 

 

619 2476 LC/RPL BAS 

Kosenius (2010) EcE 3 (1 opt out) 5 7(1) 3(4) 6 726 3946 RPL/LC BAS 

Burton and Rigby (2009) ERE 3 4 7(1) 3(1) 4(2) 9 608 5472 

RPL/DHCL/DHRPL/ 

LC Clark
c
 

 



48 
 

 

TABLE A. Continued 

Colombo et al. (2009) AgE 3 (1 status quo) 6 3(5) 6(1) 6 300 1187 LC/RPL/CH BAS 

Shen (2009) AppEcon 3 5 2 8 467/453 3736/3624 RPL/LC BAS 

Birol et al. (2006) EcE 3 (1 opt out) 5 2(3) 4(2) 8 407 3256 RPL/LC BAS 
a7 data sets used. b10 data sets used. cClark (2003). SD: significance of standard deviations. CH: Covariance Heterogeneity model . EC: Error Components model. PML-EC: Panel 

Mixed Logit with error component. MNP: Multinomial Probit. DHCL: Double Hurdle conditional Logit. DHRPL: Double Hurdle RPL. S-MNL: Scale-Multinomial Logit. G-MNL: 

Generalized Multinomial Logit. MM-MNL: Mixed-mixed MNL. 

Journal abbreviations= AgE: Agricultural Economics. AJAE: American Journal of Agricultural Economics. AppEcon: Applied Economics. EcE: Ecological  Economics. EnE: 

Energy Economics. EP: Energy Policy. ERE: Environmental and Resource Economics.  FQP: Food Quality and Preference.  JAE: Journal of Applied Econometrics.   JEM: Journal of 

Environmental Management. JEEM: Journal of Environmental Economics and Management. JFE: Journal of Forest Economics.  LE: Land Economics. REnE: Resource and Energy 

Economics. TR B: Transportation Research B. TR: Transportation. 
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TABLE B. Variables' associated coefficients, levels and brief description 

Attributes 

Associated 

Coefficient in 

Table 1 

Levels Description
a 

Beach SI 
   

3 Visual Impact in the SI county 

Beach MC    3 Visual Impact in the MC county 

Arch_site    2 Visual impact on a archaeological site 

Property    3 Property of the plant 

Services    3 Public benefits 

Bill reduction    4 Private benefits 

Covariates       

ID_SI Beach / 3 Psychometric variable 

ID_MC Beach / 3 Psychometric variable 

Consumerists / 3 Psychometric variable 

Local Devoted / 3 Psychometric variable 

aThe reader is referred to Strazzera et al. (2012) for further information. 
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Chapter 2: Reliability and use in model estimation of follow up statements in 

choice modeling 
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Reliability and use in model estimation of follow up statements in choice 

modeling
*
  

Abstract 

We combine information on the stated most important attributes with Choice Experiment 

data, introducing a very simple strategy which leads to promising results. The information 

regarding the most important attribute is a subset of Stated Attribute Information, which 

consists in asking respondents to provide a full ranking of the attributes right after completing 

the choice experiment. The use of self-reported information has received criticisms in the 

choice modeling literature, an example being stated attribute attendance. Alternatively, 

complex econometric models have been proposed to infer attribute attendance, hence 

completely discarding follow up statements. However, these are not necessarily unreliable 

per se, as evidence has been repeatedly showing that what we treat as ignored may be 

actually only less important. In this paper, we show that another option can be considered, 

which proves to be simple yet effective: including in model estimation an alternative specific 

constant indicating which alternative contains the better level of the stated most important 

attribute.  

Keywords: Stated Most Important Attribute·Stated Attribute Importance·Choice 

Experiments·Self-reported information 

Abbreviations 
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ANA   Attribute Stated Attendance 

CE  Choice Experiment 

CL  Conditional Logit 

DTD  Door To Door 

GA_NoTax First component-PCA applied to Attributes’ ranking (Table 6) 

LC  Latent Class 

LI  Least Important (attribute) 

PCA  Principal Component Analysis 

PV  Photovoltaic 

PV_NoIns First component-PCA applied to Attributes’sub- ranking (Table 7) 

ROL  Ranked Ordered Logit 

RPL  Random Parameters Logit 

SAI  Stated Attribute Importance 

Sol_Str  Third component-PCA applied to Attributes’sub- ranking (Table 7) 

ST   Solar Thermal 

STR  Street Dumpsters 

Tech_NoEm  Third component-PCA applied to Attributes’ ranking (Table 6) 

THE  Thernal Insulation 

TRA_NoEm Second component-PCA applied to Attributes’ ranking (Table 6) 

UD_NoDoor Second component-PCA applied to Attributes’sub- ranking (Table 7) 

UND  Underground Dumpsters 

 

1. Introduction 

The choice modeling literature has acknowledged respondents might not adopt a fully 

compensatory behavior. Examples include lexicographic behavior (Sælensminde 2001), joint 
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evaluation of common metric attributes (Hensher and Green 2010), attribute non-attendance 

(ANA) (Hensher et al. 2005). Results and policy implications may be distorted if the problem 

is not properly taken into account. As far as ANA is concerned, respondents might ignore one 

or more attributes when making the choice. To date, no consensus appears to be formed about 

the best strategy on 1) how to identify individuals who ignore some attribute and 2) how to 

model data when ANA has been detected. Regarding the former, two strategies have been 

used so far: a) asking respondents whether or not they ignored (stated or self-reported ANA) 

and b) inferring it by means of a given econometric framework (inferred ANA). Stated ANA 

was firstly proposed by Hensher et al. (2005), but it has been questioned on the grounds that 

the information obtained does not seem to be reliable (Campbell and Lorimer 2009; Carlsson 

et al. 2010; Hess and Hensher 2010; Hess 2012; Hess et al. 2013; Kragt 2013), an exception 

being Hole et al. (2013). Specifically, the common critique is that individuals may indicate as 

ignored what in reality has been only less important.  

The importance of distinguishing between ignored and less important attributes has been 

emerging in the inferred ANA literature as well. For example, it has been suggested that 

attenuating the mean and the variance of the marginal utility represents a significant 

improvement over restricting the parameter to zero or treating as missing data those 

individuals more likely to have ignored some attributes (Carlsson et al. 2010; Balcombe et al. 

2011; Cameron and DeShazo 2011; Kehlbacher et al. 2013). All in all, it seems unsatisfactory 

to simply divide respondents between attendants and non-attendants. In turn, as far as self-

reported information is concerned, it may be inadequate to simply ask whether an attribute 

has been ignored or not. In this direction is the work of Colombo et al. (2013) and Scarpa et 

al. (2013), who asked respondents to state their frequency of attendance (e.g.: always, 

sometimes, never); while Alemu et al. (2013) ask to express the reasons why an attribute has 

been ignored.   
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In this work we follow a different strategy: we asked respondents to rank the attributes, from 

the most to the least important, right after the series of choice tasks. Additionally, an open 

ended question has been posed concerning the reason of the first and last place attached to the 

attributes. After the start of this project, we got aware of an unpublished work by Balcombe 

et al. (2012), where a ranking of the attributes was requested after the choice experiment and 

modeled in a mixed Logit framework following two strategies. Namely, using the ranking 

data as covariates and estimating a contraction factor for those individuals who ranked the 

attributes as the least important, finding significant improvements as opposed to the model 

without the ranking information. 

We also acknowledge this follow-up question has been used in the past to assess internal 

consistency of choice experiment data (Azevedo et al. 2009). However, only with Balcombe 

et al. (2012) it was introduced the idea of using stated attribute importance (SAI) to 

complement choice experiment data in model estimation. In this paper we contribute in 

assessing SAI’s reliability by means of internal consistency checks. An internal consistency 

check, based on the stated most important attributes information only, in turn gives birth to 

the best model according to our empirical application. Crucially, in the choice modelling 

literature there has been some interest towards Best-Worst scaling instead of asking the 

respondent to choose one alternative (Flynn 2010). In this paper, we are focusing on the use 

of a stated attribute ranking after the choice experiment, investigating its reliability and 

potential use in model estimation.  

Summarizing, whilst assessing whether asking respondents to state attribute importance 

provides useful information and whether it might be preferable to stated ANA, we propose a 

simple yet effective strategy to include a subset of stated attribute attendance in model 

estimation. The outline of the paper is the following: in the next section we provide a brief 

overview of the internal consistency strategies employed; in section 3 the survey is 
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introduced; section 4 describes the methodology; section 5 presents the SAI results; section 6 

deals with the internal consistency checks and finally section 7 concludes. 

 

2. Internal consistency checks 

 

If we are able to effectively elicit respondents’ preferences by means of multiple choice tasks, 

we would expect the implicit ranking derived from CE data to be consistent with the explicit 

ranking, obtained by directly asking individuals to state the importance of each of the 

attributes. As effectively put forward by Ryan and San Miguel (2000), ‘if commodity A is 

preferred to B, then individuals should be willing to pay more for A than B’. Hence, a simple 

test of internal consistency is to compute the willingness to pay (WTP) estimates and check 

whether those attributes that have been ranked as relatively more important are also 

associated with a greater willingness to pay. This is the strategy undertaken in Azevedo et al. 

(2009), who showed that mean willingness to pay proved to be consistent with the stated 

ranking.  

Next, we focus on individual preferences, again comparing them to the rankings. First we 

estimate a Random Parameters Logit and check for the significant presence of heterogeneity 

in the data. Next, we compute the individual coefficients, conditioning previous RPL’s results 

on observed choice. If there is consistency, we expect that the more (stated) important an 

attribute is, the greater the mean of its coefficient. In addition, we check whether high values 

of the ratio between individual standard deviations over individual coefficients’ mean (Hess 

and Hensher 2010) are linked to less important attributes. 
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We further explore taste heterogeneity including variables derived from the ranking and 

including them into model estimation. We expect respondents who have ranked a given 

attribute as relatively more important to be associated with a greater magnitude for the 

correspondent coefficient. Conversely, we expect those who ranked a given attribute as 

relatively less important to be associated with a lower magnitude (or not significant one) for 

the correspondent coefficient. This strategy involves a two-stage procedure which is 

suggested only as internal reliability check.  

 We then consider segments of respondents and employ a common inferred-ANA approach, 

originally proposed by Scarpa et al. (2009): a confirmatory latent class model framework. 

Once computed the predicted probabilities of belonging to a given class for each respondent, 

we check the composition of the class in terms of stated attribute importance. For instance, if 

class c is characterized by a parameter constrained to zero for attribute k, we then expect to 

find those who ranked attribute k as less important to be significantly associated to class c.  

Finally, the stated most important attributes might also capture lexicographic behavior. 

Namely, the respondent may overly focus only on a given level of an attribute. If this is the 

case, the variable choice should be largely explained by a constant indicating which 

alternative contains that level; we call this constant        . Differently, if the attribute is 

truly the most important one, but not the only one considered, introducing and excluding a 

constant in this way defined, should not distort results. Hence, in this final consistency check 

we make use of only a subset of the self-reported information on the importance of the 

attributes. What is more, model selection analysis suggests that the model making use of 

        is ought to be preferred one in this empirical application. 
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3. Survey design and data 

 

By 2020 the European Union aims at reducing the consumption of  energy by 20%, 

decreasing Green House Gas emissions by 20% and increasing energy from renewable by 

20% (the so-called 20-20-20 EU strategy). A great deal of initiatives is linked to this goal. 

One is represented by the covenant of mayors (eumayors.eu), according to which local and 

regional authorities define their own strategies to increase energy efficiency and the use of 

renewable energy sources. Once a local authority decides to be part of this initiative, a 

sustainable energy action plan has to be set, giving priority to the following goals: cleaner 

transports, requalification of public and private buildings, foster citizens’ awareness 

regarding energy consumption.  

In light of these considerations, a CE was set, aimed at assessing values citizens attach to 

some local public policies regarding energy efficiency, garbage collection, and transportation. 

Five attributes were chosen: Technology, Garbage, Emissions, Transport, and Local Tax; 

together with the corresponding levels, these are listed in Table 1.  
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Table 1. Attributes and Levels 

Attributes Levels Variables' code 

Technology 

Photovoltaic 
Photovoltaic

c 
 

Solar Thermal 
Solar Thermal

c
 

Thermal Insulation 
/ 

Garbage 

Street dumpsters 
G_Street

c
 

Underground dumpsters 
/ 

Door to door collection 
G_Door

c
 

Emissions 20% or 40% reduction of noxious emissions Emission (1=20%, 2=40%) 

Transport 

Public car available Transport (1=No service, 2= Car, 

3=Car with or without driver) 
Public car with/without driver 

No additional service 

Local Tax 

0, 100, 200, 300 € increase
a
  

Tax (-3=300€ reduction, -2=200€,-

1=100€, 0=no reduction, 1=100€ 

increase, 2=200€, 3=300€)  
0, 100, 200, 300 € decrease

b
  

a
For Sample 1. 

b
For Sample 2. 

c
Dummy variables 

 

 

As far as Technology and Garbage are concerned, their levels cannot be aprioristically 

ordered, so they will be entering the models as dummy variables. Scenarios were presented as 

possible outcomes of a local policy, aimed at improving energy efficiency, providing some 

form of garbage collection and transport service (car sharing). The policy implementation 

will result in emissions reduction and local tax variation.  The choice scenarios were realized 

by means of a Db efficient experimental design (Sàndor and Wedel 2001). Each respondent 

undertook six choice tasks, each with two unlabeled alternatives. 

The research reported in this paper is an experimental part of the larger survey. We used a 

sub-sample and run a field experiment to study the follow up ranking’s usefulness in Choice 
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Experiments modeling
1
. The questionnaire for the field experiment has been administered 

face-to-face to a sample of 216 respondents in three towns of Sardinia, Italy, leading to 1296 

observations. At the end of the CE, respondents have stated the order of attributes’ 

importance. Notably, in order to make the choice task as much realistic as possible, half of 

the sample (S1) had increases in local tax, while the other half (S2) had tax reductions. In the 

estimated models a single variable that pools the levels is included as Wald test excluded the 

presence of significant difference with respect to increase vs decrease’s coefficients. 

 

4. Methodology 

 

The data obtained from the choice experiments will be analyzed by a set of econometric 

models, standard in the choice modeling literature based on the Random Utility theory 

(McFadden 1974) and Lancaster’s theory of value (Lancaster 1966). The base model, namely 

the Conditional Logit, assumes each respondent n has homogeneous preferences 

characterized by the following utility function: 

           
              (1) 

where      is the matrix of the k attributes in the choice tasks;    is the vector of coefficients 

to be estimated and    is the stochastic component, independently and identically drawn from 

a Gumbel distribution. Given a maximizing utility behavior, the probability that individual n 

                                                           
 

 

 

1
 Table A in Appendix shows how we elicited the rankings. 

2
 Therefore, we are assuming that the respondent checks in which option the best level of the most important 
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selects option j in choice task t is function of the deterministic component of the utility 

function: 

     
           

  

            
   

          (2) 

Once estimated the coefficients, we will compute the willingness to pay.  The ratio between 

the coefficient attached to a non-monetary attribute over the coefficient relative to the 

monetary attribute, Tax, will produce the monetary valuation, as each coefficients represent 

the marginal utility for the correspondent attribute: 

     
             

    
                                                                                                         (3) 

Next, homogeneity (and independence of irrelevant alternatives’ assumptions) will be 

dropped and checked whether the Random Parameters Logit model provides a better fit. In 

this framework, the researcher has to decide which parameter is deemed to be randomly 

distributed and according to which distribution too. This complicates the probability in (2) as 

we now need to integrate over all possible values of the coefficients, weighed by their 

density: 

      
           

  

            
   

                                                                                               (4) 

where         is the density function of the coefficients, whereas   is a vector of parameters 

characterizing the deviations from the mean of the coefficients. The model is estimated by 

simulated maximum likelihood as the corresponding integral does not have a close form 

solution (McFadden and Train 2000). Conditioning upon the observed choices, it is possible 

to obtain, for each of the respondents, the mean coefficient and the standard deviation. We 

will run the model estimation assuming all the parameters to be normally distributed. Hence, 

conditioned on observed choices, for each attribute k and respondent n we obtain: 
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 )          (5) 

Given these, for each respondent and attribute we can compute the following ratio HH (from 

Hess and Hensher 2010) given by: 

   
   

   
           (6) 

High values of this ratio indicate an overly disperse individual specific normal distribution. In 

turn, this can suggest that the individual n might not have considered the attribute k. 

Next, we estimate the Conditional and the Random Parameters Logit including the alternative 

specific constant         which is characterized in the following way: 

 

                                                                          
  

                                                                                 
                   

 

(7) 

Notably, some of the attributes have qualitative levels: technology and garbage. Suppose 

individual n has ranked technology as the most important attribute and photovoltaic as the 

most important level. Also, suppose she was presented with option A and B in choice task t 

without the level photovoltaic in any of the options: in this case, the constant captures the 

value of the second most important level of technology
2
.   

                                                           
 

 

 

2
 Therefore, we are assuming that the respondent checks in which option the best level of the most important 

attribute is. If none of the two options in a given choice task contains that, he or she checks which one contains 

the second stated most important level, when it comes to the qualitative levels. For the attributes with 

quantitative levels, in each choice task one option contains the best level of the most important option. 
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Hence, the utility function in (1) becomes:  

                       
            (8) 

We also model the probability of observing a given option being chosen, in a confirmatory 

latent class framework. Modelling heterogeneity in a discrete framework, we estimate the 

probability of choosing alternative j conditional on being probabilistically assigned to 

segment C: 

       
             

  

              
   

         (9) 

Constraints on the parameters will be placed to examine class with no attendance (     

       , full attendance and classes in which some attributes are assumed not to have 

been attended.   

Differently, the ranking data will be modeled by means of the ranked order Logit model. 

Specifically, the individual log-likelihood is given by the probability of observing a given 

sequence of ordered choices (see Beggs et al. 1981): 

                                                                  (10) 

where         .    represents the utility attached to the attribute j while ε is the random 

term, following a logistic distribution. 

 

4. Stated attribute importance: Results 

 

Descriptive statistics 



74 
 

The attribute Technology is the most important, and this is true for both the two samples. 

Overall, almost 70% rated it as the first or the second most important (Graph 1). On the 

opposite end, the least important attribute is Transport (Graph 5), with almost the 70% of the 

respondents placing it at the last or second last position. The attribute Garbage (Graph 2) has 

second as the modal category for both the samples.  

 

 

 

As far as the attribute Tax is concerned, 26% rated it as the most important while 22% as the 

least important. This attribute has been placed as first more frequently by sample 1(facing a 

tax increase). When it comes to Emissions (Graph 4), fourth is the modal category. Overall, 

the 15% ranked it as first and the 22% as the least important. Tax and Emissions are in the 

middle in terms of importance, compared to the other three attributes.  
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Respondents have been also asked to rank the levels of the attributes Technology and 

Garbage, since these are not quantitative. Starting with the former (Graph 6), Photovoltaic 

appears to be the most important level on average, with 47% of the sample rating it so. 

However, there is a clear difference between the two samples: S2 definitely prefers PV. Next, 

Solar Thermal is rated as second by almost half of the entire sample; Graph 6 shows how 

“second” is the modal category in both of the samples. Finally, Thermal Insulation is the 

level receiving the greatest share, about 40%, of “third”. However, it is the most important 

technology for sample 1. Thermal insulation’s measures have been undertaken by some 
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respondents (34% on average): of these, only the 30% rated this technology as the least 

important level.  

 

 

 

Finally, we consider the levels of the attribute Garbage (Graph 7). There is not a conspicuous 

difference between Door to Door and Underground Dumpsters’ rankings. In both the two 

samples, either first or second are the modal categories. Differently, Street Dumpsters is 

clearly the least important level. Summarizing, the sub-ranking of the attribute technology 
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Graph 6. Technology sub-ranking by sample 
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envisages Photovoltaic as clearly the most important one on average. Instead, for the attribute 

Garbage, Street Dumpsters appears to be the least important level.  

Ranked order Logit models 

We estimate three Ranked Ordered Logit (ROL) models: one (M1) for the attribute’s 

rankings (5 levels of importance) and one each for the sub-rankings (M2 and M3), namely 

Technology and Garbage (3 levels each). By looking at the coefficients, shown in Table 2, we 

can understand whether there is a significant difference regarding the importance attached to 

the attributes.  

In each model one attribute (or level) has to be left out as the reference one.  

 

Table 2. Ranked Ordered Models  

Ranking 
M1 

Coeff.                     
(Std. 
Err.) 

Sub-Ranking 
(Technology) 

M2 

Coeff.                     
(Std. 
Err.) 

Sub-Ranking 
(Garbage) 

M3 

Coeff.                     
(Std. 
Err.) 

      

Technology 
.796***                          
(.124) 

Photovoltaic 
.333***         
(.124)   

Thermal Ins. 
.031          

(.125)   

Garbage 
.410***                        
(.121)  

 
Door to Door 

.064         
(.129) 

  
Street Dump. 

-1.52***       
(.154) 

Emissions -.233***                             
(.119)   

   
Transport 

-.715***                      
(.126)         

Log Likelihood -946.336 
 

-382.285 
 

-310.839 
Observations 1080 

 
648 

 
648 

N 216   216   216 

Tax reference category (RC). Solar Thermal RC. Underground Dumpsters RC. 
*** Statistically significant at the 1% level 
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As regards M1, the attribute Tax is the reference one. Results show Technology is the most 

important one, followed by Garbage. Next, Emissions and Transport are less important, with 

the latter being the least important one. 

Hence, the estimated ranking is as follows:  

 Technology most important 

 Garbage  

 Tax  

 Emissions  

 Transport least important 

This mirrors what previously observed looking at the descriptive statistics of the ranking data. 

As regard the sub-ranking Technology, Solar Thermal is the reference category. Results 

indicate there is not a significant difference between the importance attached to Solar and 

Thermal Insulation, while Photovoltaic is significantly more likely to be ranked first. This is 

also in line with the results in the previous section. Interestingly, Photovoltaic is the least 

common technology installed among the respondents. Finally, considering the sub-ranking 

Garbage, the reference category is in this case Underground Dumpsters. We previously noted 

that street dumpsters appeared to be the least important level; estimates from the model M3 

confirm so. Furthermore, there is no significant difference between Underground and Street 

Dumpsters.  

Least important (LI) attributes: stated reasons 

We now analyze the answers given to the least important attributes, to detect whether some of 

the respondents have given reasons such that we might suspect they have completely ignored 

these attributes. Only a small percentage of the respondents literally stated that they placed 
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that attribute as the fifth because it was the less important. But these are not the only 

individuals showing to have considered the attribute and attaching less importance to it. This 

is also true when for example we read ‘I prefer my car’, ‘Not relevant’, ‘I do not use public 

transport’.  

 

 

Considering the attributes Garbage and Technology, some ranked it as last simply because 

they are indifferent between their levels. On the other hand, it must be noticed the presence of 

protest attitudes. Although limited as far as Emission is concerned (‘Emissions must be 

reduced anyway’), a substantial number of respondents express protest when it comes to the 

attribute Tax. Half of those placing it as the least important stated they would pay ‘only if 

they are fair’; in addition, other state that ‘Taxes must be paid anyway’ and some others that 

they ‘do not believe in tax reductions’. Hence, although none of the respondents explicitly 

reported to have ignored the attribute, some have exhibited protest attitudes, therefore placing 

the attribute as the least important not due to their genuine preference. 

46% 

30% 

16% 
8% 

Graph 8. Stated reasons for the LI 
attribute: Transport 

I prefer my car 
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` 

3. Internal consistency: Results 

3.1 Comparing WTP and explicit ranking 

Table 3 shows the conditional Logit models results, along with the marginal rates of 

substitution and the WTP estimates, both computed with the monetary attribute, tax, as 

denominator. 
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17% 
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Graph 10. Stated reasons for the LI 
attribute: Technology 
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Table 3. Conditional Logit results  
 

Variable 

Coeff.                     
(Std. Err) 

MRS                     
(Std. Err) 

WTP    
(€) 

Photovoltaic 
-.045       
(.100) 

-.168 
(.367) 

NS 

Solar Thermal 
-.151*          
(.092) 

-.558* 
(.328) 

-55.8 

G_Door 
.018         

(.100) 
.068 

(.372) 
NS 

G_Street 
-.578***       

(.103) 
-2.13*** 

(.385) 
-213 

Emission 
.301***      
(.064) 

1.10*** 
(.266) 

110 

Transport 
.114**        
(.047) 

.421** 
(.164) 

42.1 

Tax 
-.271***    

(.036) 
/ / 

Log Likelihood -826.42     

Pseudo R2 0.08 
  Observations 1296 
  N 216     

***1%, **5%, *100 significance level. NS: not 
significant. 

 
 

 

We consider the CL specification as we are focusing on the average sample values, whereas 

heterogeneity will be taken into account in the following sections. First, we notice that the 

greatest (negative) WTP is in correspondence of G_street: respondents would be willing to 

accept 213 € to accept Street Dumpsters instead of other garbage’s collection. Garbage is the 

second most important attribute, whereas street dumpsters was the least important level. 

Hence, the negative sign is in line with the explicit ranking. Furthermore, it is also confirmed 

there is no significant difference between door to door and underground dumpsters. 

Next, considering the least important attribute, namely transport, we first note its estimated 

coefficient is positive and statically significant. Its associated willingness to pay is 42 euro. In 

absolute terms, this is the lowest WTP. Likewise, emissions’ reductions are positively valued 

with a WTP of 110 euro to reduce emissions by 20% with respect to current levels. This 
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amount is greater than the WTP to obtain the transport service. This is also consistent with 

the average ranking, as the attribute emission appears to be relatively more important than 

transport. 

Finally, we consider the levels of the most important attribute, technology. We would have 

expected a positive and significant coefficient for PV, which resulted to be the most 

important level on average, but this is not the case: there is not a significant difference, in 

terms of preference, towards PV and thermal insulation. However, negative and significant is 

the coefficient for solar thermal: respondents would be willing to accept 55.8 euro to let the 

local council promote this technology as opposed to PV and insulation. Hence, overall, we 

find correspondence between average explicit rankings and WTP. 

 

3.2 Individual parameter distributions 

We now explore how much variation is present around the mean of the individual parameters. 

The correspondent Random Parameters Logit is shown in Table 4. All the parameters are 

random and assumed to be normally distributed as both negative and positive effects are 

plausible for each of the attributes. Mean effects are in line with the results obtained with the 

CL model, which assumes preference homogeneity. However, there is evidence of 

heterogeneity in the sample, as all standard deviations’ coefficients are statistically significant 

and with large magnitudes. 
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Table 4. Random Parameters Logit results 

  RPL 

Variable 
Coeff.                     

(Std. Err) 
SD Coeff. 
(Std. Err) 

Photovoltaic 
-.138   
(.191) 

1.43***  
(.290) 

Solar Thermal 
-.343**   
(.183) 

1.17 ***   
(.303) 

G_Door 
.104    

(.189) 
1.35***    
(.334) 

G_Street 
-1.17***    

(.243) 
1.57***    
(.319) 

Emission 
.627***  
(.147) 

1.12***    
(.235) 

Transport 
.179**    
(.094) 

.607***   
(.170) 

Tax 
-.568***   

(.101) 
.586***    
(.121) 

Log Likelihood -773.9370 

Pseudo R2 0.13 

Observations 1296 
N 216 

***1%, **5%, *100 significance level 
 

 

Starting from this model we estimated the individual coefficients conditioned on the observed 

choices. Table 5 reports summary statistics for each coefficient distinguishing between those 

individuals who ranked it as the least important versus the rest of the sample. As warned in 

Scarpa et al. (2013), p-values for differences of means of conditional distributions are 

difficult to derive. Here, we focus on describing whether the magnitude of the means follows 

a given pattern depending on the stated attribute importance. Specifically, we would expect to 

observe a greater mean coefficient’s magnitude relative to a given attribute for those 

respondents who ranked it as relatively more important and vice versa. 
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For technology and garbage’s levels, we make use of the sub-rankings, where 3 means least 

important and 1 most important. Instead, for Emission, Transport and Tax we look for 

differences between those who ranked any of these as the least important (R=5) versus the 

rest of the sample (R<5).  

 

Table 5. Sample average, standard deviation, minimum and maximum for 

the conditional distributions. 

Coeff. Ranking N Mean SD MIN MAX 

Photovoltaic SR<3 154 0.037 0.833 -1.91 1.98 
  SR=3 62 -0.576 0.771 -2.03 1.74 

Solar Thermal SR<3 148 -0.285 0.634 -1.98 1.64 
  SR=3 68 -0.508 0.554 -1.81 0.841 

G_door SR<3 179 0.202 0.711 -1.49 1.95 
  SR=3 37 -0.392 0.637 -1.43 1.46 

G_street SR<3 59 -0.634 0.803 -2.40 1.71 
  SR=3 157 -1.39 0.949 -3.33 1.14 

Emission R<5 168 0.683 0.714 -1.26 2.21 
  R=5 48 0.413 0.492 -0.864 1.43 

Transport R<5 122 0.230 0.308 -0.523 1.06 
  R=5 94 0.119 0.264 -0.617 0.636 

Tax  R<5 169 -0.658 0.345 -1.307 0.454 
  R=5 47 -0.328 0.266 -0.905 0.255 

SR=Sub-ranking. R=Ranking. 
 

 

For the attributes Emission, Transport and Tax, the mean coefficients of those attaching more 

importance present a greater magnitude. But considering the other two statistically significant 

coefficients, Solar Thermal and G_street, it emerges the opposite picture: the coefficient is 

greater for those attaching less importance. In particular, there is a greater negative effect. 

The fact that a respondent places a given attribute at the end of the ranking might also hide an 

even stronger dislike towards that attribute as opposed to the other respondents.  

Usually, within the inferred ANA literature, conditional mean and variance are used to 

compute a coefficient of variation, as shown in (6), interpreted as the signal to noise ratio 

(Hess and Hensher 2010). Assuming the coefficients are normally distributed, which is the 
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case in this empirical application, a value of this ratio (in absolute value) greater than 2 is 

interpreted as signaling attribute non-attendance as the correspondent normal distribution is 

over-disperse (Hess and Hensher 2010; Scarpa et al. 2013). 

Graph 15 and 16 show, respectively for the attributes with quantitative and qualitative levels, 

the composition of individuals with a ratio greater than 2 (or lower than minus 2) for each 

level of importance. For each attribute, we would expect to observe a larger share of 

individuals for lower levels of attribute importance (where we might expect some of the 

individuals to have considered the attribute to a less extent while making its choice). 

Considering the attributes Tax, Emissions, Transport and the Technology’s level Solar 

Thermal, we observe an increasing trend in line with our expectations: the lower the level of 

importance, the more the respondents with a HH ratio greater than 2. However, for Solar 

Thermal the largest share is in correspondence of those who ranked this technology as the 

second one.  

In order to determine whether there is a significant association between the rankings and the 

ratio we conducted a series of Pearson’s chi square test and Fisher’s Exact test (depending on 

the number of frequencies in the cells, see Appendix Tables B1-B5). Results suggest the null 

hypothesis of independence is rejected for all but one case: unsurprisingly, after having 

observed Graph 16, there is no association between the ranking of Solar Thermal and values 

of |HH ratio| greater than 2. 
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3.3 RPL’s heterogeneity decomposition 

First step: Principal Component Analysis 

First, we make use of principal component analysis (PCA), one applied to the attribute 

rankings and one applied to the sub-rankings (the levels of the qualitative attributes). PCA’s 

R1 R2 R3 R4 R5 

Tax 0.04 0.08 0.12 0.23 0.54 

Emission 0.06 0.12 0.23 0.33 0.26 

Transport 0.00 0.07 0.17 0.31 0.46 

0.00 
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0.30 

0.40 

0.50 

0.60 

Graph 15.|HH Ratio|>2 by Stated Attribute Importance-
5 levels ranking. R1=Most Important 
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Graph 16.|HH Ratio|>2 by Stated Attribute Importance-
3 levels ranking. R1=Most Important 
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results are shown in tables 6 and 7: on the basis of the variance explained, three components 

have been selected in both cases. Next, the score factors have been computed for each 

respondent.  

As regards attributes’ ranking, the three components have been named GA_NoTax, 

Tra_NoEm and Tech_NoEm. This is because the first component has a high positive 

correlation with the Garbage ranking and a high negative one with the Tax ranking; the 

second component is characterized by a high positive correlation with the Transport ranking 

and a high negative one for the Emission ranking. Finally, the third one has a high positive 

coefficient with respect to the Technology ranking and a negative one for the Emission 

ranking, although lower than the analogous one for the second component.  

 

Table 6. Attributes’ Ranking PCA. correlations between items 

and components  

 Components 

 GA_NOTAX TRA_NOEM TECH_NOEM 

Technology_r .090 .039 .986 

Garbage_r .732 .072 -.089 

Transport_r .221 .846 -.176 

Emissions_r .146 -.778 -.420 

Tax_r -.914 -.017 -.214 

Extraction Method: Principal Component Analysis.  

Rotation Method: Varimax with Kaiser Normalization. 

 
 

. 
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Table 7. Attributes’ Sub-Ranking PCA: correlations between 

items and components 

 Component 

 PV_NoINS UD_NoDOOR SOL_STR 

Photovoltaic_r .900 .145 -.247 

Solar_r .086 -.173 .740 

Thermal Ins_r -.933 -.015 -.318 

Door to Door_r -.052 -.926 -.362 

Streed D_r -.058 .237 .723 

Underground D_r .111 .845 -.232 

Extraction Method: Principal Component Analysis.  

Rotation Method: Varimax with Kaiser Normalization. 

 
 

 

Next, the PCA applied to the Sub-ranking data lead to the three following components (Table 

7): PV_NoIns, UD_NoDoor and Sol_Str. The first component has a high positive correlation 

with Photovoltaic and high negative correlation with Thermal Insulation; differently, the 

second one has a high positive coefficient with respect to Underground Dumpsters and really 

low coefficient for the Door to door ranking. Finally, the third component has high and 

positive correlation coefficients for Solar Thermal and Street Dumpsters’ rankings. 

 

Second step: Combining CE data and score factors 

We used two strategies to combine CE data and these components obtained from the 

rankings: a LC model in which the membership class probability is function of the 

components and a RPL model where the components are used to reveal the preference 

heterogeneity around the mean. In both cases the best model specification was obtained 

excluding one component from each of the two PCAs, specifically dropping Tech_NoEmi 

and Sol_Str. These are the “third” components in both the two PCA, hence explaining the 
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lowest amount of variance in the data. The best RPL specification found has a Log-

Likelihood of -678.6728 with 24 parameters, compared to the best LC specification (3 

classes) with a value of -736.3475 with ten additional parameters. The statistical criteria AIC, 

AIC3, BIC and CAIC pointed towards the RPL. The same indication, at a significance level 

α=1%, is provided by the Ben-Akiva and Swait test (Ben Akiva and Swait 1986) for strictly 

non-nested models. Since the criteria point towards the same model we can be quite confident 

in selecting the RPL model (Strazzera et al. 2013). It is therefore here presented the RPL 

specification only (Table 8). As in the previous RPL model, all parameters are assumed to be 

normally distributed. 

The interactions are all significant and all the signs are in the expected direction. When it 

comes to the Technology levels, these have been interacted with the component PV_NoIns. 

Individuals who are more likely to rank Photovoltaic as more important and Thermal 

Insulation as less important are associated with a positive effect on the mean of the variable 

Photovoltaic and Solar Thermal.  
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Table 8. Random Parameters Logit with preference 

heterogeneity decomposition 

Variable 
Coeff.                     
(Std. Err) 

SD       
(Std. Err)       

Photovoltaic 
-.066              
(.155) 

1.05***       
(.257) 

Solar Thermal 
-.269*          
(.158) 

1.00***         
(.293) 

G_Door 
.100                     
(.154) 

.589**        
(.286) 

G_Street 
-.958***                 
(.183) 

1.15***         
(.255) 

Emission 
.555***                     
(.124) 

.949***        
(.185) 

Transport 
.181**                      
(.082) 

.504***        
(.149) 

Tax 
-.509***                   
(.071) 

.362***        
(.104) 

Photovoltaic*PV_NoIns 
.962***                   
(.176) 

/ 

Solar Thermal*PV_NoIns 
.456***                   
(.155) 

/ 

G_Door*UD_NoDoor 
-.951***                   
(.158) 

/ 

G_Street*GA_NoTax 
-.391***                   
(.152) 

/ 

Emission*TRA_NoEmi 
-.459***                   
(.123) 

/ 

Transport*TRA_NoEmi 
.342***                   
(.084) 

/ 

Tax*GA_NoTax 
.399***                  
(.066) 

/ 

Log-Likelihood -687.1037  

Pseudo R2 0.235 

 

Observations 1296 

N 216 

***1%, **5%, *10% significance level 
 

 

 



91 
 

Next, considering Garbage’s levels, G_Door has been interacted with UD_NoDoor while 

G_Street with GA_NoTax. Respondents more likely to have given more importance to 

Underground Dumpsters and less to Door to Door collection are associated with a negative 

effect on the mean of G_Door. Those who (more likely) ranked the attribute Garbage as more 

important have a negative effect on the mean of G_Street; this further increases the negative 

magnitude of this coefficient. 

As regards the attribute Emission, a significant and negative effect has arisen from the 

interaction with TRA_NoEm, lowering the magnitude of the correspondent coefficient for 

those more likely to have given less important to the attribute Emission. As for Transport, 

positive is the effect attached to the interaction with TRA_NoEm, increasing the magnitude 

of the correspondent coefficient for those respondents who ranked Transport as more 

important. Finally, a positive value is associated to the mean of the attribute Tax when 

interacted with GA_NoTax, reducing the magnitude of the corresponding Tax coefficient for 

those who are more likely to have attached less importance to this attribute. These results 

show that heterogeneity in CE data is successfully explained by means of the associated 

ranking data. Remarkably, the results obtained in a latent class setting are also in support of 

this finding. 

 

3.4 Constrained Latent Class Model 

Attribute non-attendance has been often modeled by means of constrained latent class models. 

This modeling strategy belongs to the so-called inferred approach, namely avoiding the use of 

ANA statements but rather infer choice behavior by means of a suitable econometric 

specification. We here adopt this approach, compute respondent-specific membership 

probabilities and analyze the composition of each class in terms of stated attribute importance. 
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A given coefficient is either constrained to be equal to zero or to take the same value in all 

the classes where the coefficient is different from zero (Scarpa et al. 2013). 

In choosing the best specification we follow Lagarde (2013), dropping those class’ 

specification representing specific ANA combinations with zero probability. The best 

specification found is presented in Appendix, Table C. The confirmatory approach lead to a 

4-classes model, characterized in the following way:  the first class (Class 1) is the full 

attendance one; Class 2 has emission, transport and tax coefficients constrained to zero; Class 

3 has Garbage’s levels constrained to zero and, finally, Class 4 assumes full non-attendance, 

i.e. all coefficients are constrained to zero. Differently from the previous literature, we have 

now the opportunity to check the composition of each of these classes in terms of stated 

attribute importance. Our expectations are the following: Class 4 should be characterized by a 

greater share of “5” and “4” (last positions in the ranking) compared to those observed in the 

other classes; conversely, Class 1 should include with a greater probability those individuals 

who ranked as relatively more important the attributes, as opposed to the other classes; 

considering class 3, respondents more likely to belong to these segment are expected to attach 

less importance to the attributes emission, transport and tax; finally, class 3 should include 

respondents who have attached less importance to the garbage’s levels. 

In order to assess whether there is correspondence between the classes found and the SAI, we 

first check whether there is a significant association between class composition and stated 

ranking. We run the test considering three categories: attributes ranked as first or second 

(More Important); attributes ranked as third (Middle) and, finally, attributes ranked as fourth 

and fifth (Less Important). Results of Fisher Exact test indicate that there is a significant 

association between class composition and Tax, Transport and Garbage rankings. Differently, 

there is no significant association between class composition and Technology or Emission 

rankings. 
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 Subsequently, we take a closer look at the classes’ composition, which are show in the Graph 

17. As regards Technology and Emission’s stated importance, class composition appears to 

be fairly constant. As far as the other three attributes are concerned, we have found 

significant association. Considering Transport, we would expect to observe a greater share of 

‘less important’ in class 2 and 4 as opposed to the full attendance class 1: this is the case, 

although the largest share is observed in class 3, where garbage’s level are constrained to zero. 

Still on the garbage’s levels, the share of those belonging to the category ‘middle’ is larger in 

the classes 2 and 4, whereas it is lower the share of those in the category ‘more important’. 

Finally, considering the attribute Tax, there is a substantial difference between class 1, 2 and 

4 as opposed to class 3. The latter is characterized by the greatest share of those ranking Tax 

as more important. Class 2 and 4, in which the respective coefficient is constrained to zero, 

have a greater share of ‘less important’. 

All in all, there is some degree of correspondence between class composition and SAI. 

However, this inferred ANA approach does not appear to be satisfactory in this empirical 

application. Across all the attributes, a substantial share of the respondents belonging to the 

full non-attendance class has ranked them as more important. Hence, a substantial number of 

respondents who have indicated a given attribute as fairly important to them might be 

nonetheless probabilistically associated to a class where the respective coefficients are 

instead constrained to zero.  
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Graph 17: Classes composition by SAI 
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3.5 An alternative specific constant to identify the most important attribute 

We now focus on the attributes ranked as the most important ones. We created a constant 

(       ) which equals 1 if option A contains the better level of the most important attribute 

compared to Option B, 0 otherwise. This is straightforward for the attributes Emissions, 

Transport and Tax. However, when it comes to Technology and Garbage, we need to take 

into account the sub-rankings. Notably, there are situations in which none of the two options 

contain the most important Technology or Garbage’s level. Hence, in these cases the constant 

takes the value 1 if Option A contains the second most important Technology or Garbage 

level. Table 9 shows the results obtained estimating a CL and a RPL including the 

constant        .  

We found an impressive improvement in the Log-Likelihoods of the models: compared to the 

models without the constant, CL’s and RPL’s have both about a 16% improvement with one 

extra parameter. Nevertheless, coefficients’ magnitude and significance is not particularly 

affected: this is against the presence of lexicographic behavior. As far as        ’s 

coefficient is concerned, its sign is in the expected direction: the alternative containing the 

most important (or relative more important) attribute is more likely to be chosen. In addition, 

the inclusion of this constant improves models’ prediction: correctly predicted choices reach 

the 66.5% compared to almost the 57% without the constant (for both the CL and RPL 

model).  

This, together with the noteworthy improvement in the goodness of fit and sign of the 

constant’s coefficient, shows the presence of consistency between respondents’ preferences 

elicited during the choice experiment and the most important attributed indicated in the 

ranking exercise. 
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Table 9. CL and RPL results with         

  CL RPL 

Variable 

Coeff.                     
(Std. Err) 

Coeff.                     
(Std. Err) 

SD Coeff. 
(Std. Err) 

Photovoltaic 
-.117        
(.091) 

-.155   
(.161) 

.651**     
(.316) 

Solar Thermal 
-.120          
(.096) 

-0.321* 
(.174) 

1.05***     
(.276) 

G_Door 
.112         

(.096) 
.365**      
(.176) 

.697**       
(.310) 

G_Street 
-.461***       

(.102) 
-.749***     

(.196) 
1.25***    
(.283) 

Emission 
.196***      
(.065) 

.329***      
(.112) 

.531**      
(.227) 

Transport 
.100**        
(.098) 

.315*      
(.168) 

.435**     
(.170) 

Tax 
-.179***    

(.035) 
-.273***     

(.068) 
.363***     
(.104) 

ASC_Most 
.947***      
(.066) 

1.64***        
(.215) 

1.48***     
(.252) 

Log Likelihood -713.573 -671.9 

Pseudo R2 0.205 0.252 

Observations 1296 1296 

N 216 216 

***1%, **5%, *100 significance level 
 

 

 

Table 10. Sample prediction: RPL specification 

  No constant With constant 

Prediction Success (%) 

True positive predicted 29.51 42.25 
True negative predicted 27.43 24.2 

Correct Prediction 56.94 66.45 
Prediction Failure (%) 

False positive predicted 20.49 25.8 
False negative predicted 22.57 7.75 

False prediction 43.06 33.55 
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These results are also quite interesting as far as we consider the decision process of the 

respondents in ranking the attributes. It seems that the information related to the most 

important attribute is more reliable than the full ranking. This may be due to the fact that 1) it 

is easier to recall what attribute is the most important and 2) their choice was guided by the 

presence of the better level of the most important attribute.  

 

7. Conclusions 

 

The results obtained from the internal consistency checks suggest there is correspondence 

between what the respondents choose whilst selecting the alternative during the choice 

experiment and how, afterwards, they rank the attributes according to the level of importance. 

Specifically, we found consistency between mean WTP and average explicit rankings. 

Considering instead the conditional distribution after having allowed for heterogeneity in a 

RPL framework, results show that for some attributes the greater the importance, the greater 

the coefficient’s magnitude. But when the coefficient is negative, its magnitude gets 

amplified for those respondents ranking the relevant attribute as less important. This raises 

questions on the ranking process, as it appears that some individuals ranking a given attribute 

as the least important are not just ignoring it, but they might dislike it a lot: hence, having an 

important role in their choice indeed.  

Complementing ranking with the CE data may lead to noteworthy improvements in both 

model fit and sample prediction. Specifically, including an alternative specific constant 

indicating which of the alternatives contains the better level of the most important attribute, 

has proven to be the best modeling strategy in this application. It has a better fit and less 
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parameters compared to the RPL with heterogeneity decomposition through the covariates 

obtained applying PCA to the ranking. In addition, the RPL with the inclusion of 

        shows a notable improvement in terms of sample prediction.  Model selection 

criteria AIC, AIC3, CAIC and BIC, as well as the Ben-Akiva and Swait test confirm the RPL 

model with the alternative specific constant represents the best specification (the RPL with 

heterogeneity decomposition was found to be preferred to the best LC specification by means 

of the same criteria).  

Whilst making use of different modeling strategies, we have estimated a Constrained Latent 

Class model, often employed within the inferred ANA literature. When SAI is to be 

considered a reliable self-reported information, results suggest the researcher should be 

cautious as the non-attendance class may actually (probabilistically) contain individuals 

attaching importance to the attributes. 

More work is under way to confirm the reliability of this self-reported information. Further 

research should be aimed at testing whether checking for consistency between CE data and 

self-reported information could also represent a powerful tool at the pilot/pre-testing stage, in 

order to detect anomalies in the survey, such as an excessively complex choice task. Another 

line of research we envisage is to understand which variables drive the ranking, using 

structural equations that relate rankings with socio-economic and attitudinal variables. Hence, 

the next step could be represented by integrating CE and ranking data within a hybrid 

modeling approach. In addition, more empirical applications are needed to assess the use and 

validity of        . 
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Appendix 

Table A. Ranking Exercise. 

Please, order the following attributes on the basis of how much you have taken them into 

consideration whilst making your choices. 

1=Most Important  1=Most Important 

5= Least Important 3=Least Important 

      Photovoltaic 

 Technology  Solar Thermal 

    Thermal Insulation 

 

    Door to door 

 Garbage       Street Dumpsters 

    Underground Dumpsters 

  

 Transports       

 Emissions  

 Tax 

Please state the reason of the first position 

 

   Please state the reason of the last position 
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Table B1. Chi square test-Emissions 

 
Emission R 

 
R1 R2 R3 R4 R5 

|HH ratio|<2 28 16 24 42 28 

|HH ratio|>2 5 9 18 26 20 

Pearson chi2 (4)= 7.88 Pvalue=.096 

      Table B2. Fisher's Exact test-Transport 

 
Transport R 

 
R1 R2 R3 R4 R5 

|HH ratio|<2 6 9 20 20 38 

|HH ratio|>2 0 10 19 38 56 

Fisher's Exact=0.022 

      

      Table B3. Fisher's Exact test-Tax 

 
Tax R 

 
R1 R2 R3 R4 R5 

|HH ratio|<2 56 37 30 32 30 

|HH ratio|>2 1 2 4 7 17 

Fisher's Exact=0.000 

      

      Table B4. Chi square test-Emissions 
  

 
Street R 

  

 
R1 R2 R3 

  |HH ratio|<2 5 20 126 
  |HH ratio|>2 8 26 31 
  Pearson chi2 (2)= 29.37  Pvalue=.000 
  

      

      Table B5. Chi square test-Solar Thermal 
  

 
Solar Thermal R 

  

 
R1 R2 R3 

  |HH ratio|<2 11 54 38 
  |HH ratio|>2 21 62 30 
  Pearson chi2 (2)= 4.16 Pvalue=.125 
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Table C. Confirmatory Latent Class  

  CLASS1 CLASS2 CLASS3 CLASS4 

Variable 

Coeff.                     
(Std. Err) 

Coeff.                     
(Std. Err) 

Coeff.                     
(Std. Err) 

Coeff.                     
(Std. Err) 

Photovoltaic 
-.110  
(.087) 

-.110  
(.087) 

-.110  
(.087) 0 

Solar Thermal 
-.318***  

(.094) 
-.318***  

(.094) 
-.318***  

(.094) 0 

G_Door 
.328**   
(.138) 

.328**   
(.138) 0 0 

G_Street 
-1.90***   

(.206) 
-1.90***   

(.206) 0 0 

Emission 
.692***  
(.084) 0 

.692***  
(.084) 0 

Transport 
.176***   
(.059) 0 

.176***   
(.059) 0 

Tax 
-.577***   

(.047) 0 
-.577***   

(.047) 0 

Average class 
Probabilities 0.121 0.213 0.421 0.245 

Log Likelihood -804.584 

Pseudo R2 0.104 

Observations 1296 

N 216 

***1%, **5%, *100 significance level 
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Chapter 3: Task complexity in choice experiments: A review 
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Task complexity in choice experiments: A review
*
 

Abstract 

Whilst designing a discrete choice experiment, every practitioner has to set the complexity of 

the task the respondents are going to undertake. Many studies have dealt with this issue, but 

most of them have focused only on partial definitions of task complexity. Nevertheless, some 

studies have gone as far as proposing some numbers (e.g.: the number of choice tasks and the 

attributes) which can be considered feasible or “best practice”.  Here, we focus on the 

structuralist view of Task Complexity in choice experiments. After having provided a 

systematic review of the literature we find that the number of the attributes, the number of 

attributes’ levels and the number of alternatives are reported to significantly affect error 

variance and willingness to pay, whereas less substantial impacts emerge with respect to the 

number of choice tasks. Nevertheless, results are country specific. We suggest it is quite risky 

to define what a high number is ex-ante: this has to be determined in the building of the DCE. 

Finally, considering 30 articles recently published in the Transportation, Environmental and 

Health Economics literature, we find that although the issue of task complexity is 

acknowledged, it is not treated satisfactorily.  

Keywords: Task Complexity, Discrete Choice Experiments, Error Variance. 

Abbreviations 

ADM_M Administration mode 

 

 

 

*
I am especially grateful to John Rose for the help received whilst visiting the Institute of Transport 

and Logistics Studies, University of Sydney Business School. The presence of any error is my sole 

responsibility. 
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ATT_R  Attributes’  level range 

AVCM  Asymptotic Variance Covariance Matrix 

CA  Constant Alternative 

DCE  Discrete Choice Experiment 

ED  Experimental Design 

ENV  Environmental Economics 

GMNL  Generalized Multinomial Logit 

HE  Health Economics 

H-MNL  Heterosckedastic Multinomial Logit 

H-RPL  Heterosckedastic Random Paramters Logit 

IID  Independent Identically Distributed 

MMNL  Mixed-Mixed Multinomial Logit 

MNL  Multinomial Logit Model 

NALT  Number of Alternatives 

NC  No Choice 

NCT  Number of Choice Tasks 

NLEV  Number of attributes’ levels 

OHL   Ordered Heterogeneous Logit 

ORD  Order 

PHMNL  Parameterized Heterosckedastic Multinomial Logit 

RUT  Random Utility Theory 

S-MNL  Scale Multinomial Logit 

SQ  Status Quo 

TC  Task Complexity 

TR  Transportation 

WTP  Willingness to pay 
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1. Introduction 

 

Discrete choice experiments (DCEs) are commonly employed in a wide range of fields, i.e. 

Marketing, Transportation, Environmental Economics, Health Economics, Tourism, Political 

Science, originally employed in Psychology (Thurstone 1931). Two are the main building 

blocks: Random utility Theory (RUT) and Lancaster’s Theory of Value (Lancaster 1966). 

The former was pioneered by the Law of Comparative Judgements (Thurstone 1927), later 

brought into economics thanks to Marschak (1960). Subsequently, McFadden (McFadden 

1974) developed the conditional Logit model, confirming the link between Economics and 

Econometric theory. This methodology assumes that the respondent follows a compensatory 

utility maximizing behaviour. Every respondent is assumed to be perfectly rational, not 

affected by fatigue nor learning, not behaving strategically nor according to different decision 

processing rules.  

 

Not only has the Psychology literature provided the basis for the discrete choice models 

based upon RUT, but it has also provided an arena for its critiques. The rationality of human 

behaviour has been questioned since the 50s (see Simon 1955; Miller 1955). Over time, it has 

become clear the decision making process was to be regarded as including ‘1)cognitive errors 

that people make when they judge the likelihood of future consequences and 2)simplifying 

heuristics that people use to cope with the complexity of decision making’ (Loewenstein and 

Lerner 2003, p.619). Recently, the role of emotions has also received a great deal of attention. 

The transfer to the DCEs literature has been quite lagged: Araña et al. (2008) have extended 

the conventional RUT, including the possibility that (stated) emotions play a role as well. In 

addition, as an alternative to RUT, Chorus et al. (2008) have proposed the Random Regret 

Minimization approach based on Regret Theory. 
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Over the last two decades, an increasing number of articles have been focusing on the 

limitations of the respondents asked to take part in DCEs. In this context, the term Task 

Complexity (TC) has gained a huge popularity; however, a common definition seems to be 

lacking. This, in turn, might make practitioners less accountable with regards to the reasons 

they give for the complexity they set. Indeed, if we are not consistent in defining it, then it 

appears problematic to be direct and explicit in giving reasons why a certain experimental 

design has been chosen. We would like the reader not to be left with broad statements only 

(see Louviere et al. 2011). 

For the reasons stated above, a systematic literature review has been conducted using Science 

Direct, Web of Science, International Bibliography of Social Sciences and Google Scholar. 

Finally, once defined TC, it appears fundamental to examine how applied DCEs studies are 

currently dealing with it.   

 

The aim of this paper is threefold: 1) to provide a definition of task complexity in DCEs; 2) 

reviews the literature concerning those elements defining task complexity; 3) to analyze the 

recent applied DCEs studies to give evidence of a) which experimental design and 

dimensions are chosen and b) which motivations are given, if any. The paper’s outline 

mirrors these goals as followed by a section defining the concept of task complexity; Section 

3 presents the effects of the task complexity’s components defined in Section 2; Section 4 

provides a review of the applied work using DCE and finally section 5 concludes. 

 

2. Defining task complexity 

 

2.1 Individuals and information 
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The choices we observe are the result of a complex process. First, respondents receive 

information inputs, next these are processed, and finally the decision is made. Hence, 

following Mowen (1993), we have three main steps leading to choice: 

•INFORMATION INPUTS 

•INFORMATION PROCESSING 

•DECISION MAKING 

Focusing on the information processing level, this in turn consists of exposure, attention and 

comprehension. All of these are related to involvement and memory. The former can be 

defined as ‘a motivational state influenced by the perceived personal importance and/or 

interest evoked by a stimulus’ Mowen (1993, p. 73). The more the involvement, the greater 

the attention and the level of comprehension, namely the extent to which the respondent 

organizes and interprets the information received. In addition, involvement is generally found 

to positively influence memory. A worrying issue is that of information overload, which 

takes place when the respondent receives more information than what he or she can actually 

process. This may create problems since the respondents may start adopting some heuristics 

which deviate a lot from the standard assumptions (Malhotra 1984). 

 

2.2 What constitutes the task in DCEs 

 

The respondent is presented with a choice experiment which is, to date, usually realized ex 

ante. The experimental design (ED), so far, has been assessed either by imposing 

orthogonality between the attributes or seeking the most statistically efficient design. The 

goal of the former is to ensure the attributes of the design are statistically independent, while 
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the latter aims at producing smaller standard errors for a given sample size. Different 

measures of the so-called efficient design have been proposed, depending on the assumptions 

posed on the utility’s coefficients and/or the index obtained from the asymptotic variance 

covariance matrix (AVCM), which in turn depends on the econometric model chosen
3
. 

Unless one assumes zero or close to zero parameters priors, the orthogonal design is likely to 

not be the most efficient one whereas an efficient design would most likely have correlations. 

However, orthogonality in the estimation data is really unlikely to be preserved due to non-

response, the removal of response by the analyst, unequal assignment of choice sets, 

inclusion of covariates in the estimated utility function and finally because non-linear models 

are estimated
4
. All in all, ‘both methods have merits as well as problems’ (Rose and Bliemer 

2004, p.2).  

Another stream of the experimental design literature is represented by the so called optimal 

designs, where the Fisher Information Matrix is obtained by taking derivatives against total 

utility rather than parameters (Street and Burgess 2004a, 2004b, Street et al. 2005). Other 

constraints on the ED have been also discussed in the literature, such as aiming jointly at 

utility balance, minimal level overlap, level balance and orthogonality (Huber and Zwerina 

1996); minimal attribute overlap in a Bayesian framework (Sandor and Wedel 2001). 

Crucially, in deciding which approach to follow, the researcher has to consider the quality of 

the priors available (Ferrini and Scarpa 2007). Recently, developments have sought to go 

                                                           
 

 

 

3
 For a detailed analysis of the state of the art practice see Rose and Bliemer (2004), Rose and Bliemer (2009) 

and Rose et al. (2009a). Usually, the information criterion relies on the Fisher Information Matrix; see Yu et al. 

(2012) for alternative information criteria. 
4
 This is because the correlations the design seeks to minimize refer to the level of the attributes, but this does 

not imply there will not be correlations between the differences in the utility function, which is what really 

matters, as shown by Rose and Bliemer (2004). 
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beyond an ED where the AVCM is derived with the multinomial Logit model (MNL) as the 

only data generating process (see Bliemer et al. 2009; Bliemer and Rose 2010). Finally, an 

approach to handle the model’s uncertainty has also been proposed (see Rose et al. 2009a).  

A common limitation lies at the heart of each of these EDs. As a matter of fact, concern 

regarding the limitations of the respondents has been practically non-existent. Two 

exceptions being blocking the choice situations to reduce the number of choice tasks an 

individual is asked to take part in or using fractional rather than full factorials designs. One 

cannot help but notice there has also been an increased interest towards designs that are 

pivoted around individual-specific reference alternatives (see Rose et al. 2008), which may 

enhance the realism of the task. However, only a handful of studies (Severin 2001
5
; Sándor 

and Franses 2009
6
; Danthurebandara et al. 2011

7
) have proposed some ways to take 

respondent’s efficiency into account within the experimental design strategy. If the 

experimental design has not received much attention from this point of view, most of the 

reviewed studies have instead focused on what might be the effects arising from different 

experimental design’s dimensions and/or allowing for different processing rules at the 

estimation stage.  In this regard, the main strategy followed has been of relaxing the scale 

homogeneity assumption, either assuming it exogenously or determining it endogenously, as 

discussed in the next section.   

                                                           
 

 

 

5
 Specifically, she proposed an overall efficiency index, consisting of ‘[...] the determinant of the information 

matrix corrected for the differences in error variance [...]’ (Severin, 2001; p.63). 
6
 They set the scale factor as a function of the mean attributes level dispersion, the number of trade-offs and 

price specification.  
7
  They propose a D-optimal design where the model assumed is the heteroscedastic logit model, where choice 

complexity is modelled following Swait and Adamowicz (2001). 
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There is a crucial link between the experimental design and the econometric models to be 

estimated after data has been collected. Indeed, the researcher has to determine whether to 

estimate main effects or non-linear effects too. When he or she aims at maximizing the 

determinant of the AVCM, the log-likelihood function must be specified, besides setting the 

parameters values. Notably, a different model implies a different AVCM. Therefore, if a way 

to incorporate plausible behavioral mechanisms is proven to be empirically valuable at the 

estimation stage, it should be then transferred, and tested at the experimental design stage. 

Irrespective of the experimental design, the researcher must determine: 

- (a) the number of choice tasks (NCT); 

- (b) the number of alternatives (NALT); 

- (c) whether to label or not the alternatives (LAB); 

- (d) whether to include a status quo and/or a no choice option (SQ/NC); 

- (e) the number of the attributes (NATT); 

- (f) the order choice tasks, attributes and alternatives (ORD); 

- (g) the number of levels (NLEV); 

- (h) the attribute level range (ATT_R); 

- (i) the experimental design strategy itself (ED); 

- (j) the survey’s administration mode (ADM_M). 

 

2.3 Defining Task Complexity 
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Following Liu and Li (2012), we distinguish between three ways of defining Task 

Complexity: the structuralist point of view (1), the resource requirement (2) and, finally, the 

interaction view point (3). According to (1) TC is defined as a function of the elements 

forming the task and relationships between those elements; (2) looks at the amount of 

resources a given individual needs in order to complete the task; finally (3) sees TC as the 

interaction between task and individual’s characteristics. As far as DCEs are concerned, 

following the structuralist point of view we can define objective TC as: the function of all 

features and characteristics of the experimental design and the choice experiments’ 

implementation, which have to be set by the researcher. Any of these experimental design’s 

characteristics is likely to influence objective task complexity (TC).  

Formally, the TC of a given choice experiment is modeled as a function of the elements (a) to 

(j): 

                                                                (1) 

where the error term    reminds there may be some variables influencing     we are not 

including in (1). For simplicity, we jointly refer to NCT, NALT, NATT, and NLEV as 

design’s dimensions.  Given this level of task complexity, each respondent, characterized by 

a     matrix of k respondent’s characteristics    , (such as cognitive ability, involvement, 

memory) will have a subjective perception of TC in a given choice experiment. Accordingly, 

focusing on cognitive effort or the time needed by the respondents to complete the survey 

would fit with the resource requirement view on TC. In regard to the interaction view point, it 

is given by the interaction between     and             . In this paper we will focus on the 

structuralist view of TC and analyze its components in the following sections. 

We start from a neutral perspective: more complex choice experiments might be more 

difficult to be processed by some respondent, but on the other hand they might contribute to a 
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more realistic task and involvement. Task complexity per se cannot be deemed to be harmful 

and necessarily equivalent to difficulty. 

 

Table 1. Task complexity’s definitions 

Views on Task 

Complexity 
Liu and Li (2012) In DCEs 

Structuralist 

TC is given by the structure of 

the task. It can be viewed as a 

function of the elements 

forming the task. 

TC is given by the function of 

the experimental design's 

characteristics and the survey 

instrument. Together they 

form the structure of the task.  

Resource 

Requirement 

TC is given as resource 

requirements needed to 

complete the task. 

TC is given by the cognitive 

effort, the time needed to 

complete the task etc. 

Interaction 

TC is given by the product of 

the interaction between the 

characteristics of the 

respondents and those of the 

task. 

TC is given by the interaction 

between task characteristics 

(entering the function) and 

respondents’ characteristics. 

 

 

In other words, complexity cannot be linked only to the quantity of information, but also to 

its relevance (Hensher 2006). In this sense, the use of perceived difficulty of the task as a 

proxy for TC is questionable (as in Bonsall and Lythgoe 2009). What is more, the complexity 

of the task may be linked to different decision strategies (as in Dellaert et al. 2012). However, 

in this paper we only focus on characterizing TC, whereas linking this with different 

processing strategies is left for further research.  

As shown in Fig.1, after having determined the elements characterizing TC in DCEs 

following the structuralist view, in the following sections we will be focusing on their effects 

on error variance and WTP before taking a look at recent DCEs studies. 
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Fig.1: Content of the sections 3-4 

 

 

 

 

 

3. Task complexity’s components 

 

In the following sub-sections we assess the main findings across different disciplines, firstly 

considering (a) to (j) in a separate fashion to ease the narrative (with the exception of b-c and 

g-h treated jointly), before providing a holistic discussion.  It is worth noting that only a few 

authors varied multiple design dimensions and/or presented respondents with different 

designs in which the main task complexity dimensions have been varied. This seriously 

undermines the possibility of assessing the impact of design dimensionality on behavioral 

response (Rose et al. 2009b). Specifically, Dellaert et al. (1999), Swait and Adamowicz 

(2001), DeShazo and Fermo (2002), Caussade et al. (2005) and Chung et al. (2011) 

parameterized the scale factor as function of multiple design’s dimensions; whereas Hensher 

(2004, 2006), Cassuade et al. (2005), Rose et al. (2009b), Hess et al. (2012) and Meyerhoff et 

Task Complexity in DCEs: 

 

Which are the Task 

Complexity’s components?  

Structuralist 

 

Resource 

 

Interaction 

 

Views: 

 

Effects on Error 

Variance and WTP  

 

How recent DCEs study 

decides these elements 
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al. (2013) have presented the respondents with designs with different levels of task 

complexity (using the so-called Design of Designs). Finally, Rose et al. (2009b) and Hess et 

al. (2012) obtained data from different countries. 

As the scale factor/error variance is a recurrent theme in the following paragraphs, we spend 

a few lines to give a brief explanation of its role. Heiner (1983) and De Palma et al. (1994) 

have been the first in linking error variance in random utility models respectively with the 

gap between respondent’s competence and difficulty, and the ability to choose. Hence, a way 

to assess how the complexity of the choice task affects respondent’s behavior is that of 

focusing on the scale parameter. Indeed, its decrease implies an increase in the variance and 

vice versa, which has been generally interpreted as less consistent choices. The scale factor 

can be estimated as setting one data set as the reference (Swait and Louviere 1993) or by 

setting the scale as a function of some covariates, such as task complexity’s dimensions. 

Different names have been used in the literature to define these models. We use the term 

heterosckedastic multinomial Logit (HMNL) when scale differences between data sets were 

estimated. Instead, we employ the term parameterized heterosckedastic multinomial Logit 

(PHMNL) when the scale factor is a function of same complexity measure(s), hence treating 

variance heterogeneity in a deterministic way. Besides, the generalized mixed Logit model 

(G-MNL) has been also proposed (Fiebig et al. 2010), in which random parameters are 

associated both to the preference coefficients and to scale. However, as warned by Hess and 

Rose (2012), one cannot claim to completely separate scale and coefficient heterogeneity. 

Finally, MMNL refers to the multinomial mixed Logit model (sometimes also defined as 

random parameter Logit model).     

3.1 Number  of choice tasks (NCT) 
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The first choice experiment ever performed (that we are aware of), consisted of 256 pairwise 

choice tasks administered to a single respondent (Thurstone 1931). There is no evidence of 

other studies reaching this number of comparisons. From a theoretical point of view, a single 

binary choice task is one of the requirements to fulfill incentive compatibility, so that the 

respondent answers truthfully (Carson and Groves 2007). However, not only does the 

researcher aim at a receiving a truthful answer, but also to capture the respondents’ 

preferences. On this regard, multiple choice tasks ease the pursuit of this objective, besides 

allowing for a decrease in data gathering costs and the possibility of estimating interactions 

(Brazell and Louviere 1996). On this note, we consider for instance Cherchi and Ortúzar 

(2008) and Rose et al. (2011), which both by means of a simulation analysis, suggest that for 

a given number of respondents increasing the number of choice tasks produces better t-ratios, 

as far as MMNL models are concerned. An empirical comparison of the single vs multiple 

choice format is offered by McNair et al. (2011), who finds differences in WTP arising after 

the first task. Other authors found the effects on WTP to be small or not significant. This is 

the case in Chung et al. (2011), Hensher et al. (2001)
8
, and Hensher (2004). Finally, Rose et 

al. (2009b) show how results might be quite culturally and data set specific. In fact, 

comparing value of travel time savings (VTTS) estimates for Chilean, Australian and 

Taiwanese respondents, they found the NCT had a significant impact only for the first group 

of respondents.   

The impact on the variance of the error has been receiving a more exacting attention. Bradley 

and Daly (1994) applied the Logit scaling approach to two case studies, i.e. a series of rank 

                                                           
 

 

 

8
 A preliminary analysis on the same data set, reaching analogous conclusions, was conducted by Stopher and 

Hensher (2000). 
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order tasks and a series of choice experiments. Their results show that the scale factors 

respectively estimated relative to the first rank and the second choice experiment
9
 are 

decreasing over the choices. Therefore, there seems to be evidence, respectively, of a 

potential rank order effect and a fatigue effect, the latter arising from the 5
th

 response 

(respondents faced between 10 and 26 choice experiments). Later, Brazell and Louviere 

(1996) employed a wider range of comparisons, including 12, 24, 48 and 96 choice tasks in 

one study and 16, 36, 68, 120 in the second. They put forward individuals who seem to learn 

at first (scale parameter greater than one), whereas some fatigue effect arises at a later stage 

(scale parameter lower than one)
10

. Similarly, Chung et al. (2011) found a concave 

relationship between the number of choice sets (1-20) and the scale factor, parameterized as a 

function of the number of choice sets and alternatives. Interestingly, Cassuade et al. (2005), 

setting the scale factor as a function of five design dimensions including NCT, confirmed a 

concave relationship, suggesting that learning effects prevail until the 10
th

 choice task. 

Nevertheless, this has the least relative impact on variance compared to the other complexity 

dimensions. Of analogous advice Bech et al. (2011), arguing that although variance is higher 

for the respondent’s segment that had to engage in more choice tasks (17 opposed to 5), the 

effect appears to be relatively small. The presence of fatigue, and specifically from the 6
th

 

task, is also found by Hu (2006).  

No statistical evidence of fatigue is present according to Arentze et al. (2003), who estimated 

the scale of the last 8 choice tasks relative to the first 8. Employing the same comparison as 

                                                           
 

 

 

9
 Since the first was a presented a dominated exercise on purpose, hence discarded as a valid base. 

10
 However, differences in variance between the model with 12 and 48 choice sets, case study 1, are not 

significant. In addition, no scale difference is found across the models with respect to case study 2. Finally, there 

is no statistical evidence of difference in variance when analysing equivalent sub-design for a given length. 
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in Arentze et al. (2003), but allowing for heterogeneity in preferences estimating a H-RPL, 

Carlsson et al. (2012) finds instead evidence of learning effects
11

, reversing the evidence of 

the former study. However, in these two studies the respondents may have realized of taking 

part in the same sequence of choices twice, so this could have caused order effects. This issue 

is addressed by Czajkowski et al. (2012), who randomized the order of the choice tasks and 

estimated HMNL, S-MNL, H-RPL and G-MNL, confirming evidence of learning effects
12

. 

Finally, no significant effect is found in Meyerhoff et al. (2013) who offered between 6 and 

24 choice tasks; but they suggest that higher percentages of drop outs are observed as the 

NCT grows. Also, no statistical effect is found according to Carlsson and Martinsson (2008), 

who alternatively present respondents with either 12 or 24 choice tasks, nor by Hole (2004) 

who asked respondents to take part in 9 choice tasks. Adding up to the not clear effect of the 

NCT on learning and fatigue, it is important the contribution offered by Hess et al. (2012), 

who looked for differences in error variance in 5 different case studies in different countries. 

Although there were differences in scale as one progressed through the choice tasks, a clear 

and consistent pattern across the studies was not found
13

. 

Instead using a different approach, namely employing a series of ordered heterogeneous 

Logit (OHL) models where the dependent variable is the number of attributes ignored, 

Hensher (2006) suggests that as the number of choice sets increases, from 6 to 15, error 

variance increases.  Stopher and Hensher (2000) have also wandered outside of the well-

                                                           
 

 

 

11
 Both Arentze et al. (2003) and Carlsson et al. (2012) set 5 attributes, similar number of attributes levels; the 

former made use of an orthogonal design, while the latter opted for a D-efficient design. 
12

 Each respondent faced 26 choice tasks. According to the HMNL, the scale factor is statistically greater than 1 

only after the 10
th

 choice task. 
13

 ‘[...] overall, there is more evidence of learning (in terms of increasing scale) than fatigue’ (Hess et al. 2012, 

p. 642). 
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known path of inspecting error variance. They focused instead on whether increasing the 

number of tasks leads the respondents to choose the same alternative over and over again, 

signaling the emergence of fatigue, without finding evidence confirming this hypothesis. 

There has been a robust result linked to the number of tasks. Indeed, it has been regularly 

found that response time decreases as respondents make repeated choices (Haaijer et al. 2000; 

Rose and Black 2006; Bonsall and Lythgoe 2009; Vista et al. 2009). Coinciding with the 

evidence that the respondent gets better and better at comparing alternatives, but the learning 

effect is only one of the possible explanations. For instance, the respondent may just want to 

get away from the survey. 

All in all, there is evidence of a concave relationship between the NCT and the scale factor in 

those studies where task complexity is not simply seen as a function of NCT and where a 

great deal of comparisons with respect to the NCT presented (Brazell and Louviere 1996). In 

regard to the other pieces of evidence, three studies suggest fatigue effects, two put forward 

learning effects, one suggests no clear pattern, whereas four advance no effect at all. 

Crucially, when found the effect does not seem to be substantial, neither with respect to the 

variance of the error nor in terms of mean WTP and elasticities.  

 

3.2 Number  of alternatives (NALT) 

As far as incentive compatibility is concerned, a binary choice task format would be 

preferable (i.e.: two alternatives), alongside other conditions to be met (Carson and Groves, 

2007). It is arguable whether the binary format might be the most realistic and informative. 

On this note, some authors have sought to understand whether respondents might prefer more 

choice opportunities or vice versa. Rolfe and Bennet (2009) asked two groups of respondents 
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to take part, respectively, in a DCE with 2 and 3 alternatives; in each case the status quo 

option is also available (so effectively we have 3 and 4 alternatives). Their findings suggest 

that when presented with 4 alternatives, individuals were more able to choose fixed choices 

and serial non participation decreased drastically. Innovatively, the opportunity of choosing 

the number of alternatives has been given by Burton and Rigby (2012), specifically offering 

either 3, 4 or 6 alternatives
14

. Those respondents who opted for 4 or 6 alternatives, in each 

case 30% of the sample, generally exhibited a lower error variance. For the group with the 

highest number of alternatives preferred, there was ‘a generically articulated desire to have 

more choices’ (Burton and Rigby 2012, p.794). However, it must be noticed how asking the 

respondents to choose how many alternatives might increase the complexity of the task, as 

the respondents are subjected to more and different decision tasks thereby dealing not only 

with  which option to select but how many to consider.  

In line with the empirical research on the effects of NCT, many authors have focused on the 

effects on the error variance of the utility function. Arentze at al. (2003) did not find a 

statistical significant difference comparing two versus three alternatives (without status quo). 

Contrary, DeShazo and Fermo (2002) support the evidence of a non-linear relationship, with 

the scale first increasing and then decreasing. Specifically, error variance is minimized for 3 

alternatives (they proposed between 2 to 7 alternatives in one study and 6 to 9 in another 

study). Similarly, Cassuade et al. (2005) and Mayerhoff et al. (2013) found a quadratic 

relationship too. As already pointed out, they simultaneously consider other TC dimensions 

and NALT appears to have the second highest impact. Already in 2001, Swait and 
                                                           
 

 

 

14
 In particular, respondents first received eight choice sets with three alternatives, then one with four and finally 

one with six options. Eventually, they were asked to choose how many alternatives they would like to have in 

the next final four choices. 
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Adamowicz had stressed the relevance of jointly considering multiple TC dimensions. They 

set the scale factor as a function of an entropy index   , which is directly affected by NALT, 

NATT, and N_LEV, putting forward a convex relationship between complexity and error 

variance. In addition, Chung et al. (2011) found a quadratic relationship between the scale 

factor and NALT. Notably, they varied the number of alternatives (including a no choice 

option) from 3 to 12.   

Hensher (2004), who did not limit the focus on NALT, in a mixed Logit model where 56 

interactions between attributes of alternatives and design characteristics were included, found 

only 1 statistically significant interaction related to the number of alternatives. Interestingly, 

as we noted in the previous section for the NCT, also NALT might have a different influence 

depending on the country considered (Rose et al. 2009b). In fact, in terms of VTTS, it 

appears that an upward bias is present with respect to the Australian and Taiwanese data set, 

whereas a downward one when it comes to the Chilean data set. 

To sum up, more alternatives are not necessarily associated with a more demanding choice 

task. For some respondents too few alternatives might undermine their capability of making a 

choice. Second, with the exception of one study (i.e.: Arentze et al. 2003), it appears to be 

present a convex relationship between NALT and error variance. This is supported in all 

those studies setting the scale factor as a function of multiple complexity dimensions, hence 

less prone to omitted variable bias. Some authors have also indicated the number of optimal 

NALT (although stressing the contingency of the result), which is interestingly greater than 

the theoretically incentive compatible binary format. 

Notably, researchers have also to decide whether or not to label the alternatives. Usually, the 

parameters for unlabeled DCE are set as generic, whereas for labelled ones can be either 

generic or alternative specific. This influences the ED’s design dimension, as in the former 
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case less choice situation are required, ceteris paribus. In addition, non-trading behaviour 

might be associated to labelled alternatives, for instance due to a particular transport mode. 

However, besides taking into account the risk of fostering non trading behaviour, labeling 

alternatives may enhance the realism of the task.  

 

3.3 Status quo, opt out and no choice option (SQ/NC) 

Among the alternatives proposed to the respondents, one should confer keen attention to the 

inclusion of constant alternatives (CA) in choice tasks, namely the status quo, opt out, neither 

option. In other words, a crucial decision the researcher has to undertake is whether to design 

forced or unforced choices. On this note, Pedersen and Gyrd-Hansen (2013) suggest that an 

unforced DCE needs both an opt out and a status quo option to be undoubtedly such. 

Unfortunately, there are cases in which both the inclusion and exclusion of a constant 

alternative are plausible (Pedersen et al. 2011).  

If a no choice alternative is included and the respondent chooses it, there is little or no 

information on the relative attractiveness relative to the other options. In some applied 

studies, the researcher might incur in a massive number of opt-out choices, hence 

undermining the possibility of determining the importance of each of the attribute. An 

example is given by a choice experiment on the realization of nuclear plants in a country 

where the population is widely against it. To overcome this issue, a dual response choice 

design may be employed (Dhar and Simonson 2003; Brazell et al. 2006). Accordingly, the 

respondent is presented with two series of choice tasks, respectively with and without the no-

choice option. Similarly, Rose and Hess (2009) propose a dual response format, where in 

addition to the status quo option is respondent-specific and the alternatives are pivoted with 

respect to this reference. Moreover, rather than presenting the respondents with two series of 



127 
 

choice tasks, they asked them to choose between the remaining alternatives only if the CA 

had been chosen at first. However, a dual response format may lead to the violation of the 

independently and identically distributions (IID) assumption, besides differences in WTP 

estimates. The latter issue has been investigated by Hess and Rose (2009), who do not report 

systematic differences. Similarly, with respect to the IID violation, Hess and Rose (2009) and 

Brazell et al. (2006) do not find it to be severe, contrarily to Dhar and Simonson (2003). 

These authors, however, employed a relatively simple choice experiment compared to Hess 

and Rose (2009) and Brazell et al. (2006). Differently, Savage and Waldman (2008) propose 

to first force respondents to choose between the alternatives and later ask them if they would 

still prefer it to their status quo. All of these approaches aim at possibly tackling a too 

extreme number of the CA being chosen by first forcing and later setting the respondent free 

and also choose among nothing or the status quo.  

Once it has been established whether to insert a CA in the design, one should also be careful 

in deciding how to describe it, since this seems to affect respondents’ choice too. In this 

regard, Ruby et al. (1998), in a split sample choice experiment, respectively proposed a 

‘prefer another site’ option and ‘not go fishing’ one, in a context of a saltwater angling 

survey. They find the way the CA is framed influences results, especially with respect to the 

‘site characteristics that are most salient to respondents’ (Ruby et al. 1998, p.9). Similarly, 

Kontoleon and Yabe (2003) alternatively used the ‘buying the usual brand’ option and the 

‘not buying’ one, also concluding that the different format affects the parameters of the 

attributes that are more important for the respondents. Moreover, the no purchase option 

appeared to be more restrictive, whereas the usual brand one ‘took disproportionately greater 

share from options that individuals tended to select under the no purchase alternative’ 

(Kontoleon and Yabe 2003, p.22).  Breffle and Rowe (2002) proposed different choice 

questions formats, i.e. simple choices (2 alternatives), referendum choices (2 alternatives, one 
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is the status quo), and composite choices (multiple changes in attribute levels, no status quo). 

They argue that, despite the exclusion of the status quo, the simple choice format is 

associated with the smallest error variance. However, as noticed by the authors themselves, 

the inclusion of the status quo is not realistic in that instance. All in all, these findings make 

clear how proposing a status quo rather than an opt out or a no choice option may influence 

results. 

Another issue is that respondents might opt for the CA whilst not stating their true preference. 

Firstly, because they do not find any alternative appealing enough or because these are too 

similar, as suggested by Haaijer et al. (2001). Of the same advice Dhar (1997), who suggests 

the preference for the no choice-option is more likely when an attractive alternative is added 

to the choice task and less likely when an inferior alternative is added instead. This, in turn, 

strongly contrasts with Huber and Zwerina (1996) suggestion of aiming at utility balance 

when designing the choice experiment. On the other hand, Boxall et al. (2009) and Day et al. 

(2012) suggest that as the difference between the alternatives increases, respondent may find 

the choice task more difficult and opting out might be viewed as a safe and attractive choice. 

Similarly, Meyerhoff and Liebe (2009) advance that a greater (perceived) task difficulty may 

foster the preference for the status quo. Hence, it seems that for some respondents the task 

gets demanding if too few and similar alternatives are presented, whereas for others the 

converse may be true. Moreover, varying the number of alternatives might alter the 

preference towards the no choice or status quo (Adamowicz et al. 2005; Rolfe and Bennet 

2009). Another reason why respondents may not answer truthfully is represented by protest 

against some aspect of the choice tasks (Meyerhoff and Liebe, 2008 and 2009). However, it 

seems to be particularly challenging to detect protesters in DCE. In this regard, Meyerhoff 

and Liebe (2008) note that it does not exist a unique way to define protesters when one uses 

protest/attitudinal scales, so that authors can very likely disagree on whether an individual is 
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deemed to be identified as a protester or not. What is more, respondents might choose the CA 

because they are uncertain about their preference (Hanley et al. 2006). On this note, Olsen et 

al. (2011) suggest stated certainty depends positively on the utility difference between 

alternatives. Finally, Kataria et al. (2012) argue that respondents are more likely to opt out 

when they find the information to be unbelievable and unrealistic. Realism could be enhanced 

employing reference based alternatives, although this can lead to high rate of inertia (see 

Chintakayala et al. 2009). 

In a nutshell, once determined whether a CA should be included, a great deal of care has to be 

placed on the choice of the format and at the modelling stage. In addition, the extent to which 

alternatives differ seems to have a crucial role in influencing choices, besides task difficulty 

and protest attitudes. We can safely conclude that status quo and no choice options are not 

just like any other alternative. As far as TC is concerned, researchers should not simply add 

up alternatives and CA, but carefully distinguish between the two types. 

 

3.4 The number of the attributes (NATT) 

As previously noticed with respect to NCT and NALT, it has been also investigated the effect 

of varying NATT on error variance. Specifically, as the number of attributes increases the 

error variance seems to increase. This finding is supported by authors who simultaneously 

considered different complexity dimensions at the estimation stage by means of a PHMNL, 

as DeShazo and Fermo (2002) and Cassuade et al. (2005). The former varied NATT from 7 

to 9, whereas the latter varied them between 4 and 6. In addition, Cassuade et al. (2005) stress 

that among the complexity dimensions considered, NATT had the largest impact on variance. 

A substantial impact is also found by Mayerhoff et al. (2013), who varied NATT between 4 

and 7. Finally, Swait and Adamowicz (2001) find a concave relationship between the scale 
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factor their entropy index, which is also affected by NATT as noticed in the previous 

sections.  

The conclusions of the authors who only focused on a limited number of complexity 

dimensions are in line with these results, suggesting this might be quite a robust result, as in 

the case of Arentze et al. (2003) and Islam et al. (2007). The former considered only NATT 

and NALT as determinants of task complexity whereas the latter set the scale factor as a 

function of attributes and attributes’ levels. What is more, some attributes can be seen as 

casually related and not treated independently by the respondents: Blamey et al. (2002) show 

that the inclusion of a casual attribute reduces the scale factor, while no effect in terms of the 

taste parameters is found. 

Considering instead the effect of NATT on WTP, Rose et al. (2009b) show NATT (varied 

between 3 and 6) generally influences it downwards, with the exception of two attributes for 

the Chilean respondents, hence confirming the significance of taking the country and culture 

factor into account. In addition, Hensher (2006), conditioning the random parameter 

estimates on stated attribute attendance, finds a lower mean estimate of WTP. Hence, all in 

all, it appears that both variance and WTP estimates are affected; in addition, respondents 

may not consider all of the attributes presented. 

Specifically, attribute non-attendance-ANA- (Hensher et al. 2005) refers to the possibility 

that respondents might process only a subset of the attributes in the choice set. As pointed out 

by Hensher and Rose (2009), mainly two ways have been employed to deal with it: 1) asking 

respondents supplementary questions to determine whether they are ignoring some attribute 

(hence using stated ANA) or 2) specifying a model that allows for ANA whilst avoiding the 

use of supplementary questions (inferring ANA). However, it is worth noticing that ANA 

should not be of concern when a respondent ignores an attribute because he truly attaches 
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zero, or close to zero, marginal utility to it, hence behaving in a compensatory way (as 

analogously postulated with respect to respondent deemed to be protesters or not when 

choosing the status quo-no choice option). In all other circumstances, one should address the 

issue. Notably, one of these reasons might be task complexity (Hensher 2006; Alemu et al. 

2013). However, the possibility that some respondent may only consider a subset of the 

attributes should not lead practitioners to remove the likely unattended (by some) attributes 

from the survey. In fact, Hess (2011) suggests that even if for some respondents some 

attribute might be irrelevant, the risk of overburdening them seems to be small. For recent 

discussions about ANA, the reader is referred to Alemu et al. (2013), Kehlbacher et al. 

(2013), Scarpa et al. (2013).  

To date, the debate on which method is the most suitable to deal with it (i.e., whether the 

mixed Logit or latent class framework) and whether to use (and how) or not stated 

respondents’ information on attendance is quite open. The latest evidence suggest that what is 

being treated as not attended, either by means of stated or inferred approach, might instead 

only be less important. Hence, practitioners should consider the possibility of asking 

respondents to state attribute importance, providing a ranking of the attributes at the end of 

the choice task. In turn, this ranking might be used at the pilot stage to detect seemingly 

irrelevant attributes. 

We conclude this section noticing that among the attributes that need to be chosen to create 

the scenarios, the cost or monetary one has a crucial role since it allows WTP computation, 

essential for policy indications. Pedersen et al. (2011) analyze the impact of 

including/excluding the cost parameter in the context of both forced and unforced choices. In 

the case of forced situation the scale factor decreases as the cost attribute is included. 

Moreover, marginal rates of substitution and the ranking of the attributes appear to be 

affected. The same does not hold in case of unforced choices, where none of these measures 
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seem to be affected. The positive effect in terms of the variance error is also suggested by 

Carlsson et al. (2007), as well as respondents’ preferences
15

. These results show how, as 

analogously noticed with respect to the alternatives, not every attribute is the same and so not 

only the number of attributes might affect TC. Further effects are associated also to the way 

attributes are framed (Howard and Salkeld 2009; Rolfe et al. 2002; Hess et al. 2008a), the 

context in which decision takes place (Swait et al. 2002; Jaeger and Rose 2008) and whether 

respondents are familiar with the attributes (Christie and Gibbons 2011).  

 

3.5 The number and range of attributes’ levels 

The effect of varying the number of levels (NLEV) had been examined in the context of 

conjoint analysis (the reader is referred to Louviere et al. (2010) for a discussion on the 

differences between choice experiment and conjoint analysis studies).The studies of Currim 

et al. (1981) and Wittink et al. (1989) suggest that the relative importance of an attribute 

might increase when this is described by more levels and, according to Wittink et al. (1992), 

the effect is magnified in the presence of dominated alternatives. Similarly, Green and 

Srinivasan (1990), suggest that adding more intermediate levels may increase the relative 

importance of the attribute.  

With regard to choice experiments, NLEV might influence the importance attached to the 

attributes too, but in a different way. According to Hensher (2006) the more the levels per 

attribute, the less the attributes that may be considered by the respondent. Dellaert et al. 
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 Specifically ‘we find one order reversal in each experiment; reject a null hypothesis of equal intensity for 

several of the preferences (measured in terms of marginal rates of substitutions)’ (Carlsson et al. 2007, p. 162). 
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(1999) specify the scale parameter as a function of the attribute levels and attribute levels’ 

differences. Both this two have a negative effect on choice consistency and less variability is 

observed with respect to similarly priced alternatives. Analogously, van der Waerden et al. 

(2004) suggest that greater variance is attached to four-level attributes as opposed to two-

level attributes. As far as the effect on WTP is concerned, Rose et al. (2009) find that the 

number of level has a significant impact, whose sign is different depending on the attribute 

and country considered as also noted for NCT and NATT. Similarly, Hensher (2004) found 

the increase in the number of levels to significantly influence WTP, with different effects 

depending on the attribute considered. However, regardless of the effects on variance and 

WTP, practitioners should also keep in mind that more than two levels are needed for a given 

attribute if non-linear effects are to be estimated (Rose and Bliemer 2009). 

Considering the studies which simultaneously model the scale factor as a function of multiple 

complexity dimensions, Caussade et al. (2005) finds the number of levels contributes to 

higher variance; however, this effect is three times smaller than the one associated to NATT. 

DeShazo and Fermo (2002) focus more in depth on changes in the structures of the 

information provided, analyzing the impact of 1) increasing the number of attributes that 

differ across alternatives, 2) the mean of the correlation of attribute levels across alternatives 

and 3) the dispersion of this correlation. Results suggest that an increase in any of these 

measures increases error variance considerably. Similarly, Sándor and Franses (2009) set the 

scale factor as a function of mean dispersion (as defined above), the number of trade-offs and 

price specification. With the exception of the former, the remaining variables affect error 

variance.  The degree of attribute correlation was also taken into account within the entropy 

index employed by Swait and Adamowicz (2001), which was found to be convexly related to 

the error variance. 
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Not only is important the number of the attributes but also whether wide or narrow ranges are 

proposed, how much-and how many-levels vary across alternatives and how these are 

framed. From a statistical point of view a wide range is preferable; nevertheless wide ranges 

increase the probability of dominated alternatives (Hess and Rose 2009). Empirically, range 

effects are found to be statistically significant by Cassuade et al. (2005) and Rose et al. 

(2009). Specifically, the former finds that the levels’ range has the third highest impact on 

variance whereas the latter found significant effects in terms of WTP. Moreover, Hensher 

(2004) finds that a wide range lowers mean WTP compared to the base and narrower range. 

In addition, according to Ohler et al. (2000), attribute range differences may impact on the 

complexity of the functional form, the model fit and between subject response variability. 

What is more, Luisetti et al. (2011) suggest respondents might interpret the levels as relative 

rather than absolute values, hence anchoring and referencing may be an issue to be taken into 

account too.  

As previously noted, the price/monetary attribute deserves particular attention. When it 

comes to the level of the monetary attribute, Hanley et al. (2005) point out that changing the 

price vector does not seem to affect WTP estimates
16

. On the other hand, Sándor and Franses 

(2009) suggest that presenting respondents with different (but equivalent) price specification 

affects choice consistency. Another framing effect can arise depending on whether the levels 

indicate losses rather than gains. For instance, in a recent study Kragt and Bennet (2012) 

found that when describing levels in terms of loss, respondents tend to attach more value to it 

(i.e.: they oppose loss more strongly than they value gains). In order to reduce gains-losses 
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 Nevertheless, the sample presented with higher price levels tends to opt more often for the status quo. 
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asymmetries, Bateman et al. (2009) stress the importance of presenting the information in the 

most comprehensible way possible, for example by means of virtual reality visualizations, 

with the aim of reducing respondents’ uncertainty in processing the attributes as this 

uncertainty may, in turn, lead to an increased preference for avoiding losses.  

When it comes to the number of levels differing across alternatives, the study by Mazzotta 

and Opaluch (1995) ought to be acknowledged.  They presented respondents with a minimum 

of two and a maximum of six attributes’ levels differing, concluding that complexity arises, 

and variance increases, when four or more attributes differ. What is more, Severin (2001) 

suggests that the number of attribute levels difference is the main responsible for an increase 

in the error variance. Instead, Maddala et al. (2003) compared a ‘minimal overlap’ DCE 

versus a ‘increased overlap’ DCE, the former characterized by almost no attributes’ level 

overlap, the latter by two overlaps on average. Apart from differences in stated preferences, 

no differences seem to arise in terms of consistency, dominated responses and perceived 

difficulty. An analogous study has been later implemented by Johnson et al. (2010), who 

found statistically different preference’s distributions across the two versions of the survey.  

We noted in the previous section that respondents might focus on a sub-set of attributes 

presented. A related issue is that of lexicographic choices. These occur when the respondent 

chooses on the basis of only one attribute’s level, departing from compensatory decision rules 

(Sælensminde 2006; Campbell et al 2006). Crucially, lexicographic preferences are rational, 

but fail to satisfy the continuity axiom. In fact, ‘[...] for people with lexicographic preferences 

there does not exist a reservation price at which they are willing to trade a good.’ 

(Rosenberger et al. 2003, p.64). Hence, the ranges’ definitions are crucial: are we reaching 

respondents’ reserve price? Worryingly, lexicographic choices might only apparently be the 

result of decision strategy to cope with a too difficult task, rather than true underlying 

preferences (Sælensminde 2006). Practitioners are advised to simultaneously check whether 
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lexicographic choices, attribute non-attendance, non-trading and, more general, inconsistent 

behaviour are present, as focusing on only one issue seems a rather limited strategy. These 

checks should be run both at the piloting and model estimation stage and results should be 

included in the publication. 

Summarizing, varying the number of levels seems to affect error variance and WTP. 

However, it seems rather myopic to only focus on their number. In fact, their range, the way 

levels are framed, the way they differ between alternatives complicates the picture a lot. 

Importantly, these effects appear to be robust and substantial, differently from what has 

emerged when looking at NCT. 

 

3.6 The order of choice tasks, attributes and alternatives (ORD) 

We have seen in the previous sections how the multiple questions in choice experiments may 

prompt respondents to anwer in strategic ways, due to its lack of incentive compatibility. 

Notably, ordering effects might be either linked to the order of the choice task, the attributes 

and the levels within the choice tasks and, finally, the alternatives.  

Providing the same sequence of choice tasks twice, as noticed in the first section, might lead 

to both learning and fatigue effects. However, we should also reflect upon the effects 

stemming from presenting respondents with particular sequences of choice tasks and how 

much information (and how he/she processes it) the respondent is given before starting the 

experiment. Specifically, Day and Prades (2010) designed their study so that respondents 

experienced price worsening/improving as well as commodity worsening/improving 

sequences of choice tasks. Results suggest respondent do not consider each choice task 

independently and there is evidence of ordering effects with respect to worsening  price and 
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commodity sequences and also with respect to improving commodity sequences. In addition, 

Day et al. (2012) focused on position-dependent (PO-D) and precedent-dependent (PR-D) 

ordering effects, respectively related to the position and to ‘the nature of the options in the 

previous task’ (Day et al. 2012, p.74). They analized the impact of informing ex ante 

respondents about all of the choice tasks’ features, as opposed to a task by task revelation of 

the experiments’ characteristics, finding evidence of both PO-D and PR-D ordering effects. 

The former are significant for the group of respondents who did not received information in 

advance, while the latter are significant for both the two groups. In particular, PR-D effects 

are characterized by some anchoring with respect to the first task and to the ‘deals’ that have 

been proposed in the previous tasks. Analogously, Scheufele and Bennett (2012) suggest that 

respondents are affected by the attributes’ levels presented in the precedent tasks, finding an 

increase in cost sensitivity as they progress through the choice tasks. 

Inversely, Kjær et al. (2006) examine the effects arising from placing the monetary attribute 

in different locations in the choice sets (i.e.: at the beginning or at the enf of the attributes 

listed). Results show the order of the price attribute influences the value respondents attach to 

it. Particularly, the impact is greater when this attribute is placed at the end of the list. Van 

der Waerden et al. (2006) focus instead on order effects arising from presenting labelled 

alternatives in different order. In this case findings suggest significant effects, although not 

substantial ones. 

All in all, order effects are indeed an issue to be faced in choice experiments and, as 

suggested by Day et al. (2012), we should account for them, further studying the effects of 

advance disclosure of the choice tasks compared to stepwise task revelation. In addition, it 

should be further tested whether randomizing choice tasks, attributes and alternatives order 

across respondents might reduce overall order effects, and at what prize. Finally, in some 
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situations it may be preferable to give respondents the opportunity to order the attributes and 

alternatives, so to enhance the experiment’s realism (as in Bliemer and Rose 2011). 

 

3.7 Experimental design effects     

Different strategies have been proposed in order to design choice experiments. However, only 

a few studies have been conducted in order empirically test whether different ED lead to 

differences in results. Hess et al. (2008b) compared  two orthogonal designs, with and 

without random blocking, and an efficient design with non random blocking, showing 

differences in models results and that the random blocking strategy appears to be dominated. 

Louviere et al. (2008) compared 44 experimental designs in which the number of attributes 

and the number of attribute levels’ differences were varied. This work stands out since it was 

aimed at studying the relationship between statistical efficiency and respondents’ choice 

consistency, beside the great deal of EDs compared. Results show a robust negative 

relationship between the two measures: the more the attributes and the levels of these, the 

greater the statistical efficiency and the lower the choice consistency. Previously, Viney et al. 

(2005) tested the performance of an orthogonal main effects design, a random design and a 

utility balanced design. Their findings show unexplained variance is greatest for the latter; 

nevertheless the differences in scale are not significant; overall, the model estimated from the 

ortoghonal design perform best. Differently, Tudela and Rebolledo (2006) compared the 

performance of an optimal design which takes into account the variances of the parameter 

estimates with a classic boundary value one. Although limited by the low number of 

respondents and incredibly high NCT (16 individuals, 144 choices), hence a non realistic 

choice experiment, they suggest the former design leads to significantly better t-ratios. 

Recently, Bliemer and Rose (2011) empirically checked whether D-efficient designs 



139 
 

effectively lead to more reliable parameter estimates, given smaller sample sizes. In 

particular, they compared an orthogonal design and two D-efficient designs, crucially 

differing in the number of choice situations (108 and 18). Results indeed point towards the 

use of D-efficient design when the number of choice situation needs to be kept small; 

nevertheless, their performance relies on the priors the researcher is able to find. In addition, 

a greater number of choice tasks does not necessarily perform better. 

More research is needed to compare ED  which takes into account respondent efficiency (so 

far focusing on the scale factor as in Severin 2001; Sándor and Franses 2009; 

Danthurebandara et al. 2011) with the standard ones. Futhermore, more work is needed with 

respect to the comparison of different experimental design strategies with varying levels of 

task complexity, as well as in different countries and fields.  

 

3.8 Administration mode (ADM_M) 

Deciding which survey mode to opt for was of major concern when DCEs were not 

extensively used yet, whereas Contingent Valuation studies were playing a major role. With 

respect to this stated preference technique, the NOAA panel (Arrow et al. 1993) advised 

using the face to face interview method over the mail and telephone, but at a time when the 

internet was yet to become easily accessible. Face to face interviewing allows for both 

‘maintaining respondent motivation and allowing use of graphic supplements’ (Arrow et al., 

1993; p. 49).  

However, the possibility of conducting online surveys, together with the latest development 

of information technology, gives access to much more powerful graphic representations (see 

for example Bateman et al. 2009). In addition, it is generally agreed internet surveys are 
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cheaper and returned faster. Besides, they allow the researcher to establish how much and 

when the given information is displayed. Online surveys can nowadays be shown within the 

context of face to face surveys, by means of tablet computers, which seem to represent a 

promising venue for DCEs surveys (see Reiter et al. 2013). However, some segment of the 

population (for instance, some age group), might find the use of these technologies more 

difficult or unfamiliar. In addition, these differences may be lessened or enhanced depending 

on the country considered.  It is worth noting how crucial the choice between a face to face 

versus a self-completion survey is. As just noted, the interviewer can keep the respondent 

motivated and observe whether the individual understands the task. But this presence may 

bias (i.e. due to social desirability and/or satisficing behavior) results, even assuming the 

interviewer does a great conducting. For instance, Snowball and Willis (2011) show that 

respondents who self-completed the DCE provided lower-and more realistic- coefficients and 

WTP estimates. When it comes to task complexity, besides common survey’s mode effects
17

, 

                                                           
 

 

 

17
 A few studies have focused on sampling and measurements effects. Lindhjem and Navrud (2011) provide a 

review of survey modes employed in the context of stated preference techniques, concluding there is no clear 

evidence of differences among the survey modes (nevertheless they recognize most of the study fail to separate 

sample effects from measurement effects) and that internet surveys might represent the way forward. Windle 

and Rolfe (2011) compare a paper based format and an internet format using a pre-recruited internet panel. 

Whereas differences in the sampled groups were found, there were not any in terms of estimated WTP. Bell et 

al. (2011) focus instead on the sampling effects arising from the use of different recruiting modes. In fact they 

recruit respondents by phone, in person at malls, online, asking them to complete the survey by means of a 

computer. They find the latter minimizes self selection issues; besides, the internet recruited sample is 

associated with significantly fewer inconsistent response (i.e.: choosing dominated alternatives). Analogously, 

McDonald al. (2010) compare results obtain from online versus mail recruited respondents, concluding that 
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the administration mode should be chosen and employed so that respondents’ understanding 

and the realism of the tasks are maximized. As regards these concerns, online and/or tablet 

based survey are essential to carry out an interactive stated choice survey (as in Collins et al. 

2012, 2013), which allows respondents to sort, search, show and hide attributes and 

attributes’ levels. In this way each individual is self-selecting the choice set he prefers in 

order to perform the task. Nevertheless, whereas it is a clearly promising venue for marketing 

and transportation related studies, it should be tested in the context of environmental and 

health economics before proclaiming it as a great opportunity for any DCEs study. 

The relationship between survey mode and error variance has received some attention in the 

literature. Savage and Waldman (2008), Olsen (2009) and Hatton McDonald et al. (2010) 

investigated whether the survey mode affects choice consistency, finding that respondents 

answered more consistently in the mail survey rather than in the internet one. Previously, 

Brydon (1997) compared paper and pencil versus computer interactive surveys, varying the 

number of alternatives and attributes presented, concluding that paper-pencil format is 

preferable when NATT and NALT are relatively high (i.e. six alternatives and twelve 

alternatives). However, studies are needed where task complexity, as in this paper defined, is 

analyzed in relation to different survey modes. It would be especially interesting to 

investigate whether the combination of online and the latest IT developments available make 

the respondent more involved and/or make choices more consistent.  

 

                                                                                                                                                                                     
 

 

 

those mail recruited and surveyd have the greatest error variance, whereas the lowest is for those who were 

internet recruited. 
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3.9 A summary of the findings 

Although the studies reviewed so far present a low degree of comparability it is fair to draw 

the following conclusions: 

•First, there is evidence that each choice situation is unlikely to be independent from 

the previous one for reasons including learning, fatigue and ordering effects. In 

addition, results indicate an increased number of choice tasks seem to affect error 

variance and estimated willingness to pay. Nevertheless, these effects are consistently 

reported to be small/not substantial. 

•Second, as regard the number of alternatives, evidence points towards a concave 

relationship with the scale factor, primarily in those studies that simultaneously 

considered multiple task complexity’s dimensions. Crucially, practitioners have to 

carefully consider whether to include a status quo/no choice option and how to frame 

it. Some studies have reported that a more difficult choice task can lead to an 

increased preference for the status quo/no choice.  

•Third, as far as the number of the attributes is concerned, results suggest that error 

variance is substantially and positively affected. This conclusion is rather robust 

across the studies reviewed. Furthermore, there is some evidence of effects in terms of 

the willingness to pay. 

•Fourth, as the number of levels increase, error variance and willingness to pay seem 

again to be affected. Notably, non-linear effects on scale are consistently reported by 

authors who parameterized it as a function of multiple measures linked to the number 

of levels (such as mean and standard deviation of the correlation between attributes’ 

levels). Moreover, varying levels’ range may impact variance and WTP as well. 
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• More research is needed to assess the effect of the experimental design strategy. 

Particularly, more real data studies are needed rather than simulations, in order to test 

how respondents perform in an experimental design set up considering respondent’s 

efficiency. An interesting result is that a greater number of choice tasks does not 

necessarily performs better, and a higher number of attribute and attributes’ levels is 

associated with less choice consistency. 

•Finally, online/interactive surveys seem to represent an effective way to foster 

realism and respondents’ involvement. Nevertheless, in some study reports 

respondents seem to answer more consistently in mail surveys. Research is needed to 

assess how task complexity is perceived in relation to different survey modes. 

 

4. Task complexity’s awareness in the applied literature 

We selected 30 recent (2011-2013) applied studies, ten each from Transportation (TR), 

Environmental Economics (ENV) and Health Economics (HE) literature. Specifically, these 

studies have been selected from Transportation Research, Transportation, Ecological 

Economics, Land Economics, Energy Policy, Journal of Health Economics, Health 

Economics and Health Policy. Table 2 shows the TC dimensions chosen in these studies.  

We begin with providing some summary statistics. First, we notice some variability in terms 

of NCT. The minimum number observed is 3, the maximum is 32, whereas the average 

number of choice tasks presented is 9. The NCT is higher in the HE studies, whereas is quite 

similar if compared between TR and ENV. Second, most of the studies present between two 

and three alternatives; an exception being Ziegler (2012) with 7. Notably, within the ENV 

applied studies, it is frequently prevalent the availability of the status quo or an opt out 
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alternative. Almost all of the studies present unlabeled alternatives. Third, the average 

number of attributes chosen is around 6 for the TR and HE applied studies, whereas it is less 

than 5 for the ENV papers. More dispersed is the picture within the TR literature, where three 

studies use as much as 9 attributes, while one as few as 3. Fourth, the attributes’ levels range 

between 2 and 8; only in one case one attribute can have up to 16 levels (in Viney et al. 

2013). Fifth, when it comes to the experimental design, the main criteria still employed are 

orthogonality and efficiency. Unfortunately, some studies do not provide a detailed 

explanation regarding their ED. None of the studies considered applies the EDs proposed by 

Severin (2001), Sándor and Franses (2009) or Danthurebandara et al. (2011) in order to deal 

with respondent efficiency.  Finally, considering the survey instrument, we notice that face to 

face interviews seem to be rarely used within TR and HE, whereas the online surveys are 

gaining more popularity, especially within the TR studies. 

There are some substantial differences, in terms of task complexity dimensions, set across the 

studies considered. For instance, Popkin et al. (2012) choose 3 alternatives, 3 attributes and 4 

choice tasks, whereas Fiebig et al. (2011) set them respectively to 3, 8 (with 2 of these 

attributes having 8 levels) and 32. Are these differences influenced by the authors’ beliefs 

about respondents’ cognitive burden or are they set following a specific protocol? 

Unfortunately, only in a few of these studies the authors explicitly refer to this issue, failing 

to explain why they chose those particular design’s dimensions. Most of them focus on the 

number of the choice tasks. For instance, in Gracia et al. (2012, p.788) we find that ‘To avoid 

fatigue effects associated with multiple scenario valuation tasks, the 32 choice sets were 

randomly split into 8 blocks of 4 choices.’ Similarly, Hurley and Mentzakis (2013, p.674) 

suggest ‘To reduce the burden on subjects the 24 choice scenarios were divided into two 

blocks of 12 scenarios […]’. Mentzakis et al. (2011, p.934) put forward that ‘The discussion 

groups and pilot surveys indicated that respondents found it difficult to engage in 48 choices. 
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The design was therefore blocked into six sets of eight choice sets’. Nguyen et al. (2013, 

p.120) state that ‘In order to reduce the cognitive burden on respondents, each respondent 

was randomly chosen to face a block of 6 choice tasks’. Finally in Kolstad (2011, p.200) it is 

reported that ‘The 32 choices were randomly divided into two blocks in order not to exhaust 

the respondents’.  

Only a few studies have explicitly expressed concern over the number of attributes. For 

example, Duke et al. (2012, p.98) state that ‘[…] the number of attributes is at the mid-to-

lower end of most choice experiments, leading to relatively simple choice task’. Similarly, in 

Kolstad (2011, p.200) ‘[…] seven attributes are included. Thus, the job alternatives include a 

relatively complete description of the job, while at the same time they avoid being too 

complex for rational and well-informed choice making’. Some attention is paid to order 

effects issues, namely in Nguyen et al. (2013), Kolstad (2011), Hurley and Mentzakis (2013), 

Franken and Koolman (2013) and Popkin et al. (2012). However, this is simply addressed by 

varying the order of choice tasks presented to the respondents.  The remaining TC elements 

are mainly stated with no concerns about the respondents. 

In some of these studies, focus groups and in-depth interviews have been used to help 

determine NCT and NATT. However, it is not clear what procedure has been used, hence not 

giving more insights than authors simply stating what was the NCT and NATT chosen. For 

instance, how do we pass from 48 to 8 choice sets (in Mentzakis et al. 2011)? Furthermore, it 

appears to be uncommon to use focus groups and/or interviews to build the scenarios and test 

the feasibility of higher levels of objective TC, instead of focusing almost exclusively on the 

cognitive limits of the respondent. Moreover, the cognitive burden is mainly associated to the 

number of choice tasks. But we have just concluded in the previous section how this might be 

over-feared.  
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In conclusion, the issue of task complexity and cognitive burden is acknowledged by the 

authors in the building of the choice experiments. However, we confirm 1) there is not a clear 

definition of these concepts, 2) too little information is given regarding the NCT and NATT, 

3) almost none of the studies gives reasons why the other TC dimensions have been chosen.  
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Table 2.Applied DCEs studies 

Journal Reference Alternatives Attributes Levels NCT 
Sample 

size 
Obs. Model Labelled/Unlabelled Type Survey mode 

CE 

construction 

T Res A 
Beck et al. 

(2013) 
4 (1 status 

quo) 
9 3,6 5 650 3172 LC Labelled D-efficient Online+interviewer 

Literature 

reviews, 
secundary 

data analysis 

T Res A 
Jones et al. 

(2013) 
3 9 

1(2) 2(3) 
2(6) 2(4) 

2(5) 

6 400 2236 RPL Labelled Orthogonality Face to face 
Literature 
review, 

interviews 

Transp 

Rose and 

Hensher 
(2013) 

3(1 status 
quo) 

7 4(4) 3(3) 12 
189 and 

295 

2268 

and 
3540 

ECL Unlabelled D-optimality online 
Previous study 

experience 

Transp 
Sikka and 

Hanley (2013) 

2 or 3(1 

status quo) 
4 

2(6) 1(4) 

1(5) 
12 273 2088 RPL Unlabelled 

Fractional 

Factorial, 

pivoted 
alternatives 

online 
Literature 

review 

T Res D 
Caulfield et 
al. (2012) 

4,6 5 
3(3) 1(4) 

1(2) 
n.a. 1941 11692 MNL Unlabelled 

Fractional 
Factorial 

CAPI Specific 

T Res A 
Devarasetty et 

al. (2012) 
4 3 3,aRGWI 3 n.a. 3325 RPL Unlabelled 

Db eff; random, 

adaptive random 
Online 

Literature 

review 

T Res A 
Wardman and 
Ibánez (2012) 

2 6 5,8 9 
956, 
1040 

8426, 
9359 

Het-
Logit 

Unlabelled 
Fractional 
Factorial 

1 mail, 1 online 
Literature 

review 

T Res A Ziegler (2012) 7 5 4(5)  1(4) 6 598 3588 M Probit Quasi-labelled n.a. CAPI Pretest 

T Res A 
Correia and 

Viegas (2011) 
2 8,9  aRGWI 4 996 3984 

Binary 
Logit 

Labelled 
Fractional 
Factorial 

Online 

Past 

experience, 
literature 

review 

T Res D 
dell'Olio et al. 

(2011) 
2 4 4(3) 9 110 990 RPL Unlabelled 

Balanced, not 

further specified 
interviewed 

Literature 
review, FG, 

pilot 
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Table 2. Continued 

ECEC 
Abildtrup et al. 

(2013) 

3(1 status 

quo) 
5 5(3) 6 1054 6324 RPL Unlabelled Db efficient Online 

Literature review, 

FG, interviews, 
pilot 

ECEC 
Nguyen et al. 

(2013) 

2(1 status 

quo) 
4 3(3) 1(2) 6 169 1014 

MNL, 

RPL, LC 
Unlabelled Orthogonality 

Face to 

face 

Pilots, internet 
survey, interviews, 

literature review 

ECEC 
Gelo and Koch 

(2012) 

3(1 status 

quo) 
4 

2(2) 1(4) 

1(5) 
4 600 2400 

MNL, 

RPL, LC 
Unlabelled Orthogonality 

Face to 

face 

FG, Meta analyis, 

pilot 

ECEC 
Duke et al. 

(2012) 

3(1 status 

quo) 
5 

1(4) 3 (2) 

1(5) 
5 664 3280 RPL Unlabelled D-optimality Mail FG, Pretest 

Land Econ 
Anderson et al. 

(2013) 

3(1 opt 

out) 

8 grouped 

into 4 
1,3 3 1309 4752 RPL Unlabelled D-efficient Mail FG, interviews 

EP 
Kaenzig et al. 

2013 
3 7 5(4) 2(5) 12 414 4968 HBM Unlabelled Random CAPI 

Literature review 
and expert 

interviews 

EP 

Kosenius and 

Ollikainen 
(2013) 

4 5(1 opt 

out) 
4 3(8) 1(4) 8 947 7566 NL Unlabelled Orthogonality Online 

Literature review, 

interviews, pilot 

EP 
Gracia et al. 

(2012) 

3(1 status 

quo) 
5 4(5) 1(2) 4 400 1600 RPL Unlabelled Orthogonality 

Face to 

face 

Literature review, 
interviews, FG 

pilot 

EP 
Popkin et al. 

(2012) 

3(1 status 

quo) 
3 2(2) 1(7) 4 515 1425 RPL Unlabelled Random Online Literature Review 

Land Econ Qin et al. (2011) 
3(1 opt 

out) 
5 

1(5) 2(2) 

2(3) 
7 210 1470 RPL Unlabelled Orthogonality 

Face to 

face 

FG, interviews, 

pilot  
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Table 2. Continued 

J Health Ec 

Hurley and 

Mentzakis 

(2013) 

4(1 opt 

out)/2(1 opt 

out) 6,4 

5(2) 1(6)/3(2) 

1(6) 12,16 268 3216/4288 Nested Logit Unlabelled Orthogonality Online Literature Review 

Health Pol 

Franken and 

Koolman (2013) 2 5 4 16 63 1008 MNL Unlabelled Orthogonality Pencil paper 

Pilot, involvment 

pre-survey 

Health Econ 

Viney et al. 

(2013) 3 6 5(3) 1(16) 15 1031 15465 QALY Unlabelled Specific online 

Literature review, 

Pilot 

Health Pol 

Goodall et al. 

(2012) 2 6 4(2) 2(4) 16 78 1247 MNL, RPL Unlabelled 

Full factorial 

randomly 

splitted not stated Literature review 

Health Pol 

Pederesen et al. 

(2012) 

3(1 status 

quo) 4 2(5) 1(2) 1(4) 4 1229 4916 MNL Labelled Db efficient Mail Interviews, pilot 

Health Econ 

Sivey et al. 

(2012) 2 7 6(3) 1(4) 9 536 4808 GMNL Unlabelled D error 

paper or 

online 

Interviews, pilot, 

literature review 

Health Pol 

Watson et al. 

(2012) 

3(1 status 

quo) 5 4(4) 1(2) 11 450 4950 MNL Unlabelled Orthogonality Mail 

Literature review, 
interviews, 

discussions 

Health Econ 

Fiebig et al. 

(2011) 3 8 

1(4) 2(8) 2(4) 

3(3) 32 171 5472 

MNL RPL 

GMNL Unlabelled Modified LMA online 

Literature review, 
interviews, 

discussions. FG 

Health Econ Kolstad (2011) 2 7 3(4) 4(2) 16 296 9342 MNL Unlabelled Orthogonality Face to face 

Literature review, 

interviews, 
discussions 

Health Econ 

Mentzakis et al. 

(2011) 3( 1 opt out) 5 5(4) 8 209 1672 LC Unlabelled D optimal Mail 

Literature review, 

Pilot 
a
RGWI: Randomly Generated between Intervals. Journals’ abbreviations: ECEC=Ecological Economics. EP=Energy Policy. Health Pol=Health Policy. J Health Ec= 

Journal of Health Economics. Land Econ=Land Economics. T RES= Transportation Research. Transp=Transportation. Models’ abbreviations: M Probit=Multivariate 

Probit. HBM= Hierarchical Bayes Model. Other: FG=Focus Group. 
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5. Conclusions 

We have sought to define task complexity within the choice experiments method, following 

the structuralist angle. We have also thoroughly reviewed published articles that studied the 

effect of TC dimensions on error variance and WTP. Finally, we have considered 30 recently 

published articles wondering if and how this issue has been addressed. Although this theme 

has gained importance, it appears there is no protocol established so to justify the task 

complexity dimensions’ chosen. Notably, the publishing process might also influence the 

amount of information given. 

Task complexity is a small component of a bigger issue. Respondents might develop 

numerous strategies during the experiment, such as lexicographic, attribute non-attendance, 

non-trading and mixings of these. Hence, the least practitioners can do is to check for 

heteroskedasticity and correlations in the data and test more complex models, already 

available, which can take into account different heuristics (see for example Araña et al. 2008, 

Leong and Hensher 2012). In addition, it is not just about the number of choices, attributes, 

attributes’ levels and alternatives. Not all attributes are the same (i.e.: the cost attribute), not 

all alternatives are the same (i.e.: status quo/no choice). If this is not enough, influences and 

effects seem to be rather country and culturally specific. 

Hence, unfortunately, it does not seem possible to provide guidelines concerning the number 

of each one of these dimensions. Frankly, any rules of thumb in this context seem rather 

naive and studies in which some numbers are provided should be looked at cautiously and 

critically. Surely, a great deal of task complexity awareness is needed, and this is what we 

call for: to step into the respondent’s shoes. What all the studies reviewed here tell us is that a 

higher level of objective complexity is not necessarily abominable for the respondents. 

Asking whether they are able to understand the task and/or what happens if it is too difficult 
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for them is not enough. Realism, as repeatedly stressed in the works by Louviere and 

Hensher, is simply essential and can be fostered by tailoring the choice task to the context, 

the country, the respondent herself. On this note, fixed experimental design’s dimensions, i.e. 

the same for each respondent, might be dominated by an ED with variable dimensions, which 

can be also dynamically adjusted during the choice experiment, relying on online-interactive 

surveys. Research is needed to assess this. On this note, individual efficient experimental 

designs might represent a great opportunity (see Rose and Hensher 2013).  

In light of these considerations, a careful qualitative analysis to inform the survey’s 

construction appears to be a necessary prerequisite, ‘a must’, as already stated by Hess and 

Rose (2009). But at the same time, some set of rules should be established and empirically 

tested: broad statements regarding the setting of the ED should be taken over by detailed 

reasons. This appears to be fundamental to get to know more about how to practically deal 

with the issue and provide examples of ‘good practice’ for the practitioners to come, which 

cannot overly rely on their ‘own judgment’. 

The research has much more to investigate. We need cross-field studies to determine the 

extent to which the state of the art tools, and whether further extensions, in Transportation 

and Marketing are transferable to Health and Environmental Economics. Another notable gap 

in the literature is assessing how different ED strategies perform as ED dimensions are 

varied. In addition, research is needed to test whether extending the averaging approach 

framework proposed by Rose et al. (2009a) to include models that take into account 

heterosckedasticity and/or different processing strategies can likely lead to substantial gains 

and if so, in which circumstances. Finally, for the proponents of the value transfer technique, 

one should critically interrogate if and how to consider task complexity when transferring 

values.
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