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Abstract

Black hole solutions of Einstein (and Einstein-Maxwell) gravity coupled to

scalar fields have acquired a growing interest and importance in recent years.

This interest is motivated both by more “classical” issues, as the problem of

the uniqueness of classical black holes solutions (and related “no-hair” theo-

rems), and mainly by recent applications of the AdS/CFT correspondence,

an holographic duality which allows to describe, starting from a gravitational

theory, strongly coupled quantum field theories.

In this thesis, we treat this topic both from a pure gravitational point

of view and from the holographic perspective. In particular, we propose

a general method for exactly solving, in some cases, the field equations of

Einstein-scalar-Maxwell gravity, and present some new analytical and nu-

merical solutions (we mainly focus on black brane solutions, i.e. solutions

with a planar event horizon). Moreover, we discuss hyperscaling violation,

a particular scaling behavior of free energy and entropy (as functions of the

temperature), typical of some phase transitions of real condensed matter sys-

tems. Hyperscaling violation can be described, via AdS/CFT, starting from

a gravitational solution with a particular symmetry.

Finally, we perform some interesting results about the mass spectrum

and stability of black brane solutions in a wide class of gravitational mod-

els. In particular, the thermodynamics of some solutions of these models

provides important information about the possible existence of physically-

relevant phase transitions in the dual field theories.
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Introduction

In recent years there has been a renewed growing interest for the static black

hole solutions of Einstein (and Einstein-Maxwell) gravity coupled to scalar

fields.

In the past, the interest for these models, and in particular for solutions

characterized by a nontrivial profile of the scalar field (scalar “hair”), was

basically motivated either by the issue of the uniqueness of the Schwarzschild

black hole and related no-hair theorems [1, 2], or by cosmological issues, in

particular in the context of dark energy models [3–5], or by the quest for new

black hole solutions in low-energy string models [6–10]. Moreover, the search

for this black holes was mainly focused on asymptotically flat solutions.

More recently, the interest for these solutions was shifted from asymp-

totically flat to asymptotically anti-de Sitter (AdS) solutions. From a pure

gravitational point of view, the shift to asymptotically AdS solutions allows

to circumvent standard no-hair theorems, which relate the existence of black

hole solutions with scalar hair to the violation of the positive energy theo-

rem (PET) [11, 12]. Unlike the flat case, a scalar field in the AdS spacetime

may have negative squared-mass m2, without destabilizing the AdS vacuum,

provided m2 is above the so-called Breitenlohner-Freedman (BF) bound [13].

But static black hole solutions with non trivial scalar hair and AdS asymp-

totics can play a crucial role in the context of applications of the anti-de

Sitter/Conformal Field Theory (AdS/CFT) correspondence [14], one of the

most intriguing recent discoveries in theoretical physics. When the clas-
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sical approximation for the bulk gravity theory is reliable, exploiting the

AdS/CFT “rules”, one can deal with “holographic” strongly coupled quan-

tum field theories (QFTs) at finite temperature in d dimensions by investi-

gating black holes in AdS in d+ 1 dimensions. In this context, the nontrivial

scalar hair of the black hole solutions can be interpreted either as a running

coupling constant or as a scalar condensate in the dual QFT. In the first case

the bulk scalar dynamics is very useful for holographic renormalization meth-

ods [15]. In the second case the scalar condensate can describe a symmetry

breaking or phase transitions in the dual QFT, in many cases reminiscent of

well-known condensed matter systems [16–25].

The best-known example is represented by holographic superconductors:

below a critical temperature the bulk gravity theory, in this case Einstein-

Maxwell with a covariantly coupled scalar field, allows for black hole solutions

with scalar hair [18–20, 22, 24]. This corresponds to the formation of a

charged condensate in the dual theory that breaks spontaneously a global

U(1) symmetry, a typical behavior of superconducting systems. This basic

structure has been generalized to a number of cases including, among others,

Yang-Mills theories [26] and nonminimal couplings between the scalar and

the electromagnetic field [23, 25, 27–31].

Another interesting feature of static black holes with scalar hair and AdS

asymptotics, which is common to several models, is the presence in the near-

horizon regime of solutions which break the conformal symmetry of AdS

vacuum, but preserve some scaling symmetries [23, 25, 28, 30, 32–40]. In

particular it has been realized that these solutions belong to a general class

of metrics that are not scale-invariant but scale-covariant, in the sense that

these metrics transform, under scale transformations, with a definite weight.

In the context of Einstein-scalar gravity, the global solutions typically appear

as scalar solitons interpolating between an asymptotic AdS spacetime and a

near-horizon scale-covariant metric.

Scale-covariant metrics are very interesting also from the holographic
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point of view, because are dual to quantum field theories with hyperscal-

ing violation, namely a particular scaling behavior of the free energy and

entropy as a function of the temperature, typical of some phase transitions

in real condensed matter systems (e.g. Ising models) [38, 39, 41–48]. In

terms of the dual QFT, the scalar soliton describes a flow from a conformal

fixed point in the ultraviolet regime (UV) to an hyperscaling-violating phase

in the infrared (IR).

An alternative scenario is represented by models with non-AdS asymp-

totics [32, 35, 49], in which the scalar soliton interpolates between a near-

horizon AdS spacetime and an asymptotic scale-covariant metric. Corre-

spondingly, in the dual QFT we have a flow between a conformal fixed point

in the IR and an hyperscaling-violating phase in the UV. However, in this

case the correct interpretation of the dual QFT is often more involved.

The main purpose of this thesis is twofold: firstly, from a pure gravita-

tional point of view, we look for new gravitational solutions with scalar hair,

both analytical and numerical. In particular, we will focus our attention on

black brane solutions, i.e. black holes with planar event horizons, that in

general are computationally more tractable against the spherical black holes.

Secondly, we will study the possible holographic applications of some of these

new gravitational solutions.

Following this line of reasoning, the thesis is structured in two parts. The

Part I is mainly dedicated to the presentation of new exact black brane solu-

tions with scalar hair. We will consider both the electromagnetic uncharged

and the charged case. In Chapter 1 we will give a brief introduction about

the general features of Einstein gravity theories coupled to scalar fields and

the relative possible solutions (mainly in the context of asymptotically AdS

spacetimes, but also considering different asymptotic behavior). In Chapter

2 we will present a general method for exactly solving the field equations

of Einstein-Maxwell gravity minimally coupled to scalar fields. The striking

feature of this method is that it requires an ansatz for the scalar field, instead
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than for the potential, as usually occurs. Using this method we will derive

a broad class of exact “hairy” solutions and a new no-hair theorem about

the general existence of black brane and black hole solutions of Einstein-

Maxwell gravity with scalar hair. In Chapter 3 we discuss a particular model

of Einstein gravity minimally coupled to a scalar field and derive an exact

black brane solution with scalar hair, but with a different approach than that

used in Chapter 2. As we will see, the black brane solution obtained is not

asymptotically AdS, but has a domain wall asymptotic, namely a spacetime

in which the conformal symmetry is broken, while is preserved the Poincarè

relativistic symmetry.

In the Part II we focus our attention on the holographic applications. The

Chapter 4 will be dedicated to a brief overview of the general formulation of

the AdS/CFT correspondence and to one of its most significant phenomeno-

logical extensions, the AdS/condensed matter duality. We also present with

some detail several interesting applications as holographic superconductors,

metallic behavior and hyperscaling violation. In Chapter 5 we extend the

model already studied in Chapter 3 to a generic number of dimensions, and

also discuss the thermodynamical properties of the black brane solution. For

what concerns the dual field theory, we will derive the hyperscaling viola-

tion parameter and the short-distance form of the correlators for the scalar

operators. In Chapter 6 we study a very general class of models of Einstein-

scalar-Maxwell gravity and show some general and interesting results about

the stability of black brane solutions with scalar hair. These results will be

checked deriving several numerical solutions for particular models. More-

over these results, as we will see, seem to imply very important consequences

about the existence of phase transitions, typical of real condensed matter

systems, in the dual field theory.

Finally, in the Conclusions we summarize the results of the thesis and

point out the possibile future developments.



Part I

Gravitational solutions with

scalar “hair”





Chapter 1

Generalities on Einstein-scalar

gravity in AdS

In this chapter we present some general features of Einstein gravity mini-

mally coupled to a scalar field, in particular in the context of asymptotically

anti-de Sitter (AdS) spacetimes. In the first two sections we analyze in par-

ticular the general setup of these theories, with a particular attention to the

constraints imposed by the AdS asymptotics, the tricky question about the

general existence of black hole solutions with a non-trivial profile of the scalar

field, and the symmetries of the possible near-horizon behavior of the solu-

tions. Finally in Sect. 1.3, we consider an interesting example of Einstein-

scalar gravity, the so-called “fake supergravity” models. For simplicity, in

this chapter we mainly consider uncharged theories, but most of the gen-

eral considerations, in particular for what concerns the general setup of the

asymptotically AdS models, are still valid in presence of an electromagnetic

field.
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1.1 AdS Einstein-scalar gravity setup

We consider theories of gravity in d + 2 dimensions coupled to a real scalar

field φ(r) with potential V (φ):

S =

∫
dd+2x

√
−g
(
R− 1

2
(∂φ)2 − V (φ)

)
. (1.1)

The potential is taken to have a negative local maximum in φ = 0, cor-

responding to an AdS vacuum:

V (φ) = −d(d+ 1)

L2
+

1

2
m2φ2 +O

(
φ3
)
,

where L is the AdS length and m2 = V ′′(0) is the scalar mass. This

choice guarantees that small scalar fluctuations are tachyonic, i.e. m2 <

0. It has long been known that tachyonic scalars in d + 2 AdS spacetime

do not represent an instability, provided their mass is above the so-called

Breitenlohner-Freedman (BF) bound [13] m2
BF = −(d+ 1)2/4L2.

Asymptotically AdS black hole solutions with m2 > 0 are in general

forbidden by usual no-hair theorems, as we will discuss in Sect. 1.2. For this

reason we will in general consider negative scalar squared masses. We will

only consider positive scalar masses in the case of solutions with non-AdS

asymptotics. In this latter case usual no-hair theorems do not apply.

We wish to study asymptotically AdSd+2 solutions, where the metric ap-

proaches:

ds2 =
r2

L2
(−dt2 + dΩ2

d) +
L2

r2
dr2,

where dΩ2
d is the d-dimensional transverse space.

In all asymptotically AdS solutions, when m2 > m2
BF the scalar φ decays

at large radius as1

1A particular case is m2 = m2
BF , that is when the BF bound is saturated. In this case

the asymptotic behavior of the scalar presents a logarithmic branch. In particular one
finds at r →∞: φ = O1r

−(d+1)/2 ln r +O2r
−(d+1)/2[50].
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φ =
O1

r∆1
+
O2

r∆2
,

where ∆1,2 =
(d+1)∓

√
(d+1)2+4m2L2

2
. Because the AdS spacetime is not glob-

ally hyperbolic, this asymptotic behavior must be supported by boundary

conditions (BC) on O1 and O2. Standard choices that preserve the asymp-

totic isometries of the AdS spacetime are O1 = 0 (Dirichlet BC) or O2 = 0

(Neumann BC), but recently has been shown that if the scalar mass is in

the range m2
BF < m2

s < m2
BF + 1/L2, also boundary conditions of the form

O1 = fO
∆1/∆2

2 (with f an arbitrary constant), which admit a conserved total

energy and preserve all the AdS asymptotic symmetries, are allowed [50, 51].

We can also consider more general boundary conditions, that are conven-

tionally parametrized as:

O2 =
∂W

∂O1

, (1.2)

where W (O1) is an arbitrary function. For a generic choice of W , some

of the asymptotic AdS symmetries will be broken. When the gravitational

theory admits a field theory dual (see Part II), the choice of boundary con-

ditions (1.2) is mapped into a multitrace deformation of the action of the

boundary theory [52, 53].

The simplest static solution of the field equations stemming from the

action (1.1) is the Schwarzschild-AdS black hole2:

ds2 = −
(
r2

L2
+ ε− M

2rd−1

)
dt2 +

(
r2

L2
+ ε− M

2rd−1

)−1

dr2 + r2dΩ2
d, φ = 0,

where M is the black hole mass and ε = 0, 1,−1 denotes, respectively, the

2Obviously, in presence of a coupling also with a Maxwell field, the simplest solution

will be the Reissner-Nordström-AdS black hole: ds2 = −
(
r2

L2 + ε− M
2rd−1 + ρ2

4r2

)
dt2 +(

r2

L2 + ε− M
2rd−1 + ρ2

4r2

)−1

dr2 + r2dΩ2
d, where ρ is the charge density.
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d-dimensional planar, spherical or hyperbolic transverse space dΩ2
d (in par-

ticular, hereafter we will define black branes the black hole solutions with

ε = 0, i.e. with planar transverse space).

Any other black hole solution will be characterized by a non-trivial profile

of the scalar field. For a given potential, these “hairy” solutions generally

form a two-parameter family defined by the values of the horizon radius

rh and of the scalar field at the horizon φ(rh) = φh. Alternatively, each

solution is uniquely characterized by the (O1, O2) coefficients related to the

asymptotic behavior of the scalar field, and from the field equations we can

obtain a precise mapping (rh, φh)↔ (O1, O2). Then, varying φh and leaving

rh fixed, one obtains a curve O2(O1) in the (O1, O2) plane, that will be

generally not single-valued.

Apart from the black hole solutions, the ensemble of static and spherically

symmetric solutions to (1.1) is completed by the hairy solitons, which are

defined by the requirement of regularity at r = 0 and form a one-parameter

family, defined by the value of the scalar field at the origin φ(r = 0) = φ0. In

this case, the integration of the field equations provides a single curve O
′
2(O1)

in the (O1, O2) plane, which can obtained as the rh → 0 limit of O2(O1).

The case more studied in the literature is m2 = −2/L2 in four dimensions

(i.e. d = 2), where it is simple to find that ∆1 = 1 and ∆2 = 2. In this

case it was found [54] that in the limit of small φ and small O1, O2 one

finds the universal behavior O
′
2 = − 2

π
O1+ O(O3

1). At large O1 the soliton

function instead scales as O
′
2 ' −scO2

1 (with sc > 0), as one would expect

from dimensional analysis [55]. At the non-linear level the behavior of O
′
2

obviously depends on the particular theory considered.

An interesting point is to understand for which W the theory has a stable,

minimum energy ground state. Defining an “effective potential” V (O1):

V (O1) = W (O1) +W
′
(O1),

where W
′
(O1) = −

∫ O1

0
O
′
2(O1)dO1, it is simple to note that the extrema
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of V are precisely the points where O
′
2 = O2. In other words, there is a soliton

which satisfies the boundary conditions. In [55], following two conjectures

formulated in [56], it was shown that:

1. The total energy of the theory with boundary conditions O2 = ∂W
∂O1

is

bounded from below if and only if V has a global minimum Vmin;

2. The minimal energy solution is simply the soliton associated with Vmin.

Substantially, we observe that for the same action, many possible bound-

ary conditions can be fixed. But if we change the boundary conditions, we

change the properties of the theory. In particular, in some theories one can

“pre-order” the number and masses of solitons, so we can say that there are

boundary conditions wich yield a desired result. For this reason, often these

theories are called “designer gravity” theories [56].

1.2 “Hairy” solutions and no-hair theorems

A crucial issue in this context is the question about the existence of regular,

static black hole solutions of Einstein-scalar gravity with AdS asymptotics,

endowed with non trivial scalar hair.

“Black holes have no hair”, wrote John Wheeler in the early 1970’s [57].

His conjecture was inspired by some uniqueness theorems for static and

asymptotically flat black hole solutions in Einstein-Maxwell theory [1, 58–60],

for which these solutions are uniquely determined by only three parameters

(“hair”), defined as integrals at spatial infinity: mass, charge and spin.

However, the conjecture is valid only in the context of pure General

Relativity. It was shown that black hole solutions with extra hair can

exist in theories where gravity is coupled to scalar or Higgs fields, as e.g.

Einstein-Maxwell-dilaton, Einstein-Yang-Mills and Einstein-Skyrme theories
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[7, 61, 62], although some of these solutions are unstable [63–65]. More gener-

ally, Bekenstein [66] demonstred the non-existence of regular, asymptotically

flat, hairy spherical black hole solutions when the scalar field is minimally

coupled and has a convex potential. This theorem was then generalized to

scalar fields minimally coupled with arbitrary positive potentials [67], scalar

multiplets [2] and nonminimally coupled scalars [10].

But what happens when one considers spacetimes not asymptotically flat,

but asymptotically anti-de Sitter? In general, we can say that the presence of

the negative cosmological constant seems to favour the existence and stability

of black hole solutions with scalar hair. In particular, several examples of

stable hairy black holes in AdS were found, both analytical and numerical [11,

18, 23, 25, 68–71]. However, in 2001 Torii, Maeda and Narita [11] showed that

regular black hole solutions asymptotically AdS cannot exist when the scalar

field is massless or has a convex potential. More recently, Hertog [12] added

two other necessary conditions for the existence of asymptotically AdS hairy

black hole solutions: the violation of the Positive Energy Theorem (PET)

and the breaking of the full AdS symmetry group, in theories where the scalar

field has negative local maxima. The first condition implies that black hole

solutions with scalar hair and positive squared mass m2 are forbidden, while

in general allows solutions with negative m2 above the BF bound.

Another important issue is the existence of stable solitonic solutions. For

spherical solutions can be found boundary conditions, breaking the AdS sym-

metry, which allow stable solitons. But in the case of planar solutions only

AdS-symmetry preserving boundary conditions are possible, and has been

shown that these boundary conditions allow for a stable ground state only if

the potential has a second extremum [55].

1.2.1 Exact solutions

Despite the growing importance played by static black hole solutions with

scalar hair and AdS asymptotics, in particular in the context of the applica-
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tions of AdS/CFT, very few exact analytical solutions are known. In fact,

most of the usual methods used for finding exact, asymptotically flat, “hairy”

solutions, as for examples those used in [6–9] for deriving hairy solutions with

nonminimal couplings (mainly motivated by string theory), do not work in

AdS spacetime. Essentially, the few examples of exact asymptotically AdS

solutions are the family of four-charge black holes in N = 8 four-dimensional

gauged supergravity [72, 73], the solution with hyperbolic horizon of Ref. [71]

and a few other examples, some of them generated from asymptotically flat

solutions [74–79]. Actually, most solutions of this kind, which have been ex-

ploited for holographic applications and for deriving the most recent no-hair

theorems, are numerical [18, 20, 22–25]. Hovewer, to find general methods

for obtaining exact solutions would be obviously a very important step in

this context.

1.2.2 Black brane solutions

Asymptotically AdS black brane solutions can be classified by means their,

small r, near-horizon behavior (also called infrared behavior, in particular if

the solutions have an holographic dual).

The most general scaling behavior one can find is described by the fol-

lowing full class of metrics [39, 42]:

ds2 = r−2(d−θ)/d (−r−2(z−1)dt2 + dr2 + dx2
i

)
. (1.3)

These metrics exhibit a dynamical critical exponent z and the so-called

hyperscaling violation exponent θ. We will return in Sect. 4.4.3 on the

meaning of the exponent θ in the context of holographic applications to

condensed matter systems. Here we observe that a nonzero value of θ makes

the metric 1.3 not scale-invariant, but scale-covariant, in the sense that the

metric 1.3 transforms under a definite weight:
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ds→ λθ/dds

under the following scale transformation:

t→ λzt, r → λr, xi → λxi. (1.4)

This class of metrics typically appears in the near-horizon limit of ex-

tremal black holes and black branes in theories where the scalar field is

nonminimally coupled with the Maxwell field [23, 80, 81].

Two important particular cases of the general metric 1.3 are obtained

choosing, respectively, θ = 0 or z = 1.

In the first case the 1.3 becomes:

ds2 = −r−2zdt2 + r−2(dr2 + dxidx
i). (1.5)

This metric describes the so-called Lifshitz spacetimes [82–84], which are

scale-invariant under the transformations 1.4, but not conformally invariant,

because relativistic symmetry is broken. Also this class of metrics typically

appears in theories with a scalar field coupled to the Maxwell field [23, 25, 27,

28, 30]. The scalar, in these theories, usually presents a logarithmic behavior.

In the case z = 1 the 1.3 becomes:

ds2 = r−2(d−θ)/d (−dt2 + dr2 + dx2
i

)
. (1.6)

This metric, which is not scale-invariant, but preserves the Poincarè

relativistic isometry of the transverse space, is often called domain wall

[32, 33, 35], because these solutions are often related to solitonic supergrav-

ity domain-walls, resulting from various dimensional reductions of 10 and

11-dimensional maximal supergravity theories.

Domain wall solutions as 1.6 usually arise as the near-horizon limit of

black holes (branes) in uncharged Einstein-scalar theories. Typically, in these
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theories the potential behaves exponentially, while the scalar field has a log-

arithmic form.

Obviously, the most symmetric case is obtained choosing in the 1.3 both

θ = 0 and z = 1, which corresponds to relativistic conformal theories as AdS.

So far we have only considered black brane solutions with AdS asymp-

totics and a not conformal symmetry for the near-horizon behavior.

We have seen that recent no-hair theorems forbid asymptotically AdS

black brane solutions with a positive squared mass for the scalar. However,

black brane solutions with non-AdS asymptotics are allowed.

In particular, recently was shown [85] that the existence of this kind of

solutions is a rather generic feature of a broad class of models, for which

in the extremal limit the black brane solution reduces to a fully regular

scalar soliton, which interpolates between an AdS vacuum in the near-horizon

region and a scale-covariant solution in the asymptotic region.

This exchange between the near-horizon and the asymptotic behavior,

compared to the usual setup, has important consequences also in the context

of the holographic applications (as we will see with more details in the Part

II of the thesis), because these solitonic solutions represent a flow between

an infrared (IR) conformal fixed point and a hyperscaling-violating phase in

the ultraviolet (UV) regime of the dual field theory. This is an alternative

scenario against the role played by IR and UV regimes in applications of

AdS/CFT, where usually one has a conformal fixed point in the UV.

1.3 Fake supergravity

A particularly simple and interesting example of Einstein-scalar gravity is

represented by the so-called fake supergravity (SUGRA) [55, 86, 87]. In these

models one can define Killing spinors using fake transformations similar to
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real SUGRA theories. The striking feature is that the potential V (φ) for the

scalar field can be derived from a superpotential P (φ):

V (φ) = 2

(
dP

dφ

)2

− 3P 2. (1.7)

In particular, if we choose a boost invariant parametrization for the space-

time metric of the form:

ds2 = r2(−dt2 + dxidx
i) +

dr2

h(r)
,

the second-order equation of motion stemming from the action (1.1) can be

reduced to a fake Bogomol’nyi-Prasad-Sommerfeld (BPS) first order equa-

tion:

φ′(r) = − 2P,φ
rP (φ)

, h(r) = r2P 2(φ), (1.8)

whose solutions automatically satisfy the second-order field equation.

Moreover, assuming the following behavior for the superpotential near φ = 0

(corresponding to r →∞):

P (φ) = 1 +
1

4
φ2 − s

6
|φ|3 +O

(
φ4
)

(1.9)

(s is a constant), the asymptotic behavior of φ and h is constrained to

be:

φ =
α

r
− sα2

r2
+ ..., h = r2 +

α2

2
− 4sα3

3r
+ ...

We note that the boundary conditions on the scalar field are fixed in

the form O2 = −sO2
1. This is a consequence of the scale invariance of the

equations of motion under rescaling r → cr, h→ c2h.

Exploiting the Witten-Nester theorem [88–90], one can show that the

energy of any singularity-free solution of the first-order equation (1.8) is
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bounded from below. In particular one finds for the energy [55]:

E ≥
[
W +

s

3
|α|3
]
,

where W is the “boundary condition function” defined in Sect. 1.1. It is

interesting to note that it is not necessary W itself to be bounded.

A key question is the following: for what range of s the superpotential

P exists globally? For most potentials V (φ), P exists only globally up to a

critical value sc. This point is hard to show analitically, but can be understood

by a simple argument. From (1.7) we can derive the general form of the first

derivative of P :

P ′(φ) =

√
3P 2

2
+
V (φ)

2
. (1.10)

The superpotential will exist for all φ unless P ′ = 0. Since the (1.10) is a

first order differential equation, its solutions are obviously monotone except

a singular point. Because of it, if a solution P1 exists globally with some

value s = s1, then all solutions with s < s1 exist globally as well (see 1.9). So

one can algorithmically find sc by numerically solving (1.10), starting from

φ = 0, and increasing s until P no longer exists because P ′(φ) reaches zero.

Concluding remarks and summary of subsequent chapters

Summarizing, in this first chapter we have analyzed the main features of Ein-

stein theories of gravity coupled to scalar fields, with a particular attention

to black brane solutions endowed with a non-trivial scalar field and asymp-

totically AdS. Although the interest on this topic was considerably increased

in the last times, mainly for the applications to AdS/CFT, we have seen that

there are still important open problems on which we can focus our attention.

In particular, we identify the following three important points:
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• General methods to generate exact asymptotically AdS black hole and

black brane solutions are still lacking;

• The know no-hair theorems put loose constraints about the general

existence of scalar-dressed black hole and black brane solutions, while

it would be very important to be able to formulate more stringent no-

hair theorems;

• An interesting scenario, still not enough studied in deep, is represented

by black brane solutions with non-AdS asymptotics, also in the per-

spective of possible holographic applications.

In the next two chapters we will mainly address to the open problems

pointed out above. In particular, in Chapter 2 we shall present a general

method for exactly solving the field equations of Einstein and Einstein-

Maxwell gravity minimally coupled to a scalar field, and derive several exact

scalar-dressed black brane and black hole solutions with different asymp-

totic behavior (AdS, Lifshitz, domain wall). Moreover, we shall formulate a

new no-hair theorem, which adds further constraints in particular about the

existence of uncharged, asymptotically AdS, hairy black brane solutions.

In Chapter 3 we shall consider a particular fake SUGRA model of Einstein-

scalar gravity, characterized by a positive squared mass for the scalar, and

derive an exact scalar-dressed black brane solution with domain wall asymp-

totics, using a more traditional approach then that used in Chapter 2. As

we will see, the extremal limit of the black brane solution is a soliton in-

terpolating between an AdS behavior near r = 0 and a domain wall in the

asymptotic region.



Chapter 2

Exact solutions of

Einstein-scalar-Maxwell gravity

We propose a general method for solving exactly the static field equations of

Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field.

Our method starts from an ansatz for the scalar field profile and determines,

together with the metric functions, the corresponding form of the scalar self-

interaction potential. Using this method we prove a new no-hair theorem

about the existence of hairy black hole and black brane solutions and derive

broad classes of static solutions with radial symmetry of the theory, which

may play an important role in applications of the AdS/CFT correspondence

to condensed matter and strongly coupled QFTs. These solutions include:

1) four - or generic (d + 2) - dimensional solutions with planar, spherical

or hyperbolic horizon topology; 2) solutions with AdS, domain wall and

Lifshitz asymptotics; 3) solutions interpolating between an AdS spacetime in

the asymptotic region and a domain wall or conformal Lifshitz spacetime in

the near-horizon region.
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2.1 Introduction

We have pointed out in Sect. 1.2.1 that very few exact black hole solutions

with scalar hair and AdS asymptotics are known. Obviously, this situation

has a negative impact on further developments of the subject. This is par-

ticularly true because the known no-hair theorems (see Sect. 1.2) put loose

constraints on the existence of black hole solutions with scalar hair. There-

fore, they do not give stringent indications that can be used when searching

for exact or numerical solutions of a given model.

Starting from these considerations, in this chapter we first propose a gen-

eral method for solving the field equations of Einstein and Einstein-Maxwell

gravity minimally coupled to a scalar field φ in the static, radially symmet-

ric, case. Our main idea is to reverse the usual method for solving the field

equations. Usually, one determines the metric functions, the scalar field and

the EM field, for a given form of the self-interaction potential V (φ). Instead

of solving the field equations for a given potential, we will assume a given

profile φ(r) for the scalar field and then we will solve the system for the

metric functions and the potential.

This method is particularly suitable for applications to the AdS/CFT

correspondence. In this case the actual exact form of the potential V (φ) is

not particularly relevant. What is more important is the behavior of the

scalar field, and in particular its fall-off behavior at r =∞.

We will apply our solving method to two different but related issues. First,

we will apply it to find exact analytic solutions of Einstein and Einstein-

Maxwell gravity with scalar hair. For the scalar field we use profiles which

are very common for hairy black hole solutions in flat space, gauged super-

gravity and Lifshitz spacetime, namely harmonic and logarithmic functions.

This allows us to find exact solutions in several situations: four or generic

d+ 2 spacetime dimensions, different topologies of the transverse space (pla-

nar, spherical, hyperbolic) and different asymptotics (anti-de Sitter, domain

wall, conformal to Lifshitz spacetime). In particular we will derive exact
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solutions interpolating between an asymptotic AdS spacetime and a near-

horizon domain wall or conformal Lifshitz spacetime. The models that we

find contain as particular case the truncation to the abelian sector of N = 8,

D = 4 gauged supergravity.

Our solving method is also effective in dealing with more general profiles

of the scalar field, giving rise to different types of potentials. We will show

that our method allows to find exact solutions for scalar field profiles of the

rl type. In particular, we work out explicitly the solutions for l = −1 and

show that it corresponds to a potential which is the combination of powers

and trigonometric functions.

Second, our method allows to write explicitly a formal solution of the field

equations for an arbitrary potential. This fact will be used to prove a new

no-hair theorem about the existence of black hole and black brane solutions

of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field.

The structure of the chapter is as follows. In Sect. 2.2 we present our

general method for solving the field equations of Einstein-scalar-Maxwell

gravity in d + 2 dimension and planar, spherical or hyperbolic topology of

the transverse sections. In Sect. 2.3 we apply this method to find domain wall

and conformal Lifshitz black hole solutions in d = 2 for the planar case. In

Sect. 2.4 we prove a new no-hair theorem for black hole solutions of Einstein-

Maxwell gravity minimally coupled to a scalar field. In Sect. 2.5 we use our

method to derive planar solutions with AdS asymptotics in d = 2, both in the

uncharged and charged case and discuss their near-horizon behavior. In Sect.

2.6 we consider scalar field profiles of the rl type and find explicit solutions for

the l = −1 case. The generalization of our solutions to the d+ 2-dimensional

case and to spherical or hyperbolic solutions is discussed, respectively, in

Sects. 2.7 and 2.8. Finally in Sect. 2.9 we present our concluding remarks.
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2.2 A general method for solving the field

equations

We consider Einstein-Maxwell gravity in d + 2 dimensions (with d ≥ 2),

minimally coupled to a scalar field φ, and with a generic self-interaction

potential V (φ). The action is:

I =

∫
dd+2x

√
−g
(
R− 2(∂φ)2 − F 2 − V (φ)

)
. (2.1)

The ensuing field equations take the form:

∇µF
µν = 0 ,

∇2φ =
1

4

dV (φ)

dφ
, (2.2)

Rµν −
1

2
gµνR = 2

(
FµρF

ρ
ν −

gµν
4
F ρσFρσ

)
+ 2

(
∂µφ∂νφ−

gµν
2
∂ρφ∂ρφ

)
− gµν

2
V (φ) .

Throughout this chapter we will investigate static solutions of the previous

field equations, exhibiting radial symmetry. Moreover, we will consider only

purely electric solutions; magnetic solutions can be easily generated from the

electric ones using the electro-magnetic duality. We adopt a Schwarzschild

gauge to write the spacetime metric:

ds2 = −U(r)dt2 + U−1(r)dr2 +R2(r)dΩ2
(ε,d), (2.3)

where ε = 0, 1,−1 denotes, respectively, the d-dimensional planar, spherical,

or hyperbolic transverse space with metric dΩ2
(ε,d). In these coordinates, the

electric field satisfying (2.2) reads:

Ftr =
Q

Rd
, (2.4)
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with Q the electric charge. With the parametrization (2.3), the field equa-

tions take the form:

R′′

R
= −2

d
(φ′)2, (URdφ′)′ =

1

4
RddV

dφ
,

(URd)′′ = εd(d− 1)Rd−2 + 2
d− 2

d

Q2

Rd
− d+ 2

d
RdV,

(URd−1R′)′ = ε(d− 1)Rd−2 − 2

d

Q2

Rd
− 1

d
RdV. (2.5)

We are mainly interested in black hole solutions of the field equations

that are asymptotically AdS. As explained in Sect. 1.1, the existence of the

AdS vacuum requires V (0) < 0 and V ′(0) = 0, with V (0) = −d(d + 1)/L2,

where L is the AdS length (assuming that φ → 0 as r → ∞). Under this

condition the simplest static black hole solution of the field equations is given

by the Schwarzschild-AdS (SAdS) solution:

U =
r2

L2
+ ε− M

2rd−1
, R = r, φ = 0, Q = 0. (2.6)

Apart from SAdS and the Q 6= 0 Reissner-Nordström AdS black hole, the

other solutions of (2.5), if they exist, will be characterized by a non-constant

profile of the scalar field φ. These solutions are very difficult to find, at least

analytically. Eqs. (2.5) may be solved in closed form for some particular

choice of the potential V , but for a generic potential there is no a general

solving method. Moreover, it is not completely clear if and when the field

equations allow for regular black hole solutions. Explicit solutions, analytical

or numerical, are known in a few cases. Nonetheless, a more precise statement

about the existence of black hole solutions of the field equations (2.5) is still

lacking.

In this chapter we will often consider solutions with scalar hair and zero

temperature (no horizon). With some abuse of terminology we will always

call these solutions “extremal black hole solutions”. Obviously, the use of this
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name is only strictly pertinent when the T = 0 solution can be considered

as the T → 0 limit of black hole solutions with a regular horizon. As we will

see in detail in the next sections, we will not be able to show that this is the

case for all the hairy zero temperature solutions we will find. Nonetheless,

we will use the word extremal black hole in the wide sense defined above.

Usually, one solves the field equations (2.5) by determining U , R and φ,

for a given form of the potential V (φ). Here we will approach the problem

in a reversed way. Instead of solving equations (2.5) for a given potential

V , we will assume a given profile φ(r) for the scalar field and then solve the

system for U(r), R(r) and V (φ). Although at first sight this approach may

seem rather weird, it is very useful for at least two reasons.

First, focusing on solutions with AdS asymptotics, in particular for what

concerns applications to the AdS/CFT correspondence, the actual exact form

of the potential V (φ) is not particularly relevant. What is often more impor-

tant is the behavior of the scalar field φ(r), in particular its fall-off behavior

at r =∞ (see Sect. 1.1):

φ ∼ O1

r∆1
+
O2

r∆2
, ∆1,2 =

(d+ 1)∓
√

(d+ 1)2 + 4m2L2

2
. (2.7)

Moreover, in applications of the AdS/CFT correspondence to condensed

matter physics, as we will see in detail in Chapter 4, a nontrivial, r-dependent,

profile of φ has a holographic interpretation in terms of a scalar conden-

sate in the dual QFT triggering symmetry breaking and/or phase transitions

[18, 20, 22–25]. If one is interested in reproducing phenomenological prop-

erties of strongly-coupled condensed matter systems, the actual form of the

potential V may be rather irrelevant. Conversely, it is the behavior of the

scalar condensate that contains more physical information.

Second, our approach is very useful for setting up a new no-hair theorem

about the existence of black hole solutions of the field equations. In fact, our

method allows us to write explicitly a – albeit formal – solution of the field

equations for an arbitrary potential. This result will be used in Sect. 2.4, to
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prove a new no-hair theorem about the existence of black hole solutions of

minimally coupled Einstein-scalar-Maxwell gravity.

Our method for solving the field equations (2.5) works as follows. Assum-

ing that the r-dependence of the scalar field φ(r) is given, and introducing

the new variables F , Y and u defined as:

F (r) = −2

d
(φ′)2, R = e

∫
Y , u = URd, (2.8)

the field equations (2.5) become:

Y ′ + Y 2 = F, (uφ′)′ =
1

4
ed

∫
Y dV

dφ
, (2.9)

u′′ − (d+ 2)(uY )′ = −2ε(d− 1)e(d−2)
∫
Y + 4Q2e−d

∫
Y , (2.10)

u′′ = εd(d− 1)e(d−2)
∫
Y + 2

d− 2

d
Q2e−d

∫
Y − d+ 2

d
ed

∫
Y V. (2.11)

The first equation in (2.9) is a first-order nonlinear equation for Y , known

as the Riccati equation, which can be solved in a number of cases. Once the

solution for Y has been found we can integrate Eq. (2.10), which is linear in

u, to obtain:

u = Rd+2

[∫ (
4Q2

∫
1

Rd
− 2ε(d− 1)

∫
Rd−2 − C1

)
1

Rd+2
+ C2

]
, (2.12)

where C1 and C2 are integration constants. Finally, we can determine the

potential V (φ) by using Eq. (2.11),

V =
d2(d− 1)

d+ 2

ε

R2
+ 2

d− 2

d+ 2

Q2

R2d
− d

d+ 2

u′′

Rd
, (2.13)

while the metric functions read (cfr. 2.8):

R = Λe
∫
Y , U =

u

Rd
, (2.14)
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where we have introduced an integration constant Λ coming from the integral

of Y .

In the following sections we will use this method to find solutions of min-

imally coupled Einstein-scalar-Maxwell gravity in different spacetime dimen-

sions and for planar, spherical and hyperbolic topologies of the d-dimensional

transverse section of the spacetime.

2.3 Domain walls and solutions conformal to

Lifshitz

In this section, we consider the case of (3+1)-dimensional spacetime, i.e.

d = 2, and black brane solutions, i.e. ε = 0. This is the most useful case

for applications to holography. These solutions will be generalized to d + 2

spacetime dimensions in Sect. 2.7 and to black holes with spherical (ε = 1)

or hyperbolic (ε = −1) symmetry in Sect. 2.8.

Our method for solving the field equations (2.5) requires an ansatz for

the scalar field. In this section we wish to find domain wall and Lifshitz-like

solutions. Usually, these solutions appear when the scalar behaves as log r

[23, 25, 27, 28, 30]. The most natural ansatz is therefore:

γφ = log
r

r−
, (2.15)

where γ and r− are constants. Note that r− has no particular physical

meaning, but simply sets a length-scale.

2.3.1 Uncharged (Domain wall) solutions

Let us consider the solutions (2.12), (2.14) for d = 2, ε = 0. At first we

examine the simplest case in which Q = 0. Choosing C1 = 0 and scaling the
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constants C2 and Λ to 1, one gets:

U = R2.

Hence, for this choice of the parameters, the solution takes the form of a

domain wall:

ds2 = U(−dt2 + dx2 + dy2) + U−1dr2. (2.16)

Notice that in the relevant cases, even when C1 6= 0 the corresponding term

in Eq. (2.12) in the r →∞ limit is subleading, and therefore the solution is

still asymptotical to a domain wall.

With the ansatz (2.15) the Riccati equation is solved by:

Y =
α

r
, α(α− 1) = − 1

γ2
. (2.17)

Parametrizing α and γ as

γ−1 = hα =
h

h2 + 1
, (2.18)

the solution takes the form:

U =

(
r

r−

) 2
1+h2

− C1

(
r

r−

)− 1−h2

1+h2

, R =

(
r

r−

) 1
1+h2

, (2.19)

with potential

V = − 2(3− h2)

(1 + h2)2r2
−
e−2hφ. (2.20)

Hence the potential has a simple exponential form. If in the theory a length-

scale L is present, as happens for instance when the exponential potential

arises as near-horizon approximation of an asymptotically AdS spacetime,

one can trade r− for L using the invariance of the field equations under
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rescaling of V → λV, U → λU , yielding V = −[ 2(3−h2)
(1+h2)L2 ]e−2hφ.

In the extremal case, C1 = 0, the solution (2.19) has the typical form

of a single-scalar domain wall solution, ds2 = (Ar)δ(ηµνdx
µdxν) + (Ar)−δdr2

(see Sect. 1.2.2). Domain wall solutions are conformal to AdS spacetime and

have a consistent holographic interpretation, in terms of a dual QFT with

only relativistic symmetry, for δ ≥ 1, which in our case implies h2 ≤ 1.

One can easily calculate the curvature invariants for the solution (2.19):

R =
2

(1 + h2)2r2
−

[
3(h2 − 2)x

−2h2

1+h2 − h2µx
−3−h2

1+h2

]
,

RµνRµν =
4

(1 + h2)4r4
−

[
(3h4 − 9h2 + 9)x

−4h2

1+h2 + 3h2(1− h2)µx−3 + h4µ2x
−6−2h2

1+h2

]
,

where x = r/r−, showing that r = 0 is a curvature singularity.

For h2 ≤ 3 and C1 > 0, our solution (2.19) represents a black brane

with domain wall asymptotics, a singularity at r = 0 and a horizon at rh =

C
(1+h2)/(3−h2)

1 r−. The horizon is regular and has negative curvature (R(rh) <

0 , RµνRµν(rh) 6= 0). The domain wall solution for C1 = 0 shows a naked

singularity at the origin and may be seen as the T = 0 extremal limit of

(2.19). Notice however that the solution at finite temperature breaks the

Poincaré isometry of the extremal domain wall solution. For h2 > 3, the

solution is still valid, but its physical interpretation is less clear.

2.3.2 Solutions conformal to Lifshitz spacetime

Let us now consider the case of nonvanishing electric charge. In this case it

is convenient to adopt the parametrization:

α =
h2

h2 + 4
, γ−1 =

2h

h2 + 4
. (2.21)
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Using again the ansatz (2.15) and Eq. (2.17), the solution (2.12) reads:

U =
Q2

Λ4

(4 + h2)2r2
−

(4− h2)(2− h2)

(
r

r−

)2 4−h2

4+h2

1− C1

(
r

r−

)− 4−h2

4+h2

+ C2

(
r

r−

)−4 2−h2

4+h2

 ,
R = Λ

(
r

r−

) h2

4+h2

, (2.22)

with potential:

V = −Q
2

Λ4

[
4

2− h2
e−2hφ +

2h2(3h2 − 4)

(4− h2)(2− h2)
C2 e

−4φ/h

]
, (2.23)

where the integration constants C1 and C2 of (2.12) have been rescaled. The

solution holds for h2 6= 2, 4.

Setting Λ2 = r−Q, the potential becomes independent from the electric

charge. If an extra length scale L is present, one can, like in the uncharged

case, trade r− for L in the potential (2.23), so that it acquires a factor 1/L2.

The constant C2 is a parameter of the action, that can be chosen to vanish.

In such case, one is left with an exponential potential like in (2.20).

For C2 = 0, the extremal C1 = 0 case in Eq. (2.22) represents a solution

which is conformal to the Lifshitz spacetime:

ds2 = l2
(
−r̄2zdt2 +

dr̄2

r̄2
+ r̄2dxidxi

)
. (2.24)

This can be easily shown by setting r̄ = (r/r−)−h
2/(4+h2) in Eq. (2.22). The

metric (2.22) is conformal (with conformal factor r̄−4) to the Lifshitz metric

(2.24) with z = 3 − 4/h2 and l = r−
√

(4− h2)(2− h2)/h2. Obviously the

anisotropic scaling transformation between space and time:

t→ λzt, r̄ → λ−1r̄, xi → λxi, (2.25)

which is an isometry of the Lifshitz metric (2.24), is not longer an isometry
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of our solution (2.22). However, its conformality with Lifshitz implies that

it scales with a definite weight under the anisotropic scaling transformation

(2.25): ds2 → λ4ds2. In the remaining of this chapter we will denote solutions

which are conformal to Lifshitz spacetime simply as “conformal Lifshitz” .

For h2 < 2, C2 = 0 and C1 > 0 the solution represents a black brane with

asymptotics conformal to Lifshitz, a singularity at r = 0 and a regular horizon

at rh = C
(4+h2)/(4−h2)

1 r−. The conformal Lifshitz solution with C1 = 0 may be

seen as the T = 0 extremal limit of (2.22). The solution at finite temperature

does not follow the simple scaling behavior of the extremal solution.

If instead C2 6= 0, two horizons may be present, depending on the value

of the parameters. Moreover, the term in C2 becomes dominant for r → ∞
if h2 > 2. In any case, the solutions (2.22) constitute a two-parameter family

parametrized by C1 and Q.

2.3.3 Alternative approach

When C2 = 0, the solutions of this section can be obtained also by means

of a more traditional approach, introduced in [6] and developed in several

papers [7–9, 91].

Parametrizing the metric and the electric field as:

ds2 = −e2νdt2 + e2ν+4ρdξ2 + e2ρ(dx2 + dy2), Ftξ = e2νQ, (2.26)

where ν = ν(ξ), ρ = ρ(ξ) and φ = φ(ξ), one can in fact reduce the field

equations to the form of a dynamical system, that admits a three-parameter

family of regular black brane solutions. Exact solutions can be obtained in

a special two-parameter case and coincide with those obtained above. The

third parameter is presumably related to the scalar charge. In the next

chapter we will use this approach to find an exact solution of an Einstein-

scalar gravity model.

It is important to stress that only the solutions derived in this section –
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and their higher-dimensional generalization –, which correspond to a purely

exponential potential, can be derived using the more traditional approach.

The solutions derived in the remaining sections of this chapter, corresponding

either to combination of exponentials (see Sects. 2.5, 2.7, 2.8) or to combina-

tions of powers and trigonometric functions (see Sect. 2.6), cannot be derived

using standard methods.

2.4 A No-hair theorem

In Sect. 1.2 we have already pointed out the importance of the question

about the general existence of black hole solutions with non-trivial scalar

hair. In particular we have seen that recent “no-hair” theorems put some

constraints about the existence of hairy black hole solutions asymptotically

AdS, as the violation of the PET and the breaking of the full AdS symmetry

group [12].

We prove here, using the reformulation of the field equations discussed

in Sect. 2.2, a new no-hair theorem about the existence of regular hairy

black hole solutions of Einstein-scalar-Maxwell gravity. We will consider for

simplicity the d = 2 case, but our theorem can be trivially generalized to

arbitrary d+ 2 dimensions. We will first consider the uncharged and planar

case Q = ε = 0 and then we will generalize our argument to the charged and

ε = ±1 cases.

A key ingredient for our argument is the existence of an extremal T = 0

hairy black hole solution. We will prove the validity of the following three

statements about black hole solutions of Einstein gravity minimally coupled

to a scalar field:

1) One-parameter families of asymptotically AdS black brane solutions

with nontrivial scalar hair exist only if the field equations (2.5) admit an

extremal T = 0, U = R2 solution.
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2) Black brane solutions that asymptotically approach the domain wall solu-

tion (2.19) exist in some range of the parameters for the case of an exponential

potential V (φ).

3) The allowed asymptotically AdS hairy black brane solutions necessarily

have a scalar hair that depends on the black brane temperature T . Solutions

with temperature-independent scalar hair exist only for the case of domain

wall spacetimes (2.19).

In order to prove part 1) of the theorem we start from equation (2.12), set

d = 2, ε = 0 and fix the physically irrelevant integration constant C2 = 1.

In the planar and uncharged case we are considering, the constant C2 is

physically irrelevant because the field equations (2.5) are invariant under the

rescaling R → λR of the metric function R. C2 can be set to 1 by using

this symmetry. Physically, C2 parametrizes the volume of the d-dimensional

transverse space, which is not fixed by the field equations.

We get in this way the general form of the solution of the field equation

(2.5) for the metric function U :

U = R2

(
1− C1

∫
1

R4

)
. (2.27)

The integration constant C1 is determined in terms of the mass M (or

equivalently of the temperature T ) of the solution.

Assuming the existence of a one-parameter family of black brane solutions

with a regular horizon at r = rh, we have to require U(rh) = 0, R(rh) 6= 0.

This implies that the horizon is determined by the equation:

1− C1

∫
1

R4
= 0, (2.28)

whereas for C1 = 0 we have an extremal T = 0 domain wall solution with

U = R2.

Let us now assume that the field equations do not admit the C1 = 0

extremal solution. Inserting Eq. (2.27) into the third field equation in (2.5),
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C1 becomes completely determined in terms of the functions R and φ. This,

at least in principle, can be used to eliminate the integration constant C1 from

the field equations (2.5), which can now be used to determine the solutions

for R and φ. As a consequence, the solutions for R and φ will not depend on

C1, i.e. they will be temperature independent.

Let us now pick up a particular – albeit generic – solution of the field

equations (2.5) with C1 = C
(0)
1 , denote it with (U0, R0, φ0) and decompose

the general solution of the equations (2.5) as follows:

(U = U0 + Ũ(C1, r), R, φ). (2.29)

Because R and φ do not depend on C1, we must have φ = φ0 and R = R0.

Substitution of Eq. (2.29) into Eq. (2.5) gives (ŨR2)′′ = 0, (ŨR2φ′)′ = 0,

which implies φ = c log r
r0

, with c, r0 integration constants. According to Eqs.

(2.15)-(2.20), this is only possible for an exponential potential V (φ) and gives

the domain wall solution (2.19). From this, part 1) and part 2) of the no-hair

theorem follow immediately.

Obviously, if the field equations allow the C1 = 0 solution the previous

derivation fails. We can choose in Eq. (2.29) U0 as the C1 = 0 solution,

whereas φ and R do not need to be independent from C1.

Statement 3) can be proved with a slight modification of the previ-

ous argument. One begins by noticing that, owing to the first equation

in (2.5), a temperature-independent scalar hair implies that also the func-

tion R is temperature-independent. One then assumes the existence of a

one-parameter family of black brane solutions of the field equations (2.5)

(U(C1), R, φ) with φ and R independent of C1. Repeating the argument

starting from Eq. (2.29) one easily finds that the one-parameter family of

hairy solutions (U(C1), R, φ) exists only in the case of an exponential poten-

tial and is given by the black brane solution (2.19).

The previous derivation can be easily extended to the charged case Q 6= 0

and to ε = ±1. The only new ingredient is that now the general solution of
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the field equations (2.5) is determined by:

U = R2

[
C2 +

∫ (
4Q2

∫
1

R2
− 2εr − C1

)
1

R4

]
, (2.30)

rather than by Eq. (2.27). Notice that for ε = ±1 and/or Q 6= 0 the rescaling

of R is not anymore a symmetry of the equations of motion as in the ε = 0

case. The constant C2 in Eq. (2.30) becomes physically relevant but enters

as parameter of the potential, therefore cannot represent a new “independent

hair” of the solution.

Since for Q 6= 0 or ε 6= 0 the solution (2.30) with C1 = 0 is no longer given

by U = R2, in general, it will not necessarily be an extremal T = 0 solution.

This is related to the fact that C1 will now be determined not only in terms

of the black hole mass M , but in terms of Q as well. As a consequence,

the spacetime will in general have an inner and outer horizon. Statement 1)

then holds in a much weaker form: One-parameter families of asymptotically

charged AdS black hole solutions with nontrivial scalar hair exist only if the

field equations (2.5) admit a black hole solution with C1 = 0. Because the

C1 = 0 solution is not necessarily extremal, this statement is not particularly

useful.

On the other hand statements 2) and 3) do not depend on the existence

of an extremal solution. Their generalization to the charged and ε = ±1 case

is almost trivial. Statement 2) now affirms that charged black brane/black

hole solutions that asymptotically approach the conformal Lifshitz spacetime

(2.22) exist, in some range of the parameters, for the case of an exponential

potential V (φ). Statement 3) still remains true in the form given above also

for the case of charged and ε = ±1 black holes.

Concerning statement 3) it is important to stress that this theorem does

not apply to the case of a nonminimal coupling between the scalar and the

gauge field. In the latter case we have an additional term depending on the

derivative of the coupling function between the scalar and F 2 in the last
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equation of (2.5). The effect of this term is to allow for solutions with two

integration constants r±, with Q ∼ r−r+, T ∼ (r+ − r−), whereas the scalar

field depends on r− only. Hence the scalar hair is independent from the black

hole temperature but is related to Q. This result is perfectly consistent with

the well-established existence of black holes with temperature-independent

scalar charges in models with a non-minimally coupled scalar field.

We conclude this section by listing the classes of static black hole solutions

of Einstein-scalar-Maxwell gravity that may exist in view of the above no-hair

theorems:

• Models with an exponential potential admit, at least in some range of

the parameters, a one-parameter family of domain wall (Q = 0, ε = 0),

conformal Lifshitz (Q 6= 0, ε = 0), black brane or black hole (Q = 0 or

Q 6= 0 and ε = ±1) solutions.

• The existence of asymptotically AdS uncharged black brane solutions

with scalar hair is tightly constrained. Apart from the violation of the

PET, a further necessary, but not sufficient, condition for their exis-

tence is that the field equations allow for an extremal T = 0 solution.

• The existence of hairy asymptotically AdS charged black branes, or

charged and uncharged black holes, is very loosely constrained by the

above no-hair theorem.

• For all cases (charged and uncharged, black branes and black holes)

the allowed hairy AdS solutions must have a temperature-dependent

scalar hair.

2.5 Asymptotically AdS solutions

In this section we will derive asymptotically AdS solutions with scalar hair of

the field equations (2.5) for d = 2 and ε = 0. As explained in Sects. 1.1 and
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2.2, in order to have asymptotically AdS solutions we require the potential

to satisfy V (0) < 0, V ′(0) = 0 and we normalize V using V (0) = −6/L2.

As usual, the starting point of our solving method is an ansatz for the

scalar field. Inspired by known solutions in flat spacetime and in gauged

supergravity [6–9, 72], we use an ansatz in which φ is expressed in terms of

a four-dimensional harmonic function X:

γφ = logX, X = 1− r−
r
, (2.31)

where γ and r− are constants. Notice that with this ansatz, in the asymptot-

ical AdS region the scalar field φ is a tachyonic excitation with mass above

the BF bound in 4D, m2 = −2/L2. Expanding Eq. (2.31) near r = ∞ and

comparing with Eq. (2.7) one finds that the asymptotic behavior of the scalar

field is characterized by ∆1,2 = 1, 2 and by O2 = r−O1. This tells us that we

are dealing with so-called designer gravity models (see Sect. 1.1).

Given the ansatz (2.31), the Riccati equation (2.9) can be solved in terms

of the harmonic function X to give:

R = ΛrXβ+ 1
2 , β2 − 1

4
= − 1

γ2
, (2.32)

where Λ can be set to 1 without loss of generality, if ε = 0 and Q = 0. Notice

that the previous equation implies

− 1

2
< β <

1

2
. (2.33)

As usual we will proceed by discussing separately uncharged and charged

solutions.

2.5.1 Uncharged solutions

Let us set Q = 0 in Eq. (2.12) and first consider the C1 = 0 extremal

solutions. The constant C2 essentially determines the normalization of the
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potential. This is fixed by choosing C2 = 1/L2. With these assumptions,

Eqs. (2.12) and (2.13) give, respectively, the solution for the metric and the

scalar potential:

U = R2 =
r2

L2

(
1− r−

r

)2β+1

, (2.34)

V1(γ, φ) = −2e2γβφ

L2

[
2− 8β2 + (1 + 8β2) cosh(γφ)− 6β sinh(γφ)

]
. (2.35)

One can easily check that these solutions represent domain walls with AdS4

asymptotics. Calculating the periodicity of the 2D Euclidean section one can

also check that the solution is an extremal T = 0 solution.

The potential (2.35) interpolates smoothly between the asymptotic AdS

region at φ = 0 and a φ → ∞ region (a near-horizon region) where the

potential behaves exponentially:

V (φ) = −(2β + 1)(4β + 1)

L2
eγ(2β−1)φ. (2.36)

Moreover, it contains as a special case, β = 0, the potential resulting from

truncation to the abelian sector of N = 8, D = 4 gauged supergravity [51]:

V (φ) = − 2

L2
(cosh 2φ+ 2). (2.37)

In this case the solution (2.34) takes the particularly simple form:

U = R2 =
r2

L2
− rr−

L2
, φ =

1

2
log
(

1− r−
r

)
. (2.38)

The model described by the potential (2.35) becomes very simple also for

β = 1/4:

V (φ) = − 6

L2
cosh

2φ√
3
. (2.39)
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The potential (2.35) remains invariant under the duality transformation:

φ→ −φ, β → −β. (2.40)

This symmetry of the action can be used to generate a new dual solution

from Eq. (2.34):

U = R2 =
r2

L2
X−2β+1, γφ = − logX. (2.41)

Notice that for the supergravity model (2.37) the symmetry transformation

is simply φ→ −φ, whereas solution (2.38) becomes self-dual.

Because the model with potential (2.35) admits the C1 = 0 solution,

statement 1) of the no-hair theorem discussed in the previous section implies

that also non extremal black brane solutions with C1 6= 0 can in principle

exist. Unfortunately, our method does not allow to find such a solutions.

Naively, one could think that these solutions can be derived just by using Eq.

(2.32) into Eq. (2.12) with C1 6= 0. This is not the case not only because the

resulting potential Ṽ is different from (2.35) but, more importantly, because

Ṽ will depend explicitly on C1, which instead should be a free integration

constant related to the mass of the solution.

Notice that a one-parameter family of solutions can be generated from

Eq. (2.12) with C1 6= 0 by using the invariance of the field equations under

the rescaling R → λR, to let the potential depend only on the ratio C2/C1,

whereas U depends on both C2 and C1. However, in this case the solution

C1 = 0 is not allowed. Hence the no-hair theorem of the previous section

implies that this family of solutions are not black branes. Thus non-extremal

black brane solutions of models with the potential (2.35), if they exist, have

to be found numerically.

The hairy extremal solution (2.34) interpolates between an AdS vacuum

at r = ∞ and a domain wall solution (2.19) near r = r−. This can be

easily shown by expressing solution (2.34) in the near-horizon approximation
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r ∼ r−. Shifting r → r + r− and expanding near r = 0 one finds at leading

order:

γφ = ln
r

r−
, U = R2 = A2

(
r

r−

)2β+1

, A =
r−
L
. (2.42)

As expected, this solution is easily recognized, just by setting β = (1 −
h2)/(2 + 2h2) and by rescaling V (in the way explained after Eq. (2.19))

as the exact solutions (2.19) with C1 = 0 of a model with near-horizon

exponential potential (2.36).

The near-extremal solutions with a horizon, corresponding to solutions

(2.19) with C1 6= 0, are given by:

U = A2

(
r

r−

)2β+1

− µ
(
r

r−

)−2β

, (2.43)

whereas φ and R are given as in Eq. (2.42). We stress again that Eq. (2.42)

and (2.43) are exact solutions of the near-horizon approximate form of the

potential (2.36), but only leading-order solutions of the near-horizon approx-

imation for the exact potential (2.35).

The near-horizon, extremal and near-extremal solutions, corresponding

to the dual solution (2.41), can be easily obtained from Eq. (2.43) just by

using the duality transformation (2.40).

2.5.2 Charged solutions

Following the same steps described in the previous subsection we now derive

Q 6= 0 hairy black brane solutions of the field equations (2.5) with AdS

asymptotics.

The C1 = C2 = 0 solution, corresponding to the ansatz (2.31) for the

scalar, is obtained by substituting the solution (2.32) of the Riccati equation

into Eq. (2.12):
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U =
r2

L2

(
1− r−

r

)−2β (
1− r1

r

)(
1− r2

r

)
,

R = Λ
r

r−

(
1− r−

r

)β+ 1
2
, γφ = log

(
1− r−

r

)
,

1

4
− β2 = γ−2, (2.44)

where Λ2 = QL/(|β|
√

3
2
(36β2 − 1 ), r1,2 = (r−/2)(6β + 1±

√
36β2 − 1) and

1/6 < |β| < 1/2.

Using Eq. (2.13), the corresponding potential turns out to be:

V2(γ, φ) = − 2

L2
e−4γβφ(4β2 − 1)

[
−(36β2 + 1) cosh(γφ) + 27β2 − 2− 12β sinh(γφ)

]
+ 3β2(1 + 12β2) cosh(2γφ) + 24β3 sinh(2γφ). (2.45)

Eqs. (2.44) represent a one-parameter (the charge) family of asymptot-

ically AdS solutions of the model (2.45) for a fixed value of the mass (or

temperature). As pointed out in Sect. 2.4, in the charged case the C1 = 0

solution does not necessarily correspond to extremal T = 0 black brane so-

lutions. Moreover, in this case statement 1) of the no-hair theorem of the

previous section is not useful for guessing about the existence of a full two-

parameter (charge Q and mass M) family of hairy black brane solutions.

The potential (2.45) is invariant under the duality symmetry (2.40). The

dual solutions are easily obtained using Eq. (2.40) into Eq. (2.44).

The geometrical and thermal properties of the solution (2.44) depend

on the value of β. In the parameter region −1/2 < β < −1/6 we have

r1, r2 < r−. Because r− is the origin of the radial coordinate r, there are no

horizons and the solution is an extremal T = 0 solution. For 1/6 < β < 1/2

we get r1 > r− and we have an horizon. Because r1 is just a simple (not

double) root of U , the solution does not represent an extremal T = 0 solution.

Solution (2.44) for −1/2 < β < −1/6 interpolates between an AdS vac-

uum at r =∞ and a conformal Lifshitz solution (2.22) with C1 = C2 = 0 in

the near-horizon limit r ∼ r−. In fact, shifting r → r + r− and expanding
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near r = 0, Eq. (2.44) becomes:

γφ = ln
r

r−
, U = B

(
r

r−

)−4β

, R =
r−
L

(
r

r−

)β+ 1
2

, (2.46)

where B is a constant depending on β and r−. Solution (2.46) has the

conformal Lifshitz form (2.22). On the other hand for 1/6 < β < 1/2 we

have U ∼ r and R ∼ const., which seems to indicate that in this case the

solution has to interpreted as an extremal T 6= 0 solution.

Analogously to the Q = 0 case, one can also write down near-extremal,

approximate solutions with an horizon (black brane):

γφ = ln
r

r−
, U = B

(
r

r−

)−4β

− µ
(
r

r−

)−2β

, R =
r−
L

(
r

r−

)β+ 1
2

. (2.47)

Also in the charged case, both the C1 = 0 solution (2.46) and the near-

extremal solution (2.47) are exact solutions of an Einstein-scalar-Maxwell

gravity model with an exponential potential given by the leading term in the

φ→∞ expansion of the potential (2.45).

2.5.3 Other solutions

In this subsection we present a further example of the use of our general

method for generating exact solutions of (2.5) with AdS asymptotic behavior,

for Q = 0, d = 2 and ε = 0.

As ansatz for the scalar field we choose a combination of harmonic func-

tions in n+ 2 dimensions1:

φ =

√
2n− 1

2n
log

X+

X−
, X± = 1±

(r−
r

)n
, n >

1

2
. (2.48)

In an asymptotically AdS spacetime, this corresponds to a scalar excitation

1We do not limit ourselves to an integer n, but we take n real.
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near φ = 0 of mass:

m2 = −n(3− n)

L2
. (2.49)

The scalar excitation is a tachyon with mass above the BF bound for 1/2 <

n < 3. The PET implies the non existence of black brane solutions for n ≥ 3.

The Riccati equation (2.9) is solved by:

Y =
r2n−1

r2n − r2n
−
. (2.50)

In the uncharged case, Q = 0, Eq. (2.12) with C1 = 0 and C2 = 1/L2 gives

the solution:

U = R2 =
r2

L2

[
1−

(r−
r

)2n
] 1
n

, φ =

√
2n− 1

2n
log

rn + rn−
rn − rn−

, (2.51)

which represents an asymptotically AdS domain wall solution. As expected,

also in this case the solution is a T = 0 extremal solution. Eq. (2.13) gives

the potential:

V (φ) = − 2

L2
(cosh

aφ

2
)2− 2

n [(2− n) cosh aφ+ (n+ 1)] , a =
2n√

2n− 1
.

(2.52)

Notice that this potential is invariant under the duality transformation φ→
−φ. The potential (2.52) smoothly interpolates between the asymptotical

AdS region at φ = 0 and the φ→∞ near-horizon region, where the potential

has the exponential behavior:

V (φ) = −(2− n)

L2
2

2
n
−2e2

√
2n−1φ. (2.53)

In the special case n = 2 the potential takes a very simple form:

V (φ) = − 6

L2
cosh

2φ√
3
. (2.54)
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Also for the case of the potential (2.52) hold the same considerations con-

cerning the existence of non-extremal black brane solutions as those discussed

in subsection 2.5.1 for the potential (2.35).

The extremal solution (2.51) interpolates between an AdS vacuum at

r = ∞ and a domain wall solution of the form (2.19) with C1 = 0 near r =

r−. This can be easily seen by working in the near-horizon approximation.

Shifting r → r+r− and expanding near r = 0, Eq. (2.51) becomes at leading

order:

φ = −1

a
ln

r

r−
, U = R2 = D2

(
r

r−

) 1
n

, D =
r−
L

(2n)1/(2n). (2.55)

Near-extremal approximate solutions with a horizon have the form (2.19)

with C1 6= 0 and are given by:

U = D2

(
r

r−

)1/n

− µ
(
r

r−

)1−1/n

, (2.56)

whereas φ and R are given as in Eq. (2.55). As expected, solution (2.56) is

an exact solution of a model with the exponential potential (2.53).

2.6 Solutions for models with nonexponential

potentials

Until now we have considered the application of our method to models for

which the potential turns out to behave as a combination of exponentials.

This fact may have generate in the reader the wrong impression that our

method works only for this class of Einstein-scalar-Maxwell (ESM) gravity

models. In this section we will show that this is not the case, i.e. that our

method can be used to generate solutions of models whose potential does not

behave exponentially.
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These solutions can be generated using a general method for solving the

Riccati equation. The method works when the equation takes the form:

Y ′ + aY 2 = brs, (2.57)

where a, b are constants and s = 4n/(1− 2n), n = ±1,±2 . . . ..

To solve the Riccati equation we perform, iteratively, the following trans-

formations until we reach s = 0:

n > 0 : Y = Z−1r−2 + (ar)−1, r = x
1
s+3 ; (2.58)

n < 0 : Y =
b

x(bxZ + s+ 1)
, r = x−

1
s+1 . (2.59)

In both cases, after the transformation, the Riccati equation takes the form
dZ
dx

+ âZ2 = b̂xŝ with â = b/(s + 3), b̂ = a/(s + 3), ŝ = −(s + 4)/(s + 3) for

n > 0 and â = −b/(s + 1), b̂ = −a/(s + 1), ŝ = −(3s + 4)(s + 1) for n < 0.

Once we reach s = 0, the Riccati equation becomes separable and can be

integrated using elementary methods.

As an example let us consider ESM gravity in 4D with ε = Q = 0 and a

scalar field with an 1/r profile:

φ =
k

r
. (2.60)

In four-dimensional asymptotically AdS spacetimes this corresponds to a

scalar field of mass m2 = −2/L2 and boundary conditions (2.7) characterized

by O2 = 0, O1 = k. The Riccati Eq. (2.9) takes the form (2.57) with s = −4

(n = 1), a = 1 and b = −k2. After a single iteration of the solving procedure,

the equation is brought into the form dZ
dx

+ k2Z2 = −1, which can be easily

integrated to give, after reintroducing the initial variables, the solution:

Y =
k

r2
cot

(
c− k

r

)
+

1

r
, (2.61)
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where 0 < c ≤ π/2 is an integration constant. Using Eqs. (2.8) and (2.12)

with C1 = 0 and C2 = 1, one finds the solutions of the field equations of

ESM gravity:

U = R2, R =
r

L
sin

(
c− k

r

)
. (2.62)

For k
c
< r <∞, the solution describes a domain wall with AdS asymptotics.

The point r = k
c

is the origin of the radial coordinate, whereas asymptotically,

as r →∞, we have U = R2 ∼ r2/L2. The potential can be calculated using

Eq. (2.13). Fixing for simplicity the value of the constant c to c = π/2, one

finds:

V (φ) = − 2

L2

[
3

2
(1 + cos 2φ) + 3φ sin 2φ+ φ2(1− 2 cos 2φ)

]
. (2.63)

The resulting potential is a combination of powers and trigonometric func-

tions. The asymptotic r =∞ AdS region corresponds to φ = 0. As expected

one has V (0) = −6/L2, V ′(0) = 0, V ′′(0) = −8/L2. The solution (2.60),

(2.62) is now defined for 0 < φ < π/2, corresponding to 2k/π < r <∞.

2.7 Generalization to d + 2 dimensions

In this section we generalize the black brane solutions found in the d = 2

case to d+ 2 dimensions.

2.7.1 Domain wall solutions

We start again from the ansatz (2.15). When d 6= 2 the Riccati equation

(2.9) is solved by:

Y =
α

r
, α(α− 1) = −2

d
γ−2. (2.64)
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It is useful to parametrize α and γ as follows:

α =
2

2d+ h2
, γ−1 =

dh

2 + dh2
. (2.65)

Redefining the constant C2 in Eqs. (2.8) and (2.12), and rescaling C1, the

solution takes the form:

U =

(
r

r−

) 4
2+dh2

− C1

(
r

r−

) dh2−2d+2

2+dh2

, (2.66)

R =

(
r

r−

) 2
2+dh2

, (2.67)

V = −2d[2(d+ 1)− dh2]

(2 + dh2)2r2
−

e−2hφ. (2.68)

As usual, the parameter r− in the potential can be substituted by the AdS

scale L, using the invariance of the field equations under rescaling of V and

U .

As in d = 2, choosing C1 = 0 we obtain the typical domain wall solution

U = R2. For h2 ≤ 2/d, the domain wall solution (2.66) with C1 = 0 has a

consistent holographic interpretation and a singularity at r = 0. For C1 ≥ 0

and h2 ≤ 2 + 2/d , the solution (2.66) is asymptotical to the domain wall

solution, and has a horizon at rh = C
(2+dh2)/(2d+2−dh2)

1 r−.

2.7.2 Charged solutions

The previous solution can be generalized to the case Q 6= 0. This is the only

charged solution, among those found for d = 2, that can be computed in

closed form in d+ 2 dimensions.

The ansatz for the scalar field is still given by (2.15), whereas the solution

for the Riccati equation is the same as in Eq. (2.64). In the case at hand, it
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is convenient to choose the following parametrization for α and γ:

α =
h2

2d+ h2
, γ−1 =

dh

2d+ h2
.

Equations (2.12), (2.13) and (2.64) give (after a rescaling of the integra-

tion constants C1 and C2):

U =
2(2d+ h2)2r2

−Q
2

[2d− (d− 1)h2](2d− dh2)Λ2d

(
r

r−

)2
2d−(d−1)h2

2d+h2

[
1− C1

(
r

r−

)− 2d−(d−1)h2

2d+h2

+C2

(
r

r−

)− 4d−2dh2

2d+h2

]
,

R = Λ

(
r

r−

) h2

2d+h2

, (2.69)

V = − 2Q2

(2− h2)Λ2d

[
2e−2hφ +

h2[−2d+ (d+ 1)h2]C2

[2d− (d− 1)h2]
e−4φ/h

]
. (2.70)

In order to make the potential independent from the electric charge, one must

choose the integration constant Λ = (r−Q)1/d. As usual, one can introduce

a further length scale L in the potential, by performing a rescaling of the

variables.

For C1 = C2 = 0, the solution is conformal to (d+2)-dimensional Lifshitz

spacetime. For h2 < 2d/(d − 1), C2 = 0 and C1 > 0 the solution repre-

sents a black brane asymptotical to the conformal Lifshitz spacetime, with a

singularity at r = 0 and a horizon at rh = C
2d+h2

2d−(d−1)h2

1 r−.

2.7.3 Asymptotically AdS solutions

In order to derive asymptotically AdSd+2 solutions of our field equations

(2.5), we consider again the ansatz (2.31), which expresses the scalar field in

terms of a harmonic function X given as in (2.31).



44 Chapter 2. Exact solutions of Einstein-scalar-Maxwell gravity

Near the AdS vacuum the scalar field is tachyonic and has mass:

m2 = −d/L2,

which is always above the BF bound in d+2 dimensions. The Riccati equation

(2.9) is now solved by:

R = r
(

1− r−
r

)β+ 1
2
,

1

4
− β2 =

2

d
γ−2, −1

2
< β <

1

2
. (2.71)

We search again for extremal solutions with C1 = 0. Setting C2 = 1/L2

in (2.12) and (2.13), we obtain the following asymptotically AdSd+2 domain

wall solution and the corresponding potential:

U = R2 =
r2

L2

(
1− r−

r

)2β+1

, γφ = ln
(

1− r−
r

)
(2.72)

V (φ) = − d

L2
e2γβφ

{
1

2
(d+ 2)(1− 4β2) +

1

2

[
4β2(d+ 2) + d

]
cosh(γφ)

−2β(d+ 1) sinh(γφ)} . (2.73)

One can easily check that the previous potential satisfies, as expected, V (0) =

−d(d + 1)/L2 and V ′(0) = 0. Notice that the metric part of the solutions

for the generic case (2.72) is exactly the same as in the d = 2 case (see Eq.

(2.34)). Only the scalar field and the potential are changed. Also in d + 2

dimensions the potential (2.73) is invariant under the duality transformation

(2.40). Dual solutions are easily obtained using (2.40) into Eq. (2.72) and

(2.71).

Since the metric functions U and R do not depend on the spacetime di-

mension, the near-horizon and near-extremal approximate behavior of U and

R is the same as in the d = 2 case. Thus, the hairy extremal solution (2.72)

always interpolates between an AdSd+2 vacuum at r =∞ and a domain wall

solution (2.66) near r = r−.

As in d = 2, the case β = 0 is particularly simple. The metric part of the
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solution is still the same as in d = 2 and is given by Eq. (2.38), whereas the

scalar field and the potential are:

φ =
1

2

√
d

2
log
(

1− r−
r

)
, V (φ) = − d

L2

[
d

2
cosh

(
2

√
2

d
φ

)
+
d+ 2

2

]
.

For what concerns the existence of nonextremal C1 6= 0 solutions in d+ 2

dimensions, and the consequences of the no-hair theorem of Sect. 2.4, the

same considerations as in the d = 2 case hold.

2.7.4 Other solutions

It is also easy to work out the generalization to d+2 dimensions of the model

described in subsection 2.5.3.

We consider the following ansatz for the scalar field:

aφ = log
X+

X−
, X± = 1±

(r−
r

)n
, a =

√
8n2

d(2n− 1)
, n >

1

2
. (2.74)

Near the AdSd+2 vacuum the scalar field is a tachyon with mass:

m2 = −n(d+ 1− n)

L2
,

which is always above the BF bound in d+ 2 dimensions. The PET forbids

the existence of black brane solutions for n > d + 1, when the square-mass

of the scalar becomes positive.

The Riccati equation gives the same solution (2.50) as in the d = 2 case,

the metric function U (with C1 = 0 and C2 = 1
L2 ) is given by Eq. (2.51),

while the potential becomes:

V (φ) = − d

L2

(
cosh a

φ

2

)2− 2
n
[(

d+ 2

2
− n

)
cosh aφ+

(
n+

d

2

)]
. (2.75)
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Because the metric part of the solution is the same obtained for d = 2, the

near-horizon, near-extremal approximate solutions for U and R are identical

to those obtained in four dimensions.

2.8 Spherical and hyperbolic solutions

The results of the previous sections can be easily generalized to the case in

which the two-dimensional sections of the solutions are spherical or hyper-

bolic. Contrary to the planar case, where it is dimensionless, the metric

function R, and hence the integration constant Λ in the solution (2.14), is

now usually taken to have the physical dimension of a length. Therefore,

when Λ is not determined by the field equations, we shall identify it with the

AdS length L.

2.8.1 Uncharged black hole solutions

We first consider the case of four dimensions (d = 2). The field equations

are given by (2.5), with ε = ±1 and the solutions by (2.9)-(2.14).

The generalization of the black brane solutions of Sect. 2.3.1 to the case

of spherical (or hyperbolic) symmetry is obtained adopting the ansatz (2.15).

Substituting the solutions (2.17), with parametrization (2.18), in the general

solution of Sect. 2.2, after rescaling C1 and putting C2 = 0, the metric

functions take the form:

U =
(1 + h2)εr2

−

(1− h2)L2

(
r

r−

) 2h2

1+h2
(

1− C1r−
r

)
, R = L

(
r

r−

) 1
1+h2

, (2.76)

with potential

V =
2h2ε

(h2 − 1)L2
e−2φ/h, (2.77)
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having a simple exponential form, as in the planar case. Notice that we have

identified the integration constant Λ with the the AdS length L.

If ε = 1 and h2 < 1, the solutions represent spherically symmetric black

holes with conformal Lifshitz asymptotics, exhibiting a singularity at r = 0,

shielded by a horizon at rh = C1r−. Solutions exist also for ε = −1 and

h2 > 1: they are black holes with conformal Lifshitz asymptotics and horizons

with hyperbolic topology.

2.8.2 Charged black hole solutions

We now try to extend the previous solutions to the case of nonvanishing

electric charge, generalizing those of Sect. 2.3.2. With the parametrization

(2.21) the solution reads, after a redefinition of the constants C1 and C2:

U =
(4 + h2)r2

−

4− h2

[
− ε

Λ2

(
r

r−

) 8
4+h2

+
(4 + h2)Q2

(2− h2)Λ4

(
r

r−

)2 4−h2

4+h2

+ C2

(
r

r−

) 2h2

4+h2

−C1

(
r

r−

) 4−h2

4+h2
]
, R = Λ

(
r

r−

) h2

4+h2

, (2.78)

with

V = − 4Q2

(2− h2)Λ4
e−2hφ+

8 ε

(4− h2)Λ2
e−hφ+

2h2(4− 3h2)C2

(4 + h2)(4− h2)
e−4φ/h. (2.79)

Contrary to the planar case, if ε 6= 0 one cannot eliminate from the po-

tential the dependence on Q by a suitable choice of the integration constants:

one ought in fact to impose Λ2 = Q = 1. However, the solution with Q = 0,

C2 6= 0 may still have interest. For ε > 0, h2 > 4 and C1 > 0, such solution

represents a black hole with domain wall asymptotic behavior, a singularity

at r = 0 and one or two horizons, depending on the value of C2. The asymp-

totic behavior is dictated by the C2 term. The potential is the sum of two

exponential.
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2.8.3 Asymptotically AdS solutions

In this section, we wish to generalize the asymptotically anti-de Sitter solu-

tions obtained using the ansatz (2.31), in the case ε 6= 0. The solution (2.32)

for the radial function still holds, while, after the usual rescaling of C2, the

metric function U becomes in the special case C1 = 0, corresponding to an

extremal black hole:

U = − εr2

2β(1 + 4β)L2
X−2β

[
1− (1 + 4β)

r−
r

]
+
C2r

2

L2
X2β+1, (2.80)

where we have rescaled C2, set L = Λr−, and −1/4 < β < 0. The potential

is then:

V (φ) = − ε

2β(1 + 4β)
V1(−γ, φ) + C2V1(γ, φ), (2.81)

where V1(γ, φ) is given by Eq. (2.35). The metric is singular at r = 0, while,

when C2 6= 0, in general the solution is a black hole, whose horizon structure

cannot be determined analytically. As in the planar case, solutions with

C1 6= 0 exist, but it is not possible to eliminate C1 from the potential. Hence

if a family of black hole solutions exist for the potential (2.81), it must be

determined numerically.

An interesting property of the potential (2.81) is the symmetry between

its two terms for φ→ −φ. In particular, choosing C2 = ε/2β(1 + 4β)L2, the

potential becomes:

V (φ) = − 2ε

β(1 + 4β)L2
{(β +

1

2
)(4β + 1) sinh[2(β − 1

2
)γφ]− (8β2 − 2) sinh[2βγφ]

+(β − 1

2
)(4β − 1) sinh[(2β + 1)γφ]}.

The most interesting case is C2 = 0, ε = 1. With this assumption, using

the invariance of the field equations under the rescaling R → 1
λ
R, U →

λ2U, V → λ2V and changing the sign of γ in Eq. (2.31), the potential (2.81)
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can be brought into the form V = V1(γ, φ) where, as usual, V1(γ, φ) is given

by Eq. (2.35). Solution (2.80) becomes:

U = − r
2

L2
X−2β

[
1− (1 + 4β)

r−
r

]
, R =

L r

r−
√
−2β(1 + 4β)

Xβ+ 1
2 , γφ = − logX.

(2.82)

In the range of definition, −1/4 < β < 0, the solution has no horizon.

However, as we will see when we consider the near-horizon, near extremal

solution, it cannot be considered an extremal black hole.

We conclude by observing that a solution can be found also in the par-

ticular case β = 0, γ = 2. In this case:

φ =
1

2
logX, R = ΛrX1/2,

and then:

U =
2εr(r − r−)

L2

[
r−

r − r−
+ log

(
r − r−
r

)]
,

V = − 4ε

L2
[4φ+ 2φ cosh(2φ)− 3 sinh(2φ)].

2.8.4 Charged asymptotically AdS solutions

We consider now the solutions of the previous subsection with Q 6= 0, but

C2 = 0. The only change is in the function U :

U = − εr2

2β(1 + 4β)L2
X−2β

[
1− (1 + 4β)

r−
r

]
(2.83)

+
8µr2

3(1− 36β2)
X−4β

[
1 + (1 + 6β)

r−
r

+ 3β(1 + 6β)
r2
−

r2

]
,

and in the potential:

V (φ) = − ε

2β(1 + 4β)
V1(−γ, φ)− 2µL2

3β(1 + 4β)
V2(γ, φ),
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where we have defined L = Λr−, µ = Q2

r3
−Λ4 , while V1(γ, φ) and V2(γ, φ) are

given respectively by Eqs. (2.35) and (2.45). Therefore µ, L and β are

parameters of the action, Q is a free parameter and r− = µL4/Q2. Multiple

horizons may occur, but cannot be determined analytically for generic β.

2.8.5 Spherical solutions generated from the planar

ones

For d = 2, spherical solutions can simply be generated from the planar ones

just by exploiting the fact that the field equations (2.5) are linear in the

metric function U . This method permits to find spherical solutions for a

given form of the potential. This fact may be very useful when one wants

to compare planar and spherical solutions of the same model or when the

method described in the previous subsection gives a singular result (e.g. β =

0 in Eq. (2.80)).

Indicating with U0, R0 = rXβ+1/2, φ0 = γ−1 lnX, where X is the har-

monic function (2.31), a solution of the field equations (2.5) for ε = 0 and

d = 2, it follows from the linearity in U of the field equations that a solution

of (2.5) for ε = ±1 and d = 2 is given by:

U = U0 + εX−2β, R = R0, φ = φ0. (2.84)

This method can be used to generate ε = ±1 solutions for the potentials

(2.35) and (2.45) from the planar solutions respectively given by (2.34) and

(2.44). In the uncharged case, i.e for the potential (2.35), we have:

U = X2β+1 r
2

L2
+εX−2β, R = rXβ+ 1

2 , γφ = lnX, X = 1−r−
r
,

1

4
−β2 = γ−2.

(2.85)

Notice that, differently from Eqs. (2.82), this solution holds in the full range

−1/2 < β < 1/2 of the parameter β. For β = 0 we get the spherical extremal



Spherical and hyperbolic solutions 51

solution of the model (2.37):

U =
r2

L2
− rr−

L2
+ ε, R = rX1/2, φ =

1

2
lnX. (2.86)

One can easily check that solution (2.85) is an extremal T = 0 solution, in

fact the zeros of U are always behind the origin of the radial coordinate at

r = r−.

Eqs. (2.82) and (2.85) are solutions of the same model with potential

V1(γ, φ) given by (2.35). Because V1(γ, φ) is invariant under the duality

transformation (2.40), one can generate from (2.82), (2.85) two other solu-

tions of the same model just by reversing the sign of β and φ.

2.8.6 Near-horizon, near-extremal spherical solutions

Let us now consider the near-horizon approximation of the solutions (2.82)

and (2.85). One can obtain the near-horizon, near-extremal solution by first

shifting r → r + r− and expanding near r = 0. Then one solves the field

equations perturbatively near r = 0 using the extremal, near-horizon solution

as zero-th order approximation.

In the case of solution (2.82) this procedure gives the solution:

U =
(r−
L

)2

x−2β [(1− 4β(1 + 2β))x− C] ,

R =
Lxβ+ 1

2√
−2β(1 + 4β)

[
1− 2

C
β(2β − 1)x

]
, γφ = − lnx+

4β

C
x, (2.87)

where C is an integration constant and x = r/r−. For C > 0 the solution

describes black holes with a regular horizon at x = xh = C/(1− 4β(1 + 2β))

with R(xh) 6= 0 and a singularity at r = 0. The Hawking temperature of

the horizon is T = (1/4π)(r2
−/L

2)xh
−2β. The solution (2.87) is singular for

C = 0, although T → 0 as C → 0. For C < 0 we have solutions with no

horizon and in particular for C = C0 = 4β we get the solution (2.82) in the
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near-horizon approximation.

Because solution (2.87) has a singularity at r = 0 (corresponding to the

singularity of (2.82) at r = r−), one should reject solutions with C < 0 as

unphysical. This gives a strong hint about the nature of our solution (2.82):

it is an isolated solution disconnected from the continuous part of the black

hole spectrum at C > 0 by solutions with naked singularities.

In the case of solution (2.85), near-horizon, near-extremal solutions are

given by:

U =
r2
−

L2

(
x2β+1 − Cx−2β

)
+ 2βx−2β+1,

R = r−x
β+ 1

2

(
1 +

L2

Cr2
−

(β − 1

2
)x

)
, γφ = lnx+

L2

Cr2
−
x, (2.88)

where C is an integration constant. For C > 0 the solution has a regular

horizon, which at leading order is located at x = xh = C1/(4β+1) when C

is small, C <
(
r2
−/(L

2(1− 2β))
)−(4β+1)/(4β)

. This is consistent with a near-

extremal approximation. The Hawking temperature of the horizon is T =

(1/4π)(r2
−/L

2)(4β + 1)xh
2β. The solution (2.88) is singular for C = 0. For

C < 0 we have solutions with no horizon and, in particular, for C = C0 =

L2/r2
− we get the solution (2.85) in the near-horizon approximation.

Also solution (2.88) has a singularity at r = 0, which corresponds to the

singularity of (2.85) at r = r−. Hence, solutions with C < 0 have naked

singularities and solution (2.85) is disconnected from the continuous part of

the black hole spectrum at C > 0.

2.9 Conclusions

In this chapter we have presented a general method for finding static, radi-

ally symmetric, analytic solutions of Einstein and Einstein-Maxwell gravity

minimally coupled to a scalar field. Rather than assuming a particular form
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of the scalar self-interaction potential, our method starts from an ansatz for

the scalar field profile and determines, together with the metric functions,

the corresponding form of the potential. For this reason it is particularly

suitable for applications to the AdS/CFT correspondence.

We have investigated in detail two related applications of our method.

Firstly, we have derived a new no-hair theorem about the existence of black

hole solutions of Einstein gravity with scalar hair. As a second application,

we have derived broad classes of exact analytic hairy solutions of Einstein

and Einstein-Maxwell gravity minimally coupled to a scalar. These solutions

have been derived using rather general and simple ansätze for the scalar

(in terms of harmonic, logarithmic functions and rl behaviour). They cover

many different situations: four or higher dimensions; solutions with planar,

spherical or hyperbolic horizon topology; solutions with AdS, domain wall

and conformal Lifshitz asymptotics; solutions interpolating between an AdS

spacetime in the asymptotic region and domain wall or conformally Lifshitz

behavior in the near-horizon region. Also the class of potentials for the scalar

field characterizing these models is broad, ranging from the simple exponen-

tial potential – known to give rise in many situations to domain wall and

Lifshitz solutions – to more general forms such as combinations of exponen-

tials – containing as a particular case N = 8 gauged supergravity in 4D

truncated to the U(1) sector – or combinations of powers and trigonometric

functions.

Our investigation has shown that Einstein gravity minimally coupled to

a scalar field has a rich spectrum of solutions with non trivial scalar hair and

AdS asymptotics, which may play an important role in applications of the

AdS/CFT correspondence to condensed matter and strongly coupled QFTs.

Our approach has a main drawback. In some situations it does not allow

to find a full one-parameter family of black holes, i.e. the full spectrum of

solutions for different temperatures, but only “extremal” T = 0 solutions.

Moreover, what we have called extremal solutions always present a curvature
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singularity at r = 0.

Although our method always allows to find one-parameter families of

near-horizon near-extremal solutions, interpolating solutions with AdS asymp-

totics can be found only in the extremal case. Moreover, in many situations,

it is not even clear whether or not such solutions exist. This is a partic-

ularly important question in the cases in which the exact solution interpo-

lates between the AdS spacetime and a near-horizon domain wall or Lifshitz

spacetime. In the spherical case we have found strong evidence that our ex-

act solutions represent isolated solutions disconnected from the continuous

part of the spectrum. A final answer to these questions involves numerical

computations.



Chapter 3

Black brane and solitonic

solutions in Einstein-scalar

gravity

In this chapter we investigate static, planar solutions of Einstein-scalar grav-

ity admitting an AdS vacuum. When the squared mass of the scalar field

is positive and the scalar potential can be derived from a superpotential,

minimum energy theorems indicate the existence of a scalar soliton. On the

other hand, for these models, no-hair theorems forbid the existence of hairy

black brane solutions with AdS asymptotics. By considering a specific ex-

ample in four dimensions (an exact integrable model which has the form of

a Toda molecule) and by deriving an explicit exact solution, we show that

these models allow for hairy black brane solutions with non-AdS domain wall

asymptotics, whose extremal limit is a scalar soliton. The soliton smoothly

interpolates between a non-AdS domain wall solution at r =∞ and an AdS

solution near r = 0.
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3.1 The model

Let us investigate static, radially symmetric, planar solutions of four-dimensional

Einstein gravity, minimally coupled to a scalar field with self-interaction po-

tential V (φ). The action is:

I =

∫
d4x
√
−g
[
R− 2(∂φ)2 − V (φ)

]
. (3.1)

Differently from the previous chapter, in which we have considered potentials

having a negative maximum and corresponding negative squared mass m2

for the scalar (but above the BF bound), here we assume that V (φ) has a

negative minimum at φ = 0, thus allowing an AdS4 vacuum, corresponding

to a positive squared mass m2 for the scalar excitation. In this case, positive-

energy theorems (PET) allow for a stable ground state solitonic solution, but

standard no-hair theorems forbid the existence of black brane (BB) solutions

asymptotically AdS (see Sect. 1.2).

However, our new no-hair theorem (see Sect. 2.4) implies that only BB

solutions with AdS asymptotics are forbidden, leaving open the possibility

of having BB solutions with generic domain wall asymptotics.

We also assume that V (φ) can be derived from a superpotential P (φ):

V (φ) = 2

(
dP

dφ

)2

− 6P 2. (3.2)

This means that our theory is a fake SUGRA model (see Sect. 1.3). So, if

we parametrize the spacetime metric as ds2 = r2(−dt2 + dxidx
i) + h−1dr2,

the second-order field equations stemming from (3.1) reduce to first order

equations:

φ′(r) = − P,φ
rP (φ)

, h(r) = r2P 2(φ). (3.3)
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For definiteness, we will focus on a fake SUGRA model defined by (L is

the AdS length):

V (φ) = − 6

γL2

(
e2
√

3βφ − β2e
2
√

3
β
φ
)
, P (φ) =

1

γL

(
e
√

3βφ − β2e
√

3
β
φ
)
, γ = 1−β2.

(3.4)

The potential is defined for every β 6= 0, 1. It has always a minimum at

φ = 0, with V (0) = −6/L2, corresponding to the AdS4 solution and to a

scalar excitation with positive squared mass m2 = 18/L2. We use standard

(Dirichlet) boundary conditions for φ, which set to zero the dominant term

in the r →∞ expansion. The fall-off behavior of the scalar field is therefore

given by φ ∼ β
r6 .

We will look for BB solutions of (3.1) with asymptotics:

ds2 = rη(−dt2 + dxidx
i) + r−ηdr2, (3.5)

with 0 ≤ η ≤ 2. For η = 0, 2, Eq. (3.5) describes flat or AdS spacetime,

respectively. When 0 < η < 2 (3.5) describes a domain wall (DW).

3.2 The exact solution

The field equations of the Einstein-scalar gravity model with potential (3.4)

can be exactly integrated. This can be achieved using a parametrization of

the metric introduced in [6] and used in several investigations of dilatonic

black holes [8, 9, 91–95]:

ds2 = −e2νdt2 + e2ν+4ρdξ2 + e2ρdxidx
i. (3.6)

Using this parametrization, the field equations can be recast in the form

of the SU(2) × SU(2) Toda molecule [96]. In fact, defining new variables

Ω = ν + 2ρ +
√

3βφ, Σ = ν + 2ρ +
√

3
β
φ, and taking into account that the
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field equations imply ρ = ν + cξ, with c an integration constant, one obtains

the second-order equations:

Ω̈ =
9

L2
e2Ω, Σ̈ =

9

L2
e2Σ, (3.7)

subject to the constraint:

Ω̇2 − β2Σ̇2 − γc2 =
9

L2
(e2Ω − β2e2Σ). (3.8)

These equations can be solved to give the general solution:

e2ν =

(
2L

3

)2/3

a
2

3γ b
−2β2

3γ e
2bβ2ξ0

3γ e2(a−β2b−2γc)ξ/3γ

[
(1− e2b(ξ−ξ0))β

2

1− e2aξ

]2/3γ

,

e2ρ =

(
2L

3

)2/3

a
2

3γ b
−2β2

3γ e
2bβ2ξ0

3γ e2(a−β2b+γc)ξ/3γ

[
(1− e2b(ξ−ξ0))β

2

1− e2aξ

]2/3γ

,

φ =
β√
3 γ

log

[
b sinh aξ

a sinh b(ξ − ξ0)

]
, (3.9)

where ξ0 is an arbitrary integration constant and a, b, c must satisfy the

constraint γc2 = a2 − β2b2.

We are interested in solutions with a regular horizon at ξ = ξh. Requir-

ing e2ν(ξh) = 0 and e2ρ(ξh) = const., one easily realizes that this is only

possible for ξh → −∞, when γc = β2b − a. This condition, together with

the constraint, implies a = b = −c. In the case ξ0 = 0, we obtain the pla-

nar Schwarzschild-anti de Sitter solution with φ = 0. As one can show by

expanding (3.9) near ξ = 0 and ξ = −∞, all the other solutions with AdS

asymptotics and non-trivial scalar hair have a naked singularity at r = 0 with

φ ∼ log r. This is in complete accordance with the results of well-established

no-hair theorems.

In the general case ξ0 6= 0 we have solutions with a regular horizon, but

they do not approach AdS4 asymptotically, and it is not possible to write
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them in a Schwarzschild form in terms of elementary functions.

Let us first consider the case β2 < 1. In this case the asymptotic region

corresponds to the limit ξ → 0. Defining the new radial coordinate σr =

(1 − e2aξ)−(1+3β2)/3γ with σ constant, for 0 < ξ0 < ∞ the solution (3.9)

becomes:

ds2 =
(

1 +
µ2

rδ

)2β2/3γ [
−
(

1− µ1

rδ

)
r2/(1+3β2)dt2

+
E(1 + µ2/r

δ)4β2/3γ

(1− µ1/rδ)r2/(1+3β2)
dr2 + r2/(1+3β2)dxidx

i

]
,

e2φ = D
(

1 +
µ2

rδ

)−2β/
√

3γ

r−2
√

3β/(1+3β2), (3.10)

where µ1 ≥ 0, µ2 > 0 are free parameters, δ = 3γ/(1 + 3β2) , D =

[µ2(µ1 + µ2)]β/
√

3γ, and E = [γL/(1 + 3β2)]2D−
√

3β.

The asymptotic behavior of this solution for r → ∞ is that of a domain

wall (3.5) with η = 2/(1 + 3β2) and φ = −[(
√

3β)/(1 + 3β2)] ln r. For µ1 > 0,

the metric (3.10) exhibits a singularity at r = 0 shielded by a horizon at

r = µ
1/δ
1 , and therefore represents a regular black brane. Owing to the fact

that the scalar φ depends on µ1, the existence of this BB solution is perfectly

consistent with our no-hair theorem (see Sect. 2.4). Notice that although

the scalar field remains finite at r = 0, the scalar curvature R of spacetime

diverges as R ∼ r−3(1+β2)(1+3β2).

The extremal, zero temperature, solution is obtained for µ1 = 0:

ds2 =
(

1 +
µ2

rδ

)2β2/3γ
[
r2/(1+3β2)

(
−dt2 + dxidx

i
)

+ Er−2/(1+3β2)
(

1 +
µ2

rδ

)4β2/3γ

dr2

]
,

(3.11)

while the scalar field maintains the form of Eq. (3.10). The extremal

solution (3.11) represents a regular soliton. In fact, not only the scalar field
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is finite at r = 0 (e2φ = D(µ2)−(2β)/(
√

3γ)), but also the scalar curvature of

the spacetime remains finite both ar r = 0 and r =∞. The extremal soliton

has the form of a brane, for which the metric behaves for small and large r

as in Eq. (3.5) with a different power of r in the r = ∞ and r = 0 region.

Whereas for r → ∞ we have η = 2/(1 + 3β2) and φ ∼ ln r, near the origin

η = 2 and φ = const.. Hence, our soliton (3.11) interpolates between a DW

solution at infinity and AdS spacetime at r = 0. As expected the soliton

(3.11) satisfies the fake BPS equations (3.3).

A similar procedure allows one to find the solution when β2 > 1. Now the

asymptotic region r →∞ corresponds to ξ → ξ0. As before, the metric can

be written in terms of a new radial coordinate σr = (1− e2a(ξ−ξ0))(3+β2)/3γ:

ds2 =
(

1 +
µ2

rδ

)−2/3γ [
−
(

1− µ1

rδ

)
r2β2/(3+β2)dt2

+
E(1 + µ2/r

δ)−4/3γ

(1− µ1/rδ)r2β2/(3+β2)
dr2 + r2β2/(3+β2)dxidx

i

]
,

e2φ = D
(

1 +
µ2

rδ

)2β/
√

3γ

r−2
√

3β/(3+β2), (3.12)

where now δ = −3γ/(3 + β2) > 0, D = [µ2(µ1 + µ2)]β/
√

3γ, and E =

[γL/(3+β2)]2D−
√

3β. At infinity, the solution behaves as a domain wall with

η = 2β2/(3 + β2) and φ = −[(
√

3β)/(3 + β2)] ln r.

As in the previous case, if µ1 > 0, the metric exhibits a singularity at

r = 0 and a horizon at r = µ
1/δ
1 , and therefore describes a regular black

brane with non-AdS domain wall asymptotics.

Also in this case the extremal, zero temperature solution, obtained for

µ1 = 0, is a regular soliton that satisfies Eq. (3.3):

ds2 =
(

1 +
µ2

rδ

)−2/3γ
[
r2β2/(3+β2)

(
−dt2 + dxidx

i
)

+ Er−2β2/(3+β2)
(

1 +
µ2

rδ

)−4/3γ

dr2

]
.

(3.13)
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As expected, the soliton interpolates between the domain wall solution

(3.5) with η = 2β2/(3 + β2) at infinity and an AdS solution with constant φ

near r = 0.

It may be interesting to notice that the Schwarzschild-anti de Sitter so-

lution is recovered in the singular limit µ2 →∞ of (3.10) or (3.12).

Let us now compare our results with those obtained in the previous chap-

ter, when the potential had a negative maximum with m2
BF ≤ m2 < m2

BF +1.

If the potential V (φ) behaves exponentially at large φ, one has solutions with

AdS4 asymptotics at large r and singular DW behavior near r = 0, with

φ ∼ ln r . The only known case that does not present a small-r singularity is

when V has a second extremum. Apart from this case, the solutions always

have opposite behavior with respect to the soliton that we get in the m2 > 0

case: the solution interpolates between an AdS4 spacetime at r = ∞ and a

DW solution near r = 0.

In this context, it is also interesting to notice that also a pure exponential

potential V = −2λe−2hφ for h2 < 3 is a fake SUGRA model [55]. In fact, V

can be derived from the superpotential P =
√
λ/(3− h2) e−hφ. Also in this

case, the field equations can be exactly integrated using the Toda molecule

parametrization (3.6) for the metric. BB solutions with DW asymptotics

can be found using the procedure described above. Defining a new variable

η = ν+2ρ−hφ, the field equations can be recast in the form η̈ = (3−h2)λe2η,

together with a constraint involving the integration constants. Solving these

equations, one can show that the solutions with a regular horizon can be

written in the form ds2 = −U(r)dt2 + U(r)−1dr2 +R(r)2dxidx
i, with:

U =
(

1− µr(h2−3)/(1+h2)
)
r2/(1+h2), R(r) = r1/(1+h2), e2φ = Cr2h/(1+h2),

where µ is an integration constant and C = [(λ(1 + h2)2/(2(3− h2))]1/h. For

µ = 0 we get a DW solution, which is singular at r = 0. We can immediately

note that this form of the solution is the same already derived in Sect. 2.3.1,
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using a different method.

3.3 Concluding remarks

In this chapter we have derived explicit exact black brane solutions of Einstein-

scalar gravity with positive squared mass for the scalar field, whose extremal

limit is a regular scalar soliton. We have circumvented standard no-hair the-

orems by allowing for solutions with non-AdS domain wall asymptotics. We

have derived the solutions for 4D Einstein-scalar gravity but our derivation

could be easily extended to arbitrary spacetime dimensions. The scalar soli-

ton interpolates between AdS4 for small r and non-AdS brane at large r. As

we will see in the next Part of the thesis, this soliton has an holographic

interpretation in terms of a flow of a dual 3D QFT between an IR fixed point

at r = 0 and an UV Poincaré invariant vacuum at r =∞.



Part II

Holographic applications





Chapter 4

AdS/CFT and AdS/condensed

matter correspondence

Black hole and black brane solutions with scalar hair, like those presented

in the previous chapters, can play a crucial role in the context of applica-

tions of the AdS/CFT correspondence. In this chapter we will briefly review

the original formulation of the AdS/CFT duality and its most significant

extensions and applications. In particular we will focus our attention on the

so-called AdS/condensed matter duality and its most important examples, as

holographic superconductors, metallic behavior and hyperscaling violation.

4.1 From the holographic principle to the AdS/CFT

correspondence

One of the most intriguing features of black holes is their entropy. In the

early 70’s Bekenstein [97, 98] proposed that a black hole has an entropy which

is proportional to the event horizon area rather than, as one would expect,

to the volume:
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S ∝ A
l2P
,

where l2P is the Planck area. This conjecture was then proved by Hawking,

Bardeen and Carter on thermodynamical basis [99].

About twenty-five years later, this concept was used by ’t Hooft and

Susskind [100, 101] to formulate the so-called holographic principle, i.e. the

conjecture that the number of local degrees of freedom in a gravity theory

depends on the area enclosing a volume, and not on the volume itself. In

other words, the principle requires that the three dimensional world is an

image of data stored on a two dimensional projection, just like an hologram.

The main realization of this suggestive idea is surely the anti-de Sit-

ter/Conformal Field Theory correspondence (AdS/CFT), formulated by Mal-

dacena in 1997 [14] and developed by Witten [102].

In its original formulation, AdS/CFT is an equivalence between the full

type IIB string theory defined on the background AdS5 × S5 (AdS space in

five-dimensions times a five-sphere) and the N = 4 SU(N) supersymmetric

Yang-Mills gauge theory, defined in the flat (3+1)-dimensional spacetime (i.e.

in one dimension less than the string theory).

The N = 4 super Yang-Mills theory in 3 + 1 dimensions contains a gauge

field A together with multiple scalar fields Φ and Weyl fermions Ψ, trans-

forming in the adjoint representation of SU(N). The Lagrangian is:

LQFT ∼ Tr
(
F 2 + (∂Φ

)2
+ iΨΓ · ∂Ψ + g2 [Φ,Φ]2 + igYMΨ [Φ,Ψ] , (4.1)

where F = dA+ gYMA∧A is the nonabelian field strenght. The Yang-Mills

coupling gYM is exactly marginal and the theory is conformal at all couplings.

Actually, the full quantum string theory on AdS5×S5 is still poorly under-

stood. However, the string theory can be well approximate by a (semi)classical

gravitational theory in the so-called “t’Hooft large N limit”, where N repre-

sents the rank of the gauge group of the quantum field theory (QFT) with
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Lagrangian (4.1).

This limit can be better understood if we represent the duality by a

mapping between the parameters of the two theories, through the following

relation:

L ∼ lsgYMN
1/4, (4.2)

where L is the AdS radius and ls is the string length.

The large N limit implies L >> ls, i.e. a small curvature (in Planck

units) of the spacetime, that guarantees the validity of the semiclassical ap-

proximation.

For making the correspondence more precise, in the large N limit it is

natural to define an action for the bulk theory. Actually, in general the full

action will be rather complicated, depending on many fields, buth often is

possible to truncate it to a relatively small number of fields, that capture the

physics of interest.

The simplest theory from which we can start is the universal sector, i.e.

the Einstein-Hilbert action, coupled to a negative cosmological constant:

S =
1

2k2

∫
dd+1x

√
−g
(
R +

d(d− 1)

L2

)
, (4.3)

where R is the Ricci scalar and k the gravitational constant. The most

symmetric solution of this theory is the anti-de Sitter space (AdS):

ds2 =
L2

r2

(
−dt2 + dr2 + dxidxi

)
, (4.4)

whose full isometry group is the conformal group in d dimensions SO(d, 2).

As a consequence, the symmetries of the bulk action act on the boundary

field theory as conformal transformations, implying that the dual QFT is

conformally invariant.

The extra radial dimension of the bulk has a precise physical meaning:

it is the renormalization group (RG) scale in the boundary QFT. In few
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words, some components of the gravitational field equations, determining

the evolution of the bulk spacetime along the extra dimension, correspond

precisely to the RG equations of the boundary field theory. In particular,

the AdS spacetime corresponds to a CFT, i.e. to an UV fixed point without

RG flow. In general the bulk geometry will be asymptotically AdS, so the

dual QFT will approach a fixed point in the UV.

It’s very interesting to observe that, also in the largeN limit, the dual field

theory remains strongly coupled. This makes the AdS/CFT really powerful:

it puts in relation very different regimes of two completely different theories,

which in turn are defined in a different number of dimensions!

For this reason, we can say that AdS/CFT is one of the most significant

results found in the last years in theoretical physics, although it still must

be considered a conjecture, because a definitive proof of the duality is still

lacking. However, during the two last decades AdS/CFT received numer-

ous confirmations and survived several tests of validity, so it would be very

surprising to find that the conjecture is not valid.

4.2 AdS/CFT dictionary

Starting from the general definition of the AdS/CFT duality, we can de-

fine a precise dictionary of the correspondence, which puts in relation each

gravitational object with a corresponding dual object in the boundary QFT.

The most basic entry in the dictionary is that for each dynamical field

φ in the bulk gravitational theory, supported with appropriated boundary

conditions, there is an operator O in the conformal dual field theory, in a

one-to-one correspondence. This can also be represented by an equivalence

between the gravity partition function Zbulk and the gauge theory correlation

functions:
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Zbulk[φ0(~x)] =
〈
e
∫
d4xφ0(~x)O(~x)

〉
QFT

,

where φ0 is the boundary value of the bulk field φ.

In particular, the metric gµν will be dual to the energy-momentum tensor

T µν of the dual field theory, but the bulk action can contain more fields

than just the metric, as the Maxwell field (dual to the global current Jµ of

the QFT), scalars and fermionic fields (duals to appropriate operators in the

QFT). In the Table below we summarize the main entries of the dictionary.

Gravitational bulk ⇐⇒ Boundary field theory

metric tensor gµν ⇐⇒ conserved energy tensor T µν

Maxwell field Aµ ⇐⇒ global current Jµ

scalar field φ ⇐⇒ scalar operator OS
fermionic field ψ ⇐⇒ fermionic operator OF
AdS black hole ⇐⇒ finite-temperature quantum field theory

4.3 Extensions

The gauge theory described in the original formulation of AdS/CFT is a

quantum field theory at zero temperature. However in several cases we wish

to describe quantum field theories at finite temperature. In general, the tem-

perature introduces an energy scale T which breaks the conformal invariance,

and this could make difficult the computation of quantum field theories at

finite temperature, even at weak coupling. However, a remarkable feature

of the holographic correspondence is that finite temperature computations

of strongly coupled gauge theories are essentially no harder than computa-

tions at zero temperature, as involve only classical bulk fields in a curved

spacetime.
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The natural extension of the bulk theory is to consider, rather than an

AdS spacetime (4.4), an asymptotically AdS black hole, and the Hawking

temperature of the black hole will be associated to the temperature of the

boundary field theory at equilibrium.

Always starting from the action (4.3) and relaxing the conformal symme-

try, the only regular static, radially symmetric solution of the theory is the

Schwarzschild-AdS black hole:

ds2 =
L2

r2

(
−f(r)dt2 +

dr2

r2
+ dxidxi

)
, f(r) = 1−

(
r

rh

)d
, (4.5)

where rh is the event horizon.

The Hawking temperature of the black hole (and of the dual field theory)

is:

T =
d

4πrh
.

Starting from the definition of temperature, the simplest finite tempera-

ture quantity one can compute is the free energy of the theory:

F = −T logZ = TSE[gBH ] = −(4π)d

2dd
N2Vd−1T

d,

where in the second equality we exploited the largeN relation Z = e−SE [g],

whith the partition function expressed as the classical Euclidean action eval-

uated on the black hole saddle point (4.5).

From the free energy we can derive the black hole entropy:

SBH = −∂F
∂T

= −(4π)d

dd−1
N2Vd−1T

d−1.

Remarkably, it is simple to check that SBH , computed in a purely grav-

itational background, agrees with the entropy SYM of the dual Yang-Mills

field theory at weak coupling.

More generally, when we introduce a central charge c ∼ N2, we get the

entropy of a free-field CFT in d dimensions with central charge c.
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Another very important extension of the basic setup of the correspondence

is to introduce in the gravity bulk other fields, as e.g. the Maxwell field and

scalar fields.

In the first case, we need to supplement the basic action (4.3) with the

term:

S[A] = − 1

4g2

∫
dd+1x

√
−gF 2,

where F = dA is the field strenght. The effect of adding a Maxwell field

in the bulk is to add an electric charge to the black hole and, in turn, to

place the dual theory at finite chemical potential and hence induce a charge

density ρ. In particular, the nonzero Maxwell potential will be:

At = µ

[
1−

(
r

rh

)d−2
]
,

where µ is the chemical potential and rh the horizon.

Adding a scalar field φ, the additional term in the action will be:

S[φ] =

∫
dd+1x

√
−g
(
−1

2
∂µφ∂

µφ− V (φ)

)
,

where V (φ) is a self-interaction potential. In this case, the bulk scalar

field is dual to a scalar operator which represents an order parameter.

The next step is to couple the scalar field to the Maxwell field. This can

be done in various ways. Depending on this coupling we will have a different

behavior (e.g different transport features) in the dual QFT. If the scalar field

is U(1)- charged (i.e complex), one can have a covariant coupling between the

scalar and the Maxwell field. As we will see in the next section, this leads in

the dual QFT to superconducting behavior. On the other hand, if the scalar

field does not have charge (i.e. it is real) one can consider a nonminimal

coupling between the two fields. As we will see in Sect. 4.4.2, this leads to
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metallic transport features in the dual QFT .

4.4 AdS/condensed matter duality

The original Maldacena conjecture can be considered a starting point, which

immediately stimulated theoretical physicists to look for other gauge/gravity

dual pairs, also when some of the stringent hypotesis of the AdS/CFT cor-

respondence were not met. Actually, in the last fifteen years, many other

dual field theories have been discovered or conjecturated, including non-

supersymmetric and non-conformal theories. Among the several dualities

conjecturated, there is no doubt that one of the most interesting and fasci-

nating is the so-called anti-de Sitter/Condensed Matter (AdS/CM) duality:

starting from effective and phenomenological models of AdS gravity (not nec-

essarily arising from string theories), it is possible to give a dual description

of strongly coupled real condensed matter systems.

But why it is so interesting and important to investigate this kind of

duality? After all, we are talking about phenomena in which, owing to its

weakness, the gravitational interaction is almost completely irrelevant. There

are at least two good reasons. Firstly, the AdS/CFT approach provides

a unique chance to get new insight into some aspects of strongly coupled

condensed matter systems, because these systems are holographically related

to semiclassical gravity models, which are computationally tractable and

conceptually more transparent. Secondly, condensed matter systems can

be investigated in detail in laboratories, thus the AdS/CFT can offer the

fascinating possibility to realize experimental tests of gravitational theories,

exploiting their condensed matter duals.

The AdS/CM duality allows to have dual descriptions of phenomena as

e.g. the Hall effect [103] and Nernst effect [104], but the best-known example

is represented by the holographic superconductors, which will be the subject

of the next subsection. In the following subsections we will see how is possible
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to describe via AdS/CFT also typical metallic behavior and, in one of the

most recent applications, hyperscaling violation.

4.4.1 Holographic superconductors

In the early part of the 20th century it was discovered that the electrical resis-

tivity of most metals drops suddenly to zero when the temperature is lowered

below a critical value Tc. Moreover, in these materials a magnetic field is ex-

pelled when T < Tc, the so-called Meissner effect. This property was called

superconductivity. A first phenomenological description of superconductiv-

ity was given by the London brothers in 1935 [105], while in 1950 Landau e

Ginzburg [106] described superconductors in terms of a second order phase

transition, whose order parameter is a scalar field. They also showed that

the superconductive phase transition is associated to a breaking of a U(1)

symmetry. A more complete theory of superconductivity was finally given

by Bardeen, Cooper and Schrieffer in 1957 (BCS theory [107]). They showed

that interactions with phonons can cause pairs of electrons with opposite

spin to bind and form a particular charged boson called Cooper pair. Below

a critical temperature Tc, there is a second order phase transition and these

bosons condense, while the DC conductivity becomes infinite producing a

superconductor.

Until the mid-80s, it was thought that the highest Tc for a BCS super-

conductor was around 30◦ K, but from 1986 a new class of high Tc super-

conductors was discovered. Today, the highest Tc known (at atmospheric

pressure) is Tc = 134◦ K for a mercury, barium, copper, oxide compound.

There is evidence that electron pairs still form in these high Tc materials,

but the pairing mechanism is not well understood because, unlike the BCS

theory, it involves strong coupling.

This last feature, however, makes high-temperature superconductors the

ideal arena for gauge/gravity duality. In the wake of this motivation, few
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years ago a gravitational dual to a strongly coupled superconductor has been

formulated [18, 19, 24].

But what are the minimal ingredients of an holographic dual for a su-

perconductor? Firstly, in a superconductor we need a temperature: in the

gravity side, as already discussed in the previous section, that role can be

played by a black hole with a Hawking temperature. Secondly, a supercon-

ductor needs a charged condensate, i.e. a charged operator which acquires

a non-vanishing expectation value below a critical temperature Tc. In the

bulk, this can be described by a nonzero field outside a black hole (i.e. a

black hole “hair”).

So, in few words, to describe a superconductor we need to find a black

hole with a charged scalar hair at low temperatures, but no hair at high tem-

peratures. Because the scalar has to be charged, the most natural coupling

to the EM field is the usual covariant gauge coupling. We are therefore lead

to consider the following gravitational action in the bulk:

S =

∫
d4x
√
−g
(
R +

6

L2
− 1

4
FµνF

µν − |∇Ψ− iqAΨ|2 −m2 |Ψ|2
)
,

which is just Einstein gravity in anti-de Sitter, covariantly coupled to a

Maxwell field and a charged scalar field Ψ with charge q and mass m.

A solution of the equations of motion stemming from this theory is the

Reissner-Nordström-AdS (RN-AdS) black hole with Ψ = 0, i.e. with no

scalar hair, but if q is large enough and for sufficiently low temperatures,

the RN-AdS black hole becomes unstable against scalar pertubations [108].

As a consequence, at low temperatures the RN-AdS black hole develops a

scalar hair, which breaks the U(1) symmetry of the theory. Moreover, if

one computes the free energy of the two configurations (RN-AdS black hole

with scalar hair and without scalar hair), it turns out that for T < Tc the

free energy is always lower for the hairy configurations and becomes equal as

T → Tc. This behavior guarantees that for T < Tc the “scalar-dressed” black
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hole is always energetically favoured against the undressed configuration.

Furthermore, the difference of free energies scales like (Tc − T )2 near the

transition, showing a second order phase transition.

But the fundamental ingredient which characterizes a superconductor is

the infinity DC conductivity. This can be obtained, following the gauge/gravity

dictionary, by studying electromagnetic pertubations and considering in par-

ticular their asymptotic behavior (for details see [18, 19]). Remarkably, the

DC conductivity turns out to be infinite (see Fig. 4.1). Moreover, the AC

conductivity shows the frequency gap typical of real superconductors (see

Fig. 4.2).

Figure 4.1: DC conductivity as a function of the frequency (normalised in terms of the
condensate), at small T/Tc.

4.4.2 Metallic behavior

More recently it was shown [23] that it is possible to generate phase transi-

tions between charged black holes with scalar uncharged hair and the RN-

AdS solution, to obtain holographic dual QFTs with interesting charge trans-

port features, starting from the following models:
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Figure 4.2: The formation of a frequency gap in the AC conductivity, as a function of
ω/T , at small T/Tc.

S =

∫
d4x
√
−g
(
R− f(φ)

4
FµνF

µν − 1

2
∂µφ∂µφ− V (φ)

)
.

The main differences with the model of the holographic superconductors

are the presence of a nonminimal coupling f (φ) between the scalar field

φ and the Maxwell field and the choice of a neutral scalar field, instead

of a charged one. However, similar results was found. In particular, also

these models present a second-order phase transition between the RN-AdS

black hole solution and the “scalar-dressed” charged black hole solutions,

which exist only below a critical value Tc of the black hole temperature. An

interesting feature of the scalar-dressed solutions is the near-horizon behavior

of the extremal zero-temperature solutions. In this limit the solution has the

scale-covariant form which we have described in Sect. 1.2.2 and we will also

discuss in the next subsection.

From the holographic point of view, in this case we have the condensation

of a neutral scalar condensate, which is related to very interesting electric

transport properties (probably caused by the interaction of the charge car-

riers with the scalar condensate), reminiscent of electron motions in real
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materials. In particular, when the temperature is not too close to zero, the

AC optical conductivity shows a minimum at low frequencies (the so-called

“Drude peak”), reaching a constant value at ω = 0 (which can be much

larger than its constant value at high frequencies). Moreover, the resistivity

does not increase monotonically with the temperature but displays a mini-

mum, in a reminiscence of the well-known Kondo effect, caused in real metals

with magnetic impurities by the interaction of the magnetic moment of the

conduction electrons with the magnetic moment of the impurity.

In [25] these results were generalized to the case of dyonic black holes, i.e.

solutions endowed with both an electrical and a magnetic charge. Also in this

case, the dual field theory at finite temperature presents a rich phenomenol-

ogy, reminiscent of electron motion in metals: phase transitions triggered by

nonvanishing expectation values of scalar operators, non-monotonic behavior

of the electric conductivities, Hall effect and sharp synchrotron resonances

of the conductivity in presence of a magnetic field. Furthermore, in the zero

temperature limit the AC optical conductivity for these models shows an

interesting universal power-law behavior, whereas the DC conductivity in

general scales as T 2 and is suppressed at small temperatures.

4.4.3 Hyperscaling violation

While the initial interest in the context of the holographic applications was fo-

cused mainly on AdS gravity theories and their conformal dual field theories,

in recent years the class of metrics of interest in gauge/gravity duality has

been considerably enlarged. The natural generalization is to consider metrics

dual to field theories which are not conformally invariant, but scale-covariant.

We have already defined in Sect. 1.2.2 the general form of scale-covariant

metrics:

ds2 = r−2(d−θ)/d (−r−2(z−1)dt2 + dr2 + dx2
i

)
. (4.6)
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The hyperscaling violation exponent θ, which makes the metric scale-

covariant, has a precise meaning in terms of the boundary theory [41]. Hy-

perscaling is a property of real critical systems for which free energy and

entropy scale (as functions of the temperature T ) by their naive dimensions:

F ∼ T
d+z
z , S ∼ T d/z. (4.7)

When hyperscaling is violated, free energy and entropy scale in a different

way:

F ∼ T
(d−θ)+z

z , S ∼ T (d−θ)/z. (4.8)

Comparing the (4.7) and (4.8) we can observe that, very roughly speaking,

in a theory with hyperscaling violation the thermodynamical behavior is as

if the theory enjoyed dynamical exponent z but lived in d− θ dimensions.

In presence of hyperscaling violation, also the typical hyperscaling relation

between the specific heat exponent α̂ and the critical exponent ν̂ [41]:

2− α̂ = d ν̂

is modified by “lowering” the dimensionality of the system from d to d−θ,
namely:

2− α̂ = (d− θ) ν̂.

Obvioulsy, there are some constraints we must impose on (4.6), in order to

get a physically sensible dual field theory. From the gravity side, a minimum

constraint is that the null energy condition (NEC) is satisfied:

TµνN
µN ν ≥ 0,

where NµNµ = 0. Taking into account that Gµν = Tµν on shell, from the

Ricci and Einstein tensors for the metric (4.6) the NEC becomes:
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{
(d− θ)[d(z − 1)− θ] ≥ 0

(z − 1)(d+ z − θ) ≥ 0.

These conditions imply some consequences for the allowed values of the

exponents z and θ that admit a consistent gravity dual. For example, in a

Lorentz invariant theory (i.e. with z = 1) the first inequality implies θ ≤ 0

or θ ≥ d, while in the case of a scale invariant theory (θ = 0), we recover the

known result, for Lifshitz theories, z ≥ 1.

Moreover, it was found [42] that the “area law” of the entanglement

entropy requires the further constraint:

θ ≤ d− 1.

Concluding remarks and summary of subsequent chapters

In this chapter we have reviewed the general formulation of the AdS/CFT

correspondence and some of its extensions and applications. We have seen

that one of the most intriguing applications of the AdS/CFT is the possibility

to describe, starting from a gravitational theory coupled to scalar fields and

an electromagnetic field, strongly coupled condensed matter systems, as e.g.

superconductors. One of the most recent applications involves hyperscaling

violation (HV), a particular scaling of free energy and entropy (as functions

of the temperature), observed near critical points in real condensed matter

phase transitions. Hyperscaling violation can be described by scale-covariant

gravitational theories. Typically, in real systems HV is observed in the in-

frared (IR) regime of the field theory, while in the ultraviolet (UV) one has

a conformal fixed point. This behavior can be described, in the gravitational

bulk, by a “scalar-dressed” solution interpolating between a scale-covariant

metric in the near-horizon behavior and AdS at infinity.

However, we have showed (see Chapter 3) that in some gravitational
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solutions (in particular those characterized by a scalar field with a positive

squared mass) this behavior is reversed, with AdS in the near-horizon region

and a scale-covariant behavior at infinity. This corresponds, in the dual field

theory, to a flow between a fixed point in the IR regime and an hyperscaling-

violating phase in the UV.

In the next two chapters we will attempt to move a step in order to achieve

a better understanding of both these configurations, both from the point of

view of the gravitational solutions and in the perspective of the dual field

theory. In particular, in Chapter 5 we shall generalize to a generic number of

dimensions the black brane solution derived (in four dimensions) in Chapter

3, also focusing on the thermodynamical properties of the solutions, and

discuss some features of the dual field theory, in which we observe the more

unusual configuration with hyperscaling violation in the UV regime and a

conformal fixed point in the IR.

In Chapter 6 we shall focus our attention on scalar-dressed black brane

solutions asymptotically AdS and with different near-horizon behaviors (AdS,

scale covariant). We will make a detailed analysis of the infrared features

of the spectrum of the black brane solutions, with a particular attention to

the solutions with a scale-covariant near-horizon behavior, corresponding to

an hyperscaling-violating phase in the IR regime of the dual field theory.

Moreover, we will present some interesting general results about the stability

of “hairy” black brane solutions in a wide class of gravitational models. These

results, as we will see, can be used for understanding quantum critical points

and phase transitions in the corresponding dual field theories.



Chapter 5

Hyperscaling violation for

scalar black branes

We extend to black branes (BB) in arbitrary dimensions the results of Chap-

ter 3 and of Ref. [85] obtained for scalar black 2-branes. We derive the an-

alytic form of the (d+ 1)-dimensional scalar soliton interpolating between a

conformal invariant AdSd+2 vacuum in the infrared and a scale-covariant met-

ric in the ultraviolet. We show that the thermodynamical system undergoes

a phase transition between Schwarzschild-AdSd+2 and a scalar-dressed BB.

We calculate the critical exponent z and the hyperscaling violation param-

eter θ in the two phases. We show that our scalar BB solutions generically

emerge as compactifications of p−brane solutions of supergravity theories.

We also derive the short distance form of the correlators for the scalar op-

erators corresponding to an UV exponential potential supporting our black

brane solution. We show that also for negative θ these correlators have a

short distance power-law behavior.
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5.1 Introduction

Recent investigations on the application of the AdS/CFT correspondence

to strongly interacting quantum field theories (QFT) have emphasized the

importance played by non-AdS gravitational backgrounds and the related

dual nonconformal QFTs [23, 25, 27, 28, 30, 34, 37–40, 80, 109, 110].

The standard setup for this kind of holographic applications is a black

brane in a AdS background endowed with non trivial scalar field configu-

rations and finite electromagnetic charge density. It has been shown that

this produces a rich phenomenology in the dual QFT, such as spontaneous

symmetry breaking, phase transitions and non-trivial transport properties

[18–23, 25, 27, 28, 30, 34, 37–40, 80, 109–117]. In the case of nonminimal,

exponential coupling between the scalar field and the Maxwell tensor, the

bulk gravity allows for extremal, near-horizon solutions which break the con-

formal symmetry of the AdS vacuum [23, 25, 28, 30, 34, 36–40]. We have seen

in Sect. 1.2.2 and in the previous chapter that these IR metrics belong to a

general class of metrics that are not scale-invariant but only scale-covariant

and lead to hyperscaling violation in the dual field theory [38, 39, 42–48].

They are characterized by two parameters, the critical exponent z and the

hyperscaling violation parameter θ, which characterize both the transforma-

tion weight of the infinitesimal length ds under scale transformations and the

scaling behavior of free energy and entropy as functions of the temperature.

The standard framework for obtaining, dynamically, scale-covariant met-

rics in the IR is given by Einstein-scalar gravity, possibly coupled – minimally

or non-minimally – to a U(1) field. The self-interaction potential V (φ) for

the scalar field φ must have a negative local maximum at φ = 0, with a

corresponding scalar tachyonic excitation whose mass is slightly above the

Breitenlohner-Freedman (BF) bound. Under suitable conditions, usually an

exponential behavior of the potential and/or scalar-Maxwell tensor coupling

functions, the theory admits black brane solutions with scalar hair that in

the near-extremal regime approach the scale-covariant metrics.
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In Chapter 3 we have shown that this framework is not the only possible

way to produce scale-covariant BBs. These solutions can be also obtained

from Einstein-scalar gravity with a positive squared mass for the scalar, when

the potential behaves exponentially in the asymptotic region of the spacetime.

Although BB solutions with scale-covariant asymptotics have been ex-

plicitly derived for particular four-dimensional (4D) Einsten-scalar gravity

models, as our exact solution described in Chapter 3, their existence is a

rather generic feature of a broad class of 4D models [85]. Moreover, in the

extremal limit the BB solution reduces to a fully regular scalar soliton, which

interpolates between an AdS4 vacuum in the near-horizon region and a scale-

covariant solution in the asymptotic region.

These results allow to realize an alternative scenario, which exchanges IR

and UV regions. In the dual QFT we have an infrared fixed point, corre-

sponding to the AdS vacuum, whereas in the UV regime we have hyperscaling

violation.

Detailed investigations of the symmetries and thermodynamics of these

BB solutions revealed rather interesting and intriguing features [85]. The

thermodynamical phase diagram of the system is characterized by the pres-

ence of different phases. Above a critical temperature Tc the scalar-dressed

BB becomes energetically preferred with respect to the Schwarzschild-AdS4

(SAdS) solution and the thermodynamical system undergoes a first-order

phase transition. Moreover, for some values of the parameters characterizing

the model, at low temperatures different phases may coexist. In the dual

QFT the scalar-dressed, stable, BB corresponds to a phase with a negative

hyperscaling violation parameter θ. Although negative values of θ do not

have analogous in condensed matter system, they are consistent with the

null energy conditions for the bulk stress-energy tensor. Moreover they also

arise in string theory and supergravity constructions [35, 39, 114, 118, 119].

In this chapter we will generalize the results obtained in Chapter 3 and

in Ref. [85] concerning 2-branes to branes of arbitrary dimensions. We will
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show that basically all the results of Ref. [85] can be generalized to arbitrary

dimensions and therefore generically hold for d-branes. Moreover, we will

also show that our scalar BB solutions can be obtained in several ways as

compactifications of p-brane solutions of supergravity (SUGRA) theories.

Finally, we will be concerned with some holographic features of QFTs with

negative hyperscaling violation parameter θ. Extending the results of Ref.

[39], which hold for positive θ and for a massive scalar field, we will derive

the short distance form of the correlators for scalar operators corresponding

to an UV exponential potential supporting our black brane solution. We

show that for negative θ these correlators have a short distance power-law

behavior.

The chapter is organized as follows. In Sect. 5.2 we present our Einstein-

scalar gravity model, derive the BB solutions with scale-covariant asymp-

totics and discuss their solitonic extremal limit. In Sect. 5.3 we show how

our BB solutions can be obtained as compactifications of p-brane solutions

of SUGRA theories. The thermodynamics of our solutions is investigated

in Sect. 5.4. The symmetries of the BB are discussed in Sect. 5.5, where

also critical exponent and hyperscaling violation parameters are calculated.

In Sect. 5.6 we extend our investigation to general models whose poten-

tial behaves exponentially in the asymptotic region. In Sect. 5.7 we study

holographic properties of our BB solution and in particular the two-point

function of scalar operators in the dual QFT. Finally, in Sect. 5.8 we state

our conclusions.
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5.2 Einstein-scalar gravity in d+2 dimensions

We consider d+ 2-dimensional (with d ≥ 2) Einstein gravity minimally cou-

pled to a scalar field φ:

I =

∫
dd+2x

√
−g
[
R− 2(∂φ)2 − V (φ)

]
. (5.1)

We will focus on models for which the scalar self-interaction potential V (φ)

is given by:

V (φ) = −d(d+ 1)

γL2

(
e2sβφ − β2e2 s

β
φ
)

, γ = 1−β2, s =

√
2(d+ 1)

d
, (5.2)

where β is a (real) parameter characterizing the model and L is the AdS

length. The action (5.1) is the d + 2-dimensional generalization of the four-

dimensional Einstein-scalar gravity model investigated in Chapter 3 and in

Ref. [85]. It shares with the 4D model several features. The potential

(5.2) has a minimum at φ = 0 with V (0) = −d(d + 1)/L2, corresponding

to an AdSd+2 vacuum and a local scalar excitation of positive squared-mass

m2 = 2(d+ 1)2/L2.

The model is a fake SUGRA model. In fact the potential (5.2) can be

derived from the superpotential:

P (φ) =

√
d

2
γ−1L−1

(
esβφ − β2e

s
β
φ
)
. (5.3)

Moreover, the action (5.1) is invariant under the duality transformation:

β → 1

β
. (5.4)
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5.2.1 Black brane solutions

We now look for static, radially symmetric, planar solutions of the field

equations stemming from the action (5.1).

The presence of the φ = 0 minimum of the potential (5.2) for every value

of β implies the existence of the Schwarzschild-AdS (SAdS) solution with

φ = 0:

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dxidxi , f(r) =
r2

L2
− M

2rd−1
, (5.5)

where M is the black brane mass and i = 1, 2 . . . d.

Solutions with a non-trivial scalar field can be found using the same

approach used in Chapter 3. Choosing for the metric the parametrization:

ds2 = −e2νdt2 + e2ν+2dρdξ2 + e2ρdxidxi, (5.6)

the field equations can be recast in the form of the SU(2) × SU(2) Toda

molecule [96]. Solutions with a regular horizon and nontrivial scalar field

exist only if they do not approach asymptotically to AdSd+2. For β2 < 1 we

get the two-parameter family of solutions:

ds2 =
(r0

r

) 2
ω

{
∆(r)

2β2

(d+1)γ
[
−Γ (r) dt2 + dxidxi

]
+ E∆(r)

2β2

γ Γ (r)−1 dr2

}
,

e2φ =

[
A

∆(r)

] 2β
sγ
(
r

r0

) dsβ
ω

, Γ(r) = 1− µ1

(r0

r

)δ
, ∆(r) = 1 + µ2

(r0

r

)δ
,

ω = 1− (d+ 1)β2, δ = −(d+ 1)γ

ω
,

A =
√
µ2(µ1 + µ2), E =

(
γL

r0ω

)2

A−
2β2

γ , (5.7)

where µ1,2 are dimensionless free parameters and r0 is a length scale that

must be introduced in order to get the correct physical dimensions. After a

trivial change of parametrization for the radial coordinate r, it is simple to
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verify that solution (5.7) reduces to (3.10) for d = 2.

The asymptotic region of the spacetime (5.7) is given by r → 0 for β2 <

1/(d+ 1), whereas it is given by r =∞ when β2 ≥ 1/(d+ 1). In both cases

the asymptotic behavior of the solution (5.7) is given by:

ds2 =
(r0

r

) 2
ω

(−dt2 + dxidxi + dr2), φ =
sdβ

2ω
log(r/r0). (5.8)

This metric represents a domain wall. It is not invariant under scale trans-

formations, but still transforms with definite weight, so it is scale-covariant.

The solution (5.7) becomes singular for β2 = 1/(d + 1). This is related to

the fact that this value of β corresponds to a divergent hyperscaling param-

eter θ. Nevertheless, a fully regular solution can be written using a different

parametrization for the radial coordinate r:

ds2 =
(r0

r

)2
{

∆(r)
2

d(d+1)
[
−Γ (r) dt2 + dxidxi

]
+ E∆(r)

2
dΓ (r)−1

(r0

r

)2

dr2

}
,

e2φ =

[
A

∆(r)

]√ 2
d
(
r

r0

)√2d

, δ = −d, E =

(
d2 L

r0(d+ 1)(d+ 2)

)2

A−
2
d ,(5.9)

whereas ∆,Γ, A are given as in Eq. (5.7).

The radial coordinate in the metric (5.8) gives the information about

the various energy scales in the dual QFT. A proper energy E0 is redshifted

according to the law:

E(r) = r−
1
ω E0. (5.10)

This equation tells us that for ω > 0 (β2 < 1/(d + 1)), r → 0 (→ ∞)

corresponds to the UV (IR) region of the dual QFT, whereas for ω < 0

(β2 > 1/(d+ 1)) the UV (IR) corresponds to r =∞ (r → 0).

For µ1, µ2 ≥ 0 , the metric (5.7) exhibits a singularity at r = ∞ (r = 0)

for β2 < 1/(d+ 1) (β2 ≥ 1/(d+ 1)) shielded by a horizon at r/r0 = µ
1/δ
1 , and

therefore represents a regular black brane.
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Until now we have considered only the case β2 < 1. The form of the

solutions for β2 > 1 can be simply found using the duality (5.4) into Eq.

(5.7). All the considerations of this section can be trivially extended to the

case β2 > 1.

5.2.2 Extremal limit and scalar soliton

The extremal limit of the solution (5.7) is obtained setting µ1 = 0. When

µ2 = 0 this extremal limit is singular, with a naked singularity at r =∞ for

β2 < 1/(d + 1) (at r = 0 for β2 > 1/(d + 1)) with φ ∼ ln r. On the other

hand, for µ2 > 0 the extremal BB is a regular scalar soliton that interpolates

between a scale-covariant solution in the UV and AdSd+1 in the IR:

ds2 =
(r0

r

) 2
ω

{
∆(r)

2β2

(d+1)γ
[
−dt2 + dxidxi

]
+ E∆(r)

2β2

γ dr2

}
,

e2φ =

[
µ2

∆(r)

] 2β
sγ (r0

r

)− dsβ
ω
. (5.11)

Let us now consider the UV (asymptotic) and IR (near-horizon) limit of the

scalar soliton (5.11). For β2 < 1/(d+1) this corresponds to take, respectively,

r → 0 and r → ∞. For β2 ≥ 1/(d + 1) these limits are reversed (the UV

corresponds to r →∞ and the IR to r → 0).

In the IR limit, the scalar field φ vanishes, the length scale r0 decouples

and the metric (5.11) becomes that of AdSd+2. The length-scale r0 is an UV

scale, which decouples in the IR, where conformal invariance is restored. On

the other hand, in the UV limit it is the AdS length L that decouples: the

metric (5.11) can be written in terms of r0 only and takes the scale-covariant

form given by Eq. (5.8).
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5.3 Compactifications of p-brane solutions of

SUGRA theories

In this section we will look for string theory realizations that produce, after

compactification, an Einstein-scalar model (5.1) with potential of the form

(5.2). This means that we are considering our models just as an effective

description, which breaks down in the far UV. The short-distance physics

will be therefore described by the UV completion of our effective model.

We will show in the following that BB solutions (5.7) arise as compactifi-

cations of black p-brane solutions of SUGRA theories. We will see that they

emerge from the p-brane both as simple spherical compactification or also as

a more general Kaluza-Klein compactification parametrized by a parameter.

Black p-branes are classical Ramond-Ramond charged solutions of D-

dimensional SUGRA theories supported by a (p+2)-form field strength Gp+2

[120, 121]. In the Einstein frame the bosonic part of the action is:

I =

∫
dDx
√
−g
(
R− 1

2
(∂Φ)2 − eaΦ 1

2(p+ 2)!
G(p+2)

)
, (5.12)

where Φ is the dilaton field and a is constant, which is zero for non-dilatonic

p-branes, whereas

a2 = 4− [(p+ 1)(D − p− 3)]/(D − 2), (5.13)

for dilatonic branes. The metric part of the p-brane solution is given in terms
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of two integration constants h0, g0 by:

ds2
D = H(r)−

2d̃
ρ

(
−g(r)dt2 +

p∑
i=1

dxidxi

)
+H(r)

2d
ρ
(
g(r)−1dr2 + r2dΩ2

q

)
,

H(r) = 1 +

(
h0

r

)d̃
, g(r) = 1−

(g0

r

)d̃
,

ρ = (p+ 1)d̃+ a2D − 2

2
, d̃ = D − p− 3, (5.14)

where dΩ2
q is the line element of a compact space Kq with q = D − p − 2

dimensions.

Let us first consider nondilatonic p-branes. The simplest diagonal ansatz

for the D-dimensional metric, which gives the p + 2-dimensional theory in

the Einstein frame, is obtained by setting Kq = Sq and

ds2
D = e−

2q
p
ψds2

p+2 + e2ψdΩ2
q. (5.15)

Taking into account that for nondilatonic branes eψ = rH1/d̃ one finds after

compactification the BB metric:

ds2
p+2 = r−

2
p

(p+2−D)

[
H(r)

2(D−2)
p(p+1)(D−p−3)

(
−g(r)dt2 +

p∑
i=1

dxidxi

)
+ H(r)

2(D−2)
p(D−p−3) g(r)−1dr2

]
, (5.16)

one can easily see that the metric (5.16) matches exactly, after some trivial

identification of the parameters, the metric (5.7) if we take d = p and

β2 =
D − 2

(p+ 1)(D − p− 2)
. (5.17)

It is important to notice that this value of β always satisfies the inequality

1/(p+1) < β2 < 1. Particularly interesting cases are represented by the 2 and

5-brane in D = 11 corresponding, respectively, to β2 = 3/7 and β2 = 3/8.
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Compactification of p-branes with the diagonal ansatz (5.15) produces

BB solutions of the form (5.7) only for the particular values of the parameter

β given in Eq. (5.17). This limitation can be removed by considering the

more general diagonal ansatz of Ref. [80] for the D-dimensional metric.

Let us now briefly consider compactification of dilatonic p-branes. In this

case we must use in (5.14) the value (5.13) for a giving ρ = 2(D − 2). The

diagonal ansatz (5.15) produces now the BB solution:

ds2
p+2 = r−

2
p

(p+2−D)

[
H(r)

1
p

(
−g(r)dt2 +

p∑
i=1

dxidxi

)
H(r)

p+1
p g(r)−1 dr2

]
.

(5.18)

Matching this BB solution with Eq. (5.7) requires:

D =
3p+ 1

p− 1
+ p+ 2, β2 =

p+ 1

3p+ 1
. (5.19)

These are very stringent constraints which however are satisfied by a very

interesting case, the 3-brane in D = 10 which gives β2 = 2/5. It is likely

that also for dilatonic branes the use of the more general diagonal ansatz of

Ref. [80] would allow to circumvent the constraints (5.19).

5.4 Thermodynamics and phase transitions

In this section we will consider the BB solution (5.7) as a thermodynamical

system, using the Euclidean action formulation of Martinez et al. [71]. As it

has been already noted in Ref. [85] for the 4D case, the two-parameter family

of solutions (5.7) is not suitable for setting up a consistent BB thermody-

namics. The problem is the explicit dependence of the scalar field on the

parameter µ1, which causes divergences in the boundary action, that deter-

mines the mass of the solution. This explicit dependence can be eliminated

by constraining the possible values of µ1,2 in Eq. (5.7) with µ2(µ2 + µ1) = 1.
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We end up with the one-parameter family of solutions:

ds2 = r−
2
ω

{(
γL

ω

)2 [
−∆(r)

2β2

(d+1)γ Γ(r)dt2 + ∆(r)
2β2

γ Γ(r)−1dr2

]
+ ∆(r)

2β2

(d+1)γ dxidxi

}
,

e2φ = ∆(r)−
2β
sγ r

sdβ
ω , Γ(r) = 1− ν1

rδ
, ∆(r) = 1 +

ν2

rδ
, (5.20)

where the parameters ν12 are constrained by:

ν1 =
1

ν2

− ν2, 0 < ν2 ≤ 1, 0 ≤ ν1 <∞. (5.21)

Notice that in writing Eq. (5.20) we have introduced dimensionless coordi-

nates t, r and parameters ν12. This is necessary because (5.11) is a global

solution interpolating between the IR and the UV regimes that are charac-

terized by two different length scales r0 and L.

Starting from Eq. (5.20) one can now calculate, using standard formulas,

the temperature T and entropy S of the BB. One has:

T =
1

4π

d(d+ 1)γ

d+ 2(d+ 1)β2
ν
− ω

(d+1)γ

2 (1− ν2
2)1/(d+1), S = 4πV ν

− d
(d+1)γ

2 (1− ν2
2)

d
d+1 ,

(5.22)

where V is the volume of the transverse d-dimensional space.

We construct the thermodynamics of our BB solutions using the Eu-

clidean action formalism. Thermodynamical potentials are given by bound-

ary terms of the action. We use the parametrization of the metric of Ref.

[71]:

ds2 = N2f 2dt2 + f−2dr2 +R2dxidxi.

The variations of the boundary terms of the action evaluated for the solution
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(5.20) are:

δI∞G = − V d2

T [(d+ 2(d+ 1)β2)]

[
δν1 +

2β2

γ
(2− β2)δν2

]
,

δI∞φ =
2β2V d2

γT [(d+ 2(d+ 1)β2)]
δν2,

δIG|rh = − V d2

T [(d+ 2(d+ 1)β2)]
(ν1 + ν2)−1 [(ν1 + γν2)δν1 + β2ν1δν2

]
,

δIφ|rh = 0, (5.23)

where IG and Iφ are, respectively, the gravitational and scalar field part of

the boundary action.

One can easily show that the BB entropy S is correctly given by S = IG|rh .

The mass of the BB is given in terms of the free energy F and the entropy

S by M = F + TS = −T (I∞G + I∞φ ). Using Eqs. (5.23) one finds:

M =
V d2

d+ 2(d+ 1)β2

(
ν1 + 2β2ν2

)
=

V d2

d+ 2(d+ 1)β2

{
1

ν2

+
(
2β2 − 1

)
ν2

}
.

(5.24)

Using Eqs. (5.22), (5.24) and the constraint (5.21) one can now check that

the first principle dM = TdS is satisfied. As usual the results can be trivially

extended to the parameter region β2 > 1 just by using the duality β → 1/β

in Eqs. (5.20), (5.22) and (5.24).

5.4.1 Phase transition

The global stability of our BB solution, considered as a thermodynamical

system, can be investigated by computing the free energy and the specific

heat. In particular, comparison of the free energies of different configurations

at fixed temperature allows us to single out the energetically preferred phase,

whereas a positive (negative) specific heat indicates local stability (instabil-

ity) of a given phase. We start with the case β2 < 1/(d + 1), where, as we

will see, we observe a phase transition.



94 Chapter 5. Hyperscaling violation for scalar black branes

Free energy

In the case under consideration, the two competitive phases are represented

by the black brane with scalar hair (SB) (5.20) and the SAdS BB (5.5). The

free energy of the scalar black brane is:

FSB(T ) = M − TS =
V d

d+ 2(d+ 1)β2

{
− ω

ν2(T )
+
[
1 + (d− 1)β2

]
ν2(T )

}
,

(5.25)

where ν2(T ) is defined implicitly by the first equation in (5.22). For the free

energy of the SAdS black brane we have instead:

FSAdS(T ) = −V
(

4π

d+ 1

)d+1

T d+1.

The relevant quantity ∆F (T ) = FSB(T )−FSAdS(T ) cannot be computed ex-

plicitly in closed form because ν2(T ) is only implicitly defined. Nevertheless,

one can show that for β2 < 1/(d+1), ∆F (T ) is positive for small T , vanishes

at finite value of the temperature and becomes negative at large T .

A qualitative way to see this change of sign of ∆F (T ) is to consider

the small-T (ν2 ∼ 1) and the large-T (ν2 ∼ 0) behavior of FSB. At small

temperatures we have:

FSB(T ) = V

{
2β2d2

d+ 2(d+ 1)β2
− (4π)d+1

(d+ 1)d+1

[
d+ 2(d+ 1)β2

dγ

]d
T d+1

}
.

(5.26)

The small-T behavior is determined by the T = 0, AdSd+2 extremal limit and

is pertinent to a holographically dual (d + 1)-dimensional CFT. Conversely

for the large-T (ν2 ∼ 0) behavior we have:

FSB = − ωV d

d+ 2(d+ 1)β2

{
4π [d+ 2(d+ 1)β2]

d(d+ 1)γ

} (d+1)γ
ω

T
(d+1)γ
ω . (5.27)

The free energy for the hairy BB is positive at small T implying ∆F > 0.
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For β2 < 1/(d+1), ∆F becomes negative at large T . This shows the existence

of a critical temperature Tc such that ∆F (Tc) = 0.

In general the critical temperature cannot be determined analytically.

However, we can show the existence of Tc graphically. By setting y = ν2
2 , the

equation FSB = FSAdS gives:

g(y) =
1− (d+ 1)β2 − [1 + (d− 1)β2] y

1− y
= f(y) =

[
d

d+ 2(d+ 1)β2

]d
γd+1y

dβ2

2γ ,

0 ≤ y ≤ 1.

While the curve f(y) is always positive, the behavior of g(y) depends on

the value of β. For β2 > 1
d+1

, the curve starts from a negative point and

is always negative; for β2 = 1
d+1

, the curve starts from y = 0 and is always

negative; for β2 < 1
d+1

, the curve starts from a positive point and decreases

monotonically to −∞. Then the two curves f(y) and g(y) do not intersect

for β2 > 1
d+1

, while they intersect at a finite critical value of the temperature

for β2 < 1
d+1

.

In Fig. 5.1 we show the behavior of the free energy density for d = 3

and for β2 = 1/8, a value in the range 0 ≤ β2 < 1/(d + 1). The critical

temperature can also be determined numerically. For the case described in

Fig. 5.1 we have Tc = 0.20917.

We have therefore discovered, in the β2 < 1/(d + 1) case, a cross-over

behavior for the free energies of the SAdS and scalar black brane solutions.

The relevant question is now the following: can we interpret this behavior

as a phase transition between two different configurations of the same bulk

gravity theory? This question can be answered only if one clarifies the role

played by boundary conditions in the definition of canonical thermodynam-

ical ensembles. In fact, the two classical configurations - the SAdS and the

scalar brane - actually are two different solutions of the same bulk theory

defined by the action (5.1). On the other hand, these solutions correspond to

different asymptotic values of the scalar field in the UV (φ = 0 and φ = −∞
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Figure 5.1: The free energy density F/V, as function of T 4, of the scalar black brane for
d = 3 and β2 = 1/8 (blue, thick line) and of the SAdS black brane for d = 3 (red, thin
line).

respectively for the SAdS solution (5.5) and the hairy black brane solution

(5.7)) and to different asymptotic geometries. However, there is no obstruc-

tion in considering solutions of the same bulk theory with different boundary

conditions as belonging to the same canonical ensemble. Although this is

not an usual situation in the AdS/CFT correspondence, where one refers to

fixed boundary conditions, one can define a canonical partition function just

by evaluating the Euclidean action on the particular bulk solution, without

any reference to the asymptotics of the solutions. This is exactly the way

we have calculated the free energy using Eqs. (5.23). This is a strong ar-

gument supporting the interpretation of the free energy cross-over described

in this section as a truly first-order phase transition (the phase transition is

first-order because at T = Tc, dFSB/dT 6= dFSAdS/dT ).

A definitive answer about the existence of the phase transition could be

obtained by showing that for T > Tc the SAdS solution decays with finite

half-life in the scalar brane solution.

Because of the change in asymptotics of the two competitive bulk solu-

tions, the holographic interpretation of the phase transition is rather involved.

In the usual gravity/gauge theory correspondence dictionary, the sources J in
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the dual QFT are related to small perturbations of the UV boundary condi-

tions. The gravity/gauge theory correspondence rules allow then to compute

the n-point functions for dual operators differentiating the bulk partition

function with respect to J . The dramatic change in the boundary conditions

for the scalar field we have in our case seems to suggest that the two different

phases we have on the gravity side correspond to different sources in the dual

QFT. Because different sources generally lead to different Lagrangians, we

are led to the conclusion that the two phases of the gravity theory - the SAdS

and the scalar brane phase - correspond to two distinct dual QFTs, not to

two distinct phases of a single QFT.

An other argument supporting this interpretation is the analogy with what

happens in bulk theories allowing for a flow between an AdS in the IR and an

other AdS in the UV. Such solutions are known in the literature. Analogously

to the case discussed in this chapter, we have also here three different bound-

ary QFTs. In particular we have two CFTs with no flow, corresponding to

fixed IR or UV fixed values for the scalar field and a QFT describing the

flow between the IR and the UV fixed point, corresponding to a r-dependent

scalar field.

Specific heat

It is easy to check, using Eqs. (5.22) and (5.24), that for β2 < 1/(d + 1)

the function M(T ) is a monotonic increasing function of the temperature T.

Then the specific heat c = ∂M/∂T is positive for all values of T. Similarly,

the specific heat of the SAdS black brane is: cSAdS(T ) = (4π)d+1V d
(d+1)d

T d > 0.

5.4.2 1/(d+ 1) ≤ β2 < 1

For β2 = 1/(d + 1), the scalar black brane solution exists only for temper-

atures below the critical value T = Tc = d2

4π(d+2)
, while for T > Tc only the
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SAdS solution (5.5) exists. The free energy is:

FSB =
2V d2

(d+ 1)(d+ 2)

√
1−

(
T

Tc

)d+1

.

The free energy is positive definite and vanishes for T = Tc, while FSAdS is

always negative. Then we have FSAdS < FSB in the whole range T ≤ Tc,

that is the SAdS solution is always energetically favored. The specific heat

of the black brane solution is always positive and diverges at the critical

temperature.

For β2 > 1/(d+1), the function T (ν2) is not monotonic. It has a maximum

at ν2 = ν0 =
√

[(d+ 1)β2 − 1] / [(d− 1)β2 + 1]. Also in this case the black

brane solution exists only below a maximum, critical temperature T = Tc.

For what concerns the free energy, from Eq. (5.25) it is easy to realize

that, for β2 > 1/(d + 1), FSB is always positive. Hence also in this case

FSAdS < FSB and the SAdS solution is energetically preferred with respect

to the scalar-dressed black brane. However, the non-monotonicity of the

function T (ν2) implies the existence of two different branches of the SB phase

for T ≤ Tc, as it has been already observed in Ref. [85] for the 4D case. The

first branch (obtained for ν0 ≤ ν2 ≤ 1) is the analogue of the AdSd+2 phase

obtained for β2 < 1/(d + 1) at small T , while the second branch (obtained

for 0 < ν2 ≤ ν0) has no analogue for β2 < 1/(d + 1). In this case the free

energy scales at small temperatures as F ∼ Tα, with α = (d+ 1)γ/ω. But α

is negative, hence FSB has a singularity at T = 0.

For what concerns the specific heat we have an interesting peculiarity: in

the first branch the specific heat is positive and hence it corresponds to a

locally stable phase (although this phase is not energetically preferred with

respect to the SAdS solution), while in the second branch c(T ) is always

negative, corresponding to an unstable phase.
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5.4.3 Dual solution

As already observed, using the duality (5.4) into the (5.20) we obtain the

solution for β2 > 1. The thermodynamical properties of these solutions

follow easily from the case β2 < 1 by duality. We note that in this case

the phase transition between the scalar-dressed black brane solution and

the SAdS solution is present for β2 > (d + 1), while for β2 ≤ (d + 1) the

SAdS solution is always energetically favored respect to the SB solution.

The behavior of the free energy and the specific heat in the three cases are

qualitatively analogous to those discussed for β2 < 1.

5.5 Hyperscaling violation

The thermodynamical behavior of our scalar BB described in the previous

sections is strongly related to the symmetries of the solutions in the UV and

IR regimes.

The UV regime, where the solution takes the form (5.8), is character-

ized by violation of the scale symmetry, whereas in the IR regime we have

the conformal invariant AdSd+2 extremal solution. For the dual QFT this

corresponds to an hyperscaling-violating phase in the UV and to a scaling-

preserving phase in the IR.

To describe holographic hyperscaling violation in d + 2 dimensions we

consider the parametrization of the scale-covariant metric defined in Sect.

1.2.2:

ds2 = r−2(d−θ)/d (−r−2(z−1)dt2 + dxidxi + dr2
)
, (5.28)

where θ is the hyperscaling violation parameter and z is the dynamic critical

exponent.

Comparing Eq. (5.28) with Eq. (5.8) one can easily read off the param-
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eters θ, z for our BB solution:

z = 1, θ =
d(d+ 1)β2

(d+ 1)β2 − 1
. (5.29)

As usual the case β2 > 1 is covered just by using the duality (5.4). We have:

z = 1, θ =
d(d+ 1)

(d+ 1)− β2
. (5.30)

As expected, we have z = 1, θ 6= 0 in the scalar black brane phase,

whereas we get z = 1, θ = 0 in the SAdS phase. This gives the deviation

from the conformal scaling of the free energy of a d+1 conformal field theory.

One can easily check from Eq. (5.29) that θ < 0 for β2 < 1
d+1

and θ > d

for 1
d+1

< β2 < 1, while θ diverges for β2 = 1
d+1

(for the dual case (5.30)

we have θ < 0 for β2 > d + 1 and θ > d for β2 < d + 1). The null energy

conditions for the bulk stress-energy tensor are satisfied: in fact for z = 1

these conditions require either θ ≤ 0 or θ ≥ d (see Sect. 4.4.3) .

A negative value of θ is not common in condensed matter critical sys-

tems, for which θ is positive. However in our solutions the case θ < 0 is

physically more interesting (in particular for the possible holographic appli-

cations) because in this case we observe a phase transition between the scalar

black brane solution and the SAdS solution, and the specific heat of the BB

solution is always positive.

5.6 General models

In the previous sections we have investigated the Einstein-scalar gravity

model defined by the potential (5.2). However, the main features of our

models are dictated not by the full form of the potential but only by the

behavior of the potential at φ = 0 and φ = −∞. We will show that the two

main features of the model (hyperscaling violation and the SAdS→ scalar
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BB phase transition) are pertinent to all models satisfying the conditions:

1) V (φ) has a local minimum for φ = 0 with V (0) < 0; 2) The potential

approaches zero exponentially as φ → −∞. The previous conditions ensure

the existence of an AdSd+1 vacuum and of a Schwarzschild-AdS (SAdS) black

brane solution with φ = 0.

In Chapter 2 we have derived the general BB solution of a model with

an exponential potential in d + 2 dimensions. In particular, for the metric

parametrization we are using in this chapter, the asymptotic behavior of the

solution for the exponential potential V = −λ2e2hφ is given by:

φ = − dh

dh2 − 2
log r +

1

2h
lnC1, ds2 = r

4
dh2−2

(
−dt2 + dxidxi + dr2

)
,

(5.31)

where h > 0 and C1 = {2d[2(d+ 1)− dh2]}/[λ2(dh2 − 2)2].

The case β2 < 1 described in the previous section for the model (5.1) is

covered by setting h2 < 2(d + 1)/d , whereas the two cases β2 < 1/(d + 1)

and β2 > 1/(d+ 1) correspond, respectively, to h2 < 2/d and h2 > 2/d.

For a generic model, the existence of a global scalar black brane solution

interpolating between the AdSd+2 vacuum and the asymptotic scale-covariant

solution has to be shown numerically. If we can prove that such a solution

exists, the thermodynamical system for h2 < 2/d must have a scalar black

brane → SAdS phase transition.

The derivation follows closely that used in Sect. 5.4. At small T the

free energy of the scalar black brane must have a behavior similar to that

of Eq. (5.26), i.e. FSB = C2 − C3T
d+1, with C2,3 positive constants. This

implies that at small T , FSB − FSAdS > 0. On the other hand, at large T ,

the free energy scales as FSB ∼ −T (2+2d−dh2)/(2−dh2). For h2 < 2/d we have

T (2+2d−dh2)/(2−dh2) > T d+1, from which follows that at large T , FSB−FSAdS <
0.

Comparing Eq. (5.31) with Eq. (5.28), one can read off the hyperscaling
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violation parameter and the dynamic critical exponent:

θ =
d2h2

dh2 − 2
, z = 1. (5.32)

Notice that θ is negative for h2 < 2/d, whereas θ > d for h2 > 2/d.

5.7 Holographic properties and two-point func-

tions for scalar operators

Holographic features of theories with hyperscaling violation have been dis-

cussed in Ref. [39]. Most of the results derived in [39] for general scale-

covariant metrics apply directly to the model discussed in this chapter. Im-

posing on the gravity side the null energy conditions on the stress-energy ten-

sor constrains the range of the possible values of the parameters z, θ. In our

case, being z = 1, the conditions become simply θ ≤ 0 or θ > d. Taking into

account Eq. (5.29) one can easily see that these conditions are always satisfied

for every value of β, being θ < 0 for {0 < β2 < 1/(d+1)}∪{d+1 < β2 <∞}
and θ > d for {1/(d+ 1) < β2 < d+ 1, β2 6= 1}.

In Ref. [39] it has been also calculated the short distance form of the two-

point function of a scalar operator O dual to a scalar field with a potential

2m2φ2. It has been shown that it has a power-law form and for z = 1,

0 < θ < d is given by:

〈O(x)O(x′)〉 =
1

|x− x′|2(d+1)−θ . (5.33)

The problem is that the derivation of [39] does not hold for θ < 0, which is

the most interesting case for the models under consideration in this chapter.

Moreover, for θ > d, r → 0 corresponds to the IR regime of the dual QFT.

This means that for θ > d, Eq. (5.33) gives the large distance behavior of
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the two-point function instead of the short distance behavior.

Let us now first observe that for θ < 0 Eq. (5.33) gives the IR behavior

of the two-point function. This means that for θ < 0 the mass term is

irrelevant in the IR and dominates in the UV. Conversely, for θ > 0 we have

the opposite behavior: the mass term is irrelevant in the UV and becomes

relevant in the IR. It is exactly this feature that allows one to use scaling

arguments to determine the form (5.33) for the two-point function.

Obviously, if the theory whose solution is given by the metric (5.28) has

an UV (or IR) completion with an UV (or IR) fixed point, the far short (far

large) behavior of the two-point function (5.33) will be modified accordingly.

This is for instance the case of the models discussed in this chapter, which

have an IR fixed point.

We are therefore left with the problem of finding a short distance form

for two-point functions of scalar operators in the case θ < 0. A strong hint

for tackling the problem can be obtained by looking at the gravitational

dynamics that produces solution (5.28). One can easily realize that, at least

in the context of Einstein-scalar gravity, what is needed is an exponential

potential and a ln r short distance behavior for the scalar (see Eq. (5.31)).

We will therefore look for the UV behavior of two-point functions of a scalar

operator O dual to a scalar field that supports our black brane solution and

therefore has near the UV a potential −λ2e2hφ. The equation of motion for

φ in the background (5.31) is:(
∂2
r −

d− θ
r

∂r + ∂2
i − ∂2

t

)
φ+

hλ2

2
e2hφr−2+ 2θ

d = 0, (5.34)

where h has to be expressed as a function of θ using Eq. (5.32). Eq. (5.34)

can be solved perturbatively for θ < 0 (h2 < 2/d) by expanding φ around

the background solution φ0 given by Eq. (5.31): φ = φ0 + δφ. Using Eqs.

(5.31) and (5.32) one gets, for the perturbation δφ, the equation of motion
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satisfied by a massive scalar field in AdS in d+ 2− θ “bulk dimensions”:(
∂2
r −

d− θ
r

∂r + ∂2
i − ∂2

t

)
δφ− m2

r2
δφ = 0, (5.35)

with m2 = −C1h
2λ2 = [2θ(d + 1− θ)]/d. Eq. (5.35) can be solved with the

usual power-law ansatz δφ ∝ rα(1 + O(r2)), with α given by the standard

AdS formula in d+ 1− θ dimensions:

α12 =
1

2

(
d+ 1− θ ±

√
(d+ 1− θ)2 + 4m2

)
=

1

2
(d+ 1− θ)

(
1±

√
1 +

8θ

d(d+ 1− θ)

)
.

(5.36)

The two solutions for α, corresponding to a faster and slower falloff mode

of the scalar for r → 0, always exist for d ≥ 8, whereas for d < 8 we must

require θ ≥ −d(d+ 1)/(8− d).

The general solution to Eq. (5.35) is given by a superposition of the

slower and faster falloff modes:

δφ = a(kr)α2(1 +O(r2)) + b(kr)α1(1 +O(r2)), (5.37)

where a, b are O(1) constants determined by the boundary conditions, we

have taken the (t, xi)-Fourier transform and k2 = −k2
0 + kiki. The retarded

Green’s function GR(k) for the scalar operator dual to the bulk scalar field

is given by the ratio of the coefficients of the rα1 and rα2 terms in Eq. (5.37)

(see for instance [122]):

GR(k) ∼ kα1−α2 , (5.38)

where α12 are given by Eq. (5.36). Taking the Fourier transform, in the

coordinate space we get the power-law form for the two-point function for

the scalar operator dual to a bulk scalar field with exponential potential:

〈O(x)O(x′)〉 =
1

|x− x′|d+1+α1−α2
. (5.39)
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It is also of interest to compute the two-point function (5.39) for small

negative values of θ:

〈O(x)O(x′)〉 =
1

|x− x′|2(d+1)−(d−4)θ/d
. (5.40)

5.8 Conclusions

In this chapter we have analyzed the thermodynamics and the scaling sym-

metries of BB solutions of Einstein-scalar gravity in arbitrary dimensions for

models with positive scalar squared mass and a potential that has an ex-

ponential asymptotic behavior. We have generalized the results of Chapter

3 and Ref. [85], which hold for two-dimensional scalar branes, to branes of

arbitrary spacetime dimensions.

We have been mainly concerned with an integrable model, which also

arises as compactification of black p-brane solutions of SUGRA theories.

However, the relevant features of this model can easily be extended to a

broad class of Einstein-scalar gravity models.

The striking features of these d-dimensional scalar BB solutions are an

unexpected phase diagram and non-trivial behavior in the ultraviolet regime

of the holographically dual QFT, which is characterized by hyperscaling vio-

lation. This generates an UV length scale which decouples in the IR, where

conformal invariance is restored. At high temperatures, when β2 < 1/(d+ 1)

or β2 > d + 1, the scalar-dressed BB solution, with scale-covariant asymp-

totical behavior, becomes energetically preferred.

The hyperscaling-violating phase is characterized by the two parameters

normally used for critical systems with hyperscaling violation, namely the

dynamical critical exponent z and the hyperscaling violation parameter θ.

The most important peculiarity of our models is that for scalar black

branes that are stable at high temperatures, the hyperscaling parameter θ is
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always negative. In QFTs with hyperscaling violation the scaling law for the

free energy is that pertinent to a CFT in d − θ dimensions. For positive θ

we have therefore a lowering of the effective dimensions. This is an impor-

tant feature of the small temperature behavior of traditional hyperscaling-

violating critical systems [41]. On the other hand, the scalar BB brane solu-

tions investigated by us are characterized by a negative hyperscaling violation

parameter θ, producing a raising of the “effective dimensions”.

It is important to notice in this context that the most general compact-

ification of p-brane solutions of SUGRA theories produces hyperscaling vio-

lation in the dual QFT with both θ < 0 or θ > d. Both cases are consistent

with the null energy condition for the bulk stress energy tensor, but for θ > d

the SAdS phase is always energetically preferred (see Sect. 5.4). On the other

hand the simplest diagonal ansatz (5.15) for the D-dimensional metric leads

to BB solutions with θ > d.

We have also determined, for the case of negative θ, the short distance

behavior of two-point functions for scalar operators of the QFT dual to a

bulk scalar field with an exponential potential. We have shown that it has

a power-law behavior. Our calculation completes the derivation of Ref. [39].

In that paper the short distance, power-law, form of the two-point functions

for scalar operators dual to a scalar field with a mass term potential was

determined only for positive θ.

A puzzling point which still remains to be clarified is the holographic

interpretation of the phase transition between the two bulk phases - the

SAdS and the scalar brane phase. The cross-over of the free energies for

SAdS and scalar branes observed in Sect. 5.4 seems to have a very different

interpretation than a conventional phase transition in the gravity/gauge the-

ory correspondence, such as for instance the Hawking-Page phase transition

[123].

Usually, in the gravity/gauge theory correspondence, we fix the boundary

conditions for the fields and consider two distinct extensions into the bulk.



Conclusions 107

The corresponding dual solutions contribute to the same canonical ensemble

of the QFT. In the large N limit the solution with lower free energy is ener-

getically preferred. On the other hand the two competing phases of the QFT

holographically dual to the SAdS-scalar brane phases seem to correspond

to different boundary QFTs. Therefore they do not contribute to the same

canonical ensemble.

This is obviously related to the unusual feature that our scalar black brane

solutions exhibit hyperscaling violation in the UV and conformal symmetry

in the IR. In the conventional setting where the solution has a UV fixed point

and an emergent nonzero θ in the IR, the holographic interpretation of the

phase transition is not problematic. In this latter case the SAdS and the

hyperscaling-violating phase contribute to the same canonical ensemble.





Chapter 6

Infrared behavior in effective

holographic theories

In this chapter we investigate the infrared behavior of the spectrum of scalar-

dressed, asymptotically anti-de Sitter (AdS) black brane (BB) solutions of

effective holographic models. These solutions describe scalar condensates in

the dual field theories. We show that for zero charge density the ground

state of these BBs must be degenerate with the AdS vacuum, must satisfy

conformal boundary conditions for the scalar field and it is isolated from the

continuous part of the spectrum. When a finite charge density is switched

on, the ground state is not anymore isolated and the degeneracy is removed.

Depending on the coupling functions, the new ground state may possibly

be energetically preferred with respect to the extremal Reissner-Nordström

AdS BB. We derive several properties of BBs near extremality and at finite

temperature. As a check and illustration of our results we derive and discuss

several analytic and numerical BB solutions of Einstein-scalar-Maxwell AdS

gravity with different coupling functions and different potentials. We also

discuss how our results can be used for understanding holographic quantum

critical points, in particular their stability and the associated quantum phase

transitions leading to superconductivity or hyperscaling violation.
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6.1 Introduction

We have seen in the previous chapters that holographic models have been

widely used as a powerful tool to describe the strongly coupled regime of a

quantum field theory (QFT). In particular, these effective holographic the-

ories (EHTs) can be very useful to give a holographic description of many

interesting quantum phase transitions, such as those leading to critical su-

perconductivity and hyperscaling violation.

Most of the EHTs with hyperscaling violation in the infrared (IR) inves-

tigated in the literature are low-energy effective models in which the ultravi-

olet (UV) behavior is not specified. An UV completion of these models is not

strictly necessary. In fact all the thermodynamical parameters and properties

are well defined also for models with hyperscaling violation in the UV (see

the previous chapter). However, there are several reasons to consider models

that have hyperscaling violation in the IR but flow to an AdS spacetime in

the UV. First of all many EHTs are low-energy approximations of string the-

ory and the AdS/CFT correspondence is the cornerstone of all holographic

applications. Moreover, the AdS background preserves the Poincaré symme-

tries of the dual QFT and models with near-horizon hyperscaling-violating

geometries and an asymptotic AdS spacetime will describe a flow between

an UV conformal fixed point and hyperscaling violation in the IR. Last but

not least the existence of an AdS solution will allow for interesting, highly

nontrivial phase transitions.

Thus, if we assume that the asymptotic geometry is the AdS spacetime,

the dual QFT shows a universal conformal fixed point in UV. The nontriv-

ial dynamics therefore occurs in the IR region, at the corresponding critical

points. In a Wilsonian approach, EHTs should be first classified in terms of

flows, driven by relevant operators, between critical points corresponding to

scale-invariant (more generally scale-covariant) QFTs. Two other relevant

characterizations of the critical points are: a) the distinction between frac-

tionalized phases (sourced by non-zero electric flux in the IR) and cohesive
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phases (sourced by zero electric flux in the IR); b) phases with broken and

unbroken U(1) symmetry [81, 124].

Progress in the classification and understanding of IR critical points have

been achieved following various directions. In particular, it has been shown

that in the case of hyperscaling-preserving and hyperscaling-violating solu-

tions, quantum critical theories may appear as fixed lines rather than fixed

points [81]. Hyperscaling-preserving solutions appear indeed as fixed points

and correspond to AdS4, AdS2 ×R2 and Lifshitz bulk geometries. However,

hyperscaling-violating solutions are characterized by an explicit scale and

therefore appear rather as critical lines generated by changing that scale or

equivalently the charge density [39, 81].

A crucial point for understanding these quantum critical points is the

presence of a scalar condensate. Indeed nontrivial configurations of (generi-

cally charged or uncharged) scalar fields play several crucial roles: (i) nontriv-

ial scalar fields are dual to relevant operators that drive the renormalization

group (RG) flow from the UV fixed point to the IR critical point (or line);

(ii) scalar fields are the sources that support the IR hyperscaling-violating

geometry allowing for both fractionalized and cohesive phases [81, 124]; (iii)

charged scalar condensates break the U(1) symmetry and generate a super-

conducting phase [81, 124].

Despite the recognized relevance of scalar condensates for describing holo-

graphic critical points, we are far from having a complete understanding of

the physics behind them, in particular we have very few information about

their stability. For instance, one would like to understand why at zero (and

small) temperature the hyperscaling-violating phase is energetically preferred

with respect to the hyperscaling-preserving phase. In this chapter we will

move a step forward in this direction by asking ourselves a simple, but rele-

vant question: what is the energy of the ground state of a neutral asymptot-

ically AdS BB sourced by a generic nontrivial scalar field? We show that for

zero charge density the BB ground state must be degenerate with the AdS
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vacuum. This degeneracy is the result of an exact cancellation between a

positive gravitational contribution to the energy and a negative contribution

due to the scalar condensate.

Moreover, we also show that for the BB ground state the symmetries of

the field equations force conformal boundary conditions for the scalar field,

i.e. boundary conditions preserving the asymptotic symmetry group of the

AdS spacetime. The conformal boundary conditions correspond to dual mul-

titrace scalar operators driving the dynamics from the UV conformal fixed

point to the IR critical point. In the case of an IR hyperscaling-violating

geometry sourced by a pure scalar field with a potential behaving exponen-

tially, a scale is generated in the IR. On the other hand we will show that, in

the case of pure Einstein-scalar gravity at finite temperature T , the boundary

conditions for the scalar are determined by the dynamics and are, therefore,

generically nonconformal. This means that the ground state for scalar BBs

is isolated, i.e. it cannot be obtained as the T → 0 limit of finite-T BBs with

conformal boundary conditions for the scalar field.

When a finite charge density ρ is switched on, the degeneracy of the

ground state is removed. Because an additional degree of freedom (the EM

potential) is present, the boundary conditions for the scalar field are not any-

more determined by the dynamics. The freedom in choosing the boundary

conditions arbitrarily can be used to impose conformal boundary conditions

also for BBs at finite temperature. The ground state for scalar BBs is there-

fore not anymore isolated from the continuous part of the spectrum. The

coupling between the bulk scalar and the EM field determines if it is en-

ergetically preferred with respect to the extremal Reissner-Nordström (RN)

AdS BB.

We also derive several properties of the scalar BBs near extremality and

at finite temperature. For instance, we show that scalar-dressed, neutral

(charged), BB solutions of radius rh (and charge density ρ) only exist for

a temperature T bigger than the temperature of the Schwarzschild-AdS
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(Reissner-Nordström AdS) BB with the same rh (and with the same ρ).

As a check and illustration of our results we give and discuss – both ana-

lytically and numerically – several (un)charged, scalar-dressed BB solutions

of Einstein-scalar-Maxwell AdS (ESM-AdS) gravity with minimal, nonmin-

imal and covariant coupling functions and different potentials (quadratic,

quartic, exponential).

Finally, we also discuss the relevance of our results for understanding

holographic quantum critical points, in particular their stability and the as-

sociated quantum phase transitions.

The structure of the chapter is the following. In Sect. 6.2 we present

the general form of the EHTs we consider. In Sect. 6.3 we investigate the

spectrum of this class of theories in the IR region. In Sect. 6.4 we de-

rive extremal, near-extremal and finite-temperature BB solutions of pure

Einstein-scalar gravity theories in the case of a quadratic, quartic and expo-

nential potential. We also derive their thermodynamical behavior and their

critical exponents. In Sect. 6.5 we derive and discuss charged solutions with

the scalar minimally, nonminimally and covariantly coupled to the EM field.

Finally in Sect. 6.6 we end the chapter with some concluding remarks about

the relevance that our results have for understanding the dual QFT, holo-

graphic quantum critical points, and in particular the stability of the latter

and the associated quantum phase transitions leading to superconductivity

or hyperscaling violation. In Appendix 6.7 we discuss perturbative solutions

in the small scalar field limit.
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6.2 Effective holographic theories

We consider Einstein gravity coupled to a real scalar field and to an EM field

in four dimensions:

I =

∫
d4x
√
−g
[
R− 1

2
(∂φ)2 − Z(φ)

4
F 2 − V (φ)− Y (φ)A2

]
, (6.1)

where Fµν = ∂µAν − ∂νAµ is the Maxwell field-strength. The model is

parametrized by the gauge coupling function Z(φ), by the self-interaction

potential V (φ) for the scalar field and by the coupling function Y (φ) giving

mass to the Maxwell field.

The action (6.1) defines Einstein-scalar Maxwell (ESM) theories of grav-

ity, which are also called Effective Holographic Theories (EHTs) because are

relevant for holographic applications. Moreover, models like (6.1) generically

appear, after dimensional reduction, as low-energy effective string theories.

The action (6.1) can be also interpreted as an EHT for a complex scalar field

that enjoys a U(1) symmetry [81]. In this context the real scalar φ describes

the modulus of the charged scalar and the phase with broken (unbroken)

U(1) symmetry is obtained by Y 6= 0 (Y = 0).

Although our considerations can be easily extended to the case Y 6= 0,

we will focus for simplicity on the case of unbroken U(1) symmetry, Y = 0.

We will briefly comment on the case Y 6= 0 in Sect. 6.5.3.

We are interested in electrically charged BB solutions of the theory. Using

the following parametrization for the metric:

ds2 = −λ(r)dt2 +
dr2

λ(r)
+H2(r)(dx2 + dy2), (6.2)
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the Einstein and scalar equations read:

H ′′

H
= −(φ′)2

4
, (λH2)′′ = −2H2V, (6.3)

(λHH ′)′ = −H2

[
V

2
+
ZA′0

2

4

]
, (6.4)

(λH2φ′)′ = H2

(
dV

dφ
− A′0

2

2

dZ

dφ

)
. (6.5)

The ansatz (6.2) is very convenient, as in these coordinates Maxwell’s equa-

tions can be directly solved for A′0:

A′0 =
ρ

ZH2
, (6.6)

where ρ is the charge density of the solution. Note that only Eqs. (6.4) and

(6.5) depend on the EM field and only through A′0. Therefore, substituting

the solution above into the remaining field equations, we can completely

eliminate the EM field and solve Eqs. (6.3)–(6.5) for λ, H and φ.

As we are looking for asymptotically AdS solutions, we will consider mod-

els for which the potential V (φ) has a maximum at φ = 0 and Z ′(φ = 0) = 0,

with the local mass of the scalar m2
s = V ′′(0) satisfying the condition m2

BF <

m2
s ≤ −2/L2 and with V (0) = −6/L2, where m2

BF = −9/(4L2) is the BF

bound in four dimensions1. The presence of an extremum of V (φ) and Z(φ)

at φ = 0 implies the existence of a Reissner-Nordström-AdS (RN-AdS) BB

solution:

λ =
r2

L2
− M

2r
+

ρ2

4r2
, H = r, φ = 0, (6.7)

which is characterized by a trivial scalar field configuration. Each other

solution of the field equations will be characterized by a non-trivial profile

for the scalar field.

1The results of this chapter can be easily extended to the scalar-mass range m2
BF <

m2
s < m2

BF + 1/L2, where the dual CFT is known to be unitary.
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The AdS, r = ∞, asymptotic behavior requires the following leading

behavior of the metric and the scalar field (see Sect. 1.1):

ds2 = − r
2

L2
dt2 +

L2

r2
dr2 + r2(dx2 + dy2)

φ =
O1

r∆1
+
O2

r∆2
, (6.8)

with ∆1,2 =
3∓
√

9+4m2
sL

2

2
. As we know from Sect. 1.1, boundary conditions

that preserve the asymptotic isometries of the AdS spacetime can be O1 = 0,

O2 = 0 or O1 = fO
∆1/∆2

2 (the last in the range of scalar masses m2
BF < m2

s <

m2
BF + 1/L2). More in general, boundary conditions of the form:

O1 = W (O2) (6.9)

can be used. For a generic form of the function W the asymptotic AdS

isometries are broken, yet an asymptotic time-like Killing vector exists and

the gravitational theory admits a dual description in terms of multitrace

deformations of CFTs [52, 53, 56, 125–128].

Apart from their UV AdS behavior, the scalar-dressed solutions of EHTs

are also characterized by their, small r, IR behavior. This IR behavior is

of crucial relevance for holographic applications, in particular in the context

of the AdS/condensed matter correspondence [22]. Generically, we expect

the IR regime not to be universal, but rather determined by the infrared

behavior of the potential V (φ) and of the gauge coupling functions Z(φ),

Y (φ). Nevertheless, we will discover in the next sections some features of

the IR spectrum of EHTs, which are model-independent and related to the

scaling symmetries of the UV AdS vacuum.

Although we will be concerned with general features of EHTs, for the sake

of definiteness we will mainly focus on three classes of models with different

IR behavior of the potential V (φ):
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a) The potential has a quadratic form:

V (φ) = − 6

L2
+
m2
sφ

2

2
. (6.10)

This corresponds to the simplest choice for the potential, which has

been widely used in holographic models. The IR regime is dominated by

the quadratic term and at T = 0 the scalar field diverges logarithmically

in the r = 0, near-horizon region.

b) The potential behaves exponentially for small values of the radial co-

ordinate r. Assuming that r = 0 corresponds to φ → ∞, we have in

this case:

V (φ) ∼ ebφ, (6.11)

where b is a positive constant. As we shall discuss later in Sect. 6.4.3,

this case produces a scale-covariant solution in the IR, corresponding

to hyperscaling violation in the dual QFT.

c) The origin r = 0 corresponds to an other extrema (a minimum) at

φ = φ1 of the potential V (φ). In this case the theory flows to a second

AdS4 vacuum in the infrared.

The IR regime of the EHT (6.1) is also characterized by the IR behavior of

the gauge coupling function Z. In particular, Z is crucial for determining the

contribution of bulk degrees of freedom inside or outside the event horizon

to the boundary charge density. This distinction is captured by the behavior

of the electric flux in the IR:

Φ =

(∫
R2

Z(φ)F̃

)
IR

, (6.12)

where F̃ is the dual Maxwell tensor. Using a terminology borrowed from

condensed matter physics, the phase with Φ = 0 has been called cohesive

and describes dual confined gauge invariant operators. The phase Φ 6= 0 has
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been named fractionalized and describes a dual deconfined phase [81, 124].

In this chapter we will consider two choices for the gauge coupling function

Z(φ): (1) a minimal coupling, Z(φ) = 1; (2) a coupling which behaves

exponentially in the IR, Z ∼ eaφ.

Since in the following we shall make often use of the thermodynamical

properties of the BB solutions, we find it convenient to summarize them here.

The temperature T , entropy S and free energy F of the solutions (6.2) are

given by:

T =
λ′(rh)

4π
, S = 4πVH2(rh), F = M − TS, (6.13)

where M is the total mass of the solution, V is the volume of the 2D sections

of the spacetime and rh is the location of the outer event horizon.

6.3 Spectrum of Einstein-scalar-Maxwell AdS

gravity in the Infrared region

In this section we investigate general features of the mass spectrum of ESM-

AdS gravity in the IR region. Assuming the existence of scalar-dressed BBs

with AdS asymptotic behavior, the two basic questions in this context are

about the existence and features of the T = 0 extremal state and of the states

near-extremality. We will treat separately the EM charged and uncharged

cases. We will first consider the theory with zero charge density (Z = Y =

0 in the action (6.1)), i.e. a vanishing Maxwell field (Einstein-scalar AdS

gravity). Later, we will extend our considerations to the case of finite charge

density.
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6.3.1 Einstein-scalar AdS gravity

A nontrivial point is the determination of the total mass M (i.e. the energy)

of the BB solutions. As discussed in Ref. [56], the usual definition of energy

in AdS diverges whenever O1 6= 0 (with a divergent term proportional to

r). This is because the backreaction of the scalar field causes certain metric

components to fall off slower than usual. However, this divergent term is

exactly canceled out if one considers that for O1 6= 0 there is an additional

scalar contribution to the surface terms which determine the mass.

Using the Euclidean action formalism, in the case m2
s = −2/L2 the total

mass turns out to be [56]:

M = MG +
V
L4

[O1O2 + P (O1)] , (6.14)

where MG is the gravitational contribution to the mass, we have chosen the

following boundary conditions for the scalar: O2 = O2(O1), and P (O1) =∫
O2(O1)dO1.

In the following we will need an expression for the mass when ms is in the

range of values considered in this chapter, −9/4 < m2
sL

2 ≤ −2. Furthermore,

working with the parametrization of the metric given by Eq. (6.2), it is useful

to express the total mass M in terms of the coefficient of the 1/r term in the

r = ∞ expansion of the metric functions. To derive such an expression, as

in the previous chapter, we use the Euclidean action formalism of Martinez

et al. [71]. Using the parametrization of the metric (6.2), the gravitational

and scalar part of the variation of the boundary terms are given respectively

by [71]:

δIG =
2V
T

[(HH ′δλ− λ′HδH) + 2λH(δH ′)] |∞rh ,

δIφ =
V
T
H2λφ′δφ|∞rh . (6.15)

From the definition of the free energy F = M −TS, taking into account that
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Iφ|rh = 0, S = IG|rh and from F = −IT , it follows (see also Sect. 5.4):

M = TS − TI = −T (I∞G + I∞φ ). (6.16)

To calculate the mass M (6.16) we need the subleading terms in the

r =∞ expansion of the metric (6.8). By means of a translation of the radial

coordinate r, the asymptotic expansion of the solution can be put in the

general form:

λ =
r2

L2
+ prβ − m0

2r
+O(rβ−1),

H2 =
r2

L2
+ qrα +

s

r
+O(rα−1),

φ =
O1

r∆1
+
O2

r∆2
+O(r−∆1−1), (6.17)

where p, q, α, β, s are constants. Inserting this expansion in the field equations

one gets (at the first and second subleading order) the following relations

between the constants:

β = α = 2(1−∆1), p = q =
∆1O

2
1

4L2(1− 2∆1)
, s = −∆1∆2O1O2

6L2
. (6.18)

Substituting Eq. (6.17) into (6.15) and using p = q, we obtain:

δI∞G = − V
TL2

(
δm0 + 6δs− 2δp(β − 1)rβ+1

)
, (6.19)

δI∞φ = − V
TL4

(
∆1O1δO1r

β+1 + ∆1O1δO2 + ∆2O2δO1

)
. (6.20)

Notice that both the gravitational and the scalar contribution to the mass

contain a term which diverges as rβ+1. Using Eq. (6.18) one easily finds that

the two divergent terms cancel out in δI∞ = δI∞G + δI∞φ . Finally, we obtain
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the total mass of the solution:

M = −TI∞ =
V
L2

(
m0 +

(∆1 −∆2)

L2

∫
dO2W (O2) +

∆2(1−∆1)

L2
O2O1

)
,

(6.21)

where we have parametrized the boundary conditions for the scalar in terms

of the function O1 = W (O2). It is also useful to split the total mass into the

gravitational and scalar contributions MG and Mφ, arising separately from

the two terms in Eq. (6.21):

MG =
V
L2

(
m0 −

∆1∆2

L2
O1O2

)
, Mφ =

V
L4

[∆1O1O2 + (∆2 −∆1)P (O1)] ,

(6.22)

where P (O1) is defined as in Eq. (6.14). One can easily check that the

previous equations reproduce correctly Eq. (6.14) in the case m2
s = −2/L2,

i.e. ∆1 = 1,∆2 = 2.

Let us now investigate general features of the mass spectrum of ES-AdS

gravity in the IR region. In particular, assuming the existence of scalar-

dressed BBs with AdS asymptotic behavior, we wish to characterize the

features of the T = 0 extremal state and of the near-extremal states.

In the uncharged case a general, albeit implicit, form of the solution for

the metric function λ in a generic ES-AdS gravity theory has been derived

in Chapter 2 (see in particular Sect. 2.4):

λ = H2 − C1H
2

∫
dr

H4
, (6.23)

where C1 is an integration constant. The equation above implies that if an

extremal T = 0 hairy BB solution exists, this must have C1 = 0, i.e. λ = H2.

We can prove this statement by the following argument. Differentiating the

equation above and using Eqs. (6.13), we find the following relation between
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the temperature and the entropy density S of the solution:

T =
λ′(rh)

4π
=

(2λHH ′ − C1)rh
S

. (6.24)

Therefore we get C1 = [2λHH ′]rh−ST . An extremal solution satisfies T = 0

and λ(rh) = 0. Assuming that H and H ′ are finite at the horizon (to avoid

curvature singularities), the existence of an extremal solution imposes C1 = 0,

i.e.:

λ = H2. (6.25)

Note that this argument applies both when the entropy of the extremal so-

lution is vanishing or when it is finite.

Obviously, an extremal uncharged solution with AdS asymptotics (besides

the trivial AdS vacuum) may not exist. For the moment, we assume such

a solution exists and derive a general and very important result. We shall

prove that if such a solution exists it must have zero energy, i.e. must be

degenerate with the AdS vacuum.

To prove this statement, let us first show that every scalar-dressed so-

lution with AdS asymptotics, which is characterized by λ = H2, requires

necessarily conformal boundary conditions:

O1 = fO
∆1/∆2

2 (6.26)

for the scalar field. The field equations (6.3)–(6.6) with ρ = 0 and the met-

ric (6.2) are invariant under the scale transformation r → µr, λ→ µ2λ, t→
µ−1t. In the extremal case, the asymptotic expansion (6.17) implies that the

full solution (λ = H2 and φ) is invariant under this scale transformation if

O1,2 scale as follows: O1 → µ∆1O1, O2 → µ∆2O2, which in turn implies the

conformal boundary condition (6.26).

We can now calculate the mass (6.21) of the extremal solution, which has
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λ = H2, hence m0 = −2s. We get:

M =
V
L4

[
(∆2 −∆1)P (O1) + ∆1(1− 2

3
∆2)O2O1

]
, (6.27)

where P (O1) is defined as in Eq. (6.14). For the conformal boundary con-

ditions (6.26) we have O2 = f̂O
∆2
∆1
1 and P (O1) = ∆1

3
f̂O

3
∆1
1 , where f̂ is a

constant and we have used the equation ∆1 + ∆2 = 3. Substituting the

previous equations into Eq. (6.27) it follows immediately that for conformal

boundary conditions (6.26) the mass M vanishes. This is an important and

extremely nontrivial result. It means that in ES-AdS gravity with no EM

field, if an extremal scalar-dressed BB solution exists, the AdS4 vacuum of

the theory must necessarily be degenerate. Physically, this degeneration is

a consequence of the fact that the scalar condensate gives a negative con-

tribution to the energy. Therefore we may have configurations in which the

positive gravitational energy is exactly canceled by the negative energy of the

scalar condensate. This cancellation is a consequence of the conformal sym-

metry of the extremal solution; it necessarily occurs because the extremality

condition λ = H2 forces the conformal boundary conditions (6.26).

It is also important to notice that the argument leading to the degeneracy

of the T = 0 ground state holds true also when a condition much weaker than

Eq. (6.25) is satisfied:

λ = H2 +O(r−2). (6.28)

In fact the mass (6.21) and the scaling arguments leading to the conformal

boundary conditions for the scalar field depend only on terms up to O(r−1)

and are completely insensitive to higher order terms in 1/r.

Let us now consider near-extremal solutions. We assume that the theory

allows for scalar-dressed BBs at finite temperature with AdS asymptotics. In

the next section, we shall prove the existence of finite temperature solutions,

by constructing AdS-BBs, numerically, for three classes of ES-AdS gravity
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models.

The BB spectrum near-extremality can be investigated by considering

the T → 0 limit of the finite T solutions. However, one can show that this

T → 0 limit is singular. In order to prove the statement we expand the fields

in the near-horizon region:

λ =
∞∑
n=1

an(r − rh)n, H =
∞∑
n=0

bn(r − rh)n, φ =
∞∑
n=0

cn(r − rh)n . (6.29)

At first order we get for b0 6= 0 :

b2 = −b0

4
c2

1, b1a1 = −b0

2
V (c0), a1c1 =

(
dV

dφ

)
c0

, (6.30)

whereas the temperature of the dressed solutions, from Eqs. (6.13), be-

comes:

T =
a1

4π
= −b0V (c0)

8πb1

. (6.31)

Because in the case under consideration (V has a maximum) the potential

V is limited from above (V (φ) ≤ −6/L2), the T → 0 limit can only reached

by letting b0 → 0. But on the other hand from the third equation in (6.30)

it follows immediately that a1 = 0 is a singular point of the perturbative

expansion (6.29) unless (dV/dφ)c0 = 0 (corresponding to the Schwarzschild-

anti-de Sitter (SAdS) BB). Thus the T → 0 limit is a singular point of the

perturbation theory. It should be stressed that this result has been derived

by first considering the near-horizon limit, then taking T → 0. In Sect. 6.4.4

we will see what happens if the two limits are taken in the reversed order.

Note that the above results are strictly true only if one considers AdS so-

lutions with negative squared mass for the scalar field. If the scalar potential

has a local minimum at φ = 0, then our argument above does not apply. This

is for instance the case with the class of models studied in Chapters 3 and 5

which, however, turn out not to have BB solutions with AdS asymptotics.



Spectrum of Einstein-scalar-Maxwell AdS gravity in the Infrared region 125

The singularity of the T → 0 limit in the near-horizon perturbation theory

indicates that the ground state (6.25) is isolated, i.e. it cannot be reached

as the T → 0 limit of finite-T scalar BB solutions. This conclusion can be

also inferred by reasoning on the r = ∞ boundary conditions for the scalar

field. We have previously shown that the symmetries of the field equations

together with Eq. (6.25) force conformal boundary conditions (6.26) for the

scalar field. On the other hand, one can easily show that in the case of T

finite, the field equations together with the conditions for the existence on an

event horizon imply boundary conditions of the form (6.9), hence in general

nonconformal boundary conditions. In fact, the field equations (6.3)–(6.6)

have the following symmetries:

r → kr, t→ kt, L→ kL, H → kH,

r → kr, λ→ k2λ, t→ k−1t, A0 → kA0, (6.32)

H → kH, (x, y)→ k−1(x, y),

λ→ kλ, t→ k−1t, H2 → k−1H2, L→ kL , A2
0 → k−1A2

0.

These symmetries can be used to fix all but one parameter in the perturbative

expansion (6.29). The solutions become in this way a one-parameter family

of solutions. The near-horizon expansion (6.29) depends on a single free

parameter, which can be chosen to be rh. For each value of rh, we can extract

the two functions O1(rh) and O2(rh), which define implicitly the boundary

condition O1 = W (O2).

It follows that in general the finite-T solutions require boundary condi-

tions for the scalar, which are different from the conformal ones required for

the ground state (6.25). Therefore, the solution (6.25) is generically isolated,

i.e. it cannot be reached as the T → 0 limit of finite-T scalar BB solutions.

It should be stressed that the above feature is a key general feature of

the BB solutions of AdS Einstein-scalar gravity which holds true also for the

numerical solutions discussed in the next sections. If one assumes an analytic
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expansion close to the horizon, an asymptotically AdS behavior at infinity

and if one requires the existence of hairy BB solutions, then the boundary

conditions at infinity cannot be arbitrarily imposed but are determined by

the field equations. These boundary conditions will have the form (6.9), with

the function W determined by the dynamics. In the dual QFT the function

W characterizes the scalar condensate. Thus, the particular form of the

condensate is determined by the gravitational dynamics.

It is obvious that this is true only in the case of pure Einstein-scalar

gravity. For instance it does not hold for electrically charged solutions2.

In this latter case the near-horizon solution has always more than one free

parameter, that can be fixed by prescribing some boundary conditions for

the scalar field.

We can also compare the temperature of the dressed solution of radius

rh with the temperature T0 of the SAdS BB with the same radius. We can

use Eqs. (6.32) to set rh = L, b1 = c1 = L−1, b0 = 1, so that the only free

parameter is c0 = φ(rh) and the temperature becomes −8πT = LV (c0). We

have therefore:

T − T0 = 8πL(V (0)− V (c0) ). (6.33)

In the case under consideration, V (φ) has a local maximum at φ = 0, so

that V (0) ≥ V (c0). Therefore, we obtain T > T0 for any finite temperature

solution. That is, there exists a critical temperature given by the temperature

of the SAdS BB: T0 = 3rh
4πL2 such that scalar-dressed solutions of the same

radius rh only exist when T > T0.

6.3.2 Einstein-scalar-Maxwell AdS gravity

Let us now consider the EM charged case, i.e. a finite charge density in the

dual QFT. In general, one expects that the finite charge density will remove

2It does not hold also for black hole solutions of ES-AdS gravity, i.e. for solutions
which spherical horizons. This is because in this case the field equations are not anymore
invariant under the full set of transformations (6.32).
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the degeneracy of the T = 0 extremal state we have found in the uncharged

case. This can be shown explicitly. Indeed, when ρ 6= 0, the field equations

imply:

ρ2

ZH2
+ 2λH ′

2
+ 2λHH ′′ = H2λ′′ , (6.34)

which is solved by Eq. (6.23) only when the charge is vanishing. In particular,

λ = H2 is not a solution of the equation above when ρ 6= 0. Moreover in the

charged case Eq. (6.23) becomes (see Sect. 2.4):

λ = H2

[
1− C1

∫
dr

H4
+ ρ2

∫
dr

(
1

H4

∫
dr

ZH2

)]
. (6.35)

By using the same procedure leading to Eq.(6.25), we get that the ex-

tremal solution in the EM charged case is attained for:

C1 = ρ2

(∫
dr

ZH2

)
rh

. (6.36)

Because C1 6= 0, not even the weaker condition (6.28) is satisfied in the

charged case. This implies that Eq. (6.27) does not hold if ρ 6= 0. In

general, the mass of the extremal scalar-dressed solution will be different

from the mass of the extremal RN-AdS solution, so that the degeneration of

the T = 0 ground state in the EM charged case is removed.

Notice that in the charged case the T = 0 solution is not necessarily

forced to have conformal boundary conditions for the scalar field. In fact,

the argument used for the uncharged case is based both on the relation

λ = H2 and on the scale symmetries of the field equations. Both do not hold

anymore at finite charge density. Nevertheless, in this case the presence of an

additional field (the EM potential Aµ) allows to choose arbitrary boundary

conditions for the scalar. As discussed in the previous section, the boundary

conditions are not anymore imposed by the dynamics of the system as in the

uncharged case. It follows that in the charged case the T = 0 ground state
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is not anymore isolated but can be reached continuously as the T = 0 limit

of finite-temperature scalar-dressed BB solutions.

For what concerns the BB spectrum near extremality, the results we have

found in the uncharged case still hold in the charged case. In fact the first

and the third equation in (6.30) are not modified by the nonvanishing charge,

whereas the second becomes: a1b1 = −(Z−1(c0)ρ2 + 2b4
0V (c0))/4b3

0.

The temperature is:

T =
a1

4π
= −Z

−1(c0)ρ2 + 2b4
0V (c0)

16πb1b3
0

. (6.37)

Also here, we can compare the temperature of a scalar-dressed BB with that

of the RN-AdS BB with the same charge ρ and radius rh. One easily finds

that Eq. (6.33) still holds for the charged case and that T > TRN0 for any

finite-temperature solution, where the critical temperature TRN0 is given by:

TRN0 =
12r4

h − L2Z−1(c0)ρ2

16πr3
hL

2
. (6.38)

Scalar-dressed EM charged solutions of the same radius rh and charge of the

RN-AdS solution exist only for T > TRN0 .

An important issue when dealing with finite EM charge density is the

characterization of the phase as fractionalized or cohesive [81, 124]. For the

generic theory (6.1) with Y 6= 0, this characterization will depend on the IR

behavior of both Z(φ) and Y (φ). However, one can easily show that in the

case of unbroken U(1) symmetry, Y = 0, only the fractionalized phase may

exist. In fact using Eq. (6.6) into Eq. (6.12) one easily finds Φ ∼ ρ.

To summarize, the following interesting picture emerges for the IR spec-

trum of scalar-dressed BB solutions of ESM-AdS gravity with m2
BF < m2

s <

m2
BF + 1/L2. If a scalar-dressed, neutral, extremal solution exists at ρ = 0,

it must necessarily be degenerate with the AdS vacuum. This is due to a

precise cancellation of the contributions to the total energy from the gravi-
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tational and scalar part and, in turn, it is due to the conformal symmetries

of the boundary theory. Moreover, the T → 0 limit of finite-T BB solutions

is singular and the ground state is isolated from the continuous part of the

spectrum.

When an EM charge is switched on, the degeneracy of the ground state is

removed and the ground state can be reached continuously as the T → 0 limit

of finite-T solutions. Scalar-dressed uncharged (EM charged) solutions of the

same radius rh (and charge) of SAdS (RN-AdS) solution exist only for T > T0

(T > TRN0 ). Cohesive phases may exist only when the U(1) symmetry is

broken. In the U(1) symmetry-preserving case only the fractionalized phases

are allowed.

Our results are fairly general and only assume the existence of scalar-

dressed solutions, which has to be investigated numerically. In the next

two sections we will show that the picture above is realized for three wide

classes of models with quadratic, quartic and exponential potentials V (φ)

and for two classes of gauge couplings (Z = 1 and Z ∼ eaφ). Numerical

computations confirm the degeneracy of the ground state in the uncharged

case and the peculiarity of the T → 0 limit of finite-temperature scalar-

dressed BB solutions. We will discuss separately the EM neutral and charged

solutions.

6.4 Neutral solutions

6.4.1 Quadratic potential

In this section we will construct numerical solutions of Einstein-scalar AdS

(ES-AdS) gravity models with the quadratic potential (6.10) and we shall

check the validity of the general results of Sect. 6.3. The case of a quadratic

potential is the simplest possible choice and it is therefore our first exam-

ple. Moreover, this is the usual choice for models describing holographic
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superconductors. We will come back to this point later in Sect. 6.5.3.

Extremal solutions

The near-horizon behavior of the extremal solution of the model (6.10) with

an EM field covariantly coupled to a charged scalar field has been derived

in Ref. [129]. The near-horizon, extremal solution of a pure Einstein-scalar

gravity model (both the EM and the charge of the scalar field are zero) can

be obtained as a particular case of the solution given in Ref. [129]. In the

gravitational gauge used in [129], we have:

ds2 = −g(r̂)e−χdt2 +
dr̂2

g(r̂)
+ r̂2(dx2 + dy2), (6.39)

and with our normalization for the kinetic term of the scalar field, the solution

reads:

ds2 =
dr̂2

g0r̂2(− ln r̂)
+r̂2(−dt2+dx2+dy2), φ = 2

√
2(− ln r̂)1/2, g0 = −2m2

s

3
.

(6.40)

The near-horizon, extremal solution (6.40) can be written in the gauge (6.2)

by a suitable reparametrization of the radial coordinate. We get:

λ = H2 = e−
g0X

2(r)
2 , φ = −

√
2g0X(r), r =

√
π

g0

+

∫ X

dte−
g0t

2

4 , (6.41)

where the last equation defines implicitly the function X(r). We note that

also in these coordinates the horizon is located at r = 0.

The global, extremal, solution interpolating between the near-horizon be-

havior (6.41) and the asymptotic AdS behavior (6.8) has to be found numer-

ically. We have integrated the field equations numerically for several values

of m2
s. In all cases we have found λ = H2, which implies the conformal

boundary condition (6.26). Indeed the total mass M of the scalar-dressed

solution is zero. In Fig. 6.1 we show the profiles of the metric functions and
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the scalar field for m2
s = −2/L2.
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Figure 6.1: The metric functions λ = H2 (left) and the scalar field φ (right) as functions
of r/L, in the extremal case, for a quadratic potential with m2

sL
2 = −2.

Finite-temperature solutions

Let us now consider BB solutions of Einstein-scalar theory at finite tempera-

ture. Again we have to construct global solutions, which interpolate between

the asymptotic AdS expansion given by Eq. (6.8) and a near-horizon expan-

sion as in Eq. (6.29).

We have constructed these solutions numerically, starting from the near-

horizon solution above and integrating outwards to infinity, where the asymp-

totic behavior of the solution is AdS4. In Fig. 6.23 we show an example of the

metric and scalar profiles and of the function O2(O1) in the case m2
s = −2/L2.

In the large O1 limit, our data are well fitted by O2 ∼ −0.57O2
1, which is

consistent with the conformal boundary condition (6.26). However, for small

values of O1 the behavior reads O2 ∼ −0.36O1 and the global behavior in-

terpolates between these two asymptotic regimes. Therefore, the function

O2(O1) does not generically satisfy the conformal boundary condition (6.26).

3In Fig. 6.2 and in all the figures we show in this chapter, all the dimensional quantities
(O1,2, F,F , c, T ) are normalized with appropriate powers of the AdS length L.
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This is a general statement that we have verified also for different choices

of the parameters and different models. This fact confirms that extremal

solutions are isolated from finite-temperature solutions.

As expected, solutions dressed with scalar hair only exist above a certain

critical temperature T0 = 3/(4π) and a critical mass M0 which correspond

to the temperature and mass of the Schwarzschild-AdS BB, after a rescaling

that sets rh = L = 1. This is shown in Fig. 6.3, where we present the total

mass M of the solutions as a function of the temperature T . The absence

of dressed solutions (irrespectively of the boundary conditions O2(O1)) for

T < T0 confirms numerically the existence of the critical temperature T0.

1 2 5 10 20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

r � r h

p
ro

fi
le

s

Λ � r 2

H� r

Φ

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

O1

O
2

Figure 6.2: Left panel: metric and scalar profiles as functions of the (nonrescaled) coordi-
nate r for a quadratic potential with m2

sL
2 = −2. Right panel: the function O2 = O2(O1)

for the same model.

6.4.2 Quartic potentials

In this section we will check numerically the results of Sect. 6.3, and the

validity of the picture that has emerged from our results, in the case of a

theory with a potential V (φ) having the behavior described as type c) in

Sect. 6.2, i.e. a theory with a IR fixed point. As an example of such a theory
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Figure 6.3: Total mass M as a function of the temperature T for a quadratic potential
with m2

sL
2 = −2.

we take the quartic potential:

V (φ) = Λ4φ4 − m̂2

2
φ2 − 6

L2
. (6.42)

This potential has the typical mexican hat form with a maximum at φ = 0

with V (0) = −6/L2, V ′′(0) = −m̂2 and a minimum at φ12 = ± m̂
2Λ2 with

V (φ1) = −6/l2 = −m̂4/(16Λ4) − 6/L2, V ′′(φ1) = 2m̂2. The potential is

invariant under the discrete transformation φ → −φ, so that we will just

consider φ ≥ 0. The theory allows for two AdS4 vacua: an UV AdS4 at

φ = 0 (corresponding to r =∞), with AdS length L and with squared mass

of the scalar given by −m̂2, and an IR AdS4 at φ = φ1 (corresponding to

r = 0) with AdS length l and with squared mass of the scalar given by 2m̂2.

Again, we focus on −9/4 < −m̂2L2 ≤ −2.

Extremal solutions

A scalar-dressed, extremal solution of the kind discussed in the previous

section would represent a flow between an UV AdS4 and an IR AdS4. Let us

first investigate numerically the existence of such a solution. If it exists we
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know from the results of the previous section that it must have zero mass,

i.e. it must be degenerate with the (UV) AdS vacuum. In order to construct

such solution numerically we need its perturbative expansion in the UV (near

r = ∞) and in the IR (near horizon, r = 0). The UV expansion is given

by Eq. (6.8). For what concerns the near-horizon r = 0 expansion, the field

equations (6.3)-(6.5) give instead:

λ =
r2

l2
− γ2

12l4
r4 +O(r6), H =

r

l
− γ2

24l3
r3 +O(r5), φ = φ1 +

γ

l
r +O(r2),

(6.43)

where γ is an arbitrary constant. Moreover, Eq. (6.5) constrains the pos-

sible values of the parameter m̂ in Eq. (6.42) to m̂2 = 2/l2. Introducing a

dimensionless parametrization for Λ in Eq. (6.42), Λ−4 = kl2, one finds that

the restriction on m̂2 implies:

0 < k <
8

3
,

l2

L2
= 1− k

24
. (6.44)

We have integrated the field equations numerically, starting from r ∼ 0

outwards to infinity. When φ ≥ 0, regular solutions only exist for γ < 0.

These solutions interpolate between the r = ∞ AdS behavior (6.8) and the

near-horizon solution (6.43).

In Fig. 6.4 we show the profiles of the metric functions and of the scalar

for k = 1, and the function O2(O1) (obtained by varying the free parameter

γ) for selected values of k. Again we have found that λ = H2, which implies

the conformal boundary condition (6.26) and that the total mass M of the

scalar-dressed solution is vanishing.

Finite-temperature solutions

Using the same method described in Sect. 6.4.1 we have constructed, nu-

merically, dressed BB solutions at finite temperature for models with the

potential (6.42). We have generated global BB solutions for m2
sL

2 = −2 and
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Figure 6.4: Left panel: profiles of the metric functions and the scalar field, in the extremal
case, for a quartic potential with k = 1 and γ = −1. Right panel: the function O2(O1)
for three different values of k.

for several values of the parameter Λ. These solutions interpolate between

the near-horizon expansion (6.29) and the asymptotic AdS4 form. In Fig. 6.5

we show an example of the metric and scalar profiles and the function O2(O1)

for the case m2
sL

2 = −2 and for some selected values of Λ. As it is clear from

Fig. 6.5, the function O2(O1) displays a universal linear behavior at small

O1, which already confirms that the boundary conditions are not conformal

for any value of Λ. In addition, for larger values of O1 the slope of O2(O1)

depends on the quartic coupling.

In Fig. 6.6 we show the total mass of the solution as a function of the

temperature for fixed horizon radius rh = 1 and L = 1. As expected the

dressed solutions exist only for T > T0, confirming numerically the existence

of the critical temperature T0. It should be noticed that we have generated

the numerical finite-temperature solutions for values of the parameters m2
s

and Λ, which are different from those used to generate the extremal solu-

tions. The reason for this choice is a numerical instability of the solutions

for positive values of m2
s.
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nate r for a quartic potential with m2

sL
2 = −2 and λ4 = 0.3. Right panel: the functions

O2 = O2(O1) for different values of Λ.
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6.4.3 Exponential potentials

In this section we will investigate the case of a theory with a potential V (φ)

having the behavior described as type b) in Sect. 6.2, i.e. the potential

behaves exponentially ∼ ebφ for φ→∞ (corresponding to r = 0).

We search for scalar-dressed BB solutions that smoothly interpolate be-

tween an asymptotic AdS spacetime and a near-horizon scale-covariant met-

ric. In the dual QFT they correspond to a flow between an UV fixed point

and hyperscaling violation in the IR. In general these interpolating solutions

cannot be found analytically but have to be computed numerically. To be

more concrete, in the following we will focus on a class of models defined by

the potential:

V (φ) = − 2

b2L2
[cosh(bφ) + 3b2 − 1]. (6.45)

This potential is such that the mass of the scalar is independent from

the parameter b, m2
s = −2/L2. Moreover, it contains as particular cases

b = 1/
√

3, b = 1 models emerging from string theory compactifications, for

which analytical solutions are known [51] (see also Chapter 2).

Extremal solutions

The leading near-horizon behavior of the extremal solutions can be captured

by approximating the potential in the φ → ∞ region with the exponential

form V (φ) = −(1/b2)ebφ. In this case the field equations (6.3)-(6.5) give:

λ = α0

(
r

r−

)w
, H =

(
r

r−

)w/2
, φ = φ0 − bw ln

(
r

r−

)
, (6.46)

α0 =
ebφ0r2

−

b2w(2w − 1)
, w =

2

1 + b2
.

Notice that α0 > 0 requires w > 1/2. This restricts the parameter range to

1/2 < w < 2 (0 < b2 < 3). This ansatz provides an exact solution to the
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equations of motion with an exponential potential −(1/b2)ebφ but only the

leading near-horizon, extremal, behavior of the solutions with V (φ) generic.

Solution (6.46) is scale-covariant, and the metric transforms under rescaling

in the following way:

r → kr, (t, x, y)→ k1−w(t, x, y), ds2 → k2−wds2. (6.47)

The extremal solution (6.46) contains an IR length-scale r−. However, in

the case of neutral BBs the scaling transformations (6.47) may change this

scale. The metric part of the solution is scale-covariant whereas the leading

log r term of the scalar is left invariant. The only parameter that flows when

IR length-scale r− is changed, is the constant mode φ0 of the scalar.

To reduce the number of independent parameters, we can exploit the

symmetries of the field equations previously discussed [cf. Eqs. (6.32)] to

fix L = 1 and φ0 = 0 in Eq. (6.46). So we can start from the more simple

ansatz containing only one free parameter r−.

Starting from this scaling behavior near the horizon and imposing an AdS

behavior (6.8) for the metric and the scalar field at infinity, we have inte-

grated numerically the field equations with a potential given by Eq. (6.45),

with different values of the parameter 0 < b <
√

3. We have found BB solu-

tions with scalar hair, that interpolate between the near-horizon (6.46) and

asymptotic (6.8) behavior.

In Fig. 6.7 we show the metric functions and the scalar field of these

extremal BBs for b = 1/2 and the function P (O1) (obtained by varying the

free parameter r−) for different values of the parameter b. Also in this case

we have checked numerically that λ = H2 and that the conformal boundary

conditions P (O1) ∼ O2
1 are satisfied. We have also explicitly checked that

the mass of the extremal solutions vanishes.

For the two cases b = 1/
√

3 and b = 1 the extremal solutions are known



Neutral solutions 139

analytically (see Sect. 2.5.1). They are respectively given by:

λ = H2 =
(r + r−)

1
2

L2
r

3
2 , φ = −

√
3

2
log

(
r

r + r−

)
,

λ = H2 =
r + r−
L2

r, φ = − log

(
r

r + r−

)
, (6.48)

where r− is a constant. From solutions (6.48) one can easily derive the

function P (O1) defining the asymptotic boundary conditions for the scalar

field. We have P = (2/
√

3)O2
1 for b = 1/

√
3 and P = O2

1 for b = 1.

In order to compare these analytical solutions with those obtained nu-

merically, we need to eliminate a linear term in the asymptotic behavior of

λ(r). Taking into account this translation, we have checked explicitly that

our numerical solutions with b = 1/
√

3 and b = 1 and the numerical calcu-

lated functions P exactly reproduce the analytical results. In general, the

proportionality factor f depends on the value of b. We observe that for b < 1

f is negative, for b = 1 f = 0, while for b > 1 f becomes positive, as shown

in Fig. 6.7.
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Figure 6.7: Left panel: profiles of the metric functions and the scalar field, in the extremal
case, for the potential (6.45) with b = 1/2 and r− = 1. Right panel: the function O2(O1)
for three different values of b.
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Solutions at finite temperature

Following the same method as the one used in the previous subsections,

one can generate generic hairy BB solutions with AdS asymptotics at finite

temperature, i.e. solutions interpolating between the near-horizon (6.29) and

the AdS (6.8) behavior. We have generated numerically these BB solutions

and found, as in the case of a quartic potential discussed above, that for every

value of the parameter b in the allowed range, they exist only for rh ≥ 1.

This implies the existence of a critical temperature T0 below which only the

SAdS BB exists.

A summary of our results is presented in Fig. 6.8, which is qualitatively

similar to Fig. 6.5 for the case of a quartic scalar potential. Again we have

verified that the function O2(O1) does not define conformal boundary condi-

tions (6.26) for the scalar, i.e. the extremal solutions are isolated from those

at finite temperature.
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dinate r for the potential (6.45) with b = 1/2. Right panel: the functions O2(O1) for
different values of b.
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6.4.4 Perturbative solutions near-extremality

In Sect. 6.3.1 we have seen that the T → 0 limit of finite-temperature

BB solutions is singular and that the ground state (6.25) is isolated from

the continuous part of the spectrum. A way to gain information about the

behavior near-extremality is to consider separately the near-horizon and near-

extremal expansions. In general the two limits do not commute. In this

section we will perform this perturbative analysis for the potential (6.45).

Similar results can be obtained for other classes of potentials.

We look for perturbative solutions of the field equations (6.3)-(6.5) in the

near-extremal, near-horizon regime. The near-extremal regime is obtained by

expanding the metric functions λ, H and φ in power series of an extremality

parameter m, with m → 0 when the temperature T → 0 (or the BB radius

rh → 0). On the other hand the near-horizon regime is obtained by expanding

the metric functions and the scalar field in power series of r − rh. Because

in general the two limits m → 0 and r → rh do not commute, we have to

consider separately the two cases.

r→ rh, rh→ 0

We first expand λ, H and φ in powers of m:

λ(r) =
∞∑
n=0

λn(r)mn, H(r) =
∞∑
n=0

Hn(r)mn, φ(r) =
∞∑
n=0

φn(r)mn. (6.49)

For small BB radius rh << L (or equivalently small T , i.e. T << 1/L)

we can truncate in the perturbative expansion (6.49) to first order in m. At

leading order we find that λ0, H0 and φ0 must satisfy the same field equations
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(6.3)-(6.5). At subleading order we find instead:

H ′′1 = −1

4

(
2H0φ

′
0φ1 + (φ′0)2H1

)
, (6.50)(

2λ0H1 +H2
0λ1

)′′
= 4

[
λ0 (H0H1)′ + λ1H0H

′
0

]
, (6.51)(

2λ0H1 +H2
0λ1

)′′
= −2φ1H

2
0

dV (φ0)

dφ
− 4H0H1V (φ0), (6.52)

(
λ0H

2
0φ
′
1 + 2λ0H1φ

′
0 + λ1H

2
0φ
′
0

)′
= 2H0H1

dV (φ0)

dφ
+H2

0φ1
d2V (φ0)

dφ2
. (6.53)

A solution of Eqs. (6.50)-(6.53) can be obtained by setting φ1 = H1 = 0, so

that they reduce to:

(
H2

0λ1

)′′
= 0, (H ′0H0λ1)

′
= 0,

(
H2

0φ
′
0λ1

)′
= 0. (6.54)

Equations (6.3)-(6.5) for the near-extremal leading order functions λ0, H0, φ0

can be now solved as a near-horizon expansion in powers of r, the leading

term in this expansion being obviously given by Eq. (6.46):

λ0(r) =

(
r

r−

)w ∞∑
n=0

αn

(
r

r−

)n
, H0(r) =

(
r

r−

)w
2
∞∑
n=0

βn

(
r

r−

)n
,

φ0(r) = −bw ln
r

r−
+
∞∑
n=0

γn

(
r

r−

)n
. (6.55)

For each order in the r-expansion we can then determine the correspond-

ing term λ
(n)
1 for λ1 by solving Eqs. (6.54). One could worry about compat-

ibility of the three equations (6.54). However, one can easily realize that for

H2
0 = c1r

l, the system (6.54) is always solved by λ1 = c2r
−l+1 with c1,2 con-

stants. This follows from the first equation in (6.3), which implies H ′0 ∝ 1/r.

The leading order in the near-horizon expansion involves w, α0, β0, γ0. The

symmetry of the field equations (6.3)-(6.5) under a rescaling of H allows to

fix β0 = 1, whereas as expected w and α0 turn out to be given as in Eq.
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(6.46). At this order Eqs. (6.54) give in turn:

λ
(0)
1 ∝ r−w+1. (6.56)

At the n−th order in the near-horizon expansion we find λ
(n)
1 ∝ r−w−n+1.

The form of the near-extremal solution is therefore given by:

λ = λ0 +
m

rw−1

(
∞∑
n=0

εn
rn

)
+O(m2), H = H0, φ = φ0, (6.57)

where λ0, H0, φ0 are given by Eqs. (6.55). Assuming m < 0 in the previous

equation, we find that at leading order the relation between m and rh is

m ∝ r2w−1
h . Notice that this is an expansion in 1/r. This means that terms

with higher n give smaller contributions for r →∞.

rh→ 0 , r→ rh

This limit has been already discussed in Sect. 6.3.1. The expansion in powers

of (r−rh) is given by Eq. (6.29) and at leading order the field equations (6.3)-

(6.5) give the relations (6.30) involving the parameters a1,2, b0,1,2, c0,1. At the

next to leading order we have three more parameters a3, b3, c2 and three more

relations. We are therefore left with 4 independent parameters b0, c0, a1, rh.

As previously discussed, the field equations have the symmetries (6.32), so

that rh is the only independent parameter. In principle, one can now expand

an(rh), bn(rh), cn(rh) in powers of rh, substitute in Eq. (6.29) and reorganize

it as the power expansion in m given by Eq. (6.49). By retaining only

the linear terms in m one could then compare the result with Eq. (6.57).

Unfortunately, this is a very cumbersome task. Indeed, terms of order O(rh)

are generated at any order in the near-horizon expansion (6.29). The problem

has to be solved numerically. Numerically, one can look for global solutions

interpolating between the near-horizon behavior (6.29) with a given rh and

the AdS asymptotic solution (6.8). There is no guarantee that the solutions
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obtained in this way match Eq. (6.57). This is because the two limits r → rh

and rh → 0 do not commute.

Near-extremal numerical solutions

We have generated numerically, for the case of the potential (6.45), the so-

lutions interpolating between the AdS asymptotic behavior (6.8) and the

near-extremal regime given by Eq. (6.57). In Fig. 6.9 (left panel) we can

see the profiles of the metric functions and the scalar field for b = 1/
√

3 and

rh = 10−2 (corresponding to m = −10−4).

We see that although the T → 0 limit of the near-horizon perturbation

theory is singular and isolated, global solutions obtained interpolating the

near-horizon, near-extremal behavior (6.57) with AdS4 exist also for T > 0.

This is a manifestation of the noncommutativity of the near-horizon and near-

extremal limit. From the point of view of perturbation theory, the T = 0

singularity means that the perturbative series in m (6.49) do not converge

and that solutions (6.57) are only perturbative solutions valid for rh << L.

The hairy near-extremal solutions shown in Fig. 6.9 describe small ther-

mal perturbations of the extremal solution, but they do not describe the

small-T limit of finite-temperature solutions. These results confirm that the

ground state solutions (6.25) are not smoothly connected to the finite-T so-

lutions, because of the existence of the discontinuity.

Perturbative solutions in the small scalar field limit can be also con-

structed. These kind of solutions are described in the Appendix.

6.4.5 Hyperscaling violation and critical exponents

The extremal T = 0 hairy solutions found in Sect. 6.4.3 for the case of the

potential (6.45) describe a flow between the near-horizon (IR) scale-covariant

regime and an asymptotic AdS fixed point. From a QFT point of view,

this translates into a hyperscaling-violating phase in the IR and a scaling-
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Figure 6.9: Left panel: interpolating solutions between AdS at infinity and the near-
extreme regime given by Eq. (6.57) with b = 1/

√
3 and rh = 10−2. Right panel: difference

between the free energy density of the near-extremal BB solution and the free energy
density of the SAdS BB, for two values of b.

preserving phase in the UV. We can characterize the holographic features of

this flow by giving the scaling exponents in the conformal (AdS) phase and

nonconformal (hyperscaling-violating) phase. The IR behavior is dictated by

Eqs. (6.46). The UV metric is instead that of AdS4.

To describe hyperscaling violation in four dimensions we reconsider the

parametrization (1.3) of the metric, with d = 2:

ds2 = rθ−2(−r−2(z−1)dt2 + dx2
i + dr2). (6.58)

By a simple redefinition of the radial coordinate and a rescaling of the

coordinates, we can write the metric (6.46) in the form (6.58). We obtain:

ds2 = r
w

1−w (−dt2 + dx2
i + dr2). (6.59)

Comparing Eq. (6.59) with Eq. (6.58), we can easily extract the parameters

θ and z of our solution:
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z = 1, θ =
2− w
1− w

. (6.60)

While the value z = 1 of the dynamic critical exponent is largely expected

for uncharged solutions, we see that θ ≤ 0 for 1 < w ≤ 2 and θ > 2 for

1/2 < w < 1, while θ diverges for w = 1 (recall that in our case 1/2 < w ≤ 2).

This is in agreement with the null energy conditions for the stress-energy

tensor, which require, for z = 1 and in the general case of d+ 2 dimensions,

either θ ≤ 0 or θ ≥ d.

Trivially, the parameters of the UV AdS conformally invariant solution

are z = 1, θ = 0.

The general behavior of the free energy in four dimensions (see Eq. (4.8)

with d = 2) is:

F ∼ T
2−θ+z
z . (6.61)

From Eq. (6.61), substituting the (6.60), we get that the free energy

scales as:

F ∼ T
1−2w
1−w . (6.62)

We see from Eq. (6.62) that the exponent of T is negative for 0 < w < 1

or, equivalently, when θ > 2. So in this case the free energy diverges for

T → 0 and the corresponding phase is always unstable.

6.4.6 Thermodynamics of the near-extremal solutions

The hairy near-extremal solutions discussed above can be interpreted as small

thermal fluctuations of extremal T = 0 hairy BBs. The thermodynamical

features of these BB solutions – in particular the free energy and the specific

heat – will provide important information about the stability of the ground

state. Properties such as the scaling exponents are determined by the be-
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havior of the system at the quantum critical point, namely by the T = 0

scale-covariant extremal near-horizon solution (6.46). On the other hand the

stability properties are global features and they must be investigated using

the global T 6= 0 solutions.

By Eqs. (6.13), the temperature and the entropy density of the near-

horizon, near-extremal solution (6.57) are given at leading order by:

T =
2w − 1

4π
α0r

w−1
h , S =

(4π)
2w−1
w−1

[α0(2w − 1)]
w
w−1

T
w
w−1 . (6.63)

Notice that in these subsections we are using dimensionless coordinates,

so that the IR length-scale r− drops out from our formulae, as in Eq. (6.59),

and we set L = 1. Temperature and entropy density are therefore also

dimensionless.

The scaling exponent of the entropy becomes negative when 1/2 < w < 1

(corresponding to 1 < b2 < 3), implying a negative specific heat, and the

corresponding solutions are therefore unstable. This is in agreement with the

results of the previous subsection concerning the scaling of the free energy

for w < 1. Moreover, in this case small values of the temperature correspond

to high values of the horizon rh and of the parameter m, so that we cannot

obtain near-extremal solutions (in the sense of small temperature solutions)

with rh << 1, which is the range of validity of the perturbative solutions

(6.57).

For what concerns the entropy density and free energy density F0 of the

SAdS BB, we have:

S0 =
(4π)3

9
T 2, F0 = −

(
4π

3

)3

T 3.

We have derived numerically the free energy of the numerical near-extremal

solutions as a function of the temperature, for T << 1 . In Fig. 6.9 (right

panel) we show the behavior of the free energy density of the hairy BB solu-
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tion compared with the free energy density of the SAdS BB for two selected

values of the parameter b (both such that 1 < w < 2), and for small values

T << 1 of the temperature. We observe that the scalar-dressed solutions

are energetically disfavored against the SAdS BB. This result can also be

verified analytically by comparing F0 with the free energy density F of the

hairy near-extremal solution, which can be expressed as a function of the

temperature using Eq. (6.13).

6.4.7 Thermodynamics of the finite-temperature solu-

tions

We have also computed the free energy F and the specific heat c of the

finite-temperature numerical scalar-dressed solutions derived in the previous

sections for the case of the quartic (6.42) and exponential (6.45) potential.

The results are shown in Fig. 6.10 where we plot ∆F/F0 and c as a function of

the temperature, with ∆F = F −F0. The free energy F is always larger than

that of the corresponding Schwarzschild-AdS BB at the same temperature

and the specific heat is negative. Hence, these solutions are energetically

disfavored against the undressed ones.

6.5 Charged solutions

In this section, we will extend the numerical results previously obtained for

neutral BBs in ES-AdS gravity to the case of finite charge density, i.e to

the case in which an EM field is present in the bulk. We will focus our

attention on models with exponential (6.45) or quadratic (6.10) potential.

We will discuss separately the cases of: i) minimal gauge coupling Z = 1;

ii) exponential gauge coupling in the U(1)-symmetry preserving phase; iii)

Minimal gauge coupling in the U(1)-symmetry breaking phase (Z = 1, Y 6=
0).
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Figure 6.10: Free energy (left panels) and specific heat (right panels) of the BBs as a
function of the temperature. Top and bottom panels refer to theories with a quartic
potential with m2

s = −2 and with the potential (6.45), respectively.
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6.5.1 Minimal gauge coupling

In this subsection we will construct numerical BB solutions for the model

(6.1) with Z = 1, Y = 0 and the potential (6.45). As usual we discuss

separately extremal and finite-temperature solutions.

Extremal solutions

Following the same approach as the one used for the case of electrically neu-

tral solutions, we look for numerical scalar-dressed BB solutions interpolating

between an asymptotic AdS spacetime and a near-horizon scale-covariant

metric. Also in this case, the near-horizon behavior can be captured by

approximating the potential (6.45) in the φ → ∞ region with the expo-

nential form V (φ) = −(1/b2)ebφ. The field equations (6.3)–(6.5) give the

scale-covariant solution, which in the dual QFT corresponds to hyperscaling

violation:

λ = α0

(
r

r−

)w
, H =

(
r

r−

)h
, φ = φ0 −

b

4
(w + 2) ln

(
r

r−

)
, (6.64)

w = 2− 4h =
8− 2b2

4 + b2
,

α0 =
8ebφ0r2

−

b2w(w + 2)
, ρ2 =

2ebφ0(3w − 2)

b2(w + 2)
,

where ρ is the charge density of the solution. The solution above, together

with the condition α0 > 0, restricts the parameter range to 2/3 < w < 2

(corresponding to 0 < b2 < 2). We can exploit the symmetries of the field

equations to fix L = 1 and φ0 = 0, leaving r− the only free parameter.

We immediately note an important feature of this solution: in the limit

ρ → 0 it does not reduce to the near-horizon solution (6.46) obtained in

the electrically neutral case. This means that the uncharged solution (6.46)

and the electrically charged solutions (6.64) represent two disjoint classes of

solutions.
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As usual, starting from this near-horizon scaling and imposing an AdS

behavior (6.8) at infinity, we have integrated numerically the field equations

for different values of the parameter b, finding numerical solutions only for

b > 1/2. In Fig. 6.11 we show the fields for b = 1. As expected, here we find

in general λ 6= H2, hence the mass of the solution is nonvanishing and the

degeneracy with the AdS vacuum is removed.
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Figure 6.11: Metric functions (left panel) and scalar and Maxwell field (right), in the
extremal case, for the potential (6.45) with b = 1 and r− = 1.

Finite-temperature solutions

At variance with the extremal case, the charge of finite-temperature solutions

is a free parameter and the uncharged case is obtained setting ρ = 0. Using a

straightforward extension of the numerical integration previously discussed,

we can construct finite-temperature solutions at fixed charge density ρ. Some

examples are shown in Fig. 6.12 for the potential (6.45) with b = 1. In the

left panel we show the radial profiles of the fields, in the central panel we

show the function O2 = O2(O1) for different values of ρ, and in the right

panel we show the difference between the free energy of the dressed solution

and that of a RN-AdS BB with same radius and same charge. Notice that,
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as already stressed, in the charged case the boundary conditions can be

arbitrarily chosen. In particular, one can also choose conformal boundary

conditions of the form O1 = 0. However, in the case at hand we have found

that such conditions do not allow for scalar-dressed BBs.

Similarly to the uncharged case, these dressed solutions are always ener-

getically disfavored with respect to the undressed ones.
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Figure 6.12: Left panel: profiles for the metric coefficients, scalar field and potential as
functions of the (nonrescaled) coordinate r for the (6.45) with b = 1 and different values
of ρ. Central panel: the functions O2 = O2(O1) for different values of ρ and b = 1. Right
panel: difference between the free energy of the solution and that of a RN-AdS BB with
same radius and same charge.

6.5.2 Nonminimal gauge coupling

As an example of a model with nonminimal gauge coupling we consider here

the model presented in Ref. [23] and already discussed in Sect. 4.4.2. The

gauge coupling Z and the potential V are [23]:

Z(φ) = 2Z0 cosh aφ, V (φ) = −2V0 cosh bφ. (6.65)

In the IR (φ→∞) both the gauge coupling Z and the potential V behave ex-

ponentially. The model therefore belongs to the wide class of EHTs that flow

to a hyperscaling-violating phase in the IR [23, 27, 28, 39, 42, 81, 130]. The

extremal solution of the field equations in the near-horizon approximation is
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the scale-covariant metric [23]:

λ = α0

(
r

r−

)w
, H =

(
r

r−

)h
, φ = φ0 − ξ ln

(
r

r−

)
, (6.66)

ξ =
4(a+ b)

4 + (a+ b)2
, w = 2− 4ch, c =

b

a+ b
,

α0 =
2V0e

bφ0r2
−

(w + 2h)(w + 2h− 1)
,

ρ2

Z0

e−aφ0 =
2V0e

bφ0(2− 2h− bξ)
(w + 2h)

.

In Ref. [23] T = 0 global solutions interpolating between the near-horizon

hyperscaling-violating metric (6.66) and the asymptotic AdS4 geometry have

been constructed numerically. Furthermore, numerical finite-temperature

solutions have been found and their properties have been discussed in detail.

In particular, it has been shown that below a critical temperature Tc the

system undergoes a phase transition: the scalar-dressed BB solution becomes

energetically preferred with respect to the RN-AdS BB (see also Sect. 4.4.2).

The results of Ref. [23] fully confirm the general results of Sect. 6.3.

The finite charge density removes the degeneracy of the T = 0 solution we

have in the uncharged case. Comparing the charged solution (6.66) with

the neutral solution (6.46), one easily realizes that although the IR behavior

of the two solutions belongs to the same class (hyperscaling-violating), the

critical exponents change. Moreover, the nonminimal coupling between the

scalar field and the Maxwell field is such that the energy of the extremal

scalar-dressed solution is smaller than that of the RN-AdS solution. This

determines an IR quantum phase transition between the AdS2 × R2 near-

horizon geometry of the RN-AdS BB and the near-horizon scale-covariant

geometry (6.66). In the dual QFT this corresponds to a phase transition

between a conformal and a hyperscaling-violating fractionalized phase.

Because the thermodynamical properties of the system at small temper-

atures are essentially determined by the T = 0 quantum phase transition,

this also explains why the hyperscaling-violating phase is stable at small
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temperatures, below Tc.

The near-horizon solutions for the charged BBs (6.64) and (6.66) depend

on the same IR length-scale r− as the neutral BB solution (6.46). However,

in the charged case the scaling transformations under which the metric part

of the solutions is scale-covariant, change not only the constant mode of

the scalar φ0 but also the charge density ρ. Thus, changing the IR scale r−

corresponds to a flow of the charge density ρ. As noticed already in Ref. [81],

this is an irrelevant deformation along the hyperscaling-violating critical line.

It is also interesting to notice the different role played in the quantum

phase transition by the finite charge density and the nonminimal gauge cou-

pling. The finite charge density lifts the degeneracy of the T = 0 vacuum

and changes the values of the critical exponents of the hyperscaling-violating

solution, but it is by itself not enough to make the hyperscaling-violating

phase energetically competitive with respect to the conformal AdS2 × R2

phase. Indeed, in the case of minimal gauge couplings discussed in the pre-

vious subsection, the energy of the extremal RN-AdS BB is lesser than the

energy of the scalar-dressed T = 0 solution. It is the nonminimal coupling

between the gauge and the scalar field that makes the extremal RN-AdS

solution energetically disfavored with respect to the extremal scalar-dressed

solution.

Hyperscaling violation and critical exponents

In the case of a potential behaving exponentially in the IR, the near-horizon,

extremal solutions are scale-covariant for both zero or finite charge density

and for both minimal or nonminimal gauge couplings. On the other hand,

the critical exponents are affected by switching on a finite charge density. In

particular in the case of charged solutions we will always have z 6= 1.

In the minimal case, after a redefinition of the radial coordinate and a
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rescaling of the coordinates, the metric (6.64) reads:

ds2 = r2
(
−r

2(3w−2)
2−w dt2 + dr2 + dx2

i

)
,

from which we can easily extract the critical parameters:

θ = 4, z =
2(2− 2w)

2− w
.

We note immediately that the hyperscaling violation exponent θ is a (posi-

tive) constant, independent from the parameters of the potential. The range

of w implies z < 1, which is in agreement with the NEC conditions. Indeed

the latter impose, for these values of θ and z, the conditions z > 2 or z < 1.

Moreover we note that for 1 < w < 2, z is negative.

On the other hand, for 2/3 < w < 1 (corresponding to 0 < z < 1), the

free energy scales with a negative exponent:

F ∼ T
2−θ+z
z = T

w
2w−2 ,

which implies an instability of the corresponding phase and a negative specific

heat.

Finally, we consider the case of a nonminimal gauge coupling given by

Eq. (6.65). The critical exponents can be read off from Eq. (6.66), after an

appropriate reparametrization of the radial coordinate. We have:

θ =
4c

2c− 1
, z =

2c(2− 2w)

(2c− 1)(2− w)
,

while the free energy scales as:

F ∼ T
2−θ+z
z = T

(2c−1)w+2−2c
c(2w−2) . (6.67)
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6.5.3 Symmetry-breaking phase

As an example of a model having a U(1)-symmetry-breaking phase we con-

sider here the model discussed in Ref. [18–20, 129] and in Sect. 4.4.1, which

gives the simplest realization of holographic superconductors. The gauge

coupling is minimal, while the potential V and the function Y (φ) in the

action (6.1) are quadratic [129]:

Z(φ) = 1, V (φ) =
m2
s

2
φ2, Y (φ) = q2φ2,

where q is the electric charge of the complex scalar field whose modulus is φ.

The metric and scalar field associated to the T = 0 solution of the field

equations in the near-horizon approximation are given as in the neutral case

discussed in Sect. 6.4.1, i.e. by Eq. (6.40), whereas the EM potential is

A0 = φ0r̂
β(− log r̂)1/2, with 2β = −1 ± (1 − 48q2/m2

s)
1/2. Numerical, ex-

tremal solutions interpolating between the near-horizon solution (6.40) and

AdS4 have been constructed for q2 > |m2
s|/6 in Ref. [129]. Numerical finite-

temperature solutions have been also considered [18–20]. In particular, it

is well known that below a critical temperature the superconducting phase

(corresponding in the bulk to the scalar-dressed BB solution) becomes ener-

getically preferred.

The results of Ref. [18–20, 129] for the holographic superconductors fully

confirm our general results of Sect. 6.3. The finite charge density removes

the degeneracy of the T = 0 solution in the uncharged case. Moreover, the

nonvanishing coupling function Y gives a mass to the U(1) gauge field and

makes the extremal scalar-dressed solution energetically competitive with

respect to the RN-AdS solution. The system represents an IR quantum phase

transition between the AdS2×R2 near-horizon geometry of the RN-AdS BB

and the near-horizon geometry (6.40). In the dual QFT this corresponds to

the superconducting phase transition [18–20, 129], which occurs below the

critical temperature.



Concluding remarks 157

Similarly to the nonminimal case, also here the finite charge density and

the nonvanishing function Y play a very different role. The finite charge

density simply lifts the degeneracy of the T = 0 vacuum we have in the

uncharged case. But it is the coupling between the scalar field and the EM

potential A0 that causes the superconducting phase transition to occur at

the critical temperature. It is also interesting to notice that in this case the

finite charge density does not change the metric (and scalar) part of the IR

solution, which is determined by the near-horizon solution and it is described

as in the EM neutral case by Eq. (6.40).

6.6 Concluding remarks

In this chapter we have discovered several interesting features of scalar con-

densates in EHTs, which may be relevant for understanding holographic

quantum phase transitions. In particular, we have shown that for zero charge

density the ground state for scalar-dressed, asymptotically AdS, BB solutions

must be degenerate with the AdS vacuum, must be isolated from the finite-

temperature branch of the spectrum and must satisfy conformal boundary

conditions for the scalar field. This degeneracy is the consequence of a can-

cellation between a gravitational positive contribution to the energy and a

negative contribution due to the scalar condensate. When the scalar BB is

sourced by a pure scalar field with a potential behaving exponentially in the

IR, a scale is generated in the IR.

Thus, we see that fixing the UV behavior of IR hyperscaling-violating

geometries to be AdS provides new crucial insights on the IR scaling geome-

tries. In particular, the UV conformal symmetries of the AdS spacetime are

relevant also in the IR and determine the degeneracy of the ground state.

Switching on a finite charge density ρ for the scalar BB, the degeneracy

of the ground state is removed, the ground state is not anymore isolated from

the continuous part of the spectrum and the flow of the IR scale typical of
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hyperscaling-violating geometries determines a flow of ρ. Depending on the

gauge coupling between the bulk scalar and EM fields, the new ground state

may be or may not be energetically preferred with respect to the extremal

RN-AdS BB. We have also explicitly checked these features in the case of

several charged and uncharged scalar BB solutions in theories with minimal,

nonminimal and covariant gauge couplings. In the following subsections we

will briefly discuss the consequences our results have for the dual QFT and

for quantum phase transitions.

6.6.1 Dual QFT

One striking feature of the uncharged scalar BB solutions we discussed is

that the boundary conditions for the scalar field are either determined by the

symmetries (for the ground state) or by the dynamics (for finite-temperature

solutions). Because the only free function in the model is the scalar potential

V (φ), this means that the information about boundary conditions for the

scalar field is entirely encoded in the symmetries of the field equations and

in V . Since the scalar field drives the holographic renormalization group

flow, this fact has some interesting consequences for the dual QFT.

We have seen in Sect. 6.3 that in the case of zero charge density the

ground state for the scalar BB must be characterized by conformal boundary

conditions. From the point of view of the dual QFT this corresponds to a

multi-trace deformation of the Lagrangian of the CFT. This is a relevant

deformation, associated to a relevant operator, which will produce a renor-

malization group flow from an UV CFT to an IR QFT. The nature of the

IR QFT is entirely determined by the self-interaction potential V (φ). In the

case of the quartic potential (6.42) – which is characterized by two extrema –

the IR QFT has the form of a further CFT. In the case of the exponential

potential (6.11), the IR QFT is characterized by hyperscaling violation. In

the case of the quadratic potential (6.10), the characterization of the IR QFT

is much less clear because of the absence of scaling symmetries.
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The characterization of the dual QFT at finite temperature is much more

involved. In this case we have generically nonconformal boundary conditions

for the scalar field and the asymptotic AdS isometries are broken. Nonethe-

less, an asymptotic time-like killing vector exists and both the UV and the

IR QFT should admit a description in terms of multi-trace deformations of

a CFT.

On the other hand we have shown that the ground state and finite-T

states are not continuously connected. This means that we are dealing here

with two different disjoint sets of theories.

This picture changes completely when one adds a finite charge density.

Now the boundary conditions for the scalar field can be arbitrarily chosen, for

instance in the form of the usual conformal Neumann or Dirichlet boundary

conditions. Thus, in the case of finite charge, we have the usual description

borrowed from the AdS/CFT correspondence with single trace operators dual

to the scalar field.

6.6.2 Scalar condensates and quantum criticality

The results of this chapter improve our understanding of quantum critical

points in EHTs. In particular they shed light on the phase structure of these

critical points proposed in Ref. [81] and on their stability.

The degeneracy of the ground state for uncharged BBs simply means

that at zero charge density the hyperscaling-violating critical point (or line)

and the hyperscaling-preserving critical point have the same energy. The

potential V for the scalar field determines completely the scaling symmetry

and the critical exponents of the hyperscaling-violating critical point. The

renormalization group flow from the UV conformal fixed point into the IR

introduces an emergent IR scale. Changing this IR scale produces a flow

of the constant mode of the scalar field. As already noted in Ref. [81], the

presence of this arbitrary scale implies that hyperscaling-violating critical

points appear as critical lines rather than critical points. On the other hand,
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for scalar-dressed BBs the ground state is isolated from the finite-T part of

the spectrum and the states at finite temperature are always energetically

disfavored with respect to the SAdS BB. Thus, at zero charge density there

is no phase transition between the hyperscaling-preserving phase and the

hyperscaling-violating phase.

Considering charged scalar BBs, i.e. introducing a finite charge density ρ

in the dual QFT, generates several effects. First of all the degeneracy of the

ground state is lifted and the ground state is not anymore isolated from the

T > 0 continuous branch of the spectrum. The change of the IR scale typical

of hyperscaling-violating critical lines now also produces a flow of the charge

density ρ. Although the critical exponents are modified by the presence of a

finite charge density (for instance the dynamical critical exponent z becomes

6= 1), the scaling symmetries characterizing the critical point are very similar

to those we have in the case of ρ = 0. The similarity between the ground

state geometries in the ρ 6= 0 and ρ = 0 case is even more striking in the

case of a covariant gauge coupling (the case of holographic superconductors).

In this latter case the metric and scalar part of the near-horizon solution is

exactly the same for ρ 6= 0 and ρ = 0.

The stability of the hyperscaling-violating critical line is a far more in-

volved question. It turns out that it depends crucially on the coupling be-

tween the scalar condensate and the EM field, i.e. on the two coupling

functions Z(φ) and Y (φ) in the action (6.1). In all cases that we have

considered with a minimal gauge coupling Z = 1, and in absence of U(1)-

symmetry breaking (Y = 0), the hyperscaling-preserving phase is always

energetically preferred with respect to the hyperscaling-violating one. In

this case, an IR phase transition between the hyperscaling-preserving phase

and the hyperscaling-violating phase does not occur.

Conversely, in the two cases of a nonminimal gauge coupling behav-

ing exponentially in the IR (Z ∼ eaφ, Y = 0) and covariant gauge cou-

pling (Z = 1, Y ∼ φ2), the hyperscaling-violating phase is energetically



Concluding remarks 161

preferred. This gives, respectively, the IR phase transitions between the

hyperscaling-preserving phase and the hyperscaling-violating phase found in

Ref. [23] and the well-known superconducting phase transition of Ref. [18–

20, 129]. On the other hand, considering charged BBs at finite temperature,

the critical temperature of the phase transition between the hyperscaling-

preserving/hyperscaling-violating phases is settled by the charge density ρ

[23], i.e by the IR emergent scale typical of the hyperscaling-violating critical

line.

Summarizing, our results strongly indicate that for EHTs described by

(6.1), the three coupling functions V (φ), Z(φ), Y (φ) determine different fea-

tures of holographic quantum critical points. The self-interaction potential

V (φ) determines the scaling symmetries but not the stability of hyperscaling-

violating phases. Conversely Z and Y are crucial in determining the stability,

the breaking of the U(1) symmetry and the characterization as fractionalized

or cohesive of the hyperscaling-violating phase.
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6.7 Appendix: Uncharged perturbative solu-

tions in the small scalar field limit

In the neutral case, it is possible to construct analytical BB solutions in the

small scalar field limit perturbatively, i.e. expanding the solution as follows:

λ(r) =
r2

L2
− M

2r
+ ε2λ2(r) , (6.68)

H(r) = r + ε2H2(r) , (6.69)

φ(r) = εφ1(r) , (6.70)

where ε is a book-keeping parameter of the expansion. The solution for the

scalar field can be obtained by solving the scalar equation at first order. The

regular solution can then be inserted into the Einstein equations that, to

second order, can be solved for λ2 and H2.

Let us start with the T = 0 AdS4 vacuum, i.e. we set M = 0 in the

equations above. To second order in the scalar field, the solution reads:

λ(r) =
r2

L2
+

(
− O2

1

4L2
− O2

2

6L2r2
+

2rC1

L2
+
C2

r

)
ε2 +O(ε4) , (6.71)

H(r) = r +

(
− O2

2

12r3
− O1O2

6r2
− O2

1

8r
+ C1 + rC2

)
ε2 +O(ε4) , (6.72)

φ(r) = ε

(
O1

r
+
O2

r2

)
+O(ε3) , (6.73)

where Ci are integration constants. This is a solution for the classes of

potentials presented in the main text. Although not presented, the solutions

can be obtained in closed form at least to fourth order. The constant C1

can be set to zero by performing a coordinate translation such that the

asymptotic form of the metric reads as in Eq. (6.17) with C2 = −m0/2,

being related to the metric contribution to the gravitational mass and after

a rescaling H → H/(1 + ε2C2), which can be performed by rescaling the
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transverse coordinates. Interestingly, there exists an event horizon, so the

solution represents a BB endowed with a scalar field. Let us consider two

cases separately: O2 = 0 and O2 = O2(O1) (without loss of generality, we

assume O2 ≥ 0). For the latter case, the horizon is located at:

rh =

√
O2ε

61/4
+

√
3m0

4
√

2O2

ε+
31/4 (4O2

1O
2
2 − 3m2

0)

23/432O
5/2
2

ε3/2 +O(ε5/2) , (6.74)

and, to first order, the temperature of the solution is:

T =

√
O2

√
ε

61/4π
. (6.75)

On the other hand, if O2 = 0, the horizon and the temperature read:

rh =
m

1/3
0 ε2/3

21/3
+

O2
1ε

4/3

22/36m
1/3
0

, (6.76)

T =
3m

1/3
0 ε2/3

21/34π
+

O4
1ε

2

96m0π
. (6.77)

In general, these solutions describe a BB whose horizon shrinks to zero

in the Oi → 0 limit. The total mass of the BB is given by Eq. (6.14) and it

coincides with m0 when O2 = 0. It is interesting to compare the free energy

of this solution with that of a SAdS BB at the same temperature. When

O2 6= 0, we obtain:

F − F0 =
37(εO2)3/2

63/427
+O(ε2) , (6.78)

so that F > F0 for any O2 6= 0 and the dressed solution is always energetically

disfavored. Note that this result is valid for any boundary condition O2 =

O2(O1) 6= 0 and for any scalar potential whose expansion reads V ∼ −6/L2−
φ2/L2. On the other hand, if O2 = 0, F = F0 to second order in O1, so that

the two solutions are degenerate.
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Finally, we can adopt the same technique to construct perturbative so-

lutions of the SAdS BB at finite temperature. At first order, the general

solution of the scalar field equation reads:

φ1 = αP−1/3

[
r3/(L2M)− 1

]
+ βQ−1/3

[
r3/(L2M)− 1

]
, (6.79)

where Pn and Qn are Legendre functions of order n and α and β are integra-

tion constants. Imposing regularity at the horizon rh = (2L2M)1/3 requires

β = 0. In principle, this solution can be inserted in the Einstein equations

in order to obtain two equations for H2(r) and λ2(r). Unfortunately, these

equations do not appear to be solved in closed form.



Conclusions

In this thesis we have investigated several aspects of Einstein-scalar gravity

models, and related “hairy” black brane solutions, both from a pure gravita-

tional point of view and from the perspective of possible holographic appli-

cations, motivated by recent applications of the AdS/CFT correspondence.

We found some interesting original results that we summarize now.

In the Part I we have focused our attention on gravitational aspects, pre-

senting several new black brane solutions with scalar hair, and studying their

main features. In particular, in Chapter 2 we proposed a new general method

for obtaining exact solutions of Einstein and Einstein-Maxwell gravity min-

imally coupled to a scalar field. The particularity of this method is that it

imposes to fix a priori the general form of the scalar field, for determining

the metric functions and the potential. Usually one starts from an opposite

approach (with the potential as an input and the scalar field an output),

but in this way it is possible, starting from several forms for the scalar field,

to find exact solutions. Moreover, the method is suitable for applications of

AdS/CFT, because in these cases what is most important is not the form

of the potential, but the behavior (especially asymptotic) of the scalar field,

which can be interpreted, in the dual field theory, as a running coupling

constant or as a scalar condensate. We applied the method for deriving

broad classes of new exact black brane and black hole solutions with scalar

hair. In particular, we get solutions both in four and in a generic number

d of dimensions, and with different asymptotic behavior (AdS, domain wall,
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Lifshitz-like).

Furthermore, our method allowed us to formulate a new important no-hair

theorem about the general existence of black hole and black brane solutions,

that puts some constraints in particular about the existence of uncharged

asymptotically AdS black brane solutions. This result is particularly impor-

tant because it represents an useful guideline in the search for new black

brane solutions with scalar hair, which represent scalar condensates in the

dual QFT.

In Chapter 3 we presented an exactly integrable fake SUGRA model of

Einstein-scalar gravity and derived a black brane solution, using a more tra-

ditional approach. In this approach, the field equations for static, spherically

symmetric solutions are reduced to an integrable dynamical system, namely

a Toda lattice system. The most interesting feature of the solution is that

its extremal limit is a regular scalar soliton interpolating between a non-AdS

domain wall behavior at r = ∞ and an AdS solution at r = 0. In terms of

the dual QFT this means that we have an IR conformal fixed point and an

UV hyperscaling-violating phase.

In the Part II we studied other black brane solutions with scalar hair, but

focusing more on the holographic applications. In Chapter 5 we considered

an extension to a generic number of dimensions of the model presented in

the Chapter 3. Studying the thermodynamics of the exact black brane solu-

tions we showed that, in a certain range of the parameter of the potential,

one observes a phase transition between the background Schwarzschild-AdS

(SAdS) black brane solution (without scalar hair) and the “scalar-dressed”

black brane solution, with the latter becoming energetically favoured at high

temperatures. Actually, the correct physical interpretation of this phase

transition remains quite involved, because the two phases (the SAdS and the

hairy black branes) are characterized by two different asymptotic behavior.

From the holographic point of view, the black brane solution (when is

stable) describes a field theory with hyperscaling violation in the ultraviolet
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regime, while the hyperscaling violation critical exponent θ is negative. Also

here, the interpretation of this result is problematic, because a negative value

of θ corresponds to an anomalous “raising” of the effective dimensions of the

theory and has no analogue in real condensed matter systems.

Finally, in Chapter 6 we investigated a very general class of models with

black brane solutions asymptotically AdS, focusing on the IR behavior of

the black branes spectrum. Firstly, we studied the spectrum of energy of

these solutions. We found that for zero charge density the extremal T = 0

black brane solutions have always zero mass, so are degenerate with the

AdS vacuum, and are isolated from the continuous part of the spectrum. In

presence of a finite charge density, the degeneracy is removed and the T = 0

ground state is not anymore isolated. We have checked these general results

performing some numerical solutions with different potentials. In particular

we found complete agreement with the no-hair theorem shown in Chapter 2.

Our results have improved our understanding of quantum critical points

in effective holographic theories. The study of the stability of these solu-

tions, in particular the charged ones, compared with the results of some

recent works [23, 129], seem to indicate that the scalar-dressed black brane

solutions can be energetically favoured against the Reissner-Nordström-AdS

BB only in presence of a covariant or nonminmal coupling between the scalar

field and the EM field. As the stability of the scalar-dressed phase against

the AdS undressed background phase is a necessary condition for having a

physically-relevant phase transition in the dual field theory, these results are

very important for selecting the bulk gravity models which can produce in

the dual QFT physically interesting phase transitions.
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Open problems

We close the thesis with a list of open problems, in part already mentioned in

the previous chapters, both concerning the gravitational solutions and about

the holographic applications.

• The general method presented in Chapter 2, in some cases, does not al-

low to find full finite-temperature families of black hole and black brane

solutions, but only extremal solutions with T = 0 (see for example the

solutions described in Sects. 2.5.1, 2.5.2 and 2.5.3). The existence of

the full spectrum of solutions for these models should be investigated

numerically. Actually, in Chapter 6 we have seen that the difficulty of

generating analitically the full spectrum of solutions is related to its IR

behavior and we have derived finite-temperature numerical solutions

for a model studied in Sect. 2.5.1. However, could be interesting to

verify the existence of these finite-temperature solutions also for other

models.

• A very puzzling point, as we have pointed out more times in this the-

sis, is to find the correct holographic interpretation of the black brane

solutions described in Chapters 3 and 5 (respectively in four and in

generic d dimensions). In particular, what is the physical interpreta-

tion of a negative value for the hyperscaling violation critical exponent

θ? And, mostly, there exists a real condensed matter system which

could describe, holographically, a gravitational solution of this kind?

Actually, it is likely that this class of solutions could be more inter-

esting for understanding some peculiarities of the gravitational inter-

action (e.g. its holographic nature) rather than for condensed matter

applications. Support to this point of view has been given in a recent

paper [131], where it has been argued that after analytic continuation

the black brane solutions of these models produce FLRW cosmological

solutions, which could be used to model inflation.
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• We have seen from Chapter 6, on the base of analytical and numerical

solutions, that the problem of the stability of the various phases (AdS,

superconducting, hyperscaling-violating) is a rather involved issue to

which we could not give a definite answer. We have argued that the

relevant information about stability is encoded in the coupling functions

between the Maxwell and the scalar field. Our results strongly indicate

that in the case of U(1)-symmetry breaking and minimal coupling, at

low temperature, the superconducting phase is preferred, whereas in the

case of nonminimal coupling and real scalar the hyperscaling-violating

phase is preferred.

An important question is: are these results completely general? Can

we prove them in an exact way by imposing on the coupling functions

appropriate constraints?
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