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Introduction  

 

 

 

 

Infection with the hepatitis C virus (HCV) is currently a major cause of chronic hepatitis , 

cirrhosis, end-stage liver disease and hepatocellular carcinoma in most Western Countries 

where it represents the most frequent reason for liver transplantation. The global 

prevalence of HCV averages 3%, with an estimated nearly 300 million persons infected 

worldwide (1,2,3). Although universal screening of blood donors in developed countries 

and improvements in infection control measure have significantly decrease exposure to the 

virus, the large reservoir of chronically infected individuals, the high evolutionary potential 

of the virus, the lack of routine screening of blood products in the developing countries, the 

use of traditional medicine and tattoing in some culture, the increasing fluxes of 

immigration from endemic areas to less prevalent regions strongly support the hypothesis 

that HCV is still spreading throughout the world. One striking characteristic of HCV 

infection is its high chronicity rate. HCV establishes persistent infection in up to 85% of 

infected individuals. The clinical features associated with chronic HCV infection are 

highly heterogeneous and the natural course of the underlying liver disease is also 

extremely variable and still not fully understood. Some patients remain HCV viremic 

without biochemical evidence of liver damage; some seem to have a static form of chronic 

hepatitis characterized by persistently elevated aminotransferase levels without overt 

symptoms or disease advancement; some progress over a period to histologic fibrosis and 

cirrhosis; some have long-term stable cirrhosis identified only through liver biopsy; some 

have progressive cirrhosis that culminates in liver failure; and, finally, some develop 

hepatocellular carcinoma. It is estimated that 15 to 20 % of chronically infected individuals 

undergo liver cirrhosis in a decade or so after infection, with hepatocellular carcinoma 

arising from cirrhosis at an estimated rate of 1 to 4% per year (4).  

HCV is an enveloped positive-strand RNA virus of the genus Hepacivirus in the family 

Flaviviridae. The HCV genome is comprised of a positive-stranded RNA molecule of 

about 9500 nucleotides (5) containing a single long translational open reading frame (ORF) 

that encodes a large polypeptide of approximately 3000 amino acids, beginning with the 

first in-frame methionine codon (6-8) bounded by 5’ and 3’ untranslated regions of 

approximately 341 nucleotides (fig 1). Analysis of the structure of HCV particles has been 



hampered by the low titre of virus in infectious sera and the difficulties of replicating the 

virus in culture system. It is likely that HCV is an enveloped icosahedral virus. However, 

detailed structural analysis of HCV virions is still lacking. Particles with a diameter of 45-

65 nm have been observed by electron microscopy in human plasma (9) and in chimpanzee 

and human liver chronically infected with HCV (10,11). HCV-like particles have been 

detected in experimentally infected (9) or transfected cell lines (12). There is evidence that 

HCV particles are present in the circulation as immune complexes (13) or in association 

with serum lipoproteins (14-17). The large ORF extends throughout most of the HCV 

RNA genomic sequence and encodes a polypeptide of between 3010 and 3033 amino 

acids, depending on the source of viral isolate. ORF encodes a polyprotein precursor that is 

processed co- and post-translationally to yield a variety of structural and non- structural 

(NS) protein (Fig 2). Structural proteins are processed from the N-terminal region of the 

HCV polyprotein precursor, beginning with an RNA-binding nucleocapsid polypeptide of 

basic charge (Core; ca. 23 kDa) followed by two glycoproteins-E1 (33-35 kDa) and E2 

(68-72 kDa). Additional proteins derived from core, 21 kDa and 17 kDa and a 7 kDa 

protein (p7) wich lies between E2 and NS2 have also been found. The non-structural (NS) 

proteins, NS2, NS3, NS4A, NS4B, NS5A, and NS5B, are generated by proteases encoded 

by the virus. NS2 is a metallo protease that cleaves, in cis, its junction with NS3. NS3 is a 

serine proteinase that cleaves  its junction with NS4A, in cis, the other junctions in trans. 

The function of NS4B protein is not yet clear. NS5A has been implicated as having a role 

in inhibiting host cell responses to IFN. NS5B is the RNA-dependent RNA polymerase. 

The numbering of the NS proteins is derived historically from studies on viruses belonging 

to the genus flavivirus. HCV and pestivirus do not possess an NS1. The processing of the 

putative region of the HCV polyprotein is mediated at least in part by the host signal 

peptidases. E1 and E2 are essential components of the HCV virion envelope and they are 

necessary for virion entry into host cells by direct receptor binding and possibly for 

membrane fusion. Internal signal sequences upstream of the E1 and E2 proteins direct the 

polyprotein precursor to the endoplasmic reticulum (ER), where they are translocated into 

the lumen, and after signal sequence cleavage (18) they remain anchored inside the lumen 

(18,19). E1 and E2 are integral membrane proteins and are glycosylated in the ER lumen. 

E1 and E2 have binding sites for low-density lipoprotein and E1 additionally for high-

density lipoprotein. E1 and E2 are cotranslationally separated from each other before they 

assume their complex conformation as heterodimers in the ER (20). E1 and E2 or their 

heterodimer are not secret and must be extracted from transfected animal cells (21). It 



cannot be excluded that mature HCV particles have a different structure than that deduced 

from data on vitro expression and from analogies with other genera of the Flaviviridae. 

The C-terminal region of E1 domain is very hydrophobic and terminates with the 

hydrophobic E2 signal sequence, which is cleaved by signal peptidase upon translocation 

into the ER lumen. E1 and E2 proteins can be co-precipitated by antibodies against E1 or 

E2 when they are expressed together, indicating that these two proteins are associated in 

HCV-infecetd cells. E1 and E2 were predominantly located in the ER rather than at the cell 

surface, suggesting that there may be mechanism for retention of these proteins in this 

compartment and that they are not translocated beyond the Golgi. This fact support the 

hypothesis that the HCV buds from the endoplasmic reticulum and is released from cells 

via the endocytosis pathway. E2 protein binds to CD81, a tetraspanin which is present on 

the surface of B lymphocytes and hepatocytes. Binding of CD 81 by E2 induced the 

aggregation of lymphocytes and inhibited B-cell proliferation (22) and blocked natural 

killer cell activation, cytokine production and cytotoxic granular release and proliferation 

(23,24). This suggests that E2 inhibition of cells of the immune system may be an evasion 

strategy by HCV to establish chronic infection. But there are indication that CD 81 is not 

the main/only receptor fro HCV (25,26). 

The HCV genome exhibits a considerable degree of sequence variation, and on the basis of 

these variants, HCV is classified into at least six phylogenetically distinct genotypes which 

in turn are subdivided into numerous, more than 60, subtypes (27). Viral sequences have 

been shown to vary up to more than 30% across the entire genome among genotypes, 20% 

among subtypes, and up to 10% within a subtype(27,28). Moreover, the HCV genome in 

single hosts is described as a dynamic population of different but closely related genomes 

designated quasispecies (29). The high variability of HCV is attributed to a limited fidelity 

of the RNA dependent RNA polymerase encoded by non-structural protein NS5B, and a 

high rate of viral replication. A model of viral kinetics led to the estimation that more than 

1012 virions with a virion half-life of 2.7 h are produced each day in an infected person 

(30). HCV variability plays a crucial role in escaping the host immune surveillance and 

establishing persistent infection. This quasispecies composition undergoes extensive 

variations during the course of chronic infection, which may result from the accumulation 

of random substitutions or from changes in the predominant quasispecies population under 

the selective pressure of the immune response. Beside the overall variability of the HCV 

genome, hypervariability exists in the 27 amino acid long hypervariable region-1 (HVR-1) 

located at the N terminus of glycoprotein E2. HVR-1 displays marked sequence variability 



with as many as 1.5 X 10-2 excanges/year in HVR-1 and only 0.9 to 5.2 X 10-3 in E1 (31). 

HVR-1 is one of the main targets of immune response against HCV. It is thought to 

contain a putative immunodominant linearB-cell epitope recognized by neutralizing 

antibodies (32-35). It has been proposed that escape mutations in HVR-1 evade the limited 

cross-reactivity of the antibody response and play a key role in the establishment of 

persistent infection (36,37). However,  the biological role of HVR-1 remains unclear.  

HVR-1 has usually served as the sequence basis for quasispecies analysis to monitor virus 

evolution, disease progression, and therapy response. It is important to understand whether 

there are any genetic differences that might account for the different clinical course of 

chronic HCV infection. A number of previous study have investigated the HVR-1 

quasispecies evolution in different clinical setting and according to therapy outcome. 

However, the findings of these studies have been somewhat contradictory. In the present 

study, we evaluated the molecular evolution of HVR-1 quasipsecies in different outcome 

of HCV infection testing some novel bioinformatics tools.   

 

 

Patients 

 

We downloaded E1E2 RNA serum sequences from the HCV sequence database of the Los 

Alamos National Laboratory of 5 patients with different outcome of HCV infection. All the 

patients were drawing from the cohort studied by Farci et al (38). Briefly, serial serum 

samples were obtained from 2 patients with a mild and stable disease for more than 20 

years (slow progressor), and from 3 

patients with severe disease leading to liver-related death within 5 years of the onset of 

infection (rapid progressor). For all patients in the database were present the first available 

polymerase chain reaction positive sample (within 2 to 5 weeks of transfusion, time point 

zero), one sample before antibody seroconversion (time point 1), and one sample after 

antibody seroconversion (time point 2). For each time point a mean of 9.7 molecular clones 

were available for the analysis. All 5 patients were infected with HCV genotype 1,  3 

patients with subtype 1a (1 slow progressor, and 2 rapid progressor), and the remaining 2 

patients were infected with subtype 1b (1 slow and 1 rapid progressor). All the sequences 

were 558 nucleotides in length, starting from position 1293 and ending to position 1850 

(start coordinates based on H77 accession number NC004102).  

 



 

Computer analysis 

 

 

Mutation Master : Mutation Master generates profiles of point mutations in a population 

of sequences and produces a set of visual displays and tables indicating the number, 

frequency, and character of substitutions. It can be used to analyze hundreds of sequences 

at a time. Mutation Master sorts and counts the mutations and presents this information in a 

series of graphs and tables. In the Rank Order and Frequency Plot , the height of the red 

bar indicates the fraction of the population with the most common substitution. The 

frequency of the second most common mutation is indicated by the height of a yellow bar. 

Heights of orange, green, and blue bars indicate the frequency of successively less 

common mutations. The program also tabulates the percentage of sequences with each 

substitution (up to a maximum of six). The exact number of different amino acids at each 

site is given in the “Number of Amino Acids Plot”. This counting feature aids the detection 

of highly conserved domains and domains with limited diversity. In the BLOSUM Score 

Plot, Mutation Master identifies each mutation and provides information about its 

conservative or nonconservative nature. The major substitutions at each position are scored 

according to the appropriate BLOSUM table. Positive numbers indicate a conservative 

substitution, and negative numbers a nonconservative substitution. The colour of each box 

corresponds to that used by the 

Rank Order and Frequency Plot to indicate the relative frequency of each substitution. The 

position of each amino acid is recorded. A second line of numbers indicates the total 

number of mutant amino acids at each position. BLOSUM tables contain information 

about the frequency of various mutations in families of related proteins. Commonly 

observed mutations have BLOSUM scores that are positive numbers or zero; rare 

mutations have BLOSUM scores that are negative numbers. BLOSUM scores depend upon 

the overall conservation of the family of proteins under consideration. In the BLOSUM 

tables, the highest score is typically that of the wild-type amino acid, and the lowest score 

is that of a very rare substitution that is likely to alter the structure/function of a protein 

(such as a highly charged basic amino acid in the place of a 

bulky hydrophobic amino acid). If a position has more than four mutant amino acids, a 

blank appears in this line of numbers. 



Logos analysis: Sequence logo were invented by Tom Schneider and Mike Stephens to 

display patterns in sequence conservation, and to assist in discovering and analyzing those 

patterns. The object of a sequence logo is to visualize the information contained in a set of 

DNA, RNA, or protein sequences by examining the order and frequency of the chemical 

subunits which make up the sequences. The name “sequence logo” comes from the fact 

that a set of sequences is being represented as a single graphic which contains one or more 

separate elements. The sequence logo functions by graphically representing the 

conservation of a set of sequences in a clear, concise and mathematically sound manner. 

Sequence logos are generated by programs which look at the sequences and analyze them 

using the information theory developed by Claude Shannon. The process of generating a 

sequence logo is somewhat similar to that of creating a consensus sequence, but unlike a 

consensus, subtle feature of the data are retained. The logo generation form can process 

RNA, DNA, or multiple sequence alignments provided in either FASTA or CLUSTAL 

formats. A logo represents each column of the alignment by a stack of letters, with the 

height of each letter proportional to the sequence conservation, measured in bits, at that 

position. The letters of each stack are ordered from most to least frequent, so that one may 

read the consensus sequence from the tops of the stacks. Shannon entropy is a simple 

quantitative measure of uncertainty in a data set. One qualitative way to think about it in 

terms of sequences is that if a sample set is drawn from a large population, the Shannon 

entropy could be considered as a measure indicative of the ability to guess what amino 

acids would be in the next sequence took from the population, based on the previous 

sampling.  

 

 

Results 

 

The mean number of nucleotides and amino acids mutations did not differ significantly 

between slow and rapid progressor  in the first available PCR-positive sample, in the pre-

antibody seroconversion sample and similarly in the sample after the antibody 

seroconversion. When we focused the analysis on the HVR-1 region a trend toward an 

increase in the mean number of mutations is noted after antibody seroconversion, both at 

the nucleotides and amino acids level, despite the difference did not reach the statistical 

significance (p=0.09). To evaluate the intra-sample changes over time of sequence 

variability, we next calculated the average number of nucleotide and amino acid changes 



from the consensus sequence at time point zero with the sequences in each group for each 

time point. After antibody seroconversion, patients with rapid disease progression showed 

a statistically significant increase in the mean number of mutations both at nucleotide 

(p=0.02) and amino acid level (p=0.003), whereas those with mild and stable disease did 

not show any significant difference. The mean number of mutations did not differ 

significantly in the pre-antibody seroconversion sample in both groups. We next looked at 

differences in Shannon entropy between slow and rapid progressor in HVR-1 region after 

antibody seroconversion (Fig.3). At 29 nucleotide positions (shown in red in the figure) the 

two sets differed significantly in the degree of conservation. Interestingly, nine of these 

sites showed greater conservation in the rapid progressor group. A positive value indicates 

greater conservation in the rapid progressor sequence set. When the difference in Shannon 

entropy was assessed in the group of patients with severe and rapidly progressive disease 

in the first available PCR-positive sample and after antibody seroconversion the 

differences was statistically significant at 7 nucleotides positions. The position 44 showed 

a greater conservation after antibody seroconversion (Fig.4). Successively, we investigated 

the number, frequency, and character of amino acid substitutions in HVR-1 region in both 

study groups (Fig.5). It allowed to point out some interesting differences that deserve 

further investigation. Particularly noteworthy the difference at position 12 and 15. In fact at 

position 15 the consensus amino acid in the set of slow progressor was Glycine , and it is 

completely conserved throughout each time point. In the set of rapid progressor the 

consensus amino acid was Glycine again in the first available PCR-positive sample but 

changed in Serine after antibody seroconversion. Moreover the codon showed an 

increasing frequency of mutation going to antibody seroconversion. A similar pattern was 

show at the position 12. That is, in the set of sequences of patients with slow and mild 

disease the amino acid site is completely stable over time, whereas in the set of sequences 

from patients with severe and rapidly progressive disease the site undergoes increasing 

changes. Several amino acid sites were highlighted in the interest score graph in both 

group as uncommon amino acid pattern. Additionally we assessed the logo analysis 

(Fig.6). We performed Chi Square test to determine whether there was any position within 

HVR-1 that showed a composition that differed statistically between the sequences sets. 

The results for positions 12 and 15 were statistically significant (p=0.01 and p=0.006, 

respectively).  

 

 



 

Conclusion 

 

Using several bioinformatics approach, a quasispecies analysis of E1/E2 envelope protein 

and, in particular, of HVR-1 region is performed in samples from five patients presenting 

different natural course of HCV chronic infection. We reconfirm a trend toward an 

increase in the degree of viral diversity  after antibody seroconversion in patient that 

exhibit the more unfavourable outcome.  This is particularly relevant in the HVR1 region, 

where there is a statistically significant association between the mean number of mutation 

and poor disease outcome. Viral sequence changes likely represent selective transmission 

or outgrowth of particular clones of quasispecies rather than the novo mutations, with 

unselective acceptance of synonymous sequence polymorphisms but conservation of the 

predominant, functional amino acid sequence. The study of Farci et al, source of our 

patients, already revealed that the mean number of nonsynonymous substitutions per site 

per week within HVR-1 was significantly higher in progressing hepatitis (38). In expressed 

genes the rate of nonsynonumpus changes also reflects functional constraints acting in a 

dynamic interplay between conservative and evolutionary selective pressure. Several 

studies have analyzed the dN/dS ratio from patients with different outcomes and found that 

patients with persistent disease tend to have a higher dN/dS ratio in HVR-1 than patients 

who resolved infection, suggesting the action of continual immune-driven positive 

selection. Moreover specific virus-cell receptor interaction could play a crucial role in 

determining the immune response and the cellular activation. Interestingly, there are some 

uncommon and specific residues substitutions in HVR-1 region of patients with severe 

disease that may play an important structural and functional role given that these position 

are highly conserved among sequences of patients with mild disease. It is reasonable to 

suggest that the mutation could represent an adaptation of this region in the interaction 

with other molecules. More intesives studies in a well definite setting of patients are 

necessary to clear the role of HVR-1 quasispecies evolution during the natural course of 

HCV infection. 
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Start coordinates, based on H77 (accession NC_004102), from Fields' Virology. Structures of 3'UTR (based on Kolykhalov 
1996) and 5'UTR (Honda 1996 ) adapted from a figure provided by Stuart Ray. Other features based on Major & Feinstone, 
1997 and You et al, 2004. 
 
 

 
Figure 1  Annoteted genomic map of HCV 
From http://hcv.lanl.gov 
 



 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2  HCV genes and gene products 
From: Lindenbach BD, Rice CM. Unravelling hepatitis C virus replication from 
genome to function. Nature. 2005 Aug 18;436(7053):933-8. 



Entropy difference in the HVR-1 nt sequences between Slow and Rapid 
Progressor after antibody seroconversion 

 
 

Fig. 3: A positive value indicates greater conservation in the Rapid progressor sequence set. 
The Slow progressor set contained 18 clones from 2 patients. The Rapid progressor set 
contained 28 clones from 3 patients 
 



 
 

Entropy difference in the HVR-1 nt sequences between Rapid 
Progressor at different time point 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: : A positive value indicates greater conservation in the Rapid progressor after antibody seroconversion. The Rapid progressor set 
contained 30 clones at time point zero and 28 clones at time point 2  



 

Slow progressor time point zero 

Fig.5a 



 

Slow progressor after antibody  seroconversion 

Fig.5b 



 

Rapid progressor time point zero 

Fig.5c 



 

Rapid progressor after antibody seroconversion 

Fig.5d 



 
Fig.6 : LOGO of the HVR-1 protein. The taller the letter, the higher the frequency of the amino acid in that position 
 

LOGO of Rapid progressor; time point 
zero 

LOGO of Slow progressor; time point 
2 

LOGO of Slow progressor; time point 
zero 

LOGO of Rapid progressor; time point 
2 


