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INTRODUCTION 

 

Prion diseases, also known as Transmissible Spongiform Encephalopathies (TSEs), 

are a group of progressive and invariably fatal neurodegenerative diseases that 

affect both humans and animals. Most TSEs are characterized by a long 

incubation period and a neuropathologic feature of multifocal spongiform 

changes, astrogliosis, neuronal loss, and absence of inflammatory reaction. TSEs 

in humans include Creutzfeldt-Jakob disease (CJD), kuru, Gerstmann-Straussler-

Scheinker syndrome (GSS), Fatal Familial Insomnia (FFI), and new variant CJD 

(nvCJD). 

TSEs described in animals include scrapie in sheep and goats, transmissible mink 

encephalopathy, chronic wasting disease in deer and elk, bovine spongiform 

encephalopathy (BSE, commonly known as “mad-cow” disease), exotic ungulate 

spongiform encephalopathy, and feline spongiform encephalopathy in cats, albino 

tigers, pumas, and cheetahs. The reported ungulate and feline spongiform 

encephalopathies appear to represent transmission of the BSE agent to these 

animals (Belay, 1999).  

Prion diseases are biologically unique in that the disease process can be triggered 

through inherited germline mutations in the human prion protein gene (PRNP), 

infection (by inoculation, or in some cases by dietary exposure) with tissue 

containing a protease-resistant form of host-derived prion protein, or by rare 

sporadic events that generate PrPSc (Wadsworth et al. 2003). 

Prion diseases do not characteristically elicit an immune response by the host, 

and the mechanism of brain damage is poorly understood. However, progressive 

neuronal accumulation of the disease-associated prions may damage neurons 

directly, and diminished availability of the normal prion protein may interfere 

with the presumed neuroprotective effect of the normal prion protein, 

contributing to the underlying neurodegenerative process (Belay et al. 2005). 
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The TSE typically have long incubation periods of months (rodents, cats), years 

(cattle, sheep, deer), or decades (man), so clinical signs usually are evident in 

older animals (Novakofski et al., 2005).  

 

Characteristics and Structure of Prion Protein 

The nature of the transmissible agent has been a subject of intense and heated 

debate for many years. The initial assumption that it must be viral was 

challenged, however, both by the failure to directly demonstrate a virus (or an 

immunological response) and because the transmissible agent was resistant to 

treatments which inactivate nucleic acids (such as ultraviolet radiation or 

treatment with nucleases). These remarkable findings led to suggestions in 1966 

by Tikvar Alper and others that the transmissible agent may be devoid of nucleic 

acid and led John Griffith to suggest in 1967 that the transmissible agent may in 

fact be composed entirely of protein. In this remarkable letter to Nature, he 

proposed three hypothetical mechanisms for propagation of such an agent, one 

of which closely mirrors current thinking; indeed his model also presciently 

predicted the existence of distinct strains of agent. Needless to say, such a 

proposal met with great scepticism at the time, in what was the heyday of the 

‘‘central dogma’’ of biology: that DNA encodes RNA that in turn encodes protein. 

More than a decade later this remarkable proposal was lent biochemical 

credibility by intensive purification studies allied with laborious rodent bioassay. 

Progressive enrichment of brain homogenates for infectivity resulted in the 

isolation of a protease resistant glycoprotein, designated the prion protein (PrP) 

by Prusiner and co-workers in 1982 (Table 1). This protein was the major 

constituent of infective fractions and was found to accumulate in affected 

brains and sometimes to form amyloid deposits. The term prion (from 

proteinaceous infectious only) was proposed to distinguish the infectious 

pathogen from viruses or viroids. Prions were defined as ‘‘small proteinaceous  
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infectious particles that resist inactivation by procedures which modify nucleic 

acids’’ (Collinge, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Essential Chronology of Prion Research

Mid 18th century Earliest description of scrapie recorded
1898 Neuronal vacuolation discovered in brains of scrapie-sick sheep
1918 Contagious spread of scrapie suspected under natural conditions
1920 First possible cases of CJD described (Creutzfeldt 1920; Jakob 1921).
1937 Scrapie epidemic in Scotland following administration of formalin-treated louping ill

vaccine prepared from sheep brain
1939 Experimental transmission of scrapie reported (Cuille and Chelle 1939)
1955–57 Kuru discovered among Fore people of Papua New Guinea (Gajdusek and Zigas 1957)
1959 Similarities between Kuru and scrapie noted (Hadlow 1959)
1961 Multiple strains of scrapie agent described (Pattison and Millson 1961)
1961 Scrapie transmitted to mice (Chandler 1961)
1963 Transmission of Kuru to chimpanzees reported (Gajdusek et al. 1966)
1966 Scrapie agent found to be highly resistant to ionizing radiation and ultraviolet light (Alper et

al. 1966; Alper et al. 1967)
1967 First statement of the protein-only hypothesis (Griffith 1967)
1968 CJD transmitted to chimpanzees (Gibbs et al. 1968)

Description of Sinc gene affecting scrapie incubation period in mice (Dickinson et al. 1968)
1974 First documented iatrogenic prion transmission (corneal graft) (Duffy et al. 1974)
1980 Protease resistant, highly hydrophobic protein discovered in hamster brain fractions highly 

enriched for scrapie infectivity (Prusiner et al. 1980)
1982 Prion concept enunciated (Prusiner 1982)
1985 Gene encoding PrPC cloned (Chesebro et al. 1985; Oesch et al. 1985)
1986 PrPC and PrPSc isoforms shown to be encoded by same host gene (Basler et al. 1986)
1987 Linkage between Prnp and scrapie incubation period in mice (Westaway et al. 1987)

First report of BSE in cattle (Wells et al. 1987)
1989 Mutation in PrP linked to Gerstmann–Sträussler syndrome (Hsiao et al. 1989)

Importance of isologous PrPC/PrPSc interactions established (Scott et al. 1989)
1992 Ablation of Prnp by gene targeting in mice (Büeler et al. 1992)
1993 Prnp0/0 mice are resistant to scrapie inoculation (Büeler et al. 1993; Sailer et al. 1994)

Structural differences between PrPC and PrPSc isoforms noted (Pan et al. 1993)
1994 Cell-free conversion of PrPC to protease-resistant PrP (Kocisko et al. 1994)
1996 New variant of CJD identified (Will et al. 1996)

BSE prion strain carries a distinct glycotype signature (Collinge et al. 1996b)
First NMR structure of core murine PrPC solved (Riek et al. 1996)

1997 Evidence that nvCJD is caused by the BSE agent (Bruce et al. 1997; Hill et al. 1997)
B-lymphocytes necessary for peripheral prion pathogenesis (Klein et al. 1997)

1998 Genes controlling incubation period are congruent with Prnp (Moore et al. 1998)
1999 Discovery of the PrPC homolog (Moore et al. 1999)
2000 Temporary depletion of lymphoid follicular dendritic cells impairs prion replication
(Montrasio et al. 2000)

Experimental transmission of BSE in sheep by blood transfusion (Houston et al. 2000)
2001 Complement involved in prion pathogenesis (Klein et al. 2001; Mabbott et al. 2001)
2003 Transgenic expression of soluble PrP inhibits prion replication (Meier et al. 2003)
2005 Inflammation recognized as a modified of pathogenesis (Heikenwalder et al. 2005;

Ligios et al. 2005; Seeger et al. 2005)
Prion detection in blood by cyclic amplification (Castilla et al. 2005b)

(Aguzzi et al. 2006)
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Prion protein (PrPC) is a normal cellular protein that is expressed in the neurons 

and glia of the brain and spinal cord, as well as in several peripheral tissues and 

in leukocytes. PrP mRNA is first detectable in the brains of mice and chickens 

beginning early in embryogenesis, and its level increases as development 

proceeds. In the adult central nervous system, PrP and its mRNA are widely 

distributed, with particular concentrations in neocortical and hippocampal 

neurons, cerebellar Purkinje cells, and spinal motor (Harris, 1999). 

The PRNP gene is present in most, if not all, wild-type mammals and is highly 

conserved across species. The presence of the human and mouse PrP genes within 

conserved syntenic groups and the presence of a PrP gene in chicken argue that 

the PrP gene existed before the speciation of mammals. In mammals, DNA 

sequences of the open reading frames (ORFs) encoding PrP generally exhibit 

~90% similarity. As expected, the degree of similarity at the amino acid level 

increases to >95% when PrPs of different primates are compared but is much 

lower when human PrP is compared with that of a marsupial (~70%)  An even 

lower degree of homology is found when human PrP is compared with that of the 

chicken (~30%). Attempts to find PrP-related genes in lower eukaryotes have, to 

date, been unsuccessful (Lee et al. 1998) 

Endogenous PrP is encoded by a single exon of the PRNP gene, based on 

chromosome 20 in humans and on chromosome 2 in mice (Aguzzi et al., 2000), 

which codes for a 256- to 264-AA precursor of approximately 28 kDa that is 

processed by cleavage of a 22- to 24-AA signal peptide. This yields a mature 

protein of 231 to 253 AA (Novakofski et al 2005). 

The structure of mature PrPC from mice, humans, Syrian hamsters and cattle 

shares common features: a long, flexible N-terminal region (residues 23–128), 

three α-helices, and a two-stranded anti-parallel β-sheet that flanks the first α-

helix. The second β-sheet and the third α-helix are connected by a large loop 

with interesting structural properties. α-helices and a short anti-parallel β-sheet 
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are situated in the C-terminal domain which is stabilized by two cysteine 

residues at positions 179 and 214 forming a disulfide bond that links helices two 

and three (Collinge, 2005, Aguzzi et al., 2006).  

The N-terminal region contains five repeats of an 8 amino acid sequence (the 

octapeptide repeat region). Amplification of the number of octa repeats has 

been found in hereditary prion diseases such as familial Creutzfeldt-Jakob 

disease and Gerstmann-Straussler-Scheinker syndrome. While unstructured in 

the isolated molecule, this region is very highly conserved in evolution and 

contains two tight binding sites for Cu2+ ions (Fig. 1). It is proposed that the 

unstructured N-terminal region may acquire structure following copper binding 

and a role for PrP in copper metabolism or transport is possible. Disturbance of 

this function by the conformational transitions between isoforms of PrP could be 

involved in prion related neurotoxicity.  

 

Fig. 1 Anatomy of the prion protein 

PrP is a glycoprotein with two asparagine linked glycosylation sites, at position 

182 and 198, and is attached to the external cell surface via a glycosyl-

phosphatidyl-inositol (GPI) anchor (Collinge, 2005, Aguzzi et al., 2000). 
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The only difference between the two isoforms appears to be structural. While 

PrPC is predominantly α-helical (42%) with little β-sheet structure (3%), the 

pathological isoform (PrPSc) is mostly β-sheet (43%) with less α-helical structure 

(30%) and it has a tendency to polymerise into amyloid fibrils (Fig. 2) (Rymer et 

al., 2000). 

 
       Fig. 2 Conformational structure of PrPC (a) and PrPSc (b) 

 

Due to PrPSc altered conformation its most important hallmark is the partial 

resistance to degradation  by endoproteinases, such as proteinase K (PK), and for 

this reason is also called PrPres. This hallmark is the basis for most current 

methods of PrPSc detection (Novakofski et al., 2005).  

Depending on the particular prion strain, PK removes 55 to 70 residues from the 

N-terminal domain of PrPSc more or less efficiently: 

• the PK cleavage fragments of BSE derived PrPSc is by 1-2 kDa smaller in size 

than most scrapie-derived PrPSc fragments, indicating that the amino-terminal 

cleavage site varies between amino cid at position 85 and 100 

• the PK resistance of amino-terminally  truncated PrPSc varies between 

different prion strains, i.e. BSE PrPSc is comparatively less resistant towards PK 

digestion than PrPSc derived from most classical scrapie strains (Gretzschel et 

al., 2005). 
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Classically, after PK treatment PrPSc exhibits a typical 3-band pattern comprising 

18-30 kDa, equivalent to three glycoform: aglycosil, monoglycosil and diglycosil 

fractions. Nevertheless seems that only a minority of PrPSc molecules are 

protease resistant, and this indicates that PrPSc adopts both protease-resistant 

and –sensitive conformations (Scott et al., 2004). 

The central feature of prion disesases is the post-translational conversion of the 

normal host-encoded (PrPC), to the abnormal isoform PrPSc (Wadsworth et al., 

2003). To explain the mechanism by which a misfolded form of PrP could induce 

the refolding of “native”, normal PrP molecules into the abnormal conformation, 

two distinct models have been postulated (Fig. 3):  

• the template assistance or “refolding” model  

• the nucleation-polymerization or “seeding” model  

In the first model the conformational change is kinetically controlled; a high 

activation energy barrier prevents spontaneous conversion at detectable rates. 

Interaction with exogenously introduced PrPSc causes PrPC to undergo an induced 

conformational change to yield PrPSc..  

 
Figure 3. Models for the Conformational Conversion of PrPC into PrPSc. (A) The “refolding” or template assistance 
model postulates an interaction between exogenously introduced PrPSc and endogenous PrPC, which is induced to 
transform itself into further PrPSc. A high energy barrier may prevent spontaneous conversion of PrPC into PrPSc. (B) 
The “seeding” or nucleation-polymerization model proposes that PrPC and PrPSc are in a reversible thermodynamic 
equilibrium. Only if several monomeric PrPSc molecules are mounted into a highly ordered seed, further monomeric PrPSc 
can be recruited and eventually aggregates to amyloid. Within such a crystal-like seed, PrPSc becomes stabilized. 
Fragmentation of PrPSc aggregates increases the number of nuclei, which can recruit further PrPSc and thus results in 
apparent replication of the agent. ( Aguzzi et al., 2004) 
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This reaction may involve extensive unfolding and refolding of the protein to 

explain the postulated high energy barrier and could be dependent on an enzyme 

or chaperone, provisionally designated as Protein X.  

In the second model PrPC and PrPSc are in equilibrium strongly favouring PrPC. 

PrPSc is only stabilized when it adds onto a crystal-like aggregate of PrPSc acting 

as a seed in nucleation-dependent polymerisation process. Consistent with the 

latter model, cell-free conversion studies indicate that PrPSc aggregates are able 

to convert PrPC into a protease-resistant PrP isoform (Aguzzi e al., 2000). 

The latter form can, but does not always, aggregate to form amyloid plaques in 

the brain. TSE are one among many types of neurodegenerative diseases such as 

Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and familial 

amyloid polyneuropathy that exhibit highly structured proteinaceus aggregates. 

The relationship between infectivity, PrPC-converting activity and the size of 

various PrPSc-containing aggregates has been systematically investigated. In this 

analysis, PrPSc aggregates were partially fragmented, fractionated by size and 

assessed for infectivity and converting activity. The analysis revealed that 17–27 

nm sized (300–600 kDa) particles had the highest infectivity and converting 

activities, whereas these activities were substantially lower in large fibrils and 

virtually absentin oligomers containing ± 5 PrPSc molecules. Therefore, non-

fibrillary PrPSc-containing particles with masses equivalent to 14–28 molecules 

are the most efficient initiators of prion infection (Aguzzi et al. 2006). 

 

Prion Protein Functions 

The normal function of PrPC remains unknown, although has been implicated in 

protection from oxidative insults, apoptosis, cellular signalling, membrane 

excitability and synaptic transmission, neuritogenesis and  copper (II) transport 

or metabolism (Prado et al., 2004). There is some evidence that PrPC functions as 

a signal-transducing molecule. Structural similarities between PrPC and  
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membrane-anchored signal peptidases led to the suggestion that PrPC might 

function as a protease (Glatzel et al., 2005).   

It was also hypothesized that human genetic variability of prion protein might be 

related in the formation of long-term memory (Papassotiropoulos et al., 2005). 

Defining the physiological role of PrPC may be relevant to understanding the 

disease state, since the protein may fail to perform its normal function when it is 

converted to the PrPSc isoform. Mice in which the endogenous PrP gene has been 

disrupted display no gross developmental or anatomical defects but are reported 

to have electrophysiological and structural abnormalities in the hippocampus, loss 

of cerebellar Purkinje cells, alterations in circadian rhythm and sleep pattern and 

changes in learning and memory (Harris, 1999). Although it is not completely 

clear how conversion occurs from normal PrPC, into the abnormal and pathogenic 

isoform PrPSc, PrPC expression is absolutely necessary for development of prion 

disease; since knock out mice for the prion gene (PRNP0/0) are resistant to the 

disease (Milhavet et al., 2001)  

A recent work has shown that PrPC induces polarization in synapse development 

as well as in neuritogenesis in embryonic hippocampal neuron cultures. PrPC is also 

up-regulated after focal cerebral ischemia, and PrPC overexpression reduces the 

extent of neuronal loss after ischemic insult, suggesting that PrPC might confer a 

neuroprotective effect in certain contexts.  

In vivo, was observed that PrPC is expressed most strongly immediately adjacent 

to the proliferative region of the sub-ventricular zone but not in mitotic cells. 

Besides was also find that PrPC expression increases in fully differentiated, 

mature neurons. Both in vivo and in vitro, PrPC is found in increasing amounts as 

neuronal differentiation progresses. Besides in vivo, PrPC is found at highest 

levels in mature neurons, but it is not detected in astroglia (Steele et al, 2006). 

Furthermore have also shown that PrPC is expressed on the surface of long-term  
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repopulating hematopoietic stem cells and that PrPC-null mice have limited 

hematopoietic stem cell self-renewal (Zhang et al., 2006). 

In cultured nerve cells PrPSc causes membrane protein alterations, increased 

membrane microviscosity and abnormal receptor-mediated calcium ion responses. 

Besides it causes apoptosis of hippocampal neurons and induces hypertrophy and 

proliferation of astrocytes in vitro (Diomede et al., 2002). 

 

Pathogenesis of Prion Diseases 

The natural transmission routes of prions are poorly understood and remain to be 

clarified, but available evidence indicates that an environmental reservoir of 

infectivity contributes to the maintenance of these diseases in affected 

population. By contrast the primary infection pathway for BSE has been via 

dietary exposure to industrial animals feed and there is little evidence of an 

environmental component in its spread. There are many unanswered questions 

relating to sources of TSE infection and the fate and behaviour of TSE 

infectivity in the natural environment following the death and decomposition of 

an infected animal. Infected tissues may be introduced into the environment by 

on-farm carcass burial, mass burial by landfill, TSE infectivity in effluents from 

rendering plants and in ash following incineration of carcasses or from urinary 

excretion from infected, nephritic animals. The presence of TSE infectivity in 

soil may indicate a potential infection pathway via soil ingestion, or via biological 

vectors considering that it has been shown persistence of prions after burial in 

soil for at least 3 years (Cooke et al., 2007, Johnson et al., 2006, Genovesiet al., 

2007). 

Oral infection by ingestion involves transfer of PrPSc from the digestive tract to 

the spleen or lympho-reticular system (LRS), and then to the peripheral nervous 

system and eventually to the brain. Infectivity is established in peripheral 

lymphoid organs before infective PrPSc is found in the central nervous system  
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(CNS), indicating that peripheral conversion of PrPC to PrPSc is a necessary step 

for infection (Novakofski et al 2005). The infectious agent seems to be 

transported to the central nervous system along two nervous pathways. One 

route is through the splanchnic nerves, connected to the inter-medio-lateral 

column (IMLC) of the distal half of the thoracic and the rostral part of the 

lumbar spinal cord. The other route is through the vagus nerve, connected to the 

dorsal motor nucleus of the vagus nerve (DMNV) in the medulla oblongata. PrPSc 

can also be hematogenously transported, and blood from sheep infected with 

either bovine spongiform encephalopathy (BSE), or scrapie, has been used to 

experimentally transmit the disease (Ersdal et al., 2005). 

Following ingestion, PrPSc may be degraded by digestive enzymes, leaving a 

pathogenic fragment similar to that of a proteinase K-resistant PrPSc fragment. 

The PrPSc fragment may be co-transported across the intestinal epithelial with 

ferritin.  The PrPSc or PrPSc fragments are transported from the intestine to 

secondary lymphoid organs by intestinal dendritic cells, which are specialized to 

acquire antigen from peripheral tissues.  

Dendritic cells from the intestine present PrPSc to T and B lymphocytes within 

lymphoid tissues such as Peyer’s patches (PPs) of the intestine or follicular 

dendritic cells (FDC) of the spleen, thymus, and tonsils (Novakofski et al., 2005). 

Moreover the protease-resistant prion protein accumulate rapidly in gut-

associated lymphoid tissues (GALT), and ganglia of the enteric nervous system 

long before they are detected in the central nervous system (CNS). B 

lymphocytes play a crucial role in peripheral prion pathogenesis: mice devoid of B 

lymphocytes do not develop disease after intraperitoneal exposure. This is 

possibly because B lymphocytes induce maturation of follicular dendritic cells 

Early PrPSc  deposition can be detected in FDCs within B cell follicles in lymphoid 

tissues of patients with vCJD and in rodents inoculated with scrapie by 

peripheral routes. In mouse spleens, mature FDCs have been shown to be crucial  
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for both prion replication and PrPSc accumulation, although prion replication in 

lymph nodes can occur in the absence of mature FDCs (Fig. 4). In contrast, the 

role of intestinal B cells in prion pathogenesis following oral challenge is still 

unclear. B lymphocytes exert an important organogenic role in the GALT and are 

likely to be involved in the B cell-dependent development of the follicle-

associated epithelium (FAE). However, splenic lymphocytes can acquire prion 

infectivity, and it is unclear whether their role in prion pathogenesis is 

restricted to the generation and maintenance of FDCs or whether they may also 

be involved in prion trafficking.  

 
Fig. 4 Possible spread of scrapie infectivity from the gut lumen to the nervous system following oral infection (route 
indicated by dotted line). Soon after ingestion, the abnormal prion isoform (PrPSc) is detected readily within Peyer’s 
patches on follicular dendritic cells (FDCs), within macrophages, within cells with morphology consistent with that of M 
cells and within ganglia of the enteric nervous system (ENS). These observations indicate that, following uptake of 
scrapie infectivity from the gut lumen, infectivity accumulates on FDCs in Peyer’s patches and subsequently spreads via 
the ENS to the central nervous system. FAE, follicle-associated epithelium (Cashman e al., 2004). 
 

It was shown that prion replication in the GALT and subsequent neuroinvasion 

was independent of B cells within the mucosa-associated lymphatic tissue and 

that the remaining M cells are most likely important for this process.  

The GALT consists of highly-organized Peyer’s patches in the small intestine, and 

intraepithelial lymphocytes are present throughout the length of the 

gastrointestinal tract. The intestinal surfaces of PPs are characterized by the 

presence of “domes,” which are regions free of intestinal villi.  
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At these domes, M cells are able to tunnel pathogens through the cytoplasm to 

the basal surface,  where deep invaginations of their membrane allow close 

contact with lymphocytes and macrophages (Prinz et al., 2003). 

However remains the question how prions are transferred from FDCs to 

peripheral nerve endings within lymphoid organs given that these cells are not in 

physical contact. A model requiring cell-to-cell contact for intercellular prion 

transfer would necessitate additional cell types to bridge the gap between FDCs 

and neurons. Alternatively prions could be transmitted to the nerves by cell-

free, short-range diffusion mechanisms.  Data available are consistent with an 

intercellular prion  transfer through direct cell contacts, although another study 

reported the presence of prion infectivity in the cell culture medium of a prion 

infected neuronal cell line (Fèvrier et al., 2005). 

 

Aetiology of Human Prion Diseases 

The human prion diseases have been traditionally classified into Creutzfeldt-

Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), and kuru. 

Although these are rare disorders, affecting about one to two people per million 

world-wide per annum, remarkable attention has been focused on them in recent 

years. This is because of the unique biology of the transmissible agent or prion, 

and also because of fears that the epizootic of BSE could pose a threat to public 

health through dietary exposure to infected tissues. There was considerable 

interest in the 1950s in an epidemic of a neurodegenerative disease, kuru, 

characterised principally by a progressive cerebellar ataxia, amongst the Fore 

linguistic group of the Eastern Highlands of Papua New Guinea. Subsequent field 

work suggested that kuru was transmitted during cannibalistic feasts. In 1959 

Hadlow drew attention to the similarities between kuru and scrapie at the 

neuropathological, clinical, and epidemiological levels leading to the suggestion 

that these diseases may also be transmissible. A landmark in the field was the  
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transmission, by intracerebral inoculation with brain homogenates into 

chimpanzees, of kuru and then CJD by Gajdusek and colleagues in 1966 and 1968, 

respectively. Transmission of GSS followed in 1981. This work led to the concept 

of the ‘‘transmissible dementias’’. The term ‘‘Creutzfeldt-Jakob disease (CJD)’’ 

was introduced by Spielmeyer in 1922 drawing from the case reports of 

Creutzfeldt (1920) and Jakob (1921) and was used in subsequent years to 

describe a range of neurodegenerative conditions, many of which would not meet 

modern diagnostic criteria for CJD. Interestingly, Jakob suspected that the 

condition may be transmissible and experimentally inoculated rabbits in an 

attempt to demonstrate this in the 1920s. This was unsuccessful and we now 

know that rabbits are unusually resistant to prion infection (Collinge, 2005).  

The human prion protein is a product of a single gene located on the short arm of 

chromosome20. It is encoded by a single exon of PRNP, exon 2. Variation in the 

gene sequence produces protein variants that are causative of genetic TSE 

diseases (Sordevila et al., 2006) . 

Familial Creutzfeldt-Jakob disease (CJD), fatal familial insomnia (FFI) and 

Gerstmann-Sträussler-Scheinker disease (GSD) are frequently caused by 

mutations in the prion gene in codons 200, 178 and 102.  

CJD can also be sporadic (representing 85% of the cases) or acquired, which 

includes iatrogenic CJD cases transmitted via human pituitary hormones, human 

dura mater grafts, corneal grafts and neurosurgical devices; variant CJD which 

has bees causally linked to the bovine spongiform encephalopathy agent;  and 

kuru (Llewelyn et al, 2004). In these cases some polymorphic positions, codons 

129 (385A>G: M129V) and 219 (655G>A: E219K) of the PRNP are particularly 

important for susceptibility to prion diseases. Codon 129 is known to be 

implicated in the development of sporadic, acquired (iatrogenic, kuru, and variant 

CJD), with increased susceptibility observed for the M/M genotype. This finding 

was interpreted as suggesting that dimerization of the prion protein is an  
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important element in the pathogenesis of CJD and that this is more likely to 

occur in Met homozygotes than in heterozygotes. The relative frequencies of the 

codon 129 alleles in Europeans were estimated to be 68% M and 32% V. The 

importance of codon 129 was highlighted in a study, where an increased incidence 

of sporadic Creutzfeldt-Jakob disease was associated with a high rate of M 

homozygosity (Fig. 5). These data is the first to relate a high regional incidence 

rate for sporadic CJD to the distribution of PRNP 129 genotypes. To date, all 

studies of PRNP codon 129 have mainly focused on European or some Asian 

populations, and in all populations the Met allele was always found to be the most 

frequent(Sordevila et al., 2003). 
 

 

Figure 5. The coding region of the human PRNP gene. Mutations that segregate with inherited prion diseases are shown 
in black and nonpathogenic polymorphisms in blue. The signal peptide is cleaved off during maturation of the cellular prion 
protein. Octapeptide regions are represented by blue boxes, and pathogenic octarepeat insertions of 8, 16, 32, 40, 48, 
56, 64, and 72 amino acids are shown above. Deletion of one octarepeat stretch may segregate with a neurodegenerative 
disorder. The light green box indicates a conserved region, -sheet domains are drawn light blue, and -helical domains 
(H1, H2, H3) are red. GPI indicates glycosylphosphatidylinositol (Glatzel et al., 2006).  

Homozygosity at codon 129 is also a key factor in the resistance or susceptibility 

to the Kuru prion disease, which was shown to have been transmitted during 

endo-cannibalistic feasts among the Fore linguistic group in New Guinea 

(Soldevila et al., 2006). Kuru came to the attention of Western medicine in the 

1950s as the affected area of the Eastern Highlands of Papua New Guinea came 

under Australian administrative control. The Fore and neighboring linguistic 

groups occupied a remote highland area that had had no direct contact with the 

outside world prior to this.  
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It was the practice in these communities for kinship groups to consume deceased 

relatives at mortuary feasts. From the evidence of local oral history, this 

practice was not ancient amongst the Fore and is thought to have started around 

the end of the 19th century. The first remembered case of kuru was around 

1920 and the disease rapidly increased in incidence. Adult women and children of 

both sexes were primarily affected, reflecting their selective exposure-adult 

males participated little at feasts. At its peak, kuru killed around 1% of the 

population annually and some villages were almost devoid of young adult women. It 

is hypothesized that kuru originated from consumption of an individual with 

sporadic CJD, a disease with a remarkably uniform worldwide incidence of around 

1 per million and a lifetime risk of around 1 in 50,000. The ban on cannibalism 

imposed by the Australian authorities in the mid-1950s led to a decline in kuru 

incidence, and although rare cases still occur these are all in older individuals and 

reflect the long incubation periods possible in human prion disease-kuru has not 

been recorded in any individual born after the late 1950s (Mead, 2003). 

A statistically significant excess of heterozygotes for the codon 129 

polymorphism was found among these women, implying a heterozygote resistance 

to the disease. Balancing selection in this generation appeared to be the 

strongest yet documented in any human population. Based on a wide analysis of 

PRNP sequence and haplotype diversity in a worldwide sample, it was postulated 

that variation at this locus had been shaped by strong balancing selection related 

to prion diseases and cannibalism during the evolution of modern humans 

(Soldevila et al., 2006). 

Codon 219 has received somewhat less attention, but it has been suggested that 

the K allele at codon 219 acts as a protective factor against sporadic CJD, as all 

individuals with sporadic CJD were 219E homozygotes. This protective allele may 

inhibit the formation of PrPSc, the pathological type of PrP, as protein X, that is  
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thought to accelerate the conversion of the normal type of prion protein into the 

rogue conformation, could bind to the 219 amino acid residue of PrP (Sordevila et 

al., 2003).  

In an Italian study it was reported that the 219K was absent in healthy controls 

and CJD patients, showing that Italians are monomorphic for this position 

(Petraroli and Pocchiari, 1996). There are several different human PrPSc 

conformations, referred to as molecular strain types, that can be further 

classified by the ratio of the three PrP bands seen after protease digestion, 

corresponding to amino-terminally truncated cleavage products generated from 

di-, mono- , or non-glycosylated PrPSc. Four types of human PrPSc have now been 

reliably identified using molecular strain typing. Sporadic and iatrogenic CJD are 

associated with PrPSc types 1–3, while type 4 human PrPSc is uniquely associated 

with vCJD and is characterised by a fragment size and glycoform ratio that is 

distinct from PrPSc types 1–3 observed in classical CJD. The methionine/valine 

polymorphism at codon 129 of PRNP is associated with different PrPSc types. 

PrPSc types 1 and 4 have so far only been detected in methionine homozygotes, 

type 3 cases are predominantly associated with at least one valine allele, while 

type 2 is seen in any PRNP codon 129 genotype. PrPSc types 1 and 2 are associated 

with two clinically distinct sub-types of sporadic CJD. 

This represents a novel mechanism for post-translational modification of PrP, and 

for the generation of multiple prion strains in humans. Importantly, the 

identification of strain-specific PrPSc structural properties has enabled 

investigation of the influence of human PrP primary structure, in particular 

polymorphic residue 129, in determining PrPSc structure. In addition to the 

identification of human PrPSc types 1–4, molecular strain typing has provided 

insights into the phenotypic heterogeneity seen in inherited human prion 

diseases. In agreement with existing evidence that human prion strain diversity 

is generated through variance in PrPSc conformation and glycosylation, cases of  
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inherited prion disease caused by point mutations in the PRNP gene show 

glycoform ratios distinct from those observed in sporadic CJD and vCJD. 

Additionally, individuals with the same PRNP mutation can propagate PrPSc with 

distinct fragment sizes. Sub-classification of sporadic CJD based upon PrPSc 

type immediately allows a more precise molecular classification of human prion 

disease and re-analysis of epidemiological data using these molecular sub-types 

may reveal important risk factors obscured when sporadic CJD is analysed as a 

single entity. For example, it will be important to review the incidence of 

sporadic CJD associated with PrPSc type 2 and other molecular sub-types in both 

BSE-affected and unaffected countries in the light of recent findings 

suggesting that human BSE prion infection may result in propagation of either 

type 4 PrPSc or type 2 PrPSc. Individuals that propagate type 2 PrPSc as a result 

of BSE exposure may present with prion disease that would be indistinguishable 

on clinical, pathological and molecular criteria from that found in classical CJD 

(Wadsworth et al. 2003). 

Although the link between specific alleles of PrP and susceptibility to the disease 

has been well documented during the last decade how a few amino acid 

substitutions can so profoundly affect prion pathogenesis is largely unknown 

(Sabuncu E. et al., 2003).  

 

Prion Protein and Scrapie 

As previously said Scrapie is member of the transmissible spongiform 

encephalopathy that naturally affects sheep and goats  and it’s characterized by 

changes in behaviour, ataxia and pruritus (Goldmann et al., 2005).   

The first report of the existence of scrapie appear in 18th and 19th Century 

literature from England and Germany. The earliest definite record of the 

occurrence of scrapie was in Great Britain in 1732. Throughout the 1700s and 

1800s, scrapie was reported in many breeds of sheep in England as well as in  
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continental Europe. Spread of reported to have been through the importation of 

certain breeds of sheep (Detwiler et al., 2003).  

The gene that encodes the ovine PrP has three exons (52, 98 and 4028 

nucleotides in length) separated by two introns (2421 and 14.031 nucleotides in 

length). The 3’-untranslated region (UTR) of the sheep PrP mRNA is much longer 

than that of other analyzed species (3246 pb) (Lee et al., 1998). 

The sheep PrP gene has two short 5’untranslated exons and a long coding exon 

III. This arrangement is conserved in goats and cattle splicing of exon I, 

whereas only the ovine/caprine genes exhibit differential processing (alternative 

poly-adenylation) of their PrP m-RNAs. The importance of these differences 

remains to be established. Sheep PrP mRNA is detectable in brain and peripheral 

tissues from day 98 of gestation and increases strongly towards the newborn 

and young lambs; the level of expression is then maintained throughout adulthood 

(Baylis et al., 2004). 

The protein-coding region or open reading frame (ORF), of 768 bp (256 codons), 

is contained entirely within exon 3. DNA sequence analysis of the sheep PrP gene 

has so far found 25 polymorphic codons that result in an amino acid change (8). 

The total number of known amino acid substitutions in these 25 codons is 32, 

while the current number of published haplotypers is 40 (Goldmann et al 2005). 

In European domestic sheep breeds the following polymorphic codons have been 

found: 112, 136, 137, 138, 141, 151, 154, 168, 171, 175, 176, 180 and 211. additional 

and different variations were found in Asian sheep, such as Mongolian and 

Chinese breeds at codons 127, 189, and 176. (Baylis et al., 2004). 

Only three of these polymorphisms have a clear and significant effect on genetic 

susceptibility for a sheep to develop scrapie disease: 

• at codon 136, amino acid alanine (A) changes to valine (V); valine is associated 

with high scrapie susceptibility while alanine is associated with low susceptibility, 

although this might depend on the strain of scrapie agent.  
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• at codon 154, amino acid arginine (R) changes to histidine (H); arginine (R) is 

associated with susceptibility while histidine (H) is associated with partial 

resistance.  

• at codon 171, amino cid glutamine (Q) changes to arginine/histidine; 

glutamine(Q) and histidine (H) are associated with susceptibility while arginine 

(R) is associated with resistance (Goldmann et al 2005).  

The ancestral sheep allele is presumably A136R154Q171 (shortened to ARQ). This 

allele plus those generated through the substitution of one of its amino acids 

make up the five most common ovine PrP alleles, namely ARQ, VRQ, AHQ, ARR 

and ARH. Free permutation of these five alleles leads to 15 possible genotypes in 

the diploid organism, e.g. heterozygosity for VRQ and ARQ (VRQ/ARQ) or 

homozygosity for ARR (ARR/ARR) (Saunders et al., 2006). 

Sheep homozygous for alanine (AA) have been shown to be more resistant to 

scrapie than sheep homozygous for valine (VV) or heterozygous (AV) in European 

studies. However AA sheep are not 100% resistant to scrapie. In the U.S., amino 

acid changes at codon 136 appear to be less important to scrapie susceptibility 

than in Europe. This may be due to the different strains of scrapie found in the 

two regions. 

Of the three important codons, amino acid changes at 154 appear to have a 

slightly less dramatic effect on scrapie susceptibility than do the other two, and 

the susceptible genotypes are not consistent across studies. In some studies, 

sheep with the arginine (R) allele have a lowered incidence of scrapie, and in 

other studies, sheep with the histidine (H) allele have a lowered incidence. At 

the present time, it appears that screening sheep on the basis of codon 154 

genotype has little value in increasing resistance to scrapie. 

Amino acid changes at codon 171 has a large effect on scrapie susceptibility in 

sheep in both Europe and the U.S. Virtually no sheep homozygous for arginine 

(RR) have been identified with scrapie. The one exception is a single RR Suffolk  
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in Japan that was diagnosed with scrapie. The frequency of heterozygous (QR) 

sheep also is very low among scrapie-infected sheep. However, the frequency of 

sheep homozygous for glutamine (QQ) is very high among scrapie-infected sheep. 

It should be remembered that a susceptible genotype like QQ at codon 171 does 

not imply that the animal is scrapie-infected (Thomas ). 

The susceptibility of a sheep to scrapie depends upon a number of factors, 

amongst them the age of the animal, the route of infection, the infectious dose, 

the strain of scrapie, the genotype of the animal and its breed (Baylis et al., 

2004). For example, Australia and New Zealand are scrapie-free, but Suffolk, 

Cheviot, Merino, and Poll Dorset sheep of susceptible genotypes are found in 

these countries. There is no scrapie in these countries because the scrapie agent 

is not present (Thomas). 

It was repeatedly confirmed that most of the work regarding disease 

progression has been performed using techniques to detect the partially 

protease form of the prion protein (PrPSc) in tissues rather than confirming 

absolute infectivity. The detection of PrPSc can be accomplished with greater 

ease and speed than the detection of infectivity. However, it must be noted that 

although there have been good correlations between the presence of PrPSc and 

infectivity, TSE infections have been reported in the absence of detectable 

PrPSc. Epidemiological observations suggest that very young ruminants are more 

susceptible to TSE infections. These observations are consistent with the known 

differences between young and old ruminants in the activity of their gut-

associated lymphoid tissue and the passage of macromolecules across the gut 

wall. This does not eliminate the possibility of scrapie infection by other routes 

of entry. Those which have been shown to be effective experimentally are 

scarification and via the conjunctiva (Detwiler et al., 2003). 
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Prions, Membranes and Cholesterol  

As previously said PrP is modified by the attachment of a glycosyl-phosphatidyl-

inoditol (GPI)-anchor, which is added in the ER after cleavage of the C-terminal 

hydrophobic segment. GPI-anchor has a core structure common to other 

glycolipid-anchored proteins, consisting of an ethanolamine residue amide-bonded 

to the C-terminal amino acid, three mannose residues, an unacetylated 

glucosamine residue, and a phosphatidyl-inoditol molecule which is embedded in 

the outer leaflet of the lipid bilayer (Fig. 6). The GPI anchors of both PrPC and 

PrPSc are unusual because their cores are modified by the addition of sialic acid 

residues. Available evidence indicates that the oligosaccharide chains and GPI 

anchors of PrPC and PrPSc do not differ, although complete structures have been 

worked out only for PrPSc .  

 

 

 

 

 

 

 

 

 

 

 
                                          

Figure 6 GPI-anchored prion protein 
 

PrPC does not remain on the cell surface after its delivery there but, rather, 

constitutively cycled between the plasma membrane and an endocytic 

compartment. This endocytic recycling pathway could be the route along which  
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certain steps in the conversion of PrPC to PrPSc take place(Harris, 1999). Once 

PrPSc is formed, it appears to accumulate in late endosomes, lysosomes, and on 

the cell surface or in extracellular appears in the form of amorphous deposits, 

diffuse fibrils or dense amyloid plaque. Recent findings in non-neuronal cell 

models indicate prion protein association with secreted exosomes. Exosomes 

correspond to the intraluminal vesicles (ILVs) of multivesicular endosomes, 

commonly called multivesicular bodies (MVBs) (Fig. 7). Multivesicular endosomes 

have well known functions as intermediates in the degradation of proteins 

internalised from the cell surface or sorted from the trans-Golgi network. 

Trans-membrane proteins destined for lysosomal degradation are removed from 

the limiting membrane of early endosomal vacuoles and subsequently sequestered 

into the exosomes. Most mature MVBs fuse with pre-existing lysosomes to 

degrade their contents. Sequestration on the internal membranes allow lisosomal 

hydrolases to access and degrade all topologic domains of the associated integral 

membrane proteins. But non all MVBs have fusion with lysosomes.  
 

 
Figure 7 Schematic representation of exosome release from scrapie-infected cells and exosome targeting to recipient 
cells. PrPsc (red) transits through endocytic compartments of an infected cell (in gray) and is secreted in association with 
exosomes in the extracellular milieu. The secreted exosomes could be targeted to noninfected cells (in yellow). As 
hypothesized in the text, exosomes bearing PrPsc could fuse with the cell surface (1) which would allow for conversion of 
PrPc at the plasma membrane. Internalized PrPsc (2) could be routed to endosomes (3) and enter ILVs during MVB 
formation (4 and 5). In an alternative hypothesis, PrPsc-exosomes could be internalized by the non-infected cell (10, 20) 
before being transferred to endosomes (30). In forming MVBs, the newly endocytosed exosomes could undergo fusion 
with the MVB membrane (40). A consequence of such a process would be its incorporation in the limiting membrane (5), 
permitting conversion of PrPc in the endocytic pathway (Fèvrier et al., 2005). 
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Another potential fate in many cell types is fusion with the cell surface. 

Reticulocytes, which lack lysosomes, were the first cell shown to release their 

exosomes into the extracellular milieu during exocytic release of MVBs (Fèvrier 

et al., 2005). Exosomes are secreted by many cell types, including B lymphocytes, 

dendritic cells, mast cells, platelets, intestinal epithelial cells, melanoma and 

mesothelioma cells. The protein and lipid composition of exosomes is distinct 

from that of plasma membrane, reflecting their endosomal origin (Fèvrier et al., 

2004).Vesicles with the hallmarks of exosomes are present in vivo at the surface 

of follicular dentritic cells in germinal centres, malignant effusions and serum. 

These and other studies support the idea that exosomes secretion may be a 

regulated process and may serve not only as a means to eradicate unwanted 

molecules, but may also provide vehicles to transfer molecule among cells and 

even to deliver adhesion signals at distances in normal and pathological states. 

The association of PrP with exosomal membranes is consistent with features of 

its intracellular trafficking. Like other membrane proteins, PrpC is post-

translationally processed in the endoplasmic reticulum and Golgi on its way to the 

plasma membrane.  

PrPC at the surface of numerous cell types is constitutively internalised. Prion 

protein, in different cell types, appears to be endocytosed by either clathrin-

coated pits or caveolae. It could hypothesize that the raft-like mature of 

exosomal membranes may be a favourable environment for trans-conformation 

and amyloid fibre formation. PrPSc, as already said, has been shown to be present 

at the cell surface of various prion-infected cultured cells. These two sites of 

accumulation could be reconciled by at least two distinct models. In the first, 

conversion could occur at the plasma membrane, after which PrPSc could 

accumulate in late endosomes and lysosomes due to diversion from a cycling  

pathway between the plasma membrane and early endosomes. 
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In the second model, abnormal PrP could be produced in intracellular 

compartments and then re-exported to the plasma membrane (Fèvrier et al., 

2005). However other models must also be considered. PrPSc has been detected 

in the nucleus of infected N2a neuroblastoma cells and it has been proposed that 

conversion of PrPC to abnormal protein could occur in the cytosol in the absence 

of membranes. Thus exosomes could constitute vehicles for transmission of the 

infectious prion protein, bypassing cell-cell contact in the dissemination of prions 

(Mangé et al., 2004). 

As other GPI-anchored proteins PrPC is normally GPI-anchored to specialized 

cholesterol-rich domains of the plasma membrane, termed lipid rafts or caveolae.  

Lipid rafts are sphingolipid- and cholesterol-rich membrane microdomains in the 

outer leaflet of the plasma membrane. Lipid rafts are first assembled in the 

Golgi complex in mammalian cells, thus are moved forward to the plasma 

membrane, where they concentrate but also spread into the endocytic recycling 

pathways (Simons et al., 2002). The plasma membrane is composed primarily of 

sphingolipids, phospholipids and cholesterol. Sphingolipids differ from most 

phospholipids in that they have long, largely saturated acyl chains that allow 

them to pack tightly in a bilayer, forming a gel phase in which there is very little 

lateral movement or diffusion. The gel phase of the sphingolipids is altered by 

the association of cholesterol, which condenses the packing of the sphingolipids 

by occupying the spaces between the acyl chains. So, cholesterol-containing 

sphingolipid microdomains exist in a liquid-ordered phase that is significantly 

more fluid than the gel phase. By contrast, phospholipids are rich in unsaturated 

acyl chains that tend to be kinked and consequently to pack loosely into a liquid-

disordered phase that is considerably more fluid, allowing rapid lateral movement 

within the bilayer. The different packing of the sphingolipids and phospholipids 

probably leads to their phase separation in membrane bilayers. Sphingolipid 
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microdomains float in a phospholipid bilayer, then they lead into the coining of 

the term 'lipid rafts'(Pierce, 2002).  

There is evidence of a role for lipid rafts in a wide array of cellular processes 

including: trans-cytosis; potocytosis; an alternative route of endocytosis; 

internalization of toxins, bacteria and viruses; cholesterol transport; calcium 

homeostasis; protein sorting; and signal transduction. Biochemical analysis of the 

protein composition of purified lipid rafts in a large number of different cell 

types shows a striking concentration of signalling molecules within lipid rafts. On 

the basis of these observations, a role for lipid rafts in mediating signal 

transduction has been proposed.  

 
Fig. 8 Resting-state rafts are depicted as dynamic, nanometer-scale assemblies of raft lipids that are metastable (top). 
These assemblies can form and dissolve again, and proteins and lipids can partition into and out of them . Partitioning of a 
protein or lipid constituent onto such small raft domains can alter their metastability, effectively bringing them into an 
“excited” state which favours their growth by diffusion-limited accretion of lipid constituents from the bulk phase or by 
fusion with other “excited” raft domains. Most raft proteins are either solely lipid anchored, GPI-anchored in the 
exoplasmic (1) or doubly acylated in the cytoplasmic leaflet (2), or they contain acyl chains in addition to their trans-
membrane domain (3). A fourth group could undergo a conformational change upon binding to radt lipids, which allows the 
protein to partition into raft domains (4). Perhaps cytoplasmic raft domains only form opposite an exoplasmic counterpart 
when there is a slightly more stable assembly of at least a dew raft proteins in a given domain (5). Upon oigomerization of 
raft proteins with themselves (e.g. caveolin), by multivalent ligand (6) or by cytoplasmic scaffolds (7), the minirafts 
coalesce and become more stable. They may now contain more than one species of raft proteins, as well as cytoplasmic 
counterparts. These small raft clusters would still have a size below the limits of light microscopie resolution, but could 
already function as signalling platforms. Large raft clusters are probably only assembled when protein modifications like 
phosphorylation increase the number of protein-protein interactions, leading to the coalescence of small clusters into 
larger domains on the scale of several hundred nanometers (8). 
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In principle, lipid rafts can modulate signalling events in a variety of ways. By 

localizing all of the components of specific signalling pathways within a membrane 

compartment, lipid rafts could enable efficient and specific signalling in response 

to stimuli. Translocation of signalling molecules in and out of lipid rafts could 

then control the ability of cells to respond to various stimuli. Cross-talk between 

different signalling pathways could be facilitated if the molecules involved were 

localized to the same lipid raft. Distinct subpopulations of rafts present on the 

surface of the same cell might be specialized to perform unique functions. 

Movement or clustering of lipid rafts could be an efficient means of transporting 

pre-assembled signalling complexes to specific membrane areas upon stimulation, 

Formation of higher-order signalling complexes by clustering of one or more 

types of lipid rafts could allow amplification or modulation of signals in a spatially 

regulated manner. All of the above mechanisms imply that lipid rafts would play 

an active role in facilitating efficient and specific signalling. However, lipid rafts 

might also be involved in negatively regulating signals by sequestering signalling 

molecules in an inactive state (Zajchowski et al., 2002). 

Lipid-rafts are detergent-insoluble regions characterized by the presence of 

free cholesterol (FC). In normal tissues, with the exception of liver and adrenal 

gland, approximately 90% of the total cellular cholesterol resides in membrane 

raft domains as FC, while only a minor amount (approximately 1-10%) is found as 

cholesterol esters (CE) in a cytoplasmic storage form. Since FC levels are critical 

to the maintenance of proper membrane fluidity, as well as to the function 

and/or activation of raft-resident proteins, cells have developed a highly 

integrated set of homeostatic mechanisms acting in concert to finely control 

intracellular cholesterol levels.  The FC found in cell membranes derives either 

from de novo synthesis in the endoplasmic reticulum, or from lysosomes following 

receptor-mediated uptake of low-density lipoproteins (LDLs). Membrane FC, 

however, is in a dynamic state, moving back to the ER in response to changing 
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homeostatic conditions in the cell. In fact, if cholesterol in the rafts exceeds 

threshold levels, its excess is promptly transferred to the ER, where it might 

elicit high-order responses from the control proteins embedded. FC in the ER 

blocks the function of its cellular sensor, the SREBP-cleavage-activating-protein 

(SCAP), which is needed for the proteolytic activation of the sterol-regulatory-

element-binding-proteins-2 (SREBP-2), a transcriptional factor that promotes 

the expression of genes involved in cholesterol synthesis [i.e. hydroxyl-methyl-

glutaryl-coenzime A-reductase (HMGCoA-R)]  and uptake (i.e LDL receptor). Free 

cholesterol in the ER can be either used in the assembly of newly formed 

membrane rafts, and returned to the plasma membrane through vesicular 

transport, or, if in excess, converted to CE by the Acyl-cholesterol-acyl-

transferase (ACAT) and stored in the cytoplasm as neutral lipid droplets. 

Viceversa, when cell membranes need FC, or when CE droplets exceed a critical 

threshold value, CE can be reconverted to FC by the neutral-cholesterol-ester-

hydrolase (nCEH). FC can then be recycled to the membranes by cholesterol 

binding protein, such as caveolin-1 (Cav-1), where it can be used to replenish raft 

domains, or if in excess and where it delivered to extracellular acceptors, namely 

high-density lipoproteins (HDL), via the ATP-binding-cassette-sub-family A-

member 1 (ABCA-1) transporter.  

Complex signalling networks are responsible for controlling important cellular 

functions such as growth, differentiation, adhesion, and motility, and unregulated 

signalling can lead to many different diseases. Due to their importance in 

regulating signal transduction, it is not surprising that lipid rafts have been 

implicated in a wide variety of disorders.  

For example: mutations in an isoform of caveolin (caveolin-3) have been linked to 

a form of limb girdle muscular dystrophy; generation of the β-amyloid peptide 

from the amyloid precursor protein in Alzheimer's disease has been shown to 

occur in lipid rafts in a cholesterol-dependent manner Similarly, efficient  
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processing of the scrapie isoform of the prion protein requires its targeting to 

lipid rafts by GPI anchors (Zajchowski et al., 2002).  

Increasing evidence indicates that subtle intracellular cholesterol changes 

affect the intracellular processing/trafficking, function and/or activation of 

raft-resident proteins, including PrP.  

It is important to point out pathological, genetic and mechanistic similarities 

between TSE and Alzheimer’s disease. Alzheimer’s disease (AD) is characterized 

by the presence of extracellular senile plaque and intracellular neurofibrillary 

tangles within the afflicted brain. The major constituents of senile plaques are 

the amyloid β (Aβ) peptides, which are derived from the proteolytic processing 

of the amyloid precursor protein (APP). In the amyloidogenic pathway, β-

secretase cleavage of APP, on the cell surface and in early endosomes after APP 

internalisation by clathrin-coated vesicles and/or caveolaes. Product of β-

secretase cleavage is a soluble N-terminal fragment sAPP, along with a short 

membrane-bound C-terminal fragment that is subsequently cleaved by γ-

secretase (a multi-proteins complex) to release the Aβ peptide. In the 

alternative, non-amyloidogenic pathway, α-secretase  cleaves APP within the Aβ 

sequence, thus precluding the formation of Aβ, and releases a soluble N-terminal 

fragment sAPPα. α-secretase activity was shown to be associated with members 

of the ADAM (a disintegrin and metalloprotease) family, particularly ADAM9, 10 

and 17. As APP, PrPC is shed from the cell surface by zinc metalloproteases and is 

subject to endoproteolysis by ADAM10 and ADAM17. Furthermore, it has been 

recently shown that PrPC inhibits the β-secretase cleavage of APP and reduces 

Aβ formation. This effect is lost in scrapie-infected mouse brain or in cells 

expressing mutants of PrP associated with human prion disease. The regulation of 

β-secretase requires PrPC to be located in lipid rafts and is mediated by the N-

terminal polybasic region of PrPC interacting with β-secretase via 

glycosaminoglycans (Parkin et al., 2007, Zhang et al., 2006). 
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Generally Alzheimer disease and Prion diseases are included among rafts 

neurodegenerative diseases, since the aberrant proteolytic processing of PrP and 

A-Beta occur in these lipidic membrane domains. Therefore, it is most likely that 

alterations in the composition of lipid rafts can lead to a variety of disease of 

lipid metabolism. 

 

Diagnosis and Therapeutic Approaches to Lipid-Rafts Diseases 

The ability to secure early diagnosis is vital for therapeutic interventions to be 

real value. With respect to animals destined for the human food chain, there is 

the additional demand to determine presence of the prion agent in tissues in 

asymptomatic organisms, well before the appearance of any clinical symptoms. 

This applies equally to the detection of prions in humans, who may participate in 

tissue donation programs (Aguzzi et al., 2004) 

Although there have been clinical trials with allegedly prionostatic compounds, 

the bitter truth is that there is not proven treatment for human prion diseases 

Several approaches are currently being investigated to uncover therapeutic 

mechanisms that prevent the developer of prion diseases. These fall into 2 

distinct classes of strategies: 

• post-exposure prophylaxis, which is aimed at halting the transport of prions 

to the central nervous system (CNS) following peripheral uptake of the 

infectious agent. 

• curative or palliative. Neurodegenerative diseases, such as prion diseases and 

Alzheimer’s diseases, cause substantial damage to the CNS, thus, the only way to 

cure a human diseases that has manifested itself in the form of a dementia is 

the replace damaged CNS tissue through regeneration or transplantation. 

Although therapies (i.e. based on stem cells) are still in the experimental phase  
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• of development, there is hope that protocols based on this technology might 

be able to cure some of the symptoms elicited by human neurodegenerative 

diseases.  

Palliative approaches, on the other hands, do not have the pretense to cure the 

causative disease but rather to prolong survival or the decelerate the decline of 

cognitive functions. Research in this field tends to focus on compounds 

preventing –directly or indirectly– misfolding of PrPC to PrPSc in the case of Prion 

diseases, or misfolding of APP to Aβ peptide in case of Alzheimer’s disease 

(Glatzel et al., 2005). 

Various compounds are known to interact with PrPSc, these include anthracycline, 

Congo red, dextran sulfphate, pentosan polysulphate, and other polyanions and β-

sheet breaker peptides. Unfortunately, most of these compounds are only 

effective if administered well before the onset of clinical disease, and 

frequently also show either high levels of toxicity, low levels of bioavailability, or 

both. Although the ability to bind PrPSc, and prevent further conversion of PrPc, 

provides a logical approach to slowing or preventing disease progression, it is 

unlikely to lead to a cure for prion diseases. The development of therapies that 

provide a cure will need a clearer understanding of the role of PrPC, as well as 

advances in early diagnosis. Currently clinical trials using quinacrine and 

chlorpromazine treatment in CJD and vCJD patients are underway in both the 

UK and USA. However, there is no evidence that these drugs are useful against 

prion disease in vivo, and recently quinacrine treatment in a rodent model of CJD 

demonstrated no efficacy. This has highlighted the difficulty of transferring in 

vitro experiments to the clinical setting. (McKintosh et al., 2003) 

Complete knowledge of PrPc trafficking and biosynthesis and of the conversion of 

PrPc to the pathogenetic PrPSc isoform are fundamental for the elaboration of 

potential strategies for drug discovery. 
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One of these  approaches involves the inhibition of PrPCsynthesis by antisense 

oligonucleotides or ribozymes targeted to PrP mRNA and is supported by work on 

knockout MoPrP mice demonstrating that these animals are resistant to prion 

disease. 

Other researches have worked on the stabilization of the PrPC molecule making 

the conformational change energetically less favorable; other strategies involve 

blocking PrPC synthesis or stabilizing this PrP isoform, and the manipulation of 

the PrPSc molecule. For instance, drugs that destabilize PrPSc, making it protease 

sensitive, might enhance clearance of the latter. An important feature for the 

development a therapeutic treatment for TSE diseases is the conversion of PrPC 

to PrPSc, compounds that bind to PrPSc and prevent it from serving as a template 

for the replication of nascent PrPSc could be effective. Another strategy 

contemplates prevention of binding of protein X to a PrPC intermediate (PrPI), 

thereby inhibiting the conversion of PrPC to PrPSc (Koster T. et al.; 2003). 

Currently is really difficult diagnostic ante-mortem a prion disease: examination 

of brain sample is required to confirm the presence of TSE or other 

neurodegenerative diseases. Biochemical tests using brain samples are based on 

differential sensitivity of PrPC vs. PrPSc to PK digestion. After digestion the PrPSc 

may be assayed by conventional techniques such as Western blotting or ELISA. 

However there is necessity to identify markers allowing early diagnosis in humans 

as well as in animals, before symptoms development. 

A significant advance in prion diagnostics was accomplished in 1997 by the 

discovery that protease-resistant PrPSc can be detected in tonsillar tissue of 

vCJD patients. Furthermore, there have been reports of individual cases showing 

detection of PrPSc at pre-clinical stages of the disease in tonsil as well as in the 

appendix, indicating that lymphoid tissue biopsy may be useful for diagnosing 

presymptomatic individuals. PrPSc-positive lymphoid tissue was long considered to 

be a vCJD-specific feature that would not apply to any other forms of human 
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prion diseases. However, a recent survey of peripheral tissues of patients with 

sporadic CJD has identified PrPSc in as many as one-third of skeletal muscle and 

spleen samples, as well as the olfactory epithelium of patients suffering from 

sCJD (Aguzzi et al., 2004) 

To date, prion infectivity has not been described to occur in saliva, nasal 

secretion, respiratory aerosols, urine or feces in animals with naturally occurring 

scrapie infections. However it has recently been shown that prions are present in  

the saliva of deer with chronic wasting disease. It has been also found that in 

sheep with scrapie, PrPSc deposits are associated with acinar and ductal epithelial 

cells of the salivary glands and can be detected in gland secretion (Vascellari et 

al., 2007). 

Unfortunately PrPSc is not always easily detectable in prion diseases. Therefore, 

the development of highly sensitive assays for biochemical detection of PrPSc in 

tissues and body fluids is a top priority. One route to achieve this goal is to 

develop high-affinity immuno-reagents that recognize PrPSc. Examples include 

the ‘POM’ series of antibodies that recognize various well-defined 

conformational epitopes in the structured C-terminal region of PrPC, and linear 

epitopes in the unstructured N-terminal region. Because of the particular nature 

of the epitopes to which they are directed, some of these antibodies have 

affinities for the prion protein in the femto-molar (10-15) range. Protein 

misfolding cyclic amplification (PMCA) is also a promising method for the 

sensitive detection of the pathological prion protein. This method relies on the 

principle of disrupting large PrPSc aggregates by sonication to generate multiple 

smaller units. PMCA was recently shown to increase sensitivity 6,600-fold over 

standard detection methods. Amplifiable PrPSc was detected in the blood of 

scrapie-infected hamsters by PMCA during most of the pre-symptomatic phase 

of disease. Several research efforts have also been directed at identifying 

proteins that are differentially expressed in the tissues of prion-infected  
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animals compared with disease-free control animals. Ideally, these surrogate 

markers should be detectable at preclinical stages of disease and be 

differentially expressed in easily accessible body fluids such as blood or urine. 

So far, only one extra-neural gene -the erythroid differentiation related factor- 

has been identified that is differentially expressed during prion infection of 

experimentally infected mice, cattle with BSE and sheep with clinical scrapie. 

The identification of additional surrogate markers would certainly be useful, 

particularly if they are detectable in body fluids (Aguzzi et al., 2006).  
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Aim of the Research 

As described above, Prion disorders as well as Alzheimer’s disease are examples 

of neurodegenerative disorders whose pathogenesis involve brain deposition of 

amyloid/misfolded proteins. Several lines of evidence indicate the lipid rafts are 

at play modulating the amyloidogenic processes and that cholesterol, main 

component of the raft, is a key molecule (Howland et al., 1998, Gilch et al., 2006). 

The exact nature of its role, however, remains unclear. Studies on the ability of 

cholesterol biosynthesis inhibitors (i.e. statins) to inhibit the protein misfolding 

process gave conflicting results and inconclusive information on their mode of 

action. While in cell-based prion systems, statins (i.e. squalestatine and 

lovastatine) were able to inhibit generation of the scrapie-like prion protein 

(Bate et al., 2004), in experimentally scrapie-infected mice they were reported 

to prolong the survival time (Mok et al., 2006) by an anti-inflammatory 

neuroprotective effect, rather than via reduction of brain cholesterol (Kempster 

et al., 2006). In AD, despite a huge literature on the matter, the reported 

results are again inconclusive. Numerous evidences suggested that enzymes that 

generate Aß function best in a high-cholesterol environment, possibly by shifting 

APP metabolism from alfa- to beta-cleavage products (Simons et al., 2002-Arispe 

et al., 2002). These and other results suggested a mechanism for the observed 

lowering risk for Alzheimer’s disease among the population taking statin therapy 

and served as a rationale for the use of statins as novel therapy for AD (Jick et 

al., 2000, Klafki et al., 2006). Statins, by lowering cellular cholesterol content, 

were suggested to lead to disaggregating membrane raft domains in the Golgi 

network, thus reducing the collision frequency between β-secretase (BACE) and 

its substrate APP. However, other studies reported that another statin, 

atorvastatin, was able to reduce production of neuritic plaque without crossing 

the blood-brain barrier to a significant degree, raising the possibility that 

atorvastatin, and statins in general, might protect against AD via  
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a peripheral mechanism (Wolozin, 2002), perhaps because of their pleiotropic 

effects on endothelial cell function and as suppressors of inflammation (Maxfield 

et al., 2005). Finally, in a recent retrospective study, statins were reported to 

increase the severity of clinical symptoms in AD patients (Rea et al., 2005).  

Despite these contrasting findings, there is no doubt that cholesterol influences 

the processing/trafficking of PrP and APP, and in general of all the raft-resident 

proteins. Since, as already mentioned, cellular cholesterol is present either as 

FC, in the membranes, and as CE, in cytoplasmic droplets, we though possible 

that, rather than absolute cholesterol level, changes in the cellular content of FC 

vs. CE pools could be responsible for normal vs. aberrant processing of membrane 

proteins.  In this respect, it is worth to remind that in normal conditions only 5-

10% of total cellular cholesterol is in the storage CE form, while more than 90% 

is in membranes as FC. However, none of the studies on cholesterol and statins 

discriminated between the different cholesterol pools, limiting analysis to the 

changes in total cholesterol content. 

On these premises, the aim of my research project was to investigate whether 

cell susceptibility to prion infection/replication was somehow related to 

alterations in the intracellular cholesterol homeostasis, and in particular whether 

unbalanced FC vs. CE pools could be found in prion infected/prion susceptible 

cells  with respect to cell conditions of no infection or genetic resistance. To this 

purpose, I investigated the intracellular content of CE in two prion cell models, 

namely uninfected and prion-infected mouse neuroblastoma cell lines and ex vivo 

skin fibroblasts from uninfected and scrapie-affected sheep, and evaluated the 

effect of a panel of drugs targeting different steps of cholesterol 

metabolism/trafficking on both CE levels and PrPres formation. 
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The drugs used were the steroid hormone Progesterone and the calcium-blocking 

Verapamil that target the MDR1-PgP mediated cholesterol transport from the 

plasma membrane to the endoplasmic reticulum; Sandoz 58-035, a known 

inhibitor of the enzyme ACAT-1 which catalyzes the esterification of cholesterol 

moiety to free fatty acids in the endoplasmic reticulum:owing to its considerable 

cytotoxicity it can’t be used in therapy, but usually it used in research; 

Pioglitazone, a drug used in the treatment of non-insulin-dependent diabetes 

mellitus that appears to induce intracellular redistribution of free fatty acids; 

Everolimus, an immunosuppressant agent that have been reported to inhibit 

cholesterol esterification in our and other laboratories. 

 

Brief description of properties and clinical use of tested drugs  

Progesterone is a C-21 steroid hormone, belonging to the class of progestogens, 

involved in the female menstrual cycle, pregnancy (supports gestation) and 

embryogenesis of humans and other species. Like other steroids, progesterone 

consists of four interconnected cyclic hydrocarbons. Its molecule contains 

ketone and oxygenated functional groups, as well as two methyl branches. Like all 

steroid hormones, it is hydrophobic. This is mostly due to its lack of very polar 

functional groups. Normally cells acquire cholesterol through endogenous 

synthesis and through receptor-mediated uptake of cholesterol-rich low density 

lipoprotein (LDL). Esterification of LDL-derived cholesterol is catalyzed by acyl-

CoA:cholesterol acyltransferase (ACAT) in the endoplasmic reticulum (ER). 

Progesterone, which has been reported to induce cholesterol storage in the 

endosomal/lysosomal system (Klingenstein et al., 2006), inhibits esterification, 

and, although its mechanism of action is not completely understood, this 

inhibition depends on its ability to influence P-glycoprotein’s activity (Metherall 

et al., 1996).  
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Progesterone 

 

Verapamil is a drug that acts as L-type calcium channel blocker. It is used in the 

treatment of hypertension, angina pectoris, migrane and some types of 

arrhythmia. This drug is also used in cell biology as an inhibitor of drug efflux 

pump proteins such as P-glycoprotein (MDR-1) and is presently evaluated in 

clinical trials for ability to reverse MDR in cancer patients. (Wikipedia) 

 

Verapamil 

 

Everolimus is a selective immunosuppressive agent, it is used in organ reject 

prophylaxis, often is combination with cyclosporine. This drug is also a substrate 

for the P-glycoprotein. 

 

Everolimus 
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The medication class of Thiazolidinedione, which includes Pioglitazone, was 

introduced in the late 1990s as an adjunctive therapy for diabetes mellitus (type 

II) and related diseases. Thiazolidinediones act by binding to PPARs (Peroxisome 

Proliferators-Activated Receptors), a group of receptor molecules inside the 

cellular nucleus, specifically PPAR. The normal ligands for these receptors are 

Free Fatty Acids (FFAs) and eicosanoids. When activated, the receptor migrates 

to the DNA, activating transcription of a number of specific genes. By activating 

PPAR: 

• unsulin resistance is decreased 

• adipocyte differentiation is modified 

• VEGF-induced angiogenesis is inhibited 

• leptin levels decrease (leading to an increased appetite) 

• levels of certain interleukins (e.g. IL-6) fall 

• adiponectin levels rise 

• Pioglitazone also acts on cholesterol metabolism by capturing fatty acids 

which were to be esterified with cholesterol molecules, thus influencing 

cholesterol esterification. 

 

Pioglitazone 
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RESULTS 

Standardization of the protocols for PrPC and PrPres detection 

The cell lines used in this study were mouse neuroblastoma cells (MNB), 

uninfected and persistently infected with the 22L or RML mouse adapted scrapie 

strains. These cell lines represent largely used in vitro cell models to study prion 

infection and replication, as well as to identify novel prion inhibitors.     

Briefly, RML (Chandler) is a mouse brain adapted scrapie strain (Ward et al., 

1974) while the 22L-infected cells were developed by re-infection of RML-

infected mouse neuroblastoma cells cured by several passages in 1 µg of pentosan 

polysulfate/ml of medium (Kocisko et al., 2003). The cured cells were re-infected 

by incubation with PrPSc purified from mouse brains infected with the scrapie 

strain 22L. Neuroblastoma cells reinfected with 22L have stably expression of 

PrPres for over 100 passages.  

Scrapie infected MNB cells (22L-N2a and RML-N2a), the parental non-infected 

cell line (N2A) and the protocols used for the immnudetection of PrPC and PrPSc, 

were kindly provided by Dr Byron Caughey from the NIH/NIAID Rocky Mountain 

Laboratories, USA. These protocols have been adapted to our experimental 

conditions. Although, NIH protocols indicated the use of an enhanced 

chemiofluorescent agent (AttoPhos; Promega) for the detection of the prion 

protein, in our hands Attophos didn’t allow an adequate visualization of the PrP 

protein. Therefore, we decided to use an enhanced chemioluninescent 

immnunodetection technique (ECL). Consequently, in order to visualize the results 

we used autoradiography and the Scion Image NIH software to quantify the 

intensity of PrPC PrPres signal. The primary antibody 6H4 (Prionics) was used, 

whereas for secondary antibody and the modality of washes of the PVDF 

membrane, ECL indications were followed. 
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Western and dot blotting analysis of PrP in parental and prion-infected 22L-N2a 

and RML-N2a cells, revealed the presence of PK-resistant (PrPres) only in lysates 

from the infected cells (Fig9 A and B).  
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Figure 9. Detection of PrPc and PrPres in N2a and 22L-N2a mouse neuroblastoma cell lines. Lysate from uninfected and 
22L scrapie-infected N2a cell lines were digested or not with PK, 20 μg/ml, and analyzed with 6H4 antibody by Western 
(A) and Dot (B) blotting procedures (see methods). As control, 0.05 μg of recombinant mouse PrP (rPrP, Prionics) was 
used. 
  
 
Cholesterol esters content and effect of cholesterol modulators in mouse 
neuroblastoma cell lines 
 
To investigate whether prion-infected cells showed an alteration in cholesterol 

homeostasis, I compared the  levels of CE in the N2a cell line with that of the 

two persistently scrapie-infected sublines, 22L-N2a and RML-N2a, by using the 

colorimetric Oil Red O (ORO) method which selectively stains cellular neutral 

lipids (CE) in red color. Interestingly, these experiments revealed markedly 

higher CE levels in the prion-infected cell lines as compared to the uninfected 

cells (Table 2).   
 

9.8 ± 1.7 7.9 ± 1.2 RML-N2a 
12.3 ± 1.8 8.4 ± 1.8 22L-N2a 
4.2 ± 1.5 3.1 ± 1.0 N2a 
48 hours 24 hours 

Mean red stain/cell ± SE Cell line 

 
 

Table 2 Neutral lipid content in uninfected and prion-infected mouse neuroblastoma cell lines. Cells seeded at 
2x105/ml were stained for intracellular neutral lipids with the ORO method at the indicated times. Values represent 
the mean ± standard error of red colour intensity per cell. Experiments were performed in duplicate and repeated at 
least three times. N2a: parental cells; 22L-N2a: N2a subline infected with 22L prion strain; RML-N2a: N2a subline 
infected with RML prion strain. 
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In fact, as can be seen (Fig. 10) from the higher red intensity of individual cells 

as well as from the higher number of more intensively stained cells of the 

population,  CE accumulation was greater in the 22L-N2a than in RML-N2a cells, 

with 3-fold and 2-fold higher CE levels than N2a cells, respectively.  
 

N2a    22L-N2a    RML-N2aN2a    22L-N2a    RML-N2a

 
Figure 10. Representative pictures of N2a cultures and N2a cell lines persistently infected with the 22L and RML strain 
of scrapie. Intracellular neutral lipids were strained with the oil red O method and photographed. (see Materials and 
Methods for detail) 
 

 

The experiments performed to investigate the effect of treatments with drugs 

known to affect cholesterol esterification by targeting different steps of 

cholesterol metabolism, such as Everolimus (EVE), Pioglitazone (PIO), and 

Progesterone (PG), showed that, although at different extent, all drugs were 

able to reduce the CE content in the prion-infected cells. (Figs. 11A and 11B) 
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N2a           22L-N2a

22L-N2a + EVE           22L-N2a + PG    22L-N2a + PIO

N2a           22L-N2aN2a           22L-N2a

22L-N2a + EVE           22L-N2a + PG    22L-N2a + PIO22L-N2a + EVE           22L-N2a + PG    22L-N2a + PIO  
Figure 11. Neutral lipid content in N2a and 22L-N2a mouse neuroblastoma cell lines. A: quantification of the intensity 
of the lipid-bound stain color was determined by densitometric analysis through the Scion Image software (NIH). B: 
intracellular neutral lipids in N2a and 22L-N2a cells were stained by the ORO method after 48-hour incubation in the 
absence or in the presence of Everolimus (EVE, 50 nM), Progesterone (PG, 30 μM) and Pioglitazone (PIO, 40 μM). Values 
represent means ± SE of quadruplicate determinations from triplicate experiments. *P<0.05 vs 22L-N2a cells. 

 
 

Anti-prion activity of cholesterol modulators in mouse neuroblastoma 22L-
N2a cells.  
 
The results above reported clearly indicated a relationship between prion 

infection/replication and the presence of an altered regulation of cholesterol 

metabolism. Therefore, to address more directly this apparent relation, I 

investigated the influence of modifications in the intracellular cholesterol 

distribution (i.e. CE) on the PrP misfolding by evaluating the effect of a wider 

panel of cholesterol modulators on the production of PrPres. Treatments of 22L-

N2a cells with Everolimus (EVE), Pioglitazone (PIO), Progesterone (PG), Verapamil 

(VP) and Sandoz 58-035 (SaH), led to PrPres inhibition in a dose-dependent 

manner (Fig. 12). Similar results were obtained in the RML-N2a cell line (not 

shown). 

B 
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Figure 12 Dose-response curves of anti-prion activity of cholesterol modulators and known prion inhibitor. 22L-N2a 
cells seeded in growth medium at approximately 5.000 cells/well in 96-well plates were incubated in the absence and in 
the presence of serial dilutions of the different drugs. After four days cells were lysed and digested with Proteinase K 
(PK, 20 μg/ml). PrPres in lysates was analyzed by Dot blot procedure with 6H4 antibody and quantized (see methods). The 
mean value of PrPres at each drug concentration (four wells/concentration) was expressed as percentage of untreated 
cultures and the concentration resulting in 50% inhibition (EC50) was determined by linear regression analysis. Each drug 
was tested at least three times. 
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Although none of the drugs proved either very potent or very selective prion 

inhibitor, some of them showed anti-prion activity at non-cytotoxic 

concentrations with EC50 values ranging between 1.4 μM and 40 μM (Table 3). 

The most potent and selective was Everolimus (EC50 1.4 μM vs. CC50 >16 μM) 

followed by Verapamil (EC50 15 μM vs. CC50 ≥ 100 μM), Progesterone (EC50 35 

μM vs. CC50 95 μM), and Pioglitazone (EC50 40 μM vs. CC50 60 μM), whereas 

Sandoz 58-035 showed anti-prion activity at concentrations close to the CC50.  

The dose-response curve of the anti-prion activity of the known prion inhibitor 

quinacrine (Fig 12), and its 50% inhibitory and cytotoxic concentrations (Table 

3), were obtained under the same experimental conditions for comparative 

purposes. 

 
 

Cholesterol 

modulator 
CC50  [μM] 

PrPres 

EC50  [μM] 

Selectivity 

Index 

Everolimus > 16 1.4 ± 0.8 11.4 

Pioglitazone 60 ± 11 40 ± 5.4 1.5 

Progesterone 96 ± 18.6 35 ± 7.8 2.7 

Verapamil ≥ 100 15 ± 4.6 6.7 

Sandoz 68 ± 8.4 40 ± 6.4 1.7 

Androsterone 100 > 100 < 1 

Bezafribrate > 200 > 200 ≤ 1 

Quinacrine 

(Control) 

4.5 ± 1.3 1 ± 0.9 4.5 

 

Table X. Comparative cytotoxicities and anti-prion activity of cholesterol modulators and prion inhibitor in 22L-N2a cell 
linea. a Values are the mean ± standard deviation of three or four independent experiments. 
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Cholesterol ester levels in ex vivo skin fibroblasts from sheep with 
susceptible or resistant prion genotype and comparative inhibition by 
cholesterol modulators.  
 
The ability shown by the cholesterol  modulators to parallel inhibition of PrPres 

to the reduction of CE levels in the prion-infected mouse neuroblastoma cell 

lines, together with the observed difference in the CE levels of infected vs. 

uninfected cell lines, prompted us to investigate whether similar differences in 

CE levels and in the effect of the above drugs could also characterize cells 

known to carry a susceptible vs. a resistant genotype of the prion protein. To 

this end, I prepared ex vivo cultures of fibroblasts from dermal biopsies of 

sheep with a susceptible (ARQ) genotype, both uninfected and scrapie-affected, 

and with a resistant (ARR) genotype. After isolating spindle cells, skin fibroblast 

cultures were maintained in active growth as described in the Material and 

Method section, and were used in the experiments between second and fourth 

passage.  

In untreated cultures, the basal content (time 0) of CE was higher in the skin 

fibroblasts from the susceptible animals than in those carrying the resistant 

genotype (Fig. 13 A-C, compare controls). Interestingly, cells carrying the same 

prion susceptible genotype (ARQ) displayed different basal levels of CE 

according to the presence or absence of scrapie disease: cultures from scrapie-

affected sheep showed higher CE content than cells from susceptible but 

uninfected sheep (Figs 13 B and C).  With respect to cultures from scrapie-

resistant animals, CE levels increased with incubation time more in skin 

fibroblasts from all animals carrying the prion susceptible genotype: after 72 

hours incubation, the cultures from scrapie-affected sheep doubled the basal CE 

level (Fig. 13 C).  
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Figure 13. Neutral lipid content of skin fibroblast cultures from sheep with scrapie-susceptible or scrapie-resistant 
genotype treated in vitro with modulators of cholesterol metabolism. Skin fibroblasts were grown in the absence or 
presence of Everolimus (EVE, 50 nM), Pioglitazone (PIO, 40 μM), Progesterone (PG, 20 μM), Sandoz 58-035 (SaH, 40 μM). 
The cells were stained by the ORO method and processed for determination of neutral lipid content. Quantification of 
the intensity of lipid bound red color was determined by densitometric analysis through the Scion Image software (NIH). 
Values represent the mean ±SEM of red stain per cell of triplicate determinations from at least three independent 
experiments with each group of cultures. (A) Skin fibroblast cultures from 4 sheep with scrapie-resistant (ARR/ARR) 
genotype; (B) Skin fibroblast cultures from 2 sheep with scrapie-susceptible (ARQ/ARQ-) genotype; (C) Skin fibroblast 
cultures from 8 scrapie-affected sheep with scrapie-susceptible (ARQ/ARQ+) genotype; * P<0.05 was considered 
statistically significant (P<0.05/4 = 0.0125 after Bonferroni correction). §P<0.05 vs ARQ/ARQ+. 
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As far as the effect of cholesterol modulators is concerned, in the skin 

fibroblasts from resistant (ARR/ARR) sheep, only Everolimus (50 nM, EVE) was 

able to reduce CE levels by about 50%, while Pioglitazone (40 μM, PIO), 

Progesterone (20 μM, PG) and Sandoz 58-035 (40 μM, SaH) did not show any 

ability to significantly affect CE content (Fig. 13A).  

In fibroblasts from the unaffected-susceptible (ARQ/ARQ-) sheep, all drugs 

exerted a significant inhibitory effect, ranging from 30% to 50% (Fig. 13B). By 

contrast, incubation of skin fibroblasts from scrapie-affected (ARQ/ARQ+) 

sheep in the presence of the cholesterol modulators led to a reduction of 

intracellular CE levels from about 50% to about 70% (Fig. 13C). In all cultures, 

Everolimus emerged as the most potent of all inhibitors in terms of effective 

concentrations (50 nM vs. 20-40 μM). 

 

Cav-1 and PrP expression in sheep skin fibroblasts.  

The results obtained in the two cell-based models of cell susceptibility to prion 

infection and/or prion replication, i.e. prion-infected vs. uninfected cell lines and 

scrapie-susceptible/scrapie-affected vs. scrapie-resistant sheep fibroblasts, 

clearly indicated the presence of a tight connection linking an altered 

distribution of cellular cholesterol to the susceptibility to prion infection as well 

as to prion genotype. Given that any biochemical modification in the cellular 

metabolism is dependent on changes in the expression of the proteins involved in 

that particular pathway, I evaluated in the skin fibroblast cultures with the 

different genotypes whether the observed differences in cholesterol 

distribution (i.e. CE)  would also correlate with changes in the  gene expression of 

PrP and Cav-1.  It is worth to remind that, as is the case of PrP, also Cav- 1 is a 

raft-protein, its specific function being that of mediating the transport of 

excess FC from the endoplasmic reticulum to the surface for cholesterol efflux 

via HDL. With respect to ARR/ARR fibroblasts,  
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ARQ/ARQ cells associated lower mRNA levels of Cav-1 to higher mRNA levels of 

PrPc, both at time 0 and after 72 hours of growth (Fig. 14).  
 

 
      0         72 h         0          72 h           0         72 h 

ARR/ARR ARQ/ARQ- ARQ/ARQ+ 

Cav-1 

β-actin 

PrPc 

 

 
Figure 14. PrPc and Cav-1 mRNA levels in cultured skin fibroblasts from sheep carrying scrapie-resistant (ARR/ARR) or 
scrapie-susceptible (ARQ/ARQ) genotypes, with (ARQ/ARQ+) or without (ARQ/ARQ-) clinical Scrapie. Analysis were 
performed at the time of seed (0 hr) and 72 hrs later. The upper parts of panels A and B shows representative 
autoradiograms of RT-PCR analysis for PrPc and Cav-1, respectively. figure shows densitometric analysis of 
autoradiographic bands for PrPc and Cav-1 mRNA, normalized for the β-actin mRNA contents.. 

 
The significantly higher level of  PrPc mRNA detected in fibroblasts from the 

scrapie-susceptible animals, prompted us to evaluate whether the presence of 

the scrapie-like PrP protein (PK-resistant PrP, PrPres) could be detected in the 

ARQ/ARQ fibroblast cultures. Interestingly, Western blot analysis of PrP in 

extracts of 72 hr FCS-stimulated fibroblasts from the scrapie-susceptible 

sheep (Fig. 15), whether or not scrapie-infected, revealed the presence of PK-

resistant bands of molecular weight comparable to those reported for digested 

forms of PrPSc.  
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Figure 15. PrPc and PK-resistant PrP (PrPres) profiles of cultured skin fibroblasts carrying scrapie-resistant (ARR/ARR) 
or scrapie-susceptible (ARQ/ARQ) genotypes, with (ARQ/ARQ+) or without (ARQ/ARQ-) clinical Scrapie. Lysates of 72 
hr FCS-stimulated cultures from 1 ARR/ARR, 1 ARQ/ARQ+ and 1 ARQ/ARQ- sheep, were treated or not with 20 µg/ml 
PK (ratio 1:900), and analysed by Western blot procedure with 6H4 antiserum.  
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As seen, no PK-resistant bands were detected in the PK-treated ARR/ARR 

lysates (Fig. 15). Although the PK-resistant bands could be detected loading 

extremely high amounts of protein (up to 140 µg of total protein), and although 

only two sets of fibroblast cultures from sheep with the different genotypes 

were so far evaluated, these results confirmed that sheep carrying ARQ/ARQ 

genotype are more prone to spontaneous PrP structural conversion than those 

carrying ARR/ARR genotype. These data, if confirmed, coupled to the higher 

mRNA expression of PrP may likely justify a more consistent PrPSc accumulation 

following the natural infection with Scrapie. 

 

 

DISCUSSION 

The results obtained during my research doctorate indicate a strong relationship 

between abnormal CE accumulation and cell susceptibility to prion 

infection/replication. Firstly, scrapie-infected mouse neuroblastoma cell lines as 

well as ex vivo fibroblast cultures derived from sheep affected by clinical 

scrapie, or carrying a susceptible genotype (ARQ), displayed an alteration of 

cholesterol homeostasis as evidenced by an abnormal intracellular accumulation 

of CE. In these cultures, CE levels were about 3-fold higher than their 

respective uninfected or resistant counterparts. Secondly, the modifications of 

cellular cholesterol pools were accompanied by parallel alterations in the 

expression levels of gene and protein Cav-1, that is involved in the pathways 

leading to intracellular cholesterol trafficking, i.e. cholesterol efflux. In 

particular, a lower Cav-1 expression characterized cells with scrapie-susceptible 

genotype. Thirdly, fibroblasts carrying the susceptible ARQ/ARQ genotype 

showed an higher mRNA expression of PrPc than cultures from scrapie-resistant 

sheep, and PK-digestion of lysates led to detectable PK-resistant PrP isoforms, 

suggesting  that genetic PrP polymorphisms and altered cholesterol homeostatic 
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mechanism may act in concert to create a favorable cellular environment to 

initiation and progression of prion disease. Finally, various drugs able to inhibit 

cholesterol esterification by targeting different steps of cholesterol 

metabolism/trafficking markedly reduced CE levels in both prion-infected mouse 

neuroblastoma and skin fibroblast cultures from scrapie-affected sheep, while 

had significantly lower or no effects in their uninfected and scrapie-resistant 

counterparts. Moreover, the cholesterol modulators were able to determine a 

parallel inhibition of PrPres formation in the prion-infected N2a cell line. Among 

all cholesterol modulators tested, Everolimus was determined to be the most 

active drug. It was the most potent inhibitor of cholesterol esterification in 

terms of effective concentration (50 nM vs. 20-40 μM), and the most potent 

anti-prion drug with a 50% inhibitory concentration (EC50) of 1.4 μM in the 22L-

N2a cells. The prion inhibitor Quinacrine, under the same experimental 

conditions showed a comparable potency with an EC50 of 1 μM. Also the 

cholesterol modulators Pioglitazone, Progesterone, and Verapamil resulted in a 

selective, although moderate, anti-prion effect (EC50 range 15-40 μM).  

As reported in the Introduction, drugs known to affect the de novo cholesterol 

biosynthesis (i.e. statins) have been reported to inhibit PrPres accumulation 

(Bate et al., 2004), and more recently, evidence has been presented that 

quinacrine could exert its anti-prion effect by influencing intracellular 

redistribution of cholesterol (Klingenstein et al., 2006). However, this is the 

first time that it is shown a selective anti-prion activity of drugs affecting the 

overall cholesterol esterification process.  It is worth to note that in normal 

tissues, only a minor amount (1-10%) of total cholesterol is found as CE, the 

storage form of cholesterol in the cytoplasm, while more than 90% is in the form 

of free cholesterol (FC) and resides in the cholesterol-rich membrane domains 

(rafts). Because membrane cholesterol appears critical for the function of raft-

resident proteins (e.g. PrP, β- and γ-secretases of APP, growth factor receptors), 
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cells developed a highly integrated set of homeostatic mechanisms that finely 

regulate FC vs. CE pools according to the cell’s needs and functions.  In this 

context, my results indicate that prion infection and/or replication may be 

sustained or favourite by alterations in this fine regulatory network that 

operates to assure the correct content and distribution of cholesterol inside the 

cell. Several studies (Abid et al., 2006, Critchley et al., 2004, Gilch et al.,2006, 

Prado et al., 2004, Taraboulos et al., 1995) have pointed out the essential role of 

cellular cholesterol for the proper folding and trafficking of PrPC protein, 

indicating that the conversion rate of PrPC into PrPSc may be modulated, at least 

in part, by cholesterol homeostatic mechanisms. On the other hand, PrPSc 

replication itself has been reported (Russelakis-Carneiro et al., 2004) to 

interfere with intracellular cholesterol metabolism and trafficking by displacing 

cholesterol binding protein caveolin-1 from the membrane, thus suggesting that 

PrP perturbations may in turn exacerbate preexisting cholesterol alterations. In 

our study, sheep were infected in vivo and the scrapie agent may have reached, 

in addition to nervous and lymphatic system, various host tissues, including skin. 

As a matter of fact, Thomzig et al. (2003) showed PrPSc accumulation in the 

muscles and, very recently (2007), also in the skin of experimentally scrapie-

infected hamsters as well as in naturally infected sheep.  

On the basis of our findings, and in the light of the increasing literature on this 

matter, we then suggest that abnormal cholesterol esterification could 

represent a phenotype predisposing a cell to the development of pathologic 

processes involving abnormal activation, and/or processing, and/or trafficking of 

membrane resident proteins, and that cholesterol esterification inhibition may 

be a way to control disease progression. 

In agreement with our findings, recent studies by Kovacs’ group in models of 

Alzheimer’s disease (AD) have indicated a role for CE as modulators of the 

amyloidogenic processing of the amyloid precursor protein APP. Inhibition of CE 
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by RNAi-induced decrease of ACAT expression (Huttunen et al., 2007) or by a 

novel ACAT inhibitor, CP-113,818, prevented amyloid Aβ peptide generation 

(Puglielli et al 2001), and led to more than 90% reduction of cerebral amyloid 

plaques in a mouse model of AD (Hutter-Paier et al., 2004). 

In conclusion, further studies are necessary to elucidate the mechanisms 

responsible for the cholesterol homeostasis alterations in sheep carrying a prion 

genotype affecting susceptibility to scrapie, and to unveil the apparent cause-

effect relationship between PrP polymorphisms and cholesterol alterations. 

Nonetheless, the data reported in my study suggest that accumulation of 

cholesterol esters in peripheral cells, together with altered expression of some 

proteins implicated in intracellular cholesterol homeostasis, might serve to 

identify a distinctive lipid metabolic profile associated with increased 

susceptibility to develop prion disease following natural infection.  

Studies are already in progress to establish whether cholesterol esters may 

truly be a target of clinical interest as well as a biological marker of disease 

susceptibility applicable to prion diseases as well as to other protein-based 

neurodegenerative pathologies.  

 

The results of this research are reported in the following papers this year 

published in international peer-reviewed journals 
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vivo Lymphocytes from Scrapie-susceptible Sheep and in Scrapie-infected Mouse 

Neuroblastoma Cell Lines. Am J Infect Dis 3(3), 165-168 (2007).  
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MATERIALS AND METHODS 

 

Chemicals 

Verapamil hydrochloride (98%), Quinacrine dihydrochloride, Progesterone, and 

DMSO (99.5 %), were purchased from Sigma-Aldrich (Italy). Everolimus and 

Sandoz 58-035 were kindly provided by Novartis (Switzerland), and Pioglitazone 

by Takeda (Japan). Everolimus was solubilized in 100% ethanol and stored at 

+4°C. Pioglitazone and Sandoz 58-035 were solubilized in 100% ethanol and 

stored at room temperature. Stock solutions of the other compounds were 

prepared in DMSO and stored at -20°C.  

 

Cell lines 

The mouse neuroblastoma N2a cell line, and the 22L-N2a and RML-N2a sublines, 

respectively infected with the mouse-adapted strains of scrapie 22L and RML 

(Rocky Mountain Laboratory), were a generous gift by Dr. Byron Caughey, 

NIH/NIAID Rocky Mountain Laboratories, USA. Cells were grown and 

maintained at 37°C, 5% CO2, in OptiMEM supplemented with 10% FBS (Gibco, 

Invitrogen; Italy), 2mM L-glutamine, 50 U/ml penicillin G sodium and 50 µg/ml 

streptomycin sulphate (Gibco, Invitrogen; Italy) and passaged every 3 or 4 days 

at a 1:10 or 1:20 dilution, respectively. On occasions, 22L-N2a and RML-N2a 

sublines were cloned by end point dilution (single-cell dilution) to isolate better 

PrPres producer populations. Cell lines and subclones were stored in liquid 

nitrogen and working cultures were replaced at two-three month intervals in 

order to maintain the same intensity of PrPres signal throughout the experiment. 

All trials were carried out in cell cultures during exponential growth.  



 58

Sheep 

Sheep samples were a generous gift from Dr. Ciriaco Ligios and were collected at 

the Istituto Zooprofilattico Sperimentale of Sardinia, Sassari, Italy. Samples 

were collected from a total of 14 Sarda breed sheep, 4 carried the scrapie-

resistant ARR/ARR genotype, and 10 the scrapie-susceptible ARQ/ARQ 

genotype. Of the latter, 2 were mock-infected, 1 had natural scrapie, and 7 

developed clinical disease following experimental inoculation of scrapie. The 4 

scrapie-resistant sheep, which were scrapie-infected in parallel with susceptible 

animals, and the 2 mock-infected susceptible animals, did not develop any clinical 

signs and were alive and healthy at the time of this report. With the exception 

of the sheep affected by natural scrapie, all the animals used were raised in the 

same environmental conditions and were of the same age and sex in order to 

reduce physiological differences of experimental determinations. Samples from 

all sheep were collected at the time of terminal clinical stage of the ill animals. 

 

Skin fibroblast cultures 

Tissues fragments from skin biopsies were plated into 6-well plates and allowed 

to adhere to the bottom of the vessels. After 2 hrs, they were covered with a 

few drops of Dulbecco’s modified Eagle’s medium (D-MEM) (Gibco Lab NY, USA) 

supplemented with 10% fetal bovine serum (FBS) (Sigma), 100 U/ml 

penicillin/streptomycin (Sigma), and fungizone (Life Technologies, Inc.) and 

incubated at 37°C in a humidified incubator with 5% CO2. The following day, 

tissue fragments were overlaid with culture medium, which was changed every 

two days. Five to six days later, fibroblasts begun to proliferate from the 

fragment margins (“halo of cells”) and to form a monolayer. After four weeks, 

fibroblasts were purified by repeated trypsinization (trypsin-EDTA) and 

passaging to achieve an homogenous population of spindle cells. Purified 

fibroblasts were washed twice with sterile PBS and centrifuged. 1x106 cells 



 59

were then seeded into 25 cm2 culture flask and grown to confluence. Then, cells 

were either used for “in vitro” experiments or resuspended in cryopreservation 

medium at a density of 1x107 cells/ml and stored in liquid nitrogen. Analytical 

assays were carried out using fibroblast cultures between the second and fourth 

passage. Cells were plated at a density of 5x103 cell/cm2 in 6-well plates and 

brought to proliferative quiescence by incubation for 48 hrs in serum depleted 

(0.2% FCS) MEM 199. Then, quiescent cells were stimulated to re-enter cell 

cycle by addition of 10% FCS and incubation at 37 °C for the indicated time 

intervals. 

 

Lipid staining 

Intracellular neutral lipid (i.e. CE) were evaluated with the oil red O method 

(15,26) at the indicated time points as previously described (30). In brief, 

cultures were washed three times with PBS and fixed by soaking in 10% formalin. 

Cells were then treated with isopropyl alcohol (60%), washed, stained with oil red 

O for intracellular neutral lipid droplets and counterstained with Mayer’s 

hematoxylin. Stained cells were examined by light microscopy and digital images 

were recorded. Red color intensity in single cells, indicating neutral lipid-bound 

oil red O, was measured by the NIH Image 1.63 Analysis Software program 

(Scion Image). Values are expressed as the mean colour intensity per cell 

calculated on at least 30 single random cells in 6 different microscopic fields. 

 

Detection of PrPres in cell cultures  

For dot blot procedure, approximately 5.000 of cells in 100 µl of growth medium 

were added to each well of a Microtest flat-bottom 96-well plate with a low-

evaporation lid (Becton Dickinson, USA). For drug testing, the cells were allowed 

to settle overnight before addition of 10 µl (10x solutions) of different dilutions 

of test compounds. DMSO in the cell medium was never higher than 0.5%  
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(vol/vol). Each drug concentration was tested in quadruplicate. After 4 days at 

37°C in 5%CO2 cells were processed for PrPres as described (24). In brief, cells 

were lysed with 50 µl of cold lysis buffer (0.5% wt/vol Triton X-100, 0.5% wt/vol 

sodium deoxycholate, 5 mM Tris-HCl pH 7.4 at 4°C, 5 mM EDTA, and 150 mM 

NaCl). After 15 min on ice, 25 µl of 0.1 mg/ml proteinase K (PK, Novagen, USA) in 

TBS (1.4 M NaCl, 1 M Tris-HCl pH 7.6) was added to each well for 60 min at 

37°C. A total of 225 µl of 1 mM Pefabloc (Roche, Novagen, USA) was added to 

the wells of PK-treated and mock treated cultures. Lysates were transferred to 

a 96-well dot blot apparatus (Schleicher & Schuell) over a 0.45 µm pore-size 

polyvinylidene difluoride (PVDF) membrane (Immobilon-P; Millipore) and rinsed 

with TBS. The PVDF membrane was removed, covered with 3M Gdn SCN (Fluka) 

for 8 min at room temperature, blocked with 5% (wt/vol) non-fat dry milk (Bio 

Rad, USA) and 0.05% (vol/vol) Tween 20 (USB corporation; USA) in TBS (TBS-T-

milk) for 60 min at room temperature, incubated with anti-PrP mouse monoclonal 

antibody 6H4 (Prionics, Zurich; 1:20.000) in TBS-T for 1 h, and then exposed to 

horseradish peroxidase labeled anti-mouse IgG antibody (GE Healthcare,UK; 

1:50.000) in TBS-T for 1 h. After extensive washings, membrane was soaked for 

5 min in ECL-plus reagent (GE Healthcare), and exposed to x-ray film (Hyperfilm 

ECL, GE Healthcare). Autoradiography films were captured in TIFF format and 

intensity of each dot was determined by using the Scion Image software (Scion; 

Frederick, MD). PrPres mean  

value at each drug concentration was expressed as percentage of untreated 

controls and the concentration resulting in 50% reduction (EC50) was 

determined by linear regression analysis.  

For Western blot analysis, 4x106 cell samples were lysed in 500 µl of cold lysis 

buffer (see above) for 6 min. After centrifugation at 5000 rpm for 5min 

supernatants were collected and total protein concentration determined by the 

bicinchoninic acid (BCA) protein assay (Sigma-Aldrich). Samples were digested  
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with 20 μg/ml PK (Novagen, USA) in TBS at 37°C for 30 min and the digestion 

was stopped by incubating with 4 mM Pefabloc (Roche, Novagen, USA) for 10 min 

on ice. PrPres was collected  by precipitation  with four volumes of methanolat -

20°C (7). The resulting pellets were then solubilized by sonication in LDS sample 

buffer (Invitrogen, USA) and different amount (20-120 µg) of protein samples 

were loaded onto a 10% NuPage bis-tris-polyacrylamide gel (Invitrogen, USA) 

just after boiling. Protein bands were electro-blotted onto an Immobilion-P 

membrane (Millipore, USA) and PrPres was detected as above. 

 

Cytotoxicity assay 

Antiproliferative activity was evaluated in exponentially growing cell cultures. 

One hundred µl of a cell suspension at a density of 5x104 cells/ml was added to 

each well of flat-bottom 96-well plate 24 hours before addition of 100 µl of 2x 

dilutions of the test compounds. Each drug concentration was tested in 

quadruplicate. Cell viability was determined after four days by the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT; Sigma Italy) 

method as previously described (13). Cell viability at each drug concentration was 

expressed as percentage of untreated controls and the concentration resulting 

in 50% viability (CC50) was determined by linear regression analysis.  

 

RT-PCR and Southern blotting  

The expression levels of Cav-1 and PrPc mRNAs were evaluated in brain 

homogenates and skin fibroblasts by reverse transcription polymerase chain 

reaction (RT-PCR). mRNA levels for the housekeeping gene β-actin were used to 

normalize the amount of RNA inputs in the RT-PCR. Total RNA was extracted 

from 106 cells using TRIZOL reagent (Invitrogen Corporation). Equal amounts of 

total RNA (1 µg) were reverse transcribed into cDNA using the random hexamer 

method and amplified by PCR in the presence of specific primers, according to  
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the instructions provided by the manufacturer (GeneAmp RNA PCR Kit, Perkin-

Elmer Cetus). PCR was performed using the following ovine-specific primers and 

conditions: for Cav-1 (258 bp) forward: 5’- GATTAACAGTGGGTACGATA-3’, 

reverse: 5’-TATGTAGTCTTGCGTTATCC-3’; 94 °C for 30 sec, 59 °C for 30 sec 

and 72 °C for 45 sec, for 30 cycles. For PrP, (341 bp.) forward: 5’-

ATTGTCACCTAGCAGATAGA-3’, reverse: 5’-TTGTTCAGTAGCTCAAGTCT-3’; 94 

°C for 30 sec, 58°C for 1 min, and 72 °C for 45 sec, for 30 cycles. For β-actin 

(217 bp) forward: 5’-GATCATGTTTGAGACCTTC-3’, reverse: 5’-

GAGGATCTTCATGAGGTAGT-3’; 96 °C for 30 sec, 60 °C for 59 sec, and 72 °C 

for 45 sec, for 20 cycles. Sub-saturation levels of cDNA templates, needed to 

produce a dose-dependent amount of PCR product, were defined in initial 

experiments by testing a range of template concentrations. Amplicons were 

labeled during PCR with Digoxigenin-11-dUTP (DIG; Roche Applied Science), 

immuno-detected with anti-digoxigenin antibodies conjugated to alkaline 

phosphatase (Roche Applied Science) and visualized with the chemiluminescent 

substrate CSPD®. The intensity of the autoradiographic bands was measured 

after exposure to X-ray film with the Kodak Digital Science Band Scanner Image 

Analysis System containing HP ScanJet, ID Image Analysis  

Software. The overall procedure was normalized by expressing the amount of 

PCR products for each target mRNA relative to the amount of PCR products 

obtained for the housekeeping gene β-actin. 

 

Statistical analysis  

All values are presented as the mean ±SD (Table) or mean ±SEM (Figures). 

Statistic analysis was performed with the Student t-test. For multiple 

comparisons all significance values were corrected by the Bonferroni method for 

multiple tests. Significance was set at p < 0.05. 
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