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Chapter 1

Introduction

1. The Korteweg-de Vries equation. Many nonlinear evolution equations admit travelling
wave solutions of the form

u(x, t) = φ(x− ct), (1.1)

where x ∈ R (or x ∈ R+) is the position variable, t ∈ R is time, and c is a parameter called the
wavespeed. The first such equation formulated has been the Korteweg-de Vries (KdV) equation
[30, 31, 67]

ut + uxxx − 6uux = 0 (1.2)

to describe water waves travelling along a canal. After a long period (1895-1960) without new
applications of the KdV equation, Zabusky and Kruskal [93] coined the term “soliton” for the
elastically interactive solitary wave solutions of eq. (1.1) which pass each other without losing
their shape and velocity. Gardner, Greene, Kruskal and Miura [47, 48] developed the so-called
inverse scattering transformation (IST) to solve the initial-value problem of the KdV equation.

To understand the IST, we consider the Schrödinger equation on the line

−ψ′′(x, λ) + u(x)ψ(x, λ) = λψ(x, λ), x ∈ R, (1.3)

where u(x) is the (real) potential and λ = k2 is an eigenvalue parameter satisfying Im k ≥ 0. For
u satisfying the Faddeev condition∫ ∞

−∞
dx (1 + |x|) |u(x)| <∞, (1.4)

we introduce the Jost solutions fl(k, x) and fr(k, x) by

fl(k, x) = eikx[1 + o(1)], x→ +∞, (1.5a)

fr(k, x) = e−ikx[1 + o(1)], x→ −∞, (1.5b)

and compute the reflection coefficients R(k) and L(k) and the transmission coefficient T (k) from
the asymptotic expansions

fl(k, x) =
1

T (k)
eikx +

L(k)
T (k)

e−ikx + o(1), x→ −∞, (1.6a)

fr(k, x) =
1

T (k)
e−ikx +

R(k)
T (k)

eikx + o(1), x→ +∞, (1.6b)
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as well as the finitely many numbers k (all positive imaginary and denoted iκ1, . . . , iκN where
0 < κ1 < . . . < κN ) for which eq. (1.3) has a nontrivial solution in L2(R), along with these
so-called bound state solutions. This is the solution of the direct scattering problem. The inverse
scattering problem for the Schrödinger equation on the line, first solved by Faddeev [45] and
presented in [40, 43, 32, 75], consists of recovering the potential u(x) of Faddeev class from
one of the reflection coefficients, the bound state wave numbers iκ1, . . . , iκN , and N positive
parameters c1, . . . , cN (called the norming constants). The method consists of converting the
Riemann-Hilbert problem satisfied by the Jost solutions into a Marchenko integral equation and
to compute u(x) from its solution.

The inverse scattering transform (IST) now consists of three steps. First we let the initial
condition u(x, 0) to the KdV equation (1.1) be the potential in eq. (1.3) and solve the direct
scattering problem to arrive at the scattering data{

R(k), {κj , cj}Nj=1

}
.

We then evolve these data in time in an elementary way. Finally we solve the inverse scattering
problem starting from the time evolved data and find the potential u(x, t) as the solution of eq.
(1.1). The IST can be summarized by the following diagram:

given u(x, 0)
direct scattering problem

with potential u(x,0)−−−−−−−−−−−−−−−−→ R(k), κj , cj
for j = 1, . . . , NyIST

time evolution of
scattering data

y
u(x, t) ←−−−−−−−−−−−−−−−−−−−−−

inverse scattering problem
with time evolved scattering data

R(k)e8ik3t, κj , cje
−8κ3

j t

2. Nonlinear Schrödinger equation. Soon after the seminal papers [47, 48], many non-
linear evolution equations were discovered that can be solved by the inverse scattering transform
for some accompanying linear ordinary differential equation. In this PhD thesis we focus on the
direct and inverse scattering theory for the family of systems of first order ordinary differential
equations

−iJ ∂X(x, λ)
∂x

− V (x)X(x, λ) = λX(x, λ), x ∈ R, (1.7)

where

J =
(

In 0n×m

0m×n −Im

)
, V (x) =

(
0n×n k(x)
l(x) 0m×m

)
, X(x, λ) =

(
Xup(x, λ)
Xdn(x, λ)

)
, (1.8)

In denotes the identity matrix of order n and 0p×q the p × q matrix with zero entries, V (x) is
the potential, and λ ∈ C is an eigenvalue parameter. The most natural such system occurs for
n = m = 1 and l(x) = ±k(x) and is called the Zakharov-Shabat system. It reads

−i∂X
up(x, λ)
∂x

− k(x)Xdn(x, λ) = λXup(x, λ), (1.9a)

i
∂Xdn(x, λ)

∂x
∓ k(x)Xup(x, λ) = λXdn(x, λ). (1.9b)
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It was introduced in [94] to solve the nonlinear Schrödinger equation

iqt = qxx ± 2|q|2q

by the inverse scattering transform. The work was generalized by Manakov [73] to solve a pair
of coupled nonlinear Schrödinger equations using the inverse scattering solution of eq. (1.7) for
n = 1 and m = 2, k(x) =

(
k1(x) k2(x)

)
, l(x) =

(
l1(x) l2(x)

)T and lj(x) = ±kj(x) (j = 1, 2).
In this thesis we call (1.7) the matrix Zakharov-Shabat system. In the literature one often finds
the terminologies AKNS system (after the extensive study made in [2]; see also [1, 4, 3]) and
canonical system (primarily within the Odessa school and followers; cf. [19] for the history and
review).

In many applications such as to fiber optics we distinguish two special cases according to
the symmetry properties of the potential. In the symmetric case we have l(x) = k(x)∗,
where the asterisk denotes the matrix conjugate transpose; in the antisymmetric case we
have l(x) = −k(x)∗. The antisymmetric case occurs in fiber optics for anomolous dispersion
[61, 62], while the symmetric case occurs in the case of normal dispersion [61, 63]. In the an-
tisymmetric case (anomolous dispersion) multisoliton solutions abound. In the symmetric case
so-called dark soliton solutions (i.e., travelling wave solutions that do not vanish as x→ ±∞ for
fixed t but instead oscillate) occur. In the literature the terms “defocussing” (symmetric case)
and “focussing” (antisymmetric case) abound, but in this thesis we do not use these terms.

In general, it is not easy to know beforehand if a given nonlinear evolution equation can be
solved by an IST relating it to the direct and inverse scattering theory of a Hamiltonian operator
H. Major light was shed on this problem by Lax [72] who derived nonlinear evolution equations
associated to H by means of an IST by studying so-called Lax pairs (H,B) of linear operators H
and B such that

Ht = HB − BH.

We indicate Lax pairs for the KdV equation and the matrix NLS equation in Sec. 5.3. For
examples of Lax pairs we refer to the literature (e.g., [4, 1, 3]).

3. Inverse scattering. Inverse scattering has been studied for its own sake long before the
inverse scattering transform supplied it with a major application. Borg [27, 28] recovered the
potential in the Schrödinger equation on a finite interval from its eigenvalues under two sets of
boundary conditions. Under Neumann boundary conditions one set of eigenvalues suffices [18]. In
the early 1950’s Gelfand and Levitan [49], Krein [68], and Marchenko [74] (also [6]) developed the
inverse spectral theory (cf. [49]) and inverse scattering theory (cf. [68, 74]) for the Schrödinger
equation on the half-line R+. Faddeev [45] constructed its inverse scattering theory on the line
(also [75, 40, 43, 32]). Starting from the late 1960’s, Melik-Adamjan [76] generalized the methods
of [68] to develop the inverse scattering theory for eq. (1.7) on the half-line for arbitrary boundary
condition at x = 0. The so-called Odessa group and other researchers which followed up on this
work denoted eq. (1.7) by the term “canonical system.” The inverse scattering theory of eq. (1.7)
on the half-line and on a finite interval, has been generalized in many directions and linked to
the study of reproducing kernel Hilbert spaces and specific classes of analytic operator-valued
functions while using the language of linear control theory (see [19] for a review of the literature).

Using the ideas of Zakharov, Shabat and Manakov, the authors Ablowitz, Kaup, Newell
and Segur [2] developed the inverse scattering theory and the inverse scattering transform for

3



the matrix nonlinear Schrödinger (mNLS) equation which can be solved by applying the inverse
scattering theory of eq. (1.7). This system of eq. (1.7) is therefore often called the AKNS system.
Beals and Coifman analyzed the direct and inverse scattering theory associated with first order
systems of ordinary differential equations of AKNS type with arbitrary invertible and diagonal
matrix J and the corresponding nonlinear evolution equations with initial data in the Schwartz
class of test functions [21, 22, 23]. Earlier results on first order systems with real diagonal J
with Tr(J−1) = 0 have been given Gerdjikov and Kulish [51]. A comprehensive treatment of the
direct and inverse scattering theory for higher order systems of linear differential equations and
the corresponding IST can be found in [24]. More recent developments on higher order systems
and their accompanying IST appeared in [95, 41]. In [3] the direct and inverse scattering of eq.
(1.7) has been given in almost full generality.

4. State space methods. In linear system theory (e.g., [20, 39]), so-called state space meth-
ods are used to study various transformations of linear systems (such as conjugation, cascades,
cascade decomposition, input-output reversal, etc.) by using so-called transfer functions. When
the reflection coefficient is a rational matrix function, the inverse scattering problem for eq. (1.7)
can be solved in closed form by state space methods. Alpay and Gohberg [12, 13, 14, 15], and
Gohberg, Kaashoek and A.L. Sakhnovich [55, 56] have thus solved the inverse spectral problem
for the canonical system eq. (1.7) on the half-line as well as the inverse scattering problem on
the half-line in the symmetric case where l(x) = k(x)∗. The inverse scattering problem on the
full-line with rational reflection coefficient has been solved by similar methods by Aktosun et al.
[9] if l(x) = k(x)∗, and by van der Mee [90] if l(x) = −k(x)∗ and there are no bound states.
Recently, Aktosun and van der Mee [11] have used the solution of the inverse scattering problem
for the Schrödinger equation on the line to obtain explicit solutions of the KdV equation for
initial data which are potentials having rational reflection coefficients.

So far state space methods in inverse scattering have primarily been used to solve inverse
problems for the matrix Zakharov-Shabat system on the half-line in the symmetric case for
n = m. Very few of these papers deal with the more interesting antisymmetric case. Further,
if nonlinear evolution equations were solved, the issues of local vs. global in time existence and
the obtainability of these solutions by the inverse scattering transform were never raised. In this
thesis we deal with all of these issues. For a comprehensive account of the literature on (primarily
local in time) existence of solutions of the multidimensional nonlinear Schrödinger equation in
Sobolev spaces we refer to [29].

5. Contents of the thesis. In [3] the inverse scattering theory of eq. (1.7) has been
developed in full generality, but some details have not been given. In [3] discrete eigenvalues
are always assumed algebraically and geometrically simple and the definition of the norming
constants reflects this limitation. Further, as in [2] bound state norming constants are defined
as if the reflection coefficients extend analytically off the real line, which requires very strong
decay assumptions on the potential. The compactness of the Marchenko integral operator has
not been proved in full generality. The unique solvability of the Marchenko integral equation has
not been established in sufficient generality. In this thesis we intend to fill most of these gaps,
while developing inverse scattering theory in the notations of [9, 90]. Also in the symmetric and
antisymmetric cases we derive explicit solutions for rational scattering data if there are bound
states, as well as the most general multi-soliton solutions.

This PhD thesis is organized as follows. In Chapter 2 we specify the domain of the full
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Hamiltonian H = −iJ d
dx − V and define some basic notions of spectral theory. In Chapters

3 and 4 we develop the direct and inverse scattering theory for eq. (1.7). In particular, we
study the Jordan structure of the discrete eigenvalues of the matrix Zakharov-Shabat system and
derive the Marchenko equations irrespective of Jordan structure. Further, in the symmetric and
antisymmetric cases we prove the unique solvability of the Marchenko equations and characterize
the scattering data, the latter if there are no bound states. Then, in Chapter 5 we give a brief
exposition of fiber optics transmission and study the inverse scattering transform for the nonlinear
Schrödinger equation in more detail. Finally, in Chapter 6 we introduce the state space method
in the antisymmetric and symmetric cases, derive multi-soliton solutions in a systematic way, and
plot some of these solutions. We also give a necessary and sufficient conditions for a state space
solution of the mNLS equation to be time periodic. In Appendix A we compare our notations
to those used in [2, 3] and to those used in fiber optics theory. In Appendix B we discuss the
symmetry properties of various functions arising in direct and inverse scattering theory.

6. Notations and definitions. Let us now introduce some notations used throughout the
thesis. By R and R± we denote the real line and the (closed) positive and negative half-lines. By
C+ and C− we denote the open upper half and lower half complex planes, respectively. We write
C+ = C+ ∪ R and C− = C− ∪ R. Furthermore, let us write f̂ = Ff for the Fourier transform

f̂(ξ) =
∫ ∞

−∞
dx eiξxf(x).

Then, according to Plancherel’s theorem, (2π)−1/2F is a unitary operator on L2(R), implying
the inversion formula

f(x) = (2π)−1

∫ ∞

−∞
dξ e−iξxf̂(ξ).

The Fourier transform is a contraction from L1(R) into the Banach space of continuous complex-
valued functions on R vanishing at ±∞, endowed with the supremum norm. We shall use the
same symbol to denote the Fourier transform on direct sums of n copies of L2(R) or L1(R).

For n ∈ N we denote by Hn the direct sum of n copies of L2(R) endowed with the scalar
product

〈{fk}nk=1, {gk}nk=1〉 =
n∑

k=1

〈fk, gk〉L2(R) =
n∑

k=1

∫ ∞

−∞
dx fk(x)gk(x).

Letting Hs(R) stand for the Sobolev space of those measurable functions f whose Fourier trans-
form f̂ satisfies

‖f‖Hs(R) =
[∫ ∞

−∞
dξ (1 + ξ2)s|f̂(ξ)|2

]1/2

<∞, (1.10)

we denote by Hs
n the direct sum of n copies of Hs(R) endowed with the scalar product

〈{fk}nk=1, {gk}nk=1〉 =
n∑

k=1

〈fk, gk〉Hs(R).

As a result, H0
n = Hn (apart from a factor (2π)−1/2 in the definition of the norms) for each n ∈ N.

Introducing the Hilbert spaces

L2,s(R) = L2(R; (1 + ξ2)sdξ) (1.11)

5



for any s ∈ R and letting L2,s
n (R) stand for the orthogonal direct sum of n copies of L2,s(R), we

see that the Fourier transform F is a unitary transformation from Hs
n(R) onto L2,s

n (R).
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Chapter 2

Domains of the Hamiltonian

It is well-known [64, 83] that, under sufficiently general conditions on the real potential, the
spectrum of the Hamiltonian H of the Schrödinger equation with real potential V in the Faddeev
class consists of the continuous spectrum [0,∞) and at most countably many isolated negative
eigenvalues which can only accumulate at zero.

In this chapter we specify the domains of the free Hamiltonian H0 = −iJ d
dx and the (full)

Hamiltonian H = −iJ d
dx − V on the direct sum Hn+m of n+m copies of L2(R). We distinguish

between potentials having their entries in L1(R)∩L2(R) where H0 and H have the same domain,
and potentials having their entries in L1(R). In Sec. 2.3 we define the Jordan structure of
analytic operator-valued functions on open subsets of the complex plane. This concept is then
applied in Sec. 2.4 to prove that the nonreal spectrum of H consists of isolated eigenvalues of
finite algebraic multiplicity which can only accumulate on the real line. In Sec. 2.5 we briefly
discuss the effect of certain symmetries on the spectrum of H.

2.1 Domain of the free Hamiltonian

The free Hamiltonian H0 is defined as the unbounded linear operator

H0 = −iJ(d/dx)

on the dense domain H1
n+m in Hn+m, where

J = diag(In,−Im) = diag(1, . . . , 1︸ ︷︷ ︸
n copies

,−1, . . . ,−1︸ ︷︷ ︸
m copies

).

Denoting the Fourier transform on Hn+m by F we obtain

(FH0F−1f̂)(ξ) = −Jξf̂(ξ) =

diag(−ξ, . . . ,−ξ︸ ︷︷ ︸
n copies

, ξ, . . . , ξ︸ ︷︷ ︸
m copies

)

 f̂(ξ).

Thus H0 is selfadjoint and its spectrum is continuous and fills up the complete real line.

7



To compute the resolvent of H0, we choose alternatively λ ∈ C+ and λ ∈ C− and consider
the system of differential equations

−iJ ∂X(x, λ)
∂x

= λX(x, λ)− F (x),

where F =
(
Fup Fdn

)T with Fup ∈ Hn and Fdn ∈ Hm. Choosing λ ∈ C+ and partitioning

X =
(
Xup Xdn

)T as we did for F , we get
Xup(x, λ) = (T0(λ)Fup) (x) def= −i

∫ x

−∞
dy eiλ(x−y)Fup(y),

Xdn(x, λ) = (S0(λ)Fdn) (x) def= −i
∫ +∞

x
dy eiλ(y−x)Fdn(y),

whereas for λ ∈ C− we have
Xup(x, λ) = (T0(λ)Fup) (x) def= +i

∫ ∞

x
dy e−iλ(y−x)Fup(y),

Xdn(x, λ) = (S0(λ)Fdn) (x) def= +i
∫ x

−∞
dy e−iλ(x−y)Fdn(y).

For λ ∈ C \ R we have therefore written the resolvent of H0 in the form

(
λIHn+m −H0

)−1 =
(
T0(λ) 0n×m

0m×n S0(λ)

)
, (2.1)

where T0(λ) and S0(λ) are bounded operators on Hn and Hm, respectively.

2.2 Domain of the Hamiltonian

Recall that H−1
n+m is defined as the orthogonal direct sum of n + m copies of H−1(R), where

H−1(R) is given by (1.10) with s = −1. We have the following

Lemma 2.1 Let W be an (n +m) × (n +m) matrix function whose elements belong to L2(R).
Then multiplication by W is a bounded linear operator from H1

n+m into Hn+m and from Hn+m

into H−1
n+m.

Proof. It suffices to prove this lemma for W ∈ L2(R) and n = m = 1. In other words, it
suffices to prove that the operator of multiplication by W ∈ L2(R) is bounded from H1(R) into
L2(R) and from L2(R) into H−1(R). Indeed, for f, g ∈ L2(R) we have

〈Ŵf,
ĝ

(1 + k2)
1
2

〉 =
∫ ∞

−∞

∫ ∞

−∞
ei(k−k̂)xW (x)

1√
2π

∫ ∞

−∞
f̂(k̂)dk̂ dx

ĝ(k)

(1 + k2)
1
2

dk

= (2π)−1/2

∫ ∞

−∞

∫ ∞

−∞
Ŵ (k − k̂)f̂(k̂)dk̂

ĝ(k)

(1 + k2)
1
2

dk,

8



where Ŵ is the Fourier transform of W . Thus∣∣∣∣∣〈Ŵf,
ĝ

(1 + k2)
1
2

〉

∣∣∣∣∣ ≤ (2π)
1
2 ‖W‖2‖f‖2

∫ ∞

−∞

|ĝ(k)|
(1 + k2)

1
2

dk ≤

≤ π
√

2 ‖W‖2‖f‖2‖ĝ‖2,

where we have used the Cauchy-Schwartz inequality. Thus, for any f ∈ L2(R) we have (1 +
k2)−

1
2 Ŵf ∈ L2(R) and therefore Wf ∈ H−1(R). Moreover, ‖Wf‖H−1(R) ≤ π

√
2 ‖W‖2‖f‖2,

i.e., the operator of multiplication by W ∈ L2(R) is a bounded linear operator from L2(R) into
H−1(R).

Next, for f ∈ H1(R) and g ∈ L2(R) we have

〈Ŵf, ĝ〉 = (2π)−1/2

∫ ∞

−∞

∫ ∞

−∞
Ŵ (k − k̂)f̂(k̂)dk̂ ĝ(k) dk =

= (2π)−1/2

∫ ∞

−∞
f̂(k̂)

∫ ∞

−∞
Ŵ (k − k̂)ĝ(k)dk.

Thus

|〈Ŵf, ĝ〉| ≤ ‖W‖2‖ĝ‖2
∫ ∞

−∞
|f̂(k̃)|(1 + k̃2)

1
2

dk̃

(1 + k̃2)
1
2

≤

≤
√
π‖W‖2‖ĝ‖2‖f‖H1(R).

Hence Wf ∈ L2(R) for f ∈ H1(R) and ‖Wf‖2 ≤ 2−1/2‖W‖2‖f‖H1(R).

It is now easy to prove the subsequent

Corollary 2.2 Let V be a potential whose elements belong to

L1(R) ∩ L2(R).

Then the premultiplication by V is a bounded linear operator from H1
n+m into Hn+m and from

Hn+m into H−1
n+m. Consequently, for any λ ∈ C\R, (λIHn+m −H0)−1V and V (λIHn+m −H0)−1

are bounded operators on Hn+m.

As a result, if V is a potential whose elements belong to L1(R) ∩ L2(R), then

H = H0 − V = −iJ d

dx
− V

is a selfadjoint operator on Hn+m with domain D(H) = D(H0) = H1
n+m. A similar result exists

for the Schrödinger equation ([64], Sec.5.3).
For general potentials V whose elements belong to L1(R), it is in general no longer possible

to define the Hamiltonian H as above or even to have a Hamiltonian H defined on the same
domain as the free Hamiltonian H0. We shall define the domain of H and discuss its discrete
spectrum of H in Subsection 2.4.2.
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2.3 Jordan normal form

In the literature (e.g., [46, 71]) the Jordan normal form is usually defined for square matrices.
Given an eigenvalue λ0 of the n × n matrix A, we call x0 an eigenvector of A at the eigenvalue
λ0 if

(λ0In −A)x0 = 0, x0 6= 0.

We call {x0, x1, · · · , xq−1} a Jordan chain of A of length q at the eigenvalue λ0 if (λ0In −A)xj−1+
xj−2 = 0 for j = 2, · · · , q and (λ0In −A)x0 = 0, x0 6= 0. The vectors x1, · · · , xq−1 are called
generalized eigenvectors. It is clear that q ≤ n and dim Ker (λ0In −A) ≤ n. When looking for
a complete set of maximal Jordan chains of A at λ0 for which the corresponding eigenvectors x0

are linearly independent and span Ker (λ0In −A), we obtain Jordan chains of A at λ0 of lengths
q1 ≥ q2 ≥ · · · ≥ qr such that

αm = dim Ker (λ0In −A)m =
m∑

s=1

] {j = 1, · · · , r : qj ≥ s} .

Let us now generalize this concept. To this end, let X be a complex Banach space, λ0 ∈ C
and H(X , λ0) the linear vector space of germs of X -valued analytic functions in a neighborhood
of λ0. This means that we identify X -valued analytic functions whenever they have the same
values in some neighborhood of λ0. Now let L(X ,Y) stand for the Banach space of bounded
linear operators from X into the complex Banach space Y, where we adopt the notation L(X ) if
X = Y.

Let Ω be an open set in C and let X ∗ denote the adjoint of a complex Banach space X , i.e.,
X ∗ def= L(X,C). Then F : Ω→ X is said to be analytic if either of the two following conditions is
satisfied:

• ∀x0 ∈ X ∗, 〈F (·), x0〉 is analytic (weak analyticity);

• ∀λ ∈ Ω we have lim
z→λ

∥∥∥∥F (z)− F (λ)
z − λ

− F ′(λ)
∥∥∥∥
X

= 0 and λ 7→ F ′(λ) is continuous in λ ∈ Ω

(strong analyticity).

It is well-known ([92], Theorem V3.1) that the above conditions are equivalent. Moreover, F :
Ω→ L(X ) is said to be analytic if one of the following conditions is satisfied:

• ∀x ∈ X , ∀x0 ∈ X ∗, 〈F (·)x, x0〉 is analytic;

• ∀x ∈ X , F (·)x is strongly analytic;

• F (·) is strongly analytic with respect to the norm of L(X ),

and, also in this case, it is easy to establish that the three preceding conditions are equivalent.
Given F ∈ H(L(X ,Y), λ0), for any p = 0, 1, 2, · · · and writing

F (λ) =
∞∑

j=0

(λ− λ0)
j Fj , |λ− λ0| ≤ ε,
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we define the linear operator Φp(F ;λ0) : X p → Yp by

Φp(F ;λ0) =


F0 0 · · · · · · · · ·
F1 F0 0 · · · · · ·
...

. . . 0
...

. . .
Fp−1 Fp−2 · · · · · · F0

 . (2.2)

Here X p and Yp denote the direct sums of p copies of X and Y, respectively. Then we easily
obtain

Φp(F ;λ0)Φp(G;λ0) = Φp(H;λ0) (2.3)

whenever FG = H with F ∈ H(L(Y,Z), λ0), G ∈ H(L(X ,Y), λ0) and H ∈ H(L(X ,Z), λ0). It
is easily seen that Φp(F ;λ0) is boundedly invertible for some (and hence all) p if and only if
F0 = F (λ0) is boundedly invertible.

Let us restrict ourselves to those F ∈ H(L(X ,Y), λ0) that have only invertible values in a
deleted neighborhood of λ0 and for which F (λ0) is a Fredholm operator. Then

αp(F, λ0) = dim KerΦp(F, λ0)

is finite and for some q ∈ N we have

α0(F, λ0) ≤ α1(F, λ0) ≤ . . . ≤ αq−1(F, λ0) < αq(F, λ0) = αq+1(F, λ0) = . . . < +∞.

The index q is called the ascent of F in λ0 and coincides with the order of the pole of F (λ)−1 in
λ0. The numbers {αp(F, λ0)}q−1

p=0 determine the Jordan characteristics of F in λ0.
Let F ∈ H(L(X ,Y), λ0) and G ∈ H(L(Z,W), λ0). Then F and G are called equivalent

in λ0 (see, e.g., [54], Chapter II) if there exist operator functions E ∈ H(L(X ,Z), λ0) and
Ẽ ∈ H(L(Y,W), λ0) such that E(λ0) and Ẽ(λ0) are boundedly invertible and

ẼF = GE

as germs of analytic functions in a neighborhood of λ0. Then F is boundedly invertible in a
deleted neighborhood of λ0 and has a Fredholm operator as its value in λ0 whenever G has these
properties, and in this case we have

αp(F, λ0) = αp(G,λ0), p = 1, 2, . . . .

Let F ∈ H(L(X ), λ0) and let Y be a complex Banach space. Then by the Y-extension of F
we mean the operator function F ⊕ IY ∈ H(L(X ⊕ Y), λ0). We then have

αp(F ⊕ IY , λ0) = αp(F, λ0), p = 1, 2, . . . .

Considering F ∈ H(L(X ,Y), λ0) and G ∈ H(L(Y,X ), λ0), it is easily seen ([54], p. 38) that the
X -extension of IY − FG is equivalent in λ0 to the Y-extension of IX −GF .
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Let y ∈ H(Y, λ0). Then the vector function y(λ) =
∑∞

n=0(λ − λ0)nyn with a power series
having a positive or infinite radius of convergence, is called a root function of F at λ0 if

F (λ)y(λ) = 0

in a neighborhood in λ0 and y(λ0) 6= 0. Then it is easily verified that

Φp(F ;λ0)


y0

y1
...

yp−1

 =


0
0
...
0


for any p ≥ 1. Thus the root functions of F at λ0 correspond to the nontrivial vectors in the
kernel of Φp(F ;λ0) for any p ∈ N. Then for p = 1, . . . , q the dimension of the vector space of root
functions y(λ) which are Y-valued polynomials of degree at most p− 1 coincides with αp(F, λ0).

2.4 Nature of the discrete spectrum

In this section we define the Hamiltonian operator H for all potentials V having their entries in
L1(R) by specifying its domain D(H). We also prove that the nonreal spectrum of H consists of
eigenvalues of finite algebraic multiplicity which can only accumulate on the real line.

We first prove the following two technical lemmas. For n = m = 1 the first lemma appears as
Lemma 4.1 of [66]. In the case of the Schrödinger equation it is known as the Birman-Schwinger
principle.

Lemma 2.3 Let W1 and W2 be (n + m) × (n + m) matrix functions whose elements belong to
L2(R), and let λ ∈ C \ R. Then

W1(λ−H0)−1W2

is a Hilbert-Schmidt operator on Hn+m whose Hilbert-Schmidt norm vanishes as |Imλ| → ∞.

Proof. It suffices to prove that W1T0(λ)W2 is a Hilbert-Schmidt operator whenever λ ∈ C+

and W1 and W2 are n×n matrix functions whose elements belong to L2(R). Indeed, W1T0(λ)W2

is an integral operator on a space of vector functions defined on R whose n × n matrix integral
kernel is given by

K(x, y) = −i eiλ(x−y)W1(x)W2(y)χR+(x− y),

where χR+ stands for the characteristic function of R+. We have∫ ∞

−∞
dx

∫ ∞

−∞
dy|K(x, y)|2 =

∫ ∞

−∞
dx|W1(x)|2

∫ x

−∞
dy e−2(x−y)Im λ|W2(y)|2

≤
∫ ∞

−∞
dx|W1(x)|2

∫ x

−∞
dy |W2(y)|2 ≤ ‖W1‖22‖W2‖22,

which shows W1T0(λ)W2 to be Hilbert-Schmidt. Since the integrand is bounded above by the
integrable function

|W1(x)|2|W2(y)|2,
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we can apply the Theorem of Dominated Convergence and prove that the Hilbert-Schmidt norm
of W1T0(λ)W2 vanishes as Imλ→ +∞.

Lemma 2.4 Let W1 and W2 be (n + m) × (n + m) matrix functions whose elements belong to
L2(R), and let λ ∈ C \ R. Then

W1(λ−H0)−2W2

is a Hilbert-Schmidt operator on Hn+m whose Hilbert-Schmidt norm vanishes as |Imλ| → ∞.

Proof. The Hilbert-Schmidt operators on a separable Hilbert space such as Hn+m are them-
selves elements of a separable Hilbert space (cf. [60]) if one imposes the scalar product

〈T, S〉HS
def= tr (T1(T2)∗),

where tr denotes the trace of the trace class operator T1(T2)∗. If we now follow the proof of
Lemma 2.3 for the integral kernel

∂K

∂λ
(x, y) = eiλ(x−y)(x− y)W1(x)W2(y)χR+(x− y), (2.4)

we see that the d
dλ W1(λ − H0)−1W2 is itself the integral operator with integral kernel (2.4).

Moreover, applying the Theorem of Dominated Convergence we have for any Hilbert-Schmidt
operator T on Hn+m

d

dλ
〈W1(λ−H0)−1W2, T 〉HS = −〈W1(λ−H0)−2W2, T 〉HS , λ ∈ C \ R.

Thus W1(λ−H0)−1W2 is weakly analytic as a Hilbert-Schmidt valued vector function. But then
the derivation with respect to λ ∈ C \ R also holds in the Hilbert-Schmidt norm [92, Theorem
V3.1]. It is also easily verified, as in the proof of Lemma 2.3, that W1(λ−H0)−2W2 vanishes in
the Hilbert-Schmidt norm as |Imλ| → ∞ in either of C±.

2.4.1 Square integrable potentials

If the potential V is an (n+m)×(n+m) matrix function whose elements belong to L1(R)∩L2(R),
then, according to Lemma 2.3, V (λ−H0)−1V is Hilbert-Schmidt whenever λ ∈ C \R. If we now
define the operator function

W (λ) = (λ−H)(λ−H0)−1 = IHn+m + V (λ−H0)−1,

then for λ ∈ C \ R
[W (λ)− IHn+m ]2 =

[
V (λ−H0)−1V

]
(λ−H0)−1

is a Hilbert-Schmidt operator. Thus W (λ) − IHn+m has a compact square and hence is a Riesz
operator [86, Sec. 9.6], implying that W (λ) is a Fredholm operator of index zero. Since Lemma
2.3 also implies that ‖W (λ)− IHn+m‖ vanishes as |Imλ| → ∞, it follows from the analyticity of
W (λ) as a function of λ ∈ C \R that W (λ) is boundedly invertible for every nonreal λ, except in
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a set of points whose only accumulation points are real. Furthermore, these exceptional points
are isolated eigenvalues of W of finite algebraic multiplicity ([60], Theorem I 5.1).

Now note that W and λ−H are obviously equivalent operator functions for λ ∈ C\R. Hence,
the nonreal points of noninvertibility of W (λ) are exactly the points of the nonreal spectrum of
H. Consequently, the nonreal spectrum of H consists exclusively of isolated eigenvalues of finite
algebraic multiplicity.

We have proved the following

Theorem 2.5 Let the elements of the potential V belong to L1(R) ∩ L2(R). Then the nonreal
spectrum of H only consists of eigenvalues of finite algebraic multiplicity which can only accu-
mulate on the real line.

2.4.2 General integrable potentials

In the case of the Schrödinger equation it is well-known [64, 82] that the Hamiltonian H is
selfadjoint and has the same domain as the free Hamiltonian H0 if the potential V is real and
belongs to L1(R) ∩ L2(R). Under more general conditions on real potentials V one usually
introduces sesquilinear forms to prove the selfadjointness of H and to specify its domain. This
method can in principle be used in the case of the Hamiltonian of the matrix Zakharov-Shabat
system with arbitrary L1-potential. Since we are only interested in proving Theorem 2.5 for
arbitrary L1-potentials, we proceed along a much shorter path towards the domain of H than in
[64, 82].

Let us now define sgn (V (x)) as the partial isometry in the polar decomposition [25, 46] of
the matrix V (x).

Lemma 2.6 Let k be a complex n×m matrix and l a complex m× n matrix, and let

V =
(

0n×n k
l 0m×m

)
.

Then there exists a nonnegative selfadjoint (n +m) × (n +m) matrix V and a partial isometry
U such that V = U |V | = U(|V |1/2)2, where |V | = |l| ⊕ |k|, |V |1/2 = |l|1/2 ⊕ |k|1/2, and |l| and |k|
are nonnegative selfadjoint matrices.

Proof. Let k = U1|k| and l = U2|l| be polar decompositions of k and l, where the n × m
matrix U1 is the partial isometry defined by U1(k∗k)1/2 = k from the range of |k| def= (k∗k)1/2 onto
the range of k and by zero on the kernel of k, and the m × n matrix U2 is the partial isometry
defined by U2(l∗l)1/2 = l from the range of |l| def= (l∗l)1/2 onto the range of l and by zero on the
kernel of l. Putting

U =
(

0n×n U1

U2 0m×m

)
, |V | =

(
|l| 0n×m

0m×n |k|

)
,

we get V = U |V | with U a partial isometry, as claimed. We now define |V |1/2 = |l|1/2 ⊕ |k|1/2.
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Now let V be an arbitrary potential whose elements belong to L1(R). Applying Lemma 2.6
we can write

V (x) = U(x)|V (x)|1/2|V (x)|1/2,

where the values of the (n+m)× (n+m) matrix function U(x) are partial isometries and hence
have at most unit norm and the elements of |V (x)|1/2 belong to L2(R). Also the elements of
U(x)|V (x)|1/2 belong to L2(R).

Instead of W , we now define

W̃ (λ) = IHn+m + |V |1/2(λ−H0)−1U |V |1/2, (2.5)

where λ ∈ C\R. Then, according to Lemma 2.3, the operator W̃ (λ)−I is an integral operator of
Hilbert-Schmidt type which vanishes in the Hilbert-Schmidt norm as |Imλ| → ∞. Thus W̃ (λ) is
boundedly invertible on Hn+m for |Imλ| large enough. Using Theorem I 5.1 of [60] it follows that
W̃ (λ) is invertible on Hn+m for all nonreal λ, with the exception of a set of points which can only
accumulate on the real line. Moreover, these exceptional points of W̃ are isolated eigenvalues of
finite algebraic multiplicity.

If we are in the antisymmetric case and n = 1, the above polar decomposition has been given
before by Klaus [65] who employed its factors to arrive at eq. (2.5) . In fact, in the symmetric
and antisymmetric cases (i.e., if l(x) = ±k(x)∗) we have

U(x) =
1

ρ(x)1/2

(
0n×n k(x)
±k(x)∗ 0m×m

)
,

|V (x)| = 1
ρ(x)3/2

(
ρ(x)2 01×m

0m×1 k(x)∗k(x)

)
,

where ρ(x) = ‖k(x)‖, the Euclidean norm of k(x), is assumed nonzero.
To define the domain of H (or, equivalently, the range of (λIHn+m − H)−1 for nonreal λ

outside the discrete set of points of noninvertibility of W̃ (λ)), we depart from the identity

(λIHn+m −H)−1 = (λIHn+m −H0)−1

− (λIHn+m −H0)−1sgn(V )|V |1/2W̃ (λ)−1|V |1/2(λIHn+m −H0)−1, (2.6)

where all ingredients of eq. (2.6) have to be specified separately. In fact, for those λ ∈ C \ R for
which W̃ (λ) is invertible, the resolvent difference D(λ) = (λ−H)−1− (λ−H0)−1 is bounded on
Hn+m, as indicated by the following diagram:

Hn+m

(λIHn+m
−H0)−1

−−−−−−−−−−−→ H1
n+m

|V |1/2

−−−−→ Hn+m

D(λ)

y yW̃ (λ)−1

Hn+m ←−−−−−−−
−(λ−H0)−1

H−1
n+m ←−−−−−−−−

sgn(V )|V |1/2
Hn+m

In fact, the expression (2.6) defines the resolvent of the Hamiltonian operator H, as proved in
the following
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Lemma 2.7 For λ, µ ∈ C \ R we have the resolvent identity

(λ−H)−1 − (µ−H)−1 = (µ− λ)(λ−H)−1(µ−H)−1.

Moreover, the expression (2.6) defines the resolvent of an unbounded (but closed and densely
defined) linear operator on Hn+m.

Proof. Indeed, if W̃ (λ) and W̃ (µ) are invertible and λ 6= µ we simply substitute (2.6) for λ
and µ into the right-hand side of (µ− λ)(λ−H)−1(µ−H)−1 and employ the resolvent identity

(λ−H0)−1 − (µ−H0)−1 = (µ− λ)(λ−H0)−1(µ−H0)−1

to obtain (λ−H)−1 − (µ−H)−1. To prove that the left-hand side of (2.6) really is a resolvent,
we choose φ ∈ Hn+m such that (λ−H)−1φ = 0 for λ ∈ C \ R where W̃ (λ) is invertible. Then

0 = |V |1/2(λ−H)−1φ = |V |1/2(λ−H0)−1 − [W̃ (λ)− I]W̃ (λ)−1|V |1/2(λ−H0)−1φ

= W̃ (λ)−1|V |1/2(λ−H0)−1φ,

and hence

(λ−H0)−1φ = (λ−H)−1φ

+ (λ−H0)−1sgn(V )|V |1/2W(λ)−1|V |1/2(λ−H0)−1φ = 0,

which implies φ = 0. Using the same argument on the adjoint of (2.6), we see that (λ −H)−1

has a zero kernel and a dense range. Indeed, we should replace W̃ (λ) and (λ−H)−1 by

W̃ (λ)∗ = IHn+m + |V |1/2U∗(λ−H0)−1|V |1/2

and

[(λ−H)−1]∗ = (λ−H0)−1

− (λ−H0)−1|V |1/2[W̃ (λ)−1]∗|V |1/2[sgn(V )]∗(λ−H0)−1.

The resolvent identity then implies that this kernel and range do not depend on λ ∈ C \ R.
Therefore, we may define λ−H as its unbounded inverse defined on the range of (λ−H)−1.

A second diagram shows that the square ofD(λ) = (λ−H)−1−(λ−H0)−1 is a Hilbert-Schmidt
operator on Hn+m. More precisely,

Hn+m
(λ−H0)−1

−−−−−−→ H1
n+m

|V |1/2

−−−−→ Hn+m
W̃ (λ)−1

−−−−−→ Hn+m

D(λ)2
y yS

Hn+m ←−−−−−−
(λ−H0)−1

H−1
n+m ←−−−−−−−−

sgn(V )|V |1/2
Hn+m ←−−−−−

W̃ (λ)−1
Hn+m

where S = |V |1/2(λ−H0)−2sgn(V )|V |1/2. By Lemma 2.4, S is Hilbert-Schmidt.
We have shown that λ−H is invertible whenever λ ∈ C \R and W̃ (λ) is invertible. Thus the

nonreal spectrum of H is contained in {λ ∈ C \ R : W̃ (λ) is not invertible}. Consequently,
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Theorem 2.8 Let the elements of the potential V belong to L1(R). Then the nonreal spectrum
of H only consists of eigenvalues of finite algebraic multiplicity which can only accumulate on the
real line.

We have not proved that {λ ∈ C \ R : W̃ (λ) is not invertible} coincides with the set of
nonreal eigenvalues of H. We have not related the nonreal eigenvalues of H to the points of
noninvertibility of W (λ) = (λ−H0)−1(λ−H) either. It is easily seen that D(H) = D(H0) if the
entries of V belong to L1(R) ∩ L2(R).

2.5 Symmetries of the Hamiltonian operator

In Chapter 6 we shall derive explicit solutions of the inverse problem for the matrix Zakharov-
Shabat system and for the matrix nonlinear Schrödinger equation for x ∈ R+, without even
bothering about the negative half-line. The rationale is that a treatment for x ∈ R− is analogous
to such an extent that a repetition of the derivations involved is unnecessary. Another approach
is to introduce symmetry relations that allow one to pass from a treatment for x ∈ R+ to a
treatment for x ∈ R− and vice versa. In this section we therefore give an overview of the various
symmetries of the free Hamiltonian H0 and the full Hamiltonian H for an arbitrary L1-potential.
In Appendix B we shall discuss these symmetry relations in more detail.

1. The symmetric and antisymmetric cases. In the symmetric case (l(x) = k(x)∗)
and the antisymmetric case (l(x) = −k(x)∗) the potential V and the Hamiltonian H have the
following properties:{

V (x)∗ = V (x) and H∗ = H, symmetric case,
V (x)∗ = −V (x) and (JH)∗ = JH, antisymmetric case.

(2.7)

Thus in the symmetric case H is selfadjoint on Hn+m, which implies that its spectrum coincides
with the full real line and there do not exist any discrete eigenvalues. In the antisymmetric case
H is selfadjoint with respect to the indefinite scalar product

[f, g]0 = 〈Jf, g〉 =
∫ ∞

−∞
dx (〈fup(x), gup(x)〉 − 〈fdn(x), gdn(x)〉) . (2.8)

As a result [42, p. 80], the eigenvalues of H are located symmetrically with respect to the real
line in the sense that if λ ∈ C \ R is an eigenvalue of H, also λ is an eigenvalue of H having the
same Jordan structure.

2. Changing the sign of x ∈ R: V (−x) as a potential. For any function W of x ∈ R we
define the function W (#) by

W (#)(x) = W (−x). (2.9)

Defining the unitary and selfadjoint operator U on Hn+m by

(Uf)(x) = f (#)(x) = f(−x), x ∈ R, (2.10)

we easily obtain the symmetry relations

H0(UJ) = −(UJ)H0, H(UJ) = −(UJ)H(#), (2.11)
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where H(#) = −iJ(d/dx) − V (#) is the Hamiltonian corresponding to the potential V (#). In
deriving (2.11) we have made use of the commutation relations UJ = JU and H0J = JH0 and
the anticommutation relations JV = −V J (which actually means that V has zero diagonal n×n
and m ×m blocks) and UH0 = −H0U . As a result of (2.11), the discrete eigenvalues of H(#)

are obtained from those of H (including their Jordan structure) by multiplying them by −1.

3. Changing the sign of x ∈ R: −V (−x) as a potential. For any function W of x ∈ R
we define the function W [#] by

W [#](x) = −W (−x). (2.12)

Using (2.10) we easily obtain the symmetry relations

H0U = −UH0, HU = −UH [#], (2.13)

where H [#] = −iJ(d/dx) − V [#] is the Hamiltonian corresponding to the potential V [#]. In
deriving (2.13) we have made use of the anticommutation relations JV = −V J and UH0 =
−H0U . As a result of (2.13), the discrete eigenvalues of H [#] are obtained from those of H
(including their Jordan structure) by multiplying them by −1.

It is now clear that in the antisymmetric case the discrete spectrum of H is symmetric with
respect to both the real and the imaginary axis if the potential is an even or an odd function of
x.

Here we summarize spectral symmetries in the following table. A profound study of the
effect certain symmetries of H have on its spectrum for the Zakharov-Shabat (n = m = 1) and
Manakov (n = 1 and m = 2) systems has been made in [66, 65].

Table 2.1: For different symmetries we indicate under which transformation the discrete spectrum
of H remains invariant. This invariance regards both location of the eigenvalues and Jordan
structure.

antisymmetric case (JH)∗ = JH complex conjugation
even potential H(#) = H sign inversion
odd potential H [#] = H sign inversion

antisymmetric case
with even potential

(UJH)∗=UJH
reflection with respect to

the imaginary axis
antisymmetric case
with odd potential

(UH)∗=UH
reflection with respect to

the imaginary axis
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Chapter 3

Direct Scattering Theory

In this chapter we study the direct scattering theory of the system of differential equations

−iJ dX(x, λ)
dx

− V (x)X(x, λ) = λX(x, λ), x ∈ R, (3.1)

where

J =
(

In 0n×m

0m×n −Im

)
, V (x) =

(
0n×n k(x)
l(x) 0m×m

)
. (3.2)

Here the n×m matrix function k and the m× n matrix function l have complex-valued entries
belonging to L1(R) and λ ∈ R is an eigenvalue parameter. We call the function V the potential
matrix (or potential), k and l potentials and the parameter λ the energy. Note that V (x) satisfies

JV (x) = −V (x)J.

As before we distinguish the following two special cases:

• symmetric potentials: l(x) = k(x)∗, or V (x) = V (x)∗, where the asterisk superscript de-
notes the matrix conjugate transpose;

• antisymmetric potentials: l(x) = −k(x)∗, or JV (x) = JV (x)∗.

For n = m = 1 we have the so-called Zakharov-Shabat system and for n = 1 and m = 2 the
Manakov system.

In the symmetric and antisymmetric cases the direct and inverse scattering theory of (3.1)
has been developed in [9] and [90], respectively, the latter only if there are no bound states. Here
we extend the formalism and results of [9, 90] to the matrix Zakharov-Shabat system with general
L1 potentials with and without bound states, filling up some of the questions left unanswered
in these papers. In part we cover the same material as in Chapter 4 of [3], proving many of the
statements left unproved there and greatly improving the treatment of the bound state norming
constants, where we rely on Section B.3 of Appendix B for some of the technical aspects involving
symmetry. In Section A.1 of Appendix A we compare their formalism with ours in detail.
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After introducing the Jost solutions and Faddeev functions and deriving their continuity and
analyticity properties in Sections 3.1 and 3.2, we represent these functions as Fourier transforms of
L1 functions in Section 3.3. In Section 3.4 we introduce the reflection and transmission coefficients
and study their properties. In Section 3.5 we relate the spectral properties of the Hamiltonian
operator H to those of the inverses of the transmission coefficients, with full account of Jordan
structure. Finally, in Section 3.6 we derive Wiener-Hopf factorization results for certain matrix
functions built from a reflection coefficient in the symmetric and antisymmetric cases. These
results are used to construct the scattering matrix from one of the reflection coefficients.

3.1 Jost solutions

In this section we define the Jost solutions of (3.1), i.e., the solutions proportional to the free
solutions eiλJx as either x → +∞ or x → −∞. In [3] the Jost solutions are either (n +m) × n
matrix functions or (n+m)×m matrix functions. We shall instead define them as square matrix
functions of order n+m. Apart from trivial notational changes, our Jost solutions are composed
of those defined in [3] by arranging them as columns in a square matrix function of order n+m.
For details on the distinction between our notational system and that of [3] we refer to Section
A.1.

For λ ∈ R, we define the Jost solution from the left, Fl(x, λ), and the Jost solution from
the right, Fr(x, λ), as the (n+m)× (n+m) matrix solutions of (3.1) satisfying the asymptotic
conditions

Fl(x, λ) = eiλJx[In+m + o(1)], x→ +∞, (3.1a)

Fr(x, λ) = eiλJx[In+m + o(1)], x→ −∞. (3.1b)

Using (3.1), (3.1a) and (3.1b), we obtain the Volterra integral equations

Fl(x, λ) = eiλJx − iJ
∫ ∞

x
dye−iλJ(y−x)V (y)Fl(y, λ), (3.2a)

Fr(x, λ) = eiλJx + iJ

∫ x

−∞
dye−iλJ(y−x)V (y)Fr(y, λ). (3.2b)

Since the entries of k(x) and l(x) belong to L1(R), for each fixed λ ∈ R it follows by iteration
that (3.2a) and (3.2b) are uniquely solvable and hence that the Jost solutions exist uniquely.
Since Fl(x, λ) and Fr(x, λ) are solutions of a first order linear homogeneous differential equation
and hence the columns of one are linear combinations of the columns of the other, for each λ ∈ R
there exist (n+m)× (n+m) matrices al(λ) and ar(λ) such that

al(λ)Fr(x, λ) = Fl(x, λ), (3.3a)
ar(λ)Fl(x, λ) = Fr(x, λ). (3.3b)

Thus, from (3.1)-(3.2) we have

Fl(x, λ) = eiλJx[al(λ) + o(1)], x→ −∞, (3.4a)

Fr(x, λ) = eiλJx[ar(λ) + o(1)], x→ +∞, (3.4b)
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where

al(λ) = In+m − iJ
∫ ∞

−∞
dy e−iλJyV (y)Fl(y, λ), (3.5a)

ar(λ) = In+m + iJ

∫ ∞

−∞
dy e−iλJyV (y)Fr(y, λ). (3.5b)

We have

Proposition 3.1 For λ ∈ R the matrices al(λ) and ar(λ) appearing in (3.4a) and (3.4b), re-
spectively, satisfy

al(λ)ar(λ) = ar(λ)al(λ) = In+m, (3.6)

where

det al(λ) = det ar(λ) = 1. (3.7)

Proof. At first, we prove eq. (3.6). We have

Fl(x, λ) =

{
eiλJx[al(λ) + o(1)], x→ −∞,
eiλJx[In+m + o(1)], x→ +∞,

and

Fr(x, λ) =

{
eiλJx[In+m + o(1)], x→ −∞,
eiλJx[ar(λ) + o(1)], x→ +∞.

As a result of (3.3), we obtain Fl(x, λ) = al(λ)Fr(x, λ) = al(λ)ar(λ)Fl(x, λ), which implies
al(λ)ar(λ) = In+m. Proceeding in a similar way, but starting from the identity Fr(x, λ) =
ar(λ)Fl(x, λ) = ar(λ)al(λ)Fr(x, λ), we find ar(λ)al(λ) = In+m.

In order to prove eq. (3.7), we observe that

d(e−iλJxFl(x, λ))
dx

= e−iλJxd(Fl(x, λ))
dx

− iλJe−iλJxFl(x, λ)

= e−iλJxiJ [V (x) + λIn+m]Fl(x, λ)− iλJe−iλJxFl(x, λ)

= e−iλJxiJV (x)Fl(x, λ),

which implies (see, for example [81])

d det(e−iλJxFl(x, λ))
dx

= tr(e−iλJxiJV (x)) det(Fl(x, λ)),

where tr denotes the matrix trace. By eq. (3.2), e−iλJxiJV (x) has zero trace, and hence
det(e−iλJxFl(x, λ)) is independent of x. Because of the relations limx→−∞ e−iλJxFl(x, λ) = al(λ)
and limx→+∞ e−iλJxFl(x, λ) = In+m, we have det(al(λ)) = det(In+m) = 1. Proceeding in a
similar way for e−iλJxFr(x, λ), we find det(ar(λ)) = det(In+m) = 1.
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Proposition 3.2 Let X(x, λ) and Y (x, λ) be any two solutions of (3.1), and let λ ∈ R. Then
for symmetric potentials the matrix X(x, λ)∗JY (x, λ) is independent of x and

al(λ)−1 = Jal(λ)∗J, ar(λ)−1 = Jar(λ)∗J ; (3.8)

in particular, al(λ) and ar(λ) are J-unitary matrices. For antisymmetric potentials the matrix
X(x, λ)∗Y (x, λ) is independent of x and

al(λ)−1 = al(λ)∗, ar(λ)−1 = ar(λ)∗; (3.9)

in particular, al(λ) and ar(λ) are unitary matrices.

Proof. If we differentiate X(x, λ)∗Y (x, λ) (X(x, λ)∗JY (x, λ), respectively) and use (3.1) and
the selfadjointness of JV (x) (in the antisymmetric case) and V (x) (in the symmetric case), we
obtain that the matrix X(x, λ)∗Y (x, λ) (X(x, λ)∗JY (x, λ), respectively) does not depend on x.

Now we prove eq. (3.9) (the proof of (3.8) is very similar). From Proposition (3.1) we
have ar(λ)Fl(x, λ) = Fr(x, λ). So it is not difficult to see that in the antisymmetric case
Fl(x, λ)∗Fl(x, λ) = al(λ)∗al(λ) = In+m as x → ±∞ and, analogously, Fr(x, λ)∗Fr(x, λ) =
ar(λ)∗ar(λ) = In+m. Then eq. (3.9) readily follows.

3.2 Faddeev matrices

In this section we introduce the Faddeev matrices Ml(x, λ) and Mr(x, λ) in terms of the Jost
solutions (3.1a). Using a decomposition of these matrices in suitable blocks, we study the analyt-
icity properties of these functions. Moreover, we study the analyticity properties of the analogous
submatrices of al(λ) and ar(λ).

Let us define the Faddeev matrices Ml(x, λ) and Mr(x, λ) as follows:

Ml(x, λ) = Fl(x, λ)e−iλJx, Mr(x, λ) = Fr(x, λ)e−iλJx. (3.10)

From (3.1a) and (3.1b) we get

Ml(x, λ) = In+m + o(1), x→ +∞, (3.11a)
Mr(x, λ) = In+m + o(1), x→ −∞. (3.11b)

Let us partition the Jost solutions and Faddeev matrices in the following way:

Fl(x, λ) =
(
Fl1(x, λ) Fl2(x, λ)
Fl3(x, λ) Fl4(x, λ)

)
, Fr(x, λ) =

(
Fr1(x, λ) Fr2(x, λ)
Fr3(x, λ) Fr4(x, λ)

)
, (3.12)

Ml(x, λ) =
(
Ml1(x, λ) Ml2(x, λ)
Ml3(x, λ) Ml4(x, λ)

)
, Mr(x, λ) =

(
Mr1(x, λ) Mr2(x, λ)
Mr3(x, λ) Mr4(x, λ)

)
, (3.13)

where Fl1, Fr1,Ml1,Mr1 are n× n matrices, Fl2, Fr2, Ml2, and Mr2 are n×m matrices, Fl3, Fr3,
Ml3, and Mr3 are m×n matrices and Fl4, Fr4, Ml4, and Mr4 are m×m matrices. We shall adopt
this type of partitioning of (n +m) × (n +m) matrices into blocks labeled 1, 2, 3, 4 throughout
this thesis.

Before studying the above analyticity properties of submatrices of the Faddeev matrices, we
recall the subsequent (cf. e.g. [80]).
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Lemma 3.3 (Gronwall) Let ρ ∈ L1(R) be nonnegative, H a bounded positive function, and F
a measurable function satisfying

0 ≤ F (x) ≤ H(x) +
∫ +∞

x
dy ρ(y)F (y).

Then

0 ≤ F (x) ≤ H(x) exp
{∫ +∞

x
dy H(y)ρ(y)

}
. (3.14)

Proof. Let us first consider the case H(x) ≡ 1. We observe that G(x) = exp {
∫∞
x dyρ(y)}

is the exact solution of the integral equation G(x) = 1 +
∫∞
x dyρ(y)G(y). This solution is easily

obtained by iteration:

G0(x) = 1, Gn+1(x) = 1 +
∫ ∞

x
dyρ(y)Gn(y).

Hence, any nonnegative function F such that F (x) ≤ 1 +
∫ +∞
x dyρ(y)F (y), satisfies 0 ≤ F (x) ≤

G(x).
Let us consider the general case. Dividing eq. (3.14) by H(x) and putting ρ̃(y) = ρ(y)H(y),

we have 0 ≤ (F (x)/H(x)) ≤ exp {
∫ +∞
x dyρ̃(y)}, which implies the lemma.

We now analyze the Faddeev matrix Ml(x, λ).

Proposition 3.4 Assume that the entries of k(x) and l(x) belong to L1(R). Then the following
statements are true:

1. For each fixed x ∈ R, Ml1(x, λ) and Ml3(x, λ) can be extended to matrix functions that are
continuous in λ ∈ C+ and analytic in λ ∈ C+. Moreover, Ml1(x, λ) tends to In as λ→∞
in C+ and Ml3(x, λ) to 0m×n as λ→∞ in C+.

2. For all λ ∈ C+, the matrix functions Ml1(x, λ) and Ml3(x, λ) are bounded in the norm by
exp {

∫ +∞
x dy max(‖k(y)‖, ‖l(y)‖)}.

3. For each fixed x ∈ R, Ml2(x, λ) and Ml4(x, λ) can be extended to matrix functions that are
continuous in λ ∈ C− and analytic in λ ∈ C−. Moreover, Ml4(x, λ) tends to Im as λ→∞
in C− and Ml4(x, λ) to 0n×m as λ→∞ in C−.

4. For all λ ∈ C−, the matrix functions Ml2(x, λ) and Ml4(x, λ) are bounded in the norm by
exp {

∫ +∞
x dy max(‖k(y)‖, ‖l(y)‖)}.

Proof. Using eq. (3.10) in (3.2a), we obtain

Ml(x, λ) = In+m − iJ
∫ ∞

x
dy e−iλJ(y−x)V (y)Fl(y, λ)e−iλJx

= In+m − iJ
∫ ∞

x
dy e−iλJ(y−x)V (y)Ml(y, λ)eiλJ(y−x).
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But, using eqs. (3.2), (3.10) and because of

eiλJ(y−x) =
(
eiλ(y−x)In 0n×m

0m×n eiλ(x−y)Im

)
,

we can write(
Ml1(x, λ) Ml2(x, λ)
Ml3(x, λ) Ml4(x, λ)

)
=
(

In 0n×m

0m×n Im

)
−i
∫ ∞

x
dy

(
eiλ(x−y)In 0n×m

0m×n −eiλ(y−x)Im

)(
0n k(y)
l(y) 0m

)
×

×
(
Ml1(y, λ) Ml2(y, λ)
Ml3(y, λ) Ml4(y, λ)

)(
eiλ(y−x)In 0n×m

0m×n eiλ(x−y)Im

)
=

=
(

In 0n×m

0m×n Im

)
− i
∫ ∞

x
dy

(
eiλ(x−y)In 0n×m

0m×n −eiλ(y−x)Im

)
×

×
(
k(y)Ml3(y, λ) k(y)Ml4(y, λ)
l(y)Ml1(y, λ) l(y)Ml2(y, λ)

)(
eiλ(y−x)In 0n×m

0m×n eiλ(x−y)Im

)
.

Thus,

Ml1(x, λ) = In − i
∫ ∞

x
dy k(y)Ml3(y, λ), (3.15)

Ml2(x, λ) = −i
∫ ∞

x
dy e2iλ(x−y)k(y)Ml4(y, λ), (3.16)

Ml3(x, λ) = +i
∫ ∞

x
dy e2iλ(y−x)l(y)Ml1(y, λ), (3.17)

Ml4(x, λ) = Im + i

∫ ∞

x
dy l(y)Ml2(y, λ). (3.18)

Substituting (3.17) in (3.15), we have

Ml1(x, λ) = In − i2
∫ ∞

x
dy k(y)

∫ ∞

y
dz e2iλ(z−y)l(z)Ml1(z, λ)

= In +
∫ ∞

x
dz k(z)

∫ ∞

z
dy e2iλ(y−z)l(y)Ml1(y, λ)

= In +
∫ ∞

x
dy

∫ y

x
dz e2iλ(y−x)k(z)l(y)Ml1(y, λ). (3.19)

Proceeding in a similar manner we obtain

Ml2(x, λ) = −i
∫ ∞

x
dy e−2iλ(y−x)k(y)

+
∫ ∞

x
dy

∫ ∞

y
dz e−2iλ(y−x)k(y)l(z)Ml2(z, λ), (3.20)
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Ml3(x, λ) = −i
∫ ∞

x
dy e2iλ(y−x)l(y)

+
∫ ∞

x
dy

∫ ∞

y
dz e2iλ(y−x)k(z)l(y)Ml3(z, λ), (3.21)

Ml4(x, λ) = Im +
∫ ∞

x
dy

∫ ∞

y
dz e−2iλ(z−y)k(z)l(y)Ml4(z, λ). (3.22)

In order to derive the estimate in 2) we estimate (by (3.15) and (3.17)) ‖Ml1(x, λ)‖+‖Ml3(x, λ)‖
and find

‖Ml1(x, λ)‖+ ‖Ml3(x, λ)‖ ≤ 1 +
∫ ∞

x
dy max(‖k(y)‖, ‖l(y)‖)×

× (‖Ml1(x, λ)‖+ ‖Ml3(x, λ)‖).

Using Gronwall’s Lemma we have

‖Ml1(x, λ)‖+ ‖Ml3(x, λ)‖ ≤ exp
{∫ ∞

x
dy max(‖k(y)‖, ‖l(y)‖)

}
,

i.e., the estimate in 2). Proceeding in a similar way, we get (by using (3.16) and (3.18))

‖Ml2(x, λ)‖+ ‖Ml4(x, λ)‖ ≤ 1 +
∫ ∞

x
dy max(‖k(y)‖, ‖l(y)‖)×

× (‖Ml2(x, λ)‖+ ‖Ml4(x, λ)‖),

and using Gronwall’s Lemma, we obtain the estimate in 4).
Iterating the Volterra integral equations (3.19) and (3.21), we prove that the iterates converge

absolutely and uniformly in λ ∈ C+; similarly, we prove that the iterates of (3.20) and (3.22)
converge absolutely and uniformly in λ ∈ C−.

To prove the assertion concerning the large λ limit we first consider Ml2(x, λ). Equation
(3.16) implies

‖Ml2(x, λ)‖ ≤ ‖ω(k)(λ, x)‖ exp {
∫ ∞

x
dy max(‖k(y)‖, ‖l(y)‖)},

where
ω(k)(λ, x) =

∫ ∞

x
dy e2iλ(x−y)k(y).

Approximating k by kq ∈ [D(R)]n×m, where

D(R) = {φ : R→ C : φ ∈ C∞(R), φ has compact support},

and taking into account that

1. ω(k)
q (λ, x) def=

∫∞
x dy e2iλ(x−y)kq(y)→ 0 as λ→∞ in C+ (as a result of integration by parts);

2. ω(k)
q (λ, x) tends uniformly to ω(k)(λ, x) as λ→∞ in C+,
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we have ‖Ml2(x, λ)‖ → 0 as λ→∞ in C+. Proceeding in the same way, we obtain the proof also
for Ml3(x, λ), Mr2(x, λ) and Mr3(x, λ). Moreover, if we define ω(l)

q (λ, x) =
∫∞
x dy e2iλ(x−y)lq(y)

and proceed as for Ml2(x, λ), we find

‖Ml4(x, λ)− Im‖ ≤
(
ωl(λ, x) exp

{∫ ∞

x
dy max(‖k(y)‖, ‖l(y)‖)

})
→ 0

as λ→∞ in C+. Analogously, we obtain the proofs for Ml1(x, λ) and Ml3(x, λ).

We have a similar result for the Faddeev matrix Mr(x, λ). We omit its proof.

Proposition 3.5 Assume that the entries of k(x) and l(x) belong to L1(R). Then the following
statements are true:

1. For each fixed x ∈ R, Mr1(x, λ) and Mr3(x, λ) can be extended to matrix functions that are
continuous in λ ∈ C− and analytic in λ ∈ C−. Moreover, Mr1(x, λ) tends to In as λ→∞
in C− and Mr3(x, λ) to 0m×n as λ→∞ in C−.

2. For all λ ∈ C−, the matrix functions Mr1(x, λ) and Mr3(x, λ) are bounded in the norm by
exp {

∫ x
−∞ dy max(‖k(y)‖, ‖l(y)‖)}.

3. For each fixed x ∈ R, Mr2(x, λ) and Mr4(x, λ) can be extended to matrix functions that are
continuous in λ ∈ C+ and analytic in λ ∈ C+. Moreover, Mr4(x, λ) tends to Im as λ→∞
in C+ and Mr4(x, λ) to 0n×m as λ→∞ in C+.

4. For all λ ∈ C+, the matrix functions Mr2(x, λ) and Mr4(x, λ) are bounded in the norm by
exp {

∫ x
−∞ dy max(‖k(y)‖, ‖l(y)‖)} .

Let us now write

al(λ) =
(
al1(λ) al2(λ)
al3(λ) al4(λ)

)
, ar(λ) =

(
ar1(λ) ar2(λ)
ar3(λ) ar4(λ)

)
. (3.23)

From (3.4a) and (3.4b), we see that(
al1(λ) al2(λ)
al3(λ) al4(λ)

)
= lim

x→−∞

(
Ml1(x, λ) e−2iλxMl2(x, λ)

e2iλxMl3(x, λ) Ml4(x, λ)

)
, (3.24a)(

ar1(λ) ar2(λ)
ar3(λ) ar4(λ)

)
= lim

x→+∞

(
Mr1(x, λ) e−2iλxMr2(x, λ)

e2iλxMr3(x, λ) Mr4(x, λ)

)
. (3.24b)

Using the following expressions

Ml(x, λ) = In+m − iJ
∫ ∞

x
dy e−iλJ(y−x)V (y)Ml(y, λ)eiλJ(y−x), (3.25a)

Mr(x, λ) = In+m + iJ

∫ x

−∞
dy eiλJ(y−x)V (y)Ml(y, λ)e−iλJ(y−x), (3.25b)
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and eqs. (3.24a) and (3.24b) we find the integral representations

al1(λ) = In − i
∫ ∞

−∞
dy k(y)Ml3(y, λ), (3.26)

al2(λ) = −i
∫ ∞

−∞
dy e−2iλyk(y)Ml4(y, λ), (3.27)

al3(λ) = i

∫ ∞

−∞
dy e2iλyl(y)Ml1(y, λ), (3.28)

al4(λ) = Im + i

∫ ∞

−∞
dy l(y)Ml2(y, λ), (3.29)

ar1(λ) = In + i

∫ ∞

−∞
dy k(y)Mr3(y, λ), (3.30)

ar2(λ) = i

∫ ∞

−∞
dy e−2iλyk(y)Mr4(y, λ), (3.31)

ar3(λ) = −i
∫ ∞

−∞
dy e2iλyl(y)Mr1(y, λ), (3.32)

ar4(λ) = Im − i
∫ ∞

−∞
dy l(y)Mr2(y, λ). (3.33)

We now present the continuity and analyticity properties of the matrices of als(λ) and ars(λ),
where s = 1, 2, 3, 4.

Proposition 3.6 Assume that the entries of k(x) and l(x) belong to L1(R). Then the following
statements are true:

1. The matrices al1(λ) and ar4(λ) are continuous in λ ∈ C+ and analytic in λ ∈ C+. Moreover,
al1(λ) tends to In and ar4(λ) to Im as λ→∞ in C+.

2. The matrices al4(λ) and ar1(λ) are continuous in λ ∈ C− and analytic in λ ∈ C−. Moreover,
ar1(λ) tends to In and al4(λ) to Im as λ→∞ in C−.

3. The matrices al3(λ) and ar3(λ) are continuous in λ ∈ R and tend to 0m×n as λ→ ±∞.

4. The matrices al2(λ) and ar2(λ) are continuous in λ ∈ R and tend to 0n×mas λ→ ±∞.

Proof. The results follow from (3.26)-(3.33) using Propositions 3.4 and 3.5.

For symmetric and anti-symmetric potentials we have

Proposition 3.7 For λ ∈ R the matrices al2(λ), al3(λ), ar2(λ), ar4(λ) satisfy

ar2(λ) = −al3(λ)∗, ar3(λ) = −al2(λ)∗ (symmetric case),
ar2(λ) = al3(λ)∗, ar3(λ) = al2(λ)∗ (anti-symmetric case).

Proof. In the symmetric case we obtain the result using ar(λ)∗J = Jal(λ), whereas in the
anti-symmetric case we prove the proposition using ar(λ)∗ = al(λ).
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3.3 Representations in the Wiener algebra

In this section we introduce a particularly well-known Banach algebra: the Wiener algebra Wq

(cf. [50, 53, 54]). In order to prove that the Faddeev functions and the coefficients al(λ) and
ar(λ) belong to Wq for a suitable q, we define the L1 matrix functions Bl(x, λ) and Br(x, λ)
that are related to the Faddeev functions by eqs. (3.35) and (3.36). These functions are in turn
related to the potentials k(x) and l(x) by eqs. (3.54) and (3.55) to be discussed shortly.

Let Wq denote the Wiener algebra of all q × q matrix functions of the form

Z(λ) = Z∞ +
∫ ∞

−∞
dα z(α)eiλα, (3.34)

where z(α) is a q × q matrix function whose entries belong to L1(R) and Z∞ = Z(±∞). Then
Wq is a Banach algebra with unit element endowed with the norm

‖Z(λ)‖Wq = ‖Z∞‖+
∫ ∞

−∞
dα ‖z(α)‖.

By Wq
± we denote the subalgebra of those functions Z(λ) for which z(α) has support in R± and

by Wq
±,0 the subalgebra of those functions Z(λ) for which Z∞ = 0 and z(α) has support in R±.

Then, as a consequence of the Riemann-Lebesgue lemma, Wq
± consists of those Z ∈ Wq which

are continuous in C±, are analytic in C±, and tend to Z∞ as λ ∈ ∞ in C±. Furthermore,

Wq =Wq
+ ⊕W

q
−,0 =Wq

+,0 ⊕W
q
−.

It is important to recall the subsequent matrix generalization of a famous result by Wiener
[91, 54].

Theorem 3.8 Given Z ∈ Wq of the form (3.34), let Z∞ be invertible and Z(λ) nonsingular for
all λ ∈ R. Then there exists w such that its elements are in L1(R) and

Z(λ)−1 = (Z∞)−1 +
∫ ∞

−∞
dαw(α)eiλα

for λ ∈ R.

In order to prove that the Faddeev functions Ml(x, ·) and Mr(x, ·) belong to Wn+m for any
x ∈ R, we proceed as follows. First we write

Ml(x, λ) = In+m +
∫ ∞

0
dαBl(x, α)eiλJα, (3.35)

Mr(x, λ) = In+m +
∫ ∞

0
dαBr(x, α)e−iλJα, (3.36)

where, for any x ∈ R, Bl(x, ·) and Br(x, ·) are L1 matrix functions, without being concerned
with justifying such a representation. We then employ (3.35) and (3.36) to convert the Volterra
integral equations (3.25a)-(3.25b) into integral equations for Bl(x, α). By iterating the latter
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equations we prove the existence of the L1 matrix functions Bl(x, ·) and Br(x, ·) and show that
the matrix functions defined in terms of them by (3.35) and (3.36) satisfy (3.25a)-(3.25b). In
this way we avoid any appearance of circular reasoning.

Indeed, let us partition the matrix functions Bl(x, α) and Br(x, α) in (3.35) and (3.36) into
(n+m)× (n+m) blocks as follows:

Bl(x, α) =
(
Bl1(x, α) Bl2(x, α)
Bl3(x, α) Bl4(x, α)

)
, Br(x, α) =

(
Br1(x, α) Br2(x, α)
Br3(x, α) Br4(x, α)

)
.

Then eq. (3.35) can be written as(
Ml1(x, λ) Ml2(x, λ)
Ml3(x, λ) Ml4(x, λ)

)
=
(

In 0n×m

0m×n Im

)
+
∫ ∞

0
dα

(
Bl1(x, α) Bl2(x, α)
Bl3(x, α) Bl4(x, α)

)
eiλJα.

So we have

Ml1(x, λ) = In +
∫ ∞

0
dαBl1(x, α)eiλα, (3.37)

Ml2(x, λ) =
∫ ∞

0
dαBl2(x, α)e−iλα, (3.38)

Ml3(x, λ) =
∫ ∞

0
dαBl3(x, α)eiλα, (3.39)

Ml4(x, λ) = Im +
∫ ∞

0
dαBl4(x, α)e−iλα. (3.40)

Taking into account eqs. (3.15)-(3.18) we can proceed in the following way: First, we substitute
the second member of (3.15) into the first member of (3.37) obtaining

−i
∫ ∞

x
dy k(y)Ml3(y, λ) =

∫ ∞

0
dαBl1(x, α)eiλα.

Now, if we apply eq. (3.39) in the first member of the previous equation we have

−i
∫ ∞

x
dy k(y)

∫ ∞

0
dαBl3(y, α)eiλα = −i

∫ ∞

0
dα eiλα

∫ ∞

x
dy k(y)Bl3(y, α)

=
∫ ∞

0
dαBl1(x, α)eiλα,

and therefore
Bl1(x, α) = −i

∫ ∞

x
dy k(y)Bl3(y, α). (3.41)

Analogously, if we compare (3.39) with (3.17) we have

i

∫ ∞

x
dy e2iλ(y−x)l(y)Ml1(y, λ) =

∫ ∞

0
dαBl3(x, α)eiλα.

Substituting eq. (3.37) in this equation we find

i

∫ ∞

x
dy l(y)e2iλ(y−x) + i

∫ ∞

x
dy l(y)e2iλ(y−x)

∫ ∞

0
dα̂Bl1(y, α̂)eiλα̂ =

∫ ∞

0
dαBl3(x, α)eiλα.
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Putting α = 2(y− x) in the first integral in the first member and α = α̂+ 2(y− x) in the second
integral, we obtain∫ ∞

0
dαBl3(x, α)eiλα =

i

2

∫ ∞

x
dα l(x+

α

2
)eiλα − i

∫ ∞

0
dα eiλα

∫ ∞

x
dy l(y)Bl1(y, α− 2(y − x)),

implying

Bl3(x, α) =
i

2
l(x+

α

2
) + i

∫ x+α
2

x
dy l(y)Bl1(y, α− 2(y − x)). (3.42)

Proceeding in a similar way we get1

Bl2(x, α) =
−i
2
k(x+

α

2
)− i

∫ x+α
2

x
dy k(y)Bl4(y, α− 2(y − x)), (3.43)

Bl4(x, α) = i

∫ ∞

x
dy l(y)Bl2(y, α), (3.44)

Br1(x, α) = i

∫ x

−∞
dy k(y)Br3(y, α), (3.45)

Br3(x, α) =
−i
2
l(x− α

2
)− i

∫ x

x−α
2

dy l(y)Br1(y, α+ 2(y − x)), (3.46)

Br2(x, α) =
i

2
k(x− α

2
) + i

∫ x

x−α
2

dy k(y)Br4(y, α+ 2(y − x)), (3.47)

Br4(x, α) = −i
∫ x

−∞
dy l(y)Br2(y, α). (3.48)

Let us introduce the following mixed norm on the (n+m)×n or (n+m)×m matrix functions
B(x, α) depending on (x, α) ∈ R× R+:

‖B(·, ·)‖∞,1 = sup
x∈R
‖B(x, ·)‖1 = sup

x∈R

∫ ∞

0
dα ‖B(x, α)‖. (3.49)

Theorem 3.9 Assume that the elements of k(x) and l(x) belong to L1(R). Then, for each x ∈ R,
the four pairs of equations (3.41) and (3.42), (3.43) and (3.44), (3.45) and (3.46), and (3.47)
and (3.48) have unique solutions B(x, α) satisfying

‖B(·, ·)‖∞,1 = sup
x∈R
‖B(x, ·)‖1 <∞.

Consequently, Ml(x, ·) ∈ Wn+m and Mr(x, ·) ∈ Wn+m, with norms bounded above by a finite
constant not depending on x ∈ R.

1Note the (same) typo in eq. (4.11) of [9, 90].

30



Proof. Let us give the proof only for eqs. (3.41) and (3.42), since the proof is similar for the
other pairs of equations. Taking norms in eqs. (3.41) and (3.42) we have

‖Bl1(x, α)‖ ≤
∫ ∞

x
dy ‖k(y)‖ ‖Bl3(x, α)‖,

‖Bl3(x, α)‖ ≤ 1
2
‖l(x+

α

2
)‖+

∫ x+α
2

x
dy ‖l(y)‖ ‖Bl1(y, α− 2(y − x))‖.

Integrating with respect to α ∈ R+, we obtain

‖Bl1(x, ·)‖1 ≤
∫ ∞

x
dy ‖k(y)‖ ‖Bl3(y, ·)‖1,

as well as

‖Bl3(x, ·)‖1 ≤
∫ ∞

x
dy ‖l(y)‖+

∫ ∞

0
dα

∫ x+α
2

x
dy ‖l(y)‖ ‖Bl1(y, α− 2(y − x))‖ ≤

≤
∫ ∞

x
dy ‖l(y)‖+

∫ ∞

x
dy ‖l(y)‖

∫ ∞

0
dα̂ ‖Bl1(y, α̂)‖ =

=
∫ ∞

x
dy ‖l(y)‖+

∫ ∞

x
dy ‖l(y)‖ ‖Bl1(y, ·)‖1.

where the change of variable α̂ = α + 2x − 2y has been applied. Summing the preceding two
estimates we have

‖Bl1(x, ·)‖1 + ‖Bl3(x, ·)‖1 ≤
∫ ∞

x
dy ‖l(y)‖

+
∫ ∞

x
dy max(‖k(y)‖, ‖l(y)‖) (‖Bl1(y, ·)‖1 + ‖Bl3(y, ·)‖1).

Using the Gronwall Lemma 3.3 we obtain

‖Bl1(x, ·)‖1 + ‖Bl3(x, ·)‖1 ≤
∫ ∞

x
dy ‖l(y)‖ exp

{∫ ∞

x
dy max(‖k(y)‖, ‖l(y)‖)

∫ ∞

y
dz ‖l(z)‖

}
≤ ‖l(·)‖1 exp {‖l(·)‖1 (‖l(·)‖1 + ‖k(·)‖1)} .

Thus eqs. (3.41)-(3.42) can be solved uniquely by iteration in the Banach space of continuous
functions in x ∈ R with values in L1(R+; C(n+m)×n), endowed with the norm (3.49).

Faddeev [45] was the first to derive estimates as those given in the proof of Theorem 3.9 in
his treatment of the direct scattering theory of the Schrödinger equation on the line. Tanaka [88]
has generalized and corrected some mistakes in these estimates (See also [40]).

Let us now defineMl1(x, λ), Ml2(x, λ), Ml3(x, λ) andMl4(x, λ) by (3.37)-(3.40) andMr1(x, λ),
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Mr2(x, λ), Mr3(x, λ) and Mr4(x, λ) by

Mr1(x, λ) = In +
∫ ∞

0
dαBr1(x, α)e−iλα, (3.50)

Mr2(x, λ) =
∫ ∞

0
dαBr2(x, α)eiλα, (3.51)

Mr3(x, λ) =
∫ ∞

0
dαBr3(x, α)e−iλα, (3.52)

Mr4(x, λ) = Im +
∫ ∞

0
dαBr4(x, α)eiλα, (3.53)

in agreement with (3.36). Then the eight matrix functions thus constructed make up the matrix
functions Ml(x, λ) and Mr(x, λ) as in (3.13) which belong to Wn+m. Applying the Fourier
transform to (3.41)-(3.48) we obtain the integral equations (3.15)-(3.18) and their analogues for
Mr1(x, λ), Mr2(x, λ), Mr3(x, λ) and Mr4(x, λ). Since the latter eight equations are uniquely
solvable, we have represented the Jost solutions in the form (3.35)-(3.36), where the elements of
Bl(x, ·) and Br(x, ·) belong to L1(R+), as claimed.

The integral equations (3.41)-(3.48) allow us to derive the following relations for the potentials
k(x) and l(x):2

k(x) = 2iBl2(x, 0+) = −2iBr2(x, 0+), (3.54)
l(x) = −2iBl3(x, 0+) = 2iBr3(x, 0+). (3.55)

To justify (3.54)-(3.55), let us fix α > 0 and integrate the norm of the left hand side in (3.42)
with respect to x ∈ R. We obtain

‖Bl3(·, α)‖1 ≤
1
2
‖l‖1 +

∫ ∞

−∞
ds

∫ y

y−α
2

dx ‖l(y)‖ ‖Bl1(y, α− 2(y − x))‖,

and putting z = α − 2(y − x) in the integral in the second member of the previous formula, we
have

‖Bl3(·, α)‖1 ≤
1
2

[
‖l‖1 +

∫ ∞

−∞
ds

∫ α

0
dz ‖l(y)‖ ‖Bl1(y, z)‖

]
≤

≤ 1
2

[
‖l‖1 +

∫ ∞

−∞
dy ‖l(y)‖ ‖Bl1(y, ·)‖1

]
.

Hence, for each α > 0, Bα3(·, α) is a matrix function with entries in L1(R). We now derive the
estimate

‖Bl3(·, α)− i

2
l(x+

1
2
α)‖1 ≤

1
2

∫ ∞

−∞
dy ‖l(y)‖

∫ α

0
dz ‖l(y)‖ ‖Bl1(y, z)‖ =

= o(1), α→ 0+

which justifies the identity l(x) = 2iBl3(x, 0+). In an analogous way one proves a similar result
for Bl2(·, α), Br2(·, α) and Br3(·, α).

2Note the sign discrepancies with eq. (4.19) in [9, 90].
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Theorem 3.10 The coefficients al(λ) and ar(λ) are elements of Wn+m.

Proof. Using eqs. (3.5a) and (3.35) we have

al(λ) = In+m − iJ
∫ ∞

−∞
dye−iλJyV (y)Ml(y, λ)eiλJy =

= In+m − iJ
∫ ∞

−∞
dye−iλJyV (y)

[
In+m +

∫ ∞

0
dαBl(x, α)eiλJα

]
eiλJy.

On the other hand, the relation∫ ∞

−∞
dy

∫ ∞

0
dα ‖e−iλJyV (y)Bl(x, α)eiλJαeiλJy‖ =

=
∫ ∞

−∞
dy

∫ ∞

0
dα ‖V (y)‖ ‖Bl(x, α)‖ = ‖V ‖1 ‖Bl(x, ·)‖1 <∞

allows us to justify the use of the Dominated Convergence Theorem, which implies

al(λ) = In+m − iJ
∫ ∞

−∞
dy e−iλJyV (y)eiλJy−

− iJ
∫ ∞

0
dα

∫ ∞

−∞
dy e−iλJyV (y)Bl(x, α)eiλJαeiλJy. (3.56)

But the first two terms in the right-hand side of eq. (3.56) can be written as

In+m − iJ
∫ ∞

−∞
dy e−iλJyV (y)eiλJy =

(
In −i

∫∞
−∞ dy e−2iλyk(y)

i
∫∞
−∞ dy e2iλyl(y) Im

)
=

=
(

In − i
2

∫∞
−∞ dα e−iλαk(α

2 )
i
2

∫∞
−∞ dα eiλαl(α

2 ) Im,

)
and, in this way, we see that these terms are in Wn+m. Moreover, we have

− iJ
∫ ∞

0
dα

∫ ∞

−∞
dy e−iλJyV (y)Bl(x, α)eiλJαeiλJy =

= −iJ
∫ ∞

0
dα

[∫ ∞

−∞
dy e−iλJyV (y)Bl(x, α)eiλJy

]
︸ ︷︷ ︸

in L1 as a function of α

eiλJα,

where
[∫∞
−∞ dy e−iλJyV (y)Bl(x, α)eiλJy

]
is an element of L1 as a function of α because of the

following estimate:∫ ∞

0
dα

∥∥∥∥∫ ∞

−∞
dy e−iλJyV (y)Bl(x, α)eiλJy

∥∥∥∥ ≤ ∫ ∞

0
dα

∫ ∞

−∞
dy‖e−iλJyV (y)Bl(x, α)eiλJy‖ =

=
∫ ∞

0
dα‖Bl(x, α)‖

∫ ∞

−∞
dy‖V (y)‖ <∞.

So, we have found that also the third term in (3.56) is an element of Wn+m and consequently,
al(λ) is in Wn+m too.

The proof for ar(λ) is similar.
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3.4 The scattering matrix

In analogy with the introduction of the reflection and transmission functions for the Schrödinger
equation on the line, here we introduce the scattering matrix for the matrix Zakharov-Shabat
system (3.1). First, we discuss the properties of this matrix function in the absence of symmetries
of the potentials. Successively we analyze the symmetric and anti-symmetric cases.

Recall that (cf. eqs. (3.1a) and (3.4a))

Fl(x, λ) ∼=


eiλJx, x→ +∞

eiλJxal(λ) = eiλJx

(
al1(λ) al2(λ)
al3(λ) al4(λ)

)
, x→ −∞.

(3.57)

Let us write

Fl(x, λ)
(
Tl(λ) 0n×m

0m×n T r(λ)

)
∼=


eiλJx

(
Tl(λ) 0n×m

0m×n T r(λ)

)
, x→ +∞,

eiλJx

(
In L(λ)
L(λ) Im

)
, x→ −∞,

(3.58)

as well as

Fr(x, λ)
(
T l(λ) 0n×m

0m×n Tr(λ)

)
∼=


eiλJx

(
T l(λ) 0n×m

0m×n Tr(λ)

)
, x→ −∞,

eiλJx

(
In R(λ)
R(λ) Im

)
, x→ +∞,

(3.59)

where we put

Tl(λ) = al1(λ)−1, T r(λ) = al4(λ)−1, (3.60)

T l(λ) = ar1(λ)−1, Tr(λ) = ar4(λ)−1, (3.61)

L(λ) = al2(λ)al4(λ)−1, L(λ) = al3(λ)al1(λ)−1, (3.62)

R(λ) = ar2(λ)ar4(λ)−1, R(λ) = ar3(λ)ar1(λ)−1, (3.63)

provided the inverses appearing in (3.60)-(3.63) exist. The quantities defined in eqs. (3.60) and
(3.61) are called transmission coefficients and those in eqs. (3.62) and (3.63) reflection coefficients.
We observe that

al(λ) =
(
In L(λ)
L(λ) Im

)(
Tl(λ)−1 0n×m

0m×n T r(λ)−1

)
, (3.64a)

ar(λ) =
(

In R(λ)
R(λ) Im

)(
T l(λ)−1 0n×m

0m×n Tr(λ)−1

)
. (3.64b)

34



In this way it is possible to define the scattering matrices as

S(λ) =
(
Tl(λ) R(λ)
L(λ) Tr(λ)

)
, (3.65a)

S(λ) =
(
T l(λ) L(λ)
R(λ) T r(λ)

)
, (3.65b)

In order to define the reflection and transmission coefficients as matrix functions that are
continuous in λ ∈ R, we need the inverses appearing in (3.60)-(3.63) to exist. We therefore make
the following technical hypothesis:

The matrices al1(λ), ar1(λ), al4(λ) and ar4(λ) are invertible for all λ ∈ R.

The following proposition is immediate from Theorem 3.10 with the help of Theorem 3.8.

Proposition 3.11 Under the technical hypothesis, the reflection and transmission coefficients
belong to Wp×q for suitable p and q.

As a result, under the technical hypothesis, the reflection and transmission matrices are
continuous in λ ∈ R, while as λ → ±∞ the reflection coefficients vanish and the transmission
coefficients tend to the identity. Further, Tl(λ) and Tr(λ) are meromorphic functions of λ ∈ C+

having finitely many poles. Also, T l(λ) and T r(λ) are meromorphic functions of λ ∈ C− having
finitely many poles.

Proposition 3.12 Under the technical hypothesis, we have

det al1(λ) = det ar4(λ), λ ∈ C+,

det ar1(λ) = det al4(λ), λ ∈ C−,

and therefore

detTl(λ) = detTr(λ), (3.66a)

detT l(λ) = detT r(λ). (3.66b)

Proof. We prove only eq. (3.66a), because the proof of (3.66b) is analogous. Put

f+(x, λ) =
(
Fl1(x, λ) Fr2(x, λ)
Fl3(x, λ) Fr4(x, λ)

)
.

Using eq. (3.1) we have

d

dx

[
f+(x, λ)e−iλJx

]
= [iJV (x)f+(x, λ) + iλf+(x, λ)] e−iλJx

− f+(x, λ)iλJe−iλJx = f+(x, λ)iJV (x)e−iλJx,

which implies (see, for example, [81])

d

dx

[
det(f+(x, λ)e−iλJx)

]
= tr

(
iJV (x)e−iλJx

)
det f+(x, λ) = 0,
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because iJV (x)e−iλJx has zero trace. So, det(f+(x, λ)e−iλJx) is independent of x. Taking into
account the relations

lim
x→+∞

f+(x, λ)e−iλJx =
(

In ar2(λ)e2iλx

0m×n ar4(λ)

)
,

lim
x→−∞

f+(x, λ)e−iλJx =
(

al1(λ) 0n×m

al3(λ)e−2iλx Im

)
,

we find det(f+(x, λ)e−iλJx) = det ar4(λ) = det al1(λ). As a result, using the technical hypothesis
that det al1(λ) and ar4(λ) are nonsingular for λ ∈ R, we have

detTl(λ) =
1

det al1(λ)
=

1
det ar4(λ)

= detTr(λ),

that is eq. (3.66a). The extension of Proposition 3.12 to λ ∈ C+ proceeds by analytic continua-
tion.

Let us now derive alternative expressions for the reflection coefficients. Taking into account
Proposition 3.1 we can write(

al1(λ) al2(λ)
al3(λ) al4(λ)

)(
ar1(λ) ar2(λ)
ar3(λ) ar4(λ)

)
=
(

In 0n×m

0m×n Im

)
, (3.67a)(

ar1(λ) ar2(λ)
ar3(λ) ar4(λ)

)(
al1(λ) al2(λ)
al3(λ) al4(λ)

)
=
(

In 0n×m

0m×n Im

)
, (3.67b)

and from these we obtain

al3(λ)ar1(λ) + al4(λ)ar3(λ) = 0, (3.68)
ar1(λ)al2(λ) + ar2(λ)al4(λ) = 0, (3.69)
al1(λ)ar2(λ) + al2(λ)ar4(λ) = 0, (3.70)
ar3(λ)al1(λ) + ar4(λ)al3(λ) = 0. (3.71)

Equation (3.68) implies

R(λ) = ar3(λ)ar1(λ)−1 = −al4(λ)−1al3(λ), (3.72)

while eq. (3.69), (3.70) and (3.71) lead to the expressions

L(λ) = al2(λ)al4(λ)−1 = −ar1(λ)−1ar2(λ), (3.73)

R(λ) = ar2(λ)ar4(λ)−1 = −al1(λ)−1al2(λ), (3.74)

L(λ) = al3(λ)al1(λ)−1 = −ar4(λ)−1ar3(λ). (3.75)

In analogy with (3.64a) and (3.64b) we observe that

al(λ) =
(
Tl(λ)−1 0n×m

0m×n T r(λ)−1

)(
In −R(λ)
−R(λ) Im

)
, (3.76a)

ar(λ) =
(
T l(λ)−1 0n×m

0m×n Tr(λ)−1

)(
In −L(λ)
−L(λ) Im

)
. (3.76b)
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We now easily prove that S(λ) = S(λ)−1 for λ ∈ R. Indeed,

S(λ)S(λ) =
(
T l(λ) L(λ)
R(λ) T r(λ)

)(
Tl(λ) R(λ)
L(λ) Tr(λ)

)
=

=
(

ar1(λ)−1 −ar1(λ)−1ar2(λ)
−al4(λ)−1al3(λ) al4(λ)−1

)(
al1(λ)−1 ar2(λ)ar4(λ)−1

al3(λ)al1(λ)−1 ar4(λ)−1

)
=

=
(
ar1(λ)−1 0n×m

0m×n al4(λ)−1

)(
In − ar2(λ)al3(λ) 0n×m

0m×n Im − al3(λ)ar2(λ)

)
×

×
(
al1(λ)−1 0n×m

0m×n ar4(λ)−1

)
=
(
ar1(λ)−1 0n×m

0m×n al4(λ)−1

)
×

×
(
ar1(λ)al1(λ) 0n×m

0m×n al4(λ)ar4(λ)

)(
al1(λ)−1 0n×m

0m×n ar4(λ)−1

)
= In+m,

where we have used (3.74) and (3.75) as well as (3.6).
In the antisymmetric case the matrices al(λ) and ar(λ) are unitary, so we have

ar1(λ) = al1(λ)∗, al4(λ) = ar4(λ)∗, (3.77a)
ar2(λ) = al3(λ)∗, al2(λ) = ar3(λ)∗. (3.77b)

Thus, under the technical hypothesis, it is easy to see that

T l(λ) = Tl(λ)∗, T r(λ) = Tr(λ)∗.

Moreover,
R(λ)∗ = −al3(λ)∗

[
al4(λ)−1

]∗ = −ar2(λ)ar4(λ)−1 = −R(λ).

From eqs. (3.73) and (3.75) we obtain in the same way

L(λ)∗ =
[
al4(λ)−1

]∗
al2(λ)∗ = ar4(λ)−1ar3(λ) = −L(λ).

In other words, in the antisymmetric case the scattering matrices S(λ) and S(λ) are J-unitary
and

S(λ) = S(λ)−1 = JS(λ)∗J, λ ∈ R.

In the symmetric case the matrices al(λ) and ar(λ) are J-unitary, implying that

al1(λ)∗al1(λ)− al3(λ)∗al3(λ) = In,

al4(λ)∗al4(λ)− al2(λ)∗al2(λ) = Im,

ar1(λ)∗ar1(λ)− ar3(λ)∗ar3(λ) = In,

ar4(λ)∗ar4(λ)− ar2(λ)∗ar2(λ) = Im.

These equations imply that al1(λ), al4(λ), ar1(λ), and ar4(λ) are invertible for λ ∈ R and hence
the technical hypothesis is always satisfied. As in the antisymmetric case, we have

T l(λ) = Tl(λ)∗, T r(λ) = Tr(λ)∗.
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Moreover,
R(λ)∗ = −al3(λ)∗

[
al4(λ)−1

]∗ = ar2(λ)ar4(λ)−1 = R(λ),

and
L(λ)∗ =

[
al4(λ)−1

]∗
al2(λ)∗ = −ar4(λ)−1ar3(λ) = L(λ).

In other words, in the symmetric case the scattering matrices S(λ) and S(λ) are unitary and

S(λ) = S(λ)−1 = S(λ)∗, λ ∈ R.

In the symmetric case, we prove the following important properties.

Proposition 3.13 In the symmetric case the transmission coefficients Tl(λ) and Tr(λ) are con-
tinuous in λ ∈ C+ and analytic in λ ∈ C+, while

sup
λ∈C+

‖Tl(λ)‖ > 0, sup
λ∈C+

‖Tr(λ)‖ > 0. (3.78)

Moreover, the reflection coefficients R(λ) and L(λ) satisfy the inequalities

sup
λ∈R
‖R(λ)‖ < 1, sup

λ∈R
‖L(λ)‖ < 1. (3.79)

Proof. If λ0 ∈ C+ is a zero of det al1(λ), then there exists 0 6= ξ ∈ Cn such that al1(λ0)ξ = 0.
Then the asymptotic properties of Fl(x, λ0) as x→ ±∞ imply that

Fl(x, λ0)
(

ξ
0m×1

)
belongs to L2(R; Cn×m). Hence λ0 is a nonreal eigenvalue of the Hamiltonian operator H, which
contradicts its selfadjointness. Thus det al1(λ) 6= 0 for λ ∈ C+. In the same way we prove that
det ar4(λ) 6= 0 for λ ∈ C+. Hence, Tl(λ) and Tr(λ) are analytic in C+.

Using the unitarity of the scattering matrix S(λ) we obtain the identities

Tl(λ)Tl(λ)∗ +R(λ)R(λ)∗ = In, Tr(λ)∗ Tr(λ) +R(λ)∗R(λ) = Im, (3.80)
Tl(λ)∗ Tl(λ) + L(λ)∗ L(λ) = In, Tr(λ)Tr(λ)∗ + L(λ)L(λ)∗ = Im, (3.81)
Tr(λ)R(λ)∗ + L(λ)Tl(λ)∗ = 0m×n, Tr(λ)∗ L(λ) +R(λ)∗ Tl(λ) = 0n×m. (3.82)

Since Tl(λ) and Tr(λ) are continuous in λ ∈ R, tend to identity as λ → ∞ in C+, and take
nonsingular values only, there exist εl, εr ∈ (0, 1) such that

‖Tl(λ)ξ‖ ≥ εl‖ξ‖, ξ ∈ Cn,

‖Tr(λ)η‖ ≥ εr‖η‖, η∈ Cm,

As a result,

‖L(λ)ξ‖ ≤
√

1− ε2l ‖ξ‖, ξ ∈ Cn,

‖R(λ)η‖ ≤
√

1− ε2r ‖η‖, η∈ Cm,

which completes the proof.
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We conclude this subsection by analyzing the cases in which the potential V (x) is supported
on the half-line R+ or R− (cf. [90, 9]). We have the following:

Proposition 3.14 If k(x) and l(x) are supported on R+, then L(λ) and L(λ) belong to Wm×n
0,+

and have continuations that are continuous on C+, are analytic on C+, and vanish as λ→∞ in
C+.

Proof. If k(x) has support in R+, then from (3.28) and Proposition 3.4 we find that al3

belong to Wm×n
0,+ , has a continuation that is analytic in C+, is continuous in C+ and converges

to 0m×n as λ→∞ in C+. As a result, using eq. (3.75) we can conclude that also L(λ) extends
to a function that is continuous on C+, is analytic on C+ and vanish as λ→∞ in C+.

Proceeding in a similar way, it is easy to see that also the following proposition holds.

Proposition 3.15 If k(x) and l(x) are supported on R−, then R(λ) and R(λ) belong to Wn×m
0,+

and have continuations that are continuous on C+, are analytic on C+, and vanish as λ→∞ in
C+.

3.5 Bound states and scattering coefficients

In this section we prove that Tl(λ) and Tr(λ) have the same pole structures in each pole λ ∈ C+.
More precisely, we prove that al1(λ) and ar4(λ) have the same Jordan structure in all zeros of
their determinants in C+.

We say that λ0 ∈ C+ is a bound state if λ0 is an eigenvalue of the Hamiltonian H = H0 − V
and the corresponding eigenfunction belongs to Hn+m. Now we prove the following important

Theorem 3.16 Let λ0 ∈ C+ be a bound state. Then the Jordan structures of λIHn+m − H,
al1(λ) and ar4(λ) at λ0 coincide. Analogously, let λ0 ∈ C− be a bound state. Then the Jordan
structures of λIHn+m −H, ar1(λ) and al4(λ) at λ0 coincide.

Proof. Let us first find the eigenfunctions of H corresponding to a nonreal eigenvalue. Recall
that any column vector solution of (3.1) has either of the equivalent forms

Fl(x, λ)ε = Fr(x, λ)η

for certain vectors ε,η ∈ Cn+m. For λ ∈ C+ these solutions have the asymptotic properties{
eiλJx[1 + o(1)]ε = eiλJx[ar(λ)η + o(1)], x→ +∞,
eiλJx[al(λ)ε + o(1)] = eiλJx[1 + o(1)]η, x→ −∞,

but in order for them to be eigenfunctions of H they should also belong to L2(R; Cn+m). Thus
for λ ∈ C+ the vectors ε and η should have the form

ε =
(

ε0
0m×1

)
, η =

(
0n×1

η0

)
,
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where al1(λ)ε0 = ar4(λ)η0 = 0. Hence the eigenvalues of H in C+ are the zeros of det al1(λ) = 0
or, equivalently [cf. Proposition 3.12], of det ar4(λ) = 0 and the eigenfunctions correspond to the
nontrivial vectors ε0 ∈ Ker al1(λ) and η0 ∈ Ker ar4(λ), which implies that these null spaces have
the same dimension. Therefore, for λ ∈ C+ the eigenfunctions of H have either of the equivalent
forms (

Fl1(x, λ)ε0
Fl3(x, λ)ε0

)
=
(
Fr2(x, λ)η0

Fr4(x, λ)η0

)
, (3.83)

where 0 6= ε0 ∈ Cn and 0 6= η0 ∈ Cm satisfy al1(λ)ε0 = ar4(λ)η0 = 0. Analogously, for λ ∈ C−
the eigenfunctions of H have either of the equivalent forms(

Fr1(x, λ)ε̃0
Fr3(x, λ)ε̃0

)
=
(
Fl2(x, λ)η̃0

Fl4(x, λ)η̃0

)
, (3.84)

where 0 6= ε̃0 ∈ Cn and 0 6= η̃0 ∈ Cm satisfy ar1(λ)ε̃0 = al4(λ)η̃0 = 0.
To obtain the Jordan chains corresponding to a eigenvalue λ ∈ C+ of H, we should solve the

differential equations

−iJ dX0(x, λ)
dx

− V (x)X0(x, λ) = λX0(x, λ), (3.85a)

−iJ dXs(x, λ)
dx

− V (x)Xs(x, λ) = λXs(x, λ) +Xs−1(x, λ), (3.85b)

where X0(x, λ) is any of the two vector functions in (3.83). Further, 0 6= ε0 ∈ Cn and 0 6= η0 ∈ Cm

should satisfy al1(λ)ε0 = ar4(λ)η0 = 0 and all of the vector functions Xs(·, λ) should belong to
L2(R; Cn+m). Similarly, to find the Jordan chains corresponding to any eigenvalue λ ∈ C− of
H, we should solve eqs. (3.85) starting from any of the two vector functions in (3.84), where
0 6= ε̃0 ∈ Cn and 0 6= η̃0 ∈ Cm satisfy ar1(λ)ε0 = al4(λ)η0 = 0 and all of the vector functions
Xs(·, λ) ∈ L2(R; Cn+m).

To derive equations of the type (3.85) from any solution X(x, λ) of (3.1), we calculate its
successive derivatives with respect to λ and obtain

−iJ dX(x, λ)
dx

− V (x)X(x, λ) = λX(x, λ),

−iJ ∂

∂x

∂X

∂λ
(x, λ)− V (x)

∂X

∂λ
(x, λ) = λ

∂X

∂λ
(x, λ) +X(x, λ),

−iJ ∂

∂x

∂2X

∂λ2
(x, λ)− V (x)

∂2X

∂λ2
(x, λ) = λ

∂2X

∂λ2
(x, λ) + 2

∂X

∂λ
(x, λ),

...
...

...
...

−iJ ∂

∂x

∂sX

∂λs
(x, λ)− V (x)

∂sX

∂λs
(x, λ) = λ

∂sX

∂λs
(x, λ) + s

∂s−1X

∂λs−1
(x, λ).

Thus Xs(x, λ) = (s!)−1(∂/∂λ)sX(x, λ) satisfies the differential equations (3.85). Once the solu-
tions X0(x, λ), . . . , Xs−1(x, λ) are known, any two particular solutions Xs(x, λ) of the subsequent
differential equation differ by an arbitrary (λ-dependent) linear combination of the solutions
X0(x, λ), . . . , Xs−1(x, λ).
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Putting Fl,s(x, λ) = (s!)−1(∂/∂λ)sFl(x, λ), we depart from ε0 ∈ Cn satisfying al1(λ)ε0 = 0,
where λ ∈ C+, and define ε1, . . . , εs−1, . . . by

ψ0(x) = Fl,0(x, λ)
(
ε0
0

)
,

ψ1(x) = Fl,1(x, λ)
(
ε0
0

)
+ Fl,0(x, λ)

(
ε1
0

)
,

ψ2(x) = Fl,2(x, λ)
(
ε0
0

)
+ Fl,1(x, λ)

(
ε1
0

)
+ Fl,0(x, λ)

(
ε2
0

)
,

...
...

...
...

ψs−1(x) =
s−1∑
σ=0

Fl,σ(x, λ)
(
εs−σ−1

0

)
.

Then {ψ0, ψ1, . . . , ψs−1} is a Jordan chain of length s if and only if ε0 6= 0 and ψ0(−∞) =
ψ1(−∞) = . . . = ψs−1(−∞) = 0. Computing the asymptotic behavior of the first n components
of each of the vectors ψ0(x), . . . , ψs−1(x) we obtain for t = 1, . . . , s− 1

ψup

t (x) =


eiλx

t∑
σ=0

(ix)σ

σ!
εt−σ[1 + o(1)], x→ +∞,

t∑
σ=0

1
σ!

(
d

dλ

)σ

eiλxal1(λ)εt−σ + o(1), x→ −∞.
(3.86)

Writing the second line of (3.86) as

eiλx
t∑

r=0

(ix)r

r!

t−r∑
ρ=0

1
ρ!

(
d

dλ

)ρ

al1(λ)εt−r−ρ,

we obtain the identity

Φs(al1;λ)

 ε0
...

εs−1

 = 0, (3.87)

where 0 6= ε0 ∈ Cn and Φs is defined by eq. (2.2).
Next, putting Fr,s(x, λ) = (s!)−1(∂/∂λ)sFr(x, λ), we depart from η0 ∈ Cm and define the

vectors η1, . . . , ηs−1, . . . by

ψ̃0(x) = Fr,0(x, λ)
(

0
η0

)
,

ψ̃1(x) = Fr,1(x, λ)
(

0
η0

)
+ Fr,0(x, λ)

(
0
η1

)
,
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ψ̃2(x) = Fr,2(x, λ)
(

0
η0

)
+ Fr,1(x, λ)

(
0
η1

)
+ Fr,0(x, λ)

(
0
η2

)
,

...
...

...
...

ψ̃s−1(x) =
s−1∑
σ=0

Fr,σ(x, λ)
(

0
ηs−σ−1

)
.

Then {ψ̃0, ψ̃1, . . . , ψ̃s−1} is a Jordan chain of length s if and only if η0 6= 0 and ψ̃0(+∞) =
ψ̃1(+∞) = . . . = ψ̃s−1(+∞) = 0. Computing the asymptotic behavior of the last m components
of each of the vectors η0(x), . . . , ηs−1(x) we obtain for t = 1, . . . , s− 1

ηdn
t (x) =


t∑

σ=0

1
σ!

(
d

dλ

)σ

e−iλxar4(λ)ηt−σ + o(1), x→ +∞,

e−iλx
t∑

σ=0

(−ix)σ

σ!
ηt−σ, x→ −∞.

(3.88)

Writing the second line of (3.88) as

e−iλx
t∑

r=0

(−ix)r

r!

t−r∑
ρ=0

1
ρ!

(
d

dλ

)ρ

ar4(λ)ηt−r−ρ,

we obtain the identity

Φs(ar4;λ)

 η0
...

ηs−1

 = 0, (3.89)

where 0 6= η0 ∈ Cm.
We have therefore derived the Jordan structure of H at any eigenvalue λ ∈ C+ in two different

ways, relating it first to the Jordan structure of al1(·) at λ and then to the Jordan structure of
ar4(·) at λ. Consequently, for s = 1, 2, 3, . . . and λ ∈ C+ we have

dim KerΦs(al1;λ) = dim KerΦs(ar4;λ).

In the same way we deduce that for s = 1, 2, 3, . . . and λ ∈ C−

dim KerΦs(ar1;λ) = dim KerΦs(al4;λ),

which completes the proof.

Corollary 3.17 Let λ0 ∈ C+ ∪ C− be a bound state. Then the geometrical multiplicity of λ0 as
an eigenvalue of H does not exceed min(n,m).

Proof. Suppose n ≤ m and λ0 ∈ C+. Then Theorem 3.16 implies that the geometric
multiplicity of λ0 as an eigenvalue of H coincides with the dimension of the kernel of al1(λ0),
which cannot exceed n, the order of the square matrix al1(λ0). The proof is similar in the cases
n ≥ m and/or λ0 ∈ C−.
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Corollary 3.17 implies that the discrete eigenvalues of the Zakharov-Shabat (n = m = 1) and
Manakov (n = 1, m = 2) systems are geometrically simple, i.e., that there cannot be more than
one Jordan block per eigenvalue.

3.6 From reflection coefficient to scattering matrix

In this section we review some well-known results on the canonical Wiener-Hopf factorization of
matrix functions on the line and apply them to construct the scattering matrix from one reflection
coefficient in the symmetric case and in the antisymmetric case.

Suppose W is a p × p matrix function defined on the extended real line which is continuous
on R and at ±∞. Then

W (λ) = W+(λ)W−(λ), λ ∈ R ∪ {∞},

is called a left canonical (Wiener-Hopf ) factorization of W if

1. W±(λ) extends to a p×p matrix function that is analytic in λ ∈ C±, continuous in λ ∈ C±,
and has a limit as λ→∞ in C±.

2. detW±(λ) 6= 0 for all λ ∈ C± and as λ→∞ in C±.

A factorization of W of the form

W (λ) = W−(λ)W+(λ), λ ∈ R ∪ {∞},

where the factors W± have the properties 1-2 stated above, is called a right canonical (Wiener-
Hopf ) factorization of W . If W = W+W− = W̃+W̃− are two left canonical factorizations of the
same matrix function, then there exists a nonsingular matrix G such that W+(λ)G = W̃+(λ) and
W−(λ) = GW̃−(λ). The same uniqueness property is true for right canonical factorizations. If
W has either a left or a right canonical factorization, then detW (λ) 6= 0 for each λ ∈ R and as
λ → ±∞ and its winding number (with respect to +i) vanishes. Wiener-Hopf factorizations of
matrix functions have been studied in detail in [59, 38].

Let us recall the following well-known result [59, 53, 38] on the canonical factorization of
positive selfadjoint matrix functions of Wiener class.

Theorem 3.18 Let F ∈ L1(R; Cp×p) be such that

Ŵ (λ) = Ip +
∫ ∞

−∞
dt eiλtF (t) (3.90)

is positive and selfadjoint for λ ∈ R. Then there exist unique functions F+ ∈ L1(R+; Cp×p) and
G+ ∈ L1(R+; Cp×p) such that

Ŵ (λ) =
[
Ip +

∫ ∞

0
dt eiλtF+(t)

] [
Ip +

∫ ∞

0
dt e−iλtF+(t)

]∗
, (3.91)

Ŵ (λ) =
[
Ip +

∫ ∞

0
dt e−iλtG+(t)

]∗ [
Ip +

∫ ∞

0
dt eiλtG+(t)

]
, (3.92)

43



while

det
([
Ip +

∫ ∞

0
dt eiλtF+(t)

])
6= 0, λ∈ C+, (3.93)

det
([
Ip +

∫ ∞

0
dt eiλtG+(t)

])
6= 0, λ∈ C+. (3.94)

Next, we apply this result to the antisymmetric and symmetric cases. First we consider the
antisymmetric case. In this case, we know that the scattering matrix S(λ) is J-unitary. So, using
this information, it is possible to construct the scattering matrix S(λ) in terms of L(λ) or R(λ)
alone. In fact, we find the following identities

Tl(λ)Tl(λ)∗ −R(λ)R(λ)∗ = In, Tr(λ)∗ Tr(λ)−R(λ)∗R(λ) = Im, (3.95)
Tl(λ)∗ Tl(λ)− L(λ)∗ L(λ) = In, Tr(λ)Tr(λ)∗ − L(λ)L(λ)∗ = Im, (3.96)
Tr(λ)R(λ)∗ − L(λ)Tl(λ)∗ = 0m×n, Tr(λ)∗ L(λ)−R(λ)∗ Tl(λ) = 0n×m. (3.97)

Now given R(λ) for λ ∈ R and assuming it to be continuous for λ ∈ R and to belong to Wn×n
0

(see Proposition 3.11 for a comparison), by applying Theorem 3.18 we obtain the unique matrix
function Tl0(λ) which is continuous on C+, is analytic on C+, tends to In as λ→∞ in C+, and
which satisfies the following relation

Tl0(λ)Tl0(λ)∗ = In +R(λ)R(λ)∗, λ ∈ R. (3.98)

In a similar way, the matrix function Tr0(λ) which is continuous on C+, is analytic on C+, belongs
to Wn×n

0 and tends to Im as λ→∞ in C+, is constructed in the following way:

Tr0(λ)∗ Tr0(λ) = Im +R(λ)∗R(λ), λ ∈ R. (3.99)

We then define the matrix function

L0(λ) = Tr0(λ)R(λ)∗ [Tl0(λ)∗]−1, λ ∈ R. (3.100)

It easily follows that Tl0(λ), Tr0(λ), R(λ), and L0(λ) are the scattering coefficients if al1(λ) and
ar4(λ) are nonsingular for λ ∈ C+ (i.e., in the absence of bound states).

Next consider the four factorizations given in (3.95) and (3.96), where both al1(λ) and ar4(λ)
are nonsingular for λ ∈ R and at least one (and hence both) of al1(λ) and ar4(λ) is singular for
some λ ∈ C+ (i.e., in the presence of bound states). Then there exist matrices Bl(λ) and Br(λ)
such that

Tl(λ) = Tl0(λ)Bl(λ), Tr(λ) = Br(λ)Tr0(λ). (3.101)

Then we easily see that
L(λ) = Br(λ)L0(λ)Bl(λ). (3.102)

The matrices Bl(λ) and Br(λ) have the following properties:

• they are unitary for λ ∈ R;

• they tend to the identity matrix as λ→ ±∞;
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• they have no real poles;

• they have the same Jordan structure,

where the last statement follows from Theorem 3.16. Further, Bl and Br can be extended
meromorphically to λ ∈ C− by putting Bl,r(λ) = Bl,r(λ)−1. Since multiplication of the extended
Bl,r(λ) by a suitable scalar polynomial creates an entire matrix function of polynomial growth at
infinity and hence a matrix polynomial, the matrix functions Bl(λ) and Br(λ) must be rational.
So we can conclude that Bl(λ) and Br(λ) are rational matrix functions with the same Jordan
structure.

Next we consider the symmetric case. Using the unitarity of the scattering matrix S(λ), we
obtain the identities

Tl(λ)Tl(λ)∗ +R(λ)R(λ)∗ = In, Tr(λ)∗ Tr(λ) +R(λ)∗R(λ) = Im, (3.103)
Tl(λ)∗ Tl(λ) + L(λ)∗ L(λ) = In, Tr(λ)Tr(λ)∗ + L(λ)L(λ)∗ = Im, (3.104)
Tr(λ)R(λ)∗ + L(λ)Tl(λ)∗ = 0m×n, Tr(λ)∗ L(λ) +R(λ)∗ Tl(λ) = 0n×m. (3.105)

We must take into account that Tl(λ) and Tr(λ) are continuous in λ ∈ R, tend to identity as
λ→∞, and satisfy (3.78)-(3.79). Then, given R(λ) for λ ∈ R and assuming it to be continuous
for λ ∈ R, applying Theorem 3.18 we obtain the matrix functions Tl(λ) and Tr(λ) which are
continuous on C+, are analytic on C+ and tend to the identity matrix as λ → ∞ in C+, which
satisfy the factorizations

Tl(λ)Tl(λ)∗ = In −R(λ)R(λ)∗, λ ∈ R, (3.106)
Tr(λ)∗ Tr(λ) = Im −R(λ)∗R(λ), λ ∈ R. (3.107)

Note that the absence of bound states implies that Tl(λ) and Tr(λ) are analytic in λ ∈ C+. We
then define the reflection coefficient from the left by

L(λ) = −Tr(λ)R(λ)∗ [Tl(λ)∗]−1, λ ∈ R. (3.108)
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Chapter 4

Inverse Scattering Theory

In this chapter we develop the inverse scattering theory of determining the potentials k(x) and l(x)
from one of the reflection coefficients and bound state data. The potentials follow immediately
from the values at α = 0+ of the solutions B(x, α) (where x ∈ R and α ∈ R+) of the Marchenko
integral equations, which are in turn derived from the Riemann-Hilbert problem satisfied by the
Faddeev matrices. We first discuss the general form of the Marchenko integral equations, both in
the so-called coupled and uncoupled forms, and how to retrieve the potentials from its solution.
We then go on to discuss its symmetries (separately for the symmetric and antisymmetric cases),
the compactness of the integral operator, and, in the symmetric and antisymmetric cases, its
unique solvability. Next, starting from the Riemann-Hilbert problem for the Faddeev matrices,
we derive its integral kernel explicitly, first in the absence of bound states, next if there are only
algebraically simple eigenvalues, and then in general. After a discussion of the symmetries of the
Marchenko integral kernels, we conclude by characterizing the scattering data in the absence of
bound states.

4.1 Analysis of the Marchenko equations

In this section we analyze the Marchenko integral equations without bothering with the precise
form of their integral kernels.

4.1.1 Coupled and uncoupled Marchenko equations

The Marchenko integral equations have as their solutions one of the eight matrix functions
Bls(x, α) and Brs(x, α) (s = 1, 2, 3, 4), where α ∈ R+ is the independent variable and x ∈ R
is a parameter. These eight matrix functions are related to the Faddeev matrices Ml(x, λ) and
Mr(x, λ) by (3.35) and (3.36). According to Theorem 3.9, they satisfy

sup
x∈R

∫ ∞

0
dα (‖Bls(x, α)‖+ ‖Brs(x, α)‖) <∞, s = 1, 2, 3, 4,
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provided the potentials k(x) and l(x) have their entries in L1(R). The relationship between the
potentials and the solutions of the Marchenko equations is given by (cf. (3.54) and (3.55))

k(x) = 2iBl2(x, 0+) = −2iBr2(x, 0+), (4.1)
l(x) = −2iBl3(x, 0+) = 2iBr3(x, 0+). (4.2)

In Sec. 4.2 the integral kernels Ωl, Ωr, Ωl, and Ωr will be expressed in the reflection coefficients
and bound state data. Here we are primarily concerned with their properties rather than their
explicit form.

The eight coupled Marchenko equations are given by

Br1(x, α) = −
∫ ∞

0
dβ Br2(x, β) Ωr(α+ β − 2x), (4.3a)

Bl2(x, α) = −Ωl(α+ 2x)−
∫ ∞

0
dβ Bl1(x, β) Ωl(α+ β + 2x), (4.3b)

Br3(x, α) = −Ωr(α− 2x)−
∫ ∞

0
dβ Br4(x, β) Ωr(α+ β − 2x), (4.3c)

Bl4(x, α) = −
∫ ∞

0
dβ Bl3(x, β) Ωl(α+ β + 2x), (4.3d)

and

Bl1(x, α) = −
∫ ∞

0
dβ Bl2(x, β) Ωl(α+ β + 2x), (4.4a)

Br2(x, α) = −Ωr(α− 2x)−
∫ ∞

0
dβ Br1(x, β) Ωr(α+ β − 2x), (4.4b)

Bl3(x, α) = −Ωl(α+ 2x)−
∫ ∞

0
dβ Bl4(x, β) Ωl(α+ β + 2x), (4.4c)

Br4(x, α) = −
∫ ∞

0
dβ Br3(x, β) Ωr(α+ β − 2x). (4.4d)

In other words, these eight equations consist of four pairs of two coupled integral equations.
Let us formally write (4.3a)-(4.4d) as follows:(

Bl1 Bl2

Bl3 Bl4

)
+
(
Bl1 Bl2

Bl3 Bl4

)(
0n Ωl

Ωl 0m

)
= −

(
0n Ωl

Ωl 0m

)
(4.5a)(

Br1 Br2

Br3 Br4

)
+
(
Br1 Br2

Br3 Br4

)(
0n Ωr

Ωr 0m

)
= −

(
0n Ωr

Ωr 0m

)
, (4.5b)

where the integral operators depend on the parameter x ∈ R. Passing to the conjugate transpose
we have (

B∗l1 B∗l3
B∗l2 B∗l4

)
+
(

0n Ω∗l
Ω∗l 0m

)(
B∗l1 B∗l3
B∗l2 B∗l4

)
= −

(
0n Ω∗l
Ω∗l 0m

)
(4.6a)(

B∗r1 B∗r3
B∗r2 B∗r4

)
+
(

0n Ω∗r
Ω∗r 0m

)(
B∗r1 B∗r3
B∗r2 B∗r4

)
= −

(
0n Ω∗r
Ω∗r 0m

)
. (4.6b)
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Substituting one equation of a pair of coupled equations into the other and vice versa, we
obtain eight uncoupled Marchenko equations. In fact, in view of eqs. (4.1) and(4.2) we only
list the equations for Bl2(x, α), Bl3(x, α), Br2(x, α) and Br3(x, α), which turn out to have less
complicated inhomogeneous terms than those for Bl1(x, α), Bl4(x, α), Br1(x, α) and Br4(x, α).
For example, the uncoupled Marchenko equation for Br1(x, α) is rather complicated and reads

Br1(x, α) =
∫ ∞

0
dγ Ωr(α+ γ − 2x) Ωr(γ − 2x)+

+
∫ ∞

0
dβBr1(x, β)

∫ ∞

0
dγ Ωr(γ + β − 2x) Ωr(α+ γ − 2x).

Formally we thus obtain the uncoupled Marchenko equations

Bl2

(
I − ΩlΩl

)
= −Ωl, (4.7a)

Bl3

(
I − ΩlΩl

)
= −Ωl, (4.7b)

Br2

(
I − ΩrΩr

)
= −Ωr, (4.7c)

Br3

(
I − ΩrΩr

)
= −Ωr, (4.7d)

as well as their conjugate transposes(
I − Ω∗l Ω∗l

)
B∗l2 = −Ω∗l , (4.8a)(

I − Ω∗l Ω∗l
)
B∗l3 = −Ω∗l , (4.8b)(

I − Ω∗r Ω∗r
)
B∗r2 = −Ω∗r , (4.8c)(

I − Ω∗r Ω∗r
)
B∗r3 = −Ω∗r , (4.8d)

where the operators and right-hand sides depend on the parameter x ∈ R.
In the symmetric case (l(x) = k(x)∗) and the antisymmetric case (l(x) = −k(x)∗), the integral

kernels turn out to satisfy the following symmetry relations (cf. Subsection 4.2.4):{
Ωl(α) = Ωl(α)∗ and Ωr(α) = Ωr(α)∗, symmetric case,
Ωl(α) = −Ωl(α)∗ and Ωr(α) = −Ωr(α)∗, antisymmetric case.

(4.9)

Specifying the (adjoint) uncoupled Marchenko equations (4.5) in these special cases we obtain in
the symmetric case

(I − Ω∗l Ωl)B∗l2 = −Ω∗l , (4.10a)
(I − Ωl Ω∗l )B

∗
l3 = −Ωl, (4.10b)

(I − Ωr Ω∗r)B
∗
r2 = −Ωr, (4.10c)

(I − Ω∗r Ωr)B∗r3 = −Ω∗r , (4.10d)
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and in the antisymmetric case

(I + Ω∗l Ωl)B∗l2 = −Ω∗l , (4.11a)
(I + Ωl Ω∗l )B

∗
l3 = −Ωl, (4.11b)

(I + Ωr Ω∗r)B
∗
r2 = −Ωr, (4.11c)

(I + Ω∗r Ωr)B∗r3 = −Ω∗r . (4.11d)

4.1.2 Compactness of the Marchenko integral operator

In the sequel it will be apparent that, for every x ∈ R, each of the eight Marchenko integral kernels
is a matrix function Ω(α + β) depending only on the sum α + β of its arguments α, β ∈ R+,
where each entry of Ω belongs to L1(R+). Such integral operators are specific cases of so-called
Hankel operators and are known to be compact on a variety of function spaces [54]. Here we
shall actually prove these important properties.

Let Ω belong to L1(R+). We consider the operator

(HΩb) (α) =
∫ ∞

0
dβ Ω(α+ β)b(β)

and prove the following

Proposition 4.1 Let p be a real number such that 1 ≤ p ≤ ∞. Then HΩ is bounded in Lp(R+)
and the inequality

‖HΩ‖ ≤ ‖Ω‖L1(R+)

is satisfied.

Proof. When p = 1, we have∫ ∞

0
dα |(HΩb) (α)| ≤

∫ ∞

0
dα

∫ ∞

0
dβ |Ω(α+ β)| |b(β)|

=
∫ ∞

0
dβ

∫ ∞

β
dγ |Ω(γ)| |b(β)| ≤ ‖Ω‖L1(R+) ‖b‖L1(R+) .

For p =∞, we find

|(HΩb) (α)| ≤ ‖b‖L∞(R+)

∫ ∞

0
dβ |Ω(α+ β)| ≤ ‖Ω‖1 ‖b‖∞ .

When p = 2, we consider the Fourier transform. For b](β) = b(−β) we have the identity
b̂](ω) =

∫∞
−∞ dβ eiωβb(−β) = b̂(−ω), and hence(

ĤΩb
)

(ω) = Ω̂(ω)b̂(−ω).

It is clear that HΩ can also be represented by the diagram

L2(R+) F−→ H2(C+)
]−→ H2(C−)

Ω̂−φ−→ L2(R) F
−1

−→ L2(R) Π+

−→ L2(R+),
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where φ is any bounded analytic function in C− [i.e., φ ∈ H∞(C−)]: As a result,

‖HΩ‖L2→L2 ≤ sup
ω∈R

∣∣∣Ω̂(ω)− φ(ω)
∣∣∣ ,

and therefore
‖HΩ‖ ≤ sup

ω∈R

∣∣∣Ω̂(ω)
∣∣∣ ≤ ‖Ω‖L1(R+) .

The boundedness of HΩ on the other Lp spaces follows with the help of the Riesz-Thorin inter-
polation Theorem [69]. In fact,

‖HΩ‖Lp→Lp ≤ ‖HΩ‖
1
p

L1→L1‖HΩ‖
1− 1

p

L∞→L∞ ≤ ‖Ω‖L1(R+),

which completes the proof.

According to Nehari’s Theorem [79] we have the norm equality

‖HΩ‖L2→L2 = inf
φ∈H∞(C−)

sup
ω∈R

∣∣∣Ω̂(ω)− φ(ω)
∣∣∣ .

In the general case we mimic the proof given in [54] to derive

Theorem 4.2 Let 1 ≤ p ≤ ∞ and Ω ∈ L1(R+). Then HΩ is a compact operator on Lp(R+).

Proof. The proof is easy for p = 2. In this case we know that there exists a sequence
Ωn ∈ L1(R+) of functions of compact support such that ‖Ω− Ωn‖1 → 0. So, we obtain

‖HΩ −HΩn‖L2(R+) = ‖HΩ−Ωn‖L2(R+) ≤ ‖Ω− Ωn‖1 .

Since obviously ∫ ∞

0
dα

∫ ∞

0
dβ |Ωn(α+ β)|2 =

∫ α

0
dγ γ|Ωn(γ)|2 ≤ ∞

and hence HΩn is a Hilbert-Schmidt operator, the compactness of HΩ is clear.
In the general case we proceed in the following way: For α > −1 the Laguerre polynomials(

( n!
Γ(n+α+1))

1
2L

(α)
n

)∞
n=0

, where Γ denotes the Gamma function, form an orthonormal basis of

L2(R+;xα e−xdx). Thus ((
n!

Γ(n+ α+ 1)

) 1
2

Lα
n(·)x

α
2 e−

x
2

)∞
n=0

is an orthonormal basis of L2(R+). So there exists a sequence of polynomials (pn)∞n=0 such that

lim
n→∞

∥∥∥Ω− pnx
α
2 e−

x
2

∥∥∥
1

= 0,

and hence for α = 0 we get

pn(x+ y) e−
(x+y)

2 =
∑

s

γs cs(x)cs(y),
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where the summation is finite, each γs is a real number and cs(x) = xs e
−x
2 . Now it is easy to

check that the integral operator H
pne−

x
2

defined by the expression

(
H

pn e−
x
2
b
)

(α) =
∑

s

γs cs(α)
∫ ∞

0
dβ cs(β)b(β)

has finite rank. Thus H
pn e−

x
2

is a compact operator. Since∥∥∥HΩ −Hpn e−
x
2

∥∥∥
Lp(R+)

≤
∥∥∥Ω− pne

−x
2

∥∥∥
1
→ 0,

also HΩ is a compact operator on Lp(R+).

4.1.3 Unique solvability of the Marchenko integral equations

In this subsection we prove the unique solvability of the Marchenko integral equations in the
symmetric and antisymmetric cases. The proofs will be carried out for the integral equations in
adjoint form, since they can more easily be modelled as the effect of a linear operator (actually,
the sum of the identity and a compact operator) acting on a vector in a Banach function space.
It is almost trivial to prove these results in an L2 setting. Compactness arguments are used to
transfer them from the familiar L2 setting to the general Lp setting.

Theorem 4.3 Let 1 ≤ p ≤ ∞. Then in the symmetric and antisymmetric cases the Marchenko
equations (4.3)-(4.4) are uniquely solvable in Lp(R+; Ck) for some suitable k ∈ N.

Proof. First we assume that p = 2. In the symmetric case there are no bound states and Ωl

and Ωr coincide with the Fourier inverse transforms of the reflection matrices R(λ), L(λ), R(λ)
and L(λ) apart from the factors e±2iλx. Since the euclidean norms of the reflection coefficients
are strictly less than 1 for any λ ∈ R and these coefficients are continuous in λ ∈ R and vanish
as λ → ±∞ [cf. Proposition 3.13], the Marchenko integral operators are strict contractions on
L2(R+; Ck), which implies the unique solvability of eqs. (4.3)-(4.4) for p = 2.

In the antisymmetric case we consider the uncoupled Marchenko equations. Then the linear
operators I+Ω Ω∗ and I+Ω∗Ω governing these equations are bounded on L2(R+; Ck) and satisfy

((I + Ω Ω∗) b, b) = ‖b‖22 + ‖Ω∗ b‖22 ≥ ‖b‖22,
((I + Ω∗Ω) b, b) = ‖b‖22 + ‖Ω b‖22 ≥ ‖b‖22,

which implies their unique solvability for p = 2.
Let us consider the same uncoupled Marchenko equations for arbitrary p. Such an equation

has the form
(I + Γ) b = b0,

where Γ is a compact operator on Lp(R+; Ck) (1 ≤ p ≤ ∞). Let us now consider the following
diagram, where all arrows represent natural (dense and continuous) imbeddings between Banach
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spaces:
L2(R+; Ck) −−−−→ L2(R+; Ck) + Lp(R+; Ck)x x

L2(R+; Ck) ∩ Lp(R+; Ck) −−−−→ Lp(R+; Ck)

Here L2(R+; Ck) ∩ Lp(R+; Ck) is a Banach space with respect to the norm

‖b‖ = ‖b‖2 + ‖b‖p,

while L2(R+; Ck) + Lp(R+; Ck) is a Banach space with respect to the norm

‖b‖ = inf
b=b2+bp

b2∈L2, bp∈Lp

max (‖b2‖2, ‖bp‖p) ,

If Γ is compact on L2(R+; Ck) and Lp(R+; Ck), it is also compact on L2(R+; Ck) ∩ Lp(R+; Ck).
Hence, I + Γ satisfies the Fredholm alternative on all four spaces L2(R+; Ck) ∩ Lp(R+; Ck),
L2(R+; Ck), Lp(R+; Ck) and L2(R+; Ck)+Lp(R+; Ck). Obviously, using the invertibility of I+Γ
on L2(R+; Ck), we have

Ker L2(R+;Ck)∩Lp(R+;Ck) (I + Γ) = {0}

and hence, by the Fredholm alternative, I + Γ is invertible on L2(R+; Ck) ∩ Lp(R+; Ck). Next,

Lp(R+; Ck) ⊇ ImLp(R+;Ck) (I + Γ) ⊇ ImL2(R+;Ck)∩Lp(R+;Ck) (I + Γ) = L2(R+; Ck) ∩ Lp(R+; Ck),

while the image ImLp(R+;Ck) (I + Γ) is closed in Lp(R+; Ck) and L2(R+; Ck)∩Lp(R+; Ck) is dense
in Lp(R+; Ck). Therefore

ImLp(R+;Ck) (I + Γ) = Lp(R+; Ck).

Hence, by the Fredholm alternative, I + Γ is invertible on Lp(R+; Ck).

4.1.4 The x-dependence of Marchenko operators

In this subsection we prove that the solutions of the previous Marchenko integral equations lead to
potentials k(x) and `(x) having their entries in L1(R). This requires us to study these equations
as functions of x ∈ R. Therefore, we introduce the notations Ω(x)

l , Ω(x)
r , Ω(x)

l and Ω(x)
r to express

their dependence on x. We show that these integral operators depend continuously on x and
vanish as x→ ±∞ in the operator norm, irrespective of the Lp-space of vector functions on R+

in which we are working.
We have the following:

Proposition 4.4 For x ≥ 0, the Marchenko operators Ω(x)
l and Ω(x)

l depend continuously on x
in the norm, while

lim
x→+∞

‖Ω(x)
l ‖ = 0, lim

x→+∞
‖Ω(x)

l ‖ = 0. (4.12)

For x ≤ 0, the Marchenko operators Ω(x)
r and Ω(x)

r depend continuously on x in the norm, while

lim
x→−∞

‖Ω(x)
r ‖ = 0, lim

x→−∞
‖Ω(x)

r ‖ = 0. (4.13)
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Proof. We give the proof only for the first equation of (4.12), because the proof of the other
equations is similar. We have for x2 ≥ x1 ≥ 0[

H
Ω

(x2)
l

b−H
Ω

(x1)
l

b
]
(α) =

∫ ∞

0
dβ [Ωl(2x2 + α+ β)− Ωl(2x1 + α+ β)] b(β).

Then, according to Proposition 4.1, in the operator norm we obtain, as a result of the Theorem
of Dominated Convergence,

‖H
Ω

(x2)
l

−H
Ω

(x1)
l

‖ ≤
∫ ∞

0
dα‖Ωl(2x2 + α)− Ωl(2x1 + α)‖ → 0

as x2 → x1. In the same way,

‖H
Ω

(x)
l

‖ ≤
∫ ∞

0
dα‖Ωl(2x+ α)‖ =

∫ ∞

2x
dα‖Ωl(α)‖ → 0

as x→ +∞.

Corollary 4.5 The Marchenko integral equations (4.7a) and (4.7b) are uniquely solvable for
sufficiently large x. Similarly, the integral equations (4.7c) and (4.7d) are uniquely solvable for
sufficiently large −x.

Let us now suppose that the Marchenko integral equations (4.7a) and (4.7b) are uniquely
solvable for any x ≥ 0 and the equations (4.7c) and (4.7d) are uniquely solvable for any x ≤ 0.
This is in particularly true in the symmetric and the antisymmetric cases (cf. Theorem 4.3).
Because of Proposition 4.4, the linear operators I − ΩlΩl, I − ΩlΩl, I − ΩrΩr, and I − ΩrΩr

appearing in the respective equations (4.7) depend continuously on x and vanish as |x| → ∞ in
the operator norm on the half-line indicated in the table below. Thus

sup
x≥0
‖(I − Ω(x)

l Ω(x)
l )−1‖ <∞, sup

x≥0
‖(I − Ω(x)

l Ω(x)
l )−1‖ <∞, (4.14a)

sup
x≤0
‖(I − Ω(x)

r Ω(x)
r )−1‖ <∞, sup

x≤0
‖(I − Ω(x)

r Ω(x)
r )−1‖ <∞. (4.14b)

Theorem 4.6 Suppose that the Marchenko integral equations (4.7a) and (4.7b) are uniquely
solvable for any x ≥ 0 and the equations (4.7c) and (4.7d) are uniquely solvable for any x ≤ 0.
Then the potentials k(x) and `(x) follow from (4.1) and (4.2) and have their entries in L1(R).

Proof. The estimates (4.14a) imply that

sup
x≥0

∫ ∞

0
dα ‖Bl2(x, α)‖ <∞.

Using (4.4a) we get

sup
x≥0

∫ ∞

0
dα ‖Bl1(x, α)‖ ≤ ‖Ω(x)

l ‖1 sup
x≥0

∫ ∞

0
dα ‖Bl2(x, α)‖ <∞.
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We now estimate (4.3b):∫ ∞

0
dx ‖Bl2(x, 0+)‖ ≤

∫ ∞

0
dx ‖Ωl(2x)‖+

(
sup
x≥0

∫ ∞

0
dα ‖Bl1(x, α)‖

)
sup
β≥0

∫ ∞

0
dx ‖Ωl(β + 2x)‖

≤
(

1 + sup
x≥0

∫ ∞

0
dα ‖Bl1(x, α)‖

)
‖Ω(x)

l ‖1 <∞.

As a result of (4.1) we have∫ ∞

0
dx ‖k(x)‖ = 2

∫ ∞

0
dα ‖Bl2(x, 0+)‖ <∞.

To prove that
∫ 0
−∞ dx ‖k(x)‖,

∫∞
0 dx ‖`(x)‖, and

∫ 0
−∞ dx ‖`(x)‖ are finite, we apply the same

argument to Br2, Bl2, andBl3, respectively, in accordance with the table below.

equation solution potential computed
(4.7a) Bl2(x, α) k(x) for x ≥ 0
(4.7b) Bl3(x, α) `(x) for x ≥ 0
(4.7c) Br2(x, α) k(x) for x ≤ 0
(4.7d) Br3(x, α) `(x) for x ≤ 0

4.2 Deriving the Marchenko equations

As we have seen in Chapter 3, the Jost solutions and Faddeev matrices are (n+m)×(n+m) matrix
functions, each partitioned into blocks of sizes n×n, n×m, m×n, and m×m, half of which are
analytic in C+ and the other half in C−. To arrive at the Riemann-Hilbert problems satisfied by
(blocks of) the Faddeev matrices and ultimately at Marchenko integral equations, we introduce
modifications of the Faddeev matrices and Jost functions which are analytic in either C+ or
C−, by rearranging the blocks into newly defined (n+m)× (n+m) matrix functions m+(x, λ),
m−(x, λ), f+(x, λ), and f−(x, λ). Next, we employ the asymptotic properties of m+(x, λ) and
m−(x, λ) as x → ±∞ to derive a Riemann-Hilbert problem satisfied by these functions. This
Riemann-Hilbert problem is then Fourier transformed to derive the Marchenko integral equations.

Using the notations of (3.12), let us define the following modified Jost solutions:

f+(x, λ) =
(
Fl1(x, λ) Fr2(x, λ)
Fl3(x, λ) Fr4(x, λ)

)
, (4.15a)

f−(x, λ) =
(
Fr1(x, λ) Fl2(x, λ)
Fr3(x, λ) Fl4(x, λ)

)
, (4.15b)

thus repeating the definition of f+(x, λ) given in the proof of Proposition 3.12. From Propositions
3.4 and 3.5 it follows that f+(x, λ) is a solution of (3.1) that is continuous in λ ∈ C+ and analytic
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in λ ∈ C+; similarly, f−(x, λ) is a solution of (3.1) that is continuous in λ ∈ C− and analytic in
λ ∈ C−. Using (3.13) and (4.15), let us also define the modified Faddeev matrices

m+(x, λ) =
(
Ml1(x, λ) Mr2(x, λ)
Ml3(x, λ) Mr4(x, λ)

)
= f+(x, λ)e−iλJx, (4.16a)

m−(x, λ) =
(
Mr1(x, λ) Ml2(x, λ)
Mr3(x, λ) Ml4(x, λ)

)
= f−(x, λ)e−iλJx. (4.16b)

Then according to (3.35) and (3.36) we have

m±(x, λ) = In+m +
∫ ∞

0
dα b±(x, α)e±iλα, (4.17)

where b±(x, ·) ∈ L1(R+; Cn+m). Here

b+(x, α) =
(
Bl1(x, α) Br2(x, α)
Bl3(x, α) Br4(x, α)

)
, b−(x, α) =

(
Br1(x, α) Bl2(x, α)
Br3(x, α) Bl4(x, α)

)
. (4.18)

Let us now derive the Riemann-Hilbert problems satisfied by m+(x, λ) and m−(x, λ).

Theorem 4.7 Under the technical hypothesis, we have the Riemann-Hilbert problems

m−(x, λ) = m+(x, λ)G(x, λ), where G(x, λ) = eiλJxJS(λ)Je−iλJx, (4.19)

m+(x, λ) = m−(x, λ)G(x, λ), where G(x, λ) = eiλJxJS(λ)Je−iλJx. (4.20)

Proof. It suffices to prove that

f−(x, λ) = f+(x, λ)e−iλJxG(x, λ)eiλJx, (4.21)

where e−iλJxG(x, λ)eiλJx = JS(λ)J . In fact, on either side we have an (n+m)× (n+m) matrix
solution of (3.1). Using the asymptotic properties of the Jost solutions as x → +∞ we have to
prove that (

ar1(λ) 0n×m

ar3(λ) Im

)
=
(

In ar2(λ)
0m×n ar4(λ)

)(
Tl(λ) −R(λ)
−L(λ) Tr(λ)

)
, λ ∈ R. (4.22)

Using the asymptotic properties of the Jost solutions as x→ −∞ we also have to prove that(
In al2(λ)

0m×n al4(λ)

)
=
(
al1(λ) 0n×m

al3(λ) Im

)(
Tl(λ) −R(λ)
−L(λ) Tr(λ)

)
, λ ∈ R. (4.23)

Indeed, easy calculations on the right-hand side of eq. (4.22) show that

Tl(λ)− ar2(λ)L(λ) = al1(λ)−1 − ar2(λ)al3(λ)al1(λ)−1 = ar1(λ)

where, in the second identity of the preceding equation, we have taken into account that from eq.
(3.67b) we find ar1(λ)al1(λ)+ar2(λ)al3(λ) = In, which implies al1(λ)−1−ar2(λ)al3(λ)al1(λ)−1 =
ar1(λ). Also, using (3.75)

−ar4(λ)L(λ) = −ar4(λ)ar4(λ)−1ar3(λ) = ar3(λ).
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Finally, using (3.63) and (3.61),

−R(λ) + Tr(λ)ar2(λ) = −ar2(λ)ar4(λ)−1 + ar2(λ)ar4(λ)−1 = 0n×m,

ar4(λ)Tr(λ) = ar4(λ)ar4(λ)−1 = Im,

i.e., eq. (4.22) is satisfied. Moreover, if we consider the right-hand side of eq. (4.23) we obtain
using (3.60) and (3.63)

al1(λ)Tl(λ) = al1(λ)al1(λ)−1 = In,

−L(λ) + Tl(λ)al3(λ) = −al3(λ)al1(λ)−1 + al3(λ)al1(λ)−1 = 0m×n,

and, using (3.74)
−al1(λ)R(λ) = al1(λ)al1(λ)−1al2(λ) = al2(λ),

Then
Tr(λ)− al3(λ)R(λ) = ar4(λ)−1 − al3(λ)ar2(λ)ar4(λ)−1 = al4(λ),

where, in the second identity of the preceding equation, we have taken into account that from eq.
(3.67a) we have al3(λ)ar2(λ) + al4(λ)ar4(λ) = Im, which implies a−1

r4 (λ) − al3(λ)ar2(λ)a−1
r4 (λ) =

al4(λ). So, we have proved that also eq. (4.22) is satisfied and all components of (4.19) belong
to the Wiener algebra Wp for suitable p.

The Marchenko integral equations are now derived by

(a) projecting (4.19) onto Wn+m
−,0 and projecting (4.20) onto Wn+m

+,0 ;

(b) stripping off the Fourier transforms to arrive at integral equations for the blocks of b+(x, α)
and b−(x, α) defined by (4.18).

This is straightforward if the transmission coefficients are analytic in C+, i.e., if there are no
bound states. We shall therefore discuss this case first. The result consists of Marchenko integral
equations of the type (4.3) or (4.4) in which Ωl = R̂, Ωr = L̂, Ωl = R̂, and Ωr = L̂. Next, we
assume that the poles of the transmission coefficients in C+ are simple (as in [3]). This will lead
to additional terms in the kernel functions Ωl, Ωr, Ωl, and Ωr, which amount to a finite rank
perturbation of the integral operators. Finally, we consider the most general case, where the
transmission coefficients may have higher order poles in C+ and the additional terms are more
complicated.

Throughout the remainder of this chapter we assume that the matrices al1(λ), ar1(λ), al4(λ)
and ar4(λ) are invertible for all λ ∈ R, i.e., we depart from the technical hypothesis. According
to Theorem 3.10, the elements of al(λ) and ar(λ) belong to some W. Because of the hypothesis
made, we can apply Theorem 3.8 to prove that the reflection and transmission coefficients have
their entries in W. We may therefore write

R(λ) =
∫ +∞

−∞
dα R̂(α)e−iλα, (4.24a)

L(λ) =
∫ +∞

−∞
dα L̂(α)e−iλα, (4.24b)

R(λ) =
∫ +∞

−∞
dα R̂(α)eiλα, (4.24c)
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L(λ) =
∫ +∞

−∞
dα L̂(α)eiλα, (4.24d)

where R̂, L̂, R̂, and L̂ have their entries in L1(R).
In Sec. 3.4 we have derived the following symmetries for the reflection coefficients:{

R(λ)∗ = R(λ) and L(λ)∗ = L(λ), symmetric case,
R(λ)∗ = −R(λ) and L(λ)∗ = −L(λ), antisymmetric case,

where λ ∈ R. We thus obtain{
R̂(α) = R̂(α)∗ and L̂(α) = L̂(α)∗, symmetric case,

R̂(α) = −R̂(α)∗ and L̂(α) = −L̂(α)∗, antisymmetric case,

which agrees with (4.9) if Ωl = R̂, Ωr = L̂, Ωl = R̂, and Ωr = L̂.

4.2.1 When there are no bound state eigenvalues

It is well-known that there are no bound states in the symmetric case. Here we discuss the
derivation of the Marchenko integral equations in general if there are no bound states, without
specializing them in the symmetric and antisymmetric cases, thus recovering the equations derived
in [9, 90].

Let us now derive the first four Marchenko integral equations.

Theorem 4.8 For α ≥ 0 we have the Marchenko integral equations

Br1(x, α) = −
∫ ∞

0
dβ Br2(x, β)L̂(α+ β − 2x), (4.25a)

Bl2(x, α) = −R̂(α+ 2x)−
∫ ∞

0
dβ Bl1(x, β)R̂(α+ β + 2x), (4.25b)

Br3(x, α) = −L̂(α− 2x)−
∫ ∞

0
dβ Br4(x, β)L̂(α+ β − 2x), (4.25c)

Bl4(x, α) = −
∫ ∞

0
dβ Bl3(x, β)R̂(α+ β + 2x). (4.25d)

Proof. We note that eq. (4.19) is an identity, where m−(x, ·) − In+m ∈ Wn+m
−,0 , m+(x, ·) −

In+m ∈ Wn+m
+,0 and G(x, ·) − In+m ∈ Wn+m

0 . In the absence of bound states we also have
Tl(·)− In ∈ Wn

+,0 and Tr(·)− Im ∈ Wn
+,0. Projecting (4.19) onto Wn+m

−,0 , we obtain

Mr1(x, λ)− In = Π−,0(Mr1(x, λ)) = −Π−,0(Mr2(x, λ)L(λ)e−2iλx), (4.26a)

Ml2(x, λ) = Π−,0Ml2(x, λ) = −Π−,0(Ml1(x, λ)R(λ)e2iλx), (4.26b)

Mr3(x, λ) = Π−,0(Mr3(x, λ)) = −Π−,0(Mr4(x, λ)L(λ)e−2iλx), (4.26c)

Ml4(x, λ)− Im = Π−,0(Ml4(x, λ)) = −Π−,0(Ml3(x, λ)R(λ)e2iλx), (4.26d)
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where Π−,0 is the projection of Wp onto Wp
−,0 along Wp

+. Moreover, we have taken into account
that Ml1(x, λ)− In, Mr2(x, λ), Ml3(x, λ) and Mr4(x, λ)− Im are elements of W+, 0, therefore the
terms Ml1(x, λ)Tl(λ), Ml3(x, λ)Tl(λ), Mr2(x, λ)Tr(λ) and Mr4(x, λ)Tr(λ) belong to W+, 0 and
can be deleted in the projection onto Wp

−,0.
Let us now simplify the right-hand sides of (4.26). Using (4.24a) and (4.24b) we can write

R(λ)e2iλx =
∫ +∞

−∞
dα R̂(α+ 2x)e−iλα,

L(λ)e−2iλx =
∫ +∞

−∞
dα L̂(α− 2x)e−iλα.

Now, easy calculations show that

Π−,0(Mr2(x, λ)L(λ)e−2iλx) =
∫ +∞

0
dα e−iλα

∫ +∞

0
dβ Br2(x, β)L̂(α+ β − 2x), (4.27a)

Π−,0(Ml1(x, λ)R(λ)e2iλx) =
∫ +∞

0
dα R̂(α+ 2x)e−iλα

+
∫ +∞

0
dα e−iλα

∫ +∞

0
dβ Bl1(x, β)R̂(α+ β + 2x), (4.27b)

Π−,0(Mr4(x, λ)L(λ)e−2iλx) =
∫ +∞

0
dα L̂(α− 2x)e−iλα

+
∫ +∞

0
dα e−iλα

∫ +∞

0
dβ Br4(x, β)L̂(α+ β − 2x), (4.27c)

Π−,0(Ml3(x, λ)R(λ)e2iλx) =
∫ +∞

0
dα e−iλα

∫ +∞

0
dβ Bl3(x, β)R̂(α+ β + 2x). (4.27d)

Recalling eqs. (3.50), (3.38), (3.52), (3.40), (4.26) and (4.27) we obtain∫ ∞

0
dα e−iλαBr1(x, α) = −

∫ ∞

0
dα e−iλα

∫ ∞

0
dβ Br2(x, β)L̂(α+ β − 2x), (4.28a)∫ ∞

0
dα e−iλαBl2(x, α) = −

∫ ∞

0
dα e−iλαR̂(α+ 2x)

−
∫ ∞

0
dα e−iλα

∫ ∞

0
dβ Bl1(x, β)R̂(α+ β + 2x), (4.28b)∫ ∞

0
dα e−iλαBr3(x, α) = −

∫ ∞

0
dα e−iλαL̂(α− 2x)

−
∫ ∞

0
dα e−iλα

∫ ∞

0
dβ Br4(x, β)L̂(α+ β − 2x), (4.28c)∫ ∞

0
dα e−iλαBl4(x, α) = −

∫ ∞

0
dα e−iλα

∫ ∞

0
dβ Bl3(x, β)R̂(α+ β + 2x). (4.28d)

Removing the Fourier transforms from the preceding equations, we get the Marchenko integral
equations (4.25).
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The proof of the following Theorem 4.9 is very similar. We now project (4.20) onto Wn+m
+,0

and use (4.24c) and (4.24d) instead. To facilitate checking some of the subsequent Marchenko
equations, we give a short proof of Theorem 4.9.

Theorem 4.9 For α ≥ 0 we have the Marchenko integral equations

Bl1(x, α) = −
∫ ∞

0
dβ Bl2(x, β)R̂(α+ β + 2x), (4.29a)

Br2(x, α) = −L̂(α+−x)−
∫ ∞

0
dβ Br1(x, β)L̂(α+ β − 2x), (4.29b)

Bl3(x, α) = −R̂(α+ 2x)−
∫ ∞

0
dβ Bl4(x, β)R̂(α+ β + 2x), (4.29c)

Br4(x, α) = −
∫ ∞

0
dβ Br3(x, β)L̂(α+ β − 2x). (4.29d)

Thus eqs. (4.3) and (4.4) are satisfied for Ωr = L̂, Ωl = R̂, Ωl = R̂, and Ωr = L̂.

Proof. We note that m+(x, ·) − In+m ∈ Wn+m
+,0 , m−(x, ·) − In+m ∈ Wn+m

−,0 , and G(x, ·) −
In+m ∈ Wn+m

0 . In the absence of bound states we also have T l(·)− In ∈ Wn
−,0 and T r(·)− Im ∈

Wn
−,0. Projecting (4.20) onto Wn+m

+,0 , we obtain

Ml1(x, λ)− In = Π+,0(Ml1(x, λ)) = −Π+,0(Ml2(x, λ)R(λ)e−2iλx), (4.30a)

Mr2(x, λ) = Π+,0Mr2(x, λ) = −Π+,0(Mr1(x, λ)L(λ)e2iλx), (4.30b)

Ml3(x, λ) = Π+,0(Ml3(x, λ)) = −Π+,0(Ml4(x, λ)R(λ)e−2iλx), (4.30c)

Mr4(x, λ)− Im = Π+,0(Mr4(x, λ)) = −Π+,0(Mr3(x, λ)L(λ)e2iλx), (4.30d)

where Π+,0 is the projection of Wp onto Wp
+,0 along Wp

−.
Let us now simplify the right-hand sides of (4.30). Using (4.24c) and (4.24d) we can write

R(λ)e−2iλx =
∫ +∞

−∞
dα R̂(α+ 2x)eiλα,

L(λ)e2iλx =
∫ +∞

−∞
dα L̂(α− 2x)eiλα.

We now proceed as in the proof of (4.27) and (4.28). Removing the Fourier transforms from the
preceding equations, we get the Marchenko integral equations (4.29).

4.2.2 When the eigenvalues are algebraically simple

By hypothesis, al1(λ), ar1(λ), al4(λ), and ar4(λ) are invertible for every λ ∈ R. Therefore the
transmission coefficients Tl(λ) and Tr(λ) have at most finitely many poles in C+ and these neces-
sarily coincide. We denote these distinct poles in C+ by iκ1, . . . , iκN . Similarly, the transmission
coefficients T l(λ) and T r(λ) have at most finitely many poles in C− and these necessarily coin-
cide. We denote these distinct poles in C− by −iκ̃1, . . . ,−iκ̃N . Let us suppose that all of these
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poles are simple. Then there exist unique n×n and m×m matrix functions Tl1(λ) and Tr1(λ),
continuous in λ ∈ C+, analytic in λ ∈ C+, and approaching In and Im (respectively) as λ → ∞
from within C+, such that

Tl(λ) = i
N∑

j=1

τlj0
λ− iκj

+ Tl1(λ), (4.31)

Tr(λ) = i

N∑
j=1

τrj0

λ− iκj
+ Tr1(λ), (4.32)

where λ ∈ C+. Analogously, there exist unique n × n and m ×m matrix functions Tl1(λ) and
Tr1(λ), continuous in λ ∈ C−, analytic in λ ∈ C−, and approaching In and Im (respectively) as
λ→∞ from within C−, such that

Tl(λ) = −i
Ñ∑

j=1

τ̃lj0
λ+ iκ̃j

+ T l1(λ), (4.33)

Tr(λ) = −i
Ñ∑

j=1

τ̃rj0

λ+ iκ̃j
+ T r1(λ), (4.34)

where λ ∈ C−.
For j = 1, . . . , N , put mj0

+ (x) = m+(x, iκj) and for j = 1, . . . , Ñ put mj0
− (x) = m−(x,−iκ̃j).

Then for j = 1, . . . , N we have the partitioning

mj0
+ (x) =

(
M j0

l1 (x) M j0
r2 (x)

M j0
l3 (x) M j0

r4 (x)

)
, mj0

− (x) =

(
M j0

r1 (x) M j0
l2 (x)

M j0
r3 (x) M j0

l4 (x)

)
. (4.35)

We prove the following

Proposition 4.10 For α ≥ 0 we have the following integral equations :

Br1(x, α) = −
N∑

j=1

M j0
l1 (x)τlj0e−κjα −

∫ ∞

0
dβ Br2(x, β)L̂(α+ β − 2x), (4.36a)

Bl2(x, α) = −
N∑

j=1

M j0
r2 (x)τrj0e

−κjα − R̂(α+ 2x)−
∫ ∞

0
dβ Bl1(x, β)R̂(α+ β + 2x), (4.36b)

Br3(x, α) = −
N∑

j=1

M j0
l3 (x)τlj0e−κjα − L̂(α− 2x)−

∫ ∞

0
dβ Br4(x, β)L̂(α+ β − 2x), (4.36c)

Bl4(x, α) = −
N∑

j=1

M j0
r4 (x)τrj0e

−κjα −
∫ ∞

0
dβ Bl3(x, β)R̂(α+ β + 2x). (4.36d)
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Proof. Let us mimic the proof of Theorem 4.8 while concentrating on the extra terms stem-
ming from the transmission coefficients in the Riemann-Hilbert problem (4.19). To retrieve the
extra term in (4.36a) we consider the proof of (4.25a). Instead of (4.26a) we now have

Mr1(x, λ)− In = Π−,0(Ml1(x, λ)Tl(λ))−Π−,0(Mr2(x, λ)L(λ)e−2iλx)

= i

N∑
j=1

Π−,0
Ml1(x, λ) τlj0
λ− iκj

−Π−,0(Mr2(x, λ)L(λ)e−2iλx).

Let us analyze the extra term separately. Using that Ml1(x, iκj) = mj0
l1 (x) we have

iΠ−,0

(
Ml1(x, λ) τlj0
λ− iκj

)
= i

M j0
l1 (x) τlj0
λ− iκj

= −
∫ ∞

0
dy e−iλye−κjyM j0

l1 (x) τlj0,

which implies the extra term in (4.36a). The other equations are proved analogously.

In the same way we prove the following

Proposition 4.11 For α ≥ 0 we have the following integral equations :

Bl1(x, α) = −
Ñ∑

j=1

M j0
r1 (x)τ̃lj0e−κ̃jα −

∫ ∞

0
dβ Bl2(x, β)R̂(α+ β + 2x), (4.37a)

Br2(x, α) = −
Ñ∑

j=1

M j0
l2 (x)τ̃rj0e

−κ̃jα − L̂(α− 2x)−
∫ ∞

0
dβ Br1(x, β)L̂(α+ β − 2x), (4.37b)

Bl3(x, α) = −
Ñ∑

j=1

M j0
r3 (x)τ̃lj0e−κ̃jα − R̂(α+ 2x)−

∫ ∞

0
dβ Bl4(x, β)R̂(α+ β + 2x), (4.37c)

Br4(x, α) = −
Ñ∑

j=1

M j0
l4 (x)τ̃rj0e

−κ̃jα −
∫ ∞

0
dβ Br3(x, β)L̂(α+ β − 2x). (4.37d)

In the proof of Theorem 3.16 we have made clear that all eigenfunctions of (3.1) at an
eigenvalue λ = iκj ∈ C+ have one of the equivalent forms

Fl(x, iκj)
(

εj
0m×1

)
= Fr(x, iκj)

(
0n×1

ηj

)
, (4.38)

where εj and ηj are nontrivial vectors satisfying al1(iκj)εj = 0n×1 and ar4(iκj)ηj = 0m×1.
Since al1(λ)εj = (λ − iκj)f(λ) for a vector function f(λ) that is analytic in a neighborhood of
iκj , we obtain εj = iτlj0f(iκj). On the other hand, if εj = τlj0h ∈ Im τlj0, then al1(λ)εj =
−i (λ− iκj) [h− Tl1(λ)h] vanishes as λ → iκj and hence al1(λ0)εj = 0n×1. Consequently, the
subspace of Cn generated by the vectors εj coincides with the range of τlj0. Similarly, the subspace
of Cm generated by the vectors ηj coincides with the range of τrj0. Because these ranges have the
same dimension, we can find an m×n matrix Cj0 and an n×m matrix Dj0 such that ηj = Cj0εj
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and εj = Dj0ηj whenever εj and ηj are related by (4.38). In other words, Cj0 and Dj0 are each
other’s inverses on the subspaces of Cn and Cm generated by εj and ηj . Letting them annihilate
the orthogonal complements of these subspaces, we have

Cj0 = Cj0Dj0Cj0, Dj0 = Dj0Cj0Dj0,

where Cj0Dj0 is the orthogonal projection onto the range of τrj0 and Dj0Cj0 is the orthogonal
projection onto the range of τlj0. In fact, Dj0 is the Moore-Penrose generalized inverse of Cj0

and vice versa (cf. [25]). We call the matrices Cj0 and Dj0 dependency constant matrices. Since
(4.38) implies that

e−κjx

(
Ml1(x, iκj)εj
Ml3(x, iκj)εj

)
= eκjx

(
Mr2(x, iκj)ηj

Mr4(x, iκj)ηj

)
, (4.39)

we get

M j0
r2 (x)ηj = e−2κjxM j0

l1 (x)εj , (4.40)

M j0
l3 (x)εj = e2κjxM j0

r4 (x)ηj . (4.41)

Consequently,

M j0
r2 (x)τrj0 = e−2κjxM j0

l1 (x)Dj0τrj0= e−2κjxM j0
l1 (x)Γlj , (4.42a)

M j0
l3 (x)τlj0 = e2κjxM j0

r4 (x)Cj0τlj0 = e2κjxM j0
r4 (x)Γrj , (4.42b)

M j0
r4 (x)τrj0 = e−2κjxM j0

l3 (x)Dj0τrj0= e−2κjxM j0
l3 (x)Γlj , (4.42c)

M j0
l1 (x)τlj0 = e2κjxM j0

r2 (x)Cj0τlj0 = e2κjxM j0
r2 (x)Γrj , (4.42d)

where the norming constant matrices are defined by

Γlj = Dj0τrj0, Γrj = Cj0τlj0. (4.43)

Thus eqs. (4.42) can be written in the form

m+(x, iκj)
(
τlj0 0n×m

0m×n τrj0

)
= m+(x, iκj)

(
0n×n e−2κjxΓlj

e2κjxΓrj 0m×m

)
. (4.44)

In [2] norming constant matrices are introduced for the matrix Zakharov-Shabat system
with antisymmetric potential when the poles of the transmission coefficients are simple and the
potential has sufficient exponential decay. These quantities are defined in terms of reflection
coefficients evaluated off the real axis, which is only correct for sufficient exponential decay of
the potential. In [2] appropriate decay assumptions on the potential are made to justify their
definitions. Our definitions extend those given in [2] (and those given in the subsequent [1, 3]) to
general L1-potentials without symmetries. In [10] norming constant matrices are introduced to
study the small energy asymptotics of the matrix Schrödinger equation with selfadjoint potential.
These norming constant matrices relate two representations of the eigenfunction at a zero energy
half-bound state.
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Analogously, it is clear that all eigenfunctions of (3.1) at an eigenvalue λ = −iκ̃j ∈ C− have
one of the equivalent forms

Fl(x,−iκ̃j)
(

0n×1

ηj

)
= Fr(x,−iκ̃j)

(
εj

0m×1

)
, (4.45)

where ar1(−iκ̃j)εj = 0n×1 and al4(−iκ̃j)ηj = 0m×1. Further, the vectors εj generate the range of
τ̃lj0 and the vectors ηj the range of τ̃rj0. Because these ranges have the same dimension, we can
find an m×n matrix Cj0 and an n×m matrix Dj0 such that ηj = Cj0εj and εj = Dj0ηj whenever
εj and ηj are related by (4.45). Letting Cj0 and Dj0 annihilate the orthogonal complements of
these subspaces, we have

Cj0 = Cj0Dj0Cj0, Dj0 = Dj0Cj0Dj0,

where Cj0Dj0 is the orthogonal projection onto the range of τ̃rj0 and Dj0Cj0 is the orthogonal
projection onto the range of τ̃lj0. In fact, Dj0 is the Moore-Penrose generalized inverse of Cj0 and
vice versa. We also call the matrices Cj0 and Dj0 dependency constant matrices. Since (4.45)
implies that

eκ̃jx

(
Mr1(x,−iκ̃j)εj
Mr3(x,−iκ̃j)εj

)
= e−κ̃jx

(
Ml2(x,−iκ̃j)ηj

Ml4(x,−iκ̃j)ηj

)
, (4.46)

we get

M j0
l2 (x)ηj = e2κ̃jxM j0

r1 (x)εj , (4.47)

M j0
r3 (x)εj = e−2κ̃jxM j0

l4 (x)ηj . (4.48)

Consequently,

M j0
l2 (x)τ̃rj0 = e2κ̃jxM j0

r1 (x)Dj0τ̃rj0 = e2κ̃jxM j0
r1 (x)Γrj , (4.49a)

M j0
r3 (x)τ̃lj0 = e−2κ̃jxM j0

l4 (x)Cj0τ̃lj0= e−2κ̃jxM j0
l4 (x)Γlj , (4.49b)

M j0
l4 (x)τ̃rj0 = e2κ̃jxM j0

r3 (x)Dj0τ̃rj0 = e2κ̃jxM j0
r3 (x)Γrj , (4.49c)

M j0
r1 (x)τ̃lj0 = e−2κ̃jxM j0

l2 (x)Cj0τ̃lj0= e−2κ̃jxM j0
l2 (x)Γlj , (4.49d)

where the norming constant matrices are defined by

Γlj = Cj0τ̃lj0, Γrj = Dj0τ̃rj0. (4.50)

Thus eqs. (4.49) can be written in the form

m−(x,−iκ̃j)
(
τ̃lj0 0n×m

0m×n τ̃rj0

)
= m−(x,−iκ̃j)

(
0n×n e2κ̃jxΓrj

e−2κ̃jxΓlj 0m×m

)
. (4.51)

In [3] we find definitions of Γlj and Γrj in terms of the residues of R and L at −iκ̃j , even though
in general the reflection coefficients do not extend meromorphically off the real axis. This is
correct under appropriate decay assumptions on the potential.

Substituting equations (4.42) into (4.36) and using (4.43) it is easy to prove the following
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Theorem 4.12 For α ≥ 0 we have the Marchenko integral equations

Br1(x, α) = −
∫ ∞

0
dβ Br2(x, β) Ωr(α+ β − 2x), (4.52a)

Bl2(x, α) = −Ωl(α+ 2x)−
∫ ∞

0
dβ Bl1(x, β) Ωl(α+ β + 2x), (4.52b)

Br3(x, α) = −Ωr(α− 2x)−
∫ ∞

0
dβ Br4(x, β) Ωr(α+ β − 2x), (4.52c)

Bl4(x, α) = −
∫ ∞

0
dβ Bl3(x, β) Ωl(α+ β + 2x), (4.52d)

where

Ωl(α) = R̂(α) +
N∑

j=1

Γlj e
−κjα, (4.53a)

Ωr(α) = L̂(α) +
N∑

j=1

Γrj e
−κjα. (4.53b)

In the same way we derive

Theorem 4.13 For α ≥ 0 we have the Marchenko integral equations

Bl1(x, α) = −
∫ ∞

0
dβ Bl2(x, β) Ωl(α+ β + 2x), (4.54a)

Br2(x, α) = −Ωr(α− 2x)−
∫ ∞

0
dβ Br1(x, β) Ωr(α+ β − 2x), (4.54b)

Bl3(x, α) = −Ωl(α+ 2x)−
∫ ∞

0
dβ Bl4(x, β) Ωl(α+ β + 2x), (4.54c)

Br4(x, α) = −
∫ ∞

0
dβ Br3(x, β) Ωr(α+ β − 2x). (4.54d)

where

Ωl(α) = R̂(α) +
Ñ∑

j=1

Γlj e
−κ̃jα, (4.55a)

Ωr(α) = L̂(α) +
Ñ∑

j=1

Γrj e
−κ̃jα. (4.55b)
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4.2.3 When the eigenvalues have any multiplicity

If some of the poles of Tl(λ) or Tr(λ) are not simple, the construction of the Marchenko integral
equations is to be modified. It is comparatively simple to convert the Riemann-Hilbert prob-
lem containing the principal parts of the transmission coefficient at the poles into an integral
equation of Marchenko type. However, it is not obvious how to generalize the insertion of the
dependency constants to the multiple pole case. For the 1-D Schrödinger equation with energy
dependent potential ikP (x) + Q(x) this generalization has been accomplished in [8], but it is
based on Wronskian relations relating Jost solutions of the Schrödinger equation with potential
ikP (x)+Q(x) to Jost solutions of the Schrödinger equation with potential −ikP (x)+Q(x). Such
Wronskian relations can in principle be generalized to systems of ordinary differential equations,
but to have a meaningful result we need to relate Jost solutions of the original equations to those
of the adjoint equations. In this subsection we shall accomplish the same result without using
Wronskian relations by relating matrices of the type Φs(al1;λ0) and Φs(ar4;λ0) for the poles
λ0 ∈ C+ of Tl(λ) and Tr(λ). By doing the same thing for the poles of T l(λ) and T r(λ) in C−, we
avoid confining ourselves to the antisymmetric case, although Subsection 4.2.4 will be devoted
to the simplifications arising from the antisymmetric case. It is not necessary to consider the
symmetric case, since there is no discrete spectrum and hence no need to account for bound state
information.

Let us assume that the transmission coefficients Tl(λ) and Tr(λ) have the form

Tl(λ) =
N∑

j=1

qj−1∑
s=0

is+1 τljs
(λ− iκj)s+1

+ Tl0(λ), (4.56)

Tr(λ) =
N∑

j=1

qj−1∑
s=0

is+1 τrjs

(λ− iκj)s+1
+ Tr0(λ), (4.57)

where Tl0(λ) and Tr0(λ) are continuous in λ ∈ C+, are analytic in λ ∈ C+, and tend to the identity
matrix as λ → ∞ in C+. The usual technical hypothesis guarantees the finiteness of the set of
poles, while Theorem 3.16 implies that Tl(λ) and Tr(λ) have the same poles iκ1, . . . , iκN and the
same pole orders q1, . . . , qN . Obviously, τljqj

and τrjqj are nonzero matrices (j = 1, . . . , N). As a
result,

Π−,0Tl(λ) =
N∑

j=1

qj−1∑
s=0

is+1τljs
(λ− iκj)s+1

= −
N∑

j=1

qj−1∑
s=0

τljs
s!

∫ ∞

0
dα e−iλααse−κjα,

Π−,0Tr(λ) =
N∑

j=1

qj−1∑
s=0

is+1τrjs

(λ− iκj)s+1
= −

N∑
j=1

qj−1∑
s=0

τrjs

s!

∫ ∞

0
dα e−iλααse−κjα.

Let us consider the series expansion

m+(x, λ) =
∞∑

t=0

(−i)tmjt
+(x)(λ− iκj)t, |λ− iκj | < Reκj . (4.58)
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For j = 1, . . . , N and t = 0, 1, 2, . . . we introduce the partitioning

mjt
+(x) =

(
M jt

l1 (x) M jt
r2(x)

M jt
l3 (x) M jt

r4(x)

)
, (4.59)

where M jt
l1 (x), M jt

r2(x), M
jt
l3 (x), and M jt

r4(x) have the sizes n × n, n × m, m × n and m × m,
respectively. Letting

m(x, λ) =
∫ ∞

0
dα eiλαb(x, α)

stand for any of two component matrices Ml1(x, λ) − In and Ml3(x, λ) of m+(x, λ) − In+m and
(−i)tmjt(x) for the coefficient of (λ− iκj)t in the Taylor series of m(x, λ) at λ = iκj , we obtain
after some calculation

Π−,0

(
m(x, λ)

is+1 τljs
(λ− iκj)s+1

)
=

s∑
t=0

it+1

(λ− iκj)t+1
mj,s−t(x)τljs,

where s = 0, 1, . . . , qj − 1. Similarly, letting m(x, λ) stand for any of two component matrices
Mr2(x, λ) and Mr4(x, λ)− Im of m+(x, λ)− In+m, we obtain after some calculation

Π−,0

(
m(x, λ)

is+1 τrjs

(λ− iκj)s+1

)
=

s∑
t=0

it+1

(λ− iκj)t+1
mj,s−t(x)τrjs,

where s = 0, 1, . . . , qj − 1.
By inverse Fourier transformation, we therefore obtain the following.

Proposition 4.14 For α ≥ 0 we have the following integral equations

Br1(x, α) = −
∫ ∞

0
dβ Br2(x, β)L̂(α+ β − 2x)−

N∑
j=1

qlj−1∑
s=0

s∑
t=0

M j,s−t
l1 (x)τljs

αt

t!
e−κjα, (4.60a)

Bl2(x, α) = −R̂(α+ 2x)−
∫ ∞

0
dβ Bl1(x, β)R̂(α+ β + 2x)

−
N∑

j=1

qrj−1∑
s=0

s∑
t=0

M j,s−t
r2 (x)τrjs

αt

t!
e−κjα, (4.60b)

Br3(x, α) = −L̂(α− 2x)−
∫ ∞

0
dβ Br4(x, β)L̂(α+ β − 2x)

−
N∑

j=1

qlj−1∑
s=0

s∑
t=0

M j,s−t
l3 (x)τljs

αt

t!
e−κjα, (4.60c)

Bl4(x, α) = −
∫ ∞

0
dβ Bl3(x, β)R̂(α+ β + 2x)−

N∑
j=1

qrj−1∑
s=0

s∑
t=0

M j,s−t
r4 (x)τrjs

αt

t!
e−κjα. (4.60d)
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Analogously, the transmission coefficients T l(λ) and T r(λ) have the form

T l(λ) =
Ñ∑

j=1

q̃j−1∑
s=0

(−i)s+1 τ̃ljs
(λ+ iκ̃j)s+1

+ T̃l0(λ), (4.61)

T r(λ) =
Ñ∑

j=1

q̃j−1∑
s=0

(−i)s+1 τ̃rjs

(λ+ iκ̃j)s+1
+ T̃r0(λ), (4.62)

where T̃l0(λ) and T̃r0(λ) are continuous in λ ∈ C−, are analytic in λ ∈ C−, and tend to the identity
matrix as λ → ∞ in C−. The usual technical hypothesis guarantees the finiteness of the set of
poles, while Theorem 3.16 implies that T l(λ) and T r(λ) have the same poles −iκ̃1, . . . ,−iκ̃Ñ and
the same pole orders q̃1, . . . , q̃Ñ . Obviously, τ̃ljq̃j

and τrjq̃j are nonzero matrices (j = 1, . . . , Ñ).
As a result,

Π+,0T l(λ) =
Ñ∑

j=1

q̃j−1∑
s=0

(−i)s+1τ̃ljs
(λ+ iκ̃j)s+1

= −
Ñ∑

j=1

q̃j−1∑
s=0

τ̃ljs
s!

∫ ∞

0
dα e−iλααse−κ̃jα,

Π+,0T r(λ) =
Ñ∑

j=1

q̃j−1∑
s=0

(−i)s+1τ̃rjs

(λ+ iκ̃j)s+1
= −

Ñ∑
j=1

q̃j−1∑
s=0

τ̃rjs

s!

∫ ∞

0
dα e−iλααse−κ̃jα.

Let us now consider the series expansion

m−(x, λ) =
∞∑

t=0

itmjt
−(x)(λ+ iκ̃j)t, |λ+ iκ̃j | < Reκj . (4.63)

For j = 1, . . . , Ñ and t = 0, 1, 2, . . . we introduce the partitioning

mjt
−(x) =

(
M jt

r1(x) M jt
l2 (x)

M jt
r3(x) M jt

l4 (x)

)
, (4.64)

where M jt
r1(x), M

jt
l2 (x), M jt

r3(x), and M jt
l4 (x) have the sizes n × n, n × m, m × n and m × m,

respectively. Letting

m̃(x, λ) =
∫ ∞

0
dα e−iλαb̃(x, α)

stand for any of two component matrices Mr1(x, λ)− In and Mr3(x, λ) of m−(x, λ)− In+m and
itm̃jt(x) as the coefficient of (λ + iκ̃j)t in the Taylor series of m̃(x, λ) at λ = −iκ̃j , we obtain
after some calculation

Π+,0

(
m̃(x, λ)

(−i)s+1 τ̃ljs
(λ+ iκ̃j)s+1

)
=

s∑
t=0

(−i)t+1

(λ+ iκ̃j)t+1
m̃j,s−t(x)τ̃ljs,
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where s = 0, 1, . . . , q̃j − 1. Similarly, letting m̃(x, λ) stand for any of two component matrices
Ml2(x, λ) and Ml4(x, λ)− Im of m−(x, λ)− In+m, we obtain after some calculation

Π+,0

(
m̃(x, λ)

(−i)s+1 τ̃rjs

(λ+ iκ̃j)s+1

)
=

s∑
t=0

(−i)t+1

(λ+ iκ̃j)t+1
m̃j,s−t(x)τ̃rjs,

where s = 0, 1, . . . , q̃j − 1.
By inverse Fourier transformation, we obtain the following

Proposition 4.15 For α ≥ 0 we have the following integral equations

Bl1(x, α) =
∫ ∞

0
dβ Bl2(x, β)R̂(α+ β + 2x)−

Ñ∑
j=1

q̃lj−1∑
s=0

s∑
t=0

M j,s−t
r1 (x)τ̃ljs

αt

t!
e−κ̃jα, (4.65a)

Br2(x, α) = L̂(α− 2x) +
∫ ∞

0
dβ Br1(x, β)L̂(α+ β − 2x)

−
Ñ∑

j=1

q̃rj−1∑
s=0

s∑
t=0

M j,s−t
l2 (x)τ̃rjs

αt

t!
e−κ̃jα, (4.65b)

Bl3(x, α) = R̂(α+ 2x) +
∫ ∞

0
dβ Bl4(x, β)R̂(α+ β + 2x)

−
Ñ∑

j=1

q̃lj−1∑
s=0

s∑
t=0

M j,s−t
r3 (x)τ̃ljs

αt

t!
e−κ̃jα, (4.65c)

Br4(x, α) =
∫ ∞

0
dβ Br3(x, β)L̂(α+ β − 2x)−

Ñ∑
j=1

q̃rj−1∑
s=0

s∑
t=0

M j,s−t
l4 (x)τ̃rjs

αt

t!
e−κ̃jα. (4.65d)

We now observe that the four equations (4.60a), (4.60b), (4.65a), and (4.65b) are coupled,
as are also the four equations (4.60c), (4.60d), (4.65c), and (4.65d). When there are no bound
states, we have in fact coupled pairs of two equations each. If the bound state poles are simple,
dependency constants can be introduced to attain the same degree of coupling. We intend to
generalize this procedure when there are higher order bound state poles.

If {ε0, ε1, . . . , εs−1} and {η0, η1, . . . , ηs−1} are the two s-tuples of vectors in Cn and Cm satis-
fying (3.87) and (3.89), we can write instead of (3.88) and (3.89)

al1(λ)
s−1∑
σ=0

(λ− iκj)σεσ = (λ− iκj)sfl(λ),

ar4(λ)
s−1∑
σ=0

(λ− iκj)σησ = (λ− iκj)sfr(λ),
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where fl(λ) and fr(λ) are analytic vector functions in a neighborhood of iκj . Putting

T#
l (λ) = (λ− iκj)qjTl(λ) =

qj−1∑
s=0

(λ− iκj)s iqj−sτlj,qj−s−1 + (λ− iκj)
qj Tlj1(λ),

T#
r (λ) = (λ− iκj)qjTr(λ) =

qj−1∑
s=0

(λ− iκj)s iqj−sτrj,qj−s−1 + (λ− iκj)
qj Trj1(λ),

where Tlj1(λ) and Trj1(λ) are analytic in iκj , we obtain

qj−1∑
σ=qj−s

(λ− iκj)σεσ+s−qj = T#
l (λ)fl(λ),

qj−1∑
σ=qj−s

(λ− iκj)σησ+s−qj = T#
r (λ)fr(λ),

implying that for s = 1, . . . , qj

0
...
0
ε0
...

εs−1


∈ Im Φqj (T

#
l ; iκj),



0
...
0
η0
...

ηs−1


∈ Im Φqj (T

#
r ; iκj), (4.66)

where either column vector contains qj − s zero entries which are by themselves zero column
vectors in Cn and Cm, respectively. Thus {ε0, . . . , εs−1} induces a Jordan chain of al1(λ) at
λ = iκj of length s or the zero string if and only if its natural extension to a chain of length qj
belongs to the range of Φqj (T

#
l ; iκj), and likewise for Jordan chains of ar4(λ).

In the proof of Theorem 3.16 it has been explained that the Jordan chains of H of length s
at the eigenvalue λ = iκj ∈ C+ are given by any of the two equivalent expressions

(
Fl1,0(x, λ)ε0
Fl3,0(x, λ)ε0

)
,


1∑

σ=0

Fl1,σ(x, λ)ε1−σ

1∑
σ=0

Fl3,σ(x, λ)ε1−σ

 ,. . . ,


s−1∑
σ=0

Fl1,σ(x, λ)εs−σ−1

s−1∑
σ=0

Fl1,σ(x, λ)εs−σ−1




and 
(
Fr2,0(x, λ)η0

Fr4,0(x, λ)η0

)
,


1∑

σ=0

Fr2,σ(x, λ)η1−σ

1∑
σ=0

Fr4,σ(x, λ)η1−σ

, . . . ,


s−1∑
σ=0

Fr2,σ(x, λ)ηs−σ−1

s−1∑
σ=0

Fr2,σ(x, λ)ηs−σ−1


,

where

Φs(al1; iκj)

 ε0
...

εs−1

 = Φs(ar4; iκj)

 η0
...

ηs−1

 = 0. (4.67)
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When writing the entries in the Jordan chains pertaining to Fl1 and Fl3 as a column of vectors
in Cn and Cm, we obtainΦs(Fl1(x, ·); iκj)

 ε0
...

εs−1

 ,Φs(Fl3(x, ·); iκj)

 ε0
...

εs−1


 . (4.68)

Similarly we get for the Jordan chains pertaining to Fr2 and Fr4Φs(Fr2(x, ·); iκj)

 η0
...

ηs−1

 ,Φs(Fr4(x, ·); iκj)

 η0
...

ηs−1


 . (4.69)

The 1, 1-correspondence between the Jordan chains of al1(λ) and ar4(λ) at λ = iκj implies
the equivalence, in the sense of Sec. 2.3, of the extensions al1 ⊕ Im and In ⊕ ar4 in C+. In other
words, there exist analytic (n+m)× (n+m) matrix functions E and Ẽ having only nonsingular
values such that

E(λ) [al1(λ)⊕ Im] = [In ⊕ ar4(λ)] Ẽ(λ), λ ∈ C+.

Consequently, for j = 1, . . . , N and s = 0, 1, . . . , qj − 1 we have

Φs(E; iκj)Φs(al1 ⊕ Im; iκj) = Φs(In ⊕ ar4; iκj)Φs(Ẽ; iκj),

where the matrices Φs(E; iκj) and Φs(Ẽ; iκj) are nonsingular. Letting

E3(λ) =
(
0m×n Im

)
E(λ)

(
In

0m×n

)
,

Ẽ3(λ) =
(
0m×n Im

)
Ẽ(λ)

(
In

0m×n

)
,

we obtain for j = 1, . . . , N and s = 0, 1, . . . , qj − 1

Φs(E3; iκj)Φs(al1; iκj) = Φs(ar4; iκj)Φs(Ẽ3; iκj).

Starting instead from the equivalence relation

[al1(λ)⊕ Im] Ẽ(λ)−1 = E(λ)−1 [In ⊕ ar4(λ)] , λ ∈ C+,

we derive for j = 1, . . . , N and s = 0, 1, . . . , qj − 1

Φs(al1; iκj)Φs((Ẽ−1)3; iκj) = Φs((E−1)3; iκj)Φs(ar4; iκj),

where

(E−1)3(λ) =
(
0m×n Im

)
E(λ)−1

(
In

0m×n

)
,

(Ẽ−1)3(λ) =
(
0m×n Im

)
Ẽ(λ)−1

(
In

0m×n

)
.
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Thus there exist matrices block Toeplitz matrices

Φs(Cj)=


Cj0 0 . . . 0
Cj1 Cj0 . . . 0
...

. . .
...

Cj,s−1 . . . Cj1 Cj0

, Φs(Dj)=


Dj0 0 . . . 0
Dj1 Dj0 . . . 0

...
. . .

...
Dj,s−1 . . . Dj1 Dj0

,
satisfying

Φs(Cj) = Φs(Cj)Φs(Dj)Φs(Cj), Φs(Dj) = Φs(Dj)Φs(Cj)Φs(Dj),

such that the range of Φs(Dj)Φs(Cj) coincides with the kernel of Φs(al1; iκj) and the range of
Φs(Cj)Φs(Dj) coincides with the kernel of Φs(ar4; iκj). In particular,

Φs(Cj)[KerΦs(al1; iκj)] = Ker Φs(ar4; iκj),
Φs(Dj)[KerΦs(ar4; iκj)] = Ker Φs(al1; iκj),

while Φs(Cj) and Φs(Dj) act as each other’s inverses between these two subspaces. We shall call
the matrices Cj,σ and Dj,σ (j = 1, . . . , N , σ = 0, 1, . . . , qj − 1) dependency constant matrices.

In analogy with (4.43) we introduce the norming constant matrices Γlj,σ and Γrj,σ (j =
1, . . . , N , σ = 0, 1, . . . , qj − 1) by

Φs(Γlj) = −iΦs(Dj)Φs(T#
r ; iκj), Φs(Γrj) = −iΦs(Cj)Φs(T

#
l ; iκj), (4.70)

where

Φs(Γlj) =


Γlj0 0 . . . 0
Γlj1 Γj0 . . . 0

...
. . .

...
Γlj,s−1 . . . Γlj1 Γlj0

 , Φs(Γrj) =


Γrj0 0 . . . 0
Γrj1 Γrj0 . . . 0

...
. . .

...
Γrj,s−1 . . . Γrj1 Γrj0

 .

Therefore, deleting the argument iκj and any x-dependence from all Φs matrices to avoid clutter
we compute for s = 1, . . . , qj

Φs(Mr2)Φs(T#
r ) = Φs(Fr2)Φm

s (eiλx)Φs(T#
r ) ?= Φn

s (eiλx)Φs(Fr2)Φs(T#
r )

?= Φn
s (eiλx)Φs(Fl1)Φs(Dj)Φs(T#

r )
(4.70)
= iΦn

s (eiλx)Φs(Fl1)Φs(Γlj)
?= iΦs(Fl1)Φn

s (eiλx)Φs(Γlj)

= iΦs(Ml1)Φn
s (eiλx)Φn

s (eiλx)Φs(Γlj)
?= iΦs(Ml1)Φn

s (e2iλx)Φs(Γlj)
?= iΦn

s (e2iλx)Φs(Ml1)Φs(Γlj),

where we give the following clarifications:
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a. At the equality signs carrying the first, third, and fifth question marks, we use that Φp
s(eiλx)

and either of Φs(Fr2) or Φs(Fl1) intertwine for suitable p, where

Φp
s(e

iλx) = Φs(ei(·)xIp; iκj) = e−κjx


Ip 0 . . . 0

(ix)Ip Ip . . . 0
...

. . .
...

(ix)s−1

(s−1)! Ip . . . (ix)Ip Ip

 .

This intertwining relation follows from

Fl1(x, λ) = eiλxMl1(x, λ) = Ml1(x, λ)eiλx

and likewise for Fr2 and Mr2.

b. At the equality sign carrying the second question mark, we use that Φs(Dj) maps the
η-vectors pertaining to the Jordan chains of length s into the corresponding ε-vectors, in
combination with the second of (4.66). This means assuming s = qj . However, this is OK
for any s = 1, . . . , qj , because Φq(A)Φq(B) = Φq(C) implies Φs(A)Φs(B) = Φs(C) for any
s ∈ 1, . . . , q.

c. At the equality sign carrying the fourth question mark we apply the identity Φn
s (eiλx)2 =

Φn
s (e2iλx), which is in turn based on the rather obvious relation (eiλxIn)2 = e2iλxIn.

In this way we derive the following analogs of (4.42):

Φs(Mr2(x, ·);λj)Φs(T#
r ;λj) = iΦs(e2i(·)xIn;λj)Φs(Ml1(x, ·);λj)Φs(Γlj)

= iΦs(Ml1(x, ·);λj)Φs(e2i(·)xIn;λj)Φs(Γlj), (4.71a)

Φs(Ml3(x, ·);λj)Φs(T
#
l ;λj) = iΦs(e−2i(·)xIm;λj)Φs(Mr4(x, ·);λj)Φs(Γrj)

= iΦs(Mr4(x, ·);λj)Φs(e−2i(·)xIm;λj)Φs(Γrj), (4.71b)

Φs(Mr4(x, ·);λj)Φs(T#
r ;λj) = iΦs(e2i(·)xIm;λj)Φs(Ml3(x, ·);λj)Φs(Γlj)

= iΦs(Ml3(x, ·);λj)Φs(e2i(·)xIn;λj)Φs(Γlj), (4.71c)

Φs(Ml1(x, ·);λj)Φs(T
#
l ;λj) = iΦs(e−2i(·)xIn;λj)Φs(Mr2(x, ·);λj)Φs(Γrj)

= iΦs(Mr2(x, ·);λj)Φs(e−2i(·)xIm;λj)Φs(Γrj), (4.71d)

where λj = iκj . The four equalities between the first and third member can be written in the
concise form

Φs(m+(x, ·); iκj)Φs

((
T#

l 0n×m

0m×n T#
r

)
; iκj

)

= iΦs(m+(x, ·); iκj)Φs

((
0n×n e2i(·)xγlj

e−2i(·)xγrj 0m×m

)
; iκj

)
, (4.72)

where γlj(λ) =
∑qj−1

σ=0 (λ− iκj)σΓlj, σ and γrj(λ) =
∑qj−1

σ=0 (λ− iκj)σΓrj, σ.
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Let us now write the entries in the Jordan chains pertaining to Fr1 and Fr3 corresponding to
the eigenvalue −iκ̃j ∈ C− as a column of vectors, obtainingΦs(Fr1(x, ·);−iκ̃j)

 ε0
...

εs−1

 ,Φs(Fr3(x, ·);−iκ̃j)

 ε0
...

εs−1


 . (4.73)

Similarly we get for the Jordan chains pertaining to Fl2 and Fl4Φs(Fl2(x, ·);−iκ̃j)

 η0
...

ηs−1

 ,Φs(Fl4(x, ·);−iκ̃j)

 η0
...

ηs−1


 , (4.74)

where

Φs(ar1;−iκ̃j)

 ε0
...

εs−1

 = Φs(al4;−iκ̃j)

 η0
...

ηs−1

 = 0. (4.75)

Putting

T
#
l (λ)=(λ+ iκ̃j)q̃jT l(λ)=

q̃j−1∑
s=0

(λ+ iκ̃j)s (−i)q̃j−sτlj,q̃j−s−1+(i+ κ̃j) T̃lj1(λ),

T
#
r (λ)=(λ+ iκ̃j)q̃jT r(λ)=

q̃j−1∑
s=0

(λ+ iκ̃j)s (−i)q̃j−sτrj,q̃j−s−1+(i+ κ̃j) T̃rj1(λ),

we have in analogy with (4.66)

0
...
0
ε0
...

εs−1


∈ Im Φq̃j (T

#
l ;−iκ̃j),



0
...
0
η0
...

ηs−1


∈ Im Φq̃j (T

#
r ;−iκ̃j), (4.76)

where either column vector contains q̃j − s zero entries which are by themselves zero column
vectors in Cn and Cm, respectively. Moreover, there exist block Toeplitz matrices

Φs(C̃j) =


C̃j0 0 . . . 0
C̃j1 C̃j0 . . . 0
...

. . .
...

C̃j,s−1 . . . C̃j1 C̃j0

 , Φs(D̃j) =


D̃j0 0 . . . 0
D̃j1 D̃j0 . . . 0

...
. . .

...
D̃j,s−1 . . . D̃j1 D̃j0

 ,

satisfying

Φs(C̃j) = Φs(C̃j)Φs(D̃j)Φs(C̃j), Φs(D̃j) = Φs(D̃j)Φs(C̃j)Φs(D̃j),
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such that the range of Φs(D̃j)Φs(C̃j) coincides with the kernel of Φs(ar1;−iκ̃j) and the range of
Φs(C̃j)Φs(D̃j) equals the kernel of Φs(al4;−iκ̃j). In particular,

Φs(C̃j)[KerΦs(ar1;−iκ̃j)] = Ker Φs(al4;−iκ̃j),

Φs(D̃j)[KerΦs(al4;−iκ̃j)] = Ker Φs(ar1;−iκ̃j),

while Φs(C̃j) and Φs(D̃j) act as each other’s inverses between these two subspaces. We shall call
the matrices C̃j,σ and D̃j,σ (j = 1, . . . , Ñ , σ = 0, 1, . . . , q̃j − 1) dependency constant matrices.

In analogy with (4.50) we introduce the norming constant matrices Γlj,σ and Γrj,σ (j =
1, . . . , Ñ , σ = 0, 1, . . . , q̃j − 1) by

Φs(Γlj) = iΦs(C̃j)Φs(T
#
l ;−iκ̃j), Φs(Γrj) = iΦs(D̃j)Φs(T

#
r ;−iκ̃j), (4.77)

where

Φs(Γlj) =


Γlj0 0 . . . 0
Γlj1 Γj0 . . . 0

...
. . .

...
Γlj,s−1 . . . Γlj1 Γlj0

 , Φs(Γrj) =


Γrj0 0 . . . 0
Γrj1 Γrj0 . . . 0

...
. . .

...
Γrj,s−1 . . . Γrj1 Γrj0

 .

We then derive the following analogs of (4.49):

Φs(Ml2(x, ·);λj)Φs(T
#
r ;λj) = −iΦs(e2i(·)xIn;λj)Φs(Mr1(x, ·);λj)Φs(Γrj)

= −iΦs(Mr1(x, ·);λj)Φs(e2i(·)xIn;λj)Φs(Γrj), (4.78a)

Φs(Mr3(x, ·);λj)Φs(T
#
l ;λj) = −iΦs(e−2i(·)xIm;λj)Φs(Ml4(x, ·);λj)Φs(Γlj)

= −iΦs(Ml4(x, ·);λj)Φs(e−2i(·)xIm;λj)Φs(Γlj), (4.78b)

Φs(Ml4(x, ·);λj)Φs(T
#
r ;λj) = −iΦs(e2i(·)xIm;λj)Φs(Mr3(x, ·);λj)Φs(Γrj)

= −iΦs(Mr3(x, ·);λj)Φs(e2i(·)xIn;λj)Φs(Γrj), (4.78c)

Φs(Mr1(x, ·);λj)Φs(T
#
l ;λj) = −iΦs(e−2i(·)xIn;λj)Φs(Ml2(x, ·);λj)Φs(Γlj)

= −iΦs(Ml2(x, ·);λj)Φs(e−2i(·)xIm;λj)Φs(Γlj), (4.78d)

where λj = iκj . The four equalities between the first and third member can be written in the
concise form

Φs(m−(x, ·);−iκ̃j)Φs

((
T

#
l 0n×m

0m×n T
#
r

)
;−iκ̃j

)

= −iΦs(m−(x, ·);−iκ̃j)Φs

((
0n×n e2i(·)xγrj

e−2i(·)xγlj 0m×m

)
;−iκ̃j

)
, (4.79)

where γlj(λ) =
∑qj−1

σ=0 (λ+ iκ̃j)σΓlj, σ and γrj(λ) =
∑qj−1

σ=0 (λ+ iκ̃j)σΓrj, σ.
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Let us employ (4.71d) to write (4.60a) in a more convenient way. Indeed, the second term in
the right-hand side of (4.60a) can be written as follows:

i

qj−1∑
s=0

s∑
t=0

(−iα)t

t!
e−κjα︸ ︷︷ ︸

[Φs+1(e−i(·)α;iκj)]t

(−i)s−tM j,s−t
l1 (x)︸ ︷︷ ︸

[Φs+1(Ml1(x,·);iκj)]s−t

is+1τljs,︸ ︷︷ ︸
[Φs+1(T#

l ;iκj)]qj−s−1

where [Φs+1(C)]p = Cp. This expression can in turn be written as

+ i
[
Φs+1(e−i(·)αMl1(x, ·)T#

l ; iκj)
]
qj−1

= −
[
Φs+1(e−i(·)αe−2i(·)αMr2(x, ·)Γrj ; iκj)

]
qj−1

= −
qj−1∑
s=0

s∑
t=0

(−i[α+ 2x])t

t!
e−κj(α+2x)(−i)s−tM j,s−t

r2 (x)Γrj,qj−s−1.

Similar considerations apply to eqs. (4.60b)-(4.60d).
We now easily derive the following theorem.

Theorem 4.16 For α ≥ 0 we have the Marchenko integral equations

Br1(x, α) = −
∫ ∞

0
dβ Br2(x, β) Ωr(α+ β − 2x), (4.80a)

Bl2(x, α) = −Ωl(α+ 2x)−
∫ ∞

0
dβ Bl1(x, β) Ωl(α+ β + 2x), (4.80b)

Br3(x, α) = −Ωr(α− 2x)−
∫ ∞

0
dβ Br4(x, β) Ωr(α+ β − 2x), (4.80c)

Bl4(x, α) = −
∫ ∞

0
dβ Bl3(x, β) Ωl(α+ β + 2x), (4.80d)

where

Ωl(α) = R̂(α) +
N∑

j=1

qj−1∑
s=0

αs

s!
e−κjαΓlj,qj−1−s, (4.81a)

Ωr(α) = L̂(α) +
N∑

j=1

qj−1∑
s=0

αs

s!
e−κjαΓrj,qj−1−s. (4.81b)

In the same way we prove
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Theorem 4.17 For α ≥ 0 we have the Marchenko integral equations

Bl1(x, α) = −
∫ ∞

0
dβ Bl2(x, β) Ωl(α+ β + 2x), (4.82a)

Br2(x, α) = −Ωr(α− 2x)−
∫ ∞

0
dβ Br1(x, β) Ωr(α+ β − 2x), (4.82b)

Bl3(x, α) = −Ωl(α+ 2x)−
∫ ∞

0
dβ Bl4(x, β) Ωl(α+ β + 2x), (4.82c)

Br4(x, α) = −
∫ ∞

0
dβ Br3(x, β) Ωr(α+ β − 2x), (4.82d)

where

Ωl(α) = R̂(α) +
Ñ∑

j=1

q̃j−1∑
s=0

αs

s!
e−κ̃jαΓlj,q̃j−s−1, (4.83a)

Ωr(α) = L̂(α) +
Ñ∑

j=1

q̃j−1∑
s=0

αs

s!
e−κ̃jαΓrj,q̃j−s−1. (4.83b)

4.2.4 Symmetry relations in the antisymmetric case

Let us now discuss the simplifications in deriving the Marchenko integral equations in the anti-
symmetric case. As we have seen in Sec. 2.5, in this case the spectrum of the Hamiltonian H
is symmetric with respect to the real line, i.e., we have Ñ = N (same number of poles in C±),
κ̃j = κj , and q̃j = qj (j = 1, . . . , N). Moreover [cf. Sec. 3.4],

T l(λ) = Tl(λ)∗, T r(λ) =Tr(λ)∗, (4.84a)

R(λ) = −R(λ)∗, L(λ) =− L(λ)∗, (4.84b)

R̂(α) = −R̂(α)∗, L̂(α) =− L̂(α)∗. (4.84c)

Thus in the absence of bound states we have the symmetry relations

Ωl(α) = −Ωl(α)∗, Ωr(α) = −Ωr(α)∗, (4.85)

for the Marchenko integral kernels. In this subsection we show, with the help Sec. B.3 of
Appendix B, that these symmetry relations remain true if there are bound states [cf. eqs. (B.28)].
In the case of simple poles of the transmission coefficients these symmetry relations have been
derived before in [2, 3] on the basis of their treatment of the norming constant matrices. In their
proof residues of reflection coefficients are employed, which greatly restricts the class of potentials
that can be treated. Our treatment of the norming constant matrices necessitates a profound
study of the symmetry relations of various quantities in Appendix B.

Using (4.56), (4.57), (4.61), and (4.62) we easily derive the following symmetry relations for
the Laurent expansion coefficients of Tl(λ) and Tr(λ) in iκj :

τ̃ljs = (τljs)∗, τ̃rjs = (τrjs)∗, (4.86)
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where j = 1, . . . , N and s = 0, 1, . . . , qj − 1. According to (4.85) and (4.86), eqs. (4.85) are
equivalent to the equalities

Γlj,σ = −(Γlj,σ)∗, Γrj,σ = −(Γrj,σ)∗, (4.87)

where j = 1, . . . , N and s = 0, 1, . . . , qj − 1. In Sec. B.3 we shall prove (4.87) if the poles of the
transmission coefficients are simple.

4.3 The characterization problem

The characterization problem can be described as follow: Give necessary and sufficient conditions
for a matrix (

a(k) b(k)
c(k) d(k)

)
to be the scattering matrix of a potential V (x) ∈ L1(R). More precisely, if we specify when the
diagram below is such that the correspondence between the data within the boxes is 1,1, we
arrive at the so-called characterization of the scattering data.

k(x), `(x) ∈ L1

direct scattering problem
−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−
inverse scattering problem

R(k) or L(k)
plus

bound state data

In the case of the Schrödinger equation the characterization problem for the so-called Faddeev
class potentials (i.e., the real potentials V (x) such that

∫∞
−∞ dx (1 + |x|)|V (x)| < ∞) has been

resolved in [75, 77] (also [7]). As far as we know, no solution of the characterization problem for
the matrix Zakharov-Shabat system has been published. In the symmetric case on the half-line
Melik-Adamjan [76] has given a complete characterization of the Jost solution as scattering data
to retrieve an L1-potential, but his proof only implies that the tail of the potential is in L1. In
this section we present the most general characterization result in the symmetric case (where
there are no bound states) and in the antisymmetric case without bound states.

4.3.1 Symmetric case

In the symmetric case the characterization problem can be solved in a particularly elementary
way. In fact, in this case the potentials are linked by `(x) = k(x)∗ and there are no bound states.
We then have

Ωl(α) = R̂(α), Ωr(α) = L̂(α),

which are related to the reflection coefficients by eqs. (4.24a)-(4.24b):

R(λ) =
∫ +∞

−∞
dα R̂(α)e−iλα, (4.88a)

L(λ) =
∫ +∞

−∞
dα L̂(α)e−iλα. (4.88b)
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In the following diagram we indicate the 1, 1-correspondence between selfadjoint potentials
with entries in L1(R) and the scattering data.

`(x) = k(x)∗

in L1

direct problem
−−−−−−−−−−→
←−−−−−−−−−−−−
inverse problem


R(λ) =

∫ +∞
−∞ dα R̂(α)e−iλα

supλ∈R ‖R(λ)‖ < 1∫ +∞
−∞ dα ‖R̂(α)‖ <∞,

OR :


L(λ) =

∫ +∞
−∞ dα L̂(α)e−iλα

supλ∈R ‖L(λ)‖ < 1∫ +∞
−∞ dα ‖L̂(α)‖ <∞.

Indeed, let the potentials satisfy k(x) = `(x)∗ and have their entries in L1(R). Then R(λ)
and L(λ) have their entries in the Wiener algebra W (cf. Theorem 3.10 and eqs. (3.60) and
(3.63)) and hence can be represented by (4.88), where the entries of R̂(α) and L̂(α) belong to
L1(R). Moreover, since the scattering matrix S(λ) is unitary and the transmission coefficients
are nonsingular and depend continuously on λ ∈ R, we have as a result of (3.79)

sup
λ∈R
‖R(λ)‖ < 1, sup

λ∈R
‖L(λ)‖ < 1. (4.89)

On the other hand, if the reflection coefficients satisfy (4.88) with∫ ∞

−∞
dα
(
‖R̂(α)‖+ ‖L̂(α)‖

)
<∞, (4.90)

as well as (4.89), then the Marchenko integral equations (4.10a) and (4.10b) are uniquely solvable
for any x ≥ 0, while the equations (4.10c) and (4.10d) are uniquely solvable for any x ≤ 0 (see
Theorems 4.3). Further, the potentials defined in terms of their solutions by (4.1) and (4.2) have
their entries in L1(R) (see Theorem 4.6).

The scattering data consist of just one reflection coefficient, while the other reflection coeffi-
cient is to be computed in the process. In fact, given R ∈ Wn×m satisfying the first of (4.89),
L(λ) is to be evaluated from the unitarity of the scattering matrix

S(λ) =
(
Tl(λ) R(λ)
L(λ) Tr(λ)

)
, λ ∈ R,

where L ∈ Wm×n, Tl is an invertible element of Wn×n
+ with Tl(±∞) = In, and Tr is an invertible

element of Wm×m
+ with Tr(±∞) = Im. Indeed, using unitarity we first determine the unique

matrix functions Tl(λ) and Tr(λ) such that Tl is an invertible element ofWn×n
+ with Tl(±∞) = In,

Tr is an invertible element of Wm×m
+ with Tr(±∞) = Im, and (3.106) and (3.107) are satisfied.

These factorization problems have a unique solution, as a result of Theorem 3.18. We then define
L(λ) by (3.108). On the other hand, given L ∈ Wm×n satisfying the second of (4.89), we first
determine the unique matrix functions Tl(λ) and Tr(λ) such that Tl is an invertible element of
Wn×n

+ with Tl(±∞) = In, Tr is an invertible element of Wm×m
+ with Tr(±∞) = Im, and the two

equations (3.104) are satisfied. These factorization problems again have a unique solution. We
then define [cf. (3.105)]

R(λ) = −Tl(λ)L(λ)∗[Tr(λ)∗]−1, λ ∈ R.

We then derive a uniquely solvable Marchenko integral equation and hence a unique potential.
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4.3.2 Antisymmetric case

If bound states are present, the characterization problem in the antisymmetric case is more
complicated than in the symmetric case and hence we do not study this general situation. On
the other hand, when there are no bound states, the characterization problem can be solved as in
the symmetric case. In this situation the potentials are linked by `(x) = −k(x)∗. We then have

Ωl(α) = R̂(α), Ωr(α) = L̂(α),

which are related to the reflection coefficients by eqs. (4.24a)-(4.24b):

R(λ) =
∫ +∞

−∞
dα R̂(α)e−iλα, (4.91a)

L(λ) =
∫ +∞

−∞
dα L̂(α)e−iλα. (4.91b)

In the following diagram we indicate the 1, 1-correspondence between selfadjoint potentials
with entries in L1(R) and the scattering data.

`(x) = −k(x)∗
in L1

without bound states

direct problem
−−−−−−−−−→
←−−−−−−−−−−−

inverse problem

{
R(λ) =

∫ +∞
−∞ dα R̂(α)e−iλα∫ +∞

−∞ dα ‖R̂(α)‖ <∞,

OR :

{
L(λ) =

∫ +∞
−∞ dα L̂(α)e−iλα∫ +∞

−∞ dα ‖L̂(α)‖ <∞.

Indeed, let the potentials satisfy k(x) = −`(x)∗ and have their entries in L1(R). Then R(λ)
and L(λ) have their entries in the Wiener algebra W (cf. Theorem 3.10 and eqs. (3.60) and
(3.63)) and hence can be represented by (4.88), where the entries of R̂(α) and L̂(α) belong to
L1(R). On the other hand, if the reflection coefficients satisfy (4.88) with∫ ∞

−∞
dα
(
‖R̂(α)‖+ ‖L̂(α)‖

)
<∞, (4.92)

then the Marchenko integral equations (4.11a) and (4.11b) are uniquely solvable for any x ≥ 0,
while the equations (4.11c) and (4.11d) are uniquely solvable for any x ≤ 0 (see Theorems 4.3).
Further, the potentials defined in terms of their solutions by (4.1) and (4.2) have their entries in
L1(R) (see Theorem 4.6).

The scattering data consist of just one reflection coefficient, while the other reflection coeffi-
cient is to be computed in the process. In fact, given R ∈ Wn×m, L(λ) is to be evaluated from
the J-unitarity of the scattering matrix

S(λ) =
(
Tl(λ) R(λ)
L(λ) Tr(λ)

)
, λ ∈ R,

where L ∈ Wm×n, Tl is an invertible element of Wn×n
+ with Tl(±∞) = In, and Tr is an invertible

element of Wm×m
+ with Tr(±∞) = Im. Indeed, using J-unitarity we first determine the unique
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matrix functions Tl(λ) and Tr(λ) such that Tl is an invertible element ofWn×n
+ with Tl(±∞) = In,

Tr is an invertible element of Wm×m
+ with Tr(±∞) = Im, and the two equations (3.95) are valid.

These factorization problems have a unique solution (cf. Theorem 3.18). We then define L(λ)
by (3.100). On the other hand, given L ∈ Wm×n, we first determine the unique matrix functions
Tl(λ) and Tr(λ) such that Tl is an invertible element of Wn×n

+ with Tl(±∞) = In, Tr is an
invertible element of Wm×m

+ with Tr(±∞) = Im, and the two equations (3.96) are satisfied.
These factorization problems again have a unique solution. We then define [cf. (3.97)]

R(λ) = Tl(λ)L(λ)∗[Tr(λ)∗]−1, λ ∈ R.

We then derive a uniquely solvable Marchenko integral equation and hence a unique potential.

81



82



Chapter 5

Nonlinear Schrödinger Equations and
Applications to Fiber Optics

In this chapter we give a brief exposition of fiber optics transmission and discuss the inverse
scattering transform method for solving the matrix nonlinear Schrödinger equation. In Sec. 5.1,
after a discussion of group velocity dispersion and nonlinearity effects, we introduce the nonlinear
Schrödinger equation. We then go on to discuss a generalization to account for polarization effects.
In Sec. 5.2 we discuss (bright and dark) solitons and their interactions. In Sec. 5.3 we find the
Lax pair of operators determining the inverse scattering transform method for solving the matrix
nonlinear Schrödinger equation. In Sec. 5.5 we derive the time evolution of the integral kernels
of the Marchenko integral equations.

5.1 Basic facts on fiber optics transmission

Compared to the information carriers of radio transmissions, lightwaves have a much shorter
wavelength and can therefore in principle carry information much more efficiently than radio
waves. In fact, lightwaves can carry hundreds of thousands of times more information in unit time
than radio waves. Furthermore, in suitable transparent materials a lightwave can propagate over
tens or even hundreds of kilometers before facing a serious problem of energy loss. Since a strictly
monochromatic lightwave has no information content (except for its frequency, amplitude, and
phase), a lightwave has to be modulated to carry information efficiently. A modulated lightwave
may be expressed in the following way

E(z, t) = Re
[
E(z, t)ei(k0z−ω0t)

]
, (5.1)

where t is time, E(z, t) is the modulation amplitude, or modulation, of the electric field E(z, t),
and ω0 and k0 are, respectively, the frequency and wave number of the unmodulated lightwave.
Contrary to the case of strictly monochromatic light, the modulation depends on the spatial
coordinate z along the fiber.

At z = 0 where the fiber begins, the information content of the modulated lightwave depends
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on the width of its Fourier spectrum, i.e., on the size of the support of the function

E(z,Ω) =
∫ ∞

−∞
E(z, t)eiΩt dt (5.2)

at z = 0. Even if we succeed in eliminating signal loss on transmission along the fiber (for
example, by using optical amplifiers), there are nevertheless two unavoidable limitations that do
not allow one to have perfect transmission, namely group velocity dispersion and nonlinearity of
the fiber. We shall discuss these two phenomena separately.

1. Group velocity and group velocity dispersion. In a dispersive medium the angular
frequency ω depends on the wave number k in a nonlinear way, by means of the so-called dis-
persion relation. The group velocity of a wavepacket is the velocity with which the variations
in the shape of the wavepacket’s amplitude propagate through space. The group velocity vg is
defined by the equation

vg ≡
∂ω

∂k
=

1
k′
, (5.3)

where ω is the angular frequency and k is the wave number. Group velocity is to be distinguished
from the phase velocities

vf (k) =
ω(k)
k

(5.4)

of the single components of the wavepacket. Electromagnetic waves in a material such as an
optical fiber and waves along the surface of a fluid are major examples of wave motion in a
dispersive medium.

Group velocity dispersion originates from the slightly different velocities with which the var-
ious frequency components E(z,Ω) of E(z, t) propagate along the fiber. In a dispersive medium
such as an optical fiber the dielectric constant ε depends on the frequency ω. As a result, different
components of a wavepacket travel with different speeds and tend to change phase with respect
to one another. Thus, in a dispersive medium the energy flows at a speed that may greatly
differ from the phase velocity (ω/k) = (c/n), where k is the wavenumber, c the speed of light in
vacuum, and n the index of refraction of the medium. Considering two frequencies, ω1 and ω2,
in a wavepacket, the relative delay ∆tD of arrival time at the distance z is given by the so-called
group delay

∆tD ≈ k′′(ω1 − ω2)z, (5.5)

where k′′ is the derivative of the reciprocal group velocity k′ with respect to the frequency ω, i.e.,

k′′
def=
∂k′

∂ω
= − 1

v2
g

∂vg

∂ω
= −(k′)2

∂(1/k′)
∂ω

=
−1

(∂ω/∂k)2
∂2ω

∂k2
. (5.6)

Group velocity dispersion becomes a more serious problem as the frequency difference ω1 − ω2

increases.
We recall that, anomolous dispersion occurs if k′′ < 0, and normal dispersion if k′′ > 0. Here

we observe that k′′ and ∂2ω
∂k2 have opposite signs.
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2. Nonlinearity effects. The refractive index of a material such as an optical fiber may
change under the influence of an electric field, which can be either externally applied or be
generated by a lightbeam travelling along the fiber. This phenomenon is known as the optical
Kerr effect. Especially the dependence of the refractive index on the electric field generated by a
lightbeam travelling along the fiber is a major contributor to information loss in the propagation
along the fiber.

When an electric field is applied, the dielectric material polarizes and a polarization current
is induced. The effect of polarization is expressed in the following way

~D = ε0 ~E + ~P ,

where ε0 is the dielectric constant of the vacuum and ~P is the polarization vector given by

~P = −en ~ε( ~E),

e being the absolute value of the electron charge, n the density of the electrons which contribute
to the polarization and ~ε represents the displacement of electron position in a dielectric molecule
induced by the electric field ~E defined in (5.1). The index of refraction n is given by the phe-
nomenological relation

n = n0 + n2
|E|2

2
, (5.7)

where n0 is the refractive index in the absence of an electric field and n2 is the so-called Kerr
coefficient. Thus the Kerr effect induces the nonlinear phase shift (or self phase modulation)

∆φN =
ω

2c
n2|E|2z =

πzn2|E|2

λ
. (5.8)

For most materials used in fiber optics the Kerr coefficient n2 is comparatively small (about
10−20m2W−1 for typical glasses).

3. Nonlinear Schrödinger equation. If we take into account group velocity dispersion
and the Kerr effect to describe the evolution of E in the direction z of propagation of information
(i.e., along the fiber), we arrive at a so-called master equation. This equation, first derived by
Hasegawa and Tappert in 1973 in [62], has the form

i
∂E

∂z
− k′′

2
∂2E

∂τ2
+
ω0n2

2c
|E|2E = 0. (5.9)

Here τ = t − k′z is a time variable in which the effect of group velocity dispersion has been
subtracted. Further, k′′ is defined by (5.6), ω0 is the carrier angular frequency, n2 is the Kerr
coefficient, and c is the light speed in vacuum. In applications, where anomolous dispersion
prevails, k′′ is almost always negative.

By rescaling the physical quantities E, z, and T in the master equation (5.9) we arrive at the
nonlinear Schrödinger equation

∂q

∂Z
=
i

2
∂2q

∂T 2
+ i|q|2q. (5.10)
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It is well-known that eq. (5.9) can also be derived starting from the Maxwell equations (see, for
example, Hasegawa in Chapter 1 of [89]).

The nonlinear Schrödinger equation (5.10) pertains to an idealized situation, where there are
no amplifiers, there is no loss beyond group velocity dispersion, and the (negative) fiber dispersion
k′′ does not depend on Z. Letting G(Z) be the amplifier gain, Γ the loss rate over the distance
z0, and letting k′′ depend on Z, we have the more general equation

∂q

∂Z
=
i

2
d(Z)

∂2q

∂T 2
+ i|q|2q + [G(Z)− Γ]q. (5.11)

4. Generalizations of the nonlinear Schrödinger equation. The nonlinear change in
the index of refraction of a medium in which an electromagnetic wave is propagating, may cancel
the diffraction divergence and lead to waveguide propagation of the radiation. The theory of
such phenomena in two dimensional geometry has been developed by Zakharov and Shabat [94]
for waves having the same polarization everywhere. Manakov [73] generalized the method used
in [94] to the case of waves of arbitrary polarization

Following Chandrasekhar [33], we introduce a plane of reference passing through the direction
of propagation of the electromagnetic wave and two unit vectors, ~cl parallel and ~cr perpendicular
to this plane, such that ~cr × ~cl points in the direction of propagation. Let us write the electric
field vector ~E as a sum of right- and left- hand polarized wave:

~E = E1~cr + E2~cl.

Using the orthogonality of ~cr and ~cl, we obtain the following system of equations for E1 and E2:

i
∂E1

∂t
+
∂2E1

∂x2
+ k

(
|E1|2 + |E2|2

)
E1 = 0, (5.12)

i
∂E2

∂t
+
∂2E2

∂x2
+ k

(
|E1|2 + |E2|2

)
E2 = 0, (5.13)

which represent a generalization of (5.10). In fact, equation (5.10) is obtainable from eqs. (5.12)
and (5.13) by substituting E2 = 0.

5.2 Soliton solutions

Hasegawa and Tappert [62] were the first to show theoretically that an optical pulse in a dielectric
fiber forms a solitary wave based on the fact that the wave envelope satisfies the nonlinear
Schrödinger equation (5.10). However, at the time, the technology was not ready to support
this important intuition. In fact, neither a dielectric fiber with small signal loss existed nor the
dispersion properties of the fiber were known. Consequently, it was necessary to consider the case
of normal dispersion where the group dispersion, k′′, is positive, i.e, when the coefficient of the
first term on the right-hand side in eq. (5.10) is negative, because, in this case, a solitary wave
appears as the absence of a light wave (a so-called dark soliton) [63]. In the preceding sections of
this chapter, we have already discussed the solution of the nonlinear Schrödinger equation by the
inverse scattering method. According to this theory, the properties of the envelope soliton of the
NLS equation can be described by the complex eigenvalues of the HamiltonianH = −iJ d

dx−V (x),
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where the potential V (x) specifies the initial envelope wave form. Because of this, the solitary
wave solution proposed by Hasegawa and Tappert is called a soliton. Seven years after the
prediction by Hasegawa and Tappert, Mollenauer et al. [78] succeeded for the first time in the
generation and transmission of optical solitons in a fiber, thus confirming experimentally the
Hasegawa-Tappert predication.

In this section we introduce the concept of soliton from the physical point of view. We divide
the treatment in two subsections: the first of these is devoted to the so-called bright solitons
which appear as solutions of eq. (5.10) when k′′ is negative (anomolous dispersion), the second
to the dark solitons which occur when k′′ > 0 (normal dispersion).

5.2.1 Bright solitons

Let us recall the nonlinear Schrödinger equation

∂q

∂t
=
i

2
∂2q

∂x2
+ i|q|2q,

where, with respect to eq. (5.10), we have made the change of variables t = Z and x = T . This
equation can be solved by the inverse scattering transform, where the corresponding eigenvalue
equation Hψ = λψ is the Zakharov-Shabat system. For the sake of simplicity, we consider the
antisymmetric case (with n = m = 1), where the eigenvalue equation is given by

−i∂ψ1

∂x
− k(x)ψ2 = λψ1, (5.14a)

i
∂ψ2

∂x
+ k(x)∗ψ1 = λψ2. (5.14b)

If we write the eigenvalue of this equation as

λ =
B + iA

2
, (5.15)

the one-soliton solutions have the following form (cf. (6.68))

k(x, t) = ±A eiBxe−i(A2−B2)teiC1

cosh(A[x− 2Bt] + C2)
. (5.16)

Equation (5.16) implies that the absolute value of k(x, t) has the form φ(x− 2Bt) and hence
represents a travelling wave with velocity 2B. In particular, if B = 0, the absolute value of k(x, t)
no longer depends on t. On the other hand, the argument of k(x, t) is a linear function of x and t
(in fact, arg k(x, t) = Bx− (A2−B2)t+C1 if ±A > 0, and arg k(x, t) = Bx− (A2−B2)t+C1 +π
if ±A < 0), which only depends on t if B = 0 and only depends on x if A = ±B. For B 6= 0
we have arg k(x, t) = ψ(x − ((A2 − B2)/B)t), which represents a travelling wave with velocity
(A2 − B2)/B. It is remarkable that, contrary to the case of the Korteweg-de Vries equation
[47, 48], the speed of the soliton is not proportional to its amplitude.

We have plotted |k(x, t)| and arg k(x, t) as functions of x for four different values of t using
MatLab Version 6.5, thus illustrating the travelling wave behaviour of these functions (with
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possibly different, zero or nonzero, wavespeeds). In these plots we have represented |k(x, t)| and
arg k(x, t) for t = 0 (red solid curve), t = 1 (green dashed curve), t = 2 (red dashed curve), and
t = 3 (green solid curve). When either |k(x, t)| or arg k(x, t) does not depend on t, the plot shows
just one green solid curve. In Fig. 5.1 we have plotted these functions for a case where B = 0,
i.e., where |k(x, t)| only depends on x and arg k(x, t) only depends on t. Next, in Fig. 5.2 we have
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Figure 5.1: |k(x, t)| as a function of x for any t and arg k(x, t) as a function of x ∈ [−5, 5] for
t = 0, 1, 2, 3 for A = 1, B = 0, C1 = π, and C2 = 0.

considered a case where A = B > 0, i.e., where arg k(x, t) only depends on x. Finally, in Fig. 5.3
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Figure 5.2: |k(x, t)| as a function of x ∈ [−5, 10] and arg k(x, t) as a function of x ∈ [−5, 5] for
t = 0, 1, 2, 3 for A = B = 1, C1 = π, and C2 = 0.

we have dealt with the most general case where neither B = 0 nor A = ±B. It is important to
note that the amplitude A and speed 2B of the soliton are characterized by the imaginary and
real parts of the eigenvalues λ in (5.15).

5.2.2 Dark solitons

In the wavelength range shorter than the zero group dispersion point where k′′ = 0, soliton
solutions no longer exist. In fact, there exist so-called dark soliton solutions which do not decay
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Figure 5.3: |k(x, t)| as a function of x ∈ [−5, 10] and arg k(x, t) as a function of x ∈ [−5, 5] for
t = 0, 1, 2, 3 for A = 2, B = 1, C1 = π, and C2 = 0.

as x→ ±∞ for fixed t.
For k′′ > 0 eq. (5.10) can be rewritten by using a new distance normalization, z0 = t20/k

′′ as

∂q

∂Z
= − i

2
∂2q

∂T 2
+ i|q|2q. (5.17)

In the preceding equation, q is the same rescaled quantity which appear in (5.10), while Z is the
distance normalized by z0. Now using variables x and t instead of T and Z, respectively, we have

∂q

∂t
= − i

2
∂2q

∂x2
+ i|q|2q. (5.18)

Dark solitons are solutions of the preceding equation which, as the bright solitons, have the
property that they propagate without change of shape. Contrary to bright solitons, dark solutions
do not vanish exponentially as x → ±∞ for fixed t, but rather oscillate as x → ±∞ for fixed
t. In order to obtain the expression of the dark soliton solution, we follow the treatment of [61,
Sections 4.7 and 5.4] and [89, Chapter 1]. Since we are looking for a localized solution q of eq.
(5.18) that it is stationary in t (i.e., is a stationary shape of the packet), we ensure that the
solution will be single-humped by imposing the following conditions:

1. |q|2 is bounded below by ρs > −∞ and above by ρD < +∞;

2. |q|2 has a global minimum at ρs where ∂2|q|2
∂x2 > 0;

3. ρD is the limit of |q|2 as x→ ±∞.

In order to evaluate this solution, we introduce two real variables, ρ = |q(x, t)|2 and σ =
arg(q(x, t)), i.e.,

q(x, t) = ρ(x, t)
1
2 eiσ(x,t).
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Substituting this expression in eq. (5.18) (and dividing the real part to the imaginary part), we
find after straightforward but long calculations

ρ = ρ0

[
1− a2 sech2(

√
ρ0 ax)

]
, (5.19a)

σ =
[
ρ0(1− a2)

] 1
2 x+ arctan

[
a

(1− a2)
1
2

tanh(
√
ρ0 ax)

]
− ρ0(3− a2)

2
t, (5.19b)

where ρ0 denotes the asymptotic value of ρ and a2 = ρs−ρ0

ρ0
≤ 1. Unlike a bright soliton, a dark

soliton has an additional new parameter, a, which designates the depth of modulation. We also
note that at x→ ±∞, the phase of q changes. The expression for a dark soliton simplifies when
a = 1: in this case the solution does not depend on t and reads

q(x, t) =
√
ρ tanh(

√
ρ x).

Dark solitons were observed for the first time experimentally in fibers by Emplit et al. [44]
and Krökel et al. [70] by transmitting a lightwave along a fiber under the normal dispersion.

5.2.3 Soliton interactions

In a communication system, it is desirable to launch the pulses close to each other as to increase
the information carrying capacity of the fiber. But the overlap of the closely spaced solitons
can lead to mutual interactions and therefore to serious performance degradation of the soliton
transmission system.

By numerical investigation Chu and Desem [34] have shown that soliton interaction can lead
to a significant reduction in the transmission rate by as much as a factor of ten. On the other
hand, Blow and Doran [26] found that the inclusion of fiber loss results in a drastic increase
in soliton interactions. In order to reduce soliton interactions, various ideas has been proposed.
For example, Chu and Desem [35] suggest using Gaussian shaped pulses. In this case, the
interactions are reduced because of its steep slope but this is achieved at the expense of creating
larger oscillatory tails. A more realistic way of reducing the interactions is to launch adjacent
pulses with unequal amplitudes [36, 37], thus effectively maintaining their initial pulse separation.

Soliton interactions are described by two-soliton solutions of the NLS equation. We have
already seen that the eigenvalues of eq. (5.14) are related to the amplitudes (through the imagi-
nary part of λ) and the velocities (through the real part of λ) of the solitons. If the real parts,
A, of the eigenvalues are equal, the solitons are said to form a bound state. This means that the
solitons undergo periodic oscillations in shape, which are determined by the imaginary part of
the eigenvalues (B). However, if the values of A are different, they no longer form a bound state
and the two-soliton solutions break up into diverging solitons as t→ +∞.

5.3 IST for the nonlinear Schrödinger equation

In this section we change the terminology used in this chapter till now. In fact, we choose the
variables in such a way that the variable that until now is denoted by Z will be indicated by t
and the variable T by x.
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The inverse scattering transform has been developed to solve the Korteweg-de Vries equation
using the direct and inverse scattering theory of the Schrödinger equation in a series of seminal
papers by Gardner, Greene, Kruskal, and Miura [47, 48]. The method was soon employed to
solve the nonlinear Schrödinger equation using the direct and inverse scattering theory of the
Zakharov-Shabat system [94]. Within a few years various nonlinear evolution equations came to
the fore which could be solved using the direct and inverse scattering theory of a linear partial
differential equation [2, 4]. Lax [72] realized that the inverse scattering transform is based on
the interplay of two, generally unbounded but closed and densely defined, linear operators H
and B on the same complex Hilbert space, forming the so-called Lax pair (H,B), where H is a
time dependent Hamiltonian operator and B is a time independent operator generating a unitary
group {U(t)}t∈R, satisfying the time evolution equation

Ht = BH −HB. (5.20)

Using that Ut = BU = UB and U(t = 0) is the identity operator, we see that

d

dt
(U(−t)HU(t)) = −U(−t)BHU(t) + U(−t)[BH −HB]U(t) + U(−t)HBU(t) = 0.

Consequently,
H(t) = U(t)H(t = 0)U(−t), (5.21)

which implies that the spectrum of H(t) does not depend on t, which is generally known as the
isospectrality property. In the case of the Korteweg-de Vries equation we have H = −(d2/dx2)+u
and B = −4(d3/dx3) + 3u(d/dx) + 3(d/dx)u, both defined on the Hilbert space L2(R).

Let us now find a Lax pair for the matrix Zakharov-Shabat system

−iJ ∂

∂x
X(x, λ)− V (x)X(x, λ) = λX(x, λ), x ∈ R, (5.22)

where λ is a spectral parameter, X(x, λ) is a square matrix function of order n + m, J =
diag(In,−Im), and

V (x) =
(

0n×n k(x)
`(x) 0m×m

)
(5.23)

has its entries in L1(R). We now seek a pair (H,B) consisting of the Hamiltonian operator

H = −iJ d

dx
− V (x, t)

and the spectral evolution operator

B =
(
β1 β2

β3 β4

)
,

where β1 is an n × n differential operator in x, β2 is an n ×m differential operator in x, β3 is
an m× n differential operator in x, and β4 is an m×m differential operator in x. The Lax pair
must satisfy the operator differential equation

Ht = BH −HB, (5.24)
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where the t-dependence of H is confined to the potential term.
Applying (5.24) we obtain

−i
(
β1

d

dx
− d

dx
β1

)
+ kβ3 − β2` = 0, (5.25)

i

(
β2

d

dx
+

d

dx
β2

)
+ kβ4 − β1k = −kt, (5.26)

−i
(
β3

d

dx
+

d

dx
β3

)
+ `β1 − β4` = −`t, (5.27)

i

(
β4

d

dx
− d

dx
β4

)
+ `β2 − β3k = 0. (5.28)

Now assume that β1, β2, β3, β4 are second order linear differential operators in x whose matrix
coefficients βpj (p = 1, 2, 3, 4, j = 0, 1, 2) depend on x:

βp = βp0 + βp1
d

dx
+ βp2

d2

dx2
. (5.29)

Then, following [43, Sec. 6.1], we obtain the four operator identities

[i(β10)x + kβ30 − β20`− β21`x − β22`xx]

+ [i(β11)x + kβ31 − β21`− 2β22`x]
d

dx

+ [i(β12)x + kβ32 − β22`]
d2

dx2
= 0, (5.30)

[i(β20)x + kβ40 − β10k − β11kx − β12kxx]

+ [i(β21)x + kβ41 − β11k − 2β12kx + 2iβ20]
d

dx

+ [i(β22)x + kβ42 − β12k + 2iβ21]
d2

dx2
+ 2iβ22

d3

dx3
= −kt, (5.31)

[−i(β30)x + `β10 − β40`− β41`x − β42`xx]

+ [−i(β31)x + `β11 − β41`− 2β42`x − 2iβ30]
d

dx

+ [−i(β32)x + `β12 − β42`− 2iβ31]
d2

dx2
− 2iβ32

d3

dx3
= −`t, (5.32)

[−i(β40)x + `β20 − β30k − β31kx − β32kxx]

+ [−i(β41)x + `β21 − β31k − 2β32kx]
d

dx

+ [−i(β42)x + `β22 − β32k]
d2

dx2
= 0. (5.33)

Clearly, the coefficients of d/dx, d2/dx2 and d3/dx3 in (5.30)-(5.33) should vanish. If the coeffi-
cients of d3/dx3 vanish, we get

β22 = β32 = 0,
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which we substitute in (5.30)-(5.33). If the coefficients of d2/dx2 vanish, we get

(β12)x = 0,
kβ42 − β12k + 2iβ21 = 0,
`β12 − β42`− 2iβ31 = 0,

(β42)x = 0,

which means that β12 and β42 are constant matrices satisfying the relations

β21 =
1
2i

[β12k − kβ42], (5.34)

β31 =
1
2i

[`β12 − β42`]. (5.35)

If the coefficients of d/dx vanish, we get

i(β11)x + kβ31 − β21` = 0, (5.36)
i(β21)x + kβ41 − β11k − 2β12kx + 2iβ20 = 0, (5.37)
−i(β31)x + `β11 − β41`− 2β42`x − 2iβ30 = 0, (5.38)

−i(β41)x + `β21 − β31k = 0. (5.39)

Substituting (5.34) and (5.35) into (5.36) and (5.37) we get

(β11)x =
1
2
[k`β12 − β12k`], (5.40)

(β41)x =
1
2
[`kβ42 − β42`k]. (5.41)

In the case n = m = 1 (Zakharov-Shabat system) kl and lk are scalar functions and hence β11

and β41 are scalar constants. In the case n = 1 and m = 2 (Manakov system) we can only
conclude that β11 is a scalar constant.

Finally, equating the coefficients of the terms not containing a factor d/dx or a factor d2/dx2

we get

i(β10)x + kβ30 − β20`− β21`x = 0, (5.42)
i(β20)x + kβ40 − β10k − β11kx − β12kxx = −kt, (5.43)
−i(β30)x + `β10 − β40`− β41`x − β42`xx = −`t, (5.44)

−i(β40)x + `β20 − β30k − β31kx = 0. (5.45)

For general n,m we now assume that β11 and β41 are constant matrices. We already know
that β22 = 0n×m and β33 = 0m×n and that β12 and β42 are constant matrices. Thus β12 is
a constant n × n matrix commuting with k` [See (5.40)] and β42 is a constant m × m matrix
commuting with `k [See (5.41)]. Using (5.34) in (5.37) and (5.35) in (5.38) we obtain

2iβ20 =
1
2
(3β12kx + kxβ42) + (β11k − kβ41), (5.46)

2iβ30 = −1
2
(`xβ12 + 3β42`x) + (`β11 − β41`), (5.47)
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respectively. With the help of (5.22)-(5.35) and (5.42)-(5.43) we get from (5.47)

2(β10)x = −1
2
(kβ42`)x −

3
2
β12(k`)x, (5.48)

where we assume that β11 commutes with k` and β12 commutes with k`x, and

2(β40)x = −1
2
(`β12k)x −

3
2
β42(`k)x, (5.49)

where we assume that β41 commutes with `k and β42 commutes with `kx. For n = m = 1 these
assumptions are always satisfied. Thus there exist constant matrices γ1 and γ4 such that

2β10 +
1
2
kβ42`+

3
2
β12k` = 2γ1, (5.50)

2β40 +
1
2
`β12k +

3
2
β42`k = 2γ4, (5.51)

where we recall that β12 commutes with k` and β42 commutes with `k. Substituting (5.50)-(5.51)
into (5.44) and using (5.46) we obtain

kt =
1
4
(β12[kxx − 2k`k]− [kxx − 2k`k]β42) +

1
2
(β11kx + kxβ41) + (γ1k − kγ4). (5.52)

On the other hand, substituting (5.50)-(5.51) into (5.43) and using (5.46) we obtain

`t = −1
4
([`xx − 2`k`]β12 − β42[`xx − 2`k`]) +

1
2
(`xβ11 + β41`x)− (`γ1 − γ4`). (5.53)

We have thus derived the coupled system (5.52)-(5.53) of nonlinear evolution equations, where
the elements of the constant matrices β12, β42, β11, β41, γ1, and γ4 are parameters.

Let us assume `(x) = k(x)∗ (symmetric case) or `(x) = −k(x)∗ (antisymmetric case). In
order to convert the coupled system (5.52)-(5.53) in two uncoupled equations, one the adjoint
of the other, we must assume β∗12 = −β12, β∗42 = −β42, β∗11 = β11, β∗41 = β41, γ∗1 = γ1, and
γ∗4 = −γ4 to obtain (5.53) as the adjoint of (5.52). Writing β12 = iβ̃12, β42 = iβ̃42, γ1 = iγ̃1, and
γ4 = iγ̃4, where β̃12, β̃42, γ̃1 and γ̃4 are constant hermitian matrices, we obtain

ikt =
1
4
(−β̃12[kxx ∓ 2kk∗k] + [kxx ∓ 2kk∗k]β̃42)

+
1
2
i(β11kx + kxβ41) + (−γ̃1k + kγ̃4). (5.54)

Here we should take notice of the anciliary constraints that β11 commutes with kk∗, β41 commutes
with k∗k, β̃12 commutes with k(kx)∗, and β̃42 commutes with k∗kx. Taking β11 = γ̃1 = 0n×n,
β41 = γ̃4 = 0m×m, β̃12 = −2In, and β̃42 = 2Im, we obtain from (5.54) the usual mNLS equation

i kt = kxx ∓ 2kk∗k, (5.55)

where the plus sign refers to the antisymmetric case and the minus sign to the symmetric case. In
the literature the symmetric case is often called defocussing and the antisymmetric case focussing.
Summarizing (and without using any of the symmetry relations ` = ±k∗) we now make the
following special choice of βpq:
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βpq p = 1 p = 2 p = 3 p = 4
q = 0 ik` −kx −`x −i`k
q = 1 0n×n −2k −2` 0m×m

q = 2 −2iIn 0n×m 0m×n 2iIm

For this special choice we have for the isospectrality generator

B =

ik`− 2i
d2

dx2
−kx − 2k

d

dx

−`x − 2`
d

dx
−i`k + 2i

d2

dx2

 .

5.4 Time evolution of the scattering data

In this section we discuss the time evolution of the scattering data. To do so rigorously, we should
in principle employ wave operators W± (e.g., [64]) defined by

W±φ = lim
t→±∞

eitHe−itH0φ, φ ∈ Hn+m,

prove the existence of the limit appearing in their definition, and derive their main properties.
Instead, we follow a semi-rigorous approach (as, for instance, in [4, 43, 1, 3]) to describe the time
evolution of the scattering data.

Let us now derive the evolution of the Jost solutions and scattering coefficients if the initial
potential V (x, 0) is replaced by V (x, t), where

V (x, t) =
(

0n×n k(x, t)
`(x, t) 0m×m

)
and k and ` satisfy the coupled system of nonlinear evolution equations (5.52) and (5.53). Let us
first discuss the asymptotics of the isospectrality operator B as x → ±∞. Taking into account
that k and ` tend to 0 as x→∞ we find

B∞ =

(
−2i d2

dx2 0n×m

0m×n 2i d2

dx2

)
= −2iJ

d2

dx2
.

Put U∞(t) = etB∞ . Then for each Sobolev index s ∈ R we have the commutative diagram

Hs
n+m

U∞(t)−−−−→ Hs
n+m

F
y yF

L2,s
n+m(R) −−−−→

e2iξ2tJ
L2,s

n+m(R),

so that {U∞(t)}t∈R is a strongly continuous group of unitary operators on each of the Sobolev
spaces Hs

n+m. Formally applying U∞(t) to eiλJx~η for some vector ~η and using the linear operators
in the above diagram we get

U∞(t)eiλJx~η
(2π)−1/2F−−−−−−→

(
e2itξ2

δ(ξ + λ)~ηup

e−2itξ2
δ(ξ − λ)~ηdn

)
(2π)1/2F−1

−−−−−−−→ e2itλ2JeiλJx~η. (5.56)
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Using HFl(·, λ) = λFl(·, λ), HFr(·, λ) = λFr(·, λ), and U(t)H = H(t)U(t) we obtain

H(t)(U(t)Fl)(x, λ) = λ(U(t)Fl)(x, λ),
H(t)(U(t)Fr)(x, λ) = λ(U(t)Fr)(x, λ).

Hence, apart from a right factor e2iλ2tJ , U(t)Fl(·, λ) and U(t)Fr(·, λ) are the left and right Jost
solutions of the matrix Zakharov-Shabat system with potential V (x, t). In other words,

(U(t)Fl)(x, λ) ' e2iλ2tJFl(x, λ), x→ +∞, (5.57)

(U(t)Fr)(x, λ) ' e2iλ2tJFr(x, λ), x→ −∞, (5.58)

where we compare a solution of the matrix Zakharov-Shabat system with potential V (x, t) to one
with potential V (x) as x → +∞ (in (5.57)) and as x → −∞ (in (5.58)). Recalling eqs. (3.1a),
(3.1b), (3.4a), and (3.4b) we easily obtain

(U(t)Fl)(x, λ) '

{
eiλJxe2iλ2tJ , x→ +∞,
eiλJxal(λ; t)e2iλ2tJ , x→ −∞,

and

e2iλ2tJFl(x, λ) '

{
e2iλ2tJeiλJx, x→ +∞,
e2iλ2tJeiλJxal(λ), x→ −∞.

Now, using eq. (5.57), we find

e2iλ2tJal(λ) = al(λ; t)e2iλ2tJ . (5.59)

Proceeding in a similar way, but starting from the relation (5.58), we get

e2iλ2tJar(λ) = ar(λ; t)e2iλ2tJ . (5.60)

Using eqs. (5.59) and (5.60), we can immediately write down the following set of relations

al1(λ) = al1(λ; t), al2(λ; t) = e4itλ2
al2(λ), (5.61a)

ar1(λ) = ar1(λ; t), ar2(λ; t) = e4itλ2
ar2(λ), (5.61b)

al4(λ) = al4(λ; t), al3(λ; t) = e−4itλ2
al3(λ), (5.61c)

ar4(λ) = ar4(λ; t), ar3(λ; t) = e−4itλ2
ar3(λ), (5.61d)

which imply

Tl(λ; t) = Tl(λ), T l(λ; t) = T l(λ),

Tr(λ; t) = Tr(λ), T r(λ; t) = T r(λ), (5.62)

and

R(λ; t) = e4itλ2
R(λ), R(λ; t) = e−4itλ2

R(λ),

L(λ; t) = e−4itλ2
L(λ), L(λ; t) = e4itλ2

L(λ). (5.63)
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The IST to solve the matrix nonlinear Schrödinger equation is now described by the following
diagram:

k(x, 0)
direct scattering problem

with potential k(x,0)−−−−−−−−−−−−−−−−→ R(λ), κj ,Γj

for j = 1, . . . , NyNLS
time evolution of
scattering data

y
k(x, t) ←−−−−−−−−−−−−−−−−−−−−−

inverse scattering problem
with time evolved scattering data

e4iλ2tR(λ), κj , e
−4κ2

j tΓj

5.5 Time evolution of Marchenko integral kernels

In this section we derive a linear PDE for the Marchenko integral kernel Ω and explicitly determine
the convolution integral operator mapping Ω(α; 0) into Ω(α; t).

In the absence of bound states the time evolution of the scattering data amounts to

R(λ)→ e4iλ2tR(λ),

where the reflection coefficient R(λ) can be written as the Fourier integral (4.24a) and hence

R̂(α) =
1
2π

∫ +∞

−∞
dλ eiλαR(λ).

Using the Theorem of Dominated Convergence it is clear that R̂ has the time evolution

∂tR̂+ 4i∂2
αR̂ = 0, (5.64)

provided
∫∞
−∞ dλ (1 + λ2) |R(λ)| <∞. Since R̂ = Ω is the Marchenko integral kernel, we can use

Ω as scattering data and arrive at the following diagram:

k(x, 0)
direct scattering problem

with potential k(x,0)−−−−−−−−−−−−−−−−→ Ω(α; 0)yNLS (∂t + 4i∂2
α)Ω = 0

y
k(x, t) ←−−−−−−−−−−−−−−−−−−−−

inverse scattering problem
with propagated scattering data

Ω(α; t)

Equation (5.64) can be interpreted in a more general way by letting the Fourier transform
act from L2, s(R) onto Hs for any s ∈ R. Since R is continuous and vanishes as λ→ ±∞, every
entry of R belongs to L2, s(R) for s > −1

2 . Thus every entry of R̂ belongs to Hs
2 for s > −1

2 and
(5.64) remains true.

Let us now derive the linear PDE for the Marchenko integral kernel if there are bound states.
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Theorem 5.1 Suppose all of the poles of the transmission coefficients are simple. Then every
entry of Ω belongs to Hs for s < −1

2 and

∂tΩ + 4i∂2
αΩ = 0. (5.65)

Proof. Let us now study the time dependence of dependency constant matrices if the poles
of the transmission coefficients are simple. Then (5.62) implies that τlj0 and τrj0 do not depend
on t. From (5.61a) and (5.61b) it is clear that the vectors εj and ηj describing the eigenfunctions
according to (4.38) are to be replaced by proportional vectors, where the proportionality constant
depends on t. Since

(U(t)Fl,r)(x, λ)e−2iλ2tJ ' Fl,r(x, λ; t), x→ ±∞,

by taking λ = iκj we obtain

Fl(x, iκj ; t)e−2iκ2
j tJ

(
εj
0

)
' Fr(x, iκj ; t)e−2iκ2

j tJ

(
0
ηj

)
, x→ ±∞,

which leads to
e−2iκ2

j tεj = e2iκ2
j tDj0(t)ηj , e−2iκ2

j tCj0(t)εj = e2iκ2
j tηj ,

where Cj0(t) and Dj0(t) are the time dependent dependency constant matrices. Therefore,

Cj0(t) = e4iκ2
j tCj0, Dj0(t) = e−4iκ2

j tDj0.

Using (4.43) we obtain

Γlj(t) = e−4iκ2
j tΓlj , Γrj(t) = e4iκ2

j tΓrj .

Equation (5.65) then follows from (5.64) and (4.53a).

We are interested in finding the solutions of eq. (5.65). To this end we observe that the
following relations hold

f̂ ′(ξ) =
∫ ∞

−∞
dy f ′(y)eiξy = −iξf̂(ξ), f ∈ H1(R),

f̂ ′′(ξ) = −iξf̂ ′(ξ) = (−iξ)2f̂(ξ) = −ξ2f̂(ξ), f ∈ H2(R).

Then, if every entry of Ω belongs to H2, applying the Fourier transformation to eq. (5.65) we
obtain

∂tΩ̂ = −4i∂̂2
αΩ = 4iξ2Ω̂, (5.66)

which admit as a unique solution the function

Ω̂(ξ, t) = e4iξ2tΩ̂(ξ, 0). (5.67)
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Taking into account that

Ω(y, t) = lim
N→+∞

1
2π

∫ N

N
dξ e−iyξΩ̂(ξ, t)= lim

N→+∞

1
2π

∫ N

N
dξ e−iyξe4iξ2tΩ̂(ξ, 0)

= lim
N→+∞

1
2π

∫ N

N
dξ e−iyξe4iξ2t

∫ ∞

−∞
dz eiξzΩ(z, 0),

if we suppose that every entry of Ω(·, 0) belongs to L1(R)∩L2(R), we can apply Fubini’s Theorem
to obtain

Ω(y, t) = lim
N→+∞

∫ ∞

−∞
dz

(
1
2π

∫ N

N
dξ e−iξ(y−z)e4iξ2t

)
Ω(z, 0),

which can be written as

Ω(y, t) = lim
N→+∞

∫ ∞

−∞
dz

(
1
2π

∫ N

N
dξ e4it[ξ− 1

8t
(y−z)]2

)
e−

1
16t

i(y−z)2Ω(z, 0).

Making the following change of variable η = 2
√
|t|[ξ− 1

8t(y−z)], the preceding equation becomes

Ω(y, t) = lim
N→+∞

∫ ∞

−∞
dz

(
1

4π
√
|t|

∫ 2
√
|t|[N− 1

8t
(y−z)]

2
√
|t|[−N− 1

8t
(y−z)]

dη eiη
2t

)
·

e−
1

16t
i(y−z)2Ω(z, 0). (5.68)

Introducing the Fresnel integrals [5, 7.3.1-7.3.2]

C(z) =
∫ z

0
dt cos

(π
2
t2
)
, S(z) =

∫ z

0
dt sin

(π
2
t2
)
,

which have the property that C(+∞) = S(+∞) = 1
2 (cf. [5, 7.3.0]), we easily calculate

lim
N→+∞

1
4π
√
|t|

∫ 2
√
|t|[N− 1

8t
(y−z)]

2
√
|t|[−N− 1

8t
(y−z)]

dη eiη
2t =

1
2π
√
|t|

∫ +∞

0
dη eiη

2t =

1
2π
√
|t|

[∫ +∞

0
dη cos(η2) + it

∫ +∞

0
dη sin(η2)

]
=

1 + it

4
√

2π|t|
.

As a result, using the Theorem of Dominated Convergence, eq. (5.68) can be written as

Ω(y, t) =
∫ ∞

−∞
dz lim

N→+∞

(
1

4π
√
|t|

∫ 2
√
|t|[N− 1

8t
(y−z)]

2
√
|t|[−N− 1

8t
(y−z)]

dη eiη
2t

)
×

×e−
1

16t
i(y−z)2Ω(z, 0) =

1 + it

4
√

2π|t|

∫ +∞

−∞
dz e−

1
16t

i(y−z)2Ω(z, 0), (5.69)

where every entry of Ω(·, 0) belongs to L1(R) ∩ L2(R). If every entry of Ω(·, 0) belongs to L2(R)
we have

Ω(y, t) = lim
N→+∞

1 + it

4
√

2π|t|

∫ N

−N
dz e−

1
16t

i(y−z)2Ω(z, 0). (5.70)

In other words, we have proved the following
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Theorem 5.2 Let every entry of Ω(·, 0) be an element of L1(R) ∩ L2(R). Then the solution of
eq. (5.65) is given by

Ω(y, t) =
1 + it

4
√

2π|t|

∫ +∞

−∞
dz e−

1
16t

i(y−z)2Ω(z, 0).

If every entry of Ω(·, 0) belongs to L2(R), the solution of (5.65) is given by

Ω(y, t) = lim
N→+∞

1 + it

4
√

2π|t|

∫ N

−N
dz e−

1
16t

i(y−z)2Ω(z, 0).

Theorem 5.2 describes the strongly continuous group of unitary transformations on the
Sobolev spaces Hs

n+m generated by the skew-selfadjoint differential operator −4i(d/dα)2. A
similar unitary group has been introduced to describe the solutions of the initial-value problem
to the linearized Korteweg-de-Vries equation [4, Example 1.5.1] and the time evolution of the
Marchenko integral kernel [4, Subsection 7.3.1] (also [2]). It is also known that, for t > 0, the
group action Ω(·, 0) 7→ Ω(·, t) is a bounded linear operator from (a direct sum of copies of) L1(R)
into (a direct sum of copies of) L∞(R) (cf. [29]), a result which is also known to be true for the
Schrödinger equation [52].
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Chapter 6

State Space Solutions of the
Marchenko equations

In Sec. 6.1, we introduce the so-called state space methods to write the Marchenko integral
equations as integral equations with separated variables, thus leading to their explicit solution.
By varying the Marchenko integral kernel in time while preserving its state space form, in Sec. 6.2
we also derive explicit solutions of the matrix nonlinear Schrödinger equation which encompass
all known multi-soliton solutions. In the symmetric case these solutions may be local in time,
but in the antisymmetric case most relevant to fiber optics they are global in time on each half-
line. We shall discuss the extent to which these explicit mNLS solutions are those obtained by
the inverse scattering transform. In Sec. 6.3 we derive all multi-soliton solutions of the matrix
nonlinear Schrödinger equation. In Sec. 6.4 we give necessary and sufficient conditions for a
multi-soliton solution to be time periodic. We then go on to plot the modulus, argument, real
part, and imaginary part of the solution to the NLS equation (n = m = 1) in the antisymmetric
case, where we illustrate various interesting special cases.

State space solutions of 1-D inverse spectral and inverse scattering problems for so-called
canonical systems (in fact, matrix Zakharov-Shabat systems in the symmetric case, where n = m)
have been studied extensively since Alpay and Gohberg [12] derived the solution of the inverse
spectral problem on the half-line in state space form. The corresponding solution for the inverse
scattering problem soon followed [13]. Subsequent research in this area led to a plethora of papers
on these inverse spectral and inverse scattering problems [14, 15, 17, 55, 56, 58, 57, 16, 84, 85].
The inverse scattering problem for the matrix Zakharov-Shabat system (with n = m) on the line
with rational scattering data was solved in the symmetric case [9] and in the antisymmetric case
without bound states [90]. A review on the literature relating the direct and inverse spectral
theory of canonical systems on finite intervals and on the half-line to the theory of certain classes
of analytic operator-valued functions was given in [19].

In [55, 56] the state space formulas were modified to arrive at local in time solutions of
certain nonlinear evolution equations on the half-line. Recently solutions of the Korteweg-de
Vries equation on the half-line in state space form were derived in [11] in a particularly simple
way.

So far state space methods in inverse scattering have primarily been used to solve inverse
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problems for the matrix Zakharov-Shabat system on the half-line in the symmetric case. Very few
of these papers deal with the more interesting antisymmetric case. Further, if nonlinear evolution
equations were solved, the issues of local vs. global in time existence and the obtainability of these
solutions by the inverse scattering transform were never raised. In this chapter we apply state
space methods to both the antisymmetric and symmetric cases, derive multi-soliton solutions in
a systematic way, and relate these results to the literature.

6.1 State space method: symmetric and antisymmetric cases

In this section we frequently employ representations of rational n×m matrix functions W (λ) of
the form

W (λ) = D − iC(λ− iA)−1B, (6.1)

where A, B, C, and D are p×p, p×m, n×p, and n×m matrices. Apart from the imaginary unit
factors i, the representations (6.1) occur as transfer functions of linear continuous time systems
[20, 39] and are often called realizations. The realization of W is called minimal if the matrix
order p of A (the so-called McMillan degree of W ) is minimal. In fact, a realization is minimal
if and only if for sufficiently large integer r the rn× p matrix colr(C,A) and the p×mr matrix
rowr(A,B) defined by

colr(C,A) def=


C
CA
CA2

...
CAr−1

 , rowr(A,B) def=
(
B AB A2B . . . Ar−1B

)
,

have full rank. Thus minimality is equivalent to the pair of statements

∞⋂
r=1

Ker (CAr−1) =
∞⋂

r=1

Ker (B∗(A∗)r−1) = {0}. (6.2)

Minimal realizations have the property that W (λ) and (λ− iA)−1 have the same poles with the
same pole order.

For minimal realizations the following uniqueness result is well-known (cf. [20, 39] and other
books on linear systems theory).

Proposition 6.1 Suppose

W (λ) = D1 − iC1(λ− iA1)−1B1 = D2 − iC2(λ− iA2)−1B2

are two minimal realizations of W . Then there exists a unique nonsingular matrix S such that

A1S = SA2, B1 = SB2, C1S = C2, D1 = D2.
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We first consider the antisymmetric case. If R(λ) is a rational scattering matrix (of size
n×m) without real poles and vanishing as λ→∞, then there exist complex matrices A, B, and
C of respective sizes p× p, p×m, and n× p such that

R(λ) = −iC(λ− iA)−1B, λ ∈ C, (6.3)

where A has minimal matrix order and hence does not have purely imaginary eigenvalues. A
similar minimal realization exists for L(λ). Since R(λ) does not have any obvious symmetry
properties, there is not much that we know about A, B, and C apriori.

We now recall that

R(λ) =
∫ +∞

−∞
dα R̂(α)e−iλα, L(λ) =

∫ +∞

−∞
dα L̂(α)e−iλα,

where R̂(α) and L̂(α) are suitable matrix functions. Since the integral kernels of the Marchenko
integral equations based on R(λ) for x ∈ R+ only depend on R̂(α) for α > 0, it is sufficient to
consider only the sum Π+R(λ) of the principal parts of R(λ) at the poles in C+. Similarly, since
the integral kernels of the Marchenko integral equations based on L(λ) for x ∈ R− only depend
on L̂(α) for α > 0, it is sufficient to consider only the sum Π+L(λ) of the principal parts of L(λ)
at the poles in C+. In fact,

Π+R(λ) =
∫ +∞

0
dα R̂(α)e−iλα, Π+L(λ) =

∫ +∞

0
dα L̂(α)e−iλα.

We then have the following minimal realization of Π+R(λ):

Π+R(λ) = −iC(λ− iA)−1B, λ ∈ C, (6.4)

where the matrix order of A does not exceed the McMillan degree of R(λ). Further, A has all of
its eigenvalues in the right half-plane. We now easily get

R̂(α) = Ce−αAB, α > 0, (6.5)

where

e−αA =
∞∑

r=0

(−α)r

r!
Ar

stands for the matrix exponential.
Taking the adjoint in (6.3) and (6.4) we get

R(λ∗)∗ = iB∗(λ+ iA∗)−1C∗, Π−R(λ∗)∗ =
∫ ∞

0
dα R̂(α)∗eiλα,

where we have singled out the sum Π−R(λ∗)∗ of the principal parts of R(λ∗)∗ for λ ∈ C−. So
we should in fact replace (A,B, C) by (−A∗, C∗,−B∗) to get R(λ∗)∗ instead of R(λ). Then

R̂(α)∗ = B∗e−αA∗C∗, α > 0.
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We now easily compute that for α, β > 0 and x ∈ R+∫ ∞

0
dβ R̂(β + γ + 2x)∗R̂(α+ β + 2x) = B∗e−(γ+2x)A∗XCe

−(α+2x)AB, (6.6)∫ ∞

0
dβ R̂(β + γ + 2x)R̂(α+ β + 2x)∗ = Ce−(γ+2x)AXBe

−(α+2x)A∗C∗, (6.7)

where

XC =
∫ ∞

0
dβ e−βA∗C∗Ce−βA, (6.8)

XB =
∫ ∞

0
dβ e−βABB∗e−βA∗ , (6.9)

are the unique solutions of the Lyapunov equations

A∗XC + XCA = C∗C, AXB + XBA∗ = BB∗. (6.10)

These solutions are easily seen to be nonnegative selfadjoint. Moreover, XB and XC are nonsin-
gular whenever the realization in (6.4) is minimal. Indeed, if XCy = 0, then

0 = 〈XCy, y〉 =
∫ ∞

0
dβ ‖Ce−βAy‖2,

and hence Ce−βAy = 0 for β ≥ 0. Taking the Laplace transform we obtain C(λ+A)−1y = 0 for
λ in the right half-plane and hence for λ in a neighborhood of infinity. As a result, we obtain
from the Neumann series expansion CAr−1y = 0 for r = 1, 2, . . ., which implies y = 0 because of
the minimality of the realization in (6.4). Consequently, XC is nonsingular. In a similar way we
prove the nonsingularity of XB. If we do not assume minimality of the realization (6.4), then the
same reasoning implies that

KerXC =
∞⋂

r=1

Ker (CAr−1), KerXB =
∞⋂

r=1

Ker (B∗(A∗)r−1).

Thus minimality of (6.4) is equivalent to having both of XC and XB nonsingular.

Theorem 6.2 Suppose that there are no bound states. Then for x ∈ R+ the solutions of the
Marchenko integral equations (4.11a) and (4.11b) (where Ω(λ) = R̂(λ)) are given by

Bl1(x, α) = −C
[
Ip + e−2xAXBe

−2xA∗XC

]−1
e−2xAXBe

−(α+2x)A∗C∗; (6.11)

Bl2(x, α) = −C
[
Ip + e−2xAXBe

−2xA∗XC

]−1
e−(α+2x)AB; (6.12)

Bl3(x, α) = +B∗
[
Ip + e−2xA∗XCe

−2xAXB

]−1
e−(α+2x)A∗C∗; (6.13)

Bl4(x, α) = −B∗
[
Ip + e−2xA∗XCe

−2xAXB

]−1
e−2xA∗XCe

−(α+2x)AB. (6.14)

Consequently, for x ∈ R+ we have

k(x) = −2iC
[
Ip + e−2xAXBe

−2xA∗XC

]−1
e−2xAB. (6.15)
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It is easy to see that Ip + e−2xAXBe
−2xA∗XC is invertible whenever Ip + e−2xA∗XCe

−2xAXB

is, since they have the form Ip + TS and Ip + ST for certain matrices S and T . More precisely,
let us consider the expression Ip + e−2xAXBe

−2xA∗XC and write it in the form Ip + TS where

T = e−2xAXBe
−2xA∗X 1/2

C and S = X 1/2
C and X

1
2

B and X
1
2

C are the positive selfadjoint matrices
having XB and XC as their squares. Then

Ip + ST = Ip + X
1
2

C e
−2xAX

1
2

BX
1
2

B e
−2xA∗X

1
2

C = Ip +
(
X

1
2

B e
−2xAX

1
2

C

)∗(
X

1
2

B e
−2xA∗X

1
2

C

)
.

So, we find

Ip + e−2xAXBe
−2xA∗XC =

(
X

1
2

B

)−1

(Ip + θ(x)θ(x)∗)
(
X

1
2

B

)
,

where
θ(x) = X

1
2

C e
−2xAX

1
2

B .

Proof. We first give the proof for eq. (6.12) and for eq. (6.15), because eq. (6.13) is proved
likewise. Now, we consider the following Marchenko equation (obtained from eqs. (4.3b) and
(4.4a))

Bl2(x, α) = −Ωl(α+ 2x)−
∫ ∞

0
dβ Bl2(x, β)

∫ ∞

0
dγ Ωl(γ + β + 2x)∗Ωl(α+ γ + 2x).

Substituting (6.5) and (6.6) into the preceding equation we obtain

Bl2(x, α) = −
∫ ∞

0
dβ Bl2(x, β)B∗e−(β+2x)A∗XCe

−(α+2x)AB − Ce−(α+2x)AB,

which can be written as

Bl2(x, α) = −
[
C +

(∫ ∞

0
dβ Bl2(x, β)B∗e−βA∗

)
e−2xA∗XC

]
e−(α+2x)AB,

where ∫ ∞

0
dαBl2(x, α)B∗e−αA∗

[
I +

∫ ∞

0
dβ e−2xA∗XCe

−2xAe−βABB∗e−βA∗
]

= −C
∫ ∞

0
dα e−(α+2x)ABB∗e−αA∗ .

Taking into account eqs. (6.8) and (6.9), we have∫ ∞

0
dαBl2(x, α)B∗e−αA∗ = −Ce−2xAXB

[
I + e−2xA∗XCe

−2xAXB

]−1
,

implying

Bl2(x, α) = −
[
C − Ce−2xAXB

[
I + e−2xA∗XCe

−2xAXB

]−1
e−2xA∗XC

]
e−(α+2x)AB.

Equation (6.12) then follows as a consequence. Equation (6.15) follows with the help of (3.54).
Equations (6.11) and (6.14) follow from eqs. (6.12) and (6.13) with the help of eqs. (4.4a) and
(4.3d) using (4.9).
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In the general situation, i.e., if bound states are present, we have

Ωl(α) = R̂(α) +
N∑

j=1

qlj
−1∑

s=0

(−1)sΓlj
αs

s!
e−κjα. (6.16)

Again, from the theory of the transfer functions, since the second term on the right hand of eq.
(6.16) tends to 0 as α→ ±∞, it follows that Ωl(α) can be represented in the form

Ωl(α) = Ce−αAB + C̃e−αÃB̃ =
(
C C̃

)
e
−α

0@A 0
0 Ã

1A(
B
B̃

)
. (6.17)

Now, if we consider the following correspondences

A →
(
A 0
0 Ã

)
, B →

(
B
B̃

)
, B →

(
C C̃

)
,

we reduce the above derivations to the case already analyzed in the absence of bound states.
In general, the third member of (6.17) does not lead to a minimal realization and hence the
corresponding Lyapunov solutions are not nonsingular. However, the matrix A ⊕ Ã can always
be replaced by a matrix of reduced order as to lead to a minimal realization. Nevertheless, eqs.
(6.11)-(6.15) based on the matrices appearing in the third member of (6.17) are correct (albeit
potentially cumbersome).

Let us return to (6.15) and write instead of (6.15)

k(x) = −2iCX−1
C

[
X−1

C + e−2xAXBe
−2xA∗

]−1
e−2xAB

= −2iCX−1
C e2xA∗

[
e2xAX−1

C e2xA∗ + XB

]−1
B

= −2iCX−1
C e2xA∗

[
X−1

B e2xAX−1
C e2xA∗ + Ip

]−1
X−1

B B

= −2iCX−1
C

[
e2xA∗X−1

B e2xAX−1
C + Ip

]−1
e2xA∗X−1

B B

= −2iCX−
1
2

C [Z∗Z + Ip]
−1X−

1
2

C e2xA∗X−1
B B,

where Z = X−
1
2

B e2xAX−
1
2

C and the realization (6.4) is minimal. Then XB and XC are nonsingular
and

‖k(x)‖ ≤ 2‖C‖‖X−1
C ‖ ‖e

2xA‖ ‖X−1
B B‖, (6.18)

which is exponentially decreasing as x → −∞. Thus k(x) is a C∞-function which decays expo-
nentially as x→ ±∞.

In the symmetric case we do not have to take into account the bound states, while we
employ the symmetry relation Ωl(α) = Ωl(α)∗ instead of Ωl(α) = −Ωl(α)∗. The above derivation
can then be repeated in full, except for occasional sign changes. As a result, we arrive at the
following theorem.
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Theorem 6.3 For x ∈ R+ the solutions of the Marchenko integral equations (4.10a) and (4.10b)
(where Ω(λ) = R̂(λ)) are given by

Bl1(x, α) = +C
[
Ip − e−2xAXB e

−2xA∗XC

]−1
e−2xAXBe

−(α+2x)A∗C∗; (6.19)

Bl2(x, α) = −C
[
Ip − e−2xAXB e

−2xA∗XC

]−1
e−(α+2x)AB; (6.20)

Bl3(x, α) = −B∗
[
Ip − e−2xA∗XC e

−2xAXB

]−1
e−(α+2x)A∗C∗; (6.21)

Bl4(x, α) = +B∗
[
Ip − e−2xA∗XC e

−2xAXB

]−1
e−2xA∗XCe

−(α+2x)AB. (6.22)

Consequently, for x ∈ R+ we have

k(x) = −2iC
[
Ip − e−2xAXBe

−2xA∗XC

]−1
e−2xAB. (6.23)

The only remaining issue is the existence of the inverses appearing in (6.20)-(6.23). However,
when repeating the above calculations these inverses must exist in order to make the Marchenko
equation uniquely solvable. If we were to replace C by εC for an arbitrary ε ∈ C with |ε| ≤ 1, we
would replace Ωl(α) by εΩl(α) without compromising the unique solvability of the Marchenko
equation. This is due to the fact that the spectral radius of the integral operator is strictly
less than 1. In that case XC is replaced by |ε|2XC and hence the inverted matrix in (6.20) by
Ip − |ε|2e−2xAXBe

−2xA∗XC , implying the invertibility of

Ip − |ε|2θ(x)θ(x)∗ = Ip − |ε|2X
1
2

C e
−2xAXBe

−2xA∗X
1
2

C .

As a result, for x ≥ 0 we have for the spectral norm

‖θ(x)‖ =
∥∥∥∥X 1

2
C e

−2xAX
1
2

B

∥∥∥∥ < 1. (6.24)

6.2 Solving matrix NLS equations by state space methods

We know (see eq. (5.65)) that the Marchenko integral kernel satisfies the following equation

∂tΩ + 4i∂2
αΩ = 0.

It is easy to see that a solution of the preceding equation is given by

Ω(α; t) = Ce−αAe−4itA2B. (6.25)

In fact, if we calculate the derivatives with respect to t and α, we obtain

∂tΩ = −4iCe−αAA2e−4itA2B, ∂2
αΩ = CA2e−αAe−4itA2B,

which imply eq. (5.65). Note that we can write (6.25) in the following way

Ω(α; t) = Ce−2itA2
e−αAe−2itA2B. (6.26)
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We therefore expect to derive solutions of the matrix nonlinear Schrödinger equation by solving
the inverse scattering problem as in Sec. 6.1, but replacing A, B and C by A, e−2itA2B and
Ce−2itA2

, respectively. The only potential limitation is the possible nonexistence of the inverse
matrix constructed during the inversion procedure.

Exactly as in the preceding section we first discuss the antisymmetric case. Here, eqs.
(6.8) and (6.9) become

XC(t) =
∫ ∞

0
dβ e−βA∗e2it(A∗)2C∗Ce−2itA2

e−βA = e2it(A∗)2XCe
−2itA2

, (6.27)

XB(t) =
∫ ∞

0
dβ e−βAe−2itA2BB∗e2it(A∗)2e−βA∗ = e−2itA2XBe

2it(A∗)2 , (6.28)

so we can easily compute for α, β > 0 and x ∈ R+∫ ∞

0
dβ Ωl(β + γ + 2x; t)∗Ωl(α+ β + 2x; t) = B∗e2it(A∗)2e−(γ+2x)A∗XC(t)e

−(α+2x)Ae−2itA2B,

(6.29)∫ ∞

0
dβ Ωl(β + γ + 2x; t)Ωl(α+ β + 2x; t)∗ = Ce−2itA2

e−(γ+2x)AXB(t)e
−(α+2x)A∗e2it(A∗)2C∗.

(6.30)

We have the following

Theorem 6.4 For x ∈ R+ and t ≥ 0 (where Ω(λ; t) = R̂(λ; t) in the absence of bound states)
the matrix functions

Bl1(x, α; t) = −Ce−2itA2
[
Ip + e−2xAe−2itA2XBe

4it(A∗)2e−2xA∗XCe
−2itA2

]−1
×

× e−2xAe−2itA2XBe
4it(A∗)2e−(α+2x)A∗C∗; (6.31)

Bl2(x, α; t) = −Ce−2itA2
[
Ip + e−2xAe−2itA2XBe

4it(A∗)2e−2xA∗XCe
−2itA2

]−1
×

× e−(α+2x)Ae−2itA2B; (6.32)

Bl3(x, α; t) = +B∗e2it(A∗)2
[
Ip + e−2xA∗e2it(A∗)2XCe

−4itA2
e−2xAXBe

2it(A∗)2
]−1
×

× e−(α+2x)A∗e2it(A∗)2C∗; (6.33)

Bl4(x, α; t) = −B∗e2it(A∗)2
[
Ip + e−2xA∗e2it(A∗)2XCe

−4itA2
e−2xAXBe

2it(A∗)2
]−1
×

× e−2xA∗e2it(A∗)2XCe
−4itA2

e−(α+2x)AB; (6.34)

are the solutions of the Marchenko integral equations (4.11a) and (4.11b). Consequently, for
x ∈ R+ and t ≥ 0 we have the following solution of the matrix nonlinear Schrödinger equation:

k(x; t) = −2iCe−2itA2
[
Ip + e−2xAe−2itA2XBe

4it(A∗)2e−2xA∗XCe
−2itA2

]−1
e−2xAe−2itA2B.

(6.35)
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We omit the proof, because it is very similar to the proof of the Theorem 6.2. The existence of
the inverses appearing in (6.32)-(6.35) can be proved as in the paragraph following the statement
of Theorem 6.2.

In the symmetric case we have employed the unique solvability of the Marchenko integral
equations to prove the existence of the inverse matrices appearing in (6.20)-(6.23). When in-
troducing time dependence, we can no longer be sure that the (modified) Marchenko integral
equations with A, B and C replaced by the respective matrices A, e−2itA2B and Ce−2itA2

remain
uniquely solvable. Therefore Theorem 6.3 should be generalized as if the potential k(x, t) only
exists for small t.

Theorem 6.5 There exists τ1 > 0 (possibly τ1 = +∞) such that for x ∈ R+ and 0 ≤ t < τ1 (in
the symmetric case Ω(λ; t) = R̂(λ; t) because there are not bound states) the matrix functions

Bl1(x, α; t) = +Ce−2itA2
[
Ip − e−2xAe−2itA2XBe

4it(A∗)2e−2xA∗XCe
−2itA2

]−1
×

× e−2xAe−2itA2XBe
4it(A∗)2e−(α+2x)A∗C∗; (6.36)

Bl2(x, α; t) = −Ce−2itA2
[
Ip − e−2xAe−2itA2XBe

4it(A∗)2e−2xA∗XCe
−2itA2

]−1
×

× e−(α+2x)Ae−2itA2B; (6.37)

Bl3(x, α; t) = −B∗e2it(A∗)2
[
Ip − e−2xA∗e2it(A∗)2XCe

−4itA2
e−2xAXBe

2it(A∗)2
]−1
×

× e−(α+2x)A∗e2it(A∗)2C∗; (6.38)

Bl4(x, α; t) = +B∗e2it(A∗)2
[
Ip − e−2xA∗e2it(A∗)2XCe

−4itA2
e−2xAXBe

2it(A∗)2
]−1
×

× e−2xA∗e2it(A∗)2XCe
−4itA2

e−(α+2x)AB; (6.39)

satisfy the Marchenko integral equations (4.10a) and (4.10b). Consequently, for x ∈ R+ and
0 ≤ t < τ1 we have the following solution of the matrix nonlinear Schrödinger equation:

k(x; t) = −2iCe−2itA2
[
Ip − e−2xAe−2itA2XBe

4it(A∗)2e−2xA∗XCe
−2itA2

]−1
e−2xAe−2itA2B. (6.40)

Proof. Equations (6.37)-(6.40) are immediate from (6.20)-(6.23), on changing A, B and C in
A, e−2itA2B and Ce−2itA2

, provided the inverses occurring in them exist. However, these inverses
exist, provided

‖θ(x, t)‖ < 1, (6.41)

where
θ(x, t) = X 1/2

C(t)e
−2xAX 1/2

B(t).

To prove the existence of the inverse of

Γ(x, t) = Ip − e−2xAXB(t)e
−2xA∗XC(t),
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we observe that the inverse matrix Γ(x, 0)−1 exists for every x ≥ 0 and tends to Ip as x→ +∞.
Thus supx≥0 ‖Γ(x, 0)−1‖ is finite. We now write

Γ(x, t)− Γ(x, 0) = e−2xA[XB −XB(t)]e
−2xA∗XC

+ e−2xA[XB − (XB −XB(t))]e
−2xA∗ [XC −XC(t)].

Put f(t) = ‖Ip − e−2itA2‖ = ‖Ip − e2it(A∗)2‖. Then f(t) depends continuously on t ∈ R+ and
vanishes as t→ 0+. Hence,

‖XB −XB(t)‖ ≤ f(t)[1 + f(t)]‖XB‖,
‖XC −XC(t)‖ ≤ f(t)[1 + f(t)]‖XC‖.

Moreover, ‖e−2xA‖ = ‖e−2xA∗‖ ≤Me−αx for certain M,α > 0. Consequently,

‖Γ(x, t)− Γ(x, 0)‖ ≤M2e−2αx‖XB‖‖XC‖f(t)[1 + f(t)][1 + f(t)(1 + f(t))].

Thus there exists τ1 > 0 such that the right-hand side is strictly less than infx≥0 ‖Γ(x, 0)−1‖−1

for 0 ≤ t < τ1. For these t the matrix Γ(x, t) is invertible for every x ≥ 0. Since det Γ(x, t) =
det(Ip − θ(x, t)θ(x, t)∗), we finally obtain (6.41) for 0 ≤ t < τ1 and x ≥ 0, as claimed.

Similar state space methods can be used to derive explicit solutions of the Korteweg-de Vries
equation where the initial condition is a real Schrödinger equation potential corresponding to a
rational reflection coefficient. In this case the explicit solution has the form

u(x, t) = −2
∂2

∂x2
log det Γ(x, t),

where det Γ(x, t) > 0 for 0 ≤ t < τ1 and x ≥ 0 (cf. [11]). Here τ1 can be finite as well as infinite.
In fact, the matrix trace can be used to substantially simplify the expression for u(x, t) compared
to the analogous expression for the matrix KdV equation. No such simplification occurs for the
matrix nonlinear Schrödinger equation, not even in the case n = m = 1.

The exact solutions (6.35) and (6.40) of the matrix nonlinear Schrödinger equation are based
on the application of the inverse scattering transform as if changing the triple (A,B, C) into the
triple (A, e−2itA2B, Ce−2itA2B) to produce a solution of the differential equation (5.65) is a correct
way to implement the time evolution of the scattering data. When dealing with the multi-soliton
solutions in Sec. 6.3, this is indeed the correct way to go. Unfortunately, in general we have
derived state space solutions on the positive and negative half-lines by using separate realizations
of the form (6.4).1 This leads to the correct result for t = 0, i.e., we have solved the inverse
scattering problem in a correct way. For 0 6= t ∈ R, however, it is by no means clear (and, in
fact, it is in general not true) that the solutions obtained belong to the same Sobolev space of
matrix functions of x as their initial data. Similar considerations have induced the authors of
[11] to give explicit solution of the KdV equation on the positive half-line only.

1To do so on the negative half-line, we should in principle repeat the calculations of Sections 6.1 and 6.2 or
apply the symmetry relations of Sec. B.2 of Appendix B to convert the results on the positive half-line to those
on the negative half-line.
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6.3 Multi-soliton solutions

In this section we find all multi-soliton solutions of the matrix nonlinear Schrödinger equation on
the line in the antisymmetric case. This means solving the inverse scattering problem for the
matrix Zakharov-Shabat system in the reflectionless case where R(λ) ≡ 0n×m and L(λ) ≡ 0m×n.

Let us assume that
Ωl(α) = Ce−αAB, α > 0,

where A is a p × p matrix with all of its eigenvalues in the open right half-plane, B is a p ×m
matrix and C is an n× p matrix such that

∞⋂
j=0

Ker(CAj) =
∞⋂

j=0

Ker(B∗(A∗)j) = {0}.

Then the solutions of the Marchenko equations (4.3a)-(4.3d) and (4.4a)-(4.4d) are given by (6.31)-
(6.34). Using (3.35) we obtain

Ml1(x, λ) = In +
∫ ∞

0
dαBl1(x, α)eiλα, (6.42)

Ml2(x, λ) =
∫ ∞

0
dαBl2(x, α)e−iλα, (6.43)

Ml3(x, λ) =
∫ ∞

0
dαBl3(x, α)eiλα, (6.44)

Ml4(x, λ) = Im +
∫ ∞

0
dαBl4(x, α)e−iλα. (6.45)

where x ∈ R+. Further,

k(x) = −2iBl2(x, 0+) = 2iBr2(x, 0+).

We have seen that k(x) as given by (6.15) makes sense for x ∈ R and is in fact an n × m
matrix function with entries in C∞(R) which are exponentially decaying as x→ ±∞. Let us now
solve the direct scattering problem for this antisymmetric potential. According to (3.26)-(3.29)
we have

al1(λ) = In − i
∫ ∞

−∞
dy k(y)Ml3(y, λ),

al2(λ) = −i
∫ ∞

−∞
dy e−2iλyk(y)Ml4(y, λ),

al3(λ) = −i
∫ ∞

−∞
dy e2iλyk(y)∗Ml1(y, λ),

al4(λ) = Im − i
∫ ∞

−∞
dy k(y)∗Ml2(y, λ).

It is easy to prove the following
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Theorem 6.6 In the antisymmetric case, the following equations hold

al1(λ) = In − iC X−1
C (λ+ iA∗)−1 C∗, (6.46)

al2(λ) = 0n×m, (6.47)
al3(λ) = 0m×n, (6.48)

al4(λ) = Im + iB∗X−1
B (λ− iA)−1 B. (6.49)

Consequently,

Tl(λ) = al1(λ)−1 = In + iC X−1
C

(
λ+ i

[
A∗ − C∗C X−1

C

])−1 C∗, (6.50)

Tr(λ) =
[
al4(λ)∗

]−1 = Im + iB∗
(
λ+ i

[
A∗ −X−1

B BB∗
])−1 X−1

B B. (6.51)

Moreover, the bound states are given by the poles of Tl(λ) (or Tr(λ)) in C+, which we observe to
coincide and to have the same order.

Proof. In the antisymmetric case, using eqs. (4.11a)-(4.11d) and Theorem 6.2 we immedi-
ately obtain

Ml1(x, λ) = In − iC
[
Ip + e−2xAXBe

−2xA∗XC

]−1
e−2xAXBe

−2xA∗ (λ+ iA∗)−1 C∗, (6.52)

Ml2(x, λ) = iC
[
Ip + e−2xAXBe

−2xA∗XC

]−1
e−2xA (λ− iA)−1 B, (6.53)

Ml3(x, λ) = iB∗
[
Ip + e−2xA∗XCe

−2xAXB

]−1
e−2xA∗ (λ+ iA∗)−1 C∗, (6.54)

Ml4(x, λ) = Im + iB∗
[
Ip + e−2xA∗XCe

−2xAXB

]−1
e−2xA∗XCe

−2xA (λ− iA)−1 B, (6.55)

where we have taken into account the following relations∫ +∞

0
dα eiλαe−αA∗ = i (λ+ iA∗)−1 ,∫ +∞

0
dα e−iλαe−αA = −i (λ− iA)−1 .

In the sequel of the proof we also use the well-known formula

d

dx
F (x)−1 = −F (x)−1

(
d

dx
F (x)

)
F (x)−1. (6.56)

Applying formula (6.56) we find

d

dx

[
Ip + e−2xAXB e

−2xA∗ XC

]−1
= 2

[
Ip + e−2xAXB e

−2xA∗ XC

]−1
×

× e−2xA {AXB + XBA∗} e−2xA∗XC

[
Ip + e−2xAXB e

−2xA∗ XC

]−1

= 2
[
Ip + e−2xAXB e

−2xA∗ XC

]−1
×

× e−2xABB∗ e−2xA∗
[
Ip + XC e

−2xAXB e
−2xA∗

]−1
XC , (6.57)
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where, in the second identity, we have used eq. (6.10). Now, in order to prove eq. (6.46), we
substitute in eq. (3.26) the expressions of the potential k(x) and Ml3(x, λ) given by (6.15) and
(6.54), respectively, getting

al1(λ) = In − 2i
∫ +∞

−∞
dx C

[
Ip + e−2xAXB e

−2xA∗ XC

]−1
×

× e−2xABB∗
[
Ip + e−2xA∗ XC e

−2xAXB

]−1
e−2xA∗ (λ+ iA∗)−1 C∗.

Then, because the following identity holds[
Ip + e−2xA∗ XC e

−2xAXB

]−1
= e−2xA∗

[
Ip + XC e

−2xAXB e
−2xA∗

]−1
,

we can write (taking into account eq. (6.57))

al1(λ) = In − i
∫ +∞

−∞
dx

d

dx
C
[
Ip + e−2xAXB e

−2xA∗ XC

]−1
X−1

C (λ+ iA∗)−1 C∗. (6.58)

If we now consider that[
Ip + e−2xAXB e

−2xA∗ XC

]−1
−→

{
Ip, as x→ +∞
0p×p, as x→ −∞

where [
Ip + e−2xAXB e

−2xA∗ XC

]−1
= X−1

C

[
X−1

C + e−2xAXB e
−2xA∗

]−1

= X−1
C e−2xA∗

[
e2xAXC e

2xA∗ +XB

]
e2xA,

we obtain
al1(λ) = In − iC X−1

C (λ+ iA∗)−1 C∗,

which completes the proof of eq. (6.46). Moreover, if we use the well-known formula

(I + TR−1S)−1 = I − T (R+ ST )−1S (6.59)

for T = iC, R = (λ+ iA∗), and S = C∗, we find that eq. (6.50) is satisfied.
Now, using the same scheme we prove eq. (6.49). In fact, substituting in eq. (3.29) the

expressions of −k(x)∗ (obtainable by (6.15)) and Ml2(x, λ) (given by (6.43)) we get

al4(λ) = Im + 2i
∫ +∞

−∞
dxB∗e−2xA∗

[
Ip + XC e

−2xAXB e
−2xA∗

]−1
×

× C∗C
[
Ip + e−2xAXB e

−2xA∗XC

]−1
e−2xA (λ− iA)−1 B

= Im + 2i
∫ +∞

−∞
dxB∗

[
Ip + e−2xA∗ XC e

−2xAXB

]−1
e−2xA∗×

× C∗C e−2xA
[
Ip + XB e

−2xA∗XC e
−2xA

]−1
(λ− iA)−1 B.
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Exactly as above, we calculate

d

dx

[
Ip + e−2xA∗ XC e

−2xAXB

]−1
= 2

[
Ip + e−2xA∗ XC e

−2xAXB

]−1
×

× e−2xA∗ {A∗XC + XCA} e−2xAXB

[
Ip + e−2xA∗ XC e

−2xAXB

]−1

= 2
[
Ip + e−2xA∗ XC e

−2xAXB

]−1
×

× e−2xA∗C∗C e−2xA
[
Ip + XB e

−2xA∗ XC e
−2xA

]−1
XB, (6.60)

where eq. (6.10) has been used in the second identity. Consequently, considering eq. (6.60), we
have

al4(λ) = Im + i

∫ +∞

−∞
dx

d

dx
B∗
[
Ip + e−2xA∗ XC e

−2xAXB

]−1
X−1

B (λ− iA)−1 B. (6.61)

Therefore,
al4(λ) = Im + iB∗X−1

B (λ− iA)−1 B, (6.62)

which implies
ar4(λ) = al4(λ)∗ = Im − iB∗ (λ+ iA∗)−1 X−1

B B, (6.63)

and eq. (6.49) is proved. Moreover, if we use (6.59) with T = iB∗, R = (λ+ iA∗) and S = X−1
B B

we find that eq. (6.51) is satisfied.
Next, we prove eq. (6.47). Substituting in eq. (3.27) the expressions of the potential k(x)

and Ml4(x, λ) given by (6.15) and (6.55), respectively, we have

al2(λ) = −2
∫ +∞

−∞
dx e−2iλxC

[
Ip + e−2xAXB e

−2xA∗ XC

]−1
×

× e−2xA B
{
Im + iB∗

[
Ip + e−2xA∗ XC e

−2xAXB

]−1
e−2xA∗XC e

−2xA (λ− iA)−1 B
}

= −2
∫ +∞

−∞
dx e−2iλxC

[
Ip + e−2xAXB e

−2xA∗ XC

]−1
e−2xA B

− 2i
∫ +∞

−∞
dx e−2iλx

(
d

dx
C
[
Ip + e−2xAXB e

−2xA∗ XC

]−1
)
e−2xA (λ− iA)−1 B.

where we have used (6.56) to write the second identity. Integrating by parts the second integral
in the second identity of the preceding equation, we get

al2(λ) = −2
∫ +∞

−∞
dx e−2iλxC

[
Ip + e−2xAXB e

−2xA∗ XC

]−1
e−2xA B

− i
[
C
[
Ip + e−2xAXB e

−2xA∗ XC

]−1
e−2ix(λ−iA) (λ− iA)−1 B

]+∞

−∞

+ i

∫ +∞

−∞
dx C

[
Ip + e−2xAXB e

−2xA∗ XC

]−1
(−2i) (λ− iA) e−2ix(λ−iA) (λ− iA)−1 B

= −i
[
C
[
Ip + e−2xAXB e

−2xA∗ XC

]−1
e−2ix(λ−iA) (λ− iA)−1 B

]+∞

−∞
= 0n×m.
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Since the scattering matrix is J-unitary, we also obtain

al3(λ) = 0m×n,

which completes the proof.

We need the following lemma to prove that the transmission coefficients Tl(λ) and Tr(λ) are
unitary matrices for λ ∈ R.

Lemma 6.7 The following relations hold :

X−1
C

[
A∗ − C∗C X−1

C

]
XC = −A, XB

[
A∗ −X−1

B BB
∗]X−1

B = −A. (6.64)

Proof. We have (cf. with (6.10))

A∗XC + XCA = C∗C, AXB + XBA∗ = BB∗.

Thus

X−1
C

[
A∗ − C∗C X−1

C

]
XC = X−1

C A
∗XC −X−1

C C
∗C = X−1

C A
∗XC −X−1

C (A∗XC + XCA) = −A,

and, in a similar way

XB

[
A∗ −X−1

B BB
∗]X−1

B = XBA∗X−1
B − BB∗X−1

B = XBA∗X−1
B − (AXB + XBA∗)X−1

B = −A,

which completes the proof.

Lemma 6.7 implies that

A∗ −X−1
B BB∗ = X−1

B (−A)XB, A∗ − C∗C X−1
C = XC(−A)X−1

C . (6.65)

As a result, eqs. (6.50)-(6.51) can be written as

Tl(λ) = In + iC (λ− iA)−1 X−1
C C∗, (6.66)

Tr(λ) = Im + iB∗X−1
B (λ− iA)−1 B. (6.67)

Hence,

Tl(λ)∗ = In − iC X−1
C (λ+ iA∗)−1 C∗ = al1(λ) = Tl(λ)−1,

Tr(λ)∗ = Im − iB∗ (λ+ iA∗)−1 X−1
B B = al4(λ) = Tr(λ)−1,

and, consequently, Tl(λ) and Tr(λ) are unitary matrices for λ ∈ R.
We have seen (cf. with Sec. 5.5-6.2) that the time evolution of the scattering data is governed

by eq. (5.65). Thus if we are interested in finding the evolution of the transmission coefficients,
we have to make the following change of data in eq. (6.66)-(6.67):

A 7→ A, B 7→ e−2itA2B, C 7→ Ce−2itA2
, XB 7→ e−2itA2XBe

2itA2
, XC 7→ e2itA2XCe

−2itA2
.
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With the above changes we get

Tl(λ; t) = In + iC e−2itA2
(λ− iA)−1 e2itA2 X−1

C e2it(A∗)2e−2it(A∗)2C∗ =

= In + iC (λ− iA)−1 X−1
C C∗ = Tl(λ),

Tr(λ; t) = Im + iB∗ e−2it(A∗)2e2it(A∗)2 X−1
B e−2itA2

(λ− iA)−1 e2itA2 B =

= Im + iB∗X−1
B (λ− iA)−1 B = Tr(λ),

which shows that the transmission coefficients are invariant while the scattering data evolve.
Equation (6.35) represents a multi-soliton solution of the matrix nonlinear Schrödinger equa-

tion for x ∈ R and t ∈ R. When interpreting k(x, t) as an antisymmetric potential in the matrix
Zakharov-Shabat system, we have zero reflection coefficients. The matrix A in the minimal
representation of the Marchenko kernel

Ωl(α) = C e−αA B, α > 0,

corresponds to the poles of the transmission coefficients Tl(λ) and Tr(λ).
Applying the same method in the symmetric case leads to a guaranteed breakdown for some

x < 0, because

det
[
Ip − e−2xAXBe

−2xA∗XC

]
= det

[
Ip −

(
X

1
2

C e
−xAX

1
2

B

)(
X

1
2

C e
−xAX

1
2

B

)∗]
is the determinant of a selfadjoint matrix whose eigenvalues tend to −∞ as x → −∞. Hence
this determinant must vanish for certain negative x. Thus in the symmetric case there do not
exist multi-soliton solutions. This is understandable, because there are no bound states in the
symmetric case and multi-soliton solutions are believed to correspond to bound state poles of
the transmission coefficients. Instead, in the symmetric case there exist so-called dark soliton
solutions, but it is by no means clear how to get them by the state space method.

The literature abounds with multi-soliton solutions, in most cases for n = m = 1. For
example, in [96] the following expression

k(x, t) = ±A eiBx−i(A2−B2)t+iC1

cosh(Ax− 2ABt+ C2)
(6.68)

where A, B, C1, C2 are arbitrary real constants, represents a soliton solution of the nonlinear
Schrödinger equation (5.55).2 Putting

A = (a) , B = (1) , C = (c) ,

where a = p+ iq with p > 0 and 0 6= c ∈ C and taking into account that

XB =
∫ ∞

0
dβ e−β(p+iq)e−β(p−iq) =

1
2p
,

XC =
∫ ∞

0
dβ e−β(p+iq) |c|2 e−β(p−iq) =

|c|2

2p
,

2We have substituted k = 2 and made the substitution t 7→ −t to account for the different NLS equation.
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eq. (6.35) becomes

k(x, t) =
−2ice−2x(p+iq)e−4it(p2−q2)e8tqp

1 + |c|2
4p2 e−4xpe16tpq

×
2p
|c|e

2p(x−4qt)

2p
|c|e

2p(x−4qt)
,

where 2px0 = ln
(
|c|
2p

)
. Thus we have

k(x, t) =
−2ip c

|c|e
−4it(p2−q2)−2ixq

cosh(2p(x− x0 − 4qt))
. (6.69)

Equation (6.69) coincides with eq. (6.68) if we choose

A = 2p, B = −2q, ±eiC1 = −i c
|c|
, C2 = −2px0 = ln

(
2p
|c|

)
.

The transmission coefficients are easily seen to be given by

Tl(λ) = Tr(λ) =
λ+ ia

λ− ia
.

In the same way we can make the second soliton solution in [96] correspond to ours by taking
A = (a) with a > 0, B = (1), and C = (c) with 0 6= c ∈ C. The multi-soliton solution in [96]
corresponds to A being a diagonal matrix with distinct entries in the right half-plane, B being a
column vector with entries 1, and C a row vector with nonzero complex entries.

6.4 Graphical representation of multi-soliton solutions

In this section we give the graphical representation of the solutions of the matrix nonlinear
Schrödinger equation obtained by the state space method in the antisymmetric case. We know
(see eq. (6.35)) that these solutions exist globally in t ∈ R. When we have constructed the plots
corresponding to these solutions, we have observed that sometimes the figure obtained displays
time periodicity. This fact is very interesting because the solutions obtained with the state space
method of the KdV equation are almost never periodic. Thus, we have studied this question in
detail.

Before giving the main result we prove the following lemma.

Lemma 6.8 Let A be an n × n matrix. Then eitA is periodic if and only if A is diagonalizable
and its eigenvalues are integer multiples of the same nonzero real number.

Proof. (⇒) Let eitA be periodic. Then there exists τ > 0 such that

ei(t+τ)A = eitA, t ∈ R.

From the preceding equation we get
eiτA = In.
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Moreover, every eigenvalue λ of A satisfies the following equation

eiτλ = 1,

which implies

λ =
2πk
τ
, k ∈ Z.

Thus there exist an invertible matrix S and integers k1 < . . . < kr such that

S−1AS =
r⊕

s=1

(
2πks

τ
Ims +Ns

)
, (6.70)

where m1 + . . . + mr = n and N1, . . . , Nr are nilpotent matrices, that is Nps
s = 0ms . Then we

can write

In = S−1eiτAS =
r⊕

s=1

e
2πiks

τ︸ ︷︷ ︸
=1

eiτNs =
r⊕

s=1

ps−1∑
j=0

(iτ)j

j!
N j

s ,

from which we obtain

Ims =
ps−1∑
j=0

(iτ)j

j!
N j

s ,

and consequently, we get

iτNs

ps−1∑
j=1

(iτ)j−1

j!
N j−1

s = 0.

Now, taking into account that
∑ps−1

j=1
(iτ)j

j! N
j−1
s is invertible because it has the form Ims + M

where M is a nilpotent matrix, we find

Ns = 0ms , for s = 1, . . . , r.

From eq. (6.70) we obtain

S−1AS =
r⊕

s=1

(
2πks

τ
Ims

)
,

which implies that A is diagonalizable and λs = 2πks
τ , for s = 1, . . . , r are its eigenvalues.

(⇐) Let A be diagonalizable with distinct eigenvalues λ1, . . . , λr with respective multiplicities
m1, . . . ,mr. Then there exists an invertible matrix S such that

S−1AS =
r⊕

s=1

(λsIms) .

Thus

eiτA = S

r⊕
s=1

(
eiτλsIms

)
S−1.

As a consequence, eiτA = In iff there exist integers k1, . . . , kr such that τλs = 2πks (s = 1, . . . , r).
In other words, λ1, . . . , λr are integer multiples of 2π/τ .
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We now have the following main result regarding periodicity of solutions of the matrix NLS
equation in the antisymmetric case.

Theorem 6.9 Let A have minimal square matrix order in the representation (6.35) of the solu-
tion of the matrix nonlinear Schrödinger equation. Then this solution is periodic if and only if
e4itA2

is periodic. The latter is satisfied if and only if A is diagonalizable with positive eigenvalues
and the squares of these eigenvalues have rational ratios.

Proof. Let us represent the Marchenko integral kernel Ωl corresponding to the antisymmetric
potential k(x, 0) as

Ωl(α) = Ce−αAB, α ∈ R+,

where A has minimal square matrix order and has its eigenvalues in the open right half-plane.
Then the realization C(k− iA)−1B is minimal and the corresponding solution of the matrix NLS
equation is given by (6.35). Letting Ωl(α; t) stand for the Marchenko kernel corresponding to the
antisymmetric potential k(x, t), we have

Ωl(α; t) = Ce−αAe4iA2tB, α ∈ R+, t ∈ R. (6.71)

Now let k(x, t) be periodic in t. Then eqs. (3.43) and (3.44) imply that the solution Bl2(x, α; t)
of the Marchenko integral equation with kernel Ωl(α; t) is periodic. We now apply Theorem B.1
given in Appendix B and the analyticity of Ωl(α; t) in α to prove that there exists τ > 0 such
that

Ωl(α; t+ τ) = Ωl(α; t), α ∈ R+, t ∈ R.

Substituting (6.71) and expanding the resulting equation in a power series in α we obtain for
k = 0, 1, 2, . . . and t ∈ R

CAke4iA2tB = CAke4iA2(t+τ)B.

By the minimality of the realization we get for t ∈ R

e4iA2tB = e4iA2(t+τ)B,

which implies

B∗(A∗)l
[
e4iA2t

]∗
= B∗(A∗)l

[
e4iA2(t+τ)

]∗
for l = 0, 1, 2, . . . and t ∈ R. Using minimality again we get

e4iA2t = e4iA2(t+τ), t ∈ R.

We now apply Lemma 6.8 plus the fact that all eigenvalues of A have a positive real part.
ThenA2 is diagonalizable, its eigenvalues are real (and hence positive), and the ratios are rational.
Since a nonsingular matrix with diagonalizable square is itself diagonalizable, we conclude that
A is diagonalizable, has only positive eigenvalues, and has rational ratios for the squares of these
eigenvalues, as claimed.
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We have applied the Symbolic Toolbox of Matlab Version 6.5 to plot the real and imaginary parts
as well as the absolute values and arguments of the NLS solution k(x, t) given by eq. (6.35) in
various cases. The different types of plots are given. On one hand, we have plotted Re k(x, t),
Im k(x, t), |k(x, t)|, and arg k(x, t) as functions of (x, t), which results in a surface in R3. On the
other hand, we have plotted these quantities as functions of x for different values of t, leading to
curves in the same figure corresponding to different t-values.

In Figures 6.1 and 6.2 the solution (6.35) of the NLS equation is shown for p = n = m = 1,
A = (3), B = (1), and C = (2), which represents a one soliton solution that is periodic in time [cf.
Theorem 6.9]. In Figure 6.1 we have plotted Re k(x, t) and Im k(x, t) as a function of x ∈ [−3, 3]

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

5

6
Real Part

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6
Imaginary Part

Figure 6.1: The real and imaginary parts of k(x, t) as a function of x ∈ [−3, 3] for t =
0, 0.5, 1, 1.5, 2 for the model specified by the realization with matrices A = (3), B = (1), and
C = (2).

for five different values of t. It is interesting to observe that these curves assume their maximal
and minimal values for the same x, which suggests that arg k(x, t) is constant for a fixed t. In
Figure 6.2 we have therefore plotted |k(x, t)| and arg k(x, t) as a function of (x, t) ∈ [−3, 3]× [0, 2],
which confirms |k(x, t)| only depends on x and arg k(x, t) is time periodic.

In Figures 6.3 and 6.4 the solution (6.35) of the NLS equation is shown for p = n = m = 1,
A = (3 + i), B = (1), and C = (2), which represents a soliton solution that is not periodic [cf.
Theorem 6.9]. In Figure 6.3 we have plotted Re k(x, t) and Im k(x, t) as a function of x ∈ [−3, 3]
for five different values of t, with virtually the same graph for certain different t-values. The
surfaces which represent |k(x, t)| and arg k(x, t) and appear in Figure 6.4, are more complicated
than those drawn in Figure 6.2.

In Figures 6.5 and 6.6 the solution (6.35) of the NLS equation is shown for p = 2, n = 1,
m = 1, A = diag (1, 2), B = (1, 1)T , and C = (3, 2), which represents a time periodic two-soliton
solution [cf. Theorem 6.9]. In Figure 6.5 we have plotted Re k(x, t) and Im k(x, t) as a function of
x ∈ [−3, 3] for five different values of t, displaying time periodicity (with period π). The surfaces
which represent |k(x, t)| and arg k(x, t) and appear in Figure 6.6, are very complicated, but the
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Figure 6.2: |k(x, t)| and arg k(x, t) as a function of (x, t) ∈ [−3, 3]× [0, 2] for the same model as
in Figure 6.1.

time periodicity of |k(x, t)| is apparent.
In Figures 6.7 and 6.8 the solution (6.35) of the NLS equation is shown for p = 2, n = 1,

m = 1, A =
(

1 1
−1 1

)
, B = (1, 1)T , and C = (3, 2), which represents a two-soliton solution that

is not periodic [cf. Theorem 6.9]. In Figure 6.7 we have plotted Re k(x, t) and Im k(x, t) as a
function of x ∈ [−3, 3] for five different values of t. The surfaces which represent |k(x, t)| and
arg k(x, t) appear in Figure 6.8.

Aktosun has produced graphical representations of the solutions of the KdV equations on the
half-line using Mathematica. This has led, among other things, to an animation of the solution
of the KdV equation as a function of time [97]. Although we have not displayed them in this
thesis, we have also produced similar animations of the modulus of k(x, t) using MatLab.
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Figure 6.3: The real and imaginary parts of k(x, t) as a function of x ∈ [−3, 3] for t =
0, 0.5, 1, 1.5, 2 for the model specified by the realization with matrices A = (3 + i), B = (1),
and C = (2).
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Figure 6.4: |k(x, t)| and arg k(x, t) as a function of (x, t) ∈ [−3, 3]× [0, 2] for the same model as
in Figure 6.3.
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Figure 6.5: The real and imaginary parts of k(x, t) as a function of x ∈ [−3, 3] for t =
0, 0.5, 1, 1.5, 2 for the model specified by the realization with matrices A = diag (1, 2), B = (1, 1)T ,
and C = (3, 2).
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Figure 6.6: |k(x, t)| and arg k(x, t) as a function of (x, t) ∈ [−3, 3]× [0, 2] for the same model as
in Figure 6.5.
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Figure 6.7: The real and imaginary parts of k(x, t) as a function of x ∈ [−3, 3] for t =

0, 0.5, 1, 1.5, 2 for the model specified by the realization with matrices A =
(

1 1
−1 1

)
, B = (1, 1)T ,

and C = (3, 2).
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Figure 6.8: |k(x, t)| and arg k(x, t) as a function of (x, t) ∈ [−3, 3]× [0, 2] for the same model as
in Figure 6.7.
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Appendix A

Comparison of Notations

In this thesis three different notational systems have been used, namely our own system based
on [9, 90], that of Ablowitz and co-workers (see [3]), and that adopted in fiber optics [61]. Here
we specify how to move from one system to the other.

A.1 Comparison with notations of Ablowitz et al.

In [3] the differential equation studied is as follows:

∂v

∂x
=
(
−ikIN Q

R ikIM

)
v, (A.1)

where Q is an N ×M matrix function with entries in L1(R), R is an M × N matrix function
with entries in L1(R), v is an (N +M)-component vector, and k is a spectral parameter. Thus
by putting

k = −λ, Q(x) = ik(x), R(x) = −i`(x),
we convert (A.1) into (3.1). These authors use J = (−IN )⊕ IM , which corresponds with our −J
if N = n and M = m. In [3] the Jost solutions φ(x, k), φ(x, k), ψ(x, k), and ψ(x, k) are defined
as those (N +M)×N , (N +M)×M , (N +M)×M , and (N +M)×N solutions that satisfy

φ(x, k) ∼
(

IN
0M×N

)
e−ikx, φ(x, k) ∼

(
0N×M

IM

)
eikx, x→ −∞, (A.2a)

ψ(x, k) ∼
(

0N×M

IN

)
eikx, ψ(x, k) ∼

(
IN

0N×M

)
e−ikx, x→ +∞. (A.2b)

Thus in our notations(
ψ(x, k) ψ(x, k)

)
= Fl(−k, x),

(
φ(x, k) φ(x, k)

)
= Fr(−k, x). (A.3)

These authors then introduce1

M(x, k) = eikxφ(x, k), M(x, k) = e−ikxφ(x, k), (A.4a)
1What the authors of [3] call Jost solutions, we call Faddeev functions.
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N(x, k) = e−ikxψ(x, k), N(x, k) = eikxψ(x, k). (A.4b)

We have in our notations(
N(x, k) N(x, k)

)
= Ml(−k, x),

(
M(x, k) M(x, k)

)
= Mr(−k, x). (A.5)

For any (N +M)× J matrix A the authors of [3] introduce the notation

A =
(

A(up)

A(dn)

)
,

where A(up) is N × J and A(dn) is M × J .
In [3] the so-called scattering matrix2

S(ξ) =
(

a(ξ) b(ξ)
b(ξ) a(ξ)

)
, ξ ∈ R, (A.6)

is introduced such that

φ(x, k) = ψ(x, k)b(k) + ψ(x, k)a(k),

φ(x, k) = ψ(x, k)a(k) + ψ(x, k)b(k),

where a(k) is N ×N , a(k) is M ×M , b(k) is M ×N , and b(k) is N ×M . Thus in our notations(
a(k) b(k)
b(k) a(k)

)
= ar(−k) =

(
ar1(−k) ar2(−k)
ar3(−k) ar4(−k)

)
. (A.7)

On the other hand, in [3] we have

ψ(x, k) = φ(x, k)d(k) + φ(x, k)c(k),

ψ(x, k) = φ(x, k)c(k) + φ(x, k)d(k),

where c(k) is N ×N , c(k) is M ×M , d(k) is M ×N , and d(k) is N ×M . Thus in our notations(
c(k) d(k)
d(k) c(k)

)
= al(−k) =

(
al1(−k) al2(−k)
al3(−k) al4(−k)

)
. (A.8)

The authors of [3] observe that the matrices in (A.7) and (A.8) are each others inverses and have
determinant 1, and that det a(k) = det c(k) and deta(k) = det c(k).

2We use this terminology for a different matrix.
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In [43], for n = m = 1, the authors introduce the four 2-column vector functions

ψr = Re−iζx, R→

(
1
0

)
as x→ −∞

ψ̃r = R̃e−iζx, R̃→

(
0
1

)
as x→ −∞

ψl = Le−iζx, L→

(
1
0

)
as x→ +∞

ψ̃l = L̃e−iζx, L̃→

(
0
1

)
as x→ +∞

Here ψr, ψ̃r, ψl, ψ̃l are the Jost solutions of the Zakharov-Shabat system(
v′1
v′2

)
=
(
−iζ q
r iζ

)(
v1
v2

)
.

Because ψr and ψ̃r (so as ψl and ψ̃l) are linearly independent, for ζ real, we have{
ψr = r+ψl + r−ψ̃l

ψ̃r = r̃+ψl + r̃−ψ̃l
and

{
ψl = l−ψr + l+ψ̃r

ψ̃l = l̃−ψr + l̃+ψ̃r

where the scattering coefficients r−, r̃− only depend on ζ ∈ R, and with r−r̃+−r̃−r+ = 1. Putting
λ = ζ, we have in our notations

Fl =
(
ψl|ψ̃l

)
, Fr =

(
ψr|ψ̃r

)
, ar =

(
r− r̃−
r− r̃+

)
, al =

(
l̃− l−
l̃+ l+

)
.

A.2 Notations used for the NLS equation

In the literature there exist various conventions regarding the way to write the NLS equation.
The aim of this section is to discuss the main notations used and to make a comparison between
their notations and ours.

We recall that in this PhD thesis we have essentially followed the notations used by Hasegawa,
Tappert and Matsumoto in [62, 63, 61] when discussing fiber optics applications. Following these
authors, in order to derive the NLS equation we consider the equation

i
∂E

∂z
− k′′

2
∂2E

∂τ2
+
ω0n2

2c
|E|2E = 0. (A.9)

where E represents the modulation of the electric field and the quantities k′′, z, ω0 and τ are
already introduced in Chapter 5. Now if t0 is the scale size of the wavepacket, putting z0 = t0

−k′′

and applying the following rescaling

Z = z/z0, T = τ/t0, q =

√
ω0g n2z0

2c
E,
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we obtain the NLS equation

∂q

∂Z
=
i

2
∂2q

∂T 2
+ i|q|2q. (A.10)

Our notation is different. In fact, we obtain our NLS equation

∂q

∂t
=
i

2
∂2q

∂x2
+ i|q|2q. (A.11)

from theirs by making the change of variables t → Z and x → T . Now in [3, 1, 2] we see that
the NLS equation is written as

∂q

∂t
= −i ∂

2q

∂x2
∓ 2i|q|2q. (A.12)

Also this equation can be found starting from eq. (A.9), in fact if we put z0 = t0
k′′ and consider

the normalized variables (always in eq. (A.9))

Z = z/(2 ∗ z0), T = τ/t0, q =

√
ω0g n2z0

2c
E,

we get eq. (A.12).
A more complete discussion of the normalization of eq. (A.9) can be found in [87]. In this

book the NLS equation has the following form

i
∂u

∂ζ
=

sign(β2)
2

∂2u

∂τ2
− |u|2u. (A.13)

Taking q = u, t→ ζ and x→ τ , we arrive at

i
∂q

∂t
=

sign(β2)
2

∂2q

∂x2
− |q|2q,

which implies

∂q

∂t
= −isign(β2)

2
∂2q

∂x2
− |q|2q. (A.14)

When sign(β2) < 0 eq. (A.14) is very similar to eq. (A.11) and can be reduced to eq. (A.11).
On the other hand, when sign(β2) > 0 we find a copy of eq. (A.12). We have already observed
in Chapter 5 that in the optical communications literature the case sign(β2) < 0 corresponds to
anomalous dispersion, while sign(β2) > 0 corresponds to normal dispersion.
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Appendix B

Symmetry Relations

In this appendix we discuss four different transformations of the potential, namely conjugation
(V (x) 7→ V (x)∗), anticonjugation (V (x) 7→ −V (x)∗), inversion (V (x) 7→ V (−x)), and antiinver-
sion (V (x) 7→ −V (x)), and discuss their impact on the Jost solutions, the Faddeev matrices,
the scattering coefficients, the reflection and transmission coefficients, the matrices Bl(x, α) and
Br(x, α), and the Marchenko integral kernels. We also discuss specific relations for these quanti-
ties in the symmetric case (V (x)∗ = V (x)), in the antisymmetric case (V (x)∗ = −V (x)), for even
potentials (V (−x) = V (x)), and for odd potentials (V (−x) = −V (x)). In this way we elaborate
on the symmetry theory expounded in Sec. 2.5. We start with the detour of constructing the
Marchenko integral kernels from the functions Bl(x, α) and Br(x, α).

B.1 Integral equations for the Marchenko integral kernels

In this section we study the extent to which the Marchenko integral kernel can be evaluated from
the corresponding solution B(x, α) by solving the Marchenko integral equation with the roles of
known and unknown function reversed. It appears that Ωl(α) (α ≥ 2x) can be computed uniquely
from Bl2(x, α) (α ≥ 0) for sufficiently large x. Similarly, it appears that Ωr(α) (α ≥ −2x) can
be computed uniquely from Br2(x, α) (α ≥ 0) for sufficiently large −x.

Let us write the Marchenko integral equations (4.3b), (4.3c), (4.4b), and (4.4c) as follows:

Ωl(α+ 2x) +
∫ ∞

α
dβ Bl1(x, β − α)Ωl(β + 2x) = −Bl2(x, α), (B.1a)

Ωr(α− 2x) +
∫ ∞

α
dβ Br4(x, β − α)Ωr(β − 2x) = −Br3(x, α), (B.1b)

Ωr(α− 2x) +
∫ ∞

α
dβ Br1(x, β − α)Ωr(β − 2x) = −Br2(x, α), (B.1c)

Ωl(α+ 2x) +
∫ ∞

α
dβ Bl4(x, β − α)Ωl(β + 2x) = −Bl3(x, α). (B.1d)

Letting Bls(x, α) and Brs(x, α) be known and have their entries in L1(R+) for any x ∈ R and
s = 1, 2, 3, 4, we thus obtain Volterra integral equations of convolution type.
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Proposition B.1 Given the matrix functions Bls(x, α) or Brs(x, α) in each of eqs. (B.1) and
fixing x ∈ R, the following statements are true:

a. Equation (B.1a) is uniquely solvable if and only if detMl1(x, λ) 6= 0 for every λ ∈ C+.
Moreover, there exists x0 ∈ R such that (B.1a) is uniquely solvable for x ≥ x0.

b. Equation (B.1b) is uniquely solvable if and only if detMr4(x, λ) 6= 0 for every λ ∈ C+.
Moreover, there exists x0 ∈ R such that (B.1b) is uniquely solvable for x ≥ x0.

c. Equation (B.1c) is uniquely solvable if and only if detMr1(x, λ) 6= 0 for every λ ∈ C−.
Moreover, there exists x0 ∈ R such that (B.1c) is uniquely solvable for x ≤ x0.

d. Equation (B.1d) is uniquely solvable if and only if detMl4(x, λ) 6= 0 for every λ ∈ C−.
Moreover, there exists x0 ∈ R such that (B.1d) is uniquely solvable for x ≤ x0.

Proof. Each of eqs. (B.1) has the form

Ω(α) +
∫ ∞

α
dβ B(β − α)Ω(β) = F (α), α ∈ R+,

where the entries of B and F belong to L1(R+) and a solution Ω is sought with entries in L1(R+).
Applying the standard theory of systems of convolution equations on the half-line [59, 53], we
have unique solvability if and only if the so-called symbol

W (λ) def= Ip +
∫ ∞

0
dγ eiλγB(γ)

is invertible for each λ ∈ C+, where p = n,m, n,m respectively. In fact, by Fourier transformation
we obtain

W (λ)
∫ ∞

0
dα eiλαΩ(α) =

∫ ∞

0
dα eiλαF (α).

Thus we obtain for the Fourier transformed solution∫ ∞

0
dα eiλαΩ(α) = W (λ)−1

∫ ∞

0
dα eiλαF (α).

Since Theorem 3.8 implies the existence of Z with entries in L1(R+) such that

W (λ)−1 = Ip +
∫ ∞

0
dα eiλαZ(α),

we obtain the unique solution

Ω(α) = F (α) +
∫ ∞

α
dβ Z(β − α)F (β).

The second statement in part a follows from the fact that Ml1(x, λ) → In as x → +∞,
uniformly in λ ∈ C+. Parts b-d are proved in the same way.
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B.2 Inversion and antiinversion

As in Sec. 2.5, for any function W of x ∈ R we define the functions W (#) and W [#] by

W (#)(x) = W (−x), W [#](x) = −W (−x).

Defining the unitary and selfadjoint operator U on Hn+m by

(Uf)(x) = f(−x), x ∈ R,

we then have the following symmetry relations [cf. (2.11) and (2.13)]:

inversion H(#) = −iJ(d/dx)− V (#) H0(UJ) = −(UJ)H0

H(UJ) = −(UJ)H

antiinversion H [#] = −iJ(d/dx)− V [#] H0U = −UH0

HU = −UH

Replacing (x, λ) by (−x,−λ) in (3.2b) and making the change of variable y 7→ −y we obtain
the Volterra integral equation

Fr(−x,−λ) = eiλJx + iJ

∫ ∞

x
dy e−iλJ(y−x)V (−y)Fr(−y,−λ)

= eiλJx − iJ
∫ ∞

x
dy e−iλJ(y−x)V [#](y)Fr(−y,−λ). (B.2)

Multiplying the first line of (B.2) from the left and the right by J and using JV (x)J = −V (x),
we obtain

JFr(−x,−λ)J = eiλJx − iJ
∫ ∞

x
dy e−iλJ(y−x)V (−y)JFr(−y,−λ)J

= eiλJx − iJ
∫ ∞

x
dy e−iλJ(y−x)V (#)(y)JFr(−y,−λ)J. (B.3)

In a similar way we can manipulate (3.2a). Because (3.2a) and (3.2b) are uniquely solvable for
any L1-potential V , we obtain for the Jost solutions corresponding to H(#) and H [#]

F
(#)
l (x, λ) = JFr(−x,−λ)J, F (#)

r (x, λ) = JFl(−x,−λ)J, (B.4a)

F
[#]
l (x, λ) = Fr(−x,−λ), F [#]

r (x, λ) = Fl(−x,−λ). (B.4b)

Using (3.10) we get for the Faddeev matrices

M
(#)
l (x, λ) = JMr(−x,−λ)J, M (#)

r (x, λ) = JMl(−x,−λ)J, (B.5a)

M
[#]
l (x, λ) = Mr(−x,−λ), M [#]

r (x, λ) = Ml(−x,−λ). (B.5b)

Taking the appropriate limits of (B.4) as x→ ±∞, we obtain for the scattering matrices

a
(#)
l (λ) = Jar(−λ)J, a(#)

r (λ) = Jal(−λ)J, (B.6a)

a
[#]
l (λ) = ar(−λ), a[#]

r (λ) = al(−λ). (B.6b)
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Equations (B.6) lead to identities of the following type:

a
(#)
l1 (λ) = ar1(−λ), a

(#)
l4 (λ) = ar4(−λ),

a
(#)
l2 (λ) = −ar2(−λ), a

(#)
l3 (λ) = −ar3(−λ),

a
[#]
l1 (λ) = ar1(−λ), a

[#]
l4 (λ) = ar4(−λ),

a
[#]
l2 (λ) = ar2(−λ), a

[#]
l3 (λ) = ar3(−λ).

Using (3.35) and (3.36) in (B.5) we obtain

B
(#)
l (x, α) = JBr(−x, α)J, B(#)

r (x, α) = JBl(−x, α)J, (B.7a)

B
[#]
l (x, α) = Br(−x, α), B[#]

r (x, α) = Bl(−x, α). (B.7b)

It is now easily understood that the technical hypothesis applies to the inverted and antiin-
verted Hamiltonians H(#) and H [#] whenever it applies to H. Under the technical hypothesis
we then easily prove the following identities:

T
(#)
l (λ) = T l(−λ) T

(#)
r (λ) = T r(−λ)

T
(#)
l (λ) = Tl(−λ) T

(#)
r (λ) = Tr(−λ)

R(#)(λ) = −L(−λ) L(#)(λ) = −R(−λ)
R

(#)(λ) = −L(−λ) L
(#)(λ) = −R(−λ)

T
[#]
l (λ) = T l(−λ) T

[#]
r (λ) = T r(−λ)

T
[#]
l (λ) = Tl(−λ) T

[#]
r (λ) = Tr(−λ)

R[#](λ) = L(−λ) L[#](λ) = R(−λ)
R

[#](λ) = L(−λ) L
[#](λ) = R(−λ)

These identities can be written as four identities for the scattering matrices

S(#)(λ) = JS(−λ)J = JS(−λ)−1J, (B.8a)

S[#](λ) = S(−λ) = S(−λ)−1. (B.8b)

It is now immediate from the above table and eqs. (4.56), (4.57), (4.61), and (4.62) that we have
the following correspondences for the poles of the transmission coefficients, their orders, and their
Laurent series expansion coefficients (j = 1, . . . , Ñ , s = 1, . . . , q̃j):

κ
(#)
j = κ

[#]
j = κ̃j , q

(#)
j = q

[#]
j = q̃j ,

τ
(#)
ljs = τ

[#]
ljs = τ̃ljs, τ

(#)
rjs = τ

[#]
rjs = τ̃rjs,

κ̃
(#)
j = κ̃

[#]
j = κj , q̃

(#)
j = q̃

[#]
j = qj ,

τ̃
(#)
ljs = τ̃

[#]
ljs = τljs, τ̃

(#)
rjs = τ̃

[#]
rjs = τrjs.

(B.9)

Let us now study the effect of inversion and antiinversion on eigenfunctions. Applying (4.38)
to the inverted potential V (#) we have

F
(#)
l (x, iκj)

(
ε
(#)
j

0m×1

)
= F (#)

r (x, iκj)

(
0n×1

η
(#)
j

)
.

Using (B.4a) and making the change x 7→ −x we get

Fr(x,−iκj)

(
ε
(#)
j

0m×1

)
= −Fl(x,−iκj)

(
0n×1

η
(#)
j

)
.
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A comparison with (4.45) leads to εj = ε
(#)
j and ηj = −η(#)

j . Therefore,

Cj0 = −C(#)
j0 , Dj0 = −D(#)

j0 , Cj0 = −C(#)
j0 , Dj0 = −D(#)

j0 . (B.10a)

In the same way we obtain with the help of (B.4b)

Cj0 = C
[#]
j0 , Dj0 = D

[#]
j0 , Cj0 = C

[#]
j0 , Dj0 = D

[#]
j0 . (B.10b)

With the help of (B.9) we arrive at the identities

Γlj = −Γ(#)
rj , Γrj = −Γ(#)

lj , Γlj = −Γ(#)
rj , Γrj = −Γ(#)

lj . (B.11a)

In the same way we obtain with the help of (B.4b)

Γlj = Γ[#]
rj , Γrj = Γ[#]

lj , Γlj = Γ[#]
rj , Γrj = Γ[#]

lj . (B.11b)

The previous table and, for algebraically simple eigenvalues only, the previous table plus eqs.
(B.10) lead to the following symmetry relations for the Marchenko integral kernels:

Ω(#)
l (α) = −Ωr(α), Ω(#)

r (α) = −Ωl(α), (B.12a)

Ω(#)
l (α) = −Ωr(α), Ω(#)

r (α) = −Ωl(α), (B.12b)

Ω[#]
l (α) = Ωr(α), Ω[#]

r (α) = Ωl(α), (B.12c)

Ω[#]
l (α) = Ωr(α), Ω[#]

r (α) = Ωl(α). (B.12d)

For even potentials (V = V (#)) we have Ωl = Ω(#)
l and Ωr = Ω(#)

r and therefore we obtain
the symmetry relations

Ωl(α) = −Ωr(α), Ωr(α) = −Ωl(α),

Ωl(α) = −Ωr(α), Ωr(α) = −Ωl(α).

Instead, for odd potentials (V = −V (#) = V [#]) we get the symmetry relations

Ωl(α) = Ωr(α), Ωr(α) = Ωl(α),

Ωl(α) = Ωr(α), Ωr(α) = Ωl(α).

B.3 Conjugation and anticonjugation

In this section we study the impact of conjugation and anticonjugation on various quantities,
assuming there are no bound states.
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1. Dualizing the matrix Zakharov-Shabat system. Let us begin our discussion with
the following variation on the matrix Zakharov-Shabat system for λ ∈ R:

−i ∂
∂x

(
F (x, λ)−1

)
J = i F (x, λ)−1∂F

∂x
(x, λ)F (x, λ)−1J

= −F (x, λ)−1J

{
−iJ ∂F

∂x
(x, λ)

}
F (x, λ)−1J

= −F (x, λ)−1J {λIn+m + V (x)}F (x, λ)F (x, λ)−1J

= −F (x, λ)−1J {λIn+m + V (x)} J
= −F (x, λ)−1 {λIn+m − V (x)} , (B.13)

where F stands for either the left or the right Jost solution. Here we note that Jost solutions
are invertible matrices of order n+m. Let us now consider the matrix Zakharov-Shabat system
itself satisfied by a Jost solution:

−iJ ∂F
∂x

(x, λ) = {λIn+m + V (x)}F (x, λ).

Let us now take the complex conjugate of this equation and write it in the following two
equivalent forms:

−i ∂
∂x

(JF (x, λ)∗J) J = −JF (x, λ)∗J {λIn+m − V (x)∗} ,

−i ∂
∂x

(F (x, λ)∗) J = −F (x, λ)∗ {λIn+m + V (x)∗} .

Then using the superscript (∗) for quantities pertaining to the conjugate potential V (∗)(x) def=
V (x)∗ and the superscript [∗] for quantities pertaining to the anticonjugate potential V [∗](x) =
−V (x)∗, we obtain

F (∗)(x, λ)−1 = JF (x, λ)∗J, F [∗](x, λ)−1 = F (x, λ)∗. (B.14)

2. Symmetries for Jost solutions, Faddeev matrices, and scattering coefficients.
Let us now employ (3.1a), (3.1b), (3.4a), and (3.4b) in (B.14). We get

F
(∗)
l (x, λ) = J [Fl(x, λ)∗]−1J, F (∗)

r (x, λ) = J [Fr(x, λ)∗]−1J, (B.15a)

F
[∗]
l (x, λ) = [Fl(x, λ)∗]−1, F [∗]

r (x, λ) = [Fr(x, λ)∗]−1. (B.15b)

For the scattering coefficients we get

a
(∗)
l (λ) = J [al(λ)∗]−1J = Jar(λ)∗J, (B.16a)

a(∗)
r (λ) = J [ar(λ)∗]−1J = Jal(λ)∗J, (B.16b)

a
[∗]
l (λ) = [al(λ)∗]−1 = ar(λ)∗, (B.16c)

a[∗]
r (λ) = [ar(λ)∗]−1 = al(λ)∗. (B.16d)
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From (B.15) and (3.10) we get the following symmetry relations for the Faddeev matrices:

M
(∗)
l (x, λ) = J [Ml(x, λ)∗]−1J, M (∗)

r (x, λ) = J [Mr(x, λ)∗]−1J, (B.17a)

M
[∗]
l (x, λ) = [Ml(x, λ)∗]−1, M [∗]

r (x, λ) = [Mr(x, λ)∗]−1. (B.17b)

Consequently, in the symmetric case (V (∗) = V ) the Jost solutions and scattering coefficients are
J-unitary matrices, while in the antisymmetric case (V [∗] = V ) these matrices are unitary. This
is in agreement with Proposition 3.2.

It is now easily understood that the technical hypothesis applies to the conjugate and anti-
conjugate Hamiltonians H0 − V (∗) and H0 − V [∗] whenever it applies to H. Under the technical
hypothesis we then easily prove the following identities:

T
(∗)
l (λ) = T l(λ)∗ T

(∗)
r (λ) = T r(λ)∗

T
(∗)
l (λ) = Tl(λ)∗ T

(∗)
r (λ) = Tr(λ)∗

R(∗)(λ) = L(λ)∗ L(∗)(λ) = R(λ)∗

R
(∗)(λ) = L(λ)∗ L

(∗)(λ) = R(λ)∗

T
[∗]
l (λ) = T l(λ)∗ T

[∗]
r (λ) = T r(λ)∗

T
[∗]
l (λ) = Tl(λ)∗ T

[∗]
r (λ) = Tr(λ)∗

R[∗](λ) = −L(λ)∗ L[∗](λ) = −R(λ)∗

R
[∗](λ) = −L(λ)∗ L

[∗](λ) = −R(λ)∗

These identities can be written as four identities for the scattering matrices

S(∗)(λ) = S(λ)∗ = [S(λ)∗]−1, (B.18a)

S[∗](λ) = JS(λ)∗J = J [S(λ)∗]−1J, (B.18b)

Thus S(λ) is unitary in the symmetric case and J-unitary in the antisymmetric case. It is now
immediate from the above table and eqs. (4.56), (4.57), (4.61), and (4.62) that we have the
following correspondences for the poles of the transmission coefficients, their orders, and their
Laurent series expansion coefficients (j = 1, . . . , Ñ , s = 1, . . . , q̃j):

κ
(∗)
j = κ

[∗]
j = κ̃j , q

(∗)
j = q

[∗]
j = q̃j ,

τ
(∗)
ljs = τ

[∗]
ljs = (τ̃ljs)∗, τ

(∗)
rjs = τ

[∗]
rjs = (τ̃rjs)∗,

κ̃
(∗)
j = κ̃

[∗]
j = κj , q̃

(∗)
j = q̃

[∗]
j = qj ,

τ̃
(∗)
ljs = τ̃

[∗]
ljs = (τljs)∗, τ̃

(∗)
rjs = τ̃

[∗]
rjs = (τrjs)∗.

3. Symmetries for the functions Bl,r(x, α). It is in general not easy to derive symmetry
relations for Bl(x, α) and Br(x, α), and eventually for the Marchenko integral kernels in the pres-
ence of bound states, under conjugation or anticonjugation. This requires introducing “adjoint”
Jost solutions and Faddeev matrices based on the adjoint matrix Zakharov-Shabat system (B.13).
From (3.10) and the proof of Proposition 3.1 it is clear that

detMl(x, λ) = detMr(x, λ) = 1. (B.19)

Also, M [∗]
l (x, λ) and M

[∗]
r (x, λ) can be divided into blocks labeled 1, 2, 3, 4 in such a way that

M
[∗]
l1 (x, λ), M [∗]

l3 (x, λ), M [∗]
r2 (x, λ), are M [∗]

r4 (x, λ) are analytic in C+ and M
[∗]
r1 (x, λ), M [∗]

r3 (x, λ),
M

[∗]
l2 (x, λ), and M [∗]

l4 (x, λ) are analytic in C−. From (B.17b) it then follows that the blocks 1, 2 of
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Mr(x, λ)−1 and the blocks 3, 4 of Ml(x, λ)−1 are analytic in C+ and the blocks 3, 4 of Mr(x, λ)−1

and the blocks 1, 2 of Ml(x, λ)−1 are analytic in C−. In fact, these blocks of the inverse Faddeev
matrices belong to the corresponding Wiener algebras. We therefore write

Ml(x, λ)−1 = In+m +
∫ ∞

0
dα e−iλJαCl(x, α), (B.20a)

Mr(x, λ)−1 = In+m +
∫ ∞

0
dα eiλJαCr(x, α), (B.20b)

where ‖Cl(x, ·)‖1 and ‖Cr(x, ·)‖1 are finite for x ∈ R. The same result can be derived using
Theorem 3.8. Equations (B.17) and (B.20) imply

B
(∗)
l (x, α) = JCl(x, α)∗J, B(∗)

r (x, α) = JCr(x, α)∗J, (B.21a)

B
[∗]
l (x, α) = Cl(x, α)∗, B[∗]

r (x, α) = Cr(x, α)∗. (B.21b)

We now define n+(x, λ) and n−(x, λ) as follows:

n+(x, λ) =
(

In 0n×m

0m×n 0m×

)
Mr(x, λ)−1 +

(
0n×n 0n×m

0m×n Im

)
Ml(x, λ)−1, (B.22a)

n−(x, λ) =
(

In 0n×m

0m×n 0m×

)
Ml(x, λ)−1 +

(
0n×n 0n×m

0m×n Im

)
Mr(x, λ)−1. (B.22b)

Then

n+(x, λ) = In+m +
∫ ∞

0
dα eiλαc+(x, α), (B.23a)

n−(x, λ) = In+m +
∫ ∞

0
dα e−iλαc−(x, α). (B.23b)

We then have the following analog of Theorem 4.7.

Theorem B.2 Under the technical hypothesis, the Riemann-Hilbert problems

n−(x, λ) = H(x, λ)n+(x, λ), (B.24a)

n+(x, λ) = H(x, λ)n−(x, λ), (B.24b)

where H(x, λ) = eiλJxS(λ)e−iλJx and H(x, λ) = eiλJxS(λ)e−iλJx, hold true.

Proof. In analogy with (B.22) we define

g+(x, λ) =
(

In 0n×m

0m×n 0m×

)
Fl(x, λ)−1 +

(
0n×n 0n×m

0m×n Im

)
Fr(x, λ)−1,

g−(x, λ) =
(

In 0n×m

0m×n 0m×

)
Fr(x, λ)−1 +

(
0n×n 0n×m

0m×n Im

)
Fl(x, λ)−1.
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Then (as in Fl,r(x, λ)−1 = e−iλJxMl,r(x, λ)−1)

g+(x, λ) = e−iλJxn+(x, λ), g−(x, λ) = e−iλJxn−(x, λ).

Then it is easy to verify from the asymptotics as x→ ±∞ that

g−(x, λ) = S(λ)g+(x, λ), g+(x, λ) = S(λ)g−(x, λ).

These two identities can then rewritten as (B.24).

For later use we write

Nl(x, λ) = Ml(x, λ)−1, Nr(x, λ) = Mr(x, λ)−1.

Then Nls(x, λ) and Nrs(x, λ) (s = 1, 2, 3, 4) are the blocks in the usual partitioning of Nl(x, λ)
and Nr(x, λ). From (B.17) and (B.22) we easily derive the symmetry relations

n
(∗)
+ (x, λ) = Jm−(x, λ)∗J, n

[∗]
+ (x, λ) = m−(x, λ)∗, λ ∈ C+, (B.25a)

n
(∗)
− (x, λ) = Jm+(x, λ)∗J, n

[∗]
− (x, λ) = m+(x, λ)∗, λ ∈ C−. (B.25b)

Because of (B.19), the blocks of Nl(x, λ) and Nr(x, λ) coincide with the corresponding blocks of
the cofactor matrices of Ml(x, λ) and Mr(x, λ). For n = m = 1 we find the obvious relations

Nl1(x, λ) = Ml4(x, λ), Nl2(x, λ) = −Ml2(x, λ),
Nl3(x, λ) = −Ml3(x, λ), Nl4(x, λ) = Ml1(x, λ),
Nr1(x, λ) = Mr4(x, λ), Nr2(x, λ) = −Mr2(x, λ),
Nr3(x, λ) = −Mr3(x, λ), Nr4(x, λ) = Mr1(x, λ).

For n = 1 and m ≥ 2 the only remaining elementary relations are as follows:

Nl1(x, λ) = detMl4(x, λ), Nr1(x, λ) = detNr4(x, λ).

4. Dual Marchenko integral equations. Mimicking the proof of Theorems 4.8 and 4.9,
we now easily derive the “adjoint” Marchenko integral equations

Cl1(x, α) =
∫ ∞

0
dβ Ωl(α+ β + 2x)Cl3(x, β), (B.26a)

Cl2(x, α) = Ωl(α+ 2x) +
∫ ∞

0
dβ Ωl(α+ β + 2x)Cl4(x, β), (B.26b)

Cl3(x, α) = Ωl(α+ 2x) +
∫ ∞

0
dβ Ωl(α+ β + 2x)Cl1(x, β), (B.26c)

Cl4(x, α) =
∫ ∞

0
dβ Ωl(α+ β + 2x)Cl2(x, β), (B.26d)
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and

Cr1(x, α) =
∫ ∞

0
dβ Ωr(α+ β − 2x)Cr3(x, β), (B.27a)

Cr2(x, α) = Ωr(α− 2x) +
∫ ∞

0
dβ Ωr(α+ β − 2x)Cr4(x, β), (B.27b)

Cr3(x, α) = Ωr(α− 2x) +
∫ ∞

0
dβ Ωr(α+ β − 2x)Cr1(x, β), (B.27c)

Cr4(x, α) =
∫ ∞

0
dβ Ωr(α+ β − 2x)Cr2(x, β), (B.27d)

in the absence of bound states.
5. Symmetries for the Marchenko integral kernels in the absence of bound states.

The symmetry relations for the reflection coefficients as presented in the previous table lead to
the following symmetry relations for the Marchenko integral kernels:

Ω(∗)
l (x, α) = Ωl(x, α)∗, Ω(∗)

l (x, α) = Ωl(x, α)∗, (B.28a)

Ω(∗)
r (x, α) = Ωr(x, α)∗, Ω(∗)

r (x, α) = Ωr(x, α)∗, (B.28b)

Ω[∗]
l (x, α) = −Ωl(x, α)∗, Ω[∗]

l (x, α) = −Ωl(x, α)∗, (B.28c)

Ω[∗]
r (x, α) = −Ωr(x, α)∗, Ω[∗]

r (x, α) = −Ωr(x, α)∗. (B.28d)

Here we make use of eqs. (4.24a)-(4.24d) to convert symmetry relations for the reflection coef-
ficients into symmetry relations for their Fourier transforms. Thus in the symmetric case we
have the symmetry relations

Ω(∗)
l (x, α) = Ωl(x, α)∗, Ω(∗)

l (x, α) = Ωl(x, α)∗, (B.29a)

Ω(∗)
r (x, α) = Ωr(x, α)∗, Ω(∗)

r (x, α) = Ωr(x, α)∗, (B.29b)

while in the antisymmetric case we have

Ω[∗]
l (x, α) = −Ωl(x, α)∗, Ω[∗]

l (x, α) = −Ωl(x, α)∗, (B.30a)

Ω[∗]
r (x, α) = −Ωr(x, α)∗, Ω[∗]

r (x, α) = −Ωr(x, α)∗. (B.30b)

B.4 Conjugation symmetries and bound states

So far we have derived the symmetry relations (B.28) only if there are no bound states, where
we could just as well have applied the symmetry relations for the reflection coefficients. If there
are bound states, the situation is far more complicated. We restrict ourselves to the case where
all of the eigenvalues are algebraically simple.
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Let us derive eqs. (B.26) and (B.27) if the poles of the transmission coefficients are simple.
In analogy with (4.36) and (4.37) we first derive the identities

Cl1(x, α) = −
N∑

j=1

e−κjατlj0N
j0
r1 (x) +

∫ ∞

0
dβ R̂(α+ β + 2x)Cl3(x, β),

Cl2(x, α) = −
N∑

j=1

e−κjατlj0N
j0
r2 (x) + R̂(α+ 2x) +

∫ ∞

0
dβ R̂(α+ β + 2x)Cl4(x, β),

Cr3(x, α) = −
N∑

j=1

e−κjατrj0N
j0
l3 (x) + L̂(α− 2x) +

∫ ∞

0
dβ L̂(α+ β − 2x)Cr1(x, β),

Cr4(x, α) = −
N∑

j=1

e−κjατrj0N
j0
l4 (x) +

∫ ∞

0
dβ L̂(α+ β − 2x)Cr2(x, β),

where N j0
ls (x) = Nls(x, iκj) and N j0

rs (x) = Nrs(x, iκj) (s = 1, 2, 3, 4). We now replace eigen-
solutions of the matrix Zakharov-Shabat system by “left” eigensolutions which are row vector
functions with entries in L2(R) satisfying (B.13). These left eigensolutions have either of the
equivalent forms

εj

(
In 0n×m

)
Fr(x, iκj)−1 = ηj

(
0m×n Im

)
Fl(x, iκj)−1,

where 0 6= εj ∈ C1×n and 0 6= ηj ∈ C1×m satisfy

εjal1(iκj) = 01×n, ηjar4(iκj) = 01×m.

It is then clear that εj and ηj are exactly the row vectors ξτlj0 and ζτrj0 for arbitrary nontrivial
ξ ∈ C1×n and ζ ∈ C1×m, respectively.

In analogy with (4.44) we obtain(
τlj0 0n×m

0m×n τrj0

)
n+(x, iκj) =

(
0n×n e−2κjx∆lj

e2κjx∆rj 0m×m

)
n+(x, iκj), (B.31)

where n+(x, iκj) is defined in the proof of Theorem B.2 and

∆lj = τlj0Cj0, ∆rj = τrj0Dj0,

for dependency constant matrices satisfying

ηj = εjCj0, εj = ηjDj0,

which are each other’s Moore-Penrose generalized inverses. Using (B.31) we then obtain the
Marchenko integral equations (B.26a), (B.26b), (B.27c), and (B.27d), where

Ωl(α) = R̂(α) +
N∑

j=1

∆lje
−κjα, (B.32a)

Ωr(α) = L̂(α) +
N∑

j=1

∆rje
−κjα. (B.32b)
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It remains to prove that we have found the same integral kernels as in (4.53).
In the same way we can depart from the left eigensolutions

εj

(
In 0n×m

)
Fl(x,−iκ̃j)−1 = ηj

(
0m×n Im

)
Fr(x,−iκ̃j)−1,

where 0 6= εj ∈ C1×n and 0 6= ηj ∈ C1×m satisfy

εjar1(−iκ̃j) = 01×n, ηjal4(−iκ̃j) = 01×m.

We then obtain(
τ̃lj0 0n×m

0m×n τ̃rj0

)
n−(x,−iκ̃j) =

(
0n×n e−2κ̃jx∆lj

e2κ̃jx∆rj 0m×m

)
n−(x,−iκ̃j), (B.33)

where
∆lj = τ̃lj0Cj0, ∆rj = τ̃rj0Dj0,

for dependency constant matrices satisfying

ηj = εjCj0, εj = ηjDj0,

which are each other’s Moore-Penrose generalized inverses. Using (B.33) we obtain the Marchenko
integral equations (B.27a), (B.27b), (B.26c), and (B.26d), where

Ωl(α) = R̂(α) +
N∑

j=1

∆lje
−κjα, (B.34a)

Ωr(α) = L̂(α) +
N∑

j=1

∆rje
−κjα. (B.34b)

It remains to prove that we have found the same integral kernels as in (4.55).

Proposition B.3 Let the poles of the transmission coefficients be simple. Then

∆lj = Γlj , ∆rj = Γrj , ∆lj = Γlj , ∆rj = Γrj . (B.35)

Moreover, under conjugation and anticonjugation we have the following symmetries:

Γ[∗]
lj = −Γ(∗)

lj = −
(
Γlj

)∗
, Γ[∗]

rj = −Γ(∗)
rj = −

(
Γrj

)∗
, (B.36a)

Γ[∗]
lj = −Γ(∗)

lj = − (Γlj)
∗ , Γ[∗]

rj = −Γ(∗)
rj = − (Γrj)

∗ . (B.36b)

Equation (B.35) implies the Marchenko equations (B.26) and (B.27), where the integral ker-
nels are given by (B.32) and (B.34) and coincide with those defined by (4.53) and (4.55). As
explained in Subsection 4.2.4, in the antisymmetric case these integral kernels satisfy the sym-
metry relations (B.30).
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Proof. From linear algebra it is known that α is a left eigenvector of the p×p matrix A at the
eigenvalue λ (i.e., αA = λα) if and only if α∗ is a right eigenvector of A∗ at the eigenvalue λ. As
a result, C∗

j0 and D∗
j0 are each other’s inverses between the ranges of τ∗lj0 and τ∗rj0, C

∗
j0 and D

∗
j0

are each other’s inverses between the ranges of τ̃∗lj0 and τ̃∗rj0, and the matrices extend pairwise
by means of zero matrices to pairs of matrices that are each other’s Moore-Penrose generalized
inverses. A similar set of four matrices can be constructed by defining them by means of the
intertwining relations

τlj0Cj0 = Dj0τrj0, τrj0Dj0 = Cj0τlj0, (B.37a)

τ̃lj0Cj0 = Cj0τ̃lj0, τ̃rj0Dj0 = Dj0τ̃rj0, (B.37b)

and extending them by zero to form pairs of matrices that are each other’s Moore-Penrose
generalized inverses. The uniqueness of such matrices then implies (B.35). Using (B.37) together
with (B.35) we obtain (B.36), as claimed.

We now derive the main symmetry result.

Theorem B.4 Let the poles of the transmission coefficients be simple. Then the Marchenko
integral kernels satisfy the symmetry relations (B.28).

Proof. Equation (B.35) implies the Marchenko equations (B.26) and (B.27), where the inte-
gral kernels are given by (B.32) and (B.34) and coincide with those defined by (4.53) and (4.55).
Equations (B.36) and the symmetry relations for the reflection coefficients then imply (B.28).
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häuser OT 49, Basel, 1990.

[55] I. Gohberg, M.A. Kaashoek, and A.L. Sakhnovich, Canonical systems with rational spectral
densities: Explicit formulas and applications, Math. Nachr. 194, 93–125 (1998).

150



[56] I. Gohberg, M.A. Kaashoek, and A.L. Sakhnovich, Pseudo-canonical systems with rational
Weyl functions: Explicit formulas and applications, Journal of Differential Equations 146,
375–398 (1998).

[57] I. Gohberg, M.A. Kaashoek, and A.L. Sakhnovich, Sturm-Liouville systems with rational
Weyl functions: Explicit formulas and applications, Integral Equations and Operator The-
ory 30, 338–377 (1998).

[58] I. Gohberg, M.A. Kaashoek, and A.L. Sakhnovich, Canonical systems on the line with
rational spectral densities: Explicit formulas. In: V.M. Adamyan, I. Gohberg, M. Gor-
bachuk, and V. Gorbachuk (eds.), Differential Operators and Related Topics, Proceedings
of the Mark Krein International Conference on Operator Theory and Applications, Odessa,
Ukraine, August 18-22, 1997, Birkhäuser OT 117, 2000, pp. 127–139.
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[76] F.È. Melik-Adamyan, On a class of canonical differential operators, Soviet J. Contemporary
Math. Anal. 24, 48–69 (1989); also: Izv. Akad. Nauk Armyan. SSR Ser. Mat. 24, 570–592,
620 (1989) [Russian].

[77] A. Melin, Operator methods for inverse scattering on the real line, Commun. Part. Diff.
Eqs. 10, 677–766 (1985).

[78] L.F. Mollenauer, R.H. Stolen, and J.P. Gordon, Experimental observation of picosecond
pulse narrowing and solitons in optical fibers, Phys. Rev. Lett. 45, 1095–1098 (1980).

[79] Z. Nehari On bounded bilinear forms, Ann. Math. 65, 153–162 (1957).

[80] C.D. Pagani and S. Salsa, Analisi Matematica, Vol. 2, Masson, Milan, 1991.

[81] I.G. Petrovski, Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, 1966.

[82] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis,
Self-adjointness, Academic Press, New York and London, 1975.

[83] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Opera-
tors, Academic Press, New York and London, 1978.

[84] A.L. Sakhnovich, Dirac type and canonical systems: Spectral and Weyl-Titchmarsh matrix
functions, direct and inverse problems, Inverse Problems 18(2), 331–348 (2002).

[85] A.L. Sakhnovich, Dirac type system on the axis: Explicit formulae for matrix potentials with
singularities and soliton-positon interactions, Inverse Problems 19(4), 845–854 (2003).

[86] M. Schechter, Principles of Functional Analysis, Second ed., Graduate Studies in Math.
36, Amer. Math. Soc., Providence, RI, 2002.

152



[87] J.K. Shaw, Mathematical Principles of Optical Fiber Communications, CBMS-NSF Re-
gional Conference Series 76, SIAM, Philadelphia, 2004.

[88] S. Tanaka, Korteweg-de Vries equation: Construction of solutions in terms of scattering
data, Osaka J. Math. 11, 49–59 (1974).

[89] J.R. Taylor, Optical Solitons Theory and Experiment, Cambridge Studies in Modern Optics
10, Cambridge, 1992.

[90] C. van der Mee Direct and inverse scattering for skewselfadjoint Hamiltonian systems. In:
J.A. Ball, J.W. Helton, M. Klaus, and L. Rodman (eds.), Current Trends in Operator
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