UNIVERSITA DEGLI STUDI DI CAGLIARI
FACOLTA DI INGEGNERIA
Dottorato di Ricerca in

Ingegneria Elettronica e Informatica
(Anno Accademico 2007-2008 - XX ciclo)

DESIGN AND OPTIMIZATION
TECHNIQUES
FOR VLSI NETWORK ON CHIP
ARCHITECTURES

A NOVEL COMPLETE DESIGN FLOW FOR APPLICATION SPECIFIC NOCS

PhD thesis by:
Paolo Meloni

Contents

Introduction ix
1 Context and Motivation 15
1.1 Introduction 15
1.2 SoC paradigm 15
1.3 MPSoC paradigm 16
1.4 Challenges of Deep Sub-Micron Technologies 17
1.4.1 Complexity of the interconnect hierarchy 18
1.4.2 Interconnect delay 18
1.4.3 Energy consumption 19
1.4.4 Interconnect reliability 20
1.4.5 Process variations 20
1.4.6 Complexity of interconnect modeling 20

1.5 Interconnect architecture optimization:
motivationo oL Lo 21
1.5.1 Network-on-chip communication architectures 22
1.6 Network-on-chip architectures features and classification . . . 23
1.6.1 Network design constraints 24
1.7 Network-on-chip architecture design space 26
1.7.1 Fundamental network parameters 26
1.7.2 Network Design Decisions 31
1.8 State of the Art NoC Architectures 33
1.8.1 AMBA Shared Bus 36
1.8.2 AMBA Multi-Layer 37
1.8.3 xpipesNoC 37
2 Comparative analysis of NoCs and Traditional Interconnects 41
2.1 Related Worko 42
2.2 The Fabrics Under Test 43
2.3 The Test Applications 45

2.4 Reference Characterization Flow 48

iv CONTENTS
2.4.1 Fabric Simulation 48
2.4.2 Fabric Synthesis 49
2.5 Performance comparison results 53
2.5.1 Interconnect Performance 53
2.5.2 Interconnect Area, Frequency of Operation and Band-
width 56
2.5.3 Interconnect Power and Energy 58
2.5.4 Split Analysis of Area and Power Contributions 61
3 Designing Application-Specific Networks on Chips 69
3.1 Introduction 69
3.2 Design Flow 71
3.3 Input Models 75
3.4 Design Algorithms oL 76
3.5 Experiments and Case Studies 83
3.5.1 Layout-level Comparisons 83
3.5.2 Experiments on SoC Benchmarks 85
4 Area and Power Modeling for Networks-on-Chip components 91
4.1 The xpipes Switch Architecture 94
4.2 Proposed Modeling Methodology 94
4.2.1 Parameters of Interest 96
4.2.2 Area and Power Models 98
4.2.3 Choice of a Relevant Training Set 103
4.2.4 Fitting Model Coefficients 104
4.3 Experimental Results 106
4.3.1 Experiments with Netlist-Based Models and a
Netlist-Level Test Set 107
4.3.2 Test Case: a Complete NoC Topology 108
4.3.3 Experiments with Netlist-Based Models and a
Layout-Level Test Set 108
4.3.4 Experiments with Layout-Based Models and a
Layout-Level Test Set 111
4.3.5 Experiments with a Parabolic Model for the Depen-
dency on the Target Synthesis Frequency 113
5 Routing Aware Switch Hardware Customization 117
5.1 Introduction 117
5.2 Reference design flow oo 118
5.3 Routing aware hardware optimization 119

5.3.1 Hardware-Level Customization Support 121

CONTENTS

v
5.3.2 Software-Level Customization Support 121

5.4 Customization method effectiveness evaluation 122
5.4.1 Experiments on the Multimedia benchmark 122

5.4.2 Experiments on SoC benchmarks 124

6 65 nm NoC Design 129
6.1 NoC Design Flow 130
6.1.1 Flow Back-End 131

6.1.2 Post-Layout Analysis 135

6.2 Wire Design in 65 nm Technologies 135
6.2.1 Link Delay and Link Power 135

6.3 Experimental Results 136
6.3.1 Technology Scaling from 90 to 65 nm 136

6.3.2 Topologydesign 140

6.3.3 High Bandwidth Application 140

6.3.4 Effect of Link Pipelining 142

6.3.5 Low Bandwidth Application 143

7 Conclusions 149
List of figures 155

List of tables

157

Introduction

As steady progress is being made in the miniaturization of chip features,
embedded systems are quickly evolving towards complex devices, including a
large set of computation engines, dedicated accelerators, input/output con-
trollers and multiple memory buffers. MultiProcessor System-on-Chip (MP-
SoC) is a commonly used term to describe the resulting outcome. However,
this feature- and performance-oriented evolution is not devoid of significant
challenges, including mastering the increasing design complexity and mini-
mizing power consumption. Moreover, miniaturization itself is bringing its
own set of design issues at the physical level, originated primarily by an in-
creasing ratio of wire vs. logic propagation delay. One of the most critical
areas of MPSoC design is the interconnect subsystem, due to architectural
and physical scalability concerns. The former is due to the performance
pressure associated with several system cores that simultaneously demand
communication resources, and subsequently relates to the need for providing
adequate bandwidth and latency. The latter is due to the intrinsic issues due
to the design of wires that must span across the whole chip area, namely,
propagation delay, noise and rosstalk. Traditional shared bus interconnects
are relatively easy to design, but do not scale well. Thus, evolutions have been
conceived both from the protocol (e.g. outstanding transactions with out-
of-order delivery) and the topology (e.g. bridges, crossbars) points of view.
Nevertheless, scalability is still suboptimal, as protocol improvements still
hit a bandwidth limit due to the available physical resources, and topological
extensions require the use of bridges (i.e. multiple buses or “spaghetti-like”
design) or large area overheads in routing structures (i.e. using crossbars).
Networks-on-Chip (NoCs) have been suggested as a promising solution to the
scalability problem. By bringing packet-based communication paradigms to
the on-chip domain, NoCs address many of the issues of interconnect fabric
design. Wire lengths can be controlled by matching network topology with
physical constraints and bandwidth can be boosted by increasing the number
of links and switches. This thesis focuses on the design and the optimization
of Network on Chip architectures paying special attention to the aspects re-

X Introduction

lated to the relationship between the system level design decisions and the
back-end implementation variables. In particular, the core of the presented
research work is a complete flow for application-specific NoC design. The pro-
posed flow helps the NoC designer to perform all the design actions required,
from the target application task graph to the placement&routing steps. The
activities concerning this research have been performed in collaboration with
three external partners:

e Universita di Bologna
e Stanford University
e Ecole Polytechnique Fédérale de Lausanne

As will be explained more in detail in the thesis, the proposed flow aims to
tailor the optimal NoC structure for a given application. The flow consists of
a front-end part, devoted to the synthesis of the optimal NoC configuration
based on the application communication requirements, of a back-end part,
in charge of the implementation (down to the layout level) of the configura-
tion chosen by the front-end, and of some side steps needed to produce the
information received in input by the previously mentioned two parts and to
close the gaps between them. In the first chapter, the motivation bringing
to approach to this research field is dissussed. In this aim, an overview of
the landscape of todays multicore systems implemented on a single chip is
included, to explain why, from a functional point of view, modern computing
devices would require a new interconnection architecture paradigm. More-
over, the problems related to the physical aspects, such as scalability, design
feasibility and reliability, that emerge with the technology shrinking and pose
the need for a more scalable and structured communication infrastructure,
are discussed. Once this context is illustrated, some exemples of state of
the art interconnection systems are presented. A brief summary about most
efficient and diffused bus-bases systems and about the best known on-chip
networks is reported. xpipes , an in-house developed Network on Chip archi-
tecture, conceived in 2002 and so far defined in a completely reconfigurable
and synthesizable RTL component library, is depicted more in detail, being
the reference architecture for the whole research work and for the whole pre-
sented design flow. In the second chapter, to assess the usefulness of NoC
architectures, and to figure out the advantages related to them, a thorough
comparison between bus-based systems (simple and complex) and on-chip
network is presented. A great number of design variables affect the result of
such a comparison. However, to make the analysis meaningful, there are as-
pects which cannot be ignored. As mentioned above, it is not possible to just

Introduction xi

simulate each architecture to assess its effectiveness. Even if performance
alone is taken into account, the clock frequency variable can skew results.
Further, since interconnects by definition span across significant portions of
the die, wiring congestion and wire propagation delays are very difficult to
estimate in advance. Therefore, the overhead of crossbars and NoCs can only
be fully understood after having mapped the architecture onto a chip layout.
A shared-bus, a crossbar and a NoC designs were brought to the chip layout
level in order to highlight the respective strengths and weaknesses in terms
of performance, area and power, keeping an eye on future scalability. Inside
this chapter, the back-end part of the proposed NoC design flow is introduced
and illustrated in detail. Moreover, it is used to take the test platforms down
to a placed&routed layout, in order to get frequency, area and power fig-
ures. A 0.13 pm library was used for this study. In the third chapter, the
whole flow for application-specific NoC design is presented. A preliminary
description of the reasons pushing to the approach to application-driven de-
sign is given, then the different steps of the proposed flow are commented
in detail. In particular, the front-end part related to the high-level topology
synthesis is illustrated as reference and how its interfacing with the back-end
part of the flow was allowed is explained. Moreover, the chapter includes
the comment related to a set of experiments proving the usefulness of the
proposed approach and the consistence of the used design methods. In the
fourth chapter, one of the most important side steps included in the flow is
presented. This step is represented by the construction of detailed area and
power models, needed by the front-end of the flow to evaluate the impact of
each decision taken with respect to the chosen network configuration. The
models are derived by using information and experimental results coming
from the back-end part of the flow, and are thus mandatory to close the gap
between the configuration synthesis and the actual results after implemen-
tation. A complete methodology extendible to xpipes as well as to other
NoC architectures is presented and tested to asses accuracy and effort re-
quired. In the fifth chapter, an original design implementation technique,
aimed to reduce the hardware overhead introduced by NoC components is
briefly explained. Basically, according to this technique the internal hardware
of the xpipes NoC router is specifically reduced to the minimum configura-
tion needed to suit the traffic required by a given application. The proposed
technique is completely integrated in the xpipes design flow. Finally, in the
sixth chapter, the NoC design is investigated referring to Deep Sub Micron
techology. Athough the scalability and predictability improvements, derived
by the new communication paradigm, could already be assessed by evalu-
ating the experiments commented in Chapter 1, further experiments and
implementation trials have been performed referring to smaller technologies,

xii Introduction

namely 90 nm and 65 nm, to assess actual NoC feasibility and efficiency
in challenging technology nodes. Moreover the evaluation of real impact of
wiring capacitance, was tackled thoroughly shedding light on a major impor-
tant point in NoC research. Updates to the proposed design flow were found
out to be mandatory in such a contest, allowing to define some very useful
guidelines for the NoC designer.

Chapter 1

Context and Motivation

1.1 Introduction

Modern trends in electronics and challenges related to the physical features
of future technology processes, bring the need for a scalable and efficient in-
terconnect structure, to support the interaction between the units inside a
chip. SoC and MPSoC paradigms, every day more widely diffused, pose strict
requirements in terms of functional scalability and reusability of the mod-
ules. Moreover, manufacturing with deep sub-micron (DSM) technologies,
the designer can not keep up with physical scalability and reliability using
classic interconnect structures. So, to introduce the thesis, in this chapter,
an overview of the concepts related to modern design paradigms [10] and a
brief summary of the physical problems exposed by the technology scaling
are reported.

1.2 SoC paradigm

By the end of the decade, according to the International Technology Roadmap
for Semiconductors [1], it will be possible to realize inside a single silicon die
up to 4 billion transistors smaller than 50-nm, operating below one volt
and running at 10 GHz. On the other hand, today’s market pushes the
hardware designers asking for the possibility to run very complex applica-
tions, showing the needs for computing devices providing every day higher
performances. Network processors used in high-performance routers, hands-
held devices merging telephony and multimedia capabilities, digital televi-
sions and set-top boxes, video game stations rendering gaming action in real
time, sensor networks, servers, are typical modern devices needed to support
performance-hungry applications. A System-on-chip is the result of the inte-

16 Context and Motivation

gration of complete complex systems on a single chip. Systems-on-chip use
the huge integration capabilities provided by modern technology nodes, mix-
ing in the chip digital, analog, mixed-signal and radio-frequency functions, to
find a solution to the challenging design problems in the telecommunications,
multimedia and consumer electronics domains. The typical SoC hardware
implementation is based on a platform obtained by the composition of a set
of independent tiles. A tile is defined as an independent subsystem of the
System on Chip architecture that can accomplish a high-level function. It
can combine storage, computation and communication interfaces with the
system environment. It can be a processing unit (including its cache mem-
ory), like a General Purpose Processor (GPP) or a Digital Signal Processor
(DSP), a Coarse Grain Architecture (CGA), an Application Specific Inte-
grated Circuit (ASIC), a RAM blocks or an input/output interface. Tiles
are also known as Intellectual Property cores (IP cores), typically when de-
signed by another party and later integrated into a SoC platform. Major
IP vendors like ARM license their IP cores to platform integrators. The IP
cores can be provided in soft form (soft IPs), i.e. their description in a HDL
language or a standard-cell netlist is delivered, or in hard form (hard IPs),
meaning that a layout level black box is released to be integrated inside the
SoC flooplan. Hard IPs can have various sizes and aspect ratios. The possi-
bility to easily integrate inside a platform third party macros is mandatory to
take profit about the advantages coming from the improved computing po-
tential, since time-to-market pressure is every day stronger and a complete
full-custom design flow of the whole platform is unfeasible.

1.3 MPSoC paradigm

Most current SoCs are Multi-Processors SoCs (MPSoCs). They contain mul-
tiple instruction-set processors (CPUs), and are seen as the only way to meet
future system feature set, design cost, power, and performance requirements.
State of the art MPSoCs are processor arrays, instantiating multiple parallel
general-purpose processors (GPPs) and multiple application-specific proces-
sors (ASPs). They allow to exploit the intrinsic parallelism that is usually
present in modern application domains, outperforming in this cases single
high-end general purpose processor. Moreover, integrating different proces-
sors inside a chip, allows the cores to work at a lower frequency and provide
balance between performance and power consumption showing much lower
power consumption per core. It is also possible for the designer to specify
for each core a different specialized instruction set, bringing the system to
a better efficiency and to higher performances. A very useful possibility of-

1.4 Challenges of Deep Sub-Micron Technologies 17

fered by the MPSoC paradigm is related to accelerating the design process.
An MPSoC platform can be easily upgraded or customized for different cus-
tomer’s needs relying on the reusability of the tile or on the integration of
third party IPs. This allows to avoid the optimization process for a full-
custom designed high end processor, that usually requires extremely long
design cycles. MPSoC platform based design flow reduces the gap between
the design productivity and the potential offered by future silicon technolo-
gies and thus permit to better underly to the time-to-market tremendous
pressure. Typical examples of high performance MPSoC are:

e the Cell processor platform designed by Sony, Toshiba and IBM, that is
based on one general purpose processor (IBM Power PC) and 8 graph-
ical co-processors (see figure 1.4).The platform will be used for the
Playstation 3 game console, high definition television sets and com-
puter servers.

e Niagara 2 platform designed by Sun, including 8-core (look for figure)
e Barcelona designed by AMD, including 4 cores (look for figure)

e DSP PC205 by picoChip, including 1 GPP core and 248 individual
ASPs (look for figure)

e (isco Silicon Packet Processor, including 188 programmable 32-bit
RISC processors executing 47 billion instructions per second (BIPS)
(look for figure)

e Intel Network Processor, including 1 GPP Core and 16 ASPs (look for
figure)

Probably the most advanced research project in the field of high perfor-
mances MPSoC is Intel’s TeraFlop chip including 80 GPPs, interconnected
by a mesh-like network-on-chip.

1.4 Challenges of Deep Sub-Micron Technolo-
gies

Transistor size is constantly reduced in every transition to a new technology
node. The minimum feature size, that is the minimal distance separating
two wires, can be considered as a common unit for measuring transistor size
relative to a given technology. As it became smaller than 90 nm, microelec-
tronics has entered a new era of design challenges called the Deep Sub-Micron

18 Context and Motivation

era, mainly characterized by the fact that communication will become more
critical than computation. Interconnect will become the dominating factor
determining speed, noise and power. Compared to transistors, interconnect
has evolved very slowly since CMOS technology has been introduced. In the
past thirty years, the wire delay has been reduced by a factor 60 while during
the same time for transistors, a factor 1000 has been reached. While, so far,
interconnect has never been a critical issue as transistors were dominating the
delay [8], in the coming years, interconnect will have to dramatically improve
if microelectronics industry wants to keep up following Moore’s law [11].

Deep Sub-Micron technologies come up with many challenges mainly af-
fecting the global wire interconnect:

e increasing complexity of the wiring hierarchy
e increasing interconnect delay

e increasing energy consumption

e decreasing interconnect reliability

e increasing process variations

e increasing complexity of the interconnect modeling

1.4.1 Complexity of the interconnect hierarchy

The number of metallization levels costantly grows in future DSM designs as
interconnect is becoming more and more heterogeneous. The hierarchy com-
plexity must bu managed coherently on the physical plane, considering the
distinction between local, intermediate and global interconnect, and on the
logical plane, using different solutions to tackle local on-chip communication-
architecture, targeting intra-tile communications, or global on-chip commu-
nication architecture, targeting inter-tile communications.

1.4.2 Interconnect delay

As technology scales down, local and intermediate wires become shorter in
average, leading, together with the introduction of new materials, to a dra-
matic improvement in local and intermediate wire delay. However, many
phenomena are deteriorating wire RC delay improvement, affecting the wire
resistance (skin effect, effective resistivity, inelastic scattering at the bound-
aries, process variations...) or the wire capacitance (cross-talk, fringing ca-
pacitance,...). Transistor gates become smaller, leading to lower transistor

1.4 Challenges of Deep Sub-Micron Technologies 19

energy consumption and delay. The ratio between gate delay and local wire
delay remains about the same. While local wire lengths scale with the tech-
nology, global do not. The length of the longest global wires remains about
the same as technology scales or could even increase as silicon dies could
become larger. So, the relative contribution of the global interconnect to the
power consumption and delay increases considerably (see figure 1.1 [1]).

100
= (Gale Delay
[Fan cut 4)
== acal
[Scaled)
10 =& Global with Repeaters

—¥— Global wio Repeaters

Relative Delay

o1
250 180 130 N 65 45 32

Process Technology Node (nm)

Figure 1.1: Comparison between gate delay and local/global interconnect de-
lay:local wires and gate delay are scaling down while the relative
contribution of the global wire delay is increasing with technology

1.4.3 Energy consumption

Energy consumption is a critical issue for hand-held devices as battery life is
very limited and heat dissipation systems are already reaching their limits.
The power consumption of a CMOS circuit has two components: dynamic
and static. Dynamic power consumption occurs when a gate is switching
from one state to another. Static power consumption is due to the existence
of small leakage currents that flow through transistors in cut-off mode. As the
industry is moving to Deep Sub Micron technologies, leakage power consump-
tion of CMOS circuits starts to can not be neglected [9]. Leakage current
of one transistors is indeed negligible in absolute but as transistors density

20 Context and Motivation

is reaching billions of transistors per chip, sub-threshold leakage becomes a
major problem, also taking into account its temperature dependence.

1.4.4 Interconnect reliability

In Deep Sub-Micron technologies, an interconnect wire cannot be considered
as an ideal transmission medium anymore. Signal reliability is affected by
inter-wire noise, due especially to the capacitive crosstalk that arises from the
reduction of the insulator thickness between wires and the increasing of their
aspect ratio, the mutual coupling capacitance increases considerably. More-
over, noise margin is decreased due to power supply and threshold voltage
scaling. Crosstalk implies delay degradation and unpredictability. On the
other hand wire reliability is deeply affected by electromigration, that occurs
when the metal ions in a wire are repeatedly impacted by electrons and thus
transported. It causes open-circuit in the wire or short circuit between wires.

1.4.5 Process variations

As minimum feature size becomes smaller than 100nm, systematic or random
process differences can arise between dies (inter-die variations) or within one
die (intra-die variations). While systematic process variations can be handled
by designers, random process variations remain a critical research issue at
present, time. Process variations may lead to manufacturing yield problems
or to time-dependent variations that only appear during the chip operating
time and they can either affect the functionality of the system component or
only its characteristics. Examples of causes of variations are:

e Variant dopant concentration: this implies voltage threshold variations;

e Limited resolution of lithography: this causes transistor length varia-
tions resulting in leakage current variation;

e Line edge roughness problems: edges of the wires are more and more
difficult to control as technology scales;

e EDA tool inaccuracies: the technological models integrated in the EDA
tools have limited accuracy which introduces variability on system char-
acteristics;

1.4.6 Complexity of interconnect modeling

To evaluate delay and power consumption, interconnect used to be modeled
as simple RC lumped circuits. However, in Deep Sub-Micron technologies

1.5 Interconnect architecture optimization:
motivation 21

and especially for long lines like global wires, line resistance will not be neg-
ligible anymore compared to driver resistance. Thus, modeling the intercon-
nect will become more complex as models will have to take into account the
distributive character of the interconnect. Inductance contributions also have
to be taken into account for high performance designs. For very long high
performance interconnect (clocked at 1GHz), only transmission line models
give accurate results.

1.5 Interconnect architecture optimization:
motivation

Interconnect is becoming critical in SoC designs due to both system-level
and technological constraints. Major factors thus motivate the need for an
optimized communication architecture:

e the increasing density of on-chip components which makes past inter-
connect solutions inefficient

e the need for communication architecture reusability to cope with platform-
based design methodology

e the need to tackle problems imposed by DSM technologies effects

SoC design is now moving from computation to communication centric [2], [7].
Communication and data-access are indeed becoming the two most critical
issues for future SoC designs. Traditionally, SoC designers have used either
ad-hoc wiring or simple shared bus architectures as the global communica-
tion architectures. Those solutions were well adapted for small SoC platforms
for which interconnect was far less important than computing architectures.
However, as the system complexity grows and the wiring delay surpasses
the gate delay, those communication architecture, under the load of multi-
ple high-speed processing elements, rapidly become a bottleneck. Designers
have been successfully tackling the issue by incrementally improving the bus
paradigm. Approaches range from more advanced protocols [17], which keep
the shared bus topology but add sophisticated features, like the support for
multiple outstanding transactions, to new topological concepts [4, 14, 16],
up to the extreme concept of a full crossbar interconnect. These alternatives
exhibit varying levels of complexity, performance and reusability. Still, the
scalability challenge is not over. A crossbar-based design guarantees maxi-
mum bandwidth, but large crossbars run into spaghetti wiring issues, which
hinder the achievable frequency of operation and pose severe physical design

22 Context and Motivation

problems. Further, large crossbars are expensive to implement. Therefore,
for big designs, hierarchical approaches are typically taken; IP cores are glued
together by a mixture of buses, crossbars, bridges, decoders and adapters.
This choice keeps hardware cost at an acceptable level, but is difficult to
design, validate, maintain and extend; and most importantly, it does not
really provide a comprehensive answer to the scalability dilemma. In search
of a proven solution to scalability worries, researchers turned to wide area
networks to get inspiration.

1.5.1 Network-on-chip communication architectures

Networks-on-Chip (NoCs) are the target of the design and optimization tech-
inques proposed in this thesis. NoCs were proposed as a scalable solutions to
the problems related to the utilization of shared structures in complex SoCs
[5, 6]. NoCs (Fig. 1.2) are the on-chip transposition of the packet-switched
paradigm; as such, they feature some known properties, but a mostly unex-
plored set of design tradeoffs. For example, in wide area networks, switches
can leverage a whole dedicated chip and a large amount of buffer memory.
Within a chip, a switch has to fit within fractions of mm? and its power
consumption should be some milliwatts at most. The most effective way to
implement a switch while staying within those bounds has not been clearly
determined yet. Similarly, wide area networks can afford processing latencies
of hundreds of milliseconds without problems, while in a NoC an excessive la-
tency overhead for packetization and multi-hop routing could severely affect
area, power and latency metrics.

Provided that designers can comply with such tight constraints, NoCs
feature many compelling properties. Should system requirements increase,
more bandwidth can be easily added to a network. Physical design is made
easier by the possibility of optimizing wire utilization and enforcing strict
wire segmentation. Designing complex interconnection systems becomes a
more streamlined activity, since a single homogeneous architecture must be
deployed and validated. At the same time, very heterogeneous IP cores (in
terms of data width, operating frequency, transaction types) can be plugged
to a NoC, given the proper network adapters. The NoC itself can be shaped
into arbitrary topologies to optimally match the communication needs of the
cores; this is key to simultaneously satisfying application requirements and
cost constraints. Generally speaking, NoCs feature more degrees of freedom
than alternative architectures, which is a definite advantage in the highly
heterogeneous SoC market. As can be seen, each design alternative for the
interconnect fabric is very suitable for a subset of the SoC application space,
but is limited in some other respect. Buses are cheap to manufacture, but

1.6 Network-on-chip architectures features and classification 23

NI DSP

switch

/ switch

switch

AN

switch

switch

Figure 1.2: A general view of a NoC

have a clear performance scalability issue. Crossbars have the highest pos-
sible performance for medium-sized designs, however cost and wire routing
issues also prevent scalability beyond a certain threshold. Hierarchical buses
and mixed topologies struggle to provide the best tradeoff among perfor-
mance and overheads in big designs, but also encounter a stumbling block in
terms of complexity of design and validation. NoCs offer virtually unlimited
scalability and a high potential for customization, but their implementation
overhead has to be fully assessed first. The activities presented in this thesis
aim to validate this claim with exhaustive design experiments.

1.6 Network-on-chip architectures features and
classification

The efficiency of an interconnect architecture is evaluated taking into ac-
count its capability of supporting the system feasibility and communication
requirements using some corresponding metrics.

A communication process is an information (data) transfer from an ini-
tiator unit (or masters) and one target unit (or slaves). The transfer can be
“pushed” if the sending unit is an initiator or “pulled” when it is required by a
target. The “protocol” specifies how data should be transfered from senders

24 Context and Motivation

to receivers. Some control information must also be provided to initiate a
transfer, including for exemple an identifier of the destination. The “commu-
nication architecture” is devoted to implements the communication process.
Every communication architecture, and thus every NoC, basically consists
in:

e links: A “link” is a logical connection between two (or more) com-
munication architecture components, is composed out of one or more
physical communication channels supporting the signal carrying the
information. Typically, on-chip networks communication channels, are
physically implemented as global wires in current CMOS technologies.

e switching elements: A switching element is a component that connects
its input ports with its output ports in a flexible manner, performing or
not a connection between two links connected to it. Physically, while
it is typically a multiplexer in a bus or a switching fabric in a crossbar
based design, it consists in the switch of router in a Network-on-Chip.

e buffers: inside the communication architecture some storage resources
are used to assure loss less communication and reduce cogestion.

Moreover, communication architectures in general, but especially NoCs, can
require a Network Interface, that is a module devoted to perform a protocol
conversion, from the protocol supported by the external environment, to the
one featured by the communication infrastructure. In case of packet switched
NoCs, the Network Interface (NI) is also in charge of packeting operations.

1.6.1 Network design constraints

Communication architecture design is performed taking into account several
requirements posed by the system-level constraints:

e Connectivity requirements:

For a given application, the traffic pattern exposes the communica-
tion requirements between the different tasks. Any application can
be described as a Control and Data Flow Graph (CDFG). The nodes
of the graph represent the tasks, the edges represent the control and
data dependencies. A control dependency implies that a task has to
be completed before the next one can start. A data dependency repre-
sents data transfers between tasks. The application mapping can thus
be viewed as the mapping of the CDFG on an architecture.

1.6 Network-on-chip architectures features and classification 25

e Performance requirements:

can be evaluated using several metrics: the end-to-end network latency,
defined as the delay between the injection of a data in the network at
the source and its reception at the destination, that is only related
to the network feaures; the end-to-end communication architecture la-
tency, defined as the delay between the time the initiator starts its
message transmission and the time the target receives the message,
that includes the network interfaces latency; the set-up time, defined
as the delay between the time at which control information is sent and
the time at which data can be injected in the network; the throughput
(or aggregated bandwidth), defined as the maximum amount of infor-
mation per unit of time that the network can physically handle; the
bisection bandwidth, defined as the sum of the bandwidths correspond-
ing to the links intercepted by a cut which spans the least possible
amount of edges (i.e. a min-cut) and partitions the network in two
equal size parts.

e Performance guarantees:
Communication architecture performances are generally not predictable
due to the contention when network resources can be shared among dif-
ferent users. However, real-time applications may have to meet strict
temporal deadlines or require a minimum amount of bandwidth to op-
erate properly. Multimedia applications generally contains many real-
time data streams of different latency and bandwidth requirements.

e Scalability:
The scalability of a network is its aptitude to scale efficiently perfor-
mance parameters and physical parameters in function of the number
of communicating devices. In particular, the network aggregated band-
width should increase proportionally when additional communicating
devices are added to the network. The bandwidth per node can thus
be preserved when additional nodes are connected.

e Physical constraints:
Physical constraints include wiring length, area overhead introduced
by the communication architecture and energy and power consump-
tion. Energy consumption should be limited to increase the battery
lifetime, while power consumption should be minimized to restrain the
chip temperature because advanced packaging and cooling systems are
unaffordable for cheap embedded systems.

e Reliability and yield:

26 Context and Motivation

Besides providing performance guarantees during normal cases, a com-
munication architecture will also have to provide mechanisms to toler-
ate exceptional circumstances that can alter network behavior. Basic
metrics to mesure reliability are:

— Availability: measure of the probability that the network will re-
main operational

— Probability of failure on demand: measure of the probability of
the network to behave in an unexpected way for a given request

— Rate of failure occurrence: measure of the network failure fre-
quency on a given duration

— Mean Time To Failure (MTTF): measure of the mean time during
which the network remains operational before a failure occurs.

A global network design cost function can then be built based on those
soft and hard constraints. The design of the network will thus result from a
trade-off between the satisfaction of those different parameters.

1.7 Network-on-chip architecture design space

The Network-on-chip communication architecture design space is extremely
vast. Many network parameters can be set to tailor an optimal on-chip
architecture. This section gives a brief summary of the principal network
decisions.

1.7.1 Fundamental network parameters
Topology

The network topology defines the logical connections between switching ele-
ments and between the switching elements and the nodes. It can be repre-
sented by a graph G(C,N), the graph edges C being the connections between
nodes and the vertices N being the nodes and switching elements of the net-
work. The network topology is one of the most critical decision in on-chip
communication architecture. It has a considerable impact on the network
design costs. Topologies can be classified according to their features:

e direct-indirect
In direct networks, each switching device (e.g. router, switch) is con-
nected to at least one communicating device (e.g. IP core). In in-
direct networks, a switching device is not necessarily connected to a

1.7 Network-on-chip architecture design space 27

communicating device. It can be connected to other switching devices.
Switching devices are connected with each other by point-to-point links.
Hybrid networks is a mix of those two types of network.

e orthogonality
Most direct networks have an orthogonal topology. It means that nodes
can be arranged in an orthogonal n-dimension space and that every link
can be arranged in such a way that it provides a displacement in a single
dimension. Strictly orthogonal topologies is a subset of orthogonal
topologies for which every node has at least one link crossing each
dimension.

e diameter
The diameter of a network topology is the maximum number of edges
between a pair of vertices in the topology. The diameter can be linear,
logarithmic or fixed line lengtht, depending on how diameter progresses
increasing the number of nodes interconnected in the network.

e regularity
Topologies are said to be regular when all the vertices of the graph have
the same number of edges connected to each vertex.

e general purpose-domain specific General purpose topologies are not op-
timized for a specific pattern. Examples are typically the mesh topology
and k-ary n-cube networks in general. Traffic pattern specific topologies
examples exploit traffic pattern knowledge, facilitate communication lo-
cality. An example of regular topology that is not general purpose is
given by the fat-tree topology (see figure 1.3. This topology is regu-
lar but it exploits locality of traffic. On the other hand, it performs
very badly with general purpose traffic as the root nodes will become
a bottleneck.

Examples of topologies are shown in figure 1.3

Routing Technique

The routing technique decision consists in defining and implementing a strat-
egy to choose one path from source to destination nodes when the topology
offer multiple paths. In shared-buses, no routing technique is needed, since
source and destination directly share the same medium. For hierarchical
buses and bridged buses, there is only one path is available from source to
destination. It is only needed to specify which bridges have to be switched.
Routing algorithms can be classified according to several criteria:

28 Context and Motivation

P9 QPQPQPE

(a) Shared-Bus

(5{’“\ & e
WM N

(b) Ring

O

®
O O O
O QO O OO

(c) 2D Mesh (3-ary 2-cube) (d) 2D Folded Torus

O
O

O

O OO
O

(e) Fat Tree

Figure 1.3: Examples of common network topologies

1.7 Network-on-chip architecture design space 29

e Number of destinations
If a message can be routed to multiple destinations at the same time,
the routing technique will be classified as multicast (or broadcast for
all possible destinations). If only one destination can be reached, it
is said to be unicast. This choice mainly depends on the application
requirements.

e Routing decision time
Routing decisions can be performed exclusively at run-time, exclusively
at design-time or partly at design-time, partly at run-time.

e Routing decision locality
Locality of the routing decision: central/distributed /hybrid

e Locality of the routing technique implementation
The routing decisions can be performed by a central control unit (cen-
tralized routing) running one or several routine or along the network
(distributed routing). Hybrid schemes are also possible. The particu-
lar case in which a centralized routing implementation is located at the
source network interface is commonly referred to as source routing.

e Locality of the network status information
Information on the network status can be obtained at local ,global or
semi-global level, or can not be taken into account at all (oblivious
routing).

e Routing adaptivity
The routing strategy can be deterministic (fast and well adapted to be
implemented in hardware), meaning that the routing decision is invari-
ant for a given source and destination, or it can be adaptive, providing
different routes depending on the network load (offering better perfor-
mance and fault-tolerance).

e Number of paths
The routing algorithm can either consider all the paths offered by the
topology from source to destination (complete routing algorithm) or
only a sub-set of available paths (partial routing algorithm).

e Parallelization
The routing algorithm can be implemented by one sequential process
or by multiple parallel processes executed on different processing cores.

30 Context and Motivation

e Implementation
The routing decisions can be implemented in hardware(faster), soft-
ware(more flexible) or in a combination of both.

Routing granularity

The routing granularity decision consists in defining at which data granularity
the routing decision will be performed: circuit-based routing or packetbased
routing. For a circuit-based routing technique, the routing decision is per-
formed once for all at the establishment of the circuit. All the data will
then transit through the same path offering predictable Quality of Service
to that connection, once an extra-delay required at the circuit set-up time
is payed. For a packet-based routing technique, the routing decision can be
performed at the granularity of a packet. A packet is typically composed of
a header containing routing informations and a payload which contains the
data. Packet-size is an important parameter for the network. In the packet-
based routing technique there is no circuit set-up delay and bandwidth uti-
lization is closer to the optimum, no guarantees on available bandwidth and
latency can be provided.

Flow Control Mechanism

The flow control defines the policy used to adjust the data flow between com-
municating devices. Data sending, generally, requires multiple transmissions
since links bit-width is limited. The flow control can be performed at several
levels and it defines the granularity at which data are sent through communi-
cation devices. Flow/congestion control strategies handles the transmission
of data from a communication device input port to an output port. The
communication device can be a switch or a bus.

Switching Technique

When applied to networks, different combinations of paramenters such flow
control granularity, or buffering placement corresponds to well-known switch-
ing techniques such as:

e real circuit switching
Real circuit switching consists of reserving a path across the network
from source to destination, typically sending an header over the network
from the source node. The header reserves the channels along the path.
When the probe arrives at the destination, a message is sent back to
confirm that the circuit has been established and proper data sending

1.7 Network-on-chip architecture design space 31

can start. This switching technique is well suited for frequent and long
messages between two nodes.

e store and forward
In SAF the messages is split in smaller independently routed chunks
called packets. This scheme does not require full path pre-establishment
overhead. Each packet is entirely stored in a buffer and only then can
be forwarded to the next router.

e virtual cut through
VCT reduces the latency of SAF switching scheme. The switching
granularity is smaller than a packet. Elements of the packet called
flits can already be sent even if the packet is not fully arrived. If the
packet’s output port is busy, the packet is stored in a buffer. Buffer
space is the same as for SAF.

e wormbhole
In wormhole, the input buffer space is typically dimensioned to the size
of a couple of flits. When a packet accesses a router output port used
by another packet, the packet remains distributed over all the previous
router buffers along the path.

e mad postman
The mad postman switching technique is comparable to the wormhole
switching technique. The difference is that the flow granularity is set
at the bit-level instead of the flit-level to reduce latency overhead.

e switched virtual circuit
In Switched Virtual Circuit an header is sent first. When it reaches the
destination, an acknowledgment is sent back to the source The switched
virtual circuit technique is appropriate for frequent and long messages.

The switching technique specify the way a message is forwarded on the net-
work and considerably affects the network delay.

1.7.2 Network Design Decisions

On-chip communication architectures offer a vast design space. Designing a
complete network thus appears as a very complex and difficult problem. It
consists in performing decisions on the value of each parameter, to optimize
a cost function. Real design decisions are generally neither completely in-
dependent nor fully dependent of each others. The on-chip communication
architecture characteristics can be split following the OSI stack model in

32 Context and Motivation

which networks can be viewed at different abstraction layers. Upper layers
decisions will impose constraints on the lower layers values of decisions to
optimize a given cost function. As mentioned the seven layers of the OSI
network model can be identified in an on-chip communication architecture:
application, presentation, transport, network, link and physical layers.

The Application layer offers high-level communication services to the Intel-
lectual Property (IP) cores. Application layer decisions are related to the
definition of the inter-process communication interface and primitives (inter-
faces can be custom or compliant to widely diffused standard like Open Core
Protocol) and to the supporting of a determined level of Quality of Service
(QoS).

The Presentation layer provides data formatting services to the application
layer (e.g. encryption).

The Session layer is managing the establishment and coordination of the
end-to-end connections.

The presentation layer and the session layer are often merged with the neight-
bour layers in network protocol implementations.

The Transport layer offers services like end-to-end communication services to
the IP cores. With respect to the transport layer, a decision must be taken be-
tween two modes of communication: the connection-oriented or connection-
less modes. In the connection-oriented mode, after negotiation, source and
destination agree on a set of QoS parameters. The end-to-end connection
will act as if cores were directly interconnected to each other, and it must be
established prior to the actual data transfer and released once it is no more
exploited. In the connection-less mode the transport layer then simply for-
ward data to the network layer after packetization. Moreover while defining
the transport layer a decision must be taken on the flow and congestion con-
trol strategies used to prevent contention in the network either by adapting
the source data flow to the network capacity or by adapting the flow of data
transiting in the network. The most popular techniques are credit-based flow
control and thresholdbased control. The credit-based flow control technique
consists in permitting the incoming data to enter the network only when it
acquires one flow control credit, that is released when the data arrive at the
destination. The network load is limited by a fized number of credits allowed
through the network. The threshold-based flow control is based on the regu-
lation of data injection in the network depending on the network congestion
status.

The Network layer describes how data are sent from source to destination
node. It includes decisions about network topology, routing techniques and
routing granularity.

The Link layer describes how data are sent between the communication de-

1.8 State of the Art NoC Architectures 33

vices constituting the on-chip architecture. Decision taken at this layer are
related to the encoding techniques, the switching techniques, the amount and
the location of the buffering resources in the network, the arbitration tech-
inques used to handle multiple access to a shared resource, the flow control
granularity.

The Physical layer deals with the physical implementation of the network on
the chip. It includes the circuit and process technologies that are used and
the network physical lay-out. Synchronicity is also addressed in this layer as
well as low-swing drivers and other interconnect options.

1.8 State of the Art NoC Architectures

This paragraph provides a big picture of the state of the art in NoC propo-
sitions, as currently found in the available literature, summarized in figure
1.4.

(NA or shadowed boxes means that data are not available, whereas GT
means guaranteed throughput)

The features presented for each considered Data can be divided into three
groups:

e features related to network and switch structure, presented in the four
first columns;

e features related to performance data, in the following three columns;

e features related to prototyping and/or silicon implementation data, in
the last column.

A basic common choice is the use of packet switching (with the exception
of aSOC), where the definition of the route is fixed during the hardware
instantiation time.

Two connected concepts, network topology and routing strategy, are the
subject of the first column. The predominant network topology is the 2D
mesh, because this choice implies three advantages:

e facilitated implementation using current IC planar technologies;
e simplicity of the XY routing strategy; and finally

e network scalability.

34 Context and Motivation

Topology / i Estimated QoS Implementat
NoC s L FlitSize | Buffering | switch | Switch Area Peak Bocass B
9 Interface Performance PP
Fat-tree / 32 bits data Input queue 2 2 ASIC layout
SPIN - 2000 Deterministic + 4 bits + 2 shared VCl CIV(I)OZS4 5n:n& 2 G:xigiper 4.6 mm’
and adaptive control output queue m CMOS 0.13um
2D mesh Circuit-
(scalable) / 50,000) ASIC layout
as0C - 2000 Determined by 2,bits hohe transistors. swilching (no CMOS 0.35um
application wormhole)
256 bits 0.59 mm : .
Dally - 2001 Fc;lie\fi 320%:3;“ data + 38 Input queue CMOS 0.1um A G?}t:’: per G;?;n\llnr;fsal No
bits control (6.6 % of a tile)
Nostrum — 2D mesh j26 bits Input and 0.01 mm?
(scalable) / Hot data+ 10
2001 potato bits Gontrol output queues CMOS 65nm
18 bits data
Sgroi - 2001 2D mesh / NA + 2 bits ocp
control
. Chordal ring / Variable £ 8
Ocztgg;’" Distributed | data + 3 bits 40 Gbitss SVCV'IEEI"H No
and adaptive control 9
2D torus . .
2 611 slices 5 2 virtual
Marescaux - (lflca'a.b'e) /XY | AG:bitsdata Virtexl| (6.58% | SZOMbItS/s per | o nels o | FPGA Virtexll /
ocking, hop- + 3 hits Input queue Custom virtual channel - =
2002 based sonteel area overhead at 40 MHz avoid VirtexIl Pro
deterministic XC2V6000) deadlock)
Arbitrary .
(parameterizable Variable ;sil\jlf{iisn;il 800Mbits/s per | Injection rate
Bartic — links) / data Output queue | Custom Pro for 5 channel for 16- control, FPGA VirtexI|
2003 Deterministic, + 2 hits LY bidirectional bit flits at 50 congestion Pro
virtual-cut- control / link link MHz control
through inks router
DTL
Athereal - 2D mesh / . (Philips 0.26 mm?* 80Gbits/s per Circuit-
2002 Source 32 bits Input queue proprietary | CMOS 0.12um switch switching ASIC layout
standard)
. _ 2D sparse
Ec;g:; hierarchical 68 bits Output queue No
mesh / NA
Proteo — Bi-directional cc\)/nat?slbalid Input and Vel ASIC layout
2002 ring / NA data sizes output queues CMOS 0.18um
bits data + 420 LCs APEX i
_ 2D mesh). Input queue 1 Ghits/s per
SOCIN (scalable) / XY 4 bits comrpl (parameteriza- VCI FPGAS switch at 25 No No
2002 (parameteriz (Estimated, for
source ble) u MHz
able) n=8, bufferless)
_ 16 bits data | Single position y e n
it | el |,
P! control output buffers 9
16 bits data Input queue
20 mesh regular + 10 bits (parameterize- 0.02 mm? 80 Gbits/s per c?lzn-n‘gl—}su?tlt
QNOC - 2003 Gr e uIar?XY control ble) + Output Custom CMOS 90nm switch for 16-bit different No
9 (parameteriz | queue (single (Estimated) flits at 1GHz traffic)
able) position)
T-SoC — Fat-tree / 38 bits Input and Custom/ ;Zg?: Eot 2‘?338 GT - 4 virtual
2003 Adaptive maximum output queues OoCcP gpales channels
Arbitrary (design 0.33 mm? }
. _ A : .33 mm 64 Ghits/s per
nggzs “sr?aet: Cf (‘S;t’r';';e 3122'86;;’ V'“”i:fj:‘p”‘ ocp CMOS 100nm | switch for 32-bit No No
e 9 (Estimated) | flits at 500MHz
8 bits data +
_ 3 Input queue 555 LUTs 500 Mbits/s per
Hezrgrags (Ségg;s/hm((ZDZ'::;{;?;?ZI (parameteriza- ocpP 278 slices switch at 25 No &igﬁ“
able) ble) VirtexI| MHz

Figure 1.4: State of the art in NoCs overview

1.8 State of the Art NoC Architectures 35

Another approach is to use the 2D torus topology, to reduce network diameter
(Marescaux-2002). The folded 2D torus (Dally-2001) reduces also the cost
in wiring. A common problem of mesh and torus topologies is the associated
network latency. To overcome this problem the following architectures have
been proposed:

e SPIN that employ a fat-tree topology;
e T-SoC that employ a fat-tree topology; and finally
e Octagon that proposes the use of a chordal ring topology.

All of them lead to a smaller network diameter, with consequent latency
reduction. Concerning routing strategies, there is a clear lack of published
information; this means that this is still an open field.

The second important quantitative parameter of NoC switches is flit size.
It is possible to classify approaches in two groups the first one focused on
future SoC technologies and the other concerned on the existing limitations.
The first group uses wide switching channels (150 to 300 wires), without
significantly affecting the overall SoC area. This can be achieved by using a
future 60nm technology for building 22mm x 22mm chip with a 10 x 10 NoC
to connect 100 2mm x 2mm IPs. The second group uses flit size ranging
mostly from 8 to 64 bits, a data width similar to current processor architec-
tures. The next parameter considered is the switch buffering strategy. Most
NoCs employ input queue buffers. Since input queuing implies a single queue
per input, this leads to lower area overhead but, at the same time, presents
problems of head-of-line blocking. To overcome this problem, output queuing
can be used, the counterbalance of this improvement is a greater buffering
cost, since the total number of queues is increases. An intermediate solution
is to use virtual output queuing associated with time-multiplexed virtual
channels (xpipes).

Another important parameter, related to the buffering field, is the FIFO
size, which implies the need to solve the compromise among of the amount of
network contention, packet latency and switch area overhead. Bigger queues
lead to small network contention, higher packet latency, and bigger switches;
other way round for the smaller ones.

The last structural parameter is the characteristic of the IP-switch inter-
face. The use of standard communication interfaces for the on-chip environ-
ment is an evolving trend in industry and academia, to allow re-use of cores.
VCI and OCP standards are used by several of the NoC proposals presented
in figure 1.4.

36 Context and Motivation

The fifth column collects results concerning the size of the switch. It is
interesting to observe that the two approaches targeted to ASICs (SPIN-
2000 and Athereal-2002), both with a 32-bit flit size, have similar dimen-
sions, around 0.25mm2 for similar technologies. FPGA prototyped sys-
tems produced results ranging from 555 LUTs (Hermes-2003) to 1222 LUTS
(611 slices) (Marescaux-2002). This difference comes from the fact that
Marescaux-2002 employs virtual channels, while Hermes-2003 does not, lead-
ing to smaller switch area. Switch size, flit size and switch port cardinality are
fundamental values to allow estimating the area overhead and the expected
peak performance for on-chip communication.

In the following, two communication architectures, a bus based and a
NoC, are presented more in detail, being the reference for the discussions
reported in following chapters.

1.8.1 AMBA Shared Bus

The Advanced Microcontroller Bus Architecture (AMBA) 2.0 [4] intercon-
nect is a well-established fabric architecture for SoC designs, thanks to its
efficiency despite the moderate silicon footprint. Therefore, we choose it as
a reference against which to compare the xpipes NoC. The AMBA specifi-
cation dictates three different architectures with varying levels of complexity
and performance; in this paper, we will refer to Advanced High-performance
Bus (AMBA AHB), the fastest of them.

AMBA traditionally leverages upon a shared bus topology, and its com-
munication protocol is kept simple to minimize area overhead (a single ongo-
ing transaction at a time, no posted writes, etc.). An AHB bus is composed of
several TP blocks (AHB masters and slaves), of one central arbiter to manage
resource access, and of some interconnection resources. A minimal amount
of flip-flops is required in the architecture, which is typically bufferless. The
bus resources are owned by a single master at a time; if the targeted slave
is forced to insert wait states before responding, no other transaction can be
initiated, neither by the current bus owner nor by any other master. As a
result, the utilization of bus bandwidth, which is already limited, might be
poor.

AMBA AHB uses non-pipelined paths for communication among all mas-
ters and all slaves. Therefore, a key performance assumption is that the
propagation delay of the interconnect wires will be short. If that is the case,
communication will incur the minimum possible latency. However, new tech-
nology nodes are leading to faster and faster logic, potentially resulting in
faster clock periods, while wire propagation delays are proportionally increas-
ing. If the whole fabric is constrained to slow operation by wire delay, this

1.8 State of the Art NoC Architectures 37

factor represents a limit to maximum operating frequency.

1.8.2 AMBA Multi-Layer

Due to increasing congestion and bandwidth demands in modern SoCs, a
crossbar component was added to the AMBA toolkit, resulting in “Multi-
Layer” (ML) AMBA designs. To keep existing AMBA interfaces unchanged,
the device is purely combinational and completely transparent to AMBA
masters and slaves. The crossbar component behaves as a slave towards
multiple AMBA AHB buses (“layers”), and forwards requests to real AMBA
slaves (e.g. memories). Multiple layers can simultaneously access the cross-
bar, provided they do not conflict on arbitration for the same transaction
target.

Given its high-bandwidth topological nature and its combinational re-
sponse times, this crossbar is clearly a best-case reference block from an
architectural point of view. However, from the perspective of a layout engi-
neer, wire routing constraints in such a block are very demanding. Therefore,
an assessment of the achievable clock frequency and area is clearly essential.

1.8.3 xpipes NoC

The xpipes NoC |3, 15] is an example of a highly flexible library of component
blocks (Fig. 1.5). The NoC is instantiated by deploying a set of components in
an arbitrary topology and by configuring them. The xpipes library contains
three main components: switches, Network Interfaces (NIs) and links.

The backbone of the NoC is composed of switches, whose main function is
to route packets from sources to destinations. Arbitrary switch connectivity
is possible, allowing for implementation of any topology. Switches provide
buffering resources to lower congestion and improve performance; in xpipes
, output buffering is chosen, i.e. FIFOs are present on each output port.
Switches also handle flow control [13] issues (we use the ACK/NACK protocol
in this paper), and resolve conflicts among packets when they overlap in
requesting access to the same physical links.

An NI is needed to connect each IP core to the NoC. NIs convert trans-
action requests/responses into packets and vice versa. Packets are then split
into a sequence of flits before transmission, to decrease the physical wire par-
allelism requirements. In xpipes , two separate NIs are defined, an initiator
and a target one, respectively associated to system masters and system slaves.
A master/slave device will require an NI of each type to be attached to it.
The interface among IP cores and NIs is point-to-point as defined by the
OCP 2.0 [12] specification, guaranteeing maximum reusability. NI Look-Up

38 Context and Motivation

el g

—L [
:> I Crossbar III -

Bl

REQ REQ REQ
———

ACK ACK ~ACK

Figure 1.5: xpipes building blocks: (a) switch, (b) NI, (c) link

Tables (LUTSs) specify the path that packets will follow in the network to
reach their destination (source routing). Two different clock signals can be
attached to NIs: one to drive the NI front-end (OCP interface), the other to
drive the NI back-end (xpipes interface). The xpipes clock frequency must
be an integer multiple of the OCP one. This arrangement allows the NoC
to run at a fast clock even though some or all of the attached IP cores are
slower, which is crucial to keep transaction latency low. Since each IP core
can run at a different divider of the xpipes frequency, mixed-clock platforms
are possible.

Inter-block links are a critical component of NoCs, given the technology
trends for global wires. The problem of signal propagation delay is, or will
soon become, critical. For this reason, xpipes supports link pipelining [13],
i.e. the interleaving of logical buffers along links. Proper flow control pro-
tocols are implemented in link transmitters and receivers (NIs and switches)
to make the link latency transparent to the surrounding logic. Therefore,
the overall platform can run at a fast clock frequency, without the longest
wires being a global speed limiter. Only the links which are too long for
single-cycle propagation will need to pay a repeater latency penalty.

Bibliography

(1]

(2]

(3]

[4]

[5]

(6]

(7]

(8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

International technology roadmap for semiconductors (ITRS). Technical report, International Tech-
nology Roadmap for Semiconductors.

Tapani Ahonen et al. A brunch from the coffee table — case study in NoC platform design. In J. Nurmi,
H. Tenhunen, J. Isoaho, and A. Jantsch, editors, Interconnect-Centric Design for Advanced SoC and
NoC, pages 425-453. Kluwer Academic Publishers, 2004.

Federico Angiolini, Paolo Meloni, Davide Bertozzi, Luca Benini, Salvatore Carta, and Luigi Raffo.
Networks on chips: A synthesis perspective. In Proceedings of the 2005 ParCo Conference (to be
published), 2005.

ARM Ltd. The Advanced Microcontroller Bus Architecture (AMBA) homepage.
www.arm.com/products/solutions/AMBAHomePage.html.

Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC paradigm. IEEE Computer,
35(1):70 — 78, January 2002.

William J. Dally and Brian Towles. Route packets, not wires: On-chip interconnection networks. In
Proceedings of the 38th Design Automation Conference, pages 684-689, June 2001.

Jorg Henkel, Wayne Wolf, and Srimat Chakradhar. On-chip networks: A scalable, communication-
centric embedded system design paradigm. wvlsid, 00:845, 2004.

M. Horowitz, R. Ho, and K. Mai. The future of wires, 1999.

Ali Keshavarzi, Kaushik Roy, and Charles F. Hawkins. Intrinsic leakage in deep submicron cmos
ics-measurement-based test solutions. IEEE Trans. Very Large Scale Integr. Syst., 8(6):717-723,
2000.

Anthony Leroy. Optimizing the on-chip communication architecture of low power Systems-on-Chip
in Deep Sub-Micron technology. PhD thesis, Universite Libre de Bruxelles Faculte des Sciences
Appliquees, 2007.

James D. Meindl. Interconnect opportunities for gigascale integration. IEEE Micro, 23(3):28-35,
2003.

Open Core Protocol Specification, Release 2.0. www.ocpip.org, 2003.

Antonio Pullini, Federico Angiolini, Davide Bertozzi, and Luca Benini. Fault tolerance overhead in
network-on-chip flow control schemes. In Proceedings of the 18th Annual Symposium on Integrated
Circuits and System Design (SBCCI), pages 224-229, 2005.

Sonics Inc. SonicsMX. www.sonicsinc.com/sonics/products/smx/.

Stergios Stergiou, Federico Angiolini, Salvatore Carta, Luigi Raffo, Davide Bertozzi, and Giovanni
De Micheli. xpipes Lite: A synthesis oriented design library for networks on chips. In Proceedings
of the 2005 Design, Automation and Test in Europe Conference (DATE), pages 1188-1193. IEEE,
2005.

40 BIBLIOGRAPHY

[16] STMicroelectronics. The STBus interconnect. www.st.com.

[17] Drew Wingard. Micronetwork-based integration for SoCs. In Proceedings of the 38th Design Au-
tomation Conference (DAC), pages 673-677. ACM, June 2001.

Chapter 2

Comparative analysis of NoCs
and Traditional Interconnects

As already mentioned, the ever shrinking lithographic technologies available
to chip designers enable performance and functionality breakthroughs, but
they bring new hard problems. For example, Multi-Processor Systems-on-
Chip (MPSoCs) featuring several processing elements can be conceived, but
efficiently interconnecting them while keeping the design complexity man-
ageable is a challenge. In this first part of the thesis, different alternative
approaches to the on-chip interconnect designs are compared. In particular,
three different kinds of architecture are analyzed: traditional buses, easy to
deploy an to understand, but not capable of providing enough bandwidth for
modern complex systems; packet-switching Networks-on-Chip (NoCs), usu-
ally claimed to be more scalable with respect to the busses, but more complex
to design and to tailor; hybrid architectures interleaving bandwidth-rich com-
ponents (e.g. crossbars) within the preexisting fabrics. In this chapter the
results of this analysis pointing out the strengths and weaknesses of these al-
ternative approaches are presented. In particular, a thorough analysis based
upon actual chip floorplans after the interconnection place&route stages was
performed, to cover a big lack in NoC research field, answering to difficult
questions associated to chip layout problems. Since interconnects, by their
own nature, span across significant portions of the die, wiring congestion and
wire propagation delays are very difficult to estimate in advance. Therefore,
the overhead of crossbars and NoCs can only be fully understood after having
laid out the architecture onto a chip floorplan. The placement&routing step
is instrumental to a synthesis flow that properly investigates wiring loads, to
evaluate the delay impact of long-range wiring resources and to assess the real
usefulness of segmented architectures. The delay estimation provided by syn-
thesis tools is verified against post-placement figures. Performance, area and

42 Comparative analysis of NoCs and Traditional Interconnects

power results are discussed, while keeping an eye on the scalability prospects
in future technology nodes. Similarly, the distribution of the clock signal
to the cells in the design is a crucial point. It is well known that the clock
tree can represent a significant percentage of the power budget [13, 15, 28],
while another significant fraction is due to sequential logic. Therefore, the
clock distribution tree and the clock gating techniques are prime candidates
for evaluation. To take into account as many key effects as possible, a back-
end flow which takes the test platforms down to a placed&routed layout was
used. From the designs, obtained by means of this flow, frequency, area and
power figures were derived, referring to a 0.13 um library.

2.1 Related Work

Large numbers of communication fabrics are described in previous literature.
ARM AMBA [5], including the latest AXI 6] packages, STMicroelectronics
STBus [24] and Sonics MicroNetworks [30] are examples of buses and of
attempts to overcome the most classical shared bus architecture by various
means (for example, multiple STBus channels can be deployed, leading to
crossbars).

NoCs have been suggested as a scalable communication fabric [8, 14].
Research has focused on multiple design levels. From the architectural point
of view, a complete scheme is presented for example in [16], while specific
topics are tackled in several works: flow control protocols [20]|, Quality of
Service (QoS) provisions [11, 29|, asynchronous implementations [10]. A
CAD tool for NoC instantiation and optimization can be found for example
in [9].

The synthesis flow of NoCs has been explored by several groups. Layouts
are presented in |2, 21|, a test chip is shown in [17], and an FPGA target
is provided for [32]. Synthesis and layout results for the xpipes library of
component blocks that we will leverage upon are shown in [3, 23|.

As previously mentioned, one key topic which has not yet been extensively
covered is studying how NoCs compare to more traditional interconnects.
In [31], an analytical methodology is illustrated to compare NoCs of arbitrary
topology (a shared bus and a crossbar are provided as examples) also taking
into account area, frequency and power metrics. However, some assumptions
of this work (such as the relative cost of wiring vs. logic) do not seem to
be fully confirmed when considering actual fabrics, as Section 2.5 will show.
In [22], a synthesis-aware flow is presented to characterize the Hermes NoC;
PI Bus is used as a benchmark for performance metrics, but not for area and
power analysis. Further, PI Bus is not representative of current, widely used

2.2 The Fabrics Under Test

43

high-performance interconnects.

2.2 The Fabrics Under Test
o [t [w2 [s faa | ws [we {7 | ws [wo | SR [N RETIREYIREY

< AMBA AHB

o[Jez s eaes [o Jer el eslfetoleriferafsialsia
wo v i)

AMBA AHB Layer 0 (b)

EE
wz | s [§]

AMBA AHB Layer 1

j

(d)

e|

(a)

e | s [

AMBA AHB Layer 2

[

AMBA AHB Layer 3

H P7
ws | ws [§2]

AMBA AHB Layer 4

B

E3

AMBA AHB
crossbar

j

I

Figure 2.1: The platforms under test. (a) shared bus AMBA AHB; (b) ML
AMBA AHB; (¢) xpipes mesh; (d) xpipes custom topology. M:
ARMYT masters; T: traffic generators; P: privately accessed slaves; S:

shared slaves

It must be noticed that choosing a test environment to compare such
different architectures as a NoC and a bus/crossbar is a difficult task, since

44 Comparative analysis of NoCs and Traditional Interconnects

communication fabrics can be heavily tuned to optimally fit a target bench-
mark - but the resulting figures would not be representative of real-world
performance under a different test load. For this reason, it is not meaning-
ful, for the sake of the proposed benchmarking, to take into account deeply
optimized evaluation platforms, specifically tailored for one target applica-
tion. Thus it is more useful to present relatively regular mappings which
should be suitable for multiple applications. Anyway, evaluating the impact
on the comparison results obtained by means of an application-specific op-
timization, is an interesting speculation that is suitable to be added to the
analysis. In this aim, a NoC irregular topology, optimized to better match
the target application, according to criteria of low area occupation and low
power consumption, was included in the comparison. The xpipes NoC mod-
ule library, as mentioned, is taken as reference architecture. Summarizing,
four test platforms were conceived, namely:

e an AMBA AHB shared bus;

e an AMBA AHB ML system containing a crossbar element;
e a xpipes mesh

e the mentioned xpipes custom topology (Fig. 2.1).

All fabrics allow for attaching up to 30 IP cores, of which 15 masters and
15 slaves (typically memory banks). This amount is justified considering
that, already at the 0.13 pm lithography node, simple processor elements
and 32 kB memory banks can be expected to require just about 1 mm? of
die area. In fact, it is logical to expect that this amount of IP cores may well
be surpassed in some of the next-generation MPSoCs.

The ML AMBA topology is not a full crossbar. A full 15x15 crossbar
would be prohibitively expensive in terms of area and wiring. In fact, the IP
library used to synthesize this fabric (see Section 2.4) only allows instantia-
tion of up to 8x8 components. The ML AMBA test fabric contains a middle
sized 5x5 crossbar. For both the ML and shared bus AMBA designs, the
canonical data width of 32 bits is chosen, since it represents the best match
for ARMT cores. For the xpipes NoCs, non-pipelined links are instantiated,
in the assumption, confirmed by experimental results, that the nature of the
topologies should provide enough wire segmentation to guarantee single-cycle
propagation on all links, at least in 0.13 um technology. The NoC mesh is
configured with two different flit sizes, namely 21 and 38 bits, to explore the
dependency of area, power consumption and performance on this parameter.
These numbers are chosen taking into account the length of each possible

2.3 The Test Applications 45

packet type and trying to optimize the resulting flit decomposition. The
OCP pinout is configured with 32 bit data ports. The custom NoC topology
is configured with 21-bit flits to compare it against the mesh. For all the
experiments, the NoC components (switches and NIs) are always configured
with FIFO buffers having a depth of three flits, since from previous design
space explorations performed on the xpipes architecture, this value proved
to be a good tradeoff between performance and area/power cost.

2.3 The Test Applications

The performance of the interconnects are tested under two main scenarios:

e a multimedia processing application

e a Data Encryption Standard (DES) encryption algorithm.

Both applications are parallelized to be suitable for multiprocessor computa-
tion. The task graphs for both can be seen in Fig. 2.2. As can be noticed, the
multimedia application is fundamentally a pipeline of computation tasks; the
encryption application features a producer task (to split an incoming data
stream into chunks of data), a consumer task (to reassemble the outputs)
and a set of “worker” tasks which operate in parallel to perform the actual
encryption. In the testing, every task is mapped onto a single processor.
Testing results related to both applications derive from several run iterations
during which the processes were feeded them with a stream of input data.
Moreover the experiments are evaluated by capturing performance statistics
only during the execution of the application kernel, i.e. skipping the boot
stage and properly handling initialization or shutdown periods where some
of the tasks may be running while some others may be idle. This guarantees
proper handling of cache-related effects.

The multimedia application was implemented as a standalone program,
which can directly run on ARM CPUs, while the encryption algorithm is an
example of a software running on top of the RTEMS [19] operating system.

In both benchmarks, communication between nodes is handled by means
of a shared memory buffer, while synchronization is achieved via polling of
hardware semaphores. The shared memory and the hardware semaphore
device are labeled S12 and S13 in Fig. 2.1. To avoid the shared memory to
become a huge system bottleneck, processors are assigned private memory
buffers (PO to P9 in Fig. 2.1), on which they can operate without the need of
using synchronization primitives. These private buffers are cacheable, while
the shared components are not, to avoid coherency issues. Therefore, the
inter-processor communication paradigm is as follows:

46 Comparative analysis of NoCs and Traditional Interconnects

B

(@)

Figure 2.2: Task graphs for the two applications under test: (a) multimedia pro-
cessing application, (b) LMS filtering application

e Producers prepare a data set in their private memory space. In the
meanwhile, consumers operate on the previous chunk of data in their
private memory space.

e When ready, producers copy the new data set to shared memory. This
may need semaphore polling if the shared memory buffer is still busy
with the previous transaction. As soon as data is copied to shared
memory, the producer begins preparing the new message.

e When ready, consumers acquire the new data set from shared memory.
This may need semaphore polling if the shared memory buffer does not
contain new data yet. As soon as data is copied from shared memory,
the consumer begins computation on it.

This communication paradigm is just one of almost endless alternative
possibilities. The choice of this particular paradigm rely on the assumption
that, since it features both distributed (private memories) and centralized

2.3 The Test Applications 47

(single shared memory and semaphore device) elements, it represents a fair
comparison ground for such diverse communication fabric topologies such as
a shared bus and a NoC. It may be assumed that an approach based on a
fully shared memory subsystem would improve the relative performance of a
bus-based fabric, while a message passing paradigm would be more suitable
for distributed architectures such as NoCs. This analysis is beyond the scope
of the reported investigation, but is surely an interesting field for future re-
search work. To verify whether the computation/communication ratio of the
applications is a critical factor, two variants of the multimedia application
benchmark were implemented, with different degrees of computational re-
quirements: the low-computation variant is performing roughly eight times
less mathematical operations. Please note, however, that while the ratio of
computation to explicit inter-processor communication can be easily tuned
in this way, the ratio of computation to overall communication requirements
depends on several additional factors. For example, unless an ideal cache
is available, changing the computation patterns also implicitly results in dif-
ferent bandwidth demands (for cache refills and write-backs). This will be
further discussed in Section 2.5.

In the following, for the sake of brevity, the benchmarks will be called
multi-high, multi-low (high-computation and low-computation variants of
the multimedia benchmark, respectively) and des.

Since real-life MPSoCs are not likely to only feature general purpose pro-
cessing cores, traffic generators were also deployed to model additional hard-
ware IP blocks which may be present in the platform. While this choice is
not in any way supposed to model on-chip coprocessors in a general fashion,
it adds extra realism. Therefore, two different types of traffic generation pat-
terns were include: DSP-like (streams of accesses to a memory bank) and I/O
controller-like (a rotating pattern of accesses towards neighbouring devices).
DSP-like traffic generators are each programmed to fetch 128 or 256 bits of
data from one of the shared memory banks or devices (indicated with S in
Fig. 2.1), compute for 10 clock cycles, and repeat. I/O controller-like traffic
generators are instead programmed to query three shared devices in a rotat-
ing pattern, by reading 256 bits from each. It must be noticed that, since
the aim of the analysis is comparing the performance of a packet-based inter-
connect vs. a traditional interconnect under equal conditions, the generators
have to be programmed to issue functional traffic (such as data transactions);
a lower-level approach with injection of packets in the NoC would make the
comparison with AMBA very unintuitive.

48 Comparative analysis of NoCs and Traditional Interconnects

2.4 Reference Characterization Flow

In the present section we introduce for the first time in the thesis a com-
plete simulation and design flow for xpipes . The mentioned flow takes as
input the architecture definition and, on a side, brings to the evaluation of
the application communication requirements and to the verification of the
system functionalities, on the other allows to obtain the layout masks for
tape out, going through the synthesis and the place& route steps. The flow
includes the use of home-made (when needed) and commercial tools, and its
definition required avery big effort due to the unusual field of application of
the standard implementation routines performed by the involved software.
The xpipes design flow is taken as reference in the rest of the thesis, since
the implementation of sample NoC designs at layout level is key for the sake
of every research topic presented in this thesis. For the sake of the argument
discussed in this chapter, the tool was used to properly characterize the plat-
forms mentioned in Section 2.2. Thus, since the implementation of AMBA
platforms was also needed, and since it requires some different operation to
be performed, a small subsection explaining AMBA synthesis procedure is
also included. Simulation and synthesis flows are described more in detail in
the following.

2.4.1 Fabric Simulation

The platforms under test were rendered into MPARM (Fig. 2.3), a SystemC
cycle-accurate virtual platform [18]. MPARM allows for accurate injection of
functional traffic patterns as generated by real IP cores during a benchmark
run. Further, it provides facilities for debugging, statistics collection and
tracing. This virtual platform allows us to perform the tasks outlined at the
top right of Fig. 7?7 and Fig. ?7.

10 ARMT7 processors (M0 to M9 in Fig. 2.1), with caches, and 5 custom
traffic generators (TO to T4), four of which programmed to execute DSP-like
traffic and one of which programmed to perform I/O controller-like traffic,
were plugged to the master ports of the platforms. The functional multimedia
benchmarks described in Section 2.3 were run on the general purpose cores.
System slaves (memories) are either accessible by a single master (“private”)
or subject to contention due to requests by multiple masters (“shared”). This
distinction is key, since private memories exhibit optimal latency only if
located next to their master (i.e. on the same AHB layer or attached to
the same xpipes switch). The placement of shared slaves must comply with
functional constraints: for example, in a ML AMBA topology, shared slaves
must be put beyond the crossbar component, otherwise only local masters

2.4 Reference Characterization Flow 49

OS, Libraries,
Toolchain, Benchmarks

Processor Processor
Tile A Tile E
A A
| A R IR R CEN R [el e ——— .
\ 4 \ 4
Comm Comm Comm Comm Comm
Master Master Master Master Master

Interchangeable System Interconnect Fabric
(bus, bridged clusters, crossbar, NoC)

DRAM Interrupt
controller device

Statistics, Waveforms, Power Models,

Traces, Debugger Frequency/Voltage Scaling

Figure 2.3: The MPARM SystemC virtual platform

will be able to access them.

2.4.2 Fabric Synthesis

The flow to getting a chip layout for the interconnection fabrics encompasses
multiple steps. A single 0.13 um, power characterized, technology library is
used.

xpipes Synthesis

The first synthesis step for the xpipes interconnect (Fig. 2.4, top left) is based
on the previously mentioned custom CAD tool, called xpipes Compiler, by
means of which the designer can instantiate and configure xpipes library
components to fit application needs. The user must provide a specification
file defining the topology connectivity and routing tables.

Moreover, touching some configuration headers, the architecture modules
can be parameterized: the flit width can be set to arbitrary values, switches

50 Comparative analysis of NoCs and Traditional Interconnects

topology

specs

Xxpipes fabric instantiation

LTy XpipesCompiler architectural simulation
topology cycle-accurate simulation platform

SystemC

HDL translation
RTL SystemC Converter traffic

A\ 4
logs

topolo architectural
||)-|DLgy statistics

fabric synthesis
Synopsys Design traffic

Compiler v generators
R mermas rea,, o,
t?g::ios%y . performance
*,, figures

», 0
........

place&route
--------- Cadence SoC
Encounter

..........
verification,
power modeling
Mentor ModelSim
Synopsys PrimePower

topology

floorplan

Figure 2.4: The synthesis flow for our test fabrics: xpipes

can be customized in terms of I/O ports, buffering resources and arbitration
policies, while NI degrees of freedom are buffering resources and clock di-
viders. The xpipes Compiler tool processes these specifications to generate
a SystemC instance, which is suitable both for architectural simulation and
for synthesis. Second step of the flow is a SystemC-to-HDL automatic trans-
lation. The outputs include the HDL code for traffic generators, for the NoC
building blocks, and for the top level instantiation layer. Following step is
the logical synthesis of the NoC building blocks. The synthesis is performed
with Synopsys Design Compiler [26]. The synthesis step receives in input the
HDL description of the building blocks and produces in output a standard-
cell netlist. The synthesizer is also fed with a set of constraints expressed in
a Synopsys Design Constraint (SDC) format. This permits also to use the
same set of constraints to feed both the synthesizer and the place and route
tool, since both support the same general format. Inside the SDC constraint
file, the specified constraints defined a target for the optimization processes
related to the timing features of the netlist, to the area occupation and to its
power consumption. In particular, realistic constraints obtained by perform-
ing some preliminary synthesis iterations were defined for the critical path
and for the maximum input and output delays. On the other hand, since
area and power optimization processes have lower priority with respect to the
timing, maximum optimization effort is allowed for both this tasks. In this
way, the user prevents the synthesis results to be damaged by an aggressive
timing optimization aimed to reach unrealistic targets, while keeping area

2.4 Reference Characterization Flow 51

an power results as low as possible. The output of the synthesis process is a
verilog netlist instantiating a set of cells from the library, and a Standard De-
lay Format (SDF) file providing information about the delay due to the cells
and to the interconnects, estimated for each path in the netlist. This SDF
file is needed to perform the post-synthesis simulations. Full custom logic
blocks would lead to better performance, but logical synthesis process avoids
is a better candidate to illustrate the results achievable with a completely
synthetic, and therefore maximally flexible, approach.

During synthesis, Design Compiler was instructed to save power when
buffers are inactive by applying clock gating to NoC blocks. The gating logic
can be instantiated only for sequential cells which feature an input enable pin;
in xpipes , such cells are 100% of the flip-flops along the NI datapath and 75%
or more of those along the switch datapath. If the target technology library
features dedicated clock gating cells, they may be used; in the case of the
library that were taken as reference for the sake of this analysis, such devices
are not available, therefore Design Compiler implemented the gating circuit
by means of generic cells. This incurs a small penalty in operating frequency
and power consumption, that could be avoided with a more complete tech-
nology library. Once that all NoC blocks have been mapped onto a netlist,
a third step (last one that deserves to be included in the synthesis phase) is
quickly performed on the top level instantiation code to link the complete
topology. A dont_touch synthesis directive is issued on the sub-blocks, to
prevent the tool to perform additional optimization trials on the linked de-
sign, so basically this step is mainly used to attach components to each other.

AMBA Synthesis

The logic synthesis phase is different for the AMBA fabrics with respect to
the NoC architecture. AMBA synthesis (Fig. 2.5, top left) is performed
by using the Synopsys CoreAssembler [25] tool to instantiate the IP cores
included in the Synopsys AMBA DesignWare libraries, therefore composing
the needed topologies. During this phase, design parameters (such as data
lane width) and constraints can be defined. The final result is a low-level
HDL netlist composed of technology library standard cells representing the
interconnect fabric, with AMBA AHB masters and slaves instantiated as
black boxes.

Placement&Routing

The final place&route phase is performed with Cadence SoC Encounter
suite [12] (Fig. 2.5 and Fig. 2.4, bottom left) is common to all fabrics,
First, a manual floorplanning phase is performed, where the hard black

52 Comparative analysis of NoCs and Traditional Interconnects

topology YEEGEG_—G— topology
specs SystemC

architectural simulation
cycle-accurate simulation

@_ platform
fabric instantiation, v

e i traffic
fabric synthesis -
Synopsys CoreConsultant architectural logs
Synopsys Design Compiler statistics

A

traffic

3 generators
............... v,
topology - .,
netlist & performance 4
. figures o 1

place&route et trarereerens anee** - e,
Ca%ence S:)C " power 3
ncounter i figures 4

e verification, rranganns®®’
area topology power modeling e
'.,..flgures_ o floorplan Mentor ModelSim
......... Synopsys PrimePower

Figure 2.5: The synthesis flow for our test fabrics: AMBA

boxes are placed on the floorplan by the designer. Fences are defined to limit
the area where the cells of each module of the interconnect can be placed.
Subsequently, the tool automatically places cells and finally the wire rout-
ing steps are performed. From preliminary experiments arised that letting
the tool handle the complete topology simultaneously, without hierarchical
tiling, enables a more thorough optimization. The tool was allowed to use
over-the-cell routing, i.e. to route wires on top of the black boxes repre-
senting IP cores, out of the eight metal layers that the reference technology
library allows, only the top three were conservatively used for routing; the
bottom five remain free for local wires of IP cores. During the place&route
phase, a clock tree aimed to reduce the clock skew across the register pins
inside the chip was synthesized. Some constraints for the clock tree were
specified inside a .ctstch file. The synthesis was performed automatically by
the tool according with the mentioned constraints. As will be explained more
in detail in chapter 3, for the sake of the xpipes custom topology implemen-
tation, a small variant is introduced. In this case SoC Encounter is feeded
with an automatically-generated floorplan specification file. This file con-
tains information about the layout fences, and is built by an in-house CAD
tool based on xpipes area models. Such an approach [7] lets the designer
skip the tedious activity of manually placing blocks on the floorplan, and
iteratively improving the result by means of trial-and-error tighter packing.

2.5 Performance comparison results 53

Post-Layout Analysis

Post-layout verification and power estimation (Fig. ?? and Fig. 7?7, bottom
right) is achieved as follows. First, the HDL netlist representing the final
placed&routed topology is simulated by injecting functional traffic through
the OCP ports of the NIs. This simulation is aimed both at verifying func-
tionality of the placed fabric and at collecting a switching activity report.
At this point, accurate wire capacitance and resistance information, as back-
annotated from the placed&routed layout, is combined with the switching
activity report using Synopsys PrimePower [27]. The output is a layout-
aware power/energy estimation of the simulation.

2.5 Performance comparison results

2.5.1 Interconnect Performance

First, a cycle-accurate architectural simulation of the alternative topologies
under the load of three benchmarks was performed, as described in Sec-
tion 2.3 and Section 2.4.1, to assess their performance. The plots in Fig. 2.6
summarize the global results. The vertical axis represents the relative bench-
mark execution time, taking as the baseline the execution on the multilayer
AMBA AHB topology. Execution times are computed by first running an
architectural simulation, which provides results in terms of clock cycles, and
then by backannotating the clock period as resulting from the synthesis flow,
as discussed in Section 2.4. Frequency results will be discussed in more detail
in Section 2.5.2, but it is worth to anticipate that it was possible to achieve
370 MHz for the AMBA topologies and 793 MHz for the NoC topologies.
Realistically, ARMT7 cores should be able to run up to a frequency of 400-500
MHz in 0.13 pm lithography. Since the MLL. AMBA topology is capable of
achieving 370 MHz at most, and the overhead for the usage of dual clock
synchronization FIFOs would not be justified in this case, the system can be
considered fully synchronous at 370 MHz. For the NoC, the dual clock sup-
port offered by xpipes was exploited to run the cores at 396.5 MHz and the
NoC at its maximum frequency of 793 MHz. The 7% frequency boost given
to the cores is small and does not represent an unfair advantage for the NoCs;
in fact, it is a byproduct of the high clock frequency achievable by NoCs, a
feature that must be exploited as much as possible by NoC designers. The
tests was repeated with three different cache sizes for the ARMT7 processors;
smaller caches translate into more cache misses and more congestion on the
fabric.

In all benchmarks, the shared bus is completely saturated and execution

54 Comparative analysis of NoCs and Traditional Interconnects

times are unreasonable - about four times larger than with the other inter-
connects. In multi-high and multi-low, the 21-bit NoC mesh exhibits a
small but noticeable advantage with respect to the ML AMBA fabric of about
5% to 15%, with the largest gain being achieved in high-congestion (small
cache) setups. The 38-bit NoC extends the gap to the 10% to 20% range.
Even the custom NoC topology, which features much less bandwidth than the
meshes, typically performs 10% better than ML, AMBA. The figures represent
overall benchmark execution time, therefore such improvements are remark-
able. Finally, the des benchmark is strongly more bandwidth-intensive than
multi-high and multi-low, and therefore the gap among AMBA and the
NoC interconnects widens to the 20 to 35% range.

The results do not show a large difference between the multi-high and
multi-low applications; in both cases, the gap between AMBA and NoC
topologies is similar. At first sight, the benchmark with more communication
and less computation demands (multi-low) should give a larger advantage
to bandwidth-rich interconnects, such as the NoCs. The results can be better
understood by noticing two things.

The first is that, despite a difference of a factor of eight in the performed
computation, and all else being equal, this 8X difference is only translating
into a gap of about 20% in the ratio of computation to actual communi-
cation. This happens because communication bandwidth is required not
only for explicit data transfers, but also implicitly to fetch computation in-
puts (cache misses) and to store computation outputs (cache write-backs or
write-throughs). For example, on the 21-bit NoC mesh with 1 kB caches, we
observe that in the multi-low case, computation is typically 50 to 60% of
the application kernel’s simulation time, while in multi-high the fraction of
computation time ranges between 70% to 85% - obviously larger, but less so
than what could be expected.

The second key to understand the behaviour of multi-high vs. multi-
low, and more in general the reasons for the performance advantage of NoCs,
is the difference between bandwidth and latency.

One important factor that contributes to the NoC speed results is cer-
tainly their peak bandwidth. Given the clock frequencies above, the overall
bandwidth of the fabrics can be calculated. The NoC meshes have 44 links,
for an aggregate bandwidth of about 87 GB/s (21-bit mesh) or even 158
GB/s (38-bit flits). The custom topology, which is specifically optimized,
only features 14 links and therefore has around 28 GB/s of bandwidth. The
ML AMBA topology can have at most five pending transactions at a time;
considering two sets of 32-bit data wires (AMBA features dual data channels
for reads and writes), 32-bit address wires and a dozen used control wires,
the available bandwidth can be computed to be around 24 GB/s.

2.5 Performance comparison results 55

Therefore, the NoC meshes feature about 3.5 to 6.5 times more peak
bandwidth than the ML AMBA topology. This seems to explain the perfor-
mance gap. However, the NoC custom topology still outperforms ML AMBA
with just 28 GB/s of peak bandwidth - a 15% margin.

This is due to the fact that bandwidth is only an indirect clue of perfor-
mance; the real metric to assess the speed of an interconnect is the latency
from request to completion of a transaction. In Fig. 2.7, we depict the average
latencies for various types of transactions in multi-high (other benchmarks
show similar trends) as seen by the ARMT cores. For single reads, the pack-
eting overhead of the NoC is clear; the ML AMBA topology is about twice
as fast in returning responses. Indeed, it is possible to analytically and em-
pirically observe that the ML, AMBA design can internally complete a single
read in 5 CPU clock cycles in the best case (with one-wait-state memories),
while 10 CPU clock cycles are needed for the NoC in the 38-bit configura-
tion with a 2X clock multiplier. The same does not hold for burst transfers,
where the packeting overhead is only paid once, and congestion becomes the
key limiter: even though the burst traffic in our case is mostly composed of
short 4-beat cache refills (the traffic generators inject a smaller amount of
8-beat reads), the NoCs come out faster, with a margin of 10 to 20% (the
38-bit topology performing even better at 20 to 25%, due to lower conges-
tion). This result strongly suggests that NoCs should try to take advantage
of stream transfers. The single write latency figure is also interesting; in
this case, the NoC shows, on average, less than half the latency of the ML
AMBA scheme. This figure is the result of the support for posted writes
in the OCP protocol, which is exploited by xpipes . xpipes allows streams
of writes to be issued in a posted fashion, without any delays except those
possibly introduced by eventual buffer saturation somewhere in the network.
In contrast, the AMBA protocol forces a master to wait for the response to
the previous write request and for rearbitration before issuing a new write;
therefore, write streams experience continuous hiccups. This phenomenon
could be bypassed by interposing data FIFOs, but this kind of optimizations
is beyond the scope of this paper.

The overwhelming bandwidth advantage of the NoC meshes is a hint to
overdesign, and explains our choice of presenting a custom NoC topology
that is specifically tailored for the benchmarks under scrutiny. The purpose
is not to contrast this topology against the AMBA fabric, which would be
unfair, but to show how significant the savings that derive from custom
mapping can be. The custom topology is much less bandwidth-rich than the
meshes, noticeably trimming power consumption while not affecting fabric
speed nearly as much.

Coming back to the analysis of benchmark execution times, as shown

56 Comparative analysis of NoCs and Traditional Interconnects

above, our results show similar performance gains of NoCs vs. AMBA in
multi-low and multi-high, despite the fact that multi-low spends about
20% more time in communication than multi-high, and should therefore
exhibit larger speedups. On the other hand, des requires heavy communica-
tion resources and indeed strongly benefits from NoCs. Given the discussion
above, the mix of transaction types can clearly explain the results. For exam-
ple, relatively to the multi-high benchmark when run on the 21-bit mesh
with 4 kB caches, one can observe 26% of single reads, 1% of burst reads
(very few cache misses) and 73% of single writes. In the same setup, multi-
low exhibits 46%, 2% and 52%. So, while multi-low spends more time in
communication, its communication mix is less favourable to the NoCs than
that of multi-high, producing similar overall results. des not only demands
a lot from the interconnect, but it is also a good match to NoC architectures;
due to a much larger data set and code segment, in the same setup, the ratios
are respectively 16% (few single reads), 32% (many refills) and 52%.

The mix of transactions also depends on other parameters such as cache
sizes or cache locality of the application; larger caches decrease cache refills
(burst reads), but do not affect inter-processor communication, which is not
cacheable. For example, multi-high run on 256 B caches generates as much
as 33% of burst reads for cache refills, compared to 1%, as seen above, in
a 4 kB setup. Further, many other factors can contribute to performance
results, including functional bottlenecks (one slave is heavily accessed and
slows down the whole system), localized congestion (the topology suffers from
overload at some location), traffic spikes over time (resources are normally
underutilized, but communication spikes occur and when they occur they are
poorly handled). Overall, the results show a noticeable performance lead of
NoCs over a wide range of transaction patterns.

2.5.2 Interconnect Area, Frequency of Operation and
Bandwidth

Screenshots of the layouts for M, AMBA AHB and for the NoC topologies
are shown in Fig. 2.8. Here and elsewhere in this Section, the shared bus
configuration is omitted because, as shown (Section 2.5.1), the performance
of the fabric is so bad as to make any comparison pointless.

The first analysis reported is the one related to the area occupation of
the topologies under test. As a premise, it must be stated that the present
study mostly focuses on performance and power. Thus, only few iterations of
a specific optimization step in the synthesis flow were performed to minimize
area requirements. In fact, a placement step to derive fabric floorplans was

2.5 Performance comparison results 57

performed, but this is only done to get a realistic estimation of capacitive
overheads due to long wires. To put more effort in the step of tightly com-
pacting the design, which would be needed in an industrial product but is
unneeded for our characterization, was avoided for the sake of this analysis,
and can be considered to point out the need for an efficient automatic NoC
flooplanner. This argument will be discussed more in detail in the follow-
ing chapters, while considering the benefits derived by a tool aimed to the
application-specific NoC design. For these reasons, the overall floorplan ar-
eas which can be inferred from Fig. 2.8 are not competely meaningful, except
as a way to get information about wire lengths. In fact, since the floorplans
have not been intensively iteratively tightened, floorplan areas only represent
the bounds manually set for the placement&routing tools.

Still, the cell area metric, which only takes into account the area occu-
pation of logic cells in the design, is a useful indication about the expected
silicon overhead of alternative fabrics. After placement&routing, and includ-
ing the clock tree buffers, the cell area for the AMBA ML topology is 0.52
mm?. For the xpipes meshes, which feature 15 switches and 30 NIs, area
is 1.7 mm? (21-bit design) to 2.1 mm? (38-bit design), while the custom
topology comprises fewer switches and is therefore a bit less demanding at
about 1.5 mm?. While these results show a large relative overhead for the
NoCs vs. AMBA, the overhead is in fact small when compared to the area
requirements of the IP cores.

X pipes X pipes X pipes
Max Frequency ML AMBA mesh mesh custom
(21-bit) (38-bit) (21-bit)
After synthesis 480 MHz 847 MHz | 847 MHz | 847 MHz
After place&route 370 MHz 793 MHz | 793 MHz | 793 MHz

[Frequency drop || 22.9% | 64% | 64% | 64% |

Table 2.1: Pre- and post-placement achievable frequencies

The maximum frequency results for the fabrics are as reported in Ta-
ble 2.1. The MLL AMBA fabric reaches at most 480 MHz before the place-
ment stage. After placement and clock tree insertion, the actual achievable
frequency decreases sharply to 370 MHz (-22.9%). This drop means that,
compared to the design netlist, some unexpected capacitive loads arise in
the final floorplan due to routing constraints. An explanation can be found
in the purely combinational nature of the fabric, which implies long wire
propagation times and compounds the delay of the crossbar block.

As can be seen, the xpipes topologies all achieve much higher clock fre-
quencies. Even after placement&routing, the critical path is not on the

58 Comparative analysis of NoCs and Traditional Interconnects

NoC links, which confirms that the wire segmentation is highly effective. A
byproduct is wire load predictability; in fact, as the table shows, the NoC
fabrics suffer a minimal timing penalty of 6.4% after taking into account
actual capacitive loads. These results suggest better scalability of the NoC
architecture to future technology nodes.

It is meaningful to underline the effect that clock gating and clock tree
deployment have on the design of a complex architecture. With respect to
some initial results [4] on cross-benchmarking, where these elements were
not accounted for, it is for example possible to notice that the maximum
frequency achievable by NoCs drops by almost 100 MHz (885 MHz vs. 793
MHz). This is easily explained; signals need to travel from flip-flop to flip-flop
within a time budget of one clock period, but the clock management logic
adds delay and skew, both of which cut into the available timing window.
This result, while certainly not novel, is further highlighting the importance
of a complete modeling and synthesis flow spanning up to the lowest levels
of abstraction.

2.5.3 Interconnect Power and Energy

To attempt a power evaluation, in a first phase, the activity during functional
system simulations was monitored and all source-target transaction pairs
were logged. Then the flow outlined in Section 2.4.2 was set up by injecting
traffic from master ports towards each of the targets which are accessed
in the functional simulation. We only analyze average power and energy
consumption figures under specific workloads. In chapter fir reference to
chapter about power modeling methods to build flexible yet accurate power
models for xpipes architecture are presented.

From preliminary analysis, sequential logic resulted to represent by far
the largest fraction of power consumption in the xpipes NoC, with flip-flops
burning as much as 80% of the global power requirements (still excluding
the clock tree contribution, which is also major). This is contrary to some
previous assumptions, where switching activity on global wires is expected
to be the dominant contribution to power dissipation (an example is in [1]).
The balance is expected to eventually shift in smaller technologies, but at the
0.13 um node sequential elements seem to be the prime candidates for tuning.
This observation leads to optimize the NoC by means of several strategies
related to buffering elements. So, first, the implementation of clock gating
achieved about 30% power savings. Second, the buffering resources are kept
to a minimum across the NoC, by sizing NI and switch buffers to hold only
three flits at a time. Third, the flit width degree of freedom was explored,
proving its usefulness: moving from 38-bit to 21-bit flits reduces buffer size

2.5 Performance comparison results 59

almost in half, cutting power by a significant amount (see below). The as-
pects related to the optimal flit width are discussed more in chapter Fiz the
reference with the chapter about cache performances The power results ob-
tained for the topologies at their maximum operating frequency are reported
in Table 2.2, while energy results are reported in Table 2.3. xpipes figures are
for designs with clock tree and clock gating, while in the case of AMBA, only
insert a clock tree is present; given the low amount of sequential logic that
AMBA contains (see Table 2.2), clock gating would offer negligible benefits
and unnecessarily add design flow complexity and frequency penalties.

It is interesting to note that, with the used 0.13 pwm technology library,
leakage power is present but almost negligible (less than 0.1%). This is also
expected to change in smaller technologies.

X pipes X pipes X pipes
Power Consumption ML AMBA mesh mesh custom
(21-bit) (38-bit) (21-bit)
Global power 75 mW 376 mW 473 mW 347 mW
Sequential cell power 15 mW 145 mW 187 mW 116 mW

[Sequential power ratio || 20.5% | 386% [395% [334% |

Table 2.2: Power consumption of the fabrics

Energy X pipes X pipes X pipes

Consumption ML AMBA mesh mesh custom
(21-bit) (38-bit) (21-bit)

Energy per

injectable 3.13 mJ/GB 4.32 mJ/GB | 2.99 mJ/GB | 12.39 mJ/GB

data

Energy per

benchmark run 0.075 mJ 0.338 mJ 0.402 mJ 0.312 mJ

(fabric only)

Energy per

benchmark run 1.08 mJ 1.30 mJ 1.31 mJ 1.28 mJ

(1W system)

Energy per

benchmark run 5.08 mJ 5.17 mJ 4.96 mJ 5.14 mJ

(bW system)

Table 2.3: Energy consumption of the fabrics

The ML AMBA crossbar is clearly the winner in terms of pure power
consumption. The power consumption of the NoC meshes is 5.6 to 7.5 times
higher. Keeping the flit width of the NoC mesh low is however helpful, as
power savings of 25% can be noticed, with a much lower impact on overall
performance (see Section 2.5.1). Thanks to clock gating, the fraction of power
consumption due to sequential logic drops significantly, from the initial value

60 Comparative analysis of NoCs and Traditional Interconnects

of around 80% [4] obtained in preliminary analysisto around 35%. This drop
is due to the compound effect of clock gating (which cuts the sequential power
requirements by 30%) and of the clock tree insertion, which is implemented by
means of combinational cells, thus lowering the relative fraction of sequential
power. The custom NoC topology, thanks both to its lower switch count, is
able to shave about 8% off the power of the 21-bit mesh. When considering
the power density of the interconnects, AMBA has an advantage of roughly
a factor of two; this can be attributed to the difference in clock speeds.

In terms of energy, the advantage of ML AMBA is less clear. When
considering the ratio among power consumption and available bandwidth
(mW over GB/s, or mJ over GB of injectable data), ML AMBA and the
NoC meshes look much closer. However, this figure is a bit misleading;
using all of the available bandwidth, the meshes would indeed consume much
more energy. Further, the custom NoC, which is designed around providing
bandwidth only where necessary, but utilizing it efficiently, is unreasonably
penalized by this analysis. Therefore, it may be useful to define a more
meaningful metric: power over benchmark execution time, i.e. the energy
required to complete a benchmark. Given the performance figures shown
by the experiments, an execution time advantage as shown by multi-high
or multi-low is conservatively assumed; in a des-like scenario, of course,
the results of NoCs would look better. Thus, an execution time gain of
10% for the 21-bit NoCs (mesh and custom) against the ML AMBA fabric,
and of 15% in the case of the 38-bit NoC mesh was set. Calculating the
energy consumption over an execution time which is 1 ms for the baseline
ML AMBA case, it was possible to obtain the results reported in the second
row of Table 2.3. To derive an even more useful metric, however, the energy
consumption of the whole system should be taken into account. To this
effect, the power consumption of other parts of the system must be modeled.
This is a very difficult task, as it greatly depends on the specific components
at hand. It is correct to very conservatively assume a power consumption
of just 1 W at 370 MHz for all of the 15 cores, caches and memory blocks.
Further, a 370 MHz working frequency for the cores in the M. AMBA case
and a 396.5 MHz frequency for the NoCs (Section 2.5.1) can be aasumed.
The overall power consumption of the systems would therefore be 1.075 W
for ML AMBA, 1.449 W for the 21-bit NoC, and so on. The corresponding
energy is reported in the third row of Table 2.3; the three NoCs are giving
almost identical results, about 20% worse than MLL AMBA. With system
components requiring 5 W, however, the NoCs become strongly competitive,
as the table shows; the 21-bit NoCs get almost on par with ML AMBA,
while the 38-bit topology actually offsets its higher power requirements with
its performance results, coming out as the most energy-efficient by a slight

2.5 Performance comparison results 61

margin.

2.5.4 Split Analysis of Area and Power Contributions

In Fig. 2.9, a split report of area occupation and power consumption for the
three NoCs is presented. In terms of area (Fig. 2.9(a)- 2.9(c)), at first glance,
three main contributions can be noticed: switches, initiator NIs and target
NIs. However, the ratios between them can shift in a relevant fashion. To
understand the figures, it must be noticed that the mesh topologies feature
15 instances of each type of component, while the custom NoC has 15 of each
type of NIs but only 8 switches. The absolute contribution of the NIs to the
NoC area remains roughly constant across the topologies; NI area is found to
be dominated by the OCP front-end, which remains unchanged regardless of
the topologies. The main differences are therefore due to switch area. Taking
the 21-bit mesh as a baseline, switches require 38.5% of the NoC area. In the
38-bit mesh (where switches are larger due to the increased flit width) the
percentage rises to 47.7%, while in the 21-bit custom topology (where there
are fewer switches) it falls to 27.0%.

In terms of power (Fig. 2.9(d)- 2.9(f)), the major contribution, as ex-
pected, is due to the clock distribution network. Two clocks are actually be-
ing distributed, a fast one for the network and a slower one for the OCP front
end of the NIs. The two clock trees together burn 40% or more of the overall
power. Several interesting trends can be observed in this split analysis. For
example, since the absolute power consumption of the NIs remains more or
less constant across the topologies, their relative consumption is determined
by the other components. The xpipes clock tree, i.e. the fast one, has a con-
sumption which is very directly correlated to the amount of flip-flops it must
drive; therefore, it takes the smallest fraction of the power budget in the 21-
bit custom topology (where there are fewer switches to clock), a larger one in
the 21-bit mesh, and the largest one in the 38-bit mesh. Switches themselves
exhibit a more complex trend. They already burn a significant amount of
power in the 21-bit mesh, and this budget increases even more in the 38-bit
mesh and in the custom topology. The reasons are different; in the former
case, there are simply more gates (38-bit switches have datapaths which are
almost twice as wide), while in the latter, the amount of gates is actually
lower (8 switches instead of 15) but traffic is still efficiently processed, which
points to a much higher switching activity.

Finally, it is interesting to note that, in all cases, when comparing the
switches to the NIs, switches take a larger fraction of the power budget than
they do of the area budget. For example, in the most extreme case, the
custom topology, the switches require less area than either the initiator or

62 Comparative analysis of NoCs and Traditional Interconnects

target NIs, but burn as much power as both types of NIs together. We mostly
attribute this fact to NI front ends working at the OCP clock frequency, i.e.
at half the frequency of the rest of the network (Section 2.5.1), while switches
uniformly run at the higher frequency. Further, switches experience a higher
average activity level, since for example a single incoming packet forces all
output ports of a switch to evaluate a new request - even if a single output
port will eventually let flits through.

2.5 Performance comparison results

63

Q
£
S
c
ks
S
>
|9}
Q
X
Q
()
=
=1
o
()
4
256 B 1kB 4 kB
Cache size
(a)
Q
£
S
c
ks
S
>
|9}
Q
X
()
()
=
=1
o
()
4
256 B 1kB 4 kB
Cache size
(b)
Q
£
=1
C
2
=]
>
|9}
Q
x
Q
Q
=
S
©
(9]
[~

256 B 1 kB 4 kB
Cache size

()

[AMBA AHB shared bus

[l AMBA AHB multilayer

[] xpipes mesh (21-bit)

[] xpipes mesh (38-bit)

[l xpipes custom (21-
bit)

[AMBA AHB shared bus

[l AMBA AHB multilayer

[] xpipes mesh (21-bit)

[] xpipes mesh (38-bit)

[l xpipes custom (21-
bit)

O] AMBA AHB shared bus
[l AMBA AHB multilayer
[xpipes mesh (21-bit)
[] xpipes mesh (38-bit)

[l xpipes custom (21-
bit)

Figure 2.6: Relative execution times for (a) multi-high, (b) multi-low, (c) des
with varying cache sizes. The ML AMBA AHB execution time is the
baseline at 100. AMBA AHB shared bus results lay beyond the upper

limit of the Y axis scale

64 Comparative analysis of NoCs and Traditional Interconnects

100.00 217.69 208.41 208.41
w 80.00+
£ [0 AMBA AHB shared bus
> [l AMBA AHB multilayer
@)) o
qC) 60.004 Dxp!pes mesh (21 b!t)
g [] xpipes mesh (38-bit)
© M xpipes custom (21~
8 it)
® 40.00+
—
Q@
()]
£ 20.00+
(V2]
0.00
256 B 1 kB 4 kB
Cache size
(a)
100 _404.69 355.92 355.79
o 80+
5 O] AMBA AHB shared bus
> [l AMBA AHB multilayer
@) | [xpipes mesh (21-bit)
qc) 60 [] xpipes mesh (38-bit)
“B' M xpipes custom (21-
; bit)
© 40+
[J]
—
—
7]
5 204
om
256 B 1kB 4 kB
Cache size
(b)
21+ 67.37 140.72 140.61
18+
m
£ 151 [T AMBA AHB shared bus
> [l AMBA AHB multilayer
E [] xpipes mesh (21-bit)
9 12+] xpipes mesh (38-bit)
© [l xpipes custom (21-
bit)
£ 9y
—
2
QL 64
()]
£
" 3
0 l
256 B 1kB 4 kB
Cache size

(c)

Figure 2.7: Latency of (a) single read, (b) burst read, (c) single write transfers
on the interconnects. AMBA AHB shared bus results lay beyond the
upper limit of the Y axis scale

2.5 Performance comparison results 65

6.60 x 6.60 mm = 43.56 mm?2 5.10 x 6.95 mm = 35.45 mm?
(a) (b)

6.10 x 5.90 mm = 35.99 mm?
()

Figure 2.8: Layouts of our test fabrics: (a) ML AMBA, (b) xpipes meshes, (c)
Xpipes custom

66 Comparative analysis of NoCs and Traditional Interconnects

Clock trees, spare cells 4.67% Clock s, spare cells 4.02% Clock trees, spare cells 4.74%

N initators 24.06%

NI initiators 28.22%
Niinitators 34.12%
Switches 27.00%

Switches 38.54%

Switches 47.74%

N targets 24.18%

NI targets 28.57% NI targes 34.14%

(a) (b) (c)

N niators 17.56% OCP dlock ree 1252% N nitators 14.11% OCP clockree 0.19% N niators 17.99% OCP dlock ree 15.47%

N targets 10.52%

N targets 12.52% NI targes 12.56%

xpipes clock tree 35.51%
xpipes clock tree 31.89% xpipes clock tree 24.75%

Switches 30.67%

Switches 25.50% Switches 20.24%

(d) () (f)

Figure 2.9: Split report for a xpipes topology: (a-c) area of the 21-bit mesh, the
38-bit mesh and the 21-bit custom NoC; (d-f) power consumption of
the three topologies

Bibliography

(1]

(2]

(3]

[4]

(5]

[6]
(7]

(8]

[9]

[10]

[11]

[12]

13]

[14]

Tapani Ahonen, David A. Siglienza-Tortosa, Hong Bin, and Jari Nurmi. Topology optimization for
application-specific networks-on-chip. In Proceedings of the 6th International Workshop on System
Level Interconnect Prediction (SLIP0/), pages 53—60, 2004.

Adrijean Andriahantenaina and Alain Greiner. Micro-network for SoC: Implementation of a 32-port
SPIN network. In The Proceedings of Design, Automation and Test in Europe Conference and
Ezhibition, pages 1128— 1129. IEEE, 2003.

Federico Angiolini, Paolo Meloni, Davide Bertozzi, Luca Benini, Salvatore Carta, and Luigi Raffo.
Networks on chips: A synthesis perspective. In Proceedings of the 2005 ParCo Conference (to be
published), 2005.

Federico Angiolini, Paolo Meloni, Salvatore Carta, Luca Benini, and Luigi Raffo. Contrasting a NoC
and a traditional interconnect fabric with layout awareness. In Proceedings of the Design, Automation
and Test in Europe (DATE) Conference and Exhibition, pages 124-129, 2006.

ARM Ltd. The Advanced Microcontroller Bus Architecture (AMBA) homepage.
www.arm.com/products/solutions/ AMBAHomePage.html.

ARM Ltd. PrimeXsys platforms. www.arm.com.

Luca Benini. Application specific NoC design. In Proceedings of the 2006 Design, Automation and
Test in Europe Conference (DATE), pages 491-495, 2006.

Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC paradigm. IFEE Computer,
35(1):70 — 78, January 2002.

Davide Bertozzi, Antoine Jalabert, Srinivasan Murali, Rutuparna R. Tamhankar, Stergios Stergiou,
Luca Benini, and Giovanni De Micheli. NoC synthesis flow for customized domain specific multipro-
cessor systems-on-chip. IEEE Transactions on Parallel and Distributed Systems, 16, Issue 2:113-129,
February 2005.

Tobias Bjerregaard and Jens Sparsg. Scheduling discipline for latency and bandwidth guarantees
in asynchronous network-on-chip. In Proceedings of the 11th IEEFE International Symposium on
Asynchronous Circuits and Systems (ASYNC), pages 34-43, 2005.

Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. QNoC: QoS architecture and
design process for network on chip. In Journal of Systems Architecture. Elsevier, 2004.

Cadence Design Systems Inc. SoC Encounter. www.cadence.com.

R.Y. Chen, N. Vijaykrishnan, and Mary Jane Irwin. Clock power issues in System-on-a-Chip designs.
In Proceedings of the 1999 IEEE Workshop on Very Large Scale Integration (VLSI), pages 4853,
1999.

William J. Dally and Brian Towles. Route packets, not wires: On-chip interconnection networks. In
Proceedings of the 38th Design Automation Conference, pages 684-689, June 2001.

68

BIBLIOGRAPHY

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

(23]

[24]
25]
[26]
27]

28]

[29]

30]

[31]

32]

Monica Donno, Alessandro Ivaldi, Luca Benini, and Enrico Macii. Clock-tree power optimization
based on RTL clock-gating. In Proceedings of the Design Automation Conference (DAC), pages
622-627, 2003.

Faraydon Karim, Anh Nguyen, Sujit Dey, and Ramesh Rao. On-chip communication architecture
for OC-768 network processors. In Proceedings of the Design Automation Conference (DAC), pages
678 — 683, 2001.

Kangmin Lee, Se-Joong Lee, Sung-Eun Kim, Hye-Mi Choi, Donghyun Kim, Sunyoung Kim, Min-
Wuk Lee, and Hoi-Jun Yoo. A 51mW 1.6GHz on-chip network for low-power heterogeneous SoC
platform. In Digest of Technical Papers of the 2004 IEEE International Solid-State Circuits Con-
ference (ISSC), pages 152-518. IEEE Computer Society, 2004.

Mirko Loghi, Federico Angiolini, Davide Bertozzi, Luca Benini, and Roberto Zafalon. Analyzing
on-chip communication in a MPSoC environment. In Proceedings of the 2004 Design, Automation
and Test in Europe Conference (DATE). IEEE, 2004.

Real-Time Operating System for Multiprocessor Systems (RTEMS). www.rtems.com.

Antonio Pullini, Federico Angiolini, Davide Bertozzi, and Luca Benini. Fault tolerance overhead in
network-on-chip flow control schemes. In Proceedings of the 18th Annual Symposium on Integrated
Circuits and System Design (SBCCI), pages 224229, 2005.

Andrei Radulescu, John Dielissen, Kees Goossens, Edwin Rijpkema, and Paul Wielage. An efficient
on-chip network interface offering guaranteed services, shared-memory abstraction, and flexible net-
work configuration. In Proceedings of the 2004 Design, Automation and Test in Europe Conference
(DATE). TEEE, 2004.

Gilles Sassatelli, Séverine Riso, Lionel Torres, Michel Robert, and Fernando Moraes. Packet-switching
network-on-chip features exploration and characterization. In Proceedings of the International Con-
ference on Very Large Scale Integration System-on-Chip (VLSI-SoC 2005), pages 403-408, 2005.

Stergios Stergiou, Federico Angiolini, Salvatore Carta, Luigi Raffo, Davide Bertozzi, and Giovanni
De Micheli. xpipes Lite: A synthesis oriented design library for networks on chips. In Proceedings
of the 2005 Design, Automation and Test in Europe Conference (DATE), pages 1188-1193. IEEE,
2005.

STMicroelectronics. The STBus interconnect. www.st.com.
Synopsys Inc. coreTools. www.synopsys.com.

Synopsys Inc. Design Compiler. www.synopsys.com.
Synopsys Inc. PrimePower. www.synopsys.com.

M.D. Taylor, W. Lee, S.P. Amarasinghe, and A. Agarwal. Scalar operand networks. IEEE Transac-
tions on Parallel and Distributed Systems, 16:145-162, 2005.

Daniel Wiklund and Dake Liu. SoCBUS: Switched network on chip for hard real time embedded sys-
tems. In Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS03).
IEEE, 2003.

Drew Wingard. Micronetwork-based integration for SoCs. In Proceedings of the 38th Design Au-
tomation Conference (DAC), pages 673—-677. ACM, June 2001.

Jiang Xu, Wayne Wolf, Joerg Henkel, and Srimat Chakradhar. A methodology for design, modeling,
and analysis of Networks-on-Chip. In Proceedings of the 2005 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1778-1781. IEEE Computer Society, 2005.

Cesar Albenes Zeferino and Altamiro Amadeu Susin. SoCIN: A parametric and scalable network-on-
chip. In Proceedings of the 16th Symposium on Integrated Circuits and Systems Design (SBCCI03),
pages 34-43, 2003.

Chapter 3

Designing Application-Specific
Networks on Chips

For the use of NoCs to be feasible in today’s industrial designs, a custom-
tailored, application-specific NoC that satisfies the design objectives and con-
straints of the targeted application domain is required.

3.1 Introduction

Taking into account the comparative analysis reported in the previous chap-
ter, a major reason for the delay for NoCs to appear in industrial designs can
be individuated in the fact that, even though they provide large throughput
and flexibility, the power consumption and latency of the design is quite high,
when compared to today’s bus based systems. Thus a huge research field is
open, aiming to optimize the NoC hardware costs while keeping the ben-
efits in performances shown by preliminary evaluations. The optimization
challenges encountered in the design of on-chip networks for SoCs are quite
different from the design of macro-networks such as the interconnection net-
works used in parallel processing and the Internet. Some major differences
are:

e The communication between the various cores can be statically ana-
lyzed for many SoCs and the NoC can be tailored for the particular
application behavior

e The design objectives and constraints are different. As most SoCs are
used in mobile and hand-held devices, having a network with minimum
power consumption becomes an important design objective. Many
SoCs also need to respond in real-time for certain inputs, for which

70 Designing Application-Specific Networks on Chips

the NoC has to support different criticality levels for the different traf-
fic streams.

e The design process should also consider VLSI issues, such as the struc-
ture and wiring complexity of the resulting interconnect.

A very important phase in NoC design, having a deep impact on the area
occupation, latency and power consumption shown by the designed NoC, is
the synthesis of the topology (i.e. the definition of the structure of the
network and the setting of various design parameters , such as frequency
of operation or link-width). It must be noticed that standard topologies
(mesh, torus, etc.) providing uniform and regular connectivity between the
cores are required for on-chip systems where the traffic characteristics of the
system cannot be predicted statically, as in chip-multiprocessors. However,
for most SoCs the system is designed with static (or semi-static) mapping of
tasks to processors and hardware cores and hence the communication traffic
characteristics of the SoC can be obtained statically. This is true from SoC
designs that are small to state-of-the art SoCs, such as, the Philips Nexperia
platform [1], ST Nomadik 2], TT OMAP |[3], etc. In this cases, very frequent
indeed, it would be very useful to design the best topology that is tailor-made
for a specific application and satisfies the communication constraints of the
design. Being customly designed for a given use-case, the NoC designed
according to this approach would be able to save area, power and latency
allocating the hardware resources needed to provide fast communication only
where needed. Another motivation that brings the SoC designers to the use
of a NoC is the fact that the interconnect structure and wiring complexity
can be well controlled. When the interconnect is structured, the number of
timing violations that occur during the physical design (floorplanning and
wire routing) phase is minimum. Such design predictability is critical for
today’s SoCs for achieving timing closure. It leads to faster design cycle,
reduction in the number of design re-spins and faster time-to-market. As the
wire delay as a fraction of gate delay is increasing with each technological
generation, having shorter wires is even more important for future SoCs. An
application-specific NoC with structured wiring, which satisfies the design
objectives and constraints is important to have feasible NoC designs.

A large body of research works exists in synthesizing and generating bus-
based systems [9]- [14]. A floorplan-aware point-to-point link design and bus
design methodologies are presented in [15] and [14]. Anyway, while some
of the design issues in the NoCs are similar to bus based systems (such as
link-width sizing), a large number of issues such as finding the number of
required switches, sizing the switches, finding routes for packets, etc. are
new in NoCs. Methods to collect and analyze traffic information that can

3.2 Design Flow 71

be fed as input to the bus and NoC design processes have been presented
in [12] and [13]. Mappings of cores onto standard NoC topologies have been
explored in [16]- [19]. In [17], [19] a floorplanner is used during the mapping
process to get area and wire-length estimates. Unlike the method presented
here, these works only select topologies from a library of standard topologies.
In [18], a unified approach to mapping, routing and resource reservation has
been presented. However, the work does not explore topology design pro-
cess. The NoC design process for supporting multiple applications has been
presented in [20]. This research complements what was previously stated
about application-specific NoC and its methods can be applied here to sup-
port multiple applications as well. Important research in macro-networks
has considered the topology generation problem [21]|. As the traffic patterns
on these networks are difficult to predict, most approaches are tree-based
(like spanning or Steiner trees) and only ensure connectivity with node de-
gree constraints [21]. Hence, these techniques cannot be directly extended
to address the NoC synthesis problem. Application-specific custom topol-
ogy design has been explored in [22|- [25]. The works from [22], [23] do not
consider the floorplanning information during the topology design process.
In [24], a physical planner is used during topology design to reduce power
consumption on wires. However, the work does not consider the area and
power consumption of the NoC modules in the design, thus, taking into ac-
count the split analysis reported in the previous chapter, does not include
in the optimization process the biggest part of the interconnect power con-
sumption. Also, the number and size of network partitions are manually fed.
Several works exist on automatically generating the Register Transfer Level
(RTL) code of a designed topology for simulation and synthesis (e.g. [28]).
These works again complement application-driven NoC design, as the input
to them is a synthesized topology. Building area, power models for on-chip
networks has been addressed in [29]- [32].

3.2 Design Flow

In this thesis, as mentioned, some design techniques and optimizations sup-
porting application-aware NoC design are presented. In following chapters
this methods are presented more in detail. Anyway, all of them are thought
as parts of a novel streamlined design methodology for NoC topology syn-
thesis developed in collaboration with the research partners. The developed
methodology should bring the designer from the system high-level specifi-
cation to the back-end physical design (in particular this final part of the
design flow is completely integrated with the state-of-the commercial tools

72 Designing Application-Specific Networks on Chips

and was already discussed in section 2.4). The presented tool flow automates
the entire NoC design process, including:

e performance and power consumption aware topology synthesis (inte-
grated with NoC architectural parameter setting and compliant with
accurate switch area, power models and link power models that are
obtained from layouts of the components),

e routing and path computation (providing deadlock-free network oper-
ation is provided without special hardware mechanisms),

e RTL code generation and layout generation; thereby bridging an im-
portant gap in the design of application-specific NoCs.

The developed NoCs design flow is presented in Figure 3.1.

Application

Codesign,

User Constraints:
objectives: area, power,
power, hop delay,

Simulation hop delay wire length
Input traffic
model
Constraint graph
prstantece) Platform
Generation
Placement&

Topology Synthesis 0
Synthesis (xpipes- EE) Routing EEN

Compiler)
NoC includes:
Area models Floorplanner
NoC Router
NoC }:
ﬁPower models

NoC
component

library

IP Core I
models

SunFloor . L
Floorplanning specifications

Area, power characterization

Figure 3.1: NoC Design Flow

e In the first phase, the user specifies the objectives and constraints that
should be satisfied by the NoC. The application traffic characteristics,
size of the cores, and the area and power models for the network com-
ponents are also obtained.

e The second phase of the flow consists basically in the use of an home-
made tool named SunFloor, which is explained in detail as reference

3.2 Design Flow 73

Vary NoC frequency from a range
Vary link-width from a range
Vary the number of switches from one to number of cores

Synthesize the best topology with the particular
frequency, link-width, switch—count

Perform floorplan of synthesized topology, get
link power consumption, detect timing violations

Choose topology that best optimizes user objectives
satisfying all design constraints

Figure 3.2: Sunfloor NoC architecture synthesis (Second phase of the design flow)

in this chapter. By means of SunFloor the NoC architecture that opti-
mizes the user objectives and satisfies the design constraints is automat-
ically synthesized. The topology design process supports two objective
functions: minimizing network power consumption and hop-count for
data transfer. The designer can optimize for one of the two objectives
or a linear combination of both. The topology design process supports
constraints on several parameters such as the hop-count (when the
objective is power minimization), network power consumption (when
the objective is hop-count minimization), design area and total wire-
length. The topology synthesis process uses a floorplanner to estimate
the design area and wire-lengths. The wire-length estimates from the
floorplan are used to evaluate whether the designed NoC satisfies the
target frequency of operation and to compute the power consumption
of the wires. The different steps in this phase are presented in Figure
3.2. In the outer iterations, the key NoC architectural parameters (NoC
frequency of operation and link-width) are varied in a set of suitable
values. The bandwidth available on each NoC link is the product of
the NoC frequency and the link-width. During the topology synthe-
sis, the algorithm ensures that the traffic on each link is less than or
equal to its available bandwidth value. The synthesis step is performed
once for each set of the architectural parameters. In this step, sev-
eral topologies with different number of switches are explored, starting
from a topology where all the cores are connected to one switch, to
one where each core is connected to a separate switch. The synthesis
of each topology includes finding the size of the switches, establishing
the connectivity between the switches and connectivity with the cores,
and finding deadlock-free routes for the different traffic flows.

In the next step, to have an accurate estimate of the design area and
wire-lengths, the floorplanning of each synthesized topology is auto-
matically performed. The floorplanning process finds the 2D position

74 Designing Application-Specific Networks on Chips

of the cores and network components used in the design. For this, we
use Parquet, a fast and accurate floorplanner [35]. Based on the fre-
quency point and the obtained wire-lengths, the timing violations on
the wires are detected and the power consumption on the links is ob-
tained.

In the last step, from the set of all synthesized topologies and archi-
tectural parameter design points, the topology and the architectural
configuration that best optimizes the user’s objectives, satisfying all
the design constraints is chosen. Thus, the output of phase 2 is the
best application-specific NoC topology, its frequency of operation and
the width of each link in the NoC.

e The last phase of the design (right side of Figure 3.1), basically con-
sists in the reference back-end design flow presented in section 2.4.
As already mentioned, the RTL (SystemC) code of the switches, net-
work interfaces and links for the designed topology is automatically
generated, tanking as input the mentioned Xxpipes library [8], [34], a
library of soft macros for the network components, and the associated
tool xpipesCompiler [26]| to interconnect the network elements with
the cores. At this phase, a synthesizable RTL design that can also be
emulated on FPGA ca be obtained. From the floorplan specification of
the designed topology, the synthesis engine automatically generates the
inputs for placement&routing. The placement&routing of the design is
performed using SoC Encounter [37] for obtaining the layout, including
the global and detailed routing of wires. The output of this phase is a
complete layout of the NoC design that can be sent to a foundary.

As the flow has several steps, it is important to close the design gap
across the different steps. To ensure that the designed topology will sat-
isfy the timing constraints after place&route, the wire-lengths are evaluated
for detecting timing violations early in the design process, i.e. during the
topology synthesis phase itself. To bridge the gap between the initial traffic
models and the actual observed traffic after simulating the designed NoC,
a mismatch parameter is used. The parameter is read as part of the input
specifications by the topology synthesis engine. The user can manually tune
the parameter and re-design the NoC to suit the actual traffic characteristics.
Several other options are also supported by the topology synthesis engine,
such as support for cores with fixed locations in the layout (due to pin/pad
constraints). Due to lack of space, here we only present the major features
of the synthesis process.

3.3 Input Models 75

200

Mem

| ARM =] Fiter
ory 10

100

=100 1 _ 100
10 IFFT
FFT :3‘59
Y critical stream
i i weighted
sustained traffic by 10

rates

(a)

Figure 3.3: (a) Filter application (b) Core graph with sustained rates and critical
streams

3.3 Input Models

The traffic characteristics of the application are represented by a graph [16],
[17], [19], defined as follows:

Definition 1. The core graph is a directed graph, G(V, E) with each vertex
v; € V representing a core and the directed edge (v;,v;), denoted as e;; € E,
representing the communication between the cores v; and vj. The weight
of the edge e; j, denoted by comm, ;, represents the sustained rate of traffic
flow from v; to v; weighted by the criticality of the communication. The set
F represents the set of all traffic flows, with value of each flow, fr, Vk €
1---|F|, representing the sustained rate of flow between the source (si) and
destination (dy) vertices of the flow.

The core graph for a small filter example (Figure 3.3(a)) is shown in
Figure 3.3(b). The edges of the core graph are annotated with the sustained
rate of traffic flow, multiplied by the criticality level of the flow, as done
in [19].

As mentioned, one of the research topics presented in this thesis, aimed
to support application-specific NoC design, was the definition of accurate
analytical models for the power consumption and area of the network com-
ponents, based on the xpipes architecture [8]. In particular, two different
methodologies were studied and tested on the reference architecture. A de-
tailed description of the two methodologies and the discussion about their
accuracy and costs in terms of computational and manual effort is reported in
chapter fix the reference to chapter models Briefly, to get the power estimates,
the place&route of the components is performed using SoC Encounter and

76 Designing Application-Specific Networks on Chips

Table 3.1: Component Area-Power

Component | Parameter | Analytical | Experimental
4x4 area(mm?) 0.036 0.035
switch power(mW) 22.16 22.54
5xH area(mm?) 0.048 0.047
switch power(mW) 28.38 28.70
link (2mm) | power(mW) 0.57 0.57

accurate wire capacitances and resistances are obtained, as back-annotated
information from the layout, with 0.13um technology library. The switching
activity in the network components is varied by injecting functional traffic.
The capacitance, resistance and the switching activity report are combined
to estimate power consumption using Synopsys PrimePower [38].

Power consumption on the wires is also obtained at the layout level.
The analytical and experimental area, power consumption values for some
components (with 900 MHz frequency, link-width of 32 bits, buffer depth of
3 in the switches) are presented in Table 3.1.

3.4 Design Algorithms

The algorithms for the topology design process are explained in this section.
In the first step of Algorithm 1, a design point # is chosen from the set of
available or interesting design points ¢ for the NoC architectural parameters.
In the current implementation, the synthesis engine automatically tunes two
critical NoC parameters: operating frequency (fregy) and link-width (lwy).
As both frequency and link-width parameters can take a large set of values,
considering all possible combinations of values would be infeasible to ex-
plore. The system designer has to trim down the exploration space and give
the interesting design points for the parameters. The designer usually has
knowledge of the range of these parameters. As an example, the designer can
choose the set of possible frequencies from minimum to a maximum value,
with allowed frequency step sizes. Similarly, the link data widths can be set
to multiples of 2, within a range (say from 16 bits to 128 bits). Thus, it is
possible to get a discrete set of design points for ¢, as done in [14]. In all
the experiments that will be presented in this chapter, 8 frequency steps and
4 link-width steps are supported , providing 32 discrete design points in the
set ¢. The rest of the topology design process (steps 3-15 in Algorithm 1) is
repeated for each design point in ¢.

As the topology synthesis and mapping problem is NP-hard [22], efficient
heuristics are used to synthesize the best topology for the design. For each

3.4 Design Algorithms 77

design point @, the algorithm synthesizes topologies with different numbers
of switches, starting from a design where all the cores are connected through
one big switch until the design point where each core is connected to only
one switch. The reason for synthesizing these many topologies is that it
cannot be predicted beforehand whether a design with few bigger switches
would be more power efficient than a design with more smaller switches. A
larger switch has more power consumption than a smaller switch to support
the same traffic, due to its bigger crossbar and arbiter and due to its higher
number of buffering resources. On the other hand, in a design with many
smaller switches, the packets may need to travel more hops to reach the desti-
nation. Thus, the total switching activity would be higher than a design with
fewer hops, which can lead to higher power consumption. The relationship
between switch power consumption and switch size obviosly depends strictly
on the used technology process. For the chosen switch count ¢, the input
core graph is partitioned into ¢ min-cut partitions (step 3). The partitioning
is done in such a way that the edges of the graph that are cut between the
partitions have lower weights than the edges that are within a partition (refer
to Figure 3.4(a)) and the number of vertices assigned to each partition is al-
most the same. Thus, those traffic flows with large bandwidth requirements
or higher criticality level are assigned to the same partition and hence use
the same switch for communication. Hence, the power consumption and the
hop-count for such flows will be smaller than for the other flows that cross
the partitions. For partitioning, an efficient hierarchical graph partitioning
tool, named Chaco [36], was used. At this point, the communication traffic
flows within a partition have been resolved. In steps 5-9, the connections
between the switches are established to support the traffic flows across the
partitions. In step 5, the Switch Cost Graph (SCG) is generated.

Definition 2. The SCG is a fully connected graph with i vertices, where i is
the number of partitions (or switches) in the current topology.

SCG does not imply the actual physical connectivity between the dif-
ferent switches. The actual physical connectivity between the switches is
established using the SCG in the PATH COMPUTE procedure, which is
explained in the following paragraphs.

In NoCs, wormhole flow control [39] is usually employed to reduce switch
buffering requirements and to provide low-latency communication [6], [7].
With wormhole flow control, deadlocks can happen during routing of packets
due to cyclic dependencies of resources (such as buffers) [39]. The SCG is
pre-processed to prohibit certain turns in order to break such cyclic depen-
dencies. This guarantees that deadlocks will not occur when routing packets.
For finding the set of turns that need to be prohibited to break cycles, the

78 Designing Application-Specific Networks on Chips

turn prohibition algorithm presented in [33] is used, [18]. The algorithm has
polynomial time complexity (very fast in practice, see Section 3.5) and guar-
antees that at most 1/3 of the total number of turns would be prohibited to
remove cycles. The algorithm also guarantees connectivity between all nodes
in the SCG after prohibiting the turns. From the algorithm, the Prohibited
Turn Set (PTS) for the SCG is built, which represents the set of turns that
are prohibited in the graph. To provide guaranteed deadlock freedom, any
path for routing packets should not take these prohibited turns.
These concepts are illustrated in the following example:

Partition 1

Partition 2

prohibited
Partition 3 turns
(a) Min-cut partitions (b) SCG graph

(c) Path selection

Figure 3.4: Algorithm examples

Example 3.4.1. The min-cut partitions of the core graph of the filter ez-
ample (from Figure 3.3(a)) for 3 partitions is shown in Figure 3.4(a). The
SCG for the 3 partitions is shown in Figure 3.4(b). After applying the turn
prohibition algorithm from [33], the set of prohibited turns is identified. In
Figure 8.4(b), the prohibited turns are indicated by circular arcs in the SCG.

3.4 Design Algorithms 79

For this example, both the turns around the vertex P3 are prohibited to break
cycles. So no path that uses the switch P3 as an intermediate hop can be
used for routing packets.

The topology synthesis process also supports freedom from another type
of deadlock, known as message-level deadlock [39], by routing the traffic flows
of the different message types in the design onto different physical links.

Algorithm 1 Topology Design Algorithm
1: Choose design point 6 from ¢: freqy, lwy
2: for i = 1 to |V| do
3: Find i min-cut partitions of the core graph
4: Establish a switch with N; inputs and outputs for each partition, Vj €
1---4i. Nj is the number of vertices (cores) in partition i. Check for

J
bandwidth constraint violations.

Build Switch Cost Graph (SCG) with edge weights set to 0

Build Prohibited Turn Set (PTS) for SCG to avoid deadlocks

Set p to 0

Find paths for flows across the switches using function

PATH COMPUTE(i, SCG, p, PTS, 0)

9: Evaluate the switch power consumption and average hop-count based
on the selected paths

10: Repeat steps 8 and 9 by increasing p value in steps, until the hop-count
constraints are satisfied or until p reaches pipresh

11: If pipresn reached and hop-count not satisfied, go to step 2.

12: Perform floorplan and obtain area, wire-lengths. Check for timing
violations and evaluate power consumption on wires

13: If target frequency matches or exceeds freqy, and satisfies all con-
straints, note the design point

14: end for

15: Repeat steps 2-14 for each design point available in

16: For the best topology and design point, generate information for

x pipesCompiler and Cadence SoC Encounter

The actual physical connections between the switches are established in
step 8 of Algorithm 1 using the PATH COMPUTE procedure. The objective
of the procedure is to establish physical links between the switches and to
find paths for the traffic flows across the switches. Here, the procedure where
the user’s design objective is to minimize power consumption is presented as
reference. The procedure for the other two cases (with hop-count as the
objective and with linear combination of power and hop-count as objective)
follow the same algorithm structure, but with different cost metrics.

80 Designing Application-Specific Networks on Chips

Algorithm 2 PATH COMPUTE(i, SCG, p, PTS, 0)

1: Initialize the set PHY (il,j1) to false and Bw_awvail(il,j1) to fregy x
lwh, v il, jlel---i
2: Initialize switch_size_in(j) and switch_size_out(j) to N;, ¥V j €

1---i. Find switching activity(j) for each switch, based on the traffic

flow within the partition.

for each flow fi, k € 1---|F| in decreasing order of f. do

for il from 1 to i and j1 from 1 to i do
{Find the marginal cost of using link i1, j1}
{If physical link exists and can support the flow}
if PHY (il,71) and Bw_avail(il, j1) > f. then
Find cost(il, j1), the marginal power consumption to re-use the
existing link
9: else

10: {We have to open new physical link between il, j1}

11: Find cost(i1, j1), the marginal power consumption for opening and
using the link. Evaluate whether switch frequency constraints are
satisfied.

12: end if

13: end for

14: Assign cost(il, j1) to the edge W(il, j1) in SCG

15: Find the least cost path between the partitions in which source (s)

and destination (dy) of the flow are present in the SCG. Choose only
those paths that have turns not prohibited by PTS

16: Update PHY, Bw__avail, switch _size _in,

switch _size _out, switching activity for chosen path

17: end for

18: Return the chosen paths, switch sizes, connectivity

An example illustrating the working of the PATH COMPUTE proce-
dure is presented in Example 3.4.2. In the procedure, the flows are ordered
in decreasing rate requirements, so that bigger flows are assigned first. The
heuristic of assigning bigger flows first has been shown to provide better
results (such as lower power consumption and more easily satisfying band-
width constraints) in several earlier works [17], [18]. For each flow in order,
the amount of power that will be dissipated across each of the switches, if
the traffic for the flow used that switch, is evaluated. This power dissipation
value on each switch depends on the size of the switch, the amount of traf-
fic already routed on the switch and the architectural parameter point (6)
used. It also depends on how the switch is reached (from what other switch)

3.4 Design Algorithms 81

and whether an already existing physical channel will be used to reach the
switch or a new physical channel will have to be opened. This information is
needed, because opening a new physical channel increases the switch size and
hence the power consumption of this flow and of the others that are routed
through the switch. These marginal power consumption values are assigned
as weights on each of the edges reaching the vertex representing that switch
in the SCG. This is performed in steps 8 and 11 of the procedure. When
opening a new physical link, whether the switch size is small enough to sat-
isfy the particular frequency of operation is also checked. As the switch size
increases, the maximum frequency of operation it can support reduces (as the
critical path inside the switch gets longer) [8]. This information is obtained
from the placement&route derived models of the switches, taken as an input
to the algorithms, that will be discussed more in detail in the following.

Once the weights are assigned, choosing a path for the traffic flow is
equivalent to finding the least cost path in the SCG. This is done by applying
Dijkstra’s shortest path algorithm [40] in step 15 of the procedure. When
choosing the path, only those paths that do not use the turns prohibited
by PTS are considered. The size of the switches and the bandwidth values
across the links in the chosen path are updated and the process is repeated
for other flows.

Example 3.4.2. For the SCG from Ezample 3.4.1, let us consider routing
the flow of value 100 between the vertices v1 and v2, across the partitions pl
and p2. Initially no physical paths have been established across any of the
switches. If we have to route the flow across a link between any two switches,
we have to first establish the link. The cost of routing the flow across any
pair of switches is obtained from step 11 of the PATH COMPUTE proce-
dure. The SCG with the edges annotated with the costs is presented in Figure
3.4(c). The costs on the edges from p2 are different from the others due to the
difference in initial switching activity in p2 compared to the other switches.
This is because the switch p2 has to support flows between the vertices v2
and v3 within the partition. The least cost path for the flow, which is across
switches pl and p2 is chosen. Now we have actually established a physical
path between these switches and this is considered when routing the other
flows. Also, the size and switching activity of these switches have changed,
which s noted.

The PATH COMPUTE procedure returns the sizes of the switches, con-
nectivity between the switches and the paths for the traffic flows. The ob-
jective function for establishing the paths is initially set to minimizing power
consumption in the switches. Once the paths are established, if hop-count
constraints are not satisfied, the algorithm gradually modifies the objective

82 Designing Application-Specific Networks on Chips
MO| (PO | M3 P3| [M6| [P6
\
TO| [|S10] [T2 | [S12| M7 P7
M1 P1 | M4 P4 | |T4 || [S14 £
&
©
M2 P2||T3 || [S13] [M8 P8
T1 S11| (M5(| [P5 | [M9 P9 !
(a) Hand-designed topology
M4
MO
i £
1 E
n [
n S11 2
i T3
sio| i T2| (P3| [M3|i|p2| [M2 - -
=t 5.05 mm
(c) Automatically synthesized (d) Layout

Figure 3.5: (a), (b) Hand-designed topology and layout. M: ARMTY processors, T:
traffic generators, P, S: private and shared slaves (c), (d) Automat-
ically synthesized topology and layout. In Figure (c), bi-directional
links are solid and uni-directional links are dotted.

3.5 Experiments and Case Studies 83

function to minimize the hop-count as well, using the parameter p (in steps
7,10 and 11 of Algorithm 1). The upper bound for p, denoted by pipres, is
set to the value of power consumption of the flow with maximum rate, when
it crosses the maximum size switch in the SCG. At this value of p, for all
traffic flows, it is beneficial to take the path with least number of switches,
rather than the most power efficient path. The p value is varied in several
steps until the hop-count constraints are satisfied or until it reaches piresh-

In the next step (step 12, Algorithm 1), the algorithm invokes the floor-
planner to compute the design area and wire-lengths. The floorplanner min-
imizes a dual-objective function of area and wire-length, with equal weights
assigned to both. The floorplanner used [35| also supports soft cores, fixed
pin/pad locations and aspect ratio constraints for the generated design. From
the obtained wire-lengths, the power consumption across the wires is calcu-
lated. Also, the length of the wires is evaluated to check any timing viola-
tions that may occur at the particular frequency (fregg). In the end, the
tool chooses the best topology (based on the user’s objectives) that satis-
fies all the design constraints. At the last step, for the synthesized topol-
ogy, the algorithm automatically generates the information required for the
x pipesCompiler tool for network instantiation and the SoC Encounter tool
to perform placement&routing.

The presented NoC synthesis process scales polynomially with the number
of cores in the design. The number of topologies evaluated by the methodol-
ogy also depends linearly on the number of cores. Thus, the algorithms are
highly scalable to a large number of cores and communication flows. The
synthesis time for several different SoC benchmarks is presented in Section
6 B.

3.5 Experiments and Case Studies
3.5.1 Layout-level Comparisons

To perform a layout level comparison between manually developed and auto-
matically synthesized designs, the NoC design used in previous chapter about
layout aware crossbenchmarking of NoCs and bus systems was taken as ref-
erence, considering it a suitable example of SoC where to run multi-media
benchmarks. As already depicted, the mentioned design consists of 30 cores:
10 ARMT7 processors with caches, 10 private memories (a separate memory
for each processor), 5 custom traffic generators, 5 shared memories and de-
vices to support inter-processor communication. The hand-designed NoC
has 15 switches connected in a 5x3 quasi-mesh network (2 cores connected

84 Designing Application-Specific Networks on Chips

to each switch), shown in Figure 3.5(a). The design, as already explained,
even if not tailored for a specific application, can be considered quite logically
optimized from the point of view of the hardware resources, with the private
memories being connected to the processors across a single switch and the
shared memories distributed around the switches. A layout of the design
(presented in Figure 3.5(b)) was performed using SoC Encounter and the
mesh structure was maintained in the layout. Each of the cores has an area
of 1 mm? [34] in the design. The entire process, from topology specification
to layout generation took several weeks. The post-layout NoC could support
a maximum frequency of operation of 885 MHz, which is determined by the
critical path in the switch pipeline. The power consumption of the topology
for a particular functional traffic pattern has been evaluated to be 368 mW.
It must be noticed that the different frequency value reported with respect to
the previous chapter is due to two main factors. First, being the aim of this
layout a comparison between two NoC topologies, the analysis of the clock
tree effect on the frequency was avoided for both the compared topologies,
thus the reported value of 885 MHz is not affected by the clock skew. Sec-
ond, the value reported in the previous chapter was kept very conservative
for the sake of the fairness of the crossbenchmarking, thus did not include
any very stressing optimization of the clock gating insertion, thus showing
a higher frequency drop related to this technique. The topology synthesis
process was applied with the objective of minimizing power consumption,
to automatically synthesize the NoC for this application. The design con-
straints and the required frequency of operation were set to be the same (885
MHz) as that of the hand-designed topology. The synthesized NoC topology
and the layout obtained using SoC Encounter are presented in Figures 3.5(c)
and 3.5(d). The synthesized topology has fewer switches (8 switches) than
the hand-designed topology. It can support the same maximum frequency
of operation (885 MHz), without any timing violations on the wires. As the
wire-lengths were considered during the synthesis process to estimate the
frequency that could be supported, the most power efficient topology that
would still meet the target frequency could be synthesized. To reach such
a design point manually would require several iterations of topology design
and place&route phases, which is a very time consuming process.

Layout level power consumption calculations on functional traffic show
that the synthesized topology has 277 mW power consumption, which is
1.33x lower than the hand-designed topology. Given the fact that the hand-
designed topology is reasonably optimized, with much of the communicat-
ing traffic (which is between the ARM cores and their private memories)
traversing only one switch, these savings are achieved entirely from efficiently
spreading the shared memories around the different switches. As mentioned,

3.5 Experiments and Case Studies 85

the layout of the hand-designed NoC was optimized to a large extent to
reduce the area of the design (by moving switches, network interfaces), per-
forming a reasonable number of iterations due to the big effort required by
this manual procedure. The layout of the synthesized topology is obtained
completely automatically, and still the area of the design is close to that of
the manual design (only a marginal 4.3% increase in area).

Cycle-accurate simulations of the hand-designed and the synthesized NoCs
for two multimedia benchmarks were performed. The total application time
for the benchmarks (including computation time) and the average packet la-
tencies for read transactions for the topologies are presented in Figures 3.6(a)
and 3.6(b). The custom topology not only matches the performance of the
hand-designed topology, but provides an average of 10% reduction in total
execution time and of 11.3% in packet latency.

3.5.2 Experiments on SoC Benchmarks

The topology design procedure was tested over six different SoC benchmarks:
e video processor (VPROC-/2 cores),

MPEG/ decoder (12 cores),

Video Object Plane Decoder (VOPD-12 cores),

Multi-Window Display application (MWD-12 cores),

Picture-in-Picture application (PIP-8 cores)
e IMage Processing application (IMP-23 cores).

Communication characteristics of some of these benchmarks are reported
in [7].

For comparison, a mesh topologies for the benchmarks was also gener-
ated by modifying the design procedure to synthesize NoCs based on mesh
structure. To obtain mesh topologies, we generate a design with each core
connected to a single switch and restrict the switch sizes to have 5 input/out-
put ports. A variant of the basic mesh topology was also generated: optimized
mesh (opt-mesh), where those ports and links that are unused by the traffic
flows are removed. The core graph and the floorplan for the custom topol-
ogy synthesized by the synthesis tool for one of the benchmarks (VOPD) are
shown in Figure 3.7. The network power consumption (power consumption
across the switches and links), average hop-count and design area results for
the different benchmarks are presented in Table 3.2. Note that the average

86 Designing Application-Specific Networks on Chips

hop-count is the same for mesh and opt-mesh, as in the opt-mesh only the
unused ports and links of the mesh have been removed and the rest of the
connections are maintained. The custom topology results in an average of
2.78x improvement in power consumption and 1.59X improvement in hop-
count when compared to the standard mesh topologies.

The area of the designs with the different topologies is similar, thanks to
efficient floorplanning of the designs. It can be seen from Figure 3.7 that only
very little slack area is left in the floorplan. This is because the presented
flow considers the area of the network elements during the floorplanning
process, and not after the floorplanning of blocks. The total run time of
the topology synthesis and architectural parameter setting process for the
different benchmarks is presented in Table 3.2. Given the large problem
sizes and very large solution space that is explored (8 different frequency
steps, 4 different link-widths, 42 cores for VPROC and several calls to the
floorplanner) and the fact that the NoC parameter setting and topology
synthesis are important phases, the run-time of the engine is not large. This
is mainly due to the use of hierarchical tools for partitioning and floorplanning
and to the development of fast heuristics to synthesize the topology.

5
0] 300
Whand-design - BMhand-design| Benchmark 2
Mautomatic Benchmark 2 @ Mautomatic
~5 = 250
@ >
= o
4 @ 200
= :
|_
3 T 150
c
32 o 100
D Benchmark 1 % Benchmark 1
x o
(1] ()
1 0 50
<
0 256B 1KB 4KB 256B 1KB 4KB 0 256B 1KB 4KB 256B 1KB 4KB

(a) Execution time (b) Average read latency

Figure 3.6: Run time and latency for different cache sizes

A comparisons of synthesized topology against several other standard
topologies is also presented. For mapping the cores onto the standard topolo-
gies, we use the tool from [17|. As the power libraries used for switches, links
in the tool are different from the ones used in the synthesis process, the

3.5 Experiments and Case

Studies 87

AN
__rld
vid
iscan
iquant
B idct
= L
=]
pad
6.2 voprm SEr
mm P :
| network
J upsamp interface
1 switch
smem ! .
acdce
3.8 mm !

Figure 3.7: VOPD custom topology floorplan and core graph

3

N
a1

N

=

Average Hop Delay
o -
U1 U1

Mesh Tor Hyp Clos Bfly Cust

Figure 3.8: Performance comparisons

88 Designing Application-Specific Networks on Chips

Table 3.2: Comparisons with standard topologies
Appl Topol. | Power | Avg. | Area | Time
(mW) | Hops | mm? | (mins)
custom | 79.64 | 1.67 | 47.68 | 68.45
VPROC mesh 301.8 | 2.58 | 51.0
opt-mesh | 136.1 | 2.58 | 50.51

custom 27.24 1.5 | 13.49 | 4.04
MPEG4 mesh 96.82 | 2.17 15
opt-mesh | 60.97 | 2.17 | 15.01

custom 30.0 1.33 | 23.56 | 4.47
VOPD mesh 95.94 | 2.0 | 23.85
opt-mesh | 46.48 | 2.0 | 23.79

custom | 20.53 | 1.15 15 3.21
MWD mesh 90.17 2.0 13.6
opt-mesh | 38.60 | 2.0 13.8

custom 11.71 1 8.95 2.07
PIP mesh 59.87 | 2.0 9.6
opt-mesh | 24.53 | 2.0 9.3

custom 52.13 | 1.44 | 29.66 | 31.52
IMP mesh 198.9 | 2.11 | 294
opt-mesh | 80.15 | 2.11 | 29.4

topologies were optimized for performance, subject to the design constraints.
The comparisons against 5 standard topologies (mesh, torus, hypercube, Clos
and butterfly) for an image processing benchmark with 25 cores is presented
in Figure 3.8. The custom topology synthesized by the presented synthesis
method shows large performance improvements (an average of 1.73x) over
the standard topologies.

As an interesting observation, it must be noticed that prohibiting certain
turns to avoid deadlocks during routing had a negligible impact on the power
and performance results for all of the benchmarks. This was because, even if
some turns were avoided, the path computation procedure could easily find
other paths with low cost, as several alternative low cost paths exist between
each source and destination in the SCG (refer to Section 5).

Bibliography

(1]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

20]

S. Dutta et al., “Viper: A Multiprocessor SOC for Advanced Set-Top Box and Digital TV Systems”,
IEEE D&T, Sep/Oct 2001, pp. 21-31.

http://www.st.com
http://www.ti.com.

L.Benini and G.De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE Computers, pp. 70-78,
Jan. 2002.

D.Wingard,"MicroNetwork-Based Integration for SoCs", Proc. DAC, pp. 673-677, Jun 2001.

K. Goossens et al., "A Design Flow for Application-Specific Networks on Chip with Guaranteed
Performance to Accelerate SOC Design and Verification", DATE 2005.

D. Bertozzi et al., "NoC Synthesis Flow for Customized Domain Specific Multi-Processor Systems-
on-Chip", IEEE TPDS, Feb 2005.

S. Stergiou et al., “xpipesLite: a Synthesis Oriented Design Library for Networks on Chips”, pp.
1188-1193, Proc. DATE 2005.

J. Daveau et al., “Synthesis of system-level communication by an allocation based approach”, Proc.
ISSS, pp. 150-155, Sept. 1995.

M. Gasteier, M. Glesner, “Bus-based communication synthesis on system level”, ACM TODAES,
vol.4, no.1, pp. 1-11, 1999.

K. Ryu, V. Mooney, “Automated Bus Generation for Multiprocessor SoC Design”, Proc. DATE, pp.
282-287, March 2003.

K.Lahiri et al., “Design Space Exploration for Optimizing On-Chip Communication Architectures”,
IEEE TCAD, vol.23, no.6, pp. 952- 961, June 2004.

S. Murali, G. De Micheli, “An Application-Specific Design Methodology for STbus Crossbar Gener-
ation”, pp. 1176-1181, Proc. DATE ’05.

S. Pasricha et al., “Floorplan-aware automated synthesis of bus-based communication architectures”,
Proc. DAC °05.

J. Hu et al., “System-Level Point-to-Point Communication Synthesis Using Floorplanning Informa-
tion”, Proc. ASPDAC ’02.

J. Hu, R. Marculescu, ’Exploiting the Routing Flexibility for Energy/Performance Aware Mapping
of Regular NoC Architectures’, Proc. DATE, March 2003.

S. Murali, G. De Micheli, “SUNMAP: A Tool for Automatic Topology Selection and Generation for
NoCs”, Proc. DAC 2004.

A. Hansson et al., “A Unified Approach to Mapping and Routing on a Combined Guaranteed Service
and Best-Effort Network-on-Chip Architectures”, Technical Report No: 2005/00340, Philips Research,
April 2005.

S. Murali et al., “Mapping and Physical Planning of Networks on Chip Architectures with Quality-
of-Service Guarantees”, Proc. ASPDAC 2005.

S. Murali et al., “A Methodology for Mapping Multiple Use-Cases onto Networks on Chips”, pp. 1-6,
Proc. DATE, 2006.

90

BIBLIOGRAPHY

[21]

(22]
23]

[24]
25]
[26]
27]
28]

[29]
30]

[31]
32]
33]
[34]

[35]

[36]

[37]
[38]
[30]

[40]

R. Ravi et al., “Approximation algorithms for degree-constrained minimum-cost network design prob-
lems”, Algorithmica, 31(1): 58-78, 2001.

A.Pinto et al., “Efficient Synthesis of Networks on Chip”, ICCD 2003, pp. 146-150, Oct 2003.

W.H.Ho, T.M.Pinkston, “A Methodology for Designing Efficient On-Chip Interconnects on Well-
Behaved Communication Patterns”, HPCA 2003, pp. 377-388, Feb 2003.

T. Ahonen et al. "Topology Optimization for Application Specific Networks on Chip", Proc. SLIP
04.

K. Srinivasan et al., “An Automated Technique for Topology and Route Generation of Application
Specific On-Chip Interconnection Networks”, Proc. ICCAD ’05.

A. Jalabert et al., “xpipesCompiler: A tool for instantiating application specific networks-on-chip”,
pp. 884-889, Proc. DATE 2005.

D.Siguenza-Tortosa, J. Nurmi, “Proteo: A New Approach to Network-on-Chip”, in CSN 02, Sep.
2002.

X.Zhu, S.Malik, “A Hierarchical Modeling Framework for On-Chip Communication Architectures”,
ICCD 2002, pp. 663-671, Nov 2002.

T. T. Ye et al., “Analysis of powerconsumption on switch fabrics in network routers”, Proc. DAC ’03.

H-S Wang et al., “Orion: A Power-Performance Simulator for Interconnection Network”, Proc. Micro,
Nov 2002.

N. Banerjee et al., “A power and performance model for network-on-chip architectures”, Proc. DATE
'04.

G. Palemoro, C. Silvano, “PIRATE: A Framework for Power/Performance Exploration of Network-
On-Chip Architectures”, PATMOS 2004

D. Starobinksi et al., “Application of network calculus to general topologies using turn-prohibition”,
IEEE/ACM Transactions on Networking, Vol. 11, Issue 3, pp. 411-421, June 2003.

F. Angiolini et al., “Contrasting a NoC and a Traditional Interconnect Fabric with Layout Awareness”,
pp. 124-129, Proc. DATE 2006.

S. N. Adya, I. L. Markov, "Fixed-outline Floorplanning : Enabling Hierarchical De-
sign", IEEE Trans. on VLSI Systems, vol 11(6), pp. 1120-1135, Dec 2003. URL:
http://vlsicad.eecs.umich.edu/BK /parquet/

B. Hendrickson, R. Leland, “T’he Chaco_User’s Guide: Version 2.0”, Sandia Tech Report SAND94—
2692, 1994. URL: //www.cs.sandia.gov/bahendr/chaco.html

www.cadence.com
WWW.Synopsys.com

W. J. Dally, B. Towles, "Principles and Practices of Interconnection Networks", Morgan Kaufmann
, Dec 2003.

T. H. Cormen et al., "Introduction to Algorithms", The MIT Press, June 1990.

Chapter 4

Area and Power Modeling for
Networks-on-Chip components

As discussed in the previous chapters, to be fully competitive with traditional
interconnects, NoCs need well-established CAD deployment tools to tackle
the large amount of available degrees of freedom, starting from the choice of a
network topology. In Chapter 3 a complete “Silicon-aware” optimization tools
was outlined, able to select a NoC topology taking into account the tradeoff
between performance and hardware cost, i.e. area and power consumption.
A key requirement for the effectiveness of this tool, is the availability of ac-
curate analytical models for power and area. Such models are unfortunately
not as available and well understood as those for traditional communication
fabrics. Further, simplistic models may turn out to be totally inaccurate
when applied to wire-dominated architectures; this observation demands at
least for a model validation step against placed and routed devices.

It is mandatory to do not underestimate the complexity of synthesis flows,
which involve multiple tools, increasingly complex libraries, a large amount of
heuristics and several approximations or models of the behaviour of physical
on-chip devices. Experience shows that one wrong assumption may severely
impact the properties of a whole design.

The increasing importance of wiring resources is deeply impacting the
final performance of circuits, by introducing higher parasitic capacitances and
therefore power consumption, or by forcing redesign iterations due to higher
transition latencies. This scenario demands for careful assessment of the
accuracy of any predictive model at the lowest available level of abstraction;
if possible, designers should try to validate their assumptions on placed and
routed netlists. This obviously requires a large effort and may be impractical.

In this chapter a method to devise analytical models of area occupation
and power consumption of NoC switches for the reference NoC architecture

92 Area and Power Modeling for Networks-on-Chip components

xpipes was presented, and strategies for coefficient characterization which
have different tradeoffs in terms of accuracy and of modeling activity ef-
fort are proposed. The models are parameterized on several architectural,
synthesis-related and traffic variables, resulting in maximum flexibility. The
accuracy of the models is also assessed, checking whether they can also be
applied to placed and routed NoC blocks.

It must be noted that, as with any hardware component, the hardware
cost of a NoC switch depends on several kinds of parameters, including (i) ar-
chitectural (e.g. amount of buffering), (ii) synthesis tool-related (e.g. target
operating frequency), (iii) operating (e.g. traffic flows).

The proposed NoC modeling methodology which takes advantage of the
designer’s knowledge of the target architecture and synthesis library. It is
of course impossible to devise an accurate yet fully generic model for the
hardware cost, in power and area, of any given NoC. The focus is instead on
how such a model can be built for a specific NoC instance; the challenges
and opportunities involved in this flow are illustrated, in terms of accuracy
and characterization time.

The xpipes NoC switch can be considered an optimal case study due
to its parameterizability (Section 4.1). Key properties of the presented ap-
proach include accuracy and explicit modeling on several parameters of the
design, like switch cardinality, flit width, buffering, traffic and synthesis pa-
rameters. These properties make the approach suitable for fast exploration
of large parts of the fabric design space, flexible and applicable in real life,
for example by accounting for the behaviour of the synthesis tools when the
target operating frequency approaches the limits of the design. The charac-
terization is dependent on the target technology library, but can be easily
scripted and automated. A major feature of the proposed methods is the ac-
curacy of the modeling style against placed and routed test instances. This is
an essential step given the uncertainties intrinsic in today’s technology pro-
cesses. Model coefficients can be made even more accurate by using a placed
and routed training set for characterization, albeit at a modeling effort cost.
Remaining inaccuracies can mostly be attributed to the intrinsic variations
induced by synthesis tools.

The proposed modeling approach starts from an existing RTL description
of the NoC components, which are then synthesized and characterized under
multiple architectural configurations and traffic conditions. A mathematical
formulation of the area and power models is derived from empirical evidence
and from the designer’s knowledge of the NoC. Eventually, the coefficients
of the model are fitted to the experimental results, guaranteeing accurate
results for the given architecture. Two different ways of characterizing the
coefficients are presented, with varying accuracy/effort tradeoffs, and two

93

models to account for the dependency of synthesis results on the target syn-
thesis frequency. The synthesis process can optionally include the placement
and routing step for maximum thoroughness of the assessment.

Power models and simulators for processors and memories have been pro-
posed in an extremely large body of research [3, 14].

Some models of NoC hardware cost have already been proposed in previ-
ous literature. Results in [12| are derived from a mix of results on template
circuits and from technology trends, and are specifically aimed at wide ap-
plicability. Therefore, even though they have been used for design space ex-
ploration [11] and in association with high-level traffic injection models [5],
they do not guarantee maximum accuracy within an architecture-specific
CAD flow. The main advantage of these techniques is flexibility and fast
deployment. They can be seen as complementary to the presented approach,
especially for initial exploration when the NoC component library is not
available yet.

The approach in [4], on the other hand, attempts to build a cycle-accurate
power model of a target router instance. However, several major points dif-
ferentiate it by the proposed approach. First, the models presented in this
chapter are parametric not only on traffic-related events, but also on the
architectural knobs of the design. A second difference is related to the intro-
duction of an area model. Third, the model presented in the following can
be more readily adopted within a CAD mapping flow due to its definition
as a function of architectural parameters, and to its capability of provid-
ing a high-level dependence on traffic variables, instead of a cycle-by-cycle
one. Fourth, the presented approach aims to be as applicable as possible
in real-world conditions, including the hard-to-model peculiarities of the be-
haviour of synthesis tools when aiming for maximum frequency operation,
and placement and routing issues. Fifth, a fast characterization mechanism
is proposed, by means of which model coefficients can be quickly derived with
a minimal amount of synthesis runs.

In [7], a framework for NoC exploration is presented; the framework in-
cludes a power modeling flow. The power model features very limited de-
pendence on architectural parameters and does not seem to account for the
configuration knobs of synthesis tools. No area model is provided.

In [13], a bit energy modeling flow is proposed to compare different switch
fabrics in IP network routers. The approach is focused on the cost for trans-
mitting bits from input to output ports, and while bit pattern-accurate, it
is only focused on comparing router topologies against each other. The au-
thors of [8] propose a model based on transistor count, while in [15|, which is
focused on FPGAs, switch cardinality is the main parameter. None of these
models is meant for simultaneously accurate, parametric and fast representa-

94 Area and Power Modeling for Networks-on-Chip components

tion of power consumption, ¢.e. suitable for design space exploration within
a CAD environment.

4.1 The xpipes Switch Architecture

As mentioned, the switch architecture taken as reference is the one defined
in the xpipes NoC component library [1, 2|, due to its customizability. The
xpipes switch was already depicted in Chapter 1, but it is useful to remind
in this section those features that are more closely related to the model
understanding. The xpipes switch is output buffered; FIFOs of configurable
depth are instantiated at each output, while inputs feature a single register.
The flit width can be arbitrarily set. The number of input and output ports
is also a parameter; full connectivity is provided in the central crossbar.
An arbiter is attached to each output port to handle contention issues. We
test the switch with its default ACK/NACK flow control mechanism, which
leverages the output buffer resources. Since xpipes performs source routing,
the switch does not include routing LUTs.

4.2 Proposed Modeling Methodology

The presented modeling activity is composed of five main phases. First, a set
of parameters that are relevant to the accuracy of any model which aims at
practical applicability is devised. Second, a general model formula for area
and for power is defined, relying on the knowledge of the target architecture
as explained in Section 4.1. Third, several configurations (training set) of the
target switch architecture were synthesized in a 0.13 pum technology library
with Design Compiler [9], and the corresponding area and power consumption
is measured. The configurations are chosen so as to uniformly but sparsely
cover the design space of interest, therefore allowing for an accurate yet quick
construction of the model. Fourth, the obtained experimental results are used
to numerically quantify the coefficients of the model. Two different ways of
performing this step are presented. Fifth, the quality of the obtained models
is assessed against configurations (test set) outside of the training set. The
first four steps will be covered in Subsections 4.2.1, 4.2.2, 4.2.3, 4.2.4, while
the fifth will be discussed in Section 4.3. An outline of how we handle steps
3-5 is provided in Figure 4.1.

4.2 Proposed Modeling Methodology

95

Training
set

Logic Synthesis:
Design Compiler

Netlists

Placement&routing:
SoC Encounter

Power extraction:
ModelSim, PrimePower

Coefficient regression:
NCSS, Matlab, OpenOffice Prediction accuracy
assessment:

OpenOffice

 J

Figure 4.1: Outline of our characterization activity. The placement and routing

step is optional both for the training and the test set

96 Area and Power Modeling for Networks-on-Chip components

4.2.1 Parameters of Interest

A key phase of the approach is devising a model that matches the architecture
under consideration and its properties. However, considering the architecture
alone does not guarantee that the model will be applicable and accurate
enough in practice. For example, synthesis tools play a primary role in
defining the area and power efficiency of a component. Therefore, it is useful
to summarize the parameters of interest when assembling the model.

Architectural Parameters

The main parameters are:

e Switch cardinality (number of ports). To account for rectangular switches,
the amount of input ports (np;) and output ports (np,) are separately
considered.

e Amount of buffering devoted to flow control handling and performance
optimization, also called buffer depth (bd) (expressed in terms of single-
flit buffering elements).

e Number of bits of the incoming and outgoing elementary data blocks,
also called flit width (fw).

Implementation Flow Parameters

It is possible to tune synthesis tools, among other things, for:

e Target frequency of operation.
e Target area.

e Target power consumption.

Tuning these parameters differently in the synthesis tools yields, as ex-
pected, a widely different quality of results. For example, when performance
demands are extreme, synthesis tools are forced to create netlists containing
large amounts of buffers and fast gates, which are not area- and power-
efficient. To mimic a typical industrial flow, where an application perfor-
mance constraint must be satisfied, for the sake of the modeling activity, a
certain target operating frequency (which is a parameter of the model) is
imposed as the primary objective, while area and power minimization are
given to the tool as secondary optimization objectives. As a result, area

4.2 Proposed Modeling Methodology 97

and power requirements, expressed as a function of the target operating fre-
quency, exhibit a characteristic flat behaviour followed by a steeply rising
trend after an inflection point. This trend is well known, and can be ex-
plained by the fact that, above some target operating frequency which can
be achieved with minimal circuitry, synthesis backends are forced to insert
extra gates to comply with increasing performance demands.

Area A
A(fmax) - - -
A(fn)
| |
| |
s
fn fmax Frequency

Figure 4.2: Area requirements vs. target operating frequency

Figure 4.2 shows a linearized and a parabolic approximation of this trend,
and at the same time summarizes the ways this effect is modeled. For each
device configuration (e.g. 4x4 32-bit switches with 6-deep FIFO buffers), a
“native” frequency f, can be identified. This frequency is that achieved by
the synthesizer with relaxed timing constraints. Under this condition, the
tool is free to fully pursue its secondary objectives, hence creating minimum
area (A(f,)) and power (P(f,)) netlists. Configuring the tools for target fre-
quencies lower than f, does not result in further decreases of area or power
dissipation. For each switch instance, it is also possible to find a frequency
fmaz, that corresponds to the fastest achievable synthesis result. Under this
timing constraint, the module has A(f,.4.) area and P(f,,q4,) power consump-
tion. The dependency of area and power overheads is approzimated as linear
or parabolic in the range (f,; fia:). This assumption allows to character-

98 Area and Power Modeling for Networks-on-Chip components

ize devices only twice, at f,, and f,., (under various combinations of the
other architectural parameters), while being able to estimate results over the
whole range of frequencies achievable by the module. Since this analysis is
not correlated to other model parameters, in the following, for simplicity of
notation, the dependency of coefficients on the synthesis target frequency will
not be mentioned; the characterization of this parameter will be implicitly
assumed.

The linearized or parabolic approximation is a way of abstracting away
from low-level details of the logic synthesis process, which are impossible to
capture in a high-level model. The experimental results that will be shown
in Section 4.3 will be based on a test set which is also spread in terms of
target operating frequency, therefore providing a metric of the accuracy of
such a model. Subsection 4.3.5 will compare the accuracy of the linear vs.
the parabolic models.

It must be noticed that developing area and power models which are a
function of the target frequency of operation up to f,,.. also implies making
available a model of the timing properties of the switches.

Traffic Condition Parameters

These parameters are only relevant to power models, since area models are
clearly static. They include downstream congestion and internal congestion
(i.e. arbitration conflicts). They will be explained in more detail in 4.2.2.

4.2.2 Area and Power Models
Area Model

In general, the area equation must be of the form of Equation 4.1:

A = f(bd, fw,np,, np;) (4.1)

The area model expressed in Equation 4.2 was identified as suitable:

A(fw,bd,np) = Ay -np, - fw - bd+

4.2
+Ag-np; - fw + As-np,-np; + Ag- fw-np, - np; (42)

The rationale of this formula is that the area of the target switch can be
rendered as the sum of four contributions (Section 4.1): (i) output buffers,
(ii) input buffers, (iii) arbitration and flow control logic, (iv) crossbar. Each
contribution strongly depends on a known combination of architectural pa-
rameters:

4.2 Proposed Modeling Methodology 99

e Output buffers, which are dominated by flip-flop area, can be supposed
to depend linearly on flit width fw and buffer depth bd (xpipes switches
are output-buffered), which respectively represent the width and depth
of the buffer (Figure 4.3). There are np, such buffers.

e Input buffers are similar to the case above, but since they have a con-
stant depth, they do not depend on bd. Obviously np; is used in place
of np,.

e Since a distributed arbitration technique is used in the target switch,
one arbiter is instantiated at each output port. Each arbiter has a
complexity proportional to the number of candidate input ports np;,
therefore the overall contribution is the product of the input and out-
put cardinalities. The arbiter logic is clearly independent of datapath
parameters such as flit width and buffer depth.

e The area overhead due to the crossbar must have a linear dependency
on flit width, must be independent of the buffering resources and must
have a linear dependency on the product of input and output cardinal-
ities.

bd

fw

Figure 4.3: Dependency of the output buffer area on fw, bd

Power Model

The power consumption of a module depends on the switching activity of
the cells, so, to express the power consumption of a NoC switch, a term that
accounts for traffic conditions must be present. The most general way to
model the power consumption thus becomes:

100 Area and Power Modeling for Networks-on-Chip components

P = f(bd, fw,npo,np;, T) (4.3)

with T being a generic variable that summarizes the traffic conditions.
Since sequential components exhibit a power consumption even if they are
not performing computation, due to the clock switching, a static (traffic-
independent) term must appear. After analyzing the possible traffic flows in
the xpipes router, the Equation 4.4 can be used as a general power model:

P(bd> fwanpoanphT) = PA()“‘
+Z?£°1[PB(...) -Toj]—i—

+220Pe(-) - Tocg |+
+ 250 (Po(-) - Trcy)

(4.4)

where the dots express dependencies on bd, fw, np,, np; which will be
analyzed in more depth in the following. The first term models the power
dissipated by inactive, but still clocked, registers. The remaining terms de-
pend on traffic conditions. An accurate representation of the traffic condi-
tions requires a separate analysis of the state of each input and output port.
Therefore, np, traffic variables Tp; and Tpc; are defined, to model the lack
or presence of external congestion, and np; traffic variables T7¢;, to model
internal contention for resources. More specifically:

e Tp;: Percentage of time during which the output port j is successfully
transmitting flits. This coefficient models traffic in absence of conges-
tion.

e Tocj: Percentage of time during which the output port j is trying
to transmit, but flits are rejected. This coefficient models external
congestion due to traffic spikes.

e Ticj: Percentage of time during which the input port j of the switch is
trying to transmit flits through one of the output ports, but arbitration
is denied by the switch logic. This coefficient models the contention for
the same output port inside of the switch.

This set of traffic percentages is linearly independent, since the complex
arbitration and flow control patterns within a NoC switch make it very easy
for some of these time windows to overlap. Please consider the following:

Example 4.2.1. A 4x2 switch (see Figure 4.4) may feature one established
input-to-output connection where traffic is freely flowing (which is expressed

4.2 Proposed Modeling Methodology 101

by the condition Tp;), another established input-to-output connection which
is stuck due to congestion in the downstream switch (modeled within Tpes),
while the third input port is unsuccessfully trying to transmit to one of the
two output ports, which in this example are already busy (7;¢3), and the
fourth is simply idle (this contribution is therefore included in the coefficient
Py).

< (Q\|
Il Il
Q'__ o
o
- -

Figure 4.4: Example traffic in a 4x2 switch

The coefficients P4, Pg, Po, Pp depend on architectural parameters, as
for the area model. They account for the power consumption in the traffic
states described above, as follows:

e P, accounts for the static power dissipated by the switch and it is
due to the non-combinational logic in the design. Therefore, it simply
depends linearly on the number of flip-flops in the design, which are:

— input buffers
— output buffers
— state registers in the control logic

whose dependencies on architectural parameters are summarized in Ta-
ble 4.1.

e Ppg accounts for the dynamic power dissipated by flowing packet streams,
due to the enabled registers and to the switching activity of combina-
tional logic. We identify four contributions to the power dissipation:

102 Area and Power Modeling for Networks-on-Chip components

Contribution Dep. on | Dep. on | Dep. on | Dep. on
fw bd np; NPo
output buffering | linear linear none linear
input buffering linear none linear none
spare registers none none linear linear

Table 4.1: Dependency on architectural parameters of the static power coefficient
Py

— output buffers. In these buffers, during every cycle, one of the
flit registers (fw bits wide) samples a new piece of data; a bd x 1
multiplexer then brings a flit to the output port. Therefore, this
contribution is itself the sum of two terms.

— input buffers
— control logic
— selected crossbar branch

The dependencies of these contributions on the architectural parame-
ters are summarized in Table 4.2.

Contribution Dep. on | Dep. on | Dep. on | Dep. on
fw bd np; NPo
output buffer (register) | linear none none none
output buffer (mux) linear linear none none
input buffer linear none none none
control logic none none linear none
crossbar branch linear none linear none

Table 4.2: Dependency on architectural parameters of the dynamic power coeffi-
cients Pp, Po

e P accounts for the dynamic power dissipated by the switch under
a scenario where downstream congestion is preventing a free flow of
packets. Although numerically different, the P coefficient is similar
to Pp, in that it still involves an established input-to-output channel,
and therefore its dependency on architectural parameters is the same
(see Table 4.2).

e Pp accounts for the power dissipated by the switch when an incoming
stream requires the access to an output port, but the arbitration is

4.2 Proposed Modeling Methodology

103

denied. The contributions to this portion of the power consumption

are related to the following logic blocks:

— input buffers

— control logic

The dependencies

on this contributions can be summarized as shown

in Table 4.3.
Contribution | Dep. on | Dep. on | Dep. on | Dep. on
fw bd np; NPo
input buffer linear none none none
control logic none none linear linear

Table 4.3: Dependency on architectural parameters of the dynamic power coeffi-

cient Pp

The dependencies of the power coefficients are thus summarized in Ta-

ble 4.4.
Model Dep. on | Dep. on | Dep. on | Dep. on
Coefficient fw bd np; nPo
Py linear linear linear linear
Pg linear linear linear none
P linear linear linear none
Pp linear none linear linear

Table 4.4: Dependency of power coefficients on architectural parameters

It must be noticed that some coefficients, which could be intuitively ex-
pected to quadratically depend on parameters, are instead linearly depen-
dent, because they characterize a single input or output port. The quadratic
behaviour is indirectly restored by the summation symbols in Equation 4.4.

4.2.3 Choice of a Relevant Training Set

To characterize the coefficients of our area and power models, a training
set is defined, composed of switch configurations chosen in such a way as to
uniformly cover the relevant design space for the particular NoC under study.
In the case of the xpipes NoC, which is focused on the highest customizability
of topologies, design space spanning over a large variety of cardinalities (np;

104 Area and Power Modeling for Networks-on-Chip components

and np, of 4, 10, 16 and 20) was studied. Since xpipes is also focused on the
best performance/overhead tradeoff point 2], and therefore on low hardware
cost, we consider moderate buffer depths bd of 5 and 7 FIFO locations and
flit widths fw of 21, 28 and 38 bits.

In the modeling approach called Full Factorial Design, all the possible
permutations of the values of the independent design parameters should be
studied to create the training set. This is often impractical due to the quick
rise in the number of instances as soon as new design knobs are added,
leading to approaches to select only a subspace of the characterization set
(Fractional Factorial Design). In the presented case, based on the knowledge
of the target architecture, a very simple way of pruning the training set was
chosen. The rationale is based on the observation that rectangular switches
add a smaller amount of information to the training set; for example, when
studying the power consumption, a rectangular switch is by design unable
to simultaneously feature traffic flows on all of its input and output ports
(see Figure 4.4), and is therefore behaving similarly to a square switch of
smaller cardinality. Preliminary internal testing confirms this property, at
least for the xpipes NoC. Therefore, the np; and np, axes are coalesced for
the generation of the training set, and only include 4x4, 10x10, 16x16 and
20x20 instances.

Finally, all the possible parameter values were permutated, resulting in
24 (4 cardinalities times 2 buffer depths times 3 flit widths) configurations
being synthesized.

Yes, we applied a load on the output ports which, in our technology
library, is roughly equivalent to that of 2 mm of wiring. This load is also
approximately equivalent to that featured by the links in the mesh topology.

4.2.4 Fitting Model Coefficients
Fitting Area Model Coeflicients

To estimate Ay, Ay, A3, Ay, two different methods are proposed:

e Methodology 1: Coefficients can be derived directly from synthesis re-
ports, which hierarchically list every switch sub-block. For example,
once the area cost of an output buffer which is bdy flits deep and fwy
bits wide is gathered from one report, it can be called Agpyf|pdy, fuo-
Since A; is expected to increase linearly with both bd and fw, it can
be approximately derived as in Equation 4.5:

Aobuf‘bd fw
Ay = ol lodo.fuo 45
' bdy - fwy ()

4.2 Proposed Modeling Methodology 105

Other coefficients can be similarly computed.

Advantages: With this methodology, each contribution in the formula
keeps a strict physical meaning. Only one synthesis run is needed to
extrapolate coefficients for any switch instance; for the sake of the re-
sults presented in this chapter, a 10x10, 28-bit switch was arbitrarily
chosen as a reference. This instance is close to the center of the design
space of interest (see the previous Subsection); its choice will be further
discussed in Section 4.3.

Disadvantages: This simplified approximation discards any constant
offset that may be present in the coefficients. Further, the nature of syn-
thesis tools introduces unpredictable fluctuations in the netlist area and
power trends under different architectural configurations. This noise
does not have any easily characterizable property. Thus, the model
incurs a non-negligible error when compared against actual switch in-
stances. Moreover, the choice of the specific switch instance for char-
acterization might skew the computed coefficient values.

e Methodology 2: Coeflicients can be derived by leveraging the multi-
variate non-linear regression algorithms natively provided by several
mathematical and statistical packages. In this case, the input is a set
of characterization syntheses (the training set described in the previous
Subsection). The target polynomial for the regression is chosen based
on insight of the dependency of area on the architectural design pa-
rameters (see Equation 4.2).

Advantages: The model fits better to actual synthesis results.
Disadvantages: Longer characterization time; with a thorough charac-
terization set like that chosen in Subsection 4.2.3, experiments must be
performed in 24 device instances, against just one. The actual improve-
ment in accuracy depends on the smoothness of the native behaviour of
the synthesis tools. Some coefficients may lose their physical meaning
(e.g., they may become negative).

Both methodologies can be readily adapted to any parameterizable NoC
architecture.

Fitting Power Model Coefficients

To characterize the Py, Pg, Po, Pp coefficients, for first, traffic was injected
into the switch netlists under test, one at a time. This is achieved by Mod-
elSim [6] simulation of the Verilog netlists (please refer to Figure 4.1), to
which traffic generators are attached. The traffic generators are configured
to inject into the switch one of the four patterns described above (idle, free

106 Area and Power Modeling for Networks-on-Chip components

flow, downstream congestion, internal contention) at a time. The switching
activity is logged and fed as an input to Synopsys PrimePower [10], which
provides a hierarchical report of the power consumption of the switch sub-
blocks. For each netlist of the training set, four hierarchical reports are
therefore generated.

At this point, the power model coefficients are determined by using ei-
ther of the techniques just outlined for the area models. The P, P, Pc,
Pp scenarios are separately accounted for; the fitting polynomials are di-
rectly derived from Table 4.4. For each of them, the coefficients modeling
the dependency on architectural parameters were extract, either by direct
derivation or by non-linear regression,.

4.3 Experimental Results

To evaluate the accuracy of the proposed techniques, a test set of 70 switch
configurations spread across the design space of interest (both in terms of
architectural parameters and target synthesis frequencies)was randomly cho-
sen, taking care of do not overlap with the training set previously used for
characterization. Each switch is synthesized with Design Compiler to extract
its area requirements, then stimulated with traffic streams within ModelSim
and studied in PrimePower to evaluate its power consumption (Figure 4.1).
A reference set of experimental results is therefore collected. The area and
power consumption of the same set of switches is then estimated according
to the proposed methodology, and the statistical distribution of the resulting
error is plotted to study the behaviour of both coefficient fitting strategies.
The implementation flow went through several steps, among which the
two major ones are logic synthesis (i.e. mapping functionality onto elemen-
tary cells from a technology library), which results in a netlist, and place-
ment and routing (i.e. placing and interconnecting the netlist within a target
floorplan), generating a layout as the outcome. Netlists can be generated in
a relatively short time, but they do not include any information about the
placement of the cells, and thus do not give any information about the length
of the wires needed for the interconnections. This is a key missing piece of
information, especially as designs become wire-dominated. Therefore, logic
synthesis tools try to model the effect of wires by means of predictive models
provided by the vendor of the technology library. These models are necessar-
ily simplistic, and therefore may impact the accuracy of any area and power
evaluation at the netlist level. On the other hand, creating the layout of
a complex circuit provides more accurate estimations of its area and power
cost, but this extra step is at least as time-consuming as the initial logic

4.3 Experimental Results 107

synthesis. Therefore, designers would clearly like to avoid performing this
extra phase repeatedly during a modeling activity, if at all possible.

To assess the usefulness of the models, their inference and their appli-
cation to both netlists and layouts were investigated. This can be seen in
Figure 4.1, where the placement and routing step is optional.

4.3.1 Experiments with Netlist-Based Models and a
Netlist-Level Test Set

In this Subsection, models were generated starting from synthesized (but
not placed and routed) switch instances, and their accuracy was checked
against a test set which is also at the netlist level. The results are depicted
in Figure 4.5, where the vertical axis reports the number of occurrences of
inaccuracies comprised in the ranges listed on the horizontal axis. As can
be seen, in around 80% of the cases, the models result in an error margin
smaller then 10% of the actual value. Sporadically, relatively high error
rates of up to 20% are detected; however, as can be seen for example in
Figure 4.6, the distribution of the errors is quite randomly spread over the
design space, and comprises both under- and overestimations. The figure
reports modeling inaccuracy for a subspace having as axes the flit width
and the switch cardinality; these numbers are thus only a subset of the
whole test set. Similar plots can be derived for varying buffer depths and
target synthesis frequencies. Therefore, we can attribute inaccuracies to the
unpredictability which is intrinsic in the behaviour of synthesis tools, and
not to a problem of the modeling approach.

Comparing the results of the two techniques for coefficient fitting pre-
sented in Subsection 4.2.4, it is possible to see that the tails of the inaccuracy
distributions drop more sharply for Methodology 2, indicating a lower chance
of large modeling errors. However, Methodology 1 exhibits just marginally
worse average inaccuracy rates: 6.26% against 5.30% for power models and
5.97% against 5.45% for area models. In terms of characterization effort,
experience says that a designer can roughly assume that one hour may be
needed in average for the analysis of an instance of the training set; therefore,
Methodology 1 requires one hour of runtime, while Methodology 2 needs 24
hours to provide numerical values of coefficients (the actual time depends on
how thoroughly the design space is covered). Due to the drastically lower
effort, Methodology 1 becomes a natural candidate for fast yet accurate mod-
eling. However, this approach leverages upon a single switch instance to char-
acterize all the coefficients. The choice of the reference switch configuration
is therefore key, and may impact the robustness of the flow. Internal testing

108 Area and Power Modeling for Networks-on-Chip components

shows that coefficients are quite accurately rendered under a wide range of
possible choices of the reference switch. However, when manually picking an
“outlier” instance as the reference, errors over the whole design space turn out
to be larger. As a possible workaround, Methodology 1 could be applied to
multiple switch instances to minimize the chance of choosing bad references;
outliers could be effectively discarded. This hybrid approach provides better
reliability, but requires a modeling effort which is progressively closer to that
of Methodology 2 as its robustness is increased. Methodology 2 remains the
most accurate and reliable, and its characterization time can still be assumed
to be fully acceptable for both academic and industrial environments.

4.3.2 Test Case: a Complete NoC Topology

To further validate the most complex part of our methodology, i.e. the
power modeling, a whole NoC topology, such as a 5x3 mesh, was studied.
The mesh includes switches with three different cardinalities of 4x4, 5x5
and 6x6. Functional traffic was injected, namely that required to drive a
multimedia application from the MPARM suite, in the topology, and the
resulting power consumption was compared against that predicted by the
model (characterized with Methodology 2). Traffic patterns in the mesh are
irregular, due to application needs, causing the switches to spend variable
amounts of time in each possible state. The results are plotted in Figure 4.7.
The average inaccuracy is 5%, with only two switches out of fifteen (about
13%) exhibiting inaccuracies greater than 10%. Since the power consumption
of some switches is overestimated while that of others is underestimated, the
margin of error on the consumption of the whole mesh is as low as 1.3%.
This result confirms the usefulness of our modeling strategy for integration
within a CAD mapping and design space exploration flow.

4.3.3 Experiments with Netlist-Based Models and a
Layout-Level Test Set

Previously mentioned models, which are based on netlist-level analyses, were
applied to a layout-level test set, by placing and routing the test set described
above. This activity generates a very realistic test set, and is a demanding
metric for the accuracy of the models, since extra unpredictable noise is
added. The results are presented in Figure 4.8, which should be compared
to Figure 4.5(b). The two plots exhibit a comparable trend and errors of
roughly the same magnitude, even though the average modeling error for
the layout-level test set is about 3% higher. This means that models de-
veloped by only taking netlists into account still show good accuracy even

4.3 Experimental Results 109

40%

35%

A Methodology 1

30%

A B Methodology 2
25% \
20%

169% o

Inaccuracy Frequency (%)

10%
5%
O% T T T T T T T
2 R 2 2 2 2 2 2 2 S 2
N < © © o N < © © o N
<) o~ < © b by b i T N o
© o N < o o] o
- -~ -~ -~ -~ «
Model Inaccuracy
(a)
40%
35%
A Methodology 1
30%
B Methodology 2
25%

T\
o \Y 7\
AV VAN

Inaccuracy Frequency (%)

5%

N
A

0% T T T T O O
R X X R R R X X R R R

N < © [ee] o N < © e} o N

o ~ < © - by b 5 ~ N o

£ =) & < © o i<}

= - = - - &

Model Inaccuracy
(b)

Figure 4.5: Area and power coefficient modeling inaccuracy under different char-
acterization policies: (a) area coefficients, (b) power coefficients.
Models and test set are at the netlist level

110 Area and Power Modeling for Networks-on-Chip components

20
38
15+ /(i
e 35
Inaccuracy w
% 10 " S
° V1 4 a4 /n 30 \‘b\'
a4 =/U 1o B/ 28 é
57 U [CJ i) [<<\‘\\'
23
21
0 § (>°< o~ § Do § '-Q Q O,E M © o © T O m O DV o O
FERRCALTET IS S XN XTI RTINS =Y
© 2T dee T 23

Switch cardinality

Figure 4.6: Distribution of the area modeling inaccuracy over a subset of the
design space for Methodology 2. Dark colour: underestimations; light
colour: overestimations

6Xx6 6x6 6x6

-8.10% +3.24% -11.20%

Figure 4.7: Distribution of the power modeling inaccuracy for the switches of a
5x3 NoC mesh

4.3 Experimental Results 111

with respect to layout-level power evaluation. The added noise also blurs
the accuracy difference between Methodology 1 and Methodology 2, both in
maximum error (26% vs. 23%) and average error (8.8% ws. 8.35%). While
Methodology 2 remains marginally more accurate, these results seem to sug-
gest that the unpredictability introduced by the logic synthesis process is
somewhat unrelated to that introduced by the placement and routing phase.
In other words, even though Methodology 2, thanks to its interpolation of
results, can compensate for some of the non-idealities of the logic synthesis
process better than Methodology 1, this compensation is less effective when
trying to predict the power consumption after placement and routing.

40%

35% == \lethodology 1|
< 30% == lcthodology 2| |
E 25%

&
(=]
= 20%
[T
§ 15% _% A
5
é 10% -
£
5%
Dc:fl) T T T T T T T T T T
BEEEEREEREEEE N
ﬁ,‘ — — — — — ol
=] LS <+ e i3 & fi‘ 3 ié & ﬁ
Model Inaccuracy

Figure 4.8: Power coefficient modeling inaccuracy under different characterization
policies. Models are at the netlist level, test set is at the layout level

4.3.4 Experiments with Layout-Based Models and a
Layout-Level Test Set

In an attempt to check whether more accurate models can be built, the
numerical coefficients were recomputed starting from a layout-level version
of the training set and applying Methodology 2. This model is very close to
an ideal reference point, since it is derived from a regression on experimental
results which already encompass most of the unpredictable elements of the
synthesis flow. However, the time required to build the model coefficients

112 Area and Power Modeling for Networks-on-Chip components

is noticeably longer. Both logic synthesis and placement steps require a
computation time which is not easy to predict, as it largely depends on many
factors, such as the switch cardinality and the target operating frequency.
However, as a rule of thumb, the two steps are about equally time consuming;
therefore, the modeling time is approximately doubled.

The error distribution resulting from the usage of the layout-level test set
when validating the model coefficients achieved from a layout-level training
set is shown in Figure 4.9.

40%

35%

300/0 ===\ 2thodology 2

25%

20% “\
15%

10%

Inaccuracy Frequency (%)

5%

0%

20-22% T

0-2%
2-4%
46%
6-8%
8-10%
10-12%
12-14%
14-16%
16-18%
18-20%

Model Inaccuracy

Figure 4.9: Power coefficient modeling inaccuracy for Methodology 2. Models
and test set are at the layout level

As can be noticed, and as expected, the average error and the maximum
error values both noticeably decrease when compared to Figure 4.8. However,
the decrease is not huge. The remaining inaccuracies in Figure 4.9 can be
attributed to the intrinsic unpredictability of the synthesis tools. Even after
taking into account all the systematic behaviours in the synthesis flow, the
trend is the result of residual instance-to-instance variations due to heuristics
in the CAD tools and to degrees of freedom which can only vary in a discrete
fashion.

The accuracy improvement guaranteed by a layout-level characterization
is associated to a doubling of the runtime overhead, and still does not com-
pletely eliminate the presence of some “outlier” instances. The designer may
certainly choose to adopt this methodology to characterize devices at the

4.3 Experimental Results 113

layout level for maximum accuracy. However, a result that can be derived
from the present experiments is that, at least at the 0.13 pm technology
node, it is still feasible to use accurate netlist-based models in order to save
characterization time.

4.3.5 Experiments with a Parabolic Model for the De-
pendency on the Target Synthesis Frequency

It is useful to find out whether a linear model is accurate enough to charac-
terize the dependency of synthesis results on the target synthesis frequency
(see Figure 4.2). A parabolic model was leveraged as a potentially more ac-
curate approximation of the actual dependency of model coefficients on the
target frequency, then the model accuracy was re-checked on the test set.
The results are reported in Table 4.5.

Ezxperiment Linear | Parabolic
appror. | approx.

Netlist training set, | Average error | 5.19% 6.32%
Netlist test set Maximum error | 14.61% | 15.27%
Netlist training set Average error 8.23% 6.57%
Layout test set Maximum error | 22.88% | 19.94%
Layout training set, | Average error | 5.04% 9.23%
Layout test set Maximum error | 16.10% | 22.23%

Table 4.5: Accuracy of the linear ws. parabolic models for the dependency of
synthesis results on the target synthesis frequency. Coefficients derived
with Methodology 2

These results do not seem to indicate a strong bias towards any of the
alternatives. The linear approximation seems to cope much better with a
netlist-level or layout-level test set when the model is derived from experi-
ments on a training set at the same level, but the parabolic model is quite a
bit better at predicting layout-level results starting from netlist-level models.
This behaviour can be attributed to the impact of noise. In other words,
although synthesis results do clearly change depending on the target fre-
quency, the choice of a linear or parabolic model to describe this trend does
not matter much, since the non-idealities introduced by the synthesis flow
induce enough noise to blur the distinction. Overall, the usage of the linear
model, which is simpler, seems to be justified.

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]
[7]

(8]

[9]

[10]

(11]

(12]

[13]

[14]

Federico Angiolini, Paolo Meloni, Davide Bertozzi, Luca Benini, Salvatore Carta, and Luigi Raffo.
Networks on chips: A synthesis perspective. In Proceedings of the 2005 ParCo Conference, 2005.

Federico Angiolini, Paolo Meloni, Salvatore Carta, Luca Benini, and Luigi Raffo. Contrasting a NoC
and a traditional interconnect fabric with layout awareness. In Proceedings of the Design, Automation
and Test in Europe (DATE) Conference and Ezhibition, pages 124-129, 2006.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power analysis
and optimizations. In Proceedings of the 27th International Symposium on Computer Architecture
(ISCA), pages 83-94, 2000.

J. Chan and S. Parameswaran. NoCEE: Energy macro-model extraction methodology for network
on chip routers. In Proceedings of the IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pages 254-259, 2005.

Noel Eisley and Li-Shiuan Peh. High-level power analysis of on-chip networks. In Proceedings of
the 7th International Conference on Compilers, Architectures and Synthesis for Embedded Systems
(CASES), pages 104-115, 2004.

Mentor Graphics. ModelSim. www.model.com.

Gianluca Palermo and Cristina Silvano. PIRATE: A framework for power/performance exploration
of network-on-chip architectures. In Proceedings of the 1jth Intl. Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS), pages 521-531, 2004.

C. S. Patel, S. M. Chai, S. Yalamanchili, and D. E. Schimmel. Power constrained design of multipro-
cessor interconnection networks. In Proceedings of the IEEE International Conference on Computer
Design: VLSI in Computers and Processors (ICCD), pages 408-416, 1997.

Synopsys Inc. Design Compiler. www.synopsys.org.
Synopsys Inc. PrimePower. www.synopsys.org.

Hang-Sheng Wang, Li-Shiuan Peh, and Sharad Malik. A technology-aware and energy-oriented
topology exploration for on-chip networks. In Proceedings of Design, Automation and Testing in
Europe Conference 2005 (DATEO05), pages 1238-1243. IEEE, March 2005.

Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik. Orion: a power-performance
simulator for interconnection networks. In Proceedings of the 35th annual ACM/IEEE international
symposium on Microarchitecture, pages 294-305. IEEE Computer Society Press, 2002.

Terry Tao Ye, Luca Benini, and Giovanni De Micheli. Analysis of power consumption on switch
fabrics in network routers. In Proceedings of the 36th Design Automation Conference (DAC’02),
pages 524-529, 2002.

W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and use of simplepower: A
cycle-accurate energy estimation tool. In Proceedings of the 34th Design Automation Conference
(DAC’00), pages 340-345, 2000.

116 BIBLIOGRAPHY

[15] Hui Zhang, Marlene Wan, V. George, and Jan Rabaey. Interconnect architecture exploration for
low-energy reconfigurable single-chip DSPs. In Proceedings of the IEEE Workshop On VLSI 99,
pages 2-8, 1999.

Chapter 5

Routing Aware Switch Hardware
Customization

As mentioned, for NoCs to be feasible in today’s SoC designs, a NoC architec-
ture with low hardware overhead is required. The NoC architecture typically
has a large area overhead when compared to the current bus-based systems.
In this chapter, a method for reducing the hardware complexity of the NoC
by automatically configuring the architecture of the NoC switches to suit
the application traffic characteristics is presented. The crossbar matrix and
the arbiters of each switch in the NoC design are customized to support the
traffic flows utilizing that switch. This application-specific switch customiza-
tion is integrated with the xpipes design flow, the tool flow for application
specific Noc design deeply illustrated in this thesis.

5.1 Introduction

A typical NoC switch consists of input ports, arbiters, crossbar matrix, out-
put ports and buffers (present at the input/output ports). In state of the
art NoC designs, the internal architectures of all the switches in the NoC
are uniform, with all the input ports of a switch connected to all its out-
put ports, through the crossbar matrix and arbiters. Such an architecture
is needed when the packet routes cannot be determined at design time, so
that during run-time, data from any input port can be sent to any output
port of the switch. However, as deeply discussed, in most NoC designs,
application-driven system optimization is possible and very helpful, since
deterministic routing is employed, where the routes for the packets of the
various traffic flows are obtained at design time and the route selection is
usually performed during the NoC topology synthesis phase [20]. Thus, the

118 Routing Aware Switch Hardware Customization

general architecture leads to an over-design of the NoC switches, resulting
in large area-power overhead for the NoC. The hardware design technique
proposed in this chapter is aimed to reduce the hardware complexity of the
NoC by automatically configuring the architecture of the NoC switches to
match the designed routes and the given application traffic pattern. While
there are several research works that have addressed several aspects of the
application-specific NoC design process, and even if the xpipes design flow is
already tought to support application-driven hardware optimization taking
into account area obstruction and power consumption during the topology
synthesis, it is very useful and attractive to have a method for automati-
cally customizing the architecture of the switches in the NoC design. The
proposed approach is general, and complementary to most of the existing
works on topology design, link insertion and buffer sizing and can be used in
conjunction with them. In the proposed customization method, the crossbar
matrix and arbiters of each switch in the NoC are tuned. That is, based on
the designed routes, the proposed method automatically prunes the set of
input-to-output connections in the crossbar matrix and arbiters that are not
utilized, in each switch of the NoC. The routing-aware switch architecture
customization method is integrated in the xpipes design flow, tackling it at
several levels.

5.2 Reference design flow

The customization method proposed in this work is integrated with the
xpipes NoC design flow, toroughly explained in chapter 3. As mentioned
the design flow guides the SoC designer to achieve the most power/perfor-
mance efficient NoC architecture, starting from the application characteris-
tics and is composed of three major design steps: NoC topology synthesis,
NoC instantiation and back-end implementation.

e Step 1: Topology synthesis:
In the first step, SUNFLOOR [29], a custom CAD tool is used to syn-
thesize the most power /performance efficient NoC topology that satis-
fies the application requirements. The application traffic characteris-
tics, size of the cores, and the area and power models for the network
components are obtained as inputs to the synthesis engine. The tool
generates different NoC switches and maps the cores onto the switches.
During the synthesis process, it determines deadlock-free routes for the
different traffic flows of the application. The tool also produces the 2D
floorplan of the synthesized NoC topology. The output produced by

5.3 Routing aware hardware optimization 119

the tool is a text file that defines the synthesized topology, which is fed
to the next step.

e Step 2: Topology instantiation:

In the second step, another custom tool XpipesCompiler [30], reads
the topology definition file generated by SUNFLOOR and instanti-
ates the RTL description of the NoC components using x pipes [9], a
pre-designed SystemC RTL component library. The modules in the
component library support a large number of instantiation parameters,
such as different input/output ports, buffer sizes, etc. The tool also
interconnects the RTL description of the processor/memory cores of
the SoC (which are pre-designed components, taken as user inputs)
with the RTL code of the network components. The output of this
step is the RTL design of the entire NoC that can be simulated and
synthesized.

e Step 3: Back-end implementation:

This step includes the utilization of a commercial tool-chain to imple-
ment the designed topology at the layout level. The RTL description
of the interconnect from the previous step is synthesized and the place-
ment&routing of the design is performed using the commercial tool,
Cadence SoC Encounter [31]. The post-layout design is then verified
for functional correctness and is used for obtaining accurate perfor-
mance estimations of the design.

5.3 Routing aware hardware optimization

The objective of the proposed switch customization method is to automat-
ically remove those resources that are not utilized in the NoC from the in-
terconnect hardware, based on the designed topology and the paths that are
selected for routing the different traffic flows. The base-line switch archi-
tecture of the Xxpipes library, before applying the switch customization, is
composed of four main blocks:

e Input ports: At each input port, the incoming flit and control signals
are latched onto registers, so that the critical path of the switch is
reduced.

e Crossbar: The switch crossbar includes several fully connected sets
of multiplexers, one per output port, which connect all the input ports
to each output port. The control signals that are required for data

120 Routing Aware Switch Hardware Customization

selection for each multiplexer are generated by the arbiters of the cor-
responding output port.

e Arbiters: Each output port of the switch has an arbiter that grants
access to one of the input ports requesting the corresponding output
port, based on some arbitration policy.

e Output ports: In the xpipes architecture, output buffering is em-
ployed, where the flit buffers are present at the output ports of the
switch. The output ports also accommodate the combinational logic
needed to handle the flow-control operations.

The used procedure analyzes the designed topology and routing paths,
and evaluates what input ports actually communicate packets to the different
output ports of each switch in the design. Then, we remove those set of
input-to-output connections from the crossbar matrix and arbiters that are
not used by the chosen routing paths.

Table 5.1: Switch routing table example

input 0 | input 1 input 2 | input 3
output port 0 X
output port 1 X
output port 2 X X
output port 3 X X X

Example 5.3.1. As an example, consider the set of input-to-output con-
nections that are required at a particular switch (a 4 X 4 switch) of a NoC
(refer Table 5.1), which are obtained from the routing paths established by the
topology synthesis procedure. In the table, the presence of a cross signifies
that the input-to-output connection is utilized by the routing paths. In Figure
5.1(a), a traditional architecture for this switch is presented, where all the in-
put ports are connected to all the output ports of the switch. In Figure 5.1(b),
the switch architecture obtained by the proposed method is represented, where
the crossbar matriz and arbiters are customized to match the required input-
to-output connections of the designed routes. The switch customization for
this example, leads to 56.25% reduction in the input-to-output connections of
the switch.

To achieve this switch customization, the design flow was tackled at two
points, i.e. at the component library level (hardware level) and at the RTL
code generation level (software level). These levels are explained in detail in
the following sub-sections:

5.3 Routing aware hardware optimization 121

Output Output
3 port 0 =3 port 0

Input port 0 Input port 0

Output
port 1

Output
port 1

Input port 1

OQutput
port 2

Input port 2

inputs
rbiter
Output
& port 3

Input port 1

CrossBar CrossBar

OQutput
port 2

T

Input port 2

Output
port 3

Input port 3 Input port 3
4-inputs
Arbiter

(a) Traditional design (b) Customized design
Figure 5.1: Switch architecture before and after the routing aware customization

5.3.1 Hardware-Level Customization Support

A layer was added to the configuration of the switch building blocks in the
x pipes SystemC RTL macros, specifying a set of parameters for each instance
of the multiplexer and the arbiter. More in detail, before the enhancement,
the multiplexers were configured automatically, connecting all the input ports
to each output port. After the customization enhancement, each multiplexer
module is also configured in terms of the number of input ports that need to
be connected to each output port. In the same way, each arbiter is configured
for the number of ports for which it has to arbitrate for. While the individual
multiplexer and arbiter modules are parameterized in this fashion, a tool
chain is needed to instantiate the different modules for the designed NoC and
to interconnect the sub-blocks with the switch top module. To achieve this,
the xpipesCompiler tool was extended at the software level to customize,
instantiate and interconnect the different modules together.

5.3.2 Software-Level Customization Support

A software layer integrated with the xpipesCompiler tool in the design flow
, that analyzes the routing paths and finds the unneeded hardware in the
switches, was defined. The software thus:

e parses the topology definition file from SUNFLOOR, extracting the
information about every single routing path,

e for each arbiter and multiplexer, defines a set of parameters that sum-
marize how many and which input ports require access to the related
output port,

122 Routing Aware Switch Hardware Customization

e for all the switches, generates a top module that instantiates all the
sub-blocks and defines the connectivity between them according to the
routing needs.

The output of this switch customization enhanced NoC instantiation tool
is the RTL description of the customized NoC design that can be simulated
and synthesized

5.4 Customization method effectiveness evalu-
ation

(a) Mesh topology (b) Custom topology

Figure 5.2: Mesh and application-specific custom topologies for the MULT bench-
mark. The P0-P9 are the processors, T0O-T4 are the hardware cores,
MO0-M9 are the private memories and S10-S14 are the shared devices.
The shaded boxes connecting the cores are the switches in the design.

The switch customization method was applied on the NoCs designed
for several SoC applications: Multimedia design (MULT-30 cores), IMage
Processing design 1 (IMP1-25 cores), IMage Processing design-2 (IMP2-21
cores), FFT based SoC (FFT-29 cores), Data Processing SoC (DP-15 cores)
and SoC implementing a DES encryption system (DES-19 cores). In the
next sub-sections the details of one of the applications (MULT, the largest of
the benchmarks) and the customization impact on the different designs are
reported.

5.4.1 Experiments on the Multimedia benchmark

This subsection presents the designs obtained by the proposed approach for
two different topologies (a regular and a custom NoC topology) that are

5.4 Customization method effectiveness evaluation 123

Table 5.2: Total switch area of the designs

Topology Total area Total area Area # I-to-0 links
base-line customized | reduction reduction
(mm?) (mm?) (%) (%)
5% 3 Mesh 0.73 0.51 30.14 69.63
Custom 0.45 0.31 31.11 66.38

Table 5.3: Combinational area of the switches for the designs

Topology Comb. area Comb. area | Comb. area
base-line customized reduction
(mm?) (mm?) (%)
5x 3 Mesh 0.32 0.158 50.63
Custom 0.22 0.09 59.09

used to interconnect the cores of the MULT SoC benchmark. Such differ-
ent topologies are used to show the generality of the proposed customization
method. The MULT SoC consists of fifteen processor/hardware cores, ten
private memories for the different processors and five shared slave devices.
The regular topology is a 5 x 3 mesh, which is hand-designed to suit the appli-
cation characteristics of the benchmark (presented in Figure 5.2(a)) [9]. The
second topology is an application-specific custom topology obtained from the
SUNFLOOR tool (presented in Figure 5.2(b)). To achieve the optimum net-
work throughput, 3 flit buffers are utilized at each output port [9]. The total
area and the area of the combinational blocks of the switches for the two
topologies, for the base-line design and for the design where the proposed
switch customization technique is applied are shown in Tables 5.2 and 5.3.
The area numbers are obtained from synthesizing the RTL code of the dif-
ferent switches in the design. As seen from the table, the use of the switch
customization technique leads to a large reduction (an average of 30.63%) in
the total switch area of the design. As the proposed procedure optimizes the
switch crossbar and multiplexers, which are predominantly combinational
blocks, a large savings in the combinational area of the switches is obtained,
which leads to the significant total switch area savings.

The power consumption of the different architectures are shown in Ta-
ble 5.4. The power numbers are based on the switching activities of the
components, which are obtained from functional simulations. For the power
consumption estimations, the accurate switching resistance and capacitance
values of the components, obtained from the post-synthesis net-lists of the
NoC designs, is also considered. The synthesis experiments were performed
using Synopsys Design Compiler [32|, with 0.13u technology library, an oper-
ating frequency of 500 MHz and an operating voltage of 1.2 V. Clock-gating
was also used in the architectures, so that the elements that are not heavily

124 Routing Aware Switch Hardware Customization

Table 5.4: Switch power consumption for the designs

Topology Power Power Power
base-line customized reduction
(mW) (mW) (%)
5x 8 Mesh 66.2 29.4 55.6
Custom 36.3 28.6 21.2

utilized have a lower power consumption value. The proposed customization
technique also leads to a large reduction in the power consumption of the
switches (an average of 38.4%) for both the topologies.

90
80 1 —
70 4
601 @ combinational area %
50 gain

40 4 O power consumption %
30 1 gain

201 010 connection % gain

W total area % gain

10 1

dp fft des inp1 inp2

Figure 5.3: Switch area, power and input-to-output connection savings for the
SoC designs

5.4.2 Experiments on SoC benchmarks

The best topologies for the different SoC designs were synthesised using
SUNFLOOR. The area, power and input-to-output connection savings for
the different designs for the customized architecture, when compared to the
base-line architecture are shown in Figure 5.3. For all the designs, the switch
customization technique leads to significant reduction in the switch area (28%
on average) and power consumption (21% on average) values.

Finally, as the proposed customization technique leads to a reduction in
the crossbar and arbiter complexity, the critical path of the switches also
reduces significantly. This is because, the critical path of the switch in the
xpipes architecture is the path from the input ports to the output ports,
that traverses the arbiters and the crossbar multiplexers. As an example, for
a 4 x 4 base-line switch architecture, the critical path is around 1 ns, while
for the customized 4 x 4 switch architecture, on average, the critical path
is around 0.57 ns. These timing values are obtained from RTL synthesis of

5.4 Customization method effectiveness evaluation 125

the switches. Thus, the customization technique also leads to a significant
speed-up (of 75%) of the NoC.

Bibliography

(1]

2]
(3]

L.Benini, G.De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE Computers, pp. 70-78,
Jan. 2002.

D.Wingard, “MicroNetwork-Based Integration for SoCs”, Proc. DAC, pp. 673-677, Jun 2001.

M. Sgroi et al., “Addressing the System-on-a-Chip Interconnect Woes Through Communication-Based
Design”, Proc. DAC, pp. 667-672, June 2001.

S. Dutta, R. Jensen, A. Rieckmann, “Viper: A Multiprocessor SOC for Advanced Set-Top Box and
Digital TV Systems”, IEEE Design and Test of Computers, pp. 21-31, Vol. 18, No. 5, Sep/Oct 2001.

A. Artieri, V. D Alto, R. Chesson, M. Hopkins, M. C. Rossi, “Nomadik Open Multimedia Platform
for Next-generation Mobile Devices”, STMicroelectronics Technical Article TA305, 2003, available at
http://www.st.com

S. Kumar et al., “A Network on Chip Architecture and Design Methodology”, Proc. ISVLSI, pp.
117-122, April 2002

P. Guerrier, A. Greiner, “A generic architecture for on-chip packet-switched interconnections”, Proc.
DATE, pp. 250-256, March 2000.

K. Goossens et al., “The Aethereal network on chip: Concepts, architectures, and implementations”,
IEEE Design and Test of Computers, Vol. 22(5), pp. 21-31, Sept-Oct 2005.

S. Stergiou et al., “xpipes Lite: A Synthesis Oriented Design Library For Networks on Chips”, Proc.
DATE, pp. 1188-1193, March 2005.

I. Saastamoinen et al., "Proteo interconnect IPs for networks-on-chip”. In Proc. IP Based SoC Design,
France, 2002.

E. Bolotin et al., “QNoC: QoS architecture and design process for network on chip”, Journal of
Systems Architecture, Feb. 2004.

K. Goossens et al., "A Design Flow for Application-Specific Networks on Chip with Guaranteed
Performance to Accelerate SOC Design and Verification", DATE 2005.

D. Bertozzi et al., "NoC Synthesis Flow for Customized Domain Specific Multi-Processor Systems-
on-Chip", IEEE Transactions on Parallel and Distributed Systems, Feb 2005.

P. Pande et al., “Design of a Switch for Network on Chip Applications”, pp. 217-220, Porc. ISCAS
2003.

C. Zeferino et al., “A Parameterizable Interconnect Switch for Networks-on-Chip”, pp. 204-209, Proc.
SBCCI 2004.

T. Bjerregaard, J. Spars, “A Router Architecture for Connection-Oriented Service Guarantees in the
MANGO Clockless Network-on-Chips”, Proc. DATE 2005.

J. M. Kim et al., “A Low-Latency Router Supporting Adaptivity for On-Chip Interconnects”, pp.
559-564, Proc. DAC, June 2005.

K. Lee et al., “A High-Speed and Lightweight On-Chip Crossbar Switch Scheduler for On-Chip
Interconnection Networks”, ESSCIRC 2004.

T. Ye et al., “Analysis of Power Consumption on Switch Fabrics in Network Routers”, Proc. DAC
2002.

J. Hu, R. Marculescu, “Exploiting the Routing Flexibility for Energy/Performance Aware Mapping
of Regular NoC Architectures”, Proc. DATE, March 2003.

128 BIBLIOGRAPHY

[21]

(22]
23]

[24]
[25]

[26]
27]
28]

[29]
[30]

31]
32]

S. Murali, G. De Micheli, “SUNMAP: A Tool for Automatic Topology Selection and Generation for
NoCs”, Proc. DAC 2004.

W. Hu et al., “Thermal Aware Placement for NoC Architectures”, pp. 430-437, Proc. ICCD 2004.

A. Hansson et al., “A unified approach to constrained mapping and routing on network-on-chip
architectures”, pp. 75-80, Proc. ISSS 2005.

A.Pinto et al., “Efficient Synthesis of Networks on Chip”, ICCD 2003, pp. 146-150, Oct 2003.

T. Ahonen et al. "Topology Optimization for Application Specific Networks on Chip", Proc. SLIP
04.

K. Srinivasan et al., “An Automated Technique for Topology and Route Generation of Application
Specific On-Chip Interconnection Networks”, Proc. ICCAD ’05.

U. Y. Ogras, R. Marculescu, “Application-Specific Network-on-Chip Architecture Customization via
Long-Range Link Insertion”, Proc. ICCAD 2005.

J. Hu, R. Marculescu, “Application Specific Buffer Space Allocation for Networks on Chip Router
Design”, Proc. ICCAD 2004.

S. Murali et al., “Designing Application-Specific Networks on Chips with Floorplan Information”.

A. Jalabert et al., “xpipesCompiler: A Tool for Instantiating Application-Specific Networks on
Chips”, Proc. DATE 2004.

www.cadence.com

WWW.Synopsys.com

Chapter 6

65 nm NoC Design

Networks-on-Chip (NoCs) have been proposed as a scalable solution to both
physical design issues and increasing bandwidth demands. However, this
claim has not been fully validated yet, since the design properties and trade-
offs of NoCs have not been studied in detail below the 100 nm threshold.

This chapter is aimed at shedding light on the opportunities and chal-
lenges, both expected and unexpected, of NoC design in nanometer CMOS.
We present fully working 65 nm NoC designs, a complete NoC synthesis flow
and detailed scalability analysis.

While the key advantages offered by the use of NoCs have been largely
accepted nowadays, the practical implementation of NoCs in very deep sub-
micron technology, below the 100 nm threshold, is a very open challenge. The
crucial issue is again related to wiring. Even if capacitive loads and propaga-
tion delays can be controlled much better than in shared buses, issues such
as wiring congestion, link power consumption, and the need for placement-
aware logic synthesis still have to be explored to assess the feasibility of NoCs
in forthcoming technology nodes.

This chapter presents a detailed description of some updates required
by the reference xpipes design flow to supprto 65 nm technology and out-
lines some of the tradeoffs that a next-generation back-end implies. Link
performance, placement issues, scaling results in shifting from 90 nm to 65
nm technologies, and the degrees of freedom allowed by the availability of
multiple libraries (with different power/performance tradeoffs) at the same
technology node are explored.

130 65 nm NoC Design

Application

ooooo

o !
N ion
Topology System i ey
Synthesis e xpipes-
L ompiler) -
includes: -

Floorplanner
NoC Router

SunFloor

Floorplanning

Area, power characterization

Figure 6.1: Our proposed complete NoC design flow for MPSoCs

6.1 NoC Design Flow

An overview of the complete xpipes flow for designing NoCs for MPSoCs is
presented in Chapter 2 and Chapter 3. As mentioned this flow comprises
several tools that are integrated together. First, SunFloor, which automates
the front-end process of NoC design. Second, xpipesCompiler, which au-
tomates the architecture generation phase (leveraging the Xxpipes library of
NoC components). Finally, several industrial tools that automate the back-
end processes, i.e. the logic synthesis and physical design. In this chapter,
approaching to deep sub micron technologies, some updates were required
to face modern technology node features. For exemple, the SunFloor tool,
used to synthesize the best custom NoC topology for a given MPSoC plat-
form, required, in addition to the already discussed switch area and power
models, derived using the procedures deeply explained in Chapter 4, detailed
area and power consumptions models for the links. This models for the links
are derived using the same methodologies proposed in Chapter 4 and taking
into account as architectural parameters their length and flit width. Mor-
ever, as said, the topologies synthesized by SunFloor required that the links
could be traversed in a single clock cycle. In the updated version of the
design flow, this assumption was removed by including in SunFloor the pre-
characterization of link delay information. Therefore, Sunfloor automatically
pipelines long links in the design, based on the targeted frequency of opera-
tion. When a link is pipelined and its latency increases, SunFloor considers
this information to determine the average latency of the NoC and, therefore,

6.1 NoC Design Flow 131

takes it into account in its cost metrics. The NoC component library taken as
reference did not require any change, due to the its high parameterizability
and thanks to the fact that it supports link pipelining, where logical buffers
are interleaved along links. This feature reduces signal propagation delays,
and as we illustrate in our analysis (Section 6.2.1) and results (Section 6.3),
it is a very relevant element in latest technology nodes.

6.1.1 Flow Back-End

The xpipes back-end flow based on standard cell synthesis needed to be up-
dated to face the need, imposed by DSM technologies to tightly close the
gaps between the different steps of the flow. As previously mentioned, in the
previously illustrated verion of the flow, the first step of the implementation
flow consists of the logic synthesis phase, obtained automatically by utilizing
standard Synopsys tools. In a second phase, the flow scheduled a floorplan-
ning phase, which was performend inside the Cadence SoC Encounter suite
devoted to the place and route procedure. Thus, in the traditional flow logic
synthesis and placement are conceived as two clearly decoupled stages, even
if informations obtained by the area and power models are used by SunFloor
to define the topology floorplan. As shown by the experiments presented in
previous chapters, this flow achieved reasonable enough results for 130 nm
NoC design. Anyway the assumption considering the two steps indipendently
appears to be substantially inadequate at the 65 nm node. The origin of the
problem lies in the same concept that enables the splitting of the two steps,
namely, wireload models. Wireload models are pre-characterized equations,
supplied within technology libraries, that attempt to predict the capacitive
load that a gate will have to drive based on its fan-out alone. A gate driv-
ing a fan-out of two other gates is very likely to be part of a local circuit.
Thus, its capacitive load is little more than the input capacitance of the two
downstream gates. A gate with a fan-out of one thousand is likely to be the
driver of a global network. Therefore, some extra capacitance is expected
due to the long wires needed to carry the signal around. This assumption
works very well as long as wire loads do not become too large. Otherwise, the
characterization of wireload models becomes very complex, and the predic-
tion inaccuracies become critical. While performing the presented 65 nm test
explorations, unacceptable performance degradation due to inaccuracies in
wireload estimation could be observed. Even when synthesizing single NoC
modules (i.e., even without considering long links), after the logic synthesis
step, tools were expecting some target frequency to be reachable. However,
after the placement phase, the results were up to 30% worse. Unfortunately,
traditional placement tools are not able to deeply modify the netlists they

132 65 nm NoC Design

are given as an input. In general, they can only insert additional buffering to
account for unexpected loads on few selected wires. Therefore, if the input
netlist is fundamentally off the mark due to erroneous wireload expectations,
not only a performance loss is certain, but the placement runtime skyrockets.
To address this issue placement-aware logic synthesis tools, such as Synopsys
Physical Compiler [36] were introduced in an update version of the flow. In
this type of flow, after a very quick initial logic synthesis based on wireload
models, the tool internally attempts a coarse placement of the current netlist,
and also keeps optimizing the netlist based on the expected placement and the
wire loads it implies. The final resulting netlist already considers placement-
related effects. Therefore, after this netlist is fed to the actual placement
tool, performance results do not incur major penalties. In addition, other
wiring- and placement-related problems were observed within soft macros
due to congestion. In test designs, placements tools performed poorly both
when modules had to be placed within too small and too wide fences. While
the former case is clearly understandable, the unexpected latter effect can be
attributed to the placement tool heuristics, which are probably performing
worse when the solution space becomes very large. Thus, the problem must
be solved by proper tuning of the spacing among the soft macro fences and,
consequently, accurate area models of the NoC modules are required to avoid
very time-consuming manual interventions in the synthesis process.

This procedure is followed by using 90 and 65 nm technology libraries
by a partner foundry, tuned for different performance/power tradeoffs, with
different threshold and supply voltages. While full custom design would cer-
tainly improve results, it would also greatly decrease flexibility and increase
design time.

To take profit of the advantages derived by the use of a complete suite de-
veloped by the same vendor, and to avoid small file portability problems that
may arise using software provided by different companies (although Phisical
Compiler and SoC Encounter are conceived for mutual compatibility), the
original design flow was updated to perform the detailed placement&routing
step within Synopsys Astro [35]. Two of the main placement strategies com-
monly available within industrial tools are virtual flat and soft macros. In the
former option, the tool is fed with the complete design, and albeit placement
guidelines can be given, the tool is allowed to modify the global floorplan.
This theoretically allows for maximum optimization and better handling of
design violations; unfortunately, for a design as large as a whole NoC-based
chip, it appeared to be extremely demanding on system resources (more than
5 GB of RAM were needed by the placement process, and runtimes were unac-
ceptable). The soft macro alternative is based on rigid fences which separate
floorplan areas. Each module of the design is assigned to one such area;

6.1 NoC Design Flow 133

RTL description

Synopsys Physical Compiler
» Placement-aware logic synthesis
4+ Clock gating

tlist

Synopsys Astro

* Placement

» Clock tree insertion

* Power grid insertion

* Routing

4+ Post-routing optimizations

Area
statistics

Placed&ro

uted netlist

Mentor ModelSim

» Post-layout simulation
» Switching activity dump
Synopsys PrimePower
I Power profiling

Power
statistics

Figure 6.2: The synthesis flow for xpipes

Frequency .
statistics

134 65 nm NoC Design

the tool is able to freely perform placement operations within such modules
and areas, but it is not allowed to trespass fences. The option integrated
in the flow is a mix of the two strategies, aimed to obtain optimal results
with reasonable computational effort. First, Astro was fed with a rough
floorplan, generated either manually or by SunFloor. This floorplan contains
hard macros and soft macros, separated by fences. The hard macros repre-
sent IP cores and memories, and are modeled as black boxes. Hard macros
are defined with a Library Exchange Format (LEF) file and a Verilog Inter-
face Logical Model, and obstruct an area of our choice. These boxes also
obstruct some of the metal layers laying directly above; the exact number
of obstructed levels is configurable, depending on how many metal layers
the IP cores are supposed to require and on whether over-the-cell routing
for the NoC wires vs. between-the-cell is preferred. Soft macros enclose the
modules of xpipes; by constraining the placement tool to operate on one
tile at a time, faster runtimes can be achieved. For proper results, however,
it becomes necessary to specify rough timing constraints at the soft macro
boundaries; this was achieved thanks to the pre-characterization of the links
(please see Section 6.2.1 below).

The next step in the flow is clock tree insertion. While a separate clock
tree could be added to each soft macro, it would be difficult to control the
skew when joining the trees together and attaching them to a single clock
source. Therefore, this step operates at a global level. The clock tree is added
by leveraging clock borrowing algorithms in the tools; in other words, clock
skews are exploited to accommodate the delay properties of the circuits, by
supplying wider clock periods where the logic paths are most critical. Once
the clock tree has been generated, its wires are kept untouched within the
tool, to prevent further skews from appearing.

At this point, the power supply nets are added. To improve supply stabil-
ity, the power grid scheme was chosen instead of the traditional power ring;
power nets are distributed from the topmost metal layers of the chip, instead
of from a ring around the die. This minimizes IR drops (voltage drops and
fluctuations due to resistive effects in the supply networks and to the current
draw). After the power nets have been routed, the tool begins to route the
logic wires. After an initial mapping, searchérepair loops are executed to fix
any violations.

As a final step, post-routing optimizations are performed. This stage
includes crosstalk minimization, antenna effect minimization, and insertion
of filler cells. Finally, a signoff procedure can be run by using Synopsys
PrimeTime [38] to accurately validate the timing properties of the resulting
design.

6.2 Wire Design in 65 nm Technologies 135

6.1.2 Post-Layout Analysis

Post-layout verification and power estimation is achieved as described in
relationship with the original flow.

6.2 Wire Design in 65 nm Technologies

As mentioned above, wires are a very important element in sub-100 nm tech-
nologies. Experiments with a 65 nm design flow have shown that wires are
critical both within NoC modules and for inter-module links. The problems
related to the wires within a module, as already mentioned, were solved
by performing a placement aware synthesis of the modulese. The following
subsections will briefly describe the results of this analysis at global level.

6.2.1 Link Delay and Link Power

In order to assess the impact of global wires, 65 nm NoC links were studied
in isolation from the NoC modules. An overview of some of our analyses
can be found in Figure 6.3. The results show that several factors have to be
considered in link design. Two obvious factors are link length and desired
clock frequency. Short links or links clocked at a very slow frequency do not
pose problems. However, as either length or target frequency are increased,
an undesired effect appears in the form of high power consumption. The
reason is that when links are pushed for high performance, back-end tools
automatically insert large amounts of buffering gates, increasing the energy
cost of the links. In some validation experiments, the feasibility threshold
of high-frequency or very long links was in some cases set by the inability
to decrease delay further and in some cases by crosstalk concerns. In other
words, the added buffers would sometimes be too large to be safely deployed.

Another extremely important dependency was on the specific technology
library in use. As Section 6.3 shows, especially at the 65 nm node, a single
“technology library” no longer exists for standard cell design. In fact, manu-
facturing technologies are spreading across a variety of libraries optimized for
specific uses, such as low power or high performance, with several interme-
diate levels featuring for example different threshold voltage values. In this
case, if very low power libraries are used, the size and speed of the buffers
that can be interleaved along wires becomes dramatically inferior, which
results in much tighter constraints on frequency of operation or length. Fig-
ure 6.3(a) reports power consumption for a 65 nm low power library tuned
for a low threshold voltage (called LP-LVT in the following), and therefore
for a power/performance tradeoff. Figure 6.3(b) is based on a 65 nm low

136 65 nm NoC Design

power library tuned for a high threshold voltage (LP-HVT), and therefore
for minimum power consumption. As can be seen, the LP-HV'T library is
substantially more power effective than the LP-LVT library, but puts much
tighter constraints on link feasibility.

Link repeaters can be used to tackle this issue. Repeaters can be defined
as clocked registers along links. By providing one or more extra clock peri-
ods to traverse long distances, they solve the link infeasibility problem at a
much lower cost than that of deploying whole NoC switches in the middle of
the links. In some cases, repeaters may even produce more power-effective
solutions than regular wire buffering along particularly critical links, but at a
performance cost (i.e., one extra cycle of latency). In all cases, the NoC flow
control protocol must be designed in such a way as to enable a transparent
insertion of the repeaters. Alternatively, repeaters must contain extra logic
to properly handle the flow control handshake signals. In xpipes design flow,
support for pipelined links is present at all levels of abstraction, starting from
the high-level SunFloor tool down to final layout tools.

6.3 Experimental Results

6.3.1 Technology Scaling from 90 to 65 nm

In a first set of results (see Figure 6.4) the effect of scaling is studied when the
x pipes switches are synthesized in four different libraries, namely, two 65 nm
and two 90 nm ones, tuned for different power/performance tradeoffs (LP-
LVT and LP-HVT). In these experiments, switches were fully placed&routed,
including the addition of a clock tree. Then, syntheses were tuned for the
maximum operating frequency. To this end, clock gating option was disabled.
As can be seen in the results, 65 nm libraries provide large opportunities
for improvement over their 90 nm predecessors. In fact, observed power
consumptions about 50% lower (up to 75% lower when comparing the LP-
HVT versions) could be observed, and area savings of 40-50%.

It is also important to observe the large difference in synthesis results
among two different libraries at the same technology node. For the 65 nm
case, the LP-HVT library is consuming one order of magnitude less power
than the LP-LVT variant. In addition, the results indicate that this perfor-
mance spread is increased compared to the 90 nm libraries. For example, by
observing the achievable clock frequency, LP-HVT 65 nm libraries reach 50%
lower frequencies than their 90 nm equivalents, but LP-LVT 65 nm libraries
are actually 25% faster than their 90 nm equivalents. This trend suggests
that new degrees of freedom are available to designers in new technology

6.3 Experimental Results 137

45

40

35

30

25
Normalized power

(a) performance/power oriented 65 nm library (LP-LVT)

Normalized power 3,0

2,0

1,0

0,0

(b) very low-power 65 nm library (LP-HVT)

Figure 6.3: Power consumption of 38-bit links of varying lengths at different op-
erating frequencies. Values normalized to shortest link at slowest fre-

quency. Missing columns represent infeasible length/frequency com-
binations.

138

65 nm NoC Design

nodes.

100

80 —

60 —

Relative switch power

20 —

J

4x4 switch, 21-bit, 4 buffers 6x6 switch, 38-bit, 6 buffers

(a) power

Relative switch frequency

4x4 switch, 21-bit, 4 buffers 6x6 switch, 38-bit, 6 buffers

(b) operating frequency

o

IS

Relative switch area
w

N

o

4x4 switch, 21-bit, 4 buffers 6x6 switch, 38-bit, 6 buffers

(c) area

[65 nm, LP-HVT

[]90 nm, LP-HVT

[65 nm, LP-HVT
I 65 nm, LP-LVT
[190 nm, LP-HVT
[190 nm, LP-HVT

[65 nm, LP-HVT
I 65 nm, LP-LVT
[190 nm, LP-HVT
[190 nm, LP-HVT

Figure 6.4: Analysis of two representative Xpipes switches in different technology
libraries. Figures normalized to the 4x4 switch in the LP-HVT library.

In a second set of experiments complete NoC topologies were analyzed,
namely 4x4 meshes (see Figure 6.5). The topologies were synthesized with the
higher-performance version of the 90 nm and 65 nm libraries presented above.

6.3 Experimental Results 139

| [90 nm, 1 mm? | 65 nm, 1 mm? | 65 nm, 0.63x0.63 mm? |

Relative frequency 1.00 1.25 1.25
Relative cell area 1.00 0.49 0.48
Relative power 1.00 0.66 0.63
Relative bandwidth 1.00 1.25 1.25
Relative power/bandwidth 1.00 0.53 0.50
Relative link power 1.00 1.16 0.71

Table 6.1: Synthesis results on three 4x4 NoC meshes. Figures normalized to the
90 nm results.

For the 90 nm case, IP cores were modeled as 1 mm? obstructions, while, for
the 65 nm topologies, tho different IP models were used: one assuming the
same size of 1 mm? and one assuming a scaled size, where IP cores require
0.63x0.63 mm?. The area scaling factor is derived from datasheet analyses
and experiments on adder designs.

(a) 90 nm, 1 mm? obstructions (b) 65 nm, 1 mm? obstruc- (¢c) 65 nm,
tions 0.63x0.63 mm?
obstructions

Figure 6.5: Three 4x4 Xpipes meshes.

As the results in Table 6.1 show, the jump to the 65 nm node presents
large advantages in area, power consumption and maximum achievable fre-
quency. The most impressive result is the power over bandwidth metric,
which improves by a factor of 2. The gains are similar to those for single
switches reported above, except for the power consumption figure, which fea-
tures smaller savings. The main reason is that, in regular meshes, links are
generally short (at most 1.2 mm in the meshes with 1 mm? cores), enough so
to not represent a performance bottleneck even at the 65 nm node. However,
in 65 nm technology, there is still a power consumption penalty to be paid
due to the extra required buffering along the wires. For this reason, the links
in the 65 nm mesh with 1 mm? cores, which are the most constrained of this
experiment due to a mix of technology properties, length and operating fre-
quency, are the most power-expensive and have an impact on overall figures.

140 65 nm NoC Design

The scaled 65 nm mesh is less link-constrained, leading to slightly smaller
area and power consumption.

6.3.2 Topology design

Next, the SunFloor tool was applied to a high bandwidth application, typical
of today’s video applications, and to a low bandwidth application, typical of
mobile applications.

6.3.3 High Bandwidth Application

126

126

Figure 6.6: Enhanced VOPD application, called DVOPD, with the capability to
decode two streams in parallel.

The objective of this experiment, whose results are outlined in Table 6.2,
was twofold. First, it aimed at finding the impact of technology scaling on the
sizes of the communication architectures and on the topologies required to
match the application characteristics. Second aim was to analyze the impact
of the choice of libraries (i.e. LP-LVT or LP-HVT) used for the technology
process. The performed comparisons are:

e Same Platform for both 90 nm and 65 nm In this experiment, the same
platform was assumed to be used in 90 nm and 65 nm nodes, and the

6.3 Experimental Results 141

Library, Max | Switch | Largest | Switch Link Total Avg.
Application Freq. | Count Switch Power | Power | NoC Power | latency
90 nm LP-LVT, 400 4 10x9 140.83 57.58 198.3 3.42
DVOPD MHz mW mW mW cycles
90 nm LP-HVT, - - - - - - -
DVOPD
65 nm LP-LVT, 400 4 10x9 59.13 24.46 83.59 3.91
DVOPD MHz mW mW mW cycles
65 nm LP-HVT, - - - - - -
DVOPD
65 nm LP-LVT, 800 6 7x6 131.99 | 47.98 179.97 4.24
DVOPDX2 MHz mW mW mW cycles
65 nm LP-LVT, 800 10 =<7 189.35 79.93 269.29 4.35
TVOPD MHz mW mW mW cycles

Table 6.2: High Bandwidth Application Results

impact of technology scaling on the designed NoCs was evaluated. This
is often done by system designers, who reuse the same platform (possi-
bly as a part of a bigger system) to reduce the design and verification
efforts. This analysis is based on a Dual Video Object Plane Decoder
(DVOPD) application, where two video streams are decoded in parallel
by utilizing 26 processing/hardware cores. This application is a scaled
version of the VOPD benchmark presented in [8]. The communica-
tion characteristics of the DVOPD benchmark are shown in Figure 6.6.
The core (each core in the application is represented by a vertex in
Figure 6.6) size was assumed of 1 mm? in 90 nm technology and would
shrink to 0.63x0.63 mm? when migrating to 65 nm.

e Higher Bandwidth Platform in 65 nm To evaluate the scalability of the
interconnect in 65nm technology, a second benchmark was additionally

considered , where the bandwidth requirements of the DVOPD were
doubled, referred to as DVOPDX2.

e Larger and Higher Bandwidth Platform in 65nm As the core sizes are
smaller in 65 nm technology, more cores could fit on the chip in compar-
ison to 90 nm. Therefore, to take this effect into account, a third bench-
mark was considered, called TVOPD, where 3 video streams were de-
coded in parallel following the same graph as in the DVOPD application
(shown in Figure 6.6), instead of 2 video streams as in DVOPD. This
new design consisted of 38 cores. We also assumed that the base appli-
cation bandwidth requirements would be doubled, as in DVOPDX2.

The characteristics of the NoCs synthesized by our tool chain for the
benchmarks are shown in Table 6.2. The average latency presented in the
table is defined as the latency for a head flit of a packet to move from the

142 65 nm NoC Design

output of the initiator NI to the input of the target NI, when there is no
congestion in the network. In this study, the network flit width was fixed to
match the data width of the cores (equal to 32 bits). The DVOPD application
bandwidth requirements demanded a 400 MHz operation for the NoC, which
was automatically determined by the SunFloor tool. Several interesting facts
could be observed:

e The switches designed using the LP-HVT libraries were not able to
meet the required frequency and bandwidth requirements, due to their
focus on very low power operation. Thus, only the LP-LVT libraries
resulted in valid designs for the benchmark.

e For the DVOPD application (represented by the rows 1-4 in the table),
the best topology synthesized by our tool flow remains the same (i.e.,
same switch count and sizes), with both 90 nm and 65 nm libraries. The
ratio of link power to switch power consumption, however, increased
when moving to the 65 nm technology. This is despite the fact that, for
this benchmark, the core sizes were smaller in 65 nm technology, which
led to an overall reduction in the total length of wires. The reason for
this reduction was that the switch power consumption reduces by 55%
when moving from 90 nm to 65 nm, whereas the wire power consump-
tion was reduced only by 31%. This result is in agreement with the
findings in Table 6.1.

e The number of switches needed increased to 6 and 10 for the DVOPDX2
and TVOPD scenarios, respectively. This is because these benchmarks
have doubled bandwidth requirements with respect to the DVOPD ap-
plication; thereby, they require double the operating frequency for the
NoC (800 MHz). In fact, as big switches cannot satisfy such a high
operating frequency, the SunFloor tool synthesized a design with many
smaller switches. As the topology size increases, as expected, the aver-
age head flit latency also increases.

e The 65 nm technology is very power efficient. In fact, this technology
supported twice the application bandwidth requirements (the DVOPDX2
benchmark) at a lower power consumption than the 90 nm technology
library.

6.3.4 Effect of Link Pipelining

The SunFloor tool automatically pipelines long links, based on the required
NoC operating frequency and the link lengths obtained from the floorplan of

6.3 Experimental Results 143

Il unpipelined
[] 1-stage pipeline

al [=2] ~ o]
(=) (=) o (=)
T T

Number of Links
g 38

N
o
T

=
(=)
T

DVOPDX2 TVOPD

Figure 6.7: Amount of pipelined links in two sample benchmarks.

Library, Max Switch | Largest Switch Link Total Avg.
Application Freq. Count Switch Power Power NoC Power latency
90 nm LP-LVT 50 MHz 2 11x11 10.46 mW | 5.47 mW 15.93 mW 3.94 cycles
90 nm LP-HVT | 50 MHz 2 11x11 4.27 mW 2.1 mW 6.36 mW 3.94 cycles
65 nm LP-LVT 50 MHz 2 11x11 4.72 mW 2.31 mW 7.03 mW 3.94 cycles
65 nm LP-HVT | 50 MHz 5 9x9 2.61 mW 1.65 mW 3.86 mW 3.94 cycles

Table 6.3: Low Bandwidth Application Results.

the design. Such link pipelining is needed for NoCs that require a high oper-
ating frequency. As an example, without link pipelining support, the NoC for
the DVOPDX2 and TVOPD designs could only operate at 500 MHz, while
the application bandwidth requirements necessitate 800 MHz operation. In
Figure 6.7, the number of pipeline stages required for the different links in
the DVOPDX2 and TVOPD designs was plotted. A non-pipelined link re-
quires one clock cycle for traversal, while a link with a single pipeline stage
requires two clock cycles. For all these benchmarks, all the links could be
traversed within 2 clock cycles. As the design complexity increases (moving
to the TVOPD design), the portion of links that require pipelining also in-
creases. The SunFloor tool automatically considers the increase in latency
due to link pipelining when determining the average latency of the NoC, and
is therefore able to account for the overhead in its performance metrics.

6.3.5 Low Bandwidth Application

NoCs can be used effectively not just for high bandwidth applications, but
also for low bandwidth applications that have tight power budget constraints.
Therefore, in a final set of experiments, is demonstrated that the performance
of NoCs forthcome requirements of low-power applications and mobile sys-
tems.

144 65 nm NoC Design

Private 180 MB/s
Memory 0 |

Shared

Private 180 MB/s
Memory 1 |~

Interrupt
Device

Private 180 MB/s

e > Al links:
1.8 MB/s
Figure 6.8: DES benchmark.
[Application | Library | Bandwidth per mW |
DVOPD 90 nm LP-LVT 67.27 MB/s/mW
DVOPD 65 nm LP-LVT 159.64 MB/s/mW
DES 90 nm LP-LVT | 94.62 MB/s/mW
DES 90 nm LP-HVT | 229.56 MB/s/mW
DES 65 nm LP-LVT | 207.68 MB/s/mW
DES 65 nm LP-HVT | 378.23 MB/s/mW

Table 6.4: Bandwidth supported per milliwatt of power consumption

In order to represent mobile applications with these low power require-
ments, the DES encryption benchmark implemented on 19 cores was con-
sidered. The communication characteristics for the benchmark are shown
in Figure 6.8. The designed NoCs for the 2 different technologies for the
LP-LVT and LP-HVT libraries are shown in Table 6.3. As seen from the
table, for low power requirements, the LP-HV'T libraries are far superior to
the LP-LVT libraries. As an example, for the DES mapping in the 65 nm
LP-HVT technology, the resulting chip layout is also presented in Figure 6.9.

In addition,the energy efficiency of the NoCs for the different applications
was investigated across the different technology generations. The total band-
width required by the DVOPD application is 13.34 GB/s, while for the DES
application, it is 1.46 GB/s. In Table 6.4, the bandwidth supported per mil-
liwatt of power consumption by the different NoC designs is presented for the
DVOPD and DES applications. This metric captures the energy efficiency of
the different technology libraries. The 65 nm technology libraries have much
higher energy efficiency. For example, for the DES application, using the
LP-LVT libraries, a 2.19X improvement is obtained when compared to the
90 nm technology. Another interesting fact to note is that, for the DES ap-
plication, the NoC supports a higher bandwidth per mW power consumption
than for the DVOPD application. This is because of two reasons: firstly, the
DVOPD application needs a higher operating frequency, which requires the

6.3 Experimental Results 145

i
!
N
B
3
1
-
L
|
=

Figure 6.9: Layout of the DES mapping on 65 nm LP-HVT technology. Over-
the-cell routing was allowed in this example.

146 65 nm NoC Design

synthesis tools to utilize more power intensive components for the switches.
Secondly, the communication traffic is more evenly spread in the DVOPD
application, thereby requiring more inter-switch traffic flows than the DES
application.

520000

510000

500000

490000

430000

470000

460000

450000

Best Quasi-mesh Mesh

Figure 6.10: Comparisons of best topology synthesized by SunFloor vs. quasi-
mesh and mesh topologies

Finally, the quality of the custom topology generated for the DES bench-
mark was compared with that of a mesh topology (19 switches, with each
core connected to a switch) and a quasi-mesh topology (10 switches, with 2
cores connected to a single switch). In this case cycle-accurate simulations
of the DES benchmark was performed with the designed NoCs using the
x pipes platform. The total application runtimes for the 3 designs are shown
in Figure 6.10. As this figure indicates, the entire application performance
(which also includes the time for computation) improves by 7% when the
custom topology is used.

Bibliography

(1]

(2]

(3]

[4]

[5]
(6]
(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

T. Ahonen, et al. Topology optimization for application-specific networks-on-chip. In Proc. SLIP),
2004.

F. Angiolini, et al. Contrasting a NoC and a traditional interconnect fabric with layout awareness.
In Proc. DATE, 2006.

M.-N. K. Bambha, et al. Joint application mapping/interconnect synthesis techniques for embedded
chip-scale multiprocessors. IEEE Trans. PDS, 2005.

N. Banerjee, et al. A power and performance model for network-on-chip architectures. In Proc.
DATE, 2004.

L. Benini, et al. Networks on chip: a new SoC paradigm. IFEE Computer, 2002.
L. Benini, et al. Networks on chips: Technology and Tools. Morgan Kaufmann Publishers, 2006.

D. Bertozzi, et al. xpipes: A network-on-chip architecture for gigascale systems-on-chip. IEEE
Circuits and Systems Magazine, 2004.

D. Bertozzi, et al. NoC synthesis flow for customized domain specific multiprocessor systems-on-
chip. IEEE Trans. PDS, 2005.

J. Chan, et al. Nocgen: a template based reuse methodology for NoC architecture. In Proc. ISVLSI,
2004.

M. Coppola, et al. OCCN: a network-on-chip modeling and simulation framework. In Proc.
DATE’04, 2004.

W. Dally, et al. Principles and Practices of Interconnection Networks. Morgan Kaufmann Pub-
lishers, 2003.

M. Gasteier, et al. Bus-based communication synthesis on system level. ACM TODAES, 1999.

W. Hang-Sheng, et al. A technology-aware and energy-oriented topology exploration for on-chip
networks. In Proc. DATE, 2005.

W. Hang-Sheng, et al. Orion: a power-performance simulator for interconnection networks. In
Proc. MICRO, 2002.

A. Hansson, et al. A unified approach to constrained mapping and routing on NoC architectures.
In Proc. CODES+I1SSS, 2005.

W. H. Ho, et al. A methodology for designing efficient on-chip interconnects on well-behaved
communication patterns. In Proc. HPCA, 2003.

J. Hu, et al. System-level point-to-point communication synthesis using floorplanning information.
In Proc. ASP-DAC, 2002.

148 BIBLIOGRAPHY

[18] J. Hu, et al. Exploiting the routing flexibility for energy/performance aware mapping of regular
NoC architectures. In Proc. DATE, 2003.

[19] Y. Hu, et al. Communication latency aware low power NoC synthesis. In Proc. DAC ’06, 2006.

[20] A. Jalabert, et al. xpipescompiler: A tool for instantiating application specific NoC. In Proc.
DATE, 2004.

[21] A. Jantsch, et al. Networks on chip. Kluwer Academic Publishers, 2003.

[22] K. Lahiri, et al. Design space exploration for optimizing on-chip communication architecture. IEEE
T-CAD), 2004.

[23] S. Manolache, et al. Fault and energy-aware communication mapping with guaranteed latency for
applications implemented on NoC. In Proc. DAC, 2005.

[24] S. Murali, et al. Mapping and physical planning of NoC architectures with quality-of-service guar-
antees. In Proc. ASP-DAC, 2005.

[25] S. Murali, et al. A methodology for mapping multiple use-cases onto NoCs. In Proc. DATE, 2006.

[26] S. Murali, et al. An application-specific design methodology for stbus crossbar generation. In Proc.
DATE, 2005.

[27] S. Murali, et al. Designing application-specific networks on chips with floorplan information. In
Proc. ICCAD, 2006.

[28] OCP-IP. Open core protocol standard, 2003. http://www.ocpip.org/home.

[29] G. Palermo, et al. Pirate: A framework for power/performance exploration of network-on-chip
architectures. In Proc. PATMOS), 2004.

[30] S. Pasricha, et al. Fast exploration of bus-based on-chip communication architectures. In Proc.
CODES+I1SSS, 2004.

[31] C. S. Patel. Power constrained design of multiprocessor interconnection networks. In Proc. ICCD,
1997.

[32] A. Pinto, et al. Efficient synthesis of NoCs. In Proc. ICCD, 2003.

[33] D. Siguenza-Tortosa, et al. Vhdl-based simulation environment for proteo noc. In Proc. HLDVT
Workshop, 2002.

[34] K. Srinivasan, et al. An automated technique for topology and route generation of application
specific on-chip interconnection networks. In Proc. ICCAD, 2005.

[35] Synopsys. Astro. http://www.synopsys.com.

[36] Synopsys. Physical Compiler. http://www.synopsys.com.

[37] Synopsys. PrimePower. http://www.synopsys.com.

[38] Synopsys. PrimeTime. http://www.synopsys.com.

[39] T.T. Ye, et al. Analysis of power consumption on switch fabrics in network routers. In Proc. DAC,
2002.

[40] X. Zhu, et al. A hierarchical modeling framework for on-chip communication architectures. In Proc.

ICCAD, 2002.

http://www.ocpip.org/home
http://www.synopsys.com
http://www.synopsys.com
http://www.synopsys.com
http://www.synopsys.com

Chapter 7

Conclusions

This thesis sheds light on some questions which were previously unanswered
or only partially answered. For first, the usefulness of NoC architectures and
the benefits that can be obtained by their use inside a SoC were assessed tak-
ing into account the aspects related to the chip layout and the global wiring
capacitance, since this factors are crucial for a meaningful and thorough anal-
ysis. In this aim, a comparative analysis of interconnect fabrics is presented,
ranging from low-cost classic schemes to NoCs. While the traditional shared
bus proves completely unable to cope with the heavy load injected by 30
IP cores, the evolutionary ML AMBA design and the xpipes NoC handle
the load with different degrees of effectiveness and area and power overhead.
The Multi-Layer architecture is much more efficient in terms of area and
power at the current technology node, but the NoC is faster and promises
better scalability and predictability in future lithographic processes. NoC
handles wiring delays and congestion much better than even a medium sized
5x5 crossbar component, so well so that most of its area and power over-
head seems to be concentrated in buffers. This is contrary to expectations
in some previous literature, where wire switching activity was expected to
be dominant. While this ratio shifts in smaller technologies, using a 130 nm
process, proper buffering optimizations are very useful. Clock gating, short
FIFOs and narrow flit widths are instrumental in keeping area and power
to reasonable levels. The comparison showed also how the NoC topology
design, where a NoC is tailored to fit the target application, has noticeable
potential benefits. The experiments related to the crossbenchmarking activ-
ity show more than 10% savings in global area, 8% savings in power, and
constant performance. These savings are visible even despite being masked
by large system-level overheads, such as the resources required by the clock
tree and the cores themselves, and also by topological considerations - in a
system with 30 IP cores and 30 NIs, the improvements that can be achieved

150 Conclusions

by optimizations of the network of switches alone have limited headroom.
While it is not fair to compare a custom designed NoC to a fairly generic ML
AMBA topology, the superior customizability of NoCs should be taken into
account.

To take advantage of the mentioned customizability, a complete platform
generation flow using NoC interconnects to generate fully functional chip
layouts from initial high-level application models was developed. The in-
tegration of this flow represents the core of this thesis. It can be used to
obtain a power and latency efficient design, by building a communication
architecture that closely matches the application traffic characteristics, sat-
isfying the different design constraints. Synthesizing such NoC architecture
is non-trivial, given the large design space that needs to be explored. In this
thesis, a complete methodology that automates the process, generating effi-
cient NoCs that satisfy the design constraints of the application, is presented.
To have fewer design re-spins and faster time-to-market, fast and accurate
floorplan information is needed early in the design cycle. This leads to de-
tecting timing violations on the NoC links during the NoC synthesis phase,
thereby leading to timing closure with quicker convergence between the high
level design and the physical design phases. Accurate switch and link power
models that are based on layouts of the components and accurate link power
estimates based on the wire-lengths obtained from floorplanning are used.
Deadlock free routing methods have been integrated in the NoC synthesis
process, to face a critical issue for proper NoC operation. Experiments on
several SoC benchmarks show that the synthesized topologies are much bet-
ter (an average of 2.78x power reduction, 1.59x hop-count reduction) than
the best mesh topology and mesh-based custom topologies for significant case
studies.

A methodology for the developement of the mentioned accurate mod-
els for the characterization of NoC switch area and power requirements is
presented. The proposed approach is based on thorough parameterization
on several architectural, deployment and runtime variables. This guarantees
excellent applicability within a NoC CAD flow like the proposed xpipes de-
sign flow, for topology mapping and/or design space exploration. The area
and power models for the xpipes case study turn out to be very accurate
within the limits allowed by the non-idealities of synthesis tools, even when
applied to a whole NoC topology with irregular traffic lows. Experiments
show that, at least at the 0.13 um node, applying the proposed methodol-
ogy to netlist-level devices yields an acceptable approximation of the actual
behaviour even after placement and routing, but that even greater precision
can be achieved, if desired, by applying the same technique at the layout
level. Another tradeoff among accuracy and modeling effort exists, namely,

151

coefficients can be extracted based on a single (or on just a few) device
instances, by normalization of the synthesis report, or on several of them,
by an interpolation process. With respect to the modeling methodologies,
future work includes minimizing the characterization effort, and especially
a detailed testing verifying how well the proposed technique scales to finer
process technologies.

For NoCs to be feasible in today’s SoC designs, a NoC architecture with
low hardware overhead is required. Chapter 5 involves a novel method for
reducing the NoC hardware overhead by automatically customizing the ar-
chitecture of the switches of the NoC to match the designed topology and
routing paths. The customization process is integrated with the xpipes tool
chain. The customization process leads to large reduction in network area
and power consumption. Moreover, the critical paths of the switches reduce
significantly, thereby leading to a significant speed-up of the NoC design. In
future, the customization method will be extended for sizing the buffers of
the NoC switches as well.

Finally, a complete and thorough study of the trends imposed by deep
submicron manufacturing processes was performed in fully working 65 nm
NoC designs. Experimental results show that, while new technology nodes
allow for large benefits in terms of power consumption, device area and
operating frequency, they also pose non-trivial challenges, which must be
properly tackled by NoC design flows. The xpipes design flow was thus
updated to support the issues emerging with the technology shrinking, es-
pecially modifications were needed in the back-end phase, and architectural
support (pipelined links) was also required for optimal results. A very pos-
itive outcome, however, is that the scalability of NoCs does not deteriorate
even for large 65 nm designs, and that NoCs prove capable of tackling the
challenges of 65 nm processes.

To understand exhaustively the NoC architectures, it is mandatory to in-
vestigate asynchronous or Globally Asynchronous Locally Synchronous (GALS)
paradigms for their design. Asynchronous, or partially so, design styles may
be the only way to counter extreme process variation issues in future technolo-
gies. Of course, asynchronous designs feature a very different set of tradeoffs
compared to fully synchronous logic, including better power efficiency but
much more complex implementation flows. Whether the advantages will
outweigh the problems remains to be seen.

List of Figures

1.1

1.2
1.3
1.4
1.5

2.1

2.2

2.3
2.4
2.5
2.6

2.7

2.8

2.9

Comparison between gate delay and local/global interconnect
delay:local wires and gate delay are scaling down while the
relative contribution of the global wire delay is increasing with
technology
A general view of a NoC
Examples of common network topologies
State of the art in NoCs overview
xpipes building blocks: (a) switch, (b) NI, (¢) link

The platforms under test. (a) shared bus AMBA AHB; (b) ML
AMBA AHB; (c) xpipes mesh; (d) xpipes custom topology.
M: ARMT masters; T: traffic generators; P: privately accessed
slaves; S: shared slaves
Task graphs for the two applications under test: (a) multime-
dia processing application, (b) LMS filtering application
The MPARM SystemC virtual platform
The synthesis flow for our test fabrics: xpipes
The synthesis flow for our test fabrics: AMBA
Relative execution times for (a) multi-high, (b) multi-low,
(c) des with varying cache sizes. The ML AMBA AHB exe-
cution time is the baseline at 100. AMBA AHB shared bus
results lay beyond the upper limit of the Y axis scale
Latency of (a) single read, (b) burst read, (c) single write
transfers on the interconnects. AMBA AHB shared bus results
lay beyond the upper limit of the Y axis scale
Layouts of our test fabrics: (a) ML AMBA, (b) xpipes meshes,
() xpipes custom
Split report for a xpipes topology: (a-c) area of the 21-bit
mesh, the 38-bit mesh and the 21-bit custom NoC; (d-f) power
consumption of the three topologies

154 LIST OF FIGURES
3.1 NoC Design Flow 72
3.2 Sunfloor NoC architecture synthesis (Second phase of the de-

sign flow) ... 73
3.3 (a) Filter application (b) Core graph with sustained rates and

critical streamso 75
3.4 Algorithm examples 78
3.5 (a), (b) Hand-designed topology and layout. M: ARM7 pro-

cessors, T traffic generators, P, S: private and shared slaves

(c), (d) Automatically synthesized topology and layout. In

Figure (c), bi-directional links are solid and uni-directional

links are dotted. 82
3.6 Run time and latency for different cache sizes 86
3.7 VOPD custom topology floorplan and core graph 87
3.8 Performance comparisons 87
4.1 Outline of our characterization activity. The placement and

routing step is optional both for the training and the test set . 95
4.2 Area requirements vs. target operating frequency 97
4.3 Dependency of the output buffer area on fw, bd 99
4.4 Example traffic in a 4x2 switch 101
4.5 Area and power coefficient modeling inaccuracy under differ-

ent characterization policies: (a) area coefficients, (b) power

coefficients. Models and test set are at the netlist level 109
4.6 Distribution of the area modeling inaccuracy over a subset of

the design space for Methodology 2. Dark colour: underesti-

mations; light colour: overestimations 110
4.7 Distribution of the power modeling inaccuracy for the switches

ofadbx3 NoCmesh 110
4.8 Power coefficient modeling inaccuracy under different charac-

terization policies. Models are at the netlist level, test set is

at the layout level L. 111
4.9 Power coefficient modeling inaccuracy for Methodology 2. Mod-

els and test set are at the layout level 112
5.1 Switch architecture before and after the routing aware cus-

tomizationo 121
5.2 Mesh and application-specific custom topologies for the MULT

benchmark. The P0-P9 are the processors, T0-T4 are the
hardware cores, M0-M9 are the private memories and S10-S14
are the shared devices. The shaded boxes connecting the cores
are the switches in the design. 122

LIST OF FIGURES 155
5.3 Switch area, power and input-to-output connection savings for
the SoC designso 124
6.1 Our proposed complete NoC design flow for MPSoCs 130
6.2 The synthesis flow for xpipes 133
6.3 Power consumption of 38-bit links of varying lengths at dif-
ferent operating frequencies. Values normalized to shortest
link at slowest frequency. Missing columns represent infeasi-
ble length /frequency combinations. 137
6.4 Analysis of two representative xpipes switches in different
technology libraries. Figures normalized to the 4x4 switch
in the LP-HVT library. 138
6.5 Three 4x4 xpipes meshes. 139
6.6 Enhanced VOPD application, called DVOPD, with the capa-
bility to decode two streams in parallel. 140
6.7 Amount of pipelined links in two sample benchmarks. 143
6.8 DES benchmark., 144
6.9 Layout of the DES mapping on 65 nm LP-HVT technology.
Over-the-cell routing was allowed in this example. 145
6.10 Comparisons of best topology synthesized by SunFloor vs.
quasi-mesh and mesh topologies 146

List of Tables

2.1
2.2
2.3

3.1
3.2

4.1

4.2

4.3

4.4
4.5

5.1
5.2
9.3
0.4

6.1

6.2
6.3
6.4

Pre- and post-placement achievable frequencies.
Power consumption of the fabrics
Energy consumption of the fabrics

Component Area-Power
Comparisons with standard topologies

Dependency on architectural parameters of the static power
coefficient Py
Dependency on architectural parameters of the dynamic power
coefficients Pg, Po
Dependency on architectural parameters of the dynamic power
coefficient Pp
Dependency of power coefficients on architectural parameters .
Accuracy of the linear ws. parabolic models for the depen-
dency of synthesis results on the target synthesis frequency.
Coefficients derived with Methodology 2

Switch routing table example L.
Total switch area of the designs
Combinational area of the switches for the designs
Switch power consumption for the designs

Synthesis results on three 4x4 NoC meshes. Figures normal-
ized to the 90 nm results.
High Bandwidth Application Results
Low Bandwidth Application Results.
Bandwidth supported per milliwatt of power consumption

	Introduction
	Context and Motivation
	Introduction
	SoC paradigm
	MPSoC paradigm
	Challenges of Deep Sub-Micron Technologies
	Complexity of the interconnect hierarchy
	Interconnect delay
	Energy consumption
	Interconnect reliability
	Process variations
	Complexity of interconnect modeling

	Interconnect architecture optimization: motivation
	Network-on-chip communication architectures

	Network-on-chip architectures features and classification
	Network design constraints

	Network-on-chip architecture design space
	Fundamental network parameters
	Network Design Decisions

	State of the Art NoC Architectures
	AMBA Shared Bus
	AMBA Multi-Layer
	pipes NoC

	Comparative analysis of NoCs and Traditional Interconnects
	Related Work
	The Fabrics Under Test
	The Test Applications
	Reference Characterization Flow
	Fabric Simulation
	Fabric Synthesis

	Performance comparison results
	Interconnect Performance
	Interconnect Area, Frequency of Operation and Bandwidth
	Interconnect Power and Energy
	Split Analysis of Area and Power Contributions

	Designing Application-Specific Networks on Chips
	Introduction
	Design Flow
	Input Models
	Design Algorithms
	Experiments and Case Studies
	Layout-level Comparisons
	Experiments on SoC Benchmarks

	Area and Power Modeling for Networks-on-Chip components
	The pipes Switch Architecture
	Proposed Modeling Methodology
	Parameters of Interest
	Area and Power Models
	Choice of a Relevant Training Set
	Fitting Model Coefficients

	Experimental Results
	Experiments with Netlist-Based Models and a Netlist-Level Test Set
	Test Case: a Complete NoC Topology
	Experiments with Netlist-Based Models and a Layout-Level Test Set
	Experiments with Layout-Based Models and a Layout-Level Test Set
	Experiments with a Parabolic Model for the Dependency on the Target Synthesis Frequency

	Routing Aware Switch Hardware Customization
	Introduction
	Reference design flow
	Routing aware hardware optimization
	Hardware-Level Customization Support
	Software-Level Customization Support

	Customization method effectiveness evaluation
	Experiments on the Multimedia benchmark
	Experiments on SoC benchmarks

	65 nm NoC Design
	NoC Design Flow
	Flow Back-End
	Post-Layout Analysis

	Wire Design in 65 nm Technologies
	Link Delay and Link Power

	Experimental Results
	Technology Scaling from 90 to 65 nm
	Topology design
	High Bandwidth Application
	Effect of Link Pipelining
	Low Bandwidth Application

	Conclusions
	List of figures
	List of tables

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

