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1. Introduction21

The famous Cantor–Bernstein–Schröder theorem of the set theory states that22

“if a set X can be embedded into a set Y and vice versa, then there23

is a one-to-one function of X onto Y ”.24

The history of this theorem is rather curious. The earliest record of the the-25

orem might be a letter to Dedekind dated 5 november 1882 where Cantor26

conjectured the theorem. Dedekind proved it in 1887 but did not publish it.27

His proof was printed only in his collected works in 1932. Schröder proved the28

theorem in 1894 but he published it in 1898 [39,40]. However Schröder’s proof29

was defective. Korselt wrote to Schröder about the error in 1902 and few weeks30

later he sent a proof of the theorem to the Mathematische Annalen. Korselt31

paper appeared in 1911 [32]. Bernstein, a 19 years old Cantor student, proved32

the theorem. His proof found its way to the public through Borel because Can-33

tor showed the proof to Borel in the 1897 during the International Congress34

of Mathematicians in Zürich. The Bernstein proof was published in 1898 in35

the appendix of a Borel book [6] and in 1901 Bernstein’s thesis appeared with36

his proof. Several years later, at the end of the forties, Sikorski [38] and inde-37

pendently Tarski [44], showed that the CBS-theorem is a particular case of a38

statement on σ-complete Boolean algebras. Following this idea, several authors39

have extended the Sikorski–Tarski version to classes of algebras more general40

than Boolean algebras. Among these classes there are lattice ordered groups41

[26], MV -algebras [12,14,24], orthomodular lattices [13], effect algebras [27],42

pseudo effect algebras [16], pseudo MV -algebras [25], pseudo BCK-algebras43

[34] and in general, algebras with an underlying lattice structure such that the44

central elements of this lattice determine a direct decomposition of the algebra45

[18]. It suggests that the CBS-theorem can be formulated in a common alge-46

braic framework from which all the versions of the theorem mentioned above47

stem.48

In the present work we provide this general algebraic framework for the49

CBS-theorem. It consists of a category A of algebras of the same type and a50

presheaf, called congruences presheaf, acting on the congruence lattice of each51

algebra of the category A.52

In this perspective each congruences presheaf determinates a CBS type53

theorem formulated in terms of the quotient algebras related to the congru-54

ences involving by the presheaf. Moreover, conditions for the validity of the55

CBS-theorem may be established in terms of properties that certain algebras56

in A should satisfy with respect to the congruence presheaf. This framework57

also yields new versions of the CBS-theorem, applied to several algebraic struc-58

tures.59

The paper is structured as follows. Section 2 contains generalities on60

lattice theory, universal algebra and some technical results that are used in61

subsequent sections. In Section 3 the crucial notion of congruences presheaf62

is introduced and the abstract framework for the CBS-theorem is provided.63

Quasi-cyclic groups are studied as an example of algebras satisfying the CBS-64

theorem. In Section 4 a congruences presheaf related to factor congruences65
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The Cantor–Bernstein–Schröder theorem Page 3 of 29 _####_

is introduced and a CBS-theorem with respect to this special presheaf is es-66

tablished. A necessary and sufficient condition for the validity of the CBS-67

theorem is given. Injective modules and divisible groups are studied as exam-68

ples of algebras satisfying the CBS-theorem. A useful necessary and sufficient69

condition for the validity of the CBS-theorem, restricted to this particular70

congruences presheaf, is also provided. In Section 5 our abstract version of71

the CBS-theorem is studied in categories of algebras having Boolean factor72

congruences (BFC). This particular framework allows us to consider versions73

of the theorem extended to algebras with an underlying lattice structure as74

lattice ordered groups, orthomodular lattices, residuated lattices, �Lukasiewicz75

and Post algebras, semigroups with 0, 1, bounded semilattices, commutative76

pseudo BCK-algebras, rings with unity, ∗-rings etc. Finally, we extend our ab-77

stract framework to two categories of algebras defined by partial operations.78

2. Basic notions79

We recall from [4,7,35] some basic notions about lattice theory and universal80

algebra that play an important role in what follows. Let 〈L,≤〉 be an ordered81

set. An interval [a, b]L of L is defined as the set {x ∈ A : a ≤ x ≤ b}. The82

ordered set L is called bounded if it has a smallest element 0 and a greatest83

element 1. Let L be a bounded ordered set. A subset X of L is orthogonal84

(dual orthogonal) if and only if x∧ y = 0 (x∨ y = 1) whenever x, y are distinct85

elements of X.86

Let 〈L,∨,∧〉 be a lattice. If a ≤ b in L then 〈[a, b]L,∨,∧, a, b〉 is a bounded87

lattice. Given a, b, c in L, we write: (a, b, c)D if and only if (a ∨ b) ∧ c =88

(a ∧ c) ∨ (b ∧ c) and (a, b, c)D∗ if and only if (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c).89

Further, we write (a, b, c)T if and only if (a, b, c)D and (a, b, c)D∗ hold for90

all permutations of a, b, c. An element z of the lattice L is called a neutral91

element if and only if for all elements a, b ∈ L we have (a, b, z)T . The lattice L92

is σ-complete if and only if L admits denumerable supremum and denumerable93

infimum. In particular, L is said to be orthogonal σ-complete (dual orthogonal94

σ-complete) if and only if every denumerable orthogonal (dual orthogonal)95

subset of L has supremum (infimum) in L.96

Let 〈L,∨,∧, 0, 1〉 be a bounded lattice. A complement of an element a ∈ L97

is an element ¬a ∈ L such that a ∨ ¬a = 1 and a ∧ ¬a = 0. The lattice L is98

called complemented when every element of L has a complement. In particular,99

L is a Boolean algebra if and only if it is a complemented distributive lattice.100

If L is a Boolean algebra then every element in L has a unique complement.101

Let 〈L,∨,∧, 0, 1〉 be a bounded lattice. An element z ∈ L is called a central102

element if and only if z is a neutral element having a complement. The set of103

all central elements of L is called the center of L and it is denoted by Z(L).104

The center Z(L) is a Boolean sublattice of L [35, Theorem 4.15].105

Proposition 2.1 [18, Proposition 3.1]. Let L be a bounded lattice and z ∈ Z(L).106

Then107

(1) Z(L) ∩ [z, 1]L = Z([z, 1]L).108
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_####_ Page 4 of 29 H. Freytes Algebra Univers.

(2) If x ∈ Z([z, 1]L) and ¬x is the complement of x in Z(L) then the com-109

plement of x relative to [z, 1]L is ¬zx = z ∨ ¬x.110

(3) 〈Z([z, 1]L),∨,∧,¬z, z, 1〉 is a Boolean Algebra.111

Proposition 2.2. Let A be Boolean algebra. Then A is orthogonal (dual orthog-112

onal) σ-complete if and only if A is σ-complete.113

Proof. Suppose that A is an orthogonal σ-complete Boolean algebra and let114

(xi)i∈N be a denumerable set in A. Let us consider the sequence (ti)i∈N such115

that t1 = x1, t2 = ¬x1 ∧ x2 and, in general, tn =
∧n−1

i=1 ¬xi ∧ xn. Note that116

(ti)i∈N is an orthogonal set then, by hypothesis, there exists the supremum117

t =
∨

i∈N
ti. We will show that t =

∨

i∈N
xi.118

We first prove, by induction, that for each n ∈ N,
∨n

i=1 xi =
∨n

i=1 ti.119

If n = 2 then t1 ∨ t2 = x1 ∨ (¬x1 ∧ x2) = x1 ∨ x2. Let us assume that120

∨n−1
i=1 ti =

∨n−1
i=1 xi. Then121

n
∨

i=1

ti =

n−1
∨

i=1

ti ∨ tn =

n−1
∨

i=1

xi ∨

(

n−1
∧

i=1

¬xi ∧ xn

)

122

=

n−1
∨

i=1

xi ∨

((

¬
n−1
∨

i=1

xi

)

∧ xn

)

=

n
∨

i=1

xi.123

124

By the above result we can see that for each n ∈ N,125

xn ≤
n
∨

i=1

xi =

n
∨

i=1

ti ≤ t.126

Therefore t is an upper bound of the set (xi)i∈N. Let M be an upper bound127

of the set (xi)i∈N. Then for each n ∈ N,
∨n

i=1 ti =
∨n

i=1 xi ≤ M and then128

t =
∨

i∈N
ti ≤ M . It proves that t =

∨

i∈N
xi. Hence A is a σ-complete129

Boolean algebra. By the dual argument we can prove that dual orthogonal130

σ-completeness also implies σ-completeness.131

The other direction of the proof is trivial. �132

Let τ be a type of algebras and X be a denumerable set of variables such133

that τ ∩X = ∅. We denote by Termτ (X) the set of terms built from the set of134

variables X. Each element t ∈ Termτ (X) is referred as a τ -term. For a τ -term t135

we often write t(x1, x2, . . . , xn) to indicate that the variables occurring in t are136

among x1, x2, . . . , xn. If t ∈ Termτ (X) and A is an algebra of type τ then we137

denote by tA the interpretation of t in the algebra A. A τ -homomorphism is a138

function between algebras of type τ that preserves the τ -operations. We write139

A ∼=τ B to indicate that there exists a τ -isomorphism between the algebras140

A and B of type τ . An equation of type τ is an expression of the form s = t141

such that s, t ∈ Termτ (X) and the symbol = is interpreted as the identity.142

A quasi equation is an expression of the form (&n
i=1si = ti) =⇒ s = t where143

ti, si, s, t ∈ Termτ (X) and &n
i=1 denotes a logical n-conjunction.144

Let A be a class of algebras of type τ . The language of A is the first order145

language with identity built from the set Termτ (X). If Φ is a sentence in the146

language of A and A ∈ A then A |= Φ means that Φ holds in A. The sentence147
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The Cantor–Bernstein–Schröder theorem Page 5 of 29 _####_

Φ holds in the class A, abbreviated as A |= Φ, if and only if for each A ∈ A,148

A |= Φ. If Σ is a set of sentences in the language of A then A |= Σ means that149

A |= Φ for each Φ ∈ Σ. The class A is a variety (quasivariety) if and only if150

there exists a set Σ of equations (quasi equations) in the language of A such151

that A = {A : A |= Σ}. Equivalently, A is a variety if and only if it is closed152

under homomorphic images, subalgebras and direct products. The class A is153

a quasivariety if and only if A contains a trivial algebra and it is closed under154

subalgebras, isomorphisms, direct products and ultraproducts. Let us notice155

that a quasivariety is not necessarily closed under homomorphic images.156

Let A be an algebra of type τ . We denote by Con(A) the congruence157

lattice of A. The largest congruence on A, given by A2, is denoted by ∇A158

and the smallest one, given by the diagonal {(a, a) : a ∈ A}, is denoted by159

∆A. If f : A → B is a τ -homomorphism then the kernel congruence of f160

(i.e. the congruence {(x, y) ∈ A2 : f(x) = f(y)}) is denoted by ker(f). For161

a ∈ A and θ ∈ Con(A), a/θ
denotes the congruence class of a modulo θ.162

Let θ1, θ2 ∈ Con(A). Then we say that θ1, θ2 are permutable if and only if163

θ1 ◦ θ2 = θ2 ◦ θ1 where ◦ is the relational product defined as θ1 ◦ θ2 = {(x, y) ∈164

A2 : ∃w ∈ A,with (x,w) ∈ θ1 and (w, y) ∈ θ2}. In [7, Theorem 5.9] it is proved165

that the congruences θ1, θ2 are permutable if and only if θ1 ∨ θ2 = θ1 ◦ θ2. Let166

σ ∈ Con(A). If θ ∈ [σ, ∇A]
Con(A)

then167

θ/σ = {(x/σ
, y/σ

) ∈ (A/σ)2 : (x, y) ∈ θ} (2.1)168

is a congruence on A/σ. The following theorem plays an important role in the169

next sections:170

Theorem 2.3. Let A be an algebra of type τ and σ ∈ Con(A). Then171

(1) If σ ⊆ θ then f : (A/σ)/(θ/σ) → (A/θ) such that f((a/σ
)/(θ/σ)

) = a/θ
is172

a τ -isomorphism.173

(2) uσ : [σ, ∇A]
Con(A)

→ Con(A/σ) such that uσ(θ) = θ/σ is a lattice isomor-174

phism.175

(3) If σ ⊆ θ1 and σ ⊆ θ2 then (a, b) ∈ θ1 ◦ θ2 if and only if (a/σ
, b/σ

) ∈176

θ1/σ ◦ θ2/σ.177

Proof. (1) See [7, Theorem 6.15]. (2) See [7, Theorem 6.20]. (3) (a, b) ∈ θ1 ◦ θ2178

if and only if there exists c ∈ A such that (a, c) ∈ θ1 and (c, b) ∈ θ2 if and179

only if (a/σ
, c/σ) ∈ θ1/σ and (c/σ

, b/σ
) ∈ θ2/σ if and only if (a/σ

, b/σ
) ∈180

θ1/σ ◦ θ2/σ. �181

A congruence θ on A is a factor congruence if and only if there exists ¬θ ∈182

Con(A), called a factor complement of θ, such that θ ∩¬θ = ∆A, θ ∨¬θ = ∇A183

and θ permutes with ¬θ (or equivalently, by [7, Theorem 5.9], θ ∩ ¬θ = ∆A184

and θ ◦ ¬θ = ∇A). In this case A is τ -isomorphic to A/θ × A/¬θ. The pair185

(θ, ¬θ) is called a pair of factor congruences. We denote by FC(A) the set of186

factor congruences on A.187

Proposition 2.4. Let A be an algebra of type τ , σ ∈ FC(A) and a congruence188

θ ∈ [σ, ∇A]
Con(A)

such that θ/σ ∈ FC(A/σ). Then θ ∈ FC(A).189
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_####_ Page 6 of 29 H. Freytes Algebra Univers.

Proof. Let us suppose that (σ, ¬σ) is a pair of factor congruences in FC(A)190

and (θ/σ, ¬(θ/σ)) is a pair of factor congruences in FC(A/σ). Then, by The-191

orem 2.3(1), we have that192

A ∼=τ A/σ × A/¬σ ∼=τ ((A/σ)/(θ/σ) × (A/σ)/¬(θ/σ)) × A/¬σ193

∼=τ A/θ × B194
195

where B = (A/σ)/¬(θ/σ) × A/¬σ. Consider the diagram A
f
→ A/θ × B

πB→ B196

where f is a τ -isomorphism. Then (θ, ker(πBf)) is a pair of factor congruences197

on A proving that θ ∈ FC(A). �198

Proposition 2.5. Let A be an algebra of type τ and let us consider the denu-199

merable direct product B =
∏

N
A. Then there exists σ ∈ FC(B) such that200

B ∼=τ B/σ.201

Proof. If we consider B = A × A
N−{1}

where A
N−{1}

=
∏

i∈N−{1} A then202

f : B → A
N−{1}

, defined by B ∋ (bi)i∈N �→ f((bi)i∈N) = (ai)i≥2 where a2 =203

b1; a3 = b2; . . . an+1 = bn; . . . , is a τ -isomorphism. Thus, by considering204

σ = ker(πA
N−{1}

), we have that σ ∈ FC(B) and B ∼=τ B/σ. �205

Definition 2.6. A category of algebras is a category A whose objects are al-206

gebras of type τ and whose arrows are the τ -homomorphisms (also called207

A-homomorphisms) f : A → B such that A,B are objects of A.208

Let A be a category of algebras. We denote by Ob(A) the class of objects209

of A and by HomA the set of all A-homomorphisms. For the sake of simplicity210

if A is an object of A then we write A ∈ A when there is no confusion. If two211

objects A,B ∈ A are τ -isomorphic, i.e. there exists a bijective map between212

A and B that preserves τ -operations, then we denote this fact by A ∼=A
B.213

Note that if A is a class of algebras of type τ then we can identify A with214

a category of algebras by considering the τ -homomorphisms between algebras215

of A as arrows of A. In this sense varieties and quasivarieties can be seen as216

categories of algebras. A presheaf on a category C is a functor F : Cop → Set217

where Cop is the dual category of C and Set is the category of all sets.218

3. Presheaf approach to the CBS-theorem219

In this section we provide an abstract formulation of the CBS-theorem that220

captures the numerous algebraic versions of the theorem present in the litera-221

ture. With this aim, we first analyze the Sikorski–Tarski version of the theorem222

focusing our attention on the congruence lattice of a Boolean algebra.223

Let A be a Boolean algebra and z ∈ A. Then, by Proposition 2.1, we have224

that 〈[z, 1]A,∨,∧,¬z, z, 1〉 is a Boolean algebra. In this way, the Sikorski–Tarski225

version of the CBS-theorem reads as follows:226

Theorem 3.1. Let A and B be σ-complete Boolean algebras, a ∈ A, and b ∈ B.227

If A is Boolean-isomorphic to [b, 1]B and B is Boolean-isomorphic to [a, 1]A,228

then A is Boolean-isomorphic to B.229
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The Cantor–Bernstein–Schröder theorem Page 7 of 29 _####_

Clearly, to obtain the classical CBS-theorem it is sufficient to assume230

that A and B are the power sets of two sets endowed with the natural set-231

theoretic Boolean operations. Let us notice that the Boolean algebras [a, 1]A232

and [b, 1]B are isomorphic to the quotient algebras A/θa and B/θb respectively,233

where θa = {(x, y) ∈ A2 : x ∨ a = y ∨ a} ∈ FC(A) and θb = {(x, y) ∈ B2 :234

x ∨ b = y ∨ b} ∈ FC(B). Consequently, the hypothesis of σ-completeness in A235

and B can be equivalently expressed as σ-completeness conditions in FC(A)236

and FC(B) respectively. In this context we can also notice that the conditions237

for the validity for CBS-theorem, extended to different classes of algebras [12,238

13,16,18,24,25,26,27,34], can be expressed in terms of σ-completeness type239

conditions related to the set of factor congruences of the algebras.240

Following this idea and in order to establish a general algebraic version241

of CBS-theorem, our abstract framework for the CBS-theorem will consist242

on a category of algebras A where for each A ∈ A, instead of the set of243

factor congruences, a subset K(A) ⊆ Con(A) is considered. The set K(A)244

will be uniformly determined in each algebra A ∈ A through a presheaf. In245

this perspective, in Sections 4 and 5 where the particular case K = FC(A) is246

studied, we will show how order-theoretic properties imposed on the set K(A)247

allow us to establish conditions for the validity of the CBS-theorem formulated248

in this abstract framework. In this way our abstract framework captures the249

already known algebraic versions of the CBS-theorem.250

The use of a presheaf defining the set K(A) ⊆ Con(A) in each A ∈ A is251

very useful due to its contravariant character. Indeed, since our abstract for-252

mulation of the CBS-theorem will be established in terms of properties related253

to a set of congruences of an algebra then it will be necessary to express prop-254

erties about homomorphic images of an algebra A ∈ A in terms of properties255

related to congruences that define the mentioned homomorphic images. This256

task is performed by the presheaf K introduced in Definition 3.6. In particular,257

for each A-homomorphism f : A → B, the application K(f) : K(B) → K(A)258

will be an order preserving map defined in terms of the function f∗ introduced259

below.260

Let A,B two algebras of type τ and f : A → B be a τ -homomorphism.261

Then we define the following sets:262

f∗(θ) = {(a, b) ∈ A2 : (f(a), f(b)) ∈ θ}, for each θ ∈ Con(B). (3.1)263

f∗(θ) = {(f(a), f(b)) ∈ B2 : (a, b) ∈ θ}, for each θ ∈ Con(A). (3.2)264

Proposition 3.2. Let A,B be two algebras of type τ and f : A → B be a τ -265

homomorphism. Then we have:266

(1) The assignment Con(B) ∋ θ �→ f∗(θ) defines an order homomorphism267

f∗ : Con(B) → Con(A).268

(2) (gf)∗ = f∗g∗ whenever the composition of τ -homomorphisms gf is de-269

fined.270

(3) 1∗
A = 1Con(A).271

(4) If f is a τ -isomorphism then the assignment Con(A) ∋ θ �→ f∗(θ) defines272

an order isomorphism f∗ : Con(A) → Con(B) and f∗ = (f∗)−1 = (f−1)∗.273
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_####_ Page 8 of 29 H. Freytes Algebra Univers.

Moreover, f ′ : A/θ → B/f∗(θ) such that f ′(x/θ
) = f(x)/f∗(θ)

is a τ -274

isomorphism.275

(5) If f is a τ -isomorphism and θ1, θ2 ∈ Con(A) are permutable then f∗(θ1),276

f∗(θ2) are permutable in Con(B).277

Proof. (1) Straightforward calculation.278

(2) Let A
f
→ B

g
→ C be a composition of τ -homomorphisms. Consider the279

diagram Con(A)
f∗

← Con(B)
g∗

← Con(C). If θ ∈ Con(C) then f∗g∗(θ) =280

{(x, y) ∈ A2 : (f(a), f(b)) ∈ g∗(θ)} = {(x, y) ∈ A2 : (gf(a), gf(b)) ∈281

θ} = (gf)∗(θ). Hence (gf)∗ = f∗g∗.282

(3) Immediate.283

(4) Let us assume that f is a τ -isomorphism. Then f∗ defines a bijective284

function f∗ : Con(A) → Con(B). We first prove that f∗f∗ = 1Con(A). Let285

θ ∈ Con(A). Then, (x, y) ∈ f∗f∗(θ) if and only if (f(x), f(y)) ∈ f∗(θ)286

if and only if (x, y) ∈ θ. Therefore f∗f∗ = 1Con(A). Now we prove that287

f∗f
∗ = 1Con(B). Let θ ∈ Con(B). Then (x, y) ∈ f∗f

∗(θ) if and only if288

there exists (x0, y0) ∈ f∗(θ) such that f(x0) = x and f(y0) = y. Since289

(x0, y0) ∈ f∗(θ) if and only if (x, y) = (f(x0), f(y0)) ∈ θ then we have290

that f∗f
∗ = 1Con(B). Thus f∗ = (f∗)−1.291

Let f−1 be the inverse of f and θ ∈ Con(A). Then, (x, y) ∈ (f−1)∗(θ) ⊆292

B2 if and only if (f−1(x), f−1(y)) ∈ θ if and only if (ff−1(x), ff−1(y)) ∈ f∗(θ)293

if and only if (x, y) ∈ f∗(θ). It proves that f∗ = (f∗)−1 = (f−1)∗.294

Now we prove that f∗ is an order preserving function. Suppose that θ1 ⊆295

θ2 in Con(A). Let (c, d) ∈ f∗(θ1). Then (f−1(c), f−1(d)) ∈ θ1 ⊆ θ2 and (c, d) ∈296

f∗(θ2). Hence f∗(θ1) ⊆ f∗(θ2) and f∗ is an order isomorphism from Con(A)297

onto Con(B).298

We first prove that f ′ is well defined. If x/θ
= y/θ

then we have that299

(x, y) ∈ θ, (f(x), f(y)) ∈ f∗(θ) and f ′(x/θ
) = f(x)/f∗(θ)

= f(y)/f∗(θ)
= f ′(y/θ

).300

Thus, f ′ is well defined. If f ′(x/θ
) = f ′(y/θ

) then (f(x), f(y)) ∈ f∗(θ) and301

(x, y) ∈ θ. Thus, x/θ
= y/θ

and f ′ is injective. Now we prove that f ′ is302

surjective. Let y/f∗(θ)
∈ B/f∗(θ). Since f is surjective then there exists x ∈ A303

such that f(x) = y. Thus, y/f∗(θ)
= f(x)/f∗(θ)

= f ′(x/θ
) and f ′ is surjective.304

Let t(x1 . . . xn) ∈ Termτ (X). Then for a1 . . . an ∈ A we have that:305

f ′(tA/θ(a1/θ
, . . . , an/θ

)) = f ′(tA(a1, . . . , an)/θ
)306

= f(tA(a1, . . . , an))/f∗(θ)
307

= tB(f(a1), . . . , f(an))/f∗(θ)
308

= tB/f∗(θ)(f(a1)/f∗(θ)
, . . . , f(an)/f∗(θ)

)309

= tB/f∗(θ)(f ′(a1/θ
), . . . , f ′(an/θ

)).310
311

It proves that f ′ preserves τ -operations. Hence, f ′ is a τ -isomorphism.312

(5) Let us assume that θ1, θ2 ∈ Con(A) are permutable. Since f is a313

τ -isomorphism, each pair in f∗(θ1) ◦ f∗(θ2) has the form (f(x), f(y)) where314

x, y ∈ A. Suppose that (f(x), f(y)) ∈ f∗(θ1) ◦ f∗(θ2). Then, by definition of315

relational product, there exists w ∈ A such that (f(x), f(w)) ∈ f(θ1) and316
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The Cantor–Bernstein–Schröder theorem Page 9 of 29 _####_

(f(w), f(y)) ∈ f(θ2). Thus (x,w) ∈ θ1, (w, y) ∈ θ2 and (x, y) ∈ θ1 ◦ θ2 =317

θ2 ◦ θ1. It implies that there exists v ∈ A such that (x, v) ∈ θ2 and (v, x) ∈318

θ1; consequently (f(x), f(v)) ∈ f∗(θ2) and (f(v), f(x)) ∈ f∗(θ1). Therefore,319

(f(x), f(y)) ∈ f∗(θ2) ◦ f∗(θ1) and then f∗(θ1), f∗(θ2) are permutable. �320

Proposition 3.3. Let A be an algebra, σ ∈ Con(A) and the order isomorphism321

uσ : [σ, ∇A]
Con(A)

→ Con(A/σ) given by u(θ) = θ/σ. If p : A → A/σ is the322

natural homomorphism then p∗ = u−1
σ .323

Proof. Let θ ∈ [σ, ∇A]
Con(A)

. Then, by Eq. (2.1), we have that324

p∗(θ/σ) = {(x, y) ∈ A2 : (p(x), p(y)) ∈ θ/σ}325

= {(x, y) ∈ A2 : (x/σ
, y/σ

) ∈ θ/σ}326

= {(x, y) ∈ A2 : (x, y) ∈ θ} = θ = u−1(θ/σ).327
328

Hence our claim. �329

Definition 3.4. Let A be a category of algebras. A congruences operator over330

A is a class operator of the form A ∋ A �→ K(A) ⊆ Con(A) such that,331

(1) ∆A ∈ K(A).332

(2) For each σ ∈ K(A), A/σ ∈ A.333

(3) If f : A → B is a A-isomorphism then the restriction f∗↾K(B) : K(B) →334

K(A) is an order isomorphism.335

Proposition 3.5. Let A be a category of algebras and K be a congruences op-336

erator over A. Let us define the class337

HomAK
= {A

f
→ B ∈ HomA : f is surjective and ker(f) ∈ K(A)}. (3.3)338

Then the following statements are equivalent:339

(1) AK = 〈Ob(A),HomAK
〉 is a category and, by defining K(f) = f∗↾K(B)340

for each A
f
→ B ∈ HomAK

, K : AK → Set is a presheaf.341

(2) For each A ∈ A and σ ∈ K(A), if p : A → A/σ is the natural A-342

homomorphism then the restriction p∗↾K(A/σ) is an order isomorphism343

from K(A/σ) onto K(A) ∩ [σ, ∇A]
Con(A)

.344

(3) θ ∈ K(A) ∩ [σ, ∇A]
Con(A)

if and only if θ/σ ∈ K(A/σ), for all A ∈ A and345

σ ∈ K(A).346

Proof. 1 =⇒ 2. Let us suppose that AK is a category and K : AK → Set is347

a presheaf. Let A ∈ A, σ ∈ Con(A) and p : A → A/σ be the natural A-348

homomorphism. Note that Imag(p∗↾K(A/σ)) = Imag(K(p)) ⊆ K(A) because349

K is a presheaf. Then, by Proposition 3.3, p∗↾K(A/σ) is an injective order350

homomorphism of the form p∗↾K(A/σ) : K(A/σ) → K(A) ∩ [σ, ∇A]
Con(A)

. We351

want to prove that p∗↾K(A/σ) is a surjective map. With this aim we need to352

show that if θ ∈ K(A) ∩ [σ, ∇A]
Con(A)

then θ/σ ∈ K(A/σ). Indeed, by Theo-353

rem 2.3(1), A/θ ∼=A (A/σ)/(θ/σ) and therefore the natural A-homomorphism354

A/σ → (A/σ)/(θ/σ) can be identified with the AK-homomorphism g : A/σ →355
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_####_ Page 10 of 29 H. Freytes Algebra Univers.

A/θ such that g(x/σ
) = x/θ

. By hypothesis we have that K(g) = g∗↾K(A/θ) :356

K(A/θ) → K(A/σ) and ∆A/θ ∈ K(A/θ). Then357

K(A/σ) ∋ g∗(∆A/θ) = g∗(θ/θ)358

= {(x/σ
, y/σ) ∈ (A/σ)2 : (g(x/σ

), g(y/σ
)) ∈ θ/θ}359

= {(xσ, yσ) ∈ (A/σ)2 : (x/θ
, y/θ

) ∈ θ/θ}360

= {(x/σ
, y/σ

) ∈ (A/σ)2 : (x, y) ∈ θ}361

= θ/σ362
363

i.e., θ/σ ∈ K(A/σ). Thus, by Proposition 3.3, if θ ∈ K(A) ∩ [σ, ∇A]
Con(A)

364

then θ/σ ∈ K(A/θ). Therefore, [K(p)](θ/σ) = p∗(θ/σ) = θ and consequently365

p∗↾K(A/σ) is surjective. Hence our claim.366

2 =⇒ 3. Immediate form Proposition 3.3.367

3 =⇒ 1. We first note that for each A ∈ A, 1A ∈ HomAK
because368

∆A ∈ K(A). Now we prove that the class HomAK
is closed under compositions.369

Let A ∈ K, σ ∈ K(A), θ/σ ∈ K(A/σ) and let us consider the following diagram370

A
p1
→ A/σ

p2
→ (A/σ)/(θ/σ) in HomAK

where p1 and p2 are two natural A-371

homomorphisms. By Theorem 2.3(1) we have (A/σ)/(θ/σ) ∼=A A/θ and, by372

hypothesis, θ ∈ K(A). Then the composition p2p1 ∈ HomAK
and it proves373

that HomAK
is closed under compositions. Hence AK defines a category. Now374

we show that K : AK → Set is a presheaf. Let f : A → B ∈ HomAK
. We first375

show that K(f) = f∗↾K(B) is a function of the form K(f) = K(B) → K(A).376

Let us notice that f admits the following factorization in A377

✲

❄ �
�✒≡

A B

A/σ

f

p

g
378

where σ = ker(f) ∈ K(A), p is the natural A-homomorphism and g is a379

A-isomorphism. By hypothesis and by Theorem 2.3, p∗ : K(A/σ) → K(A) ∩380

[σ, ∇A]
Con(A)

is an order isomorphism and g∗↾K(B) : K(B) → K(A/σ) is an381

order isomorphism because g is a A-isomorphism. Thus, by Proposition 3.2(2),382

f∗ = (gp)∗ = p∗g∗ and then f∗↾K(B) is an order homomorphism from K(B)383

onto K(A). By Proposition 3.2 we also note that K is a contravariant functor.384

Hence K : AK → Set is a presheaf. �385

Definition 3.6. Let A be a category of algebras. A congruences operator K386

over A satisfying the equivalent conditions listed in Proposition 3.5 is called a387

congruences presheaf.388

If we focus our attention on the item 3 of Proposition 3.5 we can notice389

that the condition for a congruences operator to be a congruences presheaf390

is a generalization of the fact that Z(L) ∩ [z, 1]L = Z([z, 1]L) where L is a391

bounded lattice and z ∈ Z(L). This result (or the equivalent dual version),392

introduced in Proposition 2.1, turns out to be crucial in the proof of several393
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The Cantor–Bernstein–Schröder theorem Page 11 of 29 _####_

algebraic versions of the CBS-theorem (see for example [16, Proposition 2.8,394

Proposition 6.2], [18, Proposition 3.4, Theorem 3.7], [34, Lemma 3.2, Lema395

4.2] etc.).396

Example 3.7 [Presheaf Con]. Let A be a category of algebras closed under397

homomorphic images. Let us define the class operator A ∋ A �→ Con(A). It398

is not difficult to show that Con is a congruences operator and that HomACon
399

is the class of surjective A-homomorphisms. Thus ACon is a category. If we400

define Con(f) = f∗ then, by Proposition 3.2, Con is a congruences presheaf.401

In particular Con is a congruences presheaf over varieties of algebras.402

Example 3.8. Let A be a quasivariety. For each A ∈ A, let us consider the403

set of relative congruences of A, Rel(A) = {θ ∈ Con(A) : A/θ ∈ A}. Let404

us define the class operator A ∋ A �→ Rel(A). It is not difficult to prove405

that Rel(−) is a congruences operator and that ARel = 〈Ob(A),HomARel
〉 is a406

category. We shall prove that if f : A → B ∈ HomARel
then Imag(f∗) ⊆ Rel(A)407

which is equivalent to prove that if f : A → B ∈ HomARel
then, for each θ ∈408

Rel(B), A/f∗(θ) ∈ A. Indeed: Let us consider a quasi equation (&n
i=1ri(x) =409

si(x)) =⇒ r(x) = s(x) holding in A where x is a vector of k variables. Let410

a/f∗(θ)
be a vector of k elements of the algebra A/f∗(θ) such that A/f∗(θ) |=411

&n
i=1ri(a/f∗(θ)

) = si(a/f∗(θ)
). Thus, by definition of f∗ in Eq. (3.1), we have412

that (f(si(a)), f(ri(a))) = (si(f(a)), ri(f(a))) ∈ θ for 1 ≤ i ≤ n and then413

B/θ |= &n
i=1ri(f(a))/θ

= si(f(a))/θ
. Since B/θ ∈ A and the quasi equation414

holds in A, B/θ |= s(f(a))/θ
= r(f(a))/θ

. It implies that (f(s(a)), f(r(a))) ∈ θ415

and then (s(a), r(a)) ∈ f∗(θ). Hence A/f∗(θ) |= r(a/f∗(θ)
) = s(a/f∗(θ)

). It416

proves that A/f∗(θ) ∈ A and, by Proposition 3.2, Rel(−) is a congruences417

presheaf.418

Proposition 3.9. Let A be a category of algebras, K be a congruences presheaf419

and A ∈ A. If σ ∈ K(A), θ ∈ K(A) ∩ [σ, ∇A]
Con(A)

and A ∼=A A/θ then there420

exists θ′ ∈ K(A/σ) such that A ∼= (A/σ)/θ′.421

Proof. Since θ ∈ K(A) ∩ [σ, ∇A]
Con(A)

, by Proposition 3.5(3), θ′ = θ/σ ∈422

K(A/σ). Then, by Theorem 2.3(1), (A/σ)/θ′ = (A/σ)/(θ/σ) ∼=A A/θ ∼= A. �423

Definition 3.10. Let A be a category of algebras and K be a congruences424

presheaf. An algebra A ∈ A has the Cantor–Bernstein–Schröder property with425

respect to K (CBSK-property for short) if and only if the following holds: given426

B ∈ A and θB ∈ K(B) such that there is θA ∈ K(A) with A ∼=A B/θB and427

B ∼=A A/θA then A ∼=A B.428

As we will see in Example 5.4, in the above definition if we assume that429

A is the variety of Boolean algebras and the congruences presheaf K satisfies430

K(A) = FC(A) for each A ∈ A then the CBSK-property, attributed to a431

Boolean algebra, rephrases the Sikorski–Tarski version of the CBS-theorem432

when the σ-completeness is considered in FC(A). A very useful equivalence of433

the CBSK-property is given by the following theorem.434

Theorem 3.11. Let A be a category of algebras and let K be a congruences435

presheaf. Then the following conditions are equivalent for each A ∈ A:436
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_####_ Page 12 of 29 H. Freytes Algebra Univers.

(1) A has the CBSK-property.437

(2) If θ ∈ K(A) and A ∼=A A/θ then for all σ ∈ K(A) such that σ ⊆ θ we438

have that A ∼=A A/σ.439

Proof. 1 =⇒ 2. Let σ, θ ∈ K(A) such that σ ⊆ θ and A ∼=A A/θ. Let B =440

A/σ. Note that θ ∈ K(A) ∩ [σ, ∇A]
Con(A)

then, by Proposition 3.9, there exists441

θB ∈ K(A/σ) = K(B) such that A ∼=A B/θB . Since A has the CBSK-property442

we have that A ∼=A B = A/σ.443

2 =⇒ 1. Let B ∈ A, σA ∈ K(A) and σB ∈ K(B). Suppose that there444

exist two A-isomorphisms f : A → B/σB and g : B → A/σA.445

By Proposition 3.2(4), we have that g∗(σB) ∈ K(A/σA) and there exists446

a A-isomorphism g′ : B/σB → (A/σA)/g∗(σB). Let us consider the following447

composition of A-isomorphisms:448

A
f
→ B/σB

g′

→ (A/σA)/g∗(σB). (3.4)449

Note that g∗(σB) = θ/σA for some θ ∈ Con(A) and, by Proposition 3.5(3), θ ∈450

K(A) ∩ [σA,∇A]
Con(A)

. Thus, by Theorem 2.3(1), (A/σA)/g∗(σB) = (A/σA)/451

(θ/σA) ∼=A A/θ and the diagram of A-isomorphisms given in Eq. (3.4) can be452

seen as453

A
f
→ B/σB

g′

→ A/θ.454

Therefore A ∼=A A/θ where θ ∈ K(A) ∩ [σA,∇A]
Con(A)

. Since σA ⊆ θ, by455

hypothesis, A ∼=A A/σA
∼=A B. Hence A has the CBSK-property. �456

Remark 3.12. Let us notice that, by condition 2 of Theorem 3.11, if there457

are not θ ∈ K(A) such that A ∼=A A/θ then the algebra A trivially has the458

CBSK-property. Then we say that A satisfies the CBSK-property in a non459

trivial way whenever this property is satisfied and there exists θ ∈ K(A) such460

that A ∼=A A/θ.461

We conclude this section with a concrete example showing our abstract462

framework for the CBS-theorem formulated in terms of the congruence presheaf463

Con introduced in Example 3.7.464

Example 3.13 (Pseudo-simple algebras). An algebra A is called pseudo-simple465

[37] if and only if Card(A) > 1 and for every σ ∈ Con(A) − {∇A}, A/σ ∼= A.466

Let A be a category of algebras closed under homomorphic images and let us467

consider the congruences presheaf Con. Then, by Theorem 3.11, pseudo-simple468

algebras of A satisfy the CBSCon-property.469

Concrete examples of these algebras can be found in the variety Grp of470

groups. Indeed, a quasi-cyclic group is an Abelian group which is isomorphic471

to Z(p∞) for some prime number p. They are pseudo-simple algebras in Grp.472

In this way quasi-cyclic groups have the CBSCon-property.473
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The Cantor–Bernstein–Schröder theorem Page 13 of 29 _####_

4. Factor congruences presheaves474

In this section we introduce and study a special case of congruences presheaf475

that allow us to formulate versions of the CBS-theorem based on factor con-476

gruences. In this particular framework necessary and sufficient conditions for477

the validity of CBS-theorem are established.478

Definition 4.1. Let A be a category of algebras. A factor congruences presheaf479

is a congruences presheaf K such that for each A ∈ A,480

(1) K(A) ⊆ FC(A).481

(2) For each θ ∈ K(A) there exists ¬θ ∈ K(A), such that (θ, ¬θ) is a pair of482

factor congruences on A.483

(3) If σ ∈ K(A), θ ∈ K(A) ∩ [σ, ∇A]
Con(A)

and (θ, ¬θ) is a pair of factor484

congruences in K(A) then (θ/σ, (¬θ∨σ)/σ) is a pair of factor congruences485

in K(A/σ).486

By item 2 of the above definition, ∇A ∈ K(A) because ∆A ∈ K(A) and,487

by Proposition 3.5, the following result is immediate.488

Proposition 4.2. Let A be a category of algebras and K be a factor congruences489

presheaf. Let A ∈ K, σ ∈ K(A), θ ∈ K(A) ∩ [σ, ∇A]
Con(A)

and (θ, ¬θ) be a pair490

of factor congruences in K(A). Then ¬θ ∨ σ ∈ K(A) ∩ [σ, ∇A]
Con(A)

.491

Let A be a category of algebras such that for each A ∈ A and σ ∈ FC(A),492

A/σ ∈ A. Then, by Proposition 3.2(5), it is immediate that the class operator493

A ∋ A �→ FC(A) (4.1)494

is a congruence operator. The following proposition provides a sufficient con-495

dition for FC to be a congruences presheaf.496

Proposition 4.3. Let A be a category of algebras such that for each A ∈ A and497

σ ∈ FC(A), A/σ ∈ A. If A is congruence modular or congruence permutable498

then FC is a congruences presheaf.499

Proof. Let us assume that A is congruence modular. Let A ∈ A, σ ∈ FC(A),500

θ ∈ FC(A)∩ [σ, ∇A]
Con(A)

and (θ, ¬θ) be a pair of factor congruences in FC(A).501

We first prove that (θ/σ, ¬θ∨σ/σ) is a pair of factor congruences in FC(A/σ).502

By modularity θ ∩ (σ ∨ ¬θ) = σ ∨ (θ ∩ ¬θ) = σ ∨ ∆A = σ because σ ⊆ θ.503

Then, by Theorem 2.3(2), θ/σ ∩ (¬θ ∨ σ)/σ = ∆A/σ. We also note that ∇A =504

θ ◦ ¬θ ⊆ θ ◦ (¬θ ∨ σ). Then, by Theorem 2.3(3), θ/σ ◦ (¬θ ∨ σ)/σ = ∇A/σ.505

Thus, (θ/σ, (¬θ ∨ σ)/σ) is a pair of factor congruences on A/σ and θ/σ ∈506

FC(A/σ). Now if we suppose that θ/σ ∈ FC(A/σ) then, by Proposition 2.4,507

θ ∈ FC(A). Hence, by Proposition 3.5, FC is a factor congruences presheaf.508

Let us notice that if A is a category of congruence permutable algebras then,509

by the Birkhoff theorem (see [7, Proposition 5.10]), A is congruence modular.510

Hence our claim. �511

Example 4.4 [CBSFC-property: injective modules and divisible groups]. Let512

ModR be the variety of modules over the ring R and Ab be the variety of513

Abelian groups. Let us notice that divisible groups are the injective objects in514

Journal: 12 Article No.: 590 TYPESET DISK LE CP Disp.:2019/3/22 Pages: 29

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

_####_ Page 14 of 29 H. Freytes Algebra Univers.

Ab. We will denote by A both the varieties ModR and Ab. In the variety A,515

the notions of finite direct sum and finite direct product coincide. Thus, for516

each A ∈ A, 〈FC(A),⊆〉 is order reverse isomorphic to the set of direct factor517

subalgebras of A denoted by 〈DF(A),⊆〉. It is well known that A is a con-518

gruence permutable variety and then, by Proposition 4.3, FC is a congruences519

presheaf.520

Let A be an injective object in A. We shall prove that A has the CBSFC-521

property. In order to do this, by Theorem 3.11, we have to show that: for522

I,K ∈ DF(A) such that I is a subalgebra of K, if A ∼=A I then A ∼=A K.523

Indeed, let f : I → A be a A-isomorphism. Since A is an injective object,524

there exists a A-homomoprhism g : K → A such that the following diagram525

commutes526

✲

❄ �
�✒≡

I A

K

f

1I

g
527

Let us notice that the composition g1I is an injective A-homomoprhism.528

Thus, if we consider the following composition K
f−1↾K

֌ I
g1I

֌ A, by com-529

mutativity of the above diagram, we have that A ⊇ K ∋ x = f(f−1(x)) =530

g1I(f
−1(x)). It proves that the diagram K

f−1↾K

֌ I
g1I

֌ K is the identity531

1K . Therefore, g1I is also a surjective A-homomoprhism and I ∼=A K. Hence532

A ∼=A K and A has the CBSFC-property. Since A is an injective object then533

the denumerable direct product B =
∏

N
A is injective in A. Thus, by Propo-534

sition 2.5, there exists σ ∈ FC(B) such that B ∼=A B/σ. In this way B satisfies535

the CBSFC-property in a non trivial way.536

Now we study a necessary a sufficient condition for the validity of the537

CBS-property with respect to a factor congruences presheaf.538

Let A be a category of algebras and K be a factor congruences presheaf.539

Let A ∈ A, θ ∈ K(A) and let us suppose that there exists a A-isomorphism540

f : A → A/θ. By Theorem 2.3(2) and Proposition 3.2(4) let us consider the541

〈∇,∆,⊆〉-isomorphism f̂ = u−1
θ f∗ i.e.,542

f̂ : K(A)
f∗
→ K(A/θ)

u−1
θ→ K(A) ∩ [θ, ∇A]

Con(A)
. (4.2)543

If σ ∈ K(A) such that σ ⊆ θ then we define the following set:544

〈σ〉θ = {ζ ∈ [∆A, θ]
Con(A)

∩ K(A) : A/σ ∼=A A/ζ}. (4.3)545

If ζ ∈ 〈σ〉θ then we recursively define the following sequences of congruences:546

σ0 = ∆A ,547

σ1 = ζ , θ1 = f∗(σ0) = θ/θ ,548

σ2 = u−1
θ (θ1) = θ , θ2 = f∗(σ1) ,549

σ3 = u−1
θ (θ2) , θ3 = f∗(σ2) ,550
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The Cantor–Bernstein–Schröder theorem Page 15 of 29 _####_

...
...551

σn+1 = u−1
θ (θn) , θn+1 = f∗(σn) . (4.4)552

553

Let us notice that, by Eq. (4.2), (σn)n∈N is a sequence in K(A).554

Proposition 4.5. Let A be a category of algebras, K be a factor congruences555

presheaf, A ∈ A and θ ∈ K(A) such that there exists a A-isomorphism f : A →556

A/θ. Let us consider the sequence (σn)n∈N in K(A) given in Eq. (4.4). Then:557

(1) f̂(σn) = σn+2,558

(2) (σn)n∈N is an increasing sequence in K(A). In particular, if ∆A < ζ then559

(σn)n∈N is strictly increasing.560

Proof. (1) If k ≥ 2 then σk = u−1
θ (θk−1) = u−1

θ f∗(σk−2) = f̂(σk−2). Thus, if561

k = n + 2 then we have that f̂(σn) = σn+2.562

(2) Suppose that σ0 = ∆A = ζ = σ1. Then it is not very hard to see563

that σn = θ for n ≥ 2. Thus (σn)n∈N is an increasing sequence in K(A). Let564

us assume that σ0 = ∆A < ζ = σ1. By induction, let us assume that σi < σj565

whenever 1 < i < j < n. Since the function f̂ is an order isomorphism and566

n ≥ 2, by item 1, we have that σn = f̂(σn−2) < f̂(σn−1) = σn+1. Hence567

(σn)n∈N is strictly increasing. �568

Definition 4.6. Let A be a category of algebras, K be a factor congruences569

presheaf, A ∈ A and θ ∈ K(A) such that there exists a A-isomorphism f : A →570

A/θ. Let us consider the sequence (σn)n∈N in K(A) given in Eq. (4.4). Then a571

CBS-sequence is a sequence of the form (σ2n ∨ ¬σ2n+1)n≥0 such that572

(1) ¬σ1 = ¬ζ = f̂−1(¬f̂(ζ)) where (f̂(ζ),¬f̂(ζ)) is a pair of factor congru-573

ences in K(A).574

(2) ¬σ2n+3 = f̂(¬σ2n+1) for n ≥ 1.575

Let us note that (ζ,¬ζ) is a pair of factor congruences because f̂ preserves576

order and permutability in view of Proposition 3.2(5).577

Proposition 4.7. Let A be a category of algebras, K be a factor congruences578

presheaf, A ∈ A and θ ∈ K(A) such that there exists a A-isomorphism f : A →579

A/θ. Let us consider the sequence (σn)n∈N in K(A) given in Eq. (4.4) and a580

CBS-sequence (σ2n ∨ ¬σ2n+1)n≥0. Then:581

(1) σ2n+1 ∨ ¬σ2n+1 = ∇A.582

(2) (σ2n ∨ ¬σ2n+1)n≥0 is a dual orthogonal sequence in K(A).583

(3) f̂(σ2n ∨ ¬σ2n+1) = σ2n+2 ∨ ¬σ2n+3 for n ≥ 0.584

Proof. (1) By definition of CBS-sequence, (σ1,¬σ1) is a pair of factor congru-585

ences in K(A) and then σ1∨¬σ1 = ∇A. Since f̂ is an order isomorphism, if n >586

0 and σ2(n−1)+1 ∨ ¬σ2(n−1)+1 = ∇A then ∇A = f̂(σ2(n−1)+1 ∨ ¬σ2(n−1)+1) =587

f̂(σ2(n−1)+1) ∨ f̂(¬σ2(n−1)+1) = σ2(n−1)+3 ∨ ¬σ2(n−1)+3 = σ2n+1 ∨ ¬σ2n+1.588

(2) By Proposition 4.5(2), for each natural number n we have that σ2n ≤589

σ2n+1 and then σ2n+1 ∈ K(A)∩ [σ2n,∇A]
Con(A)

. Thus, by Definition 4.1(3) and590

Proposition 4.2, σ2n ∨ ¬σ2n+1 ∈ K(A). In this way, (σ0 ∨ ¬σ1, σ2 ∨ ¬σ3, . . .) =591
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_####_ Page 16 of 29 H. Freytes Algebra Univers.

(σ2n ∨ ¬σ2n+1)n≥0 is a sequence in K(A). Suppose that m < n. Since (σn)n∈N592

is an increasing sequence, σ2n ≥ σ2m+1 then, by item 1, we have that593

(σ2m ∨ ¬σ2m+1) ∨ (σ2n ∨ ¬σ2n+1) ≥ σ2m ∨ (¬σ2m+1 ∨ σ2m+1) ∨ ¬σ2n+1594

= σ2m ∨ ∇A ∨ ¬σ2n+1 = ∇A.595
596

Hence (σ2n ∨ ¬σ2n+1)n≥0 is a dual orthogonal sequence in K(A).597

(3) Since f̂ is an order isomorphism, by Proposition 4.5(1), f̂(σ2n ∨598

¬σ2n+1) = f̂(σ2n) ∨ f̂(¬σ2n+1) = σ2n+2 ∨ ¬σ2n+3. �599

In what follows, the infimum in K(A) of a family (σi)i∈I of K(A), if it600

exists, will be denoted by
�K(A)

i∈I σi, to distinguish it from the infimum
⋂

i∈I σi601

in Con(A), which does not necessarily belong to K(A).602

Definition 4.8. Let A be a category of algebras and K be a factor congruences603

presheaf. An algebra A ∈ A is called CBSK-complete if and only if for all604

A-isomorphism f : A → A/θ, where θ ∈ K(A), and for all σ ∈ K(A) such that605

σ ⊆ θ, there exists ζ ∈ 〈σ〉θ and a CBS-sequence (σ2n ∨ ¬σ2n+1)n≥0 satisfying606

the following conditions:607

(1) σζ =
�K(A)

n≥1 (σ2n ∨ ¬σ2n+1) exists.608

(2) There exists ¬σζ ∈ K(A) such that (σζ ,¬σζ) and (¬ζ ∩ σζ , ζ ∨ ¬σζ) are609

two pairs of factor congruences in K(A).610

Theorem 4.9. Let A be a category of algebras, K be a factor congruences611

presheaf and A ∈ A. Then the following conditions are equivalent:612

(1) A is CBSK-complete.613

(2) A has the CBSK-property.614

Proof. (1) =⇒ (2). Let us assume that A is CBSK-complete. Let σ, θ ∈ K(A)615

such that σ ⊆ θ and f : A → A/θ be a A-isomorphism. By Theorem 3.11616

we shall prove that A ∼=A A/σ. Let us suppose that (σ2n ∨ ¬σ2n+1)n≥0 is a617

CBS-sequence satisfying the conditions introduced in Definition 4.8.618

By hypothesis σζ =
�K(A)

n≥1 (σ2n∨¬σ2n+1) ∈ K(A)∩[ζ,∇A]
Con(A)

. Further,619

there exists ¬σζ ∈ K(A) such that (σζ ,¬σζ) and (¬ζ ∩ σζ , ζ ∨ ¬σζ) are two620

pairs of factor congruences in K(A). If we define χ = ¬ζ ∩σζ and ¬χ = ¬σζ ∨ζ621

then622

A ∼= A/¬χ × A/χ. (4.5)623

Since σζ ∈ K(A) ∩ [ζ,∇A]
Con(A)

, by Proposition 4.2 and by hypothesis,624

we have that625

A/ζ ∼=A A/(¬σζ ∨ ζ) × A/σζ626

= A/¬χ × A/σζ . (4.6)627
628

Since f∗(χ) ∈ K(A/θ), by Theorem 3.5(3), there exists a congruence ρ629

in K(A) ∩ [θ, ∇A]
Con(A)

such that f∗(χ) = ρ/θ. Therefore, f̂(χ) = u−1
θ f∗(χ) =630

u−1
θ (ρ/θ) = ρ and, by Proposition 3.2(4), we have that631

A/χ ∼=A (A/θ)/f∗(χ) = (A/θ)/(ρ/θ) ∼=A A/ρ = A/f̂(χ). (4.7)632
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The Cantor–Bernstein–Schröder theorem Page 17 of 29 _####_

Since f̂ : K(A) → K(A) ∩ [θ, ∇A]
Con(A)

is a 〈∇,∆,⊆〉-isomorphism, by Defini-633

tion 4.6, we have that634

f̂(χ) = f̂(σζ ∩ ¬ζ)635

= f̂(
�K(A)

n≥1 (σ2n ∨ ¬σ2n+1)) ∩ f̂(¬ζ)636

= f̂(
�K(A)

n≥1 (σ2n ∨ ¬σ2n+1)) ∩ f̂(f̂−1(¬f̂(ζ))637

= f̂(
�K(A)

n≥1 (σ2n ∨ ¬σ2n+1)) ∩ f̂(∆A ∨ f̂−1(¬f̂(ζ))638

= f̂(
�K(A)

n≥1 (σ2n ∨ ¬σ2n+1)) ∩ (f̂(∆A) ∨ f̂(f̂−1(¬f̂(ζ)))639

=
�K(A)

n≥1 (σ2n+2 ∨ ¬σ2n+3) ∩ (θ ∨ ¬f̂(ζ))640

=
�K(A)

n≥1 (σ2n+2 ∨ ¬σ2n+3) ∩ (σ2 ∨ ¬σ3)641

=
�K(A)

n≥1 (σ2n ∨ σ2n+1)642

= σζ . (4.8)643
644

Therefore, by Eqs. (4.7) and (4.8), A/χ ∼=A A/σζ . Then, by Eq. (4.6), A/ζ ∼=A645

A/¬χ × A/χ and, by equation Eq. (4.5), A ∼=A A/ζ ∼=A A/σ since ζ ∈ 〈σ〉θ.646

Hence A has the CBSK-property.647

(2) =⇒ (1). Let us assume that A has the CBSK-property. Let f : A →648

A/θ be a A-isomorphism where θ ∈ K(A), and σ ∈ [∆A, θ]
Con(A)

∩K(A). Then,649

by hypothesis, A/∆A
∼=A A ∼=A A/σ and ∆A ∈ 〈σ〉θ (see Eq. (4.3)). Thus, we650

consider the sequence (σn)n∈N given by651

σ0 = ∆A ,652

σ1 = ∆A , θ1 = f∗(σ0) = θ/θ ,653

σ2 = u−1
θ (θ1) = θ , θ2 = f∗(σ1) = f∗(∆A) = θ/θ ,654

σ3 = u−1
θ (θ2) = θ , θ3 = f∗(σ2) ,655

...
...656

σn+1 = u−1
θ (θn) , θn+1 = f∗(σn) .657

658

By induction, we show that σ2n = σ2n+1 for all n ≥ 1. Indeed σ2 = σ3 = θ/θ.659

Let us suppose that σ2k = σ2k+1. Then660

σ2(k+1) = u−1
θ (θ2k+1) = u−1

θ f∗(σ2k)661

= u−1
θ f∗(σ2k+1) = u−1

θ (θ2(k+1))662

= σ2(k+1)+1.663
664

In this way, (σ2n ∨ ¬σ2n+1)n≥1 = (∇A,∇A,∇A, . . .) and consequently σ∆A
=665

�K(A)
n≥1 (σ2n ∨ ¬σ2n+1) = ∇A. Hence A is CBSK-complete. �666

In the rest of the section we study a special framework for the CBS-667

theorem based on congruences presheaves defined by sets of factor congru-668

ences with a Boolean structure. For this aim we first introduce the following669

definition.670
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_####_ Page 18 of 29 H. Freytes Algebra Univers.

Definition 4.10. Let A be a category of algebras. A Boolean factor congru-671

ences presheaf is a factor congruences presheaf K such that, for each A ∈ A,672

〈K(A),∨,∩,¬,∆A,∇A〉 is a Boolean sublattice of Con(A) where ¬ is the factor673

complement.674

By Proposition 2.1(2) and by item 3 of Definition 4.1 we can see that for675

each σ ∈ K(A), the Boolean structure of K(A/σ) is given by676

〈K(A/σ),∨,∩,¬,∆A/σ,∇A/σ〉 where ¬(θ/σ) = (¬σθ)/σ. (4.9)677

The following proposition allows us to provide examples of Boolean factor678

congruences presheaves from the centers of the congruence lattices of algebras679

in a category of algebras.680

Proposition 4.11. Let A be a category of algebras such that for each A ∈ A681

and σ ∈ Z(Con(A)), A/σ ∈ A. Then the class operator A ∋ A �→ Z(Con(A))682

is a congruences operator over A and the following statements are equivalent:683

(1) Z(Con(−)) is a Boolean factor congruences presheaf.684

(2) For each A ∈ A, and θ ∈ Z(Con(A)), θ ◦ ¬θ = ∇A where ¬θ is the685

Boolean complement of θ in Z(Con(A)).686

Proof. By Proposition 3.2 it is immediate to see that Z(Con(−)) is a congru-687

ences operator over A.688

1 =⇒ 2. Let us assume that Z(Con(−)) is a Boolean factor congruences689

presheaf. Then, for each A ∈ A, Z(Con(A)) ⊆ FC(A). Since Z(Con(A)) is690

a Boolean algebra, the complement of an element in Z(Con(A)) is unique.691

Consequently, by condition 2 of Definition 4.1, for each θ ∈ Z(Con(A)) we692

have that θ ◦ ¬θ = ∇A.693

2 =⇒ 1. Let us assume that for each θ ∈ Z(Con(A)), θ ◦ ¬θ = ∇A. Then694

Z(Con(A)) ⊆ FC(A) for each A ∈ A. Let σ ∈ Z(Con(A)). By Proposition 2.1695

and Proposition 2.3(2) we have that θ ∈ [σ, ∇A]
Con(A)

∩Z(Con(A)) if and only if696

θ ∈ Z([σ, ∇A]) if and only if θ/σ in Z(Con(A/σ)). Thus, by Proposition 3.5(3),697

Z(Con(−)) is a congruences presheaf. Hence our claim. �698

Example 4.12. Let A be a congruence permutable variety. Let us notice that for699

each A ∈ A and θ ∈ Z(Con(A)), θ∩¬θ = ∆A and θ◦¬θ = θ∨¬θ = ∇A because700

of the permutability of θ. Then Z(Con(A)) ⊆ FC(A) and, by Proposition 4.11,701

Z(Con(−)) is a Boolean factor congruences presheaf.702

Example 4.13. Let A be an arithmetical variety i.e., A is a congruence dis-703

tributive and congruence permutable variety. By Example 4.12, for each A ∈704

A, Z(Con(A)) ⊆ FC(A) and Z(Con(−)) is a Boolean factor congruences705

presheaf. Since A is congruence distributive, FC(A) is a Boolean sublattice706

of Con(A) and then FC(A) ⊆ Z(Con(A)). Thus Z(Con(A)) = FC(A). In this707

way FC(−) = Z(Con(−)) is a Boolean factor congruences presheaf. Other in-708

teresting categories of algebras in which FC(−) = Z(Con(−)) is a Boolean709

factor congruences presheaf are discriminator varieties since they are arith-710

metical varieties.711

Theorem 4.14. Let A be a category of algebras and K be a Boolean factor712

congruences presheaf. Then the following conditions are equivalent:713
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The Cantor–Bernstein–Schröder theorem Page 19 of 29 _####_

(1) A has the CBSK-property.714

(2) For each A-isomorphism f : A → A/θ, where θ ∈ K(A), and for each715

σ ∈ [∆A, θ]
Con(A)

∩K(A) there exists ζ ∈ 〈σ〉θ and a CBS-sequence (σ2n ∨716

¬σ2n+1)n≥0 (see Definition 4.6) such that σζ =
�A(A)

n≥1 (σ2n ∨ ¬σ2n+1)717

exists.718

Proof. Since for each A ∈ A, K(A) is a Boolean sublattice of Con(A), for all719

ζ, σ ∈ K(A) we have that (¬ζ ∩ σ, ¬(¬ζ ∩ σ)) = (¬ζ ∩ σ, ζ ∨ ¬σ) is a pair of720

factor congruences in K(A). Hence, by Theorem 4.9, our claim. �721

By Theorem 4.14 and Proposition 4.7(2) we can immediate establish the722

following instance of the CBS-theorem formulated in a language closer to the723

algebraic versions already known in literature.724

Proposition 4.15. Let A be a category of algebras, K be a Boolean factor con-725

gruences presheaf and A ∈ A such that K(A) is dual orthogonal σ-complete726

Boolean lattice. Then A has the CBSK-property.727

5. Boolean factor congruences and CBS-property728

An algebra A has Boolean factor congruences (BFC for short) if and only if729

FC(A) is a Boolean sublattice of Con(A). We say that a category of algebras730

has BFC if and only if each algebra of the category has BFC.731

Categories of algebras having BFC are examples of categories where the732

class operator FC defines a Boolean factor congruences presheaf. In virtue733

of Proposition 4.15 it is possible to establish several examples of the CBS-734

theorem for these categories. Indeed, most of the versions of the CBS-theorem735

related to classes of algebras having an underling lattice structure can be736

formulated in terms of the congruences presheaf FC. In this section we deal737

with this argument and we establish new examples of algebras having the738

CBSFC-property.739

Proposition 5.1. Let A be a category of algebras having BFC such that for each740

A ∈ A and σ ∈ FC(A), A/σ ∈ A. Then FC is a Boolean factor congruences741

presheaf.742

Proof. Let A ∈ A and σ ∈ FC(A). Let us suppose that θ∈FC(A)∩[σ, ∇A]
Con(A)

.743

We want to prove that θ/σ ∈ FC(A/σ). We first note that θ/σ ∩ (¬θ ∨σ)/σ =744

∆A/σ. Moreover, ∇A = θ ◦ ¬θ ⊆ θ ◦ (¬θ ∨ σ) and, by Theorem 2.3(3),745

θ/σ◦(¬θ∨σ)/σ = ∇A/σ. Thus, (θ/σ, (¬θ∨σ)/σ) is a pair of factor congruences746

of A/σ and θ/σ ∈ FC(A/σ). Now, if we suppose that θ/σ ∈ FC(A/σ) then, by747

Proposition 2.4, θ ∈ FC(A). Hence, by Proposition 3.5, FC is a Boolean factor748

congruences presheaf. �749

The next proposition provides a general method to obtain algebras sat-750

isfying the CBSFC-property in categories of algebras having BFC.751
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_####_ Page 20 of 29 H. Freytes Algebra Univers.

Proposition 5.2. Let A be a category of algebras closed under direct products752

having BFC and let us consider a family (Ai)i∈I of directly indecomposable753

algebras in A. Then754

B =
∏

i∈I

Ai satisfies the CBSFC-property.755

In particular, if I = N and Ai = A for each i ∈ N then B satisfies the CBSFC-756

property in a non trivial way (see Remark 3.12).757

Proof. Note that for each i ∈ I, FC(A) = {∆Ai
,∇Ai

}. Then, by [23, The-758

orem 2 and Theorem 11], we can see that FC(B) is lattice isomorphic to759
∏

i∈I FC(Ai) = 2
I . Since 2

I is a complete Boolean algebra, by Proposi-760

tion 4.15, B satisfies the CBSFC-property. The second part follows from Propo-761

sition 2.5. �762

The rest of the section is devoted to rephrasing several versions of the763

CBS-theorem already known in literature in terms of Boolean factor congru-764

ences presheaves. Moreover we establish new versions of the theorem in cate-765

gories of algebras having BFC.766

Example 5.3 (Lattice ordered groups). A lattice ordered group (l-group for767

short) is an algebra 〈A,+,∨,∧,−, 0〉 of type 〈2, 2, 2, 1, 0〉 such that768

(1) 〈A,+,−, 0〉 is a group,769

(2) 〈A,∨,∧〉 is a lattice,770

(3) x + (s ∧ t) + y = (x + s + y) ∧ (x + t + y),771

(4) x + (s ∨ t) + y = (x + s + y) ∨ (x + t + y).772

Thus, l-groups define a variety of algebras denoted by LG. Let A ∈ LG.773

If x ∈ A then we define |x| = x ∨ −x. The positive cone of A is given by774

A+ = {x ∈ A : x ≥ 0}. A set G ⊆ A is said to be orthogonal if and only775

if G ⊆ A+ and x ∧ y = 0 for any pair of distinct elements x, y ∈ G. The776

l-group A is said to be orthogonal σ-complete if and only if each denumerable777

orthogonal subset of A has a supremum in A. It is well known that Con(A)778

is lattice isomorphic to the lattice Il(A) of all convex normal subgroups (also779

called l-ideals) of A. Moreover FC(A) is a Boolean sublattice of Con(A) (see780

[4, §XIII-9]) identified with a Boolean sublattice of Il(A), denoted by FCIl(A),781

whose elements are called direct factors of A. Thus, LG has BFC and, by782

Proposition 5.1, FC is a Boolean factor congruences presheaf. If I ∈ FCIl(A)783

then the set ¬I defined by ¬I = {a ∈ A : |a| ∧ |x| = 0 for each x ∈ I} is the784

complement of I in FCIl(A) (see [26, Eq. (1.3)]). To establish a CBS-theorem785

for l-groups we need to prove the following result:786

Let A be an orthogonal σ-complete l-group. Then FC(A) is a σ-787

complete Boolean algebra.788

Indeed, if (In)n∈N is a dual orthogonal sequence in FCIl(A) then the se-789

quence (¬In)n∈N is an orthogonal sequence in FCIl(A) because FCIl(A) is a790

Boolean algebra. By [26, Lemma 1.5] ¬
⋃

n∈N
¬In ∈ FCIl(A) and in [41, The-791

orem 2.2.5] it is proved that ¬
⋃

n∈N
¬In =

⋂

n∈N
¬¬In =

⋂

n∈N
In. Thus,792
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FCIl(A) is a dual orthogonal σ-complete Boolean algebra and, by Propo-793

sition 2.2, FCIl(A) is a σ-complete Boolean algebra. Hence FC(A) is a σ-794

complete Boolean algebra.795

Therefore, by the above result and by Proposition 4.15, we can rephrase796

the CBS-theorem for l-groups (given in [26]) in terms of the Boolean factor797

congruences presheaf FC as follows.798

CBS-theorem If A is an orthogonal σ-complete l-group then A has799

the CBSFC-property.800

Example 5.4 [L-varieties]. L-varieties were introduced in [18] as a general lat-801

tice ordered structure in which several versions of the CBS-theorem can be802

formulated. A variety A of algebras is a L-variety if and only if803

(1) there are terms of the language of A defining on each A ∈ A operations804

∨, ∧, 0, 1 such that L(A) = 〈A,∨,∧, 0, 1〉 is a bounded lattice;805

(2) for all A ∈ A and for all z ∈ Z(L(A)), the binary relation Θz on A defined806

by (a, b) ∈ Θz if and only if a ∧ z = b ∧ z is a congruence on A such that807

A ∼= A/Θz × A/Θ¬z.808

Examples of L-varieties are the following (see [18, §2])809

• The variety L01 of bounded lattices and its subvarieties. In particular,810

distributive lattices and modular lattices.811

• The variety LI01 of bounded lattices with involution “∼” [30] satisfying812

the Kleene equation x∧ ∼ x = (x∧ ∼ x) ∧ (y∨ ∼ y). Subvarieties of LI01813

are the variety OL of ortholattices [4,35], characterized by the equation814

x∧ ∼ x = 0, and the variety KL of Kleene algebras [1], characterized815

by the distributive law. The intersection OL ∩ KL is the variety B of816

Boolean algebras. An important subvariety of OL is the variety OML of817

orthomodular lattices [4,35].818

• The variety Bω of pseudocomplemented distributive lattices [1] and the819

subvariety of Stone algebras ST defined as820

ST = Bω + {(x ∧ y)∗ = x∗ ∨ y∗}821

where ∗ is the pseudocomplement (see [1, §VIII]).822

• The variety RL of residuated lattices [29] also called commutative integral823

residuated 0, 1-lattices [33] defined by algebras 〈A,∨,∧,⊙,→, 0, 1〉 of type824

〈2, 2, 2, 2, 0, 0〉 satisfying:825

(1) 〈A,⊙, 1〉 is an abelian monoid,826

(2) L(A) = 〈A,∨,∧, 0, 1〉 is a bounded lattice,827

(3) (x ⊙ y) → z = x → (y → z),828

(4) ((x → y) ⊙ x) ∧ y = (x → y) ⊙ x,829

(5) (x ∧ y) → y = 1.830

Very important subvarieties of RL are: the variety of Heyting alge-831

bras [1] given by H = RL+{x⊙y = x∧y} and the variety of BL-algebras,832

characterized by833

BL = RL + {x ∧ y = x ⊙ (x → y), (x → y) ∨ (y → x) = 1}.834
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_####_ Page 22 of 29 H. Freytes Algebra Univers.

BL-algebras are the algebraic counterpart of the fuzzy logic related to835

continuous t-norms [21]. Important subvarieties of BL are: the variety of836

MV-algebras, representing the algebraic counterpart of the infinite-valued837

�Lukasiewicz logic [9,21] given by MV = BL + {¬¬x = x}, the variety of838

linear Heyting algebras, also known as Gödel algebras, given by839

HL = H + {(x → y) ∨ (y → x) = 1}840

and the variety of Product logic algebras [10,11] given by841

PL = BL + {¬¬x → ((x → (x ⊙ y)) → (y ⊙ ¬¬y))}.842

• The varieties of �Lukasiewicz and of Post algebras of order n ≥ 2 [1], as well843

as the various types of �Lukasiewicz–Moisil algebras which are considered844

in [5].845

• PMV, the variety of pseudo MV-algebras [15,20].846

Let A be a L-variety. In [18, Proposition 1.4] it is proved that A has BFC.847

Then, by Proposition 5.1, FC is a Boolean factor congruences presheaf. Thus,848

the CBS-theorem given in [18, Corollary 3.8] can be rephrased as follows.849

CBS-theorem Let A be a L-variety and let A ∈ A such that Z(L(A))850

is a σ-complete Boolean algebra. Then A has the CBSFC-property.851

Indeed, if Z(L(A)) is a σ-complete Boolean algebra then FC(A) is a852

σ-complete Boolean algebra too. Therefore, by Proposition 4.15, A has the853

CBSFC-property.854

Let A be a L-variety and A ∈ A. Let us notice that the σ-completeness of855

L(A) does not generally imply the σ-completeness of Z(L(A)) (see [18, Exam-856

ple 4.1]). However, there are L-varieties where the σ-completeness, orthogonal857

σ-completeness or dual orthogonal σ-completeness condition on the algebras858

guarantee the corresponding σ-completeness of their centers. In these particu-859

lar cases an algebra A ∈ A such that L(A) is σ-complete satisfies the CBSFC-860

property. Examples of these particular L-varieties are: Boolean algebras (where861

the CBSFC-property was obtained by Sikorski and Tarski), orthomodular lat-862

tices (where the CBSFC-property was obtained in [13]), MV-algebras (where863

the CBSFC-property was obtained in [12]), pseudo MV-algebras (where the864

CBSFC-property was obtained in [25]), Stone algebras [18, Proposition 4.3],865

BL-algebras [18, Corollary 4.8], �Lukasiewicz and Post algebras of order n [8,866

Lemma 3.1].867

Example 5.5 [Semigroups with 0, 1 and bounded semilattices]. A semigroup868

with 0, 1 is an algebra 〈A, ·, 0, 1〉 of type 〈2, 0, 0〉 such that the operation · is869

associative, 0·x = x·0 = 0 and 1·x = x·1 = x. Thus, semigroups with 0, 1 define870

a variety denoted by SG0,1. An important subvariety of SG0,1 is the variety of871

bounded semilattices defined as SL0,1 = SG0,1 + {x2 = x, x · y = y ·x}. Let A872

be a subvariety of SG0,1 and A ∈ A. An element z ∈ A is called central if and873

only if there exist A1, A2 ∈ A and a SG0,1-isomorphism f : A → A1 × A2 such874

that f(z) = (1, 0). In [42,43] it is proved that the set of all central elements875

Z(A) can be identified with FC(A). Thus, by Proposition 5.1, FC is a Boolean876

factor congruences presheaf.877

Journal: 12 Article No.: 590 TYPESET DISK LE CP Disp.:2019/3/22 Pages: 29

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

The Cantor–Bernstein–Schröder theorem Page 23 of 29 _####_

Hence, if A ∈ A is an algebra such that Z(A) is a σ-complete Boolean878

algebra then, by Proposition 4.15, A has the CBSFC-property. By Proposi-879

tion 5.2, denumerable direct product of directly indecomposable semigroups880

with 0, 1 are concrete examples of algebras satisfying the CBSFC-property in881

a non trivial way.882

Example 5.6 [Commutative pseudo BCK-algebras]. A commutative pseudo883

BCK-algebras (cpBCK-algebra for short) [20] is an algebra 〈A,→,�, 1〉 of884

type 〈2, 2, 0〉 satisfying the following equations:885

(1) x → (y � z) = y → (x � z),886

(2) x → x = x � x = 1,887

(3) 1 → x = 1 � x = x,888

(4) (x → y) � y = (y → x) � x,889

(5) (x � y) → y = (y � x) → x.890

Thus cpBCK-algebras define a variety denoted by cpBCK. Let A be a891

cpBCK-algebra. The relation x ≤ y if and only if x → y = 1 if and only if892

x � y = 1 defines a join semi-lattice order where x ∨ y = (x → y) � y =893

(x � y) → y. Let us notice that in [34] a dually equivalent definition for894

cpBCK-algebras, based on the reverse order, is introduced. In [17, Corollary895

4.4] it is proved that cpBCK is a congruence distributive variety. Then, for896

each A ∈cp BCK, FC(A) is a Boolean sublattice of Con(A). Thus cpBCK has897

BFC and, by Proposition 5.1, FC is a Boolean factor congruences presheaf. By898

[34, Lemma 4.1] we can dually prove that if A is a dual orthogonal σ-complete899

cpBCK-algebra then each dual orthogonal sequences (θn)n∈N in FC(A) admits900

the infimum
⋂

n∈N
θn ∈ FC(A). Hence, by Proposition 2.2, if A is a dual901

orthogonal σ-complete cpBCK-algebra then FC(A) is a σ-complete Boolean902

algebra. Thus, by Proposition 4.15, the version of CBS-theorem for cpBCK-903

algebras given in [34], can be rephrased as follows.904

CBS-theorem If A is a dual orthogonal σ-complete cpBCK-algebra905

then A has the CBSFC-property.906

Example 5.7 [Church algebras]. An algebra A is called Church algebra [36] if907

and only if there are two constants 0, 1 ∈ A and a ternary term t(z, x, y) called908

if-then-else term in the language of A such that t(1, x, y) = x and t(0, x, y) = y.909

A variety of algebras A is called a Church variety if and only if every algebra910

in A is a Church algebra with respect to the same term t(z, x, y) and constants911

0, 1. Let A be a Church variety and A ∈ A. An element e ∈ A is called central912

if and only if the generated congruences θ(1, e) and θ(e, 0) defines a pair of913

factor congruences of A. It is proved that central elements are equationally914

characterized in the following way: e ∈ A is a central element if and only915

if whenever ϕ is an operation symbol of arity n in the language of A and916

a, b ∈ An, the following equations are satisfied917

t(e, x, x) = x, t(e, t(e, x, y), z) = t(e, x, z) = t(e, x, t(e, y, z)),918

t(e, 1, 0) = e, t(e, ϕA(a), ϕA(b)) = ϕA(t(e, a1, b1) . . . t(e, an, bn)).919
920

Moreover the set Z(A) of all central elements endowed with the operations921

x ∨ y = t(x, 1, y), x ∧ y = t(x, y, 0) and ¬x = t(x, 0, 1) is a Boolean algebra922
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_####_ Page 24 of 29 H. Freytes Algebra Univers.

isomorphic to FC(A). Thus, A has BFC and, by Proposition 5.1, FC is a923

Boolean factor congruences presheaf. In what follows we shall study concrete924

examples of Church algebras satisfying the CBSFC-property.925

• Rings with identity define a Church variety denoted by R1 where the if-926

then-else term is given by t(z, x, y) = (y +z −zy) · (1−z +zx). If A ∈ R1927

then Z(A) is the set of central idempotent elements of A. Two interesting928

examples of rings with identity whose central idempotent elements define929

a complete Boolean algebra are the following:930

- Division rings because they are simple algebras. Then, by Propo-931

sition 5.2, denumerable direct products of division rings satisfy the932

CBSFC-property in a non trivial way.933

- Baer rings i.e., a ring with identity A such that for every subset934

S ⊆ A the right annihilator Annr(S) = {r ∈ A : ∀s ∈ S, r · s = 0}935

is the principal right ideal generated by an idempotent element. In936

[2, §3, 3.3 ] it is proved that Z(A) is a complete Boolean algebra.937

Then, by Proposition 4.15, Baer rings have the CBSFC-property.938

• ∗-Rings. They are rings with identity having an involution operation x �→939

x∗ such that x∗∗ = x, (x + y∗) = x∗ + y∗ and (x · y)∗ = y∗ · x∗. By940

the underling ring with unity structure, ∗-rings define a Church variety941

denoted by R∗
1. Examples of ∗-rings having the CBSFC-property are the942

Baer ∗-rings. Indeed: A Baer ∗-ring is a ∗-rings A such that for every943

subset S ⊆ A, Annr(S) = eA where e is a projection (i.e. e2 = e∗ = e). By944

[3, P18, 4A] we can see that Z(A) is determined by the central projections.945

Moreover, in a Baer ∗-rings their central projections define a complete946

Boolean algebra [31, p.30, Corollary]. Thus, by Proposition 4.15, Baer947

∗-rings have the CBSFC-property.948

Example 5.8 [Effect and pseudo-effect algebras]. Although there are versions949

of the CBS-theorem related to these structures [16,27], from a strictly formal950

viewpoint, these versions cannot be framed in our formalism because these951

algebras are defined by a binary partial operation. However, we can easily ex-952

tend the notion of Boolean factor congruences presheaf and the CBS-property953

to these particular algebraic structures. A pseudo-effect algebra is a partial954

algebra 〈E,+, 0, 1〉 of type 〈2, 0, 0〉 such that955

(1) a + b and (a + b) + c exist if and only if b + c and a + (b + c) exist and in956

this case (a + b) + c = a + (b + c),957

(2) for each a ∈ E there is exactly one a− ∈ E and exactly one a∼ ∈ E such958

that a− + a = a + a∼ = 1,959

(3) if a+ b exists, there are elements d, e ∈ E such that a+ b = d+a = b+ e,960

(4) if 1 + a or a + 1 exists then a = 0.961

We denote by PE the category whose objects are pseudo-effect algebras962

and whose arrows, called PE-homomorphisms, are functions f : E → F be-963

tween pseudo-effect algebras such that f(0) = 0, f(1) = 1 and f(a + b) =964

f(a) + f(b) whenever a + b exists in E. If + is commutative then E is said965

to be an effect algebra and we denote by E the subcategory of effect algebras.966

Let E ∈ PE . If we define a ≤ b if and only if there exists x ∈ E such that967
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The Cantor–Bernstein–Schröder theorem Page 25 of 29 _####_

a + x = b then 〈E,≤〉 is a partial order such that 0 ≤ a ≤ 1 for any a ∈ E.968

For a given e ∈ E the interval [0, e]E endowed with + restricted to [0, e]2E is a969

pseudo effect algebra 〈[0, e]E ,+, 0, e〉. An element e ∈ E is said to be central970

if and only if there exists a PE-isomorphism fe : E → [0, e]E × [0, e∼]E such971

that fe(e) = (e, 0) and, if fe(x) = (x1, x2) then x = x1 + x2 = x1 ∨ x2. We972

denote by Z(E) the set of all central elements of E. In [16, Proposition 2.2]973

it is proved that for any x ∈ E and e ∈ Z(E), x ∧ e and x ∧ e∼ are defined974

in E and, moreover, πe : E → [0, e]E such that πe(x) = x ∧ e is a surjec-975

tive PE-homomorphism. Furthermore, in [16, Theorem 2.3], it is proved that976

〈Z(E),∧,∼ , 0, 1〉 is a Boolean algebra. Let us notice that for each e ∈ Z(E),977

θe = {(x, y) ∈ E2 : x ∧ e = y ∧ e} defines a congruence on E such that978

E/θe
∼=PE

[0, e]E . Let us consider the set FC(E) = {θe : e ∈ Z(E)}. It is not979

very hard to see that for each e1, e2 ∈ Z(E), θe1
∩ θe2

= θe1∨e2
. Moreover,980

the ordered set 〈FC(E),⊆〉 defines a Boolean algebra 〈FC(E),∩,∨,¬,∆E∇E〉981

where, θe1
∨ θe2

= θe1∧e2
, ¬θe = θe∼ and the function e �→ θe is an order re-982

verse isomorphism from Z(E) to FC(E). We also note that the class operator983

E �→ FC(E) defines a congruence operator over PE in the meaning of Defini-984

tion 3.4 and, taking into account Eq. (3.3), we can define the class HomPEFC
985

in the following way:986

HomPEFC
=

⋃

E∈PE

{E
fe
→ [0, e]E : fe(x) = x ∧ e and e ∈ Z(E)}. (5.1)987

In [16, Proposition 2.8] it is proved that:988

for each e ∈ Z(E) and x ≤ e, x ∈ Z([0, e]E) if and only if x ∈ Z(E). (5.2)989

Therefore, by Eq. (5.2), it immediately follows that HomPEFC
is closed under990

composition of PE-homomorphisms and then PEFC = 〈Ob(PE),HomPEFC
〉991

defines a category. Let us notice that Eq. (5.2) also implies that if E
fe
→992

[0, e]E ∈ HomPEFC and if θa ∈ FC([0, e]E) then [FC(fe)](θa) = f∗
e (θa) =993

{(x, y) ∈ E2 : x ∧ a = y ∧ a} ∈ FC(E). Consequently, it is not hard to see that994

FC: PEFC → Set is a presheaf. Thus, following Definition 4.10, we can refer995

to FC as a Boolean factor congruences presheaf for pseudo-effect algebras.996

Now, taking into account Definition 3.10, it is possible to analogously997

introduce the notion of CBSFC-property for these partial structures. Indeed,998

A pseudo-effect algebra E has the CBSFC-property the following999

holds: Given a pseudo-effect algebra F , and θf ∈ FC(F ) such that1000

there is θe ∈ FC(E) with E ∼=PE
F/θf and F ∼=PE

E/θe, it follows1001

that E ∼=PE
F .1002

In [16, Proposition 6.2] it is proved that if E,F ∈ PE and h : E → [0, f ]F is1003

a PE-isomorphism where f ∈ Z(F ) then, for each e ∈ Z(E), h(e) ∈ Z(F ).1004

This result and the order reverse identification Z(E) ∼= FC(E) allow us to1005

establish the useful equivalence of the CBSFC-property given in Theorem 3.111006

for pseudo-effect algebras. More precisely, following the proof of Theorem 3.11,1007

we can also prove that for each pseudo-effect algebra E the following conditions1008

are equivalent1009

(1) E has the CBSFC-property.1010
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_####_ Page 26 of 29 H. Freytes Algebra Univers.

(2) If θ ∈ FC(E) and E ∼=PE E/θ then for all σ ∈ FC(E) such that σ ⊆ θ1011

we have that E ∼=PE E/σ.1012

The CBS-theorem for pseudo-effect algebras given in [16] is formulated1013

under the hypothesis of orthogonal σ-completeness (referred as central decom-1014

position property in [16]) of the center of the algebras. Since the center of a1015

pseudo-effect algebra E is a Boolean algebra then, by Proposition 2.2, the cen-1016

tral decomposition property turns out to be equivalent to the σ-completeness1017

of Z(E). Hence, by the order reverse identification Z(E) ∼= FC(E) for each1018

E ∈ PE , the CBS-theorem for pseudo-effect algebras given in [16, Theorem1019

6.3] and the CBS-theorem for effect algebras given in [27, Theorem 1.6] can1020

be rephrased as follows:1021

CBS-theorem Let E be a pseudo-effect algebra such that Z(E) is a1022

σ-complete Boolean algebra. Then E has the CBSFC-property.1023

In this way, we have extended our abstract framework for the CBS-1024

theorem to these partial algebraic structures.1025
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