
University of Cagliari

PhD Degree in

Mathematics and Computer Science

XXXI cycle

Course in Computer Science

Cages and Skeletons in

Digital Animation

A Novel Skeleton-based Approach for Cage

Generation

Scientific Disciplinary Sector: INF/01

Ph.D. Student:

Sara Casti

Ph.D. Supervisor:

Prof. Riccardo Scateni

Ph.D. Coordinator:

Prof. Michele Marchesi

Final exam: Academic Year 2017 – 2018

Thesis defence: January – February 2019 Session

Abstract

Cages together with skeletons are the most widely used structures to pose
a digital character, giving the illusion of its movement. While skeletons are
generally used for primary motion, like limbs movements, cages instead,
are usually used to enrich primary motion with secondary effects, like
body jiggling, character breath, cloth movements etc. In the light of the
importance of cages in the animation pipeline, we have investigated two
main subproblems related to cage-based deformations techniques: build the
cage; provide powerful tools to perform assist in the process of deforming
digital models.

Cages are intrinsically more complicated to be created than skeletons.
During their design, well-established properties have to be fulfilled: the
cage must tightly envelop the original model without intersecting it; it
must be coarse enough to be easily manipulated, and it must be shape-
aware, i.e., its control nodes should be close to the parts of the model
one would like to deform or bend. Due to these hard constraints, cages
are often hand-made, and their creation may require hours of extensive
work by skilled artists. For this reason, we focused on defining a novel
skeleton based approach which allows the user to quickly design high-
quality cages for animation; and developing a novel research-oriented
software tool to perform cage-based deformations in a lightweight and easy
to use environment.

In this thesis after seeing the properties of the cages and the cage-
based deformations, we will see the state-of-the-art of the existing cage
generation method and their drawbacks. In the core of the thesis, we will
look at the details of our approach, the results obtained and a comparison
with the cages on state of the art. In conclusion, we will see our novel
research-oriented software tool for the visualization, editing and generation
of cage-based animation whose goal is to support the growing interest of
the research community.

3

Contents

1 Introduction 1

2 Background 5

2.1 Cages . 7

2.1.1 Cage-based deformations 9

2.2 Skeletons . 11

2.2.1 Curve Skeletons . 12

3 Related works 15

3.1 Cage generation methods 15

3.1.1 Automatic cage generation. 15

3.1.2 Interactive cage generation 18

3.2 Cage-based deformation. 19

I A Novel Approach for Cage Generation 21

4 Skeleton-based Cage Generation 27

4.1 The method . 27

4.1.1 Pre-processing: guiding field 28

4.1.2 User interaction . 30

4.1.3 Cage generation . 31

4.1.4 Symmetry . 34

4.1.5 Cage inflation . 36

4.2 Automatic placement of bending nodes 39

4.3 Results and discussion . 42

4.3.1 Comparisons . 44

4.3.2 Timing . 45

4.3.3 Deformations . 46

i

II Cage-based deformations 53

5 CageLab 57
5.1 Motivation . 57
5.2 Basic Functionalities . 58
5.3 User-Interface . 58

5.3.1 The Canvas . 60
5.3.2 Tools sidebar . 60
5.3.3 Character Manager panel 62
5.3.4 Cage Manager panel 63
5.3.5 Animator panel . 65

5.4 Technical information . 65

6 Conclusions 67
6.1 Limitations . 69
6.2 Future works . 69

Bibliography 71

List of Figures

2.1 From the left to the right, the steps of the handle-based
animation pipeline are shown. Image courtesy of [Jac15] . . 7

2.2 Example of cage-based deformations of the armadillo model.
Image courtesy of [JSW05a]. 10

2.3 Example of animation skeleton. Image courtesy of [BP07a] 11

2.4 Example of curve skeleton extracted through mesh con-
traction of the input shape. Image courtesy of [ATC∗08]
. 12

3.1 Cages obtained through geometric approaches: (a) [DLM11],
(b) [XLG09] and (c) [XLG12]. 17

3.2 Left: a purely geometric segmentation obtained with a
state-of-the-art method [ZYH∗15] does not capture bending
junctions between disjoint semantic parts (neck, elbows,
knees, wrists, joints of fingers and toes). Right: in our
interactive system the user manually selects bending points,
inducing an animation-aware semantic decomposition of the
character. 24

4.1 Our pipeline starts from a digital character and its curve
skeleton (a). The user manually selects nodes where bending
occurs (b, red dots). Symmetric cross sections at bending
nodes are obtained from a harmonic field in the volume (c).
An initial cage is created by connecting the cross sections (d).
The cage is finally inflated to accommodate the character
without intersections (e). 27

iii

4.2 We generate a shape-aware harmonic field which evaluates
0 at the skeleton and 1 at the character’s skin. The integral
curves of such field radially emanate from the skeleton,
traversing the interior volume along a short trajectory. We
exploit this property to project points from the interior to
the surface, generating cross-sections that locally adapt to
the character’s shape. 29

4.3 Example of cuts induced by different selections of bending
nodes. The cyan pyramids approximate the cuts induced by
the harmonic field, while the dashed black lines represent
the corresponding cuts induced by a plane orthogonal to the
skeleton and through the selected node. While our cuts are
all valid, the corresponding planes may induce inconsistent
cuts. 31

4.4 Curved cuts are superior to linear cuts [LD17] as they better
adapt to the geometry of the character, avoiding intersec-
tions and ill-defined cross sections (top left). We exploit the
harmonic field f (left) to define the non planar cross sections
of our cages. For each control point p we sample a ring
locally orthogonal to the skeleton, and project it on the sur-
face along the integral lines of f (bottom right). We project
the resulting polygon Gp on the plane defined by its PCA,
and find the quadrilateral Qp that better approximates it
(top right). 32

4.5 Correspondence between the bending nodes (red dots) and
the cross polygons (grey polygons) of the cage. Polyhedra
join the tubular structures (blue) at polyhedra (green) about
branching nodes of the skeleton to form the tight cage
(before inflation). 34

4.6 Symmetrizing a quad across the symmetry plane Π. Top:
two vertices of the quad lie to the left of Π, and the other
two lie to the right of Π – we impose symmetry of edges
connecting vertices on the same side of Π. Bottom: two
vertices lie on Π and the other two lie on opposite sides of
Π – we impose symmetry between the vertices not lying on Π. 35

4.7 A visual comparison between our cage without (left) and
with (right) symmetry enforcement on the Boy dataset. . . 36

4.8 Nested Cages [SVJ15] will fail without our pre-inflation
mechanism. Even though the vertices of the tight cage are
on the surface, its faces are too far from the skin to support
the mesh contraction, which is at the basis of the Nested
Cages algorithm. Antcat dataset. 37

4.9 Pre-inflation of the cage. Left: each face is assigned a
displacement vector that brings it closer to the skin. Right:
such displacements are averaged at cage vertices to pull
them outwards. 38

4.10 Faces overlap after the projection step. The faces belonging
to the tail of the dragon overlap with the faces of the body. 38

4.11 Example of faces intersection: the two faces T1(A,B,C) and
T2(F,D,E) are projected. After projection, they became
respectively T1i(G,I,H) and T2i(J,L,K). Their projections
partially overlap (the intersection area is highlighted in red
in the figure). Once the intersection is detected, we locally
solve the intersection moving backward the vertices of the
two faces (G,I,H and J,L,K) until there do not intersect any
longer. The final faces are T1′ and T2′. 39

4.12 A collection of cages obtained by running our pipeline in
fully automatic mode. Boy, Scape, Horse, Homer and Ani-
mal datasets. Some bending points may be either missing
(e.g., ankles and knees for Homer), or redundant (ankles for
the humanoid, elbows for the animal, head for Homer). . . . 40

4.13 Detail of the Armadillo hand. Since it is the skeleton which
drives the construction of the cage, it is possible to add or
remove details just adding or removing limbs in the skeleton
provided as input. Two possible cages are shown. 42

4.14 Models Warrok (top) and Ganfaul (bottom) contain spiky
elements or protrusions that are not captured by the skele-
ton. The close-up (right) of the spiky elements in these
models is shown. Our method is tolerant to these features
and builds a cage that correctly contains them. 43

4.15 The Asian dragon model with two different skeletons: on
the left, a coarser cage is generated embedding all the spikes
which are not represented by the skeleton; on the right, a
high-resolution cage captures the finer protrusions (fingers,
tail, horns) of the input model. 44

4.16 Comparison between cages obtained with: aggressive mesh
decimation followed by inflation via Nested Cages [SVJ15]
(left column); interactive cutting planes [LD17] (middle
column); our method (right column). For each cage, we
report vertex count. 47

4.17 Comparison with [CB17] on the Boy, Beast and Animal
datasets. Our cages to the right. 48

vi

4.18 Cage of a woman with long skirt. Even if the skirt is not
properly caught by the skeleton, our algorithm is able to
produce a quality cage that tightly encloses it (see closeup). 49

4.19 Different poses of a horse obtained editing a cage pro-
duced with our technique. For cage editing we used Cage-
Lab [CCLS18]. 49

4.20 A collection of cages for models with extrinsic symmetry:
Antcat, Jocker, Skater, Warrior, Dinopet, Elk, BigBunny,
ManTpose and Homer. 51

4.21 A collection of models, which are not extrinsically symmet-
ric: Gecko, Octopus, Cat, Hand, Lion and Dragon. 51

5.1 The CageLab User Interface. On the left side the FBX
Importer is highlighted in yellow (a), the Character Manager
panel in red (b), the Cage Manager panel in green (c), and
the Animator Panel in blue (d). On the right side there is
the Tools sidebar (e). The central part of the UI includes
the canvas. 59

5.2 A screenshot of the Character Manager panel. 62
5.3 In order to compare the smoothness and locality of alterna-

tive barycentric coordinates, CageLab allows to plot them
with respect to a selection of cage node (see red spheres).
This selection can be composed by a single node or by a set
of the cages handles. In this example Mean Value (left) and
Green (right) coordinates are shown. As can be noticed,
Green are a bit less local. 63

5.4 A screenshot of the Cage Manager panel. 63
5.5 Stretching Armadillo’s arm with Mean Value (left) and

Green (right) coordinates. Green coordinates better pre-
serve surface details (see closeup). CageLab allows to switch
between them in real time, so that the use can spot the
differences and change barycentric coordinates depending
on the intended deformation. 64

5.6 A screenshot of the Animator panel. 65
5.7 An overview of the deformations performed through CageLab. 66

Sara Casti Cages and Skeletons in Digital Animation

Introduction 1

Chapter 1

Introduction

Computer Animation is one of the fundamental branches of Computer
Graphics which adopts geometry processing algorithms, to bring a purely
static three-dimensional model into life. The entertainment industries,
like cinematography and video games, need to design the virtual world
reasonably; this obviously entails reproducing character’s movements.

Animating a digital character is labor intensive. In the years, several
methods have been developed to simplify the setup of the animation.
Moreover artists, researchers, and digital animators require effective tools
that allow them to create animations quickly.

To give the illusion of characters’ movements the animator has to
specify a set of poses for each model in the animated scene. Posing the
models through handles, instead of manipulating them directly, facilitates
the job of the animators and reduces the time required to accomplish their
work. However, to use them properly high skills are required, therefore,
such structures can not be easily manipulated from non-expert users.

Among the different handle-based techniques, skeletons and cages are
certainly the most widely used structures to setup the animation of a digital
character. Cages play a key role in animation, since they provide a smooth
control over the volume in their interior, they allow to perform several
kinds of deformations, therefore they are often used to enrich primary
motions with secondary effects like body jiggling, character breath, cloth
movements etc. Skeletons, instead, cannot control such motions, but they
are the most appropriate structure to control primary motions, offering
an intuitive paradigm of animation similar to the motion in the real
world. Cages are intrinsically more complex to create than skeletons.
Several properties have to be satisfied during the cage design, to make
the consequent deformation work properly. In Chapter 2, in section 2.1 a
detailed discussion of these properties can be found.

Sara Casti Cages and Skeletons in Digital Animation

2 Introduction

This thesis focuses on cages, and investigates the two main subproblems
related to the cage-based animation setup:

1. designing high quality cages;

2. providing powerful tools with an intuitive user interface which assist
in the process of deforming digital models.

In chapter 4, the first subproblem is analyzed. Although apparently it
can appear as a trivial problem, it is still a challenging issue, which has
received increasing interest in the research field over the last years. In cage-
based deformation setup, the most tedious task is the cage construction:
it is usually made by hand through modelling software such as Maya,
Blender or 3DStudio Max. For this reason several approaches for the
construction of cages has been developed. The majority of these works
[XLG09, XLG12, XLX15, DLM11, SVJ15, CB17], build an envelope for
the input model by using purely geometric approaches. In these works,
they address the cage construction in a fully automatic manner, therefore
such methods do not provide to the animators the adequate degrees of
freedom to realize the animation. The main limitation of the geometric
approaches is that they may discard the semantically important parts of
the input model, as well as, refine too much some areas that do not require
such level of refinement.

In contrast to these approaches, Le and Deng [LD17] propose an
interactive approach for cages construction. The user sketches a set of
planes, in correspondence of which the cage will be refined. The main
limitations of this work are: (1) the location of the handles is restricted to
stay on the planes sketched by the user, therefore it can cause some issues,
for example impeding the separation of certain parts of the input model
or creating self-intersections hard to be fixed by the user; (2) sketching
planes to refine the cage can still be hard for non-expert users.

Relatively few works investigate the use of skeleton as a mean to build
the cage. In [JZvdP∗08, YCSZ13] the cage is built automatically starting
from a set of predefined templates associated to each joint of the skeleton
provided as input. Their goal is to use such cage to improve skinning, thus
avoiding well-known artifacts. The main limitation is the limited number
of existing templates, hence the number of joints it can handle; Another
limitation is that such methods do not handle models with arbitrary
complex geometry.

In the light of these limitations, considering the existing duality of
cages and skeleton, and the fact that curve skeletons encode topological
information of the model from which they are directly derived, we developed
a method where the skeleton drives the construction of the cage. The
main idea behind our approach is that control cages can be designed

Sara Casti Cages and Skeletons in Digital Animation

Introduction 3

through a powerful descriptor, the skeleton, which encodes the higher level
of information, that geometric methods are not able to represent.

Building high quality cages is a very important and essential task in
the cage-based animation pipeline, but it is also extremely important to
provide an easy, lightweight and efficient way to manipulate the cage and
perform deformations. Chapter 5 of this thesis presents CageLab, a novel
tool to perform cage-based deformations.
This thesis is organized as follows:

In chapter 2 the background of handle based animation will be intro-
duced, where in section 2.1 the cage qualities, and the required properties,
will be discussed. In subsection 2.1.1 their paradigm of animation will
be described. In section 2.2 the concept of skeleton will be provided, in
particular focusing on curve skeletons in 2.2.1, and their properties that
made this kind of structure the most suitable to guide the construction of
the cage.

In chapter 3 the related works to the construction of cages and cage-
based deformations will be discussed. In section 3.1 we will talk more
about the related works of the generation of cages, where the consideration
of existing methods and their limitations will be thoroughly showed.

In chapter 4 our novel skeleton-driven approach for cage generation is
presented.

In chapter 5 our novel software tool for the visualization, editing and
generation of cage-based animation will be described.

In the final part of this thesis, in chapter 6, the final considerations
and the future works are presented and discussed.

Sara Casti Cages and Skeletons in Digital Animation

4 Introduction

Sara Casti Cages and Skeletons in Digital Animation

Background 5

Chapter 2

Background

Character animation is a fundamental task in Computer Graphics, which
plays a crucial role in contemporary computer games, animated feature
films and also virtual reality applications. Digital animation has received,
even in the research field, an increasing interest in the last years, because
there are still open problems and techniques which can be improved.

The main goals in computer animation are: (i) producing believable
deformations, taking into account physical effects, being accurate in case
of collisions, and representing secondary motions effects like fat jiggling
or cloth movement (ii) simplifying the manual work, and (iii) keep the
real-time interactivity during the animation. To realize high quality
deformations these requirements, which are essentially in conflict, should
be satisfied, therefore a trade-off between believability and performances
is necessary.

An articulated 3D model is represented as a polyhedral mesh, generally
composed by triangular or quadrilateral faces; the model geometry can
be obtained through acquisition, for example by physical scanning, or it
can be modeled by an artist with professional tools like Maya, Blender or
3DStudio Max etc.

The animation pipeline is labor intensive. To give the illusion of
movement, the animator has to produce a sequence of scenes which will
be displayed at certain interval rate. Therefore, the animator has to
define, for each articulated model, a series of its poses to design each
scene. More precisely, the animators manually specify the pose of the
character at finite set of frames, and the remaining poses are automatically
computed via interpolation [IMH05]. Several researches have focused their
attention on trying to automatize this job . Each one of these poses, can
be performed through the direct manipulation of the model geometry, or
through simplified structures, called handles. The former process is time

Sara Casti Cages and Skeletons in Digital Animation

6 Background

consuming and requires a lot of manual work, the latter is the system
mainly used in animation, called handle-based animation.
The handle-based animation pipeline is based on 3 different steps:

1. define a control structure (handles)

2. specify a set of weights for each handle and vertex of the character

3. manipulate the control structure to affect the character geometry,
updating the position of each vertex.

In the following paragraphs we will go through the details of each step.
In the first step, the animator defines a control structure, which can be

designed inside, around or on the model to deform. This control structure
is composed by geometric primitives, called handles, which are manipulated
by the user. The main types of control structures are points, skeletons and
cages; their handles are respectively points, bones and vertices. They have
increasing geometry complexity. Each one has its strength and limitations,
thus the animator choose the most appropriate to achieve a particular
kind of deformation. The control structure design is still a challenging
problem: in section 3.1 we will go through the methods to design such
structures.

Once this control structure is designed, a relation between the character
and this structure has to be defined. The deformation technique establishes
the way the character skin moves, according to the handle movements. The
process of defining how the geometry of the articulated model is deformed
in function of the deformation primitives is called skinning. The character’s
geometry may be arbitrary complex, but as long as the geometry of the
handle is simple, the resulting deformation of the character is fast.

In the second step, for each handle of the control structure and each
vertex of the character geometry a weight is defined. The weights can be
automatically computed or manually painted by an artist. In chapter 5
we will see a novel research oriented tool to automatically compute and
visualize weights to perform cage-based deformations.

The third step is the deformation: once the weights have been defined,
the artist manipulate the geometry of the control structure, moving the
position of the handles. The position of each vertex is updated according
to the transformation applied to the handles, thus obtaining the desidered
pose wanted by the animator.

Each vertex v of a shape’s surface (or skin), is updated as a new
position v′ as a weighted combination of affine transformations:

v′ =
∑

j

ωj(v)Tjv

Sara Casti Cages and Skeletons in Digital Animation

Background 7

where Tj is the transformations which is specified by the animator in
the third step.

Figure 2.1: From the left to the right, the steps of the handle-based
animation pipeline are shown. Image courtesy of [Jac15]

The research in this field has focused on finding which parts of the
pipeline are the most time consuming, and based on this consideration,
define methods to automatize these steps.

2.1 Cages

A cage is a type of control structure which is designed to be outside the
model.
More precisely, a cage is a close polyhedron
containing the character shape, which means
the character is bounded by the cage. It can
be considered as a low resolution version of
the character. In [NS13] a detailed survey on
cages is presented.

The deformation technique which involves
this control structure is known as cage-based
deformations. In the cage-based deformation
setup, the cage vertices (handles) are used to
create the deformation and propagate it to
the character skin by using the barycentric
coordinates as weights. We will see details of
this technique in section 2.1.1.

Cage-based deformations are directly de-
scendant of Free Form Deformations (FFD) where the manipulation of the

Sara Casti Cages and Skeletons in Digital Animation

8 Background

vertices of a control lattice provide an intuitive and smooth deformation
over the character skin. In spite of its benefits, this structure is not flexible
enough to realize more accurate deformations. On the contrary, cages are
characterized by topological flexibility, whose means adaptability in terms
of the representation of the shape embedded inside the cage. To better
explain the concept of flexibility, we can imagine to deform the fingers,
the legs or the tail of an articulated model. Roughly speaking if there is a
part of cage geometry wrapping these portions of the model, the animator
can deform this part, which would have been impossible with lattices.

Cages are in general more complicated than the other control structures
(skeletons and points). Not only they have a more complicated structure,
they also have some requirements to be strictly fulfill. A detailed discussion
on these properties can be found in [SVJ15, LD17, NS13, JDKL14a]. These
requirements are not just advised, but they are strictly mandatory. Some
of them are necessary to guarantee the resulting deformation is properly
working. The properties a cage should satisfy are:

• be as coarse as possible, meaning that the number of the cage
vertices is the lowest possible;

• be an envelop for the model without intersecting it. This
means there are not interpenetrations between the cage and the
character. (strict constraint)

• be shape-aware and deformations-aware, which means that
the cage should adhere to the shape and have the handles in corre-
spondence of the part of the model the animator would bend

• be homotopic to the shape, which means they should reflect the
shape topology

• tight bound to the geometry of the model, which means that
the handles (cage vertices) should be as close as possible to the
surface of the model.

• be symmetric aware, which means the cage should reflect the
symmetries of the bounded model.

Satisfy all criterion together make the cage design quite complicated.
Moreover, some of the above mentioned requirements are in conflict each
other, thus is impossible to guarantee they are all perfectly satisfied (for
example a coarser cage will not tightly adhere to the shape). Additionally
to this, some properties are not well-defined, for example where the handles
should be placed depends on the user will and it is not always well-known.

Sara Casti Cages and Skeletons in Digital Animation

Background 9

2.1.1 Cage-based deformations

Cage-based deformation techniques can be considered as an evolution of
the lattice-based freeform deformation, where the regular control lattice,
is substitute by a polyhedral mesh, the cage, which better approximate
the character topology. Between the cage and the character there is a well
defined relationship, which allows to control the volume inside the cage.
When the deformation is applied to the cage, it is also propagated in its
interior, thus affecting the volume, and therefore any object it contains (the
character). This procedure allows to use control handles (cage verteces)
to deform whatever complex model inside the cage. More precisely, in
cage-based deformations, the position of the model vertices are expressed
as affine sum of the cage vertices. Let us denote as M the model to be
deformed, and C the cage. M is a polyhedral mesh and C is a coarse
triangle mesh enveloping M. The deformation formula is the following:

pi =
∑

l

ωl(pi)cl

where pi is a point belonging to the M, cl is a point belonging to C,
and ωl(pi) is the weight function applied to the model vertex pi and the
cage vertex cl.

The weights are calculated once in pre-processing, thus the model
deformation can be performed in realtime. The weight values differ for the
barycentric coordinates definition used to calculate them. As we will see in
section 3.2 each barycentric coordinates definition has different properties.
To guarantee the deformation will be natural and intuitive, some of these
properties have to be satisfied:

Ensure continuity all over the domain The deformation domain is
the space region influenced by the cage. Deformation needs to be
well defined inside the mesh volume, for this reason is required that
the cage totally envelope the character to be deformed. Even, the
Barycentric Coordinates must be well defined (ensuring continuity all
over the domain) and they should be smooth, which means continuity
at first derivatives.

Affine invariance A curve is affine invariant if the coordinate system
can change, without affecting the relative geometry of the curve.
This mean that the geometry of the curve remains consistent when
the curve is rotated, scaled, or translated. In mathematical term
ϕl(pi) = 1 that implies

∑
ϕl(pi) = 1 for all points pi of domain.

Local deformation the vertices influence is restricted to their neighbor-
hood. In this way, a control point (cage vertex) must interrupt the

Sara Casti Cages and Skeletons in Digital Animation

10 Background

influence of other control points over the part of the cage volume
that should be over its influence.

Conformality is an important property that applies local transformation
preserving shape and surface details, without lose shape semantic.

Positiveness The coordinates can assume positive values in the entire
domain, or they can be negative. If this is achieved, deformation
will be more intuitive.

Low computation time One of the main goals in animation is produc-
ing believable deformation but also being real-time interactive. In
cage-based deformations setup the deformation can be performed in
real-time: the more expensive part is the coordinates computation,
but since it is performed once in preprocessing, the deformations are
performed in realtime.

Figure 2.2: Example of cage-based deformations of the armadillo model.
Image courtesy of [JSW05a].

Concerning these properties, the coordinates definitions differ in defor-
mation domain, coordinates values (positive or not), and the capability to
preserve the shape details. Among coordinates the ones which produce
the most intuitive and believable deformation are the Green Coordinates.
They overcame the major limitations of the other definitions: they are
characterized by a local domain, their coordinates values are non-negative
and they can preserve the model shape and its surface details. In fact, the
Green Coordinates formula is slightly different from the general one. They
add a weight function defined over cage faces which allow to preserve the
surface details. The Green’s formula is the following:

pi =
∑

l

ωl(pi)cl + φk(pi)sktk

Sara Casti Cages and Skeletons in Digital Animation

Background 11

where φk(pi) is the weight computed for the cage faces, sk is the scaling
factor representing the stretch of the face tk during the deformation, and
tk is a face of the cage.

2.2 Skeletons

Skeletons are the other control structure which is broadly used in the
animation pipeline. The concept of skeleton is relatively simple and
intuitive: in nature, the invertebrates, like humans and animals, have a
inner structure called skeleton, which drives and controls their motion.
Analogously, in computer animation, the skeleton is a inner structure
composed by bones and joints, through which the animator control the
character movements, and properly defines a set of its poses. Traditionally,
animators construct such skeleton as a 3D model defined as hierarchy
of line-segments, which is a tree where nodes are called joints connected
by one, two or more segments, called bones. Generally, skeletons are
constructed as parent-child relationship, where each joint is defined as
relative transformation from the father.

Figure 2.3: Example of animation skeleton. Image courtesy of [BP07a]

In the skeleton-based skinning setup, the bones and joints are the
handles which are used to deform the character skin. The deformation
is computed making use of the so called skinning weights, which can be

Sara Casti Cages and Skeletons in Digital Animation

12 Background

automatically generated or manually defined by the animator. Among
the techniques that make use of animation skeletons in order to perform
skin deformation, the most widespread ones are the Linear Blend Skinning
(LBS) and the Dual Quaternion Skinning (DQS) [KCvO07]. There exists
other techniques not only based on geometric approach like the ones
aforementioned. Detailed surveys of skinning methods can be found
in [RF17] and [JDKL14b]. Linear blend skinning is the standard De facto
in the entertainment industry. In applications like video games, there
should be a trade-off between visual realism and speed of user interactions,
and since they require realtime interactivity, they strongly favour for
the speed. In the LBS, the skeleton handles are represented as spacial
deformation matrix Tj and the position of the character vertices is updated
using this formula:

vi′ =
∑

j

ωi,jTjvi

where vi′ represents the deformed position of the i-vertex of the charac-
ter, Tj is the transformation of the j-th skeleton handle, ωi,j is the weight,
namely the amount of influence, of the j-th skeleton handle over the i-th
vertex of the character.

In DQS, instead of using a rigid transformation matrix to perform
deformations, it makes use of the dual-quaternions theory. Both methods,
respectively, present two well known artifacts: “candy-wrapper” and “joint-
bulging”. Researches in this field have focused on modifying the skinning
to adjusting these artifacts [MZS∗11]; proposing novel skinning algorithms
to overcame the well-known issues of this animation stage [KCvO08],
[VBG∗13]; automatize traditional animation pipeline, but at the same
time, keeping realism and realtime performances [JBK∗12].

2.2.1 Curve Skeletons

Figure 2.4: Example of curve skeleton extracted through mesh contraction
of the input shape. Image courtesy of [ATC∗08]

Curve Skeletons are a set of mono-dimensional curves meeting together
at branch points, which are meant as a compact, abstract representation
of the shape. They are very good shape descriptor because they essentially

Sara Casti Cages and Skeletons in Digital Animation

Background 13

capture the topology of the underlying shape. These properties make the
skeleton beneficial to many applicative fields, including animation.

The concept of curve skeleton directly derives from the concept of
Medial Axis Transform, which has been extended in 3D as the locus of
center of the maximal spheres inscribed in the shape M. Although a
rigorous definition of such skeleton is still missing, it can be intuitively
defined as the medial path of the medial axis of a 3D shape.

In the state of the art there are several different approaches to au-
tomatically extract curve skeletons from the shape [ATC∗08, TDS∗16,
LS13, LGS12, TAOZ12]. Alternatively, it can also be manually designed
through [BMU∗16].

In Chapter 4, we exploit curve skeletons to guide the construction of
cages for animation.

Sara Casti Cages and Skeletons in Digital Animation

14 Background

Sara Casti Cages and Skeletons in Digital Animation

Related works 15

Chapter 3

Related works

Cage-based deformation is is a well-known animation technique, which
is one of the most active research subjects in both geometry modelling
and computer animation. It involves two main sub-problems: generating a
well-shaped cage around the character to be animated, and defining a set of
smooth barycentric coordinates that govern the deformation space [NS13].
Since this theses will mainly focus on cages and their paradigm of animation,
we will see all works are related to cage generation methods and cage-based
deformation techniques. In the following sections we will have an overview
of the methods have been developed to simplify the design of the cages for
animation and then the literature of barycentric coordinates definition.

3.1 Cage generation methods

Traditionally, a coarse cage is constructed either manually, or by subdivid-
ing a bounding box of the model [SP86a]. In production, such a process is
a burden to the professional artists as it requires a significant amount of
tedious manual labor, usually taking several hours. Furthermore, naive
bounding box subdivision cannot capture the details of a complex model
such as fingers, and garments. Many techniques have been proposed to
generate cages, which can be classified into automatic and interactive cage
generation techniques.

3.1.1 Automatic cage generation.

Cages can be considered as a simplified version of the original model
[SGG∗00]. For this reason, many of the fully automatic techniques, which
have been proposed, focused on building a cage as a decimation of the

Sara Casti Cages and Skeletons in Digital Animation

16 Related works

input model.

Based on mesh simplification

To this class of methods belong [SVJ15, DLM11, BCWG09]. In [BCWG09],
Ben-Chen et al. employed simplification envelopes [CVM∗96] to develop a
heuristic method for automatic cage generation, which works as follow: (1)
from the input shape it generates a set of points with normal directions
which represent the shape. (2) then, it creates an envelope E of the input
shape, by applying a reconstruction algorithm such as [BKBH09] to the
points and normals computed in 1; (3) the envelope E is simplified, within
a tolerance ǫ; the more the offsetting is iterated, the most is coarse the
cage. They iteratively repeat these 3 steps (envelope-simplify-offsetting
the simplified envelope) to get the cage. Their goal is to use such cage for
deformation transfer. So they do not take into account some of the cage
desired properties.

Edge collapse techniques have also been used to generate cages automat-
ically. Deng et al. [DLM11] built a coarse cage by simplifying iteratively
the input model with quadratic error metrics, then two scalar functions,
about curvature and face normals, are used to maintain similarities with
the input model; finally self-intersetions are removed from the coarse cage
using Delaunay partitions. During the simplification, their method keeps
checking whether the current coarse cage meets user’s constraints (like the
vertex amount, or the tolerable error, etc.), but the requirements specified
by the user may not always be satisfied. They generate coarse cages
enveloping the input model and without self-intersections. Unfortunately,
the effectiveness of this approach significantly decreases when handling
complex mesh models, therefore, their cages cannot reflect all joints of the
input models exactly.

In [SVJ15] a set of nesting meshes are build, where each layer is coarser
then the previous one and it fully encloses without intersection that layer.
Their method rely on a sequence of decimation of the input model, a flow
to shrink and inflate the meshes and a conctact-aware optimization steps.
Their method produce bounding meshes, with different scales, but since
they are not designed to be part of the animation pipeline, the handle
position in their cages do not take into account any semantic information.

Based on mesh voxelization

Another way to automatically generate cages is based on mesh voxelization.
Xian et al. [XLG09, XLX15] proposed a voxelization-cage from a dense
mesh. In the first approach, they compute the bounding box of the dense
mesh, then they voxelize it, identifying the feature voxels, and calculating

Sara Casti Cages and Skeletons in Digital Animation

Related works 17

a tri-value distance field; they extract and triangulate the outer faces of the
feature voxels; and, finally, they perform a smoothing of the cage, based
on mean curvature flow. Their method creates effective cages in most
cases, their bounding cages can keep the topological structure and major
geometric features of the original mesh model. However, the topology of
the resulting cage relies on voxel resolution, and the resulting cages are
not compliant with the articulation system of the character.

An improved version of these works, was introduced in [XLG12], in
which the cage was built for an input mesh by generating an oriented
bounding box (OBB) for each mesh part and then registering the OBBs
together. However, the OBB is too rigid to provide the desired control in
the joint areas, where the deformation can be complex.

Figure 3.1: Cages obtained through geometric approaches: (a) [DLM11],
(b) [XLG09] and (c) [XLG12].

Recently, Calderon and Boubekeur [CB17] presented a bounding shape
approximation algorithm, which takes as input an arbitrary surface mesh
and generates a bounding proxy which is tightened on the input. Despite
their method is automatic, the user can adaptively control the geometry
of the proxy scale through a scalar field and with a virtual brush, refining
some areas of the bounding shape. Although the user can refine the cage
using a brush, the main drawback of their method is that the cage miss the
semantically important parts of the 3D model, which can be indispensable
for a certain animation.

These methods are purely geometric, and tend to produce sub-optimal
cages not always suitable for animation. In fact, control points may be
badly positioned with respect to the bending points of the character, and
may prevent to realize certain poses.

Sara Casti Cages and Skeletons in Digital Animation

18 Related works

Skeleton based

In order to generate cages with more awareness of the skeletal structure,
template-based techniques have been proposed [YCSZ13, JZvdP∗08]. They
reuse skinning templates, where the outside cage is constructed by piecing
together the predefined templates. Although these methods can construct
cages automatically for character animation, they are usually limited in the
number of joints they can handle, and they do not scale on complex shapes
with arbitrary topology. Chen and Feng [CF14], substituted template cages
by planar cross-sections locally orthogonal to the skeleton. Restricting
cage vertices to planar cross-sections may easily lead to self-intersections
in cages for complex characters, or human-like characters not posed in the
classical T-pose.

Various works addressed the problem of producing a sequence of cage
motions to compactly encode an animation sequence [CFB16, CF14,
TTB12, CHSB10] or video-based animation [Sav16]. This latter prob-
lem is orthogonal to the one we address in this work, with almost no
algorithmic overlap.

3.1.2 Interactive cage generation

Interactive methods allow the user to interact with the system and choose
the cage topology, thus generate cages that are dedicated to the needs of
the artist/animator. The system we propose belongs to this category.

The state of the art of this class of methods is the work proposed by Le
and Deng [LD17]. They propose an interactive tool based on user-defined
planar cross-sections. This approach requires the user to position and
orient planes over the model from which the cage is inferred. Even though
it significantly reduces the time required to build the cage, it remains
time consuming and it can still be hard for non-expert users to sketch
the planes and build the proper cage. Moreover, the handle locations are
restricted to be on the planes sketched by the user. This may limit them
to properly adapt the cage to the underlying model, for example impeding
the separation in certain parts or it can create self-intersecting cage, the
user is not able to fix.

Skeleton-induced semantics

The relation between skeletons and the logical parts of an object have been
exploited in a number of previous works, involving applications such as
shape recognition [KCATCO∗10, BMSF06], consistent mesh partitioning
[ZYH∗15, MPS06], and re-meshing [LAPS17, LMPS16, ULP∗15]. Our
work has been inspired from these latter works. We have investigated, the

Sara Casti Cages and Skeletons in Digital Animation

Related works 19

possibility to use skeleton induced semantics in the generation of cages for
animation. However, due to the different constraints and goals, none of
these approaches are directly applicable to the cage generation context.

3.2 Cage-based deformation.

First researches in this field were done at the beginning of digital film
animation. The first method developed by Sederberg and Parry [SP86b] is
the Free Form Deformation (FFD), which uses three dimensional control
lattices, the primordial cages. This technique allows to smoothly deform
the character through the lattice, but it is not flexible enough to realize
complicated deformations like legs or arms movements. An extension of
this work was proposed in [MJ96], and consists in recursively subdivide of
the control lattice to obtain the topological flexibility needed to effectively
deform the character.

Since the control lattice can hardly fit an articulated model, even
combining sever lattices, a cages and their deformation technique have
been developed. Cage-based animation can be seen as an evolution of FFD
methods, where the lattice is substituted by a polyhedral mesh, the cage.
Cages allow for a better approximation of the digital character at a far
lower complexity than lattices. A number of desirable properties for cages
are listed in section 2.1, whose ensure the deformation will be optimal.

In order to obtain this deformation, there must exist a well defined
relationship between the cage surface and its inside volume. This is done,
defining a set of coordinates as weight functions. These coordinates should
have some important properties, a detailed description of these qualities
can be found in 2.1.1. Barycentric coordinates realize the connection
between a character and its cage. They were first introduced by Möbius in
1827, and have been subsequentially generalized to 3D in many ways [Flo03,
ZDL∗14, HS08]. Mean Value Coordinates [FKR05, JSW05a, FHK06] were
the firsts to be introduced. They are generally smooth and well defined,
but suffer from two drawbacks: they are not very local, and they may be
negative for concave cages [JMD∗07], leading to non intuitive deformations.
Harmonic coordinates [DM06, JMD∗07] were proposed in alternative, and
effectively address both issues, being more local and guaranteed positive
inside any cage. For completeness, in [LKCOL07] Lipman et. al proposed
an evolution the of Mean Value Coordinates method which solves the
negativity issue using a GPU visibility test. A step forward in cage based
animation was achieved one year later with Green coordinates [LLCO08],
which offer better preservation of surface details under deformations,
producing more realistic animations. They use not only vertices but also
cage normals, and relax the constraint of having the character completely

Sara Casti Cages and Skeletons in Digital Animation

20 Related works

inside the cage. In recent years, various biharmonic coordinates [JBPS11a,
WPG12] and local barycentric coordinates [ZDL∗14] were introduced,
offering better locality than previous methods. In particular, bounded
biharmonic coordinates [JBPS11a] received a lot of attention, because they
offer for the first time a unified framework were cages, skeletons and point
handles co-exist in the same deformation space.

Sara Casti Cages and Skeletons in Digital Animation

21

Part I

A Novel Approach for

Cage Generation

Sara Casti Cages and Skeletons in Digital Animation

23

Skeletons and control cages are certainly the most widely used tech-
niques to pose a digital character, enabling its animation [JBPS11b]. In
complex animations, high-level motions (e.g. posing the limbs of a char-
acter) are often enriched with secondary effects driven by the movement
itself, such as the swish of a cloak or the jiggle of a body part. While
skeleton-based animation is perfectly suited to control primary motions –
such as posing the limbs of a character – cage-based animation provides
a more flexible tool, which is, overall, better suited for secondary effects
driven by the movement itself. In cage-based animation, the artist manip-
ulates a coarse control mesh containing the character: the space enclosed
by the cage, hence the character itself, are deformed by moving the cage
vertices.

This part of the theses will analyze, discuss and propose a solution for
one of the two big sub-problems that cage-based deformation technique
involves: the cage design. Although, apparently this can appear as a trivial
problem, it is not so easy to address. Cages are intrinsically more complex
to create than skeletons. Well established properties have to be fulfilled.
A detailed discussion on these attributes can be found in the section 2.1.
Summarizing, the properties which influence and in a certain way limit the
construction of the cage are: (i) the cage must tightly envelop the original
model without either intersecting it, or self-intersecting; (ii) the cage must
be animation-aware, i.e. its control nodes should be close to the parts of
the model one would like to deform or bend; (iii) the cage must be coarse
enough to be easily manipulated, yet fine enough to capture the necessary
details, thus it might need variable resolution; (iv) the cage must endow
the symmetries present in the model.

The properties required to properly build a cage for animation purpose,
make the design of that cage particularly hard. In the view of these
requirements, building a polyhedral mesh which satisfies all constraints is
not obvious.

Most often, cages are hand-made and their creation may require several
hours of extensive work. Moreover, since it involves the use of professional
modelling tools, like Maya, Blender, 3DStudio Max, it consequently require
skilled artists as cage designer. It is thus important to provide automatic
or semi-automatic methods to generate an initial coarse cage satisfying
the construction properties, letting the animators’ efforts concentrate only
on the refinement stage. As seen in section 3.1 several works attempt to
automatically build such structure. The automatic approaches are purely
geometric: they rely on the character pose, and generate a cage to fit
it, thus ignoring any possible semantics associated to its movement. For
instance, when a human-like character is in the canonical T-pose, limbs are
straight and purely geometric approaches may misplace or completely miss

Sara Casti Cages and Skeletons in Digital Animation

24

Figure 3.2: Left: a purely geometric segmentation obtained with a state-
of-the-art method [ZYH∗15] does not capture bending junctions between
disjoint semantic parts (neck, elbows, knees, wrists, joints of fingers and
toes). Right: in our interactive system the user manually selects bend-
ing points, inducing an animation-aware semantic decomposition of the
character.

important bending points, such as knees and elbows, not to mention finer
details like fingers, jaws, or eyelids (Figure 3.2). Likewise, for invertebrates
such as the Octopus in Figure 4.21, limbs must be allowed fully flexible
motion: in this case, the complexity of the cage depends on the poses the
character will assume during the animation, and this is something that
cannot be inferred by geometric analysis of a static pose.

Semi-automatic approaches let the user specify some constraints, en-
abling artistic touch and customization of the process. The effectiveness
of a method in this class is thus assessed by the trade-off between the
amount of necessary user effort and the level of control allowed during cage
construction. Ideally, one should aim at maximum control with minimal
effort. Notice that having the user in the loop is not a way to reduce
the algorithmic complexity, but rather an additional value that cannot be
achieved otherwise.

In this perspective, we propose a skeleton-driven method that lets the
user address shape-awareness by controlling the topology of the coarse cage
in an extremely simple way, while automatically fulfilling the requirements
outlined above. The skeleton can be either an animation skeleton (i.e., a
hierarchy of rigid bodies representing joints and bones), or a geometric

Sara Casti Cages and Skeletons in Digital Animation

25

one, which can be either automatically extracted with a state of the art
method [TDS∗16, LS13, LGS12, TAOZ12] or manually crafted [BMU∗16].
The user is just required to select a few bending nodes on the skeleton
of the character, while a corresponding segmentation of the shape and a
coarse cage coherent with it are automatically generated.

We address all the requirements outlined before. In order to fulfill
requirement (i) our method relies on a harmonic field defined inside the
shape volume. We use it to propagate cutting surfaces from the interior
of the character to its skin, enabling a robust tracing of non-planar cross
sections that adapt to the local shape of the character (Figure 4.4). This
approach overcomes the burden and the limitations of previous user-
assisted methods, based on cutting planes [LD17], while providing a robust
placement of vertices of a tight cage, which is finally inflated just enough
to eliminate intersections. The structure of the input skeleton, as well
as the distribution of the bending nodes, totally determine the coarse
topological structure of the final cage, thus fulfilling requirements (ii) and
(iii). Finally, we address requirement (iv) by exploiting the work of Panozzo
et al. [PLPZ12] to evaluate model symmetry. We rely on such information
to find a consensus between symmetric cuts and build a symmetric cage.

The pipeline of our method is summarized in Figure 4.1: starting at
the initial mesh with an underlying skeleton (a), the user selects bending
nodes (b); cutting surfaces across bending nodes are computed, and cross
polygons are extracted from them, which conform to the desired cross
section of the cage, as well as to the symmetry of the object (c); an initial
tight cage is obtained by connecting vertices of the cross polygons (d); that
are used to define the topology of the cage (c), which is inflated in order
to approximate the character shape (d), and finally the cage is inflated
and adjusted to avoid intersections (e). Our main contributions are in
steps (c) and (d) of the pipeline, which both rely on the harmonic field
mentioned above; we also contribute for a pre-inflation in step (e), which
is necessary to enable the Nested cages by Sacht et al. [SVJ15] to perform
final inflation. Besides, we provide a complete working tool that requires
a level of interaction as simple as the one in step (b). In Section 4.2, we
also show that a fully automatic initial placement of bending nodes is
possible, thus providing a fully automatic initial cage, which can be edited
and completed by the user at will.

Our method enables the generation of high quality coarse cages with
controlled topology, also for characters which are not given in the standard
T-pose (see examples in Figure 4.21). Our bounding cages preserve all
model features captured by the underlying skeleton, as well as all user
selected cross sections, thus providing a desired/effective shape abstraction
for animation purposes.

Sara Casti Cages and Skeletons in Digital Animation

26

The following chapter (Chap. 4) will discuss and present the proposed
method, with a detailed overview of each step of the pipeline. In section 4.1
every step of the method is presented; section 4.2 describes a simple
heuristic to automatically detect the set of bending nodes which determine
the resolution of the cage; finally section 4.3 presents the results obtained
through our method, the comparison with the existing related methods,
the times and the evaluation of the achievable deformation. The work
presented is currently under submission to a peer-reviewed journal with
relevant impact factor for the community.

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 27

Chapter 4

Skeleton-based Cage

Generation

4.1 The method

Figure 4.1: Our pipeline starts from a digital character and its curve
skeleton (a). The user manually selects nodes where bending occurs (b,
red dots). Symmetric cross sections at bending nodes are obtained from a
harmonic field in the volume (c). An initial cage is created by connecting
the cross sections (d). The cage is finally inflated to accommodate the
character without intersections (e).

The pipeline of our method is described in Figure 4.1 and has been
summarized in the Introduction. In this section, we will go through the
details of each step.

Our input consists of a triangle mesh M representing the digital

Sara Casti Cages and Skeletons in Digital Animation

28 Skeleton-based Cage Generation

character, together with its line skeleton S. We just require the skeleton
to be fully contained in the volume bounded by the mesh. Nodes of S that
have more than two incident branches, or just one incident branch, will
be called branching nodes, and leaf nodes, respectively. Additional nodes
selected by the user along the branches of the curve skeleton will be called
bending nodes.

Roughly speaking, the cage will be made of tubular structures, one for
each branch of the skeleton, connected at polyhedral joints surrounding
the branching nodes of S. Each tubular structure will have a polygonal
cross section, and it will be subdivided transversely at bending nodes. For
simplicity, we always adopt quadrilateral sections, as in [LD17], but the
method can support generic polygonal sections, possibly different for each
branch. Note that, although the boundaries of sections may usually be
nearly planar, their corresponding cutting surfaces are always forced to
pass through the central node of the skeleton and may result strongly
non-planar. Non-planarity will usually be emphasized about leaf nodes
and where relatively thin limbs are attached to a larger body (e.g., armpit,
groin). See Figures 4.1 and 4.3.

4.1.1 Pre-processing: guiding field

Our pipeline has a pre-processing step in which we compute the field which
will drive the creation of the cage. Figure 4.2 explain this pre-processing
step.

Given the surface mesh M and the skeleton S, we define a volumetric
field that is propagated radially from the skeleton to the outer surface.
Such a field is inspired by the radius component of the cylindrical parame-
terization described in [LAPS17], and will be used later on to partition
our cage.

In order to compute this field, we first generate a tetrahedral mesh
whose outer surface is perfectly conforming to the surface of the character
and embeds the skeleton, making the skeleton edges and points being part
of the tetrahedralization, as chains of internal edges of the volumetric mesh.
Then we compute a harmonic function f defined over the volume spanned
by the tetrahedral mesh, by resolving the Laplace problem △f = 0, subject
to Dirichlet boundary conditions

f(p) = 0 ∀p ∈ S

f(p) = 1 ∀p ∈ M.

The integral lines of f give us a robust way to project points from the

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 29

Figure 4.2: We generate a shape-aware harmonic field which evaluates 0
at the skeleton and 1 at the character’s skin. The integral curves of such
field radially emanate from the skeleton, traversing the interior volume
along a short trajectory. We exploit this property to project points from
the interior to the surface, generating cross-sections that locally adapt to
the character’s shape.

inner volume to the surface. We will exploit this property to generate the
control polygons associated to each bending node.

Given any regular (i.e., non branching) point p on the skeleton, the
integral lines of f starting at p span a surface that cuts the volume
transversely with respect to S. We call this surface the cutting surface at
p. The cutting surface may bend according to the local shape of M in
the proximity of p, and it will intersect M at a ring made of points that
are “closer” to p than to any other point of S. These cutting surfaces will
provide a better alternative to the cutting planes used in [LD17].

This pre-processing step is computed off-line once, before any inter-
action occurs, and is used without modification in later stages of our
method.

Sara Casti Cages and Skeletons in Digital Animation

30 Skeleton-based Cage Generation

4.1.2 User interaction

The recognition of the features of a mesh is still a challenging issue, espe-
cially when the semantics underlying the feature definition is related to an
intrinsically not formalized context, as can be in the animation environment.
We seek a combined geometric and semantic
approach in which the topology of the cage
reflects the structure of the character that will
be animated with it. Embedding semantics
into the process allows us to keep the complex-
ity of the cage low (i.e., small vertex count)
and at the same time have all the necessary
degrees of freedom to animate the model. As
highlighted and explained in sections 2.2.1
and 3.1.2 the skeleton is a good shape de-
scriptor, effectively capturing the topology of
the shape of the underlying mesh. Similarly
to [ULP∗15, LMPS16, LAPS17] where the in-
put skeleton has been exploited to get informa-
tion on the high level structure, namely, how
many limbs, and how they connect to each
other, our approach takes advantage of this informations to build the cage.

The user refines this structure prescribing additional degrees of freedom
wherever necessary. Interaction is intuitive and happens in real-time. The
user is just asked to click on skeleton curves where bending may occur
(e.g., adding knees, elbows, wrists). This selection induces a partition of
the skeleton that will then be translated into the cage. The section 4.1.3
will explain how this is performed in our method.

User selected bending nodes will originate cutting surfaces, which
constitute a better alternative to the cutting planes used in [LD17]. In
fact, while cutting planes require accurate and tedious placement in 3D,
our non-planar cutting surfaces are determined solely from the bending
nodes and make our method quite tolerant against inaccurate user selection
(Figure 4.3).

It is noteworthy that, if the skeleton provided as input, is the curve
skeleton one, the initial partition (supplied by the skeleton topology) is still
meaningful; while, if an animation skeleton is provided, this partitioning
may or may not reflect the same structure. It’s up to the user deciding
whether the cage should be compliant with it.

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 31

Figure 4.3: Example of cuts induced by different selections of bending
nodes. The cyan pyramids approximate the cuts induced by the harmonic
field, while the dashed black lines represent the corresponding cuts induced
by a plane orthogonal to the skeleton and through the selected node. While
our cuts are all valid, the corresponding planes may induce inconsistent
cuts.

4.1.3 Cage generation

This section describes the core of our method. We start from the skeleton
S and the bending nodes added by the user, and we generate a coarse cage
that fits the input mesh M. Intersections between cage and mesh will be
removed in a subsequent step of the pipeline (Section 4.1.5). Let B be the
set of bending nodes selected by the user, and L be the set of leaf nodes
of S (i.e., terminal nodes of its branches). We jointly refer to B ∪ L as
control nodes. For each control node p, we create a cross polygon which
is roughly orthogonal to S and has its vertices on M. The cross polygon
gives the transversal section of the cage at p. We overcome previous
approaches [LD17] by using non planar cross sections, thus enabling a
more flexible caging process for complex geometries.

We first generate a sampling of the cutting surface at p by tracing a
number of integral curves of the harmonic field f . Notice that f is encoded
at the vertices of M and linearly interpolated inside each tetrahedron,
thus its gradient field is piece-wise constant. This fact may result in poor
integral lines that do not radially propagate in a uniform way, especially
if they are traced from the immediate proximity of S [MLP18]. To avoid

Sara Casti Cages and Skeletons in Digital Animation

32 Skeleton-based Cage Generation

Q
p

X

Y

G
p

p

0

1

Figure 4.4: Curved cuts are superior to linear cuts [LD17] as they better
adapt to the geometry of the character, avoiding intersections and ill-
defined cross sections (top left). We exploit the harmonic field f (left)
to define the non planar cross sections of our cages. For each control
point p we sample a ring locally orthogonal to the skeleton, and project
it on the surface along the integral lines of f (bottom right). We project
the resulting polygon Gp on the plane defined by its PCA, and find the
quadrilateral Qp that better approximates it (top right).

this issue, we sample seeds on a circle centered at p and locally orthogonal
to S, and we trace the integral lines starting at such seeds (see Figure 4.4,
bottom right).

The radius of the circle is a fraction of the radius of the maximal ball
centered at p and enclosed in M (we use 20% in all our experiments); the
number of sampled points is a non-critical parameter of the method (we
sampled 20 points in all our experiments).

The integral lines we trace meet the surface M at a finite set of points
Gp, which provide a discrete approximation of the intersection ring between
the cutting surface at p and M itself. We further approximate this ring

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 33

with a polygon having its vertices at some of the points of Gp. We describe
here a technique to generate a quadrilateral section Qp(q0, q1, q2, q3); it
is straightforward to extend it to a generic n-gon for any given n. The
figure 4.4 provide the graphical explanation of this procedure. We first
compute the PCA of Gp and we take the first two principal directions to
define a XY planar frame. We then project Gp to such plane and select
the four projected points that define the quad Qp that better aligns with
the planar projection of Gp. Let λ1, λ2 be the two positive eigenvalues
associated with the X and Y axes given by the PCA: we define q0, q1, q2, q3
as the four points that maximize the signed sums of per vertex coordinates,
weighted by λ1, λ2:

maxp∈Gp
+λ1px + λ2py

maxp∈Gp
−λ1px + λ2py

maxp∈Gp
−λ1px − λ2py

maxp∈Gp
+λ1px − λ2py.

Once the cross polygons have been generated for all points B ∪ L of
S, we build the tubular portions of the cage. We complete this tubular
portions by connecting quad sections pairwise and computing the convex
hull of the two cross polygons bounding it. Notice that the triangles
generated between adjacent pairs of quad sections are independent from
the others, thus avoiding the accumulation of torsion along the limbs of
the character, which is never present in our cages.

We finalize the topology of the cage by welding together the tubular
structures we have built so far about the branching nodes of S. We follow a
technique similar to [LD17], considering one branching node at a time and
projecting its incident quad sections to a sphere centered at the center of
mass of their vertices. The convex hull of the so projected point set defines
the connectivity of the cage around each branching node (Figure 4.5).

Even if not reported in [LD17], we observe that in some pathological
cases the convex hull algorithm may fail to define an edge for each of
the sides of the quadrilateral cross-sections, resulting in an invalid cage
connectivity. To fix this issue, in the cases it occurs, we add a Steiner
vertex at the midpoint of each missed edge, and iterate this operation until
all the edges of the involved quad sections are included in the convex hull.
Additional vertices can be easily removed in post-processing by iteratively
applying the edge collapse operator to the modified quad-sections, removing
all the edges that contain at least one Steiner vertex. The need for insertion
of Steiner points is very rare and we did not need it in any of the cages we
show.

Sara Casti Cages and Skeletons in Digital Animation

34 Skeleton-based Cage Generation

Figure 4.5: Correspondence between the bending nodes (red dots) and
the cross polygons (grey polygons) of the cage. Polyhedra join the tubu-
lar structures (blue) at polyhedra (green) about branching nodes of the
skeleton to form the tight cage (before inflation).

4.1.4 Symmetry

In the digital modeling pipeline, most of the times only half of a character
is explicitly modeled, while the second half is obtained by reflecting the so
generated mesh along a symmetry plane. In order to generate consistent
animations for both sides of a symmetric character, it is therefore important
to replicate such symmetries at cage level. Moreover, as explained in
section 2.1, having a symmetric cage is a desidered properties because
it improves the deformation quality. In order to automatically detect
extrinsic symmetry of the input model, we exploit the method described
in [PLPZ12], and we employ it, to get the symmetry plane and adjust the
position of cage sections and handles according to it.

Given the symmetry plane Π, extracted with [PLPZ12], we adjust the
cross-sections, previously computed, to be perfectly symmetric respect that
plane. Our strategy to symmetrize a cage works as follows. We consider

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 35

Figure 4.6: Symmetrizing a quad across the symmetry plane Π. Top: two
vertices of the quad lie to the left of Π, and the other two lie to the right
of Π – we impose symmetry of edges connecting vertices on the same side
of Π. Bottom: two vertices lie on Π and the other two lie on opposite sides
of Π – we impose symmetry between the vertices not lying on Π.

each quad section Qi and reflect it through Π, generating a target section
QΠ

i . We then find the quad section Qj that is closest to QΠ
i . Distance

between quad sections is computed point-wise; since the vertices of each
quad section are ordered, we test the four possible vertex pairings and
consider the one that minimizes the sum of pair-wise distances. If the
two sections are not equivalent (i.e. if i 6= j) we impose a symmetry
between them, by computing the average between Qj and QΠ

i , and we use
this average section and its reflected counterpart to substitute Qj and Qi,
respectively. If i = j, the quad section is traversed by the symmetry plane.
There are two possible cases, summarized in Figure 4.6: (i) Qi has two
out of four vertices on Π, in which case we symmetrize the pair of vertices
which are not on Π; (ii) none of the vertices of Qi is on Π, in which case
we symmetrize the two edges of the quad section, which do not cross Π.
Figure 4.7 shows a visual example of caging with and without symmetry
enforcement.

This approach can be easily extended to deal with any symmetric char-
acter given in general pose (which does not exhibit extrinsic symmetry), by
using the method for intrinsic symmetry detection described in [PLPZ12].

Sara Casti Cages and Skeletons in Digital Animation

36 Skeleton-based Cage Generation

Figure 4.7: A visual comparison between our cage without (left) and with
(right) symmetry enforcement on the Boy dataset.

4.1.5 Cage inflation

The tight cage we have built so far has its vertices on the skin M, as
shown in the image in the inset on the right. Although the vertices lie
on the skin, its faces are still deep inside of
M. Obviously, such cage can not be used,
as it is, for animation purpose since it does
not envelope the input model and there are
intersections between the cage and the model.
In the final step of our method, we pull the
vertices of the cage further out, ensuring that
none of its faces intersects M. We inflate
the cage using the Nested Cages expansion
mechanism [SVJ15].

This is all but straightforward, though.
Such a method is efficient and guarantees the
absence of collisions. However, as already ac-
knowledged by the authors, it may fail if the
tight cage and the skin are not sufficiently
close to each other (see Figure 4.8). In our
experiments, for the majority of the models,
this failure case was occurring, thus we develop an additional step, which
pre-inflate the tight cage before the final inflation with Nested cages.

This pre-inflation step is described in the following paragraph. We pull

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 37

Figure 4.8: Nested Cages [SVJ15] will fail without our pre-inflation mech-
anism. Even though the vertices of the tight cage are on the surface, its
faces are too far from the skin to support the mesh contraction, which is
at the basis of the Nested Cages algorithm. Antcat dataset.

the cage faces, which may lay too much inside the model, towards the
outer surface of M with a simple technique summarized in Figure 4.9.
We sample the faces of the cage and we project each sample onto M by
following the integral lines of the harmonic field f (Section 4.1.1). Samples
that are already outside the skin are ignored. For each face fi of the cage,
we take the sample s that lies farthest from its projection sp, and define a

face displacement vector ~fi = sp − s. Then, for each vertex vj of the cage,
we build a vertex displacement vector ~vj as follows:

• the direction of ~vj is the (normalized) average of the per face dis-
placements vectors incident at vj (Figure 4.9, left);

• the magnitude of ~vj is the length of the largest projection of the
same face displacement vectors on this direction (Figure 4.9, right).

Since every vertex of the cage is moving out from the surface of the
model, the cage could self-intersect during pre-inflation . This may happen
in the proximity of tiny features or small spacing between different parts
of the model. (see, e.g., the example in Figure 4.10). This issue is fixed by
adding a check of collision during the inflation (Figure 4.11). We check if a
face of the cage intersects any other face after pulling them outwards; then,
for each pair of intersecting faces, we move all their vertices a small step
towards their previous positions, and we repeat until no intersection occurs:

Sara Casti Cages and Skeletons in Digital Animation

38 Skeleton-based Cage Generation

Figure 4.9: Pre-inflation of the cage. Left: each face is assigned a displace-
ment vector that brings it closer to the skin. Right: such displacements
are averaged at cage vertices to pull them outwards.

Figure 4.10: Faces overlap after the projection step. The faces belonging
to the tail of the dragon overlap with the faces of the body.

the offset at each step is set as a small fraction of the displacement vector
~vj defined above. In all our experiments, this procedure was sufficient to
provide a clean input to Nested cages. In case final inflation still fails, in

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 39

Figure 4.11: Example of faces intersection: the two faces T1(A,B,C)
and T2(F,D,E) are projected. After projection, they became respectively
T1i(G,I,H) and T2i(J,L,K). Their projections partially overlap (the inter-
section area is highlighted in red in the figure). Once the intersection is
detected, we locally solve the intersection moving backward the vertices of
the two faces (G,I,H and J,L,K) until there do not intersect any longer.
The final faces are T1′ and T2′.

most of the cases the number of bending nodes selected by the user was not
sufficient to provide a fine enough articulation of the cage. This is easily
fixed with one more cycle of interaction. Note that although a symmetric
energy is presented in [SVJ15], the available implementation of Nested
Cages does not support symmetry. We therefore interleave cage inflation
and symmetrization (Section 4.1.4) of the cage to obtain the desired result.

4.2 Automatic placement of bending nodes

Although the method we are proposing is designed to be user-assisted,
we may also suggest an initial guess of bending nodes. The rationale
consists in placing bending nodes in correspondence of abrupt changes in
the local thickness of the shape (e.g where arms and torso meet). This is
a classical criterion for mesh segmentation [Sha08], and it is sometimes
sufficient to obtain a fully automatic construction of the cage. In most
cases, though, it just provides some hint to the user, as bending points may

Sara Casti Cages and Skeletons in Digital Animation

40 Skeleton-based Cage Generation

Figure 4.12: A collection of cages obtained by running our pipeline in fully
automatic mode. Boy, Scape, Horse, Homer and Animal datasets. Some
bending points may be either missing (e.g., ankles and knees for Homer),
or redundant (ankles for the humanoid, elbows for the animal, head for
Homer).

not match geometrically relevant features of the mesh. We propose here a
simple heuristic which exploits the curve-skeleton. Alternative strategies
to segment a shape based on its local thickness exist in literature and may
accommodate better results. We define a function over the curve skeleton

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 41

S

r(p) = Rad(p) ∀p ∈ S,

where Rad(p) is the radius of the maximal sphere centered at p, which is
fully inscribed inside the model. Function r is provided as a byproduct
of skeleton computation by several methods [LS13, LGS12]. In case it is
not available from the input, it can be easily computed by finding the
point on the character that is closest to p. We place bending nodes at
points of the skeleton where there is a large variation of function r. We
compute the first derivative r′ ad we find its critical points. To alleviate
sensitivity to the noise, we smooth function r′ before using it. From a
practical point of view, this method allows us to further speed up the
cage construction. Starting at the initial guess, interaction is limited to
adding/removing/displacing bending nodes. Despite its simplicity, this
strategy already allowed us to produce some quality cages without any
user interaction. See Figure 4.12.

Sara Casti Cages and Skeletons in Digital Animation

42 Skeleton-based Cage Generation

4.3 Results and discussion

We implemented our cage generation tool as a single threaded C++ appli-
cation and run our experiments on a MacBook Pro equipped with a 2,7
GHz Intel Core i5 and 8GB of RAM. In the context of the pipeline, we
have used a few well established techniques implemented in a variety of
publicly available libraries, specifically: Tetgen [Si15] for volumetric mesh
generation; CGAL [FP09] to compute convex hulls; Eigen [GJ∗10] to solve
linear systems; and CinoLib [Liv17] for mesh and scalar field processing.

We applied our caging tool to a variety of 3D models listed in Table
4.1, producing cages that fulfill all the requirements listed in [LD17, NS13]
and reflect the extrinsic symmetries of models. Skeletons were computed
using the implementation of [TAOZ12] available in CGAL, as well as other
automatic [LS13, LGS12] and interactive [BMU∗16] techniques. Galleries
of cages obtained with our method are shown in Figures 4.20 and 4.21, for
models with and without extrinsic bilateral symmetry, respectively. Notice
that we effectively deal with rather complex objects and poses, like the
Joker, the Octopus and the Dragon. In addition to that, we observed that
despite its natural ability to cage tubular shapes, also digital characters
with features that are not well described by a skeleton, such as the skirt
in Figure 4.18, are robustly handled.

Tubular shapes are ubiquitous in computer animation. Our skeleton-
driven approach makes the method naturally suitable to process such
shapes, even when semantic features at different scales are present (Fig-
ure 3.2 and 4.13).

Figure 4.13: Detail of the Armadillo hand. Since it is the skeleton which
drives the construction of the cage, it is possible to add or remove details
just adding or removing limbs in the skeleton provided as input. Two
possible cages are shown.

Despite the ability of the user to control the caging process by pre-
scribing bending nodes, an additional source of control is granted by the

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 43

skeleton itself, which sets the overall structure of the cage. Coarse skeletons
that do not catch all the tiny protuberances of a shape induce a simplified
cage (Figure 4.14), while finer skeletons are able to catch all the tiny
details of the character and enable an explicit control of such structures
for animation (Figure 4.15).

Figure 4.14: Models Warrok (top) and Ganfaul (bottom) contain spiky
elements or protrusions that are not captured by the skeleton. The close-up
(right) of the spiky elements in these models is shown. Our method is
tolerant to these features and builds a cage that correctly contains them.

Nevertheless, also digital characters with features that are not well
described by a skeleton, such as the skirt in Figure 4.18 and the hat in
Figure 4.1, are robustly handled. We also validated our cages by posing
digital characters using the CageLab tool [CCLS18]; some of the key poses
we generated are depicted in Figure 4.19.

Sara Casti Cages and Skeletons in Digital Animation

44 Skeleton-based Cage Generation

Figure 4.15: The Asian dragon model with two different skeletons: on the
left, a coarser cage is generated embedding all the spikes which are not
represented by the skeleton; on the right, a high-resolution cage captures
the finer protrusions (fingers, tail, horns) of the input model.

4.3.1 Comparisons

In Figure 4.16 we compare our results against state-of-the-art methods
for caging. Examples in the left column are obtained by combining
aggressive mesh decimation [GH97], followed by inflation with the Nested
Cages [SVJ15]. As expected, being based on purely geometric criteria, this
fully automatic method fails to preserve symmetry, it misses important
bending points, and it produces a highly irregular cage, yet with a larger
number of vertices than ours. In the middle column, we show results
obtained with the recent interactive method by [LD17]. This method
requires the user to define cutting planes that progressively partition the
model and define the cage cross-sections. Planes are designed with the
mouse, sketching segments on a 3D canvas. This operation takes minutes,
let alone further adjustments that may be necessary to solve intricate
configurations. Notice that the use of cutting planes limits the cage to
have flat sections and, as acknowledged by the authors, may produce self-
intersections that cannot be easily removed. We argue that our interaction
is faster, as well as more intuitive and robust. We only require the user to
click on the skeleton to locate bending points, an operation that can be done
in a few seconds (Table 4.1, Tui). Geometric complexity is automatically
addressed by our volumetric approach based on a harmonic field, which
naturally follows the shape of the character, introducing non-planar cross
sections wherever necessary (see, e.g., Figure 4.4).

Figure 4.17 shows a comparison with respect to the bounding shapes
produced by the recent automatic method presented in [CB17]. Although
such method is not meant to produce cages for animation, we notice that
they nicely enclose the characters in rather tight cages. However, as for
the other automatic method we compare with, the distribution of vertices
in such cages totally misses the semantics needed for animation. In [CB17],

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 45

coarser cages are also shown, which were not released in the public domain
for comparison. So we argue that they may possibly produce cages as
coarse as ours, but without considering a proper placement of control
points. Moreover, aggressive simplification of the envelope may change
the global topology of the cage, e.g., by joining two feet/legs if they rest
close to each other, as shown in several examples in [CB17]. This is indeed
a benefit for application in collision detection, while it makes the cage
no longer suitable for animation. Finally, in order to obtain variable
resolution, e.g., to build a cage that may control every single finger of a
hand, they need interaction with a virtual brush, which is probably heavier
than the placement of bending nodes in our method.

4.3.2 Timing

Processing times for the various models used in our experiments are
reported in Table 4.1. Pre-processing is performed once as the model is
loaded and times depend on the complexity of the input models, varying
between less than one second to about one minute in our experiments.
Roughly speaking, user interaction requires about one second per bending
node selected on the skeleton, making this phase about one order of
magnitude faster than user-assisted techniques based on cutting planes.
The construction of the base complex and its pre-inflation phases together
report times from less than one second to about three seconds for all
models, except the Tyra at high resolution, which requires almost 20
seconds. Overall, these phases are compatible with an interactive usage:
the topology of the cage is immediately visible on the base complex, and
the user is allowed to cycle on them to edit the bending nodes and correct
the cage after running the final inflation.

The final inflation with Nested Cages is computation intensive and
requires between 45 seconds for the simplest model to about 15 minutes for
the hi-res Tyra. Although this last phase is typically one-shot, long process-
ing times may be not compatible with practical usage. In order to bring
processing times to reasonable bound, even with high resolution characters
– such as the ones created with 3D sculpting tools like ZBrush [Pix07] – a
relevant speedup can be achieved by substituting the original character
with a proxy shape obtained via aggressive mesh decimation [GH97]. A
cage built upon a low-res proxy containing just a few thousands faces may
be inflated in less than a minute, yet giving a result quite close to the final
one. The full resolution character is eventually re-introduced for a further
step of inflation with Nested Cages, which takes in input the cage inflated
about the proxy. Thanks to this warm start in the final inflation, the total
time required with this techniques is much less than that the time spent
by the method running directly on the hi-res model.

Sara Casti Cages and Skeletons in Digital Animation

46 Skeleton-based Cage Generation

In Table 4.1 we report two examples of this approach. To give concrete
numbers, building a cage directly for the high resolution version of the
Gecko (∼75K tris) required 870 seconds, while the whole pipeline required
just 40 seconds on the low resolution proxy (1000 tris); with an additional
130 seconds for the final inflation, the cage was adapted to the hi-res model,
yielding a 80% speedup. With the more complex Tyra (200K tris),and a
relatively larger proxy (25K tris), we still get a 50% speedup.

The table 4.1 reports the times of each step of the pipeline in details.
Here are reported the informations presented in the table: Mv and Mf

are the vertices and faces of the input model; BN are the bending nodes
selected in the interactive stage; Cv and Cf are the vertices and faces of
the cage; Tpp is the pre-processing time; Tui is the user interaction time;
Tbc is the time required to build the base complex; Tinf is the time required
to inflate the base complex; Tnc is the time for the execution of the Nested
Cages algorithm; Ttot is the sum of the times in the previous columns
rounded to integer. Tnc∗ is the time for the final Nested Cages when the
model is used as a proxy for the hi-res model in the previous row. All
times are in seconds.

4.3.3 Deformations

To evaluate the effective quality of the cages generated with our method,
we tried their usability for animating digital characters. To this purpose
we used our tool CageLab [CCLS18] for cage-based deformations. The tool
has the implementation of two different barycentric coordinates: Mean
Value [JSW05b] and Green Coordinates [LLCO08]. We tried to use our
cages to reproduce the deformations obtained with manually generated
cages. In our experiments we derived several poses to simulate a possible
animation sequence. An example of the produced deformations is in
Figure 4.19. Even if a usability test is well beyond the scope of this paper,
based on these experiments we believe that the animations produced
with our cages are of good quality, and that our tool may be useful in a
professional animation setup.

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 47

Figure 4.16: Comparison between cages obtained with: aggressive mesh
decimation followed by inflation via Nested Cages [SVJ15] (left column);
interactive cutting planes [LD17] (middle column); our method (right
column). For each cage, we report vertex count.

Sara Casti Cages and Skeletons in Digital Animation

48 Skeleton-based Cage Generation

Figure 4.17: Comparison with [CB17] on the Boy, Beast and Animal
datasets. Our cages to the right.

Sara Casti Cages and Skeletons in Digital Animation

Skeleton-based Cage Generation 49

Figure 4.18: Cage of a woman with long skirt. Even if the skirt is not
properly caught by the skeleton, our algorithm is able to produce a quality
cage that tightly encloses it (see closeup).

Figure 4.19: Different poses of a horse obtained editing a cage produced
with our technique. For cage editing we used CageLab [CCLS18].

Sara Casti Cages and Skeletons in Digital Animation

5
0

S
k
e
le
to
n
-b
a
se
d
C
a
g
e
G
e
n
e
ra
tio

n

Model Figure Mv Mf BN Cv Cf Tpp Tui Tbc Tinf Tnc Ttot Tnc∗

Animal 4.12 19552 39040 16 84 164 6.74 15 1.02 0.29 813.26 836
Antcat 4.8;4.20 1550 3096 29 156 308 0.66 17.75 0.16 0.26 45.37 64

Armadillo 3.2 10002 20000 17 100 196 2.92 13.2 0.75 0.33 135.21 152
Asian Dragon 4.15 10000 19996 17 96 188 3.11 15.89 0.61 2.46 108.54 131
Asian Dragon 4.15 10000 19996 51 348 692 3.45 50.32 1.43 1.17 169.21 226

Beast 4.17 15122 30264 15 76 148 5.26 10 0.6 0.22 887.38 903
BigBunny 4.20 21763 43522 14 108 212 10.2 12.22 2.43 1.1 541.5 567

Boy 4.7;4.12;4.17 7502 15000 16 84 164 2.34 12.53 0.5 0.32 67.88 84
Cat 4.21 27246 54488 19 108 212 11.73 13.11 1.55 0.5 297.76 325

Dance 4.4;4.18 9971 19938 13 72 140 3.52 11.99 0.33 0.14 102.28 118
Dinopet 4.20 4500 8996 27 156 308 1 20.1 0.33 0.34 70.6 92
Dragon 4.21 5000 10000 22 124 284 1.47 14.58 0.35 0.2 109.7 126
Elk 4.20 23114 46228 15 88 176 7.14 11.2 1.29 0.14 170.12 190

Fertility 4.16 9994 20000 23 92 196 33.01 16.59 0.26 0.34 147 197
Ganfaul 4.14 14590 29192 15 76 148 4.12 12.54 0.58 0.29 491.32 509

Gecko (high) 4.21 37352 74700 24 120 236 12.55 14.54 1.96 0.68 840 870
Gecko (low) 4.21 500 1000 24 120 236 0.15 16.45 0.06 0.16 23.37 40 130

Hand 4.21 14347 28690 15 84 164 5.2 13.5 0.7 0.2 197.27 217
Homer 4.12 12997 25990 16 84 164 4.79 13.7 0.62 0.32 80.45 100
Horse 4.12;4.19 19850 39696 15 76 148 8.67 9.55 0.8 0.29 175.49 195
Joker 4.21 13328 26652 22 132 260 4.26 13.25 1.52 0.39 191.89 211
Lion 4.21 27899 55794 17 92 180 10.18 15.2 1.22 0.4 152.06 179

ManTpose 4.20 13356 26708 14 76 148 4.02 10.2 0.51 0.11 86.05 101
Octopus 4.21 10002 20000 47 224 444 3.09 30.13 0.76 0.51 62.61 97
Scape 4.5;4.12;4.16 6318 12632 15 80 156 1.19 12.6 0.2 0.11 62.94 77
Skater 4.20 13332 26660 14 76 148 4.59 10.26 0.68 0.18 112.23 128

Tyra (high) 4.16 100002 200000 33 184 364 54.99 22.1 17.51 1.65 886 982
Tyra (low) 4.16 12501 24998 33 184 364 4.56 22.45 1.41 0.67 386.48 416 90
Warrior 4.20 9474 18944 17 88 172 3.02 14.21 0.33 0.15 72.12 90
Warrok 4.14 23528 11746 19 96 188 3.11 18.25 0.43 0.26 666.74 689

Table 4.1: Size of meshes and timing for the whole pipeline (user-assisted cages only)

S
a
ra

C
a
sti

C
a
g
e
s
a
n
d
S
k
e
le
to
n
s
in

D
ig
ita

l
A
n
im

a
tio

n

Skeleton-based Cage Generation 51

Figure 4.20: A collection of cages for models with extrinsic symmetry:
Antcat, Jocker, Skater, Warrior, Dinopet, Elk, BigBunny, ManTpose and
Homer.

Figure 4.21: A collection of models, which are not extrinsically symmetric:
Gecko, Octopus, Cat, Hand, Lion and Dragon.

Sara Casti Cages and Skeletons in Digital Animation

52 Skeleton-based Cage Generation

Sara Casti Cages and Skeletons in Digital Animation

53

Part II

Cage-based deformations

Sara Casti Cages and Skeletons in Digital Animation

55

Animating a digital character is a fundamental task in computer graph-
ics, with huge impact in the film and game industries. To realize the
animation, several frames has to be defined and displayed at certain in-
terval rate. As explained in chapter 2, the animator has to define the
key-frames of the animated scene he would like to represent. The design
of these key-frames is tedious and time-consuming, thus several method to
simplify the animation pipeline have been proposed.

In the first part of this thesis the concept of handles has been introduced,
focusing in particular on cages (2.1), and their paradigm of animation
(2.1.1). Posing a digital character by manipulating the vertices of a
coarse control cage is, after skeleton-based, probably the most widely used
technique for digital animation. While skeleton-based techniques have
been deeply researched and a variety of industrial and academic tools
are available for it, cage-based techniques have historically received less
attention.

For these reasons, we introduce CageLab, a novel software tool for the
visualization, editing and generation of cage-based animation. The main
purpose of CageLab is to support this growing interest for cage-based
animation, providing an open source and easy to install shared platform
where researchers and practitioners can take advantage of a system that
allows them to:

• Animate a digital character, setting a number of its poses, build-
ing the key-frames and generating the remaining ones, interpolating
between them. CageLab accepts data in the most common file for-
mats used in our community (e.g. OFF, OBJ), and can internally
compute barycentric coordinates of various types. Resulting defor-
mations can be closely inspected in a 3D canvas, verifying that the
impact of any action on the nodes of the cage is sufficiently smooth
and local;

• Evaluate a cage, visualizing it on top of the digital character, and
checking whether its nodes are well-positioned with respect to it
(and the poses one wants to realize). CageLab can also be used to
directly compare two given cages, posing the character with both of
them and comparing the obtained deformations. To this end, users
can exploit a convenient copy paste system for camera parameters,
which allows to observe different versions of the same pose always
from a fixed point of view, with same perspective and amount of
zoom; The user can also adjust the cage, by acting on its vertices,
to make it better suited for the animation purposes.

Sara Casti Cages and Skeletons in Digital Animation

56

• Evaluate barycentric coordinates, plotting the relation between
each cage vertex and the underlying digital character. CageLab
uses the widespread color map, (from red to white, which is the
mainly used to display weights in animation) to visualize the influ-
ence of a subset of cage nodes directly on the surface of the character
(Figure 5.3). As for cages, direct comparisons between alternative
barycentric coordinates can be created by fixing a point of view and
plotting cage-character attraction with respect to a specific node.
These visuals are very popular in literature [ZDL∗14], and allow to
easily compare locality and smoothness of each tested coordinate.
New barycentric coordinates can be loaded into the system in the
form of ASCII files;

• Take snapshots or videos of an animation, obtained interpolating
a sequence of key-frames. This is a useful feature for researchers,
to create images for their papers and content for the accompanying
videos;

• Last but not least, CageLab can be used for educational purposes,
both for preparing educational material, but also as support tool to
teach animation at universities and high schools.

The following chapter will present Cagelab [CCLS18], a novel research
oriented tool for cage-based deformations. This work has been presented
at the conference STAG (Smart Tools and Application in Graphics) 2018,
held in Brescia (Italy).

Sara Casti Cages and Skeletons in Digital Animation

CageLab 57

Chapter 5

CageLab

The tool has been developed allow to the user to perform cage based defor-
mation, visualize the weights influence comparing the different barycentric
coordinates implementation, and save each pose building a sequence of
keyframes. Similarly to tools that were released by the community and
sustained the growth of skeleton-based techniques [BP07b, JP∗17], Cage-
Lab is born to sustain researchers and practitioners who want to improve
the cage-based animation pipeline, as well as compare their ideas with the
state of the art in the field. This chapter presents the main features of our
tool.

5.1 Motivation

Cage-based deformations have played an important role in research field in
the last years. Several of these research works focused on developing a novel
coordinates definition or improving the existing cage-based deformation
system. We have noticed, that having a tool to test the existing coordinates
definition, to have a graphical representation of the weight functions
over the model, to perform and additionally to save and export a set of
animations can be extremely useful. Moreover, we observe that having the
chance to compare in practice the different kind of coordinates is valuable.
For these reasons we have been motivated to develop an easy and intuitive
tool to provide this functionality.

Plenty of modern and well-known professional software, like Maya,
Blender and 3DStudio Max, are frequently used by skilled digital artists.
These software offer a variety of 3D computer graphics techniques for
modelling, rendering and animating a character. Regarding animation
functionalities, they provide a variety of articulation methods such as en-

Sara Casti Cages and Skeletons in Digital Animation

58 CageLab

veloping [LCF00], blend shapes [JTDP06], cage-based animation [JMD∗07]
and a plethora of other deformation methods. Although several animation
functionalities are already furnished by these professional software, they
are not easy and intuitive to be efficiently used by newbies and they have
a long learning curve, thus it requires several hours of training to get ready
to use them, therefore it is difficult to be used inside an academic research
pipeline. These tools are intended for professionals (i.e. animators), there-
fore they are difficult to master and may be overly complex or intimidating
for a young researcher.

CageLab provides a keyframe system to create a complete animation
pipeline. In this way, the animation can be exported and easily imported
in another external software for different final purposes.

5.2 Basic Functionalities

In its current version, CageLab can internally compute a selection of the
barycentric coordinates, namely the Mean Value Coordinates and the
Green Coordinates. Their main differences are the deformation domain,
the coordinates negativity, and the shape and details preservation. The
Green Coordinates are characterized by a local domain, their coordinates
values are non-negative and they can preserve the model shape and its
surface details. These differences can be easily appreciated through our
color map functionality and by the direct deformation of the character.

We plan to add more options in future versions. Alternative coordinates
can be pre-computed outside CageLab for a specific cage and then imported
into our tool with a text file.

CageLab provide a key-framing system, through an intuitive interface
and an easy tool to set up a complete animation pipeline. In this way,
the animation can be exported and easily imported in another external
software for different final purposes.

5.3 User-Interface

CageLab has a user-friendly as well as lightweight User Interface. The
figure (fig. 5.1) is a screenshot taken from our tool. The following sections
will discuss the basic opearation available in the tool as well as a description
of the UI and all its elements.
The main window of CageLab is composed of three sections:

• The central section includes theCanvas, where the three-dimensional
character mesh and the cage are displayed, and it is the mean the
user manipulate to interact with them.

Sara Casti Cages and Skeletons in Digital Animation

CageLab 59

Figure 5.1: The CageLab User Interface. On the left side the FBX Importer
is highlighted in yellow (a), the Character Manager panel in red (b), the
Cage Manager panel in green (c), and the Animator Panel in blue (d). On
the right side there is the Tools sidebar (e). The central part of the UI
includes the canvas.

• On the right side, the Tools sidebar enables the user to select the
canvas interaction modes, and activate other features described in
the next sections.

• On the left side, there are four panels:

– The first one, on the top, is related to the FBX Importer. It
is useful to open a compatible fbx file (containing the character
mesh and its cage).

– The second one, the Character Manager panel, enables the
user to configure the settings related to the character mesh
rendered in the canvas.

– In the Cage Manager panel, the user can configure the
settings related to the cage rendered in the canvas and to the
cage weights.

– The last one, the Animator Panel, enables the user to import
and export the cage animation, and manage all the keyframes
that compose the animation.

In the next paragraphs we will discuss in details every single function
provided by the User Interface (UI).

Sara Casti Cages and Skeletons in Digital Animation

60 CageLab

5.3.1 The Canvas

The Canvas is the UI element used to render the cage and the relative
character mesh, and to directly interact with the user. Once the interaction
mode is selected, through the sidebar or by using the keyboard shortcuts,
the user may use the mouse click or the mouse wheel to perform different
tasks, such as camera movements, cage vertex selection or deselection and
cage deformation. These actions are described in section 5.3.2.

For the three-dimensional character mesh, different graphical rendering
settings are available: the settings are specified by the user in the Character
Manager panel. The cage, instead, is rendered as a wireframe mesh, with
each vertex (called also handle) rendered as coloured sphere, red in the
case the current handle is selected, blue otherwise. Selected vertices are
the ones involved in the deformation process.

In the lower side of the canvas small snippets of text with graphical
hints and feedback are shown. They help the final user to understand
which action is being performed.

5.3.2 Tools sidebar

The Tools sidebar on the right side of the User Interface allows to perform
several actions, like the activation of different interaction modes.

The first four buttons from the top represent the available interaction
modes (Camera Mode, Selection Mode, Deselect Mode, Deformation Mode).
To distinguish the active Interactive mode to the inactive ones, the relative
button is displayed with a green dot. The fifth button allows to lock the
cage, not allowing the user to perform deformation on it. The sixth button
(Camera Save) allows to Save the current camera point of view, allowing to
restore it later after a modification, using the last button (Camera Load).
This functionality is useful to create images for educational or academic
purposes with the same prospective.

In order to make it easier for the user to understand which action is
performed by each command button, we designed every action button
trying to use clear and intuitive icons.

Camera Mode

Through the activation of the Camera Mode (see icon aside),
the scene camera and the point of view can be ma-
nipulated by the user. When this mode is active,
the interaction with the camera is made possible
by moving the mouse over the canvas while the

Sara Casti Cages and Skeletons in Digital Animation

CageLab 61

following buttons are pressed (as a typical 3D
modeling software):

• The left mouse button rotates the camera

• The right mouse button translates the camera

• The mouse wheel scrolling enables the user to zoom in/zoom out
the scene

This Interaction Mode can also be activated using the C keyboard key
and is the default interaction mode.

Select/Deselect Cage Vertex Mode

These interaction modes (see icons aside), allows the user to select or dese-
lect one or multiple handles of a cage.
The selected handles will, then, be involved in
the deformation process. To select/deselect a
single handle, the user must simply click on it.
To choose multiple handles, the user needs to
press the left mouse button on the canvas, move the cursor over the desired
handles, and then release the left button.

This interaction mode can be activated by pressing the S keyboard
button for selection or R for deselection. Besides, if another interaction
mode has been already activated, it is also possible to select the cage
vertices preserving the active interaction mode, by pressing the SHIFT
keyboard button for selection or ALT for deselection while clicking and
dragging the mouse on the desired area. Once the SHIFT or ALT key are
released, the previous interaction mode is restored.

Cage Deformation Mode

The Cage Deformation Mode (see icon aside), en-
ables the user to deform the selected cage handles
by moving them in space and consequently de-
forming the associated mesh.

It is possible to rotate the handles along their barycenter by clicking
the left mouse button and dragging the cursor on the canvas. By clicking
the right mouse button and dragging the cursor, it is possible to translate
the selected cage vertices. The user can also scroll the mouse wheel to
expand or contract the handles around their centroid, in order to inflate
or deflate the mesh.

Sara Casti Cages and Skeletons in Digital Animation

62 CageLab

Every time a cage vertex deformation is performed, this deformation
will be propagated to its mesh accordingly to the selected barycentric
coordinate.

This interaction mode can be also activated by pressing the D button,
or temporarily pressing the CTRL key during the mouse manipulation.
Using the x, y or z key it is possible to constrain the cage vertices rotation
and translation along the x, y and z axis of the camera point of view.

5.3.3 Character Manager panel

Figure 5.2: A screenshot of the Character Manager panel.

The Character Manager panel (fig. 5.2) provides all the functionalities
and personalization settings related to the character mesh that is rendered
into the canvas and is deformable using the cage.

Load and Save buttons allow the user to import (or export) a triangle
mesh file. The format available for these operations are: the .obj, .off or
.ply format.

The Colouration radio buttons allow the user to choose the rendering
options of the character mesh, using a smooth or a flat triangle shading.

The Draw Character checkbox can activate or deactivate the render-
ing of the character mesh on the canvas.

The Show Wireframe checkbox enables or disables the rendering of
the character mesh wireframe. It is possible to render only the wireframe,
without showing the mesh surface (flat or smooth), activating the wireframe
checkbox and using the No Colour colouration setting.

The Change Colour button allows the user to choose the character
mesh colour.

Sara Casti Cages and Skeletons in Digital Animation

CageLab 63

Figure 5.3: In order to compare the smoothness and locality of alternative
barycentric coordinates, CageLab allows to plot them with respect to a
selection of cage node (see red spheres). This selection can be composed
by a single node or by a set of the cages handles. In this example Mean
Value (left) and Green (right) coordinates are shown. As can be noticed,
Green are a bit less local.

The Show cage weights checkbox (fig. 5.3) allows the user to observe
the influence of the selected cage vertices over the character mesh, based
on the current cage weights. The red parts of the character are the areas
more involved by the selected cage vertices (or handles) during the cage
deformation process. The blue parts, instead, are not influenced by those
handles.

5.3.4 Cage Manager panel

Figure 5.4: A screenshot of the Cage Manager panel.

Sara Casti Cages and Skeletons in Digital Animation

64 CageLab

Figure 5.5: Stretching Armadillo’s arm with Mean Value (left) and Green
(right) coordinates. Green coordinates better preserve surface details (see
closeup). CageLab allows to switch between them in real time, so that the
use can spot the differences and change barycentric coordinates depending
on the intended deformation.

The Cage Manager panel (fig. 5.4) provides all the functionalities and
settings relative to the cage that is rendered into the canvas.

Load and Save buttons allow to import (or export) the cage mesh
from (or in) a file on the hard drive. The file will be saved in .obj, .off or
.ply format, which represents the cage as a triangle mesh.

The Draw checkbox allows the user to activate/deactivate the cage
rendering on the canvas.

The size of the cage spheres is set through the Sphere size slider. By
default, this value is set to 0.5% of the diagonal of the cage bounding box.
By moving the slider to the left or to the right, the sphere size may be
decreased or increased.

The Compute Weights button allows the computation of the Mean
Value Coordinates (MVC) and Green Coordinates, which, in this way, can
be used in the deformation process. Subsequently, this button activates
the Barycentric Coords selection radio-buttons.

The Barycentric Coords radio-buttons allow the user to choose what
kind of barycentric coordinates must be used in order to generate the
deformation of the character mesh using the cage (MVC or Green).

With the No Coords setting, the deformation of the character will
be disabled. This is particularly useful if we want to edit the cage easily,
moving its vertices to better envelop the mesh but without generating a
character deformation.

The Save Weights button, allows the user to save on a text file the
active barycentric coordinates of the current character.

Sara Casti Cages and Skeletons in Digital Animation

CageLab 65

5.3.5 Animator panel

Figure 5.6: A screenshot of the Animator panel.

The Animator panel (fig. 5.6) provides all the functionalities needed to
define the keyframe for the character animation.

On the right side of the panel, a list of all the animation keyframes
is available. Each keyframe is defined with its sequence number and its
timing (in seconds). Clicking on a keyframe on this list, it will be shown
in the canvas.

The user can add, edit and erase a keyframe. Each operation can be
performed through the dedicated buttons placed below the keyframes list.

When all the keyframes are defined, the user is able to save the anima-
tion sequence on a txt file using the Save Animation button. The saved
animation can be reloaded in another session using the Load Animation
button.

Using the Export Cage or Export Character buttons the user is
able to export the sequence of all the deformed cage keyframes or character
keyframes. Every keyframe is saved as a single obj or ply. The name of
each file starts with a user defined string and the timing of the keyframe.

5.4 Technical information

We have implemented our tool as a single threaded C++ application on a
MacBook Pro equipped with a 2,7GHz Intel Core i5 and 8 GB of RAM. Our
tool relies on the Qt Framework and it makes use of Eigen [GJ∗10] to
perform mathematical operations and the library libQGLViewer for the
creation of the user interface. The UI icons come from the Material Design
icon library, but some graphical elements are designed by us. We use FBX
SDK to import the fbx files. The developed tool has been successfully

Sara Casti Cages and Skeletons in Digital Animation

66 CageLab

tested under both MacOs (Yosemite and Sierra) and Linux (Ubuntu and
Elementary) platform.

Figure 5.7: An overview of the deformations performed through CageLab.

Sara Casti Cages and Skeletons in Digital Animation

Conclusions 67

Chapter 6

Conclusions

The deformation of a digital model is an extremely important task in
Computer Animation, which plays a key role in industry jobs such as
the film and game design. The animation industry demand influenced
the rise of research effort in this field. Over the years, several techniques
have been proposed to facilitate this task and simplify the animators work.
After a brief introduction to the background (chapter 2) of handle based
animation, the cage properties and the basis of cage-based deformation
are presented.

In the last research papers, cages and their paradigm of animation
have received an increasing interest by the scientific community. In 3.1 the
related works to the cage generation are presented. As discussed in this
chapter, the majority of existing methods are purely geometric approaches.
Since they are fully automatic and they only rely on geometric methods,
they may not fit the animators’ goals. In fact, in animation context, the
users need to automatize some parts of their work pipeline, but at the
same time they require adequate degrees of freedom to realize the desired
animation. For this reason user assisted methods have been explored.
In [LD17] an interactive tool for cage generation is proposed. This method
requires the user to draw planes to guide the generation of the bounding
cage. Although it can effectively simplify the manual cage construction, it
can still be hard for newbies to design the cage and some issues can limit
the construction of the cage in certain scenarios.

In 3.2 the related works to cage-based deformations are presented.
Several of these research works focused on developing a novel coordinates
definition or improving the existing cage-based deformation system. We
have noticed that having a tool to test the existing coordinates definition,
to have a graphical representation of the weight functions over the model,
to perform and additionally to save and export a set of animations can be

Sara Casti Cages and Skeletons in Digital Animation

68 Conclusions

extremely useful.

The two main contributions of this thesis are: (1) a novel user assisted
method to construct cages for animation, guided by the skeleton; (2) a
novel research oriented tool to perform cage based deformation, visualize
the weights influence comparing the different barycentric coordinates
implementation, and save each pose building a sequence of keyframes.

In the chapter 4 we have presented our method for building animation
cages. Cage generation is still considered a tedious task, even for expert
users: several properties has to be fulfill, which can be in contradiction with
each other. Moreover, the placement of the cage handles, requires to mix
semantic requirements derived by the user intent, together with geometric
constraints caused by cages properties. Our approach combines semantic
and geometric informations to build cages which are more suitable for the
animation pipeline. The curve skeleton drives the construction of the cage,
whose provides high-level informations of the input model, therefore it
allows to nicely reflect it on the cage. The novelty of our method is the
definition of a harmonic field, which has been used to trace non-planar
cross sections avoiding the well know problems related to planar ones.
The cuts are decided by the user, who defines a set of bending nodes by
clicking over the skeleton. The cross-section are built maintaining the
model symmetry, then they are merged together to build the cage, which
is finally inflated to envelope the input shape. As demonstrated by a
variety of results, our algorithm scales well to complex shapes, which can
be either provided in the canonical T-pose, or in arbitrary pose. Compared
to similar approaches [LD17], we offer a faster and more intuitive user
interaction, requiring just the selection of bending points on the skeleton.
Placement of cage nodes is based on a flexible and reliable criterion, which
allows for curved cross-sections extracted from a harmonic field in the
volume, thus overcoming the popular (but tedious and limiting) cutting
planes.

In the chapter 5 we have presented CageLab, a novel tool for interactive
cage-based deformations of digital characters. Similarly to tools that were
released by the community and sustained the growth of skeleton-based
techniques [BP07b, JP∗17], CageLab is born to sustain researchers and
practitioners who want to get acquainted with and improve on the cage-
based animation pipeline, as well as compare their ideas with the state of
the art in the field. It allows users to perform cage-based deformations using
two of the most popular barycentric coordinates (Mean Value and Green
coordinates); it allows to compare alternative cages for the same character;
and to compare different differential coordinates (and the deformations
they produce). It is also possible to define, export and import animation
key-frames. We publicly release the tool to the community, with the hope

Sara Casti Cages and Skeletons in Digital Animation

Conclusions 69

to support the recent cage-based animation growth that we observed in
our community, and possibly foster even more research in the field.

6.1 Limitations

Even though our method can produce high-quality cages for a variety of
characters of any topology, we are limited to the class of shapes that admit
a skeletal representation. Although in the world of digital characters this
is by far the dominant class of shapes, more complex shapes, such as those
containing large and thin surfaces, may also occur. Such shapes may be
addressed with the use of mixed line-sheet skeletons [MCM∗12, TAOZ12].
Our approach can be extended to deal with such skeletons by just allowing
the user to select bending lines on sheets, beside bending points on the line
skeleton; the method for extracting cross sections based on the harmonic
field nicely extends to this case, too. We plan to tackle these issues in our
future work.

A second limitation is that, in some pathological cases, our method
may fail to produce a valid cage if the user selects an insufficient number
of bending points. This relates with the fact that keeping the topology
of the cage fixed, i.e., totally determined by the skeleton and its bending
points, the only mechanism to resolve intersections is inflation. For models
having insufficient bending points and narrow tubular features with high
curvature this may therefore result in excessive inflation, possibly resulting
in collisions with distant parts of the character, and intersections that
cannot be removed without refining the topology of the cage further. In
all these cases, Nested Cages [SVJ15] fails. The user can easily address
this issue by just adding one or more bending points in the pathological
areas and running the automatic part of the method again.

6.2 Future works

Even if we provide multiples advances and insights within this thesis,
cages and their paradigm of animation still remain a challenging topic in
computer graphics. We will discuss here some possibilities for future work.

Concerning the cage generation, we have planned to improve our caging
algorithm to support additional useful configurations: (i) n-points cross
sections which may help to adapt the cage to the given input shape; (ii)
quad cages, which can provide, as highlighted in [TMB], better control
to animation in particular for twisting deformations. Such extensions
are straightforward, since all cage elements along limbs and across the
symmetry plane are already defined as quads, but they can also be easily

Sara Casti Cages and Skeletons in Digital Animation

70 Conclusions

generalized to build n-points cross sections. As further improvement, we
would investigate the possibility to introduce a machine learning step
to enhance the initial placement of the bending nodes. Since, machine
learning is having a substantial effect on many areas of computer science,
we are convinced it may help to address also problems like cage generation
and deformations issues. In particular, regarding our caging algorithm we
would consider the possibility to make use of machine learning algorithms
to understand semantical features, thus reducing the user intervention in
the pipeline.

As future works, we plan to extend CageLab with additional barycentric
coordinates, as well as new features for deformations and animation.
Similarly to other research oriented tools [BTP∗18], alongside the source
code we will release a database of publicly available characters and cages
produced with state of the art methods. With this, we hope to create
the basis for a benchmark on cage generation, where new methods can be
applied to a set of known digital characters for which cages produced with
alternative methods are known and comparisons can be made. We plan
also to perform a user test to improve the usability of the developed tool
and furthermore make it available as a WebGL application.

There are still unexplored topics and challenging problems to investigate
regarding cages and their paradigm of animation. An interesting discussion
is about the expressiveness of the cage and the possibility to support
secondary motions. The cage may be used as proxy to generate such
motions (eg. oscillating chest handles to emulate the breath), but it
requires extensive work and it may be just interleaved with the primary
motion. An interesting idea is combining secondary motions with the
standard cage-based pipeline to enrich the animations. Future research
could examine the possibility to add physics constraints in the standard
cage-based deformations pipeline. A naive idea could be making use of the
information of model interior, to add motion constraints in the deformation
(eg. neglecting stretch in the case of hard tissue or giving elastic freedom
in the case of the soft body). This idea may constitute the object of future
studies.

Sara Casti Cages and Skeletons in Digital Animation

BIBLIOGRAPHY 71

Bibliography

[ATC∗08] Au O. K.-C., Tai C.-L., Chu H.-K., Cohen-Or

D., Lee T.-Y.: Skeleton extraction by mesh contrac-
tion. ACM Trans. Graph. 27, 3 (Aug. 2008), 44:1–44:10.
URL: http://doi.acm.org/10.1145/1360612.1360643,
doi:10.1145/1360612.1360643.

[BCWG09] Ben-Chen M., Weber O., Gotsman C.: Spatial De-
formation sfer. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion (New York, NY, USA, 2009), SCA ’09, ACM, pp. 67–
74. doi:10.1145/1599470.1599479.

[BKBH09] Bolitho M., Kazhdan M., Burns R., Hoppe H.:
Parallel poisson surface reconstruction. In Advances in
Visual Computing (Berlin, Heidelberg, 2009), Bebis G.,
Boyle R., Parvin B., Koracin D., Kuno Y., Wang J., Wang
J.-X., Wang J., Pajarola R., Lindstrom P., Hinkenjann
A., Encarnação M. L., Silva C. T., Coming D., (Eds.),
Springer Berlin Heidelberg, pp. 678–689.

[BMSF06] Biasotti S., Marini S., Spagnuolo M., Falcidieno

B.: Sub-part correspondence by structural descriptors of
3D shapes. Computer-Aided Design 38, 9 (2006), 1002–
1019. doi:10.1016/j.cad.2006.07.003.

[BMU∗16] Barbieri S., Meloni P., Usai F., Spano L. D.,

Scateni R.: An Interactive Editor for Curve-Skeletons:
SkeletonLab. Computer & Graphics 60 (2016), 23–33.
doi:10.1016/j.cag.2016.08.002.

[BP07a] Baran I., Popović J.: Automatic rigging and animation
of 3d characters. ACM Trans. Graph. 26, 3 (July 2007).
URL: http://doi.acm.org/10.1145/1276377.1276467,
doi:10.1145/1276377.1276467.

Sara Casti Cages and Skeletons in Digital Animation

72 BIBLIOGRAPHY

[BP07b] Baran I., Popović J.: Automatic rigging and animation
of 3d characters. ACM Transactions on graphics (TOG)
26, 3 (2007), 72.

[BTP∗18] Bracci M., Tarini M., Pietroni N., Livesu M.,

Cignoni P.: Hexalab. net: an online viewer for hex-
ahedral meshes. arXiv preprint arXiv:1806.06639 (2018).

[CB17] Calderon S., Boubekeur T.: Bounding Proxies for
Shape Approximation. ACM Trans. Graph. 36, 5 (2017),
57:1–57:13. doi:10.1145/3072959.3073714.

[CCLS18] Casti S., Corda F., Livesu M., Scateni R.: CageLab:
an Interactive Tool for Cage-Based Deformations. In Smart
Tools and Apps for Graphics - Eurographics Italian Chapter
Conference (2018), The Eurographics Association. doi:

10.2312/stag.20181299.

[CF14] Chen X., Feng J.: Adaptive skeleton-driven cages for
mesh sequences. Computer Animation and Virtual Worlds
25, 3-4 (2014), 445–453. doi:10.1002/cav.1577.

[CFB16] Chen X., Feng J., Bechmann D.: Mesh Sequence
Morphing. Computer Graphics Forum 35, 1 (2016), 179–
190. doi:10.1111/cgf.12718.

[CHSB10] Chen L., Huang J., Sun H., Bao H.: ”Cage-based
deformation transfer”. Computers & Graphics 34, 2 (2010),
107 – 118. doi:https://doi.org/10.1016/j.cag.2010.
01.003.

[CVM∗96] Cohen J., Varshney A., Manocha D., Turk G.,

Weber H., Agarwal P., Brooks F., Wright W.:
Simplification Envelopes. In Proceedings of the 23rd An-
nual Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA, 1996), SIGGRAPH ’96,
ACM, pp. 119–128. doi:10.1145/237170.237220.

[DLM11] Deng Z.-J., Luo X.-N., Miao X.-P.: Automatic Cage
Building with Quadric Error Metrics. Journal of Computer
Science and Technology 26, 3 (2011), 538–547. doi:10.

1007/s11390-011-1153-4.

[DM06] DeRose T., Meyer M.: Harmonic coordinates. In Pixar
Technical Memo 06-02, Pixar Animation Studios (2006).
doi:10.1.1.90.1208.

Sara Casti Cages and Skeletons in Digital Animation

BIBLIOGRAPHY 73

[FHK06] Floater M. S., Hormann K., Kós G.: A general con-
struction of barycentric coordinates over convex polygons.
advances in computational mathematics 24, 1-4 (2006),
311–331.

[FKR05] Floater M. S., Kós G., Reimers M.: Mean value coor-
dinates in 3d. Comput. Aided Geom. Des. 22, 7 (Oct. 2005),
623–631. URL: http://dx.doi.org/10.1016/j.cagd.

2005.06.004, doi:10.1016/j.cagd.2005.06.004.

[Flo03] Floater M. S.: Mean value coordinates. Computer
aided geometric design 20, 1 (2003), 19–27. doi:10.1016/
S0167-8396(03)00002-5.

[FP09] Fabri A., Pion S.: CGAL: The Computational Geometry
Algorithms Library. In Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems (New York, NY, USA,
2009), GIS ’09, ACM, pp. 538–539. doi:10.1145/1653771.
1653865.

[GH97] Garland M., Heckbert P. S.: Surface simplification
using quadric error metrics. In Proceedings of the 24th
annual conference on Computer graphics and interactive
techniques (1997), ACM Press/Addison-Wesley Publishing
Co., pp. 209–216.

[GJ∗10] Guennebaud G., Jacob B., et al.: Eigen v3.
http://eigen.tuxfamily.org, 2010.

[HS08] Hormann K., Sukumar N.: Maximum entropy coor-
dinates for arbitrary polytopes. In Computer Graphics
Forum (2008), vol. 27, Wiley Online Library, pp. 1513–
1520.

[IMH05] Igarashi T., Moscovich T., Hughes J. F.: Spatial
keyframing for performance-driven animation. In Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (New York, NY, USA, 2005),
SCA ’05, ACM, pp. 107–115. URL: http://doi.acm.
org/10.1145/1073368.1073383, doi:10.1145/1073368.
1073383.

[Jac15] Jacobson A.: Breathing Life into Shapes. IEEE Com-
puter Graphics and Applications 35 (2015), 92–100.

Sara Casti Cages and Skeletons in Digital Animation

74 BIBLIOGRAPHY

[JBK∗12] Jacobson A., Baran I., Kavan L., Popović J.,

Sorkine O.: Fast automatic skinning transforma-
tions. ACM Trans. Graph. 31, 4 (July 2012), 77:1–77:10.
URL: http://doi.acm.org/10.1145/2185520.2185573,
doi:10.1145/2185520.2185573.

[JBPS11a] Jacobson A., Baran I., Popović J., Sorkine

O.: Bounded biharmonic weights for real-time deforma-
tion. ACM Trans. Graph. 30, 4 (July 2011), 78:1–78:8.
URL: http://doi.acm.org/10.1145/2010324.1964973,
doi:10.1145/2010324.1964973.

[JBPS11b] Jacobson A., Baran I., Popovic J., Sorkine O.:
Bounded Biharmonic Weights for Real-time Deformation.
ACM Trans. Graph. 30, 4 (2011), 78:1–78:8. doi:10.1145/
2010324.1964973.

[JDKL14a] Jacobson A., Deng Z., Kavan L., Lewis J.: Skinning:
Real-time shape deformation. In ACM SIGGRAPH (2014),
vol. 22.

[JDKL14b] Jacobson A., Deng Z., Kavan L., Lewis J.: Skinning:
Real-time Shape Deformation. In ACM SIGGRAPH 2014
Courses (2014).

[JMD∗07] Joshi P., Meyer M., DeRose T., Green B., Sanocki

T.: Harmonic coordinates for character articulation. ACM
Trans. Graph. 26, 3 (July 2007). URL: http://doi.acm.
org/10.1145/1276377.1276466, doi:10.1145/1276377.
1276466.

[JP∗17] Jacobson A., Panozzo D., et al.: libigl:
A simple C++ geometry processing library, 2017.
http://libigl.github.io/libigl/.

[JSW05a] Ju T., Schaefer S., Warren J.: Mean value coordi-
nates for closed triangular meshes. In ACM Transactions
on Graphics (TOG) (2005), vol. 24, ACM, pp. 561–566.

[JSW05b] Ju T., Schaefer S., Warren J.: Mean Value Coordi-
nates for Closed Triangular Meshes. ACM Trans. Graph.
24, 3 (2005), 561–566. doi:10.1145/1073204.1073229.

[JTDP06] Joshi P., Tien W. C., Desbrun M., Pighin F.: Learn-
ing controls for blend shape based realistic facial animation.
In ACM Siggraph 2006 Courses (2006), ACM, p. 17.

Sara Casti Cages and Skeletons in Digital Animation

BIBLIOGRAPHY 75

[JZvdP∗08] Ju T., Zhou Q.-Y., van de Panne M., Cohen-Or

D., Neumann U.: Reusable skinning templates using
cage-based deformations. ACM Trans. Graph. 27, 5 (2008),
122:1–122:10. doi:10.1145/1409060.1409075.

[KCATCO∗10] Kin-Chung Au O., Tai C.-L., Cohen-Or D., Zheng

Y., Fu H.: Electors voting for fast automatic shape
correspondence. Computer Graphics Forum 29, 2 (2010),
645–654. doi:10.1111/j.1467-8659.2009.01634.x.

[KCvO07] Kavan L., Collins S., Žára J., O’Sullivan C.:
Skinning with dual quaternions. In Proceedings of the
2007 Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2007), I3D ’07, ACM, pp. 39–46.
URL: http://doi.acm.org/10.1145/1230100.1230107,
doi:10.1145/1230100.1230107.

[KCvO08] Kavan L., Collins S., Žára J., O’Sullivan C.: Geo-
metric skinning with approximate dual quaternion blend-
ing. ACM Trans. Graph. 27, 4 (Nov. 2008), 105:1–105:23.
URL: http://doi.acm.org/10.1145/1409625.1409627,
doi:10.1145/1409625.1409627.

[LAPS17] Livesu M., Attene M., PatanÃ¨ G., Spagnuolo M.:
Explicit Cylindrical Maps for General Tubular Shapes.
Computer-Aided Design 90 (2017), 27 – 36. SI:SPM2017.
doi:10.1016/j.cad.2017.05.002.

[LCF00] Lewis J. P., Cordner M., Fong N.: Pose space
deformation: A unified approach to shape interpola-
tion and skeleton-driven deformation. In Proceedings
of the 27th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 2000),
SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing
Co., pp. 165–172. URL: http://dx.doi.org/10.1145/
344779.344862, doi:10.1145/344779.344862.

[LD17] Le B. H., Deng Z.: Interactive Cage Generation for Mesh
Deformation. In Proceedings of the 21st ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (New
York, NY, USA, 2017), I3D ’17, ACM, pp. 3:1–3:9. doi:
10.1145/3023368.3023369.

[LGS12] Livesu M., Guggeri F., Scateni R.: Reconstructing
the Curve-Skeletons of 3D Shapes Using the Visual Hull.

Sara Casti Cages and Skeletons in Digital Animation

76 BIBLIOGRAPHY

IEEE Transactions on Visualization and Computer Graph-
ics 18, 11 (2012), 1891–1901. doi:10.1109/TVCG.2012.

71.

[Liv17] Livesu M.: cinolib: a generic programming header
only c++ library for processing polygonal and polyhedral
meshes., 2017. https://github.com/mlivesu/cinolib/.

[LKCOL07] Lipman Y., Kopf J., Cohen-Or D., Levin D.: GPU-
assisted Positive Mean Value Coordinates for Mesh Defor-
mations. In Geometry Processing (2007), The Eurographics
Association. doi:10.2312/SGP/SGP07/117-123.

[LLCO08] Lipman Y., Levin D., Cohen-Or D.: Green Coor-
dinates. ACM Trans. Graph. 27, 3 (2008), 78:1–78:10.
doi:10.1145/1360612.1360677.

[LMPS16] Livesu M., Muntoni A., Puppo E., Scateni R.:
Skeleton-driven Adaptive Hexahedral Meshing of Tubular
Shapes. Computer Graphics Forum 35, 7 (2016), 237–246.
doi:10.1111/cgf.13021.

[LS13] Livesu M., Scateni R.: Extracting Curve-Skeletons
from Digital Shapes Using Occluding Contours. The
Visual Computer 29, 9 (2013), 907–916. doi:10.1007/

s00371-013-0855-8.

[MCM∗12] Martin T., Chen G., Musuvathy S., Cohen E.,

Hansen C.: Generalized Swept Mid-structure for Polyg-
onal Models. Comput. Graph. Forum 31, 2pt4 (May
2012), 805–814. URL: http://dx.doi.org/10.1111/j.
1467-8659.2012.03061.x, doi:10.1111/j.1467-8659.

2012.03061.x.

[MJ96] MacCracken R., Joy K. I.: Free-form deforma-
tions with lattices of arbitrary topology. In Proceed-
ings of the 23rd Annual Conference on Computer Graph-
ics and Interactive Techniques (New York, NY, USA,
1996), SIGGRAPH ’96, ACM, pp. 181–188. URL:
http://doi.acm.org/10.1145/237170.237247, doi:10.
1145/237170.237247.

[MLP18] Mancinelli C., Livesu M., Puppo E.: Gradient Field
Estimation on Triangle Meshes. In Smart Tools and Apps
for Graphics - Eurographics Italian Chapter Conference

Sara Casti Cages and Skeletons in Digital Animation

BIBLIOGRAPHY 77

(2018), The Eurographics Association. doi:10.2312/stag.
20181301.

[MPS06] Mortara M., Patané G., Spagnuolo M.: From ge-
ometric to semantic human body models. Computers
& Graphics 30, 2 (2006), 185–196. doi:10.1016/j.cag.

2006.01.024.

[MZS∗11] McAdams A., Zhu Y., Selle A., Empey M., Tam-

storf R., Teran J., Sifakis E.: Efficient elas-
ticity for character skinning with contact and colli-
sions. ACM Trans. Graph. 30, 4 (July 2011), 37:1–37:12.
URL: http://doi.acm.org/10.1145/2010324.1964932,
doi:10.1145/2010324.1964932.

[NS13] Nieto J. R., Suśın A.: ”Cage Based Deformations: A
Survey”. In Deformation Models: Tracking, Animation
and Applications, González Hidalgo M., Mir Torres A.,
Varona Gómez J., (Eds.). Springer Netherlands, Dordrecht,
2013, pp. 75–99. doi:10.1007/978-94-007-5446-1_3.

[Pix07] Pixologic: ZBrush, 2007. http://pixologic.com.

[PLPZ12] Panozzo D., Lipman Y., Puppo E., Zorin D.:
Fields on Symmetric Surfaces. ACM Trans. Graph. 31,
4 (July 2012), 111:1–111:12. URL: http://doi.acm.

org/10.1145/2185520.2185607, doi:10.1145/2185520.
2185607.

[RF17] Rumman N. A., Fratarcangeli M.: Skin deformation
methods for interactive character animation. In Computer
Vision, Imaging and Computer Graphics Theory and Ap-
plications (Cham, 2017), Braz J., Magnenat-Thalmann
N., Richard P., Linsen L., Telea A., Battiato S., Imai F.,
(Eds.), Springer International Publishing, pp. 153–174.

[Sav16] Savoye Y.: Cage-based Performance Capture. In SIG-
GRAPH ASIA 2016 Courses (New York, NY, USA, 2016),
SA ’16, ACM, pp. 12:1–12:53. doi:10.1145/2988458.

2988459.

[SGG∗00] Sander P. V., Gu X., Gortler S. J., Hoppe H.,

Snyder J.: Silhouette Clipping. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA, 2000), SIGGRAPH ’00,

Sara Casti Cages and Skeletons in Digital Animation

78 BIBLIOGRAPHY

ACM Press/Addison-Wesley Publishing Co., pp. 327–334.
doi:10.1145/344779.344935.

[Sha08] Shamir A.: A survey on mesh segmentation techniques.
In Computer graphics forum (2008), vol. 27, Wiley Online
Library, pp. 1539–1556.

[Si15] Si H.: TetGen, a Delaunay-Based Quality Tetrahedral
Mesh Generator. ACM s. Math. Softw. 41, 2 (2015), 11:1–
11:36. doi:10.1145/2629697.

[SP86a] Sederberg T. W., Parry S. R.: Free-form Deformation
of Solid Geometric Models. SIGGRAPH Comput. Graph.
20, 4 (1986), 151–160. doi:10.1145/15922.15903.

[SP86b] Sederberg T. W., Parry S. R.: Free-form deformation
of solid geometric models. SIGGRAPH Comput. Graph.
20, 4 (Aug. 1986), 151–160. URL: http://doi.acm.org/
10.1145/15886.15903, doi:10.1145/15886.15903.

[SVJ15] Sacht L., Vouga E., Jacobson A.: Nested cages.
ACM Trans. Graph. 34, 6 (2015), 170:1–170:14. doi:

10.1145/2816795.2818093.

[TAOZ12] Tagliasacchi A., Alhashim I., Olson M., Zhang H.:
Mean curvature skeletons. Computer Graphics Forum 31,
5 (2012), 1735–1744.

[TDS∗16] Tagliasacchi A., Delame T., Spagnuolo M.,

Amenta N., Telea A.: 3D Skeletons: A State-of-the-Art
Report. Computer Graphics Forum 35, 2 (2016), 573–597.
doi:10.1111/cgf.12865.

[TMB] Thiery J.-M., Memari P., Boubekeur T.: Mean value
coordinates for quad cages in 3D. ACM Trans. Graph. -
Proc. SIGGRAPH Asia 2018. To appear.

[TTB12] Thiery J.-M., Tierny J., Boubekeur T.: CageR:
Cage-Based Reverse Engineering of Animated 3D Shapes.
Computer Graphics Forum 31, 8 (2012), 2303–2316. doi:
10.1111/j.1467-8659.2012.03159.x.

[ULP∗15] Usai F., Livesu M., Puppo E., Tarini M., Scateni

R.: Extraction of the Quad Layout of a Triangle Mesh
Guided by Its Curve Skeleton. ACM Trans. Graph. 35, 1
(2015), 6:1–6:13. doi:10.1145/2809785.

Sara Casti Cages and Skeletons in Digital Animation

BIBLIOGRAPHY 79

[VBG∗13] Vaillant R., Barthe L., Guennebaud G., Cani M.-

P., Rohmer D., Wyvill B., Gourmel O., Paulin M.:
Implicit skinning: Real-time skin deformation with contact
modeling. ACM Trans. Graph. 32, 4 (July 2013), 125:1–
125:12. URL: http://doi.acm.org/10.1145/2461912.

2461960, doi:10.1145/2461912.2461960.

[WPG12] Weber O., Poranne R., Gotsman C.: Biharmonic co-
ordinates. Comput. Graph. Forum 31, 8 (Dec. 2012), 2409–
2422. URL: http://dx.doi.org/10.1111/j.1467-8659.
2012.03130.x, doi:10.1111/j.1467-8659.2012.03130.
x.

[XLG09] Xian C., Lin H., Gao S.: Automatic generation of coarse
bounding cages from dense meshes. In Shape Modeling
and Applications, 2009. SMI 2009. IEEE International
Conference on (2009), IEEE, pp. 21–27. doi:10.1109/

SMI.2009.5170159.

[XLG12] Xian C., Lin H., Gao S.: Automatic cage gener-
ation by improved OBBs for mesh deformation. The
Visual Computer 28, 1 (2012), 21–33. doi:10.1007/

s00371-011-0595-6.

[XLX15] Xian C., Li G., Xiong Y.: Efficient and effective cage
generation by region decomposition. Computer Animation
and Virtual Worlds 26, 2 (2015), 173–184. doi:10.1002/
cav.1571.

[YCSZ13] Yang X., Chang J., Southern R., Zhang J. J.:
Automatic cage construction for retargeted muscle fit-
ting. The Visual Computer 29, 5 (2013), 369–380. doi:

10.1007/s00371-012-0739-3.

[ZDL∗14] Zhang J., Deng B., Liu Z., Patanè G., Bouaziz

S., Hormann K., Liu L.: Local barycentric coordi-
nates. ACM Trans. Graph. 33, 6 (Nov. 2014), 188:1–188:12.
URL: http://doi.acm.org/10.1145/2661229.2661255,
doi:10.1145/2661229.2661255.

[ZYH∗15] Zhou Y., Yin K., Huang H., Zhang H., Gong M.,

Cohen-Or D.: Generalized Cylinder Decomposition.
ACM Trans. Graph. 34, 6 (2015), 171:1–171:14. doi:

10.1145/2816795.2818074.

Sara Casti Cages and Skeletons in Digital Animation

	Introduction
	Background
	Cages
	Cage-based deformations

	Skeletons
	Curve Skeletons

	Related works
	Cage generation methods
	Automatic cage generation.
	Interactive cage generation

	Cage-based deformation.

	I A Novel Approach for Cage Generation
	Skeleton-based Cage Generation
	The method
	Pre-processing: guiding field
	User interaction
	Cage generation
	Symmetry
	Cage inflation

	Automatic placement of bending nodes
	Results and discussion
	Comparisons
	Timing
	Deformations

	II Cage-based deformations
	CageLab
	Motivation
	Basic Functionalities
	User-Interface
	The Canvas
	Tools sidebar
	Character Manager panel
	Cage Manager panel
	Animator panel

	Technical information

	Conclusions
	Limitations
	Future works

	Bibliography

