
University of Cagliari

PhD Degree in
Mathematics and Computer Science

XXXI cycle

Course in Computer Science

Microscopic Blood Images Analysis

by Computer Vision Techniques

Scientific Disciplinary Sector: INF/01

Ph.D. Student:
Andrea Loddo

Ph.D. Supervisors:
Prof. Cecilia Di Ruberto

Prof. Michel Kocher

Ph.D. Coordinator:
Prof. Michele Marchesi

Final exam: Academic Year 2017 – 2018
Thesis defence: January – February 2019 Session





”I resist what I cannot change.”

I want to state a particular thank to prof. Cecilia Di Ruberto, prof. Michel
Kocher, and Lorenzo, who have always supported me in the realization of
this work.
I dedicate my thesis to my parents. Because without whom it would never
have been started.
To my love, friends, relatives, anyone who has taught me something.
Because without whom it would never have been finished.
To Mario and Miriam. Because with whom I have learnt to appreciate life
more than ever.
To Salvatore and Rosalba. Because you are always on my mind.

Voglio esprimere un ringraziamento particolare alla Prof.ssa Cecilia Di
Ruberto, al prof. Michel Kocher e a Lorenzo, per avermi sempre supportato
nella realizzazione di questo lavoro.
Dedico la mia tesi ai miei genitori. Perché senza di loro non sarebbe mai
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Abstract

Automatic analysis and information extraction from an image is still a
highly challenging research problem in the computer vision area, attempt-
ing to describe the image content with computational and mathematical
techniques. Moreover, the information extracted from the image should
be meaningful and as most discriminatory as possible, since it will be
used to categorize its content according to the analyzed problem. In the
Medical Imaging domain, many important decisions that affect patient
care depends on the usefulness of the information extracted from the image.
Managing medical image is even more complicated not only due to the
importance of the problem but also because it needs a fair amount of prior
medical knowledge to be able to represent with data the visual information
to which pathologist refer.

Today medical decisions that impact patient care rely on the results of
laboratory tests to a greater extent than ever before, due to the marked
expansion in the number and complexity of offered tests. These develop-
ments promise to improve the care of patients, but the more increase the
number and complexity of the tests, the more improvements the possibility
to misapply and misinterpret the test themselves, leading to inappropri-
ate diagnosis and therapies. Moreover, pathologists devote much time
to the analysis of the tests rather than to the patients care and to the
prescription of the right treatment, because of the increased number of
tests and amount of data to analyze. Sometimes it can be a waste of time,
considering that most of the tests performed are only check-up tests, and
most of the analyzed samples come from healthy patients.

Then, a quantitative evaluation of medical images is essential to over-
come uncertainty and subjectivity, but also to reduce the amount of data
and the timing of the analysis significantly. In the last few years, many
computer-assisted diagnosis systems have been developed, attempting to
mimic pathologists by extracting features from the images. Image analysis
involves complex algorithms to identify and characterize cells or tissues
using image pattern recognition technology. This thesis addresses the
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main problems associated to the digital microscopy analysis in hematology
diagnosis, with the development of algorithms both for the extraction of
useful information from different digital images and for the distinction
of various biological structures. The proposed methods aim to improve
the degree of accuracy of the analysis and to reduce the diagnosis time.
Furthermore, they can be used as standard tools for skimming the number
of samples to be analyzed directly from the pathologist, or as double check
systems to verify the correct results of the automated facilities used today.
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Introduction 1

Chapter 1

Introduction

The visual analysis of bodily fluids and tissues focused on diagnosing
diseases using a microscope is called microscopic pathology, that is a sub-
discipline of pathology. This kind of analysis still constitutes the final step
to confirm if and which illness is present. Traditionally, cytopathology and
histopathology compose microscopical pathology. Cytopathology refers to
diagnosis based on the study of cytological images, that are characterized
by the presence of single cells and cell clusters, while histopathology
relates to diagnosis based on the study of histological images and involves
examination of entire human tissues composed of an association of cells
into structures which deal with a particular function.

The measurements and characterization of cells from cytological images
can be performed automatically since the late 1950s, when Coulter [Cou56]
developed a method for sizing and counting cells, using electrical impedance
directly from the blood sample. Nowadays the technique proposed by
Coulter has been improved to analyze different particles. A further im-
provement of this approach is the Flow Cytometry, used to measure and
examine multiple physical characteristics, chemical properties simultane-
ously and defines the maturation stage of particles, as they flow in a fluid
stream rapidly and they pass one-at-a-time through at least one laser.
Particle components are fluorescently labeled and then excited by the
laser to emit light at varying wavelengths, and then distinguished using an
optical-to-electronic coupling system that records the way in which the cell
emits fluorescence and scatters incident light from the laser. The properties
measured include size, morphology, granularity and internal and external
structure of cells in question. This system, due to its complexity, needs
many quality controls. Some of these controls are performed internally by
the same instrument, but others must be executed externally to check the
performance of each component.
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2 Introduction

1.1 CAD - Computer Aided Diagnosis

The microscope is still an essential tool to the pathology laboratory today
since pathologists continue to perform manual observation of samples. It
can be used to check the results from an instrument or if a recalibration
is needed. The manual microscopic examination involves numerous draw-
backs, in particular, the results accuracy heavily depends on the operator
skills. The operators develop their skills during a complex training period
analyzing as many cases as possible of different pathology. Nevertheless
many cases require different experts and technical opinions to reduce hu-
man error. The process of manual microscopic observation is prolonged and
time-consuming, in particular, if it involves different operators for a single
diagnosis. Digital microscopes are becoming routine pieces of equipment
in laboratories, being a combination of a digital camera and a lens, can
scan the samples and store the images for future review. Furthermore,
digital microscopy adds high-resolution and spatial information that flow
measurements cannot extract. Digital slides are also, by nature, more
comfortable to share than physical slides thus increasing the possibility
of consultations between two or more experts. Digital slides have also
the potential to be numerically analyzed directly by computer algorithms,
useful to automate the manual counting of structures, or for classifying
the condition of the tissue. The extraction of image-based information
by computer technology from the digital slide is also known as Digital
Pathology and can be used both to speed up the process of diagnosis and
to reduce uncertainty and subjectivity.

In the last few years, many Computer Aided Diagnosis (CAD) system
have appeared to automate or aid some stages of the diagnostic process,
also motivated by the presence of equipment which allows obtaining slides
with good quality automatically. However, automatic interpretation of
microscopy medical images is still an open research question. In particular,
the primary challenge when developing CAD systems is the creation of an
effective method to extract meaningful information from the images, such
as the cells number in the film or the position of the different structures
in a tissue. These issues become more complex, concerning artificial
vision, considering that there is not a color standardization for the staining
and acquisition of digital slides. There is a considerable color variability
between different slides, due to the quality of the biological sample and the
sample preparation, such as the quantity of dye used during the staining
procedure, or due to different acquisition system and the image capturing
parameters, such as the environment illumination. Furthermore, such
variability may be present in the same slide, in particular, the presence of
uneven lighting, with a central area very bright and shading areas more
marked towards the corners. Excessive use of the microscope light can
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cause this problem.

1.2 Contributions

In this thesis, there is an in-depth analysis of the unsolved issues in
Computer-Aided Diagnosis from digital microscopy images, mainly ac-
quired from peripheral blood smears. Different solutions have been ana-
lyzed and proposed. Three study cases can be distinguished: White Blood
Cells analysis with leukemia correlation, Red Blood Cells analysis with
malaria parasites correlation and histological tissues analysis. Particular
attention has been given to the extraction of useful information from the
digital images and the development of dataset-independent algorithms. In
particular, the proposed framework has been tested over well known public
datasets for what concerns WBC analysis, while a comprehensive dataset
for RBC cells analysis has been introduced and published by our own. Cells
count and clumps separation have been addressed in our studies. A crucial
step in this kind of work certainly regards the segmentation step, which
has several issues: some algorithms, able to isolate the cells of interest
from images acquired in different illumination condition and stained with
distinct staining have been realized. A correct segmentation step and a
subsequent count of the cells permit to manage each cell singularly, and
then to diagnose the presence of leukemia, in WBC analysis, or malaria,
in RBC analysis. Since the importance of this kind of diagnosis different
ensembles of descriptors and classifiers have been evaluated to provide
a result as accurate as possible. In the proposed framework no object
detection or segmentation method is needed, since every segmentation al-
gorithm, applied to histological images, can produce a considerable number
of regions and structures, which is extremely difficult to manage singularly.
The overall procedure instead is based on the textures analysis, being the
most suitable to analyze the tissue structure. Also, great importance has
been given to the analysis of colors, considered one of the most interesting
contents to be examined in the histological images, studying not only the
internal correlation of various colors but also by analyzing the relationship
between different colors. Moreover, further work has been realized to
extend the WBC analysis framework and to include an in-depth RBC
analysis, in particular, devoted to malaria parasites analysis. It aims
to propose the first public dataset of blood samples afflicted by malaria,
specifically designed to evaluate and compare algorithms for segmentation
and classification of malaria parasite species. Every image is provided with
its related ground truth and parasite’s classification of type and stage of
life. The primary purpose is to offer a new comparative test tool to the
image processing and pattern matching communities, to encourage and
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4 Introduction

improve computer-aided malaria parasites analysis. The scientific results
obtained during this Ph.D. work and described in this thesis also appeared
in related publications, following listed:

• C. Di Ruberto, A. Loddo, L. Putzu, ”A Multiple Classifier Learn-
ing by Sampling System for White Blood Cells Segmentation”, G.
Azzopardi, N. Petkov Eds. Computer Analysis of Images and Pat-
terns - 16th International Conference, CAIP 2015, Valletta, Malta,
September 2-4, 2015 Proceedings, Part I. Lecture Notes in Computer
Science 9256, Springer 2015, pp. 415-425, ISBN 978-3-319-23191-4.

• C. Di Ruberto, A. Loddo, L. Putzu, ” Learning by Sampling for
White Blood Cells Segmentation”, V. Murino, E. Puppo Eds.: Image
Analysis and Processing - ICIAP 2015 - 18th International Con-
ference, Genoa, Italy, September 7-11, 2015, Proceedings, Part I.
Lecture Notes in Computer Science 9279, Springer 2015, pp. 557-567,
ISBN 978-3-319-23230-0.

• C. Di Ruberto, A. Loddo, L. Putzu. Peripheral Blood Image Analysis.
Proceedings of the Doctoral Consortium, 11th Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and
Applications, VISIGRAPP 2016; Pages 15-23.

• C. Di Ruberto, A. Loddo, L. Putzu. A Leucocytes Count System
from Blood Smear Images: Segmentation and Counting of White
Blood Cells based on Learning by Sampling. Machine Vision and
Applications; Volume 27, Issue 8, November 2016, Pages 1151-1160.

• C. Di Ruberto, A. Loddo, L. Putzu., G. Fenu A Computer-Aided
System for Differential Count from Peripheral Blood Cell Images.
Proceedings of the 12th International Conference on Signal Image
Technology & Internet-Based Systems; 2016, Pages 112-118.

• A. Loddo, C. Di Ruberto, L. Putzu Histological Image Analysis
by Invariant Descriptors. Proceedings of the 19th International
Conference on Image Analysis and Processing, ICIAP 2017; LNCS
2017, vol. 10484, Pages 345-356.

• S. Porcu, C. Di Ruberto, A. Loddo, L. Putzu. White Blood Cells
Counting Via Vector Field Convolution Nuclei Segmentation. Pro-
ceedings of the 13th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications, Vol.
4: VISAPP, 227-234, 2018, January 27-29, 2018 Funchal, Madeira,
Portugal.
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• A. Loddo, C. Di Ruberto, M. Kocher. Recent Advances of Malaria
Parasites Detection Systems Based on Mathematical Morphology.
Sensors. Volume 18, number 2, Pages 513, 2018.

• A. Loddo, C. Di Ruberto, M. Kocher, Guy Prod’Hom. MP-IDB: The
Malaria Parasite image database for image processing and analysis.
SaMBa workshop, MICCAI 2018.

1.3 Dissertation structure

This dissertation describes the work mentioned above in detail. It is
organized as follows:

• Part I illustrates the phases of a typical CAD system schema for
digital microscope images analysis. Four main steps have been high-
lighted and then analyzed in detail in chapters 2, 3, 4 and 5, namely
pre-processing, segmentation, feature extraction, and classification
respectively. We give an idea of the most used techniques and il-
lustrating the basic concepts useful to the comprehension of the
proposed CAD systems.

• Part II describes the proposed CAD system for peripheral blood
image analysis. Chapter 6 contains an extended background of the
topics and materials this dissertation takes on, that is a background
on hematology and peripheral blood cells, a description of ALL and
malaria analysis with references to previous works and to the datasets
used to experiment possible solutions. Then chapter 7 shows three
different approaches for segmentation, chapter 8 illustrates a method
for leukocyte identification and count, while chapter 9 explains the
system extension to erythrocyte segmentation to realize a complete
blood cells segmenter.

• Part III concludes the dissertation and gives some final comments
on the proposed approaches, discussing the choices made with the
obtained results. The experimental results obtained have brought to
further ideas for the future, not just to improve the overall procedures
but also to extend the proposed CAD systems to further issues and
to different medical problems.

Appendix A outlines the types of diseases that are directly connected with
an abnormal number of cells in the peripheral bloodstream and shows how
the presence of diseases or parasites may affect the morphology of the cells
themselves.
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Part I

Digital Microscopy CAD
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The medical community, typically, has been established to take care of
human health with knowledgeable and expert clinicians, like radiologists,
hematologists, or health science specialists. Nowadays, technology provides
an opportunity for having faster and more accurate tools, e.g., X-ray
machines, CBC machines, and MRI. These automated medical tools are
essential for diagnosing patients’ health conditions. In this context, CAD
systems have recently gained attention because they could offer a valid help
to clinicians. They have to deal with different medical fields and with issues
related to images and data to manage. In particular, CAD systems dealing
with images acquired with a digital microscope have to face additional
issues like the variations of illumination and acquisition conditions or the
different types of smear staining. Despite the previously listed issues,
CAD systems for digital microscope based on image processing techniques
generally consist of the following phases:

• Image pre-processing: noise suppression added to the image during
the phase of acquisition and improvement of the luminance and
contrast of the images.

• Segmentation: partitioning the image to isolate the objects of interest
in the image. This phase is the most important in the automatic
analysis of images, as from the result of the segmentation depends
on the result of the entire analysis.

• Feature extraction: feature extraction of previously segmented ob-
jects, necessary for subsequent classification.

• Classification: assignment of segmented objects to a specific class. If
present, any disease is determined through this phase.

In general, it is possible that some CAD systems do not need to use
all the mentioned phases. As an example, pre-processing could be avoided
if images have been captured with the most recent microscopes which
produce high-quality images with a low percentage of imperfections or
artifacts. Conversely, some phases can be repeated multiple times in order
to deal with different issues. For instance, performing numerous stages of
segmentation is very frequent in peripheral blood smear images analysis,
for example using the first segmentation to firstly identify the cells and
then to separate the components of the cells themselves. The following
chapters give an overview of the most used techniques in the different
phases of a typical CAD system and the basic concepts applied to the
proposed methods for peripheral blood image analysis, described in part
II will be depicted.
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Image Pre-processing 11

Chapter 2

Image Pre-processing

Pre-processing is a common name for operations with images at the lowest
level of abstraction. The primary purpose is an improvement of the image
condition by means of some operations in order to suppress unwanted
distortions, such as noise or artifacts, or enhance some image features for
further processing like, for example, enhancing or stretching the contrast,
separating, in a better way, the objects of interest from the background. It
is worth to indicate that pre-processing methods may be unnecessary on
CAD systems for several reasons: first of all, image acquisition tools, like
modern microscopes, are equipped with high-level cameras, and they can
produce excellent quality images. Secondarily, this kind of operations could
alter a lot, or even suppress, the structures of the cells which are essential
for further analysis phases. Typically, images structures are represented
with an appropriate definition with only a small quantization noise, or
they can directly be acquired in a low contrast environment. For these
reasons the most used pre-processing operations are:

• Histogram operations

• Local pre-processing operations:

– Smoothing operators

– Sharpening operators

2.1 Operations on the histogram

An image histogram is a representation of the tonal distribution in a
digital image. A good example is the grey level histogram. It provides
the frequency of pixels’ intensity values inside the image and indicates the
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12 Image Pre-processing

number of pixels having each grey level. It also gives useful information
about the image, such as the number of modes, the presence of a dominant
peak or the grey levels distribution along the histogram. If the image
has a low contrast, it means that all the pixels values are condensed
towards a side of the histogram. On the other hand, a bimodal histogram
often denotes the presence of a fairly homogeneous brightness object on a
nearly constant background. Operating on the histogram means defining
a mapping h from the initial space of grey levels in a new grey levels
space h : [0..255] → [0..255], whose application to the image I, is the
replacement of grey level I[i, j] with h(I[i, j]). Therefore, it is possible to
increase the contrast within the image, equalize the histogram and highlight
or hide some image details, by defining the appropriate mapping. The
contrast stretching operation is necessary when the histogram values are
not distributed over the entire frequency range. Stretching the histogram
is a solution to correct this situation, by mapping the minimum and the
maximum value of the original image with the value 0 and 255, respectively.
This operation is common for cytometric image analysis, as it allows good
separation of foreground objects from the background. Figure 2.1 shows
an example of contrast stretching. The histogram equalization operation
is essential because it is often used to make images captured in different
lighting conditions comparable. The equalization is achieved by defining a
mapping that equally distributes the pixels values. This operation produces
a histogram (theoretically) flat, considering h(x) as the histogram of the
original image, it can be changed through the use of the function y = y(x),
so that the histogram g(y) of the resulting image becomes constant for
each intensity value g(y) = c.

Figure 2.1: Example of operations on the histogram. Left: original
greyscale image. Center: contrast stretched image. Right: result of his-
togram equalization with 64 bins.
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Image Pre-processing 13

2.2 Operations of local pre-processing

Local pre-processing ones operate on a small neighborhood of the original
image pixels to calculate new pixel values of the resulting image rather
than on the entire image. They are also called filtering operations since
they make use of digital filters. The pixels neighborhood, used to calculate
new intensity value, always needs to have odd cardinality, in such a way
that the considered pixel lies in the middle of the neighborhood. Typically,
the sizes are 3× 3, 5× 5 or 7× 7. The filter used for the filtering operation
has the same size as the considered pixel’s neighborhood. The values of
the filter are used as a weight that is multiplied by the corresponding pixel
values of the neighborhood and then added together to give rise to the new
value of the pixel in the resulting image. We can distinguish between two
groups of local pre-processing methods, in accordance with their ultimate
goal. They are the smoothing and the sharpening operators.

2.2.1 Smoothing operators

The smoothing operators have the purpose of suppressing noise or other
small unwanted details in images, using their redundancy. Unfortunately,
as previously said, these operators tend to flatten also useful details such
as objects’ edges and the cell structures, even though they generally
produce good results in the removal of impulsive noise. The most used
smoothing operator is the averaging filter. It stores the average value
of its neighborhood in the considered pixel. In this case, the results are
acceptable if the noise has a smaller size than the objects of interest; in
any case, the objects’ contours are heavily altered. Average filters can also
have different weight values, to properly reflect the characteristics of the
Gaussian noise. They are also called Gaussian filters since they simulate
the trend of a Gaussian curve. Fig. 2.2 represents an example. Another
common smoothing operator is the median filter, which behaves similarly
to the average filter. The only difference is that it stores the median value
of its neighborhood in the considered pixel.

2.2.2 Sharpening operators

The sharpening operators have the purpose of highlighting the interesting
details of the image, such as the edges of objects. Unfortunately, these
operators tend to highlight also the noise present in the image, however
they improve the perceived picture detail. These operators depend on the
use of local derivatives of the image. Since the image is a discrete function,
the traditional definition of derivative cannot be applied. In digital images,
the operator used for the first derivative is the intensity difference between
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Figure 2.2: Example of Gaussian smoothing filter application on a grey
level image. From left to right: original greyscale image, filtered images
with σ = 2, 4 and 8.

adjacent pixels. In most cases, the sharpening operators use the second
derivatives, since they are more sensitive to intensity variations. The most
used sharpening operator is the Laplacian filter that brings the desired
sharpening effect by subtracting the Laplacian filtered image from the
original one. Another useful sharpening operator is the gradient operator
that makes use of the image gradient to detect and improve the edges. An
edge is a set of connected pixels (4 or 8 connected) with sharp changes in
brightness, so it can be detected as any transition of grey levels, where
the slope of this transition is proportional to how the edge is sharp. Such
image function change can be described by the gradient pointing in the
direction in which the function has its most significant growth. Prewitt,
Sobel, Kirsch, and Robinson are examples of operators that can correctly
determine the gradient direction by using the first derivative. Another
common sharpening operator used in most of the commercial products to
make the image noticeably sharper is the Unsharp filter. It is a simple
sharpening operator which takes its name from the fact that it enhances
edges and other high-frequency components in an image via a procedure
that subtracts a smoothed (or unsharp) version of the image from the
original one. Fig. 2.3 shows some examples of the described sharpening
operators.

2.3 Color and Color Spaces

Color is very important in CAD systems since the hematologists stain
blood to highlight spatial structures. The color is the brain’s reaction
to a specific visual stimulus. It is incredibly subjective and personal,
thus trying to attribute numbers to the brains reaction to visual stimuli
is very difficult. Color spaces aim to aid the process of describing the
colors, either between people or between machines or programs. The
presence of more than one color space is since different color spaces
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Figure 2.3: Example of sharpening operators. From left to right: original
greyscale image, application of Laplacian filter, gradient operator and
unsharp filter.

can work better in specific applications, for example, some devices have
limiting factors that dictate the size and type of color space used. Thus,
some color spaces are tied to a specific piece device (device dependent)
while others are equally valid on whatever device they are used (device
independent). The standard families are primary, luminance-chrominance,
and perceptual spaces [VMP03,BVMP04] and they classify color spaces
into a few categories, concerning their definitions and their properties.

2.3.1 Primary Spaces

The primary spaces are based on the trichromatic theory of color vision,
also known as the Young-Helmholtz theory of color vision. It states
that there are three receptors in the retina that are responsible for the
perception of color. One receptor is sensitive to the color green, another
to the color blue and a third to the color red. These three colors can
then be combined to form any visible color in the spectrum. The primary
spaces assume that it is possible to match any color by mixing appropriate
amounts of the three primary colors. Examples of primary spaces are
the real RGB, the subtractive CMY(K), and the imaginary XYZ. The
most widely used color space indeed is the RGB color space, in which a
color point in the space is characterized by three color components of the
corresponding pixel which are red (R), green (G), and blue (B). In general,
color images are acquired through the RGB color space, called the image
acquisition color space. Therefore, all the color spaces are expressed thanks
to transformations performed on the R, G and B channels. As previously
said, CMY(K) is the subtractive color space and can be obtained easily
from a set of RGB values by subtracting the individual RGB values from
1, since a pure cyan (C) surface does not contain R, a pure magenta (M)
surface does not contain G and a pure yellow (Y) surface does not contain
B. So, the equation is:
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 C
M
Y

 =

 1
1
1

−
 R
G
B

 (2.1)

with the assumption that, in general, all color values have been normalized
to the range [0, 1]. In general, this color space is used in color printers and
copiers that internally perform this conversion. According to the equation,
equal amounts of the color channels should produce black. In practice,
however, their combination for printing produces only a dark color far
from the real black. Thus, to produce a pure black a fourth color has been
added, giving rise to the CMYK color space. In this case, the conversions
start from the just computed CMY, by finding the black (K) channel and
then correcting the complementary colors based on the value of K.

K = minimum(c,m, y)

C = c−K
M = m−K
Y = y −K

(2.2)

The XYZ colour space is obtained from the RGB colour space using
the following equation:

 X
Y
Z

 =

 0.412 0.357 0.180
0.212 0.715 0.072
0.019 0.119 0.950

 ·
 R
G
B

 (2.3)
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Figure 2.4: Example of primary spaces image representation. From left
to right and from top to bottom: RGB image, XYZ image, CYMK image;
CMY image, CMK image, MYK image.

2.3.2 Luminance-Chrominance Spaces

The luminance-chrominance spaces are used if it is useful to separate
the color definition into luminance, represented by one component, and
chrominance, represented by the two other components. Among these
color spaces, there are the television transmission color spaces, sometimes
known as transmission primaries, YIQ, and YUV for analogical standard
and YCbCr for the digital standard. For this reason, only the YCbCr has
been taken into account. It could be obtained from the RGB color space
using the following equation:

 Y
Cb
Cr

 =

 0
128
128

+

 0.299 0.587 0.114
-0169 -0.331 0.500
0.500 -0.419 -0.081

 ·
 R
G
B

 (2.4)

The International Commission of Illumination (CIE) has defined a system
that classifies color according to the human visual system in order to
specify any color in terms of its CIE coordinates. There are two main
CIE based color spaces, CIELUV (Luv) and CIELAB (Lab). They are
nearly linear with visual perception with the L parameter that has a good
correlation with perceived lightness and the other two parameters that
express the chrominance. Fig. 2.5 shows some examples. They are based
on the XYZ color space so they could be obtained by a conversion from
the XYZ color space using the following equations:
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Luv

L =

{
116 3
√
yr − 16, yr > 0.008856

903.3yr, yr ≤ 0.008856

u = 13L (u′ − u′r)
v = 13L (v′ − v′r)

(2.5)

where

yr =
Y

Yr

u′ =
4X

X + 15Y + 3Z

v′ =
9Y

X + 15Y + 3Z

u′r =
4Xr

Xr + 15Yr + 3Zr

v′r =
9Yr

Xr + 15Yr + 3Zr

Lab

L = 116 · h
(
Y

Yr

)
− 16

a = 500

[
h

(
X

Xr

)(
Y

Yr

)]
b = 200

[
h

(
Y

Yr

)(
Z

Zr

)] (2.6)

where

h(q) =

{
3
√
q, q > 0.008856

7.787q + 16/116, q ≤ 0.008856

Both equations require a reference white Xr, Yr and Zr.

2.3.3 Perceptual Spaces

The perceptual spaces try to quantify the subjective human color perception
through Intensity, Hue and Saturation values. This family represents a
wealth of similar color spaces, which include HSI (I stands for Intensity),
HSV (V stands for Value), HSL (Hue Saturation Lightness), HCI (C
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Figure 2.5: Example of Luminance-Chrominance spaces. From left to
right: RGB, Ycbcr and Lab images.

stands for Chroma), and so on. Most of these color spaces are linear
transforms from RGB and, consequently, are device dependent. Fig. 2.6
depicts some examples. Their advantage lies in the extremely intuitive
manner of specifying color, selecting the desired hue and then modifying it
slightly by adjusting its saturation and intensity values. Furthermore, the
separation of the luminance component from color information is stated
to have advantages in image processing. Here only the HSV color space
has been taken into account since it is the most used perceptual space. It
can be obtained from the RGB color space with the following equation:

Max = max(R,G,B)

Min = min(R,G,B)

∆ = Max−Min

V = Max

S =
(∆)

Max

H =


0, if ∆ = 0

60◦ ×
(
G−B

∆ mod6
)
, if R = Max

60◦ ×
(
B−R

∆ + 2
)
, if G = Max

60◦ ×
(
R−G

∆ + 4
)
, if B = Max

(2.7)

Figure 2.6: Example of perceptual spaces. From left to right: RGB, HSV,
HSL images.
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Chapter 3

Segmentation

Segmentation is one of the most important steps in image analysis be-
cause it permits to identify and separate, according to specific criteria of
homogeneity and separation, the different regions contained in the image.
Its main objective is to divide the image into parts that have a strong
correlation either between them or with objects and areas of the real world
contained in the image. The commonly used segmentation methods operate
essentially relying on characteristics such as the value of brightness, color,
and reflection of the individual pixels, identifying groups of pixels that
correspond to spatially connected regions. As for many problems of image
processing, no standard solution exist in general. Therefore, depending on
the characteristics of the images to process, and especially of the objects
to be segmented, different segmentation techniques can be applied. The
simplest can often lead to unsatisfactory results, while the remaining are
more powerful, but their drawback is a higher computational cost. For
medical images analysis, two primary levels of segmentation exist: the first
level aims to separate whole cells from the background and the second one
seeks to separate the cells in their components like the nucleus from the
cytoplasm in WBCs analysis or intracellular parasites in RBCs analysis, for
example. The second segmentation level is quite common in cells analysis
because the cell class depends on the morphological characteristics of its
components. The segmentation techniques can be divided into three main
categories: Pixel-Based, Edge-Based and Region Based.

3.1 Pixel Based or Thresholding

Thresholding is the most elementary and computationally cheaper tech-
nique for image segmentation, making use of a threshold operator that
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directly involves the image histogram. The hypothesis underlying this seg-
mentation technique is that the pixels of an object approximately have the
same brightness and, therefore, they can be separated from the background
by thresholding brightness values. The problem becomes more difficult
if the histogram presents more than two peaks because more than one
threshold value is necessary to separate the image objects. This technique
presents some drawbacks, in particular, if the threshold is not chosen
accurately, the detected objects can shrink or grow. This change in size
can be crucial in applications where size is an essential parameter for the
classification of the object itself. Moreover, an incorrect threshold value
can cause a partial fusion of two or more objects together, making it impos-
sible to perform its subsequent classification and identification. When the
intensity distribution of objects and background is sufficiently distinct, it is
possible to use a single global threshold [GW07,GWE04] applicable to the
entire image. The value of this global threshold is calculated starting from
an initial threshold value T between the minimum and maximum value
of the histogram, that allows making the first segmentation. It produces
two groups of pixels. Their values are averaged and used to calculate the
new threshold value T . The process is then iterated until the difference
between successive values of T is less than a predetermined parameter.
This simple algorithm works well in situations where there is a clear valley
between the various fashions histogram, relative to the background and
objects.

Figure 3.1: Example of global thresholding. From left to right: RGB orig-
inal image, binary image resulting from a 0.6 global threshold value, binary
image after Otsu threshold, which produced an optimal global threshold
value of 0.4157.

3.1.1 Otsu Algorithm

The method of Otsu [Ots75] also performs a global threshold, but differently
from the previous one allows to obtain an optimal threshold value, as it
maximizes the variance between classes, as shown in Fig. 3.1. If well
segmented, the classes are differentiated from the intensity value of their
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pixels. A threshold that gives the best separation between the classes in
terms of intensity is an optimal threshold. The method of Otsu, moreover,
can be extended to the segmentation of images that need more threshold
values, since the measure of separability on which is based also extends
to an arbitrary number of classes. It begins to lose meaning when the
number of classes excessively increases since it works only with one variable
which is the intensity. Typically, however, applications that require more
than two threshold values are resolved with the use of other values in
addition to the intensity, such as the color or the entropy present in the
histogram [KSW85].

3.1.2 Zack Algorithm

The Zack algorithm [ZRL77], also known as triangle method, differently
from the other methods, does not work directly on the intensity value of the
histogram, but it works on the image obtained from the histogram plot. It
is called triangle method because it draws a sort of triangle, constructing
a straight line that connects the highest histogram value h[bmax] and
the lowest one h[bmin], where bmax and bmin indicate the values of the
grey levels where the histogram h[x] reaches its maximum and minimum,
respectively. The distance d between the marked line and the histogram
values between bmin and bmax is then calculated. The intensity value,
where the distance d reaches its maximum, defines the threshold value.
This algorithm is particularly effective and fast, indeed, differently from
the ones seen before, it is computed directly on an image without any
further iteration.

Figure 3.2: Example of Zack algorithm.
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3.1.3 Fuzzy Threshold

The so far treated threshold algorithms are also called crisp techniques.
They produce excellent results with sharp images and regions, but the
segmentation process becomes complex in the presence of noise or impreci-
sion. The nature of this imprecision in the image arises from the presence
of uncertainty, that can lead to ill-defined regions. In this case, it is ap-
propriate to avoid crisp segmentation and to prefer a fuzzy segmentation.
Fuzzy threshold approaches are based on Fuzzy Sets (FSs) theory. Regions
may be viewed as fuzzy subsets of the image. Several researchers have
worked on fuzzy based thresholding techniques, in particular, to identify
the best fuzzy measure able to separate the fuzzy subset, such as the fuzzy
compactness [PR88], the fuzzy similarity [RAS+00] or the fuzzy divergence
and gamma membership [CR03,MPCB+13]. Fuzzy threshold approaches
segmentation performances are better than many crisp methods even
though their computational performances are not comparable, as Fig. 3.3
shows. Crisp methods are entirely based on computations performed on
the histogram, a 1-D array easily obtainable from the image, while fuzzy
approaches are based on computations performed on the image, a 2-D
array of size M ×N .

Figure 3.3: Example of fuzzy thresholding. From left to right: RGB
original image; 2 class c-means fuzzy thresholded image (threshold value
= 0.4347); 3 class c-means fuzzy thresholded image (threshold value =
0.7362).

3.1.4 Local Thresholding

Global thresholding algorithms may work properly in an area but produce
unsatisfactory results in other areas when the background is not constant,
and the contrast between objects varies unevenly. In this case, the use of
local thresholding could be a better solution. The image is subdivided into
rectangular overlapping sub-images, and the histogram of each of them is
calculated. The sub-images must be big enough to include both the object
and the background pixels. If the sub-image has a bimodal histogram,
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the minimum value between the two peaks is precisely the threshold.
If the histogram is unimodal, the threshold value must be calculated by
interpolating the thresholds of the adjacent sub-images, instead. In general,
the local thresholding is computationally more expensive than the global
one, although it is advantageous to segment objects from the background
and to extract tiny and scattered variable regions. Fig. 3.4 shows an
example.

Figure 3.4: Example of local thresholding. Left: RGB original image;
local thresholded image with uniform sensitivity given to pixels belonging to
background and everything else. WBCs zones are well distinguished from
the other objects.

3.2 Edge Based

This segmentation technique is not based on the intensity value of the
pixels, but on the fact that an object to be identified must have a closed
edge that surrounds it. This assumption is not always true but often
verified. The edges of objects are preliminarily identified by applying
suitable operators of edge detection. As said previously, an edge is a set of
connected pixels (4 or 8 connected) that lies on the border of two regions,
therefore presenting sharp brightness changes. There is a little difference
between edge and boundary since the edge is a local concept while the
boundary is an extended concept. Therefore the boundary of an object
is composed of a series of edges. It is possible to carry out a threshold
applied to the first derivative to detect only the edge. It is an operation
that takes the name of non-maxima suppression, as it resets all the values
in the first derivative which are not maximum. The chosen threshold value
allows selecting more than one maximum points, as to have a contour
wider but visible. Instead, if the threshold operation is applied to the
second derivative, this operation takes the name of zero crossing and has
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the aim of seeking zero crossing points, necessary for the location of the
edge points without distortion, avoiding the appearance of a double border.
As previously mentioned, there are several implementations of filters on
the first derivative, that can be applied directly to the search of the edges.
In general, before the edge detection, a smoothing filter is applied to
the image, to reduce both the noise and the edge thickness, so that the
detection is more effective. The process works correctly if the signal is
not noisy and if the edge is entirely localized in space and with small
amplitude. An evolution of this approach is the Laplacian of Gaussian
(LoG) filter with zero crossing and the Canny filter with non-maxima
suppression. Examples are shown in Fig. 3.5.

3.2.1 LoG Operator

This edge detection approach, also known as Marr-Hildreth algorithm
[MH80], is based on the second derivative of a function. The Laplacian
operator is rarely used by itself for edge detection, as it is susceptible to
noise, but it is used in conjunction with the Gaussian one, known precisely
as Laplacian of Gaussian, LoG. The fundamental characteristics of LoG
are the Gaussian smoothing filter, used to reduce noise and to enlarge the
edge, the Laplacian in two dimensions, the zero crossings in the second
derivative and, finally, the edge location estimated with sub-pixel using
the linear interpolation. The Gaussian filter is preferred because it applies
an action of smoothing both in space and in frequency. Furthermore, the
derivative of the Gaussian filter is independent from the considered image
and can be pre-calculated analytically by reducing complexity. Once the
Laplacian filter is applied, it is needed to search points in the image in
which there is a zero crossing, considering only those zeros for which there
is a significant change in all possible directions around zero.

3.2.2 Canny Operator

Even the Canny algorithm [Can86] uses a Gaussian filter for smoothing.
Then the magnitude and direction of the gradient are calculated using
different but finite approximations of partial derivatives. It applies the
non-maxima suppression to the magnitude of the gradient, and finally, it
uses the double threshold algorithm to find and link the edges. The use
of the double threshold is necessary, considering that a single threshold
would not lead to satisfactory results. For example, if the threshold is too
low, it may detect too many false edges instead, if the threshold is too
high some real edges may be lost. The use of two thresholds produces
two different images and, of course, the image with the higher threshold
will present a much smaller number of edges. Starting from this image,
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each edge is examined and compared with that one of the other images
in search of edges that have been lost, and that can be linked to create a
continuous boundary.

Figure 3.5: Example of edge based segmentation. Left: RGB original
image; binary mask obtained with LoG operator; binary mask obtained
with Canny operator.

3.2.3 Deformable Models

In medical image analysis, in many cases, the boundaries between the
tissue structures and cell components are not clearly defined. The use of
edge detection on these images produces poor results, in particular, due to
the presence of small structures or particles this approach produces a huge
number of false edges. Moreover, in general, the edge approaches based
on filters do not yield to a closed contour. As a result, these techniques
either fail or require some post-processing step to remove invalid object
boundaries in the segmentation results or to close the extracted contour.
To address these difficulties, deformable models or snakes [KWT88] have
been extensively studied and widely used in medical image segmentation,
with promising results, as shown in Fig. 3.6. Deformable models are
curves or surfaces defined to match a contour as an energy minimization
problem, where the optimal solution constitutes an equilibrium of internal
and external energy. The deformable model can move under the influence
of internal forces, which are defined within the curve or surface itself
to keep the model smooth during deformation, while external forces,
which are computed from the image data, are defined to move the model
toward an object boundary or other desired features within an image.
By constraining extracted boundaries to be smooth and incorporating
other prior information about the object shape, deformable models offer
robustness to both image noise and boundary gaps.
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Figure 3.6: Example of deformable model segmentation, by using Active
Contour strategy. From left to right: RGB original image; seed region
indicates the region to analyse; segmentation result after 250 iterations of
Active Contour.

3.3 Region Based

These segmentation techniques introduce more information than previous
concerning the connectivity of the pixels forming the entire object, avoiding
in this way that individual points of the same region, having the right
color or the right contrast, are classified as separate objects. Unlike the
pixel and edge-based segmentation methods, region-based approaches aim
to identify objects and regions, working directly on the space occupied
by the pixels instead of identifying objects from their properties, such as
brightness or edges. Considering R as the entire spatial region occupied
by the image, the segmentation process can be seen as the partitioning of
R into n sub-regions R1, R2, ..., Rn, with the constraint that, the union
of all regions returns R and the intersection between any set of regions is
equal to 0. The pixels belonging to a region must be connected (8 or 4
connected), and a similarity criterion must relate them. The most common
techniques of segmentation region based are divided into region growing
and split and merge techniques.

3.3.1 Region Growing

The region growing is a procedure that allows selecting regions connected
and homogeneous of an image, whose selection is effected from a single
pixel and is based on a similarity or growth criterion which imposes a
maximum difference, a priori defined, between the value of the initial
pixel and the pixel values of the region. The basic approach involves the
selection of a set of starting pixels, called seed points, and from these
seeds add the pixels of their neighborhood that have specific properties
of similarity with the seeds, such a specific intensity range or color. The
selection of the set of starting pixels is based on the nature of the problem,
instead the selection criteria of similarity depends both on the problem
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and the type of the input image, since it must be ensured independence
between the result of the segmentation and the scan direction of the image
or the selected seed points.

Algorithms of region growing have been widely used for the analysis of
peripheral blood images, in particular for segmentation of cells in which
the nucleus is easily identifiable and thus can be used as a seed, as shown
in Fig. 3.7.

Figure 3.7: Example of region growing application. From left to right:
RGB original image; segmentation result after region growing application
starting from a WBC nuclei seed point in the centre of image; superimpo-
sition of segmentation result over original image indicating the obtained
region.

3.3.2 Split and Merge

Segmentation can also be performed by recursively splitting (partitioning)
an image until uniform regions are obtained. Then, merging (aggregation)
can be performed on adjacent regions that may be compatible on the basis
of a similarity criterion. In the simplest way, an image can be partitioned
recursively repeating a division into four quadrants, until uniform smaller
regions (even composed of a few pixels) have been obtained, according to
the defined similarity criterion. Such division into quadrants is represented
by a tree called quad-tree, in which the root node contains the information
of the whole image and each of the four children nodes contains the
information about a quadrant. If a quadrant is sufficiently uniform, it
will not be further partitioned. Splitting step inevitably partitions also
homogeneous regions and makes necessary a subsequent phase to merge
the adjacent and homogeneous regions of the image into a region that
meets the defined criterion of similarity, as shown in Fig. 3.8.

3.3.3 Watershed

The watershed segmentation [Mey94] is a mixed approach based on the
pixel aggregation (flooding) with the use of the image gradient as a barrier
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Figure 3.8: Example of split and merge application. From left to right:
RGB original image; gray level converted image; split and merge segmen-
tation results by using quadrants from 512× 512 down to 1× 1.

for flooding. In this approach, the gradient image can be considered as
a topographical 3D image, in which it is possible to identify points that
come from a regional minimum, points that surely fall in a local minimum
called basin and points of local maximum called watershed lines. The
flooding applied to this image leads to a state where only the watershed
lines are visible, that correspond to the objects contours in the image. A
direct application of the watershed algorithm induces an over-segmentation
due to the presence of too many basins which can never merge, or the
presence of noise and other irregularities of the gradient. To avoid this
problem in digital microscopy images analysis, the watershed is often used
with different strategies that include the use of markers. These markers
can be extracted directly from the original images intensity value and
subsequently combined with the gradient to obtain a stronger result.

3.4 Post-Processing

After segmentation, an image can be represented as a map of binary objects,
background, and foreground. In some cases, the initial segmentation is not
satisfactory, as it can present holes or artifacts. Some improvements to
the segmentation results can be made directly on the binary image using
a series of operations based on an a priori knowledge. The morphological
operators are commonly used for this purpose, to reduce the number of
artifacts, to fill the holes present in some regions, to remove some objects
not completely enclosed in the image or others that are not interesting
for the analysis. Mathematical morphology is based on the set theory
for binary images [Ser83a, Ser83b] and on lattice theory for grey level
images. It provides some approaches to image processing that are useful
to extract image components and for the representation and description of
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the object’s shape. The sets, in this case, represent the objects contained
in the image. The operations of mathematical morphology are based on
the use of structuring elements, that are small sets of sub-images used to
investigate and study the properties of interest in the input image. They
can have any shape defined according to the problem to be treated and
are represented as binary matrices.

3.4.1 Mathematical morphology

Mathematical morphology (MM) can be defined as a theory for the analysis
of spatial structures. It is called morphology because it aims at analyzing
the shape and form of objects. It is mathematical in the sense that the
analysis is based on set theory, integral geometry, and lattice algebra. MM
is not only a theory but also a very powerful image analysis technique
[Soi04]. It was introduced by Matheron in 1964 as a technique for analyzing
the geometric structure of metallic and geologic samples. It refers to a
branch of nonlinear image processing and analysis that concentrates on the
geometric structure within an image. The morphological filters, which can
be constructed on the basis of the underlying morphological operations,
are more suitable for shape analysis than the standard linear filters since
the latter sometimes distort the underlying geometric form of the image.
Some of the salient points regarding the morphological approach are as
follows [GD88]:

• Morphological operations provide for the systematic alteration of
the geometric content of an image while maintaining the stability of
the important geometric characteristics.

• There exists a well-developed morphological algebra that can be
employed for representation and optimization.

• It is possible to express digital algorithms concerning a tiny class of
primitive morphological operations.

• There exist rigorous representation theorems by means of which one
can obtain the expression of morphological filters in terms of the
primitive morphological operations.

MM was initially developed for binary images and later generalized
to greyscale images [Soi04, Ser84], considered as a sampled function of
R2 in R, or in general of any function of Rn in R. More recently, several
researchers have extended morphological operators to color (or in general
multispectral) images, considered as sampled functions of Rn in Rm, with
m being equal to three in the case of the usual color images or the number
of bands otherwise [BDVD12]. Moreover, several approaches for fuzzifying
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MM have been proposed, extending the ordinary morphological operations
by using fuzzy sets [NK00].

Dilation and erosion are the basic morphological processing operations.
They are defined in terms of more elementary set operations but are
employed as the essential elements of many algorithms. Both dilation and
erosion are produced by the interaction of a set called structuring element
(SE) with a set of pixels of interest in the image. The structuring element
has both a shape and an origin. From these two basic operators, others
have been derived (opening, closing, hit-or-miss). They can be applied to
extract image components useful in the representation and descriptions of
region shapes, such as area granulometry, boundaries, skeleton, or convex
hull. Besides, morphological operators can be used for image preprocessing
and postprocessing, such as morphological filtering, thinning, and especially
for segmentation.

Given an image or set A and a structuring element B, the operations
are realized by sliding B over A so that the origin of B visit all elements of
A. The erosion operation creates a new set by considering all the location
of B for which B is entirely contained in A. The result is that the contour
of the set A has been eroded. Such a property for which B must be fully
contained in A is equivalent to the property for which B must not share
any elements with the complement of A. The erosion and dilation are dual
operations; thus it is possible to obtain the dilation of A through the use of
a structuring element B eroding the complement of A. More immediately,
the dilation operation creates a new set by considering all the location of
B for which at most one element of B is contained in A. The result is
that the contour of the set A has been dilated. A simple operation that
arises from the erosion is the boundary extraction. The contour of a set A
can be obtained from the difference between the original set A and the
erosion of A with an appropriate structuring element B.

Also, the opening and closing arise from the composition of erosion
and dilation. The opening of an image or set A with a structuring element
B is defined as the erosion of A with B followed by a dilation of the
result. This is useful to flatten the contours of an object, breaking the
thin lines and removing the sharp contour. The closing of an image or
set A with structuring element B is defined as the dilation of A with B
followed by the erosion of the result. Even the closing flattens the contours,
but differently, in fact, it eliminates small holes and fills the gap in the
contours. To fill bigger holes, instead, the operation of hole filling, that
consists of a more laborious process, is used. Assuming to have a set A
with a hole inside, the process starts taking the complement of A, that
is composed of the background pixels and therefore also the hole pixels.
Then, iteratively, a set containing only a pixel for each hole is dilated using
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an appropriate structuring element and making every time the intersection
with the complement of A, so as to exclude pixels outside the contour of
A. Similarly, an iterative procedure of dilatation is used for the extraction
of connected components. This time the process starts from the points
of the connected components in A, that is dilated until the connected
components have been filled. The intersection is performed with A at
every iteration, to exclude pixels outside the connected component.
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Chapter 4

Feature Extraction

Once the image has been segmented into regions, the collection of resulting
segmented pixels is represented and described appropriately for further
processes. The representation of a region may be based on external
characteristics, such as the contour and shape or internal characteristics,
such as the color and displacement of the pixels inside the region. The
following step results to be the description of the regions according to
the chosen representation. In peripheral blood cells images analysis,
it may be necessary to use both representations, as it is important to
analyze characteristics such as shape and area of a cell and also regional
characteristics such as color and texture. The features must be extracted
from the object to describe it. The ideal descriptors are those independent
to transformation such as the orientation of the object, size, and position
and that is sufficiently discriminatory. The purpose of the phase of feature
extraction is to obtain a set of descriptors, that will be further separated
into different classes by a classification procedure. Features are classified
into two distinct groups:

• general features: application independent features such as color,
texture, and shape. They can be further divided into features
calculated at each pixel, like color and location (pixel-level features),
features calculated over the results of segmentation or edge detection
(local features) and features calculated over the entire image or
sub-image (global features).

• domain-specific features: application dependent features such as
human faces, fingerprints and conceptual features.

Moreover, all features can be coarsely classified into low-level features and
high-level features. Low-level features can be extracted directly from the
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original images, whereas high-level feature extraction must be based on
low-level features.

4.1 Contour Descriptors

As previously mentioned, many descriptors may be directly extracted from
the segmentation result. For example, one of the simplest descriptors is
the contour length. A good approximation of the contour length can be
easily obtained by counting the pixels of the contour. The value of the
diameter can be easily obtained by computing the maximum distance
between two points of the contour. The segment that connects the end-
points of the diameter is called the major axis, while the minor axis is
that segment perpendicular to the major axis, of such a length, that a
rectangle completely encloses the contour, passing through the four points
of intersection of the axes. The afore defined rectangle is called bounding
box, having sides parallel to the two axes. The ratio between the sides
of the rectangle or the ratio between the two axes measures the value of
eccentricity (4.1). The elongation measures how an object is elongated
(4.2), while rectangularity represents how rectangular a shape is or, better,
how well it fills its minimum bounding box (4.3).

eccentricity =

√
(majoraxis2 −minoraxis2)

majoraxis
(4.1)

elongation = 1− minoraxis

majoraxis
(4.2)

rectangularity =
area

majoraxis ∗minoraxis
(4.3)

These descriptors are useful to discriminate the shape of abnormal
objects to normal ones, in particular, peripheral blood cells given their
almost circular shape should be distinguished easily from cells with an
unusual shape.

4.2 Regional Descriptors

Regional descriptors are the most used since they provide an overall
characterization of the examined object. Regional descriptors comprise
shape, color and texture descriptors.
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4.2.1 Geometric Descriptors

Geometric descriptors are the most used for peripheral blood cells analysis
since cells differ considerably in size or shape, thus using these descriptors
it is possible to discriminate them easily. The simplest geometrical features
are area and perimeter, from which it is possible to compute other more
complex descriptors. The area of a region is defined as the number of
pixels that constitute the region. This descriptor can be useful if the visual
geometry is fixed and the objects are always analyzed approximately at
the same distance. convex area value is also often used. It is the area of
the convex hull, the minimum convex polygon that completely encloses the
region. The perimeter of a region is defined as the number of pixels of its
outline. Even in this case, the value of the convex perimeter can be used,
although it is not usually used as a descriptor, while its most common
application is the computation of other descriptors, such as compactness,
circularity, and convexity. The compactness of a region is defined as the
ratio between the area of an object and the area of a circle with the
same perimeter (4.4). The circle is used as a benchmark because it is
the most compact form its value of compactness is 1. Also the roundness
calculates the ratio between area and perimeter. However, it excludes the
presence of small irregularities. That is the reason why it is derived from
the ratio between region area and that of a circle with the same convex
perimeter (4.5). The convexity instead expresses the relative amount that
an object differs from a convex object. This value is obtained through the
ratio between the convex perimeter and the perimeter of the object itself
(4.6). The value of solidity, instead, describes the density of an object by
comparing the area of an object and the area of its convex hull (4.7).

compactness =
4 ∗ π ∗ area
perimeter2

(4.4)

roundness =
4 ∗ π ∗ area

convex perimeter2
(4.5)

convexity =
perimeterconvex
perimeter

(4.6)

solidity =
area

convex area
(4.7)

All the mentioned descriptors that are compactness, circularity, con-
vexity, and solidity, have a maximum value equal to 1, indicating that
the region is compact, circular, convex and solid, respectively. The main
drawback of the geometric descriptors is that their application requires
accurate segmentation of the region of interest and, therefore, they are
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commonly used with other descriptors less influenced by segmentation
errors, such as chromatic descriptors or texture descriptors.

4.2.2 Chromatic Descriptors

Chromatic descriptors delineate the grey level or color distribution of
images. These descriptors are calculated directly from histograms of the
region, which may be considered as functions of color density. The most
used descriptors are the mean 4.8, standard deviation (4.9), smoothness
(4.10), skewness (4.11), kurtosis (4.12), uniformity (4.13) and entropy
(4.14), that describe the shape of the normalised histogram hN , obtained
from the histogram h by dividing each value by the total number of pixels.

µ =

Ng−1∑
k=0

k · hN (k) (4.8)

σ =
√
v (4.9)

s =
1

1 + v/(Ng − 1)2
(4.10)

µ3 = σ−3 ·
Ng−1∑
k=0

(k − µ)3 · hN (k) (4.11)

µ4 = σ−4 ·
Ng−1∑
k=0

(k − µ)4 · hN (k) (4.12)

uni =

Ng−1∑
k=0

h2
N (k) (4.13)

e = −
Ng−1∑
k=0

hN (k) · log2(hN (k)) (4.14)

where v is the variance value (4.15).

v =

Ng−1∑
k=0

(k − µ)2 · hN (k) (4.15)

The chromatic descriptors are the most discriminatory characteristics
between different types of tissues and cells, but generally, the discrimination
on sub-classes requires further descriptors such as texture measures.
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4.2.3 Texture Descriptors

The traditional machine vision and image processing approaches assume
the presence of uniform intensity values in local regions of the image. This
assumption is not always true, and in fact, some objects have a repeated
pattern as the main visual feature, which is called texture. Texture
probably represents the most used descriptor for the description of the
regions of images. Although there are no formal definitions of what
is a texture, it can be viewed as a global descriptor generated from the
repetition of local patterns. A texture is a repetitive geometric arrangement
of the grey levels of an image. It provides important information about
the spatial disposition of the grey levels and the relationship with their
neighborhoods. The human visual system determines and recognizes easily
different types of textures but although for a human observer associating a
surface with a texture is very simple, giving a rigorous definition for this is
very complex. Typically, a qualitative definition is used to describe textures.
It can be easily guessed that the quantitative analysis of texture passes
through statistical and structural relationships among the basic elements
of what we call texture. Intuitively, texture descriptors provide measures of
properties such as regularity, smoothness, roughness, coarseness, thickness,
and so on. In medical image analysis, texture descriptor has proven itself
useful to distinguish some abnormal cells or the presence of parasites in
the process of evolution. The most used approach for the description
of the texture is the statistical approach, that is also the simplest for
texture representation. Many statistical descriptors use statistical moments
extracted from the histogram of the image or the region. The measures
of texture based only on histograms, however, have many drawbacks. In
particular statistical moments do not give information about the mutual
position of the pixels. Thus, it is important to consider not only the
intensity distribution but also the positions of pixels having similar grey
levels. Many different methods for managing textures have been developed
and are based on the various ways texture can be characterized, including
the scale-invariant feature transform (SIFT) [Low04], speeded up robust
feature (SURF) [BTG06], the histogram of oriented gradients (HOG)
[DT05], Gabor filters [JF90] and others.

Gray Level Co-occurrence Matrix

One of the most powerful model for texture analysis was proposed by
Haralick [HSD73]. His method involves the creation of the Gray Level
Co-occurrence Matrices (GLCMs) from which features that represent some
image aspects can be calculated. A GLCM represents the probability
of finding two pixels i and j with distance d and orientation θ and it is
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denoted with pd,θ(i, j). Obviously, the d and θ values can assume different
values, but the most used are d = 1 and θ = [0◦, 45◦, 90◦, 135◦]. A GLCM
for an image of size N ×M with Ng grey levels is a 2D array of size
Ng × Ng. Haralick proposed thirteen descriptors that can be extracted
from these matrices.
Angular Second Moment : is the squares sum of the matrix values (4.16).
It is also known as Uniformity. This feature has a range between 0 and 1.
The value is 0 if the image is constant.

ASM =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)2 (4.16)

Often it is called also Energy but it is calculated as in (4.17).

Ene =

√√√√Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)2 (4.17)

Contrast : is the weighted average of all diagonals parallel to the main one
which emphasizes the correlation between the different tones (4.18). The
contrast is 0 if the image is constant.

Con =

Ng−1∑
i=0

Ng−1∑
j=0

(i− j)2 · p(i, j) (4.18)

Correlation: is the measure of how a pixel is in correlation with its
neighbours across the image. It is 1 or -1 for an image related perfectly
positively or negatively. It is 0 if the image is constant (4.19).

Cor =

Ng−1∑
i=0

Ng−1∑
j=0

(i− µx) · (j − µy) · p(i, j)
σx · σy

(4.19)

Variance: is the measure of linear dependence of the brightness determined
from the correlation (4.20).

V ar =

Ng−1∑
i=0

Ng−1∑
j=0

(i− µ)2 · p(i, j) (4.20)

Inverse Difference Moment : is a value which measures the proximity of
the distribution from GLCM elements to the GLCM diagonal. It has value
1 in the main diagonal of its GLCM (4.21).

IDM =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)

1 + (i− j)2
(4.21)
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Often it is called also Homogeneity and is calculated as in (4.22).

Hom =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)

1 + |i− j|
(4.22)

Sum Average: is the average of the value px+y containing the sums of all
the diagonal orthogonal to the main (4.23).

SAve =

2Ng−2∑
k=0

k · px+y(k) (4.23)

Sum Variance: is an estimation of the second order of the vector px+y

centralized respect to the average (4.24).

SV ar =

2Ng−2∑
k=0

(k − FSAv)2 · px+y(k) (4.24)

Sum Entropy : provides an estimate of the vector px+y relative to entropy,
which is the measure of the disorder of the vector itself (4.25).

SEnt = −
2Ng−2∑
k=0

px+y(k) · log2(px+y(k)) (4.25)

Entropy : is the entropy measure for the entire matrix (4.26).

Ent = −
Ng−1∑
i=0

Ng−1∑
j=0

p(i, j) · log2(p(i, j)) (4.26)

Difference Variance: is the variance of the vector px−y (4.27).

DV ar =

Ng−1∑
k=0

(k − FDAv)2 · px−y(k) (4.27)

where DAve, Difference Average or Dissimilarity, is the average of the
vector px−y containing the differences of all the diagonal orthogonal to the
main (4.45).
Difference Entropy : is the entropy measure of the vector px−y (4.28).

DEnt = −
Ng−1∑
k=0

px−y(k) · log2(px−y(k)) (4.28)
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Measure of correlation 1 and 2 : are measures related to entropy of the
matrix (4.29),(4.30).

MC1 =
FEnt −HXY 1

max(Hx−Hy)
(4.29)

MC2 =
√

1− exp[−2(HXY 2− FEnt)] (4.30)

where

px(i) =

Ng−1∑
j=0

p(i, j) (4.31)

py(j) =

Ng−1∑
i=0

p(i, j) (4.32)

px−y(i− j) =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j) (4.33)

px+y(i+ j) =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j) (4.34)

µx =

Ng−1∑
i=0

i · px(i) (4.35)

µy =

Ng−1∑
j=0

j · py(j) (4.36)

µ = (µx + µy)/2 (4.37)

σx =

√√√√Ng−1∑
i=0

px(i) · (i− µx)2 (4.38)

σy =

√√√√Ng−1∑
j=0

py(j) · (j − µy)2 (4.39)

HX = −
Ng−1∑
i=0

px(i) · log2(px(i)) (4.40)

HY = −
Ng−1∑
j=0

py(j) · log2(py(j)) (4.41)
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HXY 1 = −
Ng−1∑
i=0

Ng−1∑
j=0

p(i, j) · log2(px(i) · py(j)) (4.42)

HXY 2 = −
Ng−1∑
i=0

Ng−1∑
j=0

px(i) · py(j) · log2(px(i) · py(j)) (4.43)

To these descriptors extracted from GLCMs many others have been
proposed, but only seven are widely used [ST99, Cla02], that are mean
(4.44), difference average (4.45), autocorrelation (4.46), maximum proba-
bility (4.47), cluster shade (4.48), cluster prominence (4.49) and product
moment (4.50).

µ =

Ng−1∑
i=0

Ng−1∑
j=0

i · p(i, j) (4.44)

DAve =

Ng−1∑
i=0

Ng−1∑
j=0

|i− j| · p(i, j) =

Ng−1∑
k=0

k · px−y(k) (4.45)

Aut =

Ng−1∑
i=0

Ng−1∑
j=0

i · j · p(i, j) (4.46)

MP = max(p(i, j)) (4.47)

CS =

Ng−1∑
i=0

Ng−1∑
j=0

(i+ j − µx − µy)3 · p(i, j) (4.48)

CP =

Ng−1∑
i=0

Ng−1∑
j=0

(i+ j − µx − µy)4 · p(i, j) (4.49)

PM =

Ng−1∑
i=0

Ng−1∑
j=0

(i− µx) · (j − µy) · p(i, j) (4.50)

Some interesting methods have been presented to extend the original
implementation of GLCM, computing the matrices by evaluating different
distance parameters [GVB07], different windows sizes [HCx09], different
color channels [BH07], adding the color gradient [GW12] or also considering
the edge orientation [MMN+12]. Furthermore, the GLCM descriptors can
be extracted after computing a weighted sum of GLCM elements [WJL03]
or after calculating the local gradient of the matrix [CWCT09].
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Gray Level Difference Matrix

Grey level difference matrix (GLDM) [CH80] is another useful tool for
texture analysis. It is a particular type of matrix originated by the absolute
differences between grey levels pairs. Actually, the GLDM is defined in
very similar way to the GLCM, using the same notions of distance and
orientation to find grey levels pairs. The main difference arises in the
construction and dimension of the matrix. In fact, the GLDM preserves
the size of the original image (and not Ng ×Ng), collecting the absolute
difference between pairs of pixel values (and not the occurrences of two
grey levels). This matrix is used to calculate the histogram h(d) that
denotes the number of differences with value d. The histogram is then
normalized hN (d) = h(d)/N with N =

∑
d h(d) in order to easily compute

nine descriptors that are mean (4.51), angular second moment (4.52),
contrast (4.53), variance (4.54), inverse difference moment (4.55), entropy
(4.56), product moment (4.57), cluster shade (4.58) and cluster prominence
(4.59).
Mean:

µ =

Ng−1∑
d=0

d · hN (d) (4.51)

Angular Second Moment :

ASM =

Ng−1∑
d=0

hN (d)2 (4.52)

Contrast :

Con =

Ng−1∑
d=0

d2 · hN (d) (4.53)

Variance:

V ar =

Ng−1∑
d=0

(d− µ)2 · hN (d) (4.54)

Inverse Difference Moment :

IDM =

Ng−1∑
d=0

hN (d)

1 + d2
(4.55)

Entropy :

Ent =

Ng−1∑
d=0

hN (d) · log2(hN (d)) (4.56)
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Product Moment :

PM =

Ng−1∑
d=0

(d− µ) · hN (d) (4.57)

Cluster Shade:

CS =

Ng−1∑
d=0

(d− µ)3 · hN (d) (4.58)

Cluster Prominence:

CP =

Ng−1∑
d=0

(d− µ)4 · hN (d) (4.59)

Gray Level Run-Length Matrix

A different tool for texture analysis is based on information of higher order
statistics that uses the Grey Level Run-Length Matrices (GLRLM) [Tan98].
In this approach the GLRLM contains information on a particular number
of equal grey levels (run) in a given direction. So, a run-length matrix
is defined as a set of consecutive pixels having the same grey level. The
element (i, j) of a run-length matrix specifies the number of times that
the image contains a run of length j composed by all pixels with grey
level i. The creation of the run-length matrices is very simple and the
number of operations to be done is directly proportional to the number
of image points. A coarse texture will be characterized by a long run,
while a finer texture will be characterized by a shorter run. Also, the
GLRLMs are calculated by considering the main four orientations and
for each matrix eleven descriptors can be extracted, that are short run
emphasis (4.60), long run emphasis (4.61), grey level non-uniformity (4.62),
run length non-uniformity (4.63), run percentage (4.64), low grey level
run emphasis (4.65), high grey level run emphasis (4.66), short run low
grey level emphasis (4.67), short run high grey level emphasis (4.68), long
run low grey level emphasis (4.69) and long run high grey level emphasis
(4.70).
Short Run Emphasis:

SRE =
1

nr

M∑
i=1

N∑
j=1

p(i, j)

j2
=

1

nr

N∑
j=1

pr(j)

j2
(4.60)

Long Run Emphasis:

LRE =
1

nr

M∑
i=1

N∑
j=1

p(i, j) · j2 =
1

nr

N∑
j=1

pr(j) · j2 (4.61)
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Grey Level Non-uniformity

GLN =
1

nr

M∑
i=1

 N∑
j=1

p(i, j)

2

=
1

nr

M∑
i=1

pg(i)
2 (4.62)

Run Length Non-uniformity

RLN =
1

nr

N∑
j=1

(
M∑
i=1

p(i, j)

)2

=
1

nr

N∑
j=1

pr(j)
2 (4.63)

Run Percentage

RP =
nr
np

(4.64)

Low Grey Level Run Emphasis

LGLRE =
1

nr

M∑
i=1

N∑
j=1

p(i, j)

i2
=

1

nr

M∑
i=1

pg(i)

i2
(4.65)

High Grey Level Run Emphasis

HGLRE =
1

nr

M∑
i=1

N∑
j=1

p(i, j) · i2 =
1

nr

M∑
i=1

pg(i) · i2 (4.66)

Short Run Low Grey Level Emphasis

SRLGLE =
1

nr

M∑
i=1

N∑
j=1

p(i, j)

i2 · j2
(4.67)

Short Run High Grey Level Emphasis

SRHGLE =
1

nr

M∑
i=1

N∑
j=1

p(i, j) · i2

j2
(4.68)

Long Run Low Grey Level Emphasis

LRLGLE =
1

nr

M∑
i=1

N∑
j=1

p(i, j) · j2

i2
(4.69)

Long Run High Grey Level Emphasis.

LRHGLE =
1

nr

M∑
i=1

N∑
j=1

p(i, j) · i2 · j2 (4.70)
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Figure 4.1: The LBP operators LBP8,1 and LBP16,2, respectively

Local Binary Pattern

Another useful tool for texture analysis is the Local Binary Pattern (LBP),
originally proposed in [OPH96] and widely used for grey level texture
classification, due to its simplicity and robustness. This operator trans-
forms the image by thresholding the neighborhood of each pixel and by
coding the result as a binary number. The resulting image histogram can
be used as a feature vector for texture classification. Also, for the LBP
operator two main parameters must be defined, which are the radius r
and the number of neighborhood n pixels. For example, some possible
versions of this operator are the LBP8,1 implemented with the parameters
r and n equal to 1 and 8, respectively, and the LBP16,2 implemented with
the parameters r and n equal to 2 and 16, respectively. These two LBP
operators are reported in Fig.4.1.

4.3 Feature Selection

A further step, not always present on a CAD system, is the feature
selection, a process commonly used in pattern recognition that allows
determining the most relevant features reducing the size of the vectors
associated with the objects. The feature selection aims to reduce the
dimensionality eliminating both the redundant features, that represent
information derived from other, both the features that are irrelevant for the
analysis. The ”ideal” approach would be to test all the possible subsets of
features, using them as input to the classification algorithm of interest and
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select the subset that allows obtaining the best results. This approach in
most cases is not applicable. There are several techniques for the selection
of characteristics, that can be grouped into three categories:

• embedded methods: the selection is internal to the classification
algorithm that takes advantage of internal knowledge of the classifier,
such as the weight used to induce the model [DH73]

• filter methods: also known as scheme-independent selection, because
the selection is made in advance, with a method independent from
the classification algorithm that will be applied subsequently using
some measure of distance or correlation [YL04]

• wrapper methods: also known as scheme-specific selection, because
the selection is performed making a comparison between different
subsets of features, investigated with approaches of sequential for-
ward or backward selection [Kit78], according to the classification
algorithm that will be applied later.

Generally, the wrapper methods perform better than the other methods,
as they are optimized for a specific classifier, but they are computationally
eligible only for small feature vectors. On the other hand, there are
different approaches called, by many authors, ”feature selection” that
do not perform a proper features selection, but rather a dimensionality
reduction through projection or combination. The Principal Component
Analysis (PCA) [WEG87] is the most popular technique for the reduction
of dimensionality. Its purpose is to find a set of orthogonal vectors in
the feature space corresponding to the directions along which the data
have the highest variance. Projecting the data from their original space to
the orthogonal complement permits the dimensionality reduction of the
features. The advantages of the PCA is that it can deal with large datasets
both in objects and variables reducing the redundancy. Moreover, it does
not make particular assumptions on the data, and so it can be applied to
all datasets. The most significant disadvantage arises from the fact that
PCA does not select the features, but it creates new ones combining the
original. This procedure dramatically affects the control over the single
feature, that is particularly important in image processing where features
are extracted directly from the image and thus it is essential to establish
which are determinant for the task of classification, in order to avoid the
extraction of insignificant features.
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Chapter 5

Classification

Once the features have been extracted from cells, they must be inserted in
a process that classifies cells based on medical concepts. Given a collection
of records, each one composed by a set of features x and by a label of class
y, the goal is to define a function or classification model, that associates a
class label y to each set of attributes x. A classification model is a tool to
describe and classify the data of a specific domain. It is possible thanks
to a training set, namely a set of training samples in which the values of
the class labels are well known. So, the relations between attributes and
class labels can be identified and encoded in a model, through a learning
algorithm. This model must be able not only to describe the training
set but also to predict the class of new records not yet labeled correctly.
Literature comprises several classification algorithms, but the most used
on medical images are following listed:

• Nearest Neighbour

• Decision Trees

• Bayesian Classifier

• Neural Network

• Support Vector Machine

Moreover, machine learning methods are generally divided into supervised
and unsupervised learning algorithms, although there are many nuances.
In supervised learning, a model is presented with a dataset D = {x, y}Nn=1

of input features x and label y pairs, where y typically represents an
instance of a fixed set of classes. In the case of regression tasks y can also
be a vector with continuous values. Supervised training typically amounts
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to finding model parameters Θ that best predict the data based on a
loss function L(y, ŷ). Here ŷ denotes the output of the model obtained
by feeding a data point x to the function f(x; Θ) that represents the
model. Unsupervised learning algorithms process data without labels
and are trained to find patterns, such as latent subspaces. Examples
of traditional unsupervised learning algorithms are principal component
analysis and clustering methods. Unsupervised training can be performed
under many different loss functions. One example is reconstruction loss
L(x, x̂) where the model has to learn to reconstruct its input, often through
a lower-dimensional or noisy representation.

5.1 Nearest Neighbor

The Nearest Neighbour classifier uses the concept of proximity to classify
a new record, based on the samples provided by the training set that
are similar to it. Each instance of the training set is a point in an n-
dimensional space, where n is the number of features. When NN has
to classify a new record, it calculates its distance from each training set
sample. Then, the k examples of the training set closer to the new record,
called k-Nearest Neighbors (kNN) [CH67], are identified and used to assign
the class label prevailing among kNN to the new record. However, there
may be problems in the choice of k, in fact, if this value is too small, there
is a high sensitivity to noise, but if it is too large, there may be examples
not similar enough to the record to be classified, among the kNN. One way
to reduce the influence of the parameter k is to calculate the prevailing
class by assigning a different weight to each of the first neighbors according
to its distance from the record to be classified. This type of classifier is
the simplest among those listed, as it does not require the induction of
a model from the training set, which is used in the classification step to
compare the new records with the known ones. In contrast to the saved
resources for the construction of the model, the classification of a new
record, however, is rather expensive. Indeed, the proximity between the
new record and the known examples of the training set must be calculated
every time.

5.2 Decision Trees

Decision Trees [Qui86] are decision support tools that use a tree-like graph
or decision model for classification. The goal is to create a model that
predicts the value of a target variable by learning simple decision rules
inferred from the data features. Thus, during the classification of a new
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record, the decision tree represents a flowchart-like structure in which
each internal node represents a test on an attribute, and each branch
represents the outcome of the test. Obviously, each leaf node represents
a class label, and the decision is taken after computing all attributes.
The paths from the root to the leaf nodes represent the classification
rules. The greatest advantage of decision trees is that they are simple to
understand and interpret, but they can be complex with a high number of
attributes. In particular, having more attributes conducts to a deeper tree
and, therefore, the decision rules become more complex and the model
fitter. Among disadvantages, there is that decision tree can create too
complex trees that do not produce a suitable generalization of the data,
generating overfitting, even though the greatest one is that the same
classification rules can be expressed with different decision trees. Thus
finding the optimal decision tree is known to be an NP-complete problem
under several aspects of optimality and even for simple concepts. This
problem is generally mitigated by training multiple trees in an ensemble
learner, where the features and samples are randomly sampled with a
replacement strategy.

5.3 Bayesian Classifier

The Bayesian classifiers are based on probabilistic relations between the
class labels and feature values of the record. Considering the features of a
record as random variables a Bayesian network can be used to plot the
conditional dependencies among a set of random variables. It is an acyclic
and directed graph in which the nodes represent random variables, and
the arcs represent dependency relationships between the variables. Each
node of the network is associated with a probability table containing the a
priori probability if that node does not depend on any other node, or the
conditional probability if the node depends on a set of other nodes. Thus,
given a training sample, it must be found the Bayesian network that best
describes the conditional dependencies between variables. Once defined the
network, the process of classification of a new record entails the calculation
of the posterior probability for each class and the selection of the class for
which the probability is the highest. The induction of the network that best
describes a given training set involves the definition of network structure
and the estimation of probabilities values table associated with each node
of the network. In a general case, this is an intractable problem, but some
algorithms induce Bayesian classification models introducing appropriate
simplifying assumptions on the network topology. The simplest among
the Bayesian classifiers is the so-called Naive Bayes [DH73], [LIT92] and is
based on the assumption that the features are conditionally independent,
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given the value of the class. In this way the a priori probability of the
class and the conditional probabilities of the class features can be easily
estimated from the training sample. With the Naive Bayes method, the
model is not significantly influenced by either the noise, which is mediated
through the calculation of probabilities or by any unnecessary features, for
which the probabilities are distributed in an almost uniform way. Despite
its simplicity, the Bayesian classifier can perform accurate classifications
but only if the features are discriminatory.

5.4 Artificial Neural Network

Artificial Neural Networks (ANN) classifiers are the most used in medical
applications. They are networks that emulate the behavior of the human
brain, composed of a set of nodes that are interconnected by links to
which a weight is associated. In ANNs, as in biological systems, learning
corresponds to change the weight values of the connections between nodes.
Given a training sample, the weights of the model are first initialized
randomly and then iteratively adjusted, so that the output of the model
appears consistent with the values of the label class. The simplest ANNs
are composed of two levels, the input level, and the output level. The input
layer contains a node for each numerical features, while the categorical
features require more nodes, for example, a feature with n possible values
can be transformed into n binary variables. The output layer, on the
other hand, can contain only one node, if the problem of classification
is binary and k nodes if the class label can assume k values. There are
also multilevel ANNs whose structures present additional hidden layers
between the input layer and the output layer. The number of hidden layers
is often determined by trial and error, in fact, typically the correct number
of hidden layers is found starting from a network with a high number
of layers and nodes, and it progressively decreases the model complexity.
Network training involves the adjustment of the weights with the aim to
minimize the internal error. This process is costly, especially if the network
topology is complex, even if the classification process is rapid. The model
is susceptible to noise because the weights are adjusted for each instance of
the training sample. On the contrary, the irrelevant or redundant features
do not significantly affect the model, since the corresponding weights are
typically tiny.
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5.5 Support Vector Machine

Support Vector Machines (SVM) are supervised learning models with
associated learning algorithms that analyze data used for classification
and regression analysis. They have been designed for binary classification
problems, so with only two classes, but it can also be extended to multi-
class problems. The SVM binary classification is based on the mapping
of input vectors in a high dimensionality features space, induced by a
kernel function. The learning algorithm produces an optimal hyperplane
of separation between the two classes. The SVM can perform linear and
nonlinear discrimination, according to the kernel function. It is possible
to find a kernel function for which the parameters of the model can be
induced without an explicit mapping data. The induction of the model in
this way is formulated as an optimization problem, in which it is possible
to find quite efficiently a global minimum for the objective function. The
SVM provides extreme flexibility both because it is possible to make use of
different types of kernels and because it is possible to define a hyperplane
for separating classes which guarantees a certain tolerance with respect to
noise, using a soft margin instead of a hard margin. For an optimization
problem, it becomes changing the constraint value with the c value, that
can be increased to obtain less training error. Kernel methods use other
parameters for the creation of the separating hyperplane. The Gaussian
Radial Basis Function (RBF) is one of the most used kernels performing a
non-linear separation defined by the radius γ of the RBF. Other kernels
are the quadratic kernel, the polynomial kernel that can be defined with
different order p and the Multilayer Perceptron kernel (MLP) that instead
can be defined for different slope α and the intercept constant β. The
multi-class problem is solved by building many different binary classifiers
and then combine them. The most used strategies are the combinations
one-vs-one and one-vs-all.

5.5.1 One-vs-all SVM

The one-vs-all approach, also known as one-vs-rest, is the first and the
most intuitive approach to extend the SVM to multi-class problems. The
basic idea of the one-vs-all approach is straightforward. In fact, for a
multi-class problem having m classes, it consists on training m different
binary SVM classifiers where each one of them separates one class from
all the other m− 1 classes. Then, in the testing phase the class label is
assigned taking into account the decision of every m classifiers. The most
common practice is to assign the class label i, where i is the classifier
that maximizes the separation between the class i from the rest. Another
common practice is to use binary trees to arrange the m− 1 binary SVM;
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the path from the root node to a leaf determines the class label. In the
best scenario, only one comparison is needed, while in the worst case
m− 1 comparisons are needed. The problem encountered with binary tree
SVM is that there are

∏m
i=3 2i− 3 possible ways to construct a tree for a

multi-class problem. Thus, for a multi-class problem with a huge value of
m, analyzing all the possible solutions is impossible.

5.5.2 One-vs-one SVM

The one-vs-one approach is another commonly used SVM strategy but,
differently from the one-vs-all approach, for a multi-class problem having

m classes, it consists on training m(m−1)
2 different binary SVM classifiers,

where each one of them separates a class from another one. In this case,
combining the results from individual binary SVM classifiers becomes more
complex. The simplest way to obtain the predicted class label is to use
the majority voting, counting the votes given by each binary classifier and
assigning the class label that has the highest number of votes. However,
the voting process could produce ambiguous results (e.g., tie cases). For
this reason, a common practice is to use the majority voting strategy
combined with the maximum separation strategy, assigning the class label
i, if the result of the binary classifier produces the highest number of i
votes with the maximum separation between i class and each of the other

classes. Another common practice consists in arranging all the m(m−1)
2

binary SVM classifiers in a Directed Acyclic Graph (DAG) structure with
the same number of nodes. The test phase starts at the root node and
continues until a leaf node, representing the predicted class label, is reached.
Thus, only m− 1 comparisons are needed, completely avoiding tie cases,
but the problem is encountered just during the construction of the DAG. ,
in this case, there are several ways to construct the DAG structure, and
each one of them may produce different classification results and when the
number of classes is high, testing all possible orders is impossible.

5.6 Deep learning methods

5.6.1 Neural Networks

Neural networks are a type of learning algorithm which forms the basis
of most deep learning methods. A neural network comprises of neurons
or units with some activation a and parameters Θ = {W,B}, where W is
a set of weights and B a set of biases. The activation represents a linear
combination of the input x to the neuron and the parameters, followed by
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an element-wise non-linearity σ(·), referred to as a transfer function:

a = σ(wTx + b). (5.1)

Typical transfer functions for traditional neural networks are the sigmoid
and hyperbolic tangent function. The multi-layered perceptrons (MLP),
the most well-known of the traditional neural networks, have several layers
of these transformations:

f(x; Θ) = σ(WTσ(WT . . . σ(WTx + b)) + b). (5.2)

Here, W is a matrix comprising of columns wk, associated with activation
k in the output. Layers in between the input and output are often referred
to as ’hidden’ layers. When a neural network contains multiple hidden
layers it is typically considered a ’deep’ neural network, hence the term
’deep learning’.

At the final layer of the network the activations are mapped to a
distribution over classes P (y|x; Θ) through a softmax function:

P (y|x; Θ) = softmax(x; Θ) =
ew

T
i x+bi∑K

k=1 e
wT

k x+bk
, (5.3)

where wi indicates the weight vector leading to the output node associated
with class i.

Maximum likelihood with stochastic gradient descent is currently the
most popular method to fit parameters Θ to a dataset D. In stochastic
gradient descent a small subset of the data, a mini-batch, is used for
each gradient update instead of the full data set. Optimizing maximum
likelihood in practice amounts to minimizing the negative log-likelihood:

arg min
Θ
−

N∑
n=1

log
[
P (yn|xn; Θ)

]
. (5.4)

This results in the binary cross-entropy loss for two-class problems and the
categorical cross-entropy for multi-class tasks. A downside of this approach
is that it typically does not optimize the quantity we are interested in
directly, such as area under the receiver-operating characteristic (ROC)
curve or common evaluation measures for segmentation, such as the Dice
coefficient.

Currently, the most popular models are trained end-to-end in a super-
vised fashion, greatly simplifying the training process. The most popular
architectures are convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs). CNNs are currently most widely used in (medical)
image analysis, although RNNs are gaining popularity.
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5.6.2 Convolutional Neural Networks (CNNs)

There are two key differences between MLPs and CNNs. First, in CNNs
weights in the network are shared in such a way that it the network performs
convolution operations on images. This way, the model does not need to
learn separate detectors for the same object occurring at different positions
in an image, making the network equivariant with respect to translations
of the input. It also drastically reduces the amount of parameters (i.e. the
number of weights no longer depends on the size of the input image) that
need to be learned.

At each layer, the input image is convolved with a set of K kernelsW =
{W1,W2, . . . ,WK} and added biases B = {b1, . . . , bK}, each generating
a new feature map Xk. These features are subjected to an element-wise
non-linear transform σ(·) and the same process is repeated for every
convolutional layer l:

Xl
k = σ

(
Wl−1

k ∗Xl−1 + bl−1
k

)
. (5.5)

The second key difference between CNNs and MLPs, is the typical
incorporation of pooling layers in CNNs, where pixel values of neighbor-
hoods are aggregated using a permutation invariant function, typically
the max or mean operation. This induces a certain amount of translation
invariance and again reduces the amount of parameters in the network. At
the end of the convolutional stream of the network, fully-connected layers
(i.e. regular neural network layers) are usually added, where weights are
no longer shared. Similar to MLPs, a distribution over classes is generated
by feeding the activations in the final layer through a softmax function
and the network is trained using maximum likelihood.

5.6.3 Deep CNN Architectures

Given the prevalence of CNNs in medical image analysis, we elaborate on
the most common architectures and architectural differences among the
widely used models.

General classification architectures

LeNet [LBBH98] and AlexNet [KSH12], introduced over a decade later,
were in essence very similar models. Both networks were relatively shallow,
consisting of two and five convolutional layers, respectively, and employed
kernels with large receptive fields in layers close to the input and smaller
kernels closer to the output. AlexNet did incorporate rectified linear units
instead of the hyperbolic tangent as activation function.
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After 2012 the exploration of novel architectures took off, and in the
last three years there is a preference for far deeper models. By stacking
smaller kernels, instead of using a single layer of kernels with a large
receptive field, a similar function can be represented with less parameters.
These deeper architectures generally have a lower memory footprint during
inference, which enable their deployment on mobile computing devices such
as smartphones. [SZ14] were the first to explore much deeper networks,
and employed small, fixed size kernels in each layer. A 19-layer model
often referred to as VGG19 or OxfordNet won the ImageNet challenge of
2014.

Since 2014, the performance on the ImageNet benchmark has saturated
and it is difficult to assess whether the small increases in performance can
really be attributed to ’better’ and more sophisticated architectures. The
advantage of the lower memory footprint these models provide is typically
not as important for medical applications. Consequently, AlexNet or other
simple models such as VGG are still popular for medical data, though
recent landmark studies all use a version of GoogleNet called Inception
v3 [VLMea16]. Whether this is due to a superior architecture or simply
because the model is a default choice in popular software packages is again
difficult to assess.

5.6.4 Recurrent Neural Networks (RNNs)

Traditionally, RNNs were developed for discrete sequence analysis. They
can be seen as a generalization of MLPs because both the input and output
can be of varying length, making them suitable for tasks such as machine
translation where a sentence of the source and target language are the input
and output. In a classification setting, the model learns a distribution over
classes P (y|x1,x2, . . . ,xT ; Θ) given a sequence x1,x2, . . . ,xT , rather than
a single input vector x.

The plain RNN maintains a latent or hidden state h at time t that is
the output of a non-linear mapping from its input xt and the previous
state ht−1:

ht = σ(Wxt + Rht−1 + b), (5.6)

where weight matrices W and R are shared over time. For classification,
one or more fully connected layers are typically added followed by a softmax
to map the sequence to a posterior over the classes.

P (y|x1,x2, . . . ,xT ; Θ) = softmax(hT ; Wout,bout). (5.7)

Although initially proposed for one-dimensional input, RNNs are in-
creasingly applied to images. In natural images ’pixelRNNs’ are used as
autoregressive models, generative models that can eventually produce new
images similar to samples in the training set.
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5.7 Model Evaluation

The performance of the classification models is then evaluated on the basis
of percentage of records correctly classified on a test set with a known class
label. Therefore, accuracy and the error rate of the model can be calculated
by comparing the known class labels, and the classifiers predicted labels. A
binary problem is composed of positive and negative classes and it can be
evaluated with the following measures: True Positive (TP) indicates the
number of positives records correctly classified as positives, True Negative
(TN) measure indicates the number of negatives records correctly classified
as negative, False Positive (FP) measure is the number of negative records
misclassified as positive and, finally, False Negative (FN) measure is the
number of positive records misclassified as negative. In this way, the
accuracy of the error rate can be written as in (5.8) and (5.9):

accuracy =
TP + TN

TP + TN + FP + FN
(5.8)

errorrate =
FP + FN

TP + TN + FP + FN
(5.9)

Differently from binary classification ones, if the problem presents an
uncommon number of classes the accuracy and the error rate typically
are not good measures of model performance. In this case, the most used
measures are the True Positive Rate (TPR) also called sensitivity or recall
(r) (5.10), the True Negative Rate (TNR) also called specificity (5.11),
the False Positive Rate (FPR) (5.12), the False Negative Rate (FNR)
(5.13) and the precision (p) (5.14). Precision and recall are used if the
correct classification of positive instances is considered more important or
interesting, according to the faced problem. Indeed, a good model should
be able to maximise both measures. For this reason, another important
metric is frequently used: the F-measure or F-score (5.15).

TPR = r =
TP

TP + FN
(5.10)

TNR =
TN

TN + FP
(5.11)

FPR =
FP

TN + FP
(5.12)

FNR =
FN

TP + FN
(5.13)
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p =
TP

TP + FP
(5.14)

F -score =
2rp

r + p
(5.15)

It is worth noting that the same measures are also used for segmentation
evaluation. Actually, if any manually segmented images or ground-truth
are available, a pixel-wise evaluation can be made in order to assess if a
pixel has been correctly included in the region which it belongs (TP), it
has been correctly excluded from the region (TN), it has been erroneously
included in the region (FP) or it has been wrongly excluded from the
region (FN).

The performance of a model may not depend only on the type of classi-
fication algorithm but also by other factors such as the size or distribution
of the classes in the training and test set. In particular, if the dataset has
reduced size, the performances are more related to the specific composition
of the samples, and a higher variance characterizes them. Some methods
are quite useful to extract a representative test set, from the original
dataset, able to assess the performance of the model. They are:

• Holdout: a part of the available samples, the training set, is used
to train the model while another part, the test set, is used for its
evaluation. Holdout involves a reduction of examples available for
training and addiction due from specific partition created. To ensure
that the training set and the test set are uniformly representative,
the partition can be made by using a stratified sampling process.

• Repeated Holdout: the holdout method is iterated k times, in order
to avoid control over the number of times that each record is used
for training and testing. The accuracy and error rate are calculated
averaging the k iteration results.

• Cross-Validation: the examples available are divided into k sub-sets
of equal dimension. The process of training and evaluation of the
model is repeated k times, each time using k − 1 different sub-sets
for training and one sub-set for the test. As for Repeated Holdout,
the accuracy and error rate are calculated averaging the k iteration
results, but in this case, the final results are more stable since the
test sets are mutually exclusive and cover the entire initial sample.

• Leave-one-out: a special case of cross-validation in which k is equal
to the number of records. Thus during the training phase, the largest
possible number of examples is used, and each test set contains only
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one record. This approach provides exhaustive results, but it is
computationally costly.
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Part II

CAD for Peripheral
Blood Images
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Chapter 6

Background

6.1 Hematology

Hematology is the branch of medicine concerned with the study, diagno-
sis, monitoring, treatment, and prevention of blood and blood-forming
organs diseases. Hematology studies the blood in health and pathological
conditions, firstly to identify the patient’s health condition and, secondly,
to predict how the bone marrow may have contributed to reaching that
condition. Hematology, indeed, studies the relationship between the bone
marrow and the systemic circulation. Many diseases, disorders, and de-
ficiencies can affect the number and type of produced blood cells, their
function, and lifespan. Usually, only healthy, mature or nearly mature cells
are released into the bloodstream, but certain circumstances can induce the
bone marrow to release immature and abnormal cells into the circulation.
The Complete Blood Count (CBC) is one of the most frequently ordered
tests to monitor the cell components distribution into the bloodstream.
It offers various hematologic data represented by the numbers and types
of cells in the peripheral blood circulation. The cells percentage is com-
pared with the reference ranges to determine if the cells are present in
their expected rate, if one cell type is increased, decreased or if immature
cells exist. Reference ranges for blood tests are sets of values used to
interpret a set of diagnostic test results from blood samples. Since it is
difficult to prove that healthy-considered subjects may not have infections,
parasitic infection and nutritional deficiency, it is more feasible to talk
about reference ranges rather than normal ranges. A reference range is
usually defined as the set of values in which 95% of the healthy population
falls within. It is determined by collecting data from vast numbers of
laboratory tests result from a large number of subjects who are assumed
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to be representative of the population. With automatic counters or the
flow cytometry, an automated CBC can be performed quickly. However, if
the results from an automated cell count indicate the presence of abnormal
cells or if there is a reason to suspect that abnormal cells are present, then
a blood smear is collected [LPDRF16]. A blood smear is often used to
categorize and identify conditions that affect one or more types of blood
cells and to monitor individuals undergoing treatment for these conditions.
The results of a blood smear analysis typically include a description of
the appearance of the cells, as well as any abnormalities that may be seen
on the slide. The manual analysis of blood smears is tedious, lengthy,
repetitive and it suffers from the presence of a non-standard precision
because it depends on the operator’s skill. The use of image processing
techniques can help to analyze, count the cells in human blood and, at
the same time, to provide useful and precise information about cells mor-
phology. Peripheral blood smears analysis is a common and economical
diagnosis technique by which expert pathologists may obtain health in-
formation about the patients. Although this procedure requires highly
trained experts, it is error-prone and could be affected by inter-observer
variations. Moreover, blood cells’ images taken from a microscope could
vary in their illumination and coloration conditions, as shown in Figure 6.2.
Typically, blood cells images contain three main components of interest:
the platelets (or thrombocytes), the red blood cells (or erythrocytes) and
the white blood cells (or leukocytes). It is worth considering that blood
cells exist with different shapes, characteristics, and colorations, according
to their types. A schematic representation is shown in Fig. 6.1 Many tests
are designed to determine the number of erythrocytes and leukocytes in
the blood, together with the volume, sedimentation rate, and hemoglobin
concentration of the red blood cells (blood count). Besides, certain tests
are used to classify blood according to specific red blood cell antigens,
or blood groups. Other tests elucidate the shape and structural details
of blood cells and hemoglobin and other blood proteins. Blood can be
analyzed to determine the activity of various enzymes or protein catalysts,
that either is associated with the blood cells or are found free in the blood
plasma. Blood also may be analyzed from properties such as total volume,
circulation time, viscosity, clotting time and clotting abnormalities, acidity
(pH), levels of oxygen and carbon dioxide, and the clearance rate of various
substances. There are specific tests based on the presence in the blood of
substances characteristic of specific infections, such as the serological tests
for syphilis, hepatitis, and human immunodeficiency virus (HIV, the AIDS
virus) [Bri]. Among the several available blood tests, the most common
are the blood cells counts, e.g., a CBC is a measure of the hematologic
parameters of the blood. Included in the CBC is the calculation of the
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number of red blood cells (red blood cell count) or white blood cells (white
blood cell count) in a cubic millimeter (mm3) of blood, a differential white
blood cell count, a hemoglobin assay, a hematocrit, calculations of red
cell volume, and a platelet count. The differential white blood cell count
includes measurements of the different types of white blood cells that
constitute the total white blood cell count: the band neutrophils, seg-
mented neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
A specific infection can be suspected from the type of leukocyte that has
an abnormal value [DRLP16].

Figure 6.1: Peripheral blood smear components: a real image and a
schematic representation.

Figure 6.2: Different illumination conditions generate distinct images
because of the absence of a standardized acquisition procedure. From left
to right: acquisition of the same smear with four microscope’s brightness
levels. Courtesy of CHUV, Lausanne.

6.2 Peripheral Blood Images

There are several components in blood smears containing peripheral blood
samples. Consequently, these kinds of image usually consist of, at least,
three principal objects of interest: the White Blood Cells (WBCs), the
Red Blood Cells (RBCs) and the platelets (or thrombocytes). Platelets or
thrombocytes are small non-nucleated disc-shaped cells with a diameter
between 1 and 3 µm. Upon release into the peripheral blood from the
bone marrow, they appear as fragments. They play a significant role in
hemostasis leading to the formation of blood clots when there is blood
vessel injury or bleeding, starting to clump together to form aggregates.
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There must be a sufficient number of platelets to control bleeding. If
too few are present, or if they do not work correctly, the ability to form
a clot becomes impaired and can be a life-threatening situation [Cie11].
Healthy, mature RBCs or erythrocytes are uniform in size, 7-8 µm in
diameter, and do not have a nucleus as most other cells do. They are
round and flattened like a donut with a depression in the middle instead
of a hole (biconcave). Due to the hemoglobin inside the RBCs, they
appear pink to red with a pale center once the staining process has been
completed. Considering that not every RBC could respect its typical
shape, any significant number of cells that are different in shape or size
may indicate the presence of some diseases [EA13]. WBCs or leukocytes
have a nucleus surrounded by cytoplasm, instead. For this reason, they are
easily identifiable, as their nucleus appears darker than the background.
However, the analysis and the processing of data related to the WBCs
are complicated due to wide variations in cell shape, dimensions, and
edges. The generic term leukocyte refers to a set of cells that are entirely
different from each other. Indeed, although they are all derived from
bone marrow stem cells, in the bone marrow, they differentiate themselves
into two main groups: cells containing granules, called granulocytic or
myelocytic, and cells without granules called mononuclear or lymphoid.
Thus, we can distinguish between these cells according to their shape
or size, the presence of granules in the cytoplasm and the number of
lobes in the nucleus, as it can be seen in Fig. 6.3. The lobes are the
most substantial part of the nucleus, and thin filaments connect them.
WBCs mature into five distinct cells types, that include neutrophils,
basophils, and eosinophils in the granulocytic group and lymphocytes
and monocytes in the non-granulocytic group. Neutrophils are indeed
the most common WBCs in a healthy adult, present in the human blood
at a percentage ranging between 50 and 70%. They range in size from
10-15 µm and present a cytoplasm with pink or purple granules. They
are distinguishable also due to the number of lobes present in the nucleus,
which can range from 1 to 6 according to the cell maturation. They
are involved in the defense against infections. Basophils are the least
common of the granulocytes and represent only 0-1% of all leukocytes in
human blood. They have a diameter of approximately 10 µm. Generally,
basophils have an irregular, plurilobated nucleus that is obscured by large
and dark granules. Eosinophils are easily recognized in stained smears due
to the presence of large, red-orange granules, which include para-crystalline
structures in the shape of a coffee bean. They are round, 10-12 µm in size,
and have a nucleus with two lobes. Generally low in number, present at
1-5% in human blood, they most often increase in number in individuals
with allergies and parasitic infections. Monocytes are usually the most

Andrea Loddo Microscopic Blood Images Analysis by Computer Vision Techniques



Background 67

voluminous WBCs, with a diameter of 12-20 µm and are often referred
to as scavenger cells (phagocytes). They can ingest particles such as
cellular debris, bacteria, or other insoluble particles. They represent 3-9%
of circulating leukocytes. Their nucleus is large and curved, often in the
shape of a kidney. Lymphocytes are usually the smaller WBCs, with a
diameter of 7-12 µm. They are characterized as having a smooth, round
nucleus and a small amount of cytoplasm and often a smooth chromatin
pattern. They are very common in human blood, with a percentage of
20-45%.

Figure 6.3: A comparison between different types of WBCs: neutrophils,
basophils, eosinophils, monocytes and lymphocytes.

Numerous diseases and conditions can affect the absolute or relative
number of WBCs and their appearance on a blood smear. More details
of the conditions that affect the number and the morphology of kind of
cells are listed in Appendix A. Examples of the most common diseases
that involve variation in shape and number of blood cells include anemia,
hemophilia, general blood clots, and bleeding disorders while more severe
cases that need to be diagnosed are leukemia, myeloma, and lymphoma.
This thesis focused on the analysis of Acute Lymphoblastic Leukemia
(ALL) and malaria.

6.3 ALL - Acute Lymphoblastic Leukemia

Leukemia is a blood cancer that can be detected through the analysis of
WBCs. There are two types of leukemia: acute and chronic. According to
the French-American-British (FAB) classification model [BCMT+76], acute
leukemia is classified into two subtypes: acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML). Here, only ALL has been
considered, which affects a group of leukocytes called lymphocytes. ALL
primarily affects children and adults over 50 years of age. The risk of
developing ALL is highest in children younger than five years of age,
and it declines and begins to rise again after age 50. Due to its rapid
expansion into the bloodstream and vital organs, ALL can be fatal if left
untreated [BCPP00]. Therefore, early diagnosis of this disease is crucial
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Figure 6.4: A comparison between lymphocytes suffering from ALL: a
healthy lymphocyte, followed by lymphoblasts classified as L1, L2 and L3,
respectively, according to the FAB [BCMT+76].

for a patients’ recovery, especially for children. Diagnosis of ALL is based
on the morphological identification of lymphocytes suffering from ALL,
called lymphoblasts, by microscopy and the immunophenotypic assessment
of lineage commitment and developmental stage [IGM13]. Lymphoblasts
present morphological changes that increment with increasing severity of
the disease. In particular, lymphocytes are regularly shaped and have a
compact nucleus with regular and continuous edges, whereas lymphoblasts
are irregularly shaped and contain small cavities in the cytoplasm, termed
vacuoles, and spherical particles within the nucleus, termed nucleoli [LPS11]
(Fig. 6.4).

The observation of blood smears by skilled operators is one diagnostic
procedure available to initially recognize the ALL, where the automatic
counter fails due to the presence of abnormal cells. Human visual inspection
is tedious, lengthy and repetitive, and it suffers from the presence of a
non-standard precision because it depends on the operator’s skill; these
disadvantages limit its statistical reliability. The use of image processing
techniques can help count the cells in human blood and at the same time
to provide information about cell morphology, making them less expensive
and providing more accurate standards. One of the goals of this thesis is to
provide a fully automatic procedure based on the analysis of blood smear
images, to support medical activity. This procedure counts the WBCs
present in the smear through a process of segmentation and detection.
The detected WBCs are then classified as suffering from ALL or not.

6.3.1 Related Works

The progress of automated methods for the classification of blood cells
from digitized images is a current problem in pattern recognition. These
techniques can help to count the cells in human blood and, at the same
time, be able to provide information on the morphological cells themselves.
Unfortunately, for the analysis and processing of images, there are no
standard techniques to apply to all types of images, but the processing
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must be adapted to the context. In particular, regarding the blood smear
images, the processing techniques vary according to the type of blood cell
to be analyzed. In the literature, few attempts of automated systems,
based on techniques of image processing, able to identify and classify
peripheral blood cells have been proposed. Moreover, the existing systems
are only partially automated, combining manual steps to automated ones.
Furthermore, most of them do not work on the entire analysis process,
but on individual phases of the whole analysis process. This section will
show the techniques most commonly used by different authors at different
stages of the process.

The used methods of pre-processing depend on many variables, such
as lighting conditions, the duration of the dye, defects caused by visual
artifacts or not uniform background. The images should be processed to
improve specific characteristics or to reduce further operations that could
be required in the later stages of the analysis. The main issues addressed
at this stage include noise reduction and enhancement of some structures
of the images. Mohapatra et al. [MP10b, MPS10, MP10a, MPS14] used
a median filter to remove the noise followed by an Unsharp filter. The
median filter has been preferred to the average filter since it preserves
details of edges and then they are enhanced with the use of the Unsharp
filter. Other authors preferred operations based on the histogram such as
contrast stretching or the histogram equalization to redistribute the grey
level values. Often these two transformations have been used together or
with other techniques, as the algorithm proposed in [MKA+10]. It starts
from the greyscale image performs separately a contrast stretching and a
histogram equalization. Then a series of arithmetic operations between
the two images just obtained is performed in order to highlight the nuclei
of leukocytes. The results are impressive because it either enhances the
nuclei of leukocytes and it drastically reduces the number of the other
blood components, making further steps much more straightforward.

As previously said, different levels of segmentation are used in medical
images analysis. In particular, for what concerns peripheral blood images
two main levels are used: the level of cells segmentation, which aims
to separate whole cells from the background or plasma and the level of
segmentation that tries to separate the various components inside the cell,
such as the nucleus from the cytoplasm or intracellular parasites. Several
authors have proposed methods for effective segmentation of the nucleus of
leukocytes, while there are few attempts of segmentation of the cytoplasm.
The characteristic generally used for segmentation is the intensity value of
grey level images. However, many authors showed how the use of a single
channel from different color spaces could be used to highlight differences
between blood components. Indeed the nuclei of the white blood cells are
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more in contrast on the Green component of the RGB color space [Cse92],
while the cytoplasm of the white blood cells is more evident on the Hue
component [WZZO06] or the Saturation component [HMH11] of the HSV
color space. The Saturation component of the HSV color space is also
useful to identify and separate erythrocytes [RDKJ00] when present in
complex agglomerates of cells. Otherwise, they can be easily detected
and counted with a threshold value computed using Zack algorithm from
grey level images [BTKD11]. Based on this knowledge many algorithms of
region growing have been proposed [KGHS96,LEC+98,LC02]. They use
the pixels within the nuclei as seeds in order to segment the whole white
blood cells. The cytoplasm is detected through iterative aggregation of the
pixels surrounding the region of interest according to the homogeneity of
the colors and the information of the gradient. Edge-based segmentation
methods are rarely used in this contest since the boundaries between cells
are not clearly defined. However, the performances of edge detection
operations can be improved using morphological operators [PS04,Sco05]
being able to connect in a better way the detected edges and restore
the complete boundary of the cells. A huge number of papers has been
proposed in the literature concerning the application of clustering methods
to the segmentation of medical images [KP17]

A further problem in the analysis of peripheral blood cell images is the
presence of cells grouped together or adjacent, as shown in Fig. 6.5. It does
not allow an analysis of the single cells, such as the computation of shape
descriptors or the proportion of cytoplasm and nucleus. A priori knowledge
about the average size and shape of the cells allow working on sub-images
extracted from the original image, by cutting a square around the nucleus
previously segmented [KGHS96, SR03]. Thus, assuming that each sub-
image has only one white blood cell using some restrictions on the shape
and the color information it is possible to perform a clustering around the
nucleus. Unfortunately, this assumption is not always true, and in fact, it is
possible to find more than one nucleus on a sub-image that affects the result
of the clustering. An improvement of this approach works on the whole
images without using the a priori knowledge about the size and shape. It is
possible thanks to the distance transform [JRQ03] that associates to each
pixel of the binary image its distance from the border. Thus, the maximum
distance obtained can be used as a marker for a subsequent segmentation
step [MdSV+97], or the distance image can be used directly as a shape
delimiter for a watershed segmentation [Lin02]. The main drawbacks of
these approaches are that the cells should be perfectly segmented since
they work directly on the binary images. Furthermore, since the distance
transform, in this case, works like a shape delimiter, it can separate only
small agglomerates of cells that should have an almost circular shape.
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Finally, [CMT+16] proposed a deep learning method for cells classifi-
cation in a label-free environment. They also compared various learning
algorithms including artificial neural network, support vector machine,
logistic regression.

Figure 6.5: Crop of a sample image taken from ALL-IDB1. It represents
a leukocyte clump.

The step of feature extraction is essential in the analysis of peripheral
blood cells, as only with significant features, the system will be able
to discriminate the various types of cells, the cells affected by diseases
from the normal ones or the presence of other abnormalities in the blood.
The idea is to extract the descriptors that best approach to the visual
patterns indicated by pathologists. The color and texture descriptors are
indeed the most discriminatory features of blood cells. Generally, this
kind of images is acquired using the RGB color space that allows good
discrimination of platelets, red blood cells, and white blood cells, especially
if the analysis is extended to all RGB channels [AS02]. However, the
differentiation of subclasses of cells such as various types of leukocytes,
usually requires the use of other color spaces, taking into account all the
color channels or only the most discriminatory such as the H channel of the
HSV color space [HSP02]. Furthermore, geometrical features can be used
to discriminate cells with abnormal size or with an irregular shape. Other
geometrical features have explicitly been proposed to classify the type of
nucleated cells since they can be distinguished not only using the ratio
between cytoplasm and nucleus [PS04,Sco05,Sco06] but also extracting
the number of lobes of the nucleus. Extract the number of lobes means to
count the more substantial parts of the nucleus connected by thin filaments.
It is not an easy task since the connection between the lobes sometimes
can appear larger than average and thus, also a skilled operator, could
count two small lobes as it was only one. A good approximation of the
number of lobes can be obtained by iterative erosion of the nucleus. The
number of lobes corresponds to the connected components with an area
more significant than a prefixed parameter [PS04].

Once the features have been extracted, they must be inserted in a
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process which classifies cells based on hematological concepts [BCPP00,
SDH+91]. Different learning methods have been used to classify blood
cells, but above all very different choices about the number of classes
have been taken. The most frequent choice is the binary classification to
distinguish healthy white blood cells from abnormal ones making use of the
SVM classifier, which is excellent in the separation of binary classes with
a pattern very close in space [MP10b, MPS10, MP10a, MPS14]. Mishra
[MSMS17] showed that a highly appropriate feature extraction technique
is required for the classification of the disease. Discrete Cosine Transform
(DCT) has been used in association with a nucleus features extraction
from the RGB image. Finally, they detect ALL on ALL-IDB images
with SVM classifier. KNN classifier is also used, for example Abdeldaim
et al. [ASEH] present a computer-aided ALL diagnosis system, which
first segments each cell in the microscopic images, and then classifies
each segmented cell to be normal or affected. The experiment based
on ALL-IDB2 achieves the accuracy of 96.42% with a KNN classifier.
Instead, when the number of classes is higher the most used classifier
have been the Neural Networks, performing a separation into the five
types of leukocytes [Sco06] or performing a separation into 7 classes,
lymphocytes, neutrophils, eosinophils, other (monocytes and basophils),
lymphocytic leukaemia L1, lymphocytic leukaemia L2 and non-lymphocytic
leukaemia [BSa08].

In the following chapter, you will see the algorithms proposed to create
a fully automated system for peripheral blood images. For clarity, each
step of the whole process has been discussed separately following the
order mentioned before and used for most of the methods presented in the
literature. Furthermore, to make a comparison with the state-of-the-art,
each step of the proposed method has been tested using the same dataset
presented below.

6.3.2 White Blood Cells images Datasets

The main problem in the testing phase of an automated system is certainly
the absence of many public datasets. A lot of authors have tested their
methods by using only manual segmented ground truth samples or private
datasets. These disadvantages do not allow a direct comparison with the
results obtained by similar proposed systems, and it limits the reproducibil-
ity of possible innovations. Among the public datasets of peripheral blood
samples image we found useful for our purposes, there are the following:

• ALL-IDB [LPS11]

• IUMS-IDB [SRTB14]
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• SMC-IDB [MFG12]

Acute Lymphoblastic Leukemia Image Database (ALL-IDB), has been
proposed by Donida Labati in [LPS11]. It is a public image dataset of
peripheral blood samples of normal individuals and leukemic patients, and
it contains the relative supervised classification and segmentation data.
So, this dataset allows not only to assess the quality of the algorithms
for cell counting but also to assess the ability to discriminate the white
blood cells affected by leukemia from healthy ones. The sample images
have been collected by the experts of the M. Tettamanti Research Center
for childhood leukemia and hematological diseases, Monza, Italy. The
ALL-IDB database has two distinct versions. The first version the ALL-
IDB1 contains full-size original images that can be used for testing the
segmentation capability of algorithms, as well as the classification systems
and image preprocessing methods. The second version the ALL-IDB2
is a collection of cropped area of interest of normal and blast cells that
belong to the ALL-IDB1 dataset, so it can be used only for testing the
performances of classification systems.

Figure 6.6: Sample images from the ALL-IDB1

In both versions of the dataset, each image has an associated text file
containing the coordinates of the centroid of each candidate lymphoblast,
which was manually labeled by a skilled operator and can be used as
ground truth for classification. The dataset ALL-IDB1 includes 108 im-
ages in JPG format with 24-bit color depth. Most of the images in the
dataset were captured with an optical laboratory microscope, with different
magnifications ranging from 300 to 500, coupled with a Canon PowerShot
G5 camera and their resolution is 2592x1944. The remaining images were
acquired with a microscope at a constant magnification, combined with an
Olympus C2500L camera and their resolution is 1712x1368. Some images
belonging to the ALL-IDB1 are shown in Fig. 6.6.

The sample images show that there are many differences either re-
garding color and illumination or resolution and cells dimension. The
dataset ALL-IDB2 includes 260 images in TIFF format with 24-bit color
depth. As said previously, these images are cropped areas of interest,
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Figure 6.7: Sample images from the ALL-IDB2

containing a single leukocyte per image, belonging from the first version
of the database. These images, differently from the first ones, have a
standard size of 257× 257, but being cropped area of them, they present
the same issues about color, illumination and cells dimension, as it can be
seen in Fig. 6.7.

Figure 6.8: From left to right: original images from the ALL-IDB1
database, ground-truth for whole leukocyte, only nuclei and RBCs

To evaluate the segmentation performances of the proposed method,
52 images belonging to the ALL-IDB1 have been manually segmented
by skilled operators, creating four ground-truth images for each sample.
One for the entire WBCS, one for the whole of the RBCs, one for WBCs
nuclei and, finally, one for WBCs cytoplasm. Fig. 6.8 shows some im-
ages belonging to the ALL-IDB1 and their relative ground-truth images.
Ground-truth images have also been extracted for images belonging to
the ALL-IDB2, but in this case, the manual segmentation is only devoted
to the analysis of leukocytes, so the ground truth images display only
the cytoplasm and the nucleus of the leukocyte, as it can be seen in
Fig. 6.9. Despite our main efforts are devoted in designing a method able
to achieve a robust segmentation with different image datasets, in our
previous works [RLP15a, RLP15b] just the ALL-IDB dataset has been
used, mainly because the proposed approach exploited the subdivision
of the ALL-IDB dataset. Indeed, the ALL-IDB2 images were used to
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Figure 6.9: From left to right: original images from the ALL-IDB2
database, ground-truth for whole leukocyte, only nucleus and only cytoplasm

create the training set, being able to develop a robust model to segment
optimally the original images in ALL-IDB1. Our aim has always been
to let our segmentation algorithm work for different kinds of images and,
consequently, different datasets. For this reason, two more datasets have
been used for testing the proposed method. IUMS-IDB is provided by
the Iran University of Medical Science [SRTB14]. It presents 100 micro-
scopic images of size 732× 572, taken from peripheral blood of 8 healthy
subjects. These images are truly different from the ones present in the
ALL-IDB, since the microscope slides have been smeared and stained with
a different staining technique. SMC-IDB, on the other hand, has been
proposed in [MFG12], presented at IEEE’s 2012 SMC conference. It has
been acquired from slides stained with the same staining technique as
ALL-IDB. Nevertheless, the images are different, since they have been
acquired with a different combination of microscope and camera. This
dataset provides a total of 367 peripheral blood images of size 640× 480.
Sample images taken from IUMS-IDB and SMC-IDB are shown in 6.10.

Figure 6.10: From left to right: sample image from IUMS-IDB and
SMC-IDB.
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6.4 Malaria

This chapter explains in detail the characteristics of malaria disease in
general, how it is caused, how it affects humans and, finally, the details
of malaria parasites. It refers the survey work [LDRK18]. Malaria is
an epidemic health disease so rapid and accurate diagnosis is necessary
for proper intervention. Human malaria infection is not strongly related
to cell count, but it needs different tests in order to be identified. It
can only be caused by parasitic protozoans belonging to the Plasmodium
type. The parasites are spread to people through the bites of infected
female Anopheles mosquitoes, called ”malaria vectors”. There are five
parasite species that cause malaria in humans and two of these species,
Plasmodium falciparum and Plasmodium vivax, constitute the greatest
threat. Plasmodium ovale, Plasmodium malariae and Plasmodium knowlesi
are the three remaining species that are less dangerous in humans [WHO16],
as shown in Figure 6.11. All five species may appear in four different
life-cycle stages during the infection phase in peripheral blood: ring,
trophozoite, schizont, and gametocyte. Some examples are shown in Figure
A.10. The life-cycle-stage of the parasite is defined by its morphology, size
and the presence or absence of malarial pigment. The species differ in the
changes of infected cell’s shape, the presence of some peculiar dots and
the morphology of the parasite in some of the life-cycle-stages [Som11].

6.4.1 Related Works

In an image analysis field, especially when we refer to complex computer-
aided pipelines, preprocessing methods are particularly used to improve
the image data by suppressing unwanted noise or enhancing some image
features for further processing. It is worth mentioning preprocessing meth-
ods because they are an essential step regarding the image analysis field,
but, for what concerns the malaria-affected blood image analysis, in our
review, we mainly found methods that operate for illumination correction
and noise filtering purposes. Generally speaking, digital microscopy im-
ages can be acquired in different lighting conditions, with several types
of acquisition devices or from blood smears stained with various staining
protocols, and, consequently, the features of similar images could differ a
lot. Different techniques for illumination correction have been suggested to
reduce such variation, e.g., a lot of authors work with grayscale-converted
images as an illumination correction method. On the other hand, noise
filtering aims to remove the noise introduced by mishandling the slides and
the camera settings. Morphological operators have been extensively used
as preprocessing for image enhancement in significant studies. Erosion and
dilation operations on raw smear images allow for discarding undesired
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Figure 6.11: Types of human malaria parasites: from left to right, P.
falciparum in its schizont stage, P. vivax in two gametocytes specimens
and one ring stage, P. ovale in its ring stage, P. malariae in its schizont
stage. Courtesy of CHUV, Lausanne.

patterns and help in the selection of required cells or regions of interest.
Morphological operators are useful for the removal of unwanted objects,
holes filling, splitting, thinning and thickening. Different researchers during
the automated diagnosis of malaria used morphological operations in the
preprocessing phase, and the most recent are listed below.

In [GBea16], Gonzalez-Betancourt et al. proposed a system to deter-
mine markers for watershed segmentation based on the Radon transform
and mathematical operators. In the first step of the process, small irrele-
vant structures and part of the noise are eliminated by a morphological
filter, in order to ensure the preservation of the edges of the cell. Image
smoothing is performed by a morphological erosion-reconstruction and
dilation–reconstruction filter with a disk structuring element of a radius
equal to 20 pixels, which is 0.274 times smaller than the average radius of
the RBCs.

In this way, the influences of the size and the shape of the structures can
be separated in the smoothing process. At the same time, the objects that
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are not eliminated remain unchanged. Besides, a morphological closing is
performed with a disk structuring element having a radius smaller than
half the average of the RBCs radii, to connect the possible (more than
one) markers that can appear on a single cell.

In [KKM12], Kareem et al. illustrated a morphological approach
for blood cell identification and used image features such as intensity,
histogram, relative size and geometry for further analysis. Before the
identification of blood cells, the authors propose different morphological
filtering based on the size of RBCs for platelets and artifacts elimination.
Dilation is performed by a concentric ring structuring element and erosion
by a disk-shaped structuring element. The radius of the structuring element
depends on the radius of the RBCs so that all the components smaller
than the RBCs can be removed.

The system proposed in [OPEea17] by Oliveira et al. is based on image
processing, artificial intelligence techniques, and an adapted face detection
algorithm to identify Plasmodium parasites. The latter uses the integral
image and haar-like features concepts, and weak classifiers with adaptive
boosting learning. The search scope of the learning algorithm is reduced
in the preprocessing step by removing the background around blood cells
employing morphological erosions both for training and for testing.

Romero-Rondon et al. in [RRSRBRMC16] presented an algorithm
that uses morphological operations, the watershed method, the Hough
transform and the clustering method of k-means to detect overlapped
RBCs. In the preprocessing stage, white blood cells and platelets are
removed before the segmentation task. During this step, some noise, the
WBC cytoplasm, and platelets remain on the image. Therefore, the small
objects are removed using a morphological opening, and then the image is
dilated with a disk-shaped structuring element.

Reni et al. in [RKM15] described a new algorithm for morphological
filtering of the blood images as a preprocessing tool for segmentation.
Conventional morphological closing on blood images removes the unwanted
components but also useful information. On the contrary, the proposed
method preserves the necessary knowledge of foreground components while
eliminating noise and artifacts.

In the method proposed in [SRZT13] by Sheikhhosseini et al., the first
phase is the stained object extraction that detects candidates’ objects
that can be infected by malaria parasites using intensity and color. Before
detecting the stained objects, the method firstly extracts the foreground.
The foreground image is a binary image that is produced after applying
morphological hole filling on such pixels that have lower intensity value
than average intensity value of the green layer. After the stained objects’
extraction process, a series of morphological operations are also employed
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to eliminate small components and complete the final stained objects.

An edge-based segmentation of erythrocytes infected with malaria para-
sites using microscopic images is proposed by Somasekar et al. in [SR15]. A
fuzzy C-means clustering is applied to extract infected erythrocytes, which
is further processed for the final segmentation. A morphological erosion
is used to erase some small noises and spots before the segmentation and
holes inside the infected erythrocytes are filled using a morphological hole
filling operation for the final segmentation.

In [TDK10], Tek et al. presented a complete framework to detect and
identify malaria parasites in images of Giemsa stained thin blood film
specimens. In addition, the system is able to identify the infecting species
and life-cycle stages. The preprocessing step of the proposed method is
applied to reduce the variations in the observed size, intensity, and color
of the cells and stained objects before the detection and classification
steps. The aim is to correct the non-uniform illumination in the images.
The estimation is based on a morphological closing operation using a
sufficiently large structuring element. Enough large size for an input image
is determined automatically concerning its average cell size computed from
the area granulometry distribution.

The median filter is often used for reducing impulse noise. Several
studies have used it to enhance microscopic images of peripheral blood
smear towards the characterization of malaria followed by adaptive or local
histogram equalization. Local low pass filter and local adaptive histogram
equalization techniques have also been applied to enhance the pathological
image quality. Das et al. [DMC15] showed that the geometric mean filter
provides better performance towards improving peripheral blood smear
images. Di Ruberto et al. [DRLP16] proposed an approach to overcome the
problem of uneven illumination conditions in image acquisition. For this
purpose they designed an illumination pattern that simulates the classic
visual defects introduced by the digital microscope lenses, that is the
vignetting effect. Starting from the smallest radius, they applied different
illumination patterns, created modifying the radius of the Gaussian curve,
to the original images. Then, a similarity value measures the difference
regarding pixels between the original images and the corrupted ones.

Segmentation is a critical step in image analysis because it permits
the identification and separation of the regions that compose an image,
according to specific criteria of homogeneity and separation. Its main
target is to divide the image into parts that have a strong correlation
with objects or areas of the real world contained in the image. The
commonly used segmentation methods essentially operate considering
characteristics such as the brightness value, colour, and reflection of the
individual pixels, identifying groups of pixels that correspond to spatially
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connected regions. As for many problems of image processing, there is
no standard solution valid in general. Therefore different segmentation
techniques can be applied, according to the characteristics of the images
to process and of the objects to segment. Medical images segmentation
is typically performed using two main strategies: the first level aims to
separate whole cells or tissues from the background and the second one
seeks to separate the tissue structure in different regions or the cell in their
components, as the nucleus from the cytoplasm or intracellular parasites.
The latter case is commonly used in applications in which the cell class
depends on the morphological characteristics of its components.

Several other authors attempted to use thresholding combined with
morphological operations as a segmentation method in their computer-
aided systems, and they are described as follows.

Arco et al. in [AGR+14] worked on thick blood films and proposed
a method that uses an adaptive thresholding based scheme, which also
allows a valid classification of pixels. This means that the election of
whether a pixel belongs to the background or the signal (parasites and
white blood cells) is only established by the pixels around it, that is its
neighborhood. Then, morphological methods are applied to evaluate the
area of connected components, labeling those belonging to parasites and
counting their number.

Anggraini et al. [ANP+11] proposed a method for separating blood cells,
parasites and other components from the background in a microscopic field
of a thin blood smear. They applied several global thresholding methods
and visually compared the results to determine which technique yields the
best result qualitatively. The binary image was then subjected to a hole
filling morphological operator and applied as a marker to label blood cells.
From each identified cell (RBC and WBC), constituents of the parasite
(nucleus and cytoplasm) were extracted using multiple thresholds.

Dave et al. in [DU17] performed image segmentation using histogram-
based adaptive thresholding followed by mathematical morphological op-
erations (erosion and dilation). The detection of infected RBCs is based
on an unsupervised learning technique.

The automated method proposed in [EHZ11] by Elter et al. for parasite
detection and identification worked on thin blood film acquired with Giemsa
stain. The authors found that the G and B channels of the RGB color are
outstanding features to identify objects containing chromatin in Giemsa
stained blood films are considered highly discriminative and also almost
independent of differences in illumination and staining intensity. They
transformed the colour input image into a monochrome image I(x,y), which

highlights objects containing chromatin: I(x, y) = arctan
Igreen(x,y)
Iblue(x,y) . In

this work, mathematical morphology has been used with a black top-hat
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operator to separate MP from both leukocytes and platelets, with a non-flat
paraboloid structuring element with a radius of 9 and a slope of one pixel.
It should be taken into account that these fixed parameters might not
be suitable for images with different pixel resolutions. A thresholding
operation follows the black top-hat operator with a fixed threshold, which,
according to the authors, is reliable given the independence of the G and
B channels concerning illumination and staining intensity. However, the
authors do not define the value of this fixed threshold in their paper.

Kareem et al. in [KMK11] used the Annular Ring Ratio transform
method. Before applying it, a preprocessing phase for removing platelets,
parasites and other artifacts in the image has been performed. In the
proposed method, the image after being converted to grayscale undergoes
a morphological opening similar to closing. Unlike conventional closing
(dilation followed by erosion), which uses the same structuring element,
two different structuring elements are used: a concentric ring for dilation
and a disk for erosion. The inner and outer diameter of the dilation ring
is set to 35% and 70% of RBCs size, respectively, and the erosion disk has
the same diameter. Therefore, considering that fixed manually defined
parameters are used for this strategy, the results may substantially differ
depending on the image resolution. This approach results in locating only
the stained components in the image instead of all the cells and hence will
not only speed up the operation but reduce the complexity.

Mushabe et al. [MDD13] used morphological and statistical classifica-
tion to detect malaria in blood smears by identifying and counting red
blood cells and Plasmodium parasites. Morphological operations and
histogram-based thresholding are used to extract RBCs, and boundary
curvature calculations and Delaunay triangulation are used for splitting
clumped RBCs. They worked on Giemsa-stained thin blood smears.

In [RPRD06], Ross et al. proposed a method that provides a positive or
negative diagnosis of malaria and differentiates parasites by species. The
segmentation step relies on a six-step thresholding selection strategy. It
aims to identify and segment potential parasites and erythrocytes from the
background. Mathematical morphology has been used in several key steps
of the procedure. Hole filling is used in the first step to fill RBCs’ binary
masks obtained from first thresholding. Afterwards, step 4 employs RBCs’
morphological reconstruction with parasites’ mask, found in step 2, for
identifying infected cells. In step 5, a morphological opening filter, using a
disk-shaped SE with a radius equal to the mean erythrocyte radius less the
standard deviation, is applied to the grayscale, morphologically filtered,
green component to remove any objects smaller than an erythrocyte. The
morphological gradient (the difference between dilation and erosion of the
image) is then calculated using a diamond-shaped SE with unity length.
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Finally, in step 6, the intersection of morphological gradient image and
the dilated cell cluster is calculated. This image is then transformed into
a binary image by thresholding any value greater than zero. A series
of morphological operations, namely a closing operation, thinning, and
spur-removal are then applied to generate a contour of the segmented
erythrocytes. Contours are filled, and the segmented mask is again recon-
structed with the correct parasite marker image to result in a segmented
mask of infected cells. RBCs and parasites masks are consequently ready
for the next generation step.

Savkare et al. [SN11b] worked on thin blood films with Giemsa staining
and used a global threshold and Otsu threshold [Ots75] on the grayscale
enhanced image (green channel) for separating foreground from background.
Hole filling has been performed on identified cells, and morphological
operators have been used to identify overlapping cells. Then, a watershed
transform has been applied for separating overlapped cells.

Besides, in the method proposed in [SR17] by Somasekar et al., the
segmentation of the infected parasites is based on thresholding. It is
achieved in two stages by maximizing the between-class variance of an
original image and consequently by an iterative threshold selection from a
stage-one threshold image with suitable stopping criteria. The segmented
results are post-processed to improve the accuracy of malaria parasites
detection by morphological operators (erosion and closing).

On the other hand, a lot of works have been realized through mathe-
matical morphology and granulometry in the segmentation stages, even
in combination with thresholding strategies. They are briefly analyzed
below.

Ahirwar et al. [APA12] based their approach on thresholding and
granulometry. The histogram of the complemented green component has
been used, and it is said to be a bimodal distribution in all the considered
images. Then, both local and global thresholds are used, and the union
of the two binary images is chosen as the parasite marker image. A
morphological opening filter, using a disk-shaped SE with a radius equal to
the mean erythrocyte radius less the standard deviation, is applied to the
grayscale morphologically filtered green component of the image to remove
any objects smaller than an erythrocyte. The morphological gradient
is then calculated using a diamond-shaped SE with unity length. The
segmentation method is applied to each object in the reconstructed binary
image of erythrocytes individually. Those objects that do not exceed the
area of a circle with a radius equal to the mean erythrocyte radius plus the
standard deviation are regarded as being single cells and are unmodified.
On the other hand, the clumped cells are segmented as follows. First,
the intersection of the morphological gradient image and the dilated cell
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cluster is taken. This image is then transformed into a binary image
by thresholding any value greater than zero. A series of morphological
operations, namely a closing operation, thinning, and spur removal is then
applied to generate a contour of the segmented erythrocytes. The contours
are filled, and the segmented mask is again reconstructed with the correct
parasite marker image to result in a segmented mask of infected cells.

Di Ruberto et al. [DRDKJ02] aimed to detect the parasites utiliz-
ing automatic thresholding based on a morphological approach applied
to cell image segmentation, which is more accurate than the classical
watershed-based algorithm. They applied grey scale granulometries based
on opening with disk-shaped elements, flat and hemispherical. They used
a hemispherical disk-shaped structuring element to enhance the round-
ness and the compactness of the red blood cells improving the accuracy
of the classical watershed algorithm, while they used a disk-shaped flat
structuring element to separate overlapping cells. These methods make
use of the red blood cell structure knowledge, which is not used in existing
watershed-based algorithms.

Khan et al. in [KASS11] presented a novel threshold selection technique
used to identify erythrocytes and possible parasites present on microscopic
slides that dramatically benefit from morphological operations, such as
granulometry and morphological reconstruction.

In [RdCEC17], Rosado et al. proposed a system using supervised
classification to assess the presence of malaria parasites and determine the
species and life cycle stage in Giemsa-stained thin blood smears. For the
RBCs segmentation, they used an adaptive thresholding approach followed
by a closing morphological operation with an elliptical structuring element.

Soni et al. [SMK11] performed segmentation of erythrocytes by using
granulometry as well. The size and eccentricity of the erythrocytes are
also required for the calculation of some feature values (as these can be
indicative of infection). The shape of the objects (circular erythrocytes)
is known a priori, but the image must be analyzed to determine the size
distribution of objects in the image and to find the average eccentricity of
erythrocytes present. Grayscale granulometries based on opening with disk-
shaped elements are then used. Non-flat disk-shaped structural elements
are applied to enhance the roundness and compactness of the red blood cells
and flat disk-shaped structural elements applied to segment overlapping
cells. The object to be segmented differs significantly in contrast to the
background image. Changes, in contrast, can be detected by operators that
calculate the gradient of an image. The gradient image can be computed,
and a threshold can be applied to create a binary mask containing the
segmented cell. The binary gradient mask is dilated using a vertical
structuring element followed by a horizontal structuring element. The cell
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of interest has been successfully segmented, but it is not the only object
that has been found. Any objects that are connected to the border of the
image can be removed.

In Tek et al. [TDK10], the localization of the parasites is achieved
after a foreground and background segmentation step. Firstly, a rough
foreground image using morphological area top-hats (using the average
cell area value) is extracted. Then, from these rough foreground and
background regions, two different threshold values are determined and
used in morphological double thresholding of the input grey level image to
produce a refined binary foreground mask. From the foreground image,
the stained pixels are detected using a thresholding approach again and
finally used as markers to extract the stained objects by morphological
area top-hats based on the estimated average area value.

In [YAM12], Yunda et al. proposed a method for P. vivax parasite
detection. The segmentation phase is a combination of border and region
detection that allows rejection of the image background and permits
identifying each of the objects. Initially, the morphological gradient method
is used to enhance the borders of previously found objects. It is followed
by a threshold detection stage using the K-Median method. Furthermore,
a Laplacian operator was used to discriminate the pixels that are interior
or exterior concerning the regions of the images and then erosion operation
followed by two dilations were applied to delete the pixels that did not
make part of any object. In the end, Absence of Gradients and Nernstian
Equilibrium Stripping (AGNES) and K-Median techniques were applied
to assign the remaining number of pixels to each region, using the image
regions previously identified as objects and background as the starting
point.

Several authors used marker-controlled watershed [Soi04] with the
morphological approach, as described in the following.

Das et al. in [DGC+11,DGP+13,DMC14,DMC15] segmented erythro-
cytes as aforesaid and then morphological operators are used to eliminate
unwanted cells like leukocytes and platelets. Moreover, overlapping erythro-
cytes are segmented by using a marker-controlled watershed segmentation
technique.

In [DSSL17], Devi et al. proposed a computer-assisted system for
quantification of erythrocytes in microscopic images of thin blood smears.
The performance of the system in classifying the isolated and clump
erythrocytes by geometric features is evaluated for the different classifiers.
The clump erythrocytes are segmented using marker-controlled watershed
with h-minima as an internal marker.

In [DRB+15], Dey et al. presented an automatic system for segmenting
platelets, useful for identifying the disease like malaria, using a color based
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segmentation and mathematical morphology (opening operations with a
disk element of radius 2).

In the study presented in [DGR09] by Diaz et al. for quantification
and classification of erythrocytes in stained thin blood films infected
with Plasmodium Falciparum, the authors used connected morphological
operators in the segmentation step. The RBCs are detected as follows:
firstly, a pixel classification allowed for labeling each image pixel as either
background or foreground, based on its color features. Afterward, an
inclusion-tree structure is used to represent the hierarchical object relations
between background and foreground so that a filtering process allows for
removing irrelevant structures such as artifacts generated at the staining
or digitization processes.

Khan et al. [KASS11], among other experimentations, used it to try
to separate overlapping cells because, according to their statements, the
watershed transform can isolate touching cells, but it is not sufficient for
overlapping cells.

In the algorithm described by Romero-Rondon et al. in [RRSR-
BRMC16], the detection of overlapped RBCs is still based on marker-
controlled watershed transform. To define the suitable markers in the
watershed transform, they used three different approaches, based on a
morphological erosion operation, on Hough transform and on a clustering
method of K-means.

Savkare et al. in [SN15] segmented cells using K-mean clustering
and global threshold. Overlapping cells are separated using a Sobel edge
detector and watershed transform, applied to each cluster separately. Over-
segmentation is minimized by a series of morphological operations, like
erosion and dilation, utilizing disk-shaped structuring elements.

In [SN11a], an approach to detect red blood cells with the following
classification into parasite infected and healthy cells for further estimation
of parasitemia is proposed. For separation of overlapping cells, the water-
shed transform is applied on a distance transform of a binary mask of cells
having a larger area.

In [Špr09], Špringl performed red blood cell segmentation by using
marker-controlled watershed transformation based on the image gradient.
Markers are computed as a combination of the binary mask of the red
blood cells and centers of the cells that are computed using a similar
algorithm that was utilized for the evaluation of the average cell radius.
The binary mask is obtained by thresholding the grayscale image with an
automatically estimated threshold using the Otsu method [Ots75].

In [SRPP15], Sulistyawati et al. combined morphological operations
(erosion, dilation, opening, and closing) and blob analysis to segment and
identify malaria parasites with a high degree of accuracy.
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Tek et al. in [TDK06] proposed a classifier-based method for the
segmentation stage, which relies on a Bayesian pixel classifier to distin-
guish between stained and non-stained pixels. In particular, they used a
non-parametric approach based on histograms to produce the probability
density functions of stained and non-stained classes. Stained pixels can be-
long to other components such as WBCs, platelets or artifacts, in addition
to the parasites, and so the detection procedure requires a further classi-
fication to distinguish among parasite and non-parasite pixels. However,
the stained pixels have to be represented as connected sets, representing
stained objects, to extract features for the classifier. Furthermore, top-hat
extraction and infinite reconstruction were applied to find the regions that
include the objects.

Feature extraction has the aim of reducing the computational com-
plexity of the subsequent process and facilitating a reliable and accurate
recognition for unknown novel data, considering that the input data to an
algorithm could be too large to be processed, and it could be redundant
(e.g., the repetitiveness of pixels patterns in an image). Moreover, the
in-depth understanding of the domain-specific knowledge gained by human
experts on the problem being addressed can be of extreme importance for
the design of a reliable and effective feature extraction engine [Jia09]. It
starts by determining a subset of the initial features, and this procedure
is called feature selection. The selected features are expected to contain
the relevant information from the input data so that the desired task
can be performed by using this reduced representation instead of the
complete initial data. Malaria parasite infection causes microstructural
changes in erythrocytes. The microscopic features of the RBCs are usually
specific to morphology, intensity, and texture. They may also represent
the differences that occur among healthy and unhealthy cells. Most of the
studies have reported both textural and geometric features for describing
malaria infection stages [DMC15]. Generally speaking, features may be
distinguished according to the following characteristics: morphological
features and textural and intensity features.

It is a well known mathematical morphology approach to compute a
size distribution of grains in binary images, using a series of morphological
opening operations. It is the basis for the characterization of the concept
of size. Some authors used area granulometry for preprocessing purposes
in malaria characterization [TDK10], even though it is certainly effective
for extracting cell size features’ information [Špr09, TDK06, MAAB13].
In [TDK10], local area granulometry combined with the color histogram
is used as features. The area granulometry feature is calculated locally on
the binary mask of the stained objects, for the RGB channels, and then
concatenated. Morphological features are also used in [RPRD06] (erosion
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Figure 6.12: Types of malaria parasites: from top left, clockwise, P.
Falciparum in its schizont stage, P. Vivax in a gametocytes specimen, P.
Malariae in its schizont stage, P. Ovale in its ring stage. All parasites
have been surrounded with a yellow box. Underneath, from left to right:
crops of P. Falciparum schizont, P. Vivax gametocyte, P. Ovale ring and
P. Malariae schizont, taken from the boxes. Courtesy of CHUV, Lausanne.

dilation), in [DGC+11] (opening, closing) and in [DRDKJ02] (skeleton) to
classify parasites.

6.4.2 Malaria parasites morphology

A blood smear image, obtained through a microscope, is presented in
fig. 6.14. It typically contains at least three regions of interest: white
blood cells (or leukocytes), red blood cells (or erythrocytes) and platelets
(or thrombocytes). Two different categories of leukocytes exist granu-
locytes (composed, in turn, of neutrophils, basophils, and eosinophils).
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On the other hand, leukocytes without granules are called agranulocytes
(composed of lymphocytes and monocytes). Erythrocytes do not have
any subcategory even though malaria parasites (MPs) can infect them,
consequently modifying their shape, morphology or coloration conditions.
In particular, fig. 6.12 shows several examples of malaria parasites in their
different life stages and type. Although MPs infect only RBCs, a blood
smear image representing both WBCs (particularly granulocytes) and MPs
could be tough to analyze because of the similarities in coloration and
shape between parasites and WBC grains, as shown in fig. 6.14.

MP-IDB collects four malaria parasite species: Plasmodium Falciparum,
Ovale, Malariae, and Vivax, in four different life-cycle stages: ring, tropho-
zoite, schizont, and gametocyte. Plasmodium Falciparum trophozoite and
schizont are very rare, and they are not present in our data collection. A
complete set of examples, extracted from the dataset, are shown in fig.
6.13. The morphology, the size and the presence or absence of malarial
pigment of the parasites define their life-cycle-stage. The species differ in
the changes of infected cell’s shape, the presence of some peculiar dots and
the morphology of the parasite in some of the life-cycle-stages [Som11]. An
automated malaria parasites analysis on blood smears usually comprises
four different tasks, as follows:

1. Image preprocessing: the images are normalized in colouration be-

Figure 6.13: Examples of malaria parasite stages. From top left:
P.falciparum ring, trophozoite, schizont, gametocyte; P.ovale ring, tropho-
zoite, schizont, gametocyte; P.vivax ring, developed trophozoite, gameto-
cyte. [LDRK18]
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Figure 6.14: Example of blood smear image acquired with a good col-
oration and illumination scheme. Three different regions of interest char-
acterize the image: an eosinophil granulocyte on the bottom left (yellow
bounding box), a schizont Plasmodium Falciparum on bottom center (green
bounding box) and the erythrocytes. Please note that some platelets are
also present (blue bounding box). Courtesy of CHUV, Lausanne.

cause it can differ a lot from image to image, and the different regions
of interest are made the most contrasted possible.

2. Segmentation: red blood cells and parasites are separated from the
background and white blood cells by using algorithms based on
different characteristics of the cells (e.g., shape, color, texture).

3. Feature extraction: relevant characteristics (e.g., shape, color, tex-
ture) are extracted from the different region of interest to train an
automatic parasite analyzer.

4. Classification: several classification schemes can be performed. Hier-
archically, cells are classified in red blood cells and white blood cells.
Afterward, red blood cells are classified in affected by parasite(s) or
not. In the end, parasites are classified in their type and life stage.
Parasites potentially can also be present outside the cells. In this
case, they should need a more specific and dedicated analysis.
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Chapter 7

WBCs Segmentation

The main purpose of this thesis was to develop a CAD system able to
extract appropriate and useful information from blood cell images, acquired
employing microscopes, to easily perform activities on them, like the
WBCC. One of the main issues to deal with is certainly the management
of the different staining techniques and illumination conditions in which
the image can be acquired. Datasets presented for WBC analysis show
several examples 6.3.2. All considered, this chapter presents different
methods which takes into account these issues and offers solutions to them.
Paragraph 7.1 refers to the works [RLP15a], [RLP15b], while paragraph
8.3 refers to the work [PLPD18]. The proposed solution starts with a
segmentation step, which is a crucial step in this procedure because its
accuracy dramatically affects both the computational performances and the
whole system overall accuracy. However, it is also a challenging problem
to manage because of the complex nature of the cells, the low resolution of
microscopic images and complex scenes, e.g., cells can overlap each other
or cells can have different sizes or shapes. On the other hand, the color and
contrast between the cells and the background can vary so often according
to the standard, inconsistent staining technique, the thickness of smear
and illumination. Although standardization is useful to avoid superfluous
differences in the features of similar images, a robust segmentation approach
can cope with the described issues, and this is undoubtedly one of the main
motivations to the realization of this work. State of the art shows that most
of the authors proposed traditional methods to perform cells segmentation,
like thresholding. In some cases, WBCs counting has been based on
detection methods rather than on segmentation ones, by using the circular
Hough transform [MLMR13] or texture analysis, even though color image
segmentation could also be performed with pixels clustering or classification
in color space. Unsupervised and supervised schemes [PLC09], such as
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k-means and neural networks, have been widely used for this purpose
even if there are many disadvantages to deal with. Generally, the biggest
problem of an unsupervised clustering scheme is how to determine the
number of clusters, which is known as cluster validity. And as for a color
image, the selection of color space is quite critical. The supervised scheme
needs training. The training set and initialization may affect the results,
and overfitting should be avoided. So a supervised clustering/classification
algorithm with right generalization property is most appealing. Our
method aims to solve the segmentation problem in a non-linear feature
space obtained by kernel methods to overcome the non-linearity of data
distribution and the shift/offset of color representing the different regions
of interest inside a blood sample: mature erythrocytes, leukocytes nuclei,
and cytoplasm. SVM (Support Vector Machines) and ANN (Artificial
Neural Network) are machine learning models with excellent performances
in classification, but their main drawbacks are that a training phase
is necessary to make them work and it could be computationally hard
with large datasets. Several authors have proposed methods for effective
segmentation of the nucleus of leukocytes, while there are few attempts
of segmentation of the cytoplasm. In this chapter, the segmentation
techniques used to segment the whole white blood cells will be illustrated.
Since during the analysis of the images and the segmentation results many
issues have been observed, different approaches have been proposed in order
to make further improvement and to obtain better results. Most of the
proposed procedures are based on machine learning methods. Although in
many cases machine learning methods are not considered computationally
suitable for segmentation, here special effort has been devoted to improving
this kind of approaches in order to be robust against uneven illumination,
local imprecision, different acquisition devices, and staining. They have
been mostly chosen because they can provide excellent segmentation results
by training with different samples. Efforts have also been made to reduce
their computational expensiveness.

7.1 WBC segmentation by samples

As stated before, typically segmentation is a key step in every CAD system.
Moreover, it is worth to remember that several regions of interest have
different characteristics. Therefore a good segmentation strategy is cer-
tainly needed. Further issues addressed are that images are acquired with
various acquisition devices and staining techniques. Staining procedures
could produce very different blood smears and, consequently, images even
though they represent the same scene. Although standardization of the
procedures could be useful to avoid excessive differences in the features

Andrea Loddo Microscopic Blood Images Analysis by Computer Vision Techniques



WBCs Segmentation 93

of similar images, a robust segmentation approach can cope with the
described issues. An automatic machine learning approach to performing
image segmentation has been realized by following the critical idea that
producing a well-trained model, and it is possible to generalize the problem
and overcome the issues. As for all the approaches that involve the use of
machine learning techniques, a training set is needed in order to create
a model or to make a comparison with the unknown samples. ALL-IDB
presents two distinct versions, one with regions-complete images and the
other with singular leukocytes only. Therefore the strategy is to use a part
of this dataset as a training set for the learning by sampling algorithm.
Firstly, the images of the training set have been segmented with classic
segmentation method to obtain pure samples related to the regions of white
blood cells nucleus and cytoplasm, mature erythrocytes and background.
As a comparison, an approach based on three Mean Shift iterations and
a ROI-selection method has been realized. The first one aims to smooth
the intensity colors of the clustering modes corresponding to the colors of
the region of interest, while the second one lets the user choose the most
appropriate samples. Moreover, the pixels obtained from these regions
have been reduced in number through a Nearest Neighbour Search (NNS)
by removing any duplicates or elements with distance next to zero. Then,
the training samples have been prepared by adapting sampling from the
regions obtained from the classic segmentation phase so as to perform the
training process of a multi-class SVM in order to classify all the pixels of
a given image correctly. Finally, the SVM is used to segment the image
for extracting whole white cells, using a classification phase by means of a
model. Since the size of the training set could be controlled and reduced
in sampling, SVM training is speedy.

7.1.1 On Mean Shift Technique

Mean Shift technique was originally proposed in 1975 by Fukunaga [FH75],
then adapted by Chen [PLC09] and generalized for image analysis purposes.
More recently it has been extended to low-level vision problems [FCMG00],
including segmentation, adaptive smoothing, and visual tracking. It is
used as a non-parametric technique for the estimation of the density
gradient in the image analysis field, even if it was developed to perform
mode finding on clustering procedures. In contrast to the classic K-
means clustering approach, there are neither a priori assumptions about
the point distribution nor the number of modes and clusters: the Mean
Shift procedure itself computes them. Furthermore, Mean Shift has been
adapted to become a very effective image segmentation technique, even if
it was born as a clustering method of data analysis. It allows to attenuate
shape or color differences between the objects inside the considered images;
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for these reasons, it works as a local homogenization technique. The
objective is to substitute every single pixel value with the mean of the
sampled pixel values in a certain neighborhood, within a certain radius R
and a certain color distance D. Both of them are usually input defined
by the user who generally has a deep knowledge about the context or
uses some pre-processing technique to obtain the best values of R and
D. Typically, Mean Shift requires at least three basic information to gain
the best results; first of all, we have to define a certain kernel, which
uses a distance function, to measure the pixel distance in every single
iteration of the procedure: examples are the Gaussian kernel and the
Epanechnikov kernel. Secondly, it needs two distance values: an R radius
and a D color distance. Then, iteratively, the procedure finds the modes
of an input given image and calculates new values for every single pixel,
according to the chosen kernel function and the distance parameters. It is
worth mentioning that the Mean Shift algorithm is not well defined at the
boundaries, because it does not consider the non-existent neighbor pixels.
Consequently, a strategy to handle them is necessary. For example, we
have studied a padding of the image to process boundary pixels correctly.

7.1.2 Experimental evaluation

This section motivates how a classification method has been used to
perform a WBCs segmentation. Support Vector Machine (SVM) has
been used to perform a classification of every single pixel belonging to
the images to segment, following the indications of the method proposed
in [PLC09]. Once Mean Shift has been applied over the training set for
producing clustered colored images, as shown in fig. 7.2, in which the
classes to which each pixel belongs is immediately clear. We use a part of
these images to train the different SVM in the three different strategies
following mentioned. As a comparison, we also segment every single
dataset image with classic segmentation methods. It is done to execute
a more in-depth analysis of our study. The first strategy works as a
conventional binary SVM classifier. Hence we have exactly two classes in
which the pixels will be classified: the positive class includes the white
blood cell nuclei and cytoplasm pixels, while the negative class represents
pixels belonging to erythrocytes or background. The second strategy
substantially works like the first one, with the main difference that we
exclude from the training samples all the pixels belonging to the cytoplasm,
in order to avoid misclassification due to similarities with the lighter region
of erythrocytes. The third strategy is based on the results obtained with
the two previous versions. The classifier needs more valid training samples
for cytoplasm only. So, in the last version, we perform a three-class SVM,
using both the pixels belonging from WBCs nuclei (class 1) and both
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pixels belonging to the WBCs cytoplasm (class 2). Thus, pixels belonging
to erythrocytes or background are labeled with class 3. Note that for
this approach only classic segmentation has been used to produce pure
samples for the SVM because Mean Shift segmentation merge both WBC
nucleus and cytoplasm. A Mean Shift alteration could be done to adapt it
for our purposes, but we have chosen to use classic method for simplicity.
Fig. 7.1 shows the segmentation results using the three aforementioned
solutions. In the first one, WBCs are exactly recognized and segmented,
but the lighter region of erythrocytes is misclassified as WBC one. The
second strategy, like the first one, can correctly detect the nucleus even
if it fails in detecting the cytoplasm of some WBCs classes. Finally, the
third strategy performs a good detection of both nucleus and cytoplasm.

Figure 7.1: From left to right: extracted image from ALL-IDB2, segmen-
tation result for nucleus an cytoplasm with the first strategy, segmentation
result for nucleus an cytoplasm with the second strategy; segmentation
result for nucleus an cytoplasm with the third strategy. First strategy tends
to misclassify lighter pixels belonging to RBCs, that are quite similar to
WBC cytoplasm. Second strategy improve the results of the first one and it
misclassifies only RBC nuclei, that are quite light. Final strategy gives the
expected results by classifying WBCs pixels correctly.

7.1.3 System Implementation

For each strategy, the training set is formed by sampling pixels from the
images belonging to the ALL-IDB2 presenting healthy WBCs chosen to
make part of the available training images. On the other hand, the test
set is formed of the first 33 images of ALL-IDB1, acquired in the same
lighting conditions and with the same camera.

According to the prior knowledge defined about Mean Shift and stan-
dard segmentation methods, we have used two strategies to perform the
first phase of our algorithm. Both of them are focused on offering the
SVM a sufficient set of possible training samples. We have used either
standard methods or Mean Shift to obtain this training set. The main
objective is to understand which samples represent the most accurate
pixels to train an SVM model between Mean Shift and thresholded images.
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As said before, we have used both the approaches to experiment their
behavior concerning the SVM training set building. With thresholding, we
have obtained two binary masks. The first one contains the white blood
cells segmented in their entirety while the second one contains only the
white blood cells nuclei. From these images, the segmented cytoplasm
region could be easily obtained performing a difference operation between
the first image and the second one and remembering that the cytoplasm
region is always placed around the white blood cell nucleus. Thanks to this
process we can efficiently perform the SVM training phase. Overall, we
have obtained, in both cases, a specific set of images in which the regions
have been pointed out. Mean Shift method, instead, produces only a set
of images in which the regions of interest are marked with different colors,
obtained by finding the dominant color modes of the three main regions:
erythrocytes, white blood cell, and background.

At this time, our interest is to perform a proper training phase over
the given pixels obtained in phase one. The chosen pixels must be the
most various possible all over the regions obtained in phase one, in order
to realize a proper classification model during the SVM training phase.
The strategy we followed to train the SVM to produce a classification
model is now presented. Once we have obtained pixels belonging to
the cytoplasm, white blood cell nucleus and red blood cells regions, the
remaining step to perform is to accurately choose these pixels with uniform
sampling, to consider every single image available in the group of images
given for the training set. Thus, four different regions form candidates
of the training set for SVM. We mark nucleus pixels of white blood cells
with class label I1, cytoplasm pixels with class label I2, while mature
erythrocyte and non-cell region pixels are marked with I3. To avoid
uncertainty, the following property has been set:I1 ∩ I2 ∩ I3 = ∅ (empty
set). SVM implements a classification strategy that exploits a margin-
based ”geometrical” criterion rather than a purely ”statistical” criterion.
It does not estimate the statistical distributions of classes for classification,
while defines the classification model by exploiting the concept of margin

Figure 7.2: Examples of training samples candidates. From From left to
right: original image from ALL-IDB2, same image after three iteration of
Mean Shift algorithm; same image thresholded to emphasize WBC nuclei
(light blue) and cytoplasm (blue).
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maximization. There are two types of margin in SVM. Hard margin
classifier works well in no-noise cases but fails with noisy data due to
overfitting. Soft margin classifier may achieve much better generalization
results by relaxing the hard margin and ignoring the noisy data. So,
training can benefit from removing noisy samples from the training; for
this reason, we have produced pure samples of the three classes. Statistics
theory has revealed that, through uniform, or Monte Carlo sampling, a
subset could be produced to approximately represent the entire data set
while retaining the distribution of data effectively [Caf98]. The essential
steps of this phase can be summarized as follows:

- sample N pixels from I1, I2, I3 regions. There are N/4 pixels sampled
respectively from four regions (cytoplasm, nucleus, mature erythro-
cytes, and background region) to keep the size of the training set
balanced;

- train an SVM online, taking the reduced training set defined at point
one and an RBF kernel and generate a classifier model;

- use this model to classify the image pixels which are represented by
(R,G,B)T .

We have performed two main experiments. The first one has been realized
to verify our implementation performances over single WBCs and to
identify the most suitable parameters for the SVM. Thus, through a ten-
fold cross-validation each time we have divided the original training set
in two subsets, the first one to train the SVM and the second one to test
the obtained model. An ideal average accuracy value has been reached
by choosing the parameters c and γ as 1e3 and 1e1 respectively. The
second and final experiment has been realized to verify the segmentation
performances of the proposed method. Thus the whole original training
set has been used to create the SVM model. The first 33 native resolution
images have been used as a test set and to check the method applied to
a natural image composed of several white blood cells of many different
classes.

Once the first (visual) results have been obtained, we have started
experimenting with various features that can be used to train the classifier.
Even though we are talking of a segmentation technique, pixels are used
as features for the SVM classifier. Until now the only descriptors used are
the original RGB color intensity values. Although, in many cases, these
features are enough to reach a good segmentation result, in other cases
a weak feature set like this is not able to discriminate pixels belonging
to regions with wide variations in colors. Thus the first intuition has
been to add the average color values of each pixel neighborhood. These
average values have been tested for a neighborhood of size 3× 3, 5× 5 and
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7× 7. For the same neighborhood, we have also computed other statistical
features that are often used for segmentation purposes: standard deviation,
uniformity, and entropy. While the segmentation accuracy highly benefits
from the use of these new features, the overall system became slower,
both in training and in segmentation phases. Furthermore, the step of
samples selection, used to train the classifier, became too complicated,
due to a higher number of samples with different values. For all these
reasons the features previously mentioned have been extracted only for
a neighborhood of size 3 × 3, showing excellent performances as shown
in fig. 7.3, outperforming previous results. After the segmentation, all
the images have been automatically cleaned, as we have already proposed
in [PR13], to remove small artifacts from the background and to give
the reader an idea about the goodness of the results. To evaluate the
segmentation performances of the proposed method, a subset of images
(52 samples) belonging to the ALL-IDB1 have been manually segmented
by skilled operators. As stated above, the entire WBCs, the entire RBCs,
WBCs nuclei and WBCs cytoplasm are available as separate ground truth
images. Fig. 7.3 shows some images belonging to the ALL-IDB1 and
their relative ground-truth images. Finally, the ground-truth images
previously described have been compared with the automated segmented
images in order to calculate the most common metrics for segmentation
evaluation, that are: accuracy, sensitivity, specificity, precision and F-
measure. Our segmentation approach has been compared with some
well know segmentation algorithms like Otsu [Ots75] and Zack [ZRL77].
Table 7.1 shows the average performances obtained 52 samples They
adequately represent the different staining and illuminations available in
ALL-IDB. As it can be seen the most important values obtained with our
approach are higher than the other segmentation approaches.

Figure 7.3: Original images from the ALL-IDB1 database, ground-truth
for whole leukocyte, ground-truth for leukocyte nuclei and final segmenta-
tion result.
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Table 7.1: Segmentation performances.

Otsu Zack Our Approach
Accuracy 77.67 ± 0.6 74.76 ± 3.6 97.61 ± 1.7
Sensitivity 76.70 ± 8.3 85.43 ± 6.8 98.45 ± 0.3
Specificity 85.62 ± 4.6 81.27 ± 5.4 97.56 ± 1.2
Precision 53.55 ± 12.8 79.12 ± 8.6 70.45 ± 5.8

F-measure 45.18 ± 5.3 55.15 ± 3.3 82.13 ± 2.3

7.1.4 System extension

This segmentation solution has been developed following the idea described
in section 7.1.2. The same settings have been maintained, from the dataset
to materials. The only thing that differs is that classic segmentation
method has been used to obtain pure samples related to the regions
of white blood cells nucleus and cytoplasm, mature erythrocytes and
background, instead of Mean Shift technique. The pixels obtained from
these regions have been reduced in number through a Nearest Neighbour
Search (NNS) by removing any duplicates or elements with distance next
to zero. Even in this case, SVM has been chosen due to the excellent
results so far produced. Once the manually segmented images have been
obtained from the training set, we used a subset of these images to train
the SVM. In particular, in this version we performed a three-class SVM,
using both the pixels belonging from WBCs nuclei (class 1) and both
pixels belonging to the WBCs cytoplasm (class 2). Thus, pixels belonging
to erythrocytes or background are labeled with class 3. It is well known
that getting manually segmented images is neither simple nor cheap.
Considering that, we perform an experiment which can be applied to every
peripheral blood images dataset, even in each illumination condition and
with different combinations of cameras and microscopes. This method is
based on ROI (Region of Interest) selection. Thus, making use of a few
original images, the object of interest (WBCs) could be selected and used
as a positive example for our multiple-class classifier. Considering that
it is a segmentation method based on classifiers, negative instances are
needed. Therefore, the background region, that comprises red blood cells
and plasma must be selected. An example of ROI selection for positive
and negative example is showed in Fig. 7.4.

Naturally, the negative samples must not contain any WBC. In fact,
in this case, the NNS has performed also over pixels belonging from a
different region, to avoid errors committed during the ROI selection and
to remove pixels with close values. In this way, the obtained training set
certainly present uniformly distributed pixel values. Note that with this
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Figure 7.4: Examples of ROI selection for WBCs, RBCs and plasma.

approach the WBC cytoplasm and nucleus are managed as a unique region,
both because the ROI selection is not so suitable for adjacent regions and
both because they can be easily separated in a further step by using a
simple threshold. Differently, from other approaches, we are now able
to take also RBCs into account, considering them as a different class, as
explained in 9.1.

7.2 Discussion

This chapter illustrated the segmentation techniques used to segment white
blood cells. It has been observed how the results could be influenced by
the presence of different lighting condition and especially by the presence
of uneven lighting within the same image. Just for this reason, a machine
learning approach has been chosen, to take into account the uncertainty
present in the image itself and at the same time to address the problems
of local light variations. This method uses the SVM, a machine learning
technique providing extreme flexibility, both because it is possible to make
use of different types of kernel and both because it is possible to define a
hyperplane for separating classes which guarantees a certain tolerance with
respect to noise. Some visual results have been showed for each of the pro-
posed approaches, and finally, the most common metrics for segmentation
evaluation have been computed and compared with the results obtained
with some well know segmentation algorithms. Making a comparison with
the state-of-the-art is not easy since no public ground truth images for
segmentation experiments are available. So, each author that proposed a
new segmentation approach tested his method with manually segmented
ground truth images. Thus a direct comparison is not possible, but an
overall idea of the segmentation performances can be made by comparing
the approaches that used ALL-IDB. As a comparison, the method proposed
in [RSBK14], that uses a k-means clustering, obtained an average accuracy
of 85%, while the method proposed in [AK13] that uses a rectangular
detection using Gray Level Co-occurrence Matrix to firstly find the region
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containing the WBCs later segmented with a reshaping procedure on the
region detected achieved an overall accuracy of 91%. Again, the method
proposed in [KAG13], that uses a vector quantization technique to segment
the white blood cells, obtains an accuracy of 92%. As it can be seen the
results obtained with the SVM approach outperforms the state-of-the-art,
with an average accuracy of 97.6%. It must also be noted that most of the
algorithms proposed in the literature are focused only on WBCs segmen-
tation. Thus none of them performs a whole segmentation of peripheral
blood images. Although the accuracy of these methods can be already
considered excellent, a further approach has been proposed, to improve
them and to directly face the problem of clumped cells analysis. On the
other hand, the VFC detection method is more oriented to clumped cells
separation rather than on pure segmentation. It works by following only
their natural shape even if they are hard to distinguish. Its strength lies
in the invariance to cells shapes and, by using the gradients movement, it
can find the edge shape even if this is not immediately visible. Moreover,
the proposed algorithm is not tuned to a specific training set, and it could
be used for whichever peripheral blood images dataset. Experimental
results demonstrate that this new approach is very accurate and robust for
detection, if compared to some traditional methods, being able to obtain
excellent results with the three public tested datasets, even though some
improvements could be implemented.
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Chapter 8

WBCs Identification and
Counting

A further problem in peripheral blood cells image analysis is certainly
the presence of adjacent cells or, even worse, cells grouped or clumped
together, like the typical leukocyte agglomerates. An example is shown
in Fig. 6.5. Cells clumps can be wrongly identified as single cells and
then misclassified, by segmentation strategies, considering that all the
shape descriptors belonging to these regions are misleading. This chapter
presents an analysis of this phase, which is crucial to detect and separate
leukocyte agglomerates. Finally, the single leukocytes can be decomposed
and segmented into their components: nucleus and cytoplasm. This process
can be summarised in the following basic steps:

• Agglomerates identification

• WBCs separation

• Image cleaning

8.1 Agglomerates Identification

Once the segmented image has been obtained, it is essential to find a
suitable method to identify the cells agglomerates. As mentioned earlier,
many authors used the a priori knowledge about the typical size and shape
of the cells, assuming that only cells agglomerates should present a bigger
size than the average leukocytes size. Unfortunately, this assumption is
respected only for images acquired with the same camera resolution and
the same microscope magnification, and the main issue remains the limit

Andrea Loddo Microscopic Blood Images Analysis by Computer Vision Techniques



104 WBCs Identification and Counting

to the usefulness of these approaches to a single dataset, or even a few
sets of images. The main goal here is to find an approach able to identify
leukocytes agglomerates on different sets of images correctly. It requires
the use of one or more descriptors to analyze every region directly. Many
shape descriptors could be used to verify if a region is a single cell or
an agglomerate [GW07] but, knowing that a WBC is typically round-
shaped, an analysis of the region roundness could be useful to localize the
agglomerates. The roundness (4.5) is a measure of circularity (area-to-
perimeter ratio) that is relatively insensitive to irregular boundaries and its
value is equal to 1 for a circular object and is less than 1 for an object that
departs from circularity. The experimentations showed that this descriptor
is useful in shape discrimination and that a roundness value lower than
0.80 indicates the presence of leukocytes agglomerates. The roundness
value is computed for each connected component of the segmented images
and using the threshold mentioned above value, two different images have
been created (Fig. 8.1). The first one contains only single leukocytes, and
thus it proceeds directly to the next step of the process, while the second
one contains only grouped leukocytes and thus it proceeds with the WBCs
separation process. It is important to note that in some cases the second
image may be empty and so the phase of WBCs separation does not take
place.

Figure 8.1: Examples of leukocytes identified as grouped.

8.2 WBCs detection and separation from ag-
glomerates

The clumped cells separation is a crucial step in peripheral blood cells
analysis, as a precise separation allows extraction of more significant
features and a correct count. As previously mentioned, this step has been
faced by other authors in two different ways. The first one consists in
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analyzing the regions of interest in the original image, while the second
one is based on the analysis of the segmented image, converted to binary.
We proposed two different approaches to operate WBCs clumps separation.
The first one is a detection approach based on a modified version of the
Hough Transform in such a way that it can analyze circular shapes. It
takes the name of Circular Hough Transform (CHT), while the second
one makes use of Vector Field Convolution and mathematical morphology
techniques.

8.2.1 WBC detection with CHT

The segmentation via SVM 7.1 produces a labeled image, with a different
label for every image component. A binary mask containing only WBCs
can be easily extracted and used for a first analysis. The analysis starts
by extracting all the connected components from the binary mask that
we highlight in Fig. 8.2 by drawing a bounding box around them. As it
can be seen from the first image, both single cells and clumped cells are
detected in this phase. Each connected component just extracted is firstly
compared in size and shape with the reference value that we extracted
from the training samples. Such reference values are the solidity (4.7),
determined from the average solidity of all the leukocyte in the training
samples, and the area determined from the biggest leukocyte in the training
samples. The area value is used to distinguish all the irregular cells sizes
caused by the presence of cells agglomerates. The solidity value, on the
other hand, is used to discriminate the abnormal components, with an
irregular boundary or containing holes but even to exclude dye artifacts,
while the convex area is the area of the object’s convex hull. Since it is
already possible to operate only on cells agglomerate, the use of the whole
image is no more necessary. Therefore, we perform a crop of the original
image for each region containing the agglomerates, using the previously
computed bounding box. At this point, we know the position of the
agglomerates but, also, the specific regions to work on. Thus we can use
the segmentation result again to delete all regions within the sub-images
that are not leukocytes. To entirely preserve the leukocytes edges the
binary image containing the segmentation result has been enhanced by a
morphological closing operation, excluding small holes inside the regions
but also enhancing the contour of the cell. In this way, the resulting
image is spotless, presenting only the leukocyte agglomerate on a dark
background. Since our ultimate goal is to provide a cell count, rather
than a real separation of cells, in this case, we have preferred to speed up
the process by realizing a pure detection phase based on the knowledge
extracted from the cells forming the training set. The detection has been
performed with the circular Hough Transform, being the most suitable for
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the recognition of circular shape, in particular, if the range of the radii
values is already known, as in our case. If the range of the possible radii is
small, the detection is faster, but we are more interested in detecting all the
leukocytes. Thus the radii of the smallest leukocyte decreased of a factor
of 0.9, has been chosen as minimum radius value. On the other hand, the
radii of the biggest leukocyte have been chosen as maximum radius value
increased of 1.1 factor. Both values have been taken from the training
samples. The algorithm of the circular Hough transform is based on the
gradient field of the image, that performs a threshold in a measure of the
5% of the maximum intensity value, so ignoring all the pixels with gradient
magnitudes smaller than the threshold. Thanks to it, false detection, due
to the presence of small values of the gradient magnitude, is avoided. A
qualitative evaluation of the whole step of separation and counting is shown
in Fig. 8.2. As it can be seen the detection phase is excellent, also with the
presence of agglomerates with a high number of cells. The counting now
becomes easy, because it is only necessary to count the detected circles in
each sub-image plus the single leukocytes detected in the previous phase.

Figure 8.2: Leukocyte detection phases: connected components, single
objects detection, artifact removal, agglomerates crop and detected leuko-
cytes.

To further highlight the importance of each phase of the proposed
method, we show in Fig. 8.3 how the Hough transform performs on some
original blood sample images, without the use of any regions crop and in
particular, in the first case without any knowledge about the size of the
leukocytes and in the second case without any knowledge about the grey
levels. In both cases the results are really unsatisfactory, since many little
circles have been drawn over bigger leukocytes or worst many circles have
been drawn on areas that do not contain any leukocyte.
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Figure 8.3: Application of circular Hough transform to the whole image
using an unknown radius and a wrong threshold.

8.2.2 WBC separation from clumps with VFC

A real cells separation from clumps can be performed, on the other hand,
by using the following method, based on Vector Field Convolution.

8.3 WBC detection with VFC

Although the segmentation results of the schema based on segmentation by
sampling 7.1 has been very promising for the realization of an automatic
cells analysis framework, a further WBC analysis method, based on Vector
Field Convolution (VFC), has been investigated an implemented. The
primary targets of this improvement are to segment all the WBCs nuclei
with VFC strategy and to divide potential clumps by using an analysis of
the real cells boundaries, overcoming the use of classic methods, like Wa-
tershed transform, for example. The system is composed of the following
phases: pre-processing, binary edge map generation, VFC [BS07] appli-
cation, grades transformation, external energy computation, black and
white distance calculation and, finally, skeletonizing and region merging
application. The method starts with a contrast stretching on the RGB
color space’s G channel, as shown in fig. 8.4. The regions boundaries are
extracted employing a gradient operator which permits to obtain a binary
edge map. Subsequently, the VFC is computed with the initialization of
the kernel vector field and the edge map creation. A first WBCs detection
has been so far obtained with the previous steps, and a first nuclei seg-
mentation can be consequently obtained by applying the skeleton function
on the overlapping between the external force and the binary distance
transform images. The final segmentation result is described in detail

Andrea Loddo Microscopic Blood Images Analysis by Computer Vision Techniques



108 WBCs Identification and Counting

further on.

8.3.1 On Vector Field Convolution

An external force, namely the VFC, can be obtained by convolving a
vector field with the edge map derived from the image [BS07]. Active
contours using the VFC external force are called VFC snakes. Differently,
from the GVF [XP98] snakes, that are formulated using the standard
energy minimization framework, VFC snakes are constructed from a state
of equilibrium between the forces. Furthermore, VFC snakes have many
advantages, e.g., a wide capture range. They can grab the concavities.
They are better resistant to noise images. They can adapt the force field
and reduce the computational cost drastically. The proposed segmenta-
tion technique starts with a histogram stretching. In particular, WBCs
nuclei have been highlighted by stretching RGB color space’s G channel
(Figure8.4). The purpose is to obtain only the cells of interest to create
the best possible edge map.

The high spatial frequency regions, corresponding to the edges, have
been highlighted thanks to the Sobel operator. It is a kind of orthogonal
gradient operator, and it has the advantage to produce a smoothing effect
on the image’s random noise [SF68]. Gradient corresponds to the first
derivative. Therefore gradient operators are derivative. For a continuous
function f(x, y), in the position (x, y), its gradient can be expressed as a
vector:

Figure 8.4: RBC image’s G channel extraction. The WBCs are high-
lighted with respect to the other regions.
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∇f(x, y) =
[
Gx Gy

]T
=

[
δf

δx

δf

δy

]
(8.1)

This operator applies two kernels in the two principal directions. Calling
Gx and Gy the horizontal and vertical derivative approximations and I
the image, the computation is described as follows:

Gx =

+1 0 −1
+2 0 −2
+1 0 −1

× I (8.2)

Gy =

+1 +2 +1
0 0 0
−1 −2 −1

× I (8.3)

where the × operator indicates the convolution operation.
Before going into detail, it is useful to define the Vector Field Kernel

(VFK). It is computed using the following equation:

k(x, y) = m(x, y)n(x, y) (8.4)

where n is the unit vector that points to the origin of the kernel

n(x, y) = [
−x
r
,
−y
r

] (8.5)

and m is the magnitude of the vector. Potentially, every single pixel in
an image may be attracted to the edge of its region [BS07]. This fact
could be compared to the gravity effect on every single object in Earth: it
is attracted towards the Earth surface. Consequently, if we consider the
origin as the point of interest, VFK has the desirable property that a free
particle placed in the vectorial field is able to move to a point of interest.
The external force that works in the VFC is defined in this way:

fvfc(x, y) = uvfc(x, y), vvfc(x, y) (8.6)

Since the edge map is non-negative and wider near the edges of the
image, the VFC acts more on the edges than to homogeneous regions.
Therefore, the free particles of homogeneous regions will be attracted to
the edges. If we use a complex-valued range, the VFC acts as a filter on
the edge map, which does not depend on the origin of the kernel. The
VFC field highly depends on the magnitude of the VFK in such a way
that it is directly proportional to the VFK(x, y). The farther is the figure
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of interest (FOI) [BS07], the less powerful is the force and, therefore, the
magnitude must be expressed as a positive function that decreases with
respect to the distance of the origin. Two types of magnitude functions
are defined as follows:

m1(x, y) = (r + ε)−γ (8.7)

m2(x, y) = exp(−r2 ζ2) (8.8)

where γ and ζ are positive parameters to control the decrease rate, ε is a
small positive constant which prevents division by zero at the origin, while
m1(x, y) is inspired by Newton’s universal gravitation law. Furthermore,
the pixels in the edge map can be considered as objects of mass proportional
to the strength of the edges and the VFC would be the gravitational field
generated by all objects. m2(x, y) is a Gaussian shape function, and ζ
can be viewed as the standard deviation. The influence of FOI is strongly
dependent from γ and ζ because it increases if the first one decreases or the
second one increases. In general, the influence of FOI should be increased
(or decreased) as the signal-to-noise ratio is decreased (or increased) [BS07].

The VFC uses the two components of the external force uvfc(x, y), vvfc(x, y)
to describe the field of the image and its magnitude. These two components
are very useful to describe all the edges, both from single leukocytes and
from cell clumps. VFC’s right and left components can be computed as
follows:

uvfc = ExtF (x)/
√
ExtF (x)2 + ExtF (y)2 (8.9)

vvfc = ExtF (y)/
√
ExtF (x)2 + ExtF (y)2 (8.10)

where ExtF is the External force of the Field. u and v are two intensity
images with values range in −pi and +pi. They need to be combined and
converted in degrees values so that the orientation of every image pixel
can be described, as shown in Fig. 8.5.

VFC application typically generates some artifacts and this method
applies the distance transform to delete them all. It assigns a number that
is the distance between each pixel and the nearest non-zero pixel of the
image. As a result, the entropy of the image is reduced as well as the noise
even though it does not distinguishes if the edge is an RBC’s edge or a
WBC’s edge. As a consequence, the application of the External Energy is
needed to overcome this problem.

For an image I(x, y) the general formulation of the image Energy is:

Eimage = wlineEline + wedgeEedge + wtermEterm (8.11)

where wline, wedge, wterm are weights of the features.
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Line functional: the line functional, also known as the image intensity,
is the attracted value of the dark lines to the light lines. It is possible to
choose this value by selecting a positive or negative value of the force

Eline = filter(I(x, y)) (8.12)

Edge functional: The edge functional bases its work on the image
gradient.

Eedge = − |∇I(x, y)|2 (8.13)

This formula defines the strategy by which the method gets rid of the local
minima that are not objects of interest. The energy functional using scale
space continuation is

Eedge = −
∣∣Gσ ×∇2I

∣∣2 (8.14)

where Gσ is a Gaussian function with standard deviation σ.
Termination functional: The lines curvature in an image is used to

detect corners and terminations. Put

C(x, y) = Gσ × I(x, y) (8.15)

we derive a gradient angle

θ = arctan

(
Cy
Cx

)
, (8.16)

the unit vectors that move along the gradient direction

n = (cos θ, sin θ), (8.17)

and the unit vectors perpendicular to the gradient direction.

n⊥ = (− sin θ, cos θ). (8.18)

Starting from the previous formulas, the termination functional of energy
can be defined as follows:

Eterm =
∂θ

∂n⊥
=
∂2C/∂2n⊥
∂C/∂n

=

⇒
CyyC

2
x − 2CxyCxCy + CxxC

2
y

(C2
x + C2

y)3/2

(8.19)

External energy result: As stated before, a median filter has been
employed in order to delete all the regular part of the image and to highlight
the edges. It searches the 13th element of the 5× 5 mask (Figure 8.5).
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Once the median filter has been applied over the gradient image, an
AND operation between it and the edges regions image so that we can
highlight the points which result to be in overlay (Figure 8.5).

The image obtained from the VFC application contains only the WBCs
edges that, in some regions of the image, are far from being a connected
boundary. Thus, a further method is needed to link the edges preserving
the original boundary of the objects. This phase includes different steps.
The first one consists in connecting every single white point to the nearest
one to produce a connected boundary. A dilation with a 6 size diamond
structural element is applied in order to dilate all white dots. Secondly,
the opening of the closing is applied with a 4 and 3 size disks, respectively.
Then, the skeleton function is performed. It produces an image that
contains some spurious branches which are redundant for our purposes
and, consequently, we realized the following strategy to get rid of them.
To solve this problem we used a path analyzer that checks for the presence
of open paths. Indeed, a connected border is a closed path in which a pixel
of that border is at the same time a starting and ending point. So, each
pixel that does not belong to a closed path is removed. At this moment,
every real edge belonging to the cells is available, but over-segmentation
could occur so that we need to perform an arithmetical operation which
fills all the WBCs edges and removes the others. This operation uses a
mask obtained from the external force image. Finally, the application of an
opening on the edge map with a 6 pixels radius disk structural element and
its addition to WBCs image in the foreground, all connected components,
fitting into a specific area range, are successfully extracted, as shown in
fig. 8.5.

Figure 8.5: Example of VFC detection procedure. Top, from left to
right: original image, VFC right component, VFC left component, distance
transform image. Bottom, from left to right: external energy image, overlay
image and opened image.
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Once the cleaned binary mask has been obtained, we should be able to
perform the count of the cells inside the image. Unfortunately, as it can
be observed in Figure 8.5, using the proposed method also some WBCs
have been separated in two or more regions, so far hampering a correct
cell counting.

Thus, it is necessary a further step that merges all the image regions
belonging to the same cell. To understand which are the regions that
should be part of a single cell, we analyzed the cell area. All the regions
that have an area smaller than the half of the most significant region
inside the image are considered part of a single cell, while the other regions
are considered complete cells. Keeping in mind that smaller area regions
belong to larger area regions, we need to identify which of the first ones
belongs to the latter. The threshold area used to create these two different
images is exactly half of the image’s biggest region area. Labeling each
area and computing all the centroids, we can know which areas need to
be joined together, using the Euclidean distance formula. Finally, it is
possible to isolate the two areas and merge them using a closing procedure
with a 7 pixels radius disk element. The final result is given by an overlay
of this step to the over-segmented image employing the union operator
(figure 8.6).

8.4 Image Cleaning

Before being able to count the leukocytes a last step is necessary. Indeed
not all the objects can be considered but only the object that are real
leukocytes and only those leukocytes completely enclosed in the image.
This is necessary in order to prevent errors in the later stages of the

Figure 8.6: Application of complete VFC-based pipeline. Left: overseg-
mented image, right: final result, all WBCs are split.
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analysis process. Deleting the leukocytes that are not completely enclosed
in the image is an easy task, since it can be completed by a search of the
element touching the border of the image.

Figure 8.7: Final separation results and image cleaning results.

With this procedure, many WBCs are lost, but it ensures that only those
cells that can be analyzed accurately pass to the next step. The removal of
abnormal components instead is a more complex task. Also, in this case, it
is important to find a good method to identify the abnormal cells, and as
mentioned earlier no assumption about the typical size or shape of the cells
can be made based on previous knowledge. Since the size is discriminatory
for WBCs, the area is computed for each object in the image, in order to
have a reference value, that is the average area. The average area is useful
to determine the presence of objects with irregular size. For example, a
tiny area might indicate the presence of an artifact that was not removed.
Alternatively, a huge area may indicate the presence of adjacent leukocytes
that were not adequately separated. Thus a reference range value for
the area has been established to remove all these anomalies, preserving
only those objects for which 0.8 ∗ avg area ≤ area ≤ 1.2 ∗ avg area.
Unfortunately, abnormal objects could present a size close to the reference
value and thus can bypass this check. Typically, this object is WBCs
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that have been altered by the staining process, so they don’t present the
typical morphology even a separated nucleus and cytoplasm. Area is the
used in combination with another shape descriptor that is the solidity
(4.7). This descriptor measures the density of an object. A solidity value
of 1 signifies a solid object while a value less than 1 signifies an object
with an irregular boundary or containing holes. The reference value for
solidity is again computed by averaging the solidity value of all the object
in the image, when present in a number greater than 5, otherwise a default
value is used. During the experimentation, it has been observed that
a solidity value lower than 0.90 can adequately discriminate abnormal
components. Fig. 8.8 shows some results after border cleaning and the
removal of abnormal components. To better highlight the performance of
segmentation and separation of leukocyte agglomerates Fig. 8.9 also shows
some results after these two main steps on different images belonging to
ALL-IDB1, superimposing the segmented leukocyte borders on the original
images. As it can be seen, although the images are different between them,
both concerning resolution and colors, the results are exact.

Figure 8.8: Left to right: grey level sub-image, binary sub-image, whole
leukocyte sub-image, nucleus sub-image and cytoplasm sub-image.

8.5 WBC Count

To evaluate the performances in counting, we have used some public
datasets. The ground truth for all the images has been determined by an
expert and used to validate the proposed method. As literature proposed
we evaluated the counting performances using precision, recall, F-measure
and then we added a fourth metric that is the False Negative Rate FNR,
to highlight when the algorithm is not able to detect a cell present in the
image. The whole results for WBCs counting are reported in Table 8.1,
more precisely the method based on CHT takes the name of ”Det1”, while
the one based on VFC is ”Det2”, where they have been directly compared
with the results obtained by other authors that used at least one of the
three image datasets. As it can be seen, the first approach correctly
identified 99.2% of the whole leukocytes of ALL-IDB1 dataset, while using
the IUMS-IDB and the SMC-IDB it correctly identified 100% of the whole
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Figure 8.9: Original images superimposed with the contours of the leuko-
cytes identified.
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leukocytes. The performance of the second approach for WBC counting
are also reported in detail in Table 8.1 where it is shown that it correctly
identified 100% of the whole leukocytes of all datasets. These results have
been obtained because ALL-IDB1 presents many complex images, with
many leukocytes and different agglomerates, while IUMS-IDB and SMC-
IDB present more straightforward images with few leukocytes per image
and only a few pure agglomerates. Through a numerical comparison, it is
possible to observe that our approaches outperform the detection methods
existing in the literature. In particular, they both outperform other
methods [MLMR13,ASAZAO14], both because in our implementations we
analyzed the grey level image and because with the proposed segmentation
we can exclude all the other image regions before the detection phase, and
thus considering only portions of the image containing leukocytes. Indeed,
the proposed approach does not produce any false positive, being able to
exclude all the other image regions before the detection phase, and thus
considering only portions of the image containing leukocytes. We have
also achieved better performances than another analyzed method [PCR14]
that used the watershed algorithm applied on the distance transform. It is
mainly due to the fact that watershed transform can obtain good results
only in the presence of small agglomerates of cells. Moreover, it requires a
perfect segmentation since it works directly on the binary images, therefore
the presence of holes or other artifacts could affect the separation among
cells and the number of cells detected. Finally, it is important to note that
no one author used more than one dataset for the experiments, because
all the methods present in the literature are based on a segmentation step
that is dataset-dependent and that very realistically fails with different
ones.

8.6 Discussion

In this chapter, the identification, separation, and counting of white blood
cells have been illustrated. They can be applied to support some existing
medical methods, like the White Blood Cells Counting (WBCC). After the
segmentation phase, described in detail in chapter 7, the image requires
an analysis in order to detect agglomerates, that present an abnormal
shape and size. The agglomerates are then analyzed in two different ways,
according to the specific needs. If the segmentation has been realized with
a pixel classification techniques, single cells inside clumps are counted
employing a detection based on CHT. In the other case, they are divided
by means of VFC and mathematical morphology operations. The accuracy
obtained in counting is outstanding in both cases, as discussed in this
section. Three different public datasets have been considered to experiment,
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test and evaluate the two different proposed workflows. By using them,
it becomes clear that ALL-IDB has given accurate samples to train the
model, which can generalize enough to obtain good results in the described
procedures, as shown in the following results. The first method, called
Det 1 from now on, achieves an average accuracy of 97.61% that in
many cases reaches the 99%, outperforming the state-of-the-art methods,
such as the method proposed in [MLMR13] that uses the circular Hough
transform without any restriction on the area of interest, obtained an
average accuracy of 81%, with an high number of false positives, or the
method proposed in [AK13], based on a rectangular detection using Gray
Level Co-occurrence Matrix, that achieved a 88% of accuracy with a high
number of false positives. It is important to note that this method does not
produce any false positive, being able to exclude all the other image regions
since it is based on a previous phase of segmentation. We reported the ROC
curves to show the SVM performances of the new method (see Fig. 8.11).
The AUC value is almost always well above the 90%, except in one case.
This value is observed only in IUMS-IDB dataset, because it contains
images with significant visual defects that weaken the SVM prediction
capabilities and, as a consequence, they affect the overall segmentation
quality.

Figure 8.10: Top: from left to right, images extracted from ALL-IDB,
IUSMS-IDB and SMC-IDDB, respectively. Bottom: from left to right, the
final segmentation results for each image on top.

The evaluation of the second method, called ”Det 2” from now on, is
reported in fig. 8.10. Quantitative experimentation has been conducted
by considering every single image for a WBCs analysis and relative count.
Three metrics have been adopted to evaluate our study: False Negative
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Figure 8.11: Original and segmented images from ALL-IDB1, IUMS-
IDB, SMC-IDB and related SVM performances.
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M. A. P. Al. Det 1 Det 2
ALLALLALL ALL ALL IUMS SMC ALL IUMS SMC

FNR - - - 1.5% 0.7% 0% 0% 0% 0% 0%
Precision - - - 90% 100% 100% 100%100% 100% 100%

Recall 81%88%92% 98% 99.2% 100% 100%100% 100% 100%

Table 8.1: Detection performances of proposed WBC count methods
compared with the state-of-the-art. Please note that ”Det 1” stands for the
method based on CHT and ”Det 2” for the one based on VFC. Moreover,
”M.” stands for [MLMR13], ”A.” for [AK13], ”P.” for [PCR14] and
”Al.” [ASAZAO14]. Finally ALL, IUMS and SMC are contraction of
ALL-IDB, IUMS-IDB and SMC-IDB, respectively.

Rate (FNR), Precision and Recall. The obtained results are reported
in table 8.1, column ”Det 2”. It is evident that this approach correctly
identifies 100% of the leukocytes inside ALL-IDB, IUMS-IDB and SMC-
IDB datasets. The majority of clumped cells has been found in ALL-IDB,
which presents a lot of complex images, with lots of leukocytes per image
and different agglomerates, while IUMS-IDB and SMC-IDB contain simpler
images composed of fewer leukocytes and only a few, simpler, agglomerates.
They also have poorer quality than the ALL-IDB images. The proposed
approach produces no false positives, being able to exclude all other image
regions before the detection phase, and thus considering only the portions
of the image containing leukocytes.
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Chapter 9

RBC analysis

RBCs or erythrocytes are uniform in size, 7-8 µm in diameter. They are
round and flattened like a donut, due to the presence of hemoglobin that
is located peripherally, leaving an area of central pallor equal to 1-3 µm,
approximately 30-45% of the diameter of the cells. While not every RBC
is perfect, any significant number of cells that are different in shape or
size may indicate the presence of disease [EA13]. Identifying normal and
abnormal erythrocytes is important since automated cell counters have
not yet replaced the well-trained eye with respect to the subtleties of red
blood cell morphology. Erythrocyte color is representative of hemoglobin
concentration in the cell, while an abnormal shape may indicate a possible
presence of a specific disease or disorder. Some examples of shape and
color abnormalities are shown in Fig. 9.1. The cytoplasm of all normal
RBCs is free of debris, granules, or other structures. Inclusions are the
result of unique conditions, and their identification can be clinically helpful.
Some examples of inclusion bodies are shown in Fig. 9.1.

9.1 RBC segmentation

An extension of the work presented in 7.1 is now presented. It refers
the work [DRLP16]. This segmentation system is based on a machine
learning approach. As for all the approaches involving machine learning
techniques, training samples are needed in order to create a model or to
make a comparison with the unknown samples. The WBCs, RBCs, and
plasma regions are selected from some sample images by performing a
manual crop over them to obtain the respective Region Of Interest (ROIs)
as shown in Fig. 7.4. The pixels values from R, G and B channels are
extracted from the three different ROIs. The obtained pixels are examined
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Figure 9.1: From top left to bottom right: shape and colour abnormalities:
spherocyte, elliptocyte, tear, sickle, acanthocyte, echinocyte, keratocyte,
byte, stomatocyte, target, schistocyte and rouleaux formation. (Bottom)
Inlusions: howell-jolly bodies, siderotic granules, basophilic stippling, Heinz
bodies, malaria and nucleated RBC.

with the purpose of avoiding sampling errors and reduced in cardinality
by using a Nearest Neighbour Search (NNS) with Euclidean distance. The
NNS is applied on pixels belonging to the same region to remove duplicates
or close values, therefore pixels with distance ∼= 0, and outliers or noisy
pixels, thus pixels with distance � µ. Then the NNS is performed over
the pixels belonging to different classes so that the intersection among
the three classes is empty. Thus the NNS is used to create a smaller but
more representative training set. This training set is used to create a
multi-class model able to segment the blood components of new images
correctly. The model has been obtained by training a Support Vector
Machine using a one-vs-rest approach. The kernel used to train the model
is the Radial Basis Function, also known as RBF. It uses two parameters:
the value of the box constraint c and the value of gamma γ that defines
the width of the bell-shaped curve. After a cross-validation procedure
we identified the best parameter values that are equal to 1e3 and 1e1
for c and γ, respectively. A kernel approach has been preferred over a
linear separation among the classes because it can take into account the
brightness reductions and the uncertainty present in the images. The
results of this approach applied to a new image is a labeled image with
different labels for WBCs, RBCs, and plasma, as shown in Fig. 7.4. The
just obtained labeled image can be used as a mask over the original image
in order to separately analyze each image component. Many cells can be
extracted directly from the binary mask but, as previously said, there are

Andrea Loddo Microscopic Blood Images Analysis by Computer Vision Techniques



RBC analysis 123

many agglomerates of cells that cannot be ignored. During the analysis,
all the cells with a size comparable to the ones present in the training
set, are recognized as single cells and directly counted. The remaining
components, recognized as agglomerates of cells, are submitted to a further
step based on circular Hough transform. This step takes advantages of
the previous segmentation phase. Indeed, the detection step is performed
on the original grey level images as follows. Firstly, the original image
is masked with the segmented one, and then every cells agglomerate is
separately analyzed. Using the knowledge acquired from the training set,
we can set the correct parameters for the circular Hough transform, that
in this way searches only for the circular objects with the appropriate
grey level values. Finally, the cells count can be quickly completed by
adding the number of circles detected in this step to the single cells count
value previously computed. More details about the proposed method for
segmentation and cells count can be found in [DRLP16].

Figure 9.2: Pipeline of this approach.

To train our segmentation approach based on machine learning we
have used the images belonging to the ALL-IDB2 version, while to test the
whole algorithm we have used the first 33 images of ALL-IDB1 version that
have been acquired with the same devices and with the same magnification.
The ground truth for all the images has been determined by an expert
and used to validate the proposed method. As proposed in literature we
evaluated the counting performances using precision, recall, F-measure and
then we added a fourth metric, that is the False Negative Rate FNR, in
order to highlight when the algorithm is not able to detect a cell present in
the image. The whole results for WBCs and RBCs counting are reported
in Table 9.1, where they have been directly compared with the results
obtained by other authors that used the same image dataset. During the
experimentations the proposed approach correctly identified 99.2% of the
whole leukocytes and the 98% of erythrocytes, also showing a little FNR
value, being able to neglect just a few cells present in the images. It is

Andrea Loddo Microscopic Blood Images Analysis by Computer Vision Techniques



124 RBC analysis

also important to note that the proposed approach produces a low number
of RBCs false positives and even less WBCs false positives (0%), being
able to exclude all the other image regions before the detection phase by
considering only portions of the image containing the currently analyzed
cells. Through a numerical comparison, it is possible to observe that
our method outperforms the detection methods existing in the literature.
In particular, the method proposed in [AK13], based on a rectangular
detection for WBCs only, using Gray Level Co-occurrence Matrix, achieved
an 88% of accuracy with a significant amount of false positives. The method
proposed in [MLMR13] uses the circular Hough transform, like our does,
but it has been applied to different color spaces without any restriction
on the area of interest. This method indeed produced an overall accuracy
of 81% for WBCs and 64% for RBCs. Also in [ASAZAO14], the circular
Hough transform has been used, but in that case, the number of candidate
circles has been reduced by selecting the one with the higher probability.
This operation reduced the number of false positives but also increased
the number of true positives, reaching an overall accuracy of 98.4%. It
was also, at the best of our knowledge, the method that obtained the best
performances applied to the ALL-IDB dataset. It is worth remembering
that this system offers the possibility to perform a binary or a multiple
segmentation, as shown in Fig. 9.3.

[ASAZAO14] Proposed method
WBCs RBCs WBCs RBCs

FNR 1,5% 2,5% 0,7% 2%
Precision 90% 95% 100% 89%

Recall 98% 98% 99,2% 98%
F-measure 94% 96% 99,6% 93%

Table 9.1: Detection and count of both WBC and RBC performances
compared with the state-of-the-art.

As it can be seen also in this case the segmentation is really accurate,
being able to properly segment WBCs and also RBCs. Using the manually
segmented images we have computed the segmentation accuracy of this
version that again reaches the 99%.

9.2 MP-IDB: Malaria Parasite Dataset

Malaria is an epidemic health disease. Rapid, and accurate diagnosis is
necessary for proper intervention. Generally, pathologists visually exam-
ine blood stained slides for malaria diagnosis. Nevertheless, this kind
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Figure 9.3: Segmentation results after ROI selection for two and three
classes. Blue represents WBCs, while light blue represents RBCs.

of visual inspection is subjective, error-prone and time-consuming. Nu-
merous methods of automatic malaria diagnosis have been proposed so
far, to overcome the issues. In particular, many researchers have used
mathematical morphology as a powerful tool for computer-aided malaria
detection and classification. Microscopic image analysis and particularly
malaria detection and classification can significantly benefit from the use
of computer-aided algorithms. For these reasons, a new public dataset
has been realized by acquiring images of malaria-affected blood smears.
Dataset images have been acquired with a Leica DM2000 optical labo-
ratory microscope at Centre Hospitalier Universitaire Vaudois (CHUV)
coupled with a built-in camera and software. The entire procedure has
been realized under the supervision of expert radiologists, headed by Dr.
Guy Prod’Hom. Every image is stored in PNG format with a 2592× 1944
resolution and 24-bit color depth. The images are taken with the same
magnification of the microscope: 100×. This dataset is composed of 229
images, representing four different kinds of malaria parasite. Plasmodium
Falciparum is present in 122 images, Malariae in 37, Ovale in 29 and Vivax
in 46. Each image contains, at least, one parasite. Our dataset can be used
either for testing segmentation capability of algorithms or classification
system methods. It contains about 48000 blood cells, in which expert
radiologists have labeled malaria parasites. The number of candidate
parasites present in the MP-IDB is equal to 840. Specific counting, per
parasite type and stage of life, is shown in table 9.2. The annotation of
the dataset images is described as follows. The image filenames are named
with the following notation: ”ImXXXPR.png”, in which ”XXX” identifies
a 3-digit integer counter, P represents one of the four parasite species (’F’
for P.Falciparum, ’M’ for P.Malariae, ’O’ for P.Ovale, ’V’ for P.Vivax),
while the final R stands for the life stage (’R’ for ring, ’S’ for schizont, ’T’
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for trophozoite and ’G’ for gametocyte stage). Every single image file has a
reference text file with the filename notation set to ”ImXXXC.xyc”, which
reports the coordinates of the parasites centroids. In particular, they have
manually been estimated by a skilled radiologist at CHUV. These dataset
images have been acquired with the same microscope. Unfortunately, lots
of them suffer from different issues, like typical non-uniform background
illuminations and overexposed borders, due to the illumination of the mi-
croscope lamp (visible in fig. 9.4). It also causes that the regions of interest
can have different coloration, also due to the age of the analyzed smears.
It justifies a strong pre-processing step to make the image conditions the
most similar possible, to realize an automated procedure. Even though
the images remain intelligible, classic segmentation methods, e.g., based
on thresholding, can suffer from these issues. The main targets related
to the creation of this dataset are to show how malaria parasite analysis
is currently performed and which are the principal issues to deal with.
Moreover, we have proposed a public dataset of blood samples, specifically
designed to evaluate and compare the performances in segmentation or
classification of malaria parasites by computer vision techniques. Our
aim in realizing MP-IDB is to offer a robust image processing dataset,
specifically designed to help in encourage new studies about malaria image
analysis under a fair comparative approach based on a standard dataset,
like what ALL-IDB [LPS11] has offered for leukemia detection and white
blood cells analysis [DRLP16].

Figure 9.4: From left to right: same smear acquired with four micro-
scope brightness levels. Different illumination conditions could generate
unconventional colour schemes in images. Courtesy of CHUV, Lausanne.

9.2.1 Homomorphic filtering for image enhancement

Normally, pre-processing methods are used to enhance images. In section 2,
we listed a series of linear operators. The objective of this section, instead,
is to show how the techniques of multiplicative homomorphic systems are
used for enhancing the images in frequency domain, rather than in spacial
domain. They are useful because images that make part of MP-IDB has
an irregular background due to the illumination lamp, as shown in Fig.
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Table 9.2: Composition of dataset’s images

Dataset properties
Parasite (images) Stage of life Quantity

P. Falciparum (122)

Ring 695
Trophozoite 2
Schizont 20
Gametocyte 3

P. Vivax (41)

Ring 9
Trophozoite 27
Schizont 1
Gametocyte 10

P. Ovale (29)

Ring 13
Trophozoite 11
Schizont 1
Gametocyte 8

P. Malariae (37)

Ring 1
Trophozoite 18
Schizont 10
Gametocyte 11

9.5. The image can be characterized by two components, the amount of
incident source illumination and amount of illumination reflected by the
object. These are called the illumination and reflectance components of
the image. The illumination-reflectance model can be used to develop a
frequency domain procedure for improving the appearance of an image
by simultaneous gray-level range compression and contrast enhancement.
Here, the key to the approach is the separation of the illumination and
the reflectance components. An image as a function can be expressed as
the product of illumination and reflectance components as follows:

F (x, y) = I(x, y) ∗R(x, y) (9.1)

Equation 9.1 cannot be used directly to operate separately on the
frequency components of illumination and reflectance because the Fourier
transform of the product of two functions is not separable. Instead the
function can be represented as a logarithmic function wherein the product
of the Fourier transform can be represented as the sum of the illumination
and reflectance components as shown below:

ln(x, y) = ln(I(x, y)) + ln(R(x, y)) (9.2)
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The Fourier transform of equation 9.2 is:

Z(u, v) = Fi(u, v) + Fr(u, v) (9.3)

The Fourier transformed signal is processed by means of a filter function
H(u,v) and the resulting function is inverse Fourier transformed. Finally,
inverse exponential operation yields an enhanced image. This enhancement
approach is termed as homomorphic filtering. To get an estimate of
log(I(x, y, c)), the idea is to segment f(x, y, c) into object and background.
This can be done, for example, by thresholding the green plane or, better,
the saturation plane, by using the Otsu threshold. The saturation plane
indicates the degree of white in a given color and it is observed that the
background has a very low saturation whereas the cells have a larger
saturation. Because the saturation’s histogram exhibits a clear valley,
the optimal two classes Otsu classifier can be used. The low frequency
background is then estimated, channel by channel, by fitting a quadratic
function to the spatial evolution of f(x, y, c) at the background pixels.

fbg(x, y, c) = θ(1, c) + θ(2, c)x+ θ(3, c)x2 + θ(4, c)xy + θ(5, c)y + θ(6, c)y2

(9.4)
The coefficients θ(1)...θ(6) are obtained by a standard least square

optimization. Note that for numerical reasons, the x, y coordinates are
centered on the image center. When the background I(x,y) has been
estimated for each channel R, G and B, its maximum Max(c), over the
entire image is computed and the corrected channel is computed as such:

fcorr(x, y, c) = 10(flog(x, y, c) +Max(c)− fbg(x, y, c)) (9.5)

After having computed 9.5, c = r,g,b, the final image is formed by
concatenating the 3 planes. The results are shown in the following figures:

The two proposed methods are very similar, the difference between
them lies in the segmentation of the background, the proposed method
is based on the saturation plane whereas the other method is based on
the green plane. The profile shows, in this case, that the saturation plane
performs better than the green plane by enlighting more the image on its
right side.
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Figure 9.5: From left to right: original RGB image, Saturation channel
of HSV space, Histogram of the saturation plane with a vertical line indicat-
ing the Otsu threshold. Underneath: segmentation, polynomial estimation
of the background evolution. Courtesy of CHUV, Lausanne.

Figure 9.6: From left to right: original RGB image, corrected image
by the described method with S channel, corrected image by the described
method with G channel, horizontal profiles at the center of the image. In
red, the original image, in blue, the proposed with S channel, and in green
the proposed method with G channel. Courtesy of CHUV, Lausanne.
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Part III

Conclusions
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Conclusions and future
works

This thesis addressed the automatized visual analysis of peripheral blood
cells images, with particular efforts on WBC analysis firstly and RBC,
secondly. It has been focused on cells analysis and counting for diagnosing
diseases using a microscope, a crucial step to confirm if and which illness
is present. The main purpose has been the analysis of the outstanding
issues in a CAD from digital microscopy images, particularly Acute Lym-
phoblastic Leukemia for WBCs and malaria for RBCs. It shows the studies
addressed to some possible solutions for cells analysis and counting. Spe-
cial efforts have been focused on strategies to represent with meaningful
information the visual content of digital images. Indeed this issue is critical
in artificial vision and becomes further challenging in medical imaging,
considering that there is not a color standardization for the staining and
acquisition of digital slides. There are several color differences or intensity
variations between different slides, due to the quality of the biological sam-
ple and the sample preparation, such as the quantity of dye used during the
staining procedure, or due to different acquisition systems and the image
capturing parameters, such as the environment illumination. Furthermore,
mainly in peripheral blood images, such variability may be present in the
same slide, due to the presence of uneven lighting caused by the microscope
light. Thus, by computing descriptors that ignore this variability, it is
possible to extract from the images more general information that may be
used by conventional learning models for distinguishing different biological
concepts, avoiding any dependency on a specific dataset.

Peripheral blood image analysis has been faced with special efforts
towards the segmentation and the counting of both types of cells, either
leukocytes and erythrocytes, proposing different segmentation algorithms
able to isolate the cell of interest from images acquired in different illumi-
nation conditions and with different staining strategies. The experimental
results demonstrated that the final approach is very accurate and robust in
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relation to some traditional methods. It has been able to obtain an average
accuracy of 100% in WBC detection and 98 % in RBC detection. The 2%
difference is due to the fact that a lot of RBC tend to overlap other RBCs,
so that it becomes quite tricky, even for human eye, discover their exact
number. The results in this phase have also permitted to identify and count
the WBCs correctly, that can be directly used to support some existing
medical methods, like the WBCC. The identification of single WBCs is
also essential for the diagnosis of leukemia, for which the cell components
must be analyzed in detail, in order to find the morphological changes
that can be observed in the cells affected by that disease. Consequently, a
further extension could be devoted to the realization of a complete cells
classification system, able to distinguish among the several types of WBCs.

Moreover, the identification of RBCs has also been made in standard
cell conditions, which is represented by the dataset in WBC analysis. For
this reason, this work also contains a new public dataset specifically built
and designed for malaria analysis purposes.

It is important to note that many of the proposed approaches could
also be used in different medical imaging system and also for artificial
vision system far from the medical field. It could be possible thanks to the
generality of the proposed approaches, that is designed to overcome many
different issues, such as the color differences, that make them independent
from dataset and in some cases also from the problem itself.

Despite the good results obtained with both case studies, further
improvements can be realized for peripheral blood image analysis. Many
other phases can be integrated. In particular, a first improvement could
arise from a detailed analysis of the WBCs in order to detect the type of
disease that can affect a cell. Moreover, the realized system could also
be extended to malaria parasite analysis by using the proposed dataset.
Once single cells of each type have been detected and segmented, they can
be analyzed in detail, to detect the presence of the parasite, like malaria
parasite or to diagnose disease that can affect that particular cell type.
It can even be extended to provide new measures, like the parasitemia
percentage of an image. These measures can be diagnostic by themselves,
since that an overproduction or an underproduction is always a symptom
of problems related to the health of the bone marrow. Adapting the
system to bone marrow smear images analysis could be another exciting
and useful task. Cells in bone marrow differ from peripheral blood cell
images because there are only immature cells, so that shape and colors
are not the same of peripheral blood cells either due to the absence of
standard acquisition techniques or their characteristics. An example is
shown underneath.

Finally, we should consider another important aspect which is arising
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a lot of importance in the community. Deep learning is increasingly used
in computer vision and medical image analysis field. However, it is clear
that applying deep learning algorithms to medical image analysis presents
several unique challenges. The lack of large training data sets is often
mentioned as an obstacle, especially in the case of microscopic image
analysis. Although medical procedures nowadays tend to release a lot
of images from medical procedures, one of the main challenge is also
the acquisition of relevant annotations/labeling for these images. Even
when data is annotated by domain expert, label noise can be a significant
limiting factor in developing algorithms, whereas in computer vision the
noise in the labeling of images is typically relatively low. Training a deep
learning system on such data requires careful consideration of how to deal
with noise and uncertainty in the reference standard. One partial solution
could be incorporating labeling uncertainty directly in the loss function,
but this is still an open challenge. In medical imaging often classification
or segmentation is presented as a binary task: normal versus abnormal,
object versus background. However, this is often a gross simplification
as both classes can be highly heterogeneous. For example, in our case,
the normal category consists of completely normal blood cells but also
several categories of leukemia or parasites exist for the abnormal category.
This often leads to systems that are extremely good at excluding the most
common normal subclasses, but fail miserably on several rare ones. A
straightforward solution would be to turn the deep learning system in a
multi-class system by providing it with detailed annotations of all possible
subclasses. From a certain point of view, this thesis also faced this issue
at a first approximation. More efforts can be made in order to improve
the solution.

Figure 9.7: Bone marrow smear image. Erythroid and granulocytic
precursors are present. Courtesy of [Uta18]
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Appendix A

Appendix

A.1 Hematopoiesis

The production of all types of blood cells including the formation, develop-
ment, maturation, and differentiation of blood cells is called hematopoiesis.
Its purpose is to ensure the constant daily production of mature cells of the
peripheral blood both in healthy condition and in response to particular
situations of increased demand, such as in the presence of infection or
blood loss. The hematopoiesis is supported by a small number of primitive
cells called Haematopoietic Stem Cells (HSCs) or haemocytoblasts, char-
acterized by the ability of self-renewing, namely the ability to generate
cells identical to themselves. At the same time, the HSCs are pluripotent,
having the potential to develop into all types of blood cells. Hematopoiesis
occurs in bone marrow, where the HSCs are present in the ratio of one stem
cell for every 1.000 non-stem cell elements. It is why the cause and effect
of haematologic disease are usually rooted in the bone marrow. Usually,
only healthy, mature or nearly mature cells are released into the blood-
stream, but certain circumstances can induce the bone marrow to release
immature and abnormal cells into the circulation. The predominance of
immature cells noted in a complete blood count is indicative of infections,
inflammations, and other severe illnesses. It is also the reason why it
is essential to analyze the whole hematopoietic process, being able to
recognize inside the blood smears any cell type at any stage of maturation.
The HSCs give rise to mature cells, that enter in the peripheral circula-
tion via the bone marrow sinuses, by firstly differentiating into myeloid
(non-lymphoid) and lymphoid precursor committed cells. Myeloid pre-
cursor cells develop into monocytes, macrophages, neutrophils, basophils,
eosinophils, erythrocytes, megakaryocytes, platelets, and dendritic cells,
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while the lymphoid precursors develop into lymphocyte T-cells, B-cells,
NK-cells. Hematopoiesis can also be subdivided according to the type
of cell being formed: granulopoiesis (neutrophils, eosinophils, basophils),
monopoiesis (monocytes), lymphopoiesis (lymphocytes), erythropoiesis
(erythrocytes) and megakaryocytopoiesis (platelets). Fig. A.1 shows a
schema of the hematopoietic process.

Figure A.1: Hematopoietic process.
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A.2 Granulopoiesis

Granulocytes are also called polymorphonuclear leukocytes because of their
characteristically shaped nuclei and cytoplasmic granules. Granulocytes
include neutrophils, eosinophils, and basophils. A granulocyte differentiates
into a distinct cell type by a process called granulopoiesis. The stages
of maturation for the neutrophilic, eosinophilic and basophilic series is
very similar. They start to differentiate at the third stage, so the first two
stages are in common. The first five stages of granulopoiesis are illustrated
in Fig. A.2.

Figure A.2: Granulopoiesis.

At the first stage of maturation the myeloid progenitor, called myeloblast,
has a size that ranges from 10 to 20 micron. The nucleus is large and
centrally round, that could have a round or oval shape, and it has an
open, unclumped nuclear chromatin that is of a light red-purple color.
The nucleus contains several nucleoli, from two to five, which appear as
lightened, refractile round structures, while the cytoplasm is weak and
has a moderate blue color and usually without granules. At the second
stage the myeloblast transforms in a promyelocyte or progranulocyte, that
has a similar size that ranges from 10 to 22 micron. The nucleus is oval,
round, or eccentric and the nuclear chromatin is more condensed of a light
red-purple color. The nucleus contains less prominent nucleoli while the
cytoplasm presents azurophilic granules. At this stage, the three series
starts to differentiate, even if they preserve a similar appearance. Thus
the promyelocyte gives rise to a unique myelocyte that can either be
eosinophilic, basophilic, or neutrophilic. The myelocyte then differentiates
further into a metamyelocyte and then into a band cell before becoming
a mature neutrophil, eosinophil, or basophil. The myelocytes are slightly
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smaller than promyelocytes with a diameter of 10-18 micron. They present
an eccentric, round-oval nucleus with a coarse and condensed chromatin
and small, non-visible nucleoli. Some azurophilic granules persist in the
cytoplasm, but secondary or specific granules begin to predominate, in
particular, the neutrophilic granules are dusty, subtle, and red-blue, while
eosinophilic granules are large red-orange and singular, instead basophil
granules are large deep blue-purple. The metamyelocytes are slightly
smaller than myelocytes with a diameter of 10-15 micron. They have
characteristic kidney-shaped nuclei and relatively densely clumped nuclear
chromatin with no nucleoli. The cytoplasm range from pale blue to pink-
ish and becomes filled with predominantly secondary granules, although
primary granules persist, and tertiary granules begin to appear. The band
forms have a size of 9 to 15 micron, with a curved or band-shaped nucleus
but non-lobular or unsegmented. The cytoplasm is brown-pink, with
many fine specific or secondary granules, that start to predominate. The
segmented forms have a size similar to the band forms, but they present
a segmented nucleus, with two to five nuclear lobes connected by thin
threadlike filaments. The cytoplasm is pale lilac with blue shading and
many fine secondary dust-like granules. In detail, neutrophils or polymor-
phonuclear neutrophils have a diameter of 12-15 micron filled with pink or
purple granules and 2-5 nuclear lobes. The chromatin of the segmented
neutrophil is coarsely clumped. The cytoplasm is faint pink, and it is
filled with fine pink secondary granules. They are involved in the defense
against infections. Neutrophils are the most abundant white blood cells
in humans and account for approximately 70% of all white blood cells.
The presence of abnormally low number of neutrophils is described as
neutropenia. Also, the number of lobes and the extent of granulation are
diagnostic. Neutrophils with more than 5 lobes are called hypersegmented
neutrophils. Neutrophils with more intensely stained (large dark blue)
and more granules are described as toxic granulated neutrophils. Vacuoles
appear as holes in the cytoplasm and are frequently found in association
with toxic granulation. Eosinophils instead have a diameter of 10-15
micron and they are easily recognized in stained smears because of their
cytoplasm is filled with large, red-orange granules and a bi-lobed nucleus.
They are generally low in number (1-3%). The presence of abnormally
high number of eosinophils is described as eosinophilia. Also basophils
have a diameter of 10-15 micron and a coarse, clumped bi-lobed nucleus
and the presence of many large, specific secondary purple-black granules
in the cytoplasm. Basophils are the least often seen type of WBC (1%).
Increased basophils number is called basophilia.

Because white blood cells have such a short time span in the peripheral
circulation, alterations either in quantity or in the quality of a particular
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white blood cell can be quite dramatic. As white blood cells increase,
the peripheral smear usually shows an increased number of segmented
neutrophils or the presence of younger cells. In either of these cases, toxic
changes, such as toxic granulation, toxic vacuolization, the presence of
Dohle bodies or Auer Bodies, Pelger-Huet and Hypersegmentation may
be observed. These toxic changes are illustrated in Fig. A.3.

Figure A.3: Granulocyte toxic changes.

Toxic granulation is excessive in amount and intensity, with more
prominent granules in segmented neutrophils and bands. Normal gran-
ulation in the segmented neutrophils has a dust-like appearance, with
the red and blue granules being challenging to observe, while, with toxic
granulation, these granules are more frequent and have much more vivid
blue-black coloration. Clusters of toxic granules usually appear in neu-
trophils. Sometimes the granulation is so dense as to resemble basophilic
granules. Toxic granulation can be observed during acute bacterial in-
fections. Toxic vacuolization occurs in the segmented neutrophil with
the appearance of small or large vacuoles in the cytoplasm. Dohle bodies
are light blue cytoplasmic inclusions that range from 1 to 5 micron in
size, are located in the peripheral cytoplasm of neutrophils and appear
as a rod-shaped, pale bluish grey structure. They are nuclear remnants
that are often seen in association with toxic granules and vacuoles. Dohle
bodies may be present in sepsis or severe inflammatory responses. Auer
Bodies are clumps of azurophilic granular material that form elongated
needles seen in the cytoplasm of leukemic blasts. They are unique, pink or
red rod-shaped inclusions that are seen in very immature granulocytes in
patients with acute non-lymphocytic leukemia. Pelger-Huet is an anomaly
characterized by impaired nuclear segmentation of mature granulocytes.
The nucleus is often in the shape of a peanut or dumbbell or may consist
of two lobes connected with a filament. Hypersegmentation is defined as a
segmented neutrophilic nucleus having more than five lobes, since normal
segmented neutrophils have between three and five lobes in the nucleus.
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A.3 Monopoiesis

The cell precursors called monoblasts produce monocytes. Monocytes
differentiate and mature from monoblasts into promonocytes and then to
matured monocytes. The stages of monopoiesis are illustrated in Fig. A.4.

Figure A.4: Monopoiesis.

Monoblast is very similar to myeloblast, with a size of about 12-20
micron. The cytoplasm is agranular and the nucleus is large, round to oval
and has fine nuclear chromatin. The main difference with myeloblast is
that nucleoli (one or two) are more prominent in monoblasts. Promonocyte
has an average diameter of 14-18 micron. It has a large, convoluted nucleus,
a coarse chromatin structure and one or two nucleoli. The cytoplasm is
grey-blue and may contain a few fine azurophilic granules. Monocytes
are the largest of the white blood cells with a size of 12-20 micron. The
cytoplasm is grey-blue, it may have numerous vacuoles and fine azurophilic
granules. Monocytes have abundant cytoplasm and a large, distinctive,
kidney-shaped nucleus. They circulate in the bloodstream for about one
to three days, where they move into tissues throughout the body. They
constitute between 3-8% of all leukocytes in the blood. In the tissues,
monocytes mature into different types of macrophages and help protect
tissues from foreign substances. A decreased percentage of monocyte levels
is called monocytosis.

A.4 Lymphopoiesis

Outlining the lymphocyte cell population is a complex task and beyond
the scope of this thesis. Furthermore, some populations of lymphocytes
appear morphologically similar to peripheral smear. For this reason, only a
modified subset of sub-population is included. Lymphocytes are produced
by the cell precursors called lymphoblast, that gives rise to prolymphocyte
that differentiate into large lymphocyte and small lymphocyte. Fig. A.5
shows the lymphocyte precursors.
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Figure A.5: Lymphopoiesis.

Lymphoblasts have a size of 10-20 micron with a little cytoplasm deep
blue staining at the edge. They present one or two nucleoli. Prolympho-
cytes have a size of 9-18 with a grey-blue cytoplasm that is mostly blue
at edges. The nucleus is almost round with coarse chromatin and some
nucleoli may be present. Large lymphocytes have a size of 15 to 18 micron,
chromatin more transparent and they present a more significant amount of
cytoplasm, lighter in color. Small lymphocytes have a size of 7-12 micron.
They present an oval eccentric nucleus with coarse, lumpy chromatin with
specific areas of clumping. The cytoplasm is usually just a thin border,
with few azurophilic granules. Small lymphocytes consist of T cells and
B cells, but it is not possible to distinguish between them in a peripheral
blood smear as they appear morphologically similar. Their derivation and
function, however, are entirely different. B lymphocytes comprise 10% to
20% of the total lymphocyte population, whereas T lymphocytes comprise
60% to 80%. A third minor population, NK lymphocytes, constitutes
less than 10% of the total lymphocyte population. Lymphocytes can also
differentiate into dendritic cells, that unlike T-cells, B-cells and NK cells,
arise from lymphoid or myeloid lineages. Lymphocytes frequently represent
20 to 40% of circulating white blood cells, and they are the cornerstones
of the adaptive immune system. T lymphocytes and B lymphocytes play a
role in the maintenance of cell-mediated and antibody-mediated immunity.
The increase in the number or proportion of lymphocytes in the blood is
termed lymphocytosis, while a decreased number of lymphocytes is termed
lymphocytopenia, or lymphopenia.

A.5 Erythropoiesis

Erythropoiesis is the process by which red blood cells (RBCs) or ery-
throcytes are produced. This process starts with the proliferation and
differentiation of HSCs into the red cell precursors. This process is com-
posed of six stages of maturation in the red blood cell series: pronormoblast,
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basophilic normoblast, polychromatophilic normoblast, orthochromatic
normoblast, reticulocyte, and mature erythrocytes. In general, several mor-
phological clues mark the RBC maturation series, the cell size decreases,
nuclear chromatin becomes more condensed, the cytoplasm color is altered
during hemoglobin production, but the most evident is the vanishing of
the nucleus and the decrease in size, as it can be seen in Fig. A.6.

Figure A.6: Erythropoiesis.

The proerythroblast or pronormoblast is typically 14-20 micron in size.
It presents a round centrally located nucleus with coarser chromatin, more
reticular, and condensed with a fine texture with deep violet color, nucle-
oli may be present but are hard to visualize. The cytoplasm presents a
dark marine blue color with definitive areas of clearing. The basophilic
normoblast or erythroblast is slightly smaller in size then pronormoblast,
typically 12-17 micron of diameter. The nucleus is round with crystalline
chromatin appearance, and it presents closed nucleoli. The cytoplasm
becomes more basophilic, a cornflower blue color with indistinct areas
of clearing and a grainy and reticular textured chromatin. The poly-
chromatic or intermediate normoblast has a size of 12-15 micron. The
nuclear chromatin is condensed and moderately compacted with no nu-
cleoli. The nucleus becomes smaller with a size of 7-9 micron and the
cytoplasm color shift from deep basophilic to grey. The orthochromic
or non-nucleated normoblast has a size of 8-12 micron. The cytoplasm
increases with orange-red color tinges with slight blue tone. The nuclear
chromatin condenses further, and the nucleus shrinks and tends to become
more peripheral and eventually extruded. An orthochromatic normoblast
becomes a reticulocyte once the nucleus is extruded. Reticulocytes or poly-
chromatic erythrocyte are larger about twice than normal mature red cells,
with a size of 8 microns, but the most evident difference is the presence
of a reticulum in the cytoplasm. The mature cell is released from the
bone marrow into peripheral circulation at the reticulocyte stage. Under
normal circumstances, reticulocytes constitute about 1% of circulating red
blood cells. The reticulocyte count is the most effective measure of ery-
thropoietic activity since it reflects bone marrow healthy or injured. Low
reticulocyte counts indicate decreased erythropoietic activity or may occur
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in ineffective erythropoiesis, a condition in which red blood cell precursors
are destroyed before they are delivered to the peripheral circulation, or if
the bone marrow is infiltrated with a tumor or abnormal cells. Increased
reticulocyte counts indicate increased erythropoietic activity, usually as
the bone marrow compensates in response to anemia. The reticulocyte
matures after one to two days in circulation into a mature and functional
RBC. The mature erythrocytes present a significant reduction in the cell
size that ranges from 6 to 8 micron and the cytoplasm changes charac-
teristically from blue to salmon pink. Erythrocytes are disk-shaped cells,
due to the presence of hemoglobin that is located peripherally, leaving an
area of central pallor equal to 1-3 micron, approximately 30-45% of the
diameter of the cells.

A.5.1 Erythrocyte Variations

Identifying normal and abnormal erythrocytes is important since auto-
mated cell counters have not yet replaced the well-trained eye with respect
to the subtleties of red blood cell morphology. Erythrocytes of average size
are termed normocytes, while erythrocytes larger than average, thus with a
diameter greater than 9 microns, are called macrocytes, while smaller than
average, thus with a diameter less than 6 microns, are called microcytes.
Erythrocyte color, that in normal conditions is pinkish red with central
pallor, is representative of hemoglobin concentration in the cell. Under
normal conditions, when the color, central pallor, and hemoglobin are
proportional, the erythrocyte is termed normochromic. Hypochromic cells
exhibit an area of central pallor larger than average, thus greater than
50% of the diameter (3 microns), that means a decreased hemoglobin
concentration. Polychromatophilic cells exhibit a blue-grey cytoplasm, and
they are slightly larger than average. Poikilocytosis is a general condition
associated with the presence of one or more types of abnormally shaped
mature erythrocytes, some of which may indicate the possible presence of
a specific disease or disorder. Examples include; spherocytes, elliptocytes,
sickle cells, teardrop cells, echinocytes, acanthocytes, keratocytes, bite cells,
schistocytes, target cells, stomatocytes, and rouleaux formation. These
shape abnormalities are illustrated in Fig. A.7.

Spherocytes are compact, round, densely staining red cells that lack
central pallor. They are easily recognized among the rest of the red blood
cell because they are dense, dark and small. Ovalocytes or elliptocytes
are the most common red cells. They appear rather than the typical
biconcave disc-shaped. Erythrocytes with this defect range from slightly
oval to elongated cigar-shaped forms and they may appear macrocytic,
hypochromic, or normochromic. Sickle cells are elongated or shaped like
crescents or sickles. The fragile, sickle-shaped cells deliver less oxygen
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Figure A.7: Poikilocytosis.

to the body’s tissues. They can also get stuck more easily as they try
to go through small blood vessels, and break into pieces that interrupt
healthy blood flow. Many sickle cells may revert to normal disk shape on
oxygenation, but approximately 10% are unable to revert. Teardrop are
characterized by a smaller size and above all from the appearance that
resembles a tear. Acanthocytes are characterised by a smaller size and
above all from the presence of thorny projections distributed irregularly
around the red blood cell, which lacks central pallor. The number of
thorn can range from three to nine and must be distinguished from the
echinocytes, in which the projections are typically evenly spaced on the cell
surface and they are more numerous, from 10 to 30. Another difference is
that echinocytes have serrated edges over the entire surface and often the
membrane is smaller and much more uniform in shape and distribution.
Schistocytes are fragmented erythrocytes that are irregular in shape and
size. They are usually half the size of the normal red blood cells and have
a deeper red colour. They can appear as small triangular erythrocytes,
helmet cells, and normal-size erythrocytes with 2 to 3 pointed surface
projections (keratocytes). Round erythrocytes with a single, elliptical or
round surface defect are termed bite cells. Stomatocytes are characterized
by a mouth-shaped area of central pallor and a decrease in the ratio of
surface area-to-volume that can be induced either by a reduction in surface
area or an increase in red cell volume. Several agents can induce this
morphology and often they can also be found on the peripheral smear of
healthy subjects, due to drying artifact. It can be distinguished since the
percentage of stomatocytes in healthy subjects is usually below 3% of the
total red cells. Target cells have a centrally located disk of haemoglobin
surrounded by an area of pallor with an outer ring of haemoglobin adjacent
to the cell membrane giving the cell the appearance of a target. They are
seen in the peripheral blood due to the presence of artefacts, because of
decreased volume or increased red blood cell surface membrane. Rouleaux
formation is a phrase denoting an agglomerate of erythrocytes, that create

Andrea Loddo Microscopic Blood Images Analysis by Computer Vision Techniques



Appendix 147

a stack generally in a curving pattern. The flat surface of the RBCs give
them a large surface area to make contact and stick to each other forming
a rouleaux.

A.5.2 Erythrocyte Inclusions

The cytoplasm of all normal red blood cells is free of debris, granules, or
other structures. Inclusions are the result of unique conditions, and their
identification can be clinically helpful. Examples of inclusion bodies are
howell-jolly bodies, siderotic granules, basophilic stippling, Heinz bodies,
malaria, and nucleated red cells. This cell inclusion is illustrated in
Fig. A.8.

Figure A.8: Erythrocyte Inclusions.

Howell-jolly bodies represent remnants of the nucleus as it is extruded
from the cytoplasm, that appears in the red blood cell as round, deep
purple structures of about 1 micron in size. They are eccentrically located
in the cytoplasm and seen when erythropoiesis is rushed. Siderotic gran-
ules or Pappenheimer bodies appear as small, dark blue or purple dots,
located along the periphery of the red blood cells. Basophilic stippling
refers to numerous tiny coarse or fine blue granules in the periphery of
the cytoplasm. They are difficult to visualize in the peripheral smear
without fine focusing, but red blood cell containing basophilic stippling
often is polychromatophilic. Heinz bodies are defined as large structures
approximately 1 to 3 micron in diameter located toward the periphery
of the red blood cell membrane. Although they cannot be visualized by
standard stain, bite cells in the peripheral smear are evidence that a Heinz
body has been formed. Malaria is a mosquito-borne infectious disease
that results from the multiplication of a parasite within the cytoplasm
of the red blood cells. Five species of this parasite can infect and be
transmitted by humans, for this reason, the inclusion appearance can be
very different. Nucleated red blood cells (NRBCs), that are red cells with
a retained nucleus can be observed inside the blood smears. The average
size of the NRBC is 7-12 micron in diameter, the cytoplasm is pink, and
the nucleus is a homogeneous blue-black mass with no structure. NRBCs
detection and quantification is still based on the microscopic analysis of
stained blood, since they are often counted as white cells by most hema-
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tology analyzers because of the presence of the retained nucleus, and this,
in particular in patients with a high nucleated cell count, could lead to
misleading results. Sometimes platelets overlying erythrocytes may be
mistaken for erythrocyte inclusions.

A.6 Megakaryocytopoiesis

Megakaryocytopoiesis is the process by which platelets or thrombocytes
are produced. Platelet development is originated in the bone marrow from
the HSC that differentiate into the megakaryocytic precursor, that then
develops into the megakaryoblast, that gives rise to the pro-megakaryocyte
and then the megakaryocyte before developing into mature platelets. Dur-
ing this period the megakaryocyte nucleus undergoes extensive endomitosis,
the cytoplasmic differentiation, the formation of platelet granules, and the
fragmentation into mature platelets as it can be seen in Fig. A.9.

Figure A.9: Megakaryocytopoiesis.

The megakaryoblast has a size between 20 to 30 micron. Its nucleus
is large, oval or kidney-shaped and contains several nucleoli. It has an
insignificant non-granular and slightly basophilic cytoplasm. The pro-
megakaryocyte is very similar to the megakaryoblast except for the presence
of an intensely basophilic cytoplasm that contains fine azurophilic granules.
The megakaryocyte instead is much bigger than its precursors, having a
size around 50-100 micron. It presents a single, indented nucleus and a
basophilic (light blue) cytoplasm that contains azurophilic granules. Each
megakaryocyte fragments into thousands of platelets. Platelets are very
small, about 3 microns, the cytoplasm is stained light blue, and it contains
purple-reddish granules. Platelets play a crucial role in hemostasis, and
they are involved in the formation of blood clot. A low number of platelets
is called thrombocytopenia, while a decrease in function of platelets is called
thrombasthenia. In some people, too many platelets may be produced,
which may result in interferences with the flow of blood. An increase in the
number of platelets is called thrombocytosis. Sometimes this problem could
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cause bleeding, because many of the extra platelets may be dysfunctional
even though they appear healthy. A platelet count is usually evaluated by
preparing a blood smear to visualize any anomalies in shape or size directly.
Blood smear could present platelets greater than 3 microns in diameter,
that is called macrocytic platelets or megathrombocytes. The modern
hematology analyzers disregard this kind of platelets since they count the
platelets based on their sizing. Also, the count is falsely low when there are
platelets clumps. In such instances, the instrument does not count these
clumps of platelets and gives the platelet count as falsely low. Usually,
in a healthy person, less than 5% of the platelets appear large. Platelet
size is of diagnostic significance, particularly if considered in relation to
the platelet count. Small or normal-sized platelets in association with
thrombocytopenia are suggestive of a failure of bone marrow production,
while thrombocytopenia with large platelets is more likely to be caused by
peripheral destruction or consumption of platelets with the bone marrow
responding by increasing platelet production. Platelet size is also useful in
assessing the likely cause of thrombocytosis.

A.7 Malaria parasites

Human malaria infection is not strongly related to cell count, but it needs
different tests to be identified. It can only be caused by parasitic protozoans
belonging to the Plasmodium type. The parasites are spread to people
through the bites of infected female Anopheles mosquitoes, called “malaria
vectors”. There are five parasite species that cause malaria in humans
and two of these species, Plasmodium falciparum and Plasmodium vivax,
constitute the greatest threat. Plasmodium ovale, Plasmodium malariae
and Plasmodium knowlesi are the three remaining species that are less
dangerous in humans [WHO16], as shown in Figure A.10. All five species
may appear in four different life-cycle stages during the infection phase in
peripheral blood: ring, trophozoite, schizont, and gametocyte. Some ex-
amples are shown in Figure A.10. The life-cycle-stage of the parasite is
defined by its morphology, size and the presence or absence of malarial
pigment. The species differ in the changes of infected cell’s shape, the
presence of some peculiar dots and the morphology of the parasite in some
of the life-cycle-stages [Som11].
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Figure A.10: Examples of malaria parasite stages. First row, from left
to right: P. falciparum ring, trophozoite, schizont, gametocyte; second row,
from left to right: P. ovale ring, trophozoite, schizont, gametocyte; third
row, from left to right: P. malariae ring, trophozoite, schizont, gametocyte;
last row, from left to right: P. vivax ring, developed trophozoite, gametocyte.
Courtesy of CHUV, Lausanne.

Malarial parasite trophozoites are generally ring-shaped, 1-2 microns in
size, although other forms (ameboid and band) may also exist. The sexual
forms of the parasite (gametocytes) are much larger and 7-14 microns in
size. P. Falciparum is the largest and is banana shaped while others are
smaller and round. P. Vivax causes stippling of infected red cells.
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Figure A.11: Plasmodium Falciparum schematic stages of life. Cour-
tesy of [CDC18]. Fig. 1: Normal red cell; Figs. 2-18: Trophozoites
(among these, Figs. 2-10 correspond to ring-stage trophozoites); Figs.
19-26: Schizonts (Fig. 26 is a ruptured schizont); Figs. 27, 28: Ma-
ture macrogametocytes (female); Figs. 29, 30: Mature microgametocytes
(male).
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Figure A.12: Plasmodium Malariae schematic stages of life. Courtesy
of [CDC18]. Fig. 1: Normal red cell; Figs. 2-5: Young trophozoites (rings);
Figs. 6-13: Trophozoites; Figs. 14-22: Schizonts; Fig. 23: Developing
gametocyte; Fig. 24: Macrogametocyte (female); Fig. 25: Microgametocyte
(male).
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Figure A.13: Plasmodium Ovale schematic stages of life. Courtesy
of [CDC18]. Fig. 1: Normal red cell; Figs. 2-5: Young trophozoites
(Rings); Figs. 6-15: Trophozoites; Figs. 16-23: Schizonts; Fig. 24:
Macrogametocytes (female); Fig. 25: Microgametocyte (male).
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Figure A.14: Plasmodium Vivax schematic stages of life. Courtesy
of [CDC18]. Fig. 1: Normal red cell; Figs. 2-6: Young trophozoites (ring
stage parasites); Figs. 7-18: Trophozoites; Figs. 19-27: Schizonts; Figs.
28 and 29: Macrogametocytes (female); Fig. 30: Microgametocyte (male).
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