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classi¯er, Entropy 19(12) (2017) 659.) to a biomedical context. In particular, we benchmark

the performances of such a quantum-variant of NMC against NMC and other (nonlinear)

classi¯ers with respect to the problem of classifying the probability of survival for patients

a®ected by idiopathic pulmonary ¯brosis (IPF).

Keywords: Nearest mean classi¯er; quantum theory; idiopathic pulmonary ¯brosis.

1. Introduction

Quantum mechanics is a probabilistic theory that turns out to be particularly suit-

able to describe di®erent kinds of st€ochastic processes that — in principle — are not

con¯ned to the microscopic domain. In recent years, for example, quantum formalism

has been widely exploited in nonstandard contexts such as game theory, economic

processes, cognitive sciences and so on.1–7

Along this perspective, another nonstandard application of quantum formalism

concerns the solution of some classi¯cation problems which are typical of signal pro-

cessing8 and of pattern recognition.9,10 Exhaustive surveys concerning the applications

of quantum computing in computational intelligence and machine learning can be

found in Refs. 11 and 12. The main aim of most of these approaches is to speed up

the computational processes involved in machine learning by \quantizing" some

key-algorithms that are used in classical pattern recognition (Refs. 13 and 14). The

approach we have proposed instead in, Refs. 15–18 is based on a di®erent ground that

essentially consists in using the quantum formalism to reach remarkable bene¯ts also in

a classical context. Our model, called Quantum Nearest Mean Classi¯er (QNMC),

allows us to process any kind of classical dataset in a supervised system by (i) trans-

lating each element of the dataset (pattern) into a density pattern, i.e. a density

operator (the mathematical tool to formally describe a quantum state) of the real

vector space associated to the dataset at issue; (ii) de¯ning, for any class of density

patterns, a quantum centroid that has no counterpart in the initial classical dataset;

(iii) using the standard minimum distance procedure to classify an unlabeled density

pattern; (iv) decoding the result of the classi¯cation process in the classical pattern space.

The aim of the construction we have previously outlined is to show that quantum

formalism can be pro¯tably used also outside its natural domain of application. In

particular, we will show that the expressive power of quantum formalism allows us to

obtain remarkable advantages in the accuracy of standard machine learning pro-

cesses like pattern recognition.

In Refs. 15 and 16 we have benchmarked the performances of QNMC and of the

standard Nearest Mean Classi¯er (NMC) against both some arti¯cial and real-world

datasets that are typically used in machine learning to conclude that QNMC sig-

ni¯cantly outperforms NMC.

In the present work, we propose a particular application of our model to a real

dataset (IPF dataset) that is obtained from a group of 126 patients possibly su®ering

from Idiopathic pulmonary ¯brosis (IPF). IPF is a disease characterized by the de-

velopment of ¯brotic areas within the parenchyma of lungs causing a progressive

G. Sergioli et al.

1840011-2

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 9

3.
41

.1
26

.1
77

 o
n 

12
/1

6/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



reduction of the respiratory function. The prognosis of IPF patient is very poor with a

median survival of 3–5 years from diagnosis; the dataset includes baseline variables

with an established relation to patient's survival. In this paper, we refer to the IPF

dataset to compare the performances of two di®erent variants of QNMC not only

with NMC but also with other well-known standard classi¯ers: Linear Discriminant

Analysis (LDA) and Quadratic Discriminant Analysis (QDA).

The paper is organized as follows: in the ¯rst section, we brie°y describe the formal

structure of both NMC and QNMC. In the second section, we summarize some

interesting results presented in Refs. 15–18 by comparing NMC and QNMC on dif-

ferent datasets and we show the advantages of QNMC in terms of pattern classi¯-

cation accuracy. In the third section, we ¯rst introduce an alternative encoding from

the real vector (pattern) space to the density operator space that will turn out to be

particularly useful when applied to the IPF dataset. Second, we introduce the IPF

dataset and we provide a detailed description of the dataset features. Finally, we

show and discuss the promising results arising from the application of two di®erent

QNMC variants on the IPF dataset, showing an improvement of the accuracy with

respect to some standard classi¯ers (NMC, LDA, QDA). In the last section, we

propose some possible developments and strategies that could be used to improve the

benchmark of our model.

2. Classical and Quantum Version of the Nearest Mean Classi¯er

In this section, we brie°y describe the quantum version of the standard Nearest Mean

Classi¯er, which is a particularly simple and fast algorithm of supervised learning, i.e.

learning from a training dataset of correctly labeled objects.

In machine learning, any object is characterized by a given set of d features. A

d-feature object is naturally represented by a d-dimensional real vector x ¼
½x1; . . . ;xd� 2 Rd:a Formally, a pattern can be represented as a pair ðxi; �iÞ, where xi

is the d-dimensional vector associated with a given object and �i is the label that

refers to the class which the object belongs to. We can simply consider a class as a set

of objects. For the sake of simplicity, we con¯ne ourselves to the special (but very

common) case, where each object belongs to one and only one class of objects. Let

� ¼ f�1; . . . ; �Ng be the set of labels that is in one-to-one correspondence with the set

of all classes. The aim of the classi¯cation process is to design a classi¯er that

attributes (in the most accurate way) a label (class) to any unlabeled object. In

supervised learning, such a classi¯er is obtained by getting information from a

training set Str, i.e. a set of correctly labeled objects. Formally,

Str ¼ fðx1; �1Þ; . . . ; ðxM ; �MÞg;
where xi 2 Rd and �i is the label associated to the class which xi belongs to.

aFor the sake of clarity regarding the indexes, we use the superscription to indicate the di®erent compo-

nents of the vector and subscript to indicate di®erent vectors.
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Given a training dataset Str ¼ fðx1; �1Þ; . . . ; ðxM ; �MÞg, we can de¯ne the jth

class S j
tr in the following way:

S j
tr ¼ fðxi; �iÞ 2 Str : �i ¼ �jg:

The jth class S j
tr represents the set of all patterns of Str that have been label �j.

Finally, by Mj we will denote the number of elements of S j
tr.

One of the simplest classi¯cation methods in pattern recognition is the so-called

NMC. The NMC algorithm consists of the following steps:

(1) Training: one has to compute the centroid �j for each class S j
tr in the following

way:

¹j ¼
1

Mj

X
i2fm2M :�m¼�jg

xi: ð1Þ

(2) Classi¯cation: the associated classi¯er is a function Cl : Rd ! � such that

8x 2 Rd:

ClðxÞ ¼ �j iff 8 k 2 f1; . . . ;Mg : dðx;¹jÞ � dðx;¹kÞ;
where dðx;yÞ ¼ jx� yj is the Euclidean distance.

Intuitively, this classi¯er associates to a d-feature object x the label of the closest

centroid to x.

In order to evaluate the performance of a classi¯er, one introduces another set of

patterns (called test set) that does not belong to the training set.19 Formally, the test

set is a set Sts ¼ ffy1; �1g; . . . ; fyM 0 ; �M 0 gg, such that Str \ Sts ¼ ;.
Then, by applying NMC to the test set, it is possible to evaluate the semi-

supervised classi¯er performance by considering the accuracy (ACC) of the classi¯-

cation process as the ratio between the number of all correctly classi¯ed test patterns

and the cardinality of the test set.b

Let us notice that the values of such quantities are obviously related to the

training/test datasets; as a natural consequence, also the classi¯er performance is

strictly dataset-dependent.

In order to provide a quantum counterpart of NMC (called Quantum Nearest

Mean Classi¯er (QNMC)) we need the following steps:

(1) For each pattern, one has to provide a suitable encoding into a quantum object

(i.e. a density operator) that we will call density pattern;

(2) For each class of density patterns, one has to de¯ne the quantum counterpart of

the classical centroid, that we will call quantum centroid;

bWe recall that the classi¯cation accuracy is de¯ned as ACC ¼ 1� ERR, where ERR is the classi¯cation

error.
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(3) Finally, one has to provide a suitable notion of quantum distance between density

patterns.

Even though there are in¯nite ways to transform a real vector into a density

operator, in Ref. 16 we have proposed a promising encoding called stereographic

encoding (SE). In order to introduce the stereographic encoding, it will be expedient

to introduce the notion of stereographic projection.

Let us consider the ðdþ 1Þ-dimensional vector space Rdþ1. The stereographic

projection SP is a map SP : Rdþ1 ! Rd such that for any vector x ¼ ½x1; . . . ;xdþ1�
2 Rdþ1,

SPðxÞ ¼ x1

1� xdþ1
; . . . ;

xd

1� xdþ1

� �
:

The inverse of SP is a map SP�1 : Rd ! Rdþ1 such that for any vector

x ¼ ½x1; . . . ;xd� 2 Rd,

SP�1ðxÞ ¼ 1Pd
i¼1 ðxiÞ2 þ 1

2x1; . . . ; 2xd;
Xd
i¼1

ðxiÞ2 � 1

" #
; ð2Þ

where 1P d

i¼1
ðxiÞ 2þ1

is a normalization factor.

De¯nition 1 (Density pattern by SE). The density pattern �x associated to the

d-feature object x 2 Rd is de¯ned as follows:

�x :¼ SPðxÞ† � SPðxÞ: ð3Þ
Clearly, every density pattern is a quantum pure state, i.e. �2

x ¼ �x. Therefore, SE

allows us to encode any real vector x 2 Rd into a density operator �x. On this basis,

we can de¯ne the quantum training dataset as follows:

S q
tr :¼ ff�x1

; �1g; . . . ; f�xM
; �Mgg:

In other terms, the quantum training dataset is the original training dataset,

where in each pattern the object (the vector x) is replaced by its quantum coun-

terpart (the density pattern �x).

On this basis, we can de¯ne the notion of quantum centroid.

De¯nition 2 (Quantum centroids). Let S q
tr ¼ ff�x1

; �1g; . . . ; f�xM
; �Mgg be a

quantum training dataset. The quantum centroid �j of the jth class S j
tr is de¯ned as

follows:

�j :¼
1

Mj

X
i2fm2M:�¼�jg

�xi
: ð4Þ

Notice that the quantum centroids �j are mixed states and that they are generally

di®erent from the encoding of their respective classical centroids ¹j. Accordingly, the

Quantum-inspired minimum distance classi¯cation in a biomedical context
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de¯nition of quantum centroid leads to a new object that does not have any classical

counterpart.

Finally, as to the distance function between density patterns, we will use the trace

distance which is frequently used in quantum information as a measure of distin-

guishability between two states (see, e.g. Ref. 20).

De¯nition 3 (Trace distance). Let � and � be two quantum density operators

belonging to the same Hilbert space. The trace distance (dtr) between � and � is

given by

dtrð�; �Þ ¼
1

2
Trj�� �j; ð5Þ

where jAj ¼
ffiffiffiffiffiffiffiffiffiffi
A†A

p
.

Notice that the trace distance is a metric; hence, it satis¯es: (i) dtrð�; �Þ � 0 with

equality i® � ¼ � (positivity), (ii) dtrð�; �Þ ¼ dtrð�; �Þ (symmetry) and (iii) dtrð�; !Þ þ
dtrð!; �Þ � dtrð�; �Þ (triangle inequality).

We have introduced all the necessary ingredients to describe in detail the QNMC

algorithm, which, similarly to the classical case, consists of the following steps:

— obtaining the quantum training dataset S q
tr by applying the encoding given in

De¯nition 1 to each pattern of the classical training set Str;

— calculating the quantum centroids �j according to De¯nition 2;

— classifying an arbitrary pattern x by means of the quantum classi¯er QCL that is a

function QCL : Rd ! � such that 8x 2 Rd : QCLð�xÞ ¼ �i i® 8 k 2 f1; . . . ;Mg
we have dtrð�x; �jÞ � dtrð�x; �iÞ:

2.1. Experimental results

In what follows, we summarize some preliminary results that are obtained by com-

paring the performances of NMC and QNMC on di®erent (arti¯cial and real) dif-

ferent datasets. In particular, we consider three arti¯cial (two-feature) datasets

(Moon, Banana and Gaussian) and four real (many-feature) datasets (Diabetes,

Cancer, Liver and Ionosphere) extracted from the UCI Irvine Machine Learning

Repository.c

In our experiment, we follow the standard methodology of randomly splitting

each dataset into a training set (Str) and a test set (Sts) that are populated with

80% and 20% of the original dataset, respectively. Moreover, in order to obtain

statistically signi¯cant results, we perform 100 experiments for each dataset by

randomly splitting the dataset each time according the method we have described

above.

We summarize our results in Table 1.

chttps://archive.ics.uci.edu/ml/index.php.
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Let us note that the accuracy of QNMC is signi¯cantly greater (especially for

2-feature datasets) than the accuracy of NMC for all the datasets, except for the

Cancer dataset.

One key di®erence between NMC and QNMC concerns the invariance under

rescaling. Let us suppose that each pattern of the training and test sets is multiplied

by the same rescaling factor t, i.e. xm 7! txm and ym 0 7! tym 0 for any m and m 0.
Then, the (classical) centroids change according to ¹j 7! t¹j and the classi¯cation

problem of each pattern of the rescaled test set becomes

argmin
i

dðtym 0 ; t¹iÞ ¼ t argmin
i

dðym 0 ;¹iÞ; ð6Þ

which has the same solution of the unrescaled problem, i.e. t ¼ 1.

On the contrary, QNMC turns out to be not invariant under rescaling. Far from

being a shortcoming, this allows us to introduce a \free" parameter, i.e. the rescaling

factor, that proves useful to get a further improvement of the classi¯cation perfor-

mance for 2-feature datasets (see Ref. 16, Fig. 1, p. 7).

The method that we have introduced in this section allows us to get a relevant

improvements of the standard NMC when we have an a priori knowledge about the

distribution of the dataset we have to deal with. Indeed, if we need to classify an

unknown pattern, looking at the distribution of the training dataset, we can guess

a priori if: (i) for that kind of distribution QNMC performs better than NMC and

(ii) what is the suitable rescaling has to be applied to the original dataset in order to

get a further improvement of the accuracy.

3. Applying QNMC to the IPF Dataset

As mentioned at the beginning of the previous section, there are di®erent ways to

encode a d-dimensional feature vector into a density operator.9 Indeed, ¯nding the

\optimal" encoding, if any, that outperforms for any dataset all possible encodings is

still an open and intricate problem. This fact is not so surprising because in pattern

recognition is not possible to establish an absolute and a priori superiority of a given

classi¯cation method with respect to the other ones, the main reason being the fact

Table 1. Average results for NMC and QNMC (in %) and
their standard deviations. #Str is the cardinality of the training

dataset; #Sts is the cardinality of the test set; ðdÞ is the number

of the features of the elements of the dataset.

Dataset #Str/#Sts ACC (NMC) ACC (QNMC)

Banana 4240/1060(2) 55.0� 1.8 71:0�1:2

Gaussian 160/40(2) 55.5� 7.7 76:2�5:6

Moon 160/40(2) 77.9� 5.7 88:9�4:4

Diabetes 614/154(8) 63.4� 3.9 68:7�3:2

Cancer 546/137 (10) 96:4�1:4 93:7� 1:9

Liver 463/116(10) 53.8� 4.2 59:6�4:2

Ionosphere 280/71(34) 72.9� 4.5 83:7�4:3

Quantum-inspired minimum distance classi¯cation in a biomedical context
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that every dataset has unique and speci¯c characteristics (according to the well-

known No Free Lunch Theorem19).

Another kind of encoding (called informative encoding (IE)) has been introduced

in Refs. 17 and 18.

Let x ¼ ðx1; . . . ;xdÞ 2 Rd be a d-dimensional vector.

(1) We map the vector x 2 Rd into a vector x 0 2 Rdþ1, whose ¯rst d features are the

components of the vector x and the ðdþ 1Þth feature is the norm of x. Formally,

x ¼ ðx1; . . . ;xdÞ 7! x 0 ¼ ðx1; . . . ;xd; jxjÞ: ð7Þ
(2) We obtain the vector x 00 by dividing the ¯rst d components of the vector x 0 by

jxj as

x 0 7! x 00 ¼ x1

jxj ; . . . ;
xd

jxj ; jxj
� �

: ð8Þ

Now, similarly to De¯nition 1, we can de¯ne the notion of density pattern by

informative encoding.

De¯nition 4 (Density pattern by IE).

�x :¼ ðx 00Þ† � x 00; ð9Þ
where the vector x 00 is given by Eq. (8).

Accordingly, this encoding maps real d-dimensional vectors x into a ðdþ 1Þ-
dimensional pure state �x.

According to recent debates on quantum machine learning,9 in order to avoid loss

of information it is crucial that, in the transition from the classical to the quantum

feature-space, the norm of the original feature-vector is explicitly incorporated in the

resulting pure quantum state. It is not hard to see that both the SE and the IE keep

track, albeit in a di®erent way, of the vector norm of the original feature-vector and

Eqs. (2) and (8) have the same limit when the rescaling factor t tends to in¯nity.

However, unlike the SE, the IE has the property to explicitily incorporates the

information about the norm of the initial vector as one of its component (speci¯cally,

the last component).

As we have seen in the previous section, QNMC is the quantum counterpart of the

standard NMC that is one of the more basic standard classi¯ers. Other well-known

standard models that will be taken into account in the following are the so called

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA)

classi¯ers19 that belong to the class of minimum distance classi¯ers. The main feature

of such classi¯ers consists in classifying patterns by using a distance measure which

involves not only the centroids of the classes but also the class distribution (by means

of the covariance matrix19). The di®erence between LDA and QDA can be sum-

marized as follows: (i) in the LDA case the distance measure depends on the average

covariance matrix (over all the covariance matrices related to each class) and the

G. Sergioli et al.
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discriminant function (i.e. the surface which separates classes in the optimal way) is

linear; (ii) in the QDA case, the distance measure depends on all the covariance

matrices simultaneously and the discriminant function is quadratic. In what follows,

we compare di®erent variants of QNMC with the aforementioned classi¯ers (NMC,

LDA, QDA) by referring to a very special real-world dataset obtained from a bio-

medical context: the Idiopatic Pulmonary Fibrosis (IPF) dataset.d

3.1. The IPF dataset

In detail, the IPF dataset includes a group of 126 consecutive patients (the patterns)

retrospectively extracted from databases of the Regional Referral Centre for Inter-

stitial and Rare lung diseases of Catania. These patients are divided into three

di®erent classes (with di®erent cardinality), where each class corresponds to a dif-

ferent degree of survival (that is named GAP stage). All patients were required to

have received a Multidisciplinary team diagnosis of IPF according to 2011 American

Thoracic Society (ATS)/European Respiratory Society (ERS)/Japanese Respiratory

Society (JRS)/Latin American Thoracic Association (ALAT) IPF guidelines.21 A

minimum follow-up time of three years from diagnosis was also required in order to

assess survival. For this reason, only patients diagnosed between July 2010 and

December 2014 were considered. The dataset includes a series of baseline variables

(the features) with an established relation to survival (the classes, where three dif-

ferent survival \degrees" are considered).22,23

The dataset is organized in the following way: the patterns are numbered in the

column A (we also indicate in the column B the dates of birth of each patient). We

distinguish between two di®erent blocks of features; the ¯rst block (from column C to

column I, highlighted in light grey) contains features that allow to perfectly classify

each patient; indeed, by using the features introduced in the columns C . . . I, it is

possible to exactly evaluate the \GAP stage" of each patient (each feature adds a

score to the calculation of the GAP stage). Indeed, the features introduced from C to

I are all it takes in order to assign to each patient the class to which he belongs to; in

other words, these features are useful to have an a priori classi¯cation of each patient.

The second block of features are introduced (in light green) from column J to column

U; even if these features should allow to classify the patients, anyway — unlike the

¯rst block — there is not a systematic method to classify each patient by involving

this set of features only. Finally, the column W contains the labels associate to each

di®erent class (the column V is only used as a support to calculate W). The rest of the

paper will be devoted to use the introduced quantum-inspired algorithm to classify

the IPF dataset, only involving the second block of features. But before let us brie°y

provide a medical description of the meaning of each feature. Regarding the ¯rst

block, the feature \Forced Vital Capacity" (FVC) represents the amount of air which

can be forcibly exhaled from the lungs after taking the deepest breath possible.24 This

dThe dataset is downloadable from http://people.unica.it/giuseppesergioli/¯les/2018/02/IPFDataset.

xlsx.

Quantum-inspired minimum distance classi¯cation in a biomedical context
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value, measured with a spirometer, was reported in the dataset as percent of pre-

dicted value (FVC%), resulting from the comparison between a list of normal ref-

erence values and the measured ones.24 In the context of IPF, both baseline FVC%

value and its change over the time, represent strong predictors of mortality.25,26 The

feature \Di®using Capacity for Carbon Monoxide" (DLCO), measures the ability of

the lungs to transfer gas from inhaled air to the red blood cells in pulmonary

capillaries.27 As in the case of FVC, also DLCO is expressed as percent of predicted

value. Interestingly in IPF, DLCO is frequently reduced since early stages of the

disease, making this variable more sensitive than FVC to assess interstitial lung

damage.28 Another feature collected which signi¯cantly impacts on survival, as in

IPF as in other diseases, is the \Age at ¯rst diagnosis".21 Dataset also included the

variable \Sex". Incidence and prevalence of IPF are higher in males than in females

with a ratio ranging from 1.6:1 to 2:1. Moreover, male sex was demonstrated to be

related with a worse prognosis.21,29 All of these four features were recently included in

a single multidimensional index, known as GAP (gender [G], age [A] and lung

physiology variables [P]). This index assigns a point to each variable in order to

obtain a single value, in the dataset \GAP point", which resumes the weight of each

variable. Points ranging from 0 to 3, 4–5 and 6–8 compose respectively \GAP stage 1,

2 and 3",30 that we consider as the label of our dataset. Simply speaking, the columns

from F to I indicate the contribute in the calculation of the GAP stage provided by

the features \Sex", \FVC", \DLCO" and \Age", respectively. Regarding the second

block of features, Oxygen saturation (SpO2%) re°ects blood oxygenation, and heart

rate were indirectly measured with a pulse oximeter. Reduced levels of SpO2, which

are frequently associated with high levels of heart rate, are usually related to a worse

survival.21 Information regarding smoking habit was also collected and reported as

follows: never smoker ¼ 0, ex-smoker ¼ 1 and current smoker ¼ 2. Dataset included

also a description of high resolution computed tomography (HRCT) features which,

according to 2011 IPF guidelines, describe three scenarios: \de¯nite UIP", \possible

UIP" and \inconsistent with UIP".21 Recent studies demonstrated that also this

evaluation at baseline is related with prognosis.31 Other variables regarding infor-

mation on lung transplantation, duration of follow-up (days), status at the end of

follow-up (alive ¼ 0 or died ¼ 1), con¯rmation of diagnosis through biopsy and

family history of the Interstitial Lung Disease (ILD) were also included in the

dataset.

3.2. Applying QNMC to the IPF dataset

It is not hard to believe that each feature described above does not have the same

impact on the evaluation of the GAP stage (i.e. in the classi¯cation process). As an

example (con¯ning to the second block of features only), it is possible to say that

\Sex" and \Oxygen Saturation" have more impact in the classi¯cation process with

respect to the rest of the considered features. In general, it is possible to recognize for

each feature a di®erent impact on the classi¯cation process.

G. Sergioli et al.
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As previously noticed, QNMC is not invariant under rescaling.15,16,18 This

seeming shortcoming can be bene¯cially used to model the di®erent incidence of each

feature. The strategy we adopt is to assign to each feature a rescaling factor that is

proportional to its degree of incidence. Unlike the previous section, where all the

dataset features were multiplied by the same rescaling real factor, here we multiply

each feature by a di®erent weight that depends on the incidence of the feature itself in

the evaluation of the GAP stage. On this basis, the classi¯cation process will be

remarkably sensitive to the introduction of this rescaling factor. Anyway, the method

to assign the most suitable rescaling factor to each feature is essentially empirical and

it can be re-arranged in itinere during the semi-supervised classi¯cation process.

After rescaling, the original dataset is transformed into the following (rescaled)

dataset:

S ðrÞ ¼ S ðrÞ
tr [ S ðrÞ

ts ; ð10Þ
where

S ðrÞ
tr ¼ fð�1x1; �1Þ; . . . ; ð�MxM ; �MÞg; �i 2 R; i ¼ 1; . . . ;M ;

S ðrÞ
ts ¼ ff�1y1; �1g; . . . ; f�M 0yM 0 ; �M 0 gg; �j 2 R; j ¼ 1; . . . ;M 0:

Finally, the quantum version S qðrÞ ¼ S qðrÞ
tr [ S qðrÞ

ts of the rescaled dataset is obtained

by replacing (in Eq. (10)) all vectors xi; yj with their corresponding quantum ana-

logues �xi
; �yj

.

Table 2 allows us to compare the performances — in terms of classi¯cation

error — of three standard classi¯ers — NMC, LDA and QDA — with the two

variants of the quantum-inspired classi¯er. In detail, for each classi¯er we have

evaluated the total error (with its respective standard deviation) obtained by running

the algorithm 50 times for each di®erent choice of the rescaling factor (each of them in

accord with the di®erent survival degree of the features of the dataset).

Table 2. Average classi¯cation error for

NMC, QNMC (with di®erence encodings

and di®erent rescaling), LDA and QDA

classi¯ers (in %) over 50 runs with
related standard deviations.

Classi¯er Total error

QNMC (SE) 0.455 � 0.093
QNMC (IE) 0.378 � 0.092

QNMC (IE) Resc 1 0.334 � 0.097

QNMC (IE) Resc 2 0.341 � 0.071
QNMC (IE) Resc 3 0.344 � 0.076

QNMC (IE) Resc 4 0.314 � 0.081

NMC 0.495 � 0.085

LDA 0.393 � 0.082
QDA 0.568 � 0.119

Quantum-inspired minimum distance classi¯cation in a biomedical context
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As shown in Table 2, QNMC gives rise generally to a signi¯cant improvement of

the accuracy in the classi¯cation process with respect to the three standard classi¯ers.

Interestingly enough, the accuracy-values obtained for the third class are remarkable.

In particular, the QNMC-variant based on the informative encoding exhibits better

performance than NMC (about 12%) and QDA (where the di®erence is very high,

about 24%). On the other hand, this version of QNMC performs in a similar way to

LDA (the di®erence is about 2%). Since LDA is a classi¯er which takes into account

the class distribution by means of the covariance matrix (i.e. we can say it is more

\informative"), this result suggests that this version of QNMC is sensitive to the

dataset distribution and, consequently, it gives a more accurate classi¯cation with

respect to NMC, which does not take into account the data distribution.

Let us note that the \stereographic" QNMC provides a classi¯cation accuracy

worse than the \informative" QNMC (about 8%). This result seems to suggests that

the choice of the speci¯c encoding is fundamental and strongly a®ects the perfor-

mance of these (and possibly other) variants of QNMC.

The ¯nal result we would like to discuss concerns the use of the informative

encoding together with di®erent rescaling parameters for di®erent features (accord-

ing to the real di®erent incidence of these features on the probability of survival). In

particular, we have rescaled the feature columns \Follow Up Time (days)", \Oxygen

saturation %" and \Heart rate" ¯rst by a rescaling parameter equal to 0:1 (\QNMC

(IE) Resc 1"), after by a rescaling factor equal to 10 (\QNMC (IE) Resc 2") and

¯nally by a rescaling factor equal to 20 (\QNMC (IE) Resc 3").e In this regard, we

can observe a further improvement in terms of accuracy, up to a classi¯cation error

equals to 0:33. The most interesting result is obtained by concurrently rescaling the

feature columns \HRCT Pattern", \Smoking", \Smoking Status" by a parameter

equal to 600 and the columns \Sex" and \Oxygen saturation %" by a parameter

equal to 10. In this case, we reach a classi¯cation error equals to 31% (\QNMC (IE)

Resc 4"), which is much lower than the NMC classi¯cation error (indeed, they di®er

approximately by 20%).

Let us remark that in the proposed approach, which consists in rescaling the

feature columns by a real parameter in order to reach some computational bene¯ts,

we have adopted a systematic empirical procedure in order to get favorable rescaling

parameters. Nevertheless, by the preliminary results shown in Table 2, it is possible

to note that — in accord with the a priori assignment of the incidence of each

feature— we obtain advantages in terms of classi¯cation performance by multiplying

the more signi¯cant features by a higher rescaling parameter and the less signi¯cant

ones by a lower rescaling parameter. Consequently, the rescaling factor can be

thought of as a \weight" which somehow re°ects the relevance of a speci¯c feature

column. All this suggests, as a future work, a theoretical analysis in order to sys-

tematically obtain the most convenient rescaling for each feature of a given dataset.

eLet us remark that we do not consider to apply the nonuniform rescaling of the dataset in case of classical

classi¯ers.

G. Sergioli et al.
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We conclude the experimental sections with the following two remarks:

(1) Even if it is possible to establish whether a classi¯er is \good" or \bad" for a

given dataset by the evaluation of some a priori data characteristics, generally

it is no possible to establish an absolute superiority of a given classi¯er for any

dataset, due to the No Free Lunch Theorem.19 Anyway, QNMC seems to be

particularly convenient when the data distribution is di±cult to treat with the

standard NMC;

(2) Clearly, there are more sophisticated (classical) classi¯ers than NMC, LDA and

QDA for our IPF dataset. However, the preliminary results we have presented in

this paper show that our quantum-inspired minimum distance model outper-

forms not only its natural classical counterpart (NMC) but also other more

performing and sophisticated minimum distance methods.

4. Concluding Remarks

This paper is mostly devoted to show the potentialities of quantum formalism in

the context of classi¯cation problems related to biomedical contexts. In particular,

we have shown that some kinds of quantum-inspired classi¯ers remarkably out-

perform some standard classi¯ers (NMC, LDA, QDA) in the classi¯cation accuracy

both for arti¯cial and real-world datasets. In particular, in the second part of the

paper we have focused on a very special dataset obtained by a real biomedical

context.

As it is well-known, techniques used in biometrics are much more sophisticated

than those presented in this work. Some biomedical contexts need, for example,

classi¯ers that also include qualitative analysis, strictly depending on the dataset

under investigation. Anyway, we think that the results of this paper open the

way to new investigations of quantum formalism to biometric classi¯cation pro-

blems. In particular, in our future investigation we will consider three main

directions: (i) the quantization of some standard classi¯ers that are more sophis-

ticated and performing than the NMC; (ii) as we have remarked in the paper,

the choice of the optimal encoding is strongly dataset-dependent. Anyway, this

point deserves a further investigation. For example, it should be remarkable to

identify some classes of datasets that, because of their internal properties, are more

suitable to be treated with some encodings instead of others; (iii) ¯nally, as we

have seen, the quantum-inspired classi¯cation process we have considered is

strongly based on the distribution of patterns. Hence, the role of the distance

function is crucial. However, some datasets (like the IPF dataset) also contain

features whose values cannot be ordered (for example Sex or Smoking status).

Therefore, it should be useful to modify such datasets by replacing this unordered

values with some ordered values preserving the statistical properties of the dataset

themselves.

Quantum-inspired minimum distance classi¯cation in a biomedical context
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