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We consider transverse momentum dependent gluon distributions inside both unpolarized and
transversely polarized protons and show how they can be probed by looking at azimuthal modulations
in ep → eJ=ψ jet X. We find that the contribution due to quark induced subprocesses is always suppressed
in the considered kinematic regions, accessible in principle at a future electron-ion collider. Our model-
independent estimates of the maximal values of these asymmetries allowed by positivity bounds suggest
the feasibility of their measurement. In addition, by adopting the McLerran-Venugopalan model for the
unpolarized and linearly polarized gluon densities, we study the behavior of the cos 2ϕ asymmetries in the
small-x limit.
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I. INTRODUCTION

Transverse momentum dependent distribution functions
(TMDs) of gluons inside unpolarized and polarized protons
have been defined in terms of QCD operators for the first
time in Refs. [1,2]. Since then, they have received growing
attention, mainly because they encode essential information
on the transverse motion of gluons and their spin-orbit
correlations. As such, they parametrize highly nontrivial
features of the partonic structure of the proton. For instance,
the distribution of linearly polarized gluons can be nonzero
even if the parent proton is unpolarized and, if sizable, can
modify the transverse spectra of (pseudo)scalar particles
like, for example, the Higgs boson [3–7]. Another example
is provided by the gluon Sivers function [8,9]. In general,
the Sivers function describes the azimuthal distributions of
unpolarized partons inside a proton that is transversely
polarized with respect to its momentum; it is expected to
generate observable single spin asymmetries in processes
initiated by transversely polarized protons. Moreover, it can
provide an indication on how much quarks and gluons
contribute to the total spin of the proton through their
orbital angular momentum.

Gluon TMDs are also of great interest because of their
intrinsic process dependence, due to their gauge link
structure. This is determined by soft gluon exchanges
occurring in the particular processes in which the TMDs
are probed. Unambiguous tests of such properties have
been proposed for both the quark [10,11] and the gluon [12]
Sivers distributions. Their verification will represent an
important confirmation of our present knowledge of the
TMD formalism and nonperturbative QCD in general.
Experimentally, not much is known about gluon TMDs.

However, many proposals have been suggested to probe
them, especially through the measurement of transverse
momentum distributions and azimuthal asymmetries for
heavy-quarkonium production, both in lepton-proton [13–
16] and in proton-proton collisions [17–22]. In particular, in
a very recent publication [16], some of us considered the
inclusive production of a J=ψ or aϒmeson in deep-inelastic
electron-proton scattering, namely ep → eJ=ψðϒÞX. The
corresponding cross section can be calculated in the TMD
formalism only when two well-separated scales are present:
a soft one, sensitive to the intrinsic parton transverse
momenta, and a hard one, which allows for a perturbative
treatment. Hence the analyzed kinematic region was the one
inwhich the transversemomentumqT of the J=ψ meson (the
soft scale) is much smaller than its massM (the hard scale),
namely qT ≪ M. Such an analysis could be performed at the
future Electron-Ion Collider (EIC) planned in the United
States [23,24].
In the present paper, we study instead a somewhat

complementary process: the associated production of a
J=ψ or a ϒ meson and a hadronic jet in deep-inelastic
electron-proton scattering, ep → eJ=ψðϒÞjet X, where the
initial proton can be either unpolarized or transversely
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polarized in the virtual photon-proton center of mass (c.m.)
frame. In this case the soft scale is given by the total
transverse momentum of the J=ψ þ jet pair, required to be
much smaller than its invariant mass, while the individual
transverse momenta of the J=ψ and the jet need not to be
small. The advantage is that, by varying the invariant mass
of the pair, one can now access a range of scales, in contrast
to the very narrow range around M in ep → eJ=ψX. In
principle, this range of scales provides the opportunity to
map out the TMD evolution, although its practical fea-
sibility still remains to be seen.
Furthermore, by looking at the J=ψ production in

association with a jet, we probe a kinematic region in
which the variable z, describing the energy fraction of the
virtual photon transferred to the J=ψ meson in the proton
rest frame, assumes values smaller than one, where the
background from diffraction events is negligible [25]. This
is in contrast with ep → eJ=ψX: here one probes the end
point region z ¼ 1, where diffraction events are expected to
be present. Although such a background can be suppressed
by imposing that the virtuality of the photon is large enough
[16,26], this will lead to a reduction of the nondiffractive
signal as well.
The theoretical approach adopted in this analysis is the

TMD formalism, as already mentioned, in combination
with nonrelativistic QCD (NRQCD), the effective field
theory that provides a rigourous treatment of heavy-
quarkonium production and decay [27]. This formalism
allows for a separation of short-distance coefficients, which
can be calculated perturbatively in QCD, and long-distance
matrix elements (LDMEs), which are of nonperturbative
origin and are expected to scale with a definite power of the
heavy-quark velocity v in the limit v ≪ 1. Hence, in
addition to the common expansion in αs, NRQCD intro-
duces a further expansion in v, with v2 ≃ 0.3 for charmo-
nium and v2 ≃ 0.1 for bottomonium. As a consequence, one
needs to take into account all the Fock states of QQ̄, the
heavy quark-antiquark pairs produced in the hard scattering.

Fock states are denoted by 2Sþ1LðcÞ
J , where S is the spin of the

pair, L the orbital angular momentum, J the total angular
momentum and c the color configuration, with c ¼ 1, 8. For
an S-wave quarkonium state like the J=ψ andϒmesons, the
dominant contribution in the v expansion, i.e., in the limit
v → 0, reduces to the traditional color-singlet model (CSM)
[28,29], in which the heavy-quark pair is directly produced
in a color-singlet (CS) state,with the samequantumnumbers
as the observed quarkonium. In addition, NRQCD predicts
the existence of the color-octet (CO) mechanism, according
towhich theQQ̄ pair can be produced at short distances also
in CO states with different angular momentum and spin and
subsequently evolves into the physical CS quarkonia by the
nonperturbative emission of soft gluons.1

While in ep → eJ=ψX at small qT the CO mechanism
should be the dominant one [16], for the process under
study both the CS and CO contributions to the cross section
have to be taken into account.
Coming back to the process dependence of the gluon

TMDs, in the reaction under study the gauge links are
future pointing. Hence, at small x they correspond to the
Weiszäcker-Williams (WW) gluon distributions [31]. As
pointed out in Ref. [32], the WW gluon TMDs for a
transversely polarized proton are suppressed by a factor of
x with respect to the unpolarized WW gluon TMDs. One
therefore expects that the transverse spin asymmetries
presented here could be reduced in the small-x limit.
This is a property that could be tested at the EIC, since
there one could probe both small and large x regions.
Furthermore, we point out that the gluon TMDs probed in
ep → eJ=ψ jet X and in ep → eJ=ψX can be directly
related, pending factorization theorems,2 to the ones
characterized by past-pointing gauge links which are also
of the WW type, appearing for example in Higgs or heavy
scalar quarkonium production in proton-proton collisions.
This in principle allows us to cross-check the results
obtained at the EIC and Large Hadron Collider (LHC)
for unpolarized protons, and, in case a polarized fixed target
experiment will be achieved at the LHC [34–36], for
transversely polarized protons as well.
The paper is organized as follows: in Sec. II we present

the theoretical approach adopted and all details of the
calculation, including kinematics and its region of validity.
In Sec. III we give the analytic expressions of our results
within NRQCD. In Sec. IV we compute the azimuthal
modulations of interest in order to extract the TMDs under
study. In Sec. V we show the corresponding numerical
results adopting both known positivity bounds for the gluon
TMDs and the McLerran-Venugopalan model. Finally, in
Sec. VI we collect our conclusions and final remarks.

II. OUTLINE OF THE CALCULATION

We consider the process depicted in Fig. 1,

eðlÞ þ pðP; SÞ → eðl0Þ þ J=ψðKψÞ þ jetðKjÞ þ X; ð1Þ

where the proton is polarized with polarization vector S,
while we do not observe the polarization of the other
particles. The kinematics is defined with the help of a
Sudakov decomposition in terms of two lightlike vectors,
here chosen to be the momentum P of the incoming proton,
and a second vector n which fulfills the relations n · P ¼ 1

and n2 ¼ 0. In a frame where the three-momenta of the
incoming proton and the virtual photon exchanged in the
reaction lie on the ẑ-axis, one has the following expressions

1For an exhaustive overview on the phenomenology of
quarkonium production, see Ref. [30] and references therein.

2See for example Ref. [33] for a discussion about the soft
factor.
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for the momenta of the incoming parton (p), virtual photon
(q), outgoing jet (Kj) and quarkonium (Kψ ):

pμ ¼ xPμ þ ðp · P −M2xÞnμ þ pμ
T ≈ xPμ þ pμ

T;

qμ ¼ −xBPμ þ ðP · qÞnμ;

Kμ
j ¼

K2
j⊥

2ð1 − zÞP · q
Pμ þ ð1 − zÞðP · qÞnμ þ Kμ

j⊥;

Kμ
ψ ¼ M2 þ K2

ψ⊥
2zP · q

Pμ þ zðP · qÞnμ þ Kμ
ψ⊥: ð2Þ

In the above, x ¼ p · n, M is the mass of the quarkonium,
while the virtuality of the photon is defined as Q2 ¼ −q2,
the Bjorken-x variable is given by xB ¼ Q2=2P · q, and z ¼
P · Kψ=P · q is the energy fraction transferred from the
photon to the quarkonium in the proton rest frame. We
clarify that, in our conventions, the subscriptT refers to a soft
transverse momentum, whereas ⊥ denotes the large trans-
verse component of a measurable hadronic momentum. In
this process, and for our specific choice of the reference
frame, the two directions are the same, as can be seen from
the two-dimensional delta function in Eq. (12) below.
Moreover, the momentum l of the incoming lepton reads

lμ ¼ 1 − y
y

xBPμ þ 1

y
ðP · qÞnμ þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

Ql̂μ
⊥; ð3Þ

with y ¼ P · q=P · l the inelasticity variable, and from
which the momentum l0 of the scattered lepton can be
obtained as l0 ¼ l − q. Similarly, for the proton spin vector,

Sμ ¼ SL
Mp

�
Pμ −

M2
p

P · n
nμ
�
þ SμT; ð4Þ

with S2L þ S2T ¼ 1 and Mp denotes the proton mass.

Assuming TMD factorization, the cross section can be
written as [37]

dσ ¼ 1

2s
d3l0

ð2πÞ32El0

d3Kψ

ð2πÞ32Eψ

d3Kj

ð2πÞ32Ej

×
Z

dxd2pTð2πÞ4δ4ðqþ p − Kj − KψÞ

×
1

Q4
Lμνðl; qÞΓρσ

g ðx; pTÞHμρH�
νσ: ð5Þ

In the above expression, Lμν is the usual leptonic tensor,
defined as

Lμνðl;qÞ¼ g2e
2
trð=lγμ=l0γνÞ¼ g2eð−Q2gμνþ2lfμl0νgÞ; ð6Þ

where the factor 1=2 takes care of the spin average of the
incoming electron, and where we introduced the symmet-
rization operator pfμqνg ¼ pμqν þ pνqμ. The functionH in
Eq. (5) is the scattering amplitude for the dominant partonic
subprocess γ�ðqÞ þ gðpÞ → J=ψðKψ Þ þ gðKjÞ. As such, it
takes into account also the bounding mechanism into the
J=ψ . Moreover, it is understood that it includes the factor
1=ðN2

c − 1Þ coming from the average over the incoming
gluon colors.
Finally, Γμν

g in Eq. (5) is the gluon correlator, encoding
the gluon content of the proton, which can be parametrized
in terms of gluon TMDs [1,2,38]. For an unpolarized
proton, omitting the gauge link dependence, this correlator
is given by

Γμν
U ðx; pTÞ ¼

1

2x

�
−gμνT fg1ðx; p2TÞ

þ
�
pμ
Tp

ν
T

M2
p

þ gμνT
p2T
2M2

p

�
h⊥g
1 ðx; p2TÞ

�
; ð7Þ

where gμνT ≡ gμν − Pfμnνg. In the above expression,
fg1ðx; p2TÞ is the TMD unpolarized gluon distribution, while
h⊥g
1 ðx; p2TÞ is the distribution of linearly polarized gluons in

an unpolarized proton. Both distributions are T-even,
implying that they can be nonzero even in processes where
neither initial nor final state interactions are present. In the
case of a transversely polarized proton, its correlator can be
parametrized as

Γμν
T ðx; pTÞ ¼

1

2x

�
gμνT

ϵρσT pTρSTσ
Mp

f⊥g
1T ðx; p2TÞ

þ iϵμνT
pT · ST
Mp

gg1Tðx; p2TÞ

þ pTρϵ
ρfμ
T pνg

T

2M2
p

pT · ST
Mp

h⊥g
1T ðx; p2TÞ

−
pTρϵ

ρfμ
T SνgT þ STρϵ

ρfμ
T pνg

T

4Mp
hg1Tðx; p2TÞ

�
; ð8Þ

FIG. 1. Schematic illustration of the reaction eðlÞ þ pðP; SÞ →
eðl0Þ þ J=ψðKψ Þ þ jetðKjÞ þ X with the four-momentum as-
signments, where X is the proton remnant and Q2 ≡ −q2.
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where we have introduced the antisymmetric transverse
projector ϵμνT ¼ ϵμναβPαnβ, with ϵ12T ¼ þ1. In the symmetric

part of the correlator, Γfμνg
T =2, three T-odd TMDs appear:

the gluon Sivers function f⊥g
1T ðx; p2TÞ, as well as the TMDs

h⊥g
1T and hg1T which are chiral-even distributions of linearly

polarized gluons inside a transversely polarized proton. In
analogy with the transversity TMD for quarks, one intro-
duces the combination,

hg1 ≡ hg1T þ p2T
2M2

p
h⊥g
1T ; ð9Þ

which vanishes upon integration over transverse momen-
tum [12], in contrast to its quark counterpart. Finally, the
distribution gg1Tðx; p2TÞ is T-even and represents the circular
polarized gluon content of a transversely polarized proton.
Note that the factor 1=2, necessary to average over the
incoming gluon polarization, is already taken into account
in Eqs. (7) and (8).
Integrating out the azimuthal angle of the final lepton l0

[39], one has

d3l0

ð2πÞ32El0
¼ dQ2dy

16π2
: ð10Þ

Moreover, we can write

d3Kψ

ð2πÞ32Eψ
¼ dzd2Kψ⊥

ð2πÞ32z ;
d3Kj

ð2πÞ32Ej
¼ dz̄d2Kj⊥

ð2πÞ32z̄ ; ð11Þ

and

δ4ðqþ p−Kj −KψÞ

¼ 2

ys
δð1− z− z̄Þδ

�
x−

z̄ðM2 þK2
ψ⊥Þ þ zK2

j⊥ þ zz̄Q2

zð1− zÞys
�

× δ2ðpT −Kj⊥ −Kψ⊥Þ; ð12Þ

where we made use of the relation Q2 ¼ xBys, with
s ¼ ðlþ PÞ2 the square of the c.m. energy. Finally,
integrating over z̄, pT and x, the cross section in Eq. (5)
can be rewritten as

dσ
dzdydxBd2qTd2K⊥

¼ 1

ð2πÞ4
1

16szð1 − zÞQ4

× Lμνðl; qÞΓρσ
g ðx; qTÞHμρH�

νσ:

ð13Þ

In the above expression,

qT ≡ Kψ⊥ þ Kj⊥; K⊥ ≡ Kψ⊥ − Kj⊥
2

: ð14Þ

The region of validity of our calculation is then the one
where there are two strongly ordered scales: qT ≡ jqT j ≪
K⊥ ≡ jK⊥j, corresponding to the setup where the J=ψ
and the jet are produced almost back to back in the plane
transverse to the collision axis. We can then set K⊥ ≃
Kψ⊥ ≃ −Kj⊥ in our calculation, and retain only those
terms which are, at most, of the order of qT=Mp,
discarding the ones suppressed by powers of qT=M
or qT=K⊥.
Note that, integrating Eq. (13) over qT, one recovers the

collinear result [25],

dσ
dydQ2

¼ 1

ð2πÞ3
Z

1

xmin

dx
Z

0

t̂min

dt̂
1

64x2y2s2Q4

× Lμνð−gρσT Þfg1ðxÞHμρH�
νσ; ð15Þ

where we have introduced the usual Mandelstam
variables ŝ and t̂ for the subprocess γ�g→ J=ψg,
and where xmin ¼ ðQ2 þM2Þ=ðysÞ, t̂min ¼ −ðŝþQ2Þ×
ðŝ −M2Þ=ŝ.

III. ANGULAR STRUCTURE OF THE CROSS
SECTION: ANALYTIC RESULTS

In the reference frame defined above, and measuring
the azimuthal angles with respect to the lepton plane
(ϕl ¼ ϕl0 ¼ 0Þ as depicted in Fig. 2, we denote by ϕS,
ϕT and ϕ⊥ the azimuthal angles of the three-vectors ST , qT
and K⊥, respectively. In the region qT ≪ K⊥, we obtain
that the differential cross section can be written in the
form [37],

dσ
dzdydxBd2qTd2K⊥

≡ dσðϕS;ϕT;ϕ⊥Þ

¼ dσUðϕT;ϕ⊥Þ þ dσTðϕS;ϕT;ϕ⊥Þ:
ð16Þ

At leading order (LO) in perturbative QCD, we find

FIG. 2. Azimuthal angles for the process ep → eJ=ψ jet X in a
reference frame where ϕl ¼ ϕl0 ¼ 0. The vectors qT ¼ Kψ⊥ þ
Kj⊥ and K⊥ ¼ ðKψ⊥ − Kj⊥Þ=2 define the azimuthal angles ϕT

and ϕ⊥, respectively.
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dσU ¼ N
�
ðAeg

0 þAeg
1 cosϕ⊥ þAeg

2 cos 2ϕ⊥Þfg1ðx; q2TÞ þ ðBeg
0 cos 2ϕT þ Beg

1 cosð2ϕT − ϕ⊥Þ

þ Beg
2 cos 2ðϕT − ϕ⊥Þ þ Beg

3 cosð2ϕT − 3ϕ⊥Þ þ Beg
4 cosð2ϕT − 4ϕ⊥ÞÞ

q2T
M2

p
h⊥g
1 ðx; q2TÞ

�
; ð17Þ

while

dσT¼N jST j
�
sinðϕS−ϕTÞðAeg

0 þAeg
1 cosϕ⊥þAeg

2 cos2ϕ⊥Þ
jqT j
Mp

f⊥g
1T ðx;q2TÞþcosðϕS−ϕTÞðBeg

0 sin2ϕTþBeg
1 sinð2ϕT−ϕ⊥Þ

þBeg
2 sin2ðϕT−ϕ⊥ÞþBeg

3 sinð2ϕT−3ϕ⊥ÞþBeg
4 sinð2ϕT−4ϕ⊥ÞÞ

jqT j3
M3

p
h⊥g
1T ðx;q2TÞþðBeg

0 sinðϕSþϕTÞ

þBeg
1 sinðϕSþϕT−ϕ⊥ÞþBeg

2 sinðϕSþϕT−2ϕ⊥ÞþBeg
3 sinðϕSþϕT−3ϕ⊥ÞþBeg

4 sinðϕSþϕT−4ϕ⊥ÞÞ
jqT j
Mp

hg1Tðx;q2TÞ
�
:

ð18Þ
The normalization factor N is given by

N ¼ 8α2α2se2Q
3yMQ2M10⊥D

; ð19Þ

where eQ is the electric charge of the heavy quark in units of the proton charge, and

D≡D

�
z;

Q2

M2⊥
;
M2

M2⊥

�
¼

�
1 − zð2 − zÞ M

2

M2⊥

�
2
�
1þ zð2 − zÞ Q

2

M2⊥

�
2
�
1 − z

�
M2

M2⊥
− ð1 − zÞ Q

2

M2⊥

��
; ð20Þ

with the transverse mass M⊥ defined as M⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ K2⊥

p
.

The amplitudes of the modulationsAeg
l , with l ¼ 0, 1, 2,

describe the interaction of an electron with an unpolarized
gluon, through the exchange of a photon which can be in
different polarization states [37], and can be expressed as

Aeg
0 ¼ ½1þ ð1 − yÞ2�Aγ�g

UþL − y2Aγ�g
L ;

Aeg
1 ¼ ð2 − yÞ

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
Aγ�g

I ;

Aeg
2 ¼ 2ð1 − yÞAγ�g

T ; ð21Þ

where the subscripts i ¼ U þ L, L, I, T refer to the specific
polarizations of the photon: unpolarized plus longitudinal,
longitudinal, interference transverse-longitudinal and trans-
verse, respectively [37,40]. Namely, denoting by Aγ�g

λγ ;λ0γ
,

with λγ, λ0γ ¼ 0;�1, the helicity amplitudes squared for the

process γ�g → QQ̄½2Sþ1LðcÞ
J �g, the following relations are

fulfilled:

Aγ�g
UþL ∝ Aγ�g

þþ þAγ�g
−− þAγ�g

00 ;

Aγ�g
L ∝ Aγ�g

00 ;

Aγ�g
I ∝ Aγ�g

0þ þAγ�g
þ0 −Aγ�g

0− −Aγ�g
−0 ;

Aγ�g
T ∝ Aγ�g

þ− þAγ�g
−þ; ð22Þ

where we have omitted numerical prefactors. Analogously,
for the amplitudes Beg

m with m ¼ 0, 1, 2, 3, 4, one can write

Beg
2 ¼ ½1þ ð1 − yÞ2�Bγ�g

UþL − y2Bγ�g
L ;

Beg
m ¼ ð2 − yÞ

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
Bγ�g
mI ðm ¼ 1; 3Þ;

Beg
m ¼ 2ð1 − yÞBγ�g

mT ðm ¼ 0; 4Þ: ð23Þ

The amplitudesAγ�g and Bγ�g have been calculated at LO
in the framework of NRQCD, taking into account both the
CS and CO contributions corresponding to the Feynman
diagrams in Fig. 3.
According to the CS mechanism, the heavy-quark pair

is produced in the hard process γ�g → QQ̄½2Sþ1LðcÞ
J �g

directly with the quantum numbers of the observed
quarkonium, which in the case of the J=ψ meson are
S ¼ 1, L ¼ 0 and J ¼ 1. This means that the pair is in a
3Sð1Þ1 state. On the other hand, the allowed CO states are
1Sð8Þ0 , 3Sð8Þ1 , 3Pð8Þ

J , with J ¼ 0, 1, 2. Moreover, the quark-

induced subprocess γ�q → QQ̄½2Sþ1Lð8Þ
J �q should also

be taken into account, in principle. However, since
it turns out to be negligible in the kinematic region
under study (see Sec. V), we will not consider it in the
following.
In the calculation of Aγ�g

i and Bγ�g
i , all the CS and CO

perturbative contributions need to be added, each one
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weighted by its corresponding LDME, denoted by
h0jOcð2Sþ1LJÞj0i, encoding the soft hadronization of a
QQ̄ pair with angular momentum configuration 2Sþ1LJ and
color assignment c ¼ 1, 8, into a colorless state with the
quantum numbers of the J=ψ . One can write

Aγ�g
i ¼ CCSh0jO1ð3S1Þj0iACS

i þ C
1S0
8 h0jO8ð1S0Þj0iA

1S0
i

þ C
3S1
8 h0jO8ð3S1Þj0iA

3S1
i þ C

3P0

8 h0jO8ð3P0Þj0iA
3P0

i

þ C
3P1

8 h0jO8ð3P1Þj0iA
3P1

i þ C
3P2

8 h0jO8ð3P2Þj0iA
3P2

i ;

ð24Þ

with an analogous expression holding for the ampli-
tudes Bγ�g

i .
Making use of the heavy-quark spin symmetry

relation [27],

h0jO8ð3PJÞj0i ¼ ð2J þ 1Þh0jO8ð3P0Þj0i; ð25Þ

which is valid up to higher order corrections in the
small expansion parameter v, and the fact that the color
factors read

CCS ¼
1

Nc
;

C1 ≡ C
3S1
8 ¼ N2

c − 4

2Nc
;

C2 ≡ C
1S0
8 ¼ C

3PJ
8 ¼ Nc

2
for J ¼ 1; 2; 3; ð26Þ

Eq. (24) can be simplified further to yield

Aγ�g
i ¼ CCSh0jO1ð3S1Þj0iACS

i þ C1h0jO8ð3S1Þj0iA
3S1
i

þ C2ðh0jO8ð1S0Þj0iA
1S0
i þ h0jO8ð3P0Þj0iA

3PJ
i Þ;

Bγ�g
i ¼ CCSh0jO1ð3S1Þj0iBCS

i þ C1h0jO8ð3S1Þj0iB
3S1
i

þ C2ðh0jO8ð1S0Þj0iB
1S0
i þ h0jO8ð3P0Þj0iB

3PJ
i Þ;

ð27Þ

where we defined A
3PJ
i ≡A

3P0

i þ3A
3P1

i þ5A
3P2

i , and B
3PJ
i ≡

B
3P0

i þ 3B
3P1

i þ 5B
3P2

i .
The explicit expressions for the hard scattering

functions Aγ�g
i and Bγ�g

i we introduced above, depend on
the production mechanism of the quarkonium we consider.
For the CS hard parts, we obtain

ACS
UþL ¼ 2fM4⊥ðM2ðz2− zþ1Þ2þQ2z2Þ

þM2⊥zðM4ð−z3þ z−2Þ
þ2M2Q2ð2z5−8z4þ12z3−7z2− zþ1Þ
þQ4ðz−1Þ2zÞþM2z2ðM4ðz2−2zþ2Þ
þM2Q2ð−4z4þ18z3−32z2þ26z−7Þ
þQ4ðz−1Þ2ðz4−4z3þ7z2−6zþ1ÞÞg;

ACS
L ¼ 2z2Q2fM4⊥þ2M2M2⊥ð2z4−8z3þ12z2−8zþ1Þ

−M4ð3z4−12z3þ18z2−12zþ2Þg;
ACS

I ¼ 4z2ð1− zÞ2QK⊥fM2⊥ðM2ð2z2−4zþ3ÞþQ2Þ
−M4ð2z2−4zþ3Þ
þM2Q2ð2z4−8z3þ12z2−8zþ1Þg;

ACS
T ¼ 2z2ð1− zÞ2M2K2⊥fQ2ð2z2−4zþ1Þ−M2g; ð28Þ

FIG. 3. Feynman diagrams representing the partonic subprocesses underlying the reaction ep → eJ=ψ jet X; (a)–(d):
γ�g → QQ̄½2Sþ1LðcÞ

J �g, (e)–(g): γ�q → QQ̄½2Sþ1LðcÞ
J �q. The crossed diagrams of (a)–(e), obtained by reversing the heavy quark lines,

are included in the calculations but not shown explicitly. Only diagrams (a)–(c) contribute to the CS production mechanism.
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and

BCS
UþL ¼ z2ð1 − zÞ2M2K2⊥fQ2ð6z2 − 12zþ 5Þ −M2g;
BCS
L ¼ 2z2ð1 − zÞ2M2Q2K2⊥ð2z2 − 4zþ 1Þ;

BCS
0T ¼ z2ð1 − zÞ4M2Q2fQ2ðz − 2Þz −M2g;

BCS
1I ¼ 2z2ð1 − zÞ3QM2K⊥fQ2ð2z2 − 4zþ 1Þ −M2g;

BCS
3I ¼ 4z2ð1 − zÞ3QM2K3⊥;

BCS
4T ¼ z2ð1 − zÞ2M2K4⊥: ð29Þ

Since the CO expressions for the hard parts are very long
and not very enlightening, we do not show them here. We
note that our results for the angular independent part of the
cross section fully agree with the ones published in
Ref. [25], obtained within the framework of collinear
NRQCD, while, to the best of our knowledge, the angular
modulations are derived here for the first time.

IV. AZIMUTHAL MODULATIONS

The cross sections in Eqs. (17) and (18) exhibit various
azimuthal modulations, and have the same structure as
similar 2 → 2 processes such as γ�g → QQ̄ [37]. These
modulations can be exploited to extract ratios of specific
gluon TMDs over the unpolarized one, fg1ðx; q2TÞ. To this
end, we define the following azimuthal moments:

AWðϕS;ϕTÞ≡2

R
dϕSdϕTdϕ⊥WðϕS;ϕTÞdσðϕS;ϕT;ϕ⊥ÞR

dϕSdϕTdϕ⊥dσðϕS;ϕT;ϕ⊥Þ
;

ð30Þ

where the denominator is given by

Z
dϕSdϕTdϕ⊥dσðϕS;ϕT;ϕ⊥Þ

¼
Z

dϕSdϕTdϕ⊥dσUðϕT;ϕ⊥Þ

¼ ð2πÞ3NAeg
0 fg1ðx; q2TÞ: ð31Þ

As an example, to extract the ratio h⊥g
1 ðx; q2TÞ=fg1ðx; q2TÞ,

where h⊥g
1 is the distribution of linearly polarized gluons in

an unpolarized proton, one could measure

Acos2ϕT ¼ q2T
M2

p

Beg
0

Aeg
0

h⊥g
1 ðx;q2TÞ
fg1ðx;q2TÞ

¼ q2T
M2

p

2ð1−yÞBγ�g
0T

½1þð1−yÞ2�Aγ�g
UþL−y2Aγ�g

L

h⊥g
1 ðx;q2TÞ
fg1ðx;q2TÞ

; ð32Þ

or

Acos2ðϕT−ϕ⊥Þ ¼ q2T
M2

p

Beg
2

Aeg
0

h⊥g
1 ðx;q2TÞ
fg1ðx;q2TÞ

¼ q2T
M2

p

½1þð1−yÞ2�Bγ�g
UþL−y2Bγ�g

L

½1þð1−yÞ2�Aγ�g
UþL−y2Aγ�g

L

h⊥g
1 ðx;q2TÞ
fg1ðx;q2TÞ

:

ð33Þ

The gluon TMDs for a transversely polarized proton can
be extracted in a similar fashion. In particular, the polarized
cross section, Eq. (18), can be simplified by integrating
over the angle ϕ⊥, yielding
Z

dϕ⊥dσT ¼ 2πN jST j
jqT j
Mp

�
Aeg

0 sinðϕS − ϕTÞf⊥g
1T ðx; q2TÞ

−
1

2
Beg
0 sinðϕS − 3ϕTÞ

jqT j2
M2

p
h⊥g
1T ðx; q2TÞ

þ Beg
0 sinðϕS þ ϕTÞhg1ðx; q2TÞ

�
; ð34Þ

where we have introduced the combination hg1 of Eq. (9).
Clearly, the resulting integrated cross section has only three
independent azimuthal modulations left, each related to a
different T-odd gluon TMD. Note that this situation is
analogous to the case of quark azimuthal asymmetries in
SIDIS (ep↑ → e0hX), in which the role of ϕT is played by
ϕh [41].
Using Eq. (31), one then obtains (setting jST j ¼ 1)

AsinðϕS−ϕT Þ ¼ jqT j
Mp

f⊥g
1T ðx; q2TÞ
fg1ðx; q2TÞ

; ð35Þ

AsinðϕSþϕT Þ ¼ jqT j
Mp

Beg
0

Aeg
0

hg1ðx; q2TÞ
fg1ðx; q2TÞ

; ð36Þ

AsinðϕS−3ϕT Þ ¼ −
jqT j3
2M3

p

Beg
0

Aeg
0

h⊥g
1T ðx; q2TÞ
fg1ðx; q2TÞ

; ð37Þ

where we note that the asymmetries in Eqs. (36) and (37)
vanish when y → 1, see the last line of Eq. (23), corre-
sponding to a longitudinally polarized virtual photon.
Furthermore, as already pointed out in Ref. [16] for the
process ep → eJ=ψX, the following ratios of asymmetries:

Acos 2ϕT

AsinðϕSþϕT Þ ¼
jqT j
Mp

h⊥g
1 ðx; q2TÞ
hg1ðx; q2TÞ

; ð38Þ

AsinðϕS−3ϕTÞ

Acos 2ϕT
¼ −

jqT j
2Mp

h⊥g
1T ðx; q2TÞ

h⊥g
1 ðx; q2TÞ

; ð39Þ

AsinðϕS−3ϕTÞ

AsinðϕSþϕT Þ ¼ −
q2T
2M2

p

h⊥g
1T ðx; q2TÞ
hg1ðx; q2TÞ

; ð40Þ
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are directly sensitive to the relative magnitude of the various
gluonTMDs,without any dependence either on the different
LDMEs or on the other kinematic variables in the process.

A. Use of positivity bounds

In order to assess the maximum allowed size of the above
asymmetries, one can make use of the fact that the
polarized gluon TMDs have to satisfy the following, model
independent, positivity bounds [1]:

jqT j
Mp

jf⊥g
1T ðx; q2TÞj ≤ fg1ðx; q2TÞ;

q2T
2M2

p
jh⊥g

1 ðx; q2TÞj ≤ fg1ðx; q2TÞ;

jqT j
Mp

jhg1ðx; q2TÞj ≤ fg1ðx; q2TÞ;

jqT j3
2M3

p
jh⊥g

1T ðx; q2TÞj ≤ fg1ðx; q2TÞ: ð41Þ

Applying these to the asymmetries in Eqs. (32) and (33),
we find that

jAcos 2ϕT j ≤ 2jBeg
0 j

Aeg
0

and jAcos 2ðϕT−ϕ⊥Þj ≤ 2jBeg
2 j

Aeg
0

; ð42Þ

where the maxima on the rhs are always independent
of the c.m. energy. As can be seen from Eqs. (36) and (37),
the upper bounds of the asymmetries AsinðϕSþϕT Þ and
AsinðϕS−3ϕT Þ are equal to half the one for Acos 2ϕT , while
the bound for the Sivers asymmetry AsinðϕS−ϕT Þ, Eq. (35), is
simply equal to one.

B. McLerran-Venugopalan model

As an alternative to the model-independent positivity
bounds in the previous section, the gluon TMDs can be
evaluated in a model, in order to show predictions for the
azimuthal asymmetries in Eqs. (32) and (33). From the
expression of x, which can be read off the delta function
in Eq. (12), it follows that for realistic EIC c.m. energiesffiffiffi
s

p
∼ 100 GeV, and for values of y that are not too

small, its value is of the order of x ∼ 10−2. In this regime,
the nonperturbative McLerran-Venugopalan (MV) model
[42–44] for the gluon distributions inside an unpolarized
nucleus is phenomenologically very successful. In view
of the total lack of information on gluon TMDs, fol-
lowing Ref. [12], we will apply it also to the proton case.

The unpolarized and linearly polarized gluon TMDs in the
MV model read [31,45]

fg1ðx; q2TÞ ¼
S⊥CF

αsπ
3

Z
dr

J0ðqTrÞ
r

�
1 − e−

r2
4
Q2

sgðrÞ
�
; ð43Þ

h⊥g
1 ðx; q2TÞ ¼

S⊥CF

αsπ
3

2M2
p

q2T

Z
dr

J2ðqTrÞ
r ln 1

r2Λ2

�
1 − e−

r2
4
Q2

sgðrÞ
�
:

ð44Þ

In the above formulas, S⊥ is the transverse size of the proton
andΛ is an infrared cutoff (we takeΛ ¼ ΛQCD ¼ 0.2 GeV).
Furthermore,QsgðrÞ is the gluon saturation scale, which we
parametrize, as is usually done in the MV model, as
Q2

sgðrÞ ¼ Q2
sg0 ln ð1=r2Λ2Þ. Finally, the gluon saturation

scale is related to the one felt by the quarks by a color
factor, Q2

sg0¼ðNc=CFÞQ2
sq0, and we take the numerical

valueQ2
sq0¼0.35GeV2 at x ¼ 10−2 from the fit of Ref. [46].

The ratio of h⊥g
1 over fg1 is therefore

q2T
2M2

p

h⊥g
1 ðx; q2TÞ
fg1ðx; q2TÞ

¼
R
dr J2ðqTrÞ

r lnð 1

r2Λ2
þeÞ ð1 − e−

r2
4
Q2

sg0 ln ð 1

r2Λ2
þeÞÞ

R
dr J0ðqTrÞ

r ð1 − e−
r2
4
Q2

sg0 ln ð 1

r2Λ2
þeÞÞ

;

ð45Þ
where e was added as a regulator to guarantee numerical
convergence. In the following section, the above model is
used to show the qT dependence of the asymmetries in
Eqs. (32) and (33).

V. NUMERICAL RESULTS

Before presenting our results, we come back to the
assumption of a negligible quark contribution. To this aim,
we compute the ratio of the collinear quark- over total
unpolarized cross section in NRQCD, using for the parton
distribution functions (PDFs) the MSTW2008LO set [47]
and adopting the same LDME sets as for the study of the
azimuthal asymmetries, see Table I (with the charm mass
mc ¼ 1.3 GeV) for J=ψ and Table II (with the bottom mass
mb ¼ 4.2 GeV) for ϒ. Following Ref. [25], we choose the
hard scale for these PDFs to be equal to ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ2

p
,

where ξ varies between 1=2 and 2, and take a conservative
estimate for the c.m. energy at the EIC, i.e.,

ffiffiffi
s

p ¼ 65 GeV.
As can be clearly seen in every plot we present in what
follows, in the kinematic regions where the asymmetries
can be sizable, the estimated quark contribution to the

TABLE I. Numerical values of the LDMEs for J=ψ production.

J=ψ h0jOJ=ψ
8 ð1S0Þj0i h0jOJ=ψ

8 ð3S1Þj0i h0jOJ=ψ
1 ð3S1Þj0i h0jOJ=ψ

8 ð3P0Þj0i=m2
c

Sharma et al. [48] 1.8� 0.87 0.13� 0.13 1.2 × 102 1.8� 0.87 ×10−2 GeV3

Chao et al. [49] 8.9� 0.98 0.30� 0.12 1.2 × 102 0.56� 0.21 ×10−2 GeV3
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unpolarized cross section is always practically negligible, at
least at our current level of accuracy.
To start, in Fig. 4 we show the upper bounds of the

absolute values of the asymmetries Acos 2ϕT (left panel) and
Acos 2ðϕT−ϕ⊥Þ (right panel), for the J=ψ meson, as a function
of the transverse momentum K⊥. We identified two regions

in z and y where either of them is very large, corresponding
to, respectively, z ¼ 0.7 and y ¼ 0.3, or z ¼ 0.3 and
y ¼ 0.7. The J=ψ mass is taken to be M ¼ 3.1 GeV,
and the photon virtuality is fixed atQ2 ¼ 10 GeV2 in order
to keep all the large scales, i.e., K⊥, M and Q, in the same
ballpark. The full lines correspond to the complete NRQCD

TABLE II. Numerical values of the LDMEs for ϒ production.

ϒð1SÞ h0jOϒ
8 ð1S0Þj0i h0jOϒ

8 ð3S1Þj0i h0jOϒ
1 ð3S1Þj0i h0jOϒ

8 ð3P0Þj0i=5m2
b

Sharma et al. [48] 1.2� 4.0 4.8� 3.3 11 × 102 1.2� 4.0 ×10−2 GeV3

CMSWZ
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 1  2  3  4  5  6

K⊥

cos2(φT - φ⊥)A⏐ ⏐max

[GeV]

CMSWZ
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CSM

FIG. 4. Upper bounds for the absolute values of Acos 2ϕT (left) and Acos 2ðϕT−ϕ⊥Þ (right) for the J=ψ , in NRQCD and in the CSM, as a
function of K⊥ atQ2 ¼ 10 GeV2. We take z ¼ 0.7, y ¼ 0.3 (left) or z ¼ 0.3, y ¼ 0.7 (right). Two sets of LDMEs are used: SV [48] and
CMSWZ [49]. The ratio of the collinear quark contribution over the total unpolarized cross section is shown in the form of a band,
representing the scale uncertainty and the results obtained with the two LDME sets, for the c.m. energy

ffiffiffi
s

p ¼ 65 GeV.

 0.7

σq/σ

NRQCD

 0
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 0.1

0.15

 0.2

0.25

 0.3

0.35

 0.4
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y

cos2φTA⏐ ⏐max

SV

CMSWZ CSM

σq/σ

NRQCD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

y

cos2(φT - φ⊥)A⏐ ⏐max

SV

CMSWZ

CSM

FIG. 5. Upper bounds for the absolute values of Acos 2ϕT (left) and Acos 2ðϕT−ϕ⊥Þ (right) for the J=ψ , in NRQCD and in the CSM, as a
function of y at Q2 ¼ 10 GeV2 and K⊥ ¼ 2 GeV. We take z ¼ 0.7 (left) or z ¼ 0.3 (right). Two sets of LDMEs are used: SV [48] and
CMSWZ [49]. The ratio of the collinear quark contribution over the total unpolarized cross section is shown in the form of a band,
representing the scale uncertainty and the results obtained with the two LDME sets, for the c.m. energy

ffiffiffi
s

p ¼ 65 GeV.
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calculation, while the CS results are shown as dashed lines.
For these asymmetries, NRQCD consistently leads to larger
upper bounds as compared to the CSM, and in certain
kinematic regions even to a drastically different behavior
(see right panel). Indeed, in contrast to the CSM, the color
octet mechanism generates a large upper bound for the
Acos 2ðϕT−ϕ⊥Þ asymmetry. Furthermore, the NRQCD results
exhibit a strong dependence on the choice of the different
LDME sets. Clearly, our process can lead to large asym-
metries, with upper bounds in certain regions reaching
almost 60%. Notice that we have selected specific kin-
ematic ranges where the asymmetries could be potentially
very large and where, consequently, any measurement
could unambiguously allow to put strong constraints on
the TMDs under study.

The y dependence of the above asymmetries for J=ψ
production is presented in Fig. 5, for a fixed value of
K⊥ ¼ 2 GeV, and again both for the full NRQCD calcu-
lation (solid lines) and the CSM (dashed lines). Since

ffiffiffi
s

p
is

fixed, y is consistently cut at y ¼ 0.1 to fulfill all kinematic
constraints. In the opposite limit, y → 1, the Acos 2ϕT

asymmetries vanish, as expected from the expression in
Eq. (32). The maximum of Acos 2ðϕT−ϕ⊥Þ, on the other hand,
is almost independent of y.
In Fig. 6, the upper bounds for the same asymmetries are

presented for the ϒð1SÞ quarkonium state, whose mass is
taken to beM ¼ 9.5 GeV, and for which the single LDME
set available, see Table II, is used (taking mb ¼ 4.2 GeV).
Moreover, to avoid potentially large logarithmic effects, we
choose a virtuality of the same order as the ϒ mass:

σq/σ
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K⊥

cos2φT

cos2(φT-φ⊥)

AW⏐ ⏐max

[GeV]

CSM

σq/σ

NRQCD

CSM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

y

cos2φT
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FIG. 6. Upper bounds for the absolute values of AW , with W ¼ cos 2ϕT; cos 2ðϕT − ϕ⊥Þ for the ϒ, in NRQCD and in the CSM, at
Q2 ¼ 100 GeV2, as a function of K⊥ at y ¼ 0.3 and z ¼ 0.7 (left) and as a function of y at K⊥ ¼ 4 GeV and z ¼ 0.6 (right). The SV set
of LDMEs [48] is used. The ratio of the collinear quark contribution over the total unpolarized cross section is shown in the form of a
band, representing the scale uncertainty, for the c.m. energy
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FIG. 7. Absolute values of Acos 2ϕT (left) and Acos 2ðϕT−ϕ⊥Þ (right) for J=ψ production as a function of qT , in the MV model, for
Q2 ¼ 10 GeV2, z ¼ 0.7, y ¼ 0.3, K⊥ ¼ 2 GeV (left) and z ¼ 0.3, y ¼ 0.7, K⊥ ¼ 6 GeV (right).
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Q2 ¼ 100 GeV2. In contrast to the J=ψ case, we find that
the bounds for the asymmetries are only sizable in the
region of intermediate and low values of y and large values
of z. Notice that below y ¼ 0.15 (right panel) the quark
contribution to the unpolarized cross section could become
important and no more negligible.
As is evident from Eqs. (32) and (33), the asymmetries

Acos 2ϕT and Acos 2ðϕT−ϕ⊥Þ are sensitive to the ratio of linearly
polarized and unpolarized gluon TMDs. As discussed in
the previous section, in the case of a large nucleus
(and at low x), analytical expressions for these TMDs
are available within the MV model. Adopting this model
also for a proton target and at x ≃ 10−2, allows us to
calculate the qT dependence of the above asymmetries,
for fixed values of the other variables. As can be seen in
Fig. 7 for J=ψ production, using Q2 ¼ 10 GeV2 every-
where, and K⊥ ¼ 2 GeV, z ¼ 0.7, and y ¼ 0.3 (left panel)
or K⊥ ¼ 6 GeV, z ¼ 0.3, and y ¼ 0.7 (right panel), the
corresponding asymmetries in the full NRQCD calculation
can still be large, particularly Acos 2ðϕT−ϕ⊥Þ.
Finally, in Fig. 8 we illustrate the NRQCD decomposi-

tion in its different waves for the upper bound of Acos 2ϕT for
J=ψ . As one can see, for the CMSWZ set (left panel) there

is a clear dominance of one single wave: 1Sð8Þ0 , while for the
SV set there are two dominant waves which contribute

almost equally, i.e. 1Sð8Þ0 and 3Pð8Þ
J . This behavior could be

traced back to the values of the corresponding LDMEs.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have studied the quarkoniumþ jet
electroproduction under the assumption of TMD factori-
zation, within NRQCD. We have been able to identify

broad kinematic regions where the quark contribution is
negligible, and where the cross section can be analyzed
only in terms of gluon TMDs. The specific azimuthal
modulations entering the cross sections could allow for a
direct access to important TMDs that are still completely
unknown, like those involving linearly polarized gluons in
unpolarized or transversely polarized nucleons.
With the help of positivity bounds for these TMDs we

have demonstrated that, over a range of accessible regions
of the phase space, the arising azimuthal asymmetries are
potentially very large. Consequently, this process could be
an excellent way to experimentally access the ratio of the
linearly polarized gluon TMD over the unpolarized one at a
future electron-ion collider.
Besides these model independent estimates, we have

also considered a nonperturbative model, valid in the
small-x regime, namely the MV model, and presented
some predictions which could be tested against experi-
mental data.
Like any leading-order calculation, our work can be

improved upon in different ways. Notably, should one aim
to reliably extract gluon TMDs from precision data (at
present not available) on the process under study, our
computation of the cross section could be extended to take
the following aspects into account. Firstly, the hadroniza-
tion of the heavy-quark pair state into the quarkonium
involves the emission of soft gluons, which can smear its
transverse momentum over a range of the order of 2mcv, an
effect which can be encoded in the so-called quarkonium
TMD shape functions recently introduced in [50,51].
Likewise, the precision with which the transverse momen-
tum of the gluon can be reconstructed is unavoidably
limited by a factor of order ΛQCD due to hadronization.
Moreover, an additional uncertainty can be expected due to
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and SV (right). The upper bound is decomposed in all the contributions to the total NRQCD result, i.e., the 1Sð8Þ0 , 3Sð8Þ1 , and 3Pð8Þ
J waves in

the color octet, and the 3Sð1Þ1 wave in the color singlet.

AZIMUTHAL ASYMMETRIES IN SEMI-INCLUSIVE J=ψ … PHYS. REV. D 100, 094016 (2019)

094016-11



wide-angle radiation that escapes the jet algorithm and
hence causes a mismatch between the momentum of the
reconstructed jet and the initiating gluon. As was pointed
out in Refs. [52–54], a part of this mismatch can be
accounted for with the inclusion of TMD jet functions in
the cross section.
In order to be able to include the above mentioned

improvements to our computation in a systematic way, in
addition to the Sudakov resummations and the higher order
contributions in perturbation theory, it would be highly
desirable to have a proof of TMD factorization for this
process (e.g., in analogy with the one recently formulated
for pp → ηcX [50]). Such a factorization theorem could
also shed light on the precise role of the CO long-distance
matrix elements at small transverse momenta and pave the
way to a dedicated extraction of them in the TMD regime.
Indeed, at our present precision, the largest source of

theoretical uncertainty comes from the LDMEs which,
although they are expected to be universal, vary signifi-
cantly among different (collinear) fits.
We believe that this analysis represents an important step

towards a better understanding of gluon TMDs. Moreover,
our findings could be relevant for the study of their process
dependence, in particular when compared to similar analy-
ses for proton-proton collisions, which could be performed
at various ongoing or planned experiments at RHIC and
LHC [34–36].
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