
Proceedings of DL4KG2019 - Workshop

on Deep Learning for Knowledge

Graphs

Co-located with ESWC 2019
16th European Semantic Web Conference

Portoroz, Slovenia
2nd June 2019

Edited by

Mehwish Alam *
Davide Buscaldi +
Michael Cochez †

Francesco Osborne ⇧
Diego Reforgiato Recupero �

Harald Sack *

⇤ FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Germany
+ Labortoire d’Informatique Paris Nord (LIPN), Paris, France
† Fraunhofer Institute for Applied Information Technology FIT, Germany
⇧ Knowledge Media Institute (KMI), The Open University, UK
� University of Cagliari, Cagliari, Italy

Copyright 2019 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes. This volume
is published and copyrighted by its editors.
Proceedings submitted to CEUR-WS.org

Organizing Committee

• Mehwish Alam, FIZ Karlsruhe - Leibniz Institute for Information Infras-
tructure, Germany

• Davide Buscaldi, Universitè Paris 13, USPC, Paris, France

• Michael Cochez, Fraunhofer Institute for Applied Information Technology
FIT, Germany

• Francesco Osborne, Knowledge Media Institute (KMi), The Open Univer-
sity, UK

• Diego Reforgiato Recupero, University of Cagliari, Cagliari, Italy

• Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastruc-
ture, Germany

Program Committee

• Danilo Dessi, University of Cagliari, Italy

• Stefan Dietze, L3S Hannover, Germany

• Mauro Dragoni, Fondazione Bruno Kessler, Italy

• Aldo Gangemi, University of Bologna, Italy

• Pascal Hitzler, Wright State University, USA

• Gerard de Melo, Rutgers University, USA

• Amedeo Napoli, LORIA, CNRS, France

• Finn Arup Nielsen, Technical University of Denmark, Denmark

• Andrea Nuzzolese, , National Council of Research, Italy

• Achim Rettinger, AIFB-KIT, Germany

• Petar Ristoski, IBM research, USA

• Thiviyan Thanapalasingam, The Open University, UK

• Veronika Thost, IBM Research, USA

• Volker Tresp, Siemens AG, Germany

Preface

Over the past years there has been a rapid growth in the use and the impor-
tance of Knowledge Graphs (KGs) along with their application to many impor-
tant tasks. KGs are large networks of real-world entities described in terms of
their semantic types and their relationships to each other. On the other hand,
Deep Learning methods have also become an important area of research, achiev-
ing some important breakthrough in various research fields, especially Natural
Language Processing (NLP) and Image Recognition.

In order to pursue more advanced methodologies, it has become critical that
the communities related to Deep Learning, Knowledge Graphs, and NLP join
their forces in order to develop more e↵ective algorithms and applications. This
workshop, in the wake of other similar e↵orts at previous Semantic Web con-
ferences such as ESWC2018 as DL4KGs and ISWC2018, aimed to reinforce the
relationships between these communities and foster inter-disciplinary research
in the areas of KG, Deep Learning, and Natural Language Processing.

Contents

Loss Functions in Knowledge Graph Embedding Models.

Sameh Mohamed, Vit Novacek, Pierre-Yves Vandenbussche and Emir Munoz
. 1

Graph-Convolution-Based Classification for Ontology Alignment Change

Prediction.

Matthias Jurisch and Bodo Igler . 11

Mining Scholarly Data for Fine-Grained Knowledge Graph Construc-

tion.

Davide Buscaldi, Danilo Dessi, Enrico Motta, Francesco Osborne and Diego
Reforgiato Recupero . 21

A Comprehensive Survey of Knowledge Graph Embeddings with Lit-

erals: Techniques and Applications.

Genet Asefa Gesese, Russa Biswas and Harald Sack . 31

Iterative Entity Alignment with Improved Neural Attribute Embed-

ding.

Ning Pang, Weixin Zeng, Jiuyang Tang, Zhen Tan and Xiang Zhao 41

Knowledge Reconciliation with Graph Convolutional Networks: Pre-

liminary Results.

Pierre Monnin, Chedy Raissi, Amedeo Napoli and Adrien Coulet 47

End-to-End Learning for Answering Structured Queries Directly over

Text.

Paul Groth, Antony Scerri, Ron Daniel and Bradley Allen 57

Can Knowledge Graphs and Deep Learning Approaches help in Rep-

resenting, Detecting and Interpreting Metaphors?

Mehwish Alam .71

Loss Functions in Knowledge Graph Embedding
Models

Sameh K. Mohamed1, Vít Nováček1, Pierre-Yves Vandenbussche2, and Emir
Muñoz1

1 Data Science Institute at National University of Ireland, Galway, Ireland
2 Fujitsu Ireland Ltd, Galway, Ireland
sameh.kamal@insight-centre.org

Abstract. Knowledge graph embedding (KGE) models have become
popular for their efficient and scalable discoveries in knowledge graphs.
The models learn low-rank vector representations from the knowledge
graph entities and relations. Despite the rapid development of KGE
models, state-of-the-art approaches have mostly focused on new ways
to represent embeddings interaction functions (i.e., scoring functions).
However, we argue that the choice of a training loss function can have a
substantial impact on a model’s efficiency, which has been rather neglected
by the state of the art so far. In this paper, we provide a thorough analysis
of different loss functions that can help with the procedure of embedding
learning, providing a reduction of the evaluation metric based error. We
experiment with the most common loss functions for KGE models and
also suggest a new loss for representing training error in KGE models.
Our results show that a loss based on training error can enhance the
performance of current models on multiple datasets.

1 Introduction

The recent advent of knowledge graph embedding (KGE) models has allowed
for scalable and efficient manipulation of large knowledge graphs (KGs), im-
proving the results of a wide range of tasks such as link prediction [3,21], entity
resolution [15,2] and entity classification [16]. KGE models operate by learning
embeddings in a low-dimensional continuous space from the relational informa-
tion contained in the KG while preserving its inherent structure. Specifically,
their objective is to rank knowledge facts—relational triples (s, p, o) connecting
subject and object entities s and o by a relation type p—based on their relevance.
Various interactions between their entity and relation embeddings are used for
computing the knowledge fact ranking. These interactions are typically reflected
in a model-specific scoring function. For instance, TransE [3] uses a scoring
function defined as the distance between the o embedding and the translation of
the embedding associated to s by the relation type p embedding. DistMult [22],
ComplEx [19] and HolE [14] use multiplicative composition of the entity embed-
dings and the relation type embeddings. This leads to a better reflection of the

2 S.K. Mohamed et. al.

relational semantics and to state-of-the-art performance results (see [20] for a
review).

Although there is a growing body of literature proposing different KG models
(mostly focusing on the design of new scoring functions), the study of loss
functions—a core part of the learning process—has not received much attention
to date. This has already been shown to influence the behaviour of the KGE
models. For instance, [9] observed that despite the different motivations behind
HolE and CompleEx models, they have equivalent scoring functions. Yet their
performance still differs. In [18], the authors conclude that this difference is caused
by the fact that HolE uses a max-margin loss while ComplEx uses a log-likelihood
loss, showing that loss functions are important for thorough understanding, and
even improvement of the performance of different KGE models. However, a
comprehensive study is still missing.

In this paper, we focus on comparing different loss functions when applied
to several representative KGE models. By performing a systematic analysis of
the performance (in terms of Mean Reciprocal Rank, MRR) of different models
using different loss functions, we hope to contribute towards improving the
understanding of how loss functions influence the behaviour of KGE models
across different benchmark datasets.

The summary of our contributions is as follows:

(a) We provide a comprehensive analysis of training loss functions as used in
several state-of-the-art KGE models (Section 2);

(b) We preform an empirical evaluation of different KGE models with different
loss functions, and show the effect of different losses on the KGE models
predictive accuracy (Section 3);

(c) We propose a new formulation for a KGE loss that can provide enhancements
to the performance of KGE models. Section 3 demonstrates experimentally
that the proposed loss function can enhance performance of state-of-the-art
KGE models over multiple datasets.

2 Loss Functions in KGE Models

Generally, KGE models are cast as learning to rank problems. They employ
multiple training loss functions that comply with the ranking loss approaches.
In the state-of-the-art KGE models, loss functions were designed according to
various pointwise and pairwise approaches that we review next.

2.1 KGE Pointwise Losses

First, we discuss existing pointwise loss functions for KGE models, namely, square
error (SE), hinge, and logistic losses. Let x 2 X be one fact of the KG, f a
scoring function, and l a labelling function.
Pointwise Square Error Loss (SE). SE is the ranking loss function used in
RESCAL [15]. It models training losses with the objective of minimising the

Loss Functions in Knowledge Graph Embedding Models 3

squared difference between model scores and labels (expected output):

L
SEPt

=
1

2

X

x2X

(f(x)� l(x))2.

The optimal score for true and false facts is 1 and 0, respectively. A nice to
have characteristic of SE loss is that it does not require configurable training
parameters, shrinking the search space of hyper parameters compared to other
losses (e.g., the margin parameter of the hinge loss).
Pointwise Hinge Loss. Hinge loss can be interpreted as a pointwise loss, where
the objective is to generally minimise the scores of negative facts and maximise
the scores of positive facts to a specific configurable value. This approach is used
in HolE [14], and it is defined as:

L
hingePt

=
X

x2X

[�� l(x) · f(x)]+,

where l(x) = 1 if x is true and �1 otherwise, and [x]+ denotes max(x, 0). This
effectively generates two different loss slopes for positive and negative scores.
Thus, the objective resembles a pointwise loss that minimises negative scores to
reach ��, and maximises positives scores to reach �.
Pointwise Logistic Loss. The ComplEx [19] model uses a logistic loss, which is
a smoother version of pointwise hinge loss without the margin parameter. Logistic
loss uses a logistic function to minimise the negative triples score and maximise
the positive triples score. This is similar to hinge loss, but uses a smoother linear
loss slope defined as:

L
logisticPt

=
X

x2X

log(1 + exp(�l(x) · f(x))),

where l(x) is the true label of fact x where it is equal to 1 for positive facts and
is equal to �1 otherwise.

Taking the best of the previous loss functions, we propose a new pointwise
loss, called the Pointwise Square Loss (PSL), which combines the square growth
of SE and the configurable margin of hinge loss.
Pointwise Square Loss (PSL). In the SE loss, the objective is to set the
scores of negative and positive instances to 0 and 1, respectively. As a result,
the scores of negative instances that are less than 0, and the scores of positive
instances that are greater than 1 are penalised despite their actual compliance
with the main training objective: 8x2X+8x02X�f(x) > f(x0), where X+ and X�

are the sets of positive and negative facts, respectively. Therefore, we propose
a new loss, PSL, that allows scores of positive instances to grow and scores of
negative instances to decrease without boundaries. We also use a configurable
value � instead of 0 and 1 to allow for more search configurations as in hinge
and logistic losses. PSL is defined as:

L
PSLPt

=
1

2

X

x2X

([�� l(x) · f(x)]+)2,

4 S.K. Mohamed et. al.

�4 �2 0 2 4

0

1

2

3

4

score

lo
ss

Pairwise Square Error Loss

�4 �2 0 2 4

0

1

2

3

4

score
lo

ss

Pairwise Hinge Loss

�4 �2 0 2 4

0

1

2

3

4

score

lo
ss

Pairwise Square Hinge Loss

�4 �2 0 2 4

0

1

2

3

4

score

lo
ss

Pairwise Logistic Hinge Loss

f (x0)� f (x)

������ (�������� - ��������)

Fig. 1. Plots of growth of pairwise margin-based losses: compared to its margin with
default � = 1 and ↵ = 0.5.

where l(x) = 1 if x is true and �1 otherwise. We can see that PSL can
be made equivalent to squared hinge loss by defining it as LPSLPt(f ;X, l) =
LhingePt

(f ;X, l)2.

2.2 KGE Pairwise Losses

Here, we discuss established pairwise loss functions in KGE models, and present
two new proposed loss functions, namely tanh and softsign losses. Fig. 1 shows
the set of pairwise loss functions to be discussed in this subsection.
Pairwise Hinge Loss. Hinge loss is a linear learning-to-rank loss that it is used
for maximum-margin classification and can be implemented in both pointwise or
pairwise settings. TransE [3] and DistMult [22] models use the pairwise margin
based hinge loss. It is defined as:

L
hingePr

=
X

x2X+

X

x02X�

[�+ f(x0)� f(x)]+,

where X+ is the set of true facts, X� is the set of false facts, and � is a configurable
margin. In this case, the objective is to maximise the difference between the scores
of negative and positive instances by a good margin. This approach optimises
towards having embeddings that satisfy 8x2X+8x02X�f(x) > f(x0) as in Fig. 1.
Pairwise Logistic Loss. Logistic loss can also be interpreted as pairwise margin
based loss following the same approach as in hinge loss. The loss is defined as:

L
logisticPr

=
X

x2X+

X

x02X�

log(1 + exp(f(x0)� f(x))),

where the objective is to minimise marginal difference between negative and
positive scores with a smoother linear slope than hinge loss as shown in Fig. 1.

2.3 KGE Multi-Class Losses

Recent KGE approaches have addressed the ranking problem as a multi-class
classification. Next, we discuss how this is done.
Binary Cross Entropy Loss. ConvE model [5] proposed a new binary cross
entropy multi-class loss to model its training error. In this setting, the whole
vocabulary of entities is used to train each positive fact such that for a triple

Loss Functions in Knowledge Graph Embedding Models 5

(s, p, o), all facts (s, p, o0) with o0 2 E and o0 6= o are considered false. Despite the
extra computational cost of this approach, it allowed ConvE to generalise over a
larger sample of negative instances and outperform other approaches [5].
Negative-Log Softmax Loss. In a recent work, Lacroix et. al. [10] introduced
a softmax regression loss to model training error of the ComplEx model as a
multi-class problem. In this approach, the objective for each triple x = (s, p, o) is
to minimise the following loss:

Lsoftmax
spo = Lo0

spo +Ls0

spo , s.t.

Lo0

spo = �fspo + log(
X

o0
exp(fspo0))

Ls0

spo = �fspo + log(
X

s0
exp(fs0po))

(1)

where s0 2 E, s0 6= s, o0 2 E and o0 6= o. This resembles a log-loss of the softmax
value of the positive triple compared to all possible object and subject corruptions,
where the objective is to maximise positive facts scores and minimise all other
scores. This approach achieved significant improvement to the prediction accuracy
of ComplEx model over all benchmark datasets when used with the 3-nuclear
norm regularisation of embeddings [10].

2.4 Negative Sampling for KGE Losses

In learning to rank approaches, models use a ranking loss, e.g., pointwise or
pairwise loss to rank a set of true and negative instances [4], where negative
instances are generated by corrupting true training facts with a ratio of negative
to positive instances [3]. This corruption happens by changing either the subject
or object of the true triple instance. In this configuration, the ratio of negative
to positive instances is traditionally learnt using a grid search, where models
compromise between the accuracy achieved by increasing the ratio and the
runtime required for training.

On the other hand, multi-class based models train to rank positive triples
against their all possible corruptions as a multi-class problem where the range of
classes is the set of all entities. For example, training on a triple (s, p, o) is achieved
by learning the right classes "s" and "o" for the pairs (?, p, o) and (s, p, ?), where
the set of possible classes is E of size Ne. Despite the enhancements of predictions
accuracy achieved by such approaches [5,10], such negative sampling procedure
is exhaustive and require high space complexity due to the usage of the entire
entity vocabulary for each triple.

3 Experiments

In this section, we describe the experiments conducted on three state-of-the-art
KGE models, namely, TransE [3], DistMult [22] and ComplEx [19] (equivalent to
HolE [9]), using the previously discussed loss functions. TransE is a distance-based
scoring function, while DistMult and ComplEx are multiplicative scoring functions.

6 S.K. Mohamed et. al.

Table 1. Characteristics of the datasets.

Dataset # Entities # Relations |Train| |Valid| |Test|

WN18 41k 18 141k 5k 5k
WN18RR 41k 11 87k 3k 3k
NELL50k 50k 497 159k 5k 5k
NELL239 48k 239 74k 3k 3k
FB15k-237 15k 237 272k 18k 20k

We present the benchmarking datasets, experiments setup, and implementation
details including software and hardware configurations.
Benchmarking Datasets. In our experiments we use six knowledge graph
benchmark datasets:

– WN18 & WN18RR: subsets of Wordnet dataset [11] that contain lexical
information of the English language [3,5].

– NELL50k & NELL239: subsets of NELL dataset [6,7] that we have created
to test our model, which contains general knowledge about people, places,
teams, universities, etc.

– FB15k-237: a subset of the Freebase dataset [1] that contains information
about general human knowledge [17].

Table 1 contains the characteristics of our benchmark datasets3.
Evaluation Protocol. The three KGE models are evaluated using a unified
protocol that assesses their performance in the task of link prediction. Let X be
the set of facts (triples), ⇥E be the embeddings of entities E, and ⇥R be the
embeddings of relations R. The KGE evaluation protocol works in three steps:

(1) Corruption: For each x = (s, p, o) 2 X, x is corrupted 2|E|� 1 times by
replacing its subject and object entities with all the other entities in E. The
corrupted triples can be defined as:

xcorr =
[

s02E

(s0, p, o) [
[

o02E

(s, p, o0)

where s0 6= s and o0 6= o. These corruptions are considered effectively negative
examples for the supervised training and testing process under the Local Closed
World Assumption [13].

(2) Scoring : Both original triples and corrupted instances are evaluated using
a model-dependent scoring function. This process involves looking up embeddings
of entities and relations, and computing scores depending on these embeddings.

(3) Evaluation: Each triple and its corresponding corruption triples are
evaluated using the reciprocal ranking metric as a separate query, where the
original triples represent true objects and their corruptions false ones. It is
possible that corruptions of triples may contain positive instances that exist
3 All the benchmark datasets and experimental results are available for download in

the following url: https://figshare.com/s/8c2f1e1f98aff44b5b71

Loss Functions in Knowledge Graph Embedding Models 7

Table 2. Link prediction results for KGE models with different loss functions on
standard benchmark datasets. (*) represents the models’ default loss function. In the
ranking losses, best results are computed per model: bold results represent the model’s
best result and underlined results represent the best result in a loss approach. In
multi-class losses, best results are computed across all models.

Model Approach Loss WN18 WN18RR NELL50k NELL239 Fb15k-237
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

R
an

ki
ng

Lo
ss

TransE

Pairwise Hinge ⇤ 0.52 0.95 0.20 0.47 0.76 0.91 0.28 0.43 0.27 0.43
Logistic 0.53 0.92 0.21 0.48 0.71 0.86 0.27 0.43 0.26 0.43

Pointwise

Hinge 0.15 0.38 0.12 0.34 0.28 0.40 0.19 0.32 0.12 0.25
Logistic 0.14 0.36 0.11 0.31 0.26 0.38 0.17 0.31 0.01 0.23

SE 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.01
PSL 0.20 0.49 0.12 0.33 0.38 0.54 0.19 0.33 0.11 0.24

DistMult

Pairwise Hinge ⇤ 0.77 0.89 0.40 0.45 0.45 0.60 0.20 0.32 0.10 0.16
Logistic 0.79 0.93 0.39 0.45 0.68 0.83 0.26 0.40 0.19 0.36

Pointwise

Hinge 0.85 0.95 0.43 0.49 0.81 0.92 0.25 0.41 0.21 0.39
Logistic 0.77 0.93 0.43 0.50 0.70 0.84 0.28 0.43 0.20 0.39

SE 0.81 0.95 0.43 0.50 0.81 0.94 0.31 0.48 0.22 0.40
PSL 0.85 0.95 0.40 0.46 0.85 0.94 0.24 0.40 0.20 0.38

ComplEx

Pairwise Hinge 0.94 0.95 0.39 0.45 0.86 0.94 0.24 0.38 0.20 0.35
Logistic 0.91 0.95 0.41 0.47 0.72 0.86 0.27 0.43 0.19 0.35

Pointwise

Hinge 0.91 0.95 0.41 0.47 0.86 0.95 0.21 0.36 0.20 0.39
Logistic ⇤ 0.94 0.95 0.36 0.39 0.85 0.94 0.14 0.24 0.13 0.28

SE 0.95 0.96 0.47 0.53 0.82 0.94 0.35 0.52 0.22 0.41
PSL 0.94 0.95 0.41 0.45 0.90 0.96 0.24 0.40 0.24 0.43

M
ul

ti
-c

la
ss

lo
ss CP - BCE - - - - - - - - - -

- Softmax 0.12 0.18 0.08 0.12 - - - - 0.22 0.42

DistMult - BCE 0.82 0.94 0.43 0.49 - - - - 0.24 0.42
- Softmax 0.81 0.95 0.43 0.50 0.91 0.96 0.39 0.55 0.34 0.53

ComplEx - BCE 0.94 0.95 0.44 0.51 - - - - 0.25 0.43
- Softmax 0.92 0.95 0.44 0.52 0.94 0.97 0.40 0.58 0.35 0.53

among training or validation triples. In our experiments, we alleviate this problem
by filtering out positive instances in the triple corruptions. Therefore, MRR and
Hits@k are computed using the knowledge graph original triples and non-positive
corruptions [3].
Implementation. We use TensorFlow framework (GPU) along with Python 3.5
to implement the KGE models. Experiments were executed on a Linux machine
with processor Intel(R) Core(TM) i70.4790K CPU @ 4.00GHz, 32 GB RAM, and
an nVidia Titan X GPU.
Experimental Setup. In the experiments, we use state-of-the-art KGE models
TransE, DistMult, and ComplEx to analyse the impact of various loss functions.
We run these models over the previously mentioned benchmark datasets. A grid
search was performed to obtain the best hyperparameters for each model4. In
all our experiments, the set of investigated parameters are: embeddings size
K 2 {50, 100, 150, 200} and margin � 2 {1, 2, 3, 4, 5}. We use a fixed learning rate
of 0.1 and generate two corruptions per triple during training. All embeddings
4 Detailed results and best hyperparameters can be found at: https://figshare.com/
s/8c2f1e1f98aff44b5b71

8 S.K. Mohamed et. al.

vectors of our models are initialised using the uniform Xavier random initialiser [8].
We use 10 mini-batches per epoch, with a maximum of 1,000 epochs for training.
We implemented early stopping for the training with a target MRR metric that
is checked every 50 epochs (i.e., training stops if the filtered MRR decreases).

4 Results and Discussion

Table 2 shows evaluation results for KGE models using different loss functions
on standard benchmark datasets.

4.1 Ranking Losses

The results clearly show that changing the models’ default loss functions can
improve the reported performance of the KGE models. Moreover, the loss function
we have proposed, PSL, enhances models’ performance on multiple datasets. For
example, the DistMult model uses pairwise hinge loss by default, but its version
with the PSL function achieve 1.2% and 7.1% better MRR scores on WN18 and
NELL50k datasets, and its version with SE loss provides best result on the other
datasets. On the other hand, ComplEx originally uses pointwise logistic loss,
but its version with SE loss results in better MRR score on WN18, WN18RR
and NELL239 datasets. ComplEx using PSL version achieves the best results in
terms of MRR on the NELL50k and FB15k-237 datasets.

In addition to confirming our main assumption, the results provide for an
interesting observation. The versions of the TransE model with pairwise loss
functions consistently achieve better results in terms of mean rank, MRR, and
Hits@k when compared to the versions with pointwise losses. Conversely, the
DistMult and ComplEx models achieve the best MRR and Hits@k scores when
pointwise losses are used. This behaviour is likely caused by the fact that the
models use different scoring approaches: TransE scores triples using distances in
the embedding space, but DistMult and ComplEx use a multiplicative approach.
This observation may be used for designing optimal combinations of scoring and
cost functions in future KGE models. However, for a truly comprehensive recom-
mendation, more thorough analysis of other distance-based and multiplicative
scoring functions is required.

In terms of the type of cost function, the results show that the models with
our proposed pointwise square loss (PSL) function outperform their versions
with other pointwise losses (the MRR score is better in 7 out of 15 experiment
configurations of TransE, DistMult, and ComplEx models on all datasets).

An important technical observation is that the number of configurable pa-
rameters of a loss function has a significant impact on the time required for
training the corresponding model. The training time grows exponentially with
respect to the number of hyperparameters used in training. Pointwise SE and
both pointwise and pairwise logistic losses do not have configurable parameters,
therefore they require minimal training time when compared to other losses with
additional configurable parameters. Even the margin based loss functions that
require only one parameter, �, have significantly slower training time than SE

Loss Functions in Knowledge Graph Embedding Models 9

and logistic losses. In our experiments, models with configurable margin losses
required 5 times more training time than model using losses with no configurable
parameters as we searched for best margin � in a set of five elements.

In ranking loss functions, the differences in evaluation accuracy of models
using different loss functions can be sometimes relatively small. In real world
large scale knowledge graph applications, the choice of training loss function for a
KGE model will therefore always involve a compromise between both evaluation
accuracy and training time efficiency.

4.2 Multi-Class Losses

Results of multi-class loss shows that models’ versions with negative-log softmax
loss outperform their versions with BCE loss over all datasets. Also, it shows
that multi-class loss can provide significant improvement in terms of MRR over
ranking losses as on NELL239 and FB15k-237 datasets.

Despite the enhancements of predictions accuracy achieved by multi-class
loss approaches [5,10], they can have scalability issues in real-world knowledge
graphs with a large number of entities as they use the full entities vocabulary as
negative instances [12].

5 Conclusions and Future Work

In summary, our results clearly confirm all our key assumptions. First of all, the
choice of a loss function does have a considerable impact on the performance
of KGE models. Secondly, loss functions can be consciously selected in a way
that can optimise particular evaluation metrics. This marks a big improvement
over state-of-the-art approaches where the cost functions have been selected in
a rather non-systematic way. Last but not least, we have brought up several
interesting observations that can inform more rational and efficient design of
future KGE models.

For future work, we intend to experiment with models that use a sampled
multi-class approach, i.e., they sample negatives as a portion of the vocabulary
rather that the whole vocabulary. We also aim to study the different properties
of KGs and their effects on the performance of KGE models.

References

1. Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowledge.
In SIGMOD Conference, pages 1247–1250. ACM, 2008.

2. Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic
matching energy function for learning with multi-relational data - application to
word-sense disambiguation. Machine Learning, 94(2):233–259, 2014.

3. Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In NIPS,
pages 2787–2795, 2013.

10 S.K. Mohamed et. al.

4. Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, and Hang Li. Ranking measures
and loss functions in learning to rank. In NIPS, pages 315–323. Curran Associates,
Inc., 2009.

5. Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Con-
volutional 2d knowledge graph embeddings. In AAAI. AAAI Press, 2018.

6. Tom M. Mitchell et. al. Never-ending learning. Commun. ACM, 61(5):103–115,
2018.

7. Matt Gardner and Tom M. Mitchell. Efficient and expressive knowledge base
completion using subgraph feature extraction. In EMNLP, pages 1488–1498. The
Association for Computational Linguistics, 2015.

8. Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In AISTATS, volume 9 of JMLR Proceedings, pages
249–256. JMLR.org, 2010.

9. Katsuhiko Hayashi and Masashi Shimbo. On the equivalence of holographic and
complex embeddings for link prediction. In ACL (2), pages 554–559. Association
for Computational Linguistics, 2017.

10. Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor
decomposition for knowledge base completion. In ICML, volume 80 of JMLR

Workshop and Conference Proceedings, pages 2869–2878. JMLR.org, 2018.
11. George A. Miller. WordNet: A lexical database for english. Commun. ACM,

38(11):39–41, 1995.
12. Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with

noise-contrastive estimation. In NIPS, pages 2265–2273, 2013.
13. Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A

review of relational machine learning for knowledge graphs. Proceedings of the

IEEE, 104(1):11–33, 2016.
14. Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic embed-

dings of knowledge graphs. In AAAI, pages 1955–1961. AAAI Press, 2016.
15. Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for

collective learning on multi-relational data. In ICML, pages 809–816. Omnipress,
2011.

16. Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing YAGO:
scalable machine learning for linked data. In WWW, pages 271–280. ACM, 2012.

17. Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury,
and Michael Gamon. Representing text for joint embedding of text and knowledge
bases. In EMNLP, pages 1499–1509. ACL, 2015.

18. Théo Trouillon and Maximilian Nickel. Complex and holographic embeddings of
knowledge graphs: A comparison. CoRR, abs/1707.01475, 2017.

19. Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. In ICML, volume 48 of
JMLR Workshop and Conference Proceedings, pages 2071–2080. JMLR.org, 2016.

20. Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A
survey of approaches and applications. IEEE Trans. Knowl. Data Eng., 29(12):2724–
2743, 2017.

21. Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph
embedding by translating on hyperplanes. In AAAI, pages 1112–1119. AAAI Press,
2014.

22. Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding
entities and relations for learning and inference in knowledge bases. In ICLR, 2015.

Graph-Convolution-Based Classification for

Ontology Alignment Change Prediction

Matthias Jurisch, Bodo Igler

RheinMain University of Applied Sciences
Department of Design – Computer Science – Media

Unter den Eichen 5
65195 Wiesbaden, Germany

matthias.jurisch@hs-rm.de, bodo.igler@hs-rm.de

Abstract. Finding alignments between ontologies is a challenging and
time-consuming task. When the aligned ontologies change, these align-
ments need to be changed as well. A recent approach to this problem
proposes using embeddings as a representation for classifying changes. In
this work, we compare embedding-based approaches to a neural network
architecture built for node classification in knowledge graphs, namely re-
lational graph convolutional networks. In our evaluation on two datasets
from the biomedical domain, the best-performing embedding-based meth-
ods are RDF2Vec and TransE. The Graph convolution approach achieves
similar results as the best-performing embedding based methods on a
smaller dataset but outperforms all other approaches in standard classi-
fication metrics on a bigger dataset.

Keywords: Ontology Alignment · Alignment Adaption · Graph Em-
bedding · Graph Neural Network.

1 Introduction

Ontologies that cover overlapping topics are often connected by so-called on-
tology alignments, that describe the relation of concepts in di↵erent ontologies.
Finding these alignments is challenging and requires some degree of manual work,
which can be supported by approaches from the area of ontology matching. On-
tology matching has been an important area of semantic web research for years
[17]. However, finding these alignments is only a part of the puzzle. As ontologies
should change with the knowledge they represent, not only the ontologies need
to be adapted, but the alignments as well. As with finding alignments, adapting
them is often done manually and is very time-consuming. This is especially the
case in the area of biomedical ontologies, given the changes required in this area
as well as the size of the ontologies. Hence, automation of this task is desirable.

Rule-based approaches like [7] and [14] can be used to automate this task.
These methods are based on a set of hand-crafted rules, that need to be adapted
and maintained as ontology evolution itself may change over time. To automat-
ically classify changes, we proposed a learning based method that first learns

12 M. Jurisch, B. Igler

graph embeddings as a change representation and then applies established clas-
sification approaches [10].

In this work, we examine the application of relational graph convolutional
networks [16] to the same problem. This approach can be applied directly to
the graph and does not require a separate pre-training to generate a meaningful
graph representation. Also, we compare its performance regarding established
classification methods to approaches with intermediate representation learning.
To achieve a fair comparison, we evaluate several embedding-based methods on
an established dataset for mapping adaption and compare the results to results
obtained by applying a graph convolution.

The remainder of this paper is structured as follows: Section 2 presents foun-
dations and related work and identifies a research gap. Our approach is discussed
in Section 3. In Section 4, an evaluation of di↵erent classification approaches is
presented. Results of this evaluation are discussed in Section 5. Section 6 closes
this paper with a conclusion and an outlook.

2 Foundations and Related Work

Ontology Alignments (sometimes referred to as Ontology Mappings) are used
to connect concepts in di↵erent ontologies. When these ontologies change, an
adaption of these alignments is usually done manually. The problem of adapting
these alignments is referred to as the mapping adaption problem [7]. Work on
this topic is usually divided into the area of compositional mapping adaption and
incremental adaption [4]. To create a new alignment A0

O0
1,O

0
2
when the ontologies

O1 and O2 evolve to O
0
1 and O

0
2, the compositional approach creates a compo-

sition of the alignment AO1,O2 and A+
O2,O0

2
, the alignment between O2 and O

0
2.

The incremental approach applies a set of rules that determine how alignments
should be adapted to ontology changes. While these approaches stem from the
area of database and XML schema adaption [19,22], works by Gross [6] and Dos
Reis [5] have shown that both ideas can be applied to ontologies.

The mentioned approaches either rely on ontology mapping approaches be-
tween versions or a set of hand-crafted rules. Therefore, adaptions are either
dependent on the quality of automatic ontology matching techniques or rely
on manual work by an expert for creating rules. To automate incremental ap-
proaches using machine learning, a representation of nodes in the ontologies is
required. An approach with manual feature engineering for predicting changes
in ontologies in general was proposed by [2]. Features considered included back-
ground information from other ontologies on the same topic and records from
publication databases as well as simple structural features such as the number of
siblings and sub- or superclasses. [10] proposed using graph embeddings, specifi-
cally RDF2Vec-Embeddings [15] as a node representation, which provides a more
detailed representation of the graph structure. This representation is then used
to train established classification approaches for the mapping adaption problem.
However, only one kind of graph embedding, namely RDF2Vec, is regarded.

Graph Convolution for Ontology Alignment Change Prediction 13

Over the last ten years, several approaches for embedding knowledge graphs
have been proposed. Some of these approaches are inspired by language model-
ing techniques such as Word2Vec [12]. The aforementioned RDF2Vec [15] and
an approach based on global embeddings [3] are methods from this category. An-
other category of techniques is based on knowledge base completion approaches,
where entity and relation embeddings are learned to provide some kind of scor-
ing function to predict whether a triple should be part of the graph. The scoring
function is mostly based on some kind of translation [1,20] or multiplication
[21,18]. Embeddings from both categories can theoretically be useful when pre-
dicting alignment changes, however only one approach from the first category
has been evaluated in [10].

The aforementioned idea focuses on first creating embeddings and then learn-
ing the actual task at hand, namely, predicting which part of an ontology align-
ment should change as a consequence of an ontology change. [16] has presented
a graph network architecture that can be used for end-to-end learning on RDF
graphs. However, this kind of approach has not yet been evaluated for predicting
ontology alignment changes.

To our knowledge, the state of the art on ontology mapping adaption lacks an
evaluation of graph network approaches and a comparison of di↵erent knowledge
base embedding methods as a foundation for change classification tasks. This
aspect is at the core of the research presented in this paper.

3 Approach

The classification task we try to solve in this work is the same as in [10]: For
each changed entity c that is near an alignment statement, we predict whether an
alignment statement near c needs to be changed. To do so, we train a classifier on
data extracted from a version history. The classes we extract represent whether
in a given version change, for a changed entity c, alignment statements in the
neighbourhood of c have also been changed. For the classification itself we use two
approaches in several variants: (1) the approach with intermediate representation
learning, where we train a model for embedding all entities in the knowledge
graph and subsequently apply established classification techniques and (2) the
graph-network-based approach, where we use a relational graph convolutional
network [16] for end-to-end classification.

For the approach with intermediate representation learning, an embedding is
learned by creating a single graph out of both ontologies and the mapping and
applying a knowledge graph embedding approach to this graph. As embedding
approaches we compare the established knowledge base completion approaches
TransE [1], TransH [20], Distmult [21] and Complex [18] and RDF2Vec [15]
from the area of language-modeling based approaches. These approaches have
been chosen because of their easy accessibility in the OpenKE framework and
their general popularity. The classification approaches we apply on top of these
embeddings are from the area of Regression, Naive Bayes, Tree-Based Algorithms
as well as Support Vector Machines and Multilayer Perceptrons.

14 M. Jurisch, B. Igler

For the graph-network-based approach we apply relational graph convolu-
tional networks (RGCNs) [16]. RGCNs are an extension of graph convolutional
networks [11] to relational graphs. The core idea of RGCNs is that the prop-
agation between RGCN-layers is based on the direct connections of a node in
the relational graph. At each layer of the network, each neuron represents the
activation at a graph node. In detail, the propagation function for a forward pass
is

h(l+1)
i = �(

X

r2R

X

j2Nr
i

1

ci,r
W (l)

r h(l)
j +W (l)

0 h(l)
i)

where h(l)
i is the activation in node i at layer l of the neural network, R is

the set of all relations, Nr
i is the set of all nodes connected to i by relation r,

� is an activation function, ci,r is a normalization constant and W l
r is a weight

matrix in layer l for relation r. Hence, neural network activation travels through
the graph. The weight matrices determine what kind of relations at each layer
transport what kind of information. The depth of the network determines how
many steps in the graph the activation is propagated. To create the sets R and
Nr

i for all relations, we use a graph constructed from both ontologies and the
alignment prior to the changes we want to classify.

4 Evaluation

The main research question of our evaluation is how a graph-convolution-based
approach compares to a two-step approach with separated representation learn-
ing and classification. To evaluate this question, the impact of the graph em-
bedding choice in relation to the performance of the approach when separating
classification and representation learning also needs to be examined. To address
these issues, we conducted a series of experiments that are described in the
following subsections.

4.1 Dataset

The dataset we use has been extracted from biomedical ontologies by [9] and
has been made publically available by the authors of [6] on the web1. This
dataset consist of three biomedical ontologies – SNOMED, FMA and the NCI
Thesaurus, with version from 2009-2012 and mappings between all ontologies
for each of those versions.

These ontology versions are used as a silver standard, since ontology and
mapping versions are not necessarily perfect but contain errors. For each changed
entity close to an alignment statement in a new version of the ontology, we
examine, if an alignment statement has been changed. If this is the case, we

1 https://dbs.uni-leipzig.de/de/research/projects/evolution of ontologies and
mappings/ontology mapping adaption

Graph Convolution for Ontology Alignment Change Prediction 15

assign the changed entity the class Cchange, else, we assign the class Cnochange.
Table 1 gives an overview of the datasets we use. For each pair of ontologies, we
use two sets of changes: one set consisting of changes from 2009-2011, which is
always used as the training set, and one set of changes from 2011-2012, which is
used as the test set. In general, Cchange is always smaller than Cnochange. This
e↵ect is present to a larger extent in SNOMED-FMA than in FMA-NCI.

Table 1. Datasets

Version Entities Triples #Cchange #Cnochange

FMA-NCI 2009-2011 2M 7M 725 984
2011-2012 352 421

SNOMED-FMA 2009-2011 4M 15M 1526 13435
2011-2012 177 6925

4.2 Approach with Intermediate Representation Learning

For comparing di↵erent embedding methods as a part of the representation learn-
ing process, we first train embeddings and then compare the performance of clas-
sifiers that use these embeddings as features on our dataset. To train embeddings
from the knowledge graph completion area, we use the OpenKE-Framework [8].
To train RDF2Vec-embeddings, we use the implementation2 provided by the au-
thors of [15]. Hyperparameters where chosen based on recommendations in the
documentation.

The classification itself was implemented using scikit-learn[13]. We used clas-
sifiers from several areas, including classic regression, naive bayes and nearest
neighbour approaches as well as tree-based algorithms, SVMs and a feed-forward
neural network. A list of all classifiers used is shown in Table 2. In order to
find the optimal embedding-classifier-combination all possible combinations were
evaluated, yielding a total of 40 combinations.

As evaluation metrics we use standard classification metrics, namely preci-
sion, recall, f1-measure, accuracy, roc-auc score and average precision. Precision,
recall and f1-score are measured regarding the class Cchange, since classifica-
tion performance regarding this aspect is the most important for this task. We
evaluated each classification method on each embedding on both datasets, FMA-
NCI and SNOMED-FMA. The only exception is that we did not use RDF2Vec-
embeddings on SNOMED-FMA. RDF2Vec uses a two-step approach: first, ran-
dom walks through the graph are created (typically around 200 random walks
per entity). With the SNOMED-FMA graph containing 4 million entities and
more than 15 million triples, creating random walks for all entities would have
taken too long to be feasible given the hardware we had available. The main
issue here was the size and number of random walks.
2 http://data.dws.informatik.uni-mannheim.de/rdf2vec/code/

16 M. Jurisch, B. Igler

Table 2. Classifiers

Category Method

Regression Logistic Regression (LR)
Naive Bayes Gaussian Naive Bayes (NB)
Nearest Neighbour KNN
Tree-Based Algorithms CART, Random Forest (RF)
Support Vector Machines RBF-Kernel, Linear Kernel
Multilayer Perceptron MLP

4.3 Graph Network Based Approach

For the graph network based approach, we used the RGCN implementation
written by the authors of [16] that is available on GitHub3. For trainining

the model we used 5 hidden layers, a l2 penalty of 0.005, a dropout rate
of 0.05 and a learning rate of 0.01 with 50 training epochs. We choose only
5 hidden layers, since otherwise the model would consume too much memory
on the SNOMED-FMA dataset. The other parameters were determined by a
grid search over the hyperparameters. This approach was evaluated on the same
dataset with the same metrics as the embedding-based approach.

4.4 Results

Results of this evaluation procedure for the dataset FMA-NCI are shown in Table
3. Underlined entries represent the best values for each metric. For readability
purposes, we only show the best and the second-best results for every metric of
the combinations of embedding methods and classification approaches. For each
embedding method, we also show the two best combinations of classification
method and embedding regarding f-measure. The graph embedding is nondeter-
ministic. To account for graph embedding stability, we repeated the embedding
step and evaluation. Since the di↵erences between di↵erent runs of the embed-
ding models were insignificant, we only report results of the first experiment.

Of the embedding-based methods, RDF2Vec with Naive Bayes achieves the
best performance comparing all metrics except precision. At least one of the
other classifier/embedding combination achieves a similar performance given
one specific metric. The RGCN approach achieves very similar results to the
RDF2Vec-based classifier.

Results for SNOMED-FMA are shown in Table 4. When observing the met-
rics for this dataset, it is important to reconsider the distribution of classes
in the test set: only 2.6% of changes in the test set are in class Cchange. As
already mentioned, RDF2Vec is missing from this evaluation, as creating the
embeddings would have taken to much time on this dataset. On this dataset, no
embedding based method is better than the other methods in nearly all metrics.
The RGCN approach clearly outperforms the embedding-based methods on this

3 https://github.com/tkipf/relational-gcn

Graph Convolution for Ontology Alignment Change Prediction 17

Table 3. FMA-NCI Results

embedding classifier f1 acc prec rec roc auc avg. prec

TransE KNN 0.587 0.659 0.642 0.541 0.648 0.553
RF 0.551 0.659 0.672 0.467 0.641 0.553
SVM(RBF) 0.265 0.602 0.771 0.160 0.561 0.500
MLP 0.550 0.683 0.756 0.432 0.659 0.582

TransH MLP 0.555 0.655 0.659 0.479 0.638 0.549
RF 0.567 0.657 0.655 0.500 0.643 0.552

DistMult RF 0.516 0.639 0.647 0.429 0.619 0.534
MLP 0.560 0.656 0.657 0.488 0.640 0.551

Complex MLP 0.572 0.611 0.565 0.580 0.608 0.516
LR 0.398 0.542 0.485 0.337 0.523 0.461

RDF2Vec NB 0.657 0.548 0.701 0.619 0.501 0.701
LR 0.735 0.647 0.774 0.700 0.611 0.752

RGCN 0.624 0.778 0.706 0.561 0.723 0.540

dataset. Applying RGCNs results in significantly higher values in nearly all met-
rics except for accuracy, where the combination of TransE and linear regression
obtains similar results, which is not a remarkable score given the distribution of
classes in the test set.

To adapt our approach to the unbalanced dataset, we conducted two further
experiments: We repeated our experiments on the SNOMED/FMA-Dataset us-
ing (1) oversampling and (2) undersampling of training data so that the training
set was balanced in both experiments. Table 5 shows an excerpt of the results.
We only show the results with highest f-measure for each embedding method out
of both experiments. All best results of embedding-based methods stem from the
experiment with oversampling, whereas the best RGCN-result stems from the
undersampling experiment. Using oversampling, the RGCN overfitted despite
regularization and dropout. While the f-measure values look similar to the best
results without oversampling or undersampling, as expected, recall is higher,
whereas precision is lower.

5 Discussion

When comparing the approaches that combine embeddings with traditional clas-
sification methods, we can observe that RDF2Vec in combination with Naive
Bayes seems to show the best results where the computational e↵ort allows it.
However, since generating random walks is very costly, using this approach is
not possible for large knowledge graphs. Another embedding method that seems

18 M. Jurisch, B. Igler

Table 4. SNOMED-FMA Results

embedding classifier f1 acc prec rec roc auc avg. prec

TransE LR 0.070 0.974 0.318 0.040 0.519 0.037
NB 0.155 0.857 0.091 0.525 0.695 0.060
KNN 0.155 0.965 0.192 0.130 0.558 0.047
RF 0.189 0.944 0.148 0.260 0.611 0.057

TransH MLP 0.248 0.966 0.276 0.226 0.605 0.082
RF 0.191 0.944 0.149 0.266 0.613 0.058

Distmult MLP 0.193 0.943 0.150 0.271 0.616 0.059
RF 0.221 0.943 0.168 0.322 0.641 0.071

Complex RF 0.243 0.944 0.183 0.362 0.660 0.082
MLP 0.221 0.937 0.160 0.356 0.654 0.073

RGCN 0.542 0.978 0.508 0.581 0.784 0.305

Table 5. SNOMED-FMA Over/Undersampling

embedding classifier f1 acc prec rec roc auc avg. prec

TransE RF 0.222 0.896 0.137 0.598 0.751 0.091
TransH CART 0.224 0.896 0.138 0.605 0.754 0.093
Distmult MLP 0.223 0.895 0.136 0.605 0.753 0.092
Complex MLP 0.222 0.895 0.136 0.599 0.751 0.091
RGCN 0.461 0.965 0.355 0.656 0.814 0.241

very promising is TransE. TransE-based classification is present in all top two
performers for every metric. Hence, the choice of embedding makes a di↵erence
regarding classification performance. RDF2Vec and TransE as representations
perform best on the presented datasets.

Given the performance of the RGCN approach on both datasets we can see
that RGCN can achieve similar or better results than a combination of em-
bedding and classification approaches. On the first dataset, its performance was
similar to the best combined approach, on the second dataset it was significantly
better. Another advantage of this end-to-end learning approach is that it is signif-
icantly faster than first training the embeddings, especially for large databases.
Training embeddings using OpenKE-Embeddings or RDF2Vec at this scale was
slower then the complete RGCN classification by a factor of 20-50. On the larger
dataset, embedding the graph using RDF2Vec even took to long to be actually
usable. Therefore the answer to the research question is that a graph-network-
based approach can achieve similar or superior performance than a separated
representation learning and classification approach.

Graph Convolution for Ontology Alignment Change Prediction 19

6 Conclusion and Outlook

In this paper, we presented two approaches to predicting, whether alignment
statements need to change after an ontology update: a two-step approach that
consists of representation learning as a first step and established classification
methods as a second step and an end-to-end approach that uses a neural net-
work architecture specialized on node classification in relational graphs. In our
evaluation, we could show that on the dataset we used, the best-performing rep-
resentation learning approaches where RDF2Vec and TransE. The end-to-end
learning approach was able to achieve similar results on one dataset and outper-
form the other approaches on a second, much larger dataset while in both cases
needing much less computing time.

As future work, the integration of node and change features seems promising,
since the current approach only uses the graph structure to reason about possible
changes. Naturally, this can not be su�cient information to determine everything
about the nature of a change and how to react to it. To evaluate the capabilities of
the presented approach in other domains besides biomedical ontologies, another
dataset is required. To our knowledge, the dataset used in this paper is the only
dataset currently available for ontology mapping adaption. Hence, a new dataset
needs to be built that contains knowledge from a di↵erent domain.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in neural information
processing systems. pp. 2787–2795 (2013)

2. Cardoso, S.D., Pruski, C., Silveira, M.D.: Supporting biomedical ontology evolu-
tion by identifying outdated concepts and the required type of change. Journal of
Biomedical Informatics 87, 1 – 11 (2018). https://doi.org/10.1016/j.jbi.2018.08.013

3. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space
embeddings. In: International Semantic Web Conference. pp. 190–207. Springer
(2017). https://doi.org/10.1007/978-3-319-68288-4 12

4. dos Reis, J.C., Pruski, C., Reynaud-Delâıtre, C.: State-of-the-art on mapping main-
tenance and challenges towards a fully automatic approach. Expert Systems with
Applications 42(3), 1465–1478 (2015). https://doi.org/10.1016/j.eswa.2014.08.047

5. dos Reis, J.C., Pruski, C., Silveira, M.D., Reynaud-Delâıtre, C.: Dykosmap:
A framework for mapping adaptation between biomedical knowledge orga-
nization systems. Journal of Biomedical Informatics 55, 153 – 173 (2015).
https://doi.org/10.1016/j.jbi.2015.04.001

6. Groß, A., dos Reis, J.C., Hartung, M., Pruski, C., Rahm, E.: Semi-automatic adap-
tation of mappings between life science ontologies. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 7970 LNBI, 90–104 (2013). https://doi.org/10.1007/978-3-
642-39437-9 8

7. Groß, A., Pruski, C., Rahm, E.: Evolution of Biomedical Ontologies and Map-
pings: Overview of Recent Approaches. Computational and Structural Biotechnol-
ogy Journal pp. 1–8 (2016). https://doi.org/10.1016/j.csbj.2016.08.002

20 M. Jurisch, B. Igler

8. Han, X., Cao, S., Xin, L., Lin, Y., Liu, Z., Sun, M., Li, J.: OpenKE: An open
toolkit for knowledge embedding. In: Proceedings of EMNLP (2018)

9. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I., Berlanga, R.: Logic-based assessment
of the compatibility of UMLS ontology sources. In: JOURNAL OF BIOMEDICAL
SEMANTICS (2010). https://doi.org/10.1186/2041-1480-2-S1-S2

10. Jurisch, M., Igler, B.: RDF2Vec-based classification of ontology alignment changes.
In: Proceedings of the First Workshop on Deep Learning for Knowledge Graphs
and Semantic Technologies (DL4KGS) co-located with the 15th Extended Semantic
Web Conerence (ESWC 2018) (2018)

11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR) (2017)

12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: E�cient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013), http://arxiv.org/abs/
1301.3781

13. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

14. dos Reis, J.C., Pruski, C., Da Silveira, M., Reynaud-Delâıtre, C.: The DyKOSMap
approach for analyzing and supporting the mapping maintenance problem in
biomedical knowledge organization systems. In: Simperl, E., Norton, B., Mladenic,
D., Della Valle, E., Fundulaki, I., Passant, A., Troncy, R. (eds.) The Semantic Web:
ESWC 2012 Satellite Events. pp. 163–175. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46641-4 12

15. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data
mining. In: The Semantic Web - ISWC 20162016. pp. 498–514 (2016).
https://doi.org/10.1007/978-3-319-46523-4 30

16. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
Navigli, R., Vidal, M.E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M.
(eds.) The Semantic Web. pp. 593–607. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-93417-4 38

17. Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Chal-
lenges. IEEE Transactions on Knowledge and Data Engineering 25(10), 158–176
(2013). https://doi.org/10.1109/TKDE.2011.253

18. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embed-
dings for simple link prediction. In: Proceedings of the 33rd International Con-
ference on Machine Learning - Volume 48. pp. 2071–2080. ICML’16, JMLR.org
(2016)

19. Velegrakis, Y., Miller, R.J., Popa, L.: Mapping adaptation under evolving schemas.
VLDB ’03 Proceedings of the 29th international conference on Very large data
bases - Volume 29 pp. 584–595 (2003). https://doi.org/10.1016/B978-012722442-
8/50058-6

20. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translat-
ing on hyperplanes. In: Twenty-Eighth AAAI conference on artificial intelligence
(2014)

21. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations
for learning and inference in knowledge bases. CoRR abs/1412.6575 (2014), http:
//arxiv.org/abs/1412.6575

22. Yu, C., Popa, L.: Semantic Adaptation of Schema Mappings when Schemas Evolve.
Very Large Data Bases pp. 1006 – 1017 (2005). https://doi.org/10.1.1.72.2410

Mining Scholarly Data for Fine-Grained
Knowledge Graph Construction

Davide Buscaldi1, Danilo Dess̀ı2, Enrico Motta3, Francesco Osborne3, and
Diego Reforgiato Recupero2

1 LIPN, CNRS (UMR 7030), University Paris 13, Villetaneuse, France
davide.buscaldi@lipn.univ-paris13.fr

2 Computer Science Department, University of Cagliari, Cagliari (Italy)
{danilo dessi, diego.reforgiato}@unica.it

3 Knowledge Media Institute, The Open University, MK7 6AA, Milton Keynes, UK
{enrico.motta, francesco.osborne}@open.ac.uk

Abstract. Knowledge graphs (KG) are large networks of entities and
relationships, typically expressed as RDF triples, relevant to a specific
domain or an organization. Scientific Knowledge Graphs (SKGs) focus on
the scholarly domain and typically contain metadata describing research
publications such as authors, venues, organizations, research topics, and
citations. The next big challenge in this field regards the generation of
SKGs that also contain an explicit representation of the knowledge pre-
sented in research publications. In this paper, we present a preliminary
approach that uses a set of NLP and Deep Learning methods for ex-
tracting entities and relationships from research publications, and then
integrates them in a KG. More specifically, we i) tackle the challenge
of knowledge extraction by employing several state-of-the-art Natural
Language Processing and Text Mining tools, ii) describe an approach
for integrating entities and relationships generated by these tools, iii)
analyze an automatically generated Knowledge Graph including 10 425
entities and 25 655 relationships derived from 12 007 publications in the
field of Semantic Web, and iv) discuss some open problems that have not
been solved yet.

Keywords: Knowledge Graph · Semantic Web · Knowledge Extraction
· Scholarly Data · Natural Language Processing

1 Introduction
Knowledge graphs (KG) are large networks of entities and relationships, usually
expressed as RDF triples, relevant to a specific domain or an organization [6].
Many state-of-the-art projects such as DBPedia [9], Google Knowledge Graph,
BabelNet, and YAGO build KGs by harvesting entities and relations from textual
resources, such as Wikipedia pages. The creation of such KGs is a complex
process that typically requires to extract and integrate various information from
structured and unstructured sources.

Scientific Knowledge Graphs (SKGs) focus on the scholarly domain and typi-
cally contain metadata describing research publications such as authors, venues,

22 Buscaldi et al.

organizations, research topics, and citations. Good examples are Open Academic
Graph4, Scholarlydata.org [15], and OpenCitations [17]. These resources provide
substantial benefits to researchers, companies, and policy makers by powering
several data-driven services for navigating, analyzing, and making sense of re-
search dynamics. One of their main limitations is that the content of scientific
papers is represented by unstructured texts (e.g., title and abstract). Therefore,
a significant open challenge in this field regards the generation of SKGs that
contain also an explicit representation of the knowledge presented in scientific
publications [2], and potentially describe entities such as approaches, claims, ap-
plications, data, and so on. The resulting KG would be able to support a new
generation of content-aware services for exploring the research environment at a
much more granular level.

Most of the relevant information for populating such a KG might be derived
from the text of research publications. In the last year, we saw the emergence of
several excellent Natural Language Processing (NLP) and Deep Learning meth-
ods for entity linking and relationship extraction [12, 2, 8, 11, 10]. However, inte-
grating the outputs of these tools in a coherent KG is still an open challenge.

In this paper, we present a preliminary approach that uses a set of NLP and
Deep Learning methods for extracting entities and relationships from research
publications and then integrates them in a KG. Within our work, we refer to
an entity as a linguistic expression that refers to an object (e.g., topics, tools
names, a well-know algorithm, etc.). We define a relation between two entities
when they are syntactically or semantically connected. As an example, if a tool
T adopts an algorithm A, we may build the relation (T , adopt, A).

The main contributions of this paper are: i) a preliminary approach that
combines di↵erent tools for extracting entities and relations from research pub-
lications ii) an approach for integrating these entities and relationships, iii) a
qualitative analysis of a generated SKG in the field of Semantic Web, and iv) a
discussion of some open problems that have not been solved yet.

2 Related Work
In textual resources there are both syntactical and semantic peculiarities that
make hard the identification of entities and relations.

In previous works, entities in textual resources were detected by studying
Part-Of-Speech (POS) tags. An example is constituted by [14], where authors
provided a graph based approach for Word Sense Disambiguation (WSD) and
Entity Linking (EL) named Babelfly. Later, some approaches started to exploit
various resources (e.g., context information and existing KGs) for developing en-
semble methodologies [11]. Following this idea, we exploited an ensemble of tools
to mine scientific publications and get the input data. Subsequently, we have de-
veloped our methodology on top of the ensemble result. Relations extraction is
an important task in order to connect entities of a KG.

For doing so, authors in [8] developed a machine reader called FRED which
exploits Boxer [4] and links elements to various ontologies in order to represent

4 https://www.openacademic.ai/oag/

Mining Scholarly Data for Fine-Grained Knowledge Graph Construction 23

the content of a text in a RDF representation. Among its features FRED ex-
tracts relations between frames, events, concepts and entities5. One more project
that enables the extraction of RDF triples from text is [3], where a framework
called PIKES has been designed to exploit the frame analysis to detect entities
and their relations. These works consider a single text at a time and do not
consider the type of text they parse. In contrast with them, our approach aims
at parsing specific type of textual data and, moreover, at combining information
from various textual resources. We decided to rely on open domain information
extraction tool results refined by contextual information of our data, adapting
open domain results on Scholarly Data. In addition, we combined entities and
relations coming from di↵erent scientific papers instead of mining a single text
at a time. With our approach the resulting KG represents the overall knowledge
presented in the input scientific publications.

Recently, extraction of relations from scientific papers has also raised interest
within the SemEval 2018 Task 7 Semantic Relation Extraction and Classification
in Scientific Papers challenge [7], where participants had to face the problem
of detecting and classifying domain-specific semantic relations. An attempt to
build KGs from scholarly data was also performed by [10], as an evolution of their
work at SemEval 2018 Task 7. Authors proposed both a Deep Learning approach
to extract entities and relations, and then built a KG on a dataset of 110, 000
papers. Our work finds inspiration from it, but we used di↵erent strategies to
address open issues for combining entities and relations. In fact, authors of [10]
considered clusters of co-referenced entities to come up with a representative
entity in the cluster and solving ambiguity issues. On the contrary, we adopted
textual and statistics similarity to solve it.

3 The Proposed Approach

In this section, we describe the preliminary approach that we applied to produce
a KG of research entities. We used an input dataset composed by 12 007 abstracts
of scientific publications about the Semantic Web domain. It was retrieved by
selecting all publications from the Microsoft Academic Graph dataset which
contains in the string ”Semantic Web” in the ”field of science” heading.

3.1 Extraction of Entities and Relations

For extracting entities and relations, we exploited the following resources:

– An extractor framework designed by [10], which is based on Deep Learning
models and provides tools for detecting entities and relations from scientific
literature. It detects six types of entities (Task, Method, Metric, Material,
Other-Scientific-Term, and Generic) and seven types of relations among
a list of predefined choices (Compare, Part-of, Conjunction, Evaluate-for,
Feature-of, Used-for, Hyponym-Of).

5 http://wit.istc.cnr.it/stlab-tools/fred/

24 Buscaldi et al.

– OpenIE [1] provided with Stanford Core NLP6. It detects general entities
and relations among them, especially those which can be derived by verbs.

– The CSO Classifier [18], a tool for automatically classifying research papers
according to the Computer Science Ontology (CSO)7 [19] which is a com-
prehensive automatically generated ontology of research areas in the field of
Computer Science.

We processed each sentence from the abstract and used the three tools to
assign to each sentence si a list of entities Ei and a list of relations Ri. For
each sentence si, we firstly extracted entities and relations with the extractor
framework, and saved them in two lists (Ei and Ri, respectively). We discarded
all relations with type CONJUNCTION because they were too generic. Then,
we used CSO to extract all Computer Science topics from the sentence, further
expanding Ei. Finally, we processed each sentence si with OpenIE, and retrieved
all triples composed by subject, verb, and object in which both subject and
object were in the set of entities Ei.

3.2 Entities Refinement

Di↵erent entities in Ei may actually refer to the same concept with alternative
forms (e.g., machine learning, machine learning methods, machine-learning).

In this section, we report the methodology used to merge these entities when
they appeared together in the same abstract.

Cleaning up entities. First, we removed punctuation (e.g., dots and apos-
trophes) and stop-words (e.g., pronouns). Then we merged singular and plural
forms by using the WordNet Lemmatizer available in the NLTK8 library.

Splitting entities. Some entities actually contained multiple compound ex-
pressions, e.g., machine learning and data mining. Therefore, we split entities
when they contained the conjunction and. Referring to our example, we obtained
the two entities machine learning and data mining.

Handling Acronyms. Acronyms are usually defined, appearing the first
time near their extended form (e.g., Computer Science Ontology (CSO)) and
then by themselves in the rest of the abstract (e.g., CSO). In order to map
acronyms with their extended form in a specific abstract we use a regular ex-
pression. We then substituted every acronym (e.g., CSO) in the abstract with
their extended form (e.g., Computer Science Ontology).

3.3 Graph Generation

In order to generate the graph, we need to integrate all triples extracted from
the abstracts. In this phase we have to address three main issues. First, mul-
tiple entities derived from di↵erent abstracts may refer to the same concept.

6 https://stanfordnlp.github.io/CoreNLP/
7 http://cso.kmi.open.ac.uk
8 https://www.nltk.org/

Mining Scholarly Data for Fine-Grained Knowledge Graph Construction 25

Secondly, multiple relationships derived from the verbs in the abstract may be
redundant (e.g., {emphasize, highlight, underline}), Finally, some entities may
be too generic (e.g., paper, approach) and thus useless for a SKG.

Entity Merging For the entity merging task we exploit two data structures.
The first one, labelled W2LE, maps each word to a list of entities that share the
last token (e.g., medical ontology, biomedical ontology, pervasive agent ontology,
and so on.). With W2LE we avoided comparing those entities that syntactically
could not refer to the same entity (e.g., the entities ontology generation and
ontology adoption were not compared). The second one, labelled E2E, maps
each original entity to the entity that will represent it in the KG.

Given an entity e and the list of its tokens {t0, ..., tn}, we took tn. If tn was
not present in W2LE, a new entry key tn was added to W2LE and its value
is a list with e as its unique element. If tn was in W2LE, then we compute
the Levenshtein string similarity9 between the entity e and all other entities
e00, ..., e

0
m 2 W2LE[tn]. If the resulting score met a given threshold tL, the entity

e was mapped as e0i in E2E. Otherwise e was mapped to itself in E2E. At the
end, the entity e was added to W2LE[tn]. Finally, the map E2E was used to
select the entities for the graph. For each entry key ex, if its corresponding entity
ey = E2E[ex] was not in the graph, a new entity with label ey was added.

Relationship Merging After selecting a unique set of entities, we need to take
care the relationships among them. First we cluster all verbs labels in order to
reduce their number. For such a reason, we exploited WordNet [13] and a set of
Word2Vec word embeddings trained on a set of 9 milion research papers from Mi-
crosoft Academic Graph10. In details, given the set of all verbs V = {v0, ..., vn},
we built a distance matrix M considering as a distance between two verbs vi
and vj the 1 � WuPalmer11 similarity between their synsets. Then, we apply
a hierarchical clustering algorithm, cutting the dendrogram where the number
of clusters had the highest value of overall silhouette-width [5]. Subsequently,
clusters were refined as follows. Given a cluster c, we assigned each verb vic 2 c
with the word embedding wi in the Word2Vec model, and computed the cen-
troid ce of the cluster as the average of word embeddings of its elements. Then,
we ordered verbs in ascending order by the distance from ce. All verbs with a
distance over a threshold t were discarded. All the other verbs were mapped on
the verb nearest to the centroid ce in a map V 2V .

Finally, given each pair of entities p = (e1, e2) and their relations {r0, ..., rn},
we took every relation label lri8ri 2 {r0, ..., rn}. All relations label coming from
the extractor framework were directly merged into a single label L. All verb
labels were firstly mapped through V 2V and then merged.

9 https://pypi.org/project/python-Levenshtein/
10 Avaliable at http://tiny.cc/w0u43y
11 http://www.nltk.org/howto/wordnet.html

26 Buscaldi et al.

3.4 Detection of Generic Entities

The resulting graph may contain several generic entities (e.g., content, time,
study, article, input, and so on.) In order to discard them we used a frequency-
based filter which detects generic terms by comparing the frequency of the enti-
ties in three set of publications:

1. the set of 12 007 publications about the Semantic Web;
2. a set of the same size covering Computer Science but not the Semantic Web;
3. a set of the same size containing generic papers not about the Semantic Web

nor the Computer Science.

For each entity e, we computed the number of times it appeared in the above
datasets, so that we had three di↵erent counts c0, c00, c000. Then we computed the
ratios r0 = c0

c00 and r00 = c0

c000 . If the ratio r0 met a threshold t0, and the ratio r00

met a threshold t00 the entity e was included in the graph.
In addition, we automatically preserved all entities within a whitelist com-

posed by CSO topics and all the paper keywords in the initial dataset.

4 The Knowledge Graph

In this section, we report our preliminary results about the KG produced from
12 007 papers about the Semantic Web. We used the following parameters tL =
0.9, t0 = 2, and t00 = 3, which have been determined empirically. The resulting
KG has 10 425 entities and 25 655 relationships.

Table 1. Examples of relationships in the KG.

Subject Entity Relation Object Entity

content integration help linked data
context reasoning support web ontology language

machine readable information PART-OF semantic web
semantic wikis USED-FOR query interpretation

semantic relationship establish semantic link network
semantic relationship determine wordnet

Table 1 reports as example some relationships extracted by our framework.
The KG contains both verb-based relations (from OpenEI, in lowercase) and de-
fault relations (from the Extractor Framework, in uppercase). Verbs are usually
more informative, but also harder to extract. Conversely, the Extractor Frame-
work is more flexible and it is able to extract a large number of relationships, but
these are usually less specific. Using both systems allows us obtaining a good bal-
ance between coverage and specificity. Naturally, this set of relationships could
also be expanded by reasoning methods. For instance, the last two relationships
in Table 1 could be used to infer that wordnet is most likely a semantic link
network.

Mining Scholarly Data for Fine-Grained Knowledge Graph Construction 27
Table 2. Contribution of Extractor Framework and CSO to the KG entities.

Tools Entities Contribution Count Percentage

CSO 1 034 9.92%
Extractor Framework 8 668 83.15%

Exclusive CSO 117 1.12%
Exclusive Extractor Framework 7 751 74.35%

Entities where both tools contribute 917 8.8%
Derived Entities 1 640 15.73%

4.1 Graph Statistics

In this section, we report some statistics about entities and relations of our KG.
Table 2 reports statistics about entities. To weigh the actual contribution of
each tool, we counted the number of entities that were detected by applying
each tool. With the label Exclusive we indicate the number of entities detected
only by that underlying tool. The row Derived Entities refers to the additional
entities that were obtained by merging or splitting the original entities. The
majority of entities that are present in the resulting KG comes from the Extractor
Framework tool which contributes to the 83.15% of all entities, and exclusively
contributes to 74.35% of them. The CSO Classifier contributes with 9.92%, but
only a minority are exclusive. This was expected, since CSO contains fairly
established research topics that appeared in a minimum of 50 papers in the
dataset from which it was generated [16]. Conversely, the Extractor Framework
is able to identify many long tail entities [12] that may only appear in few research
papers. It is worth nothing that in the final KG, 15.73% of all entities are di↵erent
from the original ones due to the transformations we applied. On average, each
entity was extracted 3.69 times by one of the tools, with a maximum of 52 and
a minimum of 1.

Table 3. Contribution of Extractor Framework and OpenIE to the KG relations.

Tools Relations Contribution Count Percentage

Extractor Framework 23 624 92.09%
OpenIE 3 116 12.15%

Exclusive Extractor Framework 22 539 87.85%
Exclusive OpenIE 2 031 7.92%

Contribution of both tools 1 085 4.23%

Similarly to entities, the Extractor Framework produced also the majority of
the relations with a coverage of 92.09%, 87.85% of which exclusive to this tool.
However, the 12.15% of relations extracted by OpenIE are usually more infor-
mative since they are mapped to specific verbs. On average, each relationship
was extracted 1.32 times, with a maximum of 54 and a minimum of 1.

4.2 Limitations

In this section, we analyze some key entities of the Semantic Web and highlight
some issues that still need to be solved to automatically produce high quality

28 Buscaldi et al.

SKGs. In order to focus on specific subsections of the KG, we extracted three
subgraphs containing all the entities directly linked to ontology, natural language
processing, and artificial intelligence. For the sake of space, in the following
figures we display only the most representative relationships between each pair
of entities, considering the following priority order: any verb extracted from
OpenEI, Used-for, Part-of, Feature-of, Hyponym-Of, Evaluate-for, Compare

(a) (b)

Fig. 1. The subgraph of ontology. (a) A snippet where many entities related to ontology
are showed. (b) A snippet where relations between its nearest entities are showed.

Figure 1 shows the subgraph of ontology, which is very dense since this con-
cept is very well represented in the input dataset. The ontology entity was cor-
rectly connected to several relevant entities as semantics, knowledge base, ontol-
ogy language, description logic and so on.

The subgraph of the natural language processing entity is showed in Figure 2a.
It is less dense than that in Figure 1, since the natural language processing entity
is less represented in the input dataset. The subgraph highlights an important
issue that needs to be addressed. The entities natural language processing and nlp
were not merged. This problem is due to the fact that acronyms are managed at
abstract level, but not at graph level. Another issue regards the distinctive lack
of verb-based relations, which are often useful to better specify a relationship
between two entities.

Similar considerations also apply to Figure 2b which shows the subgraph of
the artificial intelligence entity. Some relationships between significant entities
appear to be missing. For instance, machine learning and artificial intelligence
are not connected here because they were originally linked by the CONJUNC-
TION relations, which was able to detect entities listed together, but we dis-
carded since it is too generic. Another reason can be identified in textual forms
that our approach may not be able to detect. We thus need to improve our
pipeline to be able to handle similar instances and infer more specific relation-
ships.

Mining Scholarly Data for Fine-Grained Knowledge Graph Construction 29

(a) (b)

Fig. 2. The subgraph of (a) natural language processing and (b) artificial intelligence
.
5 Conclusion and Future Work

In this paper we described a preliminary workflow for producing a Scientific
Knowledge Graph from the text of research publication. We analysed a SKG
derived from a set of 12 007 publication in the field of Semantic Web, with the aim
of gaining a better understanding of the open problems that need to be solved
when addressing this task. In summary, the analysis presented in this paper
highlighted two main challenges. The first regards the disambiguation of entities
that need to be further improved by also considering their semantic similarity.
We also need to be able to resolve acronyms at a graph level by inferring to
which extended form a certain acronym refers to in a specific publication. This
may be addressed by representing entities according to word embedding learned
from the input data or relevant textual resources. However, this representations
would not consider long-tail entities that appear in few research papers. The
second challenge regards the specificity of the relationships. While the Extractor
Framework is quite good at extracting a large number of relationships, many of
them are too generic. We thus intend to experiment with other techniques that
combine Deep Learning and NLP for deriving specific predicates from research
publications. Furthermore, we aim at validating the SKGs by human experts
through a precision-recall analysis.

Acknowledgments

Danilo Dess̀ı acknowledges Sardinia Regional Government for the financial sup-
port of his PhD scholarship (P.O.R. Sardegna F.S.E. 2014-2020).

References

1. Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic structure for
open domain information extraction. In: Proceedings of the 53rd Annual Meeting
of the ACL and the 7th IJCNLP. vol. 1, pp. 344–354 (2015)

30 Buscaldi et al.

2. Auer, S., Kovtun, V., Prinz, M., Kasprzik, A., Stocker, M., Vidal, M.E.: Towards
a knowledge graph for science. In: Proceedings of the 8th International Conference
on Web Intelligence, Mining and Semantics. p. 1. ACM (2018)

3. Corcoglioniti, F., Rospocher, M., Aprosio, A.P.: A 2-phase frame-based knowledge
extraction framework. In: Proceedings of the 31st Annual ACM Symposium on
Applied Computing. pp. 354–361. ACM (2016)

4. Curran, J.R., Clark, S., Bos, J.: Linguistically motivated large-scale nlp with c&c
and boxer. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions. pp. 33–36 (2007)

5. Dess̀ı, D., Recupero, D.R., Fenu, G., Consoli, S.: A recommender system of medical
reports leveraging cognitive computing and frame semantics. In: Machine Learning
Paradigms, pp. 7–30. Springer (2019)

6. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. SEMANTiCS
(Posters, Demos, SuCCESS) 48 (2016)

7. Gábor, K., Buscaldi, D., Schumann, A.K., QasemiZadeh, B., Zargayouna, H.,
Charnois, T.: Semeval-2018 task 7: Semantic relation extraction and classifica-
tion in scientific papers. In: Proceedings of The 12th International Workshop on
Semantic Evaluation. pp. 679–688 (2018)

8. Gangemi, A., Presutti, V., Recupero, D.R., Nuzzolese, A., et al.: Semantic Web
Machine Reading with FRED. Semantic Web 8(6), 873–893 (2017)

9. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes,
P.N., et al.: Dbpedia–a large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web 6(2), 167–195 (2015)

10. Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of en-
tities, relations, and coreference for scientific knowledge graph construction. In:
Proceedings of the EMNLP 2018 Conference. pp. 3219–3232 (2018)

11. Martinez-Rodriguez, J.L., Lopez-Arevalo, I., Rios-Alvarado, A.B.: Openie-based
approach for knowledge graph construction from text. Expert Systems with Ap-
plications 113, 339–355 (2018)

12. Mesbah, S., Lofi, C., Torre, M.V., Bozzon, A., Houben, G.J.: Tse-ner: An iterative
approach for long-tail entity extraction in scientific publications. In: ISWC. pp.
127–143. Springer (2018)

13. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11), 39–41 (1995)

14. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambigua-
tion: a unified approach. Transactions of the Association for Computational Lin-
guistics 2, 231–244 (2014)

15. Nuzzolese, A.G., Gentile, A.L., Presutti, V., Gangemi, A.: Conference linked data:
the scholarlydata project. In: ISWC. pp. 150–158. Springer (2016)

16. Osborne, F., Motta, E.: Klink-2: integrating multiple web sources to generate se-
mantic topic networks. In: ISWC. pp. 408–424. Springer (2015)

17. Peroni, S., Shotton, D., Vitali, F.: One year of the opencitations corpus. In: ISWC.
pp. 184–192. Springer (2017)

18. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.:
Classifying research papers with the computer science ontology. In: ISWC
(P&D/Industry/BlueSky). CEUR Workshop Proceedings. vol. 2180

19. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The
computer science ontology: a large-scale taxonomy of research areas. In: ISWC.
pp. 187–205 (2018)

A Comprehensive Survey of Knowledge Graph
Embeddings with Literals: Techniques and

Applications

Genet Asefa Gesese1,2, Russa Biswas1,2, and Harald Sack1,2

1 FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, Germany
2 Karlsruhe Institute of Technology, Institute AIFB, Germany

firstname.lastname@kit.edu

Abstract. Knowledge Graphs are organized to describe entities from
any discipline and the interrelations between them. Apart from facilitat-
ing the inter-connectivity of datasets in the LOD cloud, KGs have been
used in a variety of applications such as Web search or entity linking,
and recently are part of popular search systems and Q&A applications
etc. However, the KG applications su↵er from high computational and
storage cost. Hence, there arises the necessity of having a representa-
tion learning of the high dimensional KGs into low dimensional spaces
preserving structural as well as relational information. In this study, we
conduct a comprehensive survey based on techniques of KG embedding
models which consider the structured information of the graph as well as
the unstructured information in form of literals such as text, numerical
values etc. Furthermore, we address the challenges in their embedding
models followed by a discussion on di↵erent application scenarios.

Keywords: Knowledge Graph · Embedding · Literals · Knowledge Graph
embedding survey.

1 Introduction

Various Knowledge Graphs (KGs) have been published for the purpose of sharing
linked data. Some of the most popular general purpose KGs are DBpedia [14],
Freebase [1], Wikidata [23], and YAGO[16]. KGs have become quite invaluable
for various applications mainly in the area of artificial intelligence. For instance,
in a more general sense, KGs can be used to support decision making process
and to improve di↵erent machine learning applications. Spam detection, movie
recommendation, and market basket analysis are some of the ML applications
which can benefit from KGs [25]. General purpose KGs as e.g., Wikidata, often
comprise millions of entities, represented as nodes, with hundreds of millions of
facts, represented as edges connecting those nodes. However, a significant number
of important graph algorithms needed for the e�cient manipulation and analysis
of graphs have proven to be NP-complete [11]. Although KGs are e↵ective in
representing structured data, the underlying symbolic nature of the way data is
encoded as triples (i.e. < subject, predicate, object >) usually makes KGs hard

32 Genet Asefa Gesese et al.

to manipulate [24]. In order to address these issues and use a KG e�ciently, it is
recommended to convert it into a low dimensional vector space while preserving
the graph properties. To this end, various attempts have been made so far to learn
vector representation (embeddings) for KGs. However, most of these approaches,
including the state of the art TransE [2], are structure based embeddings which
do not include any literal information. This is a major disadvantage because a
lot of information encoded in the literals will be left unused when capturing the
semantics of a certain entity.

Literals can bring advantages to the process of learning KG embeddings in
two major ways. The first is in learning embeddings for novel entities i.e., entities
which are not linked to any other entity in the KG but have some literal values
associated with them. In most existing structure based embedding models, it
is not possible to learn embeddings for such novel entities. However, this can
be addressed by utilizing the information held in literals to learn embeddings.
The other advantage of literals is improving the representation of entities in
structure based embedding models where an entity is required to appear in at
least minimum number of relational triples. Some approaches have been proposed
to make use of literals for KG embeddings. The focus of this paper is to discuss
these di↵erent embedding approaches and their advantages and drawbacks in
the light of di↵erent application scenarios. Our contributions include:

– A detailed analysis of the existing literal enriched KG embedding models
and their approaches. In addition, a method is proposed to categorize them
into di↵erent groups.

– The research gaps in the area of KG embeddings in using literals are indi-
cated as directions for further future works.

The rest of this paper is organized as follows. Sect. 2 presents a brief overview
of related work. In Sect. 3, the problem formulation is provided. In Sect. 4,
the analysis of the di↵erent KG embedding techniques with literals is discussed.
In Sect. 5, various tasks used to evaluate the embedding models discussed in
Sect. 4 are explained. The survey is concluded in Sect. 6 by providing directions
for future work for KG embedding with literals.

2 Related Work

Few attempts have been made to conduct surveys on the techniques and appli-
cations of KG embeddings [12, 3, 24]. However, none of these surveys include all
the existing KG embedding models which make use of literals. The first survey
[12] is conducted with focus on network embedding models. The second [3] and
the third [24] surveys discuss only RESCAL [17] and KREAR [15] as methods
which use attributes of entities for KG embeddings, and focuses mostly on the
structure based embedding methods.

However, RESCAL is a matrix-factorization method for relational learning
which encodes each object/data property as a slice of the tensor ending up in-
creasing the dimensionality of the tensor automatically. Thus, this method is

Survey on KG Embeddings with Literals 33

not e�cient to utilize literals in KG embedding. Similarly, KREAR is not a
proper KG embedding model with literals since it takes only those data prop-
erties which have categorical values and ignores those which take any random
literals as values. This shows that there is a gap in the KG embedding surveys.
Taking this into consideration, in this paper, a survey on KG embedding models,
which make use of literals is provided.

3 Problem Formulation

In this section, a brief introduction is provided on fundamental KG and its
embeddings followed by a formal definition of KG embedding with literals.

3.1 Definitions and preliminaries

Relations (or Properties). Based on the nature of the objects, relations are
classified into two main categories:

– Object Relations – relations that link entities to entities
– Data Type Relations – relations that link entities to data values (lit-

erals).The triples consisting of literals as objects are often referred to as
attributive triples.

3.2 Types of literals

Literals in a KG encode information that is not captured by the relations or links
between the entities. There are di↵erent types of literals present in the KGs:

– Text – Wide variety of di↵erent information can be stored in KG in the
form of free text such as names, labels, titles, descriptions, comments, etc.
In most of the KG embedding models with literals, text information has
been further categorized into Short text and Long text for better capture
of the semantics in the model. The literals which are fairly short such as
for relations like names, titles, etc. are considered as Short text. On the
other hand, for strings that are much longer such as descriptions of entities,
comments, etc. are considered as Long text.

– Numeric – Information encoded in the form of real numbers, decimal num-
bers such as height, year or date, population, etc. also provide useful insight.
It is worth considering the numbers as distinct entities in the embeddings
models, as it has its own semantics to be covered which cannot be covered
by string distance metrics. For e. g. 777 is more similar to 788 than 77.

– Units of Measurement – (Numeric) literals often denote units of mea-
surements to a definite magnitude. For e. g. Wikidata property wdt:P2048
takes values in mm, cm, m, km, inch, foot, and pixel. Hence, discarding the
units and considering only the numeric values without normalization results
in loss of semantics, especially in the case if units are not comparable, as e.g.
units of length and units of weight.

34 Genet Asefa Gesese et al.

– Images – Images also provide latent useful information for modelling of
the entities. For example, a person’s details such as age, gender etc. can be
deduced via visual analysis of an image depicting the person.

– Others – Useful information encoded in the form of other literals such as
external URIs which could lead to an image, text, audio or video files.

Since the information present in the KGs is diverse, modelling of the entities is
a challenging task.

– RQ1 – How to combine the structured (triples with object relations) and

unstructured information (attributive triples) in the KGs into the represen-

tation learning?

– RQ2 – How to capture and combine the heterogeneity of the types of literals

present in the KGs into representation learning?

4 Knowledge Graph Embeddings with Literals

In this study, the investigated KG embedding models with literals are divided
into the following di↵erent categories based on the literals utilized: (i) Text, (ii)
Numeric, (iii) Image , and (iv) Multi-modal. A KG embedding model which
utilizes at least two types of literals is considered as multi-modal. This section
consists of an analysis of the models in each category, with their similarities and
di↵erences, followed by a discussion of potential drawbacks.

4.1 Text Literals

Subsequently, four KG models considering text literals are discussed, namely,
Extended RESCAL [18], DKRL [28], KDCoE [4], and KGloVe with literals [5].

Extended RESCAL improves the original RESCAL approach by process-
ing literal values more e�ciently and deal with the sparsity nature of the ten-
sors. In this method, attributive triples are handled in a separate matrix fac-
torization, which is performed jointly with the tensor factorization of the non-
attributive triples. Attributive triples containing only text literals are encoded
in an entity-attributes matrix in such a way that given a triple, one or more
< data type relation, value > pairs are created by tokenizing and stemming the
object literal. Despite the advantage that this approach handles multi-valued
literals, it does not consider the sequence of words in the literal values.

DKRL generates embeddings of entities and relations of a KG by combin-
ing structure-based and description-based representations. The structure based
representation of entities and relations are obtained via TransE [2], in which the
relation in each triple (head, relation, tail), is regarded as the translation from
head entity to tail entity. On the other hand, continuous bag of words (CBOW)
and a deep convolutional neural network model (CNN) have been used to gen-
erate the description based representations of the head and tail entities. In case
of CBOW, short text is generated from the description based on keywords and

Survey on KG Embeddings with Literals 35

their corresponding word embeddings are summed up to generate the entity em-
bedding. In the CNN model, after preprocessing of the description, pre-trained
word vectors from Wikipedia are provided as input. The CNN has five layers
and after every convolutional layer pooling is applied to decrease the parameter
space of CNN and filter noises. Max-pooling is applied for the first pooling and
mean pooling for the last one. CNN model works better than CBOW because it
preserves the sequence of words.

KDCoE focuses on the creation of an alignment between entities of mul-
tilingual KGs by creating new inter-lingual links (ILLs). The model leverages
a weakly aligned multilingual KG for semi-supervised cross-lingual learning us-
ing entity descriptions. It performs co-training of a multilingual KG embedding
model (KGEM) and a multilingual literal description embedding model (DEM)
iteratively in order for each model to propose a new ILL alternately. KGEM
adopts TransE whereas DEM uses an attentive gated recurrent unit encoder
(AGRU) to encode the multilingual entity descriptions.

KGloVe with literals works by first creating a cooccurrence matrix from
the underlying graph by performing Personalized PageRank (PPR) on the (weighted)
graph followed by the same optimisation used in the GloVe [19] approach. Two
cooccurrence matrices are generated independently and merged in the end. The
first matrix is generated using KGloVe [6] technique and Named Entity Recog-
nition is performed prior to the creation of the second matrix.

The basic di↵erences between these models lie in the methods used to exploit
the information given in the text literals and combine them with structure-
based representation. One major advantage of KDCoE over text literal based
embedding models is that it considers descriptions present in multilingual KGs.
Also, both DKRL and KDCoE embedding models are designed to perform well
for the novel entities which have only attributive triples in the KGs. Other types
of text literals are not widely considered.

4.2 Numeric literals

In this section, four models which make use of numeric literals, namely, MT-
KGNN [21], KBLRN [10], LiteralE [13], and TransEA [26] are discussed.

MT-KGNN trains a relational network (RelNet) for triple classification
and an attribute network (AttrNet) for attribute value regression in order to
learn embeddings for entities, object properties, and data properties. Only data
properties with non-discrete literal values are considered in this approach. RelNet
is a simple binary (pointwise) classification whereas the AttrNet is a regression
task. In RelNet, a concatenated triple is passed through a nonlinear transform
and then a sigmoid function is applied to get a linear transform. In the case of
AttrNet, two regression tasks are performed for head and tail data properties
respectively. Finally, the two networks are trained in a multi-task fashion using
a shared embedding space.

KBLRN combines the relational, latent (learned by adapting TransE), and
numerical features together. It uses a probabilistic PoE (Product of Experts)
method to combine these feature types and train them jointly end to end. Each

36 Genet Asefa Gesese et al.

relational feature is formulated by adopting the rule mining approach AMIE
+[9], to be evaluated in the KG to compute the value of the features. Numer-
ical features are used with the assumption that, for some relation types, the
di↵erences between the head and tail is seen as characteristics for the relation
itself. In PoE, one expert is trained for each (relation type, feature type) pair.
The parameters of the entity embedding model are shared by all the experts
in order to create dependencies between them. For numerical features, a radial
basis function is applied as activation function if the di↵erence of values is in a
specific range.

LiteralE is designed in order to incorporate literals into existing latent fea-
ture models, which are designed for link prediction. Given a base model, for
instance Distmult, LiteralE modifies the scoring function f used in Distmult
by replacing the vector representations of the entities ei in f with literal enriched
representations eliti . In order to generate eliti , LiteralE uses a learnable transfor-
mation function g which takes ei and its corresponding literal vectors li as inputs
and maps them to a new vector. For g, linear transformations, non-linear trans-
formations, simple multi-layer NNs, and non-linear transformations with gating
mechanisms are proposed. The modified scoring function f is trained following
the same procedure as in the base model.

TransEA has two component models; a newly proposed attribute embed-
ding model and a directly adopted translation-based structure embedding model,
TransE. For the attribute embedding, it uses all attributive triples containing
numeric values as input and applies a linear regression model to learn embed-
dings of entities and attributes. The loss function for TransE is defined by taking
the sum of the respective loss functions of the component models with a hyper-
parameter to assign a weight for each of the models. Finally, the two models are
jointly optimized in the training process by sharing the embeddings of entities.

Despite their support for numerical literals, all the embedding methods dis-
cussed fail to interpret the semantics behind data types of literals and units.
For e. g., ‘1999e ’ and ‘the year 1999’ could be considered same because type
semantics are discarded. Moreover, none of the models apply normalization for
literal values, hence the semantic similarity between two literal values such as,
200 mm and 2 cm is not captured. Also, most of the models do not have proper
mechanism to handle multi-valued literals.

4.3 Image

IKRL [27] learns embeddings by jointly training a structure-based (by adapting
TransE) with an image-based representation. For the image-based representa-
tion, an image encoder is applied to generate embedding for each instance of a
multi-valued image relation. Attention-based multi-instance learning is used to
integrate the representations learned for each image instance by automatically
calculating the attention that should be given to each instance. Given a triple,
the overall energy function is defined by combining four energy functions which
are based on two kinds of entity representations. The first energy function is same
as TransE and the second uses their corresponding image-based representations

Survey on KG Embeddings with Literals 37

for both head and tail entities. The third function is based on the structure-
based representation of the head entity and the image-based representation of
the tail entity whereas the fourth function is the exact opposite.

4.4 Multi-modal

Numeric literals and text: LiteralE with blocking [8] proposes to improve
the e↵ectiveness of the data linking task by combining LiteralE with a CER
blocking[7] strategy. Unlike LiteralE, it also considers literals from URI infixes
of the head entities and data relations of attributive triples. The CER blocking
is based on a two-pass indexing scheme. In the first pass, Levenshtein distance
metric is used to process literal objects and URI infixes whereas in the second
pass semantic similarity computation with Wordnet is applied to process objec-
t/data relations. All the extracted literals are tokenized into word lists so as to
create the indices.

EAKGAE [22] jointly learns entity embeddings of two KGs using structure
embedding (by adapting TransE) and attribute character embedding. Given a
triple (h, r, a), the data property r is interpreted as a translation from the head
entity h to the literal value a i.e. h + r = fa(a) where fa(a) is a compositional
function. Three di↵erent compositional functions SUM, LSTM, and N-gram-
based functions have been proposed. SUM is defined as a summation of all
character embeddings of the attribute value. In LSTM, the final hidden state
is taken as a vector representation of the attribute value. The N-gram-based
function, which shows better performance than the others, uses the summation
of n-gram combination of the attribute value.

The common drawback with both methods is that text and numeric literals
are treated in the same way. They also do not consider literal data type semantics
or multi-valued literals in their approach. Furthermore, since EAKGAE is using
character-based attribute embedding, it fails to capture the semantics behind
the cooccurrence of syllables.

Numeric literals, Text, and Images: MKBE [20] is a a multi-modal
knowledge graph embedding, in which the text, numeric and image literals are
modelled together. It extends DistMult, which creates embedding for entities and
relations, by adding neural encoders for di↵erent data types. For image triples,
a fixed-length vector is encoded using CNN. On the other hand, textual at-
tributes are encoded using sequential embedding approaches like LSTMs. Given
the vectors representations of the entities, relations and attributes, the same
scoring function from DistMult is used to determine the correctness probability
of triples.

5 Applications

In this section, the di↵erent KG application scenarios used by the techniques
discussed in Sect. 4 are presented.

Link prediction. Link prediction aims to predict new links for a KG given
the existing links among the KG entities. The models Extended RESCAL, Lit-
eralE, TransEA, KBLRN, DKRL, KDCoE, EAKGAE, IKRL, and MKBE have

38 Genet Asefa Gesese et al.

FB15K FB15K-237 YAGO-10

KBLN 0.739 0.301 0.487
MTKGNN(DistMult+MultiTask) 0.669 0.285 0.481

DistMult+LiteralE 0.583 0.314 0.504
DistMult+LiteralE-Gate 0.723 0.300 -

ComplEx+LiteralE 0.765 0.299 0.509

ConvE+LiteralE 0.66 0.314 0.506

(a)

Model MRR

Numeric

KBLN 0.503
S+N 0.549

Image

IKRL 0.509
S+I 0.566

(b)
Table 1: (a) MRR results on link prediction taken from LiteralE [13], and (b)
MRR results on link prediction task on YAGO-10 taken from MKBE [20].

been evaluated on the link prediction task. However, it is not possible to compare
the obtained evaluation results because the experiments have been carried out
on di↵erent datasets. The authors of the LiteralE and MKBE models conducted
some experiments to compare their proposed models/submodels with already
existing ones. LiteralE has been compared with KBLN, which is a submodel of
KBLRN designed without taking into consideration the relational information of
graph feature methods. Besides KBLN, LiteralE has been compared with a new
modified version of MTKGNN, where its ER-MLP part is replaced with Dist-
Mult to make it compatible with their specific implementation environment. The
results taken from LiteralE are shown in Table 1a. From the result, it can be
seen that DistMult+LiteralE delivers better MRR values when it is compared
with both KBLN and MTKGNN on the datasets FB15k-237 and YAGO-10. The
authors of LiteralE argue that the performance of DistMult+LiteralE is lower
than the others on the FB15K dataset because this dataset includes a lot of
inverse relations and hence claim that it is not an appropriate dataset for link
prediction. The other experiments conducted are in MKBE where the submodels,
structures along with numeric and image literals respectively arecompared with
KBLN and IKRL respectively as shown in Table 1b. Thereby, it can be inferred
that the two submodels of MKBE perform better than their counterparts.

Triple Classification. A potential triple is classified as 0 (false) or 1 (true).
MTKGNN, KGlove with literals, and IKRL have been evaluated on this task.
Since they do not use a common evaluation dataset, it is not possible to compare
the reported results directly.

Entity Classification. Given a KG and an entity, the entity type is pre-
dicted using a multilabel classification algorithm with KG entity types as given
classes. DKRL has been evaluated on this task.

Entity Alignment. Semantically similar entities are determined from mul-
tiple KGs using specific similarity metrics. EAKGAE has been evaluated on
an entity alignment task. In addition, KDCoE has also been evaluated on a
cross-lingual entity alignment task which determines similar entities in di↵erent
languages. Despite the fact that both these models use the same task for eval-
uation, their experimental results cannot be compared since they are based on
di↵erent datasets.

Survey on KG Embeddings with Literals 39

Other Machine Learning problems. Attribute value prediction, near-
est neighbor analysis, data linking, and document classification are other ap-
plications scenarios used for the evaluation of the models discussed in Sect. 4.
In MTKGNN, attribute value prediction is applied using an attribute-specific
Linear Regression classifier for evaluation. Nearest neighbor analysis has been
performed in LiteralE to compare DistMult+LiteralE with the base model Dist-
Mult. Data linking and document classification tasks have been used in LiteralE
with blocking and KGlove with literals respectively.

6 Conclusion and Future Directions

To sum up, in this paper, a comprehensive survey of KG embedding models with
literals is presented. The survey provides a detailed analysis and categorization
of the embedding techniques of these models along with their application sce-
narios and limitations. As mentioned in Section 4, these embedding models have
di↵erent drawbacks. None of them consider the e↵ect that data types and units
have on the semantics of literals. Most of them also do not have a proper mech-
anism to handle multi-valued literals. Thus, filling these gaps will be taken as a
direction for future work.

Moreover, only few approaches have been proposed for multi-modal KG em-
beddings and none of them take into consideration literals with URIs linking to
items such as audio, video, or pdf files. This clearly indicates that more work has
to be invested to address di↵erent types of literals. Regarding the comparison of
the quality of the models, as discussed in Section 5, it was only possible to use
the experimental results conducted for some of the models as most use di↵erent
datasets and application scenarios. However, as a future work, experiments for
all of the models on di↵erent applications will be performed to enable better
comparability.

References

1. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A Collab-
oratively Created Graph Database for Structuring Human Knowledge. In: ACM
SIGMOD international conference on Management of data (2008)

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
Embeddings for Modeling Multi-Relational Data. In: NIPS (2013)

3. Cai, H., Zheng, V.W., Chang, K.C.C.: A Comprehensive Survey of Graph Embed-
ding: Problems, Techniques, and Applications. TKDE (2018)

4. Chen, M., Tian, Y., Chang, K.W., Skiena, S., Zaniolo, C.: Co-training Embeddings
of Knowledge Graphs and Entity Descriptions for Cross-Lingual Entity Alignment.
arXiv preprint arXiv:1806.06478 (2018)

5. Cochez, M., Garofalo, M., Lenßen, J., Pellegrino, M.A.: A First Experiment on
Including Text Literals in KGloVe. arXiv preprint arXiv:1807.11761 (2018)

6. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global rdf Vector Space
Embeddings. In: International Semantic Web Conference. Springer (2017)

40 Genet Asefa Gesese et al.

7. de Assis Costa, G., de Oliveira, J.M.P.: A Blocking Scheme for Entity Resolution
in the Semantic Web. In: AINA (2016)

8. de Assis Costa, G., de Oliveira, J.M.P.: Towards Exploring Literals to Enrich Data
Linking in Knowledge Graphs. In: AIKE (2018)

9. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast Rule Mining in Onto-
logical Knowledge Bases with AMIE+. VLDB (2015)

10. Garćıa-Durán, A., Niepert, M.: Kblrn: End-to-End Learning of Knowledge Base
Representations with Latent, Relational, and Numerical Features. In: UAI (2018)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

12. Goyal, P., Ferrara, E.: Graph Embedding Techniques, Applications, and Perfor-
mance: A Survey. Knowl.-Based Syst. (2018)

13. Kristiadi, A., Khan, M.A., Lukovnikov, D., Lehmann, J., Fischer, A.: Incorporating
Literals into Knowledge Graph Embeddings. CoRR (2018)

14. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al.: Dbpedia–A Large-scale,
Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web (2015)

15. Lin, Y., Liu, Z., Sun, M.: Knowledge Representation Learning with Entities, At-
tributes and Relations. ethnicity (2016)

16. Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: A Knowledge Base from Mul-
tilingual Wikipedias. In: CIDR (2013)

17. Nickel, M., Tresp, V., Kriegel, H.P.: A Three-Way Model for Collective Learning
on Multi-Relational Data. In: ICML (2011)

18. Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing Yago: Scalable Machine Learning
for Linked Data. In: Proceedings of the 21st international conference on World
Wide Web. ACM (2012)

19. Pennington, J., Socher, R., Manning, C.: Glove: Gobal Vectors for Word Repre-
sentation. In: EMNLP (2014)

20. Pezeshkpour, P., Chen, L., Singh, S.: Embedding multimodal relational data for
knowledge base completion. arXiv preprint arXiv:1809.01341 (2018)

21. Tay, Y., Luu, A.T., Phan, M.C., Hui, S.C.: Multi-task Neural Network for Non-
discrete Attribute Prediction in Knowledge Graphs. CoRR (2017)

22. Trsedya, B.D., Qi, J., Zhang, R.: Entity Alignment between Knowledge Graphs
Using Attribute Embeddings. In: AAAI (2019)

23. Vrandečić, D., Krötzsch, M.: Wikidata: A Free Collaborative Knowledge Base
(2014)

24. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge Graph Embedding: A Survey
of Approaches and Applications. TKDE (2017)

25. Wilcke, X., Bloem, P., De Boer, V.: The Knowledge Graph as the Default Data
Model for Learning on Heterogeneous Knowledge. Data Science (2017)

26. Wu, Y., Wang, Z.: Knowledge Graph Embedding with Numeric Attributes of En-
tities. In: Rep4NLP@ACL (2018)

27. Xie, R., Liu, Z., Chua, T.S., Luan, H.B., Sun, M.: Image-embodied knowledge
representation learning. In: IJCAI (2017)

28. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation Learning of Knowledge
Graphs with Entity Descriptions. In: AAAI (2016)

Iterative Entity Alignment with Improved
Neural Attribute Embedding

Ning Pang1, Weixin Zeng1, Jiuyang Tang1,2, Zhen Tan1, and Xiang Zhao1,2

1
Science and Technology on Information Systems Engineering Laboratory, National

University of Defense Technology, Changsha, China
2
Collaborative Innovation Center of Geospatial Technology, Wuhan, China

xiangzhao@nudt.edu.cn

Abstract. Entity alignment (EA) aims to detect equivalent entities in

di↵erent knowledge graphs (KGs), which can facilitate the integration

of knowledge from multiple sources. Current EA methods usually har-

ness KG embeddings to project entities in various KGs into the same

low-dimensional space, where equivalent entities are placed close to each

other. Nevertheless, most methods fail to take fully advantage of other

sources of information, e.g., attribute information, and overlook the neg-

ative impact brought by lack of labelled data. To overcome these deficien-

cies, in this paper, we propose to generate neural attribute representation

by considering both local and global signals. Besides, entity representa-

tions are refined via an iterative training process on the neural network.

We evaluate our proposal on real-life datasets against state-of-the-art

methods, and the results demonstrate the e↵ectiveness of our solution.

Keywords: Entity alignment · Attribute information · Iterative train-

ing.

1 Introduction
Knowledge graphs (KGs) are becoming increasingly important for many down-
stream applications such as question answering [1] and sentence generation [2].
A large number of KGs, e.g., YAGO and DBpedia, have been constructed. How-
ever, in reality, these KGs are far from complete. To tackle this problem, various
methods have been proposed, among which KG alignment attracts growing at-
tention since it can incorporate complementary knowledge from multiple external
KGs. Unfortunately, KGs are usually built in di↵erent natural languages or with
various ontology systems, resulting in the obstacle of integrating knowledge from
external KGs to refine the target KG. As thus, many research works have been
devoted to improving the performance of KG alignment.
Current KG alignment approaches lay emphasis on entity alignment (EA),

as entities are the pivots connecting di↵erent KGs. The task of EA aims to
identify equivalent entities in di↵erent KGs. State-of-the-art methods [3, 4] nor-
mally harness translation-based KG embeddings to project entities and relations
into a low-dimensional embedding space. The separated embedding spaces are
then unified by harnessing seed entity pairs. Eventually given a target entity,
its counterparts in other KGs can be determined in accordance to the distance
in the unified embedding space. Nevertheless, Wang et al. [5] argued that KG
embedding might fail to fully mine the structural information and instead they
utilize graph convolutional network (GCN) [6] to generate entity embeddings.

42 Ning Pang, Weixin Zeng, Jiuyang Tang, Zhen Tan, and Xiang Zhao

Additionally, they proposed to incorporate attribute information to serve as ad-
ditional signals for EA. Due to the limitation of dataset, attribute names are
considered instead of attribute values. Their method has also achieved superior
results on existing EA benchmarks.
In [5], attribute names are represented as one-hot embeddings of the most

frequent attributes. However, the most frequent attributes appear with the ma-
jority of entities and are not able to help identify a specific entity. Addition-
ally, the neighbourhood attribute information is completely ignored. For in-
stance, to determine the equivalent entity of entity Michael Jordan, optional
attribute hasSpouse would be more useful than obligatory attribute birthDate
since every person has a birthday while not necessarily a spouse. Besides, the at-
tributes of Michael Jordan’s neighbouring entities, e.g., hasNBAChampionship
for Chicago Bulls, can also be harnessed for representing Michael Jordan.
Also, the shortage of labelled data (seed entity pairs) is largely overlooked by
previous works, which will restrain the quality of entity embeddings, and hence,
the performance of EA.
In this paper, to handle these drawbacks, we devise an iterative entity alignment

method with improved neural attribute embedding, Inga, which enhances EA
performance by harnessing neural network, i.e., GCN, iterative training strategy
and refined attribute information to generate entity representations. In specific,
by incorporating the neighbouring attributes of an entity (local attribute infor-
mation) and the frequency of an attribute (global attribute information) to form
the improved attribute feature vector, more comprehensive signals can be cap-
tured in comparison to the one-hot representation [5]. To deal with the second
limitation, an iterative training strategy is utilized to train GCN, which keeps
labelling unlabelled instances and select high-quality ones to retrain itself so as
to generate better entity embeddings.
The main contributions of this work are:

– Attribute representation is improved by considering both local and global
information.

– We apply an iterative training mechanism on GCN to generate more accurate
structure and attribute representations.

– We evaluate Inga against state-of-the-art methods on three cross-lingual EA
datasets, and the results demonstrate the e↵ectiveness of our proposal.

Related Works. The task of KG alignment can be traced back to traditional
ontology matching task [7]. With the emergence and prevalence of embedding
techniques, most KG alignment solutions resort to KG embedding for determin-
ing equivalent elements in di↵erent KGs. Chen et al. [3] (MTransE) are the first
to utilize TransE to embed entities in each KG into separated embedding spaces,
which are then unified by di↵erent alignment models using seed entities pairs.
The distance in the unified embedding space is used to determine entity pairs.
JAPE [4] introduces attribute type information for refining structure representa-
tion captured by KG embedding. GCN [5], on the other hand, harnesses GCN,
instead of KG embedding, to generate entity representation. Attribute informa-
tion, represented as one-hot vectors of most frequent attributes, is also utilized
to complement structure information.

Iterative Entity Alignment with Improved Neural Attribute Embedding 43

2 Methodology

Task Definition. A KG is usually represented as G = (E,R,A, V), where E,
R, A, V denotes entities, relations, attributes and attribute values respectively.
Given two KGs, G1 and G2, EA aims to automatically mine new aligned entity
pairs based on existing seed entity pairs S = {(ei1, ei2)|ei1 2 E1, ei2 2 E2}mi=1.

 1e

2
e

3
e

4
e

5
e

Attribute 1

Attribute 2

Attribute 3

Attribute 4

Structure Information

Attribute Information

Entity

GCN

Embedding Space

21
e 22
e

12
e11

e

31
e 32
e

42
e

41
e

Seed pairs

Fig. 1. The framework of our model. Dashed-line rectangle represents the structure

information of e1. The solid-line rectangle represents the attribute information of e1

with respect to attribute 4. GCN embeds entities into a unified embedding space.

Structure and Attribute Embedding. Equivalent entities in multiple KGs
are assumed to have similar neighbours (structure information) and attribute
names (attribute information). To capture these information, GCN is utilized to
operate on KGs and produce node-level embeddings for all entities. An entity’s
structure information can be represented by xs, as thus, the matrix encoding
structure information of all entities is denoted by Xs, which is randomly initial-
ized and updated during model training in our setting. Similarly, the attribute
feature of an entity can be represented by a vector xa, and the corresponding
attribute feature matrix for all entities is Xa. The initial attribute matrix is
pre-computed, as detailed in the following. Note that following previous works,
here we focus on attribute names, instead of attribute values.
In [5], attribute information is converted into a k-dimension one-hot vector

encoding k most frequent attributes. Nonetheless, this setting fails to di↵eren-
tiate entities or consider the neighboring information. In our model, the most
frequent attributes (which we define as attributes appearing with more than
80% of entities) are discarded for representing an entity since they appear with
many entities and are not discriminative. Among the rest of attributes, we se-
lect k most frequent ones as they can better distinguish entities and are not too
long-tail (which might result in very sparse attribute matrix). For an entity, its
attribute feature vector can be denoted by xa = [x1

a, x
2
a, ..., x

k
a], where

x
i
a =

niPk
j=1 nj

. (1)

ni is the total times of i-th attribute appearing among the attributes of an
entity and its one-hop neighbours, which is harnessed to capture local attribute
information. As thus, both local and global attribute information can be encoded.

44 Ning Pang, Weixin Zeng, Jiuyang Tang, Zhen Tan, and Xiang Zhao

The inputs of GCNmodel includeXs,Xa, and adjacency matrixA. By feeding
the inputs into GCN model, the output entity embedding matrix is:

[Cs;Ca] = GCN(A, [Xs;Xa]), (2)

where [;] denotes the concatenation of two matrices, Cs 2 RN⇥ds is the fi-
nal structure embedding matrix and Ca 2 RN⇥da represents the final attribute
embedding matrix. In our model, we harness two 2-layer GCNs to generate em-
beddings for entities in two KGs respectively. The dimensionalities of structure
and attribute feature vectors are set to ds and da for all layers in respective
models.

Distance Function. A weighted distance function, which combines structure
embedding and attribute embedding, is designed for entity alignment prediction.
Concretely, for ei1 2 G1 and ei2 2 G2, the distance can be calculated by:

Dis(ei1, ei2) = ✓Diss(ei1, ei2) + (1� ✓)Disa(ei1, ei2), (3)

where ✓ is a hyper-parameter balancing the importance of structure embedding
distance and attribute embedding distance. The structure (attribute) embedding
distance is defined as the vector norm of ci1s � ci2s (ci1a � ci2a) divided by the
dimensionality ds(da). The distance between equivalent entities is expected to
be as small as possible. As thus, the entity in G2 with the smallest distance from
a specific entity ei1 2 G1 can be regraded as the counterpart of ei1.

Loss Function. We use pre-aligned entity pairs S to train GCN models. The
training objectives for learning structure embedding and attribute embedding
are to minimize the following margin-based ranking loss functions,

Js =
X

(e1,e2)2S

X

(v1,v2)2S�

ds · [Diss(e1, e2)�Diss(v1, v2) + �s]+, (4)

Ja =
X

(e1,e2)2S

X

(v1,v2)2S�

da · [Disa(e1, e2)�Disa(v1, v2) + �a]+, (5)

where [x]+ = max{0, x}, S� denotes the set of negative aligned entity pairs; �s
and �a are two positive margins separating positive and negative aligned entity
pairs. Loss functions Js and Ja are optimized by stochastic gradient descent
(SGD) separately.

Iterative Training. Considering the lack of labelled data, inspired by [8], we
adopt semi-supervised training strategy to enlarge the training set iteratively by
including aligned pairs with high confidence during training process.
Once newly-aligned entity pairs are added into S, they are considered as valid

training data. However, some false positive pairs may be included, which will
hurt the following training process. Consequently, the key challenge is how to
choose highly confident samples from newly-aligned entity pairs to enlarge S.
In consequence, we consider candidate entity pairs {(ei1, ej2)|ei1 2 G1\S1, ej2 2
G2\S2}, which satisfy ei1 = argminDis(, ej2), ej2 = argminDis(ei1,), as reli-
able aligned pairs for iterative training, where S1 and S2 are the set of pre-aligned
entities in G1 and G2 respectively.

Iterative Entity Alignment with Improved Neural Attribute Embedding 45

3 Experiment

Datasets. We adopt the widely used DBP15K datasets in the experiments,
which were developed by [4]. The datasets were constructed from subsets of
DBpedia, which has multiple versions in di↵erent languages. DBP15K consists of
three datasets, Chinese-English (Zh-En), Japanese-English (Ja-En), and French-
English (Fr-En). In each dataset, there are 15 thousand already-known equivalent
entity pairs, 30% of which are used for training and 70% of which are for testing.

Parameter Settings. In our GCN models, the dimensionality of structure
embedding and attribute embedding in all layers were set to ds = 300 and
da = 600 respectively. The number of top attributes k is set to 1000. The iterative
training processing would not stop until the size of the newly-included set |C|
is under a threshold ↵ = 100. The margins �s and �a are set to 3. The hyper-
parameter ✓ in weighted distance function is set to 0.9.

Competing Approaches and Evaluation Metric. Three approaches are
utilized for comparison, including MTransE [3], JAPE [4], and GCN [5]. The
evaluation metric, Hits@k, measures the proportion of correctly aligned enti-
ties in top k ranked candidates. We report the results of Hits@1 (accuracy),
Hits@10, and Hits@50 in the experiment.

Table 1. Experimental Results

Zh� En En� Zh

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

MTransE 30.83 61.41 79.12 24.78 52.42 70.45

JAPE 41.18 74.46 88.9 40.15 71.05 86.18

GCN 41.25 74.38 86.23 36.49 69.94 82.45

Inga 50.45 79.42 89.79 49.36 76.05 86.38

Ja� En En� Ja

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

MTransE 27.86 57.45 75.94 23.72 49.92 67.93

JAPE 36.25 68.5 85.35 38.37 67.27 82.65

GCN 39.91 74.46 86.1 38.42 71.81 83.72

Inga 51.46 79.46 88.25 51.05 77.04 86.27

Fr � En En� Fr

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

MTransE 24.41 55.55 74.41 21.26 50.6 69.93

JAPE 32.39 66.68 83.19 32.97 65.91 82.38

GCN 37.29 74.49 86.73 36.77 73.06 86.39

Inga 50.45 79.42 87.79 49.36 76.05 86.48

Experiment Results. The experimental results of Inga and three competi-
tors on DBP15K datasets are shown in Table 1. It can be easily observed that

46 Ning Pang, Weixin Zeng, Jiuyang Tang, Zhen Tan, and Xiang Zhao

Inga achieves the best performance among most settings on three bi-directional
datasets.
Among the four approaches, MTransE achieves relatively worse results. The

Hits@1 values of MTransE on all datasets are between 20% and 30%, indicating
that translation-based KG embeddings can capture structure information and
serve as useful signals for EA. Another KG embedding based method, JAPE, out-
performs MTransE significantly by over 10% in most cases due to its ability to
incorporate attribute information for refining entity structure embeddings. GCN
attains slightly better results than JAPE on Ja�En and Fr�En language pairs,
indicating the e↵ectiveness of GCN model for generating structure representa-
tion. Inga is built on the architecture of GCN, whereas it improves the results by
a large margin. In both alignment directions, Inga outperforms GCN and JAPE
by about 3% � 12% regarding all Hits@k metrics. This demonstrates the use-
fulness of the improved attribute feature representation and iterative training
strategy.
Noteworthy is that the gap between Inga and the rest approaches is much

larger on Hits@1 (accuracy) than other metrics. This reveals that Inga can align
more accurate entity pairs, which is critical to EA task.

4 Conclusion
In this paper, we propose a GCN-based model to align entities in di↵erent KGs
by projecting entities into a unified embedding space, where equivalent entities
are placed close to each other. Attribute representation is improved by capturing
more informative attribute features. Furthermore, we devise an iterative training
strategy to enlarge training set and generate better entity embeddings via neural
network. Our proposal is then evaluated on real-life datasets and the results
demonstrate that our model outperforms three state-of-the-art competitors by
a large margin. For further work, to take more information especially attribute
values as guidance for our model is also necessary.

Acknowledgements. This work was partially supported by NSFC under grants
Nos. 61872446, 61876193 and 71690233.
References

1. J. Yin, X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li. Neural generative question

answering. In Proceedings of IJCAI, pages 2972–2978, 2016.
2. B. D. Trisedya, J. Qi, R. Zhang, and W. Wang. GTR-LSTM: A triple encoder for

sentence generation from RDF data. In Proceedings of ACL, pages 1627–1637, 2018.
3. M. Chen, Y. Tian, M. Yang, and C. Zaniolo. Multilingual knowledge graph em-

beddings for cross-lingual knowledge alignment. In Proceedings of IJCAI, pages

1511–1517, 2017.

4. Z. Sun, W. Hu, and C. Li. Cross-lingual entity alignment via joint attribute-

preserving embedding. In Proceedings of ISWC, Part I, pages 628–644, 2017.
5. Z. Wang, Q. Lv, X. Lan, and Y. Zhang. Cross-lingual knowledge graph alignment

via graph convolutional networks. In Proceedings of EMNLP, pages 349–357, 2018.
6. T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional

networks. CoRR, abs/1609.02907, 2016.
7. F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: probabilistic alignment of

relations, instances, and schema. PVLDB, 5(3):157–168, 2011.
8. H. Zhu, R. Xie, Z. Liu, and M. Sun. Iterative entity alignment via joint knowledge

embeddings. In Proceedings of IJCAI, pages 4258–4264, 2017.

Knowledge Reconciliation with Graph
Convolutional Networks: Preliminary Results?

Pierre Monnin1, Chedy Räıssi1,2, Amedeo Napoli1, and Adrien Coulet1,3

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
{pierre.monnin, chedy.raissi, amedeo.napoli, adrien.coulet}@loria.fr

2 Ubisoft, Singapore
3 Stanford Center for Biomedical Informatics Research, Stanford University, 94305

Stanford, California, USA

Abstract. In this article, we investigate the task of identifying nodes
that are identical, more general, or similar within and across knowledge
graphs. This task can be seen as an extension of instance matching or
entity resolution and is here named knowledge reconciliation. In particu-
lar, we explore how Graph Convolutional Networks (GCNs), previously
defined in the literature, can be used for this task and evaluate their per-
formance on a real world use case in the domain of pharmacogenomics
(PGx), which studies how gene variations impact drug responses. PGx
knowledge is represented in the form of n-ary relationships between one
or more genomic variations, drugs, and phenotypes. In a knowledge graph
named PGxLOD, such relationships are available, coming from three dis-
tinct provenances (a reference database, the biomedical literature and
Electronic Health Records). We present and discuss our preliminary at-
tempt to generate graph embeddings with GCNs and to use a simple
distance between embeddings to assess the similarity between relation-
ships. By experimenting on the 68,686 PGx relationships of PGxLOD,
we found that this approach raises several research questions. For ex-
ample, we discuss the use of the semantics associated with knowledge
graphs within GCNs, which is of interest in the considered use case.

Keywords: Knowledge Reconciliation · N -ary relationships · Graph
Embeddings · Graph Convolutional Networks.

1 Introduction

Data and knowledge can be accessed extensively on the Web and interpreted by
both human and software agents. Because these elements of knowledge are of
various provenances, spread in various places and published following distinct
standards, it is challenging to compare and conjointly use their content. Semantic
Web and Linked Open Data (LOD) [2] provide standards and technologies to

? Supported by the PractiKPharma project, founded by the French National Research
Agency (ANR) under Grant ANR15-CE23-0028, by the IDEX “Lorraine Université
dExcellence” (15-IDEX-0004) and by the Snowball Inria Associate Team.

48 P. Monnin et al.

facilitate the interoperability of knowledge spread over the Web, such as Uniform
Resource Identifiers (URIs) and the Resource Description Framework (RDF)
format. URIs identify nodes that can represent entities of the real world (e.g.,
places, persons, drugs), while RDF statements represent edges, using predicates
to link entities to each others or to literals (e.g., strings, integers). Such predicates
express the semantics of the relationship that connects two nodes or a node and
a literal (e.g., is-born-in, has-firstname). Therefore, URIs and RDF statements
enable to represent knowledge in the form of a directed and labeled multigraph,
loosely called a knowledge graph.

Because datasets are independently published on the Web, possibly with
some overlap, it happens that di↵erent URIs are used to identify the same re-
source. For example, dbpedia:Warfarin and wikidata:Q407431 are two URIs
representing the chemical compound Warfarin in DBpedia and Wikidata. As a
consequence, identifying di↵erent URIs possibly referring to the same resource is
necessary to use various and initially independent datasets together. This task,
called instance matching [6] or entity resolution, can be extended to identify not
only identical resources but also more general or somehow similar ones, a task we
call knowledge reconciliation (by analogy with reconciliation in databases [1]).

In this work, we illustrate this task with a real world application in the field
of pharmacogenomics (abbreviated PGx). This field studies the influence of ge-
nomic variations in drug response phenotypes. Knowledge in PGx is typically
composed of n-ary relationships between one or more genomic variations, drugs
and phenotypes, stating that a patient having the specified genomic variations,
and being treated with the specified drugs will be more likely to experience the
given phenotypes. PGx relationships can be found in di↵erent sources: refer-
ence databases, biomedical literature, or by mining Electronic Health Records
(EHRs). Therefore, there is a need to reconcile these PGx relationships from
di↵erent sources, for example to confirm state-of-the-art knowledge found in the
literature with clinical counterpart found in EHRs [5].

Several existing works use Semantic Web technologies to represent PGx
knowledge, as they allow to easily relate resources to other nodes in the knowl-
edge graph that can enrich their semantics (e.g., partOf resources, classes of
ontologies). For example, we built PGxLOD [10], a large knowledge graph con-
taining 68,686 PGx relationships from the three aforementioned sources. As Se-
mantic Web technologies only allow binary predicates, to be represented, PGx
relationships are reified: the relationship itself is a node, linked by predicates
to its components. For example, Figure 1 depicts the reification as the node
pgx rel 1 of a ternary relationship between gene CYP2C9, drug warfarin and
phenotype cardiovascular diseases. A PGx relationship is fully defined by its
components and, accordingly, two relationships involving the same sets of com-
ponents are identical. Hence, reconciliation techniques based on the relational
structure of nodes [6] are well-suited to reconcile PGx relationships represented
using Semantic Web technologies.

In this paper, we investigate how the task of knowledge reconciliation can be
achieved using graph embeddings [4], i.e., low-dimensional vectors representing

Knowledge Reconciliation with GCNs: Preliminary Results 49

CYP2C9

warfarin

cardiovascular diseasespgx rel 1

causes

cause
s

causes

Fig. 1. Representation of a reified ternary PGx relationship between gene CYP2C9, drug
warfarin and phenotype cardiovascular diseases. The relationship is reified as the
node pgx rel 1, which is connected to its components by the causes predicate.

graph structures (e.g., nodes, edges, subgraphs) while preserving variously the
properties of the graph. Particularly, we present the preliminary results of an
original experiment using Graph Convolutional Networks (GCNs) [8, 15] that
have already been successfully used for link prediction, a task somehow similar
to knowledge reconciliation. GCNs compute an embedding for each node consid-
ering its neighbors, and, thus, are well adapted to our task in which the relational
structure is of prime importance. Similarity between n-ary relationships could
be represented by ensuring a low distance between their respective embeddings.
Inspired by recent works [13, 16], we use definitions of inverses of predicates
to illustrate how semantics of knowledge graphs could be used in GCNs. We
experimented by reconciling the 68,686 PGx relationships from PGxLOD [10].
The remainder of this article is organized as follows. Section 2 presents related
works. Section 3 details GCNs and the proposed general setting for knowledge
reconciliation of n-ary relationships. Section 4 describes our experiment with the
biomedical knowledge graph PGxLOD. Finally, we discuss our results and future
directions in Section 5.

2 Related Works

Numerous works exist on ontology matching. The interested reader could refer
to [6] for a detailed presentation of approaches. In the following, we focus on
graph embeddings techniques, that have been investigated in multiple works and
successfully applied on knowledge graphs for tasks such as node classification or
link prediction [8, 14, 15]. Works di↵er in the considered type of graphs (e.g.,
homogeneous graphs, heterogeneous graphs such as knowledge graphs) or in the
graph embedding techniques used (e.g., matrix factorization, deep learning with
or without random walk), as listed in the taxonomies of problems and techniques
in Cai et al. survey [4]. In the following, few specific examples are detailed but
a more thorough overview can be found in some of the existing surveys [4, 11].

A first example is TransE [3], which computes for each triple hs, p, oi of a
knowledge graph, embeddings hs, hp, ho, such that hs + hp ⇡ ho, i.e., the
translation vector from the subject to the object of a triple corresponds to the
embedding of the predicate. This approach is adapted for link prediction but,
according to the authors, it is unclear if it can model adequately relationships

50 P. Monnin et al.

of distinct arities, such as 1-to-Many, or Many-to-Many. Another example is
RDF2Vec [14], which first extracts, for each node, a set of sequences of graph
sub-structures starting from this node. Elements in these sequences can be edges,
nodes or even subtrees. Then, sequences feed algorithms from the word2vec neu-
ral language model that compute embeddings for each element in a sequence by
either maximizing the probability of an element given the other elements of the
sequence (Continuous Bag of World architecture) or maximizing the probabil-
ity of the other elements given the considered element (Skip-gram architecture).
A third approach, adopted in this article, is GCNs that have been introduced
in [8] for semi-supervised classification on graphs and extended in [15] for en-
tity classification and link prediction in knowledge graphs. Contrasting TransE
and RDF2Vec that respectively work at the triple and sequence levels, GCNs
compute the embedding of a node by considering its neighborhood. Therefore,
GCNs seem more suited to the task of reconciling n-ary relationships, that are
entirely defined by their neighboring nodes representing their components.

However, previous methods do not consider the semantics associated with
predicates and nodes. Alternatively, Logic Tensor Networks [16] are used to learn
groundings. The grounding of a logical term is a vector of real numbers (i.e., an
embedding) and the grounding of a logical clause is a real number in the interval
[0, 1] (i.e., the confidence in the truth of the clause). The learning process tries
to minimize the satisfiability error of a set of clauses, while trying to ensure the
logical reasoning. This work can interestingly be compared to graph embeddings
if knowledge graphs are considered in their logical form, i.e., considering nodes
as logical terms and edges linking two nodes as logical formulae. We adopted
such consideration by exploring in this work a first manner to include (limited)
semantics within GCNs, for the knowledge reconciliation task.

3 Knowledge Reconciliation with GCNs

3.1 Learning Task

We consider that we have at our disposal a knowledge graph, with specific nodes
representing reified n-ary relationships. Our task consists in learning embeddings
for these relationships such as their distance reflects their similarity or dissim-
ilarity. The learning task relies on two elements: the learning of embeddings
associated with each node of the graph and the assessment of the similarity be-
tween nodes representing n-ary relationships by computing the distance between
their respective embeddings.

To train our GCN model, we constitute a training set and a test set made
of a balanced number of positive and negative examples. Regarding positive
examples, we assume that some n-ary relationships are already labeled as similar
from a manual labeling or from the execution of another method, such as the
similarity rules validated by an expert we use in Section 4. This similarity labels
may have di↵erent levels (e.g., very high, high) or may reflect di↵erent semantics
(e.g., identical relationships, more general ones). However in this preliminary
setting, we do not take into account such detailed semantics and only consider a

Knowledge Reconciliation with GCNs: Preliminary Results 51

coarse-grained similarity: similar or not labeled. Indeed, as knowledge graphs are
built under the Open World Assumption, absent statements from a knowledge
graph are only unknown and not false. For this reason, we consider that we
have at our disposal only positive similarity labeling for n-ary relationships. To
generate “negative” examples, an approach similar to the one used in TransE [3]
is considered: for each pair of similar n-ary relationships (i, j), another n-ary
relationship k is found such as it is not labeled as similar either to i or to j. The
triple (i, j, k) representing a training example is then added to the training set
S. The same method is used to generate the test set.

3.2 Using GCNs to generate graph embeddings

In the following, we adopt the notations defined in [15]. As such, R denotes
the set of predicates in the considered knowledge graph. Considering a node i
and a predicate r 2 R, we denote N r

i the set of nodes reachable from i by r.
Only nodes and predicates linking nodes are considered. Literals and predicates
linking nodes to literals are discarded.

GCNs can be seen as a message-passing framework of multiple layers, in which

the embedding h(l+1)
i of a node i at layer (l + 1) depends on the embeddings of

its neighbors at level (l), as stated in Equation (1).

h(l+1)
i = �

X

r2R

X

j2N r
i

1

ci,r
W (l)

r h(l)
j +W (l)

0 h(l)
i

!
(1)

The convolution over the neighboring nodes of i is computed with a specific

weight matrix W (l)
r for each predicate r 2 R and each layer (l). This convolution

is regularized by a constant ci,r, that can be set for each node and each predicate.
Additionally, to ensure that the embedding of i at layer (l+1) also depends on its

embedding at layer (l), a self connection is allowed, with the weight matrix W (l)
0 .

� is a non-linear function such as ReLU, used in our experiment (Section 4).
Authors in [15] consider that every predicate r 2 R has an inverse rinv 2

R. As this is not always true in knowledge graphs, and to illustrate how the
semantics of predicates could be used in GCNs, we leverage potentially defined
inverse predicates. We consider the three following cases for a predicate r:

(i) If r is defined as symmetric, we do not consider an inverse but ensure that
the adjacency matrix for r is symmetric;

(ii) If r has a defined inverse r�1, we use r and r�1 and ensure their adjacency
matrices are indeed representing inverse relations;

(iii) Otherwise, we generate an inverse rinv such as its adjacency matrix represent
the inverse of r.

By doing so, we avoid generating an abstract inverse rinv for predicates r having a
defined inverse r�1 or being symmetric, which would add unnecessary messages.
Indeed, consider a predicate r, its defined inverse r�1, and two nodes i and

j such that edges i
r�! j and j

r�1

��! i are in the knowledge graph. By always

52 P. Monnin et al.

generating an abstract inverse, two edges would be added, j
rinv���! i and i

r�1
inv���! j,

duplicating the existing edges and adding two unnecessary messages.
To train GCNs, we minimize the loss function presented in Equation (2),

inspired from the one used in TransE [3].

L =
X

(i,j,k)2S

max
⇣
||hi � hj ||2 + � � ||hi � hk||2, 0

⌘
(2)

Given a training example (i, j, k) from the training set S, minimizing the loss
function aims at minimizing the distance between hi and hj , i.e., ensuring their
similarity, while maximizing the distance between hi and hk. The constant � is
a margin hyperparameter aiming at increasing the di↵erence between the two
distances.

4 Experimentation on PGx Knowledge

4.1 Input Knowledge Graph: PGxLOD

We experimented our approach on PGxLOD [10], a large knowledge graph
containing PGx relationships from three distinct sources: PharmGKB (a refer-
ence database), the biomedical literature and results from studies on Electronic
Health Records. Main statistics of PGxLOD are presented in Table 1.

Table 1. Main statistics of PGxLOD. The line “Predicates” only counts predicates
used to link two nodes together, excluding literals. As our experiment uses a 3-layer
network, only the 3-hop neighborhood of PGx relationships is considered to compute
their embeddings.

Triples 59,136,400
Nodes and literals 25,226,599
Predicates 378
PGx relationships 68,686�

Nodes in their 3-hop neighborhood 2,943,613�

Edges in their 3-hop neighborhood 32,773,429
Similarity links between PGx relationships 283,248�

owl:sameAs links 109,226�

skos:broadMatch links 136,264�

skos:relatedMatch links 37,758

In PGxLOD, some similar PGx relationships are already labeled by being
linked together with one of the three following predicates: owl:sameAs express-
ing identical relationships, skos:broadMatch expressing more general ones and
skos:relatedMatch expressing related ones to some extent. Such labels result
from the application of logical reconciliation rules that are described in [10].

Knowledge Reconciliation with GCNs: Preliminary Results 53

They are used to constitute the training and test sets, in a “knowledge graph
as silver standard” perspective [12]. Even if owl:sameAs, skos:broadMatch and
skos:relatedMatch links express di↵erent similarity semantics, here we indif-
ferently consider the three predicates as expressing a coarse-grained similarity.
Thus, two PGx relationships are labeled as similar if they are linked by one
of these three predicates. Additionally, we consider their adjacencies in an un-
directed perspective, i.e., having (i, j) as a similarity edge is equivalent to having
(j, i). As owl:sameAs and skos:relatedMatch are symmetric, numbers of avail-
able links for training and test sets are consequently half of those presented in
Table 1. For each predicate, the training set is constituted by 2

3 of the links and
the test set by 1

3 . To form triples (i, j, k) in these sets, k is chosen such as it is
not directly linked via a similarity predicate either to i or to j.

4.2 Experimental Setting

For our preliminary experiment, we use a standard architecture and hyperpa-
rameters previously reported in the literature with successful uses of GCNs. We
consider a 3-layer network where each layer uses ReLU as the activation func-
tion. In such a 3-layer architecture, only neighboring nodes up to 3 hops of PGx
relationships will have an impact on their embeddings, output at layer 3 (Equa-
tion (1)). The input layer consists in a featureless approach as in [8, 15], i.e., the
input is just a one-hot vector for each node of the graph. Both the input layer
and the hidden layer have an output dimension of 16 while the output layer has
an output dimension of 10. Therefore, embeddings for all nodes in the knowl-
edge graph are in R10. Only the embeddings for nodes representing the reified
PGx relationships are of interest in our reconciliation task and are considered
in the loss function. As in [15], the constant ci,r is set to |N r

i | and we use the
basis-decomposition with 10 basis to avoid the growth in number of parameters.
For the learning process, we use the Adam optimizer [7] with a starting learning
rate of 0.01 and a L2-regularization coe�cient of 0.0005. The margin hyperpa-
rameter � is set to 2. Our experiment was implemented using PyTorch and the
Deep Graph Library.

4.3 Results

We trained our model during 60 epochs. The last layer outputs embeddings for
all nodes in the graph but we only consider the ones representing reified PGx re-
lationships. The mean and standard deviation of distances between embeddings
of similar relationships in the training set were respectively µtrain = 1.93 and
�train = 4.18. As a simple evaluation, for each example (i, j, k) from the test set,
(i, j) or (i, k) were considered as similar if their embeddings were distant of less
than µtrain + �train. These results were compared with existing similarity links,
obtaining a precision of 0.92, a recall of 0.94 and a F1-score of 0.93.

Then, we investigated di↵erences between the three similarity predicates. 2D
projections of embeddings using UMAP [9] are depicted in Figure 2. We can see

54 P. Monnin et al.

that clusters of nodes are appearing but seem still close. More epochs or a wider
neighborhood may allow to emphasize the di↵erence between such clusters.

(a) sameAs links (b) broadMatch links (c) relatedMatch links

Fig. 2. 2D projections using UMAP [9] of embeddings of PGx relationships involved
in the given similarity predicates.

Figure 3 depicts the distributions of distances between embeddings of similar
PGx relationships depending on their similarity link. The low means for the three
predicates illustrate that similar relationships have indeed embeddings with low
distances. We notice that the mean distances for owl:sameAs are the lowest
while the ones for skos:relatedMatch are the greatest. This could indicate the
ability of the network to learn the close similarity expressed by owl:sameAs
links and the more fuzzy one expressed by skos:relatedMatch links. Regarding
skos:broadMatch links, the distance ranges and variances are more important
than for the two other predicates. This could also illustrate the ability to learn the
semantics of the predicate. Additionally, skos:broadMatch links are directed,
and thus, could be more di�cult to fit correctly, mixed with symmetric similarity
predicates. Also, only skos:broadMatch links connect PGx relationships across
the three considered sources [10]. Therefore, they link together relationships that
may have more diversity in the semantics and vocabularies of their components,
potentially explaining the higher distance ranges and variances.

(a) sameAs links
µtrain = 0.33
�train = 0.26
µtest = 0.33
�test = 0.26

(b) broadMatch links
µtrain = 2.27
�train = 4.90
µtest = 2.30
�test = 5.12

(c) relatedMatch links
µtrain = 4.16
�train = 2.77
µtest = 4.35
�test = 3.31

Fig. 3. Distributions of distances between embeddings of similar PGx relationships
linked by the given similarity predicates. µ and � respectively denote the mean and
the standard deviation.

Knowledge Reconciliation with GCNs: Preliminary Results 55

5 Discussion and Conclusion

In this paper, we investigated the task of generating graph embeddings for knowl-
edge reconciliation using Graph Convolutional Networks and ensuring that em-
beddings associated with similar reified n-ary relationships have a low distance.
We experimented our approach on the real world use case of reconciling PGx
n-ary relationships from three distinct sources. Our preliminary results found
this approach to be suitable and to raise several research questions.

First, the network output di↵erent distances for the three considered predi-
cates: owl:sameAs, skos:broadMatch and skos:relatedMatch. This could indi-
cate that it was able to learn their di↵erent similarity semantics or had di�culties
to adequately fit some of them. Possible improvements would be to increase the
number of epochs or test other values for hyperparameters. The loss function
could integrate the di↵erent semantics of the predicates linking similar rela-
tionships i and j, for example by considering three di↵erent weighted sums.
Separate models could be learned: one per predicate or one for owl:sameAs and
skos:relatedMatch and another for skos:broadMatch which is not symmetric,
which could make easier interpreting the semantics of the output similarity.

Because we used a 3-layer network, only nodes in the 3-hop neighborhood
of PGx relationships were considered for the computation of their embeddings.
However, nodes in further neighborhoods may bring additional semantics. In
particular, phenotypes extracted from the biomedical literature are frequently
complex and formed by several simpler phenotypes, indicated by dependsOn

links. Therefore, we could benefit from using a network with more layers.
We also illustrated how semantics associated with a knowledge graph can be

used in GCNs by considering the definitions of inverses of predicates. This could
be improved, for example by considering the semantics of owl:sameAs links
between nodes. Indeed, these links indicate identical nodes that are currently
considered as neighboring nodes and used as such in the embeddings compu-
tation. Thus, a pre-processing step could consist in mapping nodes linked by
owl:sameAs links into a unique node. Additionally, the generation of negative
examples could be improved by considering ontologies. In such case, PGx rela-
tionships whose components instantiate classes in di↵erent parts of an ontology
could be more interesting negative examples.

Our model was evaluated using a manually-defined threshold on distances
between embeddings of relationships to assess their similarity. Other methods
such as (multi-)classification machine learning models could also be investigated.
Advanced performance results could also be computed on knowledge graphs from
other domains as well as be compared with other state-of-the-art methods pre-
sented in Section 2. Finally, we should manually check on a few examples whether
relationships considered as close given the distance between their embeddings
but not linked by any of the similarity predicates are indeed similar.

To conclude, these results constitute solely an initial attempt to use graph
embeddings for the non-trivial task of reconciling n-ary relationships. Several
future directions are considered, among which is the further integration of the
semantics associated with knowledge graphs in GCNs.

56 P. Monnin et al.

References

1. Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M., Senellart, P.: Web Data
Management. Cambridge University Press (2011)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

3. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States. pp. 2787–2795 (2013)

4. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding:
Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9),
1616–1637 (2018)

5. Coulet, A., Smäıl-Tabbone, M.: Mining electronic health records to validate knowl-
edge in pharmacogenomics. ERCIM News 2016(104) (2016)

6. Euzenat, J., Shvaiko, P.: Ontology Matching, Second Edition. Springer (2013)
7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR

abs/1412.6980 (2014), http://arxiv.org/abs/1412.6980
8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. CoRR abs/1609.02907 (2016), http://arxiv.org/abs/1609.02907
9. McInnes, L., Healy, J., Saul, N., Grossberger, L.: Umap: Uniform manifold approx-

imation and projection. The Journal of Open Source Software 3(29), 861 (2018)
10. Monnin, P., Legrand, J., Husson, G., Ringot, P., Tchechmedjiev, A., Jonquet, C.,

Napoli, A., Coulet, A.: PGxO and PGxLOD: a reconciliation of pharmacogenomic
knowledge of various provenances, enabling further comparison. BMC Bioinfor-
matics 20-S(4), 139:1–139:16 (2019)

11. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs: From multi-relational link prediction to automated
knowledge graph construction. Proceedings of the IEEE 104(1), 11–33 (2016)

12. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic Web 8(3), 489–508 (2017)

13. Paulheim, H.: Make embeddings semantic again! In: Proceedings of the ISWC
2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located
with 17th International Semantic Web Conference (ISWC 2018), Monterey, USA,
October 8th - to - 12th, 2018. (2018)

14. Ristoski, P., Paulheim, H.: Rdf2vec: RDF graph embeddings for data mining. In:
The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference,
Kobe, Japan, October 17-21, 2016, Proceedings, Part I. pp. 498–514 (2016)

15. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: The Semantic
Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June
3-7, 2018, Proceedings. pp. 593–607 (2018)

16. Serafini, L., d’Avila Garcez, A.S.: Learning and reasoning with logic tensor net-
works. In: AI*IA 2016: Advances in Artificial Intelligence - XVth International
Conference of the Italian Association for Artificial Intelligence, Genova, Italy,
November 29 - December 1, 2016, Proceedings. pp. 334–348 (2016)

End-to-End Learning for Answering Structured

Queries Directly over Text

Paul Groth1, Antony Scerri2, Ron Daniel, Jr.2, and Bradley P. Allen2

1 University of Amsterdam p.groth@springer.com
2 Elsevier Labs

{a.scerri,r.danel,b.allen}@elsevier.com

Abstract. Structured queries expressed in languages (such as SQL,
SPARQL, or XQuery) o↵er a convenient and explicit way for users to
express their information needs for a number of tasks. In this work, we
present an approach to answer these directly over text data without stor-
ing results in a database. We specifically look at the case of knowledge
bases where queries are over entities and the relations between them.
Our approach combines distributed query answering (e.g. Triple Pattern
Fragments) with models built for extractive question answering. Impor-
tantly, by applying distributed querying answering we are able to simplify
the model learning problem. We train models for a large portion (572) of
the relations within Wikidata and achieve an average 0.70 F1 measure
across all models. We describe both a method to construct the necessary
training data for this task from knowledge graphs as well as a prototype
implementation.

1 Introduction

Database query languages (e.g. SQL, SPARQL, XQuery) o↵er a convenient and
explicit way for users to express their information needs for a number of tasks in-
cluding populating a dataframe for statistical analysis, selecting data for display
on a website, defining an aggregation of two datasets, or generating reports.

However, much of the information that a user might wish to access using a
structured query may not be available in a database and instead available only
in an unstructured form (e.g. text documents). To overcome this gap, the area
of information extraction (IE) specifically investigates the creation of structured
data from unstructured content [15]. Typically, IE systems are organized as
pipelines taking in documents and generating various forms of structured data
from it. This includes the extraction of relations, the recognition of entities, and
even the complete construction of databases. The goal then of IE is not to answer
queries directly but first to generate a database that queries can be subsequently
executed over.

In the mid-2000s, with the rise of large scale web text, the notion of com-
bining information extraction techniques with relational database management
systems emerged [4, 10] resulting in what are termed text databases. Systems
like Deep Dive [22] InstaRead [9], or Indrex [11], use database optimizations

58 Groth et al.

within tasks such as query planning to help decide when to perform extractions.
While, in some cases, extraction of data can be performed at runtime, data is
still extracted to an intermediate database before the query is answered. Thus,
all these approaches still require the existence of a structured database to answer
the query.

In this paper, we present an approach that eliminates the need to have an
intermediate database in order to answer structured database queries
over text. This is essentially the same as treating the text itself as the store of
structured data. Using text as the database has a number of potential benefits,
including being able to run structured queries over new text without the need for
a-priori extraction; removing the need to maintain two stores for the same infor-
mation (i.e. a database and a search index); eliminating synchronization issues;
and reducing the need for up-front schema modeling. [3] provides additional ra-
tionale for not pre-indexing “raw data”, although they focus on structured data
in the form of CSV files.

Our approach builds upon three foundations: 1. the existence of large scale
publicly available knowledge bases (Wikidata) derived from text data (Wikipedia);
2. recent advances in end-to-end learning for extractive question answering (e.g.
[21]); 3. the availability of layered query processing engines designed for dis-
tributed data (e.g. SPARQL query processes that work over Triple Pattern Frag-
ment [25] servers).

A high-level summary of our approach is as follows. We use a publicly-
available knowledge base to construct a parallel corpus consisting of tuples each
which is made up of a structured slot filling query, the expected answer drawn
from the knowledge base, and a corresponding text document in which we know
the answer is contained. Using this corpus, we train neural models that learn to
answer the given structured query given a text document. This is done on a per
relation basis. These models are trained end-to-end with no specific tuning for
each query. These models are integrated into a system that answers queries ex-
pressed in a graph query language directly over text with no relational or graph
database intermediary.

The contributions of this paper are:

– an approach, including training data generation, for the task of answering
structured queries over text;

– models that can answer slot filling queries for over 570 relations with no
relation or type specific tuning. These models obtain on average a 0.70 F1
measure for query answering.

– a prototype system that answers structured queries using triple pattern frag-
ments over a large corpus of text (Wikipedia).

The rest of this paper is organized as follows. We begin with an overview of
the approach. This is followed by a description of the training data. Subsequently,
we describe the model training and discuss the experimental results. After which,
we present our prototype system. We end the paper with a discussion of related
and future work.

End-to-End Learning for Answering Structured Queries Directly over Text 59

2 Overview

SPARQL TPF Client

TPF Query Engine
(Facade)

QA Executor

Answer Ranking Model Runner

Candidate
Selection

Text
Search Engine

Model Query Builder
<s, p, o> to string

Document

Collection
ColModel

1
Model

N…

Query Service

Fig. 1: Components of the overall system for structured query answering over text.

Our overall approach consists of several components as illustrated in Figure
1. First, structured queries as expressed by SPARQL [7] are executed using a
Triple Pattern Client (SPARQL TPF Client). Such a client breaks down a more
complex SPARQL query into a series of triple patterns that are then issued to a
service. Triple patterns are queries of the form subject, predicate, object, where
each portion can be bound to an identifier (i.e. URI) or a variable.3 Within the
service, the execution engine (QA Executor) first lexicalizes the given identifiers
into strings using the Model Query Builder component. For example, this com-
ponent would translate an identifier like https://www.wikidata.org/wiki/Q727
into the string form “Amsterdam”. These queries are then issued to a candidate
selection component. This component queries a standard text search engine to
find potential documents that could contain the answer to the specified query.

The candidate documents along with the lexicalized queries are provided
to a model runner which issues these to models trained specifically to bind
the variable that is missing. That is given a query of the form < s, p, ?o >
where s and o are bound and o is the variable, there would be specific models
trained to extract ?o from the provided document. For example, given the query
(:Amsterdam :capital of ?o) we would have models that know how to answer
queries of where the type of the subject is City and the property is capital of.
Likewise, there would be models of that are able to answer queries of the form
<?s, p, o > and so on. Each model is then asked to generate a binding of the
variable. Note that the bindings generated by the models are strings. The results
of each model are then ranked (Answer Ranking). Using a cut-o↵, the results
are then translated back into identifier space and returned to the client.

3 Objects can also be bound to a literal.

60 Groth et al.

A key insight of our approach is that by breaking down complex queries
into triple patterns we can simplify the queries that need to be answered by the
learned models.

Our approach relies on the construction of models that are able to extract
potential candidate answers from text. Following from [5] and [13], we cast the
problem in terms of a question answering task, where the input is a question (e.g.
entity type + relation) and a document and the output is answer span within
the document that binds the output. To learn these sorts of models we construct
training data from knowledge graphs that have a corresponding representation
in text. In the next section, we go into detail about the construction of the
necessary training data.

3 Training Data Construction

Our training data is based on the combination of Wikidata and Wikipedia.
Wikidata is a publicly accessible and maintained knowledge base of encyclopedic
information [27]. It is a graph structured knowledge base (i.e. a knowledge graph)
describing entities and the relations between them. Every entity has a globally
unique identifier. Entities may also have attributes which have specific datatypes.
Entities have may have more than one type. Relations between entities may hold
between di↵ering entity types.

Wikidata has a number of properties that make it useful for building a corpus
to learn how to answer structured queries over text. First, and perhaps most
importantly, entities have a parallel description with Wikipedia. By our count,
Wikidata references 7.7 million articles in the English language Wikipedia. Thus,
we have body of text which will also most likely contain answers that we retrieve
from Wikidata. Second, every entity and relation in Wikidata has a human
readable label in multiple languages. This enables us to build a direct connection
between the database and text. Third, Wikidata is large enough to provide for
adequate training data in order to build models. Finally, Wikidata provides
access to their data in a number of ways including as a SPARQL endpoint, a
triple patterns fragment endpoint and as a bulk RDF download. While we use
Wikidata, we believe that our approach can be extended to any knowledge graph
that has textual sources.

Using this input data we generate datasets of the form: [query; answer;
text in which the query is answered]. As previously mentioned, com-
plex queries can be expressed as a series of graph patterns. Thus, the queries
we consider are graph patterns in which two of the variables are bound (e.g.
:New England Patriots :play ?x). We term these slot filling queries as the
aim is to bind one slot in the relation (i.e. the subject or the object). While we do
not test graph patterns where the predicate is the variable, the same approach
is also applicable. In some sense, one can think of this as generating data that
can be used to build models that act as substitute indexes of a database.

Our construction method loops through all of the predicates (i.e. relations) in
the dataset. It determines the frequency with which a predicate connects di↵erent

End-to-End Learning for Answering Structured Queries Directly over Text 61

types of entities. This is essential as large knowledge graphs can connect many
di↵erent types using the same predicate. Thus, examples from di↵erent types
of subjects and objects are needed to capture the semantics of that predicate.
Using the most frequently occurring pairs of entity types for a predicate, the
algorithm then retrieves as many example triples as possible where the subject
and object of the triple are instances of the connected types - up to a given
maximum threshold. Thresholding is used to help control the size of the training
data.

Each triple is then used to generate a row of training data for learning how
to answer graph pattern queries that contain the given predicate. To connect
the graph pattern queries, which are expressed using entity IRIs to the plain
text over which it should be answered, each of the components of the triple is
lexicalized. The lexicalized subject and predicate of each triple are concatenated
together to form a textual query and use the lexicalized object as the answer.
(Note, this is trivally modified for the (?s, p, o case). We then retrieve the text
describing the subject. We assume that the text contains some reference to the
object under consideration.

The location of that reference which we term an anchor is computed by the
given anchor function. For simplicity, in our implementation, we locate the first
instance of the answer in the text. This may not always represent an instance
of the answer’s lexical form which is located in an expression which answers
the specific question form. More complex implementations could use di↵erent
heuristics or could return all possible anchor locations.

We apply the algorithm to the combination of Wikipedia and Wikidata
dumps4. We attempted to obtain training data for all 1150 predicates in Wiki-
data that associate two entities together. At this time, we do not treat predicates
that connect entities to literals. This is left for future work. We limited the ex-
traction to the top 20 entity type pairs per predicate, and limited each type pair
to 300 examples). Thus, there is a maximum yield of 6000 examples per predi-
cate. We then apply the following cleaning/validation to the retrieved examples.
First, we drop examples where there is no Wikipedia page. Second, we ensure
that the answer is present in the Wikipedia page text. Finally, in order to ensure
adequate training data we filter out all models with less than 30 examples. Note
that this means that we have di↵ering amounts of training data per predicate.
After cleaning, we are able to obtain training data for 572 predicate for the set-
ting in which the object is the variable/answer. We term this the SP setting. On
average we have 929 examples per predicate with a maximum number of exam-
ples of 5477 and a minimum of 30 examples. The median number of examples is
312. In the setting in which the subject is the variable / answer we are trying to
extract, enough data for 717 predicates is obtained. This is because the subject
answer is more likely to appear in the Wikipedia page text. We term this the
PO setting.

4 Specifically we used Wikipedia 2018-08-20 (enwiki-20180820-pages-articles-
multistream.xml.bz2) and Wikidata 2018-08-29.

62 Groth et al.

4 Models

Based on the above training data, we individual train models for all predicates
using the Jack the Reader framework [5]. We use two state-of-the-art deep learn-
ing architectures for extractive question answering, namely, FastQA [28] and the
implementation provided by the framework, JackQA. Both architectures are in-
teresting in that while they perform well on reading comprehension tasks (e.g.
SQuAD [20]) both architectures try to eliminate complex additional layers and
thus have the potential for being modified in the future to suit this task. Instead
of describing the architectures in detail here, we refer the reader to correspond-
ing papers cited above. We also note that the Jack the Reader configuration files
provide succinct descriptions of the architectures, which are useful for under-
standing their construction.

To improve performance both in terms of reducing training time and to re-
duce the amount of additional text the model training has to cope with, we
applied a windowing scheme. This is because longer text is normally associated
with greater issues when dealing with sequence models. Our scheme takes a por-
tion of the text around the answer location chosen from the Wikipedia content.
We now describe the following parameters for each architecture.

FastQA All text is embedded using pre-trained GloVe word embeddings [17]
(6 billion tokens, and 50 dimensions). We train for 10 epochs using a batch size
of 20. We constrain answers to be a maximum of 10 tokens and use a window
size of 1000 characters. The answer layer is configured to be bilinear. We use the
ADAM optimizer with a learning rate of 0.11 and decay of 1.0.

JackQA Here we embed the text using pre-trained GloVe word embeddings
(840 billion tokens and 300 dimensions). We use the default JackQA settings.
We use a window size of 3000 characters. The batch sizes were 128/96/64 for
three iterative runs. The subsequent runs with smaller batch sizes were only run
if the prior iteration failed. We specified a maximum number of 20 epochs.

Baseline In addition to the models based on neural networks, we also im-
plemented a baseline. The baseline consisted of finding the closest noun phrase
to the property within the Wikipedia page and checking whether the answer is
contained within that noun phrase.

Note, we attempted to find functional settings that worked within our avail-
able computational constraints. For example, FastQA requires more resources
than JackQA in relation to batch size , thus, we chose to use smaller embed-
dings and window size in order to maintain a “good” batch size.

We use 2/3 of the training data for model building and 1/3 for testing. Data
is divided randomly. Training was performed using an Amazon EC2 p2.xlarge5

box. It took 23 hours for training of FastQA models, which included all models
for all predicates even when there were too few training samples. For JackQA,
the window was increased to 3000 characters, and multiple training sessions were
required, reducing the batch size each time to complete the models which not

5 1 virtual GPU - NVIDIA K80, 4 virtual CPUs, 61 GiB RAM

End-to-End Learning for Answering Structured Queries Directly over Text 63

finish from earlier runs, in all three passes were required with 128, 96 and 64
batch size respectively. Total training time was 81 hours.

Note that we train models for the setting where the subject and predicate
are bound but the object is not. We also use the FastQA architecture to build
models for the setting where the subject is treated as the variable to be bound.

5 Experimental Results and Analysis

Table 1 one reports the average F1 measure across all models as well as the
baseline. This measure takes into account the overlap of the identified set of
tokens with the gold standard answer controlling for the length of the extracted
token. By definition, the baseline only generates such overlap scores.

Model Model Count mean std min max 25% 50% 75%
JackQA - SP 572 0.70 0.24 0.0 1.0 0.54 0.77 0.89
FastQA - SP 572 0.62 0.24 0.0 1.0 0.43 0.65 0.80
FastQA - PO 717 0.89 0.10 0.4 1.0 0.85 0.92 0.96
Baseline 407 0.15 0.17 0.0 0.86 0.03 0.08 0.20

Table 1: F1 results across all models and the baseline

Table 2 reports the average exact match score over all models. This score
measures whether the model extracts the exact same string as in the gold stan-
dard. For reference, both tables also reports the total number of models trained
(Model Count), which is equivalent to the training data provided. The Model
Count for the baseline is equivalent to the number of predicates for which the
baseline method could find an answer for.

Model Model Count mean std min max 25% 50% 75%
JackQA - SP 572 0.64 0.26 0.0 1.0 0.44 0.71 0.86
FastQA - SP 572 0.55 0.25 0.0 1.0 0.36 0.57 0.74
FastQA - PO 717 0.83 0.14 0.1 1.0 0.75 0.86 0.94

Table 2: Exact results

Figure 3 plots individual model performance against the size of the training
data given. Overall, models based on deep learning notably outperform the base-
line models on average. Additionally, using these deep learning based approaches
we are able to create models that answer queries for 160 additional properties
over the baseline. In terms of analysis, first, we wanted to see if there was a cor-
relation between the amount of training data and the performance of a model.
Using the data presented in Figure 3, we fit a linear regression to it. We found no
statistically significant correlation (R2 = 0.37). The model architectures show

64 Groth et al.

Models trained using Jack QA Models trained using Fast QA.

Fig. 3: Plot of individual model performance vs. training data size. All 572 models are
shown for the SP setting.

strong correlation in performance. The R2 value being 0.97 in the case of the F1
measure and 0.96 for the Exact measure. This suggests that the performance is
primarily a factor of the underlying kind of data. More details are provided in
Appendix A

6 Prototype

To understand whether this approach is feasible in practice, we implemented a
prototype of the system outlined in Figure 1. For the triple pattern fragment
facade we modify Piccolo, an open source triple pattern fragments server to
replace its in-memory based system with functions for calling out to our QA
answering component. The facade also implements a simple lexicalization rou-
tine. The query answering component is implemented as a Python service and
calls out to an Elasticsearch search index where documents are stored. The query
answering component also pre-loads the models and runs each model across can-
didate documents retrieved by querying elastic search. We also specify a max
number of candidate documents to run the models over. Currently, we execute
each model sequentially over all candidate documents. We then chose the top
set of ranked answers given the score produced by the model. Note that we can
return multiple bindings for the same ranked results. We made some prelimi-
nary timing estimates of a query. It takes on the order of 10 seconds to provide
results for a single triple pattern query. This is surprisingly good given the fact
that we execute models sequentially instead of in parallel. Furthermore, we ex-
ecute the models over the entirety of the Wikipedia article. Our own anecdotal
experience shows that question answering models are both faster and produce
more accurate results when supplied with smaller amounts of text. Thus, there is
significant room for optimizing query performance with some simple approaches
including parallelizing models, chunking text into smaller blocks, and limiting
the number of models executed to those that are specific for the triple pattern.
Furthermore, it is straightforward to issue triple pattern fragment query requests

End-to-End Learning for Answering Structured Queries Directly over Text 65

over multiple running instances [25]. One could also implement more complex
sharding mechanisms designed for triple tables [1]. Overall, the prototype gives
us confidence that this sort of system could be implemented practically.6

7 Related Work

Our work builds upon and connects to a number of existing bodies of liter-
ature. The work on information extraction is closely related. [15] provides a
recent survey of the literature in this area specifically targeted to the the prob-
lems of extracting and linking of entities, concepts and relations. One can view
the models that we build as similar to distantly supervised relation extraction
approaches [16, 23], where two mentions of entities are found in text and the con-
text around those mentions is used to learn evidence for that relation. Recent
approaches have extended the notion of context [18] and applied neural networks
to extract relations [30, 6].

The closest work to ours in the information extraction space is [14] where they
apply machine comprehension techniques to extract relations. Specifically, they
translate relations into templated questions - a process they term querification.
For example, for the relation spouse(x,y) they created a series of correspond-
ing question templates such as “Who is x married to?”. These templates are
constructed using crowdsourcing, where the workers are provided a relation, ex-
ample sentence and asked to produce a question template. This dataset is used
to train a BiDAF-based model [21] and similar to our approach they address slot
filling queries where the aim is to populate one side of the relation. While we
apply a similar technique, our approach di↵ers in a two key aspects. First, we
target a di↵erent task, namely, answering structured queries. Second, we do not
generate questions through question templates but instead build the questions
out of the knowledge base itself.

Like much of the work in this space our approach is based on a large scale par-
allel corpus. Of particular relevance to our task are the WikiSQL and WikiRead-
ing corpora. WikiSQL [31] provides a parallel corpus that binds SQL queries to
a natural language representation. The task the dataset is used for is to an-
swer natural language questions over SQL unlike ours which is to answer SQL-
like queries over text. SQLWikiReading [8] like our approach extracts a corpus
from Wikidata and Wikipedia in order to predict the value of particular proper-
ties. Another corpus of note is ComplexWebQuestions [24], which pairs complex
SPARQL queries with natural language queries. Importantly, it looks at the com-
positionality of queries from smaller units. Like WikiSQL, it looks at answering
natural language queries over databases. In general, we think our approach in
also specifying an extraction procedure is a helpful addition for applying corpus
construction in di↵erent domains.

As mentioned in the introduction, text databases, where information extrac-
tion is combined with databases are also relevant. Our system architecture was

6 We also integrated the prototype with Slack.

66 Groth et al.

inspired by the pioneering work of [10]. In that work, a search index is used to
first locate potential documents and then information extraction techniques are
applied to the selected documents to populate a database. Our approach di↵ers
in two key aspects. First, instead of populating a database our system substitutes
the indexes of the database with models. Second, we use distributed query tech-
niques in order to process complex queries on the client side. Recent work [12]
uses deep learning based approaches to perform information extraction during
database query execution specifically for entity disambiguation. Similar to other
work in this area, and unlike ours, they integrate the information extraction
within the database engine itself.

Finally, there is a long history of mixing information retrieval and database
style queries together. For example, for the purposes of querying over semistruc-
tured data [2]. [19] provides an accessible introduction to that history. While our
system is designed to answer database queries one can imagine easily extending
to the semistructured setting.

8 Conclusion & Future Work

In this work, we have explored the notion of answering database queries over
text absent the need for a traditional database intermediary. We have shown
that this approach is feasible in practice by combining machine comprehension
based models with distributed query techniques.

There are a number of avenues for future work. In the short term, the de-
veloped models could be expanded to include extracting properties as well as
subjects and objects. We also think that joint models for all triple pattern pre-
dictions is worth exploring. One would also want to extend the supported queries
to consider not only relationships between entities but also to the attributes of
entities. Our current lexicalization approach is also quite simple and could be im-
proved by considering it as the inverse of the entity linking problem and applying
those techniques or applying summarization approaches [26]. In this work, we
used model architectures that are designed for answering verbalized questions
and not database queries. Modifying these architectures may also be a direc-
tion to obtain even better performance. Obviously more extensive experimental
evaluations would be of interest, in particular, extending the approach to other
knowledge bases and looking more deeply at query result quality.

In the long term, the ability to query over all types of data whether images,
structured data or text has proven useful for knowledge bases [29]. Extending
our concept to deal with these other datatypes could be powerful -making it
easy to perform structured queries over unstructured data while minimizing in-
formation extraction overhead. In general, we believe that structured queries
will continue to be a useful mechanism for data professionals to both work with
data and integrate information into existing data pipelines. Hence, focusing on
automated knowledge base construction from the query vantage point is an im-
portant perspective.

End-to-End Learning for Answering Structured Queries Directly over Text 67

References

1. Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P.: A survey and experimental com-
parison of distributed sparql engines for very large rdf data. Proceedings of the
VLDB Endowment 10(13), 2049–2060 (2017)

2. Abiteboul, S.: Querying semi-structured data. In: International Conference on
Database Theory. pp. 1–18. Springer (1997)

3. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.: Nodb: e�cient
query execution on raw data files. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. pp. 241–252. ACM (2012)

4. Cafarella, M.J., Re, C., Suciu, D., Etzioni, O., Banko, M.: Structured querying
of web text. In: 3rd Biennial Conference on Innovative Data Systems Research
(CIDR), Asilomar, California, USA (2007)

5. Dirk Weissenborn, Pasquale Minervini, T.D.I.A.J.W.T.R.M.B.J.M.T.D.P.S.S.R.:
Jack the Reader A Machine Reading Framework. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (ACL) System
Demonstrations (July 2018), https://arxiv.org/abs/1806.08727

6. Glass, M., Gliozzo, A., Hassanzadeh, O., Mihindukulasooriya, N., Rossiello, G.:
Inducing implicit relations from text using distantly supervised deep nets. In: In-
ternational Semantic Web Conference. pp. 38–55. Springer (2018)

7. Harris, S., Seaborne, A., Prudhommeaux, E.: Sparql 1.1 query language. W3C
recommendation 21(10) (2013)

8. Hewlett, D., Lacoste, A., Jones, L., Polosukhin, I., Fandrianto, A., Han, J., Kelcey,
M., Berthelot, D.: WIKIREADING: A novel large-scale language understanding
task over Wikipedia. In: Proceedings of the The 54th Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2016) (2016)

9. Ho↵mann, R., Zettlemoyer, L., Weld, D.S.: Extreme extraction: Only one hour per
relation. arXiv preprint arXiv:1506.06418 (2015)

10. Jain, A., Doan, A., Gravano, L.: Sql queries over unstructured text databases. In:
Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. pp.
1255–1257. IEEE (2007)

11. Kilias, T., Löser, A., Andritsos, P.: Indrex: In-database relation extraction. Infor-
mation Systems 53, 124–144 (2015)

12. Kilias, T., Löser, A., Gers, F.A., Koopmanschap, R., Zhang, Y., Kersten,
M.: Idel: In-database entity linking with neural embeddings. arXiv preprint
arXiv:1803.04884 (2018)

13. Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong,
V., Paulus, R., Socher, R.: Ask me anything: Dynamic memory networks for natural
language processing. In: International Conference on Machine Learning. pp. 1378–
1387 (2016)

14. Levy, O., Seo, M., Choi, E., Zettlemoyer, L.: Zero-shot relation extraction via
reading comprehension. In: Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017). pp. 333–342 (2017)

15. Martinez-Rodriguez, J., Hogan, A., Lopez-Arevalo, I.: Information extraction
meets the semantic web: A survey. Semantic Web Journal (2018)

16. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation ex-
traction without labeled data. In: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2-Volume 2. pp. 1003–1011. Associ-
ation for Computational Linguistics (2009)

68 Groth et al.

17. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP). pp.
1532–1543 (2014), http://www.aclweb.org/anthology/D14-1162

18. Quirk, C., Poon, H.: Distant supervision for relation extraction beyond the sentence
boundary. In: Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers. vol. 1, pp.
1171–1182 (2017)

19. Raghavan, S., Garcia-Molina, H.: Integrating diverse information management sys-
tems: A brief survey. Bulletin of the Technical Committee on Data Engineering
p. 44 (2001)

20. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. In: Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing. pp. 2383–2392 (2016)

21. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603 (2016)

22. Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., Ré, C.: Incremental knowledge
base construction using deepdive. Proceedings of the VLDB Endowment 8(11),
1310–1321 (2015)

23. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-
label learning for relation extraction. In: Proceedings of the 2012 joint conference
on empirical methods in natural language processing and computational natural
language learning. pp. 455–465. Association for Computational Linguistics (2012)

24. Talmor, A., Berant, J.: The web as a knowledge-base for answering complex ques-
tions. In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). vol. 1, pp. 641–651 (2018)

25. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D.,
Meester, B.D., Haesendonck, G., Colpaert, P.: Triple pattern fragments:
A low-cost knowledge graph interface for the web. Web Semantics:
Science, Services and Agents on the World Wide Web 37-38, 184 –
206 (2016). https://doi.org/https://doi.org/10.1016/j.websem.2016.03.003,
http://www.sciencedirect.com/science/article/pii/S1570826816000214

26. Vougiouklis, P., Elsahar, H., Ka↵ee, L.A., Gravier, C., Laforest, F.,
Hare, J., Simperl, E.: Neural wikipedian: Generating textual sum-
maries from knowledge base triples. Journal of Web Semantics
(2018). https://doi.org/https://doi.org/10.1016/j.websem.2018.07.002,
http://www.sciencedirect.com/science/article/pii/S1570826818300313

27. Vrandečić, D.: Wikidata: A new platform for collaborative data collection. In:
Proceedings of the 21st International Conference on World Wide Web. pp. 1063–
1064. ACM (2012)

28. Weissenborn, D., Wiese, G., Sei↵e, L.: Making neural qa as simple as possible but
not simpler. In: Proceedings of the 21st Conference on Computational Natural
Language Learning (CoNLL 2017). pp. 271–280 (2017)

29. Wu, S., Hsiao, L., Cheng, X., Hancock, B., Rekatsinas, T., Levis, P., Ré, C.: Fon-
duer: Knowledge base construction from richly formatted data. In: Proceedings of
the 2018 International Conference on Management of Data. pp. 1301–1316. ACM
(2018)

30. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolu-
tional deep neural network. In: Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics: Technical Papers. pp. 2335–2344
(2014)

End-to-End Learning for Answering Structured Queries Directly over Text 69

31. Zhong, V., Xiong, C., Socher, R.: Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR abs/1709.00103 (2017)

A Individual Model and Error Analysis

We looked more deeply at performance for individual models for a given property.
Table 3 shows the highest performing models. We find some consistent patterns.
First, properties that have specific value constraints within Wikidata generate
good results. For example, the “crystal system” property needs to have one of 10
values (e.g cubic crystal system, quasicrystal, amorphous solid). Likewise, the
“coolant” property needs to be assigned one of fourteen di↵erent values (e.g.
water, oil, air). This is also true of “discovery method”, which oddly enough is
actually defined as the the method by which an exoplanet is discovered. This is
also a feature of properties whose values come from classification systems (e.g.
“Kppen climate classification” and ”military casualty classification”).

A second feature that seems to generate high performing models are those
that refer to common simple words. For example, the “source of energy” property
takes values such as “wind” or “human energy”.

Lastly, simple syntactic patterns seem to be learned well. For example, the
property ”birthday”, which links to entities describing a month, day combination
(e.g. November 8) which is thus restricted to a something that looks like a month
string followed by one or two numerical characters. Likewise, the expected value
for the property “flag” often appears directly in text itself. That is the correct
answer for the query “Japan flag” is “flag of Japan”, which will appear directly
in text.

Property Fast QA Fast QA Jack QA Jack QA Training
F1 Exact F1 Exact Data Size

birthday 0.95 0.91 1.0 1.0 32
flag 0.98 0.88 1.0 1.0 50
league points system 1.00 1.00 1.0 1.0 90
discovery method 0.98 0.91 1.0 1.0 69
source of energy 0.94 0.94 1.0 1.0 50
military casualty classification 1.00 1.00 1.0 1.0 92
topic’s main category 0.99 0.91 1.0 1.0 31
Kppen climate classification 1.00 1.00 1.0 1.0 34
coolant 0.98 0.98 1.0 1.0 128
crystal system 0.96 0.87 1.0 1.0 43

Table 3: Highest 10 performing models in the SP setting as determined by F1 measures
from models trained using the Jack QA architecture.

We also look at the lowest performing models, shown in Table 4 to see what is
di�cult to learn. Ratings for films (e.g. Australian Classification, RTC film rat-
ing, EIRIN film rating) seem extremely di�cult to learn. Each of these properties

70 Groth et al.

expect values of two or three letters (e.g. PG, R15+, M). The property “blood
type” also has the same form. It seem that using character level embeddings
may worked better in these cases.

The property “contains administrative territorial entity ” is an interesting
case as there are numerous examples. This property is used within Wikidata to
express the containment relation in geography. For example, that county contains
a village or a country contains a city. We conjecture that this might be di�cult
to learn because the sheer variety of linkages that this can express making it
di�cult to find consistencies in the space. A similar issue could be present for
properties such as “voice actor” and “cast member” where the values can be
essentially any person entity. Similarly, “polymer of” and “species kept” both
can take values that come from very large sets (e.g. all chemical compounds
and all species). It might be useful for the model to be provided specific hints
about types (i.e. actors, chemicals, locations) that may allow it to find indicative
features.

Property Fast QA Fast QA Jack QA Jack QA Training
F1 Exact F1 Exact Data Size

Australian Classification 0.00 0.00 0.00 0.00 48
RTC film rating 0.00 0.00 0.00 0.00 167
EIRIN film rating 0.01 0.01 0.02 0.02 349
blood type 0.00 0.00 0.08 0.08 302
contains administrative terri-
torial entity

0.09 0.06 0.08 0.07 1838

voice actor 0.12 0.11 0.11 0.09 2562
species kept 0.11 0.03 0.12 0.03 354
best sprinter classification 0.19 0.18 0.12 0.11 165
cast member 0.15 0.14 0.13 0.11 3955
polymer of 0.18 0.08 0.13 0.08 38

Table 4: Lowest 10 performing models in the SP setting as determined by F1 measures
from models trained using the Jack QA architecture.

Can Knowledge Graphs and Deep Learning
Approaches help in Representing, Detecting and

Interpreting Metaphors?

Mehwish Alam

FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, AIFB Institute,

KIT, Karlsruhe, Germany

Abstract. This paper gives an introduction to Conceptual Metaphor

Theory (CMT) as introduced by George Lako↵ and discusses the possible

research problems that can open in the context of Knowledge Graphs and

Deep Learning Methods and Metaphors in di↵erent mediums.

1 Proposal

Typically when a human mind thinks of a metaphor, the mind tries to map

one concept to the another concept based on their properties or functionality

etc. In Conceptual Metaphor Theory (CMT) [9], George Lako↵ discusses that

in the presence of a metaphor there are cross-domain mappings, i.e., a mapping

between a source domain and a target domain. For example, in

Corruption is infecting our society.

, the source domain is infection (i.e., a Disease) which is mapped to the target

domain Corruption (i.e., a Criminal Activity).
A published resource is available on-line called MetaNet [1], which defines

a list of such metaphors and each metaphor consists of a source and a tar-

get domain. In case of the above example, it evokes the metaphor Crime is a
disease. Each of these domains are represented as a linguistic frame called as

source frame and target frame respectively. These frames resembles the frames as

introduced in FrameNet [2], however, there are only few exact matches between

the frames in both the resources, meaning that MetaNet contains its own specific

frames. For the running example, the source frame is a Disease and the tar-

get frame is a Criminal Activity, where each of the roles of source frame i.e.,

disease and patient map to the roles in the target frame criminal activtiy
and victim respectively.

Can Knowledge Graphs Capture such kind of Semantics. While thinking

in terms of Knowledge Graphs, can this information about cross-domain map-

ping be represented in the form of a Knowledge Graph? Amnestic Forgery [5,

6] is one of the attempts to integrate the metaphors from MetaNet to the ex-

isting linguistic linked data cloud based on Frame Semantics, Framester [4]. In

72 Mehwish Alam

this resource each metaphor is represented following the theory of Description

& Situation (D&S) [7]. According to this, a metaphor is a description and its

occurrence in the text is a situation. One of the drawbacks of this resource is

that it keeps very general metaphors. There is a need to find a middle ground

between the cross-domain mappings as represented by frames and mappings oc-

curring in the text. In order to find such kind of mappings we need to process

the textual resources rich in metaphors such as poems or corpora specifically

created for metaphors.

One of the solutions is to use previously designed deep learning methods [8]

for distinguishing between metaphoric and literal expressions. Then finally learn-

ing from these metaphoric expressions their specific domains and enrich the

Knowledge Graph with this kind of information. Another solution would be to

create such kind of mappings in the existing Knowledge Graphs such as DBpedia

which contain those domains and are represented based on their literal meanings

but are not connected to the other domains based on their possible metaphoric

relation. This can help in better Identification/interpretation of metaphors or

generation of new metaphors.

Metaphors in Di↵erent Mediums Metaphors not only occur in language

but they also occur in di↵erent mediums such as visual metaphors (occurring

in images which can be related to political comics, advertisement or art work).

A metaphor can also be expressed in multiple mediums such as text with im-

age or gestures which can be found in videos. The last kind of metaphors are

referred to as multi-modal metaphors [3]. Tensors can help in dealing with multi-

dimensionality in such kind of metaphors. Following these lines many other

tasks come into play such as: (i) Metaphor identification along with their in-

terpretation by combining the information present in di↵erent mediums, (ii)

Capturing/Modeling cultural biases, meaning that the metaphor is interpreted

di↵erently based on cultural background.

References

1. E. Dodge, J. Hong, and E. Stickles. Metanet: Deep semantic automatic metaphor

analysis. In Proceedings of the Third Workshop on Metaphor in NLP. Association

for Computational Linguistics, 2015.

2. C. J. Fillmore. Frame semantics and the nature of language. Annals of the New

York Academy of Sciences, 280(1), 1976.

3. C. J. Forceville and Eduardo Urios-Aparisi. Multimodal Metaphor. De Gruyter

Mouton, Berlin, Boston, 2009.

4. A. Gangemi, M. Alam, L. Asprino, V. Presutti, and D. R. Recupero. Framester: A

wide coverage linguistic linked data hub. In EKAW, 2016.

5. A. Gangemi, M. Alam, and V. Presutti. Amnestic forgery: An ontology of conceptual

metaphors. In FOIS, 2018.

6. A. Gangemi, M. Alam, and V. Presutti. Linked metaphors. In In: ISWC 2018

Posters & Demonstrations, Industry and Blue Sky Ideas Tracks with (ISWC 2018),

2018.

Title Suppressed Due to Excessive Length 73

7. A. Gangemi and P. Mika. Understanding the semantic web through descriptions and

situations. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,

and ODBASE - OTM Confederated International Conferences, CoopIS, DOA, and

ODBASE, 2003.

8. G. Gao, E. Choi, Y. Choi, and L. Zettlemoyer. Neural metaphor detection in context.

In EMNLP, 2018.

9. G. Lako↵ and M. Johnson. Metaphors we Live by. University of Chicago Press,

Chicago, 1980.

