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Abstract In this paper, we account for the research efforts that have been started, for some among us, already
since 2003, and aimed to the design of a class of exotic architectured, optimized (meta) materials. At the first
stage of these efforts, as it often happens, the research was based on the results of mathematical investiga-
tions. The problem to be solved was stated as follows: determine the material (micro)structure governed by
those equations that specify a desired behavior. Addressing this problem has led to the synthesis of second
gradient materials. In the second stage, it has been necessary to develop numerical integration schemes and
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the corresponding codes for solving, in physically relevant cases, the chosen equations. Finally, it has been
necessary to physically construct the theoretically synthesized microstructures. This has been possible by
means of the recent developments in rapid prototyping technologies, which allow for the fabrication of some
complex (micro)structures considered, up to now, to be simply some mathematical dreams. We show here a
panorama of the results of our efforts (1) in designing pantographic metamaterials, (2) in exploiting the modern
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technology of rapid prototyping, and (3) in the mechanical testing of many real prototypes. Among the key
findings that have been obtained, there are the following ones: pantographic metamaterials (1) undergo very
large deformations while remaining in the elastic regime, (2) are very tough in resisting to damage phenomena,
(3) exhibit robust macroscopic mechanical behavior with respect to minor changes in their microstructure and
micromechanical properties, (4) have superior strength to weight ratio, (5) have predictable damage behavior,
and (6) possess physical properties that are critically dictated by their geometry at the microlevel.

Keywords Pantographic fabrics · Metamaterials · Scientific design · Higher gradient materials

Introduction

Like every other human activity, the design, manufacturing and testing of prototypes of novel materials having
a complex and purpose-tailored (micro)structure need the organized efforts of many specialists having a large
scope of competence. Therefore, the present work needed the collaboration of many scientists, each one with
his/her own specific competences. The order of the authors of this paper has been formed with a simple
criterion: it is related to the length of the time period that has seen their involvement in the described joint
research efforts and, therefore, does not express any evaluation of the importance of each contribution.

Let us note that, in this paper, no specific length scale is attached to the word “micro.” Specifically, with
its use it is meant that at one or at multiple smaller (with respect to the unique macroscale corresponding to
that at which phenomena are observed) length scales the material is made of complex microstructures: they
consist in the organization of the distribution of matter and its (possibly varying) physical properties.

The aim of this paper is to account, in a unique panoramic view, for the research efforts that we have started
(at least the first ones among us) since 2003 and that has produced, in our opinion, some interesting results.
The aim of the investigations was more specifically (1) to design novel and exotic architectured metamaterials
based on a mathematical understanding of the related mechanical problems and on suitably designed numerical
simulations, (2) to build the designed prototypes by using 3D printing technology, (3) to test with sensitive
apparatuses the so-built prototypes, (4) to elaborate the obtained data with modern image correlation techniques,
(5) to produce a careful model fitting of the experimental data by means of the systematic use of numerical
simulations, and (6) to compare the proposed models with experimental evidence.

At the first stage of the research effort, as it often happens, the problem was approached from a theoretical
point of view. The mathematical models, which were initially introduced, belong to the class of generalized
continua: the introduced independent kinematic fields include not only the displacement field but, eventually,
also microstretch and/or microrotation fields. The particular class of second gradient continua was more
specifically considered: in these media, the strain energy depends on the displacement gradient and on its
second gradient. The reasons of their name are therefore clear: in second gradient continua the strain energy may
depend on the second gradient of displacement. Second gradient continua can be regarded as media endowed
with a tensorial microstructure in which a constraint is applied, namely it requires that the microstructure
tensor is equal to the placement gradient. The problem to be solved was: given a desired behavior, to find at
first the evolution equations modeling such a behavior and then to characterize the material (micro)structure
governed by the chosen equations.

In the second stage, it was necessary to develop numerical integration schemes and the corresponding
codes for solving, in physically relevant cases, the equations chosen to describe the desired behavior. Finally,
it was necessary to build the microstructures. This was possible by means of the recent developments of rapid
prototyping technologies, which allow for the fabrication of those which, up to now, were simply mathematical
dreams.

In this paper, we show the results of our efforts in designing pantographic metamaterials, in the mechanical
testing of real prototypes, and evidence is provided on their exotic behavior. With the latest advancements (e.g.,
3D-printing technology and, more generally, of rapid prototyping techniques), the small-scale production of
materials with complex geometries has become more affordable than ever [1–4]. The exploitation of these
new technologies has made possible the development in the last few years of materials with very different
substructures.

J. Neggers · F. Hild
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Fig. 1 Example of pantographic structure [13]

One of the research goals whose achievement has been sped up by rapid prototyping is to determine and
study new microstructures that, at a well-specified macroscopic scale, exhibit a behavior that can be described
by nonstandard mathematical models like generalized continuum theories. Many of these theories, that today
are being called “generalized” (as opposed to “classical” theories), were formulated before or together with
so-called “classical” theories and then lost [5,6]. It is possible to state that some of these theories were
already known at least two centuries ago [7,8]. Pantographic structures (Fig. 1) have been proposed as a
metamaterial [9], which is well described by second gradient continuum theories [10–12].

1 Modeling and experiments in elastic regime

The theoretical interest in pantographic structures derives from the fact that, in order to describe their exotic
phenomenology, one has to utilize higher gradient continuum theories [14,15] or micromophic theories [16,17]
with the related problem of homogenization [18] and of different strategies for numerical integration [19,20].

1.1 Homogenization of periodic truss modular structures

Throughout the history of mechanics, several multiscale procedures have been developed in order to relate
macromodels with micromodels, the first attempts tracing back to Maxwell and Saint-Venant [21]. An approach
that has proven to be effective is based on the postulate of a macroscopic and a microscopic model and of
a kinematic correspondence between the deformations defined within the two models. Successively, it is
postulated that the power expended in corresponding motions coincides. In this way, it is possible to obtain
the coefficients of the constitutive equations of the macromodel in terms of properties of the building blocks
constituting the microscopic model. The macromodel is not the result of the homogenization process but is,
instead, assumed a priori. Formal asymptotic expansion can help to encompass this difficulty, and a microscopic
model made up of linear Euler beams leads to a simple macroscopic second gradient model of a 1D planar
beam [11].

The structure that is considered at the microlevel is the so-called pantographic structure (Fig. 2). It is
assumed that the considered pantographic microstructure is made up of a very large number of small modules
and the limit behavior when such a number tends to infinity, i.e., the homogenized macromodel, is studied. Using
Gamma-convergence technique, it is proven that the homogenized model is the postulated second gradient
model [11]. Successively, a modified (Warren-type) pantographic structure is proposed as micromodel in order
to get for the first time a third gradient planar beam model (Fig. 3), whose general properties were already
studied by Mindlin and Tiersten [22], and Dillon and Perzyna [23]. Such structures possess other floppy modes
(i.e., placements for which the strain energy vanishes) than, trivially, rigid motions. The pantographic beam
does not store any energy when undergoing uniform extension, while the Warren-type pantographic beam does
not store any energy when undergoing uniform flexure.

In Ref. [24], formal asymptotic expansion procedures, already employed [11,13], are systematically con-
sidered in the framework of linear elasticity in order to determine the effective behavior of periodic structures
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Fig. 2 Pantographic microstructure considered in Ref. [11]

Fig. 3 Warren-type pantographic microstructure [11]

made of welded elastic bars. Noting that flexural and torsional stiffnesses of isotropic homogeneous elastic bars
are much smaller than the extensional one entails an asymptotic rescaling of stiffnesses giving rise to interesting
macromodels. In Ref. [24], different examples of two-dimensional or three-dimensional microstructures that
lead to generalized 1D, 2D or 3D continua like Timoshenko beam, Mindlin-Reissner plate, strain gradient,
Cosserat, or micromorphic continua are provided.

Reference [25], in the spirit of pantographic fabrics, addresses one of the main challenges in the modern
theory of materials: the determination of those microstructures that produce, at the macrolevel, a class of
metamaterials whose elastic range is many orders of magnitude wider than the one exhibited by “conventional”
materials. With pantographic microstructures, which are made of “long” microbeams, it is possible to obtain
metamaterials whose elastic range spans up to an elongation exceeding 30%. It is shown that the same behavior
can be obtained by means of an internal microstructure based on a king post pattern (Fig. 4). This solution
shows many advantages, namely it only involves microbeams; all beams are only undergoing extension or
contraction; all internal constraints are terminal pivots. While the elastic strain energy can be determined as
easily as in the case of a long-beam microstructure, the proposed design seems to have remarkable advantages:
it seems to be more damage resistant and, therefore, to be able to have a wider elastic range; it can be obtained
with the same three-dimensional printing technology; it seems to be less subject to compression buckling. The
following analyses were carried out: (1) the derivation of Hencky-type discrete models for king post trusses,
(2) the application of an effective integration scheme to a class of relevant deformation tests for the proposed
metamaterial, and (3) the numerical determination of an equivalent second gradient continuum model.

1.2 Pipkin elastic plate model with inextensible fibers

Starting from a number of papers by Pipkin et al. [26–33], 2D continua consisting of two orthogonal families
of inextensible fibers were considered [34] and an adaptation to the case of pantographic structures has been
presented [10,35]. First, a 2D continuum, whose reference shape is given by the rectangular domain Ω ⊂ R

2

with the tallest side three times longer than the shorter one, has been considered. Considering only planar
motions, the current shape of Ω is described by the suitably regular macro-placement χ : Ω → R

2, with

(X1, X2)
χ�→ (x1, x2). An orthogonal frame of reference (O, ξ1, ξ2), whose orientation is the same of the

inextensible fibers in the reference configuration and whose coordinates are dimensionless, is introduced.
Accordingly, we have

ξ1 := 1

l
(X1 − X2) + 1

2
, ξ2 := 1

l
(X1 + X2) + 1

2
. (1)
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Fig. 4 King post pantographic lattice: geometry (a), pantographic rods (in black), king post rods (in red and green), auxiliary
rods (in cyan) (b), and king post geometric parameters (c) (color figure online)

A graphical depiction of the introduced quantities is given in Fig. 5. A pair (D1, D2) of orthonormal vectors,
the basis associated with the frame of reference (O, ξ1, ξ2), is further introduced. The two vectors D1 and D2
are tangent to the two families of fibers in the reference configuration. The inextensibility constraint can be
encoded in the following way. A curve β is inextensible for a placement χ if, for every part α of β, χ(α) has
the same length of α.

By definition d1 and d2 are considered to be the push-forward vectors, in the current configuration, of the
vectors D1 and D2, respectively, i.e., dα = F Dα, α = 1, 2, where F = ∇χ . The inextensibility constraint
implies that ‖d1(ξ1, ξ2)‖ = ‖d2(ξ1, ξ2)‖ = 1 for all (ξ1, ξ2) such that χ is locally continuously differentiable. In
the celebrated Rivlin paper [36], it is stated that when χ is twice continuously differentiable on an open simply
linearly connected subset Δ of Ω , the fiber inextensibility assumption allows the following representation
formula

χΔ(ξ1, ξ2) = χΔ
1 (ξ1) + χΔ

2 (ξ2) (2)

to be found for the restriction to Δ of the placement. If μΔ
1 (ξ1) and νΔ

1 (ξ1) denote the projections of χΔ
1 (ξ1) on

D1 and D2, respectively, and νΔ
2 (ξ2) and μΔ

2 (ξ2) the projections of χΔ
2 (ξ1) on D1 and D2, respectively, then

χΔ
1 (ξ1) = μΔ

1 (ξ1)D1 + νΔ
1 (ξ1)D2 and χΔ

2 (ξ2) = νΔ
2 (ξ2)D1 + μΔ

2 (ξ2)D2 (3)

The map χ is assumed to be piecewise twice continuously differentiable. It is worth noting that the matrix
representation of F on the subset Δ and for the reference frame defined by D1 and D2 is expressed as

[FΔ](D1,D2) =
[
μΔ

1,1(ξ1) νΔ
2,2(ξ2)

νΔ
1,1(ξ1) μΔ

2,2(ξ2)

]
(4)
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Fig. 5 Material (Lagrangian) coordinates adapted to inextensible fiber configuration [10]

Fig. 6 Domain pattern induced by the boundary conditions [10]

and that the functions χΔ
α (ξα) (α = 1, 2) are determined up to two scalar constants C1 and C2, i.e., if the

decomposition (2) holds with the representation (3), then the following alternative representation holds

χΔ
1 (ξ1) = (

μΔ
1 (ξ1) + C1

)
D1 + (

νΔ
1 (ξ1) + C2

)
D2

χΔ
2 (ξ2) = (

νΔ
2 (ξ2) − C1

)
D1 + (

μΔ
2 (ξ2) − C2

)
D2 (5)

The inextensibility constraint, together with the assumption that the map χ be piecewise C2, implies that there
exist two quantities ϑΔ

1 (ξ1) and ϑΔ
2 (ξ2) such that

dΔ
1 = cos ϑ1(ξ1)D1 + sin ϑ1(ξ1)D2 and dΔ

2 = sin ϑ2(ξ2)D1 + cos ϑ2(ξ2)D2 (6)

The above statement stands since dΔ
1 and dΔ

2 belong to S2 = {x ∈ R
2 : ‖x‖ = 1}.

Let Σ1 and Σ2 denote the left and right short sides, respectively, of the boundary ∂Ω of Ω . The following
boundary conditions are considered:

1. vanishing displacement on Σ1;
2. nonvanishing displacement u0 on Σ2.

Because of fiber inextensibility, the boundary conditions on Σ1 and Σ2 determine the placement field not just
at the boundary, but also in some regions of the interior of Ω [34] , i.e., on the regions Δ00 and Δ33 of Fig. 6.

Hence, the space of admissible placements for the Pipkin continuum under study is uniquely determined
by the continuous piecewise twice continuously differentiable fields μ1(ξ1) and μ2(ξ2). In particular, given
the boundary conditions i.e., μ(ξ) is known on Δ00 and Δ33 (for ξα ∈ [0, 1] ∪ [3, 4]), we are interested in
determining μα(ξα) only for ξα ∈ [1, 3]. By looking at the ordinary differential equations

dμα(ξα)

dξα

= cos ϑα(ξ), α = 1, 2 (7)
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which derive from Eqs. (5) and (6). Providing an integration constant through the continuity condition μα(1) =
1 at point (1, 1) uniquely defines the space of admissible placements for the Pipkin continuum by means of
the fields ϑ1(ξ1) and ϑ2(ξ2).

In fiber-inextensible 2D Pipkin continua, it is customary to introduce the shear deformation γ as a strain
measure. The shear deformation is defined as the scalar product of the fiber directions in the deformed config-
uration and, reminding the inextensibility assumption and Eq. (6), reads

γ (ξ1, ξ2) := d1 · d2 = cos
(π

2
− ϑ1(ξ1) − ϑ2(ξ2)

)
= sin (ϑ1(ξ1) + ϑ2(ξ2)) (8)

The following kinematic constraint should be enforced

−π

2
< ϑ1 + ϑ2 <

π

2
( 	⇒ −1 < γ < 1) (9)

if the case ϑ1 + ϑ2 = ±π
2 , which stands for overlapping fibers is to be avoided. Now that the space of fields

ϑ1(ξ1) and ϑ2(ξ2) uniquely describes admissible placements, the strain energy density W (ϑ1, ϑ2,
dϑ1

ξ1
,

dϑ2

ξ2
)

is introduced. It is assumed to have the form

W

(
ϑ1, ϑ2,

dϑ1

ξ1
,

dϑ2

ξ2

)
= αg( f (γ )) + βg(‖∇ f (γ )‖) (10)

with g(x) = 1
2 x2. Different functions f have been studied [10,35], among which:

S f (γ ) = γ
Q f (γ ) = arcsin γ
T f (γ ) = tan(arcsin γ )

Henceforth the case α = 1, β = 0 is referred to as first gradient (1g), and α = 0, β = 1 as second gradient
(2g). Numerical results [37–41] show that the final configurations obtained by using second gradient energies
are smoother than those with the first gradient approach. In the following, numerical results will be reported
for standard bias extension, shear and rotation tests, which confirm such a statement. Among all experiment,
the bias test has been extensively analyzed. In a standard bias extension test, u01 = u02 := u0. Then, a new
property has to be enforced on the placement function χ , which holds true for the bias extension test, while
not, e.g., for the shear tests that will be considered later on. Only placements functions that are symmetric with
respect to the X1 axis can be considered. With regard to the reference frame (O, ξ1, ξ2), this means that given
a point P of coordinates (ξ, η) and its symmetric (with respect to X1) PS whose coordinates are (η, ξ), the
conditions

d1(P) · Dα = d2(PS) · D3−α α = 1, 2 (11)
must be satisfied. They imply that ν1,1(ξ) = ν2,2(ξ) and μ1,1(ξ) = μ2,2(ξ) and in turn, given the boundary
conditions, ν1(ξ) = ν2(ξ) := ν(ξ) and μ1(ξ) = μ2(ξ) := μ(ξ). It is thus possible to state that in a standard
bias test the space of admissible placements for the Pipkin continuum is uniquely determined by the (globally
continuous) piecewise twice continuously differentiable field μ(ξ). Since μ(ξ) is known on Δ00 and Δ33,
i.e., for ξ ∈ [0, 1] ∪ [3, 4], we are interested in determining μ(ξ) only for ξ ∈ [1, 3]. By analyzing ordinary
differential equations

dμα(ξ)

dξ
= cos ϑα(ξ), α = 1, 2 (12)

it is concluded that ϑ1(ξ) = ϑ2(ξ) := ϑ(ξ) with ϑ(ξ) a (possibly discontinuous) piecewise continuously
differentiable field. Numerical results are shown in Figs. 7 and 8. Figure 7 provides a general overview of the
qualitative differences among different choices of α, β and of the function f in Eq. (10). In Fig. 8, a comparison
between final shapes of the rectangular sample is reported when modeled with 1gT and 2gT strain energy
densities. It is noteworthy that the final shapes are much smoother when a second gradient model is employed,
as strong variations of the field variable are penalized in the energy.

Let us now turn to reporting shear tests. Thus, the symmetry assumptions, which were previously introduced
when dealing with the standard bias extension test, are no longer considered. When modeling the shear test,
the condition u01 = −u02 holds. The results are shown in Figs. 9 and 10. In particular, Fig. 9 gives an overview
of the qualitative differences among different choices of α, β and of the function f defined in Eq. (10). The
non-monotonicity of the 1gS and 2gS models is not physically grounded. Besides, in Fig. 10 comparisons
between final shapes of the rectangular samples, modeled with 1gT and 2gT strain energy density, are reported.
Again, the final shapes are much smoother when a second gradient model is employed.
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Fig. 7 Bias extension test. Resultant (normal) forces on the short side (computed by means of Castigliano’s first theorem) versus
vertical component of prescribed displacement: a first gradient energy models, b second gradient energy models

Fig. 8 Bias extension test. Reference and deformed configurations for the first gradient 1gT (left) and second gradient 2gT (right)
models

1.3 Discrete Hencky-type elastic plate model

A discrete approach has been introduced for pantographic structures [13] and subsequently studied [42,43].
Modeling assumptions for the micromodel are based on physically grounded considerations about the real
microstructure of pantographic sheets and apply to the case of large deformations. In particular, trying to
comply with reported experimental evidences [10,13], the extension of fibers is accounted for by connecting
adjacent material particles with extensional springs. Moreover, at each node of the lattice, rotational springs,
which are deformed when the angle spanned by two contiguous extensional springs is changed, are introduced.
To account for the fact that such materials show two privileged material directions, a Lagrangian Cartesian
orthonormal coordinate system is introduced. Its associated basis of unit vectors is (D1, D2) made of two
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Fig. 9 Shear test. Resultant (shear) forces on the short side (computed by means of Castigliano’s first theorem) versus vertical
component of prescribed displacement: a first gradient energy models, b second gradient energy models

Fig. 10 Shear test. Reference and deformed configurations for the first gradient 1gT (left) and second gradient 2gT (right) models

orthonormal vectors that represent the directions of the families of fibers constituting the pantographic structure
in the reference configuration. In such configuration, the lattice body points are located at the positions

Pi, j = (iε, jε), i = 0, 1, . . . , N and j = 0, 1, . . . , M (13)

and pi, j denotes the current configuration position of the body point placed at Pi, j in the reference configuration.
The body points at the nodes Pi, j are connected by extensional springs along each one of the coordinate lines



Pantographic metamaterials 861

Fig. 11 Micromodel of a pantographic sheet with a detail of the three rotational springs [13]

(Fig. 11) and their deformation energies depend on the distances between adjacent contiguous points in the
current configuration, i.e., on the distance between pi, j and pi, j+1 for the fibers parallel to D1 in the reference
configuration, and on the distance between pi, j and pi+1, j for the fibers parallel to D2 in the reference
configuration. The first type of extensional spring is characterized by the rigidity k1

i, j and the second kind by

k2
i, j . Such extensional rigidities are related to the extensional behavior, respectively, of the two families of

fibers. As mentioned before, at each node there are also three rotational springs whose deformation energies
depend, respectively, on the angles:

1. ϑ1
i, j formed by the vectors pi−1, j − pi, j and pi+1, j − pi, j ,

2. ϑ2
i, j formed by the vectors pi, j−1 − pi, j and pi, j+1 − pi, j ,

3. ϑ3
i, j formed by the vectors pi, j+1 − pi, j and pi+1, j − pi, j .

The postulated strain energy for the microscopic Lagrangian discrete system having its configuration specified
by the set of parameters {pi, j } reads

U ({pi, j }) =
∑

j

∑
i

k1
i, j

2
(‖pi+1, j − pi, j‖ − ε)2 +

∑
j

∑
i

b1
i, j (cos ϑ1

i, j + 1)

+
∑

j

∑
i

k2
i, j

2
(‖pi, j+1 − pi, j‖ − ε)2 +

∑
j

∑
i

b2
i, j (cos ϑ2

i, j + 1)

+
∑

j

∑
i

b3
i, j

2

∣∣∣ϑ3
i, j − π

2

∣∣∣ξ (14)

On the one hand, the rigidities b1
i, j and b2

i, j are related, respectively, to the bending behavior of the two families

of fibers. The rigidities b3
i, j , on the other hand, are associated with the torsional stiffness of the pivots connecting

the two families of fibers, ξ being a parameter that is equal to 2 for a standard linear case.
In subsequent papers [42,43], the discrete (elastic) quasi-static Hencky-type spring model, made of exten-

sional and rotational (i.e., torsional) springs, is solved at each iteration by energy minimization. Even if the
model does not contemplate external forces, it would be very easy to consider the discrete analogous forces
leading, after a homogenization like the one presented later on, to external bulk forces and double forces.
In Fig. 12, the equilibrium shape resulting from a standard bias extension test simulation using the strain
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Fig. 12 Bias extension test simulation using the micromodel when M = 20 and N = 60: reference configuration (gray), current
shape and color bar of the internal forces on extensional springs [43] (color figure online)

Fig. 13 Shear-extension test simulation using the micromodel: reference configuration (gray), current shape and color bar of the
internal forces on extensional springs for M = 10 and N = 30 [43] (color figure online)

energy (16) is shown, along with colors indicating the magnitude of internal forces on extensional springs
computed in the current configuration, and whose expression is given in Ref. [43]. In the same manner, in Fig.
13, the equilibrium shape resulting from a shear test simulation is shown.
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1.4 À la Piola homogenized elastic plate model

Considering the discrete Hencky-type micromodel presented above, a 2D continuum macromodel has been
derived by means of micro–macro transitions. Expanding in truncated Taylor series the kinematic map [13],
the microplacement field of material particles at the nodes of the referential lattice is computed by means
of the values, in such nodes, of a regular macro-placement and its first gradient. Such a map determines a
unique micromotion once a macro-motion is given. The micro–macro transition is obtained by equating the
microstrain energy with the macroscopic counterpart, thus obtaining a macroscopic Lagrangian surface density
of strain energy in terms of the constitutive coefficients appearing in the postulated expression of the microstrain
energy. Numerical simulations with both discrete and homogenized models show that the homogenized model is
representative of the microscopic response [42,43]. Following the notation introduced above, we now consider
a 2D continuum whose reference shape is given by a rectangular domain Ω = [0, Nε] × [0, Mε] ⊂ R

2. Very
often, it is assumed that N = 3M , which is the standard relation between the width and height of a fabric
specimen for experimental and numerical tests. By assuming planar motions, the current shape of Ω is described
by regular macro-placement χ : Ω → R

2. The kinematic map providing the micro–macro identification is
the so-called Piola ansatz and we accordingly choose pi, j = χ(Pi, j ) ∀i = 1, . . . , N , ∀ j = 1, . . . , M .
Assuming that χ(·) is at least twice differentiable at Pi, j , the following 2nd-order approximations are obtained

‖pi+1, j − pi, j‖ = ‖χ(Pi+1, j ) − χ(Pi, j )‖ � ε‖F(Pi, j )D1 + ε

2
∇F(Pi, j )|D1 ⊗ D1‖

‖pi, j+1 − pi, j‖ = ‖χ(Pi, j+1) − χ(Pi, j )‖ � ε‖F(Pi, j )D2 + ε

2
∇F(Pi, j )|D2 ⊗ D2‖ (15)

where F is the deformation gradient ∇χ . The reader is referred to the original papers [13,42,43] for further
details. Equation (15) have been used for the homogenization procedure of two addends of Eq. (14). In order
to address the other three terms, the cosines of the angles ϑα

i, j (α = 1, 2) and ϑ3
i, j are derived as functions of

the macro-placement χ . Using analogous Taylor expansions as those in Eq. (15) neglecting o(ε2) terms, and
writing all quantities in terms of the displacement χ , the strain energy of the micromodel becomes

U ({pi, j }) =
∑

j

∑
i

∑
α

kα
i, j

2
ε2(‖F(Pi, j )Dα + ε

2
∇F(Pi, j )|Dα ⊗ Dα‖ − 1)2

+
∑

j

∑
i

∑
α

bα
i, j

[
‖∇F(Pi, j )|Dα ⊗ Dα‖2

‖Fi, j Dα‖2 −
(

F(Pi, j )Dα · ∇F(Pi, j )|Dα ⊗ Dα

‖Fi, j Dα‖2

)2
]

ε2

2

+
∑

j

∑
i

b3
i, j

2

∣∣∣∣arccos

(
F(Pi, j )D1 · F(Pi, j )D2

‖F(Pi, j )D1‖ · ‖F(Pi, j )D2‖
)

− π

2

∣∣∣∣
ξ

,

(16)
Rescaling the rigidities as

kα
i, j = K

α
e ; bα

i, j = K
α
b ; b3

i, j = Kpε
2 (17)

and letting ε → 0, the strain energy of the macroscopic system reduces to

U (χ(·)) =
∫

Ω

∑
α

K
α
e

2
‖F Dα − 1‖2dS

+
∫

Ω

∑
α

K
α
b

2

[
‖∇F |Dα ⊗ Dα‖2

‖F Dα‖2 −
(

F Dα · ∇F |Dα ⊗ Dα

‖F Dα‖2

)2
]

dS

+
∫

Ω

Kp

2

∣∣∣∣arccos

(
F D1 · F D2

‖F D1‖ · ‖F D2‖
)

− π

2

∣∣∣∣
ξ

dS.

(18)

It is noteworthy that the shear strain introduced in the considered macromodel is different from that defined
in the Pipkin continuum model [see Eq. (8)]. In Fig. 14, equilibrium shapes and their corresponding shear
strains are compared for different (pure) shear test simulations (refer to problem 2 above) using the strain
energy (18). Reference [18] has first addressed the homogenization à la Piola of pantographic fabrics in a
linear setting, proving that the homogenization of pantographic fabrics gives rise to second gradient continua.
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Fig. 14 Equilibrium shape and strain energy density when a shear displacement is prescribed [13] (color figure online)

Fig. 15 Numerical simulation of the bias extension test. Colors indicate the shear strain relative to the initial fiber axes (left) and
the strain energy density (right) [13]

Several numerical simulations show the presence of (internal) boundary layers, a hallmark of second gradient
theories. In Fig. 15, numerical simulations of the bias extension test are shown. The colors indicate the shear
strain relative to the initial fiber axes (left) and the strain energy density (right) [13]. In Fig. 16, color maps of
the strain energy density are shown for standard bias extension test (left) and combined rotation-compression
test (right) of a rectangular linear elastic specimen pantographic fabrics with holes.

The well-posedness of linearized equilibrium equations deriving from the stationarity of the energy func-
tional (18), which is valid in the neighborhood of a stress free configuration for pantographic sheets, cannot
be immediately studied by using the results available in the literature. It has been proven that the standard
strategy involving the use of Poincaré inequality, Lax–Milgram Theorem, and coercivity of bilinear strain
energy form also apply in the context of linear elastic pantographic sheets [44]. The key idea is the exploitation
of an unusual energy space, where the solutions relative to well-posed boundary conditions are looked for. It
is observed that the energy space of linear pantographic sheets, i.e., the space of functions fulfilling boundary
conditions for which the strain energy is meaningful, is included in a special class of Sobolev spaces, the
so-called Anisotropic Sobolev Space. The definition of Anisotropic Sobolev Space was conceived on purely
logical grounds by Sergei M. Nikol’skii and has to be used in order to apply the abstract Hilbertian setting of
solution strategy. Thus, in order to address the well-posedness of the planar linearized equilibrium problem
for homogenized pantographic lattices, (1) a class of subsets of anisotropic Sobolev space is introduced as the
most suitable energy space relative to assigned boundary conditions; (2) it is proved that the considered strain
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Fig. 16 Color maps of the strain energy density for standard bias extension test (left) and combined rotation-compression test
(right) of rectangular linear elastic specimen pantographic fabrics with rectangular holes (color figure online)

Fig. 17 Two control angles employed in the identification procedure

energy density is coercive and positive definite in such energy space; (3) the set of placements for which the
strain energy is vanishing (the so-called floppy modes) must strictly include rigid motions; (4) the restrictions
on displacement boundary conditions that ensure the existence and uniqueness of linear static problems are
determined.

1.5 Numerical identification of homogenized model

In Ref. [42], the parameters K
α
a , Kα

b and Kp appearing in the strain energy are assumed to be independent of the
position and family of beams they are related to and the strain energy density of the homogenized model (18).
The parameter identification is numerical, which means that the constitutive parameters Ke, Kb and Kp of
the homogenized model are calibrated by means of several numerical computations performed with the 3D
Cauchy model of isotropic and homogeneous elastic materials undergoing arbitrarily large strains. Several bias
extension test simulations [45] using both the standard Cauchy model and the higher gradient model, for several
displacements prescribed on the shorter side of the specimen, are performed. For each simulation, the overall
stored energy and two representative deformations at specific points are evaluated. The two representative
deformations are chosen to be the angles ψC and ψV , evaluated at the probed points shown in Fig. 17, i.e., at
the center C of the specimen and at the corner V of the “quasi-rigid” triangle near a base of the specimen.

The material parameters of the macromodel Ke, Kb and Kp are estimated by minimizing the squared
errors for the overall stored energy and the two angles ψC , ψV , when computed with both the homogenized
and Cauchy models. The two angles ψC , ψV have been chosen among other possible control quantities because
each of them is strongly related to one of the last two energy terms (18) only dependent only on one parameter
each. The energy involved in the distortion angle at the center is mostly governed by the parameter Kp, while
the distortion angle at the triangle vertex depends for the most part on the bending energy related to Kb, thus
allowing to easily find the minimum of the squared error for the two angles by separately tuning Ke and Kb. The
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Fig. 18 Comparison of the total energy between the Cauchy model (points) and the second gradient model (solid line)

Fig. 19 Comparisons between the Cauchy model (points) and the regression with the second gradient model (solid line). a Angle
at the center ψC (blue line) and angle at the corner ψV (green line) on the left; b total reaction force (color figure online)

last parameter Ke is derived by considering the whole stored energy. In Figs. 18 and 19 (left), the total energy
and the angles ψC and ψV used for fitting the second gradient model are shown as the prescribed displacement
in the bias extension test is varying. In Fig. 19 (right), a comparison between the total reaction force of the
micromodel and the one evaluated with the macromodel is plotted versus the prescribed displacement. This
quantity was computed by means of Castigliano’s first theorem. Figure 20 shows that for the Cauchy model a
non-negligible amount of energy is stored for configurations that are not accounted for in the coarser second
gradient model. The main reason is that the Cauchy model has a richer kinematics than the homogenized one.
Figure 19 (right) confirms this statement that at large displacements, which are likely to be those where strain
energies due to the richer kinematics of the refined model start to gain significance.

1.6 Elastic surface models

In Ref. [46], the formulation of a model for pantographic sheets, which is regarded as elastic surfaces embedded
in a three-dimensional Euclidean space, has been first presented. In order to account for the geodesic (thus
generalizing the classical plate theory) and out-of-plane bending of fibers, the model exhibits an associated
second gradient areal strain energy density, which depends on the first and second gradients of the deformation.
Accounting for the fact that fibers are arranged in two material directions, a Lagrangian Cartesian orthonormal
coordinate system, whose associated basis of unit vectors is (D1, D2), is introduced in the reference config-
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Fig. 20 3D deformation details; the colors in the zooms indicate qualitatively the stored elastic energy density for the 3D Cauchy
model (color figure online)

uration. We now consider a 2D continuum, whose reference shape is the rectangular domain B ⊂ R
2. As

customary, D1 and D2 are defined as the push-forward vectors in the current configuration of the vectors D1
and D2, respectively, i.e., Dα = F Dα, α = 1, 2. In the sequel fiber, stretches ‖Dα‖ are denoted as λ and μ

F = D1 ⊗ D1 + D2 ⊗ D2 = λD̃1 ⊗ D1 + μD̃2 ⊗ D2 (19)

where D̃α = Dα‖Dα‖ are the unit vectors associated with Dα . Such vectors are used to define the fiber shear

strain γ as sin γ = D̃1 · D̃2 [13,46]. The shear strain introduced in this model is different from that defined in
the Pipkin continuum model [10,34,35]. From Eq. (19), the right Cauchy-Green tensor reads

C = FT F = λ2 D1 ⊗ D1 + μ2 D2 ⊗ D2 + λμ sin γ (D1 ⊗ D2 + D2 ⊗ D1) . (20)

and
Jn = F D1 × F D2 = D1 × D2 (21)

with n the unit normal of the deformed surface field and J = λμ| cos γ | the local areal dilation due to the
deformation. In Ref. [46], the following representation formula is proven

∇∇χ = (g1 + K1n) ⊗ D1 ⊗ D1 + (g2 + K2n) ⊗ D2 ⊗ D2 + (Γ + T n) ⊗ (D1 ⊗ D2 + D2 ⊗ D1) (22)

with

g1 = λη1 p + (D1 · ∇λ) D̃1; g2 = μη2q + (D2 · ∇μ) D̃2 (23)

Γ = (D1 · ∇μ) D̃2 + λμφ1q = (D2 · ∇λ) D̃1 + λμφ2 p (24)

q = n × D̃2; p = n × D̃1 (25)

K1 = λ2κ1; K2 = μ2κ2; T = λμτ. (26)

where η1 and η2 are the geodesic curvatures of the deformed fibers, φ1 and φ2 the so-called Tchebychev
curvatures, κ1 and κ2 the normal curvatures of the deformed fibers, and τ measures the twist of the deformed
surface. In Ref. [46], explicit expressions for geodesic and Tchebychev curvatures are provided

Jη1 = D1 · ∇(μ sin γ ) − D2 · ∇λ

Jη2 = D1 · ∇(μ) − D2 · ∇(λ sin γ )

Jφ1 = Jη2 + λD2 · ∇(sin γ )

Jφ2 = Jη1 + μD1 · ∇(sin γ ).
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Fig. 21 Numerical simulation of torsion of a square sheet (θ = 60°) using the elastic surface model presented above. Colors
represent qualitatively the out-of-plane component of the displacement u3 (color figure online)

Furthermore, a strain energy density function, which depends on the first and second gradients of the defor-
mation and incorporating the orthotropic symmetry conferred by the reference fiber arrangement, can be
proposed [47]

W = w(λ,μ, J ) + 1

2

(
A1|g1|2 + A2|g2|2 + AΓ |Γ |2 + k1K 2

1 + k2 K 2
2 + kT K 2

T

)
(27)

where A1, A2, AΓ , k1, k2, kT are constitutive constants. In Fig. 21, numerical simulations of the torsion of a
square sheet using the elastic surface model presented above are shown. Many fiber reference curvatures have
been considered (e.g., sinusoidal, spiral, parabolic fibers), and for parabolic fibers, experiments (Fig. 22) and
model (Fig. 23) both show that, after a critical load, out-of-plane buckling occurs during bias extension, because
the transverse (curved) beams in the middle of the specimen undergo buckling induced by the shortening of
the middle width of the specimen.

A 2D continuum model embedded in a 3D space has been also proposed [48] where, relying on a variational
framework, the following strain energy density is proposed

π = 1

2

{
Ke

[(
ε1)2 + (

ε2)2
]

+ Ksγ
2+

+ Kt

[(
κ1

1

)2 + (
κ2

1

)2
]

+ Kn

[(
κ1

2

)2 + (
κ2

2

)2
]

+ Kg

[(
κ1

3

)2 + (
κ2

3

)2
]}

(28)

It corresponds to a system of two orthogonal continuous families “1” and “2” of straight shear-undeformable
beams arranged along the coordinate axes in the reference configuration and resembling the pantographic
microstructure. The fibers of family α are parallel to the direction êα . The contributions 1

2 Ke
(
ε1

)2
and
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Fig. 22 Bias extension test on parabolic pantographic fabric. Out-of-plane buckling is observed after critical loading

Fig. 23 Simulation of bias extension test on parabolic pantographic fabrics. Out-of-plane buckling is observed after a critical
loading. Deformed configuration and qualitative out of plane displacement

1
2 Ke

(
ε2

)2
stand for the elongation of fibers belonging to, respectively, the families “1” and “2.” The strain

measure εα , with α = 1, 2, is defined as

εα =
∥∥∥∥ ∂ χ

∂ Xα

∥∥∥∥ − 1 (29)

and Ke ∈ [0,∞) is the corresponding stiffness, which is assumed to be the same for both families of fibers.
The contribution Ksγ

2 is accounting for the shear deformation of the sheet, i.e., it is due to the relative rotation
of two orthogonal intersecting fibers. It represents the strain energy stored in the pivot because of its torsion
of angle γ . The strain measure γ ∈ [−π

2 , π
2 ], also referred to as the shear angle, is expressed as

γ = arcsin
∂ χ
∂ X1

· ∂ χ
∂ X2∥∥∥ ∂ χ

∂ X1

∥∥∥ ∥∥∥ ∂ χ
∂ X2

∥∥∥ (30)

and Ks is a positive constitutive parameter. The terms 1
2

[
Kt

(
κ1

1

)2 + Kn
(
κ1

2

)2 + Kg
(
κ1

3

)2
]

and 1
2

[
Kt

(
κ2

1

)2

+Kn
(
κ2

2

)2 + Kg
(
κ2

3

)2
]

are due to twist, normal bending and geodesic bending of beams belonging, respec-
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Fig. 24 Shear test. Qualitative buckled shapes of the first two bifurcation modes. Colors indicate values of the out-of-plane
displacement. a First and b second buckling modes (color figure online)

tively, to families “1” and “2” of fibers. The strain measures κα
1 , κα

2 , κα
3 are the coordinates, in the augmented

levorotatory reference Cartesian frame, of the axial vector corresponding to the skew tensor W α = (Rα)T ∂ Rα

∂ Xα
,

which is the so-called current curvature tensor. The orthogonal tensor Rα transforms the augmented levorota-
tory reference Cartesian frame vectors into the following ordered triplet: (1) the unitary vector tangent to the
deformed coordinate line α; (2) the unitary vector normal to the previous one and lying in the plane tangent
to the deformed surface; (3) the unitary vector normal to the plane tangent to the deformed surface. Explicit
(lengthy) derivations can be found in Ref. [48].

It is worth noting that (1) since the beams are assumed to be shear-undeformable (2) both R1 and R2

transform the third vector ê3 of the augmented levorotatory reference Cartesian frame into the same vector,
(3) assuming that principal inertia axes of the cross sections for the two families “1” and “2” of beams in the
undeformed configuration are considered to be, respectively,

(
ê2, ê3

)
and

(−ê1, ê3
)
, the cross sections of the

beams belonging to the two families “1” and “2” are eigen-inertia vectors in the deformed configuration the
unitary vectors of points (2) and (3) above and, hence, they share the second principal inertia axis at point
(3) above. Such vector is also interpreted as the current axis of the elastic cylindrical pivot. This means that
deformation modes of the pivots other than their torsion are kinematically excluded in this model, i.e., the pivots
are assumed to remain orthogonal to both fibers in the current configuration and only their torsion contributes
to the strain energy. Further, κα

1 , κα
2 , κα

3 can also be interpreted as geodesic torsion, normal curvature and
geodesic curvature of the deformed surface multiplied, respectively, by ‖ ∂ χ

∂ Xα
‖, since Xα is not a unitary speed

parameterization. Last, the fibers intersecting in one point cannot detach or have a relative displacement, since
their motion is described by the same placement function. (This is not a so-called mixture model.) Using the
above model, shear test simulations have been performed reporting the occurrence of out-of-plane buckling
(Fig. 24).

1.7 Analytical identification of elastic plate models

Let us consider a two-dimensional body, whose points can be put in a bijective correspondence with a closed
subset B of the Euclidean space R

2. The set B represents the shape of the body in the reference (undeformed)
configuration. A Cartesian coordinate system

(O,
(
ê1, ê2

))
is introduced, with X = (X1, X2) the coordinates

of the generic point in the Euclidean space R
2.

Working in a Lagrangian framework, a placement function χ : B0 → R
2 such that the image x = χ (X)

of X through χ is the current position of point X . The displacement field u : B0 → R
2 is defined as

u (X) = χ (X)− X . The placement, or equivalently the displacement, is the independent kinematic descriptor
of the system. The image B = χ (B) of B through χ is the current shape of the body. Let F = ∇Xχ be the
gradient (with respect to the Lagrangian coordinate X ) of the placement function χ . The tensor F belongs to
Lin+, the group of second order tensors with positive determinant, i.e., orientation preserving. An objective
strain measure G = [

FT F − I
]
/2 (Green-Lagrange strain tensor) is then defined. Henceforth, the subscript

X will be omitted in ∇X and each space derivative will be considered a material derivative. When the strain
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energy density Û (G, ∇G) is considered to be depending quadratically upon the deformation tensor G and its
gradient ∇G, the following representation formula applies [49]

Û strain = 1

2
εT C3×3ε + 1

2
ηT A6×6η (31)

with
ε = (

G11 G22
√

2G12
)T

(32)

and
η = (

G11,1 G22,1
√

2G12,2 G22,2 G11,2
√

2G12,1
)T

(33)

In order to account for anisotropy of the material, we must assume invariance of the strain energy density under
the action, on the Cartesian coordinate system O,

(
ê1, ê2

)
labeling points of the reference configuration, of

some symmetry group S of transformations, which could be any subgroup of Orth. When the symmetry group
is the dihedral group D4 (orthotropic material), the representations for the matrices C3×3 and A6×6 read

C D4
3×3 =

⎛
⎜⎝

c11 c12 0

c12 c22 0

0 0 c33

⎞
⎟⎠ (34)

and

AD4
6×6 =

(
AD4

3×3 0

0 AD4
3×3

)
(35)

with c11 and c12 in C D4
3×3 corresponding to the two Lamé coefficients

AD4
3×3 =

⎛
⎜⎝

a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎟⎠ (36)

In Refs. [50–52], compatible identifications of the constitutive parameters appearing in Eq. (31) have been
carried out, thus completely characterizing the set of constitutive parameters in terms of the fiber base material
parameters (i.e., Young’s modulus), of the fiber cross section parameters (i.e., area and moment of inertia),
and of the distance between the nearest pivots. In particular, the constitutive parameters have been identified in
the small strain case |∇u| � 1, modeling fibers as (geometrically linear) Euler–Bernoulli beams and pivots as
rotational (elastic) springs with a quadratic potential in the relative rotation (torsion of pivots) angle between
fibers belonging to two different families. The following expressions for the matrices C D4

3×3 and AD4
3×3 are the

outcome of the investigation [52]

C D4
3×3 =

⎛
⎜⎜⎝

E A
d 0 0

0 E A
d 0

0 0 2kR

⎞
⎟⎟⎠ (37)

AD4
3×3 = E I

d

⎛
⎜⎜⎝

0 0 0

0 1 −√
2

0 −√
2 2

⎞
⎟⎟⎠ (38)

with E , A and I being, respectively, the Young’s modulus, the cross-sectional area and the inertia moment
of the cross section of beams, and d being the spacing between adjacent beams. Finally, kR is the equivalent
elastic torsional stiffness of the cylindrical pivots. The shear strain relative to the directions v and w is defined
as (with −π

2 < γ < π
2 )

sin γ = cos
(π

2
− γ

)
= Fv · Fw

‖Fv‖ ‖Fw‖ = wT FT Fv

‖Fv‖ ‖Fw‖ = wT (2G + I ) v

‖Fv‖ ‖Fw‖ . (39)
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Fig. 25 Circular pantographic specimen. Qualitative color maps of the strain energy density for: bias extension test (a), shear test
(b), rotation test (c)

In the present case w = ê1 and v = ê2. Thus, assuming that −π
2 ≤ γ ≤ π

2

γ = arcsin

⎛
⎝ 2G12√(

1 + u1,1
)2 + u2

2,1

√(
1 + u2,2

)2 + u2
1,2

⎞
⎠ . (40)

In the case of small strains, i.e., geometrically linear case |∇u| � 1

γ � arcsin
(
u1,2 + u2,1

) � u1,2 + u2,1. (41)

Equation (31) yields the following remarkable expression for the strain energy density

Û strain = 1

2
kR

(
u1,2 + u2,1

)2

︸ ︷︷ ︸
shear (pivot torsion) contribution

+ E A

2d

(
u2

1,1 + u2
2,2

)
︸ ︷︷ ︸
extension of fibers

+ E I

2d

(
u2

1,22 + u2
2,11

)
︸ ︷︷ ︸
bending of fibers

(42)

In Ref. [50], numerical solutions using the strain energy density (42) are presented for a circular panto-
graphic specimen and three exemplary problems: bias extension, shear, and rotation tests (Fig. 25).

In Ref. [53], two pantographic sheets with an aspect ratio 3:1 are considered, having (1) the same fiber
directions and (2) a part of their common sides interconnected by terminal clamping constraints, i.e., the
displacements in the interconnected regions are pointwise equal for the two pantographic sheets. In the region
corresponding to the cut separating the two sheets, no kinematic constraint is assumed for their relative
displacement and the results shown in Fig. 26 are obtained for a standard bias extension test. Pantographic
sheets without any internal cut are considered as well, see Fig. 27, where Eulerian representations of the strain
energy densities are given for two nonstandard bias extension tests and in presence (absence) of the shear
energy contribution. In particular in the first (higher) two plots in Fig. 27 the left side of the specimen have
been clamped and the other sides are free, while the vertices of the right side are displaced along the direction
of the longer sides. Instead, in the lower two plots, the left side of the specimen has been clamped and the
lower half of the right side has been displaced along the direction of the longer sides, while the remaining
boundaries are free. Second gradient energies allow for external actions on 2D continua not only on edges, but
also on vertices, as vertex boundary conditions and vertex-forces.

1.8 Wave propagation in discrete arrangements of Euler beams

In Ref. [54], a model for studying the dynamics of pantographic fabrics has been introduced and subsequently
employed [55,56]. Pantographic rectangular “long” waveguides are studied and time-dependent boundary
displacements inducing the onset of traveling waves are considered. In this model, the two families of orthogonal
fibers are regarded as two families of 1D orthogonal straight continua arranged in a rectangle in the reference
configuration. Each continuum Ci has a standard linearized Euler elastic potential given by

Ui = 1

2

∫
Ci

kM
(
u′′(s)

)2 + kN
(
w′(s)

)2 ds (43)
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Fig. 26 Effect of a cut inside a sheet. Eulerian representation of the elastically stored energy density for a sheet with lower shear
stiffness (left) and for a sheet with higher shear stiffness (right), both subject to a standard bias extension test

Fig. 27 Nonstandard bias extension test: Eulerian representation (including deformed shape and deformed sampled material
lines) of the strain energy density for a sheet whose expression does not include the shear contribution (left) and for a sheet whose
strain energy includes the shear contribution (right)

with s an abscissa introduced on each Ci , kM the bending stiffness, kN the axial stiffness, u and w, respectively,
the transverse and axial displacements. Dots in Fig. 28 (left) indicate the presence of frictionless hinges that do
not interrupt the continuity of the beams. The displacement prescribed on the structure is an impulse function
I = u0 ∗ sech [τ(t − t0)], with τ being a parameter affecting the duration of the pulse [Fig. 28 (right)].

In Fig. 29 (left) plots of the deformed shape of a pantographic strip during the propagation of a wave
generated by a vertical impulse, uniformly applied on the upper side of the specimen while its lower side
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Fig. 28 Reference configuration (left) and time history of the impulse (right)

Fig. 29 Qualitative displacement plot of a wave propagating after a prescribed vertical displacement on the upper side (left).
Wave propagating after double impulse (right)

remains clamped, are shown. Colors represent the magnitude of the total rotation of the cross section of the
beams. In Fig. 29 (right), plots of the deformed shape of a pantographic strip during the propagation of a
wave, generated by a double impulse applied at the middle height of the specimen, are shown, along with
colors representing the magnitude of the total rotation of the cross section of the beams. By double impulse,
we mean a couple of displacements, having the same orientation but opposite directions, oriented in one of the
two orthogonal characteristic directions of the pantographic sheet. Such displacements are prescribed on two
points at the opposite ends of two adjacent beams, i.e., consecutive beams belonging to the same orthogonal
family of 1D continua, and their amplitude over time is shown in Fig. 28.

Such a double impulse corresponds, in the continuous homogenized limit case, to a double force, i.e.,
to a pair of forces with null resultant and moment. Figure 30 shows that the energy of the system remains
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Fig. 30 Qualitative displacement of wave propagation in two identical lattices connected by an array of vertical beams

substantially confined in the upper half of the waveguide and propagation of waves beyond the discontinuity
is negligible. Therefore, such type of discontinued pantographic structures induces damping.

2 Damage and failure in pantographic fabrics

So far the study of damage mechanisms in pantographic fabrics has been addressed from a modeling stand-
point [57,58]. Further experimental data can be found [10,59]. In Ref. [57], in the aforementioned discrete
quasi-static Hencky spring model (Sect. 1.3) a simple irreversible rupture mechanisms is considered for the
springs. A spring is ruptured if its strain level exceeds (upper threshold) or is less than (lower threshold) a
certain (constant) threshold. In particular, the criterion for rupture of a spring at iteration t , which discriminates
whether that spring has to be removed from the computations at iteration t + 1 or not, is based on (constant)
thresholds for the relative elongation of extensional springs, e.g., (‖pi+1, j − pi, j‖ − ε) (upper and lower
thresholds are employed for this deformation measure). Upper thresholds for the relative rotation of adjacent
springs belonging to the same fiber like, e.g., (cos ϑ1

i, j + 1) and for the relative rotation of adjacent springs

belonging to different fibers like |ϑ3
i, j − π

2 | are contemplated but are not considered. Since the analyzed pan-
tographic sheet is made out of a ductile material (polyamide), damage is governed by fiber breakage due to
excessive extension rather than fiber breakage due to excessive bending or pivot failure due to torsion.

An experimental evidence [10] is provided by displacement-controlled uniaxial bias extension tests (Fig. 31)
when performed on three different polyamide specimens. The first failure event was observed at the corners
of the specimen, where the elongation of fibers is the highest.

This evidence is confirmed, through a different test [57] (see Fig. 32), since fiber elongation is the highest at
the lower-left and upper-right corners. When the sample is made out of a brittle material, damage is governed
by excessive shear strains (i.e., torsion of pivots) that, in the displacement-controlled uniaxial bias extension
test, reaches its maximum near the two internal vertices of the quasi-rigidly deforming triangles.

In Ref. [57], a slow-rate (15 mm/min) of uniform horizontal displacement on the top of the specimen is pre-
scribed. From the prescribed horizontal displacement u, a non-dimensional displacement λ can be calculated.
First fiber breakage is observed for a horizontal displacement u = 139.96 mm (Fig. 32), which corresponds to
a non-dimensional displacement λ = 0.976. By comparing Figs. 32 and 33, the model correctly predicts the
location of fiber breakage. The “generalized” (because of the introduction of damage) numerical model fits
well the force-displacement curve throughout the experiment, up to the onset of fiber breakage (Fig. 34).

In Ref. [58], pivot damage due to shear, i.e., fibers detaching due to friction in pivots, is taken into account,
thereby allowing for sliding between the two families of fibers. Thus, the nonlinear homogenized quasi-static
model for the discrete system in Fig. 11 (for more details about the homogenization procedure the reader is
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Fig. 31 Force versus prescribed displacement for a uniaxial bias extension test. a Sample before first beam breakage (i.e.,
breakdown onset); b upper-left corner beam breakage; c–f further fiber breakage

Fig. 32 a Reference configuration (λ = 0), b damage onset (λ = 0.976) of a shear test

Fig. 33 Deformed configuration at the onset of damage. The broken fiber is colored in black, and it is pointed by the green arrow
(color figure online)

referred to Ref. [13]) is modified by introducing, in the spirit of mixture theory, two independent placement
functions χ1 and χ2 (the placement functions of body points belonging to horizontal and vertical fibers,
respectively) defined on the same reference domain and, accordingly, considering the following nonlinear
(elastic) strain energy to be minimized at each iteration
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Fig. 34 Force (N ) versus non-dimensional displacement for the shear test of a pantographic sheet up to the onset of fiber breakage.
The black curve is the experimental data, and the red curve has been obtained via numerical simulation (color figure online)

Fig. 35 Dependence of the resistance to sliding Kint on δ

∫
B0

∑
α=1,2

K α
e

2
‖Fα êα − 1‖2

︸ ︷︷ ︸
extension of horiz. and vert. fibers

+
∫

B0

K p

2

∣∣∣∣arccos

(
F1ê1 · F2ê2

‖F1ê1‖ · ‖F2ê2‖
)

− π

2

∣∣∣∣
ξ

︸ ︷︷ ︸
shear (pivots torsion) contribution

+ (44)

∫
B0

∑
α=1,2

K α
b

2

[
‖∇Fα|êα ⊗ êα‖2

‖Fα êα‖2 −
(

Fα êα · ∇Fα|êα ⊗ êα

‖Fα êα‖2

)2
]

︸ ︷︷ ︸
bending of horiz. and vert. fibers

+
∫

B0

Kint

2
‖χ1 − χ2‖2

︸ ︷︷ ︸
relative sliding of the two layers

.(45)

In Ref. [58], the relative sliding of two families of fibers is considered. A criterion based on thresholds for the
relative distance δ = ‖χ1 − χ2‖ between χ1 and χ2 (e.g., the fitted Kint in Fig. 35) is presented.

A numerical example where an aluminum specimen is subject to uniaxial bias extension is shown. Con-
stitutive parameters K α

e , K α
b , K p and Kint were fitted using experimental data (Fig. 36), showing a very good

agreement. The experiment is studied only up to the first rupture (i.e., as long as Kint > 0 ∀X ∈ B0). For
the discrete model [57], and in turn for the continuum homogenized model [58] (as for their respective purely
elastic counterparts), it is straightforward to implement the case of non-orthogonal initially straight fibers [60].

Further, the two models have been extensively tested when dealing with pure (nonlinear) elasticity, and they
show a nearly perfect agreement with experimental results. In Fig. 37b, the onset of damage is observed at the
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Fig. 36 Force versus applied displacement for a uniaxial bias extension test of an aluminum pantographic sheet. The black curve
is the experimental measurement and the red obtained via numerical simulation (color figure online)

Fig. 37 A sample subject to uniaxial bias extension. a Sample before the first beam breakage (i.e., breakdown onset); b upper-left
corner beam rupture; c–f rupture of further fibers

upper-left corner beam only. This is due to undesired asymmetries in the experimental setup (e.g., specimen,
loading, clamping).

3 Feasibility of digital image correlation analyses

Up to now, the only reported kinematic data were prescribed macro-displacements or discrete measurements
(e.g., control angles, see Fig. 17). In the future, it is desirable to have a richer experimental database in order to
calibrate and validate in a more thorough way the previously discussed models. Since very large displacement
levels occur, digital image correlation (DIC [61,62]) is a natural choice for the measurement technique. The
feasibility of DIC on pantographic samples was shown very recently [63]. In that case study, a series of 30
load steps was analyzed with global DIC using meshes made of 3-noded triangles with linear shape functions
(i.e., T3-DIC). Since the mesh was not compatible with the pantograph mesostructure, elastic regularization
was used (i.e., so-called RT3-DIC [64]). In order to avoid any significant bias, the regularization length was
identical to the element length (i.e., 25 pixels).

This example is further analyzed hereafter. Figure 38 shows the initial configuration, the last configuration
prior to damage inception (i.e., 30th load step), and the broken sample. The grips were speckled for DIC
purposes, and the hinges of the pantographic sheet were marked in black. A red background was used in order
to create high contrast with the white color of pantographic sheet.

The first type of analysis consists in meshing the rectangular region of interest with T3 elements inde-
pendently of the underlying mesostructure [63]. Such discretizations may then be compared with numerical
simulations performed at the macroscale (as discussed above). Three different mesh densities are considered
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Fig. 38 Gray-level images of the pantograph in the reference configuration (a), last analyzed deformed configuration (b), and at
failure (c)

Fig. 39 Finite element meshes overlaid with the gray-level picture of the reference configuration

(Fig. 39a–c). The characteristic mesh size �, which is defined as the square root of the average element surface,
is equal to 34 pixels for the first mesh, 28 pixels for the second one, and 18 pixels for the third. Second, a fourth
mesh was tailored to the pantograph surface (Fig. 39d). Thanks to the uniform background, simple morpho-
logical operations were performed in order to construct this mesoscale mesh from a mask. The characteristic
mesh size is equal to 3.5 pixels.

Two types of registration routes are followed, namely the first one is an incremental approach that consists in
updating the reference configuration that becomes the deformed configuration of the previous analysis. Its main
advantage is that the elastic regularization only acts incrementally (i.e., equivalent to a hyperelastic description
with Hencky strains). The convergence condition on the norm of the mean displacement correction was set to
10−3 pixel. The regularization length was selected to be equal to 45 pixels in that case. This choice enables the
second, third and fourth meshes to be analyzed even though they are finer than the underlying mesostructure. The
drawback is that measurement uncertainties are cumulated as more pictures are analyzed. A second option is to
perform direct calculations that register the nth picture with that of the reference (i.e., unloaded) configuration.
The measurement uncertainties are no longer cumulated. However, the elastic regularization may become too
strong for the actual kinematics as it acts as a low-pass filter. Consequently, the regularization length was
lowered to 30 pixels. The convergence condition on the norm of the mean displacement correction was set
to 10−2 pixel since the measured displacement amplitudes will be significantly higher than in incremental
registrations.
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Fig. 40 RMS residual as a function of the picture number for the four meshes shown in Fig. 39. The extension U corresponds to
updated registrations, and the extension D designates direct registrations

Fig. 41 Longitudinal (a–c) and transverse (b–d) displacement fields measured with meshes 3 (a, b) and 4 (c, d) for the 10th
picture. The fields are shown on the deformed configuration

In T3-DIC, the quality of the registration is probed with the gray-level residual field, namely the pixelwise
difference between the picture in the reference configuration and the picture in the deformed configuration
corrected by the measured displacement field. The root-mean-square (RMS) average is reported in Fig. 40
for all eight situations considered herein. The first general trend is that the registration quality degrades as
more steps are analyzed, thereby signaling that the measured fields do not fully capture the complex kinematics
associated with the studied pantograph at the end of the experiment. Second, the direct registrations have always
lower levels in comparison with updated registrations. This result validates the choice of the regularization
strategy. Last, there is a clear difference between the first three meshes and the last one. This proves that a
mesh tailored to the actual pantograph surface is able to better capture the kinematics of the test, even with
the same regularization length as for the coarser meshes. In terms of measurement quality, the three meshes
lead to similar overall residuals, which is to be expected because the regularization length is larger than the
element size. For mesh 4, the gain between direct and updated registration is the highest.

In the following discussion, only two sets of results are reported, namely those of meshes 3 and 4 for direct
registrations. Figure 41 shows the longitudinal and transverse displacements measured for the 10th picture.
The transverse displacement field ux shows that there is a huge contraction, which is of the order of magnitude
as the longitudinal motions uy . Given the fact that the width of the sample is one-third of its length, it proves
that transverse deformations are much more important than the longitudinal component. This is due to the
geometry of the pantographic sheet. The same observation applies for both meshes. In the present case, both
measurements have approximately the same quality in terms of overall registration residuals (Fig. 40).
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Fig. 42 Longitudinal (a–c) and transverse (b–d) displacement fields measured with meshes 3 (a, b) and 4 (c, d) for the 20th
picture. The fields are shown on the deformed configuration

Fig. 43 Longitudinal (a–c) and transverse (b–d) displacement fields measured with meshes 3 (a, b) and 4 (c, d) for the 30th
picture. The fields are shown on the deformed configuration

In Fig. 42, the same fields are shown for the 20th picture. The pattern of the transverse and longitudinal
displacement fields is very similar with higher overall levels. The displacement ranges still are of the same
order of magnitude for the longitudinal and transverse displacements. Consequently, the central part of the
sample has become even thinner. The kinematic details are more easily observed for mesh 4. In this case, there
is a clearer difference that translates into lower registration residuals for mesh 4 (Fig. 40).

The last load level prior to damage inception (i.e., first strut failure) is reported in Fig. 43. In that case, the
gray-level residuals (Fig. 40) are significantly higher for mesh 3 in comparison with mesh 4. In both cases,
the chosen kinematic basis is no longer able to completely describe the actual motions of the pantographic
structure. For the parts of the pantographic sheet closer to the grips and the grips themselves, the registration
quality is significantly better. This result validates the choice of including part of the speckled grips in the
analysis. For this last step, the highly deformed region has grown toward both ends of the pantographic sheet,
which can be understood by the fact that when struts touch each other, the deformation mechanism moves
away from these zones.

The results reported herein show that DIC analyses can be run on pantographic structures at macroscopic
and mesoscopic levels. Significant gains were observed in terms of registration quality by moving from the
macroscopic to the mesoscopic scale (i.e., more than a factor of two at the end of the picture series). However,
the final gray-level residuals indicate that even more refined approaches should be followed. What is missing
in the mesoscopic analysis is the fact that pivots were not accounted for. This would require meshes to be
constructed in such a way that the actual geometry of the pantographic structures would be described. Two
options are possible. The first one would consist in using beam elements that are interconnected at the pivots.
DIC analyses may then be easier since the number of degrees of freedom would be significantly reduced [65].
Second, instead of using beam elements, finite elements may also be considered with explicit descriptions
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Fig. 44 a Three-point flexural test on a 3D pantographic specimen. b Pantographic sheet with “perfect” hinges

of the pivots (as in the 3D Cauchy model, see Fig. 20). One challenge is to measure surface displacements
with such very fine meshes since each element will contain very few pixels. This approach requires elastic
regularizations to be considered [64] as performed herein. Last, integrated approaches may also be considered
in which the displacement fields are derived thanks to numerical simulations and the material parameters then
become the unknowns. In that case, the mesh can be as fine as wished since the number of unknowns has been
drastically reduced [66,67].

4 Conclusion and outlook

Pantographic fabrics proved to be a very interesting subject of study, involving the work of, at least, (compu-
tational) mechanicians (modeling), experimentalists (experiments), numerical analysts (model solving), data
analysts (image correlation), mathematicians (well-posedness and Γ -convergence) and many other researchers
and professionals. We believe that what has been presented in this survey can thus be considered our manifesto
about how commitment from different groups of researchers should be directed for the study of metamaterials
and, more generally, for the study of every scientific subject. Mechanics, as any other natural science, cannot
proceed without a continuous interplay between experimental evidence and theoretical modeling.

However, this is just a first simple step toward the study of more complex structures and experiments. A
famous quote by Hilbert states that “the art of doing mathematics consists in finding that special case which
contains all the germs of generality.” This statement can be extended to every scientific discipline, including
those that have been applied in the studies presented in this survey and that pantographic fabrics can be
considered as one of the simplest examples leading to treat nonstandard problems in mechanics of materials
and its related disciplines. In this sense, pantographic structures provide the minimal setting for the study of
relevant issues in mechanics. The solution of a general problem is easier to face once that of its particular cases
has been addressed, as, very often, particular cases help to understand better the real nature of the problem.
Currently, new tests and structures are being studied, along with their technological realization challenges, like
the three-point test shown in Fig. 44a and the pantographic sheet with “perfect” pivots, i.e., hinges that do not
oppose to variations of the shear angle between two intersecting fibers, shown in Fig. 44b.
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