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Abstract

In several domains, including healthcare and home automation, it is important

to unobtrusively monitor the activities of daily living (ADLs) carried out by

people at home. A popular approach consists in the use of sensors attached to

everyday objects to capture user interaction, and ADL models to recognize the

current activity based on the temporal sequence of used objects. Often, ADL

models are automatically extracted from labeled datasets of activities and sen-

sor events, using supervised learning techniques. Unfortunately, acquiring such

datasets in smart homes is expensive and violates users’ privacy. Hence, an al-

ternative solution consists in manually defining ADL models based on common

sense, exploiting logic languages such as description logics. However, manual

specification of ADL ontologies is cumbersome, and rigid ontological definitions

fail to capture the variability of activity execution. In this paper, we intro-

duce a radically new approach enabled by the recent proliferation of tagged

visual contents available on the Web. Indeed, thanks to the popularity of social

network applications, people increasingly share pictures and videos taken dur-

ing the execution of every kind of activity. Often, shared contents are tagged

with metadata, manually specified by their owners, that concisely describe the

depicted activity. Those metadata represent an implicit activity label of the

picture or video. Moreover, today’s computer vision tools support accurate ex-
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traction of tags describing the situation and the objects that appear in the visual

content. By reasoning with those tags and their corresponding activity labels,

we can reconstruct accurate models of a comprehensive set of human activities

executed in the most disparate situations. This approach overcomes the main

shortcomings of existing techniques. Compared to supervised learning methods,

it does not require the acquisition of training sets of sensor events and activi-

ties. Compared to knowledge-based methods, it does not involve any manual

modeling effort, and it captures a comprehensive array of execution modalities.

Through extensive experiments with large datasets of real-world ADLs, we show

that this approach is practical and effective.

Keywords: Activity recognition, intelligent systems, pervasive computing,

activity models, unsupervised reasoning

1. Introduction

Nowadays, activity recognition is a key requirement in several ICT do-

mains [1], including smart home automation, homeland security, e-health, gam-

ing, manufacturing, pervasive advertising, and smart cities, just to name a few.

In particular, advanced healthcare systems rely on continuous monitoring of5

human activities to support early detection of health issues, to enhance rehabil-

itation, and to promote healthy and active lifestyles [2, 3]. These applications

take into account not only simple physical activities, but also a wide range of

complex activities of daily living (ADLs). As a consequence, several techniques

to accurately recognize ADLs have been proposed in the last years. A popu-10

lar approach to activity recognition consists in the use of supervised learning

methods applied to datasets of activities and sensor data [4, 5, 6]. Supervised

learning proves to be effective in recognizing activities characterized by specific

postures or motions, such as physical activities [7]. The supervised learning

approach was also successfully applied to the recognition of high-level urban15

activities based on GPS traces [8, 9]. However, the actual applicability of the

supervised approach to recognize complex ADLs at a fine-grained level is ques-
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tionable, especially when infrequent or sporadic activities are taken into account.

Indeed, acquiring large datasets of ADLs is expensive in terms of annotation

costs [10, 11]. Moreover, activity annotation by an external observer, by means20

of cameras or direct observation, severely violates the user’s privacy.

For this reason, different research groups investigated unsupervised approaches

for recognizing ADLs. An interesting direction in this sense consists in disre-

garding the activity semantics, and recognizing recurrent patterns of abstract

actions and their temporal variations, as proposed in [12]. That approach can be25

applied to the early recognition of particular health issues. However, for many

other applications domains, knowledge of the activity semantics is of foremost

importance. In those domains, most unsupervised methods rely on symbolic

modeling of activities in terms of their constituting simpler actions. For in-

stance, the temporal sequence of events “open medicine cabinet; take medicine30

box; put away medicine box; close medicine cabinet” characterizes the ADL

“taking medicines”. A popular approach is to manually define those models

through formal ontologies expressed in a description logics language [13, 14, 15].

However, manually defining comprehensive ADLs ontologies is cumbersome, and

requires specific expertise in formal ontology languages and knowledge engi-35

neering. Moreover, the ontological approach is generally based on rigid activity

definitions, that fall short in adapting to dynamic context conditions.

In order to overcome the limitations of current methods, in this paper, we

introduce a radically new approach. The approach starts from the observa-

tion that, thanks to the widespread popularity of social network applications,40

users are sharing more and more pictures and videos illustrating the execu-

tion of every kind of activity in the most disparate situations. Our intuition is

that the ability of extracting semantic tags from those visual resources through

computer vision tools may enable novel data mining methods to infer activity

models at essentially no cost. Indeed, shared contents are frequently labeled by45

their owners with tags describing the depicted activity. Those tags provide an

implicit activity label. Other tags can be extracted by computer vision tools to

acquire semantic information about depicted objects, actors, and context condi-
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tions (e.g., time of the day, light level, symbolic location). Hence, by reasoning

with activity labels and contextual tags, it is theoretically possible to build a50

comprehensive set of activity models, without the need of sensor-based training

sets and without manual modeling effort. To the best of our knowledge, this

is the first work that addresses this research direction, except for our prelimi-

nary investigation reported in [16]. Several research issues are involved in this

work, including search of the most representative images or videos, computer55

vision algorithms for tag extraction, and data mining methods to construct the

activity models. For the sake of this paper, we concentrate on activity model

extraction from still images, where images may include frames extracted from

videos. However, the approach can be extended to mine more sophisticated

models, considering temporal relationships captured from activities recorded in60

videos.

We point out that several previous works tried to recognize activities based

on images or videos [17, 18, 19, 20]. However, the goal of those works was

vision-based activity recognition; i.e., the model extracted from a training set

of images or videos was used to recognize the activity depicted in other im-65

ages or videos. In this paper, we investigate a completely different approach:

mining activity models from pictures and videos, and using them to recognize

activities based on firing of sensor events. Thus, in our work, the domain of

mined data (visual contents) is disjoint from the one of data used for activity

recognition (sensor data). A preliminary investigation of this approach was pre-70

sented in [16], where we introduced the use of computer vision tools to extract

object information from images depicting activity execution. In this paper, we

extend our previous work with (i) activity mining from videos, (ii) a novel ac-

tivity recognition technique, (iii) use of additional computer vision tools, and

(iv) extensive experiments with additional datasets.75

The main contributions of this work are the following:

• We introduce a novel approach to unsupervised sensor-based recognition

of human activities, which exploits tagged visual contents shared on the
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Web, and computer vision tools.

• We propose a probabilistic-based method to extract activity models from80

pictures and videos.

• We present the results of extensive experiments with two large datasets

of real-world ADLs and different computer vision tools, showing the effec-

tiveness and practicality of our approach.

The rest of the paper is structured as follows. Section 2 discusses related85

work. Section 3 introduces our methodology. Section 4 presents our algorithms.

Section 5 illustrates the methods to recognize activities based on the extracted

models. Section 6 presents the experimental evaluation. Section 7 discusses

strong and weak points of the approach. Section 8 concludes the paper.

2. Related work90

Activity recognition (AR) systems can be broadly divided into vision-based [17]

and sensor-based [5] ones. Vision-based AR systems make use of cameras and

scene recognition algorithms to recognize the situation, including the activity

carried out by people appearing in the video stream. Those systems are used in

application domains such as video surveillance, security, entertainment, and re-95

habilitation. However, their applicability is restricted to confined environments,

and the usage of cameras determines relevant issues in terms of privacy and en-

forcement of regulations. On the contrary, sensor-based AR systems rely on

events fired by different kinds of sensors, which are wore by people or embedded

in the environment. Those sensors allow monitoring basic human actions such100

as gestures and interactions with furniture and appliances, as well as contextual

conditions (e.g., power consumption, light level, presence of gases) determined

by the execution of specific activities. Since more and more sensors are invisi-

bly integrated in everyday objects, those systems are generally perceived as less

intrusive than vision-based ones [21]. For this reason, in this paper, we pursue105

the sensor-based approach.
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Sensor-based AR techniques can be classified in two main categories: data-

driven and knowledge-driven ones [22]. While the former rely on datasets of

activities to derive the activity model, the latter rely on manual definition of

those models by means of formal ontologies, rules, or other logical formalisms.110

Most data-driven AR systems adopt supervised learning methods to infer activ-

ity models based on a training set of labeled activities and sensor data. Early

AR systems are based on multiple accelerometers worn at different body loca-

tions [23, 24]. Of course, those systems are quite obtrusive; hence, later efforts

were devised to recognize simple activities based on a single accelerometer, pos-115

sibly integrated in a smartphone [25]. An indoor device-free activity recognition

system based on passive RFID tags was presented in [26]. The system detects

the user’s position through the analysis of RSSI patterns of signals emitted by

RFID tags on the wall. The recognition of transitions between different posi-

tions is achieved by a HMM-based approach. This method enables the early120

detection of abnormal actions, and thus an early intervention by raising imme-

diate alarms. A supervised learning method was also proposed by Zheng et al.

to recognize high-level activities based on traces of GPS locations [8, 9]. Huang

et al. proposed a framework to support reasoning on the edge that included

streaming-based activity recognition [27]. In order to recognize complex activi-125

ties, other supervised systems proposed the use of additional data, such as noise

level, temperature, and objects usage [28, 29, 30, 31, 32].

Even though multiuser activities constitute large part of people’s daily lives,

most of the literature focuses the attention on single-user activities. Indeed,

recognising multi-user activities in pervasive environments introduces additional130

challenges. In [33] the authors propose the epMAR system, which is able to

recognise both single and multi-user activities using wireless sensors worn by

the users. Their solution is based on Emerging Patterns describing significant

differences between two classes of data, and on a variable-length sliding window

technique. For the sake of this work, we concentrate on the recognition of135

single-user activities. However, our image-mining approach could be extended

to support recognition of multi-user activities. However, when complex ADLs
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are considered, the supervised approach incurs high costs in terms of training set

acquisition. Indeed, a comprehensive training set should include ADLs executed

by a large set of heterogeneous individuals in different real-world situations. The140

acquisition of such datasets is expensive, time-consuming, and may violate the

individuals privacy, since an external observer must annotate the start and end

time of activities. For these reasons, semi-supervised learning approaches have

been proposed in the last years. In [34], the authors propose a semi-supervised

method for activity recognition that uses `2,1 minimisation for outlier detection,145

and a graph-based label propagation method for categorizing unlabelled data.

Their objective is the minimisation of the intra-class variability, which is due to

the different ways in which the same persons can perform an activity. To this

aim, the technique searches for a subspace of the original feature space that can

be used as a signature of each activity.150

Due to the shortcomings of supervised approaches, different researchers in-

vestigated unsupervised techniques. Unsupervised AR methods based on data

are mainly devoted to recognize high-level variations in the normal pattern of

actions in order to early detect health issues, as proposed by Rashidi and Cook

in [12]. However, those approaches disregard the semantics of activities, which155

is an important factor to consider for several applications. In order to consider

semantics, other works were based on ontologies expressed through description

logic languages, possibly extended with rules, to model ADLs based on their

constituting simpler actions [35, 36, 37]. An unsupervised method for activity

segmentation was proposed in [38]. The method is based on an ontological model160

inspired by Semiotic theory, which captures generic knowledge and individual-

specific features about ADLs execution. In ontology-based systems, activity

recognition is based on the observation of temporal sequences of sensor events

that match the definition of actions defining a given activity. However, that ap-

proach has limits in the rigidity of activity descriptions and burden of manually165

defining the ontological axioms.

A less investigated approach consists in mining activity models from the

Web. A first attempt in this sense was due to Perkowitz et al. in [39] and
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refined in later works [40, 41]. The input is an activity label such as “cleaning

kitchen”. The activity label is used as a query for a Web search engine, to find170

pages related to that activity. The textual content of the top k pages is passed

to an object identification module, which exploits a lexical database to extract

the key objects related to the activity. A statistical method is used to obtain

the set of top-j related objects, weighted considering their frequency in the Web

pages. Finally, for each object o ∈ O (O being the set of objects) with weight175

w, and each activity a ∈ A (A being the set of activities), the probability of

using o during a is computed. The probability distribution p(O|A) is used by a

generative model to reconstruct the most probable sequence of activities given

an observed sequence of used objects.

A similar approach was used by Pentney et al. in [42], exploiting user-180

contributed common sense acquired by the Open Mind Indoor Common Sense

project [43]. Gu et al. presented a different method to extract activity mod-

els from the text of Web pages [44]. In that work, object-use fingerprints are

extracted in terms of contrast patterns, which describe statistically significant

differences in object-use patterns among any couple of activities. A similar185

method was used by Palmes et al. in [45] for both activity recognition and

segmentation. Ihianle et al. proposed a method to mine the textual content of

Web pages for identifying the most probable activity given a temporal sequence

of used objects [46]. The most probable activities are inferred based on a com-

bination of statistical and ontological reasoning. Differently from the above190

mentioned works, Nakatani et al. apply the Web mining approach to recognize

activities based on video streams, not from sensor data [47]. Their method con-

sists in recognizing the objects used by a subject based on egocentric cameras,

and mining the Web to derive associations among objects and activities. The

activity with highest correlation values is the predicted activity.195

Even though they adopt different techniques for inferring the relevance among

objects and activities, to the best of our knowledge, all existing Web-based ac-

tivity mining methods rely on textual content only. Instead, in this work we

investigate a different approach: exploiting visual contents available on the Web
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Figure 1: Pictures related to “preparing a birthday gift” retrieved by an image search engine

Figure 2: Pictures related to “cleaning kitchen” retrieved by an image search engine

to automatically build activity models. The intuition of our work is that visual200

data provide much more compact and expressive information than text found

on Web pages. Moreover, temporal information in video streams may enable

the inference of activity models considering temporal constraints about occurred

actions and events, while existing Web-based activity mining methods disregard

temporal information.205

3. Methodology and algorithms

In this section, at first we illustrate the rationale of our methodology and

the overall architecture. Then, we explain our methods and algorithms for ex-

tracting activity-related features from visual resources and for building activity

models.210

3.1. Rationale and methodology

Our work starts from the intuition that visual contents publicly available

on the Web provide concise and diverse information about activity execution.

Consider for instance the pictures illustrated in Figures 1 and 2. Those pictures
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Figure 3: The overall architecture to implement our methodology.

were retrieved querying an image search engine, issuing queries “preparing a215

birthday gift” (Figure 1) and “cleaning kitchen” (Figure 2). Those pictures

include several objects typically used to perform the searched activity. Indeed,

pictures regarding “preparing a birthday gift” include gift boxes, scissors, rib-

bons, scotch tape, while pictures regarding “cleaning kitchen” include broom,

rag, bucket, sink. Pictures also depict actions taken to perform the activity, such220

as “cut”, “write”, “sweep”. Moreover, those pictures provide insights about the

context of execution of depicted activities, including light level, indoor/outdoor

location, age and gender of actors, and posture. It is worth noting that pic-

tures capture different ways to perform the same activity. Moreover, frequently

those pictures concentrate on the key objects and actors regarding the activity,225

disregarding irrelevant details.

Our goal is to mine Web visual contents for automatically building activity

models to be used for sensor-based AR. Our methodology is composed of five

main elements:

1. search and refinement of activity-related pictures and videos;230

2. feature extraction from retrieved resources;
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3. feature selection and weighting;

4. activity model construction;

5. sensor-based activity recognition.

3.2. Overall architecture235

The overall architecture to implement our methodology is illustrated in Fig-

ure 3.

3.2.1. Visual search and refinement

Given an activity label (e.g., “preparing a birthday gift”), the first module

(visual search and refinement) queries a Web search engine to find the240

top k visual resources that match the label. Those visual resources are either

images directly retrieved from a Web image search engine, or frames extracted

from videos retrieved from a video search engine. For the sake of simplicity, in

the following of the paper we refer to both images and frames using the term

pictures. The query result is refined considering a set of filtering directives.245

Those directives ensure that retrieved pictures satisfy requirements concerning

size and resolution, in order to provide sufficient information to the computer

vision software.

3.2.2. Feature extraction

Remaining pictures are given to the feature extraction module, which250

queries a Computer vision API to extract a description and tags of elements

identified in those pictures. The description briefly summarizes the picture con-

tent (e.g., “a person wrapping up a gift”). Picture tags refer to objects, actions,

and other contextual information found in the picture. For instance, tags found

for the first picture in Figure 1 include “gift box”, “writing”, “indoor”, “brown”.255

Each tag is associated to a confidence value, which measures the probability that

the element actually appears in the picture or represents its content.
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3.2.3. Feature selection

Pictures’ tags and descriptions are passed to the feature selection mod-

ule, which applies part-of-speech (POS) tagging to keep only those terms that260

are useful to describe the execution of the activity (actions and objects), as

well as relevant context conditions. In particular, we retain only nouns that

represent:

• physical objects and furniture (e.g., “scissors”, “table”),

• symbolic locations (e.g., “indoor”, “dining room”),265

• time of day or light conditions (e.g., “morning”, “dim light”),

or verbs that represent actions or postures (e.g., “cutting”, “lying”).

For each term found in a picture’s tag, we keep track of its confidence value,

provided by the computer vision software. Terms extracted from the description

are assigned confidence 1; indeed, the picture description is considered accurate.270

3.2.4. Activity model construction

The procedure explained above is executed for each activity a belonging to

the set A of considered activities. Then, for each considered activity a and

each tag t ∈ T (T being the set of tags), this module probabilistically estimates

p(a|t); i.e., the conditional probability that the current activity is a given the275

observation of t, where t can correspond to either an action, or to the usage of

an object. The algorithm to compute p(A|T ) is described in Section 4.2.

3.2.5. Sensor-based activity recognition

The sensor-based activity recognition module is in charge of acquiring data

from the sensor infrastructure, executing the AR algorithm using the computed280

model, and communicating the recognized activities to external applications

through an API.

This module includes a semantic integration component, which maps

occurred sensor events to tags extracted from pictures. This mapping is neces-

sary, since the extracted model is based on tags, and it does not directly consider285
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sensor events. Essentially, that component implements a function M : S → T ,

where S is the set of sensor events that can be captured in the smart environ-

ment, and T is the set of tags extracted from pictures. The component exploits

a very simple OWL 2 ontology [48], named ArOnt, modeling a generic set of

tags, sensors, objects, and actions. The ontology is available on the Web1. The290

generic ontology is instantiated considering the current environment and tags

extracted from pictures.

Example 1. Consider the CASAS smart home, which we used as one of the

environments for our experimental evaluation reported in Section 6. The smart

home is equipped with several sensors, including sensors attached to doors,

items, and forniture. For each sensor, a corresponding instance is added to

the ontology. For instance, the following axiom:

d11 : MedCabinetDoorSensor

states that the apartment includes a sensor d11 that is an instance of MedCabi-

netDoorSensor. The latter is a subclass of CabinetSensor, and represents

a sensor attached to a medicine cabinet door. Similarly, the axiom:

medicines : Tag

states that medicines is an instance of the class Tag.

While the set of sensors must be manually specified, possibly using user-friendly

interfaces, the set of tags is automatically retrieved from computer vision API295

calls and added to the ontology.

The instantiated ontology specifies which sensors are triggered by the use of

sensorized objects or by the execution of basic actions, through the datatype

property triggers.

Example 2. Continuing Example 1, the following axiom states that the action

openMedCabinet triggers the sensor d11:

〈openMedCabinet, d11〉 : triggers,

1http://sites.unica.it/domusafe/aront/
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where openMedCabinet is an instance of the ontological class Action.300

The ontology also maps each action or object to the corresponding tag

through the datatype property correspondsTo.

Example 3. Continuing the above example, the following axiom states that the

action openMedCabinet corresponds to the tag medicines:

〈openMedCabinet,medicines〉 : correspondsTo.

Axioms defining correspondences among actions/objects and tags are environment-

independent, and can be pre-defined in the ontology.

The function M is implemented in our ontology using the property compo-

sition operator ◦ of OWL 2:

M function ⊆ triggers- ◦ correspondsTo,

where triggers- denotes the inverse of the triggers property. Hence, for each305

sensor s ∈ S, the module performs ontological reasoning to find the set Ts of

tags that are related to the activation of s.

Example 4. Continuing the previous example, ontological reasoning derives

through the property composition operator that the sensor d11 is related to the

tag medicines according to the M function. Note that each tag is automatically310

augmented with its synonyms; hence, they do not need to be manually added to

the ontology.

Then, the temporal sequence of sensor activations is mapped to a temporal

sequence of tags, which is used by the AR algorithm to detect the current activ-

ity. Ontological reasoning is performed offline in order to avoid computational315

overhead at activity recognition time.

The extracted activity model can be used to apply different activity recog-

nition methods. In the experimental evaluation, we use the model with two

methods. The first one relies on a sliding window to consider the last n sen-

sor events, and applies a temporal smoothing function to give more confidence320
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to the more recent events. The second one relies on the Markov Logic Net-

works (MLN) probabilistic logic. However, the model can be applied, with

minor modifications, to several other AR algorithms, including those presented

in [44, 45, 49, 50, 51].

4. Algorithms325

In this section, we formally describe the algorithms used to implement the

modules illustrated above.

4.1. Retrieving weighted visual features

The algorithm VisualExtraction implements the modules for visual search

and filtering, feature extraction, and feature selection shown in330

Fig. 3. The algorithm pseudo-code is shown in Fig. 4. It takes as input an

activity label a and the number k of visual objects to be used to identify the tags

related to the execution of a. Each tag is essentially a feature that represents a

characteristic of the activity execution. The output is the set of identified tags,

together with their respective weights.335

4.1.1. Visual search and refinement

After initializing a set P of pictures to the empty set, the algorithm queries

a visual Web search engine to get the top k visual objects that respond to

the query ‘a’. Those objects (i.e., images, or frames sampled from video clips)

are added to P . For each picture, the algorithm checks whether it fulfills the340

filtering directives D regarding size and resolution. Any image not satisfying D

is removed from P . After filtering, if the size of P is less than k, the algorithm

queries the search engine to download other k visual objects, and applies filtering

on them. This process is repeated until P contains at least k pictures (lines 2

to 5). Then, the algorithm selects the top k pictures according to the relevance345

of their visual objects, computed by the search engine, and removes the other

ones from P (line 6).
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Algorithm VisualExtraction(a, k,D):

Input: Activity label a; number k of visual objects; filtering directives D

Output: Weighted tags sets for activity a

1: P ← ∅

2: repeat

3: P ← P ∪ V isualWebSearch(a, k)

4: P ← Filtering(P,D)

5: until |P | ≥ k

6: P ← top-k(P )

7: for each pi ∈ P do

8: < tagsi, desci >← V isualAnalysis(pi)

9: for each tag ∈ tagsi do

10: if POS-tag(tag.label) /∈ {‘act′, ‘object′, ‘artifact′, ...} then

11: tagsi ← tagsi − {tag}

12: end if

13: end for

14: terms← POS-extraction(desci)

15: for each term ∈ terms do

16: if POS-extr(term) ∈ {‘act′, ‘object′, ‘artifact′, ...} then

17: if ∃ t ∈ tagsi such that : t.label = term then

18: t.conf ← 1

19: else

20: tag.label← term

21: tag.conf ← 1

22: tagsi ← tagsi ∪ {tag}

23: end if

24: end if

25: end for

26: end for

27: return Ta = {tags1, . . . , tagsk}

Figure 4: Algorithm VisualExtraction

4.1.2. Feature extraction and selection

For each image pi ∈ P , the algorithm queries a visual analysis tool to get its

set of tags, as well as a textual description of the picture’s content (line 8). Each350

tag is associated to a confidence value, ranging from 0 to 1, which represents the
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probability of that tag to actually be representative of pi’s content according to

the computer vision algorithm. For each tag, the algorithm queries a POS tagger

to get its lexicographic category (object, plant, animal, etc.); those tags that do

not refer to categories of interest (enumerated in Section 3.2.3) are removed from355

the set of tags (lines 9 to 13), because they do not represent useful features to

characterize the activity execution. Then, the POS engine is queried to extract

additional terms from the picture description (line 14). Once again, terms not

referring to categories of interest are discarded. For each remaining term, the

algorithm checks whether it appears as the label of any tag of the image. If so,360

the confidence of that tag for the image is set to 1. Otherwise, a new tag with

that label is created for that picture, and its confidence value is set to 1 (lines 15

to 25). Tags extracted from descriptions are given weight 1 because descriptions

are assumed to be reasonably accurate. Finally, the algorithm returns the set

Ta of weighted tags sets {tags1, . . . , tagsk} for activity a.365

4.2. Computing activity models

The algorithm ModelExtraction implements the module for activity model

construction shown in Fig. 3. The algorithm pseudo-code is shown in Fig. 5.

It takes as input the set of considered activity labels a1, . . . , an and the num-

ber k of images per activity. The output is the set of conditional probabilities

p(aj |ti), for each activity aj and tag ti. At first, for each aj , the algorithm exe-

cutes VisualExtraction(aj , k) to get the set Taj = {tags1, . . . , tagsk} of weighted

tags sets associated to aj (line 2). For each tag of each tags set tagsi, the algo-

rithm assigns the tag’s confidence tag.conf to p(tag.label, aj , i). The latter is

the probability of observing the object corresponding to the tag’s label in the

ith image of aj (lines 3 to 7). Then, for each activity aj and each tag ti, the al-

gorithm computes the conditional probability p(aj |ti) according to the following

formula:

p(aj |ti) =

∑
l

p(ti, aj , l)∑
m,l

p(ti, am, l)
·

Finally, the algorithm returns the conditional probability distribution P (A|T ),
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Algorithm ModelExtraction(a1, . . . , an, k):

Input: Activity labels a1, . . . , an; number k of pictures per activity

Output: Conditional probabilities p(aj |ti)

1: for each activity label aj do

2: Taj ← V isualExtraction(aj , k)

3: for each tagsi ∈ Taj do

4: for each tag ∈ tagsi do

5: p(tag.label, aj , i) = tag.conf

6: end for

7: end for

8: end for

9: for each activity label aj do

10: for each tag ti do

11: p(aj |ti)←

∑
l
p(ti, aj , l)∑

m,l
p(ti, am, l)

12: end for

13: end for

14: return P (A|T )

Figure 5: Algorithm ModelExtraction

where A is the set of activities and T is the set of tags. As explained before,

this simple model can be applied to several state-of-the-art activity recognition

methods. More sophisticated models could be obtained by considering addi-370

tional features, such as temporal information or sound mined from video clips,

but we leave this aspect to future work. Anyway, as shown in Section 6, the

model computed by the ModelExtraction algorithm is sufficiently accurate to

provide satisfactory recognition rates.

5. Unsupervised activity recognition375

Formally, given a temporal sequence of activations of sensors 〈s1, s2, . . . , sn〉

occurred at timestamps 〈τ1, τ2, . . . , τn〉, respectively, the objective of activity

recognition is to reconstruct the current activity at each τi. As explained in

Section 3.2.5, we use the M function to translate the temporal sequence of
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sensor activations in a temporal sequence of corresponding tags:

〈t1 = M(s1), t2 = M(s2), . . . , tn = M(sn)〉.

In the following of this section, we present two unsupervised methods for rec-

ognizing human activities based on the mined model, considering the sequence

of tags derived from sensor activations acquired in a smart environment. The

experimental evaluation of those methods is reported in Section 6.

5.1. Temporally smoothed algorithm (TempS)380

The first activity recognition algorithm is rather simple: in order to guess the

current activity, it considers the conditional probabilities p(A|T ) and a fixed-

length sliding window of the n most recent observations 〈sj , sj−1, . . . , sj−n+1〉.

As explained above, the algorithm transforms those observations into the cor-

responding temporal sequence of tags 〈tj , tj−1, . . . , tj−n+1〉. The contribution385

of the observations to the prediction is smoothed according to their temporal

order: more recent observations contribute more than less recent ones.

Technically, for each timestamp τj (j ≥ n) and for each activity a ∈ A,

the algorithm computes the weight w(a, τj), which is the temporally smoothed

product of the conditional probability of a being the current activity at τj , at

τj−1, . . . , and at τj−n+1. Formally:

w(a, τj) =
∏

k=j−n+1...j

p(a|tj) · cj−k,

where c ∈ (0, 1] is the temporal smoothing factor, used to give more relative

weight to the recent events. Given the weights computed for each activity

a ∈ A at τj , the predicted current activities pred act(τj) at τj are the ones that

maximize the weight:

pred act(τj) = arg max
a∈A

w(a, τj).
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Normally, the cardinality of pred act(τj) is 1; hence, the predicted activity is390

unique. However, it is possible that more activities achieve the maximum value

for w(a, τj). In this case, since we assume that the current activity is unique

(even though multiple activities can be executed in an interleaved fashion), the

algorithm predicts one activity at random from pred act(τj). It is also possible

that all activities achieve score 0 for w(a, τj); this case happens when all recent395

sensor events do not correspond to tags in the model. In this case, the algorithm

predicts one activity at random.

5.2. Markov Logic Networks algorithm (MarLoN)

Markov Logic Networks (MLN) [52] is a probabilistic logic that was suc-

cessfully applied to sensor-based AR, due to its natural support for reasoning

with uncertain information [53, 37]. Formally, a MLN M is a finite set of pairs

(Fi, wi), 1 ≤ i ≤ n, where each Fi is an axiom in function-free first-order logic,

and wi ∈ R is a weight representing the confidence in Fi’s truth. Together

with a finite set of constants C = {c1, ..., cn} it defines the ground MLN MC .

This comprises one binary variable for each grounding of Fi with weight wi. A

MLN defines a log-linear probability distribution over Herbrand interpretations

(possible worlds):

P (x) =
1

Z
exp

(∑
i

wini(x)

)
where ni(x) is the number of satisfied groundings of Fi in the possible world

x and Z is a normalization constant. Maximum a posteriori (MAP) inference

is the task of finding the most probable world given some observations. Given

the observed variables E = e, MAP finds an assignment of all hidden variables

X = x such that:

I = arg max
x

P (X = x | E = e),

where I is the assignment of x which leads P to be maximal. We have used

the RockIt2 MLN framework to formulate the knowledge base. In Fig. 6 we400

2http://executor.informatik.uni-mannheim.de/systems/rockit/
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Figure 6: Formulation of the AR problem as an MLN. Ti is the tag derived from the sensor

event observed at τi. Ai is the (hidden) current activity at τi. Ai depends on both Ti and on

the previous activity Ai−1.

illustrate the MLN model, which is composed of:

• a set of hidden states {A1, . . . , An}: axioms representing the activities

executed at {τ1, . . . , τn}, respectively;

• a set of observations {T1, . . . , Tn}: axioms representing the temporal se-

quence of tags obtained through the application of the M function (Sec-405

tion 3.2.5) to the temporal sequence of sensor events;

• action probabilities: axioms representing the probability that the current

activity is a when the current tag is t;

• transition probabilities: axioms representing the probability that the cur-

rent activity is a given that the previous activity was a′.410

The MLN components are represented using the language of the RockIt

framework, as shown in Figure 7.

As mentioned before, in MLN the probability of an axiom to be true is

expressed through a weight w, as in the last line of the example above. Hence,

we transform probability values into weights by applying the well-known logit

function:

logit(p) = ln

(
p

1− p

)
, p ∈ (0; 1).

We also declared the following axioms to state that there is exactly one

activity and one tag at a time:
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// The tag t corresponds to the sensor event

// occurred at time τ (second parameter).

Observe(t, int )

// The unknown activity a is executed at τ

// (second parameter).

State(a, int )

// Probability (third parameter) that the

// activity is a given the tag t.

PriorProb(a, t, float )

// Transition probabilities (w = logit(p),

// where p is the probability value).

w !State(a1, τi) v State(a2, τi+1)

Figure 7: Main definitions of the MLN model using the RockIt framework

415

|a| state(a, τ) = 1

|t| observe(t, τ) = 1

In order to recognize activities, we instantiate the Observe axioms with

the temporal list of tags. Probabilistic PriorProb axioms are instantiated420

based on the P (A|T ) probability distribution of our inferred model. Transition

probabilities are chosen based on common sense, or based on statistics. Finally,

we use the RockIt reasoner to execute MAP inference for computing the most

probable grounding of State axioms, which provide us with the most probable

current activity performed at each τ . Note that, in the definition of our MLN425

model, we assume that exactly one activity is executed at a time. Hence, when

multiple activities have the highest probability at tau, the reasoner predicts one

activity at random among the most probable ones.
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6. Experimental evaluation

We have performed extensive experiments with two real-world datasets of430

ADLs executed in different smart homes, using our methodology and the ac-

tivity recognition algorithms presented in Section 4. Since our methods are

unsupervised, we made a comparison with another unsupervised technique. We

performed the comparison using an existing Web-based activity mining tech-

nique, which relies on Web page search and lexical analysis [49].435

6.1. Datasets

The datasets were acquired in two smart homes instrumented with several

kinds of sensors, and include the execution of variegate activities of daily living.

6.1.1. CASAS dataset

The first dataset that we used is the well-known dataset acquired at Wash-440

ington State University by Cook et al. within the CASAS project [54, 55]. This

dataset includes both interleaved and sequential ADLs executed in a smart-

home by 21 subjects3. Sequential activities are pre-segmented, while interleaved

activities are not. Since, in the real world, people perform activities in an inter-

leaved fashion, we limited our attention to the recognition of interleaved ADLs.445

Sensors collected data about movement, presence in specific home locations,

temperature, use of water, interaction with objects, doors, phone; 70 sensors

were used in total. For the sake of this work, we considered only 24 out of 70

sensors; indeed, the other sensors (mostly presence sensors) were not associated

to actions, or to the use of objects or furniture. Used sensors are reported in450

Table 1. The dataset considers eight activities, whose labels are reported in

Table 2.

The order and time taken to perform the activities were up to the subject.

Activities were executed naturalistically by a single subject at a time. In the

dataset, each sensor activation (e.g., “fridge opened”, “cup moved”) is labeled455

3http://ailab.wsu.edu/casas/datasets/adlinterweave.zip
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Table 1: CASAS sensors

id sensor

I04 medicine box

I06 cabinet

I03 remote control

I05 television

AD1-B sink

AD1-C sink

D11 watering can

I08 scissors

I09 stationery

D07 kitchen door

D09 fridge

D10 cutlery

id sensor

I01 pan

I02 stove

D12 wardrobe

P01 cellphone

M19 vacuum

D08 freezer

M02 sofa

M24 medicine cabinet

M23 outfit cabinet

M04 vacuum

M05 duster

M13 envelope

Table 2: CASAS activities

activity label

a1 fill medicine cabinet

a2 watch tv

a3 watering plants

a4 answering the phone

a5 diy birthday card

a6 prepare soup

a7 hoovering

a8 choosing outfit

with the timestamp of the event, and with the current activity executed at

that timestamp. Given the temporal sequence of sensor activations, the goal

of the activity recognition system is to reconstruct the current activity at each

activation.

6.1.2. IELAB dataset460

The second dataset was collected in the IELAB facility of the University

of Auckland [56]. The smart environment includes lounge, toilet, kitchen, and

dining room. The environment is instrumented with several sensors, including
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presence sensors and door sensors to track movement and actions within the

home. Other sensors are attached to objects and furniture, including chairs,465

pots, plates, burner. As with the CASAS dataset, we disregarded data acquired

from presence sensors. The dataset4 considers 7 activities of daily living exe-

cuted by 20 subjects, which perform the activities in an arbitrary order. The

list of sensors and the activities are reported in Table 3.

Table 3: IELAB sensors and activities

id sensor

M03 toilet

I02 television

I03 sofa

I04 pot

I05 plate

D02 kitchen cabinet

W01 kitchen sink

W02 bathroom sink

C01 toilet seat

C03 dining chair

BURNER burner

FLUSH toilet flush

activity label

a1 cooking meal

a2 having meal

a3 cleaning dishes

a4 toileting 1

a5 toileting 2

a6 napping

a7 watching TV

6.2. Experimental setup470

We have implemented all the algorithms used in our experimental evaluation

in Python. In order to provide the possibility to replicate the experiments, we

have published our code online5.

We evaluated the prediction’s quality in terms of the standard measures of

precision, recall and F1 score; the latter is the harmonic mean of precision and475

recall. While precision, recall and F1 score were computed for each individual

activity, we used the micro-F1 score [57] to measure the global accuracy of the

4http://halim.readismed.com/datasets/
5http://sites.unica.it/domusafe/arcode/

25

http://halim.readismed.com/datasets/
http://sites.unica.it/domusafe/arcode/


Figure 8: Text-based activity mining method (TextAM ).

activity recognition technique on the whole set of activities. Indeed, in our

experiments, each sample (i.e., activity instance) belongs to one and only one

class, and the algorithms assign each sample to exactly one class. Hence, in our480

case the micro-F1 score corresponds to the ratio of correctly classified instances

over the total number of instances. Since the methods are unsupervised, we did

not use cross-validation.

6.2.1. Implementation of Text-based activity mining

In order to compare our approach with a Web-based activity mining one, we485

have implemented the method based on Web page search and lexical analysis

illustrated in Figure 8 and explained below. In the rest of the paper, we refer to

this method as TextAM. That method is analogous to the ones presented in [40]

and [41].

Essentially, given an activity label, TextAM queries a search engine to find490

a list of Web pages related to that activity; then, it applies text processing and

lexical analysis on the text of the Web page to compute the relatedness between

activities and terms. Relatedness is expressed through a conditional probability
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distribution P (A|T ), where A is the set of activities and T is the set of terms (or

tags). In particular, for each activity, TextAM downloads the first k Web pages495

found by Google Search. The value k is fixed to 15, because we experimentally

found that in general it provides the highest accuracy with the considered activ-

ities. For each Web page, TextAM considers the content of the 〈body〉 element,

removing stopwords. For each word in the body, the method queries the Nat-

ural Language Toolkit APIs of WordNet [58], a well-known lexical database of500

English nouns, verbs, adjectives and adverbs, to retrieve its POS. Only those

words that belong to lexicographic categories of interest (enumerated in Sec-

tion 3.2.3) are considered. For each of those words and its synonyms, TextAM

computes the number of occurrences and the weight. The weight is computed

as the probability of that word to actually be a noun (# of senses of that word505

that are noun / total # of senses of that word). Finally, TextAM computes the

conditional probability distribution P (A|T ) using the same method used in Al-

gorithm ModelExtraction (Fig. 5), but considering weighted tag sets extracted

from Web page text instead of pictures. Note that, differently from the tech-

nique presented in [40], TextAM computes the distribution of p(activity |tag),510

since in the experiments we use discriminative activity recognition algorithms.

6.2.2. Implementation of picture-based activity mining

At first, our Python software queries the Google Image Search APIs to re-

trieve the top k pictures for each activity label, excluding cliparts or drawings,

and searching for photos of medium dimension. Also in our case, k is experimen-515

tally set to 15. However, we experimentally found that slight modifications to

the k value produce little change to the overall recognition rates of our method.

In order to analyze the retrieved images for extracting tags and descrip-

tions (Algorithm VisualExtraction, shown in Fig. 4), our software exploits two

Computer Vision services: Microsoft Cognitive Services6 and Clarifai Image &520

6https://www.microsoft.com/cognitive-services/en-us/computer-vision-api
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Video Recognition7. Those services take a picture as input, and return a JSON

document storing several information about the picture, including tags with as-

sociated confidence, and a textual description. Thanks to recent advances in

artificial intelligence methods, new graphics-processing-unit (GPU)-based hard-

ware, and increasing volume of labeled data, those Computer Vision services525

provide impressively accurate results [59]. Several ad-hoc models are available

for recognizing particular classes of objects, such as food, logo, animals; in

our implementation, we use a generic model. Our software takes advantage of

the MongoDB NoSQL DBMS for storing the data retrieved from the remote

Computer Vision APIs. For each term appearing in tags and descriptions, the530

program queries the Natural Language Toolkit APIs of WordNet to retrieve

the lexicographic category of terms extracted from images, in order to select

only those terms belonging to the categories of interest. In our current sys-

tem, synsets are automatically extracted from the Natural Language Toolkit of

WordNet, and it is possible that in some cases they do not fully correspond to535

the terminology of each computer vision service. For the sake of this work, we do

not have considered this problem. However, the problem could be addressed by

applying a technique for word sense alignment [60]. Finally, for every activity

a and tag t, the program computes the conditional probability P (a|t) according

to Algorithm ModelExtraction (shown in Fig. 5).540

6.2.3. Implementation of video-based activity mining

We also conducted an experiment using short videos illustrating the execu-

tion of the activities of interest. We manually chose two videos for each activity

from YouTube, and queried the Video Recognition APIs of Clarifai to retrieve

related tags. The mechanism to select and use tags for computing the activity545

models is the same used for pictures.

7https://www.clarifai.com/developer
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(b) PictAM(MS).

Figure 9: TempS algorithm and CASAS dataset: accuracy obtained varying the size n of the

sliding window. No temporal smoothing (c = 1).

6.3. Results

In the following, we present the results of our experiments on the two

datasets. We compared the text-based activity mining method (TextAM) with

our methods to extract activity models from pictures and videos. As explained550

before, we used different computer vision APIs to identify features of interest.

We denote by PictAM(MS) the method using pictures and Microsoft Cogni-

tive Services; PictAM(CF Image) is the one using pictures and Clarifai Image

Recognition; PictAM(CF Video) uses videos and Clarifai Video Recognition.

6.3.1. TempS algorithm and CASAS dataset555

As explained in Section 5.1, the TempS algorithm has two parameters: the

temporal smoothing factor c ∈ (0, 1], and the length n ≥ 1 of the sliding window

of sensor events. Hence, the first experiment was aimed at finding the most

effective values for c and n. Initially, we set the temporal smoothing factor c to

1; i.e., no temporal smoothing was applied. We varied the size n of the sliding560

window from 1 to 10. Results for TextAM and PictAM(MS) are shown in Fig. 9.

Results using PictAM(CF Image) and PictAM(CF Video) have a similar trend;

they are omitted for lack of space. The best results are obtained using relatively

small values of n. With no temporal smoothing, the PictAM(MS) method

significantly outperformed TextAM (micro-F1 = 0.6996 vs micro-F1 = 0.6093).565
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(a) TextAM. The sliding window size is n =

2.
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(b) PictAM(MS). The sliding window size is

n = 3.

Figure 10: TempS algorithm and CASAS dataset: accuracy obtained varying the temporal

smoothing factor c. The size of the sliding window is fixed.

Then, for each method, we fixed the size n of the sliding window, and tried

different values of temporal smoothing factor c from 0.1 to 1. Fig. 10 reports the

results. With TextAM, we obtained the best results fixing n = 2. The highest

F1 score 0.612 was obtained with c = 0.8. With our image-based method

PictAM(MS), the highest F1 score 0.722 was obtained with n = 3 and c = 0.5.570

Once again, we omitted the results of PictAM(CF Image) and PictAM(CF

Video) for lack of space, but they showed a similar trend. In general, with all

methods, the influence of temporal smoothing was limited.

Table 4 shows the F1 score achieved by the different methods to extract activ-

ity models, applying the TempS algorithm on the CASAS dataset. Overall, the575

Pict(AM) method achieved the best results (micro-F1 = 0.722). The accuracy

of the PictAM(CF Image) method was significantly lower (micro-F1 = 0.6431).

Since the only difference between the two methods is the type of computer vision

API used, this results indicates that the accuracy of the algorithm used to iden-

tify tags in pictures is an essential point for the effectiveness of our approach.580

The PictAM(CF Video) method achieves a micro-F1 score of 0.6943, which is

close to the best one achieved by PictAM(MS). Even though the experiments

with videos were preliminary, this result indicates that extraction of activity

models from videos has a good potential. The TextAM method achieved the
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Table 4: TempS algorithm and CASAS dataset: F1 score of activity mining methods for the

different activities. In the last row we report the micro-F1 score over all activities.

Activity TextAM PictAM PictAM PictAM

(MS) (CF Image) (CF Video)

a1 0.8184 0.7917 0.6065 0.7394

a2 0.5370 0.8691 0.8140 0.8131

a3 0.5336 0.4283 0.0566 0.5017

a4 0.3524 0.3162 0.0615 0.5367

a5 0.8909 0.8788 0.7657 0.8183

a6 0.7094 0.7305 0.6063 0.6522

a7 0.4654 0.6405 0.6030 0.5699

a8 0.7871 0.5876 0.7330 0.7417

micro-F1 0.6120 0.7220 0.6431 0.6943

lowest micro-F1 score (0.612).585

6.3.2. MarLoN algorithm and CASAS dataset

Table 5: MarLoN algorithm and CASAS dataset: F1 score of activity mining methods for the

different activities. In the last row we report the micro-F1 score over all activities.

Activity TextAM PictAM PictAM PictAM

(MS) (CF Image) (CF Video)

a1 0.3089 0.4337 0.4051 0.6547

a2 0.7841 0.8026 0.8161 0.8247

a3 0.4146 0.3205 0.0759 0.4431

a4 0.3724 0.5749 0.4744 0.4406

a5 0.8530 0.8275 0.7549 0.7974

a6 0.6000 0.6935 0.5559 0.5132

a7 0.5485 0.4762 0.5000 0.5218

a8 0.3218 0.7634 0.7117 0.7522

micro-F1 0.5814 0.6502 0.6092 0.6483

We executed the same experiments on the CASAS dataset, using the Mar-

LoN algorithm instead of the TempS one. Results are shown in Table 5. The

outcome of experiments was in line with the results obtained using the TempS
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algorithm. Indeed, the PictAM(MS) method achieved the best results, closely590

followed by PictAM(CF Video). The micro-F1 score of PictAM(CF Image) was

significantly lower. The TextAM method achieved the lowest micro-F1 score.

In general, we observe that for most activities the MarLon algorithm achieved

lower accuracy than the TempS one on the CASAS dataset. The only activity

for which MarLoN achieved higher accuracy than TempS was a4 (answering the595

phone). A possible explanation for the low accuracy of MarLoN is that the infor-

mation about probable activity sequences (e.g., “cooking is usually followed by

having meal”) cannot be exploited with the CASAS dataset, because activities

were carried out by subjects in random order. Hence, in the MarLoN model we

set uniform transition probabilities for activity changes; we set a slightly higher600

probability value (0.2) for transitions between the same activity. However, in

a real-world situation, the exploitation of non-uniform transition probabilities

should increase the accuracy of the activity recognition algorithm.

6.3.3. TempS algorithm and IELAB dataset

Table 6: TempS algorithm and IELAB dataset: F1 score of activity mining methods for the

different activities. In the last row we report the micro-F1 score over all activities.

Activity TextAM PictAM PictAM PictAM

(MS) (CF Image) (CF Video)

a1 0.2838 0.6642 0.7333 0.7564

a2 0.8039 0.8057 0.8057 0.8042

a3 0.5098 0.3265 0.0801 0.2794

a4 0.5592 0.4602 0.4602 0.1389

a5 0.4800 0.5560 0.5560 0.5625

a6 0.9058 0.8966 0.8966 0.9016

a7 0.4279 0.4033 0.4033 0.4164

micro-F1 0.6455 0.6724 0.6803 0.6654

In this set of experiments, we used the TempS algorithm for recognizing the605

activities carried out within the IELAB dataset. Table 6 shows the outcome of

these experiments.
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Since the IELAB dataset considered different activities with respect to the

CASAS dataset, the set of pictures retrieved by the visual search engine was

different from the one retrieved for CASAS. In these experiments, the highest610

micro-F1 score was achieved using the PictAM(CF Image) method, while the

most effective method for the CASAS dataset was PictAM(MS). An explanation

for this result is that the Clarifai Image computer vision tools were more effective

in recognizing relevant objects within those pictures than Microsoft Cognitive

Services ones, while Microsoft tools were more effective than Clarifai ones on615

the pictures of the CASAS dataset. These results confirm that the effectiveness

of our methods strongly depends on the accuracy of the underlying computer

vision mechanism. This is a positive indication, since the recognition capabilities

of computer vision tools are continuously improving thanks to the use of deep

learning and to the availability of increasingly large datasets of pictures and620

videos.

6.3.4. MarLoN algorithm and IELAB dataset

Table 7: MarLoN algorithm and IELAB dataset: F1 score of activity mining methods for the

different activities. In the last row we report the micro-F1 score over all activities.

Activity TextAM PictAM PictAM PictAM

(MS) (CF Image) (CF Video)

a1 0.4147 0.3631 0.3183 0.7564

a2 0.8039 0.7695 0.7127 0.8042

a3 0.3437 0.3131 0.2287 0.2794

a4 0.5140 0.4917 0.5513 0.3727

a5 0.1728 0.4471 0.6538 0.4564

a6 0.7980 0.8867 0.9038 0.9016

a7 0.4279 0.3794 0.4224 0.4164

micro-F1 0.5748 0.6192 0.6492 0.6688

In the last set of experiments, we used the MarLoN algorithm for recognizing

the activities carried out within the IELAB dataset. Results are shown in

Table 7.625
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Table 8: Micro-F1 score of activity mining methods considering the both datasets as a whole.

Activity mining TextAM PictAM PictAM PictAM

method (MS) (CF Image) (CF Video)

TempS 0.6235 0.7049 0.6559 0.6843

MarLoN 0.5791 0.6395 0.6230 0.6554

In general, the results achieved by MarLoN were less accurate than the

ones achieved by TempS. However, the results achieved by PictAM(CF Video)

using MarLoN were slightly better than the ones achieved by the same method

using TempS. In these experiments, the highest accuracy was indeed achieved by

PictAM(CF Video). This result confirms the potential of mining activity models630

from videos for sensor-based activity recognition. The accuracy achieved by the

other methods was significantly lower. Also in these experiments, TextAM

achieved the lowest micro-F1 score.

6.3.5. Overall results

Table 8 provides an overview of results, showing the micro-F1 score of activ-635

ity mining methods considering the two datasets as a whole. With TempS, the

most effective method was PictAM(MS), which achieved a score of 0.7049. The

performance of PictAM(CF Video) was also good, while the one of PictAM(CF

Image) was lower. With this activity recognition method, the score of TextAM

was the lowest.640

With MarLoN, the highest accuracy was achieved by PictAM(CF Video),

while PictAM(MS) and PictAM(CF Image) achieved a slightly lower score.

Even with this activity recognition algorithm, the score of TextAM was the

lowest.

7. Discussion645

Overall, experimental results indicate that visual media can be effectively

used to mine activity models, even when sporadic activities are considered.
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Moreover, activity models extracted from pictures and videos outperform mod-

els extracted from text in terms of activity recognition accuracy.

Inspecting individual activities, we found some activities (especially, “water-650

ing plants”, “answering the phone”, and “hoovering”) hard to recognize, mainly

due to the lack of sufficient information about objects usage in the dataset for

them. In particular, the recognition rate of “watering plants” was low. Indeed,

as shown by the confusion matrix in Table 9, that activity was frequently con-

fused with “preparing soup”. Those errors happened because both activities655

involve the use of the same or similar tools (e.g., sinks and water containers).

We claim that this is an intrinsic limit of object based-activity recognition; it

is not due to the specific method used to define object-based activity models.

This problem can be mitigated by considering additional smart objects that can

better characterize the activities.660

Table 9: TempS algorithm and CASAS dataset (n = 3, c = 0.5): confusion matrix.

classified as → a1 a2 a3 a4 a5 a6 a7 a8

a1 98 9 6 2 3 12 3 1

a2 0 409 5 0 8 3 17 0

a3 0 8 75 0 0 68 25 1

a4 4 9 3 10 1 7 7 1

a5 0 5 0 0 106 1 0 0

a6 10 11 13 9 5 289 18 5

a7 0 32 67 0 3 2 165 0

a8 2 16 4 0 3 47 11 65

A comparison with other activity recognition techniques using the CASAS

dataset indicates that our results are positive. The Hidden Markov Model

method used in [54] on the CASAS dataset achieved an average recognition

accuracy of 0.700; our method achieved a higher score, having the advantage of

being unsupervised (i.e., no training set must be acquired). The unsupervised665

method presented in [51], based on a hybrid combination of ontological and

probabilistic reasoning, achieved higher accuracy on the CASAS dataset; i.e.,

average accuracy of 0.781. However, that method adopts an advanced activity

recognition technique, while the two methods used in this paper were rather
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simplistic. Moreover, that hybrid method strongly relies on manual activity670

modeling through ontology engineering, which is an expensive task. On the

contrary, our approach has the advantage of being fully automatic, apart from

the straightforward ontological definition of the sensor infrastructure.

Despite our ArOnt ontology having a rather simple structure, the effort of

filling the ontology with sensor instances is not negligible. We believe that675

the effort can be reduced by adopting user-friendly interfaces to specify the

semantics and positioning of sensors in the smart home, possibly with the help of

plug-and-play mechanisms. Moreover, the effort can be reduced by re-using and

extending existing ontologies. Indeed, while the set of sensors is environment-

dependent, the correspondences among actions/objects and tags is generic and680

can be shared across different smart homes.

In a recent work, it was proposed to reduce the burden of ontology engineer-

ing while retaining the advantages of unsupervised activity recognition; that

approach relies on a generic ontological model, interactively refined by users’

feedback and active learning [61]. The accuracy of that method, applied with-685

out active learning, was 0.73 on the CASAS dataset. Our method using pictures

achieved essentially the same accuracy, without the need of manually defining

a generic ontology of activities and smart environments. At the time of writ-

ing, we cannot compare the effectiveness of our methods on the IELAB dataset,

since the experimental setup used in the original paper [56] was different (differ-690

ent set of activities, different recognition task) and we could not find any other

publication using the IELAB dataset.

8. Conclusion and future work

In this paper, we introduced a new approach to unsupervised activity min-

ing, which relies on visual information. We presented a technique for extracting695

relevant activity images and videos from the Web, identifying key informa-

tion through computer vision tools, and computing activity models. A detailed

experimental comparison with related works shows the effectiveness of our ap-
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proach.

This work can be extended in several directions. The technique to select700

relevant pictures and videos could be improved by analyzing the context in which

they are published. While we used general-purpose computer vision APIs, object

recognition could be improved adopting specific methods to recognize human-

object interaction [62]. Moreover, temporal information could be extracted by

mining activity data from videos in order to compute more accurate activity705

models.

Currently, our method mainly relies on sensors attached to objects and fur-

niture. Our method could be extended in order to take advantage of indoor

positioning systems, which are more and more available in smart homes. To

this aim, we could exploit image-based place recognition APIs, and match the710

typical location of activities with the user’s current position.
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