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Reaction processes often show to be improved by microwave application, but 

the enhancing effect is not always due solely to the temperature increasing 

in the medium, which is produced by the radiation exposure. Thus, to study 

the evolution of such kind of processes needs a strict control of the 

irradiation conditions and the use of a proper reaction apparatus in which 

the interaction between radiation and irradiated materials can be precisely 

defined. The present work is made necessary by the need of operating with 

controlled and reproducible experimental conditions, and the aim was to 

design a multi-tube reactor, to work in resonance conditions, inside which 

the tubes with the fluid to be processed are positioned. In fact, working in 

resonance conditions allows the irradiated fluid to be exposed to constant 

microwave power, and the field intensity and power absorption can be 

accurately calculated and mapped. The cavity was designed by the authors 

using a proper commercial software for 3D electromagnetic simulation, then 

the reactor operation was tested by another commercial multiphysic 

simulation software. The results here presented show the proper geometrical 

characteristics of the cavity and of the internal tubes to work at 2.45 GHz of 

frequency while the irradiation power can be varied depending on the needs 

of the process. The reactor can work with different homogeneous systems, 

both chemical and biological (enzyme reactions). The future development 

will be the construction and the real operation of the designed apparatus in 

order to confirm the simulation results. 
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resonant cavity. 

1. Introduction 

Microwaves, due to their heating capacity, can enhance chemical processing. Moreover, all 

chemical and biochemical reactions involve electrical forces between the charged part of the reacting 

molecules. In fact, chemical binding is a matter of electrical interactions, thought at microscopic scale; 

thus, an external electromagnetic (EM) field can interact with such reactions [1], and many reports of 

these interactions were reported in the literature, about both thermal and non-thermal kind [2-7]. 

However, the application of microwaves in chemical and biochemical processing has not yet 

been fully exploited, above all in the latter case. The main reason may be the great difficulties of a 

precise temperature control, which arises in microwave irradiated reactors, and enzymes are very 



fragile molecules and cannot be subjected to not well controlled reaction conditions. As regards 

enzyme reactions, improved yields, that cannot be explained just to a thermal effect, have been 

reported in many cases, like isomerase [8] and amylase [9] catalyzed reactions or lipase catalyzed 

transesterification (for biodiesel production) [10, 11]. However, the mechanism of the radiation effect 

on the enzyme activity (and whether it is thermal or non-thermal) is still unclear. A possible 

explanation could be the action, played by the electric field, of changing the orientation of dipolar 

molecules and of active sites of the enzyme, which could result in a decrease of the intermolecular 

distances and in a stricter coordination between the reactive groups in substrate molecules and the 

active sites of the enzyme, thereby leading to enhance the efficiency and the specificity of enzymatic 

reactions [12, 13]. The effectiveness of non-thermal interactions during chemical, biochemical and 

biological processes under microwave irradiation cannot be easily demonstrated, because of the 

inherent difficulties in conducting such experiments. In fact, non-thermal effects (if they exist) operate 

concurrently with thermal ones, and it is hard to distinguish between them. However, as it results from 

most of the studies reported in the literature, microwaves power has not been monitored, or was high 

enough to give a temperature rise in the medium, so making difficult to quantitatively determine 

thermal and non-thermal microwave effects. In such studies, even the EM field distribution was not 

monitored. 

Aim of this paper is to design and analyze the behavior of a microwave resonant cavity, to be 

used as a chemical and biochemical reactor, from the EM point of view. The desired working 

frequency is 2.45 GHz. Then, the intention is to realize the cavity to be used for evaluating the effect 

of the EM exposition on the reacting processes. In particular, the attention will be focused on enzyme 

homogeneous catalyzed reactions performed in a polar (water) medium; as an example simulation 

case, the enzymatic hydrolysis of sucrose into glucose and fructose will be chosen. The approach here 

developed and discussed, differently from what presented in the previously cited literature works 

about enzymatic processes [8-12], allows a precise calculation of the radiation frequency and of the 

local field in the fluid bulk, which depend both on the shape/dimemsions of the vessel/tubes 

containing the exposed fluid and on the fluid temperature and dielectric properties. 

2. Materials and methods 

2.1. Cavity design and simulation 

In order to evaluate the effects of the exposition to EM fields in controlled conditions, both for 

chemical compounds and biological molecules, a suitable exposure apparatus is required, consisting in 

a resonant cavity in which the reacting mixtures can circulate. To explain the working conditions and 

the design criteria for this, it is necessary to start from the fundamental equations of electromagnetism, 

like Eqs. (1)-(6), and then to make assumptions and elaborations, with Eqs. (7)-(35), to particularize 

for the conditions here studied. Finally, the EM model will be coupled with the fundamental energy 

conservation and convection-diffusion equations, see Eqs. (36)-(37), in their general form. 

Resonant cavities represent a particular case of waveguides, which are devices properly used for 

confining an EM field inside a spatial region, forcing it to propagate in a fixed direction, 

conventionally chosen coincident with the axial direction z. To be more precise, a waveguide is a 

driving structure with a transverse section which is simply connected and invariant with z (an example 

may be a metal hollow tube). 



The EM field is governed by the Maxwell’s equations; in absence of sources, in the phasor 

domain, for a linear, isotropic, homogeneous and non-dispersive medium, they assume the form: 
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in which E [Vm-1] and H [Am-1] are respectively the electric and the magnetic field, ω [s-1] is the 

angular pulse, ε [Fm-1] and μ [Hm-1] are respectively the electric and the magnetic permittivity, 

which describe the characteristics of the dielectric material filling the waveguide (air in the present 

case), and finally j is the imaginary unit. 

The transverse and longitudinal (with respect to z) field components can be written as follows: 
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Now, Eq. (1) can be rewritten as: 

 

 

t
t z t z

t
z t t z

t z t z

t t z z

j E
z

j H
z

j H

j E










    


    

   

   

E
H i

H
i E

i E

H i

 (5) 

From the system (5), factored solutions must be found, of the kind: 
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which represent the system modes, and where V(z) [V] and I(z) [A] are scalar mode functions, while e 

[m-1] and h [m-1] are vector mode functions. Substituting the third and fourth of Eqs. (5) in the first 

and second equations of the same system, and keeping into account the system (6), the following 

system is obtained: 
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where it is notable (from the last two equations) that the factorization of the transverse components 

implies also the factorization of the longitudinal ones, and consequently of the total field. 



To the system (7), the boundary conditions must be combined. In the case of ideal waveguides, the 

walls are made of a perfect electric conductor (PEC), inside of which the electric field is zero. 

Considering that the continuity conditions for the EM field require the field, tangent to a surface, to be 

continuous, the boundary condition is: 

0n B
 i E  (8) 

in which in is the versor normal to wall and the subscript B indicates the boundary. 

To find the solutions of the system (7), further conditions are to be assumed on the longitudinal 

components of field. If 0z zE H   is assumed, both the electric and the magnetic field would result 

to be transverse to z direction, thus the modes are transverse electromagnetic (TEM) modes. It can be 

demonstrated that, for a waveguide with a simply connected transverse section, TEM modes cannot 

exist. 

Other solutions are the modes with only one transverse field, which are the transverse electric (TE, 

with only 0zE  ) and the transverse magnetic (TM, with only 0zH  ) modes. If we now consider 

the latter case (TM, with 0zH  ), the system (7) becomes: 
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The second of Eqs. (9) can be written as: 
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The left term of Eq. (10) depends only on x and y, so also the right term of Eq. (10) must depend only 

on x and y. For this condition being verified, the fraction in the right term must not introduce a 

dependence on z, so it must be a constant. In this case, Eq. (10) can be rewritten as: 

( , ) ( , )zx y A x y h i e  (11) 

in which A is an arbitrary constant that can be chosen as 1A  ; thus, the second of Eqs. (9) can be 

rewritten as: 
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Now, considering Eq. (11), the first of Eqs. (9) can be adjusted in the form: 
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from which, with analogous considerations, it can be deducted that 
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with 
2

tK  being constant. Taking into account the last relationship, the first of Eqs. (9) can be 

rewritten as: 
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Eqs. (12) and (15), taken together, form an equation system and are known as “telegrapher’s 

equations”. By introducing the following parameters: 
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with 

K    (17) 

the solution of the “telegrapher’s equations” is: 

( ) exp( )zV z V jK z m  (18) 

The single components of Eq. (18) represent waves moving along the positive direction of the z 

axis in the case of the exponential exp(–jβz), and along the negative direction of the z axis in the case 

of the exponential exp(+jβz). 

The transverse components of the field, that is the vector mode functions, can be obtained by 

observing that, in Eq. (14), e is proportional to the transverse gradient of the transverse divergence of 

e, which is the transverse gradient of a scalar function. So, if we put that: 
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Eq. (14) becomes: 
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which means that the line integral of e on a close curve lying on the transverse plane is zero, and 

consequently the third of Eqs. (9) is verified. 

Putting together Eqs. (19) and (20), the following relationship can be obtained: 

2

2 2

1 1
( , ) ( , ) ( , )

( , ) ( , ) 0

t t t

t t

t

x y x y K x y
K K

x y K x y

  

 

 
        

 

  

 (21) 

which is the Helmholtz homogeneous equation. To Eqs. (21), the boundary condition to respect ϕ must 

be added. Imposing that the wall tangent field is zero, that is Eq. (8), it can be found that ϕ must be 

zero on the boundary, that is a Dirichlet’s condition. Definitely, the problem to be solved becomes: 
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In the case of cylindrical waveguides, it is convenient to solve the problem in cylindrical 

coordinates. The system (22) is an eigenvalue problem, and could be solved numerically. Probably, the 

most effective approach is the Finite-Difference Frequency-Domain (FDFD) method [14], which can 

be applied both to scalar [15-21] and to vector [22, 23] problems. As a matter of fact, the FDFD 

approach, namely the direct discretization of the differential eigenvalue problem, is the simplest 

numerical strategy to compute eigenvalues and modes of metallic hollow waveguides [23]. The 

Helmholtz equation, in this coordinate system, brings to the Bessel equation, the solution of which is: 

     , sin( ) cos( )n tJ k A n B n         (23) 

being Jn(ψ) the Bessel function of the first kind of order n. Imposing the boundary conditions, it can be 

found that you have the nullification of the ϕ function for the zeroes of the Bessel’s function. 

Indicating with xnm the m-th zero of the n order Bessel’s function, with a [m] the waveguide radius, 

and with K [m-1] the wavenumber, the following condition must be verified: 
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and the mode can propagate for frequencies higher than its cut-off frequency fc,nm: 
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with the following propagation constant β: 
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The transverse electric field can be obtained from Eq. (20), when expressed in cylindrical coordinates, 

as follows: 
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from which it can be noted that the electric field of the TM modes with the index n = 0 has a radial 

direction in all cases. 

Once the waveguide modes have been determined, it is possible to obtain the corresponding 

resonant cavity, considering a waveguide section with a length d, closed to both the terminal parts with 

a PEC. In this situation, two waves exist, propagating in both directions (positive and negative) of z 

axis which originate a standing wave. The field can be then expressed in the following form: 

 ( , ) nm nmj z j z

t E e E e
     E e  (28) 

The boundary conditions on the new walls closing the waveguide must be the tangent field equal to 

zero. Assuming that the walls are positioned in z = 0 and in z = d, from Eq. (28) we have that: 
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Eq. (31) requires that the guide length should be an entire number of half wave lengths. 

The resonance frequency of the cavity is defined as: 
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where v [ms-1] is the speed of light in vacuum, and εr and μr are respectively the relative electric 

permittivity and the relative magnetic permeability of the material filling the cavity. In a resonant 

cavity, field configurations with frequencies different from the resonance frequencies given by Eq. 

(32) cannot exist. 

After defining the geometrical characteristics of the cavity, this has to be fed with an incoming 

signal. In general terms, the feed is closer to the maximum value of the field of a mode, the bigger is 

the probability of excite that mode. 

An adaptation between the feeding cable and the cavity is necessary to avoid the inlet power 

being reflected, and so to make it used for the field formation. An important parameter for quantifying 

the reflected power is the scattering coefficient Γ, the absolute square value of which allows binding 

the reflected power to the incident one through the following relationship: 

2

ref incP P   (33) 

It is now described the designed apparatus, based on a cylindrical cavity tuned to work at 2.45 GHz 

(i.e., the frequency allocated for industrial applications) in operating conditions. As a matter of fact, 

the materials under test are exposed in aqueous solution, so that the cavity must include a suitable 

container for them. In order to test the effectiveness in chemical processes, it was decided to expose a 

continuous flow of solution, using a reactor made of eight plexiglass tubes allocated into the cavity 

(Fig. 1). The reactor was centered with respect to the cavity, ensuring a uniform absorption of the EM 

radiation by the liquid. An external pumping system was to be used, so that the tubes diameter was 

chosen as to significantly reduce the dispersion of the field outside the cavity. Since the dielectric 

properties of the fluid under test were essentially the same as those of pure water, the fluid was 

considered (from the EM point of view) as water, using the Debye model [24] with temperature-

dependent parameter [25]. The cavity length was chosen to excite a mode independent from the 

azimuthal coordinate, in order to irradiate in the same way all the tubes. The chosen mode corresponds 

to the TM012 of the empty cavity. 



Fig. 1. Sketch of the reactor in the resonant cavity: top view (left) and side view (right). 

 

The resonant frequencies of the cavity were obtained by Eq. (32) in the following form [24]: 
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where l, m, n are integers, and xnm are the zeroes of the Bessel’s function of the first kind, and εr_avg is 
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wherein Va, Vw , and Vpl are the internal volumes filled with air (a), water (w), and plexiglass (pl), 

respectively (Va+Vw+Vpl=πa
2
h is the total cavity volume); εrw and εrp are the dielectric permittivity of 

water and plexiglass. 

It was chosen for the cavity cylindrical side a commercial size, with a diameter 2a=72.1 mm 

(twice the diameter of a cavity designed in a previous work [26]). Using Eq. (34), the height h of the 

cavity, having resonant frequency at 2.45 GHz, is equal to 102.3 mm. However the above model did 

not take into account the inhomogeneous distribution of water (and the spatial variation of the electric 

field). Actually, a correct approach would be given by Eq. (35) with an average weighted by the 

electric field intensity. Moreover, the imaginary part of the dielectric constant of water cannot be 

neglected at 2.45 GHz. Therefore the resonant frequency of the cavity of Fig. 1 with h=102.3 mm is 

different from that given by Eq. (34), and equal to 3.046 GHz. Since the application at hand requires a 

cavity tuned at (or very close to) 2.45GHz, a tuning of the cavity length h was performed. The tuning 

was done by CST (see section 2.2), using the correct (lossy) Debye model for water (with 

tan(δ)=0.15), which gave, for a cavity with the actual structure, the return loss shown in Fig. 2, and 

then the correct height. The final value is h=134 mm, and the Γ behavior of the final cavity is reported 

in Fig. 2. 

Of course, the resonant frequency of the designed cavity depends also on the liquid temperature 

(and increases with it). However, the lossy nature of water allows to feed the cavity also when the 

liquid is hot. It is clear that the resonant frequency is the required one, with a bandwidth large enough 

for the applications at hand. However, the electric field distribution is as important as the input match. 

Fig. 3 shows this distribution at the resonant frequency. It is clear that the field is azimuthally 

uniform, as required to irradiate all tubes in the same way. 
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Fig. 3. Electric field in the cavity at 2.45 GHz: 

transverse (a) and longitudinal (b) views. 

Fig. 2. Return loss with probe length Lc=28.4 mm. 

 

On the other hand, the longitudinal field is not constant but, since the irradiated liquid is 

flowing, this is not a problem. Actually the choice of a flow system, instead of a static one, was due to 

the need of creating well mixing conditions and so of preventing an inhomogeneous microwave 

exposition. The dimensions of the flow tubes were of the same order of magnitude than the expected 

thickness of the exposed fluid and the operating conditions made possible to operate in the laminar 

flow regime. Heat transfer in the fluid was addressed by the following energy conservation equation: 

 pc T k T Q     u  (36) 

in which u [ms-1] is the velocity vector, ρ [kgm-3] represents the fluid density, cp [Jkg-1K-1] the heat 

capacity at constant pressure, T [K] the temperature, k [Wm-1K-1] the thermal conductivity and Q [W] 

the thermal power of a generic heat source. Finally, the solute mass transfer (considering the very low 

concentrations, the approximation of transport of diluted species was adopted) was taken into account 

by the convection-diffusion equation in the form:  

 i i i iD M M R     u  (37) 

in which Di [m2s-1] is the diffusion coefficient, Mi [molm-3] the concentration and Ri [molm-3s-1] the 

generation rate for i; the latter was chosen and described by a suitable kinetic model [27, 28]. 

2.2. Design and simulation software 

The cavity was designed by the authors using Computer Simulation Technology
®
 (CST) 

Microwave Studio software for 3D EM simulation. It was drawn with passing-through tubes that do 

not extend outside the cavity. These pipes were filled with a material which was set up with the 

dielectric constant and loss tangent of water at the working frequency and at the temperature of 20°C. 

A first order Debye’s model frequency dependence was used for this material. Moreover, the cavity 

was surrounded by an air box, on which faces absorption boundary conditions were applied. This 

allows taking into account the (low) EM field scattered by the opening on the cavity sides.  

A more complete simulation would require taking into account the heat transfer and the fluid flowing 

into the pipes. For this purpose the simulation software COMSOL Multiphysics
®
 was used. An 

Electromagnetic Waves, Frequency Domain analysis, using the same conditions previously stated, 

showed that the two software packages are in good agreement, as proven by Fig. 2, relative to the 

reflection coefficient. The fluid dynamics of water was considered using a Laminar Flow physic, 
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assuming an average velocity for the incoming fluid on the inlet section. Furthermore, for an enzyme 

reaction, temperature is a very critical parameter, so a thermal analysis is due and a Heat Transfer in 

Fluids physic was used. This physic allows considering conduction and conduction-convection 

mechanisms in solids and in the fluid respectively. All these physics were coupled together so that 

variations of physical parameters affected all the physics. 

3. Results 

The multiphysic simulation of section 2.1 was carried out for a possible working microwave power 

range of 1÷300 W and for a fluid average axial velocity range of 5.0·10
−5

÷1.5·10
−1

 m/s. The 

simulation runs gave different, and interesting, results. An example of a simulation output is reported 

in Fig. 4. The main finding was the fact that no significant deviation from the resonance frequency 

was registered. In Fig. 5 the plot of the average temperature in the fluid as a function of the average 

fluid velocity and of microwave power is reported; the boundary condition is 20°C for the fluid inlet. 

It should be highlighted that the temperature is a key parameter in chemical and biochemical kinetic 

experiments: on one hand, it strongly influences (increases) the process evolution rate; on the other 

hand, in the case of enzyme reactions, it must be strictly checked and controlled because, if too high, it 

can irreversibly damage the enzyme molecules. In the case of sucrose hydrolysis catalyzed by 

invertase enzyme, for example, this limit can be reasonably taken in 60°C, considering that at this 

temperature the enzyme loses most of its activity after 60 minutes [29]. From the modeling 

temperature results it can be pointed out a useful working region for temperatures below 60°C and 

velocities in the range 2.0·10
−4

÷1.5·10
−1

 m/s for P = 1 W. For increasing power, the available velocity 

range shrinks (velocity has to be increased and so the process will be carried out with more fluid 

passages inside the cavity); anyway, the maximum suitable microwave power is 100 W with velocities 

in the reduced range between 1.0·10
−2

 and 1.5·10
−1

 m/s. 

4. Conclusions 

The present study describes the design of a resonant cavity reactor, operating at 2.45 GHz. Thus, the 

field distribution and the absorption rate were calculated, involving the presence of a flowing fluid 

Fig. 5. Outlet average temperature of the fluid for 

different incident microwave powers and average fluid 

velocities (inlet temperature fixed at 20°C). 

Fig. 4. Conditions inside a reaction tube as a result of a multiphysic simulation for a microwave 

power of 30 W and a fluid average velocity of 0.01 m/s (longitudinal section): a) electric field 

distribution, b) axial component of the fluid velocity, c) fluid temperature. 
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characterized by a high value of the dielectric constant, finding out that they are spatially 

homogeneous in the tube azimuthal direction, so satisfying our planning ideas. However, the 

longitudinal field distribution presents a much more inhomogeneous distribution, and only several 

recirculations of the reacting solution inside the tubes (the fluid motion is in the laminar regime) allow 

all the fluid elements to be subjected, on average, to the same irradiation conditions throughout the 

entire treatment. 

The possibility to use the resonant cavity reactor here designed as an enzyme reaction apparatus 

was described and analyzed running multiphysic simulations, with the aim of taking into account the 

complexity of the interacting phenomena. Besides, the analysis carried out, led to a suitable operating 

range for microwave power and fluid velocity. In fact, in order to bring (and maintain) the fluid 

temperature to the value here required for the enzyme reaction, a proper combination of the two 

parameters, power supply and velocity of the incoming fluid, must be used. So, if a certain electric 

field intensity is needed, the corresponding power can be supplied and the appropriate velocity can be 

used to perform the process at the right temperature. 

The next steps will be the realization of the experimental reactor prototype, in such a way to 

carry on real tests and to verify the resonance conditions in real working conditions as well as the 

simulation results here presented. 
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