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Abstract Ill-posed problems arise in many areas of science and engineering. Their

solutions, if they exist, are very sensitive to perturbations in the data. Regularization

aims to reduce this sensitivity. Typically, regularization methods replace the original

problem by a minimization problem with a fidelity term and a regularization term.

Recently, the use of a p-norm to measure the fidelity term, and a q-norm to measure

the regularization term, has received considerable attention. The relative importance

of these terms is determined by a regularization parameter. This paper discussed how

the latter parameter can be determined with the aid of the discrepancy principle. We

primarily focus on the situation when p = 2 and 0 < q ≤ 2, where we note that when

0 < q < 1, the minimization problem may be non-convex.
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1 Introduction

We consider the computation of an approximate solution of minimization problems of

the form

min
x∈Rn

‖Ax− bδ‖2, (1)

where A ∈ R
m×n is a large matrix, whose singular values decrease to zero grad-

ually with no significant gap, and the vector bδ ∈ R
m represents measured error-

contaminated data. We will sometimes refer to the error in bδ as “noise.” The norm

‖ · ‖2 in (1) denotes the Euclidean norm. We also will comment on the use of other

norms.
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Minimization problems of the kind (1) are commonly referred to as discrete ill-

posed problems. They typically arise from the discretization of ill-posed problems, such

as Fredholm integral equations of the first kind with a smooth kernel; see, e.g., [11,15,

17] for discussions on ill-posed and discrete ill-posed problems.

Let b ∈ R
m denote the (unknown) error-free vector associated with bδ. We will

assume that b is in the range of A and that a fairly sharp bound δ for the error in bδ

is known, i.e., ∥∥∥b− bδ
∥∥∥
2
≤ δ. (2)

These assumptions will allow us to determine a regularization parameter with the aid

of the discrepancy principle.

Since A is ill-conditioned and bδ is contaminated by error, the näıve solution,

A†bδ , of (1), where A† denotes the Moore-Penrose pseudoinverse of A, usually is not

a meaningful approximation of the desired vector

x̂ := A†b (3)

due to severe amplification and propagation of the error in bδ. To achieve a more

accurate approximation of x̂, the original discrete ill-posed problem (1) is replaced by

a nearby well-posed problem, whose solution is less sensitive to the error in bδ. This

replacement is known as regularization.

A regularization technique that recently has received considerable attention is to

replace (1) by an ℓp-ℓq minimization problem of the form

x∗ := argmin
x

{
1

p

∥∥∥Ax− bδ
∥∥∥
p

p
+

µ

q
‖Lx‖qq

}
=: argmin

x
J (x), (4)

where the regularization matrix L ∈ R
ℓ×n is such that

N (A) ∩N (L) = {0}. (5)

Here N (M) denotes the null space of the matrix M and

‖z‖s :=




n∑

j=1

|zj |s



1/s

, z = [z1, . . . , zn]
T ∈ R

n.

We will refer to ‖ · ‖s as the s-norm of z also for 0 < s < 1, even though the mapping

z → ‖z‖s does not satisfy the triangle inequality and therefore is not a norm for these

s-values.

The regularization parameter µ > 0 in (4) balances the relative influence of the

first term (the fidelity term) and the second term (the regularization term). The use

of 0 < p, q ≤ 2 has received considerable attention; see, e.g., [3,4,7,12,20,22,24] and

references therein. Note that if either 0 < p < 1 or 0 < q < 1, then the functional

(4) generally is non-convex. When p = q = 2, the problem (4) reduces to Tikhonov

regularization in general form [14,17,23].

We briefly comment on the choice of q. In many situations it is known that the

desired vector (3) is sparse in some basis. To enhance sparsity, we may consider using

a regularization term with ℓ0-norm. However, the minimization problem so obtained is

very difficult to solve. Therefore, it is common to approximate the ℓ0-norm by the ℓ1-

norm. The main advantage of using this approximation is that the ℓ1-norm is convex.
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Fig. 1: Comparison of different ℓq-norms. The solid black line represents the ℓ0-norm,

the dotted black line shows the ℓ1-norm, the dark gray solid line displays the ℓ0.5-norm,

and the light gray solid line depicts the ℓ0.1-norm.

This makes the computation of a solution easier. However, ℓq-norms with 0 < q < 1

are better approximations to the ℓ0-norm. In particular, the smaller q, the better the

approximation, i.e., if q1 is smaller than q2 then the ℓq1 -norm is a better approximation

of the 0-norm than the ℓq2 -norm; see Figure 1 for an illustration and [24] for a discus-

sion. The main drawback of using q < 1 is that the resulting minimization problem (4)

may be non-convex.

We turn to the choice of p. The value of p should depend on the type of noise in the

data bδ . For white Gaussian noise, the choice p = 2 is appropriate. We will primarily

consider this choice in the present paper.

A possible approach for solving the minimization problem (4) with p = 2 is to

approximate the ℓq-norm by a weighted ℓ2-norm. By iteratively refining this approxi-

mation, it is possible to effectively compute a solution of (4). This process is known as

the iteratively reweighted norm (IRN) method and has been applied in several different

situations with good results [10,13,24,25,27]. IRN methods proceed by solving a se-

quence of weighted least-squares problems until a solution of (4) has been determined

to desired accuracy. Applications of IRN-type methods to minimization problems (4)

with p or q smaller than unity are described in [20,24]. It is shown in [20] that the

solutions of the sequence of weighted least-squares problems converge to a stationary

point of the functional (4).

None of the works on solution methods for (4) mentioned discuss the choice of

the regularization parameter µ > 0. It is the purpose of the present paper to describe

several algorithms, that are based on the discrepancy principle, for choosing a suitable

µ-value, and to provide theoretical results that shed some light on their performances.

Our algorithms for determining µ are based on the IRN-type method described in

[20] and there denoted by FMM-GKS. We outline the idea behind this method and

denote it simply by MM-GKS. Each iteration with this method can be divided into

two steps: The first step majorizes the functional to be minimized in (4) by a quadratic
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function that is tangent to the functional at the current approximation. Then, in the

second step, the unique minimizer of the majorant is computed and used as the new

iterate.

In our first algorithm for determining a suitable value of the regularization param-

eter µ, we supplement the iterations described in [20] with an a priori chosen monoton-

ically decreasing sequence of values µ(k), k = 1, 2, . . . , of the regularization parameter.

The sequence is chosen such that µ(k) → 0 as k → ∞. Inspired by results due to Hanke

and Groetsch [16], we will use a geometrically decreasing sequence in the numerical

examples of Section 4. However, any monotonically decreasing sequence that converges

to zero can be used. We will show that, when no stopping criterion is employed, the

iterates generated in this manner converge to a solution of the least-squares problem

(1). This solution is not useful. Regularization is achieved by early termination of the

iterations. The stopping rule is based on the discrepancy principle, which prescribes

that the iterations be terminated as soon as an iterate x(k) has been determined that

satisfies ∥∥∥Ax(k) − bδ
∥∥∥
2
≤ τδ, (6)

where δ is defined in (2) and τ > 1 is a user-supplied constant independent of δ.

Our second algorithm for determining a suitable value of the regularization param-

eter differs from the first one in that the sequence of regularization parameters µ(k),

k = 1, 2, . . . , is not chosen a priori. Instead, we compute at each iteration a regulariza-

tion parameter µ(k) such that the iterate x(k) satisfies the discrepancy principle, i.e.,

such that ∥∥∥Ax(k) − bδ
∥∥∥
2
= τδ.

We show convergence of this algorithm (up to a subsequence) and regularization prop-

erties of the computed iterates x(k). A third algorithm considered in Section 4 uses the

regularization parameter value obtained in this manner in the algorithm described in

[20].

This paper is organized as follows: Section 2 outlines the FMM-GKS method de-

scribed in [20] for the solution of (4). Our algorithms for determining the regularization

parameter µ are described in Section 3, and a few numerical example are presented

in Section 4. Finally, Section 5 contains concluding remarks and discusses some exten-

sions.

2 A majorization-minimization method

We briefly describe the FMM-GKS method proposed in [20]. Introduce a smoothed

version of the norm ‖x‖qq as follows. Consider the function Φq : R → R defined by

Φq(t) = |t|q .
If 0 < q ≤ 1, then the function t → Φq(t) is not differentiable at t = 0. Introduce the

smoothed version of Φq as

Φq,ε(t) =
(√

t2 + ε2
)q

, (7)

where ε > 0 is a small constant. Clearly, Φq,ε(t) is everywhere differentiable. A smoothed

version of ‖x‖qq for x = [x1, . . . , xn]
t ∈ R

n is given by the right-hand side of

‖x‖qq ≈
n∑

i=1

Φq,ε(xi).
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Throughout this paper, the superscript t denotes transposition.

Define the smoothed version of the functional with p = 2 that is minimized in (4),

Jε(x) :=
1

2

∥∥∥Ax− bδ
∥∥∥
2

2
+

µ

q

ℓ∑

i=1

Φq,ε((Lx)i). (8)

Thus, the smoothed minimization problem associated with (4) reads

x∗ := argmin
x

Jε(x).

The FMM-GKS method described in [20] for computing a stationary point of Jε is

based on a majorization-minimization method. It constructs a sequence of iterates x(k)

that converge to a stationary point of Jε. At each step the functional Jε is majorized

by a quadratic function x → Q(x,x(k)) that is tangent to Jε at x(k). The next iterate

x(k+1) is the unique minimizer of x → Q(x,x(k)). We outline this method in the

remainder of this section.

Definition 1 Consider the differentiable function J (x) : Rn → R. We say that the

function x → Q(x,y) : Rn → R is a quadratic tangent majorant for J (x) at y ∈ R
n if

the following conditions hold:

– Q(x,y) is quadratic;

– Q(x,y) ≥ J (x) for all x ∈ R
n;

– Q(y,y) = J (y) and ∇Q(y,y) = ∇J (y).

2.1 Majorization step

We outline the construction of a quadratic tangent majorant at the point x(k). Two

approaches are described in [20], one yields a majorant with fixed aperture and the

other one a majorant with the largest aperture possible. The second kind of majo-

rant approximates the function Jε better than the first kind, but its computation is

more demanding. In the following we will consider only the majorant with fixed aper-

ture, although all the theoretical results hold true also for the majorant with adaptive

aperture.

Let

u(k) := Lx(k)

and introduce the vector

ω
(k) := u(k)

(
1−

(
(u(k))2 + ε2

ε2

)q/2−1
)

, (9)

where all the operations, including squaring, are meant element-wise. It is shown in

[20] that the function

Q(x,x(k)) =
1

2

∥∥∥Ax− bδ
∥∥∥
2

2
+

µεq−2

2

(
‖Lx‖22 − 2

〈
ω
(k), Lx

〉)
+ c, (10)

with c a suitable constant independent of x, is a quadratic tangent majorant for Jε at

x(k). We refer to [20] for a derivation of ω(k) and c.
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2.2 Minimization step

Given x(k), the next iterate x(k+1) is the minimizer of x → Q(x,x(k)). Since Q is

quadratic, x(k+1) can be computed by determining the zero of the gradient, i.e., by

solving the linear system of equations

(AtA+ ηLtL)x(k+1) = Atbδ + ηLt
ω
(k), η := µεq−2. (11)

The matrix on the left-hand side is nonsingular for µ > 0 due to the requirement (5).

Therefore x(k+1) is the unique minimizer of Q(x,x(k)).

An approximate solution of (11) can be computed efficiently by seeking a solution

in a low-dimensional subspace. Let the columns of Vk ∈ R
n×d, with 1 ≤ d ≪ n, form

an orthonormal basis for the subspace in which we determine an approximate solution

x(k+1) of (11). We compute x(k+1) by solving the minimization problem

y(k+1) := argmin
y

∥∥∥∥
[

AVk
η1/2LVk

]
y −

[
bδ

η1/2ω(k)

]∥∥∥∥
2

2

(12)

and letting

x(k+1) = Vky
(k+1). (13)

Introduce the QR factorizations

AVk = QARA with QA ∈ R
m×d, RA ∈ R

d×d,

LVk = QLRL with QA ∈ R
ℓ×d, RA ∈ R

d×d.
(14)

Inserting these factorizations into (12) yields

y(k+1) := argmin
y

∥∥∥∥
[

RA

η1/2RL

]
y −

[
Qt

Ab
δ

η1/2Qt
Lω

(k)

]∥∥∥∥
2

2

,

and substituting (13) into (11) gives the residual vector

r := At(AVky
(k+1) − bδ) + ηLt(LVky

(k+1) − ω
(k)). (15)

We expand the solution subspace by including the scaled residual vector vnew = r/‖r‖
in the solution subspace. This vector is orthogonal to the columns of the matrix Vk,

and we define the new matrix Vk+1 = [Vk,vnew] ∈ R
n×(d+1) with an orthonormal

basis for the expanded solution subspace. The so determined solution subspaces are

referred to as a Generalized Krylov subspaces. Another related application of this kind

of solution subspaces is described in [23].

We store the matrices

AVk+1 = [AVk, Avnew], LVk+1 = [LVk, Lvnew].

The QR factorizations of these matrices are computed by updating the QR factoriza-

tions (14) according to

AVk+1 = [AVk, Avnew] = [QA, q̃A]

[
RA rA
0t τA

]
,

LVk+1 = [LVk, Lvnew] = [QL, q̃L]

[
RL rL
0t τL

]
,
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where
rA = Qt

A(Avnew), qA = Avnew −QArA,

τA = ‖qA‖2 , q̃A = qA/τA,

rL = Qt
L(Lvnew), qL = Lvnew −QLrL,

τL = ‖qL‖2 , q̃L = qL/τL;

see Daniel et al. [8] for details.

Algorithm 1 summarizes the computations. Following Huang et al. [20], we refer

to the scheme described as a majorization-minimization generalized Krylov subspace

(MM-GKS) method. To initiate the computations a user chooses a k0-dimensional

solution subspace of Rn. The columns of the matrix V0 form an orthonormal basis for

this subspace.

Algorithm 1 (The MM-GKS method) Let 0 < q ≤ 2 and µ > 0. Consider A ∈
R
m×n and L ∈ R

ℓ×n such that (5) holds. Fix ε > 0 and k0 > 0.

η = µεq−2;

Generate the initial subspace basis: V0 ∈ R
n×k0 such that V t

0V0 = I;

Compute and store AV0 and LV0;

Let x0 ∈ R
n be an initial approximate solution. Let y(0) = V t

0x
(0);

Compute the QR factorizations AV0 = QARA and LV0 = QLRL;

for k = 0, 1, . . . do

u(k) = LVky
(k);

ω
(k) = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)
;

y(k+1) = (Rt
ARA + ηRt

LRL)
−1(Rt

AQt
Abδ + ηRt

LQ
t
Lω

(k));

r = At(AVky
(k+1) − bδ) + ηLt(LVky

(k+1) −ω
(k));

vnew = r/ ‖r‖2; Vk+1 = [Vk,vnew];

Update the QR factorizations: AVk+1 = QARA and LVk+1 = QLRL;

x(k+1) = Vky
(k+1);

end

To evaluate y(k+1), we solve a least-squares problem instead of inverting the matrix

Rt
ARA + ηRt

LRL; see [20] for details.

The main computational effort of the algorithm for large matrices A and L is the

evaluation of matrix-vector products with these matrices and with their transposes.

Since the matrices AVk and LVk are stored, each iteration requires the evaluation of

the matrix-vector products Avk+1 and Lvk+1, which are needed for updating AVk and

LVk, and of their QR factorizations. The evaluation of a matrix-vector products with

each one of the matrices At and Lt is required when computing the residual vector

(15).

The following result for the approximate solutions x(k) computed by Algorithm 1

is shown in [20].

Theorem 1 Let (5) hold. Then for any initial approximate solution x(0) ∈ R
n, the

sequence {x(k)}k converges to a stationary point of Jε(x). Thus,

(i) limk→∞

∥∥∥x(k+1) − x(k)
∥∥∥
2
= 0,

(ii) limk→∞ ∇Jε(x
(k)) = 0.
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Remark 1 When q < 1, the minimization problems (12) may be non-convex. The sta-

tionary point computed by MM-GKS therefore might not be a global minimum; in fact,

it is not assured that it is a local minimum. The stationary point computed depends on

the initial approximate solution and, hence, may vary if the starting vector is changed.

It is outside the scope of this paper to analyze the convexity or local convexity prop-

erties of the functionals (4) and (8), and of the minimization problem (12). Thus, we

are not able to provide theoretical insight on the closeness of the computed stationary

point to a global minimum. However, numerical evidences indicates that changing the

initial approximate solution does not significantly alter the quality of the restoration

determined by the MM-GKS method.

3 Determining the regularization parameter

This section describes two methods for determining the regularization parameter µ. Our

analysis requires the matrix A to be of full column rank. This requirement might not

be satisfied for certain matrices that stem from the discretization of ill-posed problems.

We may replace A by the full-rank matrix

Ã =

[
A

αI

]
, (16)

where α > 0 is a fixed tiny constant and I denotes the identity matrix of proper

dimension. For sufficiently small α > 0, this substitution will not adversely affect the

quality of the computed solution. Henceforth, we assume that such a replacement has

been carried out and refer to the matrix so obtained by A. Of course, the matrix (16)

does not have to be explicitly stored.

3.1 The MM-GKS-MD method

We first describe a method in which the regularization parameter decreases mono-

tonically during the iterations. This method is derived from Algorithm 1 and uses

the discrepancy principle to determine when to terminate the computations. Let µ(k)

denote the regularization parameter at step k. We will require that

µ(k−1) > µ(k) > 0 ∀k, lim
k→∞

µ(k) = 0. (17)

The algorithm of this subsection is referred to as a majorization-minimization general-

ized Krylov subspace method with monotonically decreasing regularization parameter,

in brief as the MM-GKS-MD method. We describe an algorithm that defines this

method and subsequently discuss some of its properties.
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Algorithm 2 (The MM-GKS-MD method) Let 0 < q < 2 be fixed and let µ(k),

k = 1, 2, . . . , be a sequence that satisfies (17). Let the matrices A ∈ R
m×n and L ∈

R
ℓ×n satisfy (5). Let x0 ∈ R

n be an initial approximate solution, and let ε > 0 and

k0 > 0 be constants.

Generate the initial subspace basis: V0 ∈ R
n×k0 such that V t

0V0 = I;

Compute and store AV0 and LV0;

Compute QR factorizations AV0 = QARA and LV0 = QLRL;

y(0) = V t
0x

(0);

for k = 0, 1, . . . do

u(k) = LVky
(k);

ω
(k) = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)
;

η(k) = µ(k)εq−2;

y(k+1) = (Rt
ARA + η(k)Rt

LRL)
−1(Rt

AQt
Ab

δ + η(k)Rt
LQ

t
Lω

(k));

if
∥∥∥AVky

(k+1) − bδ
∥∥∥
2
≤ τδ then

Exit;

end

r = At(AVky
(k+1) − bδ) + η(k)Lt(LVky

(k+1) − ω
(k));

Reorthogonalize, if needed: r = r− VkV
t
k r;

vnew = r/ ‖r‖2; Vk+1 = [Vk,vnew];

Update the QR factorizations: AVk+1 = QARA and LVk+1 = QLRL;

x(k+1) = Vky
(k+1);

end

The residual vector r in Algorithm 2 is defined as in (15).

Before showing some properties of Algorithm 2, we introduce some notation that

will be used in the following. Define the functional

J (k)
ε (x) :=

1

2

∥∥∥Ax− bδ
∥∥∥
2

2
+

µ(k)

q

ℓ∑

i=1

Φq,ε((Lx)i)

and let Q(k)(x,x(k)) denote the quadratic tangent majorant for J (k)
ε at x(k), i.e.,

Q(k)(x,x(k)) =
1

2

∥∥∥Ax− bδ
∥∥∥
2

2
+

µ(k)εq−2

2

(
‖Lx‖22 − 2

〈
ω
(k), Lx

〉)
+ c(k),

where c(k) is a suitable constant independent of x and ω
(k) is defined in (9). We use

the notation Q(k)(x,x(k)) instead of Q(x,x(k)) to stress the fact that the parameter

µ(k) in Q(k) is non-stationary.

Proposition 1 Let x(k), k = 1, 2, . . . , denote the approximate solutions generated by

Algorithm 2. Then

J (k+1)
ε (x(k+1)) ≤ J (k)

ε (x(k)).
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Proof By the properties of quadratic tangent majorants, we have

J (k)
ε (x(k)) = Q(k)(x(k),x(k))

(a)
≥ Q(k)(x(k+1),x(k))

(b)
≥ J (k)

ε (x(k+1))

=
1

2

∥∥∥Ax(k+1) − bδ
∥∥∥
2

2
+

µ(k)

q

ℓ∑

i=1

Φq,ε((Lx
(k+1))i)

(c)
≥ 1

2

∥∥∥Ax(k+1) − bδ
∥∥∥
2

2
+

µ(k+1)

q

ℓ∑

i=1

Φq,ε((Lx
(k+1))i) = J (k+1)

ε (x(k+1)),

where (a) holds since x(k+1) is a minimizer of Q(k), (b) follows from the fact that

Q(k)(x,x(k)) ≥ J (k)
ε (x) for all x, and (c) holds since µ(k) ≥ µ(k+1).

The following result is a consequence of Proposition 1.

Corollary 1 Let the iterates x(k), k = 0, 1, . . . , be determined by Algorithm 2. Then

J (k)
ε (x(k)) → J∗ as k → ∞,

for some J∗ ≥ 0.

Proof This is obvious since the sequence J
(k)
ε (x(k)), k = 1, 2, . . . , is decreasing and

bounded from below by zero.

We are now in position to show that, when A is of full column rank, the iterates

generated by Algorithm 2 converge to the solution of the least-squares problem (1) if

no stopping criterion is employed.

Theorem 2 Assume that the matrix A is of full column rank. Let Algorithm 2 deter-

mine the iterates x(k), k = 1, 2, . . . . Then

lim
k→∞

x(k) = A†bδ,

i.e., the limit is the solution of the least-squares problem (1).

Proof Let ρ(k) denote the modulus of convexity of Q(k), see, e.g., [19] for a definition,

and let

ρ := inf
k

ρ(k).

Since A is of full column rank, we have ρ > 0. We will show that x(k), k = 1, 2, . . . , is

a Cauchy sequence. To this aim consider

ρ

2

∥∥∥x(k+1) − x(k)
∥∥∥
2

2
≤ Q(k)(x(k),x(k))−Q(k)(x(k+1),x(k))

= J (k)
ε (x(k))−Q(k)(x(k+1),x(k))

(a)
≤ J (k)

ε (x(k))− J (k)
ε (x(k+1))

(b)
≤ J (k)

ε (x(k))−J (k+1)
ε (x(k+1)),

where (a) follows from the fact that Q(k) is a quadratic tangent majorant, and (b)

holds because µ(k+1) ≤ µ(k).
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Since the sequence J (k)
ε (x(k)), k = 1, 2, . . . , is convergent, we have

J (k)
ε (x(k))− J (k+1)

ε (x(k+1)) → 0 as k → ∞.

Thus,
∥∥∥x(k+1) − x(k)

∥∥∥
2
→ 0 as k → ∞,

and we have established that the sequence x(k), k = 1, 2, . . . , is a Cauchy sequence.

Since R
n is complete, there is a limit point x∗.

It remains to show that x∗ is the solution of Ax = bδ. Since we assume the matrix A

to be of full column rank, it suffices to prove that the residual converges to 0 as k → ∞.

Assume that k is large enough so that the columns of Vk span R
n and consider the

residual at step k,

r(k) = Ax(k) − bδ = A(AtA+ η(k)LtL)−1Atbδ + η(k)Lt
ω
(k) − bδ .

Since µ(k) → 0 as k → ∞, it holds that η(k) → 0 as k → ∞. Thus,

r(k) → (AtA)−1AtAbδ − bδ = 0 as k → ∞.

This shows the theorem.

Corollary 2 Let δ be a bound for the norm of the error in bδ, see (2), and let τ > 1

be a parameter independent of δ. The computations with Algorithm 2 equipped with the

discrepancy principle (6) as stopping criterion terminate after a finite number, kδ, of

steps. The iterate x(kδ) generated at step kδ satisfies

∥∥∥Ax(kδ) − bδ
∥∥∥
2
≤ τδ.

We are now in a position to show that Algorithm 2 equipped with the discrepancy

principle as a stopping rule is an iterative regularization method.

Theorem 3 Let the conditions of Corollary 2 hold and let xδ = x(kδ) denote the last

iterate determined by Algorithm 2 equipped with the discrepancy principle as stopping

criterion. Then

lim sup
δց0

∥∥∥xδ − x̂
∥∥∥
2
= 0,

where x̂ denotes the desired solution vector (3).

Proof All norms are equivalent in R
n and A is of full column rank. Therefore, there is

a constant c̃ > 0 such that

∥∥∥xδ − x̂
∥∥∥
2
≤ c̃

∥∥∥xδ − x̂
∥∥∥
A
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for all vectors xδ − x̂, where ‖y‖A = ‖Ay‖2 is the vector norm induced by A. Then

we have

lim sup
δց0

∥∥∥xδ − x̂
∥∥∥
2
≤ c̃ lim sup

δց0

∥∥∥xδ − x̂
∥∥∥
A

= c̃ lim sup
δց0

∥∥∥Axδ − Ax̂
∥∥∥
2

= c̃ lim sup
δց0

∥∥∥Axδ − bδ − (Ax̂− bδ)
∥∥∥
2

= c̃ lim sup
δց0

∥∥∥Axδ − bδ − (b− bδ)
∥∥∥
2

≤ c̃ lim sup
δց0

(∥∥∥Axδ − bδ
∥∥∥
2
+
∥∥∥b− bδ

∥∥∥
2

)

(a)
≤ c̃ lim sup

δց0
(τδ + δ)

≤ c̃ (1 + τ ) lim sup
δց0

δ

= 0,

where (a) follows from Corollary 2 and (2).

3.2 The MM-GKS-DP method

This subsection describes another method derived from Algorithm 1 for choosing a suit-

able value of the regularization parameter. The method determines a value of the regu-

larization parameter that satisfies the discrepancy principle in each iteration. We refer

to this scheme as the MM-GKS-DP method. The theoretical results for this method

are less complete than those of the previous subsection. For instance, we will not prove

convergence of the method, but only show the existence of a converging subsequence.

Nevertheless, numerical experiments reported in Section 4 show the MM-GKS-DP

method to achieve very good results. We first describe the algorithm and then discuss

its properties.
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Algorithm 3 (The MM-GKS-DP method) Let 0 < q < 2 be fixed and let µ(k),

k = 1, 2, . . . , be a sequence that satisfies (17). Let the matrices A ∈ R
m×n and L ∈

R
ℓ×n satisfy (5). Let x0 ∈ R

n be an initial approximate solution, and let ε > 0 and

k0 > 0 be constants.

Generate the initial subspace basis: V0 ∈ R
n×k0 such that V t

0V0 = I;

Compute and store AV0 and LV0;

Compute the QR factorizations AV0 = QARA and LV0 = QLRL;

y(0) = V t
0x

(0);

for k = 0, 1, . . . do

u(k) = LVky
(k);

ω
(k) = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)
;

η(k) = µ(k)εq−2;

where µ(k) is such that
∥∥∥AVky

(k+1) − bδ
∥∥∥
2
= τδ;

y(k+1) = (Rt
ARA + η(k)Rt

LRL)
−1(Rt

AQt
Ab

δ + η(k)Rt
LQ

t
Lω

(k));

r = At(AVky
(k+1) − bδ) + ηLt(LVky

(k+1) −ω
(k));

Reorthogonalize, if needed: r = r− VkV
t
k r;

vnew = r/ ‖r‖2; Vk+1 = [Vk,vnew];

Update the QR factorizations: AVk+1 = QARA and LVk+1 = QLRL;

x(k+1) = Vk+1y
(k+1);

end

Again the residual vector r is defined as in (15).

We now show that the sequence x(k), k = 1, 2, . . . , computed by Algorithm 3 has

a converging subsequence with a limit that satisfies the discrepancy principle.

Proposition 2 Assume that A is of full column rank and let x(k), k = 1, 2, . . . , denote

the iterates generated by Algorithm 3. Then there is a subsequence x(kj), j = 1, 2, . . . ,

with a limit x∗, such that ∥∥∥Ax∗ − bδ
∥∥∥
2
= τδ.

Proof We have for all k that
∥∥∥Ax(k) − bδ

∥∥∥
2
= τδ. Since all norms are equivalent in

R
n, there is a constant ĉ > 0 independent of A and x(k) such that

τδ =
∥∥∥Ax(k) − bδ

∥∥∥
2
≥
∥∥∥Ax(k)

∥∥∥
2
−
∥∥∥bδ

∥∥∥
2

=
∥∥∥x(k)

∥∥∥
A
−
∥∥∥bδ

∥∥∥
2
≥ ĉ

∥∥∥x(k)
∥∥∥
2
−
∥∥∥bδ

∥∥∥
2
,

where
∥∥∥x(k)

∥∥∥
A

= ‖Ax(k)‖2. Thus, for all k we have the bound

∥∥∥x(k)
∥∥∥
2
≤

τδ −
∥∥∥bδ

∥∥∥
2

ĉ
.

This shows that the sequence x(k), k = 1, 2, . . . , is bounded. Therefore, there is a

subsequence x(kj), j = 1, 2, . . . that converges to a limit x∗ as j increases. Since
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∥∥∥Ax(kj) − bδ
∥∥∥
2
= τδ for all j, we have by continuity of the norm that

∥∥∥Ax∗ − bδ
∥∥∥
2
= τδ.

We now can show that the MM-GKS-DP method is an iterative regularization

method (up to a subsequence).

Theorem 4 Let x(kj), j = 1, 2, . . . , denote the subsequence defined in Proposition 2

and let xδ = x(kj) denote the approximate solution determined by Algorithm 3 with

noise level δ > 0, where we assume that A is of full column rank. Then

lim sup
δց0

∥∥∥xδ − x̂
∥∥∥
2
= 0,

where x̂ denotes the solution (3) of the error-free system.

Proof The result can be shown in the same manner as Theorem 3. We therefore omit

the details.

Remark 2 In actual computations we have not experienced the need to take a subse-

quence of the iterates x(k), k = 1, 2, . . . , determined by Algorithm 3.

Remark 3 This section shows results for the MM-GKS method of [20]. This reference

also considers an approach to construct quadratic majorants, whose aperture depends

on x(k). The resulting scheme is referred to as the AMM-GKS in [20]. It requires more

work per iteration, but the number of iterations required may be smaller than for the

MM-GKS method applied in the present paper. The theory developed in this section

carries over to the AMM-GKS method without change.

Remark 4 Recently, Huang et al. [21] used the approach of this subsection to determine

the regularization parameter in an iterated Tikhonov regularization method in general

form with p = q = 2. Then the quadratic majorant Q, defined by (10), is independent

of k. Theorem 4 applies to the iterates generated by the method in [21].

Remark 5 This section focused on the use of the Euclidean norm for the fidelity term

in (4). The results of this section carry over to fidelity terms with p 6= 2, such as p = 1.

Then Algorithms 1-3 have to be modified to implement the FMM-GKS or AMM-GKS

methods of [20].

4 Numerical examples

We present some numerical examples. All computations are carried out in MATLAB

2016a with about 15 significant decimal digits running on a laptop computer with a

quad core CPU Intel Core i7-6700HQ @2.60GHz and with 16 GB of RAM. We compare

Algorithms 2 and 3 with the MM-GKS method described in [20], which requires a user

to explicitly specify a value of the regularization parameter, and with the methods

described in [2,9]. We do not compare our approach with other methods from the

literature for solving (4) since the main focus of this paper is to show that, using

the discrepancy principle, we are able to determine a regularization parameter that

provides accurate restorations, i.e., restorations that are of about the same quality
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as restorations obtained with the optimal regularization parameter. For a thorough

analysis of the performances of the ℓ2 − ℓq approach and for a comparison with other

methods from the literature we refer to [20,24].

The error in the vector b is in all examples white Gaussian noise. We fix ε = 1 in

(7). This value is small compared to elements of the vector bδ , which in all examples

represents a contaminated image. Each element is a pixel value in the range [0, 255].

Numerical experiments show that the choice of ε does not largely affect the quality

of the restorations, but can greatly affect the required number of iterations. This is

illustrated below.

We would like to compute a sparse solution and therefore use a two-level framelet

analysis operator as regularization operator L. Framelets are extensions of wavelets.

They are defined as follows.

Definition 2 Let A ∈ R
r×n with n ≤ r. The set of the rows of A is a tight frame for

R
n if ∀x ∈ R

n it holds

‖x‖22 =

r∑

j=1

yt
jx,

where yj ∈ R
n is the j-th row of A (written as a column vector), i.e., A = [y1, . . . ,yr]

t.

The matrix A is referred to as an analysis operator and At as a synthesis operator.

Tight frames have been used in many image restoration applications, including

inpainting and deblurring [3,5,6]. The essential feature of tight frames is their redun-

dancy. Due to the redundancy, the loss of some information can be tolerated. Usually

images have a very sparse representation in the framelet domain.

We will use tight frames determined by linear B-splines. These frames are in one

space-dimension made up of a low-pass filter W0 and two high-pass filters W1 and W2.

The corresponding masks are given by

w(0) =
1

2
(1, 2, 1) , w(1) =

√
2

4
(1, 0, −1) , w(2) =

1

4
(−1, 2, −1) .

We now derive the synthesis operator A from these masks. Imposing reflexive boundary

conditions, so that AtA = I , we obtain

W0 =
1

4




3 1 0 . . . 0

1 2 1

. . .
. . .

. . .

1 2 1

0 . . . 0 1 3




, W1 =

√
2

4




−1 1 0 . . . 0

−1 0 1

. . .
. . .

. . .

−1 0 1

0 . . . 0 −1 1




,

and

W2 =
1

4




1 −1 0 . . . 0

−1 2 −1

. . .
. . .

. . .

−1 2 −1

0 . . . 0 1 1




.

We obtain the synthesis operator

A =




W0

W1

W2


 .
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We define operators for two space-dimensions by using tensor products

Wij = Wi ⊗Wj , i, j = 0, 1, 2.

This yields the analysis operator

A =




W00

W01

...

W22


 .

The matrix W00 is a low-pass filter. All the other matrices Wij contain at least one

high-pass filter in some direction.

While we have discussed the stopping criterion for the MM-GKS-MD method, we

have not defined one for the MM-GKS-DP and MM-GKS methods. We will terminate

the iterations with the latter two methods as soon as two consecutive iterates are

sufficiently close, i.e., as soon as

∥∥∥x(k) − x(k+1)
∥∥∥
2∥∥x(k)

∥∥
2

≤ 10−4.

Inspired by the geometric sequence of regularization parameters used for iterated

Tikhonov methods described in [16,1], we use in the MM-GKS-MD method the fol-

lowing sequence of regularization parameters

µ(k) = 0.7k , k = 1, 2, . . . .

We also have to address the selection of the regularization parameter for the MM-

GKS method. Our first computed example illustrates that the regularization parameter

value determined by the MM-GKS-DP method is quite close to the optimal one, i.e.,

to the value that minimizes the restoration error defined below. We therefore will

in our computed examples use the regularization parameter value determined by the

MM-GKS-DP method for the MM-GKS method as well.

We measure the quality of the restored images with the relative restoration error

RRE(x) =
‖x− x̂‖2
‖x̂‖2

,

where x̂ denotes the desired solution (3).

Example 1 We consider the restoration of an image that has been contaminated by

noise and spatially invariant blur; see, e.g., [18] for a discussion of this kind of restora-

tion problems. The blurring phenomenon can be modeled with a Fredholm integral

equation of the first kind

B (k, f) =

∫
k (s− x, t− y) f (s, t) dsdt = k ∗ f,

which, due to the spatial invariance, reduces to a convolution. Discretization yields

a linear system of equations with a severely ill-conditioned matrix, i.e., the singular

values of the matrix decrease to zero with increasing index with no significant gap; see,
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(a) (b) (c)

Fig. 2: Boat test image: (a) True image (124 × 124 pixels), (b) PSF (14 × 14 pixels),

(c) blurred and noisy image (δ = 0.02 ‖b‖2).

e.g., [15,17]. We impose anti-reflective boundary conditions to take into account that

the available image is finite; see [26] for details.

We first illustrate how the selection of ε and q affect the accuracy and conver-

gence rate of the MM-GKS-DP method. Then we compare the proposed approaches

with other methods from the literature. In particular, we compare with the MM-GKS

method described in [20] and with methods proposed in [2,9]. Specifically, we com-

pare with the Approximated Iterated Tikhonov (AIT) method described in [9], the

Approximated Iterated Tikhonov with General Penalty term (AIT-GP) method, the

Approximated Projected Iterated Tikhonov (APIT) method, and the Approximated

Projected Iterated Tikhonov with General Penalty term (APIT-GP) method described

in [2].

We turn to the roles of q and ε in the MM-GKS-DP method. To gain some insight

into how these parameters should be chosen, we apply the MM-GKS-DP method to

a fairly small test problem. Specifically, we consider the Boat image blurred by an

average PSF of size 4× 4 pixels, and contaminated by white Gaussian noise such that

δ = 0.02 ‖b‖2; see Figure 2. Figure 3 shows results obtained for different values of q and

ε. We observe that for small values of ε, the method converges in fairly few iterations,

but the computed restoration is not so accurate. The best restorations are achieved

when ε = 1 and q is small (in this case q = 10−1). We also observe that, fixing ε = 1,

the error decreases with q, but the number of iterations required by the method grows

sharply as q decreases.

Figure 4 displays three restorations determined by the MM-GKS-DP method for

three different choices of q and ε. Specifically, we show restorations obtained for q =

10−1 and ε = 10−3, for q = 1 and ε = 1, and for q = 10−1 and ε = 1. Visual inspection

of the images shows the first parameter pair to yield a restoration with some noise and

ringing near the edges, the second parameter pair gives a restoration with less noise,

but still shows some ringing, while the third parameter pair gives the best restoration;

it appears noise-free and does not show significant ringing.

Example 2 We would like to illustrate that the restorations obtained by using the

smoothed functional Jε defined by (8) are very close to the restoration determined by

the functional J defined by (4). To this aim, we iteratively apply Algortihm 3 while

progressively decreasing the value of ε. Let {εj}j denote a decreasing sequence such

that εj → 0 as j → ∞. For each εj , we run Algorithm 3 until convergence. To speed



18

0.2 0.4 0.6 0.8 1

q

-3

-2

-1

0

lo
g
10
(ε
)

0.074

0.076

0.078

0.08

0.082

0.084

(a)

0.2 0.4 0.6 0.8 1

q

-3

-2

-1

0

lo
g
10
(ε
)

20

40

60

80

100

120

140

(b)

Fig. 3: Boat test case: (a) RRE obtained with MM-GKS-DP for different values of q

and ε, (b) Number of iterations required to reach convergence with MM-GKS-DP for

different values of q and ε.

(a) (b) (c)

Fig. 4: Boat test image restorations obtained with MM-GKS-DP with different values

of q and ε: (a) q = 10−1 and ε = 10−3, (b) q = 1 and ε = 1, (c) q = 10−1 and ε = 1.

up the computations, we use as initial vector the restoration provided by Algorithm 3

at the previous step, i.e., when εj−1 is used as smoothing parameter. The procedure

is summarized by Algorithm 4.
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Method RRE Iterations
Restarted MM-GKS-DP 0.13274 256
MM-GKS-DP 0.13655 186

Table 1: Satellite test image: Relative restoration errors of the restorations obtained

with the different methods and number of iterations required to reach convergence.

The smallest error is in boldface.

Algorithm 4 (The restarted MM-GKS-DP method) Let 0 < q ≤ 2. Consider

A ∈ R
m×n and L ∈ R

ℓ×n such that (5) holds. Let {εj}j denote a decreasing sequence

such that εj → 0 as j → ∞ and fix k0 > 0.

Generate the initial subspace basis: V0 ∈ R
n×k0 such that V t

0V0 = I;

Compute and store AV0 and LV0;

Compute the QR factorizations AV0 = QARA and LV0 = QLRL;

y(0) = V t
0x

(0);

for j = 0, 1, . . . do

for k = 0, 1, . . . do

u(k) = LVky
(k);

ω
(k) = u(k)

(
1−

(
(u(k))2+ε2j

ε2j

)q/2−1
)
;

η(k) = µ(k)εq−2
j ;

where µ(k) is such that
∥∥∥AVky

(k+1) − bδ
∥∥∥
2
= τδ;

y(k+1) = (Rt
ARA + η(k)Rt

LRL)
−1(Rt

AQt
Abδ + η(k)Rt

LQ
t
Lω

(k));

r = At(AVky
(k+1) − bδ) + ηLt(LVky

(k+1) − ω
(k));

Reorthogonalize, if needed: r = r− VkV
t
kr;

vnew = r/ ‖r‖2; Vk+1 = [Vk,vnew];

Update the QR factorizations: AVk+1 = QARA and LVk+1 = QLRL;

x(k+1) = Vk+1y
(k+1);

end

end

Similarly as in the previous algorithms, the residual vector r is defined by (15).

The computations described by Algorithm 4 can be demanding both in terms of

computing time and memory consumption. We therefore only apply the algorithm to

the restoration of a fairly small image. In particular, we consider a 122 × 122-pixel

satellite image, see Figure 5(a), blur it with a 13× 13-pixel motion blur PSF, and add

3% white Gaussian noise. The contaminated image is shown in Figure 5(c).

We choose a logarithmically spaced sequence εj , j = 1, 2, . . . , 5, between 1 and

10−6. Table 1 shows the restoration errors obtained and the number of iterations re-

quired to reach convergence by Algorithms 4 and 3. The table shows the restorations

determined by these algorithms to be very close. It is not surprising to see that the

restarted MM-GKS-DP method is able to produce a more accurate restoration. How-

ever, the difference in quality of the restorations obtained by Algorithms 4 and 3 is

insignificant. In particular, the small improvement in accuracy does not justify the

additional computational effort required by Algorithm 4. In the following numerical

examples we therefore are not going to consider the restarted MM-GKS-DP method.
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(a) (b) (c)

Fig. 5: Satellite test image: (a) True image (122×122 pixels), (b) PSF (13×13 pixels),

(c) blurred and noisy image (δ = 0.03 ‖b‖2).

(a) (b)

Fig. 6: Satellite test image restoration: (a) MM-GKS-DP, (b) Restarted MM-GKS-DP.

(a) (b) (c)

Fig. 7: Cameraman test image: (a) True image (238 × 238 pixels), (b) PSF (17 × 17

pixels), (c) blurred and noisy image (δ = 0.03 ‖b‖2).

Example 3 We consider the cameraman image, blur it with a non-symmetric PSF,

and add white Gaussian noise such that δ = 0.05 ‖b‖2; see Figure 7. Anti-reflective

boundary conditions are imposed; see [26].

We first analyze how the choice of µ affects the quality of the restoration determined

by the MM-GKS method, and compare it to restorations obtained by the MM-GKS-MD

and MM-GKS-DP methods. Let q = 0.1 and run the MM-GKS method for different

choices of µ. Figure 8(a) shows graphs for the RRE as a function of µ for the three
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methods. The graphs for the MM-GKS-MD and MM-GKS-DP methods are obviously

constant since they are independent of the choice of µ. Visual inspection of the graph

for the MM-GKS method shows, as one would expect, that the RRE obtained for the

optimal µ-value to be smaller than the RRE for the MM-GKS-MD and MM-GKS-

DP methods. However, the optimal RRE-value is very close to the error obtained by

the MM-GKS-DP method and not too far away from the error obtained by the MM-

GKS-MD method. Moreover, if µ is chosen too large or too small, then the restoration

error for the MM-GKS method can be very large. Since the optimal value of the

regularization parameter µ for the MM-GKS method is close to the value determined

by the MM-GKS-DP method, we will use the latter in the following computed examples

with the MM-GKS method.

Starting from this observation, we define a new method, denoted by MM-GKS-

R, for majorization-minimization in generalized Krylov subspaces, repeatedly. This

method combines the MM-GKS-DP and MM-GKS methods and is defined by Algo-

rithm 5.

Algorithm 5 (MM-GKS-R) Let 0 < q ≤ 2. Consider A ∈ R
m×n and L ∈ R

ℓ×n

such that (5) holds. Fix ε > 0 and k0 > 0.

Run MM-GKS-DP until convergence;

Denote by µ∗ the last parameter used in MM-GKS-DP;

Run MM-GKS with µ = µ∗ until convergence;

This algorithm satisfies all the properties shown in [20], i.e., Theorem 1 holds.

Moreover, it can be shown experimentally that the limit point of this algorithm ap-

proximately satisfies the discrepancy principle.

We next discuss the effect of varying q. Figure 8(b) shows the RRE obtained with

the three methods when q is varied. We observe that the RRE obtained by both the

MM-GKS-R and MM-GKS-DP methods increases with q, while the RRE obtained by

the MM-GKS-MD method does not change much with q (and is larger than for the

other two methods). While this comparison suggests that it is good to choose a very

small q-value, it must be stressed that, if q is too small, then all the three methods

might become numerically unstable.

Let q = 0.1. Table 2 reports the RRE obtained with the different methods as well

as the number of iterations required to reach convergence. Figure 9 shows some of the

restorations obtained.

Table 2 shows the MM-GKS-R, MM-GKS-MD, and MM-GKS-DP methods to out-

perform the AIT, AIT-GP, APIT, and APIT-GP algorithms in terms of accuracy.

However, the MM-GKS-type methods require more iterations to converge. Moreover,

among the MM-GKS-type methods, the MM-GKS-MD method is the fastest, but the

computed restorations are less accurate than those determined with the MM-GKS-R

and MM-GKS-DP methods.

Visual inspection of the restorations in Figure 9 shows that the restorations ob-

tained with AIT-type methods are more noisy than the ones determined with MM-

GKS-type methods. MM-GKS-type methods are seen to be able to restore details of

the image more accurately with less noise propagation.

Example 4 We turn to the restoration of a Clock image, which has been contaminated

by out-of-focus blur and white Gaussian noise such that δ = 0.01 ‖b‖2; see Figure 10.

The PSF has a radius of 4 pixels. We impose anti-reflective boundary conditions and
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Fig. 8: Cameraman test image: Behavior of the RRE as function of µ and q. Figure (a)

shows the RRE obtained for different µ-values and q = 0.1. The dashed curve displays

the RRE obtained with MM-GKS-MD, the solid curve displays the RRE determined by

MM-GKS-DP, and the dotted line depicts the RRE obtained with MM-GKS. The first

two methods have constant error since they do not need an estimate of the parameter

µ. Figure (b) displays the error obtained with the three methods when changing q. For

the MM-GKS method, we used the µ-value determined in the last iteration of MM-

GKS-DP, i.e., we applied the MM-GKS-R method. The dashed curve shows the RRE

determined by MM-GKS-MD, the solid curve depicts the RRE obtained by MM-GKS-

DP, and the dotted curve shows the RRE generated by MM-GKS.

(a) (b) (c)

(d) (e) (f)

Fig. 9: Cameraman test image restorations: (a) MM-GKS-R, (b) MM-GKS-MD, (c)

MM-GKS-DP, (d) AIT-GP, (e) APIT, (f) APIT-GP.
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Method RRE Iterations
MM-GKS-R 0.10287 97
MM-GKS-MD 0.12252 7
MM-GKS-DP 0.10228 100
AIT 0.13061 3
AIT-GP 0.12371 3
APIT 0.13025 3
APIT-GP 0.12346 3

Table 2: Cameraman test image: Relative restoration errors of the restorations obtained

with the different methods and number of iterations required to reach convergence. The

smallest error is in boldface.

(a) (b) (c)

Fig. 10: Clock test image: (a) True image (246 × 246 pixels), (b) PSF (9 × 9 pixels),

(c) blurred and noisy image (δ = 0.01 ‖b‖2).

Method RRE Iterations
MM-GKS-R 0.032887 29
MM-GKS-MD 0.036663 5
MM-GKS-DP 0.032828 28
AIT 0.051979 5
AIT-GP 0.050436 5
APIT 0.051979 5
APIT-GP 0.050436 5

Table 3: Clock test image: Relative errors of the restorations determined by different

methods and number of iterations required to reach convergence. The smallest error is

in boldface.

set q = 0.7. Figure 11 displays some of the computed restorations and Table 3 reports

the RRE and the number of iterations for the different methods.

As in the previous examples, MM-GKS-type methods out-perform the other meth-

ods, even though for this example the difference in performance is smaller than for

the previous example. This is due to the fact that there is less noise-contamination

than in the previous example. In term of efficiency, we can see that the MM-GKS-MD

method requires fewer iterations than the other two MM-GKS methods, but gives a

less accurate restoration.
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(a) (b) (c)

(d) (e) (f)

Fig. 11: Clock test image restorations: (a) MM-GKS-R, (b) MM-GKS-MD, (c) MM-

GKS-DP, (d) AIT-GP, (e) APIT, (f) APIT-GP.

5 Conclusions

The image restoration methods described in [20,24] require a user to provide a suitable

value of the regularization parameter. This paper develops two approaches to determine

such a value with the aid of the discrepancy principle. This enhances the usefulness of

the methods. They can be applied without user-interaction to real-world applications

for which an estimate of the norm of the error in bδ is available.
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