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Abstract

The nonstationary preconditioned iteration proposed in a recent work by Donatelli and Hanke appeared on
IP can be seen as an approximated iterated Tikhonov method. Starting from this observation we extend the
previous iteration in two directions: the introduction of a regularization operator different from the identity
(e.g., a differential operator) and the projection into a convex set (e.g., the nonnegative cone). Depending on the
application both generalizations can lead to an improvement in the quality of the computed approximations.
Convergence results and regularization properties of the proposed iterations are proved. Finally, the new
methods are applied to image deblurring problems and compared with the iteration in the original work and
other methods with similar properties recently proposed in the literature.
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1. Introduction

Many applications in physics and engineering lead to a linear problem of the form

T x = y, (1)

where T : X → Y is a linear operator between the Hilbert spaces X and Y, see [1, 2, 3]. In this paper we consider
numerical examples concerning the image deblurring problem, but other applications could be investigated as
well.

The situation we want to consider is when T is severely ill-conditioned and the noise free right-hand side
term y is not available, as we can only have a noise contaminated data yδ, such that

∥

∥

∥yδ − y
∥

∥

∥ ≤ δ, (2)

with δ > 0 assumed to be known and ‖·‖ denoting the ℓ2–norm. Because of the ill conditioning of T in order to
find a good approximation of x† := T †y, where T † denotes the Moore-Penrose pseudo inverse, we have to use
regularization methods. An example of these is the Tikhonov regularization method, that in its standard form
is defined as

min
x

∥

∥

∥
T x− yδ

∥

∥

∥

2
+ α‖x‖2 , (3)

where α > 0 is the regularization parameter that balances the data fidelity and the regularization term, see [4].
In order to improve the quality of the computed approximation of x†, a regularization matrix L can be

introduced:

min
x

∥

∥

∥T x− yδ
∥

∥

∥

2
+ α‖Lx‖2 . (4)

Denoting by N (L) the null space of L, the regularization matrix L has to be chosen such that important
components of the solution to restore belong to N (L) and

N (L) ∩ N (T ) = {0}, (5)

see [5] and references therein.
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Let x0 be an approximation of the true solution x†, it can be included in the Tikhonov method (3) computing

min
x

∥

∥

∥T x− yδ
∥

∥

∥

2
+ α‖x− x0‖2 ⇐⇒ min

h
‖T h − r0‖2 + α‖h‖2 ,

where r0 = yδ − T x0 and h = x− x0. Therefore h provides an approximation of the error e0 = x† − x0 and an
improved restoration is

x1 = x0 + h.

Applying iteratively the same refinement strategy, we obtain the Iterated Tikhonov (IT) method [1]. Given
x0 ∈ X , for n = 0,1, . . .

1. compute rn = yδ − T xn,

2. solve minh ‖T h − rn‖2 + αn ‖h‖2,

3. update xn+1 = xn + hn.

The previous IT algorithm can be formulated as the following iteration

xn+1 = xn + (T ∗T + αnI)−1T ∗(yδ − T xn),

= xn + T ∗(T T ∗ + αnI)−1(yδ − T xn), n = 0,1, . . . .

As a stopping rule for this iterative process is often chosen the discrepancy principle, so that the method stops
after n = nδ ≥ 0 iterations with

‖rnδ
‖ ≤ τδ < ‖rn‖ , n = 0,1, . . . ,nδ − 1 .

where τ > 1.
In this algorithm the choice of α has a crucial role and many strategies have been proposed. If the same α

is used for each iteration we call the method stationary, whereas if α depends on n then we call the method
nonstationary. In many applications the latter type has proved to obtain better results than the first type and
it has been thoroughly investigated. For instance, a common choice is the geometric sequence αn = α0qn−1,
n = 1,2, . . . with 0 < q < 1 and α0 > 0, studied in [6]. Another possible choice is that of nondecreasing sequences
proposed in [7].

In [8] the authors developed an iterative method with a nonstationary preconditioner, that can be seen as an
approximated iterated Tikhonov regularization. In particular they consider an operator C which is spectrally
equivalent to T (see Assumption 1 in the next section) and form the preconditioner at step n as

C∗(CC∗ + αnI)−1 ≈ T ∗(T T ∗ + αnI)−1,

where αn is determined by a damped version of the well-known discrepancy principle. In this way they are able
to both achieve fast computation, by wisely choosing the structure of C, and have a parameter free method,
which is very important. The estimation of the parameter αn can be difficult. For example in the above
mentioned geometric sequence there are two parameters to be estimated: α0 and q. Even though small changes
in either α0 and q have only a limited effect on the quality of the reconstruction, an imprudent choice can still
lead to poor results. Because, roughly speaking, they are approximating the operator T with C we will refer to
this method as Approximated Iterated Tikhonov (AIT).

Another extension of the AIT method has been proposed in [9]. In the this work the authors consider the
case of image deblurring and use the eigenvalue of the preconditioner generated by AIT as a generating function
for a structured preconditioner inside an iterative refinement technique.

In this work we want to add some features to the algorithm in [8] and test the resulting methods on image
deblurring. Since we know that the introduction of a regularization operator L in (3) can improve the quality of
the obtained reconstructions, at first we study the introduction of L in place of I in AIT. We call the resulting
method AIT-GP (Approximated Iterated Tikhonov with General Penalty term). If we know that x† lies in
some closed and convex Ω ⊂ X , we constrain the algorithm in order to get xn ∈ Ω, ∀n. Hence, we modify AIT
introducing the metric projection into Ω. We refer to this method as APIT (Approximated Projected Iterated
Tikhonov). For both the previous generalizations of the iterative method proposed in [8], namely AIT-GP and
APIT, we prove that the new iterations are convergent in the noise free case and that are regularization methods
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in the noisy case. Finally, we combine the regularization term and the projection into Ω developing a third
algorithm called APIT-GP (Approximated Projected Iterated Tikhonov with General Penalty term).

This work is structured as follows. In section 2 we summarized some results in [10] and we give an iterated
Tikhonov algorithm which includes the regularization term. Section 3 describes the AIT method proposed in
[8]. In Sections 4 and 5 we define and study the theoretical properties of our new three iterative regularization
methods. Finally, in Section 6 the proposed methods are applied to the image deblurring problem and compared
with other methods proposed in the literature.

2. Iterated Tikhonov in general form

In order to theoretically analyze (4), it can be useful to reduce the problem in the standard form (3).
If L is invertible, then the minimization problem (4) becomes

min
x=Lx

∥

∥

∥T L−1x− yδ
∥

∥

∥

2
+ α‖x‖2 . (6)

Solving (6) leads to xα from which we can retrieve the solution xα of (4) by multiplying times L−1:

xα = L−1xα.

When L is not invertible, we follow Eldén [10]. Let T : X → Y and L : X → X be two linear operator between
Hilbert spaces, the T −weighted pseudoinverse of L is

L†
T = (I − (T (I − L†L))†T )L†. (7)

We define the vectors






x = Lx

x(0) = (T (I − L†L))†yδ

yδ = yδ − T x(0)

and consider the problem

min
x

∥

∥

∥T L†
T x− yδ

∥

∥

∥

2
+ α‖x‖2 . (8)

The solution xα of (4) is obtained from the solution xα of (8) by

xα = L†
T xα + x(0).

Since a given approximation x0 of x† can be included also in the generalized Tikhonov method (4) computing

min
x

∥

∥

∥T x− yδ
∥

∥

∥

2
+ α‖L(x− x0)‖2 ⇐⇒ min

h
‖T h − r0‖2 + α‖Lh‖2 ,

the iterated Tikhonov method can be defined also for a general regularization operator L. However, to the
best of our knowledge, a complete theory about this method is currently not available in the literature. After
completing this work we discovered that a generalization similar to the one here proposed has been introduced
in [11] in relation with the generalized Krilov spaces.

Applying iteratively the same refinement strategy, given x0 ∈ X , for n = 0,1, . . .

1. compute rn = yδ − T xn,

2. solve minh ‖T h − rn‖2 + αn ‖Lh‖2,

3. update xn+1 = xn + hn.

Under the previous condition (5), solving the point 2. is equivalent to

xα = (T ∗T + αnL∗L)−1T ∗yδ ,

which can be rewritten as
xα = T ∗(T T ∗ + αnLL∗)−1yδ ,

if L commutes with T . Hence the previous iterated generalized Tikhonov algorithm can be formulated as the
iteration

xn+1 = xn + (T ∗T + αnL∗L)−1T ∗(yδ − T xn), n = 0,1, . . . . (9)
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3. Approximated Iterated Tikhonov

We now describe the preconditioned iteration proposed in [8]. We need the following assumption that it will
be necessary also for our algorithms in the next sections.

Assumption 1. Let C be a linear operator such that

‖(C − T )z‖ ≤ ρ‖T z‖ , ∀z ∈ X , (10)

for some 0 < ρ < 1
2 . We say that C is spectrally equivalent to T .

Under this assumption it holds a preliminary result useful for the convergence analysis.
First we define the residual at the n-th step

rn = yδ − T xn.

Lemma 2 ([8]). Assume that (2) and Assumption 1 hold, if τn = ‖rn‖/δ > τ∗ = (1+ρ)/(1−2ρ), then it follows
that

‖rn − Cen‖ ≤

(

ρ +
1 + ρ

τn

)

‖rn‖ < (1 − ρ)‖rn‖ .

Algorithm 1 (AIT). Let x0 ∈ X be fixed and set n = 0. Choose τ = 1+2ρ
1−2ρ

with ρ as in (10), and fix q ∈ [2ρ,1].

While ‖rn‖ > τδ, let τn = ‖rn‖/δ and qn = max
{

q,2ρ + 1+ρ
τn

}

, compute

hn = C∗(CC∗ + αnI)−1rn,

where αn is such that
‖rn − Chn‖ = qn ‖rn‖ ,

and update

xn+1 = xn + hn,

rn+1 = yδ − T xn+1.

We summarize the main theoretical results proved in [8] about the convergence and the monotonic decrease
of the norm of the error for AIT. We denote the iteration error en with

en = x† − xn.

Proposition 3 ([8]). Under Assumption 1, while ‖rn‖ > τδ, with τ = (1 + 2ρ)/(1 − 2ρ) the norm of the recon-
struction error en decreases monotonically, namely ‖en+1‖ ≤ ‖en‖, for n = 0,1, . . . .

Theorem 4 ([8]). Assume that the data are exact, i.e., δ = 0, and that x0 is not a solution of problem (1).
Then the sequence (xn)n converges as n → ∞ to the solution of (1) which is nearest to x0.

Theorem 5 ([8]). Let δ 7→ yδ be a function from R
+ to Y such that (2) holds true for all δ > 0. Under

Assumption 1, for two fixed parameters τ and q, denote with xδ the resulting approximation obtained with AIT.
Then for δ → 0 we have that xδ → x†

0 which is the nearest solution of (1) to x0.

In [8] the choice of x0 was not deeply investigated. For many iterative regularization methods, like Krylov
methods, the null vector is usually a good choice for x0. Nevertheless, for AIT this is not a good choice
and setting x0 = T ∗yδ, which is the initial solution subspace vector for LSQR, usually provides better results.
This is confirmed by several numerical experiments with image deblurring problems and follows from the next
observation. The approximation of T by C is motivated by the fact that the error equation, used for the iterative
refinement, allows a slight misfit due to the noise already present in the problem. If we choose x0 = 0 then
r0 = yδ and x1 = x0 + C∗(CC∗ + αnI)−1yδ which is exactly the Tikhonov solution for the operator C instead
of T . Although, from a theoretical point of view, this should not be a problem, numerically this can lead to
some issues. For example if C do not approximate well T then x1 could contain large error components. This
components may be hard to reduce in the following iterations to the point of producing a slightly worse solution
than the one obtained with x0 = T ∗yδ .
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4. Approximated Iterated Tikhonov with general penalty term (AIT-GP)

In this section we combine the idea of AIT with the generalized iterated Tikhonov method (9), i.e., we
introduce the regularization operator L in Algorithm 1.

We need a couple of assumptions that link the matrix L with T and C similarly to the basic assumption (5).

Assumption 6. Let L and C be two linear operators such that

(i) C
∣

∣

N (L)
= T

∣

∣

N (L)
;

(ii) L and C are diagonalized by the same unitary transformation.

Assumption 6(ii) is restrictive, but it is needed for the proofs that follows. This kind of requirements can
be satisfied for particular choices of C and L and in particular for certain classes of structured matrices. In
Section 6 we show an example.

Note that thanks to (10) N (T ) = N (C) and hence (5) implies that N (L) ∩ N (C) = {0}.

Remark 7. Under the assumption (ii) on C and L we have that

C : X → X ,

L : X → X .

It is indeed possible to choose an L : X → Z and then transform it into an operator to X either via an appropriate
zero padding or using its QR factorization. However, it can be challenging proving Assumption 6(ii) after the
transformation.

We define the orthogonal projection over N (L)

PN (L) = I − L†L

and the orthogonal projection over N (L)⊥

PN (L)⊥ = L†L.

From Remark 7 and Assumption 6(ii) we have the following

Lemma 8. Let L and C be operator from X to X that commute and let L†
C be the operator defined in (7), then

it holds

(i) C†C commutes with L†L;

(ii) (I − L†L)C = C(I − L†L);

(iii) (C(I − L†L))† = (I − L†L)C†.

Proof. From Assumption 6(ii) there exists Q orthogonal such that

C = Q−1ΓQ,

L = Q−1ΛQ,

with Q−1 = Q∗.
Consider now C†C and L†L, these are the projection onto the orthogonal of the null spaces of C and L

respectively, it is trivial to see then that

C†C = Q−1Γ†ΓQ,

L†L = Q−1Λ†ΛQ.
(11)

This is because this operator just need to switch of the components lying into the null spaces of C or L and
leave unchanged the others.
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From (11) the proof ot point (i) comes immediately. In fact

C†CL†L = Q−1Γ†ΓQQ−1Λ†ΛQ

= Q−1Γ†ΓΛ†ΛQ = Q−1Λ†ΛΓ†ΓQ

= Q−1Λ†ΛQQ−1Γ†ΓQ = L†LC†C,

where we have used the fact that diagonal operators commute with each other.
We move now to point (ii). From (11) we have that

(I − L†L) = (Q−1Q − Q−1Λ†ΛQ) = Q−1(I − Λ†Λ)Q.

We can then write

(I − L†L)C = Q−1(I − Λ†Λ)QQ−1ΓQ

= Q−1(I − Λ†Λ)ΓQ = Q−1ΓQQ−1(I − Λ†Λ)Q

= C(I − L†L),

proving point (ii).
Finally we can prove point (iii). In order to do that we show the four properties that characterize the

Moore-Penrose pseudo-inverse. In particular X is the Moore-Penrose pseudo-inverse of A if and only if

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

We now prove the above four properties with A = C(I − L†L) and X = (I − L†L)C†.
AXA = A. Using the fact that (I −L†L)(I −L†L) = (I −L†L), point (ii) and the properties of the pseudo-

inverse C† we have
[

C(I − L†L)
][

(I − L†L)C†
][

C(I − L†L)
]

= C(I − L†L)C†C(I − L†L) = (I − L†L)CC†C(I − L†L)

= (I − L†L)C(I − L†L) = C(I − L†L)(I − L†L) = C(I − L†L).

XAX = X. Considering also point (i) we have

[

(I − L†L)C†
][

C(I − L†L)
][

(I − L†L)C†
]

= (I − L†L)C†C(I − L†L)C†

= (I − L†L)(I − L†L)C†CC† = (I − L†L)C†

(AX)∗ = AX. Noting that (C†C)∗ = C†C and (L†L)∗ = L†L by the properties of the pseudo-inverse we get

([

C(I − L†L)
][

(I − L†L)C†
])∗

=
(

C(I − L†L)C†
)∗

=
(

(I − L†L)CC†
)∗

= CC†(I − L†L) = (I − L†L)CC† = C(I − L†L)C†

=
[

C(I − L†L)
][

(I − L†L)C†
]

.

(XA)∗ = XA. Analogously we get

([

(I − L†L)C†
][

C(I − L†L)
])∗

=
(

(I − L†L)(I − L†L)C†C
)∗

=
(

(I − L†L)C†C
)∗

= C†C(I − L†L)

= C†C(I − L†L)(I − L†L) =
[

(I − L†L)C†
][

C(I − L†L)
]

.

Which conclude the proof of point (iii).

We are now in the position of proving

Lemma 9. With the same assumptions and notations of Lemma 8 it holds

L†
C = L†
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Proof. Let us write the expression for L†
C and use the results shown in Lemma 8

L†
C = (I − (C(I − L†L))†C)L†

= (I − (I − L†L)C†C)L†

= (I − C†C + L†LC†C)L†

= L† − C†CL† + L†LC†CL†

= L† − C†CL† + C†CL†LL†

= L† − C†CL† + C†CL† = L†

We define
C = CL†

C = CL†. (12)

Algorithm 2 (AIT-GP). Let L and C be linear operators that fulfills Assumptions 1 and 6 for a fixed 0 < ρ ≤ 1
2 .

Let x0 ∈ X be fixed and set n = 0. Choose τ = 1+2ρ
1−2ρ with ρ from (10), and fix q ∈ [2ρ,1].

While ‖rn‖ > τδ, let τn = ‖rn‖/δ and qn = max
{

q,2ρ + 1+ρ
τn

}

, compute

hn = C∗(CC∗ + αnLL∗)−1rn,

where αn is such that
‖rn − Chn‖ = qn ‖rn‖ , (13)

and update

xn+1 = xn + hn,

rn+1 = yδ − T xn+1.

We refer to Algorithm 2 as Approximated Iterated Tikhonov with General Penalty term since this method
can be seen as a preconditioned iterative method whose preconditioner is obtained by approximated Tikhonov
with a general regularization operator L.

We define
{

h
(0)
n = (C(I − L†L))†rn

rn = rn − Ch
(0)
n

. (14)

Note that if L is invertible then rn = rn.

Lemma 10. Let rn be defined in (14), then it holds
∥

∥

∥L†rn

∥

∥

∥ =
∥

∥

∥L†rn

∥

∥

∥ .

Proof. From the definition of rn and h
(0)
n in (14) it follows that

∥

∥

∥L†rn

∥

∥

∥ =
∥

∥

∥L†(rn − Ch
(0)
n )

∥

∥

∥ =
∥

∥

∥L†rn − L†C(C(I − L†L))†rn

∥

∥

∥

proving that L†C(C(I − L†L))† = 0 will conclude the proof. Consider the results in Lemma 8

L†C(C(I − L†L))† = L†C(I − L†L)C† = L†(I − L†L)CC†.

Note that, since L : X → X it holds that N (L†) = N (L†) thus, being (I − L†L) = PN (L), we have that L†(I −

L†L) = 0. Using this last equality we have that

L†C(C(I − L†L))† = L†(I − L†L)CC† = 0,

which concludes the proof.

In particular we also obtained that h
(0)
n ∈ N (L).
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Lemma 11. Let rn and C be defined in (14) and (12), respectively, and define

hn := Lhn.

Then it holds
∥

∥rn − Chn

∥

∥ = ‖rn − Chn‖ .

Proof. This results has been shown in [10], we give here a proof with our notation for completeness.
Form [10] we know that

hn = L†C
∗
(CC

∗
+ αnI)−1rn + h

(0)
n ,

and so, since C
∗
(CC

∗
+αnI)−1rn ∈ N (L)⊥ for construction of rn and C and h

(0)
n ∈ N (L) (see Lemma 10), we

get

hn = Lhn = LL†C
∗
(CC

∗
+ αnI)−1rn + Lh

(0)
n = C

∗
(CC

∗
+ αnI)−1rn,

and so it holds
hn = C

∗
(CC

∗
+ αnI)−1rn. (15)

Moreover
∥

∥rn − Chn

∥

∥ = ‖rn − Chn‖ , (16)

in fact
∥

∥rn − Chn

∥

∥ =
∥

∥

∥rn − Ch
(0)
n − Chn

∥

∥

∥ =
∥

∥

∥rn − C
(

L†hn + h
(0)
n

)∥

∥

∥ = ‖rn − Chn‖ ,

where, in the last step, we have used the definition of C = CL†.

Now we divide the space X = N (L)⊕N (L)⊥ and we analyze the behavior of Algorithm 2 on each subspace.
We call

e⊥
n = PN (L)⊥ (en) = PN (L)⊥ (x†) − PN (L)⊥(xn)

and
e

(0)
n = PN (L)(en) = PN (L)(x

†) − PN (L)(xn).

On the two subspaces the Algorithm 2 has different behaviors. First, in Remark 12 we concentrate on the
space N (L).

Remark 12. Let us consider the projection onto N (L) of the very first iteration

PN (L)(x1) = PN (L)(x0 + h0) = PN (L)(x0) + PN (L)(h0),

since hn = L†hn + h
(0)
n , we get

PN (L)(h0) = PN (L)(h
(0)
0 ) = h

(0)
0 =

(

C
∣

∣

N (L)

)†
(yδ − T x0).

In force of Assumption 6 we have

PN (L)(h0) =
(

T
∣

∣

N (L)

)†
(yδ − T x0) = PN (T †yδ) − PN (L)(x0).

And thus
PN (L)(x1) = PN (L)(x0) + PN (T †yδ) − PN (L)(x0) = PN (T †yδ),

so in the null space of L we directly invert the operator T at the very first step.

Proposition 13. Let en = Le⊥
n , under Assumption 6 the norm of en of Algorithm 2 decreases monotonically.

‖en‖2 − ‖en+1‖2 ≥ 2ρ
∥

∥

∥(CC
∗

+ αnI)−1rn

∥

∥

∥‖rn‖
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Proof. This proof is in the spirit of the original result showed in [8, Proposition 2]. Let us consider ‖en‖ =
∥

∥Le⊥
n+1

∥

∥ = ‖Len+1‖ so we have that

‖en+1‖2 = 〈Len+1,Len+1〉 = 〈Len − Lhn,Len − Lhn〉

= ‖Len‖2 − 2〈Len,Lhn〉 + ‖Lhn‖2 .

Using the definition of hn we have that, denoting with Qn = (CC
∗

+ αnI), it holds

‖en‖2 − ‖en+1‖2 = 2〈Len,Lhn〉 − ‖Lhn‖2 ≥ 2〈Len,Lhn〉 − 2‖Lhn‖2

≥ 2
〈

Len,C
∗
Q−1

n rn

〉

− 2
〈

rn,CC
∗
Q−2

n rn

〉

.

since Lhn = hn = C
∗
Q−1

n rn thanks to (15). Therefore

‖en‖2 − ‖en+1‖2 = 2
〈

rn,Q−1
n rn

〉

− 2
〈

rn,CC
∗
Q−2

n rn

〉

− 2
〈

rn − CLen,Q−1
n rn

〉

= 2
〈

rn,Q−1
n rn

〉

− 2
〈

rn,CC
∗
Q−2

n rn

〉

− 2
〈

rn − Ce⊥
n ,Q−1

n rn

〉

= 2
〈

rn,
[

Q−1
n − CC∗Q−2

n

]

rn

〉

− 2
〈

rn − Ce⊥
n ,Q−1

n rn

〉

≥ 2αn

〈

rn,Q−2
n rn

〉

− 2
∥

∥

∥
rn − Ce⊥

n

∥

∥

∥

∥

∥Q−1
n rn

∥

∥

= 2αn

∥

∥Q−1
n rn

∥

∥

2
− 2

∥

∥

∥rn − Ce⊥
n

∥

∥

∥

∥

∥Q−1
n rn

∥

∥

= 2
∥

∥Q−1
n rn

∥

∥

[

∥

∥αnQ−1
n rn

∥

∥−
∥

∥

∥rn − Ce⊥
n

∥

∥

∥

]

≥ 2
∥

∥Q−1
n rn

∥

∥ [‖rn − Chn‖− ‖rn − Cen‖] ,

where the last step is obtained by considering (16)

‖rn − Chn‖ =
∥

∥rn − Chn

∥

∥ =
∥

∥

∥rn − CC
∗
(CC ∗ +αnI)−1rn

∥

∥

∥

=
∥

∥

∥

[

I − CC
∗
(CC ∗ +αnI)−1

]

rn

∥

∥

∥ =
∥

∥αnQ−1
n rn

∥

∥ ,

and by
∥

∥

∥rn − Ce⊥
n

∥

∥

∥ =
∥

∥

∥PN (L)⊥ (rn − Cen)
∥

∥

∥ ≤ ‖rn − Cen‖ ,

since
∥

∥

∥PN (L)⊥

∥

∥

∥ =
∥

∥L†L
∥

∥ = 1.

In virtue of Proposition 2 and using equation (13) we have that

‖en‖2 − ‖en+1‖2 ≥ 2
∥

∥Q−1
n rn

∥

∥ [qn ‖rn‖− ‖rn − Cen‖]

≥ 2ρ
∥

∥Q−1
n rn

∥

∥‖rn‖ = 2ρ
∥

∥

∥(CC
∗

+ αnI)−1rn

∥

∥

∥‖rn‖ .

We call nδ the iteration at which Algorithm 2 stops. From Corollary 14 we are going to be able to deduce
that nδ is finite if and only if δ > 0.

Repeating the same steps that in [8] led to derive Corollary 3 from Proposition 2, the following result can
be derived from Proposition 13.

Corollary 14. With the notation and assumptions of Proposition 13, it holds

‖e0‖2 ≥ 2ρ

nδ−1
∑

n=0

∥

∥

∥(CC
∗

+ αnI)−1rn

∥

∥

∥‖rn‖ ≥ c

nδ−1
∑

n=0

‖rn‖2 .

9



Form the outer inequality in Corollary 14 we obtain that the sum of the squares of the norm of the residual (in
N (L)⊥) is bounded and hence, if δ > 0, there must be a first integer N∋ nδ < ∞ that fulfills the stopping criterion.

In fact suppose that the algorithm does not stop after finitely many iterations, we get that limn→∞ ‖rn‖2 = 0.
Thus there exists n such that ‖rn‖ < τδ which is absurd. In other words, if δ > 0 Algorithm 2 terminates after a
finite number of iterations. Conversely in Theorem 15 we show that, if δ = 0 then the algorithms, even though
it converges to a solution of the system, does not stop.

Theorem 15. Assume that the data are exact, i.e., δ = 0, and that x0 is not a solution of the problem. Then,
the sequence (xn)n converges as n → ∞ to a solution x†

0 such that:

(i) T x†
0 = y;

(ii) PN (L)(x
†
0) = PN (L)(x

†);

(iii) the distance between x†
0 and x0 is minimal with respect to the set of all the solutions.

Proof. The proof follows the same strategy of the analogous result in [8, Theorem 4]. Let us call xnδ = x†
0, since

δ = 0 the stopping criterion can only be fulfilled for n = nδ and with ‖rn‖ = 0.
We now show that an infinite number of iterations is needed. If n > 0, then hn−1 must coincide with en−1

up to an element in the null space of T , that is (thanks to Assumption 6) the null space of C, and so, using
(13) and Proposition 2, we get

qn−1 ‖rn−1‖ = ‖rn−1 − Chn−1‖ = ‖rn−1 − Cen−1‖ ≤

(

ρ +
1 + ρ

τn−1

)

‖rn−1‖ .

This contradicts the definition of qn−1 and so the iteration does not terminate after finitely manly iterations
for exact data if x0 is not a solution of the system.

Using Remark 12 the proof of point (ii) is immediate. It is left for us to show points (iii) and (i). In order
to do that we first show that the sequence (Lxn)n = (xn)n is a Cauchy sequence.

Let m > l and let us consider ‖Lxm − Lxl‖
2

‖Lxm − Lxl‖
2 = ‖Lem − Lel‖

2 = ‖em‖2 − ‖el‖
2 − 2〈el,em − el〉

= ‖em‖2 − ‖el‖
2 + 2〈el,xm − xl〉 .

Inserting the definition of xn and of hn we get

‖xm − xl‖
2 = ‖em‖2 − ‖el‖

2 + 2

m−1
∑

k=l

〈

el,hk

〉

= ‖em‖2 − ‖el‖
2 + 2

m−1
∑

k=l

〈

Lel,C
∗
(CC

∗
+ αk)−1rk

〉

= ‖em‖2 − ‖el‖
2 + 2

m−1
∑

k=l

〈

Ce⊥
l ,(CC

∗
+ αk)−1rk

〉

≤ ‖em‖2 − ‖el‖
2 + 2

m−1
∑

k=l

∥

∥

∥Ce⊥
l

∥

∥

∥

∥

∥

∥(CC
∗

+ αk)−1rk

∥

∥

∥

≤ ‖em‖2 − ‖el‖
2 + 2

m−1
∑

k=l

‖Cel‖
∥

∥

∥(CC
∗

+ αk)−1rk

∥

∥

∥,

where in the last step we have used the fact that
∥

∥Ce⊥
n

∥

∥ ≤ ‖Cen‖.
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Let us suppose now that l ≥ n and so

‖xl − xn‖2 = ‖en‖2 − ‖el‖
2 + 2

l−1
∑

k=n

〈

el,hk

〉

= ‖en‖2 − ‖el‖
2 + 2

l−1
∑

k=n

〈

Ce⊥
l ,(CC

∗
+ αk)−1rk

〉

≤ ‖en‖2 − ‖el‖
2 + 2

l−1
∑

k=n

∥

∥

∥
Ce⊥

l

∥

∥

∥

∥

∥

∥
(CC

∗
+ αk)−1rk

∥

∥

∥

≤ ‖en‖2 − ‖el‖
2 + 2

l−1
∑

k=n

‖Cel‖
∥

∥

∥(CC
∗

+ αk)−1rk

∥

∥

∥.

Using the two inequalities together and Assumption 1 we get for general m > n and any l ∈ {n, . . . ,m − 1}

‖Lxm − Lxn‖2 ≤ 2‖Lxm − Lxl‖
2 − 2‖Lxl − Lxn‖2

≤ 2‖em‖2 + 2‖en‖2 +

− 4‖el‖
2 + 4

m−1
∑

k=n

‖Cel‖
∥

∥

∥(CC
∗

+ αk)−1rk

∥

∥

∥

≤ 2‖em‖2 + 2‖en‖2 − 4‖el‖
2 +

+ 4(1 + ρ)

m−1
∑

k=n

‖rl‖
∥

∥

∥(CC
∗

+ αk)−1rk

∥

∥

∥

Let l ∈ {n, . . . ,m − 1} be that particular index for which ‖rl‖ is minimal, so that

‖Lxm − Lxn‖2 ≤2‖em‖2 + 2‖en‖2 − 4‖el‖
2 +

+ 4(1 + ρ)

m−1
∑

k=n

‖rk‖
∥

∥

∥(CC
∗

+ αk)−1rk

∥

∥

∥.

The right-hand side of the inequality above becomes arbitrarly small, because the sequence (‖ek‖)k is mono-
tonically decreasing, in force of Proposition 13, and so converges to some limit ǫ ≥ 0 and the summation is the
partial sum of a converging series (see Corollary 14). We have proved that the sequence (xn)n is a Cauchy
sequence and so converges to a certain limit x ∈ X , and by continuity of L† we get that

PN (L)⊥ (xn) = L†Lxn → L†x = L†Lx = PN (L)⊥ (x),

for some x ∈ X . Accordingly the norm of the residual PN (L)⊥ (rn) = PN (L)⊥ (y−T xn) goes to PN (L)⊥ (y−T x),

while in force of Corollary 14 the norm of this residual converges to zero and so PN (L)⊥ (x) is the projection of

a solution of the system, this with Remark 12 prooves point (i) of the theorem.
By construction, every iterate xn satisfies

xn − x0 =

n−1
∑

k=0

hk ∈ R(C∗) = N (C)⊥,

Therefore x− x0 ∈ N (T )⊥, thanks to Assumption 6 (i) and so x is the particular solution of the system which
is closest to x0 in the norm of X thus proving point (iii).

Remark 16. If x0 is a solution of the system then we have that ‖r0‖ = ‖T x0 − y‖ = 0 and thus the algorithm
does not start. In particular only a finite number of iteration is needed.

Let us consider the inexact data case, in this circumstances Algorithm 2 is a regularization method, in fact
we have the following

11



Theorem 17. Assume that Assumption 6 holds for some 0 < ρ ≤ 1
2 and let δ 7→ yδ be a function from R to X

such that for all δ it holds
∥

∥y− yδ
∥

∥ ≤ δ. For fixed τ and q denote with xδ the approximation of x† obtained

with Algorithm 2. Then, as δ → 0, xδ goes to the solution of the system which is closest to x0.

We omit the proof since it can be copied from [12][Theorem 2.3]; for further reference see also [1][Theorem 11.5].
Its essentials ingredients are the monotonicity proved in Proposition 13, the convergence to the exact solution
in the exact data case proved in Theorem 15 and the continuity of the map δ 7→ yδ .

5. Approximated Projected Iterated Tikhonov (APIT)

Let Ω ⊂ X be closed and convex and such that x† ∈ Ω, let PΩ be the metric projection of X on Ω and
TΩ = T

∣

∣

Ω
, CΩ = C

∣

∣

Ω
. We want to constrain our problem so that ∀n, xn ∈ Ω.

Definition 18. We define the metric projection of x ∈ X onto Ω as

PΩ(x) = argmin
y∈Ω

1

2
‖x− y‖2 .

Lemma 19. Let Ω be a closed and convex subset of a Hilbert space X , then PΩ, the metric projection of X
over n, is such that:

(i) ‖PΩ(x) − PΩ(y)‖2 ≤ ‖x− y‖2 − ‖(I − PΩ)(x) − (I − PΩ)(y)‖2;

(ii) ‖PΩ(x) − PΩ(y)‖2 ≤ 〈x− y,PΩ(x) − PΩ(y)〉.

Proof. The proof of the first can be found in [13]. The second is just a reformulation.

Remark 20. Lemma 19 implies that the map PΩ is non-expansive.

In order to constrain Algorithm 1 we simply project at each iteration, obtaining the following

Algorithm 3 (APIT). Let x0 ∈ X be fixed and set n = 0. Choose τ = 1+2ρ
1−2ρ

with ρ as in (10), and fix q ∈ [2ρ,1].

While ‖rn‖ > τδ, let τn = ‖rn‖/δ and qn = max
{

q,2ρ + 1+ρ
τn

}

, compute

hn = C∗(CC∗ + αnI)−1rn,

where αn is such that
‖rn − Chn‖ = qn ‖rn‖ ,

and update

xn+1 = PΩ(xn + hn),

rn+1 = yδ − T xn+1.

We refer to Algorithm 3 as Approximated Projected iterated Tikhonov since this method can be seen as a
preconditioned iterative method whose preconditioner is obtained by approximated Tikhonov and is projected
at each iteration.

Remark 21. Since x† ∈ Ω, we have ‖en‖ ≤ ‖ẽn‖ , where ẽn is the error at the n-th iteration before of the
projection into Ω, namely ẽn = x† − (xn−1 + hn−1).

Using Lemma 19, the theoretical results reported in Section 3 for AIT can be easily extended to APIT.

Proposition 22. With the same notations and assumptions of Proposition 3, the norm of the iteration error
en decreases monotonically, namelly

‖en‖2 − ‖en+1‖2 ≥ 2ρ
∥

∥(CC∗ + αnI)−1rn

∥

∥‖rn‖ .
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Proof. Using Lemma 19:

‖en‖2 − ‖en+1‖2 = ‖en‖2 −
∥

∥

∥x† − PΩ(xn + hn)
∥

∥

∥

2
≥

≥ ‖en‖2 −
∥

∥

∥x† − (xn + hn)
∥

∥

∥

2
= ‖en‖2 − ‖en − hn‖2 .

Then, proceeding like in [8, Proposition 2], we have the thesis.

Using the same approach of [8] to prove the results in Section 4, it can be shown that

Theorem 23. Assume that the data are correct, i.e., δ = 0, and that x0 is not a solution of the problem (1).
Then, the sequence xn converges as n → ∞ to the solution on (1) which is closest to x0.

Using this result and coping the proof of Theorem 2.3 in [12] we obtain

Theorem 24. Let δ 7→ yδ be a function from R
+ to Y such that (2) holds true for all δ > 0. Under Assump-

tion 1, for fixed parameters τ and q, denote by nδ the corresponding stopping indices, and by xδ the resulting
approximations. Then, as δ → 0, xδ converges to the solution of (1) that is closest to x0 in the norm of X .

5.1. Approximated Projected Iterated Tikhonov with General Penalty term (APIT-GP)

We now combine the previous two algorithms into a third one.

Algorithm 4 (APIT-GP). Let x0 ∈ X be fixed, set n = 0. Choose τ = 1+2ρ
1−2ρ

with ρ as as in (10), and fix

q ∈ [2ρ,1].

While ‖rn‖ > τδ, let τn = ‖rn‖/δ and qn = max
{

q,2ρ + 1+ρ
τn

}

, compute

hn = C∗(CC∗ + αnLL∗)−1rn,

where αn is such that
‖rn − Chn‖ = qn ‖rn‖ ,

and update

xn+1 = PΩ(xn + hn),

rn+1 = yδ − T xn+1.

We refer to Algorithm 4 as Approximated Projected Iterated Tikhonov with General Penalty term since this
method can be seen as the combination of Algorithms 6 and 3.

From the numerical experiments in Section 6 we can see that this algorithm has good performances, however
an eventual proof of its convergence meets some problems.

6. Numerical Examples

We apply our methods to the image deblurring problem. In this examples we use as T the blurring matrix
with boundary conditions that respect the nature of the image and C the blurring matrix that has the same
point spread function (PSF) of T with periodic boundary conditions.

As L we choose the discretization of the first derivative with periodic boundary conditions. This operator
is obtained as the Kroneker product

L = L1 ⊗ I + L1 ⊗ I, (17)

where L1 is defined as

L1 =















1 −1
1 −1

. . .
. . .

1 −1
−1 1















,
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and N (L1) = span{1}, where 1 denotes the vector with all entries equal to 1. Therefore, L defined in (17) is
singular and its null space is

N (L) = span{1} , (18)

in other words the space of the constant vectors.
Since we are using the periodic boundary conditions the matrices C and L are block circulant matrices with

circulant blocks (BCCB) and satisfy the Assumption 6 (ii), with Q being the bidimensional discrete Fourier
transform [14].

Note that for L defined in (17), we have that N (L) ∩ N (C) = {0} thanks to (18). Indeed,

C1 = 1

because the sum of every row of C is equal to the sum of all entries of the PSF, which is equal to 1 to preserve
the total light intensity.

Images can be seen as the measurement of the quantity of light received from a source and so they should
not have negative values. Therefore we choose Ω to be the nonnegative cone

Ω = {x ∈ R
M : ∀i = 1, . . . ,M, xi ≥ 0}.

Moreover, according to several numerical tests with different problems and the suggestions in [8], we fix

ρ = 10−3 and q = 0.7

in all our examples. To compare the quality of the restorations, we define the relative restoration error (RRE) as

RRE =
‖x− x†‖

‖x‖
,

where x is the computed solution. The minimum RRE in all table will be marked in bold.
For the construction of the examples we proceed in the following way. We first start with an image of n1 ×n2

pixels and blur it using any boundary conditions, e.g., the periodic one, using a PSF with of m1 × m2 with
mj < nj , j = 1,2. Then, in order to simulate a real situation we cut out the the boundary from the blurred
image of half the size of the PSF, i.e., of

⌈mj

2

⌉

. We then add some white Gaussian noise, we refer to

ν =
δ

‖y‖
(19)

as noise level.
We compare the restoration obtained with our methods with the original method AIT and with some other

methods already present in the literature. In particular we consider the following methods:

• Hybrid [15];

• Two step iterative shrinkage/thresholding (Twist) [16];

• Range Restricted Arnoldi–Tikhonov (RRAT) [17];

• Flexible Arnoldi Tikhonov(FlexiAT) [18];

• Nonnegative Restarted Generalized Arnoldi Tikhonov (NN-ReStart-GAT) [18].

The Hybrid method is a Krylov method in which on the each Krylov space a Tikhonov regularization is imple-
mented so to obtain a regularized solution, the regularization parameter is chosen with a particular modification
of the generalized cross validation. In RRAT the Arnoldi Tikhonov decomposition is used to consider a certain
Krylov space and then on this space the regularized solution is obtained using Tikhonov regularization, the
regularization parameter is chosen solving the discrepancy principle equation. Twist is a method that combines
regularization of the iterative shrinkage/thresholding methods and the splitting of the Iterative Re-Weighted
Shrinkage methods. FlexiAT is a method that enables to introduce a regularization term into the equation
and to adapt the Krylov subspace using the intermediate solutions in order to achieve better approximates the
optimal regularization matrix. NN-ReStart-GAT is a projected version of ReStart-GAT, this method uses a
restarted strategy, the inner iteration solves a Tikhonov regularized version of the problem exploiting Arnoldi

14
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Figure 1: Barbara test case: (a) Test image (496 × 496 pixels), (b) Diagonal motion PSF (16 × 16 pixels), (c) Blurred image
(496 × 496 pixels), RRE = 0.16145.

Tikhonov decomposition with a regularization term L such that ‖Lx‖ ≈ ‖x‖1, then the outer iteration updates
L so that the approximation of the 1−norm gets better and better with the iterations.

In the following figures, the restored images are shown after a projection into Ω also for the methods that
do not impose the nonnegative constraint. This allows a better visualization of the images in particular when
they are affected by large ringing effects.

All the tests were performed using Matlab 9.0.0.341360 (R2016a) 64bit running on a laptop with an Intel
core i7-6700HQ @ 2.60 GHz CPU and 8 GB of RAM.

Example 1 – Barbara. In this example we use the image Barbara (see Figure 1(a)), we blur the image with a
diagonal motion PSF of 16 pixel (see Figure 1(b)) and add 3% of white Gaussian noise, i.e., ν = 0.03 in (19)
(for the result see Figure 1(c)).

Since the image is generic we use the antireflexive boundary conditions for the operator T , see [19]. From
the comparison of the RRE history in Figure 8(a) we can see that, since there are no important black parts
in the image, the introduction of the projection does not give any relevant improvement, in fact the graphs
of APIT and AIT are overlayed and the same happens for AIT-GP and APIT-GP. The introduction of L is
able to make the method faster and more accurate. In Figure 2 we can see the reconstructions with AIT-GP,
AIT, Twist and the optimal reconstruction obtained with Hybrid. We can see from those reconstructions that
the introduction of the regularization operator L let us have a better reconstruction of edges and details even
though there is some ringing effect. In Table 1 we can find the comparison of the RRE and computational times
with some other method from the literature, we can see that usually the method proposed are able to get better
reconstructions in a smaller amount of time. We want to stress the fact that the stopping criterion of Hybrid
was not able to effectively stop the method, so we printed also the optimal error; from this we can see that,
even though AIT and APIT are outperformed by Hybrid, the introduction of the regularization operator gives
better reconstructions.

FlexiAT, RRAT and NN-ReStart-GAT do not seems to perform well, moreover they also reach the maximum
number of iterations without converging. This effect might be due to the fact that this methods are constructed
for images that are mostly black, like astronomical or biological images, and not for photographic images like
the one we are using in this example.

Example 2 – Grain. For this example we use the image Grain (see Figure 3(a)), we blur the image with a non
symmetric Gaussian PSF (see figure 3(b)) from the toolbox Restore Tools by S. Berisha and J. Nagy, see
[20], and add 5% of white Gaussian noise, i.e., ν = 0.05 in (19) (for the result see Figure 3(c)). This image
having a very huge black area is very useful to see the improvements introduced by the non-negative constraint.
Again, since the image is generic at the boundary, we use the antireflexive boundary conditions. From the RRE
history in Figure 8(b) we can see that the projection in the nonnegative cone gives great improvements in the
quality of the reconstructions. In Figure 4 we can find the reconstruction with the AIT-GP, APIT, APIT-GP
and Hybrid methods, from these we can see that L helps reconstructing the edges and that the projection let
us have a more homogeneous result in the black areas. In order to better notice that we show in Figure 5 a
detail of |enδ | in color map jet. In fact the reconstructions in Figure 4 are visualized so that no negative values
are introduced, if the negative values were permitted we would get high oscillations in the black areas for the
non-projected algorithms. In Table 2 we can find the RRE and computational times of our algorithms compared
with some other method from the literature.
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(a) (b) (c) (d)

Figure 2: Barbara test case, reconstructions obtained with different methods: (a) AIT-GP, (b) AIT (c) Hybrid at the optimal
iteration (the method does not stop properly), (d) TwIST.

Method RRE Iterations Computational Time (sec.)

AIT 0.13489 3 0.60364
AIT-GP 0.13132 3 0.75130

APIT 0.13489 3 0.57012
APIT-GP 0.13132 3 0.73076

Hybrid 0.15919 (Opt.: 0.13337) 33 (Opt.: 5) 9.4639 (Opt. 1.4339)
TwIST 0.13906 6 4.5313

FlexiAT 0.16613 50 6.6665
RRAT 0.17308 50 13.782

NN-ReStart-GAT 0.16471 500 109.10

Table 1: Barbara test case: Comparison of the methods in term of relative restoration error (RRE), number of iterations and
computational time.

(a) (b) (c)

Figure 3: Grain test case: (a) Test image (300 × 300 pixels), (b) Non symmetric Gaussian PSF (22 × 22 px), (c) Blurred image
(300 × 300 pixels), RRE = 0.3680.

(a) (b) (c) (d)

Figure 4: Grain test case, reconstructions obtained with different methods: (a) AIT-GP, (b) APIT, (c) APIT-GP, (d) Hybrid.
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(a) (b) (c) (d)

Figure 5: Grain test case, absolute value of the error in the south-east corner: (a) AIT-GP, (b) APIT, (c) APIT-GP, (d) Hybrid.

Method RRE Iterations Computational Time (sec.)

AIT 0.28742 4 0.33530
AIT-GP 0.28485 4 0.33922

APIT 0.27393 30 1.4502
APIT-GP 0.27063 57 3.0685

Hybrid 0.32334 8 1.0395
TwIST 0.28743 16 5.3594

FlexiAT 0.35340 4 2.7535
RRAT 0.29767 9 0.084399

NN-ReStart-GAT 0.35044 52 4.7067

Table 2: Grain test case: Comparison of the methods in term of relative restoration error (RRE), number of iterations and
computational time.

Example 3 – Satellite. In this last example we use the dataset satellite from the toolbox Restore Tools[20].
In this case the image is blurred with an astronomical PSF. The noise level ν is approximately of the 4% and
has been computed using the knowledge of the true image. See Figure 6 for the true image, the PSF and the
blurred and noisy data. Like in the example before this image, having a very huge black area, is very useful
to see the improvements introduced by the non-negative constraint. Since near the boundary the image is all
black we use the zero boundary conditions. In Figure 8(c) we find the RRE history, we can see that all the
three methods we introduced give better result than AIT, since the image is for the most part black the better
result is achieved with APIT. In this case, however, the best reconstruction is not the one given by APIT-GP,
this is due to the fact that the introduction of the regularization operator is able to enanche the edges and
some small noise, in the black area is recognised as edge and preserved. We must notice, none the less, that
the difference between APIT-GP and APIT is very small. Finally in Figure 7 we can see the reconstructions
for APIT, APIT-GP, RRAT and NN-Restart-GAT. In Table 3 we can find the comparison of the RRE and
computational times with some other method from the literature, we can see that all the method proposed are
able to get better reconstructions, even though in some cases the computational time is higher.

(a) (b) (c)

Figure 6: Satellite Test case: (a) Test image (256×256 pixels), (b) Astronomic PSF (256×256 pixels), (c) Blurred image (256×256
pixels), RRE = 0.70464.
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(a) (b) (c) (d)

Figure 7: Satellite Reconstructions: (a) APIT, (b) APIT-GP, (c) RRAT, (d) FlexiAT.

Method RRE Iterations Computational Time (sec.)

AIT 0.40996 7 0.48016
AIT-GP 0.42385 7 0.50797

APIT 0.39801 21 1.1806
APIT-GP 0.41129 32 1.7659

Hybrid 0.47663 50 4.5397
TwIST 0.47745 22 3.0313

FlexiAT 0.44875 8 0.18139
RRAT 0.45807 8 0.078776

NN-ReStart-GAT 0.83804 59 4.5397

Table 3: Satellite test case: Comparison of the methods in term of relative restoration error (RRE), number of iterations and
computational time.
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Figure 8: Evolution of the relative reconstruction error against the iterations for AIT, APIT, AIT-GP, and APIT-GP: (a) Barbara
test case, (b) Cell test case, (c) Satellite test case. In black with stars AIT, in blue with circles APIT, in red with triangles AIT-GP,
and in cyan with pentacles APIT-GP
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7. Conclusions

In this paper, starting from the method proposed by Donatelli and Hanke in [8], we developed three algo-
rithms which like the original method AIT, do not need any parameter estimate (a part from ρ which can be
usually safely fixed equal to 10−3). All three methods can be seen both as approximated version of iterated
Tikhonov and as preconditioned algorithms in which the preconditioner is nonstationary meaning that, still
preserving its structure, it changes at each iteration. The first developed method is ARIT and let us introduce
a regularization term in order to achieve better reconstructions by adding features like edge sharpening. The
second is APIT which introduces the projection in a closed and convex set. Finally we created APIT-GP which
combines the two above. With all three methods we are able to embed the knowledge that we could have on
the true solution (e.g. that has nonnegative entries) in the method and exploit it to get good reconstructions.
Numerical experiments have proven that the introduction of the projection and the regularization is able to
improve the quality of the restored images without changing to much the structure of the original method. The
comparison with other methods in literature shows the robustness and accuracy of the algorithms developed.
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