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The combination of prenatal, such as maternal infections, and postnatal environmental
insults (e.g., adolescent drug abuse) increases risks for psychosis, as predicted
by the two-hit hypothesis of schizophrenia. Cannabis abuse during adolescence is
widespread and is associated with increased risk of psychoses later in life. Here, we
hypothesized that adolescent ∆9-tetrahydrocannabinol (THC) worsens the impact of
prenatal maternal immune activation (MIA) on ventral tegmental area (VTA) dopamine
cells in rat offspring. Additionally, since substance abuse disorder is particularly prevalent
among schizophrenia patients, we also tested how VTA dopamine neurons in MIA
offspring respond to acute nicotine and cocaine administration. We used a model of
neurodevelopmental disruption based on prenatal administration of the polyriboinosinic-
polyribocytidilic acid [poly (I:C)] in rats, which activates the maternal immune system
by mimicking a viral infection and induces behavioral abnormalities and disruption of
dopamine transmission relevant to psychiatric disorders in the offspring. Male offspring
were administered THC (or vehicle) during adolescence (PND 45–55). Once adult (PND
70–90), we recorded the spontaneous activity of dopamine neurons in the VTA and
their responses to nicotine and cocaine. MIA male offspring displayed reduced number,
firing rate and altered activity pattern of VTA dopamine cells. Adolescent THC attenuated
several MIA-induced effects. Both prenatal [poly (I:C)] and postnatal (THC) treatments
affected the response to nicotine but not to cocaine. Contrary to our expectations,
adolescent THC did not worsen MIA-induced deficits. Results indicate that the impact
of cannabinoids in psychosis models is complex.

Keywords: dopamine neurons, maternal immune activation, cannabinoids, adolescence, electrophysiology,
schizophrenia

INTRODUCTION

Environmental factors, such as prenatal exposure to a variety of infectious agents and consequent
maternal immune activation (MIA), can lead to aberrant brain development, emerging in
pathological phenotypes, such as autism and schizophrenia (Hornig et al., 2018). An association
between MIA and increased risks of developing psychiatric disorders in offspring later in
life has been reported by preclinical investigations and epidemiological studies in humans
(Meyer et al., 2011).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 September 2019 | Volume 13 | Article 202

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2019.00202
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2019.00202&domain=pdf&date_stamp=2019-09-06
https://creativecommons.org/licenses/by/4.0/
mailto:mpistis@unica.it
https://doi.org/10.3389/fnbeh.2019.00202
https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00202/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00202/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00202/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00202/full
https://loop.frontiersin.org/people/118225/overview
https://loop.frontiersin.org/people/482519/overview
https://loop.frontiersin.org/people/421506/overview
https://loop.frontiersin.org/people/45000/overview
https://loop.frontiersin.org/people/36707/overview
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Lecca et al. Adolescent ∆9-THC in Maternal Immune Activation

In utero exposure to polyriboinosinic-polyribocytidylic acid
(Poly I:C), a double-stranded synthetic RNA that activates an
innate immune response, induces MIA in rodents by mimicking
a viral infection and has been shown to induce schizophrenia-
or autism-like phenotypes in rodents (Zuckerman et al.,
2003). Hence, offspring display behavioral abnormalities, e.g.,
impairment in recognition memory, in social interactions and in
sensorimotor gating as well as alterations in brain regions key
in the neuropathology of psychoses, such as the dopaminergic
ventral tegmental area (VTA; Patterson, 2002, 2009; Meyer
et al., 2005; Boksa, 2010). Indeed, previous studies reported an
increase in the number of TH-immunoreactive neurons in the
VTA, TH-positive terminals in the striatum (Meyer et al., 2008;
Winter et al., 2009; Vuillermot et al., 2010), increases in evoked
striatal dopamine release ex vivo (Zuckerman et al., 2003) and
enhanced dopamine levels in the prefrontal cortex and lateral
globus pallidus (Winter et al., 2009). In our previous studies
we observed a marked alteration of VTA dopamine neuron
activity (reduced firing rate, reduced number of spontaneously
active cells and altered firing pattern) in male but not female
offspring coupled with disruption of sensorimotor gating and
of cognitive and social behavior, and increase in dopamine
levels in the nucleus accumbens (Luchicchi et al., 2016;
De Felice et al., 2019).

Besides the prenatal period, adolescence is also a critical
window of enhanced vulnerability. During adolescence the brain
is particularly susceptible to perturbations, such as exposure to
drugs of abuse, which can disrupt cognitive, emotional, and social
maturation (Crews et al., 2007). Cannabis is the most widely
used illegal drug during adolescence and its consumption might
induce neurobiological changes that affect adult brain function
(Rubino and Parolaro, 2016).

The dopamine system is particularly sensitive to
cannabinoids. Both ∆9-tetrahydrocannabinol (THC) and
synthetic cannabinoids induce increases in firing rate of
mesolimbic and mesocortical VTA dopamine cells (Diana
et al., 1998; Gessa et al., 1998) and in extracellular dopamine
levels in terminal regions (Tanda et al., 1997). Accordingly, in
humans, THC reduces [11C]raclopride binding in the ventral
striatum, consistent with a modest increase in dopamine
release (Bossong et al., 2009, 2015) and exacerbates psychotic
symptoms (Mason et al., 2009). We and others reported that
adolescent THC administration induced long-lasting changes in
the response to dopamine cells to drugs of abuse and enhanced
behavioral responses and self-administration (Pistis et al., 2004;
Scherma et al., 2016) which might extend across generations
(Vassoler et al., 2013). Moreover, adolescent administration of
cannabinoids is associated with schizophrenia-like deficits in
adult rodents (Rubino et al., 2009; Leweke and Schneider, 2011).

Considering that in humans early marijuana intake is
associated with increased risk of psychoses later in life
(Arseneault et al., 2004; Fergusson, 2004; Degenhardt and
Hall, 2006), our hypothesis is that cannabinoid administration
during adolescence in male rats exposed to MIA would worsen
the outcome, as the two-hits hypothesis of schizophrenia
(genetic/prenatal plus postnatal environment factors) predicts.
Additionally, since substance abuse disorder, specifically heavy

tobacco smoking (Winterer, 2010) and stimulant use disorder
(Hunt et al., 2018), is particularly prevalent among schizophrenia
patients we also tested how VTA dopamine neurons in MIA
offspring treated with THC and their controls respond to acute
nicotine and cocaine administration.

MATERIALS AND METHODS

All procedures were performed in accordance with the European
legislation EU Directive 2010/63 and were approved by the
Animal Ethics Committee of the University of Cagliari and
by Italian Ministry of Health (auth. n. 658/2015-PR). Animals
were housed in groups of three to six in standard conditions
of temperature (21 ± 1◦C) and humidity (60%) under a 12 h
light/dark cycle (lights on at 7:00 A.M.) with food and water
available ad libitum. We made all efforts to minimize animal
discomfort and to reduce the number of animals used.

Prenatal Treatment
Female Sprague–Dawley rats (Envigo, Italy) were mated at
the age of 3 months. The first day after the copulation was
defined as gestational day 1 (GD 1). MIA was induced at GD
15, following the procedure described by Zuckerman et al.
(2003). Dams were anesthetized with isoflurane 2% and a
single dose of Poly I:C (4.0 mg/kg, i.v.; InvivoGen, San Diego,
CA, USA) or an equivalent volume of endotoxin-free saline
solution was administered in the lateral vein of the tail. To
assess the efficacy of Poly I:C injection, all pregnant rats were
weighed for the first 3 days after the administration of either
Poly I:C or saline to evaluate weight loss as underlined by
previous investigations (Zuckerman et al., 2003; Wolff and
Bilkey, 2010). After weaning, male offspring were housed
with littermates and maintained undisturbed until adolescent
treatment (PND 45–55) and experiments in adulthood (PND
70–90). Male rats were randomly assigned to the experimental
procedures and care was taken to avoid assigningmore than three
animals from the same litter to the same experimental group
(Kentner et al., 2019).

Adolescent Treatment
Male rats were intraperitoneally injected with THC (THC-Pharm
GmbH) or vehicle (1% ethanol, 2% Tween 80 and saline) at
PND 45, in the mid-adolescence period. Increasing doses of THC
(2.5 mg/kg, PND 45–47; 5 mg/kg, PND 48–51; 10 mg/kg, PND
52–55) or vehicle were given twice/day for 11 consecutive days.
Theses doses of THC were chosen according to the literature
(Scherma et al., 2016). Body weight and food intake were
monitored for the entire period of treatment.

In vivo Electrophysiological Experiments
In vivo electrophysiology experiments were carried out at PND
70–90. This age window, which corresponds to the young
adulthood in humans, was selected as it is the most vulnerable
age for the onset of schizophrenia (Häfner, 2003). Moreover,
studies on the ontogeny of MIA-induced deficits showed that
these are evident at PND 70 (Romero et al., 2010; Vuillermot
et al., 2010).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 September 2019 | Volume 13 | Article 202

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Lecca et al. Adolescent ∆9-THC in Maternal Immune Activation

In vivo electrophysiological recordings were performed as
described previously (Melis et al., 2008, 2009; Luchicchi et al.,
2016). At PND 70–90, male rats were anesthetized with urethane
(1.3 g/kg, i.p.) and placed in the stereotaxic apparatus (Kopf,
Tujunga, CA, USA) with their body temperature maintained at
37 ± 1◦C by a heating pad.

For the placement of a recording electrode, the scalp was
retracted, and one burr hole was drilled above the parabrachial
pigmented nucleus (PBP) of the posterior VTA (AP, 5.8–6.2 mm
posterior from Bregma, L, 0.4–0.6 mm lateral from midline)
according to the Atlas of Rat Brain (Paxinos and Watson, 2007).
We selected this subregion as it contains the largest density of
dopamine cells as compared to the more medial portions of the
posterior VTA.

Extracellular single-unit activity of dopamine neurons located
in the VTA (V, 7.0–8.0 mm from the cortical surface) was
recorded with glass micropipettes filled with 2% Pontamine
sky blue (PSB) dissolved in 0.5 M sodium acetate (impedance
2.5–5 MΩ). The population spontaneous activity of VTA
dopamine cells was determined in 6–9 predetermined tracks
separated by 200 µm each other. Putative VTA dopamine
neurons were selected when all criteria for identification
were fulfilled: firing rate <10 Hz and duration of action
potential >2.5 ms as measured from start to end (Grace and
Bunney, 1983). At the end of the experimental session, inhibition
of spontaneous activity by dopamine receptor agonists and
subsequent reversal by dopamine receptor antagonists was tested.
Bursts were defined as the occurrence of two spikes at interspike
interval <80 ms, and terminated when the interspike interval
exceeded 160 ms (Grace and Bunney, 1984). The electrical
activity of each neuron was recorded for 2–3 min. Single-unit
activity was filtered (bandpass 0.1–10,000 Hz) and individual
action potentials were isolated and amplified (Neurolog System,
Digitimer, Hertfordshire, UK), displayed on a digital storage
oscilloscope (TDS 3012, Tektronics, Marlow, UK) and digitally
recorded. Experiments were sampled on-line and off-line with
Spike2 software (Cambridge Electronic Design, Cambridge, UK)
by a computer connected to CED 1401 interface (Cambridge
Electronic Design, Cambridge, UK). At the end of recording
sessions, DC current (15 mA for 5 min) was passed through the
recording micropipette in order to eject PSB for marking the
recording site. Brains were then rapidly removed and frozen in
isopentane cooled to −40◦C. The position of the electrodes was
microscopically identified on serial 60 µm sections stained with
Neutral Red.

In separate experiments where the effects of nicotine and
cocaine were assessed, after 5 min of stable baseline activity,
cocaine (Akzo Pharma Division Diosynth, Oss, Netherlands) was
administered i.v. at exponentially increasing cumulative doses
(0.25–2 mg/kg) every 2 min or nicotine [(-)-nicotine hydrogen
tartrate), Sigma-Aldrich, Italy] at a bolus dose of 0.2 mg/kg.

Statistical Analysis
Averaged data from different experiments are given as
mean ± SEM. Data were checked for outliers (ROUT test)
and statistical significance was assessed using Student’s t-test,
one-way ANOVA, two-way ANOVA and two-way ANCOVA,

where appropriate. Post hoc multiple comparisons were made
using the Sidak’s test. Data were analyzed using GraphPad Prism
(San Diego, CA, USA). The significance level was established at
P < 0.05.

RESULTS

In agreement with previous studies (Zuckerman et al., 2003), rat
dams underwent a significant weight loss in the 24 h following
Poly I:C systemic administration (−4.9 ± 2.8 g n = 8; vs.
controls +7.5 ± 2.4 g n = 7; P < 0.01, Student’s t-test; data
not shown). This weight loss indicates that Poly I:C treatment
induced a flu-like syndrome in treated rats (Kentner et al.,
2019). However, Poly I:C treatment did not affect litter size
(controls: 11.6 ± 1.8 pups, n = 8; Poly I:C: 12.4 ± 1.2 pups, n = 7,
P = 0.72, Student’s t-test). As our previous studies determined
that detrimental effects induced by MIA were only evident in
males (De Felice et al., 2019), we evaluated the effect of pubertal
THC solely in male rats. Hence, prenatal Poly I:C or vehicle male
offspring were randomly assigned to the adolescent THC or
vehicle groups, taking care that no more than three animals from
the same litter were assigned to the same experimental group or
procedure (Kentner et al., 2019). Therefore, electrophysiological
experiments were carried out in four experimental
groups: vehicle-vehicle, vehicle-THC, Poly I:C-vehicle and
Poly I:C-THC.

We next determined if Poly I:C prenatal and THC postnatal
treatments affect spontaneous activity of dopamine cells, by
carrying out a population sample in the VTA. For these
experiments we utilized n = 14 vehicle-vehicle (from 6 litters),
n = 19 Poly I:C-vehicle (from 8 litters), n = 8 vehicle-THC (from
4 litters) and n = 10 Poly I:C-THC (from 5 litters) male offspring.

The number of cells/track (Figure 1A), which is an index
of population activity of dopamine neurons in the VTA, was
significantly reduced by Poly I:C treatment in vehicle-treated
but not in THC-treated male offspring [two-way ANOVA:
effect of Poly I:C, F(1,45) = 9.49, P < 0.01; effect of THC,
F(1,45) = 14.78, P < 0.001; interaction between treatments,
F(1,45) = 0.66, P > 0.05; post hoc Sidak’s test: significant
effect only between vehicle-vehicle and Poly I:C-vehicle rats
(t(45) = 3.2, P < 0.05, Figure 1A)]. The firing rate was reduced
by Poly I:C treatment in both vehicle- and THC-treated rats
(Figure 1B; two-way ANOVA: effect of Poly I:C, F(1,454) = 13.53,
P < 0.01; effect of THC, F(1,454) = 1.98, P > 0.05; interaction
between treatments, F(1,454) = 0.10, P > 0.05). The percentage
of spikes per burst was reduced by both Poly I:C and THC
treatments (Figure 1C) [two-way ANOVA: effect of Poly I:C,
F(1,386) = 26.28, P < 0.001; effect of THC, F(1,386) = 9.92, P < 0.01;
interaction between treatments, F(1,386) = 4.67, P < 0.05; post
hoc Sidak’s test: significant effect between vehicle-vehicle and
all other groups: (t(386) = 5.5, t(386) = 3.9, t(386) = 6.1 for
vehicle-vehicle vs. Poly I:C-vehicle, vehicle-THC, Poly I:C-THC,
respectively, P < 0.001 for all comparisons, Figure 1C)]. The
number of spikes per burst (Figure 1D) was significantly reduced
by Poly I:C treatment only in vehicle-treated rats [two-way
ANOVA: effect of Poly I:C, F(1,334) = 20.85, P < 0.0001;
effect of THC, F(1,334) = 6.32, P < 0.05; interaction between
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FIGURE 1 | Effects of maternal immune activation (MIA) and adolescent
∆9-tetrahydrocannabinol (THC) administration on ventral tegmental area (VTA)
dopamine neuron activity in vivo. Adolescent THC administration prevented
the Poly I:C-induced decrease in the number of spontaneously active VTA
dopamine neurons (A) but not the decrease in firing rate (B). Graphs show
the effect of poly IC and THC (or vehicles) in the percentage of spikes in burst
(C), mean burst duration (D), mean number of spikes in bursts (E) and
intra-burst frequency (F). Superimposed colored diamonds show the
averages for each individual rat. Both Poly I:C and THC, or their combination,
induced a reduction in the percentage of spikes in bursts (C), whereas THC
prevented alterations induced by Poly I:C in the other electrophysiological
parameters (D,E). The number of cells for each group is: veh-veh, n = 156;
Poly I:C-veh, n = 121; veh-THC, n = 101; Poly I:C-THC, n = 117. The
horizontal blue line represents the mean. Statistical analysis was conducted
with two-way ANOVA (Poly I:C and THC treatments as factors) and Sidak’s
multiple comparison test. Asterisks on graphs represent the result of the
Sidak’s multiple comparison test: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

treatments, F(1,334) = 9.30, P < 0.01; post hoc Sidak’s test:
significant effect only between vehicle-vehicle and Poly I:C-
vehicle rats (t(334) = 5.4, P < 0.0001, Figure 1D)]. The mean
burst duration (Figure 1E) was also significantly reduced by
Poly I:C treatment in vehicle-treated but not in THC-treated rats
[two-way ANOVA: effect of Poly I:C, F(1,367) = 3.58, P > 0.05;
effect of THC, F(1,367) = 3.42, P > 0.05; interaction between
treatments, F(1,367) = 5.62, P < 0.05; post hoc Sidak’s test:
significant effect only between vehicle-vehicle and Poly I:C-
vehicle rats (t(367) = 3.2, P < 0.01, Figure 1E)]. Similarly,
the mean intraburst frequency (Figure 1F) was significantly

reduced by Poly I:C treatment in vehicle-treated but not in
THC-treated offspring [two-way ANOVA: effect of Poly I:C,
F(1,338) = 7.87, P < 0.01; effect of THC, F(1,338) = 3.26,
P > 0.05; interaction between treatments, F(1,338) = 4.25,
P < 0.05; post hoc Sidak’s test: significant effect only
between vehicle-vehicle and Poly I:C-vehicle rats (t(338) = 3.6,
P < 0.01, Figure 1F)].

In summary, in Poly I:C-vehicle male offspring we detected a
reduced number of spontaneously active cells, lower frequency,
shorter bursts, a lower number of action potentials per burst,
when compared with vehicle-vehicle offspring. Adolescent THC
treatment in vehicle-THC rats did not exert significant effects,
except for the percentage of spikes in burst, which was reduced
when compared to vehicle-vehicle offspring, whereas in Poly I:C-
THC offspring, THC reversed the effects of MIA on cells/track
index, mean spikes/burst, mean burst duration and mean intra-
burst frequency. Our data indicate that dopamine cells in
prepubertal THC-treated offspring are less affected byMIAwhen
compared with Poly I:C-vehicle rats.

Considering that we recorded several neurons from each
individual rat and that each cell was considered as an
independent replicate, a two-way ANCOVAwas carried out with
treatments as factors and individual subjects as covariate, to
exclude that differences among individual rats had significant
effects. The results indicated that individual subjects had no
significant effect overall (two-way ANCOVA P > 0.05 for
all parameters).

We next examined the response of VTA dopamine cells to a
nicotine challenge and to cumulative doses of cocaine.

Figure 2A shows that pre- and postnatal treatments affect
the response of VTA dopamine cells to nicotine (0.2 mg/kg,
i.v.). The dose of nicotine was selected as it approximately
corresponds to the i.p. dose of nicotine (0.4 mg/kg) that induces
a robust conditioned place preference and, consistently, induces
also a strong increase in firing rate of VTA dopamine cells
in control animals (Melis et al., 2008; Mascia et al., 2011;
Sagheddu et al., 2019). Spontaneous activity of VTA neurons
was recorded for 5 min then a bolus dose of nicotine was
injected intravenously. In vehicle-vehicle rats nicotine induced
a robust increase in firing rate, amounting to ∼165% of baseline
(F(4,7) = 6.7, P < 0.05, one-way ANOVA), which remained stable
across the recording time. On the other hand, nicotine did not
significantly affect firing rate of VTA cells either in Poly I:C-
vehicle, vehicle-THC nor in Poly I:C-THC rats (F(4,5) = 3.6,
F(4,5) = 2.8, F(4,5) = 0.4, respectively, P > 0.05, one-way ANOVA
for all comparisons). When curves were compared across groups,
two-way ANOVA revealed a significant interaction between
factors (time and treatments; F(12,88) = 2.10, P < 0.05) and
post hoc analysis indicates that nicotine-induced effects were
significantly different in Poly I:C-THC rats when compared to
the vehicle-vehicle group (t(110) = 2.5, P < 0.05, Sidak’s multiple
comparison test).

It is well established that cocaine inhibits dopamine neurons
via increased somatodendritic dopamine release acting on
D2 autoreceptors (Einhorn et al., 1988). As illustrated in
Figure 2B, we confirmed that cocaine (0.25, 0.5, 1.0 and
2.0 mg/kg, i.v., expressed as the final cumulative doses at
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FIGURE 2 | Effects of nicotine and cocaine on firing rate of VTA dopamine
neurons in prenatal Poly I:C and adolescent THC treated offspring and their
controls. (A) Representative firing rate histograms of VTA dopamine neurons
recorded from vehicle-vehicle, Poly I:C-vehicle, vehicle-THC and Poly I:C-THC
rats showing the effects of a bolus dose of nicotine (0.2 mg/kg, i.v.). Arrows
indicate the times of nicotine injection. The graph shows that the combination
of prenatal Poly I:C and adolescent THC prevented nicotine-induced increase
of firing rate (vehicle-vehicle, n = 8; Poly I:C-vehicle, n = 6; vehicle-THC,
n = 6 and Poly I:C-THC, n = 6; two-way ANOVA and Sidak’s test, ∗P < 0.05).
(B) Representative firing rate histograms of VTA dopamine neurons recorded
from vehicle-vehicle, Poly I:C-vehicle, vehicle-THC and Poly I:C-THC rats
showing the effects of cumulative doses of cocaine (0.25–2.0 mg/kg, i.v.).
Arrows indicate the times of cocaine injections (0.25, 0.25, 0.5, 1.0 mg/kg).
The bottom graph displays the dose–response curves of the effect of
cumulative doses of cocaine on the firing rate of VTA DA neurons recorded
from vehicle-vehicle (n = 5), Poly I:C-vehicle (n = 6), vehicle THC (n = 4) and
Poly I:C-THC (n = 4). Results are presented as mean ± SEM of firing rate
expressed as a percentage of baseline levels.

each point, as we injected 0.25, 0.25, 0.5 and 1 mg/kg,
i.v.), dose-dependently reduced firing rate of dopamine cell
to approximately 50% in vehicle-vehicle rats (F(4,5) = 17.29,
P < 0.001, one-way ANOVA). This inhibitory effect was
similar to the control group and statistically significant also
in Poly I:C-vehicle (F(4,5) = 4.5, P < 0.05, one-way ANOVA),
vehicle-THC (F(4,3) = 29.9, P < 0.01, one-way ANOVA)
and Poly I:C-THC rats (F(4,3) = 81.6, P < 0.01, one-way
ANOVA). The comparison across groups revealed that neither
Poly I:C nor THC treatments, or their interaction with the
doses of cocaine, changed the inhibitory effect of cumulative

doses of cocaine onto VTA dopamine cells (F(12,64) = 0.63,
P = 0.8, two-way ANOVA).

DISCUSSION

The present findings confirm our previous studies that
MIA, evoked by maternal exposure to Poly I:C, induces
harmful effects in offspring, namely disruption of dopamine
cell electrophysiological activity: (i) reduced number of
spontaneously active cells; (ii) decrease in their firing rate;
and (iii) profound alterations in their firing pattern (Luchicchi
et al., 2016; De Felice et al., 2019). We and other groups
showed that changes in dopamine transmission translate into
abnormal behavior such as disrupted sensorimotor gating,
deficits in cognition and social interactions (Zuckerman et al.,
2003; Meyer et al., 2011; Luchicchi et al., 2016). The risk to
develop schizophrenia has often been hypothesized with models
requiring two hits in order to induce the clinical phenotype: an
early priming in a genetically/prenatally predisposed individual
and a second, likely environmental, insult (Davis et al., 2016).
Consistent with this scenario, combining exposure to prenatal
immune challenge and peripubertal stress in mice was shown
to induce synergistic pathological effects on adult behavior and
neurochemistry (Giovanoli et al., 2013, 2016).

Cannabis exposure during adolescence is consistently
associated with an increased risk to develop schizophrenia
later in life and with an earlier onset of the disease (Arseneault
et al., 2004; Fergusson, 2004; Degenhardt and Hall, 2006).
Preclinical findings consistently indicate that adolescent
cannabinoid agonist intake induces long-term behavioral
impairment and depressive-like signs (Rubino et al., 2009;
Rubino and Parolaro, 2016). Therefore, it may represent a risk
factor for developing psychotic-like symptoms in adulthood
(Rubino et al., 2008).

Thus, our hypothesis was that exposure to THC during
adolescence might exacerbate the disruption in VTA dopamine
cell activity observed in offspring followingMIA. Contrary to our
expectations, adolescent THC did not induce effects in prenatal
vehicle-treated animals, apart from a decrease in the bursting
activity of dopamine cells, whereas in Poly I:C-treated offspring
it attenuated several alterations induced by MIA. Notably, MIA
with Poly I:C was shown to induce in rats persistent increases
in cannabinoid CB1 receptor expression in adulthood in sensory
cortex and hypothalamus assessed by PET (Verdurand et al.,
2014). These findings indicate that prenatal Poly I:C leads
to region-specific long-term alterations in the integrity of the
endocannabinoid system that mirror those observed in patients
with schizophrenia in post-mortem and in vivo PET studies
(Köfalvi and Fritzsche, 2008). It is tempting to speculate that
THC in adolescence might induce changes in CB1 receptor
expression that, in our model, counteract those induced by MIA.
As an example, in MIA-exposed male offspring we observed a
decrease in the probability of glutamate and GABA release onto
dopamine cells, indexed by an increase in the paired-pulse ratio
of excitatory and inhibitory currents coupled with a reduced
frequency of miniature inhibitory and excitatory postsynaptic
currents (De Felice et al., 2019). As the release of GABA and
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glutamate is tightly regulated by 2-arachidonoylglicerol (2-AG)
acting on presynaptic CB1 receptors (Melis et al., 2004, 2014), we
can speculate that this reduced neurotransmitter release might
be caused by an increased expression or activity of CB1 receptors
on GABA or glutamate terminals, consistent with the study by
Verdurand et al. (2014). Alternatively, one possibility is that of
an enhanced biosynthesis of 2-AG by DAG-lipase in dopamine
cells or reduced degradation by MAG-lipase. How adolescent
THC might reverse these changes is not known. One intriguing
possibility is that adolescent subchronic THC might induce
a long-lasting tolerance by reducing expression or activity of
CB1 receptors, as shown in our previous studies (Pistis et al.,
2004; Dudok et al., 2015).

To the best of our knowledge, this is the very first study
carried out in a neurodevelopmental schizophrenia model with
the phytocannabinoid THC and not with synthetic cannabinoids
(Gomes et al., 2014; Aguilar et al., 2018). Interestingly, in
line with our findings, the study by Gomes et al. (2014)
reported that administration of the synthetic cannabinoid
WIN55212 during adolescence did not exacerbate the behavioral
and electrophysiological changes in methylazoxymethanol
acetate (MAM)-treated rats but attenuated the enhanced
locomotor response to amphetamine. On the other hand, in the
study by Aguilar et al. (2018), pubertal exposure toWIN55212 or
to the fatty acid amide hydrolase (FAAH) inhibitor URB597,
which increases endogenous anandamide levels, augmented
the proportion of second-generation MAM rats that develop
schizophrenia-like deficits. In both studies, the synthetic
cannabinoid treatment was able to increase the number of
spontaneously active dopamine cells in vehicle-treated animals.
Although we observed a trend toward an increase in the cell/track
index in vehicle-THC offspring (Figure 1A), this effect did not
reach statistical significance. These divergent results with our
study might be due to different pharmacology of the cannabinoid
agonists used (full vs. partial agonist), to the different length and
protocol of adolescent cannabinoid treatment (11 vs. 25 days,
continuous vs. intermittent), or to different neurodevelopmental
models (MAM vs. MIA).

Epidemiological studies confirm that schizophrenia patients
show enhanced prevalence of substance use disorders,
particularly concerning nicotine dependence, psychostimulant
and cannabis abuse (Kalman et al., 2005; Swendsen et al.,
2010). In animal models of psychiatric disorders, responses to
psychostimulant or nicotine is altered: locomotor response to
psychostimulants is enhanced in neurodevelopmental models
of schizophrenia (Gomes et al., 2014; Aguilar et al., 2018),
whereas nicotine is more self-administered and ameliorated
cognitive deficits in a lipopolysaccharide MIA model of
schizophrenia (Waterhouse et al., 2018). Here we tested if
prenatal and/or postnatal treatments affected responses of
VTA dopamine neurons to nicotine and cocaine. We found
a blunted effect of nicotine on VTA dopamine cells in all
groups when compared to vehicle-vehicle animals, although
this difference reached a statistical significance only in Poly
I:C-THC offspring. These results suggest that adolescent
THC and MIA, or the combination of both factors, induce
persistent changes in neuronal response to nicotine. The

reason for this effect requires further investigation. It can be
speculated that a reduced response to nicotine in both THC-
or MIA-exposed rats might be relevant for the high prevalence
of heavy tobacco smoking reported in both cannabis abusers
or schizophrenia patients (Kalman et al., 2005; Swendsen
et al., 2010), as higher nicotine doses might be required to
attain positive subjective effects. On the other hand, the
inhibitory effect of cocaine did not change among the four
experimental groups.

Our results, together with other previous studies, confirm that
the effects of adolescent cannabinoid exposure in MIA-exposed
individuals are more complex than expected and that the
combination of prenatal and postnatal insults (the double hit
hypothesis of schizophrenia) in neurodevelopmental models of
schizophrenia needs to be further explored.
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