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Abstract

The solution of discrete ill-posed problems has been a subject of research for
many years. Among the many methods described in the literature, the Breg-
man algorithm has attracted a great deal attention and been widely inves-
tigated. Recently, a nonstationary preconditioned version of this algorithm,
referred to as the nonstationary modified linearized Bregman algorithm, was
proposed. The aim of this paper is to discuss numerical aspects of this algo-
rithm and to compare computed results with known theoretical properties.
We also discuss the effect of several parameters required by the algorithm on
the computed solution.
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1. Introduction

We consider systems of equations of the form

bε = Ax + η, (1)

where A ∈ R
m×n is a large matrix, whose singular values decrease to zero

gradually with no significant gap, and the vector bε ∈ R
m represents mea-

sured error-contaminated data. We will refer to the error η in bε as “noise.”
It is assumed not to be known. Problems of the kind (1) are known as lin-
ear discrete ill-posed problems. They typically arise from the discretization
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of linear ill-posed problems, such as Fredholm integral equations of the first
kind with a smooth kernel; see, e.g., [1, 2] for discussions on ill-posed and
discrete ill-posed problems.

We would like to determine an approximation of the solution xtrue =
A†(bε − η) of the unknown noise-free system associated with (1), where A†

denotes the Moore-Penrose pseudoinverse of A. Due to the noise η in bε and
the presence of “tiny” positive singular values of A, the vector A†bε generally
is not a useful approximation of xtrue.

Many approaches have been proposed in the literature for computing
a useful approximation of xtrue; see, e.g., [1, 3, 2]. We will consider the
nonstationary modified linearized Bregman (NMLB) algorithm proposed by
Huang et al. [4]. This method is a variant of the modified linearized Bregman
(MLB) algorithm described by Cai et al. [5] and is designed to yield faster
convergence than the latter. The MLB algorithm is an iterative method for
solving the minimization problem

arg min
x∈Rn

{
µ ‖x‖1 +

1

2δ
‖x‖22 : Ax = bε

}
, (2)

where µ > 0 and 0 < δ < 1/ρ(ATA) are user-supplied constants. Throughout
this paper ρ(M) denotes the spectral radius of the square matrixM , and ‖·‖1
and ‖ · ‖2 stand for the ℓ1 and ℓ2 vector norms, respectively. In the following,
we will refer to µ as the regularization parameter. The MLB algorithm, which
is reviewed in Section 2, is typically applied when the desired solution xtrue

is known to be “sparse,” i.e., to have many zero entries, and we would like to
determine an approximation of xtrue with the same property. Sparse solutions
may be desirable when m ≪ n or when in some basis, such as a framelet
basis, xtrue is known to be sparse.

The purpose of the ℓ1-norm in the minimization problem (2) is to force
the computed solution to be sparse, i.e., to have many vanishing components.
The parameter µ ≥ 0 determines the amount of shrinkage. Its choice is
important for the performance of the solution methods. This is illustrated
in Section 4. The ℓ2-norm in (2) makes the minimization problem strictly
convex.

Denote the iterates determined by the MLB algorithm by x1,x2,x3, . . . .
Since we are not interested in the solution A†bε of the available system
Ax = bε, we terminate the iterations before an accurate approximation of
this solution has been determined. Specifically, we terminate the iterations
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as soon as an iterate that satisfies the discrepancy principle has been found,
i.e., as soon as ∥∥Axk − bε

∥∥
2
≤ τε, (3)

where ε is a bound for the error in bε, which is assumed to be known. Thus,

‖η‖2 ≤ ε. (4)

The parameter τ in (3) is a user-supplied constant larger than one and is
independent of ε; see, e.g., [1] for details on the discrepancy principle.

In many applications the desired vector xtrue represents a signal that is
sparse in a suitable basis, such as in the framelet domain. Tight frames have
been used in many applications, see, e.g., [6, 5, 7], because many signals of
interest have a sparse representation in the framelet domain. We will provide
details about the transformation of (1) to the framelet domain in Section 2.

This work is structured as follows: in Section 2 we recall the main re-
sults on the convergence of the NMLB algorithm, and Section 3 discusses
the choice of the parameter δ in (2) in the situation when µ = 0. Sec-
tion 4 is concerned with the choice of several parameters, including δ and the
regularization parameter µ, required by the NMLB algorithm. Numerical
examples illustrate the performance of the algorithm for different choices of
these parameters. Concluding remarks can be found in Section 5.

2. The nonstationary modified linearized Bregman algorithm

This section collects the main results in [4]. We first derive the NMLB
algorithm from the linearized Bregman (LB) algorithm. Then we summa-
rize its theoretical properties and, finally, describe how to combine the LB
algorithm with tight frames.

Let A ∈ R
m×n, with m ≤ n, be a surjective matrix, i.e., all its singular

values are positive. We will comment on below how the situation when A
has singular values that are numerically vanishing can be handled.

The aim of linearized Bregman iteration is to find an approximation of
the solution of (1) of minimal ℓ1 norm, i.e., one seeks to solve

min
s∈Rn

{‖s‖1 : As = bε} . (5)

Note that this minimization problem is not guaranteed to have a unique
solution. The iterations of the LB algorithm can be written as

{
zk+1 = zk + AT (bε − Ask),
sk+1 = δSµ(z

k+1),
(6)
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for k = 0, 1, . . . with s0 = z0 = 0. Here Sµ(x) denotes the soft-thresholding
operator,

Sµ(x) := sign(x)(|x| − µ)+,

where all the operations are element-wise and (x)+ := max{0, x} denotes the
non-negative part of x ∈ R.

The iterations (6) can be easily implemented. They require only matrix-
vector multiplications, vector additions, scalar multiplication of vectors, and
soft-thresholding. Applications of the LB algorithm include basis pursuit
problems, which arise in compressed sensing; see [8, 9]. In this, as well as
in many other applications of the LB algorithm, the matrix A is sparse, and
matrix-vector products can be evaluated cheaply. The algorithm is designed
for the approximate solution of problems (5) for which the desired solution,
xtrue, is sparse. It is shown in [10, 11] that the limit of the sequence {sk}k
generated by (6) converges to a solution of (5).

When the matrix A is ill-conditioned, i.e., when the ratio of the largest to
smallest singular values of A is large, convergence of the sequence s1, s2, . . .
generated by the LB algorithm may be very slow. Therefore, it may be
necessary to carry out many iterations (6) until an accurate approximation
of xtrue has been found. To alleviate this difficulty, Cai et al. [5] proposed the
use of a preconditioner P ∈ R

m×m in (6). This yields the MLB algorithm,

{
zk+1 = zk + ATP (bε −Ask),
sk+1 = δSµ(z

k+1),
(7)

for k = 0, 1, . . . , with s0 = z0 = 0.

Theorem 1 ([5]). Assume that A ∈ R
m×n, m ≤ n, is surjective, let P =

(AAT )−1, and let 0 < δ < 1 be a fixed constant. Then the sequence s1, s2, . . . ,
generated by the MLB algorithm (7) converges to a solution of (2) for any
µ > 0. Furthermore, as µ → ∞, the limit of the sequence s1, s2, . . . converges
to the solution of (5) that is closest to the minimal ℓ2-norm solution among
all solutions of (5).

The main difficulty with the iterations described by the above theorem is
that when the matrix A is ill-conditioned, the preconditioner P = (AAT )−1

may be of very large norm. This may cause numerical difficulties. Moreover,
in some applications of interest, the matrix A is rank deficient and then this
preconditioner is not defined.
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To avoid these difficulties, Cai et al. [5] generalized Theorem 1 to allow
the preconditioner P to be an arbitrary symmetric positive definite matrix.
This extension is described in the following theorem. We need the following
definition. Let the matrix M ∈ R

m×m be symmetric positive definite. Then
‖ · ‖M denotes the vector norm induced by the matrix M , i.e.,

‖v‖M = (vTMv)1/2, v ∈ R
m.

Theorem 2 ([5]). Let P ∈ R
m×m be a symmetric positive definite matrix and

assume that 0 < δ < 1/ρ(ATPA). Then the sequence s1, s2, . . . generated by
the iterations (7) converges to the unique solution of

argmin
x

{
µ ‖x‖1 +

1

2δ
‖x‖22 : x = argmin

x

‖Ax− bε‖P
}
.

Furthermore, as µ → ∞, the limit of the sequence s1, s2, . . . converges to
the solution of

argmin
x

{
µ ‖x‖1 : x = argmin

x

‖Ax− bε‖P
}

(8)

of minimal ℓ2-norm among all solutions of (8).

Inspired by Tikhonov regularization, Cai et al. [5] considered the appli-
cation of preconditioners of the form

P = (AAT + αI)−1, (9)

where α > 0 is a fixed user-specified parameter. With this preconditioner
the iterations (7) can be written as

{
zk+1 = zk + AT (AAT + αI)−1(bε − Ask),
sk+1 = δSµ(z

k+1),
(10)

for k = 0, 1, . . . , where s0 = z0 = 0. Theorem 2 yields that the iterates
s1, s2, . . . generated by (10) converge to the unique solution of

argmin
x

{
µ ‖x‖1 +

1

2δ
‖x‖22 : x = argmin

x

‖Ax− bε‖(AAT+αI)−1

}
.

Huang et al. [4] observed that the iterates (10) can be sensitive to the
choice of α > 0, i.e., the quality of the computed solution may deteriorate
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significantly when α is chosen slightly off an optimal value. Determining an
accurate estimate of the optimal α-value can be difficult, and is not possible in
most applications. To circumvent this difficulty, Huang et al. [4] replaced the
parameter α in (9) by a sequence of parameter values α0, α1, . . . , similarly
to a strategy suggested in [12]. In other words, the parameter α in (10)
is changed in each iteration. This defines a nonstationary preconditioning
approach. Since ρ(ATPA) < 1 for all α > 0, Huang et al. [4] let δ = 1 in
(10). Summarizing, the iterations become

{
zk+1 = zk + AT (AAT + αkI)

−1(bε − Ask),
sk+1 = Sµ(z

k+1),
(11)

for k = 0, 1, . . . , where s0 = z0 = 0. This scheme is in [4] referred to as the
NMLB algorithm. The following convergence results are shown by Huang et
al. [4].

Theorem 3. Assume that αk → ᾱ as k → ∞ for some 0 < ᾱ < ∞. Let
s1, s2, . . . denote the iterates determined by (11). Then, as k increases, the
sk converge to the unique solution of

argmin
s

{
µ ‖s‖1 +

1

2
‖s‖22 : s = argmin

s

‖As− bε‖(AAT+ᾱI)−1

}
. (12)

Furthermore, as µ → ∞, the limit of the iterates sk as k → ∞ is the solution
of (8), with P given by (9) and α replaced by ᾱ, of minimal ℓ2-norm.

The parameter ᾱ in the above theorem has to be positive for theoretical
purposes. It is “tiny” and a lower bound for the αk in the computed examples
of Section 4. In these examples the αk are a decreasing function of k, and
the iterations are terminated well before αk is close to ᾱ.

Huang et al. [4] illustrate that the iterates determined by the NMLB
algorithm with a suitable decreasing parameter sequence α0, α1, . . . are less
sensitive to the choice of the parameters αk than the iterates generated by
the MLB algorithm (10) are to the choice of the single parameter α. More-
over, Huang et al. [4] found that the NMLB algorithm may determine more
accurate approximations of xtrue than the MLB algorithm.

The application of the preconditioner P defined by (9) is attractive when
the matrix AAT is not too large. Then we can explicitly form this matrix,
compute the Choleski factorization of AAT + αI, and use the latter when
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evaluating matrix-vector products with P . When AAT is large, the precon-
ditioner should be chosen so that it approximates (AAT +αI)−1 in a suitable
manner. For instance, in image restoration applications, the matrix A of-
ten is a large square block-Toeplitz-Toeplitz-block matrix. It may then be
attractive to approximate the preconditioner (9) by a matrix of the form
(CCT + αI)−1, where C is a block-circulant-circulant-block matrix that ap-
proximates A. Techniques for determining such preconditioners are described
in, e.g., [13, 14, 15]. A recent discussion on how to determine approximations
of the preconditioner (9) and numerical illustrations are provided by Cai et
al. [16]; see Section 5 for further comments.

In many applications the desired solution, xtrue, is not sparse in the canon-
ical basis for R

n, but it is sparse in a framelet basis. Framelets are frames
with local support. We will review how to combine tight frames and the
NMLB algorithm. Applications of tight frames are described, e.g., in [5, 4].
Computed examples with tight frames are presented in Section 4. First, we
define tight frames:

Definition 1. Let W ∈ R
r×n with n ≤ r. The set of the rows of W is a

tight frame for R
n if ∀x ∈ R

n it holds

‖x‖22 =
r∑

j=1

(wT
j x)

2, (13)

where wj ∈ R
n is the jth row of W (written as a column vector), i.e., W =

[w1,w2, . . . ,wr]
T . The matrix W is referred to as an analysis operator and

W T as a synthesis operator.

Equation (13) is equivalent to the perfect reconstruction formula

x = W Ty, y = Wx.

In other words
W is a tight frame ⇔ W TW = I.

Note that, in general, WW T 6= I, unless r = n and the frames are orthogonal.
One of the interesting properties of tight frames is that many signals that

arise in applications have a sparse representation in the framelet domain.
Since the NMLB algorithm seeks to compute a sparse solution, we would like
to modify (1) so that the unknowns are framelet coefficients. Let W denote
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an analysis operator. Inserting W TW = I into (1) and ignoring η in the
right-hand side yields the system of equations

AW TWx = bε.

Let K = AW T and y = Wx. Then the above equation can be expressed as

Ky = bε. (14)

The entries of the unknown vector y are framelet coefficients of the solution.
In many applications the vector y is very sparse. Transformation to the
framelet domain allows us to take advantage of the sparsity of solutions
computed by the NMLB algorithm, even when the desired solution xtrue is
not sparse in the canonical basis for R

n. Thus, we first apply the NMLB
algorithm to (14) to determine the framelet coefficient vector y, and then
compute an approximation of xtrue by applying the synthesis operator W T

to y. Note that, generally, the matrix W is very sparse and, therefore, the
evaluation of matrix-vector products withW andW T is very cheap. It follows
that the computational cost of the transformation of (1) to the framelet
domain and back typically is negligible. Note that the preconditioner P is
not affected by the transformation to the framelet domain; we have

(KKT + αkI)
−1 = (AW T (AW T )T + αkI)

−1

= (AAT + αkI)
−1.

We turn to the stopping criterion for the NMLB algorithm. From Theo-
rem 3, we know that the limit point of the iterates determined by the NMLB
algorithm is a solution of (12). However, when the vector bε is contami-
nated by noise and the matrix A is very ill-conditioned (i.e., the ratio of the
largest and smallest singular values of A is very large), solutions of (12) are
not meaningful approximations of xtrue. A fairly accurate approximation of
xtrue often can be determined by terminating the iterations with the NMLB
algorithm before convergence is achieved. Huang et al. [4] employed the
discrepancy principle to determine when to terminate the iterations (11).
Assume that a fairly sharp bound (4) for the norm of the error in the data
vector bε is available. We then terminate the iterations with the NMLB
algorithm when the discrepancy principle (3) is satisfied, or equivalently, as
soon as an iterate sk satisfies

∥∥AW T sk − bε
∥∥
2
≤ τε. (15)
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Algorithm 1 summarizes the computations of the NMLB method applied to
(14).

Algorithm 1 The NMLB Algorithm

Input: A ∈ R
m×n, bε ∈ R

m, {αk}k such that αk → ᾱ with 0 < ᾱ < ∞,
µ > 0, τ > 1, and W ∈ R

r×n an analysis operator
Output: regularized solution x∗

1: z0 = 0, s0 = 0, k = 0
2: repeat

3: k = k + 1
4: zk = zk−1 +WAT (AAT + αnI)

−1(bε − AW T sk−1)
5: sk = Sµ(z

k)
6: until

∥∥AW T sk − bε
∥∥
2
≤ τε

7: x∗ = W T sk

3. Landweber iteration

This section seeks to shed light on how the parameter δ > 0 in (6) and
(10) affects the rate of convergence of the iterates. To simplify the analysis,
we set µ = 0. Then the soft-thresholding operator Sµ becomes the identity
operator, and the iterations (6) and (10) turn into Landweber iteration

sk+1 = sk + δAT (bε −Ask), k = 0, 1, . . . , (16)

and preconditioned Landweber iteration

sk+1 = sk + δAT (AAT + αI)−1(bε −Ask), k = 0, 1, . . . , (17)

respectively. The parameter α is assumed to be positive. Analyses of these
iterations related to our analysis below can be found in, e.g., Elfving et al.
[17] and Engl et al. [1].

Let the matrix M ∈ R
m×m be symmetric. Then its eigenvalues are real

and we may choose the eigenvectors to be orthogonal. We will refer to the
eigenvectors associated with the largest eigenvalues as the largest eigenvec-
tors.

Proposition 1. Let s0 = 0 and assume that 0 < δ < 2/ρ(ATA). Then
the iterates (16) converge to the solution s∗ of minimal ℓ2-norm of the least-
squares problem

min
s∈Rn

‖As− bε‖2. (18)
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Let {uj}nj=1 denote the set of orthonormal eigenvectors of ATA and express
the difference sk − s∗ in terms of these eigenvectors,

sk − s∗ =
n∑

j=1

γk
juj , γk

j ∈ R. (19)

Then the choice δ = 1/ρ(ATA) makes nonvanishing coefficients γk
j associated

with the largest eigenvectors uj converge to zero faster as k increases than
nonvanishing coefficients γk

j associated with other eigenvectors.

Proof. The convergence of the iterates (16) when 0 < δ < 2/ρ(ATA) is well
known. It follows by substituting the spectral factorization of ATA into (16).
The fact that all iterates live in the range of AT makes them orthogonal to
the null space of A. Therefore, they converge to the solution of minimal
Euclidean norm; see, e.g., [17, 1] for details. The rate of convergence of the
coefficients γk

j as k increases follows by studying how the components in the
right-hand side of (19) are damped during the iterations.

Proposition 2. Let s0 = 0, α > 0, and assume that 0 < δ < 2(1 +
α/ρ(ATA)). Then the iterates (17) converge to the solution s∗ of the min-
imization problem (18) of minimal ℓ2-norm. Consider the differences (19)
with the iterates sk defined by (17). Then the choice

δ = 1 + α/ρ(ATA) (20)

makes nonvanishing coefficients γk
j in (19) associated with the largest eigen-

vectors uj converge to zero faster as k increases than nonvanishing coeffi-
cients γk

j associated with other eigenvectors.

Proof. By (17), the iterates sk, k = 1, 2, . . . , live in the range of AT . There-
fore, if they converge, then they converge to the solution of (18) of minimal
Euclidean norm. The convergence of the sequence sk, k = 1, 2, . . . , can be
established similarly as in the proof of Proposition 1, i.e., by investigating
how the error ek = sk − s∗ is damped during the iterations. We have

ek+1 = ek − δAT (AAT + αI)−1Aek. (21)

Using the identity

AT (AAT + αI)−1A = (ATA + αI)−1ATA

10



and the spectral factorization

ATA = UΛUT , Λ = diag[λ1, λ2, . . . , λn], U = [u1,u2, . . . ,un],

we obtain from (21) that

ẽk+1
j = (I − δ(Λ + αI)−1Λ)ẽk, ẽj := UTej . (22)

The observation that t → t/(α + t) is an increasing function of t ≥ 0 shows
convergence of the errors ek to zero as k increases when 0 < δ < 2(1 +
α/ρ(ATA)). The rate of convergence of the coefficients γk

j in the expansion
(21) to zero as k increases follows by studying the components of errors in
(22).

We remark that it is easy to show that the vector s∗ of Proposition 2 also
is the solution of minimal Euclidean norm of

min
s∈Rn

‖As− bε‖(AAT+αI)−1 ,

which is the expression in (12).
We are interested in damping the largest eigenvectors in the difference

sk − s∗ of Proposition 2, because these eigenvectors are the most important
components of xtrue; the smallest eigenvectors model noise and generally
should not be included in the computed approximation of xtrue. Proposition 2
suggests that when the parameter α is not “tiny” and an estimate of ρ(ATA)
that is not “huge” is available, a value of δ based on an estimate of the
right-hand side of (20) should be used, because this may result in faster
convergence of the iterates than δ = 1.

Thus, Proposition 2 indicates that δ should be chosen larger than unity
for the iterations (17) to achieve a higher rate of convergence. While the
proposition does not apply to the iterates (11) with µ > 0, we, nevertheless,
would expect the latter iterates to converge faster for δ > 1 than for δ = 1,
at least for some problems and when µ is not too large. Computed examples
reported in the following section illustrate that this indeed is the case.

4. Numerical aspects of the NMLB algorithm

This section discusses the performance of the NMLB algorithm when
applied to the solution of a few linear discrete ill-posed problems from Regu-
larization Tools by Hansen [18]. In particular, we are interested in studying
the influence of user-specified parameters on the computed solution.
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Following Huang et al. [4], we chose the sequence of parameters

αk = α0q
k + 10−15 (23)

for the preconditioners P in (11), where α0 > 0 and 0 < q < 1. Thus,
αk → ᾱ = 10−15 as k → ∞. We set α0 = 0.5 in all experiments. This leaves
us with the determination of the parameters µ, q, and δ.

We use the discrepancy principle as a stopping criterion with τ = 1.01 in
(3) and (15). The maximum number of allowed iterations is set to 7000. We
will investigate the number of iterations required to satisfy the discrepancy
principle as a function of µ, q, and δ. Also the relative restoration error
(RRE), defined by

RRE(x) =
‖x− xtrue‖2
‖xtrue‖2

,

is studied as a function of these parameters. Finally, we will consider the
norm of the residual at the final iteration, i.e.,

∥∥Axk∗ − bε
∥∥
2
, where k∗ de-

notes the number of iterations carried out by the NMLB algorithm.
We use the same tight frame system as Huang et al. [4], i.e., the system

of linear B-splines. This system is formed by a low-pass filter W0 ∈ R
n×n

and two high-pass filters W1 ∈ R
n×n and W2 ∈ R

n×n, whose corresponding
masks are

w(0) =
1

4
(1, 2, 1) , w(1) =

√
2

4
(1, 0, −1) , w(2) =

1

4
(−1, 2, −1) .

The analysis operator W is derived from these masks and by imposing
reflexive boundary conditions. These boundary conditions are such that
W TW = I. We obtain

W0 =
1

4




3 1 0 . . . 0
1 2 1

. . .
. . .

. . .

1 2 1
0 . . . 0 1 3




, W1 =

√
2

4




−1 1 0 . . . 0
−1 0 1

. . .
. . .

. . .

−1 0 1
0 . . . 0 −1 1




,

and

W2 =
1

4




1 −1 0 . . . 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 . . . 0 −1 1




.
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Thus,

W =




W0

W1

W2


 .

The matrix W is very sparse. Therefore, the evaluation of matrix-vector
products with W and W T is inexpensive.

Since we would like to investigate the performance of the NMLB algorithm
for many different choices of µ, q, and δ, we choose the dimensions m and
n in all examples to be fairly small; specifically, we set n = m = 200. The
error η in bε is modeled by white Gaussian noise and we refer to the ratio

σ =
‖η‖2

‖Axtrue‖2
as the noise level. We use the test problems baart, phillips, and heat from
Regularization Tools [18]. They are discretizations of Fredholm integral of
the first kind. In all examples, the desired solution xtrue has a sparse repre-
sentation in terms of the framelet basis used.

All computations are carried out using MATLAB 8.6 (R2015a) on a lap-
top computer with an Intel(R) Core(TM) i5-3337U CPU @ 1.80 GHz and 16
GB of memory. The floating-point precision is 10−16. Following Huang et al.
[4], we let δ = 1 in subsections 4.1-4.3. The influence of the value of δ on the
convergence rate is illustrated in subsection 4.4.

4.1. The number of iterations

We first discuss the number of iterations required by the NMLB algorithm
to reach convergence (i.e., to satisfy the discrepancy principle). This is of
particular importance since, if too many iterations are carried out, then the
algorithm becomes unstable. Consider the sequence αk defined by (23). Let
σmax and σmin denote the largest and smallest singular values, respectively, of
A. Thus, σ2

max = ρ(ATA). Then the condition number of the preconditioner
P = (AAT + αkI)

−1 is given by

κ2(P ) =
σ2
max + αk

σ2
min + αk

.

We are interested in the situation when A is severely ill-conditioned, i.e.,
when σmax ≫ σmin. Assume for the moment that A is scaled so that σmax = 1.
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Then we obtain

κ2(AA
T + αkI) ≈

1 + αk

αk

→ 1 + 10−15

10−15
≈ 1015 as k → ∞.

Thus, if many iteration are carried out, i.e., if k is large, then the matrix
AAT + αkI becomes very ill-conditioned. In this situation, the evaluation of
Pu for a vector u ∈ R

m may suffer from severely propagated error stemming
from round-off errors that are introduced during the computations.

Figure 1 displays the number of iterations required for the NMBL algo-
rithm to satisfy the discrepancy principle. Visual inspection of the graphs
shows the number of iterations to increase with µ. Moreover, we can ob-
serve that, the larger q is, the more iterations are needed. The latter is
to be expected, since for large q-values and modest k the preconditioner
(AAT + αkI)

−1 is a poor approximation of the matrix (AAT )†.
These observations show that µ should not be chosen too large, because a

large µ-value may lead to that the NMBL algorithm requires a large number
of iterations to satisfy the discrepancy principle. This makes the algorithm
expensive and, moreover, unstable. The poor performance of the NMBL
algorithm is evident in Figure 1. We can observe that, starting from a certain
µ-value, the number of iterations sharply increases as µ increases. We remark
that this behavior is less evident for the phillips test problem, because the
matrix A of this problem is less ill-conditioned than the matrices of the other
problems.

4.2. The residual norm

We turn to the behavior of the norm of the residual at the final itera-
tion. This analysis tells us when, in practical applications, the discrepancy
principle is able to effectively terminate the iterations. In theory, it follows
from Theorem 3 that the discrepancy principle should effectively stop the
algorithm after finitely many iterations, independently of the choice of µ and
q. However, if the norm of the residual does not decrease fast enough, then
the NMLB algorithm fails to converge due to numerical instability.

Figure 2 shows the norm of the residual at the last iteration for different
values of µ and q. We observe that for small values of µ, the norm of the
residual behaves as expected, i.e., it is constant and equal to τε. This implies
that the iterations were terminated by the discrepancy principle. However,
if µ is too large, then we can see that, especially for small noise levels, the
discrepancy principle is not able to stop the iterations. This is due to the
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Figure 1: Number of iterations required to reach convergence for different choices of µ and
q. The different graphs represent the number of iterations versus µ. The yellow graph
is for q = 0.6, the red graph for q = 0.8, and the blue graph for q = 0.9. Panels (a)-(c)
report results for the baart test problem, panels (d)-(f) for the heat test problem, and
panels (g)-(i) for the phillips test problem. The panels (a), (d), and (g) show results for
the noise level σ = 10−3, the panels (b), (e), and (h) for σ = 10−2, and the panels (c), (f),
and (i) for σ = 10−1.
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Figure 2: Norm of the residual at the final iteration for different choices of µ and q. The
different graphs display the norm of the residual at the final iteration versus µ. The yellow
graph is for q = 0.6, the red graph for q = 0.8, and the blue graph for q = 0.9. Panels
(a)-(c) report results for the baart test problem, panels (d)-(f) for the heat test problem,
and panels (g)-(i) for the phillips test problem. The panels (a), (d), and (g) show results
for the noise level σ = 10−3, the panels (b), (e), and (h) for σ = 10−2, and the panels (c),
(f), and (i) for σ = 10−1.
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large number of iterations performed and the consequent ill-conditioning of
the preconditioner with small αk > 0. Severely propagated round-off errors
prevent the NMLB algorithm from terminating.

4.3. The relative restoration error

We would like to analyze the behavior of the RRE as functions of the
parameters µ and q. Figure 3 shows the RRE obtained for different choices
of µ and q. We observe that for small values of µ, the RRE is almost constant.
In fact, for µ small, the NMLB algorithm essentially becomes a nonstationary
preconditioned Landweber iteration method; see Section 3. As µ increases,
the RRE starts to decrease until a minimum is reached. This behavior is
particularly evident for the test problem heat. When µ becomes large, the
error increases with µ and this increase can be very sharp. This effect is
due to the fact that the NMLB algorithm is unstable for large values of µ.
Figure 4 displays magnifications of the graphs of Figure 3 around the value
µ that gives the smallest RRE.

4.4. The choice of δ

Let s0 = z0 = 0. This subsection illustrates how the iterates s1, s2, . . . ,
defined by {

zk+1 = zk + AT (AAT + αkI)
−1(bε − Ask),

sk+1 = δSµ(z
k+1),

(24)

for k = 0, 1, . . . , depend on the choice of δ. Huang et al. [4] let δ = 1. This
choice secures convergence. However, the analysis in Section 3 suggests that
a larger value of δ may give faster convergence. The computations reported
in this subsection show that this indeed may be the case, i.e., the iterates
(24) for δ > 1 display faster convergence than the iterates (11). We will
illustrate this with a few representative computations. In all computations
for this subsection, the noise level is σ = 1 · 10−2.

We first consider the baart test problem. For µ = 6.9 · 10−4 and µ =
4.8 · 10−2, the iterations (24) for δ = 1 and δ = 1.5 are terminated by the
discrepancy principle for all q-values reported in Table 1; the errors in the
computed approximate solutions are essentially independent of q. Table 1
shows the number of iterations required to satisfy the discrepancy principle
for several q-values and two δ-values. As expected, the number of iterations
decreases as q is decreased for both values of δ. We also see that for fixed µ
and q, the number of iterations required is smaller for the larger value of δ.

17



10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
0

10
5

10
10

10
15

10
20

10
25

10
30

(a)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

(c)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

10
3

(d)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

(e)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

(f)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

(g)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

(h)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

(i)

Figure 3: RRE obtained for several choices of µ and q. The different graphs display the
RRE versus µ. The yellow graph is for q = 0.6, the red graph for q = 0.8, and the blue
graph for q = 0.9. Panels (a)-(c) report results for the baart test problem, panels (d)-(f)
for the heat test problem, and panels (g)-(i) for the phillips test problem. The panels (a),
(d), and (g) show results for the noise level σ = 10−3, the panels (b), (e), and (h) for
σ = 10−2, and the panels (c), (f), and (i) for σ = 10−1.
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Figure 4: RRE for different choices of µ and q. The panels are magnifications of the the
panels of Figure 3 around the optimal value of µ, i.e., the µ-value that gives the smallest
RRE. The different graphs show the RRE versus µ. The yellow graph is for q = 0.6, the
red graph for q = 0.8, and the blue graph for q = 0.9. Panels (a)-(c) report results for
the baart test problem, panels (d)-(f) for the heat test problem, and panels (g)-(i) for
the phillips test problem. The panels (a), (d), and (g) show results for the noise level
σ = 10−3, the panels (b), (e), and (h) for σ = 10−2, and the panels (c), (f), and (i) for
σ = 10−1.
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Table 1: Number of iterations for the baart test problem for two values of δ.

δ µ q = 0.99 q = 0.95 q = 0.90 q = 0.85 q = 0.80

1.0 6.9 · 10−4 98 44 28 21 17
4.8 · 10−2 93 43 27 20 16

1.5 6.9 · 10−4 74 37 24 18 15
4.8 · 10−2 71 36 24 18 14

Table 2: Number of iterations for the heat test problem for two values of δ.

δ µ q = 0.99 q = 0.95 q = 0.90 q = 0.85 q = 0.80

1.0 6.9 · 10−4 14 11 9 8 7
4.8 · 10−2 24 18 14 11 10

1.5 6.9 · 10−4 9 8 7 6 5
4.8 · 10−2 16 13 10 9 8

Indeed, we have observed the number of iterations to decrease as δ increases
until δ is too large. The value of δ that gives the least number of iterations
depends on the problem.

We turn to the heat test problem for the same values of µ, q, and δ, and
the same noise level. The errors in the computed approximate solutions are
essentially independent of q also for this test problem. Table 2 shows the
number of iterations required to satisfy the discrepancy principle. Similarly
as in Table 1, the number of iterations decreases as q decreases for fixed δ,
and decreases as δ increases for fixed q.

Letting δ > 1 does not reduce the number of iterations required to satisfy
the discrepancy principle for the phillips test problem. Hence, the choice of
δ that results in the least number of iterations is problem dependent. We
conclude that δ = 1 is a safe choice, but the number of iterations may be
reduced by choosing a larger δ-value for some problems.

4.5. Final considerations

We observed the value of the parameter µ to be important for the per-
formance of the NMLB algorithm. This parameter affects both the rate of
convergence and the quality of the computed approximate solution. In par-
ticular, if µ is chosen too large, then the NMLB algorithm slows down to the
point of becoming unstable. Moreover, if the value of µ is far from the value
that results in the smallest RRE, the NMLB algorithm may determine an
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approximation of xtrue of poor quality. The value of the parameter q has a
lesser effect on the quality of the computed approximation of xtrue. However,
this parameter affects the rate of convergence. Using a large q-value is both
advantageous and disadvantageous. The main advantage is that the NMLB
algorithm is more stable, since the convergence towards ᾱ of the sequence αk

is slower. Therefore, more iterations can be carried out before the method
becomes unstable due to severe ill-conditioning of the preconditioner P . On
the other hand, the number of iterations required to satisfy the discrepancy
principle increases with q. This increase may be rapid. We note that, if a
large µ-value is required, then we have to choose a large value of q. This is
due to the fact that when µ is large, convergence typically is slow and many
iterations are required. The latter leads to instability if q is not large enough.
Finally, the examples of the previous subsection illustrate that letting δ be
strictly larger than one may increase the rate of convergence.

5. Conclusions

A numerical investigation of the NMBL algorithm is presented. We have
elucidated how the choice of some user-specified parameters affect the results
obtained with this algorithm. In particular, we show that the choice of the
regularization parameter µ is of importance, and that an imprudent choice of
this parameter may result in computed solutions of poor quality. The iterates
are found to converge faster when the parameter δ in (24) is chosen larger
than one. The exact choice is not critical, but a too large value of δ prevents
convergence. Our examples illustrate that if the user-specified parameters
in (11) are not chosen carefully, then the theoretical results for this method
shown in [4] may not hold in finite precision arithmetic.

In our experiments we considered fairly small examples in one space-
dimension so that the preconditioner can be applied repeatedly by using a
direct factorization in reasonable computational time. However, in many
real-world applications the number of space-dimensions is larger than one
and, if the matrix A does not have an exploitable structure, application of
the preconditioner by a direct factorization method may not be feasible. To
reduce this difficulty Cai et al. [16] recently proposed a modification of the
NMLB algorithm, in which preconditioners of the form (9) are approximated
by nearby ones with a structure that allows their fairly inexpensive applica-
tion also for large-scale problems. The numerical analysis presented in this
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paper can be extended to the iterative scheme described by Cai et al. [16].
This is a topic of future research.
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