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Abstract. In many inverse problems the operator to be inverted depends on parameters which are not known precisely. In
this article we propose a functional that involves as variables both the solution of the problem and the parameters on which the
operator depends. We first prove that the functional, even if it is non-convex, admits a global minimum and that its minimization
naturally leads to a regularization method. Then, using the popular Alternating Direction Multiplier Method (ADMM), we describe
an algorithm to identify a stationary point of the functional. The introduction of the ADMM algorithm lets us easily introduce
some constraints on the reconstructions like non-negativity and flux conservation. Since the functional is non-convex a proof of
convergence of the method is given. Numerical examples prove the validity of the proposed approach.
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1. Introduction. Many applications in various scientific fields lead to inverse problems modeled as an
equation of the form

(1) B(k, f) = g,

where f is the desired solution, g is the measured data, and k is a variable on which the operator B depends,
e.g., if B(k, f) = k ∗ f is the convolution operator then k represents the integral kernel. We consider the case
in which the problem (1) is ill-posed. As happens in practical applications, we assume that is impossible to get
the true data g but only a noisy version gδ is available, such that ‖g − gδ‖ ≤ δ, where ‖·‖ denotes the Euclidean
norm. The direct solution of the associated discrete system, usually leads to very poor reconstruction of the
original f , thus arises the need for regularization methods. In many situations also k is not precisely known, but
only a noisy measurement kǫ is available, such that ‖k − kǫ‖ ≤ ǫ. We will assume that the noise that corrupts
both g and k is Gaussian. Therefore, equation (1) becomes

B(kǫ, f) = gδ.

We refer to the regularization of such a problem as semi-blind, since the variable k, even though is not completely
unknown, has a certain degree of uncertainty on it. Blind and semi-blind deconvolution has been largely
investigated [1, 2, 3, 6, 7, 8, 12, 15, 16, 18, 24, 29, 30]. The approach in [3, 16] requires that the blurring
operator is diagonalized by fast transforms, which is not assumed in this paper. In [6] a double regularization
approach to recover f and k was proposed, which consisted in solving

(2)
(

kδ,ǫ
α,β , f

δ,ǫ
α,β

)

= arg min
k,f

J(k, f)

where J(k, f) = 1
2T (k, f)+R(k, f), T had the role of data-fitting term and R was the penalty term. In particular

T (k, f) = ‖B(k, f) − gδ‖2
+ γ ‖k − kǫ‖2

,

R(k, f) = α ‖Lf‖ + βR(k),

where R(k) is an appropriate penalty term and L is a regularization operator which was supposed to be bounded
and continuously invertible. A numerical technique to solve (2) was proposed by the same authors in [7] using
an alternating minimization over f and k.

In this work we want to improve the results in [6, 7] by introducing a more complex penalty term for f
and by employing a more sophisticated numerical technique for the minimization. In particular we want to
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introduce for both k and f as a prior the Total Variation (TV). The TV norm has the the ability to well
preserve the edges of the signal while also reconstructing its smooth parts and has proven to well perform in
various situations. Moreover, we add some constraints like the flux conservation and nonnegativity.

We would like to stress the fact that, while here we are only considering the TV norm as a prior for k, the
extension to a general convex prior R(k) is straightforward.

The introduction of the TV and of the constraints makes the minimization of the functional we are going
to consider more complicated and so the introduction of advanced numerical techniques is needed.

For the numerical solution of the minimization we are going to use the Alternating Direction Multiplier
Method (ADMM) [9]. The ADMM algorithm was developed for solving constrained convex optimization prob-
lem, in recent years this method has been successfully applied to non-convex minimization, see, e.g., [25, 27].
However, the convergence of the algorithm is not proven in the general non-convex setting and needs to be
shown for each particular problem.

We thus prove that the resulting numerical method is convergent and we give some numerical evidences
of the improvement in the quality of the reconstructed images with respect to the proposal in [7], to the basic
method using the measured PSF for the deconvolution, and to some methods in the literature.

To the best of our knowledge an approach like the one described here has never been proposed. In particular,
most of the blind and semi-blind methods tackle the problem by considering the variables k and f separately,
see, e.g., [1], while here we propose a model that consider the two unknowns jointly. Moreover, the convergence
of the ADMM algorithm in this setup has never been proved. In particular, our approach differs from the other
ones in the literature because the variables are not decoupled. Moreover, we do not assume that the gradients
of the functional that is to be minimized are Lipschitz continuous.

This work is structured as follows: Section 2 describes the functional we want to consider and analyze some of
its properties. In Section 3 we describe the algorithm for the minimization of the functional previously introduced
and we prove its convergence, while in Section 4 we discuss the addition of some constraints. Section 5 is devoted
to numerical examples in image deblurring.In Section 6 we draw some conclusions. Finally in Appendix A.1 we
give all the detailed proofs of the results stated in the paper and in Appendix B we describe how to use the
ADMM algorithm for multiple constrained minimization.

2. The regularized functional. As previously discussed, our goal is to extend the previous results from
[6] using a more complex penalty term for both f and k. Let gδ, kǫ, f, k ∈ H1, where H1 denotes the Sobolev
space W 1,2 which is a separable Hilbert space, see, e.g., [10, Section 9.1]. We consider the minimization of the
following functional

(3) Jδ,ǫ
α,β (k, f) = ‖B (k, f) − gδ‖2

+ αTV ‖f‖T V + αE ‖f‖2
+ γ ‖k − kǫ‖2

+ β ‖k‖T V ,

where

‖h‖T V =

∫

‖∇h‖

is the total variation norm of h ∈ H1. For simplicity of notation we denote by α the couple
(

αE, αTV
)

.
We now show some theoretical properties of (3), in particular we want to show the existence of a global

minimizer, the stability of the minima, and the fact that, if α and β are properly chosen, in relation to the
noise, the minimization of Jδ,ǫ

α,β induces a regularization method.

Assumption 1. The operator B is strongly continuous on its domain.

Before proving the existence of the minimizer we first need to show some properties of Jδ,ǫ
α,β (f, k).

For the convenience of the reader we postpone all the proofs in Appendix A.1.

Lemma 1. The functional Jδ,ǫ
α,β (f, k) defined in (3) is positive, weakly lower semi-continuous (wlsc) and

coercive with respect to the norm ‖(k, f)‖2
:= ‖k‖2

+ ‖f‖2
.

We are now able to state the existence of a global minimizer.

Theorem 2 (Existence). The functional Jδ,ǫ
α,β (f, k) defined in (3) has a global minimizer.

We are now in the position to state the stability property

Theorem 3 (Stability). With the same notation as above, let αE, αTV, β, and γ be fixed. Let
(

gδj

)

j
and

(

kǫj

)

j
be sequences such that gδj

→ gδ and kǫj
→ kǫ, let (kj , fj) be minimizers obtained with data gδj

, kǫj
. Then

there exists a convergent subsequence of (kj , fj) and the limit of every subsequence is a minimizer of Jδ,ǫ
α,β.
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One of the most important properties of regularization methods is the regularization property. We want
that in the ideal case, i.e., when there is no noise, we can exactly recover a true solution of the problem and
in particular that with minimum norm. Moreover, we want that, as the norm of the noise goes to 0, the
corresponding reconstructions converge to the minimum norm solution of the problem as well. This intuitively
means that, if there is not too much noise and if the parameters αE, αTV, and β are set accordingly, we can
trust our method to give good approximation to the true solution.

We now define what is the minimum norm solution in this setup.

Definition 4. The minimum norm solution of B (k0, f0) = g0 is

f † = arg min
f∈H1

{‖f‖2
+ ‖f‖T V : B (k0, f) = g0}.

We would like to stress the fact that the quantity ‖f‖2
+ ‖f‖T V is strictly related to the norm of the Sobolev

space H1 which is defined as ‖f‖2
H1 =

∫

|f |2 + |∇f |2.
We now state that, if αE, αTV, and β are chosen properly and dependently from the noise, the method

proposed is a regularization method.

Theorem 5 (Regularization property). Let
(

gδj

)

j
and

(

kǫj

)

j
be sequences such that

∥

∥gδj
− g0

∥

∥ < δj and
∥

∥kǫj
− k0

∥

∥ < ǫj

and such that δj , ǫj → 0 as j → ∞. Let αE
j , αTV

j , and βj be sequences such that αE
j , α

TV
j , βj → 0 as j → ∞,

moreover, assume that it holds

lim
j→∞

δ2
j + γǫ2

j

αE
j

= 0, lim
j→∞

αTV
j

αE
j

= 1, and lim
j→∞

βj

αE
j

= η 0 < η < ∞.

Call (kj , fj) :=
(

k
δj ,ǫj

αj ,βj
, f

δj ,ǫj

αj ,βj

)

, then there exists a convergent subsequence of (kj , fj) such that kj → k0 and

the limit of every convergent subsequence of fj is the minimum norm solution of B(k0, f) = g0.

3. Minimization Algorithm. Computing a minimum of (3), since it is non-convex and non-smooth.
Moreover, the minimization over two variables by itself can be very challenging. The strategy proposed in [7]
was an alternating minimization, where at each step one variable was fixed and the functional was minimized
in respect to the other free variable. With this method it is possible to avoid the complicated minimization
over two arguments, but still the minimization over only one variable can be tough. The method we are going
to propose decouples the various terms inside (3) obtaining a series of simple minimization problems.

We now consider the finite dimensional case, in particular for simplicity we assume f ,k ∈ Rn×n (the
extension to the case where f and k belong to different spaces and are not square is straightforward).

In this section we denote by xi the ith component of the vector x and by x(j) the jth iteration generated
by some iterative algorithm.

Since in many application it is possible to know that the exact solution of the problem lies in some closed
and convex set, it is then beneficial to constrain the computed approximation to lie in that set as well, i.e.,
constraining the minimization of Jδ,ǫ

α,β . We consider the following constrained minimization problem

(4) (k∗, f∗) = arg min
k∈Ωk,f∈Ωf

Jδ,ǫ
α,β (k, f) ,

where, with abuse of notation, we call Jδ,ǫ
α,β the discretization of the function defined in (3) and Ωk,Ωf ⊂ R

n×n

are closed and convex sets.
For computing a minimum, or at least a critical point, of Jδ,ǫ

α,β we use the ADMM algorithm. However,

note that the classic theory of ADMM does not assure the convergence of the method in this case since Jδ,ǫ
α,β is

non-convex, see, e.g., [9]. Thus, we are going to need a different result for its convergence. In particular, we are
going to need a further assumption on Ωk × Ωf .

Before covering the convergence property of the proposed algorithm we explicitly formulate all its ingredi-
ents.
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The isotropic Total Variation operator in this space is defined as follows. Let x ∈ R
n2

be the vectorization
of a bidimensional array in Rn×n obtained by stacking its columns, then

TV (x) =
n2
∑

i=1

‖Dix‖ ,

where Dix =
((

D(1)x
)

i
,
(

D(2)x
)

i

)t ∈ R2 is

(5)

(

D(1)x
)

i
=

{

xi+n − xi, if 1 ≤ i ≤ n (n− 1)
xmod(i,n) − xi, otherwise

(

D(2)x
)

i
=

{

xi+1 − xi, if mod(i, n) 6= 0
xi−n+1 − xi, otherwise.

With abuse of notation we will write ‖x‖T V = TV (x), also in the finite dimensional case.
Let us rewrite (4) in an equivalent way

(k∗, f∗) = arg min
k∈Ωk,f∈Ωf

‖B (k, f) − gδ‖2 + αE ‖f‖2 + αTV ‖f‖T V + γ ‖k − kǫ‖2 + β ‖k‖T V

= arg min
k̃∈Ωk,f̃∈Ωf

k̂,f̂ ,k,f

{

‖B (k, f) − gδ‖2 + αE ‖f‖2 + αTV
∥

∥

∥f̂
∥

∥

∥

T V
+ γ ‖k − kǫ‖2 + β

∥

∥

∥k̂
∥

∥

∥

T V
,

k = k̃, f = f̃ ,k = k̂, f = f̂
}

,

where f , f̃ , f̂ ,k, k̃, k̂ ∈ RN with N = n2 and, with abuse of notation, B (k, f) denotes the finite dimensional
version of B(k, f).

We now write the Augmented Lagrangian of the minimization above

LA

(

f̃ , f̂ , f , k̃, k̂,k; λ, ξ, ζ,µ
)

= ‖B (k, f) − gδ‖2
+ αE ‖f‖2

+ αTV
∥

∥

∥f̂
∥

∥

∥

T V
+ γ ‖k − kǫ‖ + β

∥

∥

∥k̂
∥

∥

∥

T V

+
ω1

2

∥

∥f̃ − f
∥

∥

2 −
〈

λ, f̃ − f
〉

+
ω2

2

∥

∥

∥
f̂ − f

∥

∥

∥

2

−
〈

ξ, f̂ − f
〉

+
ω3

2

∥

∥k̃ − k
∥

∥

2 −
〈

ζ, k̃ − k
〉

+
ω4

2

∥

∥

∥k̂ − k
∥

∥

∥

2

−
〈

µ, k̂ − k
〉

,

(6)

where λ, ζ, ξ,µ ∈ RN .
We apply the ADMM algorithm on (6) obtaining Algorithm 1.
We call this method SeB-A as for Semi-blind ADMM.
We can observe that, due to the fact that the variables inside Jδ,ǫ

α,β are coupled, we cannot apply the
classical ADMM technique of first solving the minimization with respect to the auxiliary variables and then
the minimization with respect to the primary variables, but we need to implement an hybrid approach. The
variables are still divided in two blocks, but each block contains both primary and auxiliary variables. While
this seems counterintuitive it well works from both the theoretical and numerical point of view.

We now formulate some assumptions that we are going to need in the following.

Assumption 2. B (k, f) is bilinear.

Remark 6. The semi-blind deconvolution problem we are interested in satisfies Assumption 2.

Under Assumption 2 most of the minimization in Algorithm 1 are easily computed. We have that
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Algorithm 1 SeB-A

Given f (0), k(0), λ(0), ξ(0), ζ(0), and µ(0) initial guesses for f , k, λ, ξ, ζ, and µ, respectively. Let ω1, ω2, ω3, ω4 >
0 be real fixed numbers.

for j = 0, 1, . . .




f̃ (j+1)

f̂ (j+1)

k(j+1)



 = arg min
f̃ ,f̂ ,k

LA

(

f̃ , f̂ ,k
∣

∣k̃(j), k̂(j), f (j); λ(j), ξ(j), ζ(j),µ(j)
)





k̃(j+1)

k̂(j+1)

f (j+1)



 = arg min
k̃,k̂,f

LA

(

k̃, k̂, f
∣

∣f̃ (j+1), f̂ (j+1),k(j+1); λ(j), ξ(j), ζ(j),µ(j)
)

λ(j+1) = λ(j) − ω1

(

f̃ (j+1) − f (j+1)
)

ξ(j+1) = ξj − ω2

(

f̂ (j+1) − f (j+1)
)

ζ
(j+1) = ζ

(j) − ω3

(

k̃(j+1) − k(j+1)
)

µ(j+1) = µ(j) − ω4

(

k̂(j+1) − k(j+1)
)

end

f̃ (j+1) = PΩf

(

f (j) +
λ(j)

ω1

)

k(j+1) =
(

2A∗
f (j)Af (j) + 2γI + (ω3 + ω4) I

)−1
(

2A∗
f (j) gδ + 2γkǫ − ζ(j) + ω3k̃(j) − µ(j) + ω4k̂(j)

)

k̃(j+1) = PΩk

(

k(j+1) +
ζ(j)

ω3

)

f (j+1) =
(

2A∗
k(j+1)Ak(j+1) + 2αEI + (ω1 + ω2) I

)−1
(

2A∗
k(j+1) gδ − λ(j) + ω1f̃ (j+1) − ξ(j) + ω2f̂ (j+1)

)

Where by A• we indicate the linear operator obtained from B (k, f) by fixing •.
On the other hand the minimizations with respect of f̂ and k̂ are non trivial, in fact

f̂ (j+1) = arg min
f̂

αTV
∥

∥

∥f̂
∥

∥

∥

T V
+
ω2

2

∥

∥

∥f̂ − f (j)
∥

∥

∥

2

−
〈

ξ(j), f̂ − f (j)
〉

= arg min
f̂

∥

∥

∥
f̂
∥

∥

∥

T V
+

ω2

2αTV

∥

∥

∥

∥

∥

f̂ −
(

f (j) +
ξ(j)

ω2

)∥

∥

∥

∥

∥

2

k̂(j+1) = arg min
k̂

β
∥

∥

∥k̂
∥

∥

∥

T V
+
ω4

2

∥

∥

∥k̂ − k(j+1)
∥

∥

∥

2

−
〈

µ(j), k̂ − k(j+1)
〉

= arg min
k̂

∥

∥

∥k̂
∥

∥

∥

T V
+
ω4

2β

∥

∥

∥

∥

k̂ −
(

k(j+1) +
µ(j)

ω4

)∥

∥

∥

∥

2

To solve this minimization problems we can use, e.g., the ADMM algorithm. Since, however, in this case the
functional are proper and convex the convergence is assured by the classical ADMM theory, see, e.g., [9]. For
completeness we describe here this approach.

Consider the minimization problem

(7) x = arg min
x

‖x‖T V + c ‖x − y‖2 ,

where c > 0 is a constant. We can rewrite (7) as

x = arg min
x,x̂

{

N
∑

i=1

‖x̂i‖ + c ‖x − y‖2 , x̂i = Dix

}

.
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The related augmented Lagrangian is

LA (x, x̂; λ) =

N
∑

i=1

‖x̂i‖ + c ‖x − y‖2
+

N
∑

i=1

(ω

2
‖x̂i −Dix‖2 − 〈λi, x̂i −Dix〉

)

.

The resulting ADMM algorithm is summarized in Algorithm 2.

Algorithm 2 ADMM for TV optimization

Given x(0) and λ(0) initial guesses for x and λ, respectively. Let ω > 0 be a real fixed number.

for j = 0, 1, . . .

x̂(j+1) = arg minx̂

∑N
i=1

(

‖x̂i‖ + ω
2

∥

∥x̂i −Dix
(j)
∥

∥

2 −
〈

λ
(j)
i , x̂i −Dix

(j)
〉)

x(j+1) = arg minx c ‖x − y‖2
+
∑N

i=1

(

ω
2

∥

∥

∥x̂
(j+1)
i −Dix

∥

∥

∥

2

−
〈

λ
(j)
i , x̂

(j+1)
i −Dix

〉

)

λ(j+1) = λ(j) − ω
(

x̂(j+1) −Dx(j+1)
)

end

The minimization in Algorithm 2 are easily computed. The minimization with respect to x̂ decouples in N
subproblems that are easily solved using a two-dimensional shrinkage and the minimization with respect to x
can be achieved by solving a well-conditioned spd linear system. In particular

x̂
(j+1)
i =

Dix
(j) +

λ
(j)
i

ω
∥

∥

∥

∥

Dix(j) +
λ

(j)
i

ω

∥

∥

∥

∥

◦
(∥

∥

∥

∥

∥

Dix
(j) +

λ
(j)
i

ω

∥

∥

∥

∥

∥

− 1

cω

)

+

x(j+1) = (2cI + ωD∗D)−1
(

2cy + ωD∗x̂(j+1) −D∗λ(j)
)

In this setup D is the linear operator which maps RN into RN×2 defined as

(

D(1)

D(2)

)

.

We now prove the convergence of Algorithm 1 (SeB-A). This proof is very technical and inspired by [25].

The main difference between our setup and the one in [25] is that in the functional Jδ,ǫ
α,β that we want to minimize

the variables are coupled inside the fidelity term ‖B(k, f) − gδ‖2
, while in [25] all the variables are decoupled.

Remark 7. The convergence of Algorithm 1 is proven only under Assumption 4, i.e., that the norms of
the iterates f (j) and k(j) remain bounded. While this seems a very strong requirement, from the numerical
experiments we can see that this condition is always satisfied. We provide some simple bounds ϕk and ϕf for
the norms of k(j) and f (j), respectively. In Section 5 we show that this bounds are far from being violated in all
computed examples.

3.1. Proof of convergence. We now give the proof of convergence of Algorithm 1.
We first analyze the unconstrained case, i.e., we consider the minimization problem

(k∗, f∗) = arg min
k,f

‖B (k, f) − gδ‖2
+ αE ‖f‖2

+ αTV ‖f‖T V + γ ‖k − kǫ‖2
+ β ‖k‖T V ,

Let us rewrite the minimization above in an equivalent way

(8) (k∗, f∗) = arg min
k,f

k̂,f̂

{

‖B (k, f) − gδ‖2
+ αE ‖f‖2

+ αTV
∥

∥

∥f̂
∥

∥

∥

T V
+ γ ‖k − kǫ‖2

+ β
∥

∥

∥k̂
∥

∥

∥

T V
, f̂ = f , k̂ = k

}

.

We now form the augmented Lagrangian related to the minimization problem (8) where, without loss of
generality, we have chosen the same ω for all the augmentation terms

(9)
LA

(

f ,k, f̂ , k̂; ξ,µ
)

= ‖B (k, f) − gδ‖2
+ αE ‖f‖2

+ αTV
∥

∥

∥f̂
∥

∥

∥

T V
+ γ ‖k − kǫ‖2

+ β
∥

∥

∥k̂
∥

∥

∥

T V

+
ω

2

∥

∥

∥f̂ − f
∥

∥

∥

2

−
〈

ξ, f̂ − f
〉

+
ω

2

∥

∥

∥k̂ − k
∥

∥

∥

2

−
〈

µ, k̂ − k
〉

.
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Algorithm 3

Given f (0), k(0), ξ(0), and µ(0) initial guesses for f , k, ξ, and µ, respectively.

for j = 0, 1, . . .
(

f̂ (j+1)

k(j+1)

)

= arg min
f̂ ,k

LA

(

f̂ ,k
∣

∣k̂(j), f (j); ξ(j),µ(j)
)

(

k̂(j+1)

f (j+1)

)

= arg min
k̂,f

LA

(

k̂, f
∣

∣f̂ (j+1),k(j+1); ξ(j),µ(j)
)

ξ(j+1) = ξ(j) − ω
(

f̂ (j+1) − f (j+1)
)

µ(j+1) = µ(j) − ω
(

k̂(j+1) − k(j+1)
)

end

The unconstrained method is described in Algorithm 3. This simplified version of our method is an algorithm
to compute the solution of an unconstrained minimization problem. In our proofs we are not going to consider
the constraint (k, f) ∈ Ωk × Ωf . We are going to insert this constraint only at the very end.

To proceed we need some further assumptions

Assumption 3. We assume that
(i) If k = 0 or f = 0 then B (k, f) = 0;

(ii) If for a certain set K = {k(l), l = 1, 2, . . .} it holds that
∥

∥k(l)
∥

∥ < CK , where CK is a constant, then the

operators Ak(l) = B
(

k(l), ·
)

, which are linear in force of Assumption 2, have bounded norm, i.e. there
exists a constant C such that ∀f and ∀k ∈ K it holds ‖B (k, f)‖ < C ‖f‖.
Similarly assume that for a certain set F = {f (l), l = 1, 2, . . .} it holds that

∥

∥f (l)
∥

∥ < CF , where CF is a

constant, then the operators Af (l) = B
(

·, f (l)
)

, which are linear in force of Assumption 2, have bounded
norm, i.e. there exists a constant C such that ∀k and ∀f ∈ F it holds ‖B (k, f)‖ < C ‖k‖;

(iii) The parameter ω is big enough so that

‖B (k, f) − gδ‖2 + αE ‖f‖2 +
ω

2

∥

∥

∥
f̂ − f

∥

∥

∥

2

−
〈

ξ, f̂ − f
〉

,

‖B (k, f) − gδ‖2 + γ ‖k − kǫ‖2 +
ω

2

∥

∥

∥
k̂ − k

∥

∥

∥

2

−
〈

µ, k̂ − k
〉

are strongly convex with modulus ρ with respect to f and k, respectively.

We now assume that the norms of the iterates f (j) and k(j) are bounded.

Assumption 4. The norm of the iterates f (j) and k(j) generated by Algorithm 3 are uniformly bounded.

When the flux and nonnegativity constraints are imposed we can derive some bounds that the solution should
satisfy. For more details about the flux constraint please refer to Section 4, here we only recall that the flux of
a vector x ∈ Rn is defined by

flux(x) =

n
∑

i=1

xi.

We can see that the flux bounds the norm of the iterates. Namely, if we constrain the flux of k to be ϕk then
∥

∥k(j)
∥

∥ ≤ ϕk ∀ j, if we constrain the flux of f to be ϕf then
∥

∥f (j)
∥

∥ ≤ ϕf ∀ j.
The bounds proposed above are derived by the following argument. We consider f , but the extension to k

is trivial. Recalling that ∀z ‖z‖ ≤ ‖z‖1, since we are imposing that flux (f) = ϕf and that f ≥ 0, it holds

‖f‖ ≤ ‖f‖1 = flux (f) = ϕf .

Assumption 4 seems indeed strong, however, as shown in Section 5, it is always satisfied in our numerical
examples.
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For convenience we define

φ (f ,k) = ‖B (k, f) − gδ‖2
+ αEf2 + γ ‖k − kǫ‖2

,(10)

ψα (f) = αTV ‖f‖T V ,(11)

ψβ (k) = β ‖k‖T V .(12)

For the convenience of the reader here we only state the results and postpone the proofs to Appendix A.2.
We now state an auxiliary result that we are going to need for the following.

Lemma 8. Let ξ(j),µ(j), f (j),k(j) be the iterations generated by Algorithm 3. Assume that Assumptions 1-4
hold. Then we have ∥

∥

∥ξ(j+1) − ξ(j)
∥

∥

∥ ≤ C
∥

∥

∥f (j+1) − f (j)
∥

∥

∥ ,

∥

∥

∥µ(j+1) − µ(j)
∥

∥

∥ ≤ C
∥

∥

∥k̂(j+1) − k̂(j)
∥

∥

∥

where C > 0 is a constant.

We now state that the value of the augmented Lagrangian decays throughout the iterations.

Proposition 9. With the same notation of Lemma 8 it holds that

LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j+1),µ(j+1)
)

− LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)

≤
(

C2

ω
− ρ

2

)(

∥

∥

∥f (j+1) − f (j)
∥

∥

∥

2

+
∥

∥

∥k̂(j+1) − k̂(j)
∥

∥

∥

2
)

− ρ

2

(

∥

∥

∥f̂ (j+1) − f̂ (j)
∥

∥

∥

2

+
∥

∥

∥k(j+1) − k(j)
∥

∥

∥

2
)

.

We are now in position to state that Algorithm 3 converges to a limit.

Lemma 10. Let LA be the functional defined in (9) and k(j), f (j), k̂(j), f̂ (j), ξ(j),µ(j) the iterates generated

by Algorithm 3. Let Assumptions 1-4 hold. Moreover, assume that C2

ω − ρ
2 < 0 we have that

lim
j→∞

LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)

≥ ν,

where ν, defined in (22), is the global minimum of Jδ,ǫ
α,β(k, f).

We can now state our primary result.

Theorem 11. Let p∗ =
(

k∗, f∗, k̂∗, f̂∗, ξ∗,µ∗

)

be the limit point of Algorithm 3. Assume that Assump-

tions 1–4 are satisfied. Then the followings hold
(a) p∗ is a stationary point, that is

(i) f∗ = f̂∗ and k∗ = k̂∗;
(ii) 0 = ∇fφ (f∗,k∗) + ξ∗ and 0 = ∇kφ (f∗,k∗) + µ∗;

(iii)
(

k̂∗, f̂∗
)

∈ arg min(k̂,f̂) α
∥

∥

∥
f̂
∥

∥

∥

T V
+
〈

f∗ − f̂ , ξ∗

〉

+ β
∥

∥

∥
k̂
∥

∥

∥

T V
+
〈

k∗ − k̂,µ∗

〉

.

(b) Assume now that Ωf × Ωk is compact then

lim
j→∞

dist
((

f (j),k(j), f̂ (j), k̂(j); ξ(j),µ(j)
)

, Z∗
)

= 0,

where Z∗ denotes the set of stationary points and dist the Euclidean distance between sets and points.

The proof of Theorem 11 is very similar to the one of [25, Theorem 2.4]. As we mentioned above the main
differences between our work and the one in [25] is that in our work the variables are coupled in the functional,
while in [25] the variables are decoupled. This means that some technical details inside the proof of [25,
Theorem 2.4] needs to be addressed and adapted to our scenario.

4. Flux conservation. In many cases it is possible to know if the true solution (k, f) lies in some closed

and convex set (k, f) ∈ Ωk × Ωf . Therefore, we want to restrict the domain of Jδ,ǫ
α,β so that it can get only

values from those sets (for simplicity we suppose that Ωk × Ωf ⊆ D
(

Jδ,ǫ
α,β

)

) and our minimization becomes a

constrained one. If Ωk × Ωf is closed and convex we can notice that the proof of Theorem 2 becomes a simple
application of the Weierstrass Theorem.
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One of the possible constraint that we can impose is the flux conservation that here we describe in detail.
Consider, for example, the framework of convolution such that

(13) B (k, f) = k ∗ f.

Throughout this Section we will assume that k is such that
(i) k (x) ≥ 0 ∀x;
(ii)

∫

k (x) dx = 1.
It is then straightforward to show, using the convolution theorem, the following

Lemma 12. Let k be an integral kernel with compact support and let g = k ∗ f , then
∫

f =

∫

g.

After a discretization procedure by a collocation method, replacing (13) in (1), the latter becomes

g = Akx.

Lemma 12 implies that
• Ak has no negative entries;
• If the periodic boundary conditions are imposed, then

– the row-sum and column-sum of A is 1, i.e., the entries of the vector which discretize k sum up to
1;

– If y = Akz, then 1ty = 1tz, where 1 = (1, 1, . . . , 1)t.

Definition 13. Let x ∈ Rn, we call
flux (x) = 1tx,

where 1 = (1, 1, . . . , 1)
t
.

Remark 14. In the noise free case and when periodic boundary conditions are employed it holds that

(14) flux (g) = flux (x) ,

where x,g are the discretizations of the true signal f and the noise free g, respectively.
In the noisy case (14) does not hold in general. Let us call gδ the discretization of gδ so that gδ = g + η,

where η represents the discretized noise. It holds flux (gδ) = flux (g) + flux (η), however, assuming that η is
white Gaussian noise, we have that flux (η) ≈ 0. Therefore, in this case we have that flux (gδ) ≈ flux (x).

From this considerations we can see why we would like to constrain the reconstructed image to lie also in

(15) ΩF =
{

x ∈ R
n
∣

∣ flux (x) = flux (gδ)
}

.

Remark 15. The set ΩF in (15) is a closed and convex set.

We now construct PΩF
, the metric projection over ΩF . By definition of metric projection we have

PΩF
(x) = arg min

y∈ΩF

1

2
‖x − y‖2

.

Consider the Fourier matrix F . The Fourier matrix F ∈ Cn×n is defined as

(F )j,k = ei(j−1)(k−1)2π/n j, k = 1, . . . , n, i2 = −1.

When normalized by 1√
n
F is a unitary matrix and so ‖Fz‖ = ‖z‖ for all z. Note that the first row of the

matrix F is the constant vector 1t
√

n
. Hence the first entry of Fz, for some z ∈ R

n, is 1tz√
n

which is the flux

divided by
√
n of z by Definition 13. Namely, ẑ1 = flux(z)√

n
for ẑ = Fz. This implies that

Ω̂F = {x̂ = Fx | x ∈ ΩF } =

{

x̂ ∈ R
n | x̂1 =

flux (gδ)√
n

}

.
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Consider now

PΩF
(x) = arg min

y∈ΩF

1

2
‖x − y‖2 = arg min

y∈ΩF

1

2
‖Fx − Fy‖2 = F ∗ arg min

ŷ∈Ω̂F

1

2
‖x̂ − ŷ‖2 ,

where we have called x̂ = Fx, ŷ = Fy. The solution of the last minimization problem follows straightforward
from the definition of Ω̂F . Defining

ẑ = arg min
ŷ∈Ω̂F

1

2
‖x̂ − ŷ‖2 ,

the j-th entry of ẑ is

(16) ẑj =

{

flux(gδ)√
n

if j = 1

x̂j otherwise.

Finally, we have that

(17) PΩF
(x) = F ∗ẑ,

with ẑ defined in (16).
In practice the computation of PΩF

does not need any FFT and can be done in O (n) arithmetic operations.
Let us call vj , for j = 1, . . . , n, the normalized vectors of the Fourier basis. The expansion of the vector x in
this base is

x =
n
∑

j=1

x̂jvj =
x̂1√
n

1 +
n
∑

j=2

x̂jvj .

According to (17) and (16), it holds

PΩF
(x) =

flux (gδ)√
n

1√
n

+

n
∑

j=2

x̂jvj

=
flux (gδ)

n
1 +

n
∑

j=2

x̂jvj

=
flux (gδ)

n
1 − x̂1√

n
1 +

x̂1√
n

1 +
n
∑

j=2

x̂jvj

=
flux (gδ) − x̂1

√
n

n
1 + x

=
flux (gδ) − flux (x)

n
1 + x,

(18)

where the last equation holds recalling that x̂1 = flux(x)√
n

. Note that the computation of PΩF
(x) by (18) requires

only O (n) operations.

5. Numerical examples. We now give some numerical examples. Firstly we reformulate our algorithm
to be more efficient, then we compare our approach with the one in [7] on the same example proposed in their
work. Finally we compare our approach with other blind methods in the literature. For each example we
compare the result obtained by our proposal with the blind method that we considered from the literature that
provided the best result.

We consider the framework of image deblurring with spatially invariant blur, in this setting k will be the
PSF. The blurring phenomenon can be modeled as a Fredholm integral of the first kind

(19) B (k, f) =

∫

k (s− x, t− y) f (s, t) dsdt = k ∗ f,

which, due to the spatially invariance property, reduces to a convolution. If we fix one of the two variables
and discretize (19) by a collocation method, we get a linear system which is severely ill-conditioned, meaning
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that the singular values of its matrix decreases to zero exponentially with no significant spectral gap, see, e.g.,
[22, 23].

We call Ak the discretization of B (k, ·) and Af the discretized version of B (·, f). For simplicity we assume
that both the image and the PSF are periodic and so Af and Ak are BCCB matrices. Since we imposed periodic
boundary condition on D defined in (5) we have that D is a BCCB matrix as well. Thanks to this choice all
the matrices involved are diagonalizable using the Fourier transform and so all the linear systems involved can
be solved exactly using the FFT in O (n logn) flops. While this assumption is not needed for the theoretical
results it greatly simplifies the computations and lowers the computational effort. If other boundary conditions
are employed then the solution of the linear systems involved requires the usage of some iterative algorithm,
in this setting the Conjugate Gradient method would perform extremely well since all the system matrices are
symmetric positive definite and very well conditioned [21, 5].

Both the image and the PSF should not have negative values, thus we want to constrain them inside the
nonnegative cone. Since the assumptions of Section 4 hold, we can use the flux conservation on f . Moreover,
since we know that k should sum up to 1, we want to constrain the flux of k to be 1.

Summarizing we set Ωf = Ω0 ∩ ΩF and Ωk = Ω0 ∩ Ω1, where Ω0 is the nonnegative cone, ΩF is defined in
(15), and Ω1 = {k ∈ Rn×n | flux (k) = 1}.

Projecting on both Ωf and Ωk is not trivial then we have to resort to the technique described in Algorithm 7
for decoupling the projection on the two components of Ωf and Ωk . By doing so we are able to perform the
projections into the nonnegative cone and on ΩF in O (n) flops. We are then able to introduce both the
nonnegativity and the flux conservation constraints in our method.

For the evaluation of the performances of the method we use the Signal to Noise Ratio (SNR), which is
computed as

SNR (f) = 20 log10

(
∥

∥f†∥
∥

‖f − f†‖

)

.

The discussion on how to choose the appropriate αE, αTV, and β is out of the scope of this paper and thus
we choose the optimal one, i.e., the one which gives the highest value of SNR among some tested ones. For a
discussion on how to select the regularization parameter for the TV regularization see, e.g., [34, 28, 31, 14, 17,
19, 26, 13, 32, 33]. Moreover, for a discussion on multiparameter selection see, e.g., [20].

In Lemma 10 we derive a theoretical condition on ωj to ensure the convergence of the algorithm. In

particular, we state that ωj should be big enough so that C2

ω − ρ
2 < 0, where ω = minj ωj. However, from a

computational point of view, the choice of a too big ω is undesirable since it is trivial to see that the bigger the
ω the slower the method. Thus, we heuristically set ωj ≡ 1 for all j.

For stopping both methods we use the relative distance between two consecutive iterations, i.e., we stop as
soon as

∥

∥f (j−1) − f (j)
∥

∥

∥

∥f (j−1)
∥

∥

< 10−4.

Since in the considered examples we use the flux conservation (14) and nonnegativity constraints, we have that
the bounds in Assumption 4 are

(20) ϕk = 1 and ϕf = flux (gδ) .

In the computed examples we are going to show that, at least experimentally, the norm of the iterates are
bounded by the quantities (20) and so that Assumption 4 holds.

For simulating real data we add white Gaussian noise. We will refer to the ratio σ = δ
‖g‖ as noise level.

We want to show that the introduction of the knowledge of the presence of the noise in the PSF and the
flux constraint helps in getting better reconstructions. We compare SeB-A against the deconvolution obtained
using directly the noisy PSF, i.e., the reconstruction obtained by minimizing

(21) f = arg min
f∈Ω0

‖B (kǫ, f) − gδ‖2
+ αTV ‖f‖T V + αE ‖f‖2

.

This algorithm is very similar to the one proposed in [11], the only difference is the presence of ‖f‖2
in the reg-

ularization term. To minimize (21) we proceed as in [11], i.e. decoupling the variables, forming the Augmented
Lagrangian and then using ADMM.
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The decoupled problem in finite dimension becomes

f = arg min
f̃∈Ω0,f̂ ,f

{

‖B (kǫ, f) − gδ‖2
+ αTV

N
∑

i=1

∥

∥

∥f̂i

∥

∥

∥+ αE ‖f‖2
,

f̃ = f , f̂i = Dif , ∀i = 1, . . . , N
}

.

The related Augmented Lagrangian is

LA

(

f̃ , f̂ , f ,λ, ξ
)

= ‖B (kǫ, f) − gδ‖2 + αTV
N
∑

i=1

∥

∥

∥
f̂i

∥

∥

∥
+ αE ‖f‖2

+
ω1

2

∥

∥f̃ − f
∥

∥

2 − λt
(

f̃ − f
)

+

N
∑

i=1

[

ω2

2

∥

∥

∥f̂i −Dif
∥

∥

∥

2

− ξ
t
i

(

f̂i −Dif
)

]

.

The ADMM method is described in Algorithm 4.

Algorithm 4 Tikhonov-TV

Let f (0), λ(0), and ξ(0) be initial guesses for f , λ, and ξ, respectively. Let ω1, ω2 > 0 be real fixed positive
numbers.

for j = 0, 1, . . .
(

f̃ (j+1)

f̂ (j+1)

)

= arg min
f̃ ,f̂

LA

(

f̃ , f̂
∣

∣f (j); λ(j), ξ(j)
)

f (j+1) = arg min
f

LA

(

f
∣

∣f̃ (j+1), f̂ (j+1); λ(j), ξ(j)
)

λ(j+1) = λ(j) − ω1

(

f̃ (j+1) − f (j+1)
)

ξ(j+1) = ξ(j) − ω2

(

f̂ (j+1) −Df (j+1)
)

end

The various minimizations in Algortihm 1 are exactly performed, see [11] and Algorithm 5.
Since the minimized functional in (21) is convex it admits an unique minimizer and thus Algorithm 4

converges to it in force of the classical ADMM theory.
The implementation of SeB-A Algorithm 1 can be quite expensive. In fact, since there is no closed form for

the minimization with respect to the auxiliary variables k̂ and f̂ , the usage of some iterative method is required.
This implies that the computational cost of SeB-A can be fairly high. In order to damp this cost we now present
a different implementation of the algorithm. We will refer to this method as Computational SeB-A (CSeB-A).
This algorithm does not require any inner cycle for the solution of the intermediate problems, however, we are
not able to present a rigorous result of convergence. In the first numerical example we are going to show that
SeB-A and CSeB-A give equivalent results and thus in the following experiments we are going to use only the
latter for computational convenience.

Let us rewrite (4) explicitly and reformulate as in [11]

(k∗, f∗) = arg min
k∈Ωk,f∈Ωf

‖B (k, f) − gδ‖2
+ αE ‖f‖2

+ αTV
N
∑

i=1

‖Dif‖ + γ ‖k − kǫ‖2
+ β

N
∑

i=1

‖Dik‖

= arg min
k̃∈Ωk,f̃∈Ωf

k̂,f̂ ,k,f

{

‖B (k, f) − gδ‖2
+ αE ‖f‖2

+ αTV
N
∑

i=1

∥

∥

∥f̂i

∥

∥

∥+ γ ‖k − kǫ‖2
+ β

N
∑

i=1

∥

∥

∥k̂i

∥

∥

∥ ,

k = k̃, f = f̃ , Dik = k̂i, Dif = f̂i, i = 1, . . . , N
}

,

where, f , f̃ ,k, k̃ ∈ RN , f̂ , k̂ ∈ RN×2 and we have f̂i =

(

f̂i,1

f̂i,2

)

and similarly for k̂i.
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We now write the Augmented Lagrangian of the minimization above

LA

(

f̃ , f̂ , f , k̃, k̂,k; λ, ξ, ζ,µ
)

= ‖B (k, f) − gδ‖2
+ αE ‖f‖2

+ αTV
N
∑

i=1

∥

∥

∥f̂i

∥

∥

∥+ γ ‖k − kǫ‖2
+ β

N
∑

i=1

∥

∥

∥k̂i

∥

∥

∥

+
ω1

2

∥

∥f̃ − f
∥

∥

2 −
〈

λ,
(

f̃ − f
)〉

+

N
∑

i=1

[

ω2

2

∥

∥

∥f̂i −Dif
∥

∥

∥

2

−
〈

ξi, f̂i −Dif
〉

]

+
ω3

2

∥

∥k̃ − k
∥

∥

2 −
〈

ζ,
(

k̃ − k
)〉

+

N
∑

i=1

[

ω4

2

∥

∥

∥k̂i −Dik
∥

∥

∥

2

−
〈

µi, k̂i −Dik
〉

]

,

where λ, ζ ∈ RN and ξ,µ ∈ RN×2.
We can apply the ADMM method obtaining Algorithm 5.

Algorithm 5 CSeB-A

Given f (0), k(0), λ(0), ξ(0), ζ(0) and µ0 initial guesses for f , k, λ, ξ, ζ, and µ, respectively. Let ω1, ω2, ω3, ω4 > 0
be real fixed numbers.

for j = 0, 1, . . .




f̃ (j+1)

f̂ (j+1)

k(j+1)



 = arg min
f̃ ,f̂ ,k

LA

(

f̃ , f̂ ,k
∣

∣k̃(j), k̂(j), f (j); λ(j), ξ(j), ζ(j),µ(j)
)





k̃(j+1)

k̂(j+1)

f (j+1)



 = arg min
k̃,k̂,f

LA

(

k̃, k̂, f
∣

∣f̃ (j+1), f̂ (j+1),k(j+1); λ(j), ξ(j), ζ(j),µ(j)
)

λ(j+1) = λ(j) − ω1

(

f̃ (j+1) − f (j+1)
)

ξ(j+1) = ξ(j) − ω2

(

f̂ (j+1) −Df (j+1)
)

ζ(j+1) = ζ(j) − ω3

(

k̃(j+1) − k(j+1)
)

µ(j+1) = µ(j) − ω4

(

k̂(j+1) − Dk(j+1)
)

end

As we stated above, thanks to Assumption 2 and to the fact that all the matrices involved are BCCB
matrices, the minimization above are easily computed and all have a closed form.

f̃ (j+1) = PΩf

(

f (j) +
λ(j)

ω1

)

f̂
(j+1)
i =

(

Dif
(j) + 1

ω2
ξ

(j)
i

)

∥

∥

∥Dif (j) + 1
ω2

ξ
(j)
i

∥

∥

∥

◦
(∥

∥

∥

∥

Dif
(j) +

1

ω2
ξ

(j)
i

∥

∥

∥

∥

− αTV

ω2

)

+

k(j+1) =
(

2A∗
f (j)Af (j) + 2γI + ω3I + ω4D

∗D
)−1

(

2A∗
f (j) gδ + 2γkǫ − ζ(j) + ω3k̃(j) −D∗µ(j) + ω4D

∗k̂(j)
)

k̃(j+1) = PΩk

(

k(j+1) +
ζ(j)

ω3

)

k̂
(j+1)
i =

(

Dik
(j+1) + 1

ω4
µ

(j)
i

)

∥

∥

∥Dik(j+1) + 1
ω4

µ
(j)
i

∥

∥

∥

◦
(∥

∥

∥

∥

Dik
(j+1) +

1

ω2
µ

(j)
i

∥

∥

∥

∥

− β

ω4

)

+

f (j+1) =
(

2A∗
k(j+1)Ak(j+1) + 2αEI + ω1I + ω2D

∗D
)−1

(

2A∗
k(j+1) gδ − λ + ω1f̃ (j+1) −D∗ξ(j) + ω2D

∗f̂ (j+1)
)
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(a) (b) (c) (d)

Figure 1. Boat test problem: (a) Test image, (b) Noise-free PSF, (c) Blurred and noisy image, (d) Noisy PSF.
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Figure 2. Boat test problem SNRs comparison: SNRs comparison between SeB-A and CSeB-A against α and β. (a) SNR of
the image for SeB-A, (b) SNR of the image for CSeB-A, (c) SNR of the PSF for SeB-A, (d) SNR of the image for CSeB-A.

In all the example we do not consider the boundary conditions and we assume that all the images are
periodic

We can now proceed with the numerical tests. The computations were performed on a laptop pc with
an Intel Core i7 6700HQ with 16GB of RAM running Matlab 2016a 64-bit. The results for dbl-RTSL in
Subsection 5.2 were taken directly from [7].

5.1. Equivalence between SeB-A and CSeB-A. We would like now to show that SeB-A and CSeB-A
give equivalent results. For this purpose we use a relatively small example, since the images involved are of
128 × 128 pixels. We consider the image deblurring problem in Figure 1. We take the image in Figure 1(a)
and blur it with an out of focus PSF then add white Gaussian noise, such that σ = 0.02. We then add 70% of
Gaussian noise to the PSF k to obtain kǫ.

For simplicity we fix αE = αTV = α and we run both SeB-A and CSeB-A on several choices of α and β. In
particular we test the method on a 7 × 7 grid of parameters logarithmically spaced between 10−4 and 10−2. In
Figure 2 we show the SNRs obtained with different choices of α and β with the two methods. We can see that
the errors are almost the same. Moreover, we can see that the SNRs obtained with CSeB-A are slightly better
than the one obtained with SeB-A. This can be due to the fact that in SeB-A we approximate the minimization
with respect to f̂ and k̂ whereas in CSeB-A all the minimization are exact (up to machine precision).

We can also observe that changing α does not affect too much the quality of the reconstruction of k and,
similarly, changing β does not affect to much the quality of the reconstruction of f .

We conclude by showing, in Figure 3, the best restorations of k and f for both methods and in Table 1 the
SNRs of the best restorations. From both visual inspection and the comparison of the resulting SNRs we can
see that the difference between the two methods in term of accuracy is very small.

5.2. Comparison with dbl-RTLS. We now compare our approach to the one in [7] on the exact same
example proposed in that work. In Figure 4 we show the true image, the PSF, and the noise-free blurred image,
we add different levels of noise to both the image and the PSF and analyze the behavior in each situation. From
the visual inspection of the blurred image we can see that the periodic boundary conditions were employed in
its construction and that the center of the convolution is not in the peak of the PSF. Here we keep this behavior
so to be able to directly compare our results with the ones in [7]. In Table 2 we show the comparison of the
SNR with the different levels of noise. Finally, in Figure 5 we show the reconstructions.

From these comparisons we can see that the proposed approach is able to get a better restoration of the
image and in particular of the PSF. The gap between the two approaches gets more and more evident as the
quantity of noise increases.
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(a) (b) (c) (d)

Figure 3. Boat test problem optimal reconstructions: (a) PSF computed with SeB-A (SNR=29.129), (b) PSF computed with
CSeB-A (SNR=29.211), (c) Image computed with SeB-A (SNR=20.886), (d) Image computed with CSeB-A (SNR=20.859).

SNR f SNR k
SeB-A CSeB-A SeB-A CSeB-A
20.886 20.859 29.129 29.211

Table 1
Boat test problem: Comparison of the SNR obtained with SeB-A and CSeB-A for the optimal choice of parameters.

5.3. Comparison with deconvblind. We now test our method on the Satellite image blurred with an
atmospheric PSF and compare the result with the one obtained with the Matlab function deconvblind. We
consider the image and the PSF provided in the AtmosphericBlur30 dataset in the toolbox Restore Tools
[4]. We compute the blurred image by convolving the PSF provided by the toolbox with periodic boundary
conditions and we add white Gaussian noise such that δ = 0.05 ‖g‖, i.e., with σ = 0.05. Moreover, we add white
Gaussian noise to the PSF, so that ǫ = 0.7 ‖k‖. All the corresponding images are shown in Figure 6.

In this example we use the Matlab function deconvblind. This function implements a blind Richardson-
Lucy algorithm for the solution of blind deconvolution. For a fair comparison we select as initial guess for the
PSF the noisy PSF. Moreover we compare, as above, with Tikhonov-TV. For both CSeB-A and Tikhonov-TV
we select the best regularization parameter and for deconvblind the optimal number of iterations. In Figure 7
we can see the reconstructed images for the three methods and the corresponding SNRs are displayed in Table 2.

From the SNR comparison we can see that the proposed algorithm is able to outperform both Tikhonov-TV
and deconvblind. This is confirmed also by the visual inspection of the reconstructions.

We note that, since deconvblind implements the Richardson-Lucy algorithm and that the PSF is scaled
to sum up to 1 then the flux and nonnegativity constraints are satisfied by this method. However, this is not
enough for providing a good restoration of the image.

5.4. Comparison with [1]. We now compare our method with the one described in [1] denoted by
BID-ADMM. We use the Grain image blurred and we blur it, using periodic boundary conditions, with a non
symmetric PSF. We add white Gaussian noise such that σ = 0.01 and we also add white Gaussian noise to the
PSF, so that ǫ = 0.8 ‖k‖. All the corresponding images are shown in Figure 8.

Similarly to the previous example the reconstruction obtained with CSeB-A is much better than which
obtained with Tikhonov-TV and BID-ADMM.

From the comparison of the SNRs in Table 2 we can see that BID-ADMM is not able to well reconstruct
the PSF. However, from a visual inspection of the reconstructed PSF in Figure 9 it does not seems too far from
the original one. The main disadvantage of this method is that there is no projection in the nonnegative cone
and thus the algorithm is not able to well reconstruct the black area in the low-right corner. We have to stress
that the BID-ADMM algorithm does not need the estimation of any parameter while our method relies on a
good choice of a set of parameters. However, in [1] the authors were not able to provide a complete theoretical
analysis of their algorithm while our method is proven to converge under Assumption 4.

5.5. Bounds. In this last subsection we show that the bounds proposed in Assumption 4 are far from
being violated in all the computed examples. In Figure 10 we compare the norm of the iterates against the
proposed bounds. The norms

∥

∥f (j)
∥

∥ are normalized so that the bound is 1, i.e., we plot
∥

∥f (j)
∥

∥ /flux(gδ).

In Figure 10(a) we plot the norm of f (j) against the iteration j and in Figure 10(b) we visualize the norm
of k(j). From this plots we can see that the norm of the iterates increases for the first few iterations and then
stabilizes on the final value. From this analysis we can determine that, at least in the computed examples, the
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(a) (b) (c)

Figure 4. Example from [7]: (a) Test image (256 × 256 pixels), (b) PSF (256 × 256 pixels), (c) Blurred image (without noise).

(a) (b) (c) (d)

(f) (g) (h) (i)

(j) (k) (l) (m)

Figure 5. Example from [7] reconstructions with different noise levels: on the first row the reconstructed images with
Tikhonov-TV, on the second and third row the reconstructed images and PSF with CSeB-A, respectively. From left to right with
8%, 4%, 2%, and 1% of noise.

(a) (b) (c) (d)

Figure 6. Atmospheric blur test problem: (a) Test image (256×256 pixels), (b) Noise-free PSF (256×256 pixels), (c) Blurred
and noisy image, (d) Noisy PSF.



A SEMI-BLIND REGULARIZATION FOR INVERSE PROBLEMS 17

(a) (b) (c) (d) (e)

Figure 7. Atmospheric blur test problem reconstructions: (a) Image computed with Tikhonov-TV, (b) PSF computed with
deconvblind, (c) Image computed with deconvblind, (d) Image computed with CSeB-A, (e) PSF computed with CSeB-A.

(a) (b) (c) (d)

Figure 8. Grain test problem: (a) Test image (256 × 256 pixels), (b) Noise-free PSF (17 × 17 pixels), (c) Blurred and noisy
image, (d) Noisy PSF.

bounds proposed in Assumption 4 hold and thus the hypothesis of Theorem 11 are satisfied.

6. Conclusions. In this work we have proposed a regularization method for solving semi-blind inverse
problems. We have developed a functional which incorporates the informations available on both the operator
and the solution. The developed functional is non-convex and non-smooth, however, we were able to prove the
existence of a global minimum, the stability of this minima, and that the minimization of the functional induces
a regularization method.

We proposed an algorithm for computing stationary points of the functional based on the ADMM algorithm
and we proved its convergence under some mild assumptions.

We provided some numerical examples that proved the good performances of the proposed algorithm under
several situations and when compared with other methods from the literature.

Acknowledgments. The authors would like to thank the referees for their insightful comments that greatly
improved the readability and the general quality of this paper.
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Appendix A. Proofs of Section 2 and Subsection 3.1.

A.1. Proofs of Section 2. We now give all the proofs of the results of Section 2.
We start by giving the proof of Lemma 1 which shows some basic properties of the functional Jδ,ǫ

α,β.

Proof (Lemma 1). It is obvious that Jδ,ǫ
α,β is positive and that is wlsc since it is a sum of wlsc functions. We

have to prove that it is coercive. The coercivity is trivially showed, in fact, it holds Jδ,ǫ
α,β(k, f) ≥ γ ‖k − kǫ‖2

+

αE ‖f‖2 → ∞ as ‖(k, f)‖ → ∞.

We now give the proof of Theorem 2, i.e., we show that the functional Jδ,ǫ
α,β admits a global minimum.

Proof (Theorem 2). From Lemma 1 we know that Jδ,ǫ
α,β is positive, proper, and coercive, thus ∃ (k, f) ∈

D
(

Jδ,ǫ
α,β

)

, where D
(

Jδ,ǫ
α,β

)

denotes the domain of Jδ,ǫ
α,β , such that Jδ,ǫ

α,β (k, f) < ∞. Let us call

(22) ν := inf
{

Jδ,ǫ
α,β (k, f) : (k, f) ∈ D

(

Jδ,ǫ
α,β

)}

,

we want to see that ν is attained, meaning that the infimum is actually a minimum.

By definition of ν there exist M > 0 and (kj , fj) ∈ D
(

Jδ,ǫ
α,β

)

such that

(23) Jδ,ǫ
α,β (kj , fj) → ν and Jδ,ǫ

α,β (kj , fj) ≤ M ∀j.

From (23) we get that αE ‖fj‖2 ≤ M and γ ‖kj − kǫ‖2 ≤ M , moreover, ‖kj‖−‖kǫ‖ ≤ ‖kj − kǫ‖ ≤
(

M
γ

)
1
2

. Thus

the following bounds hold

‖kj‖ ≤
(

M

γ

)
1
2

+ ‖kǫ‖ and ‖fj‖ <
(

M

αE

)
1
2

,
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i.e., the sequence (kj , fj)j is uniformly bounded, so there exists a subsequence (kj , fj) (with abuse of notation

we use the same indexes) such that kj ⇀ k̄ and fj ⇀ f̄ , i.e., (kj , fj) ⇀
(

k̄, f̄
)

.

We now prove that ν is the minimum of the functional Jδ,ǫ
α,β and is attained in

(

k̄, f̄
)

, i.e.,
(

k̄, f̄
)

is a global

minimizer. By wlsc of Jδ,ǫ
α,β we have

ν ≤ Jδ,ǫ
α,β

(

k̄, f̄
)

≤ lim inf
j→∞

Jδ,ǫ
α,β (kj , fj) = lim

j→∞
Jδ,ǫ

α,β (kj , fj) = ν.

So ν = Jδ,ǫ
α,β

(

k̄, f̄
)

is the minimum of the functional and
(

k̄, f̄
)

is a global minimizer.

We now prove Theorem 3 which shows that the minima of Jδ,ǫ
α,β are stable.

Proof (Theorem 3). Because (kj , fj) are minimizers it holds that

(24) J
δj ,ǫj

α,β (kj , fj) ≤ J
δj ,ǫj

α,β (k, f) ∀ (k, f) ∈ D
(

J
δj ,ǫj

α,β

)

.

Let us indicate with
(

k̃, f̃
)

the minimizers of Jδ,ǫ
α,β, namely

(

k̃, f̃
)

:=
(

kδ,ǫ
α,β , f

δ,ǫ
α,β

)

.

Since J
δj ,ǫj

α,β

(

k̃, f̃
)

→ Jδ,ǫ
α,β

(

k̃, f̃
)

there exists c̃ > 0 such that J
δj ,ǫj

α,β

(

k̃, f̃
)

≤ c̃ for j large enough. The latter
implies that (‖kj − kǫ‖)j and (‖fj‖)j are uniformly bounded and so, like in Theorem 2, it holds that (kj , fj)j
is uniformly bounded.

With abuse of notation there exists a subsequence (kj , fj)j such that kj ⇀ k̄ and fj ⇀ f̄ . By wlsc of B

and of ‖·‖ we have

∥

∥B
(

k̄, f̄
)

− gδ

∥

∥ ≤ lim inf
j→∞

∥

∥B (kj , fj) − gδj

∥

∥ and ‖kj − kǫ‖ ≤ lim inf
j→∞

∥

∥kj − kǫj

∥

∥ .

From (24) it derives

Jδ,ǫ
α,β

(

k̄, f̄
)

≤ lim inf
j→∞

J
δj ,ǫj

α,β (kj , fj) ≤ lim sup
j→∞

J
δj ,ǫj

α,β (k, f)

= lim
j→∞

J
δj ,ǫj

α,β (k, f) = Jδ,ǫ
α,β (k, f) , ∀ (k, f) ∈ D

(

Jδ,ǫ
α,β

)

.

In particular Jδ,ǫ
α,β

(

k̄, f̄
)

≤ Jδ,ǫ
α,β

(

k̃, f̃
)

, but
(

k̃, f̃
)

is a minimizer and so Jδ,ǫ
α,β

(

k̄, f̄
)

= Jδ,ǫ
α,β

(

k̃, f̃
)

, implying that

lim
j→∞

J
δj ,ǫj

α,β (kj , fj) = Jδ,ǫ
α,β

(

k̄, f̄
)

.

We have proven the weak convergence of kj and fj to k̄ and f̄ , respectively. We now have to show that the
convergence is also strong. It is enough to prove that

∥

∥k̄
∥

∥ ≥ lim supj→∞ ‖kj‖ and
∥

∥f̄
∥

∥ ≥ lim supj→∞ ‖fj‖.

Let us suppose that ∃ τ such that τ = lim supj→∞ ‖fj‖ >
∥

∥f̄
∥

∥. So there exists a subsequence (fn)n of (fj)j

such that fn ⇀ f̄ and ‖fn‖ → τ .

lim
n→∞

(

‖B (kn, fn) − gδn
‖2

+ α ‖fn‖T V + γ ‖kn − kǫn
‖2

+ β ‖kn‖T V

)

=
∥

∥B
(

k̄, f̄
)

− gδ

∥

∥

2
+ αTV

∥

∥f̄
∥

∥

T V
+ γ

∥

∥k̄ − kǫ

∥

∥

2
+ β

∥

∥k̄
∥

∥

T V
+ αE

(

∥

∥f̄
∥

∥

2 − lim
n→∞

‖fn‖2
)

=
∥

∥B
(

k̄, f̄
)

− gδ

∥

∥

2
+ αTV

∥

∥f̄
∥

∥

T V
+ γ

∥

∥k̄ − kǫ

∥

∥

2
+ β

∥

∥k̄
∥

∥

T V
+ αE

(

∥

∥f̄
∥

∥

2 − τ2
)

<
∥

∥B
(

k̄, f̄
)

− gδ

∥

∥

2
+ αTV

∥

∥f̄
∥

∥

T V
+ γ

∥

∥k̄ − kǫ

∥

∥

2
+ β

∥

∥k̄
∥

∥

T V
,

which contradicts the wlsc of B and the norms, so fj → f̄ .
Similarly we prove that kj → k̄. Let us suppose that ∃ τ such that τ = lim supj ‖kj − kǫ‖ >

∥

∥k̄ − kǫ

∥

∥.

So there exists a subsequence (kn)n of (kj)j such that kn − kǫ ⇀ k̄ − kǫ and ‖kn − kǫ‖ → τ . By triangular
inequality

‖kn − kǫ‖ − ‖kǫ − kǫn
‖ ≤ ‖kn − kǫn

‖ ≤ ‖kn − kǫ‖ + ‖kǫ − kǫn
‖ ,
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so limn→∞ ‖kn − kǫn
‖ = limn→∞ ‖kn − kǫ‖. Thus

lim
n→∞

(

‖B (kn, fn) − gδn
‖2

+ β ‖kn‖T V

)

=
∥

∥B
(

k̄, f̄
)

− gδ

∥

∥

2
+ β

∥

∥k̄
∥

∥

T V
+ β

(

γ
∥

∥k̄ − kǫ

∥

∥

2 − lim
n→∞

‖kn − kǫ‖2
)

=
∥

∥B
(

k̄, f̄
)

− gδ

∥

∥

2
+ β

∥

∥k̄
∥

∥

T V
+ β

(

γ
∥

∥k̄ − kǫ

∥

∥

2 − τ2
)

<
∥

∥B
(

k̄, f̄
)

− gδ

∥

∥

2
+ β

∥

∥k̄
∥

∥

T V
,

which contradicts the wlsc of B and the norms, so kj → k̄.

Finally we give the proof of Theorem 5 which ensures that the minimization of the functional Jδ,ǫ
α,β induces a

regularization method.

Proof (Theorem 5). Since (kj , fj) is a minimizer we have J
δj ,ǫj

αj ,βj
(kj , fj) ≤ J

δj ,ǫj

αj ,βj
(k, f) for all (k, f) ∈

D
(

J
δj ,ǫj

αj ,βj

)

, in particular

0 ≤ J
δj ,ǫj

αj ,βj
(kj , fj) ≤ J

δj ,ǫj

αj ,βj

(

k0, f
†) ≤ δ2

j + γǫ2
j + αTV

j

∥

∥f †∥
∥

T V
+ αE

∥

∥f †∥
∥

2
+ βj ‖k0‖T V ,

so
∥

∥B (kj , fj) − gδj

∥

∥

2
,
∥

∥kj − kǫj

∥

∥

2
, ‖fj‖2

, ‖fj‖T V , and ‖kj‖T V are uniformly bounded.

There exists a subsequence (kn, fn)n of (kj , fj)j such that (kn, fn) ⇀
(

k̄, f̄
)

. We want to show that k̄ = k0

and that f̄ is the minimum norm solution. Moreover, we want to prove that the convergence is strong.
Let us firstly show that k̄ = k0. Indeed, it holds

0 ≤
∥

∥B
(

k̄, f̄
)

− g0

∥

∥

2
+ γ

∥

∥k̄ − k0

∥

∥

2

≤ lim inf
n→∞

‖B (kn, fn) − gδn
‖2

+ γ ‖kn − kǫn
‖2

≤ lim inf
n→∞

δ2
n + γǫ2

n + αE
n

∥

∥f †∥
∥

2
+ αTV

∥

∥f †∥
∥

T V
+ βn ‖k0‖T V

= 0,

thus k̄ = k0 and B
(

k̄, f̄
)

= g0.

We now show that f̄ is the minimum norm solution. We have that

‖fn‖2 +
αTV

n

αE
n

‖fn‖T V +
βn

αE
n

‖kn‖T V ≤ δ2
n + γ

αE
n

+
∥

∥f †∥
∥

2
+
αTV

n

αE
n

∥

∥f †∥
∥

T V
+
βn

αn
‖k0‖T V .

We get

∥

∥f̄
∥

∥

2
+
∥

∥f̄
∥

∥

T V
+ η

∥

∥k̄
∥

∥

T V
≤ lim inf

n→∞

(

‖fn‖2
+ ‖fn‖T V + η ‖kn‖T V

)

= lim inf
n→∞

(

‖fn‖2
+
αTV

n

αE
n

‖fn‖T V +
βn

αE
n

‖kn‖T V

)

≤ lim inf
n→∞

(

δ2
n + γ

αE
n

+
∥

∥f †∥
∥

2
+
αTV

n

αE
n

∥

∥f †∥
∥

T V
+
βn

αE
n

‖k0‖T V

)

=
∥

∥f †∥
∥

2
+
∥

∥f †∥
∥

T V
+ η ‖k0‖T V ,

but k̄ = k0 and so f̄ is the minimum norm solution.
We finally prove that fn → f † and kn → k0.
We start with fn, it is sufficient to show that ‖fn‖ →

∥

∥f †∥
∥ or equivalently (by wlsc of the norm) that

lim supn→∞ ‖fn‖ ≤
∥

∥f̄
∥

∥. Let us suppose that there exists τ such that τ = lim supn→∞ ‖fn‖2
>
∥

∥f̄
∥

∥

2
and so

there is a subsequence (fl)l of (fn)n such that fl ⇀ f̄ and ‖fl‖2 → τ , so

lim sup
l→∞

βl

αl
‖kl‖T V = η ‖k0‖T V +

(

∥

∥f̄
∥

∥

2 − lim sup
l→∞

‖fl‖2

)

< η ‖k0‖T V ,
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which is a contradiction to the wlsc of the norm. So we have that fn → f̄ .
As for kn we have

‖kn − k0‖ ≤ ‖kn − kǫn
‖ + ‖kǫn

− k0‖ ≤ ‖kn − kǫn
‖ + ǫn → 0,

which leads to the thesis.

A.2. Proofs of Subsection 3.1. We give now the proof of Lemma 8.

Proof (Lemma 8). We prove the first inequality. Consider the optimality condition for f (j+1) obtained

differentiating (9), thus 0 = ∇fφ
(

f (j+1),k(j+1)
)

+ ξ(j) − ω
(

f̂ (j+1) − f (j+1)
)

, where φ is defined in (10). Using

the update rule for ξ(j+1) we get

(25) − ξ(j+1) = ∇fφ
(

f (j+1),k(j+1)
)

.

Combining Assumption 4 with Assumption 3(ii), we get that the linear operators
{

∇fφ
(

·,k(j)
)}

j
have uniformly

bounded norm, i.e., there exists a constant Cf > 0 such that
∥

∥∇fφ
(

x,k(j+1)
)

− ∇fφ
(

y,k(j+1)
)∥

∥ ≤ Cf ‖x − y‖.
Hence we have

∥

∥

∥ξ
(j+1) − ξ

(j)
∥

∥

∥ =
∥

∥

∥∇fφ
(

f (j+1),k(j+1)
)

− ∇fφ
(

f (j),k(j+1)
)∥

∥

∥ ≤ Cf

∥

∥

∥f (j+1) − f (j)
∥

∥

∥ .

We now move to the second inequality. Considering the optimality condition of (9) for k̂(j+1) and denoting
with ∂ψβ the subdifferential of ψβ defined in (12), we get

0 ∈ ∂ψβ

(

k̂(j+1)
)

− µ(j) + ω
(

k̂(j+1) − k(j+1)
)

= ∂ψβ

(

k̂(j+1)
)

− µ(j+1).

Thus it holds µ(j+1) − µ(j) ∈ ∂ψβ

(

k̂(j+1)
)

− ∂ψβ

(

k̂(j)
)

, hence

∥

∥

∥
µ(j+1) − µ(j)

∥

∥

∥
≤ sup

∥

∥

∥
∂ψβ

(

k̂(j+1)
)

− ∂ψβ

(

k̂(j)
)∥

∥

∥
.

By Assumption 4 we have that
∥

∥

∥
k̂(j)

∥

∥

∥
is uniformly bounded and thus there exists C

k̂
> 0 such that

∥

∥

∥
µ(j+1) − µ(j)

∥

∥

∥
≤ C

k̂

∥

∥

∥
k̂(j+1) − k̂(j)

∥

∥

∥
.

Calling C = max
{

Cf , Ck̂

}

we have the thesis.

We show the proof of Proposition 9.

Proof (Proposition 9). We split the difference above as

LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j+1),µ(j+1)
)

− LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)

= LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j+1),µ(j+1)
)

− LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j),µ(j)
)

+ LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j),µ(j)
)

− LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)

.(26)

Consider the first part

LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j+1),µ(j+1)
)

− LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j),µ(j)
)

=
〈

ξ(j) − ξ(j+1), f̂ (j+1) − f (j+1)
〉

+
〈

µ(j) − µ(j+1), k̂(j+1) − k(j+1)
〉

=
1

ω

∥

∥

∥ξ(j) − ξ(j+1)
∥

∥

∥

2

+
1

ω

∥

∥

∥µ(j) − µ(j+1)
∥

∥

∥

2

,(27)

where the last step is obtained by recalling the definition of ξ(j+1) and µ(j+1). We move to the second part.
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As above we indicate with ∂LA the subdifferential of L. Let a general element of ∂LA be denoted with

θ( f

k̂

) ∈ ∂( f

k̂

)LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j),µ(j)
)

and
θ(

f̂
k

) ∈ ∂(
f̂
k

)LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j),µ(j)
)

.

Then it holds

LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j),µ(j)
)

− LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)

= LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j),µ(j)
)

− LA

(

k(j+1), f (j), k̂(j), f̂ (j+1); ξ(j),µ(j)
)

+ LA

(

k(j+1), f (j), k̂(j), f̂ (j+1); ξ(j),µ(j)
)

− LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)

(a)

≤
〈

θ( f

k̂

),

(

fj+1

k̂j+1

)

−
(

fj

k̂j

)

〉

− ρ

2

∥

∥

∥

∥

(

fj+1

k̂j+1

)

−
(

fj

k̂j

)∥

∥

∥

∥

2

+

〈

θ(
f̂
k

),

(

f̂j+1

kj+1

)

−
(

f̂j

kj

)

〉

− ρ

2

∥

∥

∥

∥

(

f̂j+1

kj+1

)

−
(

f̂j

kj

)∥

∥

∥

∥

2

(b)

≤ −ρ

2

∥

∥

∥

∥

(

fj+1

k̂j+1

)

−
(

fj

k̂j

)∥

∥

∥

∥

2

− ρ

2

∥

∥

∥

∥

(

f̂j+1

kj+1

)

−
(

f̂j

kj

)∥

∥

∥

∥

2

= −ρ

2

(

∥

∥

∥f (j+1) − f (j)
∥

∥

∥

2

+
∥

∥

∥f̂ (j+1) − f̂ (j)
∥

∥

∥

2

+
∥

∥

∥k(j+1) − k(j)
∥

∥

∥

2

+
∥

∥

∥k̂(j+1) − k̂(j)
∥

∥

∥

2
)

,(28)

where (a) follows from Assumption 3(iii) and (b) comes from the optimality condition for k, k̂, f̂ , and f , i.e.,
from the fact that we can specialize the subgradients θ to be the one that satisfies the optimality conditions.

Combining (27) and (28) with (26) and using Lemma 8, we obtain

LA

(

k(j+1), f (j+1), k̂(j+1), f̂ (j+1); ξ(j+1),µ(j+1)
)

− LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)

≤ 1

ω

∥

∥

∥ξ
(j) − ξ

(j+1)
∥

∥

∥

2

+
1

ω

∥

∥

∥µ(j) − µ(j+1)
∥

∥

∥

2

− ρ

2

(

∥

∥

∥f (j+1) − f (j)
∥

∥

∥

2

+
∥

∥

∥f̂ (j+1) − f̂ (j)
∥

∥

∥

2

+
∥

∥

∥k(j+1) − k(j)
∥

∥

∥

2

+
∥

∥

∥k̂(j+1) − k̂(j)
∥

∥

∥

2
)

≤
(

C2

ω
− ρ

2

)(

∥

∥

∥f (j+1) − f (j)
∥

∥

∥

2

+
∥

∥

∥k̂(j+1) − k̂(j)
∥

∥

∥

2
)

− ρ

2

(

∥

∥

∥f̂ (j+1) − f̂ (j)
∥

∥

∥

2

+
∥

∥

∥k(j+1) − k(j)
∥

∥

∥

2
)

We now show that the iterates generated by Algorithm 3 converges to a limit, i.e., we prove Lemma 10.

Proof (Lemma 10). We observe that since we assumed that C2

ω − ρ
2 < 0, from Proposition 9 it holds that

the succession
{

LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)}

j
is monotonically decreasing.

We now prove that the succession is bounded from below. LA can be rewritten as

LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)

=
∥

∥

∥B
(

k(j), f (j)
)

− gδ

∥

∥

∥

2

+ αE
∥

∥

∥f (j)
∥

∥

∥

2

+ αTV
∥

∥

∥f̂ (j)
∥

∥

∥

T V
+ γ

∥

∥

∥k(j) − kǫ

∥

∥

∥

2

+ β
∥

∥

∥k̂(j)
∥

∥

∥

T V

+
ω

2

∥

∥

∥f̂ (j) − f (j)
∥

∥

∥

2

−
〈

ξ(j), f̂ (j) − f (j)
〉

+
ω

2

∥

∥

∥k̂(j) − k(j)
∥

∥

∥

2

−
〈

µ(j), k̂(j) − k(j)
〉

∈
∥

∥

∥B
(

k(j), f (j)
)

− gδ

∥

∥

∥

2

+ αE
∥

∥

∥f (j)
∥

∥

∥

2

+ αTV
∥

∥

∥f̂ (j)
∥

∥

∥

T V
+ γ

∥

∥

∥k(j) − kǫ

∥

∥

∥

2

+ β
∥

∥

∥k̂(j)
∥

∥

∥

T V

+
ω

2

∥

∥

∥f̂ (j) − f (j)
∥

∥

∥

2

−
〈

∇fφ
(

k(j), f (j)
)

, f̂ (j) − f (j)
〉

+
ω

2

∥

∥

∥k̂(j) − k(j)
∥

∥

∥

2

−
〈

∂ψβ

(

k(j)
)

, k̂(j) − k(j)
〉

.
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Using the fact that ∇fφ and all the elements in ∂ψβ are Lipschitz continuous and considering that C2

ω − ρ
2 < 0

by assumption we get

LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)

≥
∥

∥

∥B
(

k(j), f (j)
)

− gδ

∥

∥

∥

2

+ αE
∥

∥

∥f (j)
∥

∥

∥

2

+ αTV
∥

∥

∥f (j)
∥

∥

∥

T V
+ γ

∥

∥

∥k(j) − kǫ

∥

∥

∥

2

+ β
∥

∥

∥k(j)
∥

∥

∥

T V

≥ ν

where in the last step we have used the fact that ν is the global minimum of Jδ,ǫ
α,β(k, f).

Since the succession
{

LA

(

k(j), f (j), k̂(j), f̂ (j); ξ(j),µ(j)
)}

j
is monotonically decreasing and bounded we

have that it converges.

Finally we show the proof of our main result, Theorem 11.

Proof (Theorem 11). We only prove part (a), we omit the proof of part (b) since it can be copied with no
significant modification from [25, Theorem 2.4 part 3].

From Proposition 9 and Lemma 10 for j → ∞ we have that
∥

∥

∥f (j+1) − f (j)
∥

∥

∥ → 0,
∥

∥

∥f̂ (j+1) − f̂ (j)
∥

∥

∥ → 0,
∥

∥

∥k(j+1) − k(j)
∥

∥

∥ → 0,
∥

∥

∥k̂(j+1) − k̂(j)
∥

∥

∥ → 0.

Moreover, in force of Lemma 8 it holds

(29)
∥

∥

∥ξ
(j+1) − ξ

(j)
∥

∥

∥ → 0,
∥

∥

∥µ(j+1) − µ(j)
∥

∥

∥ → 0.

Let φ be the functional defined in (10) and recall that p∗ =
(

f∗,k∗, f̂∗, k̂∗, ξ∗,µ∗

)

is the limit point (that exists

in virtue of Lemma 10) generated by the iterations of Algorithm 3. Observing that, from (29), we obtain that
f∗ = f̂∗ and k∗ = k̂∗, which proves (i).

We move now to the proof of (ii). From (25) we have that 0 = ∇fφ
(

f (j+1),k(j+1)
)

+ ξ(j+1) and by taking

the limit for j → ∞ we get that 0 = ∇fφ (f∗,k∗) + ξ∗. Consider now k(j+1), imposing the optimality condition
for k(j+1) to (9), it holds

0 = ∇kφ
(

f (j),k(j+1)
)

+ µ(j) − ω
(

k̂(j) − k(j+1)
)

= ∇kφ
(

f (j),k(j+1)
)

+ µ(j) − ω
(

k̂(j) − k(j+1)
)

− ωk̂(j+1) + ωk̂(j+1)

= ∇kφ
(

f (j),k(j+1)
)

+ µ(j+1) − ω
(

k̂(j) − k̂(j+1)
)

,

where we added and subtracted ωk̂(j+1) in order to make µ(j+1) to appear.

Taking the limit for j → ∞, since
∥

∥

∥k̂(j+1) − k̂(j)
∥

∥

∥ → 0, we have that 0 = ∇kφ (f∗,k∗) + µ∗, completing the

proof of (ii).
For the proof of (iii) consider the optimality condition of (9) for f̂ (j+1), we have that there exists θ ∈

∂ψα

(

f̂ (j+1)
)

, where ψα is defined in (11), such that
〈

f̂ − f̂ (j+1),θ −
(

ξ(j) − ω
(

f̂ (j+1) − f̂ (j)
))〉

≥ 0 ∀ f̂ .

By convexity of ψα it holds ψα

(

f̂
)

−ψα

(

f̂ (j+1)
)

+
〈

f̂ − f̂ (j+1),−ξ(j) + ω
(

f̂ (j+1) − f̂ (j)
)〉

≥ 0 ∀ f̂ . Taking

to the limit for j → ∞ we have that ψα

(

f̂
)

− ψα

(

f̂∗
)

−
〈

f̂ − f̂∗, ξ∗

〉

≥ 0 ∀ f̂ .

Using the fact that f̂∗ = f∗ we have

ψα

(

f̂
)

+
〈

f∗ − f̂ , ξ∗

〉

−
(

ψα

(

f̂∗
)

+
〈

f∗ − f̂∗, ξ∗

〉)

≥ 0 ∀ f̂ .

Similarly we can prove, recalling the definition of ψβ in (12), that

ψβ

(

k̂
)

+
〈

k∗ − k̂,µ∗

〉

−
(

ψβ

(

k̂∗
)

+
〈

k∗ − k̂∗,µ∗

〉)

≥ 0 ∀ k̂,

which concludes the proof of (iii). We have then proven that the limit point of the succession is a stationary
point for the unconstrained problem.
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Appendix B. ADMM algorithm for multiple constrained minimization. We now discuss how to
use the ADMM algorithm for solving a constrained minimization problem. Suppose that we want to constrain
a minimization problem, so that our minimizer lies in some closed and convex set Ω ⊂ D (f)

x = arg min
x∈Ω

f (x) ,

subject to Ax = b.
(30)

Let us write (30) in an equivalent way

(x, x̃) = arg min
x̃∈Ω,x

f (x) ,

subject to Ax = b and x̃ = x.
(31)

The Augmented Lagrangian associated with (31) is

LA (x̃,x; λ, ξ) = f (x) − 〈λ, x̃ − x〉 +
ω1

2
‖x̃ − x‖2 − 〈ξ,b −Ax〉 +

ω2

2
‖b −Ax‖2

.

The ADMM applied to (31) leads to Algorithm 6.

Algorithm 6

Let x(0),λ(0), and ξ(0) be initial guesses for x,λ, and ξ, respectively

for j = 0, 1, . . .

x̃(j+1) = arg min
x̃∈Ω

LA

(

x̃
∣

∣ x(j); λ(j), ξ(j)
)

x(j+1) = arg min
x

LA

(

x
∣

∣ x̃(j+1); λ(j), ξ(j)
)

λ
(j+1) = λ

(j) − ω1

(

x̃(j+1) − x(j+1)
)

ξ(j+1) = ξ(j) − ω2

(

b −Ax(j+1)
)

end

It is easy to show that x̃(j+1) in Algorithm 6 is obtained by

x̃(j+1) = PΩ

(

x(j) +
λ(j)

ω1

)

.

In this way we are able to easily deal with the constrained optimization problem.
This approach is possible if the projection PΩ is easily performed. On the other hand if the projection

into Ω is too complicated the algorithm above might not be attractive. Nevertheless, whenever that Ω can be
written as the intersection of two or more closed and convex sets, i.e.,

Ω =

M
⋂

m=1

Ω(m),

if PΩ(m) is easily performed, then we can still use ADMM to solve the constrained minimization problem.
For the sake of simplicity we fix M = 2. Consider the minimization problem

min
x
f (x)

s.t. x ∈ Ω(1) ∩ Ω(2),

which is equivalent to the following

min
x,x(1),x(2)

f (x)

s.t. x(1) ∈ Ω(1),x(2) ∈ Ω(2),x = x(1),x = x(2).
(32)
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In this way we have separated the two constraints on Ω(1) and Ω(2); hopefully the projection on each set is
easier to compute than the projection over the intersection.

The Augmented Lagrangian of the new minimization problem (32) is

LA

(

x,x(1),x(2); λ,θ
)

= f (x) −
〈

λ,x(1) − x
〉

+
ω1

2

∥

∥x(1) − x
∥

∥

2 −
〈

θ,x(2) − x
〉

+
ω2

2

∥

∥x(2) − x
∥

∥

2
.

We can now write the ADMM iterations for this LA in Algorithm 7.

Algorithm 7

Given x(0), λ(0), and θ(0) initial guesses for x, λ, and θ, respectively. Let ω1, ω2 > 0 be real constant numbers.

for j = 0, 1, . . .
(

x
(j+1)
(1)

x
(j+1)
(2)

)

= arg min
x(1),x(2)

LA

(

x(1),x(2)

∣

∣x(j); λ(j),θ(j)
)

x(j+1) = arg min
x

LA

(

x
∣

∣x
(j+1)
(1) ,x

(j+1)
(2) ; λ(j),θ(j)

)

λ(j+1) = λ(j) − ω1

(

x
(j+1)
(1) − x(j+1)

)

θ(j+1) = θ(j) − ω2

(

x
(j+1)
(2) − x(j+1)

)

end

The minimization problem related to the auxiliary variables x(1) and x(2) decouples and the solution is
simply obtained by

x
(j+1)
(1) = PΩ(1)

(

x(j) +
λ(j)

ω1

)

, x
(j+1)
(2) = PΩ(2)

(

x(j) +
θ(j)

ω2

)

.

We do not consider the minimization in respect to x since it is not relevant for our scope.
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