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Abstract 

Oxidative stress is commonly observed in both idiopathic and genetic cases of Parkinson’s disease 

(PD). It plays an important role in the degeneration of dopaminergic neurons, while and it has been 

associated to altered telomere length. There is currently no cure for PD and antioxidative plant 

extracts, such as Mucuna pruriens and Withania somnifera, are commonly used in Ayurveda to treat 

PD patients. In this study, we evaluated two enzymatic markers of oxidative stress, glutathione 

(GSH) system and superoxide dismutase (SOD), and telomere length in a Drosophila melanogaster 

model for PD (PINK1B9). This evaluation was also performed after treatment with the phyto-

extracts. PINK1B9 mutants showed a decrease in GSH amount and SOD activity and unexpected 

longer telomeres compared to WT flies. Mucuna pruriens treatment seemed to have a beneficial 

effect on the oxidative stress conditions. On the other hand, Withania somnifera treatment did not 

show any improvements in the studied oxidative stress mechanisms and even seemed to favor the 

selection of flies with longer telomeres. In conclusion, our study suggests the importance to test 

antioxidant phyto-extracts in PINK1B9 model to identify beneficial effects for PD.  
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INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative disease characterized by the selective loss of 

dopaminergic neurons in the substantia nigra pars compacta. Although the majority of PD cases 

are sporadic, both genetic and environmental factors contribute to PD etiology. The identification of 

autosomal recessive forms of PD caused by mutations in genes encoding for proteins involved in 

mitochondrial quality control have highlighted the importance of oxidative stress in PD (1, 2). Loss 

of function mutations in PINK1 cause early-onset autosomal recessive PD. PINK1 encodes for a 

mitochondrial protein kinase that regulate mitochondrial integrity; therefore, mutations in this gene 

are linked to mitochondrial dysfunction and consequent oxidative stress (3, 4). 

Increased oxidative stress often leads to a decrease in antioxidant pathways, such as glutathione 

(GSH) and superoxide dismutase (SOD), resulting in altered oxygen consumption and perturbed 

redox homeostasis (5, 6). Mitochondrial dysfunction results in the production of large amounts of 

reactive oxygen species causing oxidative damage to cellular components including telomeres (7). 

In fact, oxidative stress accelerates telomere shortening, and antioxidants can reverse this phenotype 

(8). Although telomere length (TL) has often been speculated as a prognostic factor for various 

diseases, including Parkinson’s disease, it remains unclear if the TL shows any correlation to 

pathological state (9-13).  

In the present work, we employed a fruit-fly Drosophila melanogaster (Dm) mutant for PTEN-

induced putative kinase 1 (PINK1B9) gene as a model of PD to study two markers of oxidative 

stress, GSH amount and SOD enzymatic activity, and telomere length.   

PINK1B9 Dm model recapitulates the essential features of PD providing information regarding its 

pathogenic molecular basis and mitochondrial dysfunction (14, 3, 4, 15) and has been used to study 

neuronal dysfunction and molecular aspects of neurodegeneration (16). To note, impairment of 

mitochondrial morphology and function has been observed not only in the brain but also in the 

supercontractile muscles such as the heart in mammals (1) and the crop in Dm PINK1B9 (15). 

Although the mechanisms of formation and maintenance of telomeres are different in Dm and 

humans, several studies have proposed Dm as a useful model to study telomere function in humans 

and as an excellent translational model to study the association between telomeres length and 

human pathologies (17-20). 

Dm lacks telomerase and chromosome length is maintained by the targeted transposition of three 

non-long terminal repeat (LTR) retrotransposons, HeT-A, TART, and TAHRE (collectively 

abbreviated as HTT), to chromosome ends. The telomere length and the composition of such 

retrotransposons’ repeats can vary significantly between either chromosomes or fly phenotypes 

(21). 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110802#pone.0110802-Celotto1
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PD cannot be cured, and the medical treatments available so far are primarily useful to regulate the 

disease symptoms. Novel effective drugs or strategies for PD treatment are urgently warranted. The 

use of plant extracts is largely employed worldwide in traditional medicine, constituting the basis of 

health-care in many societies, to treat disparate pathologies (22). The therapeutic properties of two 

plant extracts, Mucuna pruriens (Mpe) and Withania somnifera (Wse), have been investigated in 

several models (23) and have been already proved useful for PD treatment due to their antioxidative 

properties (24-26). Moreover Mpe, whose seeds contain glutathione (25, 27), has been shown to 

rescue motor and mitochondrial impairment in PINK1B9 PD model (4), while Wse has been shown 

to recover both motor and no motor symptoms in Dm LRRK2 mutants (28, 29).  

In the present study we characterized endogenous antioxidant GSH and enzyme SOD and assessed 

telomere length in Mpe and Wse treated PINK1B9 Dm model.  

 

MATERIALS AND METHODS  

Flies 

Adult wild-type (WT) Oregon-R and PINK1B9 mutant Dm males were obtained from Bloomington 

Stock Center (Indiana University, Bloomington, IN, USA). After eclosion, WT and PINK1B9 males 

were separated from females. WT and mutant flies were reared on a standard corn-meal-yeast-agar 

medium in controlled environmental conditions (25°C; 60% relative humidity; light/dark=12/12 

hours). In addition, four groups of mutant PINK1B9 flies were reared on a standard medium 

supplemented with a methanolic extract of Mucuna pruriens or Withania somnifera (kindly 

supplied by Natural Remedies Ltd, Bangalore, India) at 0.1% w/w, as larvae and adult (L+/A+) or as 

adult only (L-/A+), as described elsewhere (4, 29). 

It has to be noted that, according to data in literature reporting impairment of mitochondrial 

morphology and function not only in the brain but also in the supercontractile muscles such as the 

heart in mammals (1) and the crop in Dm PINK1B9 (15), both oxidative stress markers and telomere 

length analyses have been performed on the whole insects (10-15 days old).  

 

Quantification of total GSH and GSSG in Dm homogenates 

The amount of total glutathione (GSH-T) and oxidized glutathione (GSSG) in whole Dm 

homogenates was quantified using a glutathione colorimetric detection kit (Arbor Assays, 

Eisenhower Place Ann Arbor, MI, USA) as per manufacturer’s instruction. Free or reduced 

glutathione (GSH) was calculated by subtracting GSSG from GSH-T fraction. Data from each of 

the different insect groups (WT, untreated PINK1B9, L−/A+ Mpe- or Wse-treated, L+/A+ Mpe- or 
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Wse-treated) were obtained from a pool (15-20) of whole flies. Experiments were conducted in 

triplicate. 

 

Quantification of cytosolic and mitochondrial SOD activity in Dm homogenates 

The activity of cytosolic SOD1 (SOD-c) and mitochondrial SOD2 (SOD-m) in whole Dm 

homogenates was quantified according to the manufacturer’s protocol (Arbor Assays, Eisenhower 

Place Ann Arbor, MI, USA). Data from each of the different insect groups (WT, untreated 

PINK1B9, L−/A+ Mpe- or Wse-treated, L+/A+ Mpe- or Wse-treated) were obtained from a pool (8-10) 

of whole flies. Experiments were conducted in triplicate. 

 

DNA extraction 

Genomic DNA was extracted from a pool (8-10) of whole flies using GenElute Mammalian 

Genomic DNA Miniprep Kit (Sigma, Saint Louis, Missouri, USA).   

 

qPCR 

Genomic copy number of telomeric (HET-A, TART and TAHRE) retrotransposon was estimated by 

qPCR conducted using DNA Engine Opticon 2 Real-Time Cycler (Bio-Rad, Hercules, CA, USA). 

qPCR reactions were conducted in a total volume of 20 µl containing: 20 ng genomic DNA, 10 µl 

iQ™ SYBR® Green Supermix (Bio-Rad, Hercules, CA, USA) and 6 pmol of each primer. Primer 

sequences were obtained from Walter et al. (21). Reactions were performed using the following 

conditions: 3 min at 95°C followed by 40 cycles with 10 sec at 95°C and 1 min at 58°C. 

Experiments were conducted in triplicate. Threshold cycle values (Ct) were normalized against 

RpS17 copy number. The generated data were analyzed applying ΔΔCT method. 

 

Statistical analysis 

Data subjected to statistical analysis were evaluated by the one-way ANOVA test (Statistica for 

Windows, version 7.0; StatSoft, Tulsa, OK, USA). Post-hoc comparisons were conducted with the 

Tukey test and p values < 0.05 were considered significant. Unpaired T-test analysis was performed 

in TL comparisons. Data are expressed as average ± standard error of the mean (SEM). TL length 

data are reported as fold change. 
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RESULTS 

GSH /GSSG pathway in PINK1B9 mutant 

Drosophila PINK1 loss-of-function mutation leads to abnormalities in mitochondrial morphology 

and electron transport chain (30-32). As mitochondria are a primary source of reactive oxygen 

species, PINK1 deficiency results in increased oxidative stress (33, 34). We monitored the amount 

of glutathione, a crucial antioxidant, to assess the oxidative stress in PINK1B9 Dm model of PD 

(henceforth, PINK1B9 mutants). We measured both total glutathione (GSH-T) and its oxidized form 

(GSSG).  As shown in Fig. 1 PINK1B9 mutant flies significantly differed from WT in both the 

amounts of GSH-T (50.45 ± 7.20 and 107.51 ± 10.74 millimole/insect, respectively; p=0.0003) and 

of GSSG (17.66 ± 3.82 and 31.06 ± 3.33 millimole/insect, respectively; p=0.0134). Furthermore, 

we also measured the percentages of free and oxidized form of GSH (Table 1). In line with our 

prediction, we observed that mutant flies firstly, express a lower amount of total GSH and secondly, 

a greater percentage of glutathione is in oxidized form. Next, we reasoned if pharmacological 

treatment of PINK1B9 mutant flies with Mpe and Wse could alter the antioxidant GSH pathway.  

Accordingly, we treated the flies with Mpe and Wse either only at the adult stage (L-/A+) or from 

larval stage (L+/A+). We have previously shown that the Mpe treatment restores the locomotor 

function and overall morphology of the PINK1B9 mutant flies (4). As shown in Fig. 1, Mpe 

treatment significantly increased the amount of total GSH (80.31 ± 4.56 for L-/A+ and 85.14 ± 9.40 

millimole/insect for L+/A+, respectively; p=0.0012 and p=0.0075) compared to the untreated 

PINK1B9 mutant flies. Moreover, as shown in Table 1, Mpe treated flies showed a decrease in the 

percentage of the oxidized GSH (34.16% and 36.62%, in L-/A+ and L+/A+, respectively). We 

observed that the Mpe treatment ameliorated the glutathione levels even when the flies received the 

treatment only in adult stage. Furthermore, the GSH-T in PINK1B9mutant flies which received Mpe 

from larval stage was comparable to control flies. Wse has strong antioxidant activity and we and 

others have shown the beneficial effects Wse treatment in various neurodegenerative models (29, 

35, 36).  

In contrast to Mpe treatment, the amount of total GSH (30.91 ± 5.53 mmole/insect; p = 0.0370) and 

GSSG (5.03 ± 1.20 mmole/insect; p = 0.0012) reduced significantly in PINK1B9 mutant flies which 

received Wse only in adult stage (L-/A+). Interestingly, despite the decrease in the total GSH 

observed following the Wse administration, the free GSH was 80.55% and the oxidized GSH only 

19.45% (Table 1). The PINK1B9-Wse L+/A+ flies did not differ from the untreated mutant flies for 

the total GSH (p = 0.6026) as well as for the oxidized GSH (p = 0.5814).  

  

  



8 

 

Table 1. Percentage of GSH/GSSG in different Dm homogenates 

Dm phenotype Free GSH GSSG 

WT 59.38 40.62 

Pink1B9 46.16 53.84 

Pink1B9-Mpe (L-/A+) 65.84 34.16 

Pink1B9-Mpe (L+A+) 63.38 36.62 

Pink1B9-Wse (L-/A+) 80.55 19.45 

Pink1B9-Wse (L+/A+) 40.41 59.59 

 

SOD pathway in PINK1B9 mutants 

Next, we measured the effects of administration of Mpe and Wse on the SOD antioxidant system. 

We measured the cytosolic (SOD-c) and the mitochondrial (SOD-m) values in the whole fly. As 

shown in Fig. 2, PINK1B9 mutants showed a significantly lower enzymatic activity of both the SOD-

c (0.082 ± 0.002 U/insect and 0.107 ± 0.002 U/insect, respectively; p=6.2E 10-7) and the SOD-m 

(i.e., 0.002 ± 0.0002 U/insect and 0.004 ± 0.0002 U/insect, respectively; p=4.9E 10-6) compared to 

WT flies.  

PINK1B9 flies which received Mpe showed a significant increase in the SOD-c activity when 

treated, both, at adult stage (i.e., PINK1B9-Mpe (L-/A+), SOD-c: 0.116 ± 0.002 U/insect; p=1.2E 10-

8) and from larval stage (i.e., PINK1B9-Mpe (L+/A+), SOD-c: 0.150 ± 0.001 U/insect; ; p=7.2E 10-

10).  

The SOD-m activity in PINK1B9 mutant flies remained unchanged after Mpe treatment (p=0.1218 

and p=0.1007 for PINK1B9-Mpe L-/A+ and L+/A+, respectively; Fig. 2).   

The Wse administration to adult PINK1B9 mutants (L-/A+), caused an increase in SOD-c activity 

(p=0.0003), while SOD-m activity remained unchanged (L-/A+ flies, p=0.7818). Finally, Wse 

(L+/A+)-treated flies showed no difference in the SOD-c activity (p=0.4623), but a decrease in the 

SOD-m activity (p=0.0017) compared to the untreated PINK1B9 mutants (Fig. 2). 

 

Telomere length in PINK1B9 mutants  

We computed genomic copy number of HTT-array as a measure of telomere length. We predicted 

to observe telomere shortening as a result of mitochondrial abnormalities in PINK1B9 mutant flies. 

Contrary to our expectations, we observed significantly higher number of copies of both TART (p = 

0.0069) and TAHRE (p = 0.0164) but not HET (Fig. 3).  

To investigate the effects of Mpe and Wse treatments on telomere length, we compared PINK1B9 

mutants treated as adult only (L−/A+) or as larvae and adult (L+/A+) with PINK1B9 untreated flies.  
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The copy numbers of the telomeric retrotransposons remained unchanged after Mpe treatment (Fig. 

4).  

On the other hand, mutants treated with Wse (L-/A+) showed a significant increase in copy number 

of TART (from 22.6 to 42.0; p = 0.046) and a significant decrease in TAHRE copy number (from 

16.3 to 11.5; p = 0.019) as compared to untreated PINK1B9 mutants. The other retrotransposon did 

not show a significant difference in copy number between untreated and treated mutants (Fig. 4).  

 

 

DISCUSSION 

PD is mostly a sporadic disease, but an increasing number of evidences support an extensive and 

complex contribute of the interaction between genetics, environmental factors and the normal 

process of aging to PD pathogenesis (37). However, to date only a small part of the genetic 

component of PD has been recognized and studied (38). Genetic mutations in PINK1 (39) and 

PARK2 genes, the most known and studied genetic mutations in PD, result in an increased oxidative 

stress. 

In our study, as predicted, the analysis of the two pathways GSH/GSSG and SOD-c/SOD-m 

demonstrate that PINK1B9 mutants present a greater oxidative stress as compared to WT. The 

amount of total GSH was decreased more than 50%, while the SOD activity was decreased by 

around 20%. Thus, in whole fly, the GSH pathway is likely to be affected more than the SOD 

pathway. Accordingly, given the components and especially the contents of glutathione in the 

extract (25, 27), Mpe is more effective in rescuing the oxidative stress, even if both Mpe and Wse 

are reported to have a clear antioxidant effect (24-26). Moreover, Whitworth and collaborators (40) 

reported that oxidative stress is a major contributing factor in sporadic PD and that glutathione 

counteracts the oxidative stress effects.  

Several studies have investigated telomere length as a possible biomarker for PD. In this respect, it 

has been recently shown that there is no consistent evidence of shorter telomeres in PD (13). 

Unexpectedly, we found that PINK1B9 mutants had elongated HTT-array (increased copy number of 

TART and TAHRE) compared to WT Oregon-R. In particular, it is known that HeT-A is the most 

abundant element at Drosophila telomeres (19), as observed in our WT flies, while TART and 

TAHRE appeared the most abundant elements in PINK1B9 mutants. The observation that PINK1 PD 

model has elongated HTT-array is consistent with the results shown by Degerman and colleagues 

(12). These authors did not detect a significant difference in TL between 168 patients with 

idiopathic parkinsonism (including 136 PD, 17 with Progressive Supranuclear Palsy (PSP), 15 with 

Multi System Atrophy (MSA)) at baseline and 30 controls. Nevertheless, they found a significant 
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correlation between TL at diagnosis and cognitive phenotype in the follow-up of PD and PSP 

patients, with longer TL mean at diagnosis in patients with dementia onset within three years. 

Another study showed that both short and long telomeres increase risk of amnestic mild cognitive 

impairment (41). Furthermore, longer telomeres are often associated with increased risk of different 

cancer types (42). 

Therefore, contrary to what is commonly believed, not only the shortening of telomeres is 

associated with pathological states but also telomere elongation. The possible telomere elongation 

effects are certainly less studied, but it has been hypothesized, for example, that telomere elongation 

may have a negative effect on cell division rates (43).                                         

It could be speculated that in certain diseases the cells put in place a sort of “prevention” or 

“protection system” against adverse situations (such as oxidative stress), lengthening or maintaining 

the TL, to the detriment then of their proper functioning. 

A situation of oxidative stress had already been associated with a lengthening, and not a reduction, 

of TL in Dm by Korandová and colleagues (20). In fact, the authors observed an extended TL in 

flies chronically exposed to non-/sub-lethal doses of paraquat, a redox cycling compound used to 

induce oxidative stress. The authors hypothesized that this phenomenon may happen thanks to an 

adaption mechanism or because of a positive selection favoring individuals with longer telomeres. 

The results of our study are in line with what was observed by Korandová and colleagues (20), 

associating a state of oxidative stress to elongated HTT-array in PINK1B9 mutants compared to WT. 

Interestingly, PINK1B9 mutants showed a significantly lower amount of total GSH, a greater 

percentage of GSSG and significantly lower cytosolic and mitochondrial SOD enzymatic activities 

when compared to WT. 

Our results show that PINK1B9 mutants present an oxidative stress state, and that this is associated 

with an increased TL compared to WT. We investigated whether PINK1B9 mutants’ treatment with 

two plant extracts, Mpe and Wse, with known antioxidant properties, could be able to modify these 

parameters. Accordingly, von Zglinicki (8) proposed that oxidative stress play a role in telomere 

loss, which is considered even larger than DNA replication. In this respect, large amounts of 

reactive oxygen species causing oxidative damage to cellular components, including telomeres, are 

likely to depend on mitochondrial dysfunction (7); the latter was previously shown to be 

characterizing the PINK1B9 Dm mutants (3, 4). 

The results obtained show that the mutant flies treated with Mpe tend to re-establish conditions of 

GSH/GSSG pathway similar to WT. By recalling the contents of glutathione in the extract (25), 

data are in agreement with those reported in literature (40).  
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Since PINK1 gene mutations are linked to mitochondrial dysfunction, in particular complex I 

deficiency (32, 44) and Mpe is able to rescue mitochondrial morphology in Dm PINK1B9 (3, 4), we 

suggest that Mpe rescue properties may be due to increased complex-I activity and to the presence 

of nicotinamide adenine dinucleotide and coenzyme Q-10, as reported by Manyam et al. (45), thus 

interfering with the mechanisms responsible of energy production. 

Mpe treatment was also able to rescue the cytosolic SOD activity, while it had no effect on the 

mitochondrial SOD activity. Unexpectedly, in L+/A+ cytosolic activity was greater than what found 

in WT. This would seem to be assisted by the availability of the glutathione from the Mpe extract. 

Conversely, the effects of the Wse treatment are less clear on both pathways GSH/GSSG and SOD-

c/SOD-m, no matter of the treatment length (L-/A+ vs. L+/A+). In fact, by considering the 

GSH/GSSG pathway, the dramatic decrease in the GSH-T amount compared not only to WT, but 

also to untreated PINK1B9, is paralleled by a similarly dramatic increase of TART copy number 

compared to both WT and untreated mutants. Although more experiments are needed to better 

elucidate Wse treatment effects, it seems that Wse is not effective in counteracting oxidative stress 

(especially in relation to the metabolism of glutathione) in spite of its well-known antioxidant 

effects (24-26) in this Dm model of PD. One possible explanation for Wse results can be attributed 

to the apoptosis inductive effect (46, 47). Apoptotic cell death is considered as a protective 

mechanism to clear cytotoxic debris and to protect surrounding healthy cells. Interestingly, the 

effects observed on TL in the flies treated with Wse perfectly match with the observation that W. 

somnifera root extract enhances telomerase activity in the human HeLa cell line (48). It should be 

noted that TART is one of the Dm telomeric retrotransposons encoding also a Pol protein with 

reverse transcriptase (RT) activity, shared with human telomerase (18). 

Overall, we show that the Dm PINK1B9 PD model benefits from Mpe, but not Wse administration. 

We put another piece into ‘the telomere length biomarker hypothesis’ puzzle from an evolutionary 

perspective and highlight that the conserved mechanism of telomere elongation in 

neurodegenerative state can be studied using fruit fly. Moreover, according to our previous studies 

(4, 15), we can speculate that Mpe interferes with the antioxidant pathways which rescues the 

mitochondrial functioning from oxidative stress. Protective effect of these phyto-extracts used in 

traditional medicine could be framed into effective pharmacotherapeutic strategy. 
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Legend to figures 

Figure 1. GSH/GSSG metabolic potential of Drosophila melanogaster homogenates. Comparison 

of total (in white) and oxidized (in gray) glutathione amounts found in total bodies homogenates of 

Dm flies (WT, untreated PINK1B9 and Mpe- (M) or Wse- (W) treated PINK1B9 as L−/A+ (-/+) or 

L+/A+ (+/+)). 

Mean values ± SEM (vertical bars). a and b indicate a significant difference (p < 0.05; Tukey test 

subsequent to one-way ANOVA) compared to WT and untreated PINK1B9 flies, respectively. 

 

Figure 2. SOD metabolic potential of Drosophila melanogaster homogenates. Comparison of 

cytosolic (in white; SOD-c) and mitochondrial (in gray; SOD-m) superoxide dismutase activity 

found in different homogenates (total bodies) of Dm flies flies (WT, untreated PINK1B9 and Mpe- 

(M) or Wse- (W) treated PINK1B9 as L−/A+ (-/+) or L+/A+ (+/+)). 

Mean values ± SEM (vertical bars). a and b indicate a significant difference (p < 0.05; Tukey test 

subsequent to one-way ANOVA) compared to WT and untreated PINK1B9 flies, respectively. 

 

Figure 3. Telomere length comparison between WT and PINK1B9 flies. Bar plots represent copy 

number relative to Rps17 with upper/lower limits. Asterisks indicate statistically significant 

differences relatively to WT (*p < 0.05, **p < 0.01). 

 

Figure 4. Telomere length comparison between Mpe- (M) or Wse- (W) treated PINK1B9 as L−/A+ (-

/+) or L+/A+ (+/+)) and untreated PINK1B9 flies. Bar plots represent copy number relative to Rps17 

with upper/lower limits. Asterisks indicate statistically significant differences relatively to untreated 

flies (*p < 0.05). 
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