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ABSTRACT12

In this paper we forecast daily closing price series of Bitcoin, Litecoin and Ethereum cryptocurrencies,
using data on prices and volumes of prior days. Cryptocurrencies price behaviour is still largely unexplored,
presenting new opportunities for researchers and economists to highlight similarities and differences
with standard financial prices. We compared our results with various benchmarks: one recent work on
Bitcoin prices forecasting that follow different approaches, a well-known paper that uses Intel, National
Bank shares and Microsoft daily NASDAQ closing prices spanning a 3-year interval and another, more
recent paper which gives quantitative results on stock market index predictions. We followed different
approaches in parallel, implementing both statistical techniques and machine learning algorithms: the
Simple Linear Regression (SLR) model for uni-variate series forecast using only closing prices, and the
Multiple Linear Regression (MLR) model for multivariate series using both price and volume data. We
used two artificial neural networks as well: Multilayer Perceptron (MLP) and Long short-term memory
(LSTM). While the entire time series resulted to be indistinguishable from a random walk, the partitioning
of datasets into shorter sequences, representing different price “regimes”, allows to obtain precise
forecast as evaluated in terms of Mean Absolute Percentage Error(MAPE) and relative Root Mean
Square Error (relativeRMSE). In this case the best results are obtained using more than one previous
price, thus confirming the existence of time regimes different from random walks. Our models perform well
also in terms of time complexity, and provide overall results better than those obtained in the benchmark
studies, improving the state-of-the-art.
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INTRODUCTION31

Bitcoin is the world’s most valuable cryptocurrency, a form of electronic cash, invented by an unknown32

person or group of people using the pseudonym Satoshi Nakamoto (Nakamoto, 2008), whose network of33

nodes was started in 2009. Although the system was introduced in 2009, its actual use began to grow34

only from 2013. Therefore, Bitcoin is a new entry in currency markets, though it is officially considered35

as a commodity rather than a currency, and its price behaviour is still largely unexplored, presenting36

new opportunities for researchers and economists to highlight similarities and differences with standard37

financial currencies, also in view of its very different nature with respect to more traditional currencies38

or commodities. The price volatility of Bitcoin is far greater than that of fiat currencies (Briere et al.,39

2013), providing significant potential in comparison to mature financial markets (McIntyre and Harjes,40

2014) (Cocco et al., 2019a) (Cocco et al., 2019b). According to Coinmarketcap (2020) website, one of41

the most popular sites that provides almost real-time data on the listing of the various cryptocurrencies42

in global exchanges, on May 2019 Bitcoin market capitalization value is valued at approximately 10543

billion of USD. Hence, forecasting Bitcoin price has also great implications both for investors and44

traders. Even if the number of bitcoin price forecasting studies is increasing, it still remains limited45



(Mallqui and Fernandes, 2018). In this work, we approach the forecast of daily closing price series of46

the Bitcoin cryptocurrency using data on prices and volumes of prior days. We compare our results with47

three well-known recent papers, one dealing with Bitcoin prices forecasting using other approaches, one48

forecasting Intel, National Bank shares and Microsoft daily NASDAQ prices and one on stock market49

index forecasting using fusion of machine learning techniques.50

The first paper we compare to, tries to predict three of the most challenging stock market time series51

data from NASDAQ historical quotes, namely Intel, National Bank shares and Microsoft daily closed (last)52

stock price, using a model based on chaotic mapping, firefly algorithm, and Support Vector Regression53

(SVR) (Kazem et al., 2013). In the second one Mallqui and Fernandes (2018) used different machine54

learning techniques such as Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to55

predict, among other things, closing prices of Bitcoin. The third paper we consider in our work proposes56

a two stage fusion approach to forecast stock market index. The first stage involves SVR. The second57

stage uses ANN, Random Forest (RF) and SVR (Patel et al., 2015). We decided to predict these three58

share prices to give a sense of how Bitcoin is different from traditional markets. Moreover, to enrich our59

work, we applied the models also to two other two well-know cryptocurrencies: Ethereum and Litecoin.60

In this work we forecast daily closing price series of Bitcoin cryptocurrency using data of prior days61

following different approaches in parallel, implementing both statistical techniques and machine learning62

algorithms. We tested the chosen algorithms on two datasets: the first consisting only of the closing prices63

of the previous days; the second adding the volume data. Since Bitcoin exchanges are open 24/7, the64

closing price reported on Coinmarketcap we used, refers to the price at 11:59 PM UTC of any given day.65

The implemented algorithms are Simple Linear Regression (SLR) model for univariate series forecast,66

using only closing prices; a Multiple Linear Regression (MLR) model for multivariate series, using both67

price and volume data; a Multilayer Perceptron and a Long Short-Term Memory neural networks tested68

using both the datasets. The first step consisted in a statistical analysis of the overall series. From this69

analysis we show that the entire series are not distinguishable from a random walk. If the series were70

truly random walks, it would not be possible to make any forecasts. Since we are interested in prices and71

not in price variations, we avoided the time series differencing technique by introducing and using the72

novel presented approach. Therefore, each time series was segmented in shorter overlapping sequences in73

order to find shorter time regimes that do not resemble a random walk so that they can be easily modeled.74

Afterwards, we run all the algorithms again on the partitioned dataset.75

The reminder of this paper is organized as follows. Section 2 presents the methodology, briefly76

describing the data, their pre-processing, and finally the models used. Section 3 presents and discuss the77

results. Section 4 concludes the paper.78

LITERATURE REVIEW79

Over the years many algorithms have been developed for forecasting time series in stock markets. The80

most widely adopted are based on the analysis of past market movements (Agrawal et al., 2013). Among81

the others, Armano et al. (2015) proposed a prediction system using a combination of genetic and neural82

approaches, having as inputs technical analysis factors that are combined with daily prices. Enke and83

Mehdiyev (2013) discussed a hybrid prediction model that combines differential evolution-based fuzzy84

clustering with a fuzzy inference neural network for performing an index level forecast. Kazem et al.85

(2013) presented a forecasting model based on chaotic mapping, firefly algorithm, and support vector86

regression (SVR) to predict stock market prices. Unlike other widely studied time series, still very few87

researches have focused on bitcoin price prediction. In a recent exploration McNally et al. (2018) tried to88

ascertain with what accuracy the direction of Bitcoin price in USD can be predicted using machine learning89

algorithms like LSTM (Long short-term memory) and RNN (Recurrent Neural Network). Naimy and90

Hayek (2018) tried to forecast the volatility of the Bitcoin/USD exchange rate using GARCH (Generalized91

AutoRegressive Conditional Heteroscedasticity) models. Sutiksno et al. (2018) studied and applied α-92

Sutte indicator and Arima (Autoregressive Integrated Moving Average) methods to forecast historical93

data of Bitcoin. Stocchi and Marchesi (2018) proposed the use of Fast Wavelet Transform to forecast94

Bitcoin prices. Yang and Kim (2016) examined a few complexity measures of the Bitcoin transaction flow95

networks, and modeled the joint dynamic relationship between these complexity measures and Bitcoin96

market variables such as return and volatility. Bakar and Rosbi (2017) presented a forecasting Bitcoin97

exchange rate model in high volatility environment, using autoregressive integrated moving average98

(ARIMA) algorithms. Catania et al. (2018) studied the predictability of cryptocurrencies time series,99
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comparing several alternative univariate and multivariate models in point and density forecasting of four100

of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum, using univariate Dynamic Linear101

Models and several multivariate Vector Autoregressive models with different forms of time variation.102

Vo and Xu (2017) used knowledge of statistics for financial time series and machine learning to fit the103

parametric distribution and model and forecast the volatility of Bitcoin returns, and analyze its correlation104

to other financial market indicators . Other approaches try to predict stock market index using fusion105

of machine learning techniques (Patel et al., 2015). Akcora et al. (2018) introduced a novel concept of106

chainlets, or bitcoin subgraphs, to evaluate the local topological structure of the Bitcoin graph over time107

and the role of chainlets on bitcoin price formation and dynamics. Greave and Au (2015) predicted the108

future price of bitcoin investigating the predictive power of blockchain network-based, in particular using109

the bitcoin transaction graph. Since the cryptocurrencies market is at an early stage, the cited papers that110

deals with forecasting bitcoin prices had the opportunity to train and test their models on a quite narrow111

dataset. In particular, bitcoin market has been at first characterized by an almost constantly ascending112

price trend, the so-called bull-market condition. However, since 2018, it has been characterized by a113

strong descending price trend, the so-called bear-market condition. Therefore, the cited papers trained114

their models on data of the first market condition, and tested them on data of the second type. These115

market conditions are shown in figure 1 (a: bull-market condition; b: bear-market condition). Our study116

spans over a period of more than 4 years, characterized by different price dynamics. Therefore, we were117

able to train and test our models, including in each stage both bull- and bear- market conditions. For these118

reasons, our study enriches the state-of-the-art, as it is the most updated and deals with the biggest and119

more complete dataset.

Figure 1. Bull (a) and Bear (b) price dynamics for Bitcoin market

120

METHODS121

In this section we first introduce some notions on time series analysis, which helped us to take the122

operational decisions about the algorithms we used and to better understand the results presented in123

the following. Then, we present the dataset we used, including its pre-processing analysis. Finally we124

introduce our proposed algorithms with the metrics employed to evaluate their performance and the125

statistical tools we adopted.126

Time Series Analysis127

Time Series Components128

Any time series is supposed to consist of three systematic components that can be described and modelled.
These are ’base level’, ’trend’ and ’seasonality’, plus one non-systematic component called ’noise’. The
base level is defined as the average value in the series. A trend is observed when there is an increasing
or decreasing slope in the time series. Seasonality is observed when there is a repeated pattern between
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regular intervals, due to seasonal factors. Noise represents the random variations in the series. Every time
series is a combination of these four components, where base level and noise always occur, whereas trend
and seasonality are optional. Depending on the nature of the trend and seasonality, a time series can be
described as an additive or multiplicative model. This means that each observation in the series can be
expressed as either a sum or a product of the components (Hyndman and Athanasopoulos, 2014). An
additive model is described by following the linear equation:

y(t) = BaseLevel +Trend +Seasonality+Noise (1)

A multiplicative model is instead represented by the following non-linear equation:

y(t) = BaseLevel ∗Trend ∗Seasonality∗Noise (2)

An additive model would be used when the variations around the trend does not vary with the level of129

the time series whereas a multiplicative model would be appropriate if the trend is proportional to the130

level of the time series. This method of time series decomposition is called ”classical decomposition”131

(Hyndman and Athanasopoulos, 2014).132

Statistical Measures133

The statistical measures we calculated for each time series are the mean, labelled with µ , the standard134

deviation σ and the trimmed mean µ̄ , obtained discarding a portion of data from both tails of the135

distribution. The trimmed mean is less sensitive to outliers than the mean, but it still gives a reasonable136

estimate of central tendency and can be very helpful for time series with high volatility.137

Collected data138

We tested our algorithms on six daily price series. Three of them are stock market series, all the data139

were extracted from the ’Historical Data’ available on Yahoofinance (2020) website; the other ones are140

cryptocurrencies, namely Bitcoin, Ethereum and Litecoin price daily series, all the data were extracted141

from Coinmarketcap (2020) website.142

• Daily stock market prices for Microsoft Corporation (MSFT), from 9/12/2007 to 11/11/2011.143

• Daily stock market prices for Intel Corporation (INTC), from 9/12/2007 to 11/11/2010.144

• Daily stock market prices for National Bankshares Inc. (NKSH), from 6/27/2008 to 8/29/2011.145

• Daily Bitcoin, Ethereum and Litecoin price series, from 15/11/2015 to 12/03/2020.146

We state once more that we choose these price series and the related time intervals as benchmark to147

compare our results with well known literature results obtained by using other methods.148

Specifically, we have chosen for the stock market series the same time intervals chosen in (Kazem149

et al., 2013). The choice of Bitcoin as criptocurrency is quite natural since it represents about 60% of the150

Total Market Capitalization. We chose Ethereum and Litecoin since they are among the most important151

and well-known cryptocurrencies. It is worth noting that, for the stock market series we used the same152

data of the work we compare to, whereas for the cryptocurrencies we used all the available data to have153

more significant results.154

The dataset was divided into two sets, a training part and a testing part. After some empirical test the155

partition of the data which lead us to optimal solutions was 80% of the daily data for the training dataset156

and the remaining for the testing dataset.157

Data pre-processing158

For both models we prepared our dataset in order to have a set of inputs (X) and outputs (Y ) with temporal159

dependence. We performed a one-step ahead forecast: our output Y is the value from the next (future) point160

of time while the inputs X are one or several values from the past, i.e. the so called lagged values. From161

now on we identify the number of used lagged values with the lag parameter. In the Linear Regression162

and Univariate LSTM models the dataset includes only the daily closing price series, hence there is only163

one single lag parameter for the close feature. On the contrary, in the Multiple Linear Regression and164

Multivariate LSTM models the dataset includes both close and volume (USD) series, hence we use two165

different lag parameters, one for the close and one for the volume feature. In both cases, we attempted to166

optimize the predictive performance of the models by varying the lag from 1 to 10.167
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Univariate versus Multivariate Forecasting168

A univariate forecast consists of predicting time series made by observations belonging to a single feature169

recorded over time, in our case the closing price of the series considered. A multivariate forecast is a170

forecast in which the dataset consists of the observations of several features. In our case we used:171

• for BTC, ETH and LTC series all the features provided by Coinmarketcap website: Open, High,172

Low, Close, Volume.173

• for MSFT, INTC, NKSH series all the features provided by Yahoofinance website: Date, Open,174

High, Low, Close, Volume.175

We observed that adding features to the dataset did not lead to better predictions, but performance and176

sometimes also results worsened. For this reason, we decided to use in the multivariate analysis only the177

close and volume features, that provided the best results.178

Statistical Analysis179

As a first step we carried out a statistical analysis in order to check for non-stationarity in the time series.180

We used the augmented Dickey-Fuller test and autocorrelation plots (Banerjee et al., 1993) (Box and181

Jenkins, 1976). A stochastic process with a unit root is non-stationary, namely shows statistical properties182

that change over time, including mean, variance and covariance, and can cause problems in predictability183

of time series models. A common process with unit root is the random walk. Often price time series show184

some characteristics which makes them indistinguishable from a random walk. The presence of such a185

process can be tested using a unit root test.186

The ADF test is a statistical test that can be used to test for a unit root in a univariate process, such as187

time series samples. The null hypothesis H0 of the ADF test is that there is a unit root, with the alternative188

Ha that there is no unit root. The most significant results provided by this test are the observed test189

statistic, the Mackinnon’s approximate p-value and the critical values at the 1%, 5% and 10% levels.190

The test statistic is simply the value provided by the ADF test for a given time series. Once this value191

is computed it can be compared to the relevant critical value for the Dickey-Fuller Test.192

Critical values, usually referred to as α levels, are an error rate defined in the hypothesis test. They193

give the probability to reject the null hypothesis H0. So if the observed test statistic is less than the critical194

value (keep in mind that ADF statistic values are always negative (Banerjee et al., 1993)), then the null195

hypothesis H0 is rejected and no unit root is present.196

The p-value is instead the probability to get a ”more extreme” test statistic than the one observed,
based on the assumed statistical hypothesis H0, and its mathematical definition is shown in equation 3.

pvalue = P
(

t ≥ tobserved

∣∣∣ H0

)
(3)

The p-value is sometimes called significance, actually meaning the closeness of the p-value to zero:197

the lower the p-value, the higher the significance.198

In our analysis we performed this test using the adfuller() function provided by the statsmodels Python199

library, and we chose a significance level of 5%.200

Furthermore, the autocorrelation plot, also known as correlogram, allowed us to calculate the201

correlation between each observation and the observations at previous time steps, called lag values. In our202

case we employed the autocorrelation plot() function provided by the python Pandas library (Mckinney,203

2011).204

Forecasting205

We decided to follow two different approaches: the first uses two well-known statistical methods: Linear206

Regression (LR) and Multiple Linear Regression (MLR). The second uses two very common neural207

networks (NN): Multilayer Perceptron (MLP) NN and Long Short-Term Memory (LSTM) NN. The208

reasons of this choices are explained below.209

Linear Regression and Multiple Linear Regression210

Linear regression is a linear approach for modelling the relationship between a dependent variable and211

one independent variable, represented by the main equation:212
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y = b0 +~b1 ·~x1, (4)

where y and~x1 are the dependent and the independent variable respectively, while b0 is the intercept213

and~b1 is the vector of slope coefficients. In our case the components of the vector~x1, our independent214

variable, are the values of the closing prices of the previous days. Therefore,~x1 size is the value of the lag215

parameter. In our case y represents the closing price to be predicted.216

This algorithm aims to find the curve that best fits the data, which best describes the relation between217

the dependent and independent variable. The algorithm finds the best fitting line plotting all the possible218

trend lines through our data and for each of them calculates and stores the amount (y− ȳ)2, and then219

choose the one that minimizes the squared differences sum ∑i(yi− ȳi)
2, namely the line that minimizes220

the distance between the real points and those crossed by the line of best fit.221

We then tried to forecast with multiple independent variables, adding to the close price feature the
observations of several features, including volume, highest value and lowest value of the previous day.
These information were gained from Coinmarketcap website. In these cases we used a Multiple Linear
Regression model (MLR). The MLR equation is:

y = b0 +~b1 ·~x1 + ...+~bn ·~xn = b0 +
n

∑
i=1

~bi ·~xi (5)

where the index i refers to a particular independent variable and n is the dimension of the independent222

variables space.223

We used the Linear and Multiple regression model of scikit learn (Pedregosa et al., 2012). We decided224

to use this two models for several reasons: they are simple to write, use and understand, they are fast225

to compute, they are commonly used models and fit well to datasets with few features, like ours. Their226

disadvantage is that they can model only linear relationships.227

Multilayer Perceptron228

A multilayer perceptron (MLP) is a feedforward artificial neural network that generates a set of outputs229

from a set of inputs. It consists of at least three layers of neurons: an input layer, a hidden layer and230

an output layer. Each neuron, apart from the input ones, has a nonlinear activation function. MLP uses231

backpropagation for training the network. In our model we keep the structure as simple as possible,232

with a single hidden layer. Our inputs are the closing prices of the previous days, where the number of233

values considered depends on the lag parameter. The output is the forecast price. The optimal number of234

neurons were found by optimizing the network architecture on the number of neurons itself, varying it in235

an interval between 5 and 100. We used the Python Keras library (Chollet, 2015).236

LSTM Networks237

Long Short-Term Memory networks are nothing more than a prominent variations of Recurrent Neural238

Network (RNN). RNN’s are a class of artificial neural network with a specific architecture oriented at239

recognizing patterns in sequences of data of various kinds: texts, genomes, handwriting, the spoken240

word, or numerical time series data emanating from sensors, markets or other sources (Hochreiter and241

Schmidhuber, 1997). Simple recurrent neural networks are proven to perform well only for short-term242

memory and are unable to capture long-term dependencies in a sequence. On the contrary, LSTM243

networks are a special kind of RNN, able at learning long-term dependencies. The model is organized244

in cells which include several operations. LSTM hold an internal state variable, which is passed from245

one cell to another and modified by Operation Gates (forget gate, input gate, output gate). These gates246

control how much of the internal state is passed to the output and work in a similar way to other gates.247

These three gates have independent weights and biases, hence the network will learn how much of the248

past output and of the current input to retain and how much of the internal state to send out to the output.249

In our case the inputs are the closing prices of the previous days and the number of values considered250

depends on the lag parameter. The output is the forecast price. We used the Keras framework for deep251

learning. Our model consists of one stacked LSTM layer with 64 units each and the densely connected252

output layer with one neuron. We used Adam optimizer and MSE (mean squared error) as a loss.253

We optimized our LSTM model searching for the best set of epochs and batch size ”hyperparameters”254

values. These hyperparameters strongly depend on the number of observations available for the experiment.255
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Due to the recently birth of the cryptocurrency markets, the dimensions of our datasets are quite limited256

(around 1000 observations), therefore we decided to vary the epochs hyperparameter from 300 to 800257

with a step of 100. The Keras LSTM algorithm we used sets as default value for batch size 32. So, for258

each fixed epoch, we trained the model varying the batch size within the interval
[
22,82

]
with a step259

of 10. We did not take into account values less than 300 epochs, nor greater than 800 in order to avoid260

underfitting and overfitting problems. Furthermore, we did not consider batch size values less than 22,261

since they would lead to extremely long training times. Similarly, batch size values greater than 82 would262

not allow to find a good local minimum point of the chosen loss function during the learning procedure.263

The results obtained during the hyperparameters tuning are shown in figure 2.264

Figure 2. Bitcoin hyperparameters tuning results

This figure shows the MAPE error as a function of the batch size hyperparameter, for each fixed epoch.265

As can be seen from the figure, we considered the batch size equal to 72 to be the optimal value. In fact, it266

is an excellent compromise, having a low MAPE value, which is also practically the same for all tested267

epochs. The optimal choice for the epochs hyperparameter is 600, which is the one that minimizes the268

MAPE error for batch size equal to 72, and is consistently among the best choices for almost all batch269

sizes considered. Therefore, the best set of epochs and batch size ”hyperparameters” values we chose is270

600 and 72, respectively.271

Time Regimes272

The time series considered are found to be indistinguishable from a random walk. This peculiarity is273

common for time series of financial markets, and in our case is confirmed by the predictions of the models,274

in which the best result is obtained considering only the price of the previous day.275

The purpose is to find an approach that allow us to avoid time series differencing technique, in view276

of the fact that we are interested in prices and not in price variations represented by integrated series of277

d-order. For this reason, each time series was segmented into short partially overlapping sequences, in278

order to find if shorter time regimes are present, where the series do not resemble a random walk. Finally,279

to continue with the forecasting procedure, a train and a test set were identified within each time regime.280

For each regime we always sampled 200 observations - namely 200 daily prices. The beginning of the281

next regime is obtained with a shift of 120 points from the previous one. Thus, every regime is 200 points282

wide and has 80 points in common with the following one.283

We chose a regime length of 200 days because, in this way, we obtain at least 5 regimes (from 5 to 12)284

for each time series to test the effectiveness of our algorithms, without excessively reducing the number285

of samples needed for training and testing. The choice was determined also according to the following:286

we performed the augmented Dickey-Fuller test on subsets of the data, starting from the whole set and287

progressively reducing the data window and sliding it through the data. The first subset of data that does288
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not behave as random walks appears at time interval of 230 days, which we rounded to 200.289

Since the time series considered have different lengths, the partition in regimes has generated:290

• Bitcoin, Ethereum and Litecoin: 12 regimes291

• Microsoft: 8 regimes292

• Intel and National Bankshares: 5 regimes293

From a mathematical point of view, the used approach can be described as follows.294

Let us target a vector
−→
OA along the t axis, with length 200. This vector is identified by the points295

O(1,0), A(a,0)≡ (200,0). The length of this vector represents the width of each time regime.296

Let
−→
OH be a fixed translation vector along the t axis, identified by the points O(1,0) and H(h,0)≡297

(120,0). The length of
−→
OH represents the translation size.298

For the sake of simplicity, let us label the
−→
OA and

−→
OH vectors with ~A and ~H.299

Let ~A′ be the vector ~A shifted by ~H and ~An the vector ~A shifted by n times ~H.300

Therefore, the vector that identifies the nth sequence to be sampled along the series is given by:

~An = ~A+n~H (6)

where n ∈
[
0, D−A

h

]
, being D the dimension of the sampling space, A the time regimes width and h the301

translation size.302

So the nth time regime is given by:

Rn = f
(
~An)= f

(
~A+n~H

)
(7)

where f is the function that maps the values along the t axis (dates) to the respective regimes y values303

(actual prices).304

Performance Measures305

To evaluate the effectiveness of different approaches, we used the relative Root Mean Square Error
(rRMSE) and the Mean Absolute Percentage Error (MAPE), defined respectively as:

relativeRMSE =

√
1
N

N

∑
i=1

(yi− fi

yi

)2
(8)

MAPE =
1
N

N

∑
i=1

∣∣∣yi− fi

yi

∣∣∣ (9)

In both formulas yi and fi represent the actual and forecast values, and N is the number of forecasting306

periods. These are scale free performance measures, so that they are well appropriate to compare model307

performance results across series with different orders of magnitude, as in our study.308

RESULTS309

Time Series Analysis310

In figure 3 we report the decomposition of Bitcoin (a-d) and Microsoft (e-h) time series, for comparison311

purposes, as obtained using the seasonal decompose() method, provided by the Python statsmodels library312

(Skipper and Perktold., 2010).313

The seasonal decompose() method requires to specify whether the model is additive or multiplicative.314

In the Bitcoin time series, the trend of increase at the beginning is almost absent (from around 2016-04315

to 2017-02); in later years, the frequency and the amplitude of the cycle appears to change over time.316

The Microsoft time series shows a non-linear seasonality over the whole period, with frequency and317

amplitude of the cycles changing over time. These considerations suggest that the model is multiplicative.318

Furthermore, if we look at the residuals, they look quite random, in agreement with their definitions. The319

Bitcoin residuals are likewise meaningful, showing periods of high variability in the later years of the320

series.321
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Figure 3. Decomposition of Bitcoin (a-d) and Microsoft (e-h) time series

Figure 4. Seasonality of Bitcoin (a) and Microsoft (b) time series
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Table 1. Time Series Statistical Measures
Series µ σ µ̄

BTC 4931,3 3970,0 4593,1
ETH 216,8 239,8 171,2
LTC 55,9 58,0 45,6
MSFT 26,2 3,9 26,3
INTC 19,9 3,6 19,9
NKSH 24,3 3,9 24,5

It is also possible to group the data at seasonal intervals, observing how the values are distributed322

and how they evolve over time. In our work we grouped the data of the same month over the years323

we considered. This is achieved with the ’Box plot’ of month-wide distribution, shown in figure 4 (a:324

Bitcoin; b: Microsoft). The Box plot is a standardized way of displaying the distribution of data based325

on five numbers summary: minimum, first quartile, median, third quartile and maximum. The box of326

the plot is a rectangle which encloses the middle half of the sample, with an end at each quartile. The327

length of the box is thus the inter-quartile range of the sample. The other dimension of the box has no328

meaning. A line is drawn across the box at the sample median. Whiskers sprout from the two ends of329

the box defining the outliers range. The box length gives an indication of the sample variability, and330

for the Bitcoin samples shows a large variance, in almost all months, except for April, September and331

October. Not surprisingly, bitcoin volatility is much higher than Microsoft one. The line crossing the332

box shows where the sample is centred, i.e. the median. The position of the box in its whiskers and the333

position of the line in the box also tell us whether the sample is symmetric or skewed, either to the right334

or to the left. The plot shows that the Bitcoin monthly samples are therefore skewed to the right. The top335

whiskers is much longer than the bottom whiskers and the median is gravitating towards the bottom of the336

box. This is due to the very high prices that Bitcoin reached throughout the period between 2017 and337

2018. These large values tend to skew the sample statistics. In Microsoft, an alternation between samples338

skewed to the left and samples skewed to the right occurs, except for the sample of October that shows339

a symmetric distribution. Lack of symmetry entails one tail being longer than the other, distinguishing340

between heavy-tailed or light-tailed populations. In the Bitcoin case we can state that the majority of the341

samples are left skewed populations with short tails. Microsoft shows an alternation between heavy-tailed342

and light-tailed distributions. We can see that some Microsoft samples, particularly those with long tails,343

present outliers, representing anomalous values. This is due to the fact that heavy tailed distributions tend344

to have many outliers with very high values. The heavier the tail, the larger the probability that you will345

get one or more disproportionate values in a sample.346

Tables 1 and 2 show the statistics calculated for each time series and for each short time regime. The347

unit of measurement of the values in the tables is the US dollar ($). In table 1 we can observe that the348

only series for which the trimmed mean, obtained with trim mean() method provided by the Python scipy349

library (Jones et al., 2001), with a cut-off percentage of 10%, is significantly different from the mean are350

Bitcoin, Ethereum and Litecoin. In particular the trimmed mean decreased. This is due to the fact that351

these cryptocurrencies, for a long period of time, registered a large price increment and this implies a352

shift of the mean to the right (i.e. to highest prices). This confirms that cryptocurrencies distribution is353

right-skewed. Table 2 shows that stock market series time regimes present a lower σ than BTC, ETH and354

LTC ones, namely that cryptocurrencies distribution has higher variance.355

Figures 5 and 6 show the autocorrelation plots of BTC and MSFT series. The others stock market356

series are not presented because they show the same features of the MSFT series. Both autocorrelation357

plots (sub-figures c) show a strong autocorrelation between the current price and the closest previous358

observations and a linear fall-off from there to the first few hundred lag values. We then tried to make359

the series stationary by taking the first difference. The autocorrelation plots of the ’differences series’360

(sub-figures d) show no significant relationship between the lagged observations. All correlations are361

small, close to zero and below the 95% and 99% confidence levels.362

As regards the augmented Dickey-Fuller results, shown in table 3, looking at the observed test363

statistics, we can state that all the series follows a unit root process. We remind that the null hypothesis364

H0 of the ADF test is that there is a unit root. In particular, all the observed test statistics are greater than365

10/18



Table 2. Regimes Statistical Measures

Series h µ σ µ̄

BTC

0 419,7 39,6 421,6
120 551,2 97,3 549,6
240 707,9 122,5 693,2
360 1110,1 358,8 1048,8
480 2481,2 1107,4 2414,0
600 7446,4 4808,8 6870,7
720 10359,6 3082,8 9966,1
840 7536,5 1130,1 7424,8
960 5810,9 1382,3 5859,4
1080 4509,6 1101,3 4349,9
1200 8016,9 2752,9 8048,3
1320 9154,5 1477,4 9080,2

ETH

0 6,0 4,6 5,8
120 11,7 2,0 11,6
240 10,8 1,7 10,8
360 34,6 39,0 26,3
480 195,8 114,6 194,5
600 441,9 281,8 385,5
720 695,9 251,4 682,0
840 487,4 159,1 486,4
960 239,6 118,0 228,2
1080 144,6 34,0 141,8
1200 204,7 52,5 201,1
1320 186,8 42,5 181,7

LTC

0 3,5 0,4 3,4
120 3,9 0,5 3,9
240 3,9 0,2 3,9
360 8,2 8,1 6,2
480 33,8 19,3 33,3
600 102,6 85,4 86,1
720 167,0 65,0 163,7
840 107,6 40,2 105,3
960 52,9 17,9 52,2
1080 50,5 19,9 48,7
1200 87,4 23,8 85,7
1320 67,2 22,3 64,5

MSFT

0 30,7 2,8 30,5
120 26,1 3,2 26,4
240 20,6 3,9 20,4
360 22,8 3,8 22,8
480 28,2 2,3 28,4
600 26,8 2,2 26,7
720 26,1 1,3 26,1
840 26,0 1,2 26,0

INTC

0 23,5 2,4 23,5
120 20,0 3,6 20,3
240 15,4 2,3 15,1
360 17,3 2,3 17,4
480 20,6 1,4 20,4

NKSH

0 18,5 0,9 18,5
120 22,2 3,0 22,2
240 26,5 1,4 26,5
360 25,9 1,9 26,0
480 26,5 2,5 26,3
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Figure 5. Microsoft time series autocorrelation plots

Figure 6. Bitcoin time series autocorrelation plots

those associated to all significance levels. This implies that we can not reject the null hypothesis H0, but366

does not imply that the null hypothesis is true.367

Observing the p-values, we notice that for the stock market series we have a low probability to get368

a ”more extreme” test statistic than the one observed under the null hypothesis H0. Precisely, for both369

MSFT and INTC we got a probability of 29%, for NKSH a probability of 25%. The same considerations370

also apply to the Bitcoin, Ethereum and Litecoin cryptocurrency time series. We conclude that H0 can not371

be rejected and so each time series present a unit root process.372

We conclude that all the considered series show the statistical characteristics typical of a random walk.373

Time Series Forecasting374

Table 4 and 5 show the best results, in terms of MAPE and rRMSE, obtained with the different algorithms375

applied to the entire series. From now on, let us label the closing and the volume features lag parameters376

with kp and kv respectively. In particular, table 4 reports the results obtained using the Linear Regression377

algorithm for univariate series forecast, using only closing prices, and the Multiple Linear Regression378

model for multivariate series, using both price and volume data.379

Table 5 shows the results obtained with the LSTM neural network, distinguishing between univariate380

LSTM, using only closing prices, and multivariate LSTM, using both price and volume data.381

Small values of the MAPE and rRMSE evaluation metrics suggest accurate predictions and good382

12/18



Table 3. Augmented Dickey-Fuller test results
Series ADF statistic p-value
BTC -2,12 0,24
ETH -2,17 0,22
LTC -2.34 0,16
MSFT -1,98 0,29
INTC -1,98 0,29
NKSH -2,10 0,25

performance of the considered model.383

From the analysis of the series in their totality, it appears that linear models outperforms neural384

networks. However, for both models, the majority of best results are obtained for a lag of 1,thus385

confirming our hypothesis that the series are indistinguishable from a random walk.386

In order to perform the time series forecasting, we also implemented a Multi-Layer Perceptron model.387

Since the LSTM network outperforms the MLP one, we decided to show only the LSTM results. This388

is probably due to the particular architecture of the LSTM network, that is able to capture long-term389

dependencies in a sequence.390

It should be noted that better predictions are obtained for stock market series rather than for the391

cryptocurrencies one. In particular, the best result is obtained for Microsoft series, with a MAPE of392

0,011 and kp equal to 1. This is probably due to the high price fluctuations that Bitcoin and the other393

cryptocurrencies have suffered during the investigated time interval. This is confirmed by the statistics394

shown in table 1. It must be noted that the addition of the volume feature to the dataset does not improve395

the predictions.396

Table 4. Linear and Multiple Linear Regression results

Linear Regression Multiple Linear Regression
Series MAPE rRMSE kp MAPE rRMSE kp kv
BTC 0,026 0,040 1 0,026 0,037 1 1
ETH 0,031 0,049 1 0,039 0,053 6 3
LTC 0,034 0,050 1 0,045 0,058 2 2
MSFT 0,011 0,015 1 0,011 0,015 1 1
INTC 0,013 0,017 1 0,013 0,017 1 1
NKSH 0,014 0,019 12 0,013 0,018 7 5

Table 5. Univariate and Multivariate LSTM results

Univariate LSTM Multivariate LSTM
Series MAPE rRMSE kp MAPE rRMSE kp kv
BTC 0,027 0,041 1 0,038 0,048 2 1
ETH 0,034 0,052 6 0,057 0,076 2 1
LTC 0,035 0,051 1 0,039 0,054 1 1
MSFT 0,012 0,015 1 0,012 0,015 1 2
INTC 0,013 0,017 2 0,013 0,017 1 1
NKSH 0,014 0,020 7 0,013 0,018 1 2

In order to perform prices forecast we changed the approach and decided to split the time series397

analysis using shorter time windows of 200 points, shifting the windows by 120 points, with the aim of398

finding local time regimes where the series do not follow the global random walk pattern.399

Table 6 and 7 show the results obtained with our approach of partitioning the series into shorter400

sequences. Let us label the moving step forward with h. Particularly, in table 6 are presented the results401
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obtained using the Linear Regression algorithm for univariate series forecast, using only closing prices,402

and the Multiple Linear Regression model for multivariate series, using both price and volume data. This403

approach, has the advantage of being simple to implement and requires low computational complexity.404

Nevertheless, has led to good results, similar to those present in the literature, if not better as in the405

Microsoft, Bitcoin and National Bankshares cases, where the MAPE error is lower that 1%.406

Table 7 shows the results obtained with the LSTM neural network, distinguishing between univariate407

LSTM, using only closing prices, and multivariate LSTM, using both price and volume data. For each408

time regimes we show the best results obtained on a specific time window defined by the kp and kv values409

reported in Tabs. 6 and 7. Note that we highlighted the best results in bold. In particular, it is worth noting410

that introducing the time regimes, the best result is obtained for the Bitcoin time series, outperforming411

also the financial ones.412

These results show how such innovative partitioning approach allowed us to avoid the ”random walk413

problem”, finding that best results are obtained using more than one previous price. Furthermore, this414

method leads to a significant improvement in predictions. It is worth noting that, from this analysis the415

best result arise from the Bitcoin series, with a MAPE error of 0,007, a temporal window kp of 7 and a416

translation step h of 120, obtained using both regression models and LSTM network.417

Another interesting consideration that arises from the results is that, as stated previously in the analysis418

of the series in their entirety, the linear regression models generally outperform the neural networks ones,419

while in the short-time regimes approach the different models yielded to similar results.420

For a direct feedback we report in table 8 the best results obtained in the papers we compared to and421

our best ones. In the event that the best MAPE error results from different models, we consider the model422

whose computational complexity is the least as best. It is noticeable that our results outperform those423

obtained in the benchmark papers, providing notable contribution to the literature.424

CONCLUSIONS425

The results, obtained considering the series in their totality, reflect the considerations made in the426

introduction of this paper. The predictions of the Bitcoin, Ethereum and Litecoin closing price series427

are worse, in terms of MAPE error, than those obtained for the benchmark series (Intel, Microsoft and428

National Bankshares). This is probably due to at least two reasons: high volatility of the prices and market429

immaturity for cryptocurrencies. This is confirmed by the statistics reported in tables 1 and 2.430

The results obtained partitioning the dataset into shorter sequences also confirmed the correctness431

of our hypothesis of identifying time regimes that do not resemble a random walk and that are easier to432

model, finding that best results are obtained using more than one previous price. It is worth noting that,433

with this novel approach, we obtained the best results for the Bitcoin price series rather than for the stock434

market series, as happened in the analysis of the series in their totality. As stated before, this is probably435

due to the high volatility of the Bitcoin price. In fact, it is no accident that the best result was found for the436

time regime identified by a translation step h of 120, where the Bitcoin prices are more distributed around437

the mean, showing a lower variance. This is confirmed by the standard deviation values shown in table 2.438

It is important to emphasize that the innovative approach proposed in this paper, namely the identifica-439

tion of short-time regimes within the entire series, allowed us to obtain leading-edge results in the field of440

financial series forecasting.441

Comparing our best result with those obtained in the considered benchmark papers, our result442

represents one of the best found in the literature. We highlight that we obtained, both for the Bitcoin and443

the traditional market series, better results than the benchmark ones. Precisely, for Bitcoin we obtained a444

MAPE error of 0,007, while the benchmark best one (Mallqui and Fernandes, 2018) is 0,011. For the445

stock market series our algorithms outperform those of benchmarks even more. In fact, our errors are as446

low as between 15% and 30% with respect to the reference errors reported in the literature.447

Also for the Ethereum and Litecoin time series, the best results are those obtained with the time448

regimes approach, with a MAPE of 2% and 1% respectively.449

As regards the implemented algorithms, the best results were found with both regression models450

and LSTM network. However, from the point of view of execution speed, the linear regression models451

outperform neural networks.452

It is worth noting that, since Bitcoin and the other cryptocurrencies still are at an early stage, the453

length of the time series is limited, and future investigation might yield different results.454

14/18



Table 6. LR and MLR results with time regimes

Linear Regression Multiple Linear Regression
Series h MAPE rRMSE kp MAPE rRMSE kp kv

BTC

0 0,015 0,025 4 0,012 0,014 8 10
120 0,007 0,010 7 0,007 0,011 1 1
240 0,029 0,050 4 0,031 0,052 5 1
360 0,034 0,041 1 0,037 0,045 1 2
480 0,041 0,062 2 0,039 0,061 2 1
600 0,065 0,082 2 0,065 0,080 2 2
720 0,028 0,035 1 0,026 0,035 1 5
840 0,017 0,024 7 0,018 0,024 7 1
960 0,030 0,040 4 0,029 0,040 1 10
1080 0,029 0,039 1 0,022 0,031 3 3
1200 0,018 0,025 8 0,021 0,026 8 2
1320 0,020 0,026 5 0,021 0,027 7 7

ETH

0 0,045 0,060 7 0,042 0,056 10 6
120 0,022 0,029 1 0,022 0,028 1 1
240 0,031 0,047 4 0,033 0,046 1 3
360 0,053 0,078 1 0,053 0,078 2 2
480 0,048 0,077 1 0,050 0,077 1 1
600 0,060 0,080 1 0,053 0,069 3 8
720 0,039 0,051 1 0,036 0,049 1 7
840 0,048 0,070 7 0,064 0,084 5 1
960 0,051 0,068 1 0,055 0,071 4 1
1080 0,032 0,046 3 0,020 0,027 10 7
1200 0,024 0,031 8 0,022 0,029 1 8
1320 0,025 0,033 1 0,028 0,035 1 1

LTC

0 0,027 0,034 4 0,023 0,027 8 8
120 0,011 0,018 3 0,011 0,017 1 4
240 0,030 0,046 5 0,031 0,047 5 2
360 0,075 0,098 1 0,074 0,094 3 3
480 0,073 0,111 1 0,074 0,112 1 1
600 0,077 0,096 2 0,058 0,074 8 7
720 0,040 0,049 1 0,040 0,047 1 1
840 0,032 0,045 9 0,031 0,043 9 3
960 0,047 0,060 3 0,048 0,062 1 1
1080 0,037 0,047 9 0,023 0,028 7 7
1200 0,026 0,032 8 0,027 0,034 8 1
1320 0,026 0,036 1 0,026 0,037 1 1

MSFT

0 0,015 0,018 1 0,015 0,017 1 3
120 0,037 0,045 6 0,035 0,044 6 4
240 0,015 0,019 7 0,015 0,019 9 6
360 0,010 0,014 3 0,012 0,018 1 1
480 0,011 0,015 2 0,010 0,012 3 7
600 0,009 0,011 4 0,009 0,011 5 1
720 0,008 0,011 7 0,007 0,009 10 8
840 0,012 0,015 1 0,012 0,015 1 10

INTC

0 0,014 0,019 5 0,013 0,017 6 10
120 0,036 0,045 7 0,035 0,043 7 4
240 0,017 0,022 5 0,017 0,022 2 3
360 0,012 0,015 1 0,012 0,015 1 1
480 0,016 0,020 1 0,016 0,020 3 5

NKSH

0 0,019 0,023 8 0,019 0,023 9 6
120 0,014 0,018 9 0,013 0,017 10 4
240 0,014 0,018 4 0,012 0,016 1 4
360 0,019 0,026 2 0,019 0,026 2 1
480 0,009 0,012 7 0,009 0,012 10 5
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Table 7. Univariate and Multivariate LSTM results with time regimes

Univariate LSTM Multivariate LSTM
Series h MAPE rRMSE kp MAPE rRMSE kp kv

BTC

0 0,022 0,034 3 0,021 0,030 3 1
120 0,007 0,011 4 0,007 0,010 2 1
240 0,044 0,058 3 0,065 0,077 3 1
360 0,088 0,105 2 0,187 0,233 3 3
480 0,043 0,066 4 0,041 0,061 1 1
600 0,068 0,088 1 0,078 0,127 2 1
720 0,027 0,035 2 0,027 0,043 1 2
840 0,017 0,023 1 0,017 0,031 3 1
960 0,027 0,035 6 0,033 0,067 2 1
1080 0,025 0,038 3 0,030 0,106 3 1
1200 0,021 0,028 1 0,024 0,033 1 1
1320 0,018 0,025 1 0,020 0,028 1 2

ETH

0 0,051 0,065 6 0,054 0,068 3 1
120 0,022 0,028 1 0,023 0,031 1 3
240 0,034 0,049 1 0,035 0,048 1 2
360 0,217 0,248 5 0,284 0,349 3 3
480 0,049 0,077 2 0,050 0,076 1 1
600 0,074 0,109 3 0,164 0,396 1 1
720 0,039 0,052 3 0,037 0,079 3 1
840 0,067 0,092 1 0,052 0,252 1 1
960 0,053 0,067 1 0,062 0,101 1 1
1080 0,031 0,042 3 0,039 0,082 1 1
1200 0,026 0,035 1 0,025 0,049 1 3
1320 0,021 0,031 2 0,022 0,031 1 1

LTC

0 0,045 0,054 5 0,063 0,079 3 1
120 0,010 0,016 2 0,011 0,018 3 1
240 0,035 0,052 6 0,051 0,069 1 1
360 0,395 0,409 6 0,397 0,443 3 2
480 0,086 0,117 3 0,090 0,120 3 1
600 0,136 0,164 1 0,167 0,431 1 3
720 0,040 0,051 3 0,040 0,075 1 2
840 0,034 0,045 1 0,035 0,062 1 2
960 0,047 0,059 1 0,053 0,107 2 1
1080 0,047 0,055 1 0,034 0,121 1 3
1200 0,026 0,035 1 0,026 0,048 1 3
1320 0,028 0,038 2 0,028 0,038 1 1

MSFT

0 0,014 0,017 1 0,014 0,017 1 2
120 0,121 0,139 1 0,054 0,064 3 1
240 0,017 0,023 2 0,017 0,023 1 3
360 0,017 0,021 4 0,031 0,044 3 1
480 0,012 0,015 1 0,012 0,016 1 2
600 0,009 0,012 3 0,009 0,012 3 1
720 0,008 0,011 4 0,010 0,014 2 1
840 0,012 0,016 4 0,012 0,016 3 1

INTC

0 0,015 0,019 1 0,014 0,018 1 1
120 0,056 0,068 1 0,069 0,091 3 3
240 0,017 0,021 3 0,017 0,022 3 1
360 0,012 0,015 1 0,013 0,017 1 1
480 0,017 0,021 1 0,020 0,025 1 1

NKSH

0 0,021 0,027 1 0,023 0,027 3 1
120 0,015 0,018 6 0,014 0,019 1 3
240 0,016 0,022 1 0,017 0,022 1 3
360 0,020 0,027 1 0,023 0,030 1 3
480 0,010 0,014 1 0,010 0,013 1 1
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Table 8. Best Benchmarks Results compared to ours

Reference Series Model MAPE
Mallqui and
Fernandes
(2018)

BTC SVM:0.9-1(Relief) 0,011

Patel et al.
(2015)

S&P BSE SENSEX SVR 0,009

Kazem
et al.
(2013)

MSFT SVR-CFA 0,052
INTC SVR-CFA 0,045
NKSH SVR-CFA 0,046

Our Work

BTC LR 0,007
ETH MLR 0,020
LTC Univariate LSTM 0,010
MSFT MLR 0,007
INTC LR 0,012
NKSH LR 0,009
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