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Abstract: Breastfeeding has long-term benefits for children that may be mediated via the epigenome.
This pathway has been hypothesized, but the number of empirical studies in humans is small and
mostly done by using peripheral blood as the DNA source. We performed an epigenome-wide
association study (EWAS) in buccal cells collected around age nine (mean = 9.5) from 1006 twins
recruited by the Netherlands Twin Register (NTR). An age-stratified analysis examined if effects
attenuate with age (median split at 10 years; n<10 = 517, mean age = 7.9; n>10 = 489, mean age = 11.2).
We performed replication analyses in two independent cohorts from the NTR (buccal cells) and the
Avon Longitudinal Study of Parents and Children (ALSPAC) (peripheral blood), and we tested loci
previously associated with breastfeeding in epigenetic studies. Genome-wide DNA methylation
was assessed with the Illumina Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA,
USA) in the NTR and with the HumanMethylation450 Bead Chip in the ALSPAC. The duration of
breastfeeding was dichotomized (‘never‘ vs. ‘ever’). In the total sample, no robustly associated
epigenome-wide significant CpGs were identified (α = 6.34 × 10–8). In the sub-group of children
younger than 10 years, four significant CpGs were associated with breastfeeding after adjusting
for child and maternal characteristics. In children older than 10 years, methylation differences at
these CpGs were smaller and non-significant. The findings did not replicate in the NTR sample
(n = 98; mean age = 7.5 years), and no nearby sites were associated with breastfeeding in the ALSPAC
study (n = 938; mean age = 7.4). Of the CpG sites previously reported in the literature, three were
associated with breastfeeding in children younger than 10 years, thus showing that these CpGs
are associated with breastfeeding in buccal and blood cells. Our study is the first to show that
breastfeeding is associated with epigenetic variation in buccal cells in children. Further studies are
needed to investigate if methylation differences at these loci are caused by breastfeeding or by other
unmeasured confounders, as well as what mechanism drives changes in associations with age.
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1. Introduction

Early life environmental influences are associated with development and disease. One mechanism
that has been hypothesized to account for the association is through the “epigenetic programming”
of genes, some of which may act to confer plasticity to developmental processes [1,2]. Nutrition
in early life may play a crucial role in modulating gene expression [3,4]. It has been hypothesized
that nutrition-induced epigenetic variation may result in different development trajectories and may
be associated with metabolic and immune development during critical periods of early life [5–8].
Epigenetic mechanisms are a key element in understanding the developmental origins of later
life disease risk [9–11]. One of the best studied epigenetic mechanisms is DNA methylation—the
modification of a cytosine base, usually at CpG dinucleotides, with a methyl group, which regulates
gene expression and seems to already be sensitive to nutrition during the prenatal period [12–17].

In humans, prenatal maternal famine has been associated with long-term DNA methylation
changes that are still observable in middle-aged individuals [18,19]. The early postnatal period
is also believed to be a critical period at which permanent long-term changes may be induced by
environmental exposures that affect the child’s susceptibility to chronic disease [20]; however, whether
similar long-term changes in the human epigenome may be induced in this period is unexplored.
The first nutrition period, including breastfeeding, has long-term effects on children [3]. Human breast
milk has a unique composition that differs from other lactating animals and that is quite impossible to
reproduce in artificial production; in fact, breast milk contains a unique mixture of microorganisms
(the microbiome) [21], metabolites [22], multipotent stem cells [23], growth factors [24] and other
components that render it unique and individualized for each newborn [25]. Moreover, breast milk
varies its composition according to the lactation period and circadian rhythm, and it even varies from
the start till the end of one feeding [26]. The benefits of breastfeeding on the health of children are
widely described [27–29] and may involve the transmission of nutrients, hormones, and antibodies
from mother to child [24,30,31]. These benefits also include the process of interaction and attachment
of a child to their mother, although the effect of bonding may also be achieved through formula
feeding [32,33].

Balanced newborn feeding is the basis for the adequate growth and development in childhood and
beyond [25,28,34]. Breast milk is important for sensory, neurological and cognitive development [35–37],
especially in preterm infants [38], but its effects on cognition are confounded by maternal education [39].
The association between breastfeeding duration and a lower risk of infectious diseases, obesity, cancer,
coronary heart disease, some allergies, autoimmune disease, diabetes mellitus, inflammatory bowel
diseases, and metabolic syndrome at later age has been widely studied [27,40–49]. Even though a
protective effect of breastfeeding in hypertension, diabetes, obesity, and metabolic syndrome has
not been evident in some large studies [30,50], the benefits of breastfeeding are well recognized,
and the understanding of the biological mechanisms of its influence is of interest. Previous studies
on the association between breastfeeding and child outcomes have used a variety of definitions of
breastfeeding, including: never vs. ever breastfeeding, breastfeeding duration which has been assessed
as a continuous measure in months or weeks, or as a categorical variable (e.g., long vs. short). Some
studies have examined the percentage of breastfed meals, exclusive breastfeeding duration (when a
child is exclusively breastfed until formula feed and/or solid foods are introduced). In a meta-analysis
by Victora et al. [27], breastfeeding never vs. ever was associated with a reduction in sudden infant
deaths, a reduction of acute otitis during the first few years of life, a protection against allergic rhinitis
in children <5 years, a higher child Intelligence Quotient (IQ) of about three IQ points. More versus
less breastfeeding has been associated with major protection against diarrhea morbidity, a reduction
in severe respiratory infection, and effects on deciduous teeth. Exclusive breastfeeding has been
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associated with a strong protective result against infectious disease and allergic rhinitis in children
<5 years. A dose–response association with duration of breastfeeding was found for a higher IQ and a
decreased risk for overweight and obesity.

Epigenome-wide association studies (EWASs) can offer new insights into DNA–environment
interactions in determining child development and health [51]. To our knowledge, seven association
studies (two candidate gene studies, two EWASs with breastfeeding as covariate and three EWASs of
breastfeeding) have been performed on breastfeeding and DNA methylation in humans to date (see
Table S1). A candidate gene study of Obermann-Borst et al. found a negative association between the
duration of breastfeeding (in categories) and methylation level in blood cells from 120 children (mean
age 1.4 years) at seven CpG sites in the promoter of the LEP gene; a hormone that regulates energy
homeostasis [52]. A suggestive positive association of the methylation level of 2201 CpGs and a negative
association of the methylation level of 2075 CpGs with the duration of breastfeeding (continuous
measure in weeks) were reported in blood samples from 37 infants (mean age 25.7 months) [53].
These CpGs were annotated to genes predominantly involved in the control of cell signaling systems,
the development of anatomical structures and cells, and the development and function of the immune
and central nervous systems [53]. The impact of breastfeeding duration (continuous measure in
months) on DNA methylation patterns in 200 children (mean age 11.6 years) was suggested in a study
of asthma [54]. An EWAS of Sherwood et al. on exclusive breastfeeding supported the findings of
Obermann-Borst et al. at a later stage in childhood (10 years, n = 297) but not in young adulthood
(18 years, n = 305) [55]. This suggests that methylation changes induced by breastfeeding may change
with time and may be more evident at an early age. Similarly, it has been observed that associations
between DNA methylation and maternal smoking and birthweight attenuate during childhood [56,57].
Nevertheless, a long-lasting modulating effect of breastfeeding (continuous measure in weeks) on
the effects of methylation quantitative trait loci (mQTLs) for CpG sites at the 17q21 locus, where the
IL4R (interleukin-4) gene is located, has been suggested at age 18 (n = 245) [58]. Not having been
breastfed has been associated with an increase in methylation of the promoter of the tumor suppressor
gene CDKN2A (cyclin dependent kinase inhibitor 2A) in premenopausal breast tumors of 639 women
(mean age of 57.6 years) [59]. In a more recent EWAS study, breastfeeding (dichotomized as never vs.
ever) was associated with changes in the TTC34 gene at age 7 (n = 640), which were still evident in
adolescence (n = 709) [60]. These previous epigenetic studies of breastfeeding were often conducted
with relatively small samples (average sample size = 307, range = 37–640). In all studies, DNA was
extracted from peripheral blood [52–55,58], or from tumor tissues in adults [59].

We aimed to carry out an EWAS of breastfeeding in 1006 children around nine years of age
recruited by the Netherlands Twin Register (NTR) based on buccal cell DNA and a replication analysis
of loci previously associated with breastfeeding in aforementioned epigenetic studies. Buccal samples
typically consist of a large proportion of epithelial cells, which might serve as a surrogate tissue
for other ectodermal tissues, including the brain [61,62]. Buccal samples also consist of a smaller
proportion of leukocytes [63]. To date, few EWASs have been performed on buccal DNA. As some
studies have suggested that the effects of early life exposures, including breastfeeding [55–58], may fade
away during childhood, we also performed an EWAS on younger children (age <10 years; where
10 corresponds to the median age of the sample) and compared effect sizes in this group with effect
sizes in children older than 10 years. We applied a median split of the sample by age to achieve equal
sample sizes in both groups. We hypothesized that if effects of breastfeeding attenuate with age,
associations would be strongest in the younger age group. We performed replication in an independent
buccal-cells DNA methylation dataset from the NTR (n = 98) and in a blood-DNA-methylation dataset
from the Avon Longitudinal Study of Parents and Children (ALSPAC) (n = 938). We also examined the
correlation between methylation levels of twins for the significant CpGs associated with breastfeeding.
We hypothesized that the equal exposure to breastfeeding of co-twins should cause resemblance in
their methylation profiles.
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2. Materials and Methods

2.1. Overview

We carried out an EWAS in the NTR in 1006 children from 496 complete pairs and 14 twins
from incomplete pairs with DNA methylation in buccal cells, testing 787,711 methylation sites (α =

0.05/787771 = 6.34 × 10–8). The EWAS analyses in different age groups were performed following
the median-split of the sample by age (age <10 years: n = 517, age range = 5–9; age ≥ 10 years:
n = 489, age range = 10–12). Two models were applied with different covariates (Model 1 = “basic
model” and Model 2 = “adjusted model”) (see Table S2). Epigenome-wide significant results were
taken forward, after checking effects of outliers, for a replication analysis in an independent sample,
consisting of 98 NTR children with DNA methylation in buccal cells and in 938 ALSPAC children with
DNA methylation in peripheral blood cells. Lastly, we performed a follow-up analysis of the results
of previous studies (3859 CpGs) in the discovery cohort (NTR) in the total sample (n = 1006) and the
younger age group (n = 517). A flowchart of the analyses is provided in Figure 1.
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2.2. Subjects and Samples

2.2.1. Discovery Study

The subjects were enrolled in the NTR [64] a few weeks to months after birth. Informed consent
was obtained from parents. Data on breastfeeding collected around the age of 2 years of the children
and good quality DNA methylation data around 9 years of age (mean = 9.5, standard deviation
(SD) = 1.89, range = 5–12) were available for 1006 children. The dataset included 51.6% girls and 86%
monozygotic twins. This study is embedded in a larger project on childhood aggression: Aggression
in Children: Unraveling gene-environment interplay to inform Treatment and InterventiON strategies
(ACTION) [65,66]. From the population-based NTR, the ACTION study identified twins who at least
once scored higher or lower on a sum score for aggression [67,68].
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2.2.2. NTR Replication Study

An independent group of children from the NTR for whom EPIC array methylation data were
previously described [63] were included as replication study. This cohort was also embedded in the
ACTION project and were comprised of 98 monozygotic twins with available data on breastfeeding
duration and DNA methylation from buccal swabs (mean age = 7.5 years, SD = 2.4, age range = 1–10).
The NTR studies were approved by the Central Ethics Committee on Research Involving Human
Subjects of the VU University Medical Centre, Amsterdam, an Institutional Review Board certified
by the U.S. Office of Human Research Protections (IRB number IRB00002991 under federal-wide
Assurance-FWA00017598; IRB/institute codes, NTR 03–180).

2.2.3. ALSPAC Replication Study

Data came from the ALSPAC [69,70], a population-based birth cohort. All pregnant women
living in the geographical area of Avon (UK) with expected delivery date between 1 April 1991
and 31 December 1992 were invited to participate. Approximately 85% of the eligible population
was enrolled, totaling 14,541 pregnant women who gave informed and written consent. The study
website contains details of all the data that are available through a fully searchable data dictionary and
variable search tool (http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). Ethical
approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local
Research Ethics Committees. Of these, 938 children had information on breastfeeding duration
and DNA methylation from peripheral blood cells measured on the Infinium HumanMethylation450
BeadChip (mean age = 7.4, SD = 0.13, age range = 7.1–8.8) within the Accessible Resource for Integrated
Epigenomics Studies (ARIES) project [71].

2.3. Phenotype Data

In the NTR, breastfeeding was assessed in a questionnaire sent to mothers 2 years after the
twins were born. Mothers were separately asked about breastfeeding for the first and second born
twin. There were six answer categories: ‘no’, ‘less than 2 weeks’, ‘2–6 weeks’, ‘6 weeks to 3 months’,
‘3–6 months’, and ‘more than 6 months’, For the main analyses, breastfeeding as exposure was recoded
into 2 categories: ‘ever’ and ‘never’, No information on exclusive and mixed breastfeeding was
available. The duration of breastfeeding was used in a secondary analysis based on the 6 categories
from the original questionnaire coded from 0 (no) to 5 (more than 6 months). Socio-economic status (SES)
was determined in two ways (depending on the version of the survey): (1) SES was obtained from a
full description of the occupation of the parents and was subsequently coded according to the Standard
Classification of Occupations [72]; (2) SES was obtained by the Erikson-Goldthorpe-Portocarero
(EPG)-classification scheme [73], combined with information on parental education. The self-reported
maternal pre-pregnancy weight just before pregnancy (in kilograms) divided by the square of height
(in meters) was used to obtain the maternal pre-pregnancy body mass index (BMI) (weight/height2).
Maternal smoking during pregnancy was reported by mothers for three trimesters of pregnancy and
was coded as non-smoking if the mother did not smoke during the entire pregnancy and smoking if
the mother smoked at least during one trimester [74]. The mode of conception was classified in three
groups: naturally conceived, conceived through stimulation, and conceived via in vitro fertilization
(IVF) or intracytoplasmic sperm injection (ICSI) [75]. The mode of delivery was assessed as vaginal
delivery, caesarean section (planned and urgent), and vaginal delivery with urgent intervention with
forceps or vacuum extraction. Apgar scores at the 1st and 5th minute were presented in 3 conventional
categories 0–6 (low), 7–9 (intermediate), and 10 (high) [76]. Gestational age, birthweight, parental
age at birth were categorized in groups for descriptive statistics and treated as continuous z-scores in
the analyses.
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ALSPAC Replication Study

Breastfeeding was assessed via a questionnaire sent to mothers when the study children were
approximately 6 months old. Breastfeeding was coded as ‘ever’ or ‘never’. Information on sample
characteristics and covariates was obtained by questionnaires completed by the mother during
pregnancy and from medical birth records. Socio-economic status was determined by the highest
level of maternal education (grouped as follows: certificate of secondary education or not, vocational,
O-level, A-level, or university degree). Maternal characteristics included age at birth, pre-pregnancy
height and weight, and smoking during pregnancy (any or none). Gestational characteristics included
caesarean delivery, gestational age and birthweight.

2.4. DNA Sample Collection

2.4.1. NTR (Discovery and Replication Study)

DNA samples were collected from buccal swabs, as described previously [77]. In short, 16 cotton
mouth swabs were individually rubbed against the inside of the cheek on 2 days (morning
and evening) and placed in four separate 15 mL conical tubes containing 0.5 mL of a Sodium
Chloride-Tris-Ethylenediaminetetraacetic acid (STE) buffer (100 mM sodium chloride, 10 mM Tris
hydrochloride (pH 8.0), and 10 mM ethylenediaminetetraacetic acid) with proteinase K (0.1 mg/mL)
and sodium dodecyl sulfate (SDS) (0.5%) per swab. Individuals were asked to refrain from eating or
drinking 1 h prior to sampling. High molecular weight genomic DNA was extracted by standard DNA
extraction techniques. The DNA samples were quantified using the Quant-iT PicoGreen dsDNA Assay
Kit (ThermoFisher Scientific, Waltham, MA, USA).

2.4.2. ALSPAC Replication Study

The ALSPAC blood-based DNA methylation profiles were generated at age 7 as part of the
ARIES [71], a subsample of approximately 1000 mother-child pairs from the ALSPAC study.

2.5. DNA-Methylation Measurements

2.5.1. NTR Discovery Study

The genome-wide DNA methylation in buccal cells [68] was assessed with the Infinium
MethylationEPIC BeadChip (Illumina, San Diego, CA, USA) [78] by the Human Genotyping facility
(HugeF) of ErasmusMC, the Netherlands (http://www.glimdna.org/). Five hundred nanograms of
genomic DNA from buccal swabs were bisulfite treated using the ZymoResearch EZ DNA Methylation
kit (Zymo Research Corp, Irvine, CA, USA). The quality control of the methylation data are described
in detail elsewhere [68]. In brief, the quality control (QC) and normalization of the methylation data
were performed using a pipeline developed by the Biobank-based Integrative Omics Study (BIOS)
consortium [79], which includes sample quality control using the R package MethylAid [80] and probe
filtering and functional normalization as implemented in the R package DNAmArray. We previously
and successfully applied this pipeline in a pilot study of EPIC array data from buccal samples [63],
which was used as replication sample in the current paper. MethylAid was applied with the default
EPIC array-specific quality filter thresholds for EPIC arrays. The R package omicsPrint [81] was used
to call genotypes based on methylation probes and to verify sample relationships based on those single
nucleotide polymorphisms (SNPs) (e.g., the zygosity of twins and samples from the same individual).
We checked for sample mismatches between methylation data and genotype data by computing the
correlation between SNP genotypes called by omicsPrint based on methylation probes and genotypes
based on genome-wide SNP arrays. DNAmArray and meffil [82] were used to identify sex mismatches
(both packages identified the same mismatches).

Functional normalization was performed based on five control probe principal components (PCs).
The following probe filters were applied: Probes were set to missing (NA) in a sample if they had
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an intensity value of exactly zero, detection p-value > 0.01, or bead count <3. Probes were excluded
from all samples if they mapped to multiple locations in the genome, if they overlapped with an SNP
or insertion/deletion (INDEL), or if they had a success rate <0.95 across samples. Annotations of
ambiguous mapping probes (based on an overlap of at least 47 bases per probe) and probes where
genetic variants (SNPs or INDELS) with a minor allele frequency >0.01 in Europeans overlap with the
targeted CpG or single base extension site (SBE) were obtained from Pidsley et al. [83]. After probe
filtering, the success rate of probes for each sample was checked: All samples had a success rate above
0.95 after removal of low-performing samples detected by MethylAid. Only the autosomal methylation
sites were analyzed, leaving 787,711 out of 865,859 sites for analysis.

2.5.2. NTR Replication Study

Genome-wide DNA methylation in buccal cells was assessed with the Infinium MethylationEPIC
BeadChip (Illumina, San Diego, CA, USA) [78] by the Avera Institute for Human Genetics. The quality
control, processing and normalization of the data were performed with the same pipeline as for the
NTR discovery cohort, a pipeline which has previously been described in detail [63].

2.5.3. ALSPAC Replication Study

DNA methylation wet laboratory procedures, preprocessing analyses, and quality control were
performed at the University of Bristol, as previously described [71]. DNA methylation outliers were
identified as those three times the inter-quartile range from the nearest of the first and third quartiles.
Outliers were replaced with missing values.

2.6. Cellular Proportions

2.6.1. NTR Discovery and Replication Study

Cellularproportionswerepredictedwithhierarchicalepigeneticdissectionof intra-sample-heterogeneity
(HepiDISH) with the RPC method (reduced partial correlation), as described by Zheng et al. [84] and
implemented in the R package HepiDISH. HepiDISH is a cell-type deconvolution algorithm that was
specifically developed for estimating cellular proportions in epithelial tissues based on genome-wide
methylation profiles and that makes use of reference DNA methylation data from epithelial cells,
fibroblast and seven leukocyte subtypes. This was applied to the data after data QC and normalization.

2.6.2. ALSPAC Replication Study

Cell count estimates were estimated from DNA methylation profiles using a deconvolution
algorithm [85] and included in statistical models to adjust for cell count heterogeneity.

2.7. Data Analyses

2.7.1. Associations between Breastfeeding and Pre- and Perinatal Factors

The association between covariates and breastfeeding was tested in the discovery cohort using
a generalized estimating equations (GEE) model that accounted for the correlation structure within
families. Six breastfeeding duration categories were included as the continuous outcome variable.
The predictors consisted of variables previously described as covariates in EWASs of maternal smoking
and birth weight [56,57], i.e., parental SES, maternal smoking during pregnancy (yes/no), gestational
age (z-scores), maternal age at birth (z-score), maternal pre-pregnancy BMI (z-scores), cell counts of
epithelial cells and natural killer (NK) cells, child’s sex, and child’s age at DNA-methylation (see
Table S3). This analysis was performed in SPSS version 25.
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2.7.2. EWAS

Discovery Study

The association between DNA methylation level and breastfeeding was tested using a generalized
estimating equations (GEE) model that accounted for the correlation structure within families with
DNA methylation β-value as the outcome variable (see Table S2). All analyses in the NTR were
performed with GEE models, which were fitted with the R package ‘gee.’ The following settings were
used: Gaussian link function (for continuous outcome variables), 100 iterations, and the ‘exchangeable’
option to account for the correlation structure within families. To examine and adjust (where applicable)
for the inflation of test statistics, the R package bacon was used [86]. We first fitted a basic model with
the following predictors: breastfeeding, sex, age at sample collection, the percentages of epithelial
and natural killer cells, EPIC array row and bisulfite sample plate (using dummy coding). For the
primary EWAS, the breastfeeding outcome was dichotomized (yes/no). Secondly, we fitted a model in
which we adjusted for additional covariates (SES, maternal smoking, mother’s age at birth, mother’s
BMI at pregnancy, and gestational age). These covariates were selected on the base of adjustments
done in recent meta-analyses of maternal smoking and birthweight [56,57]. We also considered the
effects of the duration of breastfeeding by evaluating the same model with the original six categories
(not-breastfed; <2 weeks; 2–6 weeks; 6 weeks to 3 months; >6 months). Thirdly, we repeated the EWAS
in children younger than 10 years and older than 10 years. To this end, we split up the sample into
two groups (median age split) to have two equally-sized groups: children younger than 10 years
and children older than 10 years. Epigenome-wide significance was assessed following Bonferroni
correction for the number of methylation sites tested (α = 0.05/787,711 = 6.34 × 10–8).

We carefully checked if epigenome-wide significant associations were influenced by outliers. As a
sensitivity analysis, we repeated the association analysis in the discovery sample for significant CpGs
without outliers defined using the Tukey method [87], in which an outlier is any value greater than
the upper quartile plus three-times the interquartile range or any value lower than the lower quartile
minus three-times the interquartile ranges.

Twin Correlations

The correlation between DNA methylation levels of monozygotic (MZ) and dizygotic (DZ) twins
was computed for CpGs that were significant in the discovery study and which were robust to outliers.
The methylation beta-values were adjusted for the set of covariates as included in the basic EWAS
model with a linear model, and residuals were saved. Next, the MZ and DZ twin correlations were
computed on the residuals.

Replication

CpGs that were significant in the discovery study and which were robust to outliers were selected
for replication. The basic and adjusted models were applied as in the discovery sample: in the NTR,
the GEE model had the same covariates; in the ALSPAC, cell count estimates for peripheral blood were
included instead of the epithelium cells count; the sex, age of the child at blood collection around
age 7 and the same covariates from the adjusted Model 2 were included; no siblings were included.
In the ALSPAC, DNA methylation variation due to technical artefacts or unknown confounders were
handled by including 20 surrogate variables generated from the DNA methylation data using the
‘sva’ R package [88], and associations were tested with linear models implemented by the limma
package [89].

2.8. Methylation Data Annotation

To examine previously reported associations for epigenome-wide significant CpGs associated with
breastfeeding, we looked them up in the EWAS atlas (https://bigd.big.ac.cn/ewas/tools; accessed on 3
October 2019 [90]) and the EWAS catalog (http://www.ewascatalog.org; accessed on 3 October 2019).
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To analyze the possible function of CpGs, we searched for overlaps with mQTLs in a study that analyzed
EPIC array data from 102 buccal samples [63] to identify the associated SNPs, and we looked up these
SNPs and genes in the genome-wide association study (GWAS) catalog (https://www.ebi.ac.uk/gwas/;
accessed on 4 October 2019).

2.9. Overlap with Previous Findings

The follow-up analyses were done for CpGs that were previously associated with breastfeeding
in EWASs or candidate gene studies. These included all CpGs on the EPIC array that were annotated
to the genes LEP (nCpGs = 23) [52–55,58], IL4R (nCpGs = 37) [58], CDKN2A (nCpGs = 32) [59], 1 CpG
from the study of Hartwig et al. [60], and 4297 suggestive CpGs from the study of Naumova et al. [53].
In total, this resulted in a list of 4370 CpGs, of which 3859 CpGs were present (after QC) in our data.
For these CpGs, we performed a look-up analysis in the total sample (n = 1006) and in the subsample
younger than 10 years (n = 517) of the discovery NTR cohort. Significance was assessed after Bonferroni
correction for the number of CpGs tested (α = 0.05/3858 = 1.29 × 10–5).

3. Results

3.1. Descriptive Statistics

Descriptive statistics are presented in Table 1. The total discovery sample consisted of 1006 children
(mean age 9.5, SD = 1.89); 73.7% of the children were breastfed with different duration, and 26.3%
never received breastfeeding. Most of the children were breastfed at least one month: 189 (25.5%)
were breastfed for 2 weeks to 1.5 months, 181 (24.4%) were breastfed for 1.5–3 months, 148 (20%)
were breastfed for 2–6 months, and 148 (20%) were breastfed more than 6 months. The subsample of
children younger than 10 years old included 517 twins (mean age 7.9, SD = 1.1) (see Table S4), and the
group older than 10 years included 489 twins (mean age = 11.16, SD = 0.72) (see Table S5). The majority
of twin pairs was concordant for breastfeeding (99.4%). Among the discordant twin pairs were three
pairs, of which one twin was not breastfed while their co-twin received breastfeeding and three pairs
of which the co-twins experienced different durations of breastfeeding.

Table 1. Early life characteristics and breastfeeding in the Netherlands Twin Register (NTR) discovery
sample (n = 1006).

Breastfeeding Never (n = 265) Breastfeeding Ever (n = 741) Total

n % n % n %

Sex

male 138 52.1% 349 47.1% 487 48.4%
female 127 47.9% 392 52.9% 519 51.6%

Zygosity

Monozygotic (MZ) 226 85.3% 613 82.7% 839 83.4%
Dizygotic (DZ) 39 14.7% 128 17.3% 167 16.6%

Chorionicity
MCMA 4 3.5% 21 7.3% 25 6.2%
MCDA 61 53.0% 144 50.3% 205 51.1%
DCDA 50 43.5% 121 42.3% 171 42.6%

Gestational Age (Weeks)

Mean (SD) 36.2 (22.2) 35.8 (25.9) 35.9 (25.1)
≤ 32 12 4.8% 61 8.4% 73 7.5%

33–36 128 51.4% 359 49.4% 487 49.9%
≥ 37 109 43.8% 306 42.1% 415 42.6%

Mother’s Age at Birth (Years)

Mean (SD) 31.9 (4.5) 31.2 (4.2) 31.4 (4.3)
19–29 76 29.0% 288 39.0% 364 36.4%
30–39 175 66.8% 435 58.9% 610 61.0%
>40 11 4.2% 15 2.0% 26 2.6%

Mother’s BMI Before Pregnancy

Mean (SD) 24.3 (4.0) 24.2 (4.11) 24.2 (4.1)
<25 149 61.3% 470 66.1% 619 64.9%

25–29 70 28.8% 169 23.8% 239 25.1%
30–39 24 9.9% 65 9.1% 89 9.3%
>40 0 0.0% 7 1.0% 7 0.7%
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Table 1. Cont.

Breastfeeding Never (n = 265) Breastfeeding Ever (n = 741) Total

n % n % n %

Father’s Age at Birth (Years)

Mean (SD) 33.2 (4.4) 33.9 (5.4) 33.7 (5.2)
20–29 53 22.0% 146 20.3% 199 20.8%
30–39 163 67.6% 482 67.1% 645 67.3%
>40 25 10.4% 90 12.5% 115 12.0%

Mode of Conception

naturally 227 92.7% 623 86.5% 850 88.1%
stimulated 4 1.6% 26 3.6% 30 3.1%
IVF/ICSI 14 5.7% 71 9.9% 85 8.8%

Maternal Smoking

no smoking 205 86.1% 631 92.9% 836 91.2%
smoking 33 13.9% 48 7.1% 81 8.8%

Parental SES

low skill level 0 0.0% 8 1.2% 8 0.9%
lower secondary educational level 30 11.9% 41 6.1% 71 7.6%
upper secondary education level 99 39.3% 203 30.0% 302 32.5%

higher vocational level 89 35.3% 234 34.6% 323 34.8%
scientific level 34 13.5% 191 28.2% 225 24.2%

Mode of Delivery

vaginal 141 56.6% 416 57.1% 557 57.0%
caesarean planned 43 17.3% 97 13.3% 140 14.3%

urgent intervention (forceps, vacuum extraction) 20 8.0% 75 10.3% 95 9.7%
urgent caesarean section 45 18.1% 140 19.2% 185 18.9%

Birth Weight

Mean (SD) 2435.7 (444.8) 2394.6 (558) 2405 (531.7)
<1500 8 3.2% 52 7.1% 60 6.2%

1500–2500 123 49.8% 338 46.4% 461 47.3%
>2500 116 47.0% 338 46.4% 454 46.6%

Apgar Score at 1st Minute

0–6 17 12.3% 48 12.8% 65 12.7%
7–9 103 74.6% 290 77.5% 393 76.8%
10 18 13.0% 36 9.6% 54 10.5%

Apgar Score at 5th Minute

0–6 1 0.8% 14 3.9% 15 3.1%
7–9 41 31.1% 130 36.3% 171 34.9%
10 90 68.2% 214 59.8% 304 62.0%

Breastfeeding Duration

no 265 100.0% 0 265 26.3%
less than 2 weeks 75 10.1% 75 7.5%

2–6 weeks 189 25.5% 189 18.8%
6 weeks to 3 months 181 24.4% 181 18.0%

3–6 months 148 20.0% 148 14.7%
more than 6 months 148 20.0% 148 14.7%

Descriptive statistics of children included in the study. MCMA = monochorionic monoamniotic; MCDA =
monochorionic diamniotic; DCDA = dichorionic diamniotic; SD = standard deviation; BMI = body mass index;
IVF = in vitro fertilization; ICSI = intracytoplasmic sperm injection; and SES = socio-economic status.

Breastfeeding duration (six categories) was significantly positively associated with socio-economic
status (β = 0.353, standard error (SE) = 0.09, and p = 0.0004) and inversely associated with maternal
smoking (β = −0.733, SE = 0.32, and p = 0.02) and gestational age (β = −0.194, SE = 0.09, and p = 0.03)
(see Table S3). Breastfeeding was not significantly correlated with maternal pre-pregnancy BMI
(β = −0.117, SE = 0.75, and p = 0.119), maternal age at delivery (β = −0.016, SE = 0.09, and p = 0.86),
and the cell composition of buccal swabs (β = 1.27, SE = 1.2, and p = 0.25 for count of epithelial cells;
and β = 14.78, SE = 9.8, and p = 0.13 for count of natural killer cells).

3.2. Association Analysis Findings

First, genome-wide DNA-methylation analyses were performed to test the association between
breastfeeding (never/ever) and DNA-methylation level while adjusting for sex, age at DNA sample
collection, estimated proportion of epithelial cells, the estimated proportion of natural killer cells, the
row of the sample on the chip, and the bisulfite plate (model 1). No epigenome-wide significant sites
were identified (see Table S8). Genome-wide EWAS test statistics showed no inflation (see Figure S1).
DNA methylation was also not associated with the duration of breastfeeding (see Table S9).
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In the EWAS in children younger than 10 years with the same basic model, we identified
four epigenome-wide significant CpGs (see Table S10): cg25178826 (β = −0.026, SE = 0.003, and
p = 8.04 × 10–12) is located in the 5’ untranslated region (5′UTR) region of PRLR (prolactin receptor)
gene, cg12087956 (β = −0.03, SE = 0.005, and p = 1.8 × 10–8) is in the gene body of CDAN1 (codanin 1),
cg24192772 (β = −0.024, SE = 0.004, and p = 2.5 × 10–8) is in the gene body of FOXK2 (forkhead
box K2), and cg10142656 (β = −0.02, SE = 0.004, and p = 6.28 ×10–8) is mapped to the transcription
start site (TSS1500) of TRMT10B (tRNA methyltransferase 10B). These four CpGs were not strongly
associated with breastfeeding duration (see Table S11). The plots of the methylation values for these
four CpGs revealed several extreme methylation values in the data (see Figure S2 and Table S10),
and the association with breastfeeding disappeared after outlier removal: cg25178826 β = −0.00006,
SE = 0.001, and p = 0.98; cg12087956 β = 0.00004, SE = 0.0009, and p = 0.5; cg24192772 β = 0.0009,
SE = 0.001, and p = 0.15; and cg10142656 β = 0.0001, SE = 0.0008, and p = 0.13 (see Table S10).

Next, we performed EWASs of breastfeeding never/ever with adjustments for SES, maternal age
at delivery, maternal pre-pregnancy BMI, maternal prenatal smoking, and gestational age (Model 2).
One CpG, cg22491379, was significant in the total sample (β = −0.007, SE = 0.001, and p = 1.3 × 10–9)
(see Figure 2a, Figure S3, Table 2 and Table S12), and seven CpGs were significant in the children
younger than 10 years (see Table 2 and Table S14). The Manhattan plot for the EWAS in children
younger than 10 years showed a peak on chromosome 21, which contains a cluster of CpGs just
below the epigenome-wide significance threshold (see Figure 2d). Results from the same analysis for
breastfeeding duration are shown in Tables S13 and S15.
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four CpGs that were unaffected by outliers were selected for a replication analysis (see Figure S6): 
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Figure 2. Quantile-Quantile (QQ) plots: (a) in the total sample; (b) in the subsample of children
younger than 10 years old; and (c) in the subsample of children older than 10 years old. (d) Manhattan
plot shows the epigenome-wide association study results of breastfeeding ‘never’/‘ever’ in children
younger than 10 years old. Covariates included sex, age, socio-economic status (SES), maternal age at
delivery, maternal pre-pregnancy BMI, maternal prenatal smoking, gestational age, EPIC array row
and bisulfite sample plate, and cell composition. In the Manhattan plot, the red line represents the
Bonferroni threshold (6.34 × 10–8). Given CpG names indicate significant loci after removal of outliers.
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Table 2. Summary of epigenome-wide significant CpGs from the discovery epigenome-wide association study (EWAS) of DNA signatures of breastfeeding.

cgID Chromosome Position Gene Gene Region Discovery Study Discovery Study Without Outliers

Estimate SE p-Value Estimate SE p-Value

Basic Model (1). Sub-Sample < 10 years (n = 517)

cg25178826 chr5 35165447 PRLR 5’UTR −0.026 0.004 8.04 × 10–12
−6.04 × 10–5 0.001 0.98

cg12087956 chr15 43022167 CDAN1 Body −0.031 0.005 1.18 × 10–8 4.92 × 10–5 0.001 0.50
cg24192772 chr17 80536920 FOXK2 Body −0.024 0.004 2.52 × 10–8 9.17 × 10–4 0.001 0.15
cg10142656 chr9 37753047 TRMT10B TSS1500 −0.019 0.004 6.28 × 10–8 9.98 × 10–5 0.0007 0.14

Adjusted Model (2). Discovery Sample (n = 1006)

cg22491379 chr2 120553625 PTPN4 5’UTR −0.007 0.001 1.30 × 10–9 −0.005 0.001 5.78 × 10–3

Adjusted Model (2). Sub-Sample < 10 Years (n = 517)

cg03463465 chr6 164143581 0.360 0.034 4.51 × 10–26 −0.003 0.001 0.01
cg07670516 chr17 5019840 ZNF232 5’UTR 0.249 0.032 1.40 × 10–14 0.006 0.014 0.65
cg20820810 chr11 71850130 FOLR3 Body −0.300 0.054 2.82 × 10–8 −0.001 0.001 0.21
cg16279140 chr14 103981749 −0.411 0.052 3.50 × 10–15 no outliers
cg05823759 chr7 149646627 0.205 0.032 2.35 × 10–10 no outliers
cg27284194 chr4 1044797 0.638 0.107 2.90 × 10–9 no outliers
cg03995300 chr17 5019989 ZNF232 5’UTR 0.229 0.040 1.02 × 10–8 no outliers

α = 0.05/787,711 = 6.34 × 10–8. Basic Model 1 included breastfeeding coded as ‘never’ and ‘ever’ with adjustments for sex, age at DNA methylation, the count of epithelial cells, the count of
natural killer cells, EPIC array row and bisulfite sample plate. Adjusted Model (2) included in additional to basic model covariates: SES, maternal smoking during pregnancy, maternal age
at birth, maternal pre-pregnancy BMI, and gestational age. In bold: CpGs selected for replication.
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Genome-wide EWAS test statistics from the analyses of Model 2 (in the total sample and in the
children younger than 10 years) showed no inflation (see Figure 2a,b). For four out of the eight significant
CpGs, the association disappeared after removal of outliers (see Figures S4 and S5). The four CpGs that
were unaffected by outliers were selected for a replication analysis (see Figure S6): cg16279140 (β = −0.4,
SE = 0.05, and p = 3.5× 10–15), cg05823759 (β= 0.2, SE = 0.032, and p = 2.35 × 10–10), cg27284194(β = 0.64,
SE = 0.12, and p = 2.9 × 10–9), and cg03995300 (β = 0.23, SE = 0.04, and p = 1.2 × 10–8) (see Table S14).
All four CpGs were significant in children younger than 10 years.

We next examined the association with breastfeeding in children older than 10 (Model 2). In this
analysis, the genome-wide test statistics showed mild inflation (lambda = 1.11). After adjusting for
inflation, four CpGs remained epigenome-wide significant, but none were significant after outlier
removal. The four significant CpGs in the children younger than 10 years had smaller effects, and three
CpGs showed inverse directions of effect in children older than 10: cg16279140 (β = 0.04, SE = 0.02,
and p = 0.04), cg05823759 (β = −0.002, SE = 0.02, and p = 0.92), cg27284194 (β = 0.18, SE = 0.06, and
p = 0.002), and cg03995300 (β = −0.003, SE = 0.02, and p = 0.89) (see Table S16). The quantile-quantile
plots (see Figure 2b,c) suggested a stronger association signal for breastfeeding in children younger
than 10 years than in the older group. We computed the correlations between the regression coefficients
(i.e., the methylation difference associated with breastfeeding) for the top 100 CpGs from each age
group. These correlations were weak (r = 0.25 and p = 0.10 for the top 100 CpG from the EWAS in
children <10 years and from the EWAS in children >10 years). This suggests that methylation profiles
associated with breastfeeding are different in children younger than 10 years and older than 10 years.

We computed the twin correlations in the MZ and DZ pairs for the significant CpGs, as we
assumed that equal exposure to breastfeeding should cause similarity in methylation level of twins.
The correlations of methylation levels of all four sites were very high in MZ twins and almost twice
as high as in DZ twins: cg16279140 rMZ = 0.906, rDZ = 0.505; cg05823759 rMZ = 0.953, rDZ = 0.609;
cg27284194 rMZ = 0.972, rDZ = 0.462; and cg03995300 rMZ = 0.902, rDZ = 0.453. This pattern suggests
that there are heritable influences on DNA methylation at these CpGs, as previously shown by other
studies of DNA methylation heritability.

3.3. Replication Analysis of Our Findings in Other Samples

Both replication datasets were comparable to the discovery subsample of children younger than
10 years old (see Tables S4, S6, and S7). As expected, the singleton children (ALSPAC) had a higher
gestational age (~39 weeks vs. ~35.7), a higher birthweight (~3500 g vs. ~2400 g) and a lower proportion
of caesarean deliveries (~9% vs. ~36.8%). We performed a replication analysis for significant CpGs
unaffected by outliers from the adjusted Model 2 of the discovery analysis with the same set of
covariates (see Table 3).

In the NTR replication cohort, for one CpG, the direction of effect changed (cg03995300, ZNF232,
β = −0.050, SE = 0.033, and p = 0.13), and three other CpGs had the same direction of effect but were
not significant: cg16279140 (β = −0.03, SE = 0.04, and p = 0.43), cg05823759 (β = 0.03, SE = 0.033, and
p = 0.32), and cg27284194 (β = 0.07, SE = 0.054, and p = 0.21) (see Table 3, Figure S7).

In the ALSPAC, the most important difference to note were the different tissues used for DNA
methylation profiling (peripheral blood) and the platform (the Illumina Infinium HumanMethylation450
Beadchip [Illumina, San Diego, CA, USA]). Because of the platform difference, roughly half of the
CpG sites included in the discovery DNA methylation profiles were measured in the ALSPAC. In the
adjusted Model 2, two of the four most strongly associated CpG sites were not included on the ALSPAC
platform (cg16279140 and cg05823759), nor were any other sites within 1000 base pairs (bp) of these
sites. The other two sites, cg27284194 and cg03995300, were included, but neither association was
replicated (p > 0.19 and p > 0.77, respectively) in the adjusted model (see Table 3). An overall lack
of replication was confirmed by low correlations between effect estimates in the discovery and the
ALSPAC. In particular, we identified the 100 most strongly associated CpG sites in the discovery that
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were also present in the ALSPAC DNA methylation profiles. The correlation of effect estimates for
these sites between studies was low (Pearson’s r = 0.13 with p = 0.2 for the adjusted model).

Table 3. Summary of association between breastfeeding and significant in the discovery study CpGs
in replication.

cgID
Direction of Effect in

Discovery Study
<10 Years

NTR Replication Study (n = 98) ALSPAC Replication Study (n = 938)

Estimate SE P-Value a Estimate SE P-Value

cg16279140 − −0.0326 0.0412 0.43 NA NA NA
cg05823759 + 0.0329 0.0332 0.32 NA NA NA
cg27284194 + 0.0668 0.0542 0.21 0.0047 0.016 0.77
cg03995300 + −0.0502 0.0334 0.13 0.0140 0.011 0.19

Adjusted Model 2 was used. a α = 0.05/4 = 0.01. NA = not available on the 450k platform.

3.4. Replication Analysis of Findings from Previous EWAS

Of the 3858 CpGs from previous literature, four CpGs were associated with breastfeeding in our
sample (α = 1.29 × 10–5, see Table 4). One site was significant in the total sample (see Table S17):
cg16387046 is located on chromosome 12 in the MUCL1 (mucin like 1) gene (β = 0.027, SE = 0.005,
and p = 4.9 × 10–7). Three sites were significant in the children younger than 10 years (see Table S18):
cg16704958 (β = 0.009, SE = 0.002, and p = 8.03 × 10–6) and cg11287055 (β = 0.056, SE = 0.01, and
p = 4.9 × 10–6), located on chromosome 21 in the VPS26C (endosomal protein sorting factor C; previous
name DSCR3) gene, and cg26479305 (β = 0.338, SE = 0.07, and p = 1.11 × 10–5), located on chromosome
12 in the ATG101 (autophagy related 101, previous name C12orf44) gene. All these CpGs were
previously reported in the association study by Naumova et al. [53] that was carried out in infants
around two years old (mean age 25.7 months) with DNA methylation profiling in peripheral blood
with Illumina EPIC BeadChip (Illumina, San Diego, CA, USA). The direction of association was positive
for all four CpGs in both studies. CpGs located in/nearby LEP [52,55], IL4R [58] and CDKN2A [59],
previously discussed as candidate genes for association with breastfeeding, were not significant in
our study.

Table 4. Replication of CpGs from previous literature.

cgID Chromosome Position Gene Gene Region ESTIMATE SE P-Value

Total Sample (n = 1006)

cg16387046 chr12 55248207 MUCL1 TSS200 0.027 0.005 4.93 × 10–7

Sub-Sample <10 (n = 517)

cg11287055 chr21 38630234 VPS26C
(DSCR3) Body 0.056 0.012 4.93 × 10–6

cg16704958 chr21 38630728 VPS26C
(DSCR3) Body 0.009 0.002 8.03 × 10–6

cg26479305 chr12 52470979 ATG10
(C12orf44) 3’UTR 0.338 0.077 1.11 × 10–5

α = 0.05/3859 = 1.29 × 10–5. The table shows all CpGs that were previously reported to be associated with
breastfeeding and that were significantly replicated by our study.

3.5. Methylation Data Annotation

For the significant CpGs from discovery and follow-up studies, we looked up the associations
with nearby genetic variants (mQTLs) in the results from a previously published mQTL study of
buccal-derived DNA in monozygotic twins [63]. Four CpGs were associated with mQTLs (cg27284194,
associated with SNPs on chromosome 4: 927973–1039876; cg16279140, associated with SNPs on
chromosome 14: 103823243–104186876; cg16387046, associated with SNPs on chromosome 12:
54830518–54896008; and cg26479305, associated with SNPs on chromosome 12: 52492131). Additionally,
no significant mQTLs were found for four CpGs (cg03995300, cg05823759, cg11287055, cg16704958).
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Next, we compared our results against all previously associated traits in EWASs (the EWAS atlas
and the EWAS catalog) and GWASs (the GWAS catalog). One CpG (cg03995300) is mapped to ZNF232
and has been previously associated with prenatal maternal smoking, sex, and ancestry [56,91,92].
The ZNF232 locus was associated with a family history of Alzheimer’s disease in a GWA
meta-analysis [93]. The intergenic CpG on chromosome 4 (cg27284194) has been previously associated
with infertility [94,95]. In GWASs, the region 4: 927973–1039876 (harboring mQTLs for cg27284194)
has been associated with a number of traits and diseases, including bone mineral density [96–100]
and several metabolomic characteristics such as blood protein [101,102] and triglyceride [103] levels
(See Table S19). The intergenic CpG on chromosome 14 (cg16279140) did not appear in previous
EWASs. In GWASs, SNPs on chromosome 14: 103823243–104186876 have been linked to amino
acids levels as biomarkers of metabolic disorders [104] and other blood metabolites [105], and some
disease and addictions including multisite chronic pain [106], metabolite changes in chronic kidney
disease [107], bipolar disorder [108], alcohol consumption [109] and risk-taking behavior [110] (See
Table S19). The intergenic CpG on chromosome 7, cg05823759, has not been previously identified in an
EWAS and is not associated with mQTLs.

Four CpGs that were replicated from previous studies on breastfeeding exposure have been
reported in association with other traits and diseases. The ATG10 (C12orf44) gene, where cg26479305 is
located, has been related to the autophagy pathway and cellular senescence in an EWAS [111]. It is
related to regulators of inflammation (circulating cytokines and growth factors) [112], hematological
traits in GWASs [113], and prenatal arsenic exposure [114].

CpGs (cg11287055, cg16704958) mapped to the VPS26C (DSCR3) have not been reported in other
EWASs. VPS26C is a component of the retriever complex, which plays a role in cell surface processes
such as cell migration, cell adhesion, nutrient supply and cell signaling [115].

4. Discussion

We aimed to study DNA methylation in buccal cells in mid-childhood in association with
breastfeeding as an exposure. Associations were tested in the total sample and in groups stratified by
age. The age distribution allowed us to analyze whether effects of breastfeeding can be attenuated with
age, as this has been observed for other exposures in peripheral blood, including maternal smoking [56],
birthweight [57] and breastfeeding [55].

We did not find evidence for robust epigenome-wide significant associations in the total sample
(1006 children, age 5–12), but we did observe associations in the younger age group (before 10 years)
that did not appear in the group of children of 10–12 years old. This suggests that epigenetic alterations
in certain genomic regions might be associated with nutritional differences in the early postnatal
life that tend to fade across childhood. However, since the CpGs were not replicated in the small,
buccal-cells replication NTR dataset and in the large blood-cells replication dataset from the ALSPAC,
further studies are required to follow up on these findings. It also remains to be examined if the
associations reflect a causal effect of breastfeeding on methylation and whether these methylation
differences might influence developmental trajectories and later-life health of the child.

The observation that associations between breastfeeding and methylation at some CpGs are
age-dependent may be explained by age-related changes in DNA methylation that have been reported
in several studies [116,117], including children in the age range of our study [118–122]. Similarly,
Sherwood et al. [55] observed that breastfeeding is associated with the DNA methylation of the LEP
gene at age 10 but not at age 18. Previous studies have identified DNA methylation signatures of
prenatal nutrition in peripheral tissues at various life stages, even in adulthood. DNA methylation
signatures in many genomic regions have been identified in middle-aged individuals who were
exposed to the 1944/45 Dutch hunger winter at the time of conception, and many of these sites have
been found to be related to growth, developmental processes and metabolism [18,19]. It is unclear if
the effects of early life postnatal exposures can have similar long-term effects to prenatal exposures in
humans, as most studies of early life influences on the epigenome have focused on prenatal exposures
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or have not examined long-term effects. None of the genes reported in studies of prenatal malnutrition
(SMAD7, CDH23, INSR, RFTN1, CPT1A, KLF13 [19], IGF2 [18], and LEP [123]) were present among the
top CpGs associated with breastfeeding in our study. Several explanations can be proposed. First,
postnatal nutrition and prenatal nutrition exposures might differently influence the DNA methylation.
Second, DNA methylation signatures induced by early nutrition exposure can be different across
examined tissues (buccal cells in our study versus peripheral blood in previous famine studies). Third,
the prenatal famine study examined the effects of an extreme exposure during the prenatal period.

The presence of associations with breastfeeding initiation (breastfeeding never vs. ever), and the
absence of findings with breastfeeding duration suggests that the association depends on the exposure
to breast milk rather than its duration. This could potentially be in line with previous findings that
have shown that effects of exposure on DNA methylation occur only when the individual is exposed in
certain sensitive life periods [118]. Our finding of stronger epigenetic associations with breastfeeding
ever vs. never than with the duration of breastfeeding is also in line with studies providing evidence
that any breastfeeding has stronger biological effects than the duration of breastfeeding, e.g., the impact
of first maternal milk (colostrum) on immunoglobulins and further neonatal health, especially for
small for gestational age and low-birthweight infants [22,24].

We observed associations at a total of eight CpG sites: cg16279140, chromosome 14, intergenic;
cg05823759, chr7, intergenic; cg27284194, chromosome 4, intergenic; cg03995300, chromosome 17,
ZNF232; cg16387046, chromosome 12, MUCL1; cg11287055, chromosome 21, VPS26C (DSCR3);
cg16704958, chromosome 21, VPS26C (DSCR3); and cg26479305, chromosome 12, ATG10 (C12orf44).
Methylation levels at these CpGs are potentially influenced by both environmental influences, such as
breastfeeding, and by genetic variation, although an alternative interpretation could be that the
genomic regions of these CpGs affect breastfeeding function. Unfortunately, no GWAS on breastfeeding
is available to verify this suggestion. It remains to be examined whether methylation differences
induced by breastfeeding have an effect on the aforementioned traits. Interestingly, associations with
breastfeeding have been previously reported in epidemiological studies for bone mineral content and
bone mineral density [124] and metabolite profiles [125]; outcomes that have been associated with SNPs
in the regions detected in our study as differentially methylated between breastfed and non-breastfed
children. It remains to be examined whether methylation differences induced by breastfeeding have
an effect on these traits.

Since the role of nutrition is systemic, it has been assumed that biomarkers must be present in
different tissues. To study the epigenetic mechanisms of breastfeeding, previous studies have examined
DNA from peripheral blood [52–55,58] and also from tumor tissue [59]. Buccal epithelium is of interest
because it offers a non-invasive way of biosample collection for an epigenetic analysis. A number of
studies have demonstrated the potential of buccal cells to study DNA methylation [126]. We previously
showed that, although there is some correlation between DNA methylation in buccal and blood
cells (n = 22, age = 18 years), it is low for most CpGs interrogated by the Illumina 450k array [127].
The methylation levels of two of the CpG sites that were included in the ALSPAC replication study
were highly correlated in buccal and blood cells: cg27284194 (r = 0.864) and cg03995300 (r = 0.782).
In spite of this, the associations with breastfeeding observed in the NTR were not replicated in the
ALSPAC. We observed some overlap with the study of Naumova et al. [53] in peripheral blood that
used the EPIC array, and these sites had medium correlations between DNA methylation in buccal and
blood cells (cg16387046 r = 0.690, cg11287055 r = 0.413, and cg16704958 r = 0.328).

We observed that breastfeeding-associated CpGs show strong correlations in MZ twins and larger
correlations in MZ twins compared to DZ twins. As the large majority of twin pairs in our study were
almost always concordant for breastfeeding, it is expected that twins of both types show resemblance
for DNA methylation levels at these sites. The larger correlation in MZ compared to DZ twins in our
study suggests that these sites are also subject to heritable influences. In line with this observation,
some of these CpGs are associated with mQTLs. It should be noted that breastfeeding and lactation
itself are heritable traits. In previous twin studies, the heritability of initiation of breastfeeding ranged
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from 49% [128] to 70% [129]. DNA-methylation profiles may be influenced by several early life factors.
In our study, almost all early environmental factors of interest were shared by twins: SES, maternal age
at birth, maternal pre-pregnancy BMI, and maternal smoking during pregnancy and gestational age.

Some CpGs that did not reach epigenome-wide significance can have potential for further
epigenetic studies of breastfeeding. The CpG cg22491379, located in the PTPN4 on chromosome 2,
was discovered in total sample of children of 5–12 years old and, after outlier removal, had suggestive
significance (p = 5.78× 10–3). PTPN4 was listed in suggestive regions associated with breast morphology
(breast size) [130]. Some top CpGs in the discovery study (non-adjusted model) are associated with
genes that are involved in growth and metabolism. The PRLR (prolactin receptor) gene, located on
chromosome 5, is involved in prolactin receptor activity and the growth hormone receptor signaling
pathway. Growth hormone binds to the prolactin receptor, this being the basis of induction of lactation
by growth hormone [131]. The FOXK2 gene, located on chromosome 17, is a member of forkhead box
transcription factors and is involved in glucose metabolism, aerobic glycolysis and autophagy [132],
thus playing a role in metabolic reprogramming towards aerobic glycolysis [133]. It is associated lean
body mass [134] and has been found to be hypomethylated in CpG islands in obese patients’ adipose
tissues [135]. We observed a cluster of associations on chromosome 21, each individual association just
below epigenome-wide significance. The VPS26C (DSCR3) gene is located on chromosome 21 and,
as mentioned earlier, contains two CpGs previously associated with breastfeeding in blood [53].

The strengths of our study include the use of the buccal epithelium methylome to investigate
breastfeeding for the first time, sample size, and the availability of replication data, including data
from another tissue (blood). Furthermore, our exposure, breastfeeding, was assessed very shortly after
it occurred, reducing the risk of measurement error and recall bias. Both the discovery and replication
samples have been thoroughly phenotyped and extensively studied. Our study also has limitations.
First, the findings in the discovery study were not replicated in the cohort of children with buccal
cell DNA methylation of the same age, possibly due to the small size of this cohort (98 monozygotic
twins). Second, the discovery sample was included in a study of aggressive behavior, and not primarily
examined for the purposes of research on breastfeeding. Third, we did not have longitudinal DNA
methylation data to measure the stability of effects; however, we examined the possible attenuation
of breastfeeding effects through an age-stratified analysis. Fourth, there are currently no datasets
available on gene expression in buccal cells; thus, we could not examine relationships between DNA
methylation and transcription. A strength of the current analysis is that it used the Illumina EPIC
array, which has much greater coverage than the 450k array. Importantly, some of the top CpGs
identified in the discovery EWAS were all novel EPIC probes. The replication analysis in the ALSPAC
on DNA methylation data from peripheral blood, however, used the 450k array and therefore did not
permit look-up of the same CpGs. The findings of this study require further replication in cohorts
with buccal epithelium and other tissues to improve our understanding of breastfeeding-associated
methylation changes in different tissues, and the possible utility as a biomarker of early life nutrition.
Finally, a difficulty in studies of breastfeeding is that breast milk composition is unique in each mother.
Lactation is influenced not only by genetic variation but also by many environmental factors such as
the mother’s nutrition, lifestyle, level of stress, and attachment to the child [24,25,136–139]. Future
epigenetic studies of breastfeeding could stratify the breastfeeding sample on the basis of criteria of
breast milk composition. This might be more informative for predicting a child’s outcome but might
also be a better indicator of a mother’s well-being. The value of our research is that it combined
breastfeeding, prenatal characteristics, and methylation data. In the future, results from studies that
will integrate epigenomic data with genomics, transcriptomics, and metabolomics may be used to
develop prediction models of long-term outcomes in child development and health. Understanding of
the mechanisms associated with breastfeeding will help to develop interventions to improve children’s
health and reduce risk of chronic disease by supporting breastfeeding or optimizing infant nutrition
when breastfeeding is not possible.
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5. Conclusions

Our study provided a first indication that breastfeeding as an early life environmental factor
may be associated with epigenetic variation in buccal cells in children. The findings point at new
candidate loci influenced by breastfeeding. Future studies are needed to investigate if the DNA
methylation signatures are caused by breastfeeding or by other unmeasured confounders (including
a genetic predisposition to give or receive breastfeeding and other aspects of prenatal or postnatal
diet), whether they are influenced by percentage of breastfed meals, exclusive breastfeeding duration,
breastmilk composition, etc., and what age-related mechanisms drive changes in the association
between breastfeeding and methylation.
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