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Abstract

In the literature of operational research, Vehicle Routing Problems (VRP) were and still are
subject of countless studies.

Under the scope of combinatorial optimization, this thesis analyses some variants of VRP
both with deterministic and uncertain travel times.

The deterministic problem under study is a drayage problem with characteristics con-
cerning service types and requirement seldom investigated all together. The formulations
proposed to model this problem are: the node-arc formulation and the Set Partitioning formu-
lation. Concerning the solution methods, two heuristics and a branch-and-price approach are
presented.

The section dealing with uncertain and correlated travel times faces two classes of VRP
with time windows using either single or joint chance constraints depending on whether
missing a customers time window makes the entire route infeasible or not.

From a comparison between deterministic and stochastic methods, these last represent a

profitable investment to guarantee the feasibility of the solution in realistic instances.






Table of contents

List of figures xiii
List of tables XV
Nomenclature xvii
1 Introduction 1
1.1 Deterministic S€Ction . . . . . . . . . . ... e 3

1.2 Stochasticsection . . . . . . . . .. ... 6

1.3 ODbjectives . . . . . . . . o e e e e e e e 8

1.4 Outline . . ... .. . . . . e 8

2 A deterministic drayage problem 9
2.1 Introduction . . . . . . . . .. 9

2.2 Problemdescription . . . . . . .. ... 9

2.3 Literatur€ review . . . . . . . . .. e e e e e e e e e e e e 11

24 Modelling . . . . . .. L 15
24.1 Feasibility of routes . . . . ... ... ... L oL 15

242 Node-arc formulation . . . . . . .. ... ... ... ... .. 19

2.4.3 Set Partitioning formulation . . . . ... ... ... ... ... .. 23

2.4.4 Parameters affecting the number of feasible routes . . . . . . . .. 24

2.5 Heuristics . . . . . . . . e e e e e 25

2.6 Column generation approach . . . . . . .. .. .. ... ... ....... 26
2.6.1 Pricingproblem. . . . .. ... ... ... ... ... 26

277 Experimentation . . . . . . . . . .. .. e e e e e e 30

3 Stochastic Vehicle Routing Problem with
time windows and correlated travel times 35
3.1 Introduction . . . . . . . . . . e e 35



xii

Table of contents

3.1.1 Literature Review . . . . . . . . .. ... .. .. ... ... ... 37

3.1.2 Contributionand Outline . . . . . ... ... ............ 39

3.2 Preliminaries and Notation . . . . . .. .. ... ... ........... 40

3.3 SVRPTW -Single Chance Constraints . . . . . ... ... ......... 41
3.3.1 Including correlations . . . . . .. ... ... ... ... ..., 42

3.3.2 Including timedependency . . . . . . . . ... ... ... .. 46

3.3.3 Combining correlations and time dependency . . . . . . ... ... 49

3.4 SVRPTW with Backhauls and Linehauls — Joint Chance Constraints . . . . 50
341 Algorithm . . . . . . . ... 51

342 Experimental Results . . . . . ... .. .. ... ... 52

4 Comparison of the deterministic and stochastic methods 55
5 Contributions 59
Bibliography 63
Appendix A Set of feasible routes 69
Appendix B Details on statistics 73

B.1 Computation of Updated Moments . . . . . . .. ... ... ........ 77



List of figures

1.1
1.2

2.1
2.2

B.1
B.2

Intermodal container transportation, [Nossack et al. 2013] . . . . . .. .. 4
Classification of chance constrained problems, [Li et al. 2008] . . . . . .. 7
On the left stay-with services, on the right drop & pick services . . . . . . . 10
Example of tworoutes . . . . . . .. .. ... L 11
Visual inspection for the first edge of the network . . . . . . ... ... .. 74

Visual inspection for the second edge of the network . . . . . ... .. .. 76






List of tables

2.1
2.2
23
24
2.5
2.6

3.1
3.2

3.3

3.4

4.1
4.2

Possible sequences of visits for each truckslot . . . . . . . ... ... ... 18
Changesinslotstates . . . . . . ... ... ... oo 19
Example for number of feasibleroutes . . . . . . ... ... ... ... 25
Example for the heuristics . . . . . . ... .. .. ... .. .. ... 25
Results for the exact methods . . . . . . . . ... ... ... ....... 33
Results for the heuristics . . . . . .. .. ... L oo 34
Basic notation defining our instances . . . . . . . . ... ... ... ... 41
Comparison with Ehmke et al. [Ehmke et al. 2015] for Single Chance Con-

Straint . . . . .. e e 46
Comparison with Ehmke et al. [Ehmke et al. 2015] for Single Chance Con-

straint with time dependencies (without covariances) . . . ... ... ... 49
Comparison for Joint Chance Constraint . . . . . . ... ... ....... 52

Comparison between deterministic and scc stochastic solution with covariances 56
Comparison between deterministic and jcc stochastic solution with covari-

ances and without truncations . . . . . . . . . . . .. ..o 56






Nomenclature

The next list describes several symbols that will be later used within the body of the thesis.
Abbreviations

ESPPRC: Elementary SPPRC

(The shortest path does not pass through the same node twice.)
jec:  Joint chance constraint

PCTSP: Prize Collecting TSP
(TSP where the cost of the path minus the sum of the prizes associated with the nodes

in the path is minimized)
scc:  Single chance constraint

SPPRC: Shortest Path Problem with resource constraints
(Finding the shortest path from a source to a sink node satisfying a set of constraints

defined over a set of resources)

SVRP: Stochastic VRP

(VRP with uncertain travel costs)

SVRPTW-BL: SVRPTW with Backhauls and Linehauls

(Customer demands can be either deliveries - linehauls - or pickups - backhauls)
SVRPTW: SVRP with Time Windows

TSP: Travelling Salesman Problem
(Minimizing the total cost of the path starting and returning to the same node visiting
each one of the other nodes)

VRP: Vehicle Routing Problem
(All customers correspond to deliveries and the demands are deterministic and known)



xviii List of tables

VRPB: VRP with Backhauls
(Precedence constraints on the deliveries - linehaul customers - are assumed, whenever

a route serves both types of customer)

VRPCB: VRP with clustered Backhauls
(VRPB where the cluster of delivery customers has to be served before the first pickup

customer can be visited)

VRPPD: VRP with Pickup and Delivery

(A delivery and a pickup are assumed for each customer)
VRPTW: VRP with Time Windows
Data and Parameters

a;:  Binary coefficient of the deterministic problem with value 1 if customer i is served in

route r and 0 otherwise
€: Threshold for feasibility of a route
U.:  Expected travel time of arc e
O,: Standard deviation of travel time of arc e
o, r: Covariance between travel times of arc e and arc f
a,: Earliest arrival time at end node of arc e
b,: Latest arrival time at end node of arc e
d;j:  Cost of arc (i, j) in the deterministic problem
d,: Cost of route r € R in the deterministic problem

Smax: Maximum number of stops in a route for the deterministic problem

C: Set of customer nodes (when it it includes depot, it is specified)
E: Set of all arcs
E,: Set of arcs contained in a route r

K: Set of vehicles



List of tables Xix

R: Set of all feasible routes
Variables
X.:  Random variable describing the travel time of arc e

Xy Binary variable of the deterministic problem with value 1 if route r is selected and O

otherwise

xij:  Binary variable of the deterministic problem with value 1 if arc (i, j) is traversed by

vehicle k and O otherwise






Chapter 1
Introduction

The scope of the thesis is the 0-1 integer programming (and combinatorial) optimization
applied to the routing problems. Integer and combinatorial optimization deals with prob-
lems of maximizing or minimizing a function of many variables subject to (a) inequality
and equality constraints and (b) integrality restrictions on some or all of the variables
[Nemhauser et al. 1988].

The 0-1 integer programming (0-1 IP) problem can be expressed as:
max {cx:Ax < b,x€ B }

where B’ is the set of 0-1 n-dimensional vectors and x is the variable used to represent
logical relationships. The 0-1 IP is a particular case of the most general linear mixed-integer

programming model (MIP):
max {cx+hy:Ax+Gy <b,xe€Z],ye R}

In the notation above [Nembhauser et al. 1988], x and y are the variables, Z| is the set
of nonnegative integral n-dimensional vectors and R’ is the set of nonnegative real p-
dimensional vector.

The 0-1 IP has many applications (e.g. 0-1 Knapsack problem, Assignment and Matching
problems). Vehicle Routing Problems (VRP), in which the binary choice of traveling or not
traveling a route has to be decided, can also be seen as an application of the 0-1 IP. In the
literature of operational research, Vehicle Routing Problems were and still are subject of
countless studies. These problems consist in finding a set of vehicle routes serving certain

customer requests with the minimum total travel cost.
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The more frequent models for the basic version of VRP are the vehicle flow formulations
[Toth and Vigo 2002]. These formulations are also known as node-arc formulations because
each arc (or node) in the graph is associated with an integer variable which count the number
of times the arc is traversed by a vehicle. Following the notation of [Toth and Vigo 2002],
let G = (V,A) be a complete graph where V = {0,...,n} is the vertex set, with O the depot
and C =V \ {0} the set of customer and A the arc set, a first basic model of VRP is:

min Z Zdijx,-j (11)

i€V jev

le'jZI VjieC (1.2)
9%

Y xij=1 viecC (1.3)
JEV

Y xo=K (1.4)
1S

) %0 =K (1.5)
JEV

Y Y xi>r(S) VSCC,S#£0 (1.6)
i¢SjeS

xij€{0,1} Vi jeV (1.7)

The objective is to minimize the total travel cost (1.1), where d;; is the cost of arc (i, j).
According to constraints (1.2) and (1.3), exactly one arc enters and leaves each customer.
Constraints (1.4) and (1.5) impose that K vehicles leave and enter the depot. Setting r(S)
as the minimum number of vehicles needed to serve set S, the connectivity of the solution
and the vehicle capacity requirements is imposed by constraints (1.6). The variable x;; takes
value 1 if arc (i, j) is traversed by a vehicle in the optimal solution and 0 otherwise.

The model above is simple but according to the constraints of a problem, a disadvantage
of the node-arc formulations can be the modeling phase itself, that is finding a node-arc
formulation capturing all attributes of the specific problem at hand. Another important
disadvantage of the node-arc formulations lies in the subtour elimination constraints (1.6),
that are in general exponentially many and are solved either by separation or introducing
additional variables than the ones used in (1.1) - (1.7). More variables we use, slower the
problem is solved.

To remedy this disadvantage, the Set Partitioning formulation uses one binary variable
for each feasible route in the problem. Assuming that the set of customers C =V \ {0} is

known, together with the set of feasible routes R and the corresponding cost d, for each r € R,
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the following Set Partitioning formulation models the problem above:

min ) dx, (1.8)
reR
Y x <K (1.9)
reR
Y oix,=1 VieC (1.10)
reR
x-€{0,1}  VreR (1.11)

Here we choose a cheapest subset of all routes (1.8) such that each costumer is visited
exactly once by these routes (1.10) and at maximum K trucks/routes are used (1.9). The
variable x, takes value 1 if the route r is in the optimal solution and 0 otherwise (1.11).

A disadvantage of the Set Partitioning formulation is the enumeration of all the feasible

routes needed, which cause a big use of memory and a long running time.

1.1 Deterministic section

In the thesis, in Chapter 2, a case of pick up and delivery problem called drayage is studied.
Drayage is a popular research area in the field of intermodal transportation logistics. It
concerns the distribution of empty and loaded containers between intermodal facilities
(e.g. ports or railway terminals), export and import customers. Intermodal transportation
is subdivided into pre-haulage, main-haulage and end-haulage. Pre-haulage denotes the
route segments from customer to terminal, main-haulage indicates the route segments from
terminal to terminal and end-haulage from terminal to customer [Nossack et al. 2013]. A
picture of intermodal container transportation is shown in Fig. 1.1 [Nossack et al. 2013]. "In
the literature, pre-haulage and end-haulage is also referred to as inland container transport,
hinterland service or drayage" [Reinhardt et al. 2016]. It is generally handled by trucks and
it accounts for a significant portion of the transportation cost, even though main-haulage
represents the longest traveling distance carried out by rail or maritime shipment. Then,
optimizing drayage problems contributes not only to reducing traveling costs but affects
directly the environment reducing CO, emission, pollution and traffic congestion. The
drayage problem presented in the thesis differs from the majority of the literature review
presented in Section 2.3 for the problem characteristics and for the methodology used, as
detailed in Chapter 2 below. Given the modeling complexity of the constraints, the problem
is going to be analyzed and solved by the Set Partitioning formulation, although it has not

been a very common formulation in the drayage area. Anyway, in order to provide more than
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Pre-Haulage Main-Haulage End-Haulage
Customer to Terminal Terminal to Terminal Terminal to Customer

s B
o/ \.

Legend:
(© shipper Customer
@ Receiver Customer

Fig. 1.1 Intermodal container transportation, [Nossack et al. 2013]

one formulation and in particular a formulation more in line with the trends in the drayage, a
node-arc model is also presented. The continuous relaxation of such a formulation is usually
rather weak, making it an inefficient choice to develop solution methods. Yet, the continuous
relaxation of the corresponding Set Covering-type formulations is known to usually provide
much stronger lower bounds. In order to reach the required integer solution, this approach
has to be embedded in a branch-and-bound.

This idea leads to the branch-and-price approach that is a common approach in the
field of VRP and uses column generation for solving the relaxed Set Partitioning prob-
lem. The column generation is a method for solving linear programming problems adding
columns/ constraints during the pricing step of the dual simplex formulation of a linear prob-
lem. In fact, it consists in solving a restricted linear master problem in which just a subset of
routes is involved identifying iteratively routes to add. The column generation is very useful
for problems of exponential size, that is, with an exponential number of columns because it
deals at every iteration with a problem of smaller size. In order to reach the required integer
solution, the column generation approach has to be embedded in a branch-and-bound that
does not branch according to the Set Partitioning formulation.

Taking again the Set Partitioning formulation into account (1.8) - (1.11), the relaxation of

the formulation is obtained substituting (1.11) with (1.15), obtaining the following relaxation

problem:
min Y dpx, (1.12)
r€ER
Y x <K (1.13)
rer
Y oyx,=1 VieC (1.14)
reR

x>0 Vr eR (1.15)
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The column generation approach starts solving the primal problem (1.12) - (1.15) using a
subset of feasible routes R C R in the place of R. An other optimization problem provides the
routes to add in the primal problem in order to reach the feasible solution. This optimization
problem is called pricing. Looking at the dual formulation of the problem given by (1.12) -
(1.15),

dr=d,—0-Y it (1.16)

is the reduced cost of route », where the variable 0 is associated to the constraint (1.13), the
variables A; to the constraints (1.14). According to the column generation approach, a route
is added to the subset of routes used in (1.12) - (1.15) when its reduced cost is negative, that

is when (4, 0) is not feasible in the dual formulation of (1.12) - (1.15). More then one route
can be added at a time. The pricing problem consists then in an optimization problem in

which the objective is to find the minimum reduced cost:

min d, (1.17)
rer

Algorithm 1 shows the scheme of the general column generation method. Before using

Algorithm 1 Column generation algorithm

1: Compute set of feasible routes R CR that provides at least one feasible solution for
(1.12) - (1.15) with R

2: while Routes with negative reduced costs can be found do
3: Solve (1.12) - (1.15) with R
4: Solve a heuristic Pricing Problem for finding new routes with negative reduced costs
5: if No Routes with negative reduced costs can be found then
6: Solve the Pricing Problem for finding new routes with negative reduced costs
7: end if
8: Add the new routes to R’
9: end while
10: Return the solution of (1.12) - (1.15) with R

the exact pricing, a faster heuristic algorithm can be used to find new routes. Only if no
routes with negative reduced costs can be found, the exact pricing is necessary to prove that
the algorithm can stop.

For solving the drayage problem of Chapter 2, in Section 2.6 also the column generation
approach and a branch-and-bound are going to be used and the solution obtained is going to

be compared to the other presented solution methods.
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1.2 Stochastic section

The term VRP in general refers to the deterministic problem, in which all the data are known
and not subject to uncertainty. However, in practice, due to a variety of influences such
as traffic jams, weather, customer availability etc., the real situation is often unpredictable,
so that a solution of the deterministic problem in most cases produces solutions that are
far from optimal in reality. To deal with this problem, specific approaches for addressing
these uncertainties are needed. VRPs involving uncertainty and for which the probability
distribution governing the uncertain data can be estimated (or it is known), are referred to as
Stochastic Vehicle Routing Problems (SVRP). This class of routing problems subject to the
uncertainty of the travel times is addressed in Chapter 3 of the thesis. Travel times are then
random parameters.

In general terms, with respect to a fixed route r, we are going to discuss if the route r
is feasible with a high enough probability and if so, what is the expected cost of route r.
This is motivated by the fact that many exact as well as heuristic approaches for solving
vehicle routing problems can be reduced to the above tasks, in particular when deciding if the
route r is feasible with a high enough probability is a difficult problem in itself. An important
example for this class of approaches is again the Set Partitioning approach to the VRP.

Citing [Ackooij et al. 2011] "the main difficulty of such models (with random parameters
in optimization problems) is due to (optimal) decisions that have to be taken prior to the
observation of random parameters. There are circumstances in which compensating decisions
for balancing constraint violation do not exist or cannot be modeled by cost in any reasonable
way. In such circumstances one would rather insist on decisions guaranteeing feasibility as
much as possible".

In the thesis the approach of the chance constraints is used for assuring a high probability
of feasibility in case of unexpected extreme events. Chance constrained programming was
first introduced by [Charnes et al. 1959] in 1959 and the derived method of the chance
constraint is one of the major approaches used in stochastic optimization. It is used to ensure
that the probability of meeting a constraint of the uncertain problem is above a fixed threshold.
Let the following be a general formulation of an optimization problem with decision variable
x, objective function f, equality constraints g; and inequality constraints /; and subject to
uncertain data &:

min  f(x,§)
st gi(x,&)=a i€{l,...,n}
hi(x,§)>b je{l,...,m}
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We can guarantee that each inequality constraint is satisfied for a fixed probability level p,

formulating the single chance constraints as:
P(hj(x.&) 2 b)>p V]

where, for each j € {1,...,m}, a chance constraint is set. In this form, different probability
levels p; can also be assigned to every chance constraint. However, if we want that the
constraint as a whole is satisfied to the fixed probability level p, then one joint chance

constraint has to be formulated as:
Plhj(x,€)>b Vj)>p

Single chance constraints are in general easier to solve then the joint chance constraints.
The first can be in fact expressed as deterministic inequalities. The major challenge towards
solving chance constrained optimization problems lies in the computation of the probability;
often normal (Gaussian) distribution is considered as an adequate assumption for many
uncertain variables in the engineering practice and only mean and variance are required,
which are usually available [Li et al. 2008].

process : uncertainty : constraint

| [
y I I i

- Steady Const: Singl

ar ; onstant Single
Linear arcdeon ' '

! Time : Joi
: / IC N ] oint
Nonlinear Dynamic > |dependent o

[

Fig. 1.2 Classification of chance constrained problems [Li et al. 2008]

Following the classification of chance constrained problems given by [Li et al. 2008],
Fig. 1.2, in this thesis, in order to lead to a high probability of complying with time windows
constraints for solving two variants of the VRPTW (VRP with Time Windows) subject to
stochastic and normally distributed travel times, in a linear process both single and joint
chance constraint approaches are used with both cases of constant and time dependent

uncertainty.
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1.3 Objectives

As a result of the consideration above, the objectives of the thesis are now presented.

In the drayage problem in Chapter 2, several characteristics regarding the service requests
are considered. The problem has some attributes that are motivated by real cases of carrier
shipment and all together are not investigated yet in the literature. The objective is to compare
several solution methods to solve the problem in a reasonable time.

Concerning the SVRPTWs in Chapter 3, first the objectives are to investigate the im-
portance of considering correlations between travel times by solving real instances and of
considering travel times varying over the day by solving instances created with real data. A
main objective is to give for the first time an approach for solving the single chance con-
strained routing problem with correlations, without and with time dependencies. Following
this, we elaborate an algorithm considering correlations and time dependencies at the same
time for solving single chance constrained routing problems. Another main objective is to
give for the first time for a specific class of VRP like drayage an approach for solving the
joint chance constrained routing problem with and without correlations. Finally, we consider
an estimation of the waiting times of the vehicles at the customer locations, that can be used
in penalty based approaches.

As a consequence of the study of Chapters 2 and 3, a comparison between the stochastic
and the deterministic approaches is presented in order to check the costs of the investment
in stochastic methodologies and to analyze the quality of the optimal solutions in terms of

feasibility of the routes.

1.4 Outline

Summarizing, in Chapter 2 a new deterministic drayage problem is studied, in Chapter 3
two variants of the VRPTW subject to uncertain travel times are studied, in Chapter 4 a
comparison between the deterministic and stochastic methods is given. Furthermore, two
appendices follow the Bibliography for more details about the number of feasible routes of
the drayage problem (Appendix A) and the computation of the updated moments for the
algorithms presented in Chapter 3 (Appendix B).



Chapter 2

A deterministic drayage problem

2.1 Introduction

The objective of this chapter is solving a drayage problem with attributes concerning commod-
ity types and service requirements which make the problem hard to solve with conventional
methods. These characteristics are presented in details in the following Section 2.2. Next, the
most related literature on the problem is presented and the main differences are pointed out in
Section 2.3. In Section 2.4, a mathematical model for the problem statement is proposed and
a node-arc formulation and a Set Partitioning formulation are presented. From an analysis at
the end of Section 2.4 on how the types of request influence the number of feasible routes
and therefore the running time, two heuristics are proposed in Section 2.5. These heuristics
have scalable parameters to find either faster or more precise solutions, and both heuristics
can be combined with each other. In Section 2.7, we perform an extensive experimental
evaluation and compare the two heuristics with the "exact" solution obtained with the Set
Partitioning formulation to which all the feasible routes are given. The research presented in
this chapter is also collected in [Bomboi et al. 2018].

2.2 Problem description

In this section, a drayage problem motivated by the case study of a maritime medium-sized
carrier is presented. In this context, the intermodal facility is a port in which a fleet of trucks
and containers are based and adopted by the carrier to provide transportation services to the
customer locations nearby the port. The routes of the operating trucks start and end at the
port. The fleet of trucks and transported containers are homogeneous. Each truck can carry

up to two 20 feet containers, in line with the standards in many countries, and serves a single
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container at a time. One attribute considered in this study is motivated by the reality of some
special requests. It occurs that some container loads are not allowed to be carried with other
loaded containers at the same time, e.g. containers containing flammable commodities like
tobacco and alcohol or commodities with too large weight. Therefore, it is important for
the carrier to meet these customer requests. For the sake of clarity, in this thesis, containers
which are carrying these special loads are referred to as "special”" and the other containers
are called "ordinary". A second attribute of this study is that the customer is allowed to
choose between two ways of service, "stay-with" and "drop & pick". In many papers of the
related literature, containers are left at customer locations by trucks bypassing packing and
unpacking works. Since drivers do not wait for containers during loading and unloading
operations, they can serve additional customers in the meantime. This type of service is
known as drop & pick. In the stay-with service, drivers wait for containers during packing
and unpacking operations and trucks carry the same container before and after the customer
service. In Fig. 2.1 on the left, an illustration of two stay with services to an import and to
an export customer with one container per truck: the first service is made by unloading the
container and the second by loading the container. On the right of Fig. 2.1, it is shown the
same path with the same customers asking a drop & pick service: the container is dropped
at the first import customer and a new loaded container is picked up at the export customer.

From the presented characteristics, this study can be seen as a generalization of the drayage

Exporter u—DU' Importer Exporter D—U' Importer
- - o -

Port Port

Fig. 2.1 On the left stay-with services, on the right drop & pick services

problem stated in [Ghezelsoflu et al. 2018], in which only the stay-with service is adopted
and no special requests are considered. The main advance in [Ghezelsoflu et al. 2018] is
testing a new distribution policy for the carrier in which exporters can also be served after
importers, which differs from the street-turn methodology currently adopted by the carrier.
In Fig. 2.2 it is shown an example of two routes for [Ghezelsoflu et al. 2018] and for this
study. A paper in which stay-with and drop & pick are adopted together is Funke and Kopfer
(2016) [Funke et al. 2016]. In their study, the decision of the way of service is not up to the
customer like in this study, but made by the algorithm. However, the methodology presented

in this section is flexible to manage instances in which a subset of customers requires a fixed
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Import, Export, Export

Port

7Export. Import, Export

Fig. 2.2 Example of two routes

service type and for the other the algorithm can choose their service type. Several reasons
can be seen by the customers to choose one of the two service types. Drop & pick services
increase the flexibility of the customers because they can load or unload the container when
it can be integrated optimally in their working schedule. Since drop & pick services last
less time and can be integrated easier into existing routes, they can be reserved with less
advance than stay-with services. Nevertheless, stay-with services need to be considered also
because not all customers want to invest in a more expensive equipment that is necessary for
drop & pick services. In order to meet customer transportation requests, empty containers
need to be provided to and collected from customers. Two ways to provide empty containers
are regarded: they are picked up in the port or directly carried from importers to exporters
according to the street-turn policy, [Jula 2006] and [Deidda et al. 2008]. Concerning service

times at the customer locations, the problem is formulated and solved without time windows.

2.3 Literature review

The recent papers [Song et al. 2017] and [Ghezelsoflu et al. 2018] present a detailed survey
about the literature on drayage problems. The new drayage problem presented in this
section can be seen as an important extension of the paper of [Ghezelsoflu et al. 2018]. They
consider a drayage problem that is motivated by the case study of a real carrier. In their
problem statement, the trucks are able to carry more than one container and all customers are
served according to the stay-with service type. They show some improvements in the current
carrier policy solving the problem in which importers do not have the priority to be served
before all exporters. The two additional characteristics of the study presented here are the
inclusion of drop & pick services and the introduction of special loads.

A problem which belongs to the class of VRP with clustered backhauls, in which on each

route all deliveries have to be made before the pick up services, is studied by [Lai et al. 2013],
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with the extension of allowing more than one visit for a customer. Another extension of the
VRP with backhauls, in which all deliveries have to be made before the pick up services, is
made by [Vividovic et al. 2012]. They study a drayage problem with containers of different
sizes, 20 ft and 40 ft and a truck can simultaneously carry one 40ft, or two 20ft containers,
using an appropriate trailer type. [Dotoli et al. 2016] deal with a Full Truck load Pick-up &
Delivery Problem with Clustered Backhauls.

The problem statement formulated by [Funke et al. 2016] has a lot of similarities to the
one we present because they use trucks which can carry more than one container and they
consider both types of services. Despite this, there are some major differences. The most
relevant difference is that they assume that every customer is prepared for a drop & pick
service and therefore the cargo transportation company can decide during the optimization
process which service they want to use. In our problem, to reach a more realistic setting, the
customers are free to decide in advance if they want a stay-with or a drop & pick service, so
that all the types of request are fixed before the optimization process.

We consider homogeneous containers of 20 ft size, instead they use 20 ft and 40 ft
containers, which can not be coupled with any other container. Hence, it is not possible to
model 40 ft containers as special containers because special containers can be coupled with
empty containers. One more difference is that they introduce one depot for the storage of
empty containers when necessary. In contrast to our drop & pick rules, they assume to end
this kind of service on the same day by visiting the customer twice, either with the same
truck or another. They solve the problem with a node-arc model for small instances.

[Tleri et al. 2006] consider stay-with and drop & pick orders that are fixed from the
beginning like in the presented problem description. They assume that drivers start and end
the working day without a trailer. Additionally, they introduce trailer pools, in which infinitely
many empty containers are stored. Drivers can be one of two types, namely company driver
(CD) and third party (TP). This influences the objective function that is minimizing the total
cost for the company. The main difference to the problem under study here is that they
have only one container per truck. They use a Set Partitioning formulation and solve the
relaxed problem with a column generation approach. Also [Xue et al. 2014] regard both
types of service and assume that the customer decides which service to take. They have
different additional depots and only one container per truck is allowed. They solve the
problem with an algorithm based on window partitions. As much as regards the adoption of
both stay-with and drop & pick services, the drayage problem of [Reinhardt et al. 2016] take
them into account according to the model they present but their experimentations represent
only the possibility of the stay-with service. Also in the Full Truck load Pick-up & Delivery
Problem with Clustered Backhauls of [Dotoli et al. 2016] both types of service are possible
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and this results by matching a delivery with a pick up, which depends in turn on the type of
request, the size of the container and their ownership (considering that some requests can be
sub-contracted to other carriers when the fleet is not sufficient to satisfy the demand). The
fleet of vehicles they consider is heterogeneous and each vehicle is composed by a tractor to
which a trailer of different possible dimensions can be coupled.

Drop & pick service is adopted by [Namboothiri et al. 2004], [Namboothiri et al. 2008],
[Xue et al. 2015] and [Braekers et al. 2013]. In fact, in [ Xue et al. 2015], tractors and trailers
can be separated and each customer can be visited twice, either for pick up or delivery service.
Each customer node is partitioned into two task nodes, corresponding to the two visits of the
tractors to the customer. The two task nodes do not have to be served by the same tractor. In
[Braekers et al. 2013], when a loaded container is transported from a container terminal to a
consignee, the container is unloaded and the resulting empty container should be picked up
before the end of the day. Then, the destination of the empty container can be a container
terminal or a shipper.

In the drayage problem of [Nossack et al. 2013], customers are served with stay-with
services, that is, containers are loaded and unloaded at customer locations but containers
are entirely dropped and picked up at the terminals. Stay-with service is also provided by
[Shiri et al. 2016], [Lai et al. 2013] and [Srour et al. 2010].

The possibility of splitting the commodity is considered by [Reinhardt et al. 2016] and
[Dotoli et al. 2016]. In particular, [Reinhardt et al. 2016] allow that multiple customers share
a container ordering the goods in vertical layers corresponding to each customer. This case
has an implication on the order in which customers are visited. In the Full Truck load Pick-up
& Delivery Problem with Clustered Backhauls and Split Delivery of [Dotoli et al. 2016],
from the split delivery assumption derives that multiple visits at the same customer are
allowed for terminating the complete shipment to the customer.

Another attribute which characterizes routing problems is the number of containers
each truck can move at a time. In [Namboothiri et al. 2004], [Namboothiri et al. 2008],
[Shiri et al. 2016], [Reinhardt et al. 2016] and [Braekers et al. 2013] the capacity is of a
single container. In [Lai et al. 2013], trucks can carry one or two containers.

As regards the number of terminal and depots, [Nossack et al. 2013] solve a drayage
problem whose setting is with multiple terminals and multiple depots. Depots are used as
truck parking space and empty container storage. [Shiri et al. 2016] consider to have mul-
tiple truck depots where a limited number of trucks is located, and where these trucks
must start at and return to. Empty containers are stored in a empty container depot.

[Reinhardt et al. 2016] consider a drayage problem with time windows, several terminals and
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depots. [Braekers et al. 2013] study a drayage problem with one depot and more terminals,
where empty containers are available and can be stored. Routes start and end at the depot.

Some papers deal also with the important problem of truck congestion at the intermodal
terminals. [Namboothiri et al. 2008] provide an overview of US seaports terminals charac-
terized by truck congestion at the ports and very high levels of demand for trucking service.
In particular, they study the management of a fleet of trucks providing container pickup and
delivery service (drayage) to a port with an appointment-based access control system in order
to improve the scheduling of truck arrival to and departures from the port. The port operates
an access control system where its operating hours are divided into a set of equal-duration
time slots. The drayage firm is limited by the slot capacity (an upper bound on the number of
truck accesses to the port) during each time slot. They are the first to address routing problems
with constraints on the number of times vehicles may access a specific location (or locations)
during different time windows. In the drayage problem of [Namboothiri et al. 2004], to
model congested access to the port, they delay each tractor arrival at the entry gate using a
a time- dependent, exogenously-defined congestion function. [Shiri et al. 2016] analyze a
drayage problem in which the intermodal terminal requires trucks to have an appointment.
This appointment system defines the number of trucks allowed at the terminal at each time
period. [Srour et al. 2010] study a drayage problem inspired by a Dutch logistic service
provider. The problem consists of time windows for the customers and for the terminal
operating time.

As much as regards formulations and methods, in [Namboothiri et al. 2004], to fulfill
all container movement requests within the required time windows and with minimum
total transportation cost for the drayage company, their model starts with a Set Partitioning
formulation and it is based on the column generation approach with shortest path pricing.
[Namboothiri et al. 2008] develop a drayage operations planning approach based on an
integer programming heuristic based on column generation that explicitly models a port
access control system. The goal of the MIP [Srour et al. 2010] present in an node edge form
is to minimize the total routing costs, which consist of time traveling empty and penalties for
rejected jobs. [Vividovic et al. 2012] propose two MIP formulations, a multiple assignment
problem with time windows and the VRP with simultaneous pickups and deliveries. In
the drayage of [Braekers et al. 2013], the objective consists in minimizing the number of
vehicles used and the total distance travelled. They assume that waiting is allowed in
case a vehicle arrives early at a customer location and it has no costs. The problem is
solved with a sequential approach and an integrated approach. In the sequential one, empty
container allocations are determined before vehicle routes are created. In the integrated

one, empty container allocations are made simultaneously with vehicle routing decisions.
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[Lai et al. 2013] propose a metaheuristic based on several local search phases implementing
node movements and truck swaps for solving the VRP with clustered backhauls. In the
drayage problem with hard time windows constraints of [Nossack et al. 2013] a node-arc
based mixed integer programming problem is formulated. They develop a two stage heuristic
approach in which, in a first stage, an initial solution is constructed and, in a second stage,
improved by an ejection chain heuristic. [Escudero-Santana et al. 2015] solve a drayage
problem using the viral system metaheuristic method, a bioinspired approach. In the local
container drayage problem of [Xue et al. 2015], the transportation service is performed in
a local area near the terminal and it is assumed that empty containers are unlimited. An
Ant Colony Optimization algorithm is developed to solve the problem. To deal with a Full
Truck load Pick-up & Delivery Problem with Clustered Backhauls, Split Delivery, and hard
Time Windows, [Dotoli et al. 2016] used a node arc model. [Reinhardt et al. 2016] modeled
their drayage problem with time windows with a set covering formulation. In the modeling
they consider constraints for selecting empty container depots and limiting imbalances of
empty containers. [Shiri et al. 2016] formulated their drayage problem as a multiple traveling
salesman problem with time windows and solve it with an algorithm based on reactive Tabu
Search.

In conclusion, to the best of our knowledge, the presented problem statement is innovative
and not directly comparable with the other problem statements in the literature. It integrates
many realistic characteristics from different papers and is therefore worth to be regarded.
In particular, the presented Set Partitioning formulation is very flexible, it can handle a lot
of different constraints and can be used for various problem statements. Especially for this

problem statement, it is more effective than other methods presented in the literature.

2.4 Modelling

In the following subsection, the sets of customer requests are defined and the feasible routes
are illustrated. Next, the Set Partitioning model is presented and a discussion on the size of

the realistic problem instances is provided.

2.4.1 Feasibility of routes

The set of customer service types can be defined as follows:

* PE: set of requests in which an empty container must be picked up from an importer
during drop & pick service;
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» DE: set of requests in which an empty container must be dropped to an exporter during

drop & pick service.

* PLO: set of requests in which an ordinary loaded container must be picked up from an

exporter during drop & pick service;

* PLS: set of requests in which a special loaded container must be picked up from an

exporter during drop & pick service;

* DLO: set of requests in which an ordinary loaded container must be delivered to an
importer during drop & pick service;

* DLS: set of requests in which a special loaded container must be delivered to an
importer during drop & pick service.

* PLSWO: set of requests of exporters with stay-with services and ordinary containers;
* PLSWS: set of requests of exporters with stay-with services and special containers;
* DLSWO: set of requests of importers with stay-with services and ordinary containers;

* DLSWS: set of requests of importers with stay-with services and special containers.

In order to define the feasible sequences of visits among these types of requests, we describe

the state of the truck slots after each type of customer request and the types of requests that

can be served for each possible state. Let s,;(i) be the state of truck slot j after visiting

customer request i in route r. Since trucks carry up to two containers, we have j € {1,2}.

The state of any container slot is one of the following entries:
{Absent,ClosedO,ClosedS,Empty, Initial O, Initial S }.
The possible states are defined hereafter:

* 5.;(i) = Absent means that no container is placed in slot j. It can be an initial state of
the truck slot or the state after serving customer request i € DE UDLSUDLO. Next,
truck slot j can be used to serve a request in PE U PLO U PLS in route r;

* 5:j(i) = ClosedO means that an ordinary loaded container is put in slot j after serving
an export request i € PLSWO U PLO. In this case, this slot cannot change the state any

longer and cannot be used to serve any additional customer request in route r;

* 5,j(i) = ClosedS means that a special loaded container is put in slot j after serving an
export request i € PLSWSUPLS. Even in this case, this slot cannot change the state
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any longer along the route and cannot be used to serve any additional customer request.
Compared to ClosedO, this case constraints the status of the other slot of the truck,

that cannot be used for any kind of loaded container;

srj(i) = Empty means that the container in slot j is empty. It can be an initial state of
the truck slot or the state after serving a customer request i € DLSWO UDLSWS U PE.
Next, this truck slot j can be used to serve a request of set DE UPLSWO U PLSWS in

route r;

srj(i) = InitialO means that an ordinary container in slot j is loaded to satisfy an
importer request in set DLSW O U DLO in route r. Next, truck slot j will be denoted by
the state Empty or Absent ;

srj(i) = Initial S means that a special container in slot j is loaded to satisfy an importer
request in set DLSW S U DLS. Next, truck slot j will be denoted by the state Empty or
Absent.

According to this notation, the possible initializations of the two container slots in a truck

leaving the port are:

InitialO & InitialO
InitialO & Empty
InitialO & Absent
InitialS & Empty
InitialS & Absent
Empty & Empty
Empty & Absent

Absent & Absent

In the list of possible truck initializations it is taken into account that the special loaded

containers can be carried alone in a truck or be coupled only with empty containers. Table

2.1 summarizes the acceptable sequences of visit for each type of request, which is reported

in the central column and denoted by Type of request. Column Previous shows which types

of request can be visited before the considered one and the slot state that can be used to

meet the considered type of request. Column Next shows which types of requests can be
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visited after the considered one or shows the slot state after serving the considered type of
request. For example, the first row shows the possible sequences {Absent, PLO,Closed O},
{DLO,PLO,ClosedO}, {DLS,PLO,ClosedO}, {DE,PLO,ClosedO} for PLO.

Previous  Type of request Next

Absent
DLO PLO ClosedO
DLS (PLS) (ClosedS)
DE
InitialO DLO PLO
(InitialS) (DLS) PLS
PE
Absent
Empty

DLSWO PLSWO ClosedO
DLSWS (PLSWS) (ClosedS)

PE
InitialO DLSWO DE
(InitialS) (DLSWS) PLSWO
PLSWS
Absent PLSWO
DLO PE PLSWS
DLS DE
DE
Empty PLO
DLSWO DE PLS
DLSWS PE
PE Absent

Table 2.1 Possible sequences of visits for each truck slot

To determine feasible routes for two-containers trucks, both container slots must be taken
into account. Table 2.2 shows in column Slot pre-condition the required state of a slot in
order to serve the type of request reported in the first column 7ype. For example, the state
of a slot must be "Absent" in order to pick an empty container (i.e. serving a request of set
PE) and put the container in that slot. In the column Pre-condition other slot the status of
the other slot in the truck is indicated in order to accept the type of request reported in the
first column. The string "Irrelevant" shows that the ability to serve a request of set PE is
independent from the state of the other slot. Column Slot Post-condition indicates the state
of the used slot after the service of a customer request reported in the corresponding line. For
example, the state of a slot must be "Empty" after picking up an empty container (i.e. serving
arequest of set PE). To clarify, one can serve a request of set PLO by a truck slot if the state
of the other slot is different from ClosedS and InitialS.

The set of feasible routes is obtained by connecting acceptable sequences of customer

requests according to Table 2.1 and Table 2.2. Therefore a dynamic program over the number
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Table 2.2 Changes in slot states

Slot Other slot
Type
Pre-condition  Post-condition Pre-condition
PE Absent Empty Irrelevant
DE Empty Absent Irrelevant
PLO Absent ClosedO not ClosedS & not InitialS
PLS Absent ClosedS not ClosedO & not ClosedS & not InitialO & not InitialS
DLO InitialO Absent Irrelevant
DLS InitialS Absent Irrelevant
PLSWO Empty ClosedO not ClosedS & not InitialS
PLSWS Empty ClosedS not ClosedO & not ClosedS & not InitialO & not InitialS
DLSWO InitialO Empty Irrelevant
DLSWS InitialS Empty Irrelevant

of customers in a route is used. To obtain routes with £+ 1 customers, all routes with k
customers are regarded and for every customer it is checked if adding this customer is feasible.
This has to be done for all possible truck initializations because there exist routes that are

only feasible for one of the initializations.

2.4.2 Node-arc formulation

In line with the majority of the existing modeling ways for drayage problems, we also looked
for a node-arc formulation. Starting from a basic formulation, other constraints are gradually
added to model the problem requirements.

Following the notation,

N: Set of nodes;

A:  Set of arcs;

K: Set of trucks;

S= {0,...,Sna + 1} set of stops (positions of the nodes/customers) in a route;
d;j: Cost of the arc (i, j);

AT (i): Forward star of node i;

A~ (i): backward star of node i;
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X;jjx:  Decision variable equal to 1 if arc (i, ) is covered by vehicle k, 0 otherwise;

Yisk: Decision variable equal to 1 if customer i is served by truck k at stop s, 0 otherwise.

a basic node-arc formulation is given:

min ) Y dijxij 2.1)
keK (i,j)eA
Y Y xma=1 VieN\{0} 2.2)
keK jeA* (i)
Y xjp— Y xu=0 VkeK\VjeN (2.3)
i€A=(j) i€+ (j)
Y xou<1 Vkek (2.4)
JEAT(0)
Zyz',s.,k— Z xijk=0 VieN\{0},Vke K (2.5)
s€S JEA*(i)
Y Xk <Smaxt+1 VkeK (2.6)
(i,j)eA
yiox=0 VieN\{0},VkeK Q2.7)
YiSma+1k =0 Vi€ N\{0},Vk € K (2.8)
Vistlk = Visk = Xijk— 1 Vie N\{0},Vj € AT(i),VkcK,¥scS (2.9)
xij€{0,1}  VkeK,(i,j) €A (2.10)
yisk €{0,1}  VieN,VseSVkek (2.11)

The minimum total cost has to be found (2.1). Each customer is served by exactly one vehicle
(2.2). Flow on the route followed by truck k is characterized by (2.3). Constraints (2.4)
ensure that every vehicle makes at most one route. The sub-tour elimination constraints are
set as (2.5). In fact, fixing i = 7 and k = k and assuming that there is at least a cycle, then at
least the two s, and s,, exist such that Visuk = 1 and Vis k= 1. This means that }_ jca+(;) Xijk
is at least 2, breaking the constraints (2.2). Constraints (2.2) together with (2.5) ensure that
each customer is served at exactly one stop and there is a stop at a customer just when there
is an arc going to that customer. In the formulation we need to know at which point the route
can be stopped, fixing the maximum number of stops S, by (2.6). An example of S, can
be the total number of customers in the problem, which is also used in the implementation of

the presented drayage problem in Section 2.7. Constraints (2.7) and (2.8) impose that, at stop
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0 and after the maximum number of stops, trucks are at the depot and no customer is served.
In particular, constraints (2.8) are very important because (2.5) alone do not guarantee cycles
after the maximum number of stops S,,,4,. Forcing the vehicle to terminate the route coming
back to the port after S,,,4y, (2.8) avoids the formation of additional cycles. Using (2.5) and
(2.8) in this model, it follows that subtours are not possible. The binary decision variables, in
(2.10)-(2.11), are connected by constraints (2.9). In fact, if arc (i, j) is traversed by vehicle
k then x;jx = 1. This means there is a stop s at which customer i is served by vehicle k
(Visk = 1) and j follows (y; 511, = 1) and (2.9) are valid. If x;x = 0, (2.9) are also valid.
The variable y; ; ; is in general not necessary for modeling the majority of the VRPs.
In this case it has been used to introduce the following constraints required by the drayage

problem under study.

Given the additional notation,

a; . number of Absent at time 7 on truck k;
bix: number of Empty at time i on truck k;
cix: number of InitialO at time i on truck k;
d; . number of InitialS at time i on truck k;
e; . number of ClosedO at time i on truck k;

fix: number of ClosedS at time i on truck k.

the following constraints guarantee the fulfillment of the service by truck k at customer ¢
at time s in accordance with the status of the slots updated at time s — 1, refer to Table 2.2.
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We will refer to these constraints as "pre-condition constraints".

Vesk < As—1k
Ye,sk < bsfl,k
Ye,s.k < Cs—1,k
Yesk < ds—1k
Ye,sk <l _fvfl

Ve € {PE,PLO,PLS},Vk,Vs > 1

V¢ € {DE,PLSWO, PLSWS},Vk,Vs > 1

Ve € {DLO,DLSWO} Yk, Vs > 1

Ve € {DLS,DLSWS},Vk,Vs > 1

& Vee {PLO,PLS,PLSWO,PLSWS},Vk,Vs > |

Yesk <1—ds 14 Ve e {PLO,PLS,PLSWO,PLSWS},Vk,Vs > 1

2yc,s,k <2—c5
2yc,s,k <2- €s5—1

k Vee {PLS,PLSWS},Vk,Vs > 1
k Vce{PLS,PLSWS},Vk,Vs > 1

(2.12)
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)
(2.18)
(2.19)

In (2.12) for example, if customer ¢ has to be served at time s by the truck k, then at least one

status slot of truck k has to be Absent in order to satisfy one of the request types PE or PLO

or PLS.

The following constraints are referred to as "Update Status constraints", refer to Table 2.1.

sk = As—1k —

ce{PE.PLO,PLS} ce{DE,DLO,DLS}
bs,k = bs—l,k - Ye,sk + Z Ye,sk Vk,Vs >1
c€{DE,PLSWO,PLSWS} c€{PE,DLSWO,DLSW S}
Csk = Cs—1,k — Z Ye,s.k Vk,Vs > 1
ce{DLO.DLSW O}
dsk =ds—1x— ) Yesk Vk\Vs>1
c€{DLS,DLSWS}

€sk = €s—1 kT

Ye,skt Z Ye,s.k Vk,Vs > 1,

Ye,s.k V/@VS >1

c€{PLO,PLSWO}

Jsk=Fsm1xt )

Yesk Vk,Vs>1

c€{PLS,PLSW S}

(2.20)

2.21)

(2.22)

(2.23)

(2.24)

(2.25)

Constraint (2.20) imposes that the number of absent containers at time stop s in the truck & is

equal to the number of absent containers at the previous time stop s — 1 minus the number of

occupied slots caused by services like PE, PLO, PLS, plus the number of new absent caused

by services like DE, DLO, DLS. The same idea is applied to by, C; k, ds k; €5k, f5 k in order

to update at every time stop the status of all trucks.
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The following constraints are referred to as "Status initialization constraints", refer to the

discussion at Section 2.4.1.

agr+box+cox+dox=2 VkekK (2.26)
cok+2dox <2 VkeK (2.27)
€0k = fO,k =0 VkeKkK (2.28)

Constraints (2.26) sets the possible initial status of the two slots of every truck to Absent,
Empty, InitialO and InitialS. With (2.27), two InitialO are possible, but InitialS cannot be
coupled neither with InitialO nor InitialS. ClosedO and ClosedS are not status initialization
(2.28).

Following on from the disadvantages of the node-arc formulations stated in Chapter 1, in
the presented formulation the number of additional variables needed to model the drayage
problem under study increases the running time and clearly constitutes a disadvantage for
the implementation, as later can be seen from the experimentation in Table 2.5. The subtour
elimination constraints obtained with (2.5) and (2.8) do not represent a problem instead.

The additional variables needed in the formulation translate in the case of the Set Par-
titioning into a high number of constraints from which it can benefit. We prefer then the
Set Partitioning model over the node-arc formulation for the presented problem statement
because the problem is highly constrained and with a growing number of constraints the
running time of the route generation and of the Set Partition model does not increase in

general, as opposed to node-arc formulations that become harder to solve.

2.4.3 Set Partitioning formulation

Given the previous set of feasible routes, we present a Set Partitioning model using the

following notation:

R: Set of all feasible routes

C: Set of customer requests = PE UDE UPLSUPLOUDLSUDLOUPLSWSUPLSWO U
DLSWSUDLSWO

K: Maximum number of trucks;

d,: Cost of route r € R;
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o, Coefficient with value 1 if route r € R covers i € C, 0 otherwise;

x,: Binary variable which is 1 if route r € R is selected, 0 otherwise.

The Set Partitioning formulation of the model is:

min Y dx (2.29)
reR
Y x <K (2.30)
reR
Y oix,=1 VieC (2.31)
reR
x-€{0,1}  VreR (2.32)

In (2.29) the costs of the selected routes are minimized. Constraint (2.30) fixes the limit
K of the number of trucks to use. Constraints (2.31) ensure that each container requests is

met by exactly one route. Finally, (2.32) defines the domain of the decision variable.

2.4.4 Parameters affecting the number of feasible routes

The ability of solving the previous model by a standard mixed-integer programming solver
depends on the number of feasible routes. A general formula is derived to determine |R| as
function of the types of requests, but it is too large to be reported in the thesis, see Appendix A.
In the basic problem statement it is possible to compute the exact number of routes in less
than 1 second. For the problem with 8 hours working day constraints and other special
constraints deriving from the heuristics (Section 2.5), we estimate the number of routes using
sampling. The knowledge of the number of routes for a given instance is important to decide
which algorithm to apply. More details about these formulas are provided in Appendix A.
Nevertheless, the maximization of this function shows that, for a fixed number of customers,
the number of feasible routes is maximum when half of the customers requests belongs to the
set PE and the other half belongs to DE. Indeed, a problem with a huge number of customers
and less PE and DE requests could have a lower number of feasible routes than a problem
with less customers but more PE and DE requests. Table 2.3 shows the number of the
feasible routes for four instances with special constraints on the types of requests, reported in
the column Type of request, in the case of up to 8 customers per route. In the first column the
number of customers |C| for every instance is indicated. The column |R|,4x represents the

maximum number of feasible routes. In the first and third instances, the maximum is reached
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IC| | Type of request |R|max
20 | without PE - DE 20440
20 | half PE half DE 1,4 billion
100 | without PE - DE | 12,5 million
100 | half PE half DE 50 trillion

Table 2.3 Example for number of feasible routes

when half of the customers requests are PLO and the other half are DLO. In the second and
fourth instances, the maximum is reached when half of the customers requests are PE and the
other half are DE. This relevant role of PE and DE requests is also confirmed by Table 2.1.
It shows that PE and DE requests result in a higher number of acceptable sequences of visits
as opposed to the other types of requests.

2.5 Heuristics

In this section, two heuristics are proposed to select a subset of routes from the overall set
R of feasible routes. This subset of routes will replace R in the Set Partitioning model of
Section 2.4.3 and result in a restricted Set Partitioning problem. Therefore, these heuristics
can be seen as rules to delete routes from R which are not likely to appear in the optimal
solution. The heuristics are described by the example in Table 2.4, where only 4 customer
requests are considered. They are denoted by C1, C2, C3 and C4.

Name | Type of request | Coordinates
Port - (0,0)
C1 PE (0,1)
Cc2 DE (1,1)
C3 DE (1,0)
C4 PLS (2,0)

Table 2.4 Example for the heuristics

* Heuristic 1. Since customers of type PE and DE highly increase the total number
of routes, the first heuristic requires a limit /im on the number of customers of these
types in each route. For instance, if /im = 2, only routes with at most 2 customers
which have type PE or DE are regarded. Following this idea, one eliminated route is
{Port,C1,C2,C3, Port} because this route contains three customers with type PE or
DE, which is more than the allowed limit /im. A larger value of /im leads to more

precision but to a higher running time.
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* Heuristic 2. For every customer request i € C, we make a list of the closest m < |C|—2
requests. Then, in the routes generation process, a candidate can only be added to the
route only if it is in the neighbor list of the previous customer in the route. This is
motivated by the fact that a high number of long distance routes, which are not likely
in the optimal solution, are not regarded. The choice of adding a new customer to
a route looking at the number m of neighbors of the previous customer in the route
and not at the customers placed inside a fixed distance from the previous customer in
the route is because we can control the number of candidates in the list and avoiding
extreme cases of very few or too many customers in the lists. To ensure feasibility,
the port can always be added to a route and from the port it is allowed to reach every
customer. In our example, see Table 2.4, if we set m = 2, then one eliminated route is
{Port,C1,C4, Port } because C4 is not one of the m closest neighbors of C1. A larger

value of m leads to more precision but to a higher running time.

» Combination of Heuristic 1 and Heuristic 2. The rules described for Heuristic 1 and
Heuristic 2 are applied together.

2.6 Column generation approach

In this section the column generation approach is used for solving the presented drayage
problem. In Section 2.6.1, an adapted labeling algorithm for solving the pricing represented
by the shortest path problem with resource constraints is presented. The lower bound
provided by the column generation algorithm is then used in a branch-and-bound algorithm
to compute the integer solution. The branch-and-price (column generation embedded in a
branch-and-bound) has been tested and the final solutions are presented in Section 2.7.

2.6.1 Pricing problem

For the VRPs, the pricing problem is in general solved by a shortest path problem with re-
source constraints (SPPRC) or an elementary shortest path problem with resource constraints
(ESPPRC). These problems consist in finding the shortest path from a source to a sink node
satisfying a set of constraints defined over a set of resources, for example, time-windows
constraints, drayage constraints etc. In particular, in the elementary SPPRC, the shortest path
does not pass through the same node twice, so that cycles are not allowed. Considering the
drayage case and the form of the reduced cost (1.16) in Chapter 1, the pricing under study
consists in finding the path from the port to the port itself in which each node/customer has a

prize/weight A; associated with it and the cost of the path minus the sum of the prizes counted
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for the customers served, has to be minimized. The description of this optimization problem
is consistent with the goal of the Prize Collecting Traveling Salesman Problem (PCTSP) and
it can be also seen as a shortest path problem with resource constraints (SPPRC). This can be
done replacing each arc cost d;; with d;; — A}, that is, subtracting to the cost of the arc (i, /)
the prize A; for each customer j added to the path.

To solve these problems avoiding a complete enumeration of all the feasible routes, a
labeling algorithm with dominance rules with which non-optimal paths are eliminated can be
used. Dominance rules can be described for both SPPRC and ESPPRC [Irnich et al. 2005]
and dominated rules can be deleted.

More precisely, in the labeling algorithms, multi-dimensional resource vectors called
labels represent the partial paths starting from the port. In our case of drayage problem the
components are the reduced costs of the partial path and the status of the two slots of the
vehicles at the customer to which the partial paths end. For every partial path we have to
check if it is feasible and if it dominates other routes or if it is dominated by other routes.

Algorithm 2 shows the labeling algorithm steps. In the algorithm the port from which
the routes start is denoted by 0 and the same port to which the routes end as d. The aim
of the algorithm is to find the shortest path starting from the port O and finishing to the
port itself d. Algorithm 2 follows the notation of the algorithm presented in the lecture of
[Desaulniers 2018] and it is adapted for the drayage problem under study. In Algorithm 2,
the components of the label L are in order: the reduced cost, the status of the first slot, the
status of the second slot at the last node of the path associated with label L. The set U is set
following the truck initialization presented in Section 2.4.1. In line 12 of Algorithm 2, the
dominance rules are used.

To explain how the dominance rules work, let us consider two paths, p; and p,. A path
p1 dominates a path p; if both are ending at the same node and the reduced costs of p; are
lower or equal than the reduced costs of p, and if all paths to which p, can be extended can
also arise from p;. If p; dominates p,, p> can be discarded. In particular, if p; dominates p,
and p, dominates pi, one of them can be discarded.

For a time window constraint with possible waiting times, p; dominates p, if they end
at the same node, the reduced cost of p; is lower or equal than the reduced cost of p; and
the arriving time at the last customer of p; is lower or equal than the arriving time at the last
customer of p;.

In the drayage problem here presented, we do not consider time windows. In order to
adapt the dominance rules to the constraints of the drayage problem presented in this chapter,

a new rule must be added.
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Algorithm 2 Labeling algorithm

Require: Set U; of unprocessed labels at node i; set P; of processed labels at node #; i(L) last
node of the path associated with label L; DOM (U, P;) dominance algorithm applied to
labels in U; and P; that returns a possibly reduced set U;.

Ensure: Shortest 0-d path.

. SetUj=P.=0 YieC\0
: Uy = {(0, Initial O, Initial O), (0, Initial O, Empty), (0, Initial O, Absent ),
: (0,InitialS,Empty), (0, InitialS,Absent), (0, Empty, Empty), (0, Empty,Absent ),
: (0,Absent,Absent)}
while U;cc\o Ui # 0 do
Choose a label L € ;e\ Ui and remove L from Ujp)
for all arcs (i(L),j) € A do
Extend L along (i(L), j) creating a new label L
end for
if L' is feasible then
Add L to U;
Uj =DOM(U;,P;)
end if
14: Add L to Pz(L)
15: end while
16: Filter Py, to find a shortest 0-d path.

R AN AN AN e

—
W NN = O
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Theorem 1. Let py and p; be two routes that end at the same customer. Let a; be the number
of absent slots that the truck has after serving the last customer in p1, e| be the number of
empty slots, io| the number of initial ordinary loads, is| the number of initial special loads,
cs1 the number of closed special slots and co| the number of closed ordinary slots (ay, e,
07, 187, Sy, cop for ps respectively). All customers or partial paths which can extend p, can

also extend py (in other words, p| can dominate p;) if the following conditions are met:

M i01 = i02
* iS1 = iS2

e cs1 <csp
* co; < cop

Proof. Assuming these conditions, the customers still not visited that require an absent slot
or an empty slot or an initial ordinary load or an initial special load can be served by pj
because in all possible partial paths p; has at least as many absent, empty or initial as p, at
every point in time. In case some customers cannot be served by p; because the loads of the
status initial special or closed special or closed ordinary forbid that another load is taken,

then these customers cannot be served by p; too. [

With the additional requirements introduced in Theorem 1 for the drayage constraints in
comparison with the standard dominance rules, less routes can be dominated. In fact, if p;
dominates p, considering the additional requirements, then p; dominates p; also with the
standard dominance rules but it can be found p; such that p; dominates p, with the standard
dominance rules and p; does not dominate p, with the additional requirements of Theorem 1.
We can think for example to two paths p; = {1,2,3} and p, = {1,3} with reduced cost
ri = —2 and r, = —1, where customer 1 request is DLO, customer 2 PLO, customer 3 PLO
and customer 4 PLO. Paths p; and p, finish to the same customer 3, the reduce cost of p; is
smaller than the reduced cost of p, but p, can be extended to customer 4 as opposed to pi.
With the standard requirements for the classic VRP both paths can be extended to customer
4. From the fact that less routes can be dominated, it follows then that the labeling algorithm
becomes slower. On the other hand however, because of the drayage constraints some routes
are already discarded. In fact, not all customers represent a feasible extension of the paths if

they do not meet the vehicle status and the service types requirements.
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Concerning a comparison between the SPPRC and the ESPPRC, we can say that using
the SPPRC is much faster than using the ESPPRC because cycles are allowed and therefore
more routes can be dominated. The advantage of the ESPPRC is that it gives better bounds.
Some preliminary tests adapted to our problem have been performed to compare the SPPRC
with the ESPPRC. The first performed way better than the second and this is the reason why
the SPPRC is chosen.

Since in the SPPRC cycles are allowed, the labeling algorithm tends to create very long
path using always the same customers in intermediate steps. This can be time consuming
and these routes are often not taken at the end of column generation algorithm. Therefore the
algorithm using the SPPRC can be improved significantly by introducing a heuristic pricing.

The heuristic pricing consists also in searching a SPPRC with the additional requirement
that only x customers per route are allowed (in the experimental result in Section 2.7 x = 6).
When the heuristic pricing does not find new columns, the exact pricing has to be executed.

2.7 Experimentation

This section presents the computational results of the methods presented for the drayage
problem. It compares first the three exact methods obtained with the node-arc formulation of
Section 2.4.2, the Set Partitioning formulation of Section 2.4.3 and the column generation
approach with the branch-and-bound of Section 2.6. Next the heuristic methods of Section
2.5 are compared.

The presented models are implemented in Java 1.8.0_212 using IBM ILOG CPLEX
Studio 12.9. Tests have been run on an Intel Xeon CPU E5-2680 v2 with 2.80 GHz. The
time limit is set to 10 minutes and memory limit to 32 GB.

The instances are built fixing the number of PE and DE requests per setting and assigning
the other 8 types of requests with probability of % each. Concerning customer coordinates,
the x-coordinate is a random integer between 0 and 1000, the y-coordinate is a random
integer between —500 and 500. The port has coordinates (0,0). Therefore, instances are
built by a square of 1000x1000 units where the port is placed in the middle of one edge of the
square. This choice reflects the situation of the shipment between a port and the customers in
the hinterland of the port.

In the experimentation we do not assume time windows.

For the heuristic pricing, it is a good compromise to set the maximum number of

customers per route allowed x = 6.
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Reading the results Table 2.5 and Table 2.6 show the results of the method presented in
this Chapter of the thesis. They have the same structure and are built on the same instances.
Each row of the table represent a setting of 10 instances in which the number of customers
|C| (first subcolumn of the column “Setting”), the number of PE requests “#PE” (second
subcolumn of “Setting”) and the number of DE requests “#DE” requests (third subcolumn
of “Setting”) are specified. Then, all averages results on the 10 setting of the instances are
made over the instances solved within the time and memory limits. The subcolumn “time”
represents the average running time in seconds over the 10 instances for the method specified
in the column of the table. The subcolumn “s.i.” represents the number of instances out of
the 10 solved within the time limit.

In particular, in Table 2.5, the subcolumn “#routes” of column ““Set Partitioning” repre-
sents the average number of feasible routes obtained with the Set Partitioning; the subcolumn
“#nodes” of column “Branch-and-price” represents the average final number of nodes used in
the branch-and-bound; the subcolumn “gap at rn” represents the average gap at root node
(between the relaxation and the exact value at the root node) for the branch-and-bound. Since
this table shows the results of the exact methods, the objective values are omitted because
they are always reached to the optimal, a part in one instance setting with 60 customers and 3
PE and 2 DE, in which Cplex stopped the Set Partitioning to a non optimal feasible solution.

Concerning the results shown in Table 2.5, it can be seen that the node-arc formulation
does not solve the majority of the instances. The Set Partitioning formulation is useful for
instances with less PE and DE customer requests. The column generation is more effective
for instances with more PE and DE customers. The running time for the branch-and-price is
more volatile than for the Set Partitioning: it can happen that some instances are solved very
fast and others not within the time limit. Finally we can say that for instances with less than
4 PE and DE customer requests it is better to use the Set Partitioning. For instances with at
least 6 PE or DE customer requests, the branch-and-price is better. For instances with 5 PE
and DE customer requests, the branch-and-price is faster but less reliable in terms of solved
instances within the limits.

Concerning the heuristics methods presented in Section 2.5, Table 2.6 shows the results
obtained using Heuristic 1 setting /im = 2 (column “Heuristic 1), Heuristic 2 setting
m = 0.75|C| (column “Heuristic 2”’) and the combination of the two heuristics, (column
“Heuristic 37). The subcolumn “gap” represents the difference between the objective value
obtained with the method specified in the column and the objective value obtained with an
exact method if possible or with the best heuristic otherwise. All the three heuristics are
much faster as opposed to the case of complete enumeration of all feasible routes (that can

be seen in the column ““Set Partitioning” of Table 2.5), without losing much precision. In
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particular, Heuristic 1 becomes slower with the increase of customers, Heuristic 2 becomes

slower with the increase of PE and DE customers, Heuristic 3 is always fast.
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Setting Set Partitioning Branch-and-price Node-arc formulation
|C| | #PE | #DE | time | s.i. #routes | time | s.i. | #nodes | gapatrn | time S.d.
10 1 0 021 10 2133 051 10 19.4 0.02 - 0
10 1 1 03] 10 718.6 05| 10 11.8 0.02 - 0
10 2 1 03| 10 1173.6 09| 10 30.2 0.03 - 0
10 2 2 04| 10 4240.7 1.2 | 10 74.0 0.03 - 0
10 3 2 0.7 | 10 13324.6 1.9 10 74.2 0.04 - 0
10 3 3 1.3 ] 10 56854.2 48 | 10| 248.6 0.09 - 0
10 4 3 1.9 ] 10 124571.5 52110 164.0 0.08 | 320.7 1
10 4 4 59| 10 519611.6 38| 10 49.0 0.03 | 356.4 1
20 1 0 03| 10 1272.8 1.1 ] 10 30.6 0.01 - 0
20 1 1 05| 10 4347.1 22110 156.0 0.01 - 0
20 2 1 0.7 10 12203.9 48| 10| 2932 0.02 - 0
20 2 2 1.7 ] 10 72047.3 6.7 10| 24438 0.02 - 0
20 3 2 291 10 170068.3 | 34.7 | 10 | 8395.2 0.03 - 0
20 3 3] 103 10 933784.3 84| 10| 402.8 0.02 - 0
20 4 3| 435| 10| 38525108 | 13.7| 9| 217.7 0.03 - 0
20 4 412351 | 2]12625999.0 | 274 | 9| 6268 0.02 - 0
30 1 0 0.8 | 10 9515.1 | 30.1 | 10 | 39914 0.01 - 0
30 1 1 1.2 1 10 220139 | 238 | 10 | 32764 0.01 - 0
30 2 1 201 10 66421.5 91| 9| 1016.3 0.01 - 0
30 2 2 51110 3301238 | 279 | 9| 23619 0.01 - 0
30 3 2| 15.1 | 10| 12554655 | 13.7| 10| 471.0 0.01 - 0
30 3 3| 77.8| 10| 5981590.8 | 56.2 | 10 | 3471.2 0.02 - 0
30 4 3(161.0| 3| 11753644.7 | 119.6 | 9| 7551.7 0.02 - 0
30 4 4 -1 0 -| 683 ] 10| 34214 0.02 - 0
40 1 0 1.4 1] 10 26097.9 | 49.3 | 10 | 4433.6 0.01 - 0
40 1 1 23] 10 824334 | 382 | 9| 2570.6 0.01 - 0
40 2 1 41| 10 227331.4 | 128.0 9| 6250.8 0.01 - 0
40 2 2| 107 | 10 798149.5 | 56.3 | 7| 25284 0.01 - 0
40 3 2| 46.6 | 10| 34997842 | 403 | 8 | 1440.5 0.01 - 0
40 3 312034 | 7 |12314072.7 | 183.0 | 10 | 8278.0 0.01 - 0
40 4 3 -1 0 -] 720 10| 1896.2 0.01 - 0
40 4 4 -1 0 -| 531 7| 13653 0.01 - 0
50 1 0 201 10 44428.0 | 664 | 8 | 44355 0.01 - 0
50 1 1 391 10 1755624 | 83.5| 4| 2882.0 0.01 - 0
50 2 1 851 10 503619.1 | 113.2 | 8 | 5104.2 0.01 - 0
50 2 2| 28.0| 10| 1961953.5 | 1432 | 9| 43359 0.01 - 0
50 3 2| 113.0 | 10| 77227912 | 81.1 | 6| 2194.7 0.01 - 0
50 3 3 -1 0 - 1764 6| 5173.0 0.01 - 0
50 4 3 -1 0 -1 1594 5| 3617.0 0.01 - 0
50 4 4 -1 0 -| 336] 5| 3802 0.00 - 0
60 1 0 351 10 97152.0 | 112.5 7| 4767.9 0.01 - 0
60 1 1 6.8 | 10 334499.5 | 102.8 | 4 | 29725 0.01 - 0
60 2 1| 17.5| 10 | 1086615.7 | 170.3 | 6 | 4613.3 0.00 - 0
60 2 2| 649 | 10| 4063593.6 | 2082 | 6 | 5144.7 0.01 - 0
60 3 212600 | 7 13570967.7 | 603 | 4| 5265 0.00 - 0
60 3 3 -1 0 - 1243 | 4| 23245 0.00 - 0
60 4 3 -1 0 - 1439 1| 1717.0 0.01 - 0
60 4 4 -1 0 - 12528 | 2| 4455.0 0.01 - 0

Table 2.5 Results for the exact methods
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Setting Heuristic 1 Heuristic 2 Heuristic 3
|C| | #pe | #de | time | gap | s.i. #routes | time | gap | s.i. #routes | time | gap | s.i. | # routes
10 1 0| 0.2/0.00| 10 176.6 0.2]0.03| 10 88.8 | 0.2]0.03] 10 88.8
10 1 1| 03)0.00| 10 499.0 0.2]0.02| 10 15231 0.2]0.02 | 10 152.3
10 2 1| 02]0.00] 10 560.4 0.2]0.01]| 10 2824 | 02 0.01]| 10 221.1
10 2 21 03002 10 7194 0.2]0.02| 10 486.1 | 0.2 ]0.03 | 10 260.4
10 3 21 03)0.08 | 10 897.5 0.3]0.02| 10 10049 | 0.2 ]0.10 | 10 305.2
10 3 31 03]024] 10 951.5 031002 10 20272 | 0.2]0.24| 10 3574
10 4 31 02]037( 10 670.7 031004 | 10 3306.5 | 0.2]0.38 | 10 272.5
10 4 41 020641 10 535.9 04007 | 10 4907.8 | 0.2 |10.64 | 10 2433
20 1 0| 03/0.00| 10 1160.1 0.3 0.00 | 10 620.0 | 0.3 |0.00| 10 620.0
20 1 1| 05/|0.00| 10 3816.0 0.4 0.00 | 10 1746.8 | 0.4 | 0.00 | 10 1746.8
20 2 1| 0.6|0.00| 10 5753.0 0.4 0.01 | 10 2693.3 | 04 (0.01]| 10 2099.2
20 2 2| 0.8/0.00| 10 13226.9 0.8 0.00 | 10 14900.0 | 0.5 ]0.01 | 10 4809.0
20 3 2| 0.8/0.00| 10 11400.7 1.1]0.00 | 10 221555 | 0.5]0.00 | 10 4003.7
20 3 3| 0.8]0.00] 10 14215.0 1.6 | 0.00 | 10 511403 | 0.5]0.01 | 10 45727
20 4 31 09]0.01] 10 16163.0 2.6 0.00 | 10 142171.6 | 0.5 | 0.01 | 10 4888.3
20 4 41 09002 10 18639.6 | 10.5 | 0.00 | 10 852606.5 | 0.6 | 0.03 | 10 6789.6
30 1 0| 0.8|0.00| 10 8418.4 0.5 0.00 | 10 3409.6 | 0.5 |0.00 | 10 3409.6
30 1 1| 12/|0.00 | 10 20269.8 0.7 1 0.00 | 10 5670.7 | 0.7 | 0.00 | 10 5670.7
30 2 1| 1.6 |0.00 | 10 33467.4 1.0 0.00 | 10 12256.0 | 0.9 | 0.00 | 10 9161.3
30 2 2| 2.1/0.00| 10 60323.7 1.8 0.00 | 10 46538.6 | 1.2 10.00 | 10 | 164443
30 3 2| 231000 10 89480.6 3.110.00| 10 1353240 | 1.2 10.00 | 10| 21683.1
30 3 3| 25]0.00| 10 | 100707.6 6.4 |0.00 | 10 3694523 | 1.5 |0.00 | 10 | 28060.9
30 4 31 29]0.00| 10| 109318.6 | 22.7 | 0.00 | 10 | 1598527.0 | 1.6 | 0.00 | 10 | 31962.5
30 4 41 27/001] 10| 116011.3 | 589 | 0.00 | 10 | 4380303.9 | 1.5]0.01 | 10 | 29143.4
40 1 0| 14000 10 24138.6 0.9 0.00 | 10 82019 | 09 |0.00| 10 8201.9
40 1 1| 23/0.00| 10 76430.6 1.5]0.00 | 10 24842.0 | 1.5|0.00 | 10 | 24842.0
40 2 1| 32/0.00]| 10| 129606.6 2.0 0.00 | 10 53521.0 | 1.8 |0.00 | 10| 383644
40 2 2| 3.6|0.00]| 10| 154797.8 3.6 0.00 | 10 149599.3 | 2.4 0.00 | 10 | 49700.8
40 3 2| 49000 10| 2469619 6.6 | 0.00 | 10 339644.1 | 2.6 | 0.00 | 10 | 65869.2
40 3 3| 51]0.00| 10| 271427.7 | 16.6 | 0.00 | 10 | 1101009.1 | 2.6 | 0.00 | 10 | 76066.0
40 4 3| 6.7]0.00| 10| 414776.8 | 76.7 | 0.00 | 10 | 5214900.0 | 3.3 | 0.00 | 10 | 136812.1
40 4 41 67000 | 10| 413669.0 | 65.6 -| 3| 4424920.7 | 3.2 ]0.00 | 10| 114682.3
50 1 0| 19/0.00 10 41065.4 1.3 0.00 | 10 162103 | 1.3 10.00 | 10 | 16210.3
50 1 1] 38]0.00| 10| 162075.2 22 10.00 | 10 54086.5 | 2.1 | 0.00 | 10 | 54086.5
50 2 1] 59]0.00 | 10| 2824849 34 10.00 | 10 87342.1 | 3.0|0.00 | 10 | 69370.0
50 2 2| 6.7/0.00]| 10| 375376.8 7.0 | 0.00 | 10 321383.4 | 3.6 | 0.00 | 10 | 106554.6
50 3 2] 93,000 10| 5697158 | 11.9]0.00 | 10 689948.8 | 4.1 | 0.00 | 10 | 147909.5
50 3 31143]0.00| 10| 8845319 | 524 |0.00 | 10| 3205071.0 | 5.7 [ 0.00 | 10 | 219954.1
50 4 3|11.5]0.00| 10| 688935.7 | 105.2 | 0.00 | 10 | 5677371.8 | 4.6 | 0.00 | 10 | 165987.3
50 4 41157 |0.00| 10| 979020.7 - -1 0 -] 7.110.00 | 10 | 269748.2
60 1 0| 3.5/0.00 10 92746.4 2.1]0.00 | 10 39025.8 | 2.1 |0.00| 10| 39025.8
60 1 1| 6.8|0.00| 10| 303507.7 3.710.00 | 10 99055.5 | 3.9 {0.00 | 10| 99055.5
60 2 1|12.1|0.00| 10| 639618.3 6.7 | 0.00 | 10 268277.6 | 5.7 | 0.00 | 10 | 182760.0
60 2 21149 |0.00 | 10| 8133099 | 12.8 | 0.00 | 10 618998.1 | 5.9 | 0.00 | 10 | 225110.9
60 3 21226 |0.00| 10 | 13157209 | 51.9 | 0.00 | 10 | 2662909.5 | 9.4 | 0.00 | 10 | 375667.0
60 3 3127.3]0.00| 10 | 1565877.7 | 145.3 | 0.00 | 10 | 7962911.6 | 10.8 | 0.00 | 10 | 470686.7
60 4 31285|0.00 | 10 | 1626548.9 | 196.7 | 0.00 | 7 | 10459171.9 | 10.5 | 0.00 | 10 | 426588.0
60 4 4 148.3|0.00 | 10 | 2605507.6 - -1 0 -117.8 10.00 | 10 | 760553.7

Table 2.6 Results for the heuristics




Chapter 3

Stochastic Vehicle Routing Problem with

time windows and correlated travel times

3.1 Introduction

The research presented in this chapter is the result of my collaboration with Prof. Dr.
Christoph Buchheim and Jonas Pruente, merged in [Bomboi et al. 2019]. The aim of this
research was to devise a new approach to the VRP with time windows (VRPTW) assuming
stochastic travel times. Uncertainty is taken into account in several ways: firstly, the cost of a
route depends on its expected travel times and is hence a random variable itself. Secondly, if
a driver arrives too early at a costumer’s location, the resulting waiting time has to be taken
into account. The presented model allows to calculate different costs for waiting and driving.
Thirdly, and most importantly, a route may turn out to be infeasible under certain realizations
of the travel times, due to the risk of missing some time window.

Unlike many other approaches presented in the literature, we explicitly deal with de-
pendent travel times in our approach, assuming a joint normal distribution. In practice,
neighboring streets often have highly correlated travel times, so that taking into account the
dependency of travel times is important in order to obtain feasible solutions. This is also
confirmed by the computational study below in the chapter: considering such dependencies
improves the precision of the solutions significantly. The importance of correlations between
travel times has also been underlined in [Park et al. 1999].

The presented approach can be used in any context where single routes are considered
separately. This is the case, e.g., in the well-known Set Partitioning model presented in the
introduction of the thesis in Chapter 1 and in Section 2.4.3 for solving the drayage problem
of Chapter 2 , where the variables correspond to potential routes that are either enumerated in
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a first phase or are generated on the fly in a column generation approach. Also many heuristic
approaches produce potential routes that have to be checked individually for feasibility. In
particular, this allows in principle to use an arbitrary rule for deciding feasibility of a route
and to determine its cost.

The solution method proposed in this chapter is based on the chance constraint approach,
where a route is accepted if the risk of a failure stays below a given threshold. Two distinct
application scenarios are considered. In the first scenario, the route is considered infeasible
if for any of the customers on this route, the probability of missing her time window is too
high. A (single) chance constraint formulation for this scenario is presented. In the second
scenario, missing a customer’s time window may render the entire route infeasible. The
latter approach applies to variants of the VRP where pickups and deliveries are performed by
the same vehicles, so that missing a customer might imply that some following customers
cannot be served any more, e.g., due to lack of space in the vehicle. In this situation, we are
interested in the (joint) probability that at least one of the time windows is missed. For this
setting, a joint chance constraint formulation is presented. Moreover, for obtaining a more
accurate stochastic model, we propose to consider truncated probability distributions in this
case.

In both cases, an idea of Ehmke et al. [Ehmke et al. 2015] is used and extended. It
addresses the fact that, due to possible waiting times, the arrival times at subsequent customers
are not normally distributed any more. It is proposed in [Ehmke et al. 2015] to approximate
these travel times, which can be defined as maxima between two normally distributed
variables, again by normally distributed travel times, with the same expected values and
variances. In this context, we also refer the reader to [Clark 1961], [Nadarajah et al. 2008]
and [Sinha et al. 2007]. This approximation to the correlated case is extended in this chapter
by also considering and updating the covariances between travel times. Additionally, a
situation where travel times change over the day is considered, meaning that the time needed
to travel an arc depends on when the arc is traversed.

It turns out that these extensions, though being computationally more expensive, lead to
much more precise assessments of the feasibility of a route in realistic situations. In fact, our
experiments on a set of realistic instances show that ignoring covariances leads to the creation
of routes that are actually infeasible, when validated by sampling. The number of infeasible
routes is decreased significantly when including covariance information in the presented
algorithm. When travel times vary over the day, the difference between our approach taking
this into account and an approach based on average travel times, is even larger, with many
infeasible routes produced in the latter approach and, at the same time, objective values being

better for our new algorithm.
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3.1.1 Literature Review

Other works which use the chance constraint approach for the time window constraints are
[Ehmke et al. 2015] with the assumption of independent travel times and [Li et al. 2010]
with independent travel and service times, others set restrictions on the probability that
a vehicle’s capacity is exceeded [Dinh et al. 2018] and on the length of the travel time
[Nahum et al. 2009].

In [Li et al. 2010], travel and service times are random variables following a normal
distribution. In particular, together with the chance constraint approach, they propose to
formulate their SVRPTW as a two-stage stochastic programming model with recourse. This
consists in the first stage to determine the route scheduling before the stochastic travel
and service times are known and in the second stage, once the two variables are realized,
to take recourse actions to induce a penalty on the objective function. Unlike the chance
constrained problem, stochastic programming model with recourse takes into account the
possibility of route failure and the related correction costs. In [Dinh et al. 2018], the goals are
to compute lower bounds on the minimum number of vehicles required to serve a subset of
customers and to present a pricing for the branch-and-cut-and-price (BCP) approach for the
chance constrained VRP problem. They show an improved relaxed pricing for independent
normal demands and an extension to distributionally robust chance constraint. They show
an interesting comparison between the chance constraint VRP (CCVRP) and the recourse
models in the case of independent normal distribution. The recourse they assume is returning
to the depot whenever a vehicle’s capacity is exceeded. From the comparison, they conclude
that “the CCVRP model tends to yield solutions that are high quality for the recourse model,
whereas the reverse is not true. In addition, the CCVRP model is not dependent on a
particular assumption of the recourse taken, and can be solved also when customer demands
are not independent.” [Dinh et al. 2018]. [Nahum et al. 2009] address the Stochastic Time-
Dependent VRP (STDVRP). Their STDVRP algorithm is based on the savings algorithm of
[Clarke and Wright 1964], designed for solving the deterministic CVRP. For transforming
the stochastic and time-dependent data to deterministic data [Nahum et al. 2009] use the
average value (average time for each time period and probability intervals), the best value
(minimal time for all time periods, regardless of the probability) and the worst value (maximal
time for all time periods, regardless of the probability) filters. In this way a candidate list of
different deterministic estimators can be built for calculating routes, that are then analyzed by
simulation. “Based on our findings for stochastic time-dependent vehicle-routing problems,
the results of the STDVRP are similar to the results of the saving algorithm for CVRP”
[Nahum et al. 2009].
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Some reviews of SVRP literature can be found in [Gendrau et al. 1996 a], in the de-
tailed [Oyola et al. 2018] and [Oyola et al. 2017], and [Bastian et al. 1992] for the case of
uncertain, independent and identically distributed customer demands.

Articles dealing with uncertain travel times are [Ehmke et al. 2015], [Nahum et al. 2009],
then [Tas et al. 2013], [Tas et al. 2014 - 1], [Tas et al. 2014 - 2], and [Woensel et al. 2003].
Among these, in particular [Nahum et al. 2009] and [Tas et al. 2014 - 1] study the time
dependent case, in which travel times are stochastic and vary during the day.

Uncertain demands are considered in [Dinh et al. 2018] and [Golden et al. 1979] and
[Guo et al. 2004], and [Novoa et al. 2006].

An SVRP with simultaneous pickup and delivery under uncertain demands and travel
times is dealt with by [Hou et al. 2010].

For works based on stochastic travel and service times, it can be seen [Li et al. 2010],
[Miranda et al. 2016], and [Zhang et al. 2013].

For a VRP with stochastic service times we refer to [Errico et al. 2016].

Several papers assume soft time windows, namely [Guo et al. 2004], [Tas et al. 2013],
[Tas et al. 2014 - 1], [Tas et al. 2014 - 2] and [Zhang et al. 2013].

Concerning the assumption of independence and dependence of the uncertain variables,
[Ehmke et al. 2015] assume independent travel times. Independent travel and service times
are assumed by [Li et al. 2010] and [Miranda et al. 2016]. [Dinh et al. 2018] consider corre-
lated demands and [Golden et al. 1979] assume that demands follow a Poisson distribution
and show extensions with the Binomial, Negative-Binomial and Gamma distributions for solv-
ing the case of independent demand and assume multivariate normally distributed demands
in case of correlation.

With respect to solution methods, the majority of publications opt for heuristics and
metaheuristics, [Guo et al. 2004] use a genetic based algorithm, [Woensel et al. 2003] an Ant
Colony Optimization heuristic, [Dinh et al. 2018] adapt and extend the Clarke and Wright’s
heuristic [Clarke and Wright 1964] to obtain primal solutions to the chance-constrained VRP
and investigate a Dantzig-Wolfe formulation, [Golden et al. 1979] and [Lambert et al. 1993]
also use a heuristic procedure based on [Clarke and Wright 1964]. For the computational
experiments, [Ehmke et al. 2015] embed the feasibility check and the estimation of arrival
and start-service times into a tabu search algorithm. Other papers which use the tabu search
are [Li et al. 2010], [Tas et al. 2013] and [Zhang et al. 2013]. Recourse methods are used by
[Errico et al. 2016], [Li et al. 2010], [Novoa et al. 2006] and [Zhang et al. 2013].

[Ehmke et al. 2015] case. Concerning the literature, particular attention is directed to the
paper of [Ehmke et al. 2015], whose study can be considered at the basis of the presented
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chapter. They deal with a SVRPTW assuming that the time to travel from one customer to
another is normally distributed. Their approach is based on the (single) chance constraints
method, which leads to accept a set of routes that visits the set of customers if the probability
of arriving at each customer by the latest time that the service can begin at that customer
is greater or equal to a fixed threshold. Another assumption they make is that if a vehicle
arrives at a customer before the beginning of the time window at that customer, then it must
wait until the starting of the time window to begin the service. One of the main assumptions
of their study is the independence of the travel cost variables. Their interpretation of the
correlation between arc travel times is that it generally decreases over time; “that is, although
the travel time of two arcs may be correlated at any given time, the correlation of the travel
time of one arc at the current time with the travel time of another arc at some future time (i.e.
after intervening travel and service time) will be less pronounced” [Ehmke et al. 2015]. In
their study, the time-dependency of travel times is not considered. For their computational
experiments, they embedded the feasibility check used in route construction as well as the

estimation of arrival and start-service times in a tabu search algorithm.

3.1.2 Contribution and Outline

In the following, a new approach for modeling and solving two variants of the VRPTW

subject to stochastic travel times is presented. The main contributions of this chapter are:

* an investigation of the importance of considering correlations between travel times by

solving real instances;

* an approach for solving the single chance constrained routing problem with correlations,

not based on sampling;

* an investigation of the importance of considering travel times varying over the day by
solving instances created with real data;

* an approach for solving single chance constrained routing problems with time depen-
dencies, not based on sampling;

* the description of an algorithm considering correlations and time dependencies at the

same time for solving single chance constrained routing problems;

* an approach for solving the joint chance constrained routing problem with and without
correlations, not based on sampling;
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* an estimation of the waiting times of the vehicles at the customer locations, that can be

used in penalty based approaches.

Section 3.2 presents some notation for the problems in consideration. Section 3.3 deals
with the single chance constrained problem. In Section 3.4, an approximation of the joint
chance constrained problem is discussed. In Appendix B.1, some stochastic formulas used in

the proposed algorithms are listed.

3.2 Preliminaries and Notation

The general aim of this chapter is solving Vehicle Routing Problems with Time Windows
subject to uncertain travel times. Extending the terminology of [Toth and Vigo 2002] for
the deterministic version of the problem, we will refer to this class of stochastic problems
as SVRPTW. Since characteristics like capacities and demands are not in the scope of this
work, vehicles with infinite capacity are assumed. Every customer is visited exactly once by
exactly one vehicle and all vehicle routes start and end at a single depot.

More formally, we assume that a finite set C of nodes is given, where 0 € C corresponds to
the depot and the remaining nodes in C'\ {0} correspond to customers to be served. Moreover,
it is assumed that each pair of nodes i, j € C is connected by a directed arc (i, j) € E, we
thus deal with a complete graph G = (C,E) throughout the chapter. A route r in G is
given by an ordered list of distinct costumers ¢, ,...,cy,, the set of its arcs is denoted by
E,:={(0,¢r),(cr;,¢ry),- -5 (Cr_ys€r), (cr,0) }. Each costumer is assigned a deterministic
time window. It will be convenient to index the time windows by arcs, thus for an arc e = (i, j)
we will denote by a, (b.) the earliest (latest) arrival time at costumer j, so that the time
window is defined by [a,,b,].

All travel times are uncertain and thus modelled as random variables. More precisely,
we make the assumption that the vector X € RE, which defines the travel time X, for each
arc e, is jointly normally distributed with means u € ]RE and covariance matrix £ € REXE
ie., X ~ 4 (u,X); we will denote the entries of X by o, s for e, f € E. For simplicity, we
assume that X is positive definite.

In particular, the travel time of each single arc e is again normally distributed with X, ~
N (Ue,02), where we set 6, = \/Oc.e- This also implies that the travel time of a route, given
as the sum of travel times of the contained arcs, is normally distributed — however, this is only
true as long as no time windows are considered. Finally, we will use € € (0, 1) throughout
the chapter to denote the threshold for the risk of a failure, i.e., we will accept a route if the
probability that it is infeasible, with respect to the uncertain travel times, is at most €. For the

reader’s convenience, this notation is summarized in Table 3.1.
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Table 3.1 Basic notation defining our instances

depot node

set of customer nodes including depot

set of all arcs

set of arcs contained in a route r

earliest arrival time at end node of arc e
latest arrival time at end node of arc e
random variable describing the travel time of arc e
U,  expected travel time of arc e

O, r covariance between travel times of e and f
O, standard deviation of travel time of arc e

£ threshold for feasibility of a route

XFsmmao

In general terms, we are going to discuss the following two questions with respect to a
fixed route r:

(a) 1s route r feasible with a high enough probability?
(b) if so, what is the expected cost of route r?

Again the Set Partitioning approach to the VRP is an important example for the class of
approaches that can be reduced to the tasks (a) and (b).

In the following sections, we will concentrate on the above questions (a) and (b) in two
different application scenarios. In the first one, a route becomes infeasible if we miss the
time window of any of the customers with probability larger than 1 — €; see Section 3.3. In
the second scenario, a route is infeasible if the probability of missing at least one costumer
exceeds 1 — g; see Section 3.4. Even if the difference between the two scenarios seems very
subtle, the second approach is much more challenging from a mathematical (and complexity-
theoretic) point of view, as it requires to deal with joint chance constraints. In fact, we can
only deal with the latter case in an approximate way. In both cases, the expected costs have
to take possible waiting times into account.

3.3 SVRPTW - Single Chance Constraints

In this section, it is assumed that all demands are deliveries, deterministic and known before
the optimization process, and not split. A typical application for this scenario are deliveries
from a post office.

The drayage problem of Chapter 2 can be also seen as an example in the case all customers

are either importers or exporters requiring a stay-with service.
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An important characteristic of this kind of problem is that if a customer in a route happens
not to be served for some reason, the next customer in this route can still be served by the
same vehicle. This is because the service failure at one customer does not undermine the
service at the next customer. Therefore, in the chance constraint approach to be developed,
a risk level of service failure is fixed for each customer independently. In other words, the
feasibility of a route is determined considering the union of the single chance constraints
in the route. In the following, we describe our approach in mathematical and algorithmic
terms and show experimental results concerning solution quality and running times. The
issue of correlations is first addressed in Section 3.3.1, then time-dependent travel times are

considered in Section 3.3.2.

3.3.1 Including correlations

The first aim is to extend the approach of Ehmke et al. [Ehmke et al. 2015] in order to deal
with correlated travel times. As it will be shown in our experiments in Section 3.3.1, taking
correlations into account leads to a much more precise assessment of the feasibility of a

route.

Algorithm

Assume we are given a route r with arc set E, = {ey, ..., e, ex1 1 (in this order). As already
mentioned, the chance constraint consists in placing a restriction on the probability that
a given customer time window is missed. For the first customer, the constraint is easily
modeled as P(X,, > b,,) < &, which is equivalent to b,, > L., + @' (1 — €)o,, where ®
denotes the cumulative distribution function of the standard normal distribution. However,
when arriving before a,,, the driver has to wait. This may lead to other costs than driving.
More importantly, the potential waiting time will influence the arrival times at the following
costumers in the route. In particular, the distributions of the arrival times at the subsequent
customers in the route have to be re-modeled.

As already discussed by Ehmke et al. [Ehmke et al. 2015], the adapted arrival times
at a customer c¢; do not follow a normal distribution any more. Anyway, they propose to
approximate the resulting distributions by normal distributions again, iteratively at every
customer, and show experimentally that the resulting error is negligable. More precisely,
the idea is to compute means and variances of the distributions of every arrival time and to
replace the random arrival times by the corresponding normal distributions.

In this section, we follow the same idea, relaxing however the assumption of independent

travel times and instead taking into account the information of the correlations between
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routes and arcs. This is more complicated to do because we now also have to calculate
the covariances between routes and arcs. Formally, we replace the vector containing the
arrival time at the current node and the travel times of the subsequent arcs in the route by
a jointly normally distributed vector having the same means and covariances. Clearly, this
generalization leads to a higher running time due to the quadratic input in terms of the
covariances, but we think it is worth to follow this approach for having a more realistic
formulation and better solutions, as it will be shown in detail in the following Section 3.3.1.

Our approach is described in Algorithm 3. After initialization in Lines 1-6, it loops
through the costumers of the given route r. It first updates the distribution information of
the arrival time at the next customer (exp; and vary) as well as its covariance with all arcs f
coming later in the route (covy r); see Lines 8-14. Next, the route is discarded in case the
chance constraint is violated (Line 15—-17). Finally, the distribution information is updated
once again due to a possible waiting at the current customer (Lines 18-22). All formulas
needed for updating the distributions are derived in Appendix B.1.

Compared to the method proposed in [Ehmke et al. 2015], Lines 3-5, 10-13, 20-22, and
23 are new. All but the latter concern the calculation of the correlations between arcs and
routes that [Ehmke et al. 2015] do not consider because of the assumption of independent
travel times. Line 23 calculates the expected waiting time W of the vehicle at every customer.
Together with the expected driving time D, it can be used to calculate the expected cost of
route r, using any function in the two values D and W'.

A first comparison between the method involving dependent travel times here pro-
posed with Algorithm 3 and the method with the assumption of independent travel times of
[Ehmke et al. 2015] can be already made. By the introduction of covariances it is possible
to estimate better the variance of the arrival time at every customer and, consequently, of
the travel time of the route X; at every step k. Without considering the covariances between
arcs and routes, the variance is underestimated by [Ehmke et al. 2015] in case of positive
correlation (see Line 10). For € < 0.5 (and particularly for small €), a smaller value of the
variance leads to accepting as feasible a higher number of routes. A deeper analysis on the

comparison between the solution methods is given in the following section.

Experimental Results

The instances used for the experiments are based on real traffic data for the surroundings
of the port of Duisburg, the biggest hinterland hub in Europe. The port itself is chosen as
depot and 19 nearby locations are picked as customer positions. The expected values and
covariances of the travel times were calculated by a sample of data taken on 25 consecutive

days at 3 pm from Google Maps [Google Maps]. If necessary, we added a value of 10~
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Algorithm 3 Feasibility Check with Single Chance Constraint, taking correlations into

account

Input: route r = (0,ry,...,7,0)

Output: decision if r is feasible with high probability; expected driving time D; expected
waiting time W

1: k=0
2: expr =0,vary =0
3: fore € E, do
4: covie =0
5: end for
6: W=0
7: for e € E, \ (11,0) do
8: expy += U,
9: vary += Gez
10: varg +=2covy e
11: for f € E, after e do
12: COVk f += Op
13: end for
14 assume X ~ A (expy,vary)
15:  if P(X; > b,) > € then
16: discard route r
17: end if
18: expii1 = E[max{Xy,a.}] > Formula (B.1)
19: varyy = Var[max{X;,a.}| > Formula (B.2)
20: for f € E, after e do
21: covit1,5 = Covimax{Xy,a.},X/] > Formula (B.3)
22: end for
23: W += E[max{a, — X,0}] > Formula (B.1)
24: k+=1
25: end for

26: D = expr+ U, 0)
27: accept route r and return D and W
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to all diagonal entries of the resulting covariance matrix in order to guarantee positive
definiteness and to avoid numerical problems. Note that, if any, this has the effect of making
the covariances slightly less relevant with respect to the variances.

Each arc of the graph corresponds to the shortest path between two customers or the port
and a customer at the time point the data is taken. Therefore, an arc does not necessarily
refer to the same path in all of the samples. This seems more realistic because a driver would
always choose the shortest path at a given time. The considered network of customers and
arcs is directed with an asymmetric matrix of the costs that satisfies the triangle inequality.

The arcs lengths observed in our samples ranged between 5 and 167 minutes, with an
average of 60 minutes. In the resulting instance, the average correlation coefficient at a
current time is 0.64 between two adjacent arcs and 0.60 between two non-adjacent arcs. The
maximum correlation coefficient is 1.00 in both cases. This confirms our assumption that it
is important to take the covariances into account in real life instances.

We created 10 different instances that only differ from each other in the time windows.
The time windows of each instance were computed randomly in the following way: for each
customer, the lower bound a, of the time window is chosen uniformly at random as an integer
between 0 and 7. The length of all time windows is 1 hour. If the time windows do not allow
a feasible solution for the whole VRP for any of the algorithms considered, the time windows
are recomputed randomly until they do.

In the following, we compare our new Algorithm 3 to the same algorithm using zero co-
variances (which essentially agrees with the algorithm of Ehmke et al. [Ehmke et al. 2015]),
by solving the VRP problem on all 10 instances with each € € {0.01,0.05,0.1}; see Table
3.2. We then evaluate the solutions of the algorithms by sampling with 100,000 samples
using the covariances, which enables us to calculate the “real” objective value and count how
many of the chosen routes are actually infeasible. The objective function is D + %W, ie.,
waiting is half as expensive as driving. For every sample with covariances, we calculated a

vector of standard gaussians z with dimension |E

, multiplied it with a matrix L calculated
by Cholesky decomposition of X, and added the vector of expected values. For solving the
exact VRP we used the Set Partitioning formulation and solved it with CPLEX 12.6.3.0. All
algorithms are implemented in Java version 1.8.0_191 and run on an Intel(R) Xeon(R) CPU
E5-2640 0 with 2.5 GHz.

Table 3.2 consists of three main columns. In the first column, the value of € is specified.
The second column describes the results for the algorithm with covariances and the third for
the algorithm without covariances. The second and the third column are divided into three
subcolumns. The first presents the average cpu time in seconds, the second the total number

of “optimal” solutions containing at least one infeasible route, and the third the objective of
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Table 3.2 Comparison with Ehmke et al. [Ehmke et al. 2015] for Single Chance Constraint

Algorithm 3 w/ covariances Algorithm 3 w/o covariances

cpu time # bad obj cpu time # bad obj

0.01 85.6 1 1.00 68.4 4 1.00
0.05 1029 0 1.00 80.3 0 1.00
0.10  111.8 0 1.00 86.6 1 1.00

the method divided by the objective of the algorithm with covariances in the cases in which
both methods have produced feasible solutions. In other cases a comparison would be unfair
because the algorithm with more infeasible routes clearly has an advantage in terms of the
objective value.

We can see that our Algorithm 3 outperforms the algorithm of [Ehmke et al. 2015] in
terms of feasibility in 13% of the settings. In 4 instances it had less infeasible routes in the
solution than the algorithm of [Ehmke et al. 2015] and there was only one instance in which
both algorithms were infeasible. For all other instances, both algorithms returned the same
solution and therefore the objective is the same in all feasible settings. The algorithm of
[Ehmke et al. 2015] needs slightly less running time (between 77% and 80%), which is not
surprising because it has to perform less calculations for every route. On the other hand, it
computes more feasible routes and therefore the gap is not significant. We can conclude that
in our opinion the advantages of the algorithm considering covariances in terms of feasibility

clearly outweigh the slighly higher running time.

3.3.2 Including time dependency

We next address time dependency, i.e., we now allow that the traveling time of every arc e
in the network varies depending on the time of the day. More precisely, we assume that the
expected value and the variance of the travel time needed for an arc are functions of the point
in time when the arc is entered. In practice, the traffic situation and hence the travel times
strongly depend on the time of the day.

The difficulty here is that the time in which an arc is entered is itself a random variable,
so that we have to deal with normally distributed random variables having expectations and
variances that are implicitly defined by random variables again. An important modelling
issue is how to define the dependency, i.e., which type of functions to allow. We decided to
use a piecewise constant model, as it keeps the definition of instances easy and at the same

time allows to efficiently update expected values and variances in our algorithm. Alternative
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approaches could use piecewise linear models or polynomials, splines, or even trigonometric

approximations.

Algorithm

We assume to have information on travel times for a fixed set #y, ..., 7o of time points during
the day. We produce two piecewise constant functions describing the distribution at time ¢ for
arc e by the expected value () and the variance 62 (t), given the values u,(t;) and o2 (t;)
fori=0,...,Q,as U (t) := W (t;) if t € [t;,¢;+1] and analogously for o, (7) (setting o | = o).

In our algorithm, we do not know the exact time when arc e is entered, it is given by a
normal distribution. Hence, we have to consider ¢ a random variable. Given its distribution

function F;, we can obtain the expected parameters for the distribution of travel time for e as

Q Q
E[pe(t)] = ;)He(fi)P(l € (titi1]) = Z(,)He(fi)(Fz(fiH) —F(t))

and analogously for 62(¢). This formula is used in Algorithm 4, Lines 6-7. The remaining
parts of Algorithm 4 are analogous to Algorithm 3 except that no correlations are taken into

account.

Experimental Results

Because we do not have hourly data for more than one day, we artificially extended the
instances described above by using data of one day from the same streets hourly taken from
8 am to 5 pm. For every edge and for the value of every hour we computed the quotient to
the value of 3 pm. These quotients were multiplied with the expected value of the edge to
generate the expected value for that edge in that time. The variances remained unchanged,
which is a disadvantage to our algorithm with time dependencies because in reality the
variances also tend to be higher in times of the day with more traffic, and our algorithm could
exploit this information while the other algorithm cannot.

Results are shown in Table 3.3. We compare our new Algorithm 4 with Algorithm 3
described above, however without using correlation information, i.e., with the approach
proposed by Ehmke et al. [Ehmke et al. 2015]. The results show that in 5 out of 30 settings
the algorithm without time dependencies produced infeasible routes, whereas the algorithm
taking them into account always returned feasible solutions. The feasibility was again
checked using sampling with 100,000 samples. Also in terms of solution value the algorithm
without time dependency is less efficient and returns solutions with a value between 1 and 3

percent higher. On the other hand, it uses only 12 to 14 percent of the running time compared
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Algorithm 4 Feasibility Check with Single Chance Constraint, taking time dependency into
account (but no correlations)

Input: route r = (0,ry,...,r:,0)
Output: decision if r is feasible with high probability; expected driving time D; expected
waiting time W
1: k=0
2: expr=0,vary, =0
32 W=0

4: for e € E, \ (11,0) do

5: assume S ~ A (expy,vary)

6 expx+=E[Ue(S)]

7: vary += E[62(S)]

8: assume X ~ A (expy,vary)

9:  if P(X; > b,) > € then
10: discard route r

11: end if

12: expi1 = E[max{Xy,a.}] > Formula (B.1)
13: varyy = Var[max{X;,a.}| > Formula (B.2)
14: W += E[max{a, — X;,0}] > Formula (B.1)
15: k+=1

16: end for

17: D =expy+ K(r,.,0)
18: accept route r and return D and W
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Table 3.3 Comparison with Ehmke et al. [Ehmke et al. 2015] for Single Chance Constraint
with time dependencies (without covariances)

Algorithm 4 w/ time dependencies Algorithm 4 w/o time dependencies

cpu time # bad obj cpu time # bad obj
0.01 3463 0 1.00 46.4 0 1.01
0.05 4163 0 1.00 57.1 2 1.03
0.10  462.7 0 1.00 62.2 3 1.03

to the new algorithm. In summary, we suggest to use the algorithm with time dependencies
because it outperforms the other algorithm in terms of feasibility and objective value at the

cost of a reasonable increase in running time.

3.3.3 Combining correlations and time dependency

In the preceding sections, we have explained how to take correlations and time dependency
into account separately. It is also possible to combine both in one algorithm. For this,
every time we need to know a covariance o, s(f.,t) between two edges e and f, we need
to compute an expected covariance of a two-dimensional piecewise constant function over
two jointly normally distributed random variables 7, and 75 (the starting times of the two
edges). As before, the starting time of an edge is just the random variable describing
the length of the route up to that time. Therefore, we also need the covariances between
subroutes. However, we only need to consider subroutes that start from the depot, so that
the number of covariances to be computed remains quadratic in the route length. These
covariances can be computed analogously to the covariance between the entire route and a
single edge. All necessary data can be computed in the moment when it is required. When
using piecewise constant distributions, as above, we need the joint distribution function of two
normally distributed random variables to calculate the expected covariance. Computing this
is numerically challenging but possible. It is also possible to sample the expected covariance
with the given expected values and covariance matrix for the two starting points. This would
lead to a hybrid approach using a combination of sampling and a deterministic algorithm.
We would like to emphasize that a pure sampling approach is very time-consuming when
considering correlations and time dependencies. In both approaches discussed so far, the
same samples could be used for all routes, and the covariance matrix X was fixed (for every
time in the time dependent case). In particular, the Cholesky decomposition, needed to
sample travel times in the dependent case, had to be computed only once. When considering

the time-dependent case, we need the knowledge about the order of customers in the route
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already during the process of sampling. Therefore, we need to consider every route separately
and cannot create one sample used for all routes.

Even worse, since the expected covariance o, (f.,¢s) depends on the starting times ¢,
and 74 now, the Cholesky decomposition cannot be computed in the preprocessing phase any
more, since the matrix X now depends on 7, and #;. This computation is further complicated

when taking waiting into account.

3.4 SVRPTW with Backhauls and Linehauls — Joint Chance

Constraints

So far, we have assumed that feasibility of a route is determined by a high enough probability
to reach each customer within its time window. An implicit assumption in our model was
that the failure of serving a customer does not influence the feasibility of the rest of the route
directly. We now consider the case where failing to serve a customer may directly imply the
failure of serving one of the remaining costumers on the route, motivated by problems where
customer demands can be either deliveries or pickups. We will refer to this problem as a
Stochastic VRPTW with Backhauls (pickup) and Linehauls (deliveries), SVRPTW-BL. The
drayage problem in Chapter 2 is an example of VRP with pickup and deliveries with data
not subject to uncertainty. Note however that our problem differs from the classical VRP
with Backhauls [Toth and Vigo 2002], because no precedence constraints on the deliveries
are assumed, and it differs from the VRP with Pickup and Delivery [Toth and Vigo 2002], in
that the latter assumes a delivery and a pickup for each customer.

Our investigation of this VRP variant is motivated by problems in intermodal freight
transport, for example freight transportation in intermodal containers using trucks, which
involves the distribution of loaded and empty containers between an intermodal facility or
depot and fixed export and import customers like the drayage problem in Chapter 2. In these
applications, a large number of different customer request types and container constraints
may arise [Bomboi et al. 2018]. In particular, if a customer in a route is not served for some
reason, the feasibility of the rest of the route is not guaranteed anymore, e.g., a failed pickup
of an empty container leads to the failure in loading the freight at the next customer or a
failed delivery leads to a lack of space in the truck for a subsequent pickup.

We thus have to guarantee a service level for the whole route and not for each single
customer, that is, we need to consider a joint chance constraints in the place of single chance
constraints. In other words, we have to deal with the risk of infeasibility of the whole

route rather that considering the risk of failing to serve any of the customers in the route
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independently. For simplicity, we assume here that failing to serve any customer within
its time window makes the entire route infeasible. In the remainder of this section, an
algorithm for this case, using joint chance constraints in an approximative way, is provided
and computational results are presented. In principle, by a combination with the approach
presented in the preceding section, our approach could be extended to the case where not
all failures render the rest of the route infeasible. Besides having to deal with joint chance
constraints now, another complication is that, after passing a customer, distributions have to
be truncated, as we are only interested in travel times under the assumption that the customers

visited so far have been served in time.

3.4.1 Algorithm

We now present an algorithm to address the SVRPTW-BL problem described above; see
Algorithm 5. It takes correlations into account, but does not deal with time dependency.
With respect to Algorithm 3, two major changes arise. Firstly, instead of checking a chance
constraint for every customer, we have to check one chance constraint for the whole route.
Unfortunately, dealing with joint chance constraints is hard, and there is no compact formula
modeling the joint risk, therefore it is often approximated in the literature by calculating the
risk of every single event (here a failure of one customer), summing it up (using &, in
Algorithm 5), and comparing it to the maximum allowed risk for the joint chance constraint
€. We follow this approach; the corresponding changes in Algorithm 5 concern Lines 19-22.

When Algorithm 5 ends with a feasible route, i.e. when &, < €, the value &
represents the probability of the route failure. This information could also be used in a
bicriteria-style approach: instead of discarding all routes with &, > €, one could sort the
routes by their risk and solve the optimization problem for different risk levels € without
having to recompute the feasible routes. E.g., in a column generation approach, increasing €
would then just lead to the addition of more columns.

The second change concerns the truncation discussed above: for calculating the expected
value and variance for later arrival times in the route, only the scenarios being feasible so
far should be considered. E.g., if a driver misses the time window of the first customer and
thus cannot serve it, he cannot continue to the second customer, and therefore the arrival
time in this scenario does not influence the arrival time at the second customer, and so on.
To model this, we use a one sided truncated normal distribution of the upper tail (using [l
and 6 to denote expectations and covariances after truncation). After checking the chance
constraint, the truncation for the expected value and for the variance are performed in Line 23
and 24. As we consider joint normal distributions, the truncation of one variable also affects
the covariances between two other variables, so the whole submatrix of X corresponding to
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Table 3.4 Comparison for Joint Chance Constraint

Algorithm 5 w/ covariances ~ Algorithm 5 w/o covariances ~ Algorithm 5 w/o truncations
€ & truncations

cpu time #bad  obj cputime # bad obj cputime # bad obj
0.01 427.4 0 1.00 777 2 1.00 64.6 0 1.00
0.05 531.6 1 1.00 947 2 1.00 79.2 1 1.00
0.10 586.3 0 1.00 101.8 1 1.00 86.9 0 1.00

the current route has to be updated; see Lines 25-28. Note that the truncated distributions
are again replaced by normal distributions. The formulas used for computing the truncated

distributions can be found in Appendix B.1.

3.4.2 Experimental Results

In the experimental evaluation, we create instances in exactly the same way as described
in Section 3.3.1, except that different sets of time windows may now be discarded due to
infeasibility. Table 3.4 shows the results of a comparison between Algorithm 5 considering
correlations and truncations, the variant of it not considering correlations, and another variant
not performing truncations (but considering correlations). The algorithm considering corre-
lations and truncations returned in only one of thirty settings an infeasible route. Ignoring
the truncations did not lead to more infeasible settings, but decreased the running times
by around 85 percent. Ignoring the correlations, on the other hand, led to five times more
infeasible settings. In fact, every sixth setting resulted in an infeasible route in this approach.
At the same time, it did not even run faster than the algorithm ignoring truncations, because
it allows more feasible routes, which outweighs the additional running time per route. As a
conclusion, the recommended algorithm for solving instances of SVRPTW-BL considers

correlations but ignores truncations.
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Algorithm 5 Feasibility Check for Joint Chance Constraint for a Route r

Input: route r = (0,ry,...,r:,0)
Output: decision if r is feasible with high probability; expected driving time D; expected waiting

time W
1: k=0
2: expy =0,vary =0
3: fore € E,\ (r;,0) do
4. covie =0
5: end for
6. for e, f € E, with e £ f do
7: fe = e
8: 6e7f = Op¢,f
9: end for
10: W =0, Erotal = 0
11: fore € E, do
12: expy += fl,
13: vary += 62
14: vary +=2covy .
15: for f € E, after e do
16: covg y+= 6, f
17: end for
18: assume X ~ A (expy, vary)
19: Eoral += P (X > b,)
20: if &,;4 > € then
21: discard route r
22: end if
23: expr = E[X | Xk < b,
24: vary = Var[X; | X; < b,]
25: for f,g € E, after e with f # g do
26: fir = E[Xs | Xk < b,] using covy
27: 61 =Cov[Xy, X | X < b.] using covy s and covy g
28: end for
20: assume X ~ A (expy, vary)
30: exprr1 =E [max{)?klae}]
31: vargy, = Var[max{Xy,a.}|
32: for f € E, after e do
33: covis1,p = Covimax{Xy,a.},Xy]
34: end for
35: W += E[max{a, — X,0}]
36: k+=1
37: end for

38: D = expr+ W, 0)
39: accept route r and return D and W

> Formula (B.5)
> Formula (B.7)

> Formula (B.5)
> Formula (B.6)
> Formula (B.1)
> Formula (B.2)

> Formula (B.3)

> Formula (B.1)







Chapter 4

Comparison of the deterministic and
stochastic methods

The aim of this chapter is to show why it is a profitable investment considering the uncertainty
of the travel times in the routing problems of this study. In this part, time dependency is
not taken into account. Considering the algorithms used in Chapter 3 (Algorithm 3 and
Algorithm 5) and to the obtained solutions (Table 3.2 and Table 3.4), we will see how choosing
a deterministic algorithm (an algorithm which does not manage a possible uncertainty in the
data) leads to the infeasibility of several routes in the optimal solution.

In the experimental evaluation, the instances used are the same created for obtaining the
results shown in Section 3.3.1 and Section 3.4.2 (see Table 3.2 and Table 3.4). Table 4.1
compares Algorithm 3 for checking the feasibility with single chance constraints (scc) and
taking correlations into account to the deterministic algorithm using expected values as deter-
ministic data, by solving the VRP problem on all 10 instances with each € € {0.01,0.05,0.1};
see Table 4.1. We then evaluate the solutions of the algorithms by sampling with 100,000
samples considering correlated travel times, which enables us to calculate the “real” objective
value and count how many of the chosen routes by the algorithms are actually infeasible. For
solving the exact VRP, the Set Partitioning formulation is used and it is solved with CPLEX
12.6.3.0. All algorithms are implemented in Java version 1.8.0_191 on an Intel(R) Xeon(R)
CPU ES5-2640 0 with 2.5 GHz.

Table 4.1 consists of three main columns. In the first column, the value of € is specified.
The second column describes the results for the algorithm with covariances and the third for
the deterministic algorithm. As in Chapter 3, the second and the third columns are divided
into subcolumns. The column “cpu time” presents the average cpu time in seconds, the
column “# bad” the total number of “optimal” solutions containing at least one infeasible

route, the column “# infeas” the number of infeasible routes contained in the “optimal”
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Table 4.1 Comparison between deterministic and scc stochastic solution with covariances

¢ Alg. 3 w/ covariances Deterministic

cputime #bad #infeas obj cputime #bad #infeas obj
0.01 85.6 1 1 1.00 0.9 9 22 1.00
0.05 1029 0 0 1.00 0.9 9 14 1.00
0.10 1118 0 0 1.00 0.8 9 12 0.99

Table 4.2 Comparison between deterministic and jcc stochastic solution with covariances
and without truncations

c Alg. 5 w/o truncations Deterministic

cputime #bad #infeas obj cputime #bad #infeas obj
0.01 64.6 0 0 1.00 0.7 10 17 -
0.05 79.2 1 1 1.00 0.8 9 12 1.00
0.10 86.9 0 0 1.00 0.7 9 11 1.00

solutions in the ten given instances, and the column “obj” the objective of the method divided
by the objective of the algorithm with covariances in the cases in which both methods
have produced feasible solutions. In other cases a comparison would be unfair because the
algorithm with more infeasible routes clearly has an advantage in terms of the objective value.
In the results of Table 4.1, we can see that in terms of cpu time, the deterministic algorithm
is clearly faster than Algorithm 3. However, as regards the quality of the solution in terms of
the number of feasible routes in the optimal solution, we can see that in 90% of the instances
the deterministic algorithm created at least one infeasible route. In the instance in which the
optimal solution has all the routes feasible, the objective value was nearly the same (slightly
better with the deterministic algorithm).

Table 4.2 has the same structure of Table 4.1 and it shows the results of a comparison
between the variant of Algorithm 5 not performing truncations (considering correlations) and
the deterministic algorithm. In this case, the subcolumn “obj” presents the objective of the
method divided by the objective of Algorithm 5 with covariances and without truncations in
the cases in which both methods have produced feasible solutions. The first row of Table
4.2 does not show the value obj because the deterministic algorithm produced infeasible
solutions in all ten instances for € = 0.01. We can see that the deterministic algorithm is
faster than Algorithm 5, but again regarding the number of infeasible routes in the solution, in
more than in 90% of the instances the deterministic algorithm created at least one infeasible

route.
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Seen the experimental evaluation above, we can say that the algorithms that take un-
certainty into account are more efficient than the deterministic one. Considering also that
the cpu time used by these algorithm is reasonably small for the instances considered, we
can conclude that, in the context of daily decision making in routing problem (for example
drayage starting in a port or shipment from a post office, etc..) it is the best to choose the

algorithm that can manage uncertainty.






Chapter 5
Contributions

In this thesis new routing problems have been studied in the context of 0-1 integer program-
ming optimization.

In the first part of this thesis, in Chapter 2, a drayage problem has been studied. The
distribution of containers between customers and ports is not a new issue but in Chapter 2 is
faced a drayage problem with a number of new characteristics that are relevant for practical
applications. Although trucks can carry up to two 20 ft ordinary containers, no paper has
focused on both ordinary and special containers, which are requested to be carried one at
a time. Moreover, most of the research concerns stay-with or drop & pick services, but
limited attention has been devoted to their integration, as customers can typically choose
between both service types. The set of feasible routes has been explicitly enumerated in a
short time and a Set Partitioning formulation has been used to determine the routes serving
each customer request and minimizing routing costs. The presented method for doing this is
very flexible and can be used for all problem statements in which the feasibility of a route
can be decided fast.

Since the derived number of feasible routes may be too large for a Mixed-Integer pro-
gramming solver, two heuristics are proposed to select subsets of promising routes and
solve restricted Set Partitioning models. To produce the two heuristics, an analysis on the
"parameters” of the problem that effect the number on the feasible routes has been useful. It
showed in fact that, not the number of customers involved, but some kind of requests, is the
main term in influencing the number of routes. The heuristics can be tuned: one could cut
few routes in order to obtain higher quality solutions in longer running times, or cut many
routes in order to determine lower quality solutions in a shorter running time or set possible
tradeoffs. In this way, the "restricted" Set Partitioning formulation has been solved with the

subsets of routes given by the heuristics or by their combination.
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From the experimentation, it can be seen that the proposed heuristics are always able to
determine optimal and near-optimal solutions in a very short time, achieving thus the target
set at the beginning of the thesis. Moreover, the heuristic solutions are reached much faster
than the exact solution method calculated with the Set Partitioning formulation in which
all the feasible routes are used. In support of the decisional study of this drayage case, a
formula to estimate the overall number of feasible routes precisely in short time is presented
in Appendix A. It can be adapted to various problem statements with different constraints.
The number of feasible routes highly correlates with the running time of the algorithm and
therefore with this information the user can decide quickly which method to apply.

In the same Chapter 2, a node-arc formulation is also presented and a pricing formulation
using an adapted labeling algorithm for a column generation approach has been developed.
The column generation has been embedded in a branch-and-bound. From the results it can be
seen that with the increase of some types of customer requests, the branch-and-price becomes
better than the Set Partitioning. The node-arc formulation instead does not solve the majority
of the instances and it does not represent a good option for solving the drayage problem
under study.

In the second main part of the thesis, in Chapter 3, we devised feasibility check algorithms
for solving the Stochastic Vehicle Routing Problem with time-windows and with correlated
and time-dependent travel times, using either single or joint chance constraints depending
on whether missing a customers time window makes the entire route infeasible or not. In
particular, the contributions achieved in this context started paying attention on the importance
of considering correlations between travel times in stochastic routing problems. This has
been done by solving realistic instances. The first achieved objective has been giving an
approach for solving the single chance constrained routing problems with correlations. An
example of problem which can be solved in this way is the classical delivery service from
a post office. This class of problems has been also solved with time dependencies after an
investigation on the importance of considering travel times varying over the day by solving
instances created with real data. After that, an algorithm has been described considering
correlations and time dependencies at the same time for single chance constrained routing
problems.

Motivated by the study of the drayage problem of the first part of the thesis, the attention
has been moved then to the case where failing to serve a customer may directly imply the
failure of serving one of the remaining costumers on the route. For this class of problem, an
approach has been given for solving the joint chance constrained routing problem with and
without correlations, as proposed in the objectives of the thesis. The presented algorithms

can be embedded into any algorithm for solving the Vehicle Routing Problem with hard time
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windows and waiting times as a feasibility check of a given route. Due to the fact that the
algorithms also compute expected waiting times, they can be easily adapted to variants of
the problem with soft time windows and penalties. The experimental results show that the
algorithms assess the feasibility of a given route with a reasonable precision, in particular
when correlations are taken into account. Still, due to the approximation errors we make,
a pure sampling approach can give more accurate results. However, for a large number of
samples, the latter approach is time consuming.

Finally, in Chapter 4, to answer the question asked in the introduction whether it is a
profitable investment considering the uncertainty of the travel times in the routing problems of
this study, a comparison between the deterministic and stochastic methods is briefly presented.
Seen the experimental evaluation, we can say that the algorithms that take uncertainty into
account are more efficient in terms of feasibility of the solution than the deterministic one.
Concluding then, considering the cpu times used by these algorithms, it is the best to choose

the algorithm that can manage uncertainty.

Future extension A possible future extension for the drayage problem of Chapter 2 is
studying the problem assuming time windows for each customer. The introduction of the time
windows decreases the number of feasible routes and consequently makes the Set Partitioning
formulation easier to solve. On the other hand, it makes a possible node-arc model slower to
solve. Further analysis on new methods for this last point can be carried out.

Concerning the study of Chapter 3, considering the complementary strengths of the
deterministic and the sampling approach, one could also investigate combinations of both
approaches. E.g., one could check for a given route how likely it is to become infeasible, and
if the result is very close to the value of acceptance, do a second check performing sampling
with a high number of samples — possibly only for routes that were accepted, but very close
to be not accepted, because adding an infeasible route is in general more problematic than
missing a feasible one. Another hybrid approach would be to use sampling with a high
number of samples just as a callback inside the optimization process: first compute an optimal
solution using our approach, then check the feasibility of all routes used in this solution
by sampling, and if some route turns out to be infeasible, remove it and re-optimize. The
advantage of this approach is that the sampling has to be performed for a very small set of

routes.
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Appendix A

Set of feasible routes

The possibility to solve the Set Partitioning problem by the algorithms of Mixed-Integer
Programming solvers mostly depends on the number of feasible routes. Therefore, it is very
useful to determine this number before solving any problem instance, in order to calibrate
the heuristics and control the problem size. Integrated to the study of Chapter 2, a formula
is derived to determine the number of feasible routes as a function of ten variables, each
representing the number of each type of customer request. There are two different ways
to derive this formula. In the first way only the customers on a route are regarded and in
the second way also the initial state of the route is regarded. In other words, in the second
case we can take into account the same sequence of visits more than one time due to the
different initializations of the truck. Clearly, the first set of routes is a subset of the second.
For example, if a DE request must be served in the route of sequence {Port, DE, Port}, this
route is counted as one in the first way, in the second instead, at least two different routes
can be performed with the same sequence: one with initial states of the truck slots Empty -
Absent, and one starting with states Empty - Empty. In our study, the number of routes is
computed in the second way because one does not have to check in the list of routes if a new
route is already listed (according to that sequence). In addition, the number of redundant
routes is very small (around 10% of the feasible routes). Generally, the computation of the
number of routes by this formula is very fast.

Example of formula

The formula cannot be reported in Chapter 2 of this thesis for the sake of space. Nevertheless,
it is shown hereafter in the specific case of up to 2 customers per route without limits on the
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number of PE or DE request:

IR| =3|DLO| + 3|DLSWO| + 3|DLO| - |PE| + 3|DLO| - |PLO| + |DLO|(|DLO| — 1)+
IDLO| - |DLSWO| +3|DLSWO| - |DE| + |DLSWO| - |DLO| + 3|DLSWO| - |PLSW O|+
IDLSWO|(|DLSWO| — 1) +4|PE| + 3|PLO| +4|PE| - [DE| + |PE| - |DLO|+
3|PE|-|PLSWO| + |PE| - |DLSWO|+ |PLO| - IDLO| +|PLO| - |DLSW O|+
2|DLO| - |PLS| + |DLSWO| - |PE| + |DLSWO| - |PLO| 4 |DLSWO| - |PLS| +
2|DLSWO| - |PLSWS| +4|DE| + 3|PLSWO| + 4|DE| - |PE| + 3| DE| - |PLO|+
IDE|-|DLO| + |DE| - [DLSWO| + |DLO| - |DE| + |DLO| - |IPLSW O|+
IDLO| - |PLSW S| + |PLSWO| - |DLO| + |PLSWO| - |DLSW O| + 2| PLS| +
|PE|(|PE| — 1) + |PE| - |PLO| + |PE| - |PLS| + 2|PE| - |PLSWS| + |PLO| - |PE|+
|PLO|(|PLO| — 1) + |PLS| - |PE| + 2|PLSWS| + 2|DE| - |PLS| + |PLO| - | DE|+
|PLO| - |PLSWO| + |PLS| - |DE| + |PLSWO| - |PE| + |PLSWO| - |PLO|+
|PLSWS| - |PE| + |DE|(|DE| — 1)+ |DE| - [PLSWO| + |DE| - |PLSW S|+
|PLSWO| - |DE| + |PLSWO|(|PLSWO| — 1) 4 |PLSWS| - |DE| + 2| DLS| +
2|DLSWS|+ |PE| - |DLS| + |PE| - [DLSWS| + 2|DLS| - |PE| +2|DLS| - |PLO| +
2|DLS| - |PLS| +|DLSWS| - |PE| +2|DLSWS| - |DE| + |DLSWS| - |PLO|+
IDLSWS| - |PLS| +2|DLSWS| - |PLSWO| +2|DLSWS| - |PLSW S| + |DE| - |DLS|+
\DE|-|DLSWS| + |DLS| - |DE| + |DLS| - |PLSWO| + |DLS| - |PLSW S|

This formula has 74 summands obtained by simple enumeration. The choice not to sum
some similar summands (for examples the summands in bold) is due to the fact that these
summands are derived from different routes. If the maximum number of customer requests
per route is set to 8 without any limit on the number of PE or DE customers, 9068 summands
are obtained. Constraints depending explicitly or implicitly on the customer coordinates due
to the time cannot be modeled exactly in the formula.

Estimation

In our problem statement we have three types of constraints the formula above does not
take into account: the 8 hours working day constraint and the constraints of the second
heuristic. Considering these constraints, we want to find a good estimation of the number
of routes in a short time. To deal with this problem, we calibrate the probability p, that

every summand s appears in the formula. The calibration is performed in a sample of k
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routes by the computation of the ratio between the number of routes meeting all additional
requirements and the number of routes computed by the formula. If & is larger, the estimation
of py is better. In our test we set k to 10,000. If the value of the summand s is less than k,
instead of simulating we just enumerate all the feasible routes. This makes the estimation
better and decreases the running time. To solve this problem, we need to multiply every
summand s in the formula with the probability py that a route made by the sequences of
types represented by this summand is feasible. To make it clear we want to adapt the formula
shown before for the first five summands to the new constraints:

IR| =3p1|DLO| + 3p2| DLSWO| +3p3|DLO| - |PE| +3p4|DLO| - |PLO| +
ps|DLO|(|DLO| — 1) + ...

This formula can be used for all kinds of problem statements in which it is possible to decide
the feasibility of a route fast.

In Chapter 2 the formula has been useful for having an idea of the effective dimension of
the instances. In fact, as it can be seen in details in the thesis, some kind of requests and not
the number of customers involved mainly influence the number of routes. With the help of the
formula and the experimental results of the methods presented in Chapter 2, a hypothetical
user of these methods can choose the most suitable one according to the problem they have.

The adapted formula is also suitable in the case time windows constraints are considered.






Appendix B

Details on statistics

On the use of the Normal Distribution Family The gaussian distribution or normal distri-
bution developed into a standard of reference for many applications because it approximates
very well several events and phenomena. Some typical easy examples of use are known
for modeling heights and weight of adults, GRE scores of the applicants for a scholarship,
family income, time that a student stays in a classroom, life-time of the TV sets, volume
of liquid per bottle (considering random fluctuations in the automatic bottling machine),
monthly food expenditure, etc. Anyway, it has to be mentioned that, even if this extremely
important distribution arises in many real world applications, many others phenomena are
not well modeled by a normal distribution. There are families of many other distributions
that are useful to analyze events. Briefly e.g., “the continuous uniform distribution models
the likelihood that a particular outcome will result from an experiment where every outcome
value is equally likely, exponential distribution models the likelihood of an event happening
for the first time at time x in a Poisson process (i.e. a process where events occur with the
same likelihood at any point in time, independent of the time since the last occurrence). The
normal distribution models the likelihood of results if the results are either distributed with a
“Bell curve” or, alternatively, the result of the summation of a large number of random effects”
[Huber 2017]. “Perhaps it is the most useful (or used) probability model for data analysis.
There are several reasons for this, one being the central limit theorem, and another being that
the normal model is a simple model with separate parameters for the population mean and
variance - two quantities that are often of primary interest” [Hoff 2009].

Here we describe how to check the normality of the data to make sure that the assumption
of the normality of the traveling costs are met or reasonable to assume. This can be done
initially by visual inspection [STHDA]. In Fig. B.1 and Fig. B.2 is represented a first visual
analysis regarding the first two edges of the network. In particular, the density plot (Fig.
B.1(a) and Fig. B.2(a)) “provides a visual judgment about whether the distribution is bell
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Density plot of e0 traveling costs Quantile - quantile plot for e0
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(a) Density of the first edge of the network (b) Q-Q plot of the first edge of the network

Fig. B.1 Visual inspection for the first edge of the network

shaped” [STHDA]. Another visual method is the Q-Q plot (Fig. B.1(b) and Fig. B.2(b)) “or
quantile-quantile plot, which draws the correlation between a given sample and the normal
distribution. A 45-degree reference line is also plotted” [STHDA].

Since visual inspection is usually unreliable, normality test is in general the next step
to introduce. “It is possible to use a significance test comparing the sample distribution
to a normal one in order to ascertain whether data show or not a serious deviation from
normality. Shapiro-Wilk’s method is widely recommended for normality test. It is based on
the correlation between the data and the corresponding normal scores” [STHDA]. The null
hypothesis of these tests is that “sample distribution is normal”. If the test is significant, the
distribution is non-normal. In Listing B.1 “Distribution of the traveling costs”, the R code
for getting visual inspection and normality test for the traveling costs is shown. From the
results obtained by Shapiro-test on all the edges, it is possible to see that the number of the
p-values greater than 0.05 is just 11 out of 380.

Maximum of two independent normal random variables [Clark 1961] was the first to
investigate the maximum of a finite number of normal variables in the general case in
which these variables do not have a common expected value, variances are unequal, or
correlation exists. He approximated the first four moments. The maximum of two normals is
approximated with another normal by matching the first two moments of their distribution.
The results obtained for normal distributions are used with adequate accuracy in some

cases involving non-normal distributions. It was shown that the moments of max{&;, &, }
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Listing B.1 Distribution of the traveling costs

# dplyr for data manipulation
install.packages("dplyr")
library("dplyr")

# Load other required R packages
install.packages ("ggpubr")
library("ggpubr")

# Import data into R
traveling_costs <- read.delim("traveling_costs.txt")

# Assess the NORMALITY of the data in R

# Visual method

# 1. Visual method: the density plot.

ggdensity(traveling_costs$e0, main = "Density plot of el traveling costs",
xlab = "eO traveling ,costs")

# 2. Visual method: Q-Q plot or quantile-quantile plot.
ggqgplot (traveling costs$e0, title = "Quantile - ,quantile plot for ,e0")

NORMALITY TEST

Shapiro-Wilk’s test.

Null hypothesis of the test = "sample distribution is normal".

If p-value > 0.05: HO is accepted

The R function shapiro.test() can be used to perform

the Shapiro-Wilk test of normality for one variable (univariate):
shapiro.test(traveling_costs$e0)

# OUTPUT Shapiro-Wilk normality test

# data: traveling costs$eO

# W = 0.94731, p-value = 0.02647

H OH OH H O H

# The R function shapiro.test() can be used for one variable (univariate)
# Shapiro-test for all edges

lshap <- lapply(traveling costs[,2:381], shapiro.test)

lres <- sapply(lshap, ‘[‘, c("statistic","p.value"))

lres <- t(lres)

# Data export

write.table(lres, "lres_shapiro.txt", sep = ",")




76 Details on statistics

Density plot of e1 traveling costs Quantile - quantile plot for e1
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(a) Density of the second edge of the network  (b) Q-Q plot of the second edge of the network

Fig. B.2 Visual inspection for the second edge of the network

with &; and &, not normally distributed are adequately approximated by the moments of
max{n, N} with ; and 1, normally distributed. Recently, [Sinha et al. 2007] quantified
the approximation error when results obtained by [Clark 1961] are employed to compute
the maximum of Gaussian random variables. The maximum of multiple normals is not
a normal, and approximating its distribution with that of a normal, as [Clark 1961] made,
introduces inaccuracies. For multiple normals, the max operation is performed a pair at a
time and each of these pairwise operations introduces errors by approximating the resulting
distribution with a normal [Sinha et al. 2007]. [Sinha et al. 2007] derived a closed expression
for the true distribution of the maximum and they used it to quantify the approximation
error. Furthermore, also the propagation of these approximation errors affect accuracy. They
found out that the final loss in accuracy during the max of multiple Gaussians is dependent
on the order in which pairwise max operations are performed and they proposed good
orderings for pairwise max operations on a given set of Gaussians to reduce the loss in
accuracy without significant increase in run times but for this thesis the order is always
fixed. [Nadarajah et al. 2008] provided some of the known expressions for the probability
density function, moment generating function, and the moments of maximum and minimum

of correlated normal random variables.

Motivation of the use of the Normal distribution Having regards to the visual inspection,
the significant test and the studies on the approximation with normal distributions of the

previous paragraphs, we decided to model the travel costs as normally distributed random
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variables, as [Ehmke et al. 2015] did. In fact, already [Ehmke et al. 2015] demonstrated
via simulation that the equations they derive for modeling the arrival times work well with
instances that have travel times that are not normally distributed. In the results presented in
the thesis it works good in practice.

Furthermore, even if the approximation used for the maximum of the two variables (nor-
mal or not with a normal distribution according to the extreme value theory) has objectionable
accuracy, the error can always be quantified. And on the other hand, due to the extensive use
of the normal distribution in practical problems, useful formulas are known, can be calculated
more easily and can be exploited. Anyway, it is not excluded that more suitable distributions
to the travel costs can be found and the methods presented in the thesis can be adapted to

these.

B.1 Computation of Updated Moments

For the convenience of the reader, we explain in the following how to compute the expected
values, variances and covariances of the random variables appearing in Algorithms 3 and 5
of Chapter 3. For this, we use the assumptions and notation of Section 3.2, in particular, we

assume X ~ 4 (%) and thus X; ~ A (1, 67). For indices iy, ..., i, we consider the joint
density function of X;,, ..., X;,, given by
— 1 —3(s—@) "= (s—pn)
4 (81 ySE) 1= —¢ 2
fX,l,...,X, ( 1 ) k) (Zﬂ)kdet(Z) ’
where fi denotes the vector with entries L;,, . .., W; and X the corresponding submatrix of X.

We again assume here that ¥ and hence ¥ is positive definite.

Rectified Gaussian Distributions We first consider the random variable max{c, X;} for a
constant c. For the expected value, we obtain

oo

E(max{c,X;}) = / max{c,s} fx,(s)ds
= [ epulrds+ [ ssls)ds (B.1)
= cP(X; < ¢) + WwiP(X; > c) + Giifx;(c)

To compute the variance

Var(max{c,X;}) = E(max{c,X;}?) — E(max{c,X;})* (B.2)
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we can use (B.1) and

(o)

E(max{c,X;}?) :/wmax{c,s}zfxi(s)ds

:/_c czin(s)ds—l—/ooszfxi(s)ds

= 2P(X; < ¢) + (uF 4 6;)P(X; > ¢) + 0i(c + W) fx.(c)

Finally, we have

E(X;-max{c,X;}) = /oo /oo tmax{c,s}fx,x,(s,t)dsdt

:/ / tcin’Xj(s,t)dsdt%—/ / tsfx, x;(s,t)dsdt

= cpjP(X; < ) + (Wiptj + 01j)P(X; > ) + 10 fx;(c)

and thus obtain

Cov(X;,max{c,X;}) = E(X;-max{c,X;}) — E(X;)E(max{c,X;})
= G,'jP(Xj >¢)

(B.3)

Truncated Gaussian Distributions We next develop formulas for the moments of the

random vector X truncated by a condition X; < b, where b is again a constant. For the

expected values, we have

1 +oo b
E(Xj |Xi§b>:m/_m /_Nthi,Xj(S)t)det
in(b)

=M O, <)

and, in particular,

in(b)

E(Xi | Xi <b) = Wi — Ciigrr—7~
(X | )=u %ipX; < b)

For the covariances, we have

Cov(Xj, X, | Xi <b)=EX;X; | Xi <b)—E(X; | X; <b)E(Xx | X; <b)

(B.4)

(B.5)

(B.6)
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which can be computed using (B.4) and

E(Xij | X; < b) = m/ / / tuthxj_‘xk’xi (s,t,u) dudsdt
l _— —0Q —0Q —0Q

_ G} Oik ISR W » 10
= Wjlk+ Ojk ( » (b — i) + opptj + GZJuk) P < D)
As a special case, we obtain
Var(Xj | X,' S b) = COV(XJ',X]' ’ Xi S b) (B.7)

which also applies to the case i = j.
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