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Abstract

Nowadays there is a tremendous amount of unstructured data, often represented
by texts, which is created and stored in variety of forms in many domains such as
patients’ health records, social networks comments, scientific publications, and so on.
This volume of data represents an invaluable source of knowledge, but unfortunately
it is challenging its mining for machines. At the same time, novel tools as well as
advanced methodologies have been introduced in several domains, improving the
efficacy and the efficiency of data-based services.

Following this trend, this thesis shows how to parse data from text with Seman-
tic Web based tools, feed data into Machine Learning methodologies, and produce
services or resources to facilitate the execution of some tasks.

More precisely, the use of Semantic Web technologies powered by Machine Learn-
ing algorithms has been investigated in the Healthcare and E-Learning domains
through not yet experimented methodologies. Furthermore, this thesis investigates
the use of some state-of-the-art tools to move data from texts to graphs for represent-
ing the knowledge contained in scientific literature. Finally, the use of a Semantic
Web ontology and novel heuristics to detect insights from biological data in form
of graph are presented. The thesis contributes to the scientific literature in terms
of results and resources. Most of the material presented in this thesis derives from
research papers published in international journals or conference proceedings.
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Chapter 1

Introduction

1.1 Context and Research Contributions

Nowadays there is a tremendous amount of unstructured data, often represented
by texts, which is created and stored in variety of forms in many domains such as
patients’ health records, social networks comments, scientific publications, and so
on. Textual data is one of the simplest forms of data representation that is created
by humans because it results easy to understand. Moreover, it is worth to note that
this volume of data represents an invaluable source of knowledge that cannot be
ignored. However, textual data is undoubtedly challenging to be understood and
mined by machines, representing an actual unsolved research problem. Thus, an
ever-increasing interest in methods and technologies aimed to process unstructured
and textual data has gained the attention of the scientific community.

Dealing with such textual data involves techniques which are aimed to detect
no trivial features, represent data in machine-readable formats, and extract the
underlying knowledge. To accomplish these tasks, the adoption of Semantic Web
technologies powered by Machine Learning methodologies is showing a great poten-
tial and relevant advancements, positively impacting results of the use of machines
to get insights out from data.

There are two main aspects that need to be considered in the process of getting
knowledge out from unstructured data: (i) data needs to be modeled by means
of representations that hold data peculiarities and allow an efficient execution of
algorithms, and (ii) methodologies and algorithms need to be developed according
to the expected knowledge. Both aspects are relevant in the task. Erroneous data
representation can lead to no results of the adopted approach, or worse to wrong
results and conclusions. At the same time, methodologies to detect the data patterns
and insights have the role to perform those steps that transform the structured data
into useful knowledge.

Broadly, depending on the kind of input data, different approaches to model
data and perform algorithms can be adopted. Two of the most exploited data rep-
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resentations are the vector-based representation, where a numerical vector is usually
assigned to each data item and the knowledge is embedded in its values, or graphs,
where data items are represented by nodes and the knowledge is represented by pat-
terns that can be detected by studying the connections between them. According
to the type of representation, novel methods can be tested to get insights out from
data.

In this thesis, the use of Semantic Web technologies powered by Machine Learn-
ing algorithms has been investigated in the Healthcare and E-Learning domains
through not yet experimented methodologies. Moreover, it investigates the use of
some state-of-the-art tools to move data from texts to graphs for representing the
knowledge of a domain. Finally, the use of a Semantic Web ontology and novel
heuristics to detect insights from biological data in form of graph are presented.
The thesis contributes to the scientific literature in terms of results and resources.

The research program addressed during the Ph.D. course was dedicated to the
study and development of methodologies to extract, represent, and use of knowledge
from textual resources.

The main research questions addressed in the target domains are:
Q1. How to use existing Semantic Web technologies to retrieve useful informa-

tion in order to model contents of texts in machine readable formats?
Q2. What are the Machine Learning algorithms more suitable to infer knowledge

from the modelled information?
Q3. In literature many general purpose methods can be found to address text-

based applications. May these methods be used for specific domain applications?
Q4. How different techniques and their combinations will impact the perfor-

mances of specific applications for a target domain?
By answering to these research questions, the contributions provided in this

research work are:

• A study for the Healthcare domain that shows how textual patients records
can be exploited to recognize similar health states of unseen patients that are
similar to those already known.

• A novel framework for the E-Learning domain for correctly classifying online
videos of courses in pre-defined categories.

• An E-Learning dataset crawled from the web which contains data about learn-
ers, instructors, and resources.

• A Deep Learning study for predicting a sentiment score for reviews left by
learners within E-Learning platforms.

• A methodology to build knowledge graphs for the Scholarly Domain to sup-
port the modelling and forecasting of ideas and technologies across research
communities.



1.2. DISSERTATION STRUCTURE 11

• A tool called Supernoder which provides heuristics aimed to discover patterns
on a graph and applications on biological domain.

1.2 Dissertation Structure

The thesis is organized as follows:

• Chapter 2 introduces basic concepts that have been adopted across the various
addressed research problems. Moreover, it describes which software tools have
been adopted.

• Chapter 3 analyzes the background of current research on textual data for
the Healthcare domain and presents a novel methodology for mining pa-
tients records. This work has been done in collaborations with the Professor
Diego Reforgiato (University of Cagliari), Professor Gianni Fenu (University
of Cagliari) and Dr. Sergio Consoli (who was Senior Data Scientist at the
Data Science Department of the Philips Research. He is currently affiliated to
the Joint Research Centre of the European Commission). The work has been
published in [12, 4].

• Chapter 4 presents the supervised methodologies adopted on the E-Learning
domain for resources categorization and sentiment prediction tasks. In ad-
dition, it describes a new dataset collected during the research work. These
works have been done in collaborations with the Professor Diego Reforgiato
(University of Cagliari), Professor Gianni Fenu (University of Cagliari), and
Dr. Mirko Marras (University of Cagliari). The Sentiment Analysis study has
been also supervised by Dr. Mauro Dragoni who is researcher at Fondazione
Bruno Kessler. These works have been published in [11, 2, 10, 1]

• Chapter 5 presents a methodology for building a knowledge graph which rep-
resents knowledge about the Semantic Web domain. Methods to solve open
issues adopting supervised and unsupervised approaches are discussed. This
work has been done within the collaboration with the Professor Diego Refor-
giato (University of Cagliari), Professor Enrico Motta, (The Open University),
Dr. Francesco Osborne (The Open University), and Professor Davide Buscaldi
(University Paris 13 ) during my visiting in all their institutions. Preliminary
results about this work have been published in [3, 6].

• Chapter 6 describes 5 heuristics to discover patterns that appear disjointedly
on a graph and shows the benefits of abstracting graphs by means of new nodes
that we call supernodes. This work has been done within the collaboration with
Professor Diego Reforgiato (University of Cagliari), Professor Dennis Shasha
(New York University), and Dr. Jacopo Cirrone (New York University) during
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my visiting at the New York University in fall 2017. This work has been
published in [9].

• Conclusions about the use of Machine Learning algorithms and Semantic Web
technologies on the studied domains have been reported in Chapter 7.



Chapter 2

Machine Learning Basics

2.1 Supervised approaches

A supervised approach is a learning method pertaining to infer a function or a
classifier from a set of labeled training data in order to perform predictions on unseen
data. More formally, given a set of records R = {r1, ..., rn} which models our data
and such that each one is labeled with one ore more labels ci of a set C = {c1, ..., cm},
a supervised based approach is aimed to infer a function γ : R −→ C that relates
each record in R to one or more classes in C. The supervised approaches adopted
during the research work presented in this thesis are:

• Support Vector Machine. Support Vector Machine (SVM) algorithm works
by defining boundaries through hyperplanes in order to separate a class from
the others. The aim of this algorithm is to build hyperplanes among data sam-
ples in such a way that the separation between classes is as large as possible.
The algorithm takes labeled pairs (xi, yi) where xi is a vector representation
of input data, and yi is a numerical label. The algorithm then applies an opti-
mization function in order to separate classes. The regression variant of SVM,
generally called SVR (Support Vector Regressor), tries to find hyperplanes
that can predict the distribution of information.

• Support Vector Machine + Stochastic Gradient Descent
(SVM+SGD). This method extends the standard SVM implementa-
tion including the SGD algorithm during training. SGD finds the best
coefficients describing the decision boundaries through a classification func-
tion which minimizes a hinge loss function and allows performing training
over large data while reducing the computation time.

• Decision Trees. Decision Trees (DT) recursively split the training data in
smaller subsets trying to maximize a gain function until no more gain can be
obtained with subsequent splitting. First, the root node is split into several
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children according to the given criteria. Then, the process recursively continues
on children until there are not other nodes to be split.

• Random Forests. Random Forests (RF) are based on an ensemble of decision
trees, where each tree is independently trained and votes for a class for the
data presented as an input [13]. Essentially, each decision tree splits data
into smaller data groups based on the features of the data until there are
small enough sets of data that only have data points with the same label.
These splits are chosen according to a purity measure and, for each node, the
algorithm tries to maximize the gain computed on it.

• Neural Networks. This method involves one or more levels of nodes, which
are randomly joined by weighted connections in a many-to-many fashion. Neu-
ral Networks usually learn by activating nodes of a certain level and propa-
gating the signal to other nodes. The activation of a node depends on both
the input of the node and the function that is assigned to that node. More
details about modern Neural Networks methods have been deeply described
in Section 2.3.

2.2 Unsupervised approaches

An unsupervised approach is a learning method which tries to find hidden structures
of patterns out from unlabeled data. It can be applied on any kind of data because it
does not need of a training stage. One of the most common unsupervised approach is
named clustering, which is aimed to segment a collection of records R = {r1, ..., rn}
into partitions C = {c1, ..., cm} called clusters where records in the same cluster are
more similar in somehow to each other than those in other clusters. Two of the most
used clustering algorithms, named Hierarchical clustering and K-means clustering
are described:

• Hierarchical Clustering. Hierarchical Clustering builds a clusters hierar-
chy, or in other words, a tree of clusters which is usually called dendrogram.
Each cluster contains children that are clusters as well, unless for the leafs of
the tree. Sibling clusters split documents that are contained in the common
parent cluster. A hierarchical clustering algorithm can be either agglomera-
tive or divisive. In its agglomerative version, the algorithm starts with single
elements of the collection, then it merges elements together based on a cho-
sen measure (e.g., Euclidean distance). The agglomerative process is iterated
as long as a unique cluster that covers all documents collection is obtained.
The divisive variant of the algorithm starts with one cluster that contains
all elements of the input collection, and recursively splits the most appropri-
ate clusters according to a given criteria (e.g., splitting the largest cluster in
each iteration.). The method continues its execution until a stop criterion is
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achieved (e.g., the process stops when a given number of clusters has been ob-
tained). Hierarchical clustering algorithms are easily applicable on each kind
of data, enable a manageable granularity of clusters, and can be applied with
any type of similarity measures.

• K-means Clustering. The K-means Clustering is a partition method. It
builds a set of clusters minimizing the sum of squared distance between el-
ements of a cluster and its center. The result is a single partition of data
without any structure and, hence, can have advantages on applications which
involve large sets of data for which the construction of a hierarchical structure
can be onerous. The algorithm requires the number of clusters k as an input.
This number is used to allocate k random centers which will be employed to
build clusters. At beginning, it assigns each element to the cluster with the
nearest center. Iteratively, centers are updated based on the built clusters and
elements are moved into the cluster with their nearest center.

2.3 Deep Learning

Deep Learning has emerged as a subclass of the Machine Learning area, where
various neural network approaches are combined together for pattern classification
and regression tasks. It usually employs multiple layers able to learn complex data
representation and increasingly higher level features, and to correctly classify or
measure properties held by data. The success of Deep Learning is due to the new
advancements in the Machine Learning field as well as to the ever more increasing
computational abilities of computers through the use of Graphical Processing Units
(GPUs) [14].

Broadly, a Deep Learning model embraces information processing methods con-
sisting of a sequence of complex non-linear models. Each model forms a layer that
independently processes data. The output of a layer is fed as an input to the sub-
sequent layer in the sequence until the final output is obtained.

Feed-forward Neural Network (FNN)

Feed-forward Neural Networks (FNN) were one of the first and simplest components
applied to learn from data using the Deep Learning paradigm. One or more levels
of nodes, often called perceptrons, are randomly joined by weighted connections
in a many-to-many fashion. These networks were historically thought in order to
simulate a brain biological model where nodes are neurons and links between them
represent synapses. For this reason, they are also called Multi-Layer Perceptron
(MLP) networks. On the basis of the input values fed into the network, nodes of
a certain level can be activated and their signal is broadcasted to the subsequent
level. In order to activate nodes of a subsequent level, the signal generated at a
given level is weighted and must be greater than a given threshold. Weights are
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generally initialized with random values and adjusted during training in order to
minimize a predefined objective function. This family of networks has been proved
to be useful for pattern classification, but less suitable for labelling sequences since
it does not take into account the sequence of input data. A simple schema of a
three-layer Feed-forward Neural Network model is shown in Figure 2.1.

Layer n° 2 
Hidden Layer

Layer n° 3 
Output Layer

Layer n° 1 
Input Layer

Figure 2.1: An example of a Feed-forward Network composed by three layers.

The sample FNN as it is accepts three-dimensional inputs (in green) and returns
two-dimensional outputs (in red). Each node of a given layer is connected to nodes
of the subsequent layer. The input data is fed into the network by means of Layer 1,
which acts as Input Layer, and then sent to the first hidden layer, i.e., Layer 2. The
output of this layer is finally propagated to Layer 3, which represents the Output
Layer. The action to move data from a layer to another by activating or not the
corresponding nodes is generally called forward pass of the network.

Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNN) are tailored for processing data as a sequence. In
contrast to FNNs which commonly pass the input data directly from input to output
nodes, RNNs have cyclic or recurrent connections among nodes of distinct levels.
This makes possible to model the output of the network by taking into account the
history of the received input data. Recurrent connections connect past data with
the one that is currently being processed, simulating a status memory. The forward
pass is similar to the one in FNNs, with the difference that the activation of a node
depends on both the current input and the previous status of hidden layers.

It is worth to note that in a wide range of applications data can present patterns
from the past to the future and vice versa. For instance, for classifying the sections
of a given story, it could be useful to have access to both past and future sections.
However, the future content of a text is ignored by common FNNs and RNNs, as
they work sequentially. Bidirectional RNNs (BiRNNs) let the network, at a given
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point in time, to take information from both earlier and later data in the sequence,
going beyond the exposed limitation. The idea behind this kind of networks consists
of presenting the training data forwards and backwards by two hidden RNNs which
are then combined into a common output layer. This strategy makes possible to
find patterns that can be learnt from both past and future history of data.

Long Short-Term Memory (LSTM) Network

Long Short-Term Memory (LSTM) networks are an RNN extension designed to
work on sequential data and have achieved state-of-the-art results on challenging
prediction tasks. LSTM networks employ recurrent connections and add memory
blocks in their recurrent hidden layers. Memory blocks save the current temporal
state during training and make possible to learn temporal observations hidden in
the input data. The fact of using connections as a memory implies that the output
of a LSTM network depends on the entire history of the training data, not only
on the current input sample. Moreover, using memory blocks allows to relate the
current data that is being processed with the data processed long before, solving the
problem experienced by common RNNs. For this reason, LSTM networks have had
a positive impact on sequence prediction tasks. As stated for RNN, a bidirectional
layer using two hidden LSTMs can be leveraged to process data both forward and
backward.

Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) typically perform filtering operations on
the input nodes of a layer, abstracting and selecting only meaningful input features.
When CNNs are trained, the weights of links between nodes acting as filters are
defined. Such networks have been historically applied in the computer vision field,
only recently they have been also applied on textual data.

Normalization Layer (NL)

During training, the output of a given layer is affected by parameters and processes
used in previous layers. Small changes in the parameters set for a layer can hence
be propagated as the network becomes deeper, resulting in large changes in the
final output, i.e., the output of the last layer. Considering that the parameters
are continuously changed to better fit the prediction task and that the data dis-
tribution changes across levels, the variations within the parameters can negatively
influence the training, making it computationally expensive. To shape input data
with a standard distribution and improve training performance, some Normalization
Layers (NL) can be introduced. One of the most common normalization layers is
represented by Batch Normalization. This layer makes possible to reduce the de-
pendence of the optimization parameters from the input values, avoiding over-fitting
and making the training process more stable.
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Attention Layer (AL)

Attention Layers (ALs) are often adopted before the last fully-connected layers of
a model. Attention mechanisms in neural networks serve to orient perception as
well as memory access. Attention layers filter the perceptions that can be stored
in memory, and filter them again on a second pass when they need to be retrieved
from memory. Neural networks can allocate attention, and they can learn how to
do so, by adjusting the weights they assign to various inputs. This makes possible
to solve traditional limits in various Natural Language Processing (NLP) tasks.
For instance, traditional word vectors presume that words meaning is relatively
stable across sentences. However, there could be massive differences in meaning
for a single word: e.g., lit (an adjective that describes something burning) and lit
(an abbreviation for literature); or get (a verb for obtaining) and get (an animals
offspring). Attention Layers can capture the shades of meaning for a given word that
only emerge due to its situation in a passage and its inter-relations with other words.
Moreover, Attention Layers learn how to relate an input sequence to the output of
the model in order to pay selective attention on more relevant input features. For
example, in order to reflect the relation between inputs and outputs, an Attention
Layer may compute an arithmetic mean of results of various layers according to a
certain relevance.

Other Layers

There are also other layers that can be leveraged in order to fine-tune the perfor-
mance of a model. The most representative ones are described below.
Embedding Layer. An Embedding layer turns positive integers (indexes) into
dense vectors of fixed size chosen from a pre-initialized matrix. For an integer-
encoded text, the dense vector corresponding to those integers are selected.
Noise Layer. A Noise layer is usually employed to avoid model over-fitting. It
consists in modifying a fraction of input of layers, adding and subtracting some
values following a predefined distribution (e.g., Gaussian).
Dropout Layer. A Dropout layer may be seen as a particular type of noise layer.
It assigns the value 0 to a randomly chosen fraction of its input data. The name
Dropout comes from the action of dropping some units of the input.
Dense Layer. A Dense layer is a densely-connected layer that is used to map
large unit inputs in a few unit results. For example, it may be used to define the
number of classes that a model returns, mapping hundred and thousand nodes in a
few number of classes.

2.4 Embeddings

Many Machine Learning solutions leverage word embeddings, i.e., distributed rep-
resentations that model words properties in vectors of real numbers which capture
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syntactic features and semantic word relationships. These resources have been use-
ful in NLP tasks, like Part-Of-Speech (POS) tagging [15] and Word Analogy [16],
and they have been also exploited for Sentiment Analysis [17, 18, 19, 20, 21]. The
generation of word embeddings is based on distributional co-occurrences of adjacent
words able to model words meanings that are not visible from their surface. This
exploits the fact that words with a similar meaning tend to be connected by a given
relation. For instance, the verbs utilize and use, which are synonyms although syn-
tactically different, present similar sets of co-occurring words and can be considered
similar, while a third verb, such as run, has different co-occurrences and should be
considered different from both utilize and use. An overview of the most representa-
tive and recent word embedding generator algorithms is introduced in this section,
highlighting their pros and cons.

Word2Vec

The Word2Vec word embedding generator [22] aims to detect the meaning and
semantic relations between words by exploiting the co-occurrence of words in doc-
uments belonging to a given corpus. The core idea is to capture the context of
words, using Machine Learning approaches such as Deep Neural Networks. In order
to eliminate noise, Word2Vec operates on a corpus of sentences by constructing a
vocabulary based on the words that appear in the corpus more often than a user-
defined threshold. Then, it trains either the Continuous Bag-Of-Words (CBOW) or
the Skip-gram algorithm on the input documents to learn the word vector represen-
tations.

GloVe

The GloVe [23] word embedding generator is an unsupervised learning algorithm
developed by Stanford. It creates word embeddings by aggregating global word-word
co-occurrence matrices from a corpus. The resulting embeddings show interesting
linear substructures of the word in the vector space. More precisely, the algorithm
consists of collecting word co-occurrence statistics in a form of word co-occurrence
matrix. Each element of this matrix represents how often the word i appears in
context of word j. The corpus is scanned in the following manner: for each term, it
looks for context terms within some area defined by a windowsize before the term
and a windowsize after the term, and assigns less weight for more distant words.

FastText

The FastText [24] word embedding generator is another algorithm for learning word
representations. It differs form the previous ones in the sense that word vectors as
the ones learned in Word2Vec treat every single word as the smallest unit whose
vector representation is to be found, while FastText assumes a word to be formed by
n-grams of character. This new representation of a word is helpful to find the vector
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representation for rare words. Since rare words could still be broken into character
n-grams, they could share these n-grams with the common words. This can help
to manage vector representations for words not present in the dictionary since they
can also be broken down into character n-grams. Character n-grams embeddings
tend to perform superior to Word2Vec and GloVe on smaller datasets [25].

Intel

Intel proposes to improve the data structures in Word2Vec through the use of mini-
batching and negative sample sharing, allowing to solve the neural word embed-
ding generation problem using matrix multiply operations [26]. They explored dif-
ferent techniques to distribute Word2Vec computation across nodes in a cluster,
and demonstrate strong scalability. Their algorithm is suitable for modern multi-
core/many-core architectures and allows scaling up the computation near linearly
across cores and nodes, and processing millions of words per second. Intel embed-
dings generally differ from Word2Vec embeddings since the number of updates of
the model is different across these two implementations, and the convergence is not
equal for the same number of epochs.

BERT

The Bidirectional Encoder Representations from Transformers (BERT) were intro-
duced in late 2018. It is a novel method of pre-trained language representations that
allows to tune the vector representation of a word to the real meaning that it has
in a context, overcoming ambiguity issues of words. One of the famous examples
is usually reported with the word bank. Consider the two sentences “The man was
accused of robbing a bank” and “The man went fishing by the bank of the river”.
Previous introduced word embedding models describe the word bank with the same
word embedding, i.e., they associate the same vector to express the syntactic and
semantic features of the word, while BERT produces two different word embed-
dings, coming up with more accurate representations for the two different meanings.
For doing so, BERT computes context-tuned word embeddings resulting in a more
accurate representations which can lead to better models performances.

2.5 Metrics

Term Frequency-Inverse Document Frequency

This is a bag-of-word model where attributes are words within a collection. For
assigning a value to each word w, it is common using the Term Frequency - Inverse
Document Frequency (TF-IDF) technique in which (i) uncommon words are not less
relevant from frequent ones, (ii) a word that occurs many times in a document is
not less relevant than a single one, and (iii) the length of documents does not play a
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significant role for the comparison of documents. To put it more simply, words that
frequently occur within a document, but rarely in the whole collection, have more
probability to be relevant in the document. The TF-IDF formula is shown in (2.1)
where wki is the number of occurrences of the word wk in the document di, |di| is the
size of the document expressed as number of words, N is the number of documents
in the collection, and nk is the number of documents where the word wk occurs at
least once. TF-IDF values are usually normalized in the range [0,1].

TF − IDF (wk, di) =
wki

|di|
· log N

nk

(2.1)

Cosine Similarity

The Cosine similarity quantifies the angle between two vectors. Its formula applied
on two vectors vp and vq can be observed in (2.2).

CosS(vp, vq) =
vp vq

‖ vp ‖‖ vq ‖
(2.2)

CosS values 1 when vp and vq are completely similar, and 0 otherwise.

Euclidean distance

The Euclidean distance EucD between two vectors vp and vq is defined as usual in
(2.3).

EucD(vp, vq) =

√∑
i

(vp(i)− vq(i))2 (2.3)

Differently from the Cosine similarity, the Euclidean distance has not a limited
range of values, therefore, it needs to be scaled before used for similarity evaluation.
For such reason our modules adopt the formula (2.4) for scaling Euclidean-based
values.

EucS(vp, vq) =
1

1 + EucD(vp, vq)
(2.4)

Precision

The precision is a measure that is often used for evaluating supervised methods. It
indicates how many items have been correctly classified for a given class considering
all elements that have been classified with that class. It is expressed by the following
equation:

P =
TP

TP + FP
(2.5)
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In equation (2.5) TP is the number of items correctly classified for the target
class and FP is the number of elements that have been erroneously classified for
that class.

Recall

The Recall is a metric that is often computed together with the Precision. It is
defined by the equation (2.6), and measures how many items that belong to a given
class have been properly classified for the class.

R =
TP

TP + FN
(2.6)

As for the Precison, in equation (2.6) TP is the number of items correctly clas-
sified for the target class. FN is the number of elements that belong to the target
class but have not been labeled for that class.

F-measure

A measure often used to combine Precision and Recall is the F-measure. It is
computed as their harmonic mean as shown in equation (2.7).

F = 2 · P ·R
P +R

(2.7)

Mean Absolute Error

The Mean Absolute Error (MAE) is a measure of difference between two continue
variables expressed by:

MAE(y, ŷ) =
1

n
·
n−1∑
i=0

|yi − ŷi| (2.8)

where yi is a true target value, ŷi is a predicted target value, and n is the number
of samples.

Mean Squared Error

The Mean Squared Error (MSE) is a measure of difference between two continue
variables that shows how close they are. It is expressed by:

MSE(y, ŷ) =
1

n
·
n−1∑
i=0

(yi − ŷi)2 (2.9)
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where yi is a true target value, ŷi is a predicted target value, and n is the number of
samples. The MAE and MSE are often adopted for evaluating supervised regression
approaches.

2.6 Software Tools and Technologies

Cognitive Computing and IBM Watson

With the terms Cognitive Computing systems we refer to those smart systems that
learn at scale, can learn with purpose, and recently have modules for interacting
directly with humans. They are being developed to reduce costs, increase efficiency,
accelerate discovery, make essential connections in large amounts of data. With the
rapid growth of the availability of massive amounts of data, Cognitive Computing
systems represent a new appealing model to develop applications capable of work-
ing well where traditional methods fail because they are limited by a high level of
uncertainty, noise and complexity in data processing. In general, its traditional ap-
plications are based on text mining techniques while there are other ones based on
Data Mining, Machine Learning and Deep Learning [27]. Cognitive Computing sys-
tems can ingest data from external resources, add functions to identify patterns and
relationships in large and unstructured data, and consequently interpret massive
amount of varieties of them. In this way, they attempt to mimic human behav-
iors, adding the ability to manage huge amount of data [28]. Cognitive Computing
services can reduce the gap between the interpretation and the summarization of
information, learning from a large set of interrelated concepts, providing a key for
their comprehension and generalization. Embedding Cognitive Computing services
in novel systems results fundamental for dealing with previous unmanageable issues.

One of the most popular Cognitive Computing system is IBM Watson. On
February 2011, it was introduced as a question-answering system based on advanced
NLP, information retrieval, knowledge representation, and automated reasoning. It
is currently composed by 14 tools which provide analytics and interaction services.
In this set, the Natural Language Understanding analytics tool1 which provides a
cloud suite of services by means of the IBM Cloud2 platform for dealing with huge
amount of data, provides a collection of natural language APIs which enables devel-
opers to explore unstructured text, detecting and inferring high-level insights. This
service applies multiple technologies to enable the comprehension of vast data re-
sources, independently from their domain. It provides, among others, the following
set of functions: entity extraction, sentiment analysis, keyword extraction, concept
tagging, relation extraction, language detection, text extraction, micro-formats pars-
ing, feed detection and linked data. Processing the semantic context provided by
these functions helps to infer high-level features characterizing the topic of a text,

1https://www.ibm.com/watson/services/natural-language-understanding/
2https://www.ibm.com/cloud/

https://www.ibm.com/watson/services/natural-language-understanding/
https://www.ibm.com/cloud/


24 CHAPTER 2. MACHINE LEARNING BASICS

without suffering from noisy data.

Frame Semantics and Framester

Frame semantics is a linguistic theory that defines a meaning as a coherent structure
of related concepts [29]. To relate various concepts, knowledge-based resources are
usually employed as corner stones of semantic technological approaches. In order
to embed frame semantics in our modules we exploited Framester, a novel data
linked resource that works as a hub between linked open data systems as FrameNet,
BabelNet and WordNet. It is a new frame-based ontological resource that leverages
an inter-operable predicate space formalized according to frame semantics [30] and
semiotics [31].

Big Data Technologies

The Big Data movement consists of increasingly powerful and relatively inexpensive
computing platforms with fault-tolerant storage and processing carried out through
thousands of processors. The current volume of data managed by existing systems
has surpassed the processing capacity of the traditional ones and this applies to
Data Mining as well [32]. The arising of new technologies and services (e.g., Cloud
Computing and Grid Computing) and the reduction in hardware price have led
to an ever-growing rate of information on the Internet. Consequently, Big Data
applications in various domains, such as economics and finance [33], and computer
networks [34], can be efficiently moved into clouds to analyze larger amounts of data.

In last years, several platforms for large-scale processing have tried to face the
problem of Big Data [35]. These platforms try to bring closer distributed technolo-
gies to standard users (e.g., engineers and data scientists) by hiding the technical
nuances derived from distributed environments. On the other hand, Big Data plat-
forms also require additional algorithms that give support to relevant tasks, like big
data preprocessing and analytics. Standard algorithms for those tasks must be also
re-designed if we want to learn from large-scale datasets. It is not a trivial thing and
presents a big challenge for researchers. The first framework that enabled the pro-
cessing of large-scale datasets has been Map Reduce. This tool has been intended
to process and generate huge datasets in an automatic and distributed way. By
implementing two primitives, Map and Reduce, the user is able to use a scalable
and distributed tool without worrying about technical nuances such as failure recov-
ery, data partitioning or job communication. Apache Hadoop3 has emerged as the
most popular open-source implementation of Map Reduce, maintaining the afore-
mentioned features. In spite of its great popularity, Map Reduce is not designed
to scale well when dealing with iterative and online processes typical in Machine
Learning and stream analytics. Apache Spark4 has been designed as an alternative

3http://hadoop.apache.org/
4http://spark.apache.org

http://hadoop.apache.org/
http://spark.apache.org
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to Hadoop capable of performing faster distributed computing by using in-memory
primitives. Spark is built on top of a new abstraction model called Resilient Dis-
tributed Datasets (RDDs). This versatile model can control the persistence and the
partition of data effectively and efficiently.

Toolkits

During the various research works the following toolkits have been employed for the
development and evaluation of the proposed solutions.

Scikit-learn5. It is a Python library which provides implementations of super-
vised and unsupervised algorithms, and metrics to evaluate results.

Keras6. It is a high-level neural networks API, written in Python. It was
developed to rapidly build Deep Learning architectures by pre-developed modules.
It also has the advanatge that can be run on both CPUs and GPUs.

Stanford CoreNLP7. It is an integrated NLP toolkit that provides a set of lan-
guage based tools to analyze textual resources. It can perform part-of-speech (PoS)
analysis, words lemmatization, sentences mark up, syntactic dependencies detection,
and so on. It has been mainly employed as a server that has been interfaced by using
the Pyhton library stanfordcorenlp8.

NLTK9. It is a Python framework that provides interfaces to several language-
based corpus such as WordNet, and text processing tools for tokenization, stemming,
parsing and so on of textual resources. It is similar to Stanford CoreNLP, with the
difference that it is ready to be included within Python projects without the use of
interfaces.

SpaCy10. It is one more Python library that has been used within the research
presented in this thesis. It is an alternative of Stanford CoreNLP and NLTK.

NetworkX11. This is a Python library that allows the creation and manipulation
of graphs, and implements many functions of complex networks. It includes efficient
data structures for graphs, standard graph algorithms, and analysis measures.

Pandas12. It is a Python library that provides easy-to-use data structures and
data analysis tools. It allows to efficiently manage great matrices of data and perform
classic operations that are typically adopted on tables (e.g., join and selection of
rows based on their values).

5https://scikit-learn.org/stable/
6https://keras.io/
7https://stanfordnlp.github.io/CoreNLP/
8https://github.com/Lynten/stanford-corenlp
9https://www.nltk.org/

10https://spacy.io/
11https://networkx.github.io/
12https://pandas.pydata.org/
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https://stanfordnlp.github.io/CoreNLP/
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https://pandas.pydata.org/
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Chapter 3

Healthcare Domain

3.1 Open Issues

During the last decades a lot of data have been collected in textual clinical datasets
representing patients’ health states (e.g. medical reports, treatment plans, labora-
tory results, clinical records, surgical transcriptions, researches results etc.). Hence,
digital data available for patient-oriented decision making has extremely grown but
is not often mined and analyzed. Therefore, efficient access to information becomes
hard for end-users [36]. In order to overcome text data overload and transform the
text into useful and understandable source of medical knowledge, automated pro-
cessing methods are required. Undoubtedly, this data can be exploited for figuring
out relevant insights for the healthcare industry through Data Mining and Machine
Learning techniques [37]. In fact, they can work as a potential base for developing
recommender systems which employ documents as items, and try to suggest diag-
nosis for new patients who present a clinical state similar to those that have been
previously evaluated.

Technologies as Data Mining, NLP, and Machine Learning can provide novel al-
ternatives to explore and exploit potential retrieved knowledge from historical med-
ical records, and help doctors to prescribe medication correctly to decrease medica-
tion errors effectively. In fact, text and Data Mining approaches have been already
employed in healthcare for saving time, money and life [38, 39, 40]. Knowledge based
techniques and tools, if reliable, can support medical staff in diagnosis, prevention
and treatment of diseases, providing suggestions based on past medical cases. This
chapter shows how to build a content-based recommender system within the health-
care domain leveraging Semantic Web technologies, Cognitive Computing tools, and
Machine Learning methodologies.

Moreover, tests on a real dataset are reported, showing enhancements in embed-
ding Semantic Web and Cognitive Computing tools. We examined which features
better detect distinct characteristics from texts, and result suitable to cluster med-
ical documents in order to provide high quality recommendations.
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3.2 Background

3.2.1 Biomedical Information Retrieval

It would be impossible to enumerate the numerous medical questions dealt with
computational approaches for clinical enhancements. Here, we focus on an overview
of the most interesting and promising Data Mining and Machine Learning methods,
and their applications, to discover insightful information from textual data in order
to support the development of a novel content-based recommender system.

In recent years, many retrieval tools have appeared and have been used on tex-
tual resources for extracting relevant and insightful semantics [41, 42]. These tools
usually exploit statistical techniques, even though there have been recently based on
open linked data and Machine Learning techniques. Medical text processing is not a
new question, but extracting biomedical data into a well-defined structural storage
still remains a complex task [43]. Dealing with various medical domains does not
help the development of systems to support medical activity. Because biomedical in-
formation is continuously being created in textual form more than ever before, there
have been a lot of efforts for coding information into databases, and developing auto-
matic processes which aim at finding useful ways to represent and organize data [44].
Medical text processing on medical domain, in particular using NLP approaches, has
been explored into many other works [39, 40]. In general, researchers have usually
tried to overcome text-depending issues focusing on classic entity recognition and
text disambiguation techniques to create a domain-specific semantic content for the
analysis of medical reports [45, 43, 12].

To alleviate textual inherit issues, some proposals have started to adopt Seman-
tic Web practices in medical systems development. The first competition [46] on
medical text-mining was run in 2002 during the Knowledge Discovery in Databases
(KDD) Challenge Cup. Participants faced with a curation problem for assessing
medical documents from the FlyBase dataset in order to determine whether a docu-
ment should be curated based on the presence of experimental evidence of Drosophila
gene products. Exploiting Part-of-Speech (POS) tagging and semantic controls de-
termined by examining the training documents and by focusing on figures captions,
a collection of manually constructed rules obtained best results on the presence of
experimental evidence for the document clustering [47]. In [48] the authors used a
Support Vector Machine which was trained on MEDLINE abstracts to distinguish
abstracts containing information on protein-protein interactions, prior to curate this
information into their BIND database. They used a bag-of-words model with clas-
sification techniques, and discovered that classifiers could minimize the number of
abstracts that practitioners employed to read by about two-thirds.

Authors in [49] have proposed a new concept-based model which exploits var-
ious text mining approaches and their combinations for improving text clustering.
They propose a labeler which evaluates the semantic contribution of each word in
sentences, outperforming traditional methods and discovering that the semantics
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is less sensitive to noise. More recent approaches are based on semantic analysis
which enables learning more accurate features defined by means of external knowl-
edge bases. In [50] authors make able systems to face with challenges by exploiting
cultural and linguistic background knowledge for better interpreting unstructured
documents and reasoning on their content. In [51] an item recommender system
has been provided for recommendation tasks of various resources (e.g., movies and
books) exploiting Word Sense Disambiguation techniques based on WordNet lexical
ontology for mapping contents by means of synsets. Similar techniques are studied
today in medical domain.

3.2.2 Biomedical Classification

In this section, we present classification methods which have been adopted for deal-
ing with unstructured clinical notes over past years.

Classification is a fundamental component in the biomedical domain due to its
widespread utility in applications such as medical diagnosis and identification of
genetic causes of disease. In [48] authors exploit various classification techniques as
described in section 3.2.1. One more approach on MEDLINE documents was pro-
posed by [52] where authors applied a semisupervised spectral approach technique for
clustering contents over two types of constraint: must-link constraints on document
pairs with high (MeSH)-semantic or global-content similarities, and cannot-link con-
straints on those with low similarities. The authors proved the good performance
of their new method on MEDLINE documents, improving performance of linear
combination methods and several well-known semisupervised clustering methods.

Authors in [53] experiment multi-label classification techniques by means of com-
binations of bag-of-words models, and adopt time series and dimensionality reduc-
tion approaches on the MIMIC II dataset. In [54], authors implemented a Support
Vector Machine classifier on n-gram features retrieved from clinical notes of the Beth
Israel Deaconess Medical Center to identify the mechanical ventilation and diagno-
sis of neonatal and adult patients. A Convolutional Neural Network classification
approach has been proposed by [55] to build models which enable to generate con-
text based representation of health related information at sentence level. Predefined
disease labels have been adopted by [56] to classify free text clinical notes. They
propose two techniques Sampled Classifier Chains (SCC) and Ensemble of Sampled
Classifier Chains (ESCC), which extend their dataset with selected labels in order
to obtain a relationship between disease and classification.

Performances of some classification methods applied on clinical notes have been
recently evaluated in [57]. Authors focused on feature selection techniques inves-
tigating different approaches of transformation methods in order to improve the
multi-label classification task. They report advantages of using filtering techniques
and hybrid feature selection methods. One more recent work where classification
methods have been evaluated is [58]. The best results have been obtained when a
hierarchical approach to tag a document by identifying the relevant sentences for



30 CHAPTER 3. HEALTHCARE DOMAIN

each label has been exploited.

3.2.3 Biomedical Clustering

In this section, we describe clustering methods applied to biomedical texts, and
discuss recent works.

The clustering is the unsupervised task of finding groups of similar items by seg-
menting a collection into partitions called clusters, where items in the same cluster
are more similar to each other than those in other clusters. In our work, biomedical
text clustering items are medical reports. In general, document clustering can show
various insights considering different levels of granularity of texts (i.e., clusters can
be composed by whole documents, paragraphs, sentences or terms). In this case,
the clustering can be employed as a tool for organizing and browsing documents in
order to enhance the retrieval of information [59]. In biomedical domain, it could be
essential to investigate patterns of a set of medical reports on features of different
stuff so that similar patients can be treated concurrently in similar way.

An interesting medical document clustering has been proposed by [60] where
authors exploited an ontology-based term similarity to index terms in a set of med-
ical documents. They used a spherical k-means clustering algorithm on PubMed
documents sets in order to evaluate the proposed similarity technique.

In [61] authors employed the KNN clustering method for evaluating a new sim-
ilarity measure based on the semantic connection between words of an electronic
medical reports set. Authors in [62] performed cluster analysis on medical posts
of online health communities for recognizing various types of content. They found
that clusters can be associated to common categories as treatments, procedures,
medications and so on. A framework based on clustering analysis has been devel-
oped by [63] for exploring health related topic automatically in online communities
integrating data with medical domain specific knowledge.

Features as biomedical concepts and semantic relationships were identified with
the help of ad-hoc ontologies for building a graph representation in order to enhance
the recognition of categories by means of clustering techniques in [38].

3.2.4 Biomedical Recommendation

In literature, several systems refer to medicine for identifying active relations of new
patients states with past ones, but few of them exploit natural language or text
mining for accomplishing recommendation tasks. In [64], authors describe a recom-
mendation procedure which uses similarity measures for finding relations between
online users’ health data and medical information of Wikipedia to increase patients’
autonomy in their personal health. The task to predict future health risks by means
of a recommendation technique has been proposed by [65], where authors developed
an engine called CARE in order to predict the future diseases risks of patients. To
provide more accurate and personalized medical recommendations, authors in [66]
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mined emotions from previous users’ ratings adopting a topic model technique for
developing a system named iDoctor. To engender advances on health recommender
systems, the ACM Conference on Recommender Systems hosted a workshop in years
2016 and 2017 where specific-purpose health recommender systems have been pre-
sented, but no one focused on textual resources as narrative medical reports. In
addition, these systems deal with clinical data in order to provide specific online
services which target patients as end-users, but there are not systems which exploit
data for supporting diagnosis fruition and physicians’ work.

3.3 Problem Statement

The problem we targeted in this work regards the finding of the best representation
model and clustering algorithm that enable to recognize medical issues in short texts,
in order to develop a recommender system able to support physicians in their work.
The clustering problem can be defined as follows: given a set of medical documents
D = {d1, . . . , dN}, we want to compute an assignment γ : D → {1, . . . , K}, with
K being the resulting number of clusters that minimizes the objective function.
The objective function is defined in terms of distance between documents. The
objective is to minimize the average distance between documents and their centroids
or, equivalently, to maximize the similarity between documents and their centroids.

Documents are first mapped into a N -dimensional space depending on the occur-
rences of their high-level features. Then a Truncated Singular Value Decomposition
is used to reduce the N -dimensional space and to obtain a model where each docu-
ment is mapped to a numerical vector that represents its fingerprint. Fingerprints
are fed to the clustering algorithms by testing both Euclidean and Cosine dissim-
ilarity functions, and a certain number of clusters is thus generated. The metrics
we have analyzed consider the effectiveness of the resulting clustering of fingerprints
and how well the generated clusters include documents pertaining the same topics.

3.4 Data Description

The dataset used in our work was freely downloaded from the open-source iDASH
repository1. This is characterized by a set of anonymous medical reports written in
plain text. The data set is composed by 2,362 English reports and each of them is
characterized by specific words or a specific health domain. On the average, each
report contains 400 words (the shortest document has 138 words and the longest
document has 1,048 words). Reports can be medical transcription samples including
clinical notes, medical examinations, care plans, and radiology reports of individuals.
Examples of transcriptions include admission and discharge notes, surgical transcrip-
tions, outpatient clinical encounter, emergency visit notes, echo-cardiogram, nuclear

1https://idash-data.ucsd.edu/
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medicine, allergies and so on.

The dataset consists of a collection of non labeled medical reports. Each docu-
ment may be assigned to one or more categories, but there is not explicit indication
in the dataset documentation of the used taxonomy or how many categories one
report refers to. The category of each report lies within its file name. File names
generally include the disease or/and the related body part although they do not fol-
low precise structure or patterns. Also, it is possible that different file names have
words which are synonyms and, therefore, they should be considered in the same
category (e.g., there are reports concerning heart issues whose file names may have
prefixes such as cardiac, heart, echo-cardiogram, cardiology etc.). The reports are
various and many of them are singleton, meaning they are the only ones discussing
a specific topic in the whole data set. A perfect clustering should place them as
outliers.

3.5 Methodology

In this section, we describe the modules of the developed system which needs proper
techniques for representing items and comparing new and old users’ health states.
An overview of our system is depicted in Figure 3.1. The reader can see:

• Medical Reports Collection. This is the set of reports on which the system can
learn about past clinical historical cases.

• Content Analyzer Module. The module takes as an input the collection of
reports and the new report that the user (e.g., a physician) wants to evaluate.
It embeds various resources for mining features from textual components of
medical reports.

• Represented Medical Reports. This is the output given back by the Content
Analyzer Module. The output is formatted so that Machine Learning algo-
rithms can be easily applied.

• Machine Learning Module. This module implements a set of classification
and clustering algorithms that are used for building models which describe
patients’ profiles.

• Clinical Patients Profiles. They are profiles that have been built by algorithms
that had been employed in the Machine Learning Module.

• Recommender Module. The Recommender Module matches the new medical
report features with the known patients’ profile in order to make a list of
recommendations.
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Figure 3.1: Architecture of the Content-Based Recommender System.

3.5.1 Content Analyzer Module

The Content Analyzer Module takes as an input the collection of unstructured med-
ical reports and produces a structured documents representation which enables the
automatic computation of Machine Learning techniques performed by the Machine
Learning Module. In addition, it must mine new unknown medical reports. In
this section, the description of the model, the features and their characteristics are
described.

Item Representation

For applying Machine Learning algorithms, data must be represented by sets of
features usually called attributes. For example, to recommend books, attributes
adopted to describe a book can be authors, editor, genre etc. When items are de-
scribed by the same set of attributes and there are known values of these attributes,
they are represented in structured data that can be employed for automatic com-
putations. In case of biomedical textual documents there are not well-defined at-
tributes, and textual features can raise difficulties when the system learns about
patients. The main problem is that traditional term-based method can fail to cap-
ture the semantics of clinical states of patients. For example, if more words can
be used to indicate the same pathology (e.g., tumors could be indicated with the
names neoplasms, malignancies etc.) relevant information can be lost if two clinical
profiles do not contain the same word. In this context, semantic analysis of data
plays a significant role and promises surprising results for solving these issues. More
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specifically, we have employed words coming from IBM Watson which is a leading
Cognitive Computing tool, and Framester a novel hub between semantic resources.
Subsequently, in this section we show features that can be extracted from medical
textual resources and discuss about advantages of each one.

Vector Space Models.

A Vector Space Model (VSM) is a spatial representation. For example, in a word-
based VSM each document is represented over a N -dimensional space, where each
dimension corresponds to a word that belongs to the whole set of terms of the given
collection of documents. Let D = {d1, d2, ..., dk} be a collection of medical reports
and A = {a1, a2, ..., an} the set of attributes employed for representing them. A can
be built by means of a natural language process or semantic content exploration
pipeline which applies methods (e.g., the English stop word and stemming steps)
for representing D. Each medical report di is represented by a vector of values
di = {v1i, v2i, ..., vni} where each value vki indicates the degree of relation between
the attribute ak and the document di. Attributes can have various natures such
as words, n-grams, semantic features which describe contents, and so on. In our
recommender system we have employed 6 different types of attributes: TF-IDF
scores, Concepts, Keywords, Entities, BabelNet Synsets, and Frames.

TF-IDF

This module exploits the TF-IDF metric to weigh words. In order to prevent that
longer texts have higher probability to be chosen by a recommender system, TF-IDF
values are usually normalized in a range [0,1].

To avoid that frequent and no-relevant data (e.g., words that do not carry any
meaning for the medical purpose as articles the, a, an, preposition about, therefore,
at, etc.) appear in the TF-IDF features, the module performs some cleaning steps
on the input texts. It precisely removes numeric data, punctuation, and stop-words.
In fact, they are considered unnecessary and their remotion serves for (i) reducing
the size of the VSM and (ii) for the subsequent efficiency of using a smaller space of
features. All terms are taken in their lower case shape, avoiding to consider more
times different representations of the same word (e.g. Cardiac and cardiac).

Concepts

Concepts can be defined as cognitive units which model perceived abstract subjects.
They depend on the ability to process domain dependent knowledge and efficiently
learn insights which become fundamental keys in the meaning of contents. Con-
cepts can embody structures and representation of real words discovered in text,
hence, they enable capturing high level abstraction reducing the complexity of the
computation space. Moreover, they enable the specialization of employed attributes
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for representing documents in the VSM. IBM Watson can be employed for discov-
ering automatically concepts related to the medical domain from natural language
texts. It assigns a weight to each concept we have used for building the VSM.
More precisely, given a collection of medical reports we use as set of attributes a set
that contains the union of almost fifty concepts returned by IBM Watson from each
medical report.

Keywords

Keywords are words of texts that enable listing the content of a report, releasing
information about which words result relevant for describing the content of a doc-
ument. Keywords are automatically detected by IBM Watson which provides a
weight for each one. The VSM model is built as in the case of concepts.

Entities

Entities are actors that make actions in a text. Specifically to the medical domain,
they can be people (e.g., physicians or nurses), illnesses (e.g., tumor), medicine
names and so on. By capturing entities, it is possible to find relations between
different documents if they share similar actors, especially when they are specific
(for example if in a subset of documents D′ physicians are cardiologists and in
another subset D′′ they are physiotherapists, the entities are distinct and enable
better separation of the document subsets in different topics). As with the previous
IBM Watson features, a weight is returned for each entity and indicates its influence
in a document.

BabelNet Synsets

BabelNet synsets are unique unambiguous identifiers of sets of words which share the
same meaning. We have chosen this type of synsets because (i) they are the result of
the integration of various linguistic and semantic resources as WordNet, Wikipedia,
FrameNet, among others, and (ii) they are directly provided by Framester. Differ-
ently from IBM Watson features, we do not have weights, hence, only the presence of
BabelNet synsets have been considered by means of boolean flags into the Content
Analyzer Module.

Semantic Frames

A semantic frame is a coherent group of concepts such that complete knowledge
about one concept within a context depends on the knowledge associated to all oth-
ers in the same context. Given a text, they are activated by nouns and verbs. Each
frame can have multiple hierarchical levels that indicate its abstractions. For exam-
ple, in Figure 3.2, the word cardiology is abstracted by frames Medical specialties
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and Cure. It should be underlined that frames are different from IBM Watson con-
cepts because they do not depend on the application domain, but on relations that
words have into linguistic and knowledge resources Framester adopts. As with the
BabelNet synsets, we use the frames presence in the VSM.

Figure 3.2: Part of Framester result on the sentence ”Consider cardiology consult
and further evaluation if clinically indicated”.

The course of dimensionality problem

The course of dimensionality problem refers to the issue that regards the great
size of the number of attributes required to describe the target collection. The
VSM suffers of this problem, hence, it needs to be managed into content-based
applications as our recommender system. One common method often applied in
order to solve the issue is the Singular Value Decomposition (SVD). In details, let
A = {a1, a2, ..., an} be the set of attributes and D = {d1, d2, ..., di} be the collection
of our documents. The VSM is usually represented by a matrix M of size |D| × |A|.
M can be disjointed in three components M = USV T where S is a diagonal matrix
containing the largest singular values, U is a matrix where columns are left singular
vectors, and V is a matrix where columns define right singular values. In order
to reduce complexity of data, the module applies a truncation which consists in
holding only the largest k singular values, removing others which can be considered
less relevant. This technique is known in literature as Truncated-SVD (TSVD). The
module adopts the matrix M ′ = U × S which has a number of rows equivalent to
the number of considered documents with a smaller number of attributes (columns)
than the original matrix M . Besides decreasing the overall computational costs, an
advantage of using the TSVD is deleting noise elements that might deteriorate the
list of final recommendations. We want to point out that the value of k requires a
trade-off between the amount of remaining and neglecting data to avoid the loss of
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information. Its value depends on the set of attributes which characterize the used
collection.

3.5.2 Machine Learning Module

The Machine Learning Module receives a VSM as an input and returns a model
which recognizes clinical patients’ states. Its current version includes two clustering
algorithms which are applied on all VSMs. The clustering techniques the module
implements enable to deal with unsupervised data. They are (i) Hierarchical clus-
tering algorithm and (ii) K-means clustering algorithm which have been described
in section 2.2.

Precise clustering requires an accurate definition of the closeness between docu-
ments represented in the VSM. The closeness can be measured by either the pair-
wised similarity or distance. A variety of similarity or distance measures have been
proposed and discussed in literature. Our Machine Learning Module adopts the
Cosine and Euclidean measures.

3.5.3 Recommendation Module

This module uses the clinical patients’ profiles for suggesting possible past medical
cases that are similar to a new one by matching the new medical case against clinical
profiles’ clusterings of medical reports to be recommended. More specifically, the
Recommendation Module takes a new medical report representation r and predicts
whether there are clinical patients’ profiles p1, ..., pn that are interesting according
to the relevance with r. It performs strategies to rank documents, and top-ranked
ones are included in the list of recommendations that are provided to the final user.
For doing so, the module computes the closeness between a new medical reports
and clusters. In detail, given a new patients’ medical report r and a clustering
C = {c1, ..., cn}, the module finds the cluster ci which has the closest center to
r. Then elements within ci are ranked from the most to the least similar to r.
The produced ranking is used for finding the closest k medical reports as the final
recommendation list.

3.5.4 Experimental Setup

Data cleaning

Data cleaning is necessary in order to provide the same valid English text to the
Content Analyzer Module services. First of all, we have cleaned all medical reports
from HTML tags, removed all tables and structured format styles in order to obtain
simple plain texts. Then we have matched reports words against those provided
by WordNet, sending the word w′ and getting the word w′′ which has been placed
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in the text. At the end, only English text with correct grammar and punctuation
composes the collection of medical reports.

Content Analyzer Module Setup

(a)

(b)

(c)

Figure 3.3: Samples of VSMs built on concepts extracted from three medical reports.
Samples are related to (a) binary (b) weighted and (c) counted VSM.

The Content Analyzer Module has been configured for providing more VSMs
models which have been built on various features as described in section 3.5.1. More
precisely, let ri be the i-th medical report and fj be the j-th feature of a selected
type. The outcomes of the module are:

• 5 Binary VSMs: they include a matrix representation for the Concepts,
Keywords, Entities, BabelNet Synsets and Semantic Frames features. Binary
means that if fj occurs within the inferred set of features of the medical reports
ri, in the VSM model M their relation is indicated by M [i, j] = 1, otherwise
M [i, j] = 0;

• 4 Weighted VSMs: they include a matrix representation for the Concepts,
Keywords, Entities, and TD-IDF features. Weighted means that M [i, j] =
weight, where weight has been calculated exploiting the Natural Language
Understanding service of IBM Watson or the TF-IDF approach as described
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above, and represents how strong is the relation between the medical report
ri and the feature fj, otherwise M [i, j] = 0;

• 5 Counted VSMs: they include a matrix representation for the Concepts,
Keywords, Entities, BabelNet Synsets and Semantic Frames features. Counted
means that M [i, j] = count where count is the number of times that a fea-
ture fj occurs within the set of features of the medical reports ri, otherwise
M [i, j] = 0;

For more details on the three mentioned distances, the reader can look at ex-
amples of VSMs built on concepts extracted from three medical reports of the test
dataset in Figure 3.3. In the first row of each VSM, there are concepts that form the
N -dimensional space. In the other rows, there are the names of reports on the first
column followed by values that indicate the degree of relation between the medical
report and the i-th concept. The reader notices that (a) is built using the binary
relation, (b) is built using the weighted relation and (c) is built using the counted
relation.

Machine Learning Module Setup

The Machine Learning Module applied both clustering methods on all VSMs. In
order to obtain high quality clusters, we set the module for exploiting the Silhouette
width measure. Given a cluster c, its Silhouette width value s(c) is computed as
showed in Equation (3.1) where w(c) is the average dissimilarity within c and o(c)
is the lowest average dissimilarity of c to any other cluster.

s(c) =
o(c)− w(c)

max{o(c), w(c)}
(3.1)

Values of Silhouette width range from −1 to 1. When the value is closer to
1, it means that the clusters are well separated; when the value is closer to 0, it
might be difficult to detect the decision boundary; when the value is closer to -1,
it means that elements assigned to a cluster might have been erroneously assigned.
In general, we can consider good clusterings those that have high average values of
Silhouette width. Unsurprisingly, the value of the Silhouette width depends on the
type of features of the VSM under processing.
Hierarchical clustering. After the hierarchical clustering has been computed, the
resulting dendrogram has been iteratively cut starting from its head, in order to
increase the number of clusters for each iteration. In doing so, various clusterings
obtained with different cut values have been produced. As a reminder, in our dataset
we do not know how many groups can be formed. Therefore, we have exploited the
highest value of average Silhouette width values in order to cut dendrogram where
the clustering showed the best separation between medical reports.
K-Means clustering. K-Means Clustering has been performed with different val-
ues of k as number of clusters. For each value of k, the average Silhouette width
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measure has been computed similarly to hierarchical clustering setup. Then the
clustering with the highest average value of Silhouette width has been hold as the
output of the module.

3.5.5 Recommendation Module Setup

The recommendation module has been setup to receive an unknown medical re-
port and a number k which represents the number of recommendations. In our
experiments the adopted value of k is 10.

3.6 Results and Discussion

At the current state, the quality of results of our recommender system mainly de-
pends on the Content Analyzer Module and Machine Learning Module. In fact, a
good quality of clusters means that medical reports similar to a new one can be
correctly detected in the test dataset. First, for obtaining good clustering the fea-
tures must allow a good separation of reports, and second the clustering algorithm
must recognize which the best divisions are. Therefore, in this section we discuss
about the most representative features of our dataset and the clustering algorithms
performance. Results of clusterings quality can be observed in Figure 3.4, 3.5, 3.6,
3.7 and 3.8.

(a)

(b)

Figure 3.4: The average and standard deviation values of the silhouette width mea-
sure of the clusterings computed on the TF-IDF measure. (a) Hierarchical clustering.
(b) K-means clustering.

The sets of features which have formed the best division of medical reports into
clusters are those that have been computed using IBM Watson. In fact, they reach
good levels of Silhouette width. In more details, concepts and entities in their
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weighted and binary mappings have shown good performances in capturing medical
information from medical reports of the test dataset. This fact suggests that the
relevance of an entity or a concept into a medical report does not depend on the
number of times that it appears. We can say that their role depends on the relations
they have into reports, and more influent their actions are, stronger their relevance
is. Considering the number of times that a concept or an entity appears we do
not add any additional information in our representative VSM. Keywords have not
shown good performances like entities and concepts, but they can be considered as
good alternatives in those cases where detecting entities and concepts can be hard.

(a)

(b)

Figure 3.5: The average and standard deviation values of the silhouette width mea-
sure of the clusterings computed on IBM Watson features. (a) Hierarchical clustering
on cosine distance. (b) Hierarchical clustering on Euclidean distance.

Framester features do not have reached good results in the clusterings. This can
depend on the fact that they are more generic and not directly connected to the
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(a)

(b)

Figure 3.6: The average and standard deviation values of the silhouette width mea-
sure of the clusterings computed on IBM Watson features. (a) K-means clustering
on cosine distance. (b) K-means clustering on Euclidean distance.

medical domain. Moreover, our test dataset could negatively influence this types of
features since medical reports are strongly specific on patients’ medical states. By
contrast, they can result useful for those medical reports that describe the state of
patients more in general without too clinical details (e.g., a starting examination
visit). As for Framester features, the TF-IDF has not showed good performances
and similar explanations can be observed.

One more point to consider is how the distance between two medical reports
is computed. Results suggest that the cosine distance is more reliable than the
Euclidean distance. Nevertheless, it is important underlying how they seem keeping
a similar behavior on different features. To name an example, entities-binary and
entities-weighted show a similar behavior both for cosine and for Euclidean distance.
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(a)

(b)

Figure 3.7: The average and standard deviation values of the silhouette width mea-
sure of the clusterings computed on Framester features. (a) Hierarchical clustering
on cosine distance. (b) Hierarchical clustering on Euclidean distance.

Hierarchical clustering has outperformed the results of the K-means clustering,
hence, if the recommender system would have been employed on a real medical case,
the hierarchical clustering should be used. The agglomerative approach seems to be
more suitable for finding medical cases similar to a new one.

Finally, to show how recommendation module has worked the reader can look at
example in Figure 3.9. The Figure lists 10 medical reports of our test dataset that are
returned by our recommender system when the report called heart-catheterization-
angiography-1 has been adopted for the evaluation of a new patient’s clinical state.
The example shows how returned recommendations are correlated to heart issues
and, hence, that our approach in building a recommender system can effectively
recognize medical contents in order to suggest relevant past clinical cases.



44 CHAPTER 3. HEALTHCARE DOMAIN

(a)

(b)

Figure 3.8: The average and standard deviation values of the silhouette width mea-
sure of the clusterings computed on Framester features. (a) K-means clustering on
cosine distance. (b) K-means clustering on Euclidean distance.

Figure 3.9: An example of list of recommendations built by our recommender system
using as new report that called heart-catheterization-angiography-1.



Chapter 4

E-Learning Domain

4.1 Open Issues

The ever-increasing availability of digital data brings unprecedented possibilities
to analyze different educational facets. Platforms and services available to sup-
port education and emerging technologies are reshaping how people learn in their
everyday life, leading the global market of off-the-shelf education to growth and
evolve towards online learning at scale [67]. More and more individuals and teams
are leveraging it to cultivate new skill sets and achieve personal or collective goals
throughout their careers. At the same time, leading providers are offering large-
scale on-demand access to their collections of online courses with varied contents,
structures, requirements, objectives, instructors and prices [68]. Learners, teachers,
designers and managers have been mobilized to investigate how data can be used to
support learning and teaching. For instance, existing providers would automatically
organize their online courses according to meaningful taxonomies which facilitate
retrieval, instructors would find emerging teaching topics and develop courses on
appealing subjects on the basis of the latest trends and, even more, learners would
be driven along the overwhelming alternative courses. The solutions required to
address such challenges in online E-Learning resources delivering at scale depend
on advanced technological infrastructures for data storage and computation, and
should consider users’ interaction.

This intense interest has given rise to tools and techniques in the research field of
Learning Analytics (LA) [69]. Notable examples include the identification of learners
at risk of failing [70] and the analysis of data flows coming from the interactions
among communities [71]. The field is in its dynamic youth, and there are numerous
opportunities to unlock the potential of Learning Analytics, especially with the rapid
development of emerging Artificial Intelligence technologies.

In the large set of educational data, micro-learning videos embedded into Massive
Open Online Courses (MOOCs) represent one of the most powerful medium to
deliver knowledge to learners in small chunks over time, promising to have a solid
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future in delivering knowledge as proved by the recent experiences in [72]. In this
context, the most popular providers are currently Coursera1, EdX2 and Udemy3.

One challenge that has been raised is the need of Learning Analytics tools pow-
ered by intelligent methods for effective and efficient video categorization. Recent
studies [73, 74] tend to model the problem as a text classification task which auto-
matically assigns one category from a set of predefined ones to a video based on the
transcript (i.e., a written version of the content presented by the speaker). These
approaches usually map video transcripts using Term-Frequency-Inverse Document
Frequencies (TF-IDF). Even if it is simple and widely-used, several limitations have
emerged. In fact, text documents are modeled as a set of term frequencies, regardless
the position in the document or semantic links with other words. It follows that the
knowledge derived by the information behind the text is lost. Cutting-edge cognitive
computing systems, such as IBM Watson, can extract more insightful information
such as concepts, emotions, entities, keywords, and relations from unstructured text,
and use Machine Learning algorithms to derive analytics, and generate predictions
and hypothesis.

Despite the initial outcomes, different evolving problems remain to be solved.
For instance, Machine Learning techniques need to combine both descriptive and
content-based course features which require high-level semantic understanding.
Even more, online courses at scale come with various languages, so algorithms are
supposed to master cross-language capabilities. Similarly, recommendations tar-
geted to learners should match their desired content with their requirements, goals,
pedagogical, economic and temporal constraints.

One more obstacle to take these directions and provide the required techno-
logical services is the lack of suitable datasets. More in details, to build a high-
level semantic understanding, we need fine-grained information about courses. To
test cross-language capabilities, we require courses provided in different languages.
To provide meaningful recommendations, we need stakeholder interactions within
courses. However, no dataset currently meets such conditions.

Furthermore, one more interesting evolution that has innovated the field of the
E-Learning is due to the advent of Social Web, which has enabled the development
and the sharing of experiences among people around the world. In fact, individuals
use online social platforms to express opinions about products and/or services in
a wide range of domains, influencing the point of view and the behavior of their
peers. Such user-generated data, which generally come in form of text (e.g., re-
views, tweets, wikis, blogs), is often characterized by a positive or negative polarity
according to the satisfaction of people who write the content. Online educational
platforms deployed at large scale, are hence earning more and more attention as
social spaces where students can discover and consume a great variety of contents

1https://www.coursera.org/
2https://www.edx.org/
3https://www.udemy.com/

https://www.coursera.org/
https://www.edx.org/
https://www.udemy.com/


4.1. OPEN ISSUES 47

about many topics, and share opinions regarding their educational experience. Such
collective intelligence might be useful for various stakeholders, including peers who
are planning to attend a given course, instructors who are interested in improving
their teaching practices and increasing students’ satisfaction, and providers who can
get benefits from the feedback left by users to refine tools and services in the platform
itself. With this in mind, these platforms can be envisioned as dedicated social me-
dia where discussions are limited to specific topics concerning course content quality,
teachers’ skills, and so on [75]. Sentiment Analysis approaches on students’ opinions
have recently started to receive the attention of the involved stakeholders [76] and
their design and development is still an open challenge.

This chapter tackles the open challenges that have been exposed above. More
precisely, the contributions within the E-Learning domain can be summarized as
follows.

E-Learning Data Collection. We collected two datasets and released them to
the research community. We introduce a dataset of only features that can be used to
manage contents by Machine Learning algorithms. We employed this dataset for the
contents categorization task. Then, we present COCO, a novel semantic-enriched
Collection of Online COurses composed by more than 43K courses distributed in 35
different languages, involving over 16K instructors and 2,5M learners who provided
about 4,5M ratings and 1,2M comments. We describe the collection procedure and
the dataset structure together with some statistics. Furthermore, we provide two
potential use cases where COCO can be handy, highlighting the issues which need
to be faced.

E-Learning Contents Categorization. We describe how Cognitive Comput-
ing technologies can be adopted to support the development of Learning Analytics
tools by investigating (i) how we can extract and merge features extracted from
micro-learning videos to improve their representation in the eyes of Machine Learn-
ing algorithms, and (ii) which Machine Learning algorithm is best at taking advan-
tage of such features in terms of effectiveness and efficiency in micro-learning video
classification.

Sentiment Analysis of Learners Reviews. We propose a Deep Learning
model, trained on Word Embedding representations coming from the E-Learning
context and able to predict a sentiment score for reviews posted by learners. We
also report its experimental evaluation on the large-scale dataset of online course re-
views present in COCO. We show how word embeddings trained on smaller context-
specific textual resources are more effective with respect to those trained on bigger
general-purpose resources. Moreover, we highlight the benefits derived from the
combination of word embeddings and Deep Learning instead of common Machine
Learning approaches.
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4.2 The COCO Dataset

4.2.1 Dataset Collection

The Udemy APIs4 expose functionalities to help developers accessing content and
building external applications. However, they are instructed to list only a subset
of the over 40K courses Udemy includes. Consequently, we developed a Selenium5

crawler in Python to access the full Udemy catalog and build a complete and com-
prehensive dataset. We dumped it in November 2017.

The crawler is instructed to access the course catalog sublists associated to each
category of the Udemy taxonomy, so that we first extract the association between
each course and the corresponding categories while getting the link to the course
description page. Each course has one first-level category and one second-level cat-
egory. Each second-level category belongs to only one first-level category. Unlike
traditional academic taxonomies, the courses are mapped by Udemy in daily-life-
oriented categories (e.g. Lifestyle, Language, Test Preparation). Furthermore, each
course is also described with a set of fine-grained tags. We extract the association
between courses and tags using the same methodology previously employed to ex-
tract categories. However, the same course can appear in the course catalog sublist
of more than one tag in that case.

Then, the crawler goes inside the description page of each course. To get an
idea, an example course description page is made available here6. Each course
description page presents the course identifier, the heading with the title and the
short description of the course, aggregated statistics about received ratings and
enrolled students, and the language in which the course is delivered. Udemy provides
courses in more than 30 different languages. Then, different HTML boxes contain
a bullet-list of course objectives (e.g. build powerful fast user-friendly web apps,
apply for high-paid jobs or work as freelancer), a bullet-list of both pedagogical and
technical course requirements (e.g. Javascript and HTML fundamentals, a laptop
with at least 6GB RAM ), a long course description of around 500 words, and a bullet-
list of possible target users (e.g. students who want to learn how to build reactive web
apps) written by the instructors. The course description pages also include the list
of lessons and their organization in chapters. Each lesson has a title, a 30/50-word
description, and a format (e.g. video or document). Only a subset of lessons is freely
available as preview. We collected their resource URL and, eventually, the URL of
the video transcript. Furthermore, the course description pages list one or more
instructors together with their id, job title and short biography. On the left-side, a
HTML box depicts the current price. The crawler digests all such information.

To extract the learners reviews, the crawler uses the Udemy API method aimed
to return course reviews given the course identifier. Each review includes the learner

4https://www.udemy.com/developers/
5http://www.seleniumhq.org/
6https://www.udemy.com/spark-and-python-for-big-data-with-pyspark/

https://www.udemy.com/developers/
http://www.seleniumhq.org/
https://www.udemy.com/spark-and-python-for-big-data-with-pyspark/
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id and the course id together with the timestamp, the rating ranging between 0 and
5 with step 0.5 and, optionally, a textual comment. It is worth to note that learners
give their comments in their own language, but no language label is provided to keep
it. The mentioned API method does not release information regarding the instructor
replies to learners reviews, so the crawler digests a copy of the same course reviews
from the list presented at the bottom of the course description page. Differently
from the mentioned API method, the course description page does not depict the
review timestamps, but shows the instructor replies to such reviews. Then, the two
copies of the same course reviews are merged. Moreover, the course description page
depicts the full name of the learner who has made a given review. The crawler uses
it on the fly to build the URL of the public profile of the learner and access it.
Each public profile shows the courses where learners are enrolled and the wish-list
in the case they have given consent to publicly share them. Finally, we label all the
human-made textual attributes with their own language using Lang Detect7, a free
reliable language detector.

Course attributes and interactions with them embrace a wide range of human-
made-based texts such as comments, requirements, objectives, descriptions, and
video transcripts. Manipulating them in Machine Learning methods tailored for
online courses requires high-level semantic understanding, going beyond traditional
item-frequency features. To facilitate future experiments and comparisons, we first
enriched such attributes with TF-IDF features extracted by Scikit-Learn v0.19.
Then, to stimulate research in high-level semantic understanding algorithms, we
collected the features extracted by state-of-the-art cognitive tools. More precisely,
we enriched the textual attributes with the following additional feature sets.

• Part-of-Speech (PoS) tags computed by the NLP tools of the toolkit NLTK.

• Keywords and concepts computed by the state-of-the-art Cognitive Computing
tools included into the IBM Watson Natural Language Understanding APIs.
Each keyword is a set of one or more words relevant in the text, while each
concept captures cross-domain content not explicitly cited.

4.2.2 Dataset Description

Structure of the Dataset

COCO is a JSON-based collection whose structure in terms of entities and associa-
tions is depicted in Figure 4.1. Text attributes have Unicode coding, while languages
and timestamps hold ISO639-1 and ISO8601 standards, respectively.

In COCO, Course is the most informative entity. First, id and course URL
provide unique identification attributes. Then, the course is described by short and
long descriptions. Requirements and objectives list technical and pedagogical needs

7https://pypi.python.org/pypi/langdetect?

https://pypi.python.org/pypi/langdetect?
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Figure 4.1: COCO Structure. Boxes in green, blue and yellow show primitive en-
tities. Orange boxes depict associations. The attributes in red are enriched with
semantics.

at the beginning and expected learner skills at the end, respectively. The language,
the instructional level (beginner, intermediate, expert), first/second-level categories,
and tags are listed. Each course has only one first-level category and one second-level
category, while tags can be more than two for the same course. Other course fields
identify the current price and the discount. Statistical attributes list the estimated
course duration in hours. Finally, some boolean flags indicate certification release
and lifetime access availability. The Curriculum entity includes a hierarchical list
depicting the chapters and their lessons.

Due to privacy constraints, the Instructor and Learner entities only include
information available on the corresponding public profiles. Each entity instance is
uniquely identified by a fake id, so that the id stored into the dataset does not
correspond to the real id of the user. Each instructor is described by the job title
and biography. Each learner has a flag indicating whether the profile is public.

The COCO strength is the large amount of relationships among primitive enti-
ties. In Teach, the pairs of instructor id and course id model the association among
instructors and the courses they teach. One instructor can teach more than one
course and the same course can have one or more instructors. Then, each pair of
course id and learner id in Participate defines the courses that the learner has been
attending. In Wish, the id pairs set the courses each learner has inserted into the
wish-list. Finally, Evaluate contains learner id and course id together with the [0-5]
rating with step 0.5, the comment and the timestamp.
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Statistics

(a) (b)

(c) (d)

Figure 4.2: The distribution of courses per (a) first-level category, (b) second-level
category, (c) content language, (d) number of learners reviews.

Describing COCO in numbers, it includes 43,113 courses distributed into a taxon-
omy composed of 15 first-level categories and 133 second-level categories, as reported
in Figure 4.2 (a,b). The courses distribution is unbalanced for both first-level cat-
egories (avg. 2,874; st.dev. 2,334; min 477; max 7,985) and second-level categories
(avg. 324; st.dev. 475; min 7; max 3,196). Similarly, the languages distribution
along courses follows such trend, as depicted in Figure 4.2(c). The languages em-
ployed in at least 25 courses are explicitly named. Only 21% of courses do not use
English as primary language. Regarding the courses structure, each course contains
43 lessons in average (st.dev. 46; min 1; max 863).

In COCO, there are 2,546,865 learners who provided 4,584,313 ratings and
2,453,865 comments. The sparsity of the rating matrix is 0.99583%. Only learners
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(a) (b)

Figure 4.3: The distribution of learners per (a) review language, (b) number of
reviews.

with at least one rating are included, while each course can have zero or more rat-
ings. In Figure 4.2(d), the distribution of the number of ratings per courses (avg.
119; st.dev. 812; min. 1; max. 57,346) shows a downward trend, but there is a large
number of courses with a lot of ratings. Figure 4.3 shows the distribution of learners
per (a) the review language and (b) the number of provided ratings. Despite some
learners have made a lot of reviews, the average number of ratings per learner is low
(avg 2; st.dev. 3; min 0; max 1,159). COCO also incorporates 16,963 instructors.
Figure 4.4(a) shows their distribution based on the number of courses they teach
(avg. 3; st.dev. 10; max 748; min 1). In Figure 4.4(b), the distribution of instruc-
tors according to the number of learners enrolled into their courses appears divided
in two blocks, with a peak of the number of instructors with few enrolled students
(avg. 4,036; st.dev. 19,238; min 1; max 850,496).

4.2.3 Experimental Use Cases

This section depicts two potential use cases made possible by having COCO and a
set of experiments to demonstrate how they are as promising as challenging.

Multi-Class Content-Based Course Classification

Multi-class classification assigns each course to one category chosen among a set
of different options in a pre-defined taxonomy. E-Learning domain is semantically
challenging and hardly leverages several services that other domains have already
exploited. The automated classification makes easier both the categorization and
the exploration of courses. Given a set of training course records D = {d1, ..., dn}
such that each one of them is labeled with a category ci of a set C = {c1, ..., cm},
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(a) (b)

Figure 4.4: The distribution of instructors per (a) courses and (b) learners they
manage.

multi-class classification is a supervised task aimed to infer a model f : D −→ C that
relates each course record in D to a category in C. Then, the model is able to predict
the category for a course whose category is unknown. For the evaluation, we included
the most successful algorithms, namely Support Vector Machine (SVM), Decision
Trees (DT), Random Forest (RF) and Naive Bayes (NB) [77]. Their implementation
was provided by the Scikit-learn library.

Table 4.1: The best classification results with first-level category as target.

Source Attribute Algorithm Features Type W-P W-R W-F1

Long Description SVM Nouns-TF-IDF 0.79 0.78 0.77
Short Description SVM TF-IDF 0.61 0.61 0.60

Objectives SVM+SGD TF-IDF 0.74 0.73 0.72
Requirements NB Nouns-TF-IDF 0.57 0.47 0.43

First, minority categories were over-sampled to account for unbalanced cate-
gories. Then, the evaluation protocol worked as follows. For each setting, we adopted
10-fold stratified cross-validation, maintaining the original category distribution in
training and test sets. For each fold, the algorithms were fed with each features set
extracted from each course attribute in red in Figure 4.1. Then, the performance
was evaluated using weighted precision (W-P), recall (W-R) and f-measure (W-F1).
Each metric was first calculated for each category, and the average is found, weighted
by the number of true instances for each category.

Table 4.1 reports the best results that were obtained in the considered experi-
mental settings. The results provide empirical evidence that the TF-IDF generally
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produces better results than high level features. The poor performances of the latter
ones could indicate that they are not suited to capture the fine-grained information.
Although they clearly capture the most relevant characteristics of each course at
the human eyes, the results are not the same when they are analyzed by machines;
therefore, advanced semantic enriching models and techniques need to be studied to
get meaningful insights from semantic information.

Course Recommendation

Recommender systems can be one of the solutions proposed to navigate among the
overwhelming alternative courses. We considered the sets of users U , courses C,
ratings R in the range [0-5], supposing that no more than one rating can be made
by any user for a given item, writing this rating as rui. The most popular task in
recommender systems is to predict the rating score. The goal is to learn a model
f : U −→ C that predicts the rating fui of a user u for a new item i. For the
evaluation, we employed Normal Predictor (NP) as baseline, SVD, SVD++, NMF,
Slope-one, Co-Clustering. Their implementation is in Surprise8. The ratings R are
divided into a training set Rtrain used to learn f and a test set Rtest to evaluate
prediction accuracy with Root Mean Squared Error (RMSE).

The average RMSEs for various algoritms with their default parameters on a 5-
folds cross-validation procedure are depicted in Table 4.2. The folds were the same
for all the algorithms and the random seed was set to 0. The results highlight that
SVD++ performs the best among all the investigated scenarios. Its performance
is significantly better than the baseline Normal Predictor. SVD++ shows an im-
provement of about 0.28 on RMSE compared to such baseline. However, the results
still need to be improved; in this direction, advanced semantic enriching techniques
which leverage content-based course information in addition to the ratings can be a
viable solution to get better prediction results.

Table 4.2: The rating prediction performance measured with Root Mean Square
Error.

Metric NP SVD SVD++ NMF Slope One Co-Clustering

RMSE 1.051 0.7796 0.7755 0.8334 0.8582 0.9595

4.2.4 Existing E-Learning Datasets

Datasets have been frequently used in technology-enhanced learning. They differ in
terms of size and shape, domain, and context of user interaction. Here, we discuss
only the most prominent alternatives.

8http://surpriselib.com/

http://surpriselib.com/
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The Dataset of Joint Educational Entities (DAJEE) [78] includes about 20K
resources extracted from 407 online courses distributed in 10 first-level categories and
36 second-level categories. Over 484 academic instructors are mentioned. However,
the authors built an ontology aimed to detect patterns in academic teaching. No
interaction among learners and courses is listed together.

The Technology Entertainment Design (TED) dataset [79] contains around 1K
talks and 69K users who made more than 100K ratings and 200K comments. This
collection embraces only resources and no educational information such as course
requirements and objectives is given.

Multimedia Education Resource for Learning and Online Teaching (MER-
LOT) [80] is a collection of free and open online resources contributed by an in-
ternational education community. It includes over 40K materials with 19 different
material type categories. It incorporates a variety of resource types collected from
face-to-face learning lessons. It does not include feedback on learners’ preferences
and interactions between them.

The HarvardX-MITx Person-Course Dataset [81] includes interactions in 17
MITx and HarvardX courses on edX platform. These data are aggregated records
representing individual activities in one course. They combine several learner in-
formation (e.g. degree, gender, birth date) and provide data on interactions within
courses (e.g. number of viewed activities, number of published posts). The data
granularity and the number of courses limit the applicable analysis methods.

The Metadata for Architectural Contents in Europe (MACE) dataset [82] pro-
vides metadata-based access to learning resources in repositories all over Europe. It
offers access to about 150,000 learning objects, holding together about 47,000 tags,
12,000 classification terms and 19,000 competency values.

4.3 Categorization of E-Learning Contents

4.3.1 Background

Learning Analytics

Existing Learning Analytics approaches typically exploit data generated by users
during normal interactions with E-Learning technologies [83]. Several studies fo-
cused on the prediction of either the students at risk of failing or the students’
grades [84, 85]. However, they tend not to consider how the performance of algo-
rithmic techniques at the basis of Learning Analytics tools influences the students’
behavior during common E-Learning tasks. For instance, they investigate whether
providing a taxonomy of videos helps students, without considering the performance
of the underlying classification algorithm which is essential as well. Moreover, no
deep semantic exploration of the resources selected as appropriated for a given learn-
ing context is performed. It follows that modern Learning Analytics tools should
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consider the content of resources in addition to the interaction with them, especially
to find the most appropriate ones.

In the next generation of personalized learning environments, it is essential to
provide resources tailored to the learner’s need while integrating interactions, skills
and competencies with the mapping of knowledge of disciplines [86]. In this di-
rection, powering Learning Analytics tools with content-based resource analysis
promises to support content managers during video organization, and learners dur-
ing search in well-organized educational environments.

Video Content Analysis

Multimedia classification and indexing are two tasks required to organize and store
resources so that they can be quickly retrieved. Several Machine Learning techniques
try to automatize these tasks in an accurate and non time-consuming way.

However, it is well-known that the usual characteristics of a video presented in
form of visual frames and audio tracks make the classification harder in relation to
text content. In order to address this issue, researchers tend to use video meta-
data [87] and video content information such as visual frame sequences [88, 89],
audio tracks [90], transcripts [91, 92], or multiple combinations of them [93, 94, 95].
In spite of good results obtained using low-level features, emerging semantic-based
alternatives have a huge potential to better describe video content.

Recently, some studies have been focused on higher level features to model the
content of videos. In [96], the authors presented a novel system for content un-
derstanding and semantic search on a video collection based on low and high level
visual features. In a similar way, [97] investigated the problem of detecting or clas-
sifying single video-clips by means of the event occurring in them, which is defined
by a complex collection of elements including people, objects, actions, and relations
among them. The authors in [98] proposed to generate queries on videos exploiting
Automatic Speech Recognition (ASR) and Optical Character Recognition (OCR)
directly. However, we would like to point out that the type of video represents a rel-
evant characteristic to better understand its content. Hence, information channels
used for a reliable analysis should be selected in relation to the way the information
is mainly transmitted. In micro-learning videos, the greatest amount of knowledge
is transmitted by voice. Therefore, we have chosen video transcripts as source of
information.

Analysis of audio tracks as textual transcripts is an attractive way to be ex-
ploited as the most rich channel of information for micro-learning videos. For exam-
ple, state-of-the-art results in this direction can be observed in [99], where authors
used ontology-based classifier (e.g., CSO classifier [100, 101]) to mine the knowl-
edge contained in video subtitles. In this direction, we investigate how novel feature
types extracted from transcripts by Cognitive Computing tools can improve videos
classification. In contrast to the previous works, we face video content analysis ex-
ploiting the Natural Language Understanding capabilities provided by IBM Watson,
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enriching TF-IDF results with semantic information. Embedding the service in our
approach, we then focus on the analysis of various feature sets and classification
algorithms to achieve better classification performance.

4.3.2 Problem Statement

The problem we have targeted in this work was to develop a framework which is
able to assign a video resource to a class by using the video transcript. The so-
lution of this problem provides a tool which can support the categorization, and
consequently, the organization of resources in a E-Learning platform. In details,
the problem has been addressed through a supervised approach. Given a set of
videos V = {v0, ..., vn}, each one labeled with a class cj of a set C = {c0, ..., cm},
we want to compute a function γ : V → C. Videos have been fed into the function
γ through vectors representations exploiting both TF-IDF and the IBM Watson
suite. We have experimented different types of semantic video transcript represen-
tations and supervised algorithms, studying which combination of algorithms and
data representations better work for solving this task.

4.3.3 Methodology

In this section, we describe the approach for micro-learning video classification.
Figure 4.5 depicts its components and how they work together.

The Classification Manager orchestrates the overall process. First, it calls the
Pre-Processing Module to extract the transcripts from the videos included into the
dataset. Then, transcripts are handled by the Feature Extraction Module which
computes the corresponding features. During training, the Classification Manager
sends both features and category labels to the Classifer Module. During testing,
only features are sent, and returned categories are matched with the original ones
stored in the dataset to evaluate the performance. We detail all the modules in the
following subsections.

Big Data Manager

We have employed Apache Spark 1.6.1 and MLlib library. MLlib is the Spark’s
Machine Learning library aimed at making practical Machine Learning scalable
and easy. It includes common learning algorithms and utilities, such as classifi-
cation, regression, clustering, collaborative filtering, dimensionality reduction, as
well as lower-level optimization primitives and higher-level pipeline APIs. Including
it makes our approach general and flexible. We can easily use any classifier available
within the MLlib library, whose code is already optimized with the Map-Reduce
paradigm to run over a cluster. We might also use any other classifier of other
libraries not specific for Apache Spark.
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Pre-Processing Module

This module takes a micro-learning video as an input and returns the cleaned version
of the associated transcript as an output. Given a micro-learning video v, the module
sends it to the Speech-to-Text service9 of the IBM Watson suite, which combines
grammar rules with knowledge of audio signals for translating the spoken language of
an audio track in its written form. Its choice depends on the fact that it is one of the
most accurate and easily manageable speech-to-text tools [102]. The service returns
a plain text t(v) corresponding to the transcript of v. The module converts all the
words in t(v) to lowercase and each one of them is compared with the WordNet10

dictionary in order to get the correct one, w’, if w contains errors; otherwise, w and
w’ have the same value. Each word w in t(v) is substituted in t(v) with the correct
w’, obtaining t’(v). Finally, the module removes stop-words from t’(v) and returns
it as cleaned transcript.

Features Extraction Module

The Features Extraction Module has the purpose of representing a micro-learning
video with a set of features. It takes a cleaned transcript from the Pre-Processing
Module as input and returns a set of pairs where the first element is the identifier

9https://www.ibm.com/watson/developercloud/speech-to-text.html
10https://wordnet.princeton.edu/

Figure 4.5: A schema for the proposed approach for micro-learning video classifica-
tion and how the components work.

https://www.ibm.com/watson/developercloud/speech-to-text.html
https://wordnet.princeton.edu/
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string of the feature and the second element is the relevance of that feature for
the corresponding transcript. The relevance value spans in the range [0, 1] where a
value closer to 0 represents a low relevance and a value closer to 1 represents a high
relevance of the corresponding feature for the transcript.

From the transcript, the module can extract TF-IDF features and high-level
features. It returns one of these feature sets according to a flag set up into the
Feature Selector submodule. More precisely, for the high-level features, the module
calls the Natural Language Understanding API provided by the IBM Watson suite.
Currently, the module exploits only concepts and keywords, but it can be easily
extended to a wider set of features. This service works well for semantic content
extraction since it contains a wide range of pre-trained models, and can process large
samples of actual human language to derive rules governing the natural language in a
sentence. In our case, the Features Extraction Module shapes keywords and concepts
into vectors. The first one includes important topics typically used when indexing
data. The service identifies and ranks keywords directly mentioned in the text. The
second one represents concepts not necessarily referenced in the text, but with which
the text transcript can be associated. Both for concepts and keywords, the service
computes a weight that indicates the relevance we exploited in our vectors. These
feature sets enable our approach to perform high-level analysis than just TF-IDF.

Figure 4.6: Example of extraction of features with IBM Watson.

Given a cleaned transcript t’(v) as returned from the Pre-Processing Module,
the module first computes for each word w ∈ t′(v) its TF-IDF value building the
TF-IDF vector tf-idf(t’(v)). Then, it sends t’(v) to the Natural Language Under-
standing service and requests to obtain a concepts vector c(t’(v)) and a keywords
vector k(t’(v)). The service returns them as JSON data. For each vector, a list
of pairs is returned where the first element of each pair is the string identifier and
the second element is the relevance associated to it in the range [0,1]. After that,
the module builds a unique feature vector kc(t’(v)) by concatenating c(t’(v)) and
k(t’(v)). As an example, we consider a short segment of a video transcript about
computer networks. The text and the corresponding concepts and keywords ex-
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tracted using IBM Watson are shown in Figure 4.6. ”Computer network” is the
only concept extracted even though it is not directly mentioned in the text. A num-
ber of four keywords were returned. In the case of a collision between two identifiers
from concepts and keywords vectors, the module computes the mean between the
associated relevance values and stores a single instance of the identifier accordingly.

Classifier Module

The Classifier Module aims at finding the most appropriate category for a given
video using the underlying classifier trained on a number of labeled samples. The
classifier implements a function f(t′(v))→ c where f(t′(v)) is the features vector of
t′(v) and c is the category returned by the classifier and of the given taxonomy. The
module can implement any classification algorithm, independently from the feature
type. In particular, our approach tests DT, SVM, RF, and SVM+SGD since they
are the most widely used algorithms as emerged from literature review. However,
our approach does not depend on this design choice and any classification algorithm
can be used.

Figure 4.7: Video distribution over general categories in our extracted dataset.
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4.3.4 Results and Discussion

Dataset Description

This work was performed before to collect COCO, therefore, the data used to per-
form the evaluation of the methodology is not the same we released with COCO.
We collected one real-world micro-learning video dataset from Coursera to validate
our methodology. It is worth to note that the Coursera provides a taxonomy of
classes where videos are assigned to. We collected 10,328 videos from 617 courses
whose primary language is English. Coursera pre-assigned the courses to 7 general-
level categories and 34 specific-level categories. Coursera has a courses catalog; each
course has one general-level category and one specific-level category. Moreover, each
course contains a set of videos. Each downloaded video was assigned to the same
categories of the course it belongs.

Each extracted video is assigned to one general-level category and one specific-
level category and contains a number of words ranging from 200 to 10,000 (avg.
1,525; std. 1,017). The overall distribution of videos per category is reported in Fig-
ure 4.7 and Figure 4.8. The dataset is challenging because it contains fine-grained
categories that require subtle details to differentiate (e.g., Business Essentials and
Business Strategy). Moreover, video transcripts contain less words than documents
typically used in text classification. The language style is different, since the tran-
scripts are derived from speaking activities, not written.

Performance Measures

We mapped the video classification problem as a text classification problem. Hence,
we adopted the most common performance measures for this task: precision, recall,
and F-measure. Because we were dealing with a multi-class classification problem,
we first define how to calculate them for each category.

Given a specific category ci from the category space c1, . . . , cn, the corresponding
precision Pci , recall Rci , and F-measure F1ci are defined by the following formulas:

Pci = TPci

TPci+FPci
Rci = TPci

TPci+FNci
F1ci = 2 Rci ·Pci

Rci+Pci

where TPci (true positives) is the number of videos assigned correctly to the
category ci, FPci (false positives) is the number of videos that do not belong to
the category ci, but they are assigned to this category incorrectly and FNci (false
negatives) is the number of videos that actually belong to the category ci, but they
are not assigned to this class.

Then, we need to compute the average performance of a binary classifier (i.e.,
one for each category) over multiple categories. There are three main methodologies
for the computation of averaged metrics (see [103] for more information). They can
be summarized as follows:
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Figure 4.8: Video distribution over specific categories in our extracted dataset.
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• Micro-Averaged (Micro). The metrics are globally calculated by counting the
total number of true positives, false negatives and false positives, with no
category differences.

• Macro-Averaged (Macro). The metrics are locally calculated for each category
and the unweighted mean is computed. This does not consider categories
imbalance.

• Weighted-Averaged (Weight). The metrics are locally calculated for each cate-
gory, then their average is obtained by weighting each category metric with the
number of instances of the category in the dataset. Therefore, each category
does not contribute equally to the final average and some of them contribute
more than the others.

To test the performances of our approach, we only considered weighted scores
obtained from the combination of the metrics (precision, recall, F-measure) for each
one of the two categories spaces of our dataset (general-level and specific-level).

Performance Evaluation

In this section, we focus on exploring the effectiveness and the efficiency of our
approach for a certain number of combinations of the features sets, classification
algorithms and metrics. The software was developed using PyCharm 2016.2 en-
vironment. We used Python as programming language. For each experiment, we
adopted a 10-fold stratified cross validation, so that the folds were made by pre-
serving the percentage of samples for each category, then the reported results were
averaged over ten runs. Apache Spark was set underneath and the code was devel-
oped on top using map reduce functions that allows scalability.

Feature-Classifier Combinations In order to evaluate our approach, it was
tested with a number of alternative combinations of four features representations and
four classification algorithms. The features representations included TF-IDF (base-
line), concepts, keywords, and the combination of keywords and concepts. While,

Table 4.3: Basic statistics about the used features sets.

Feature Set Number of Features Avg Std. Dev.

TF-IDF (baseline) 117,073 260 513
Concepts 29,952 21 13
Keywords 332,023 78 26

Keywords + Concepts 361,975 99 31
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Table 4.4: Computational time for both training and test phases.

Features Set Algorithm
Execution Time [s]

General
Categories

Specific
Categories

TF-IDF
(baseline)

DT 5.23 7.92
RF 12.20 39.81

SVM 3.70 16.25
SVM+SGD 0.25 1.12

Keywords

DT 3.32 7.21
RF 11.06 43.96

SVM 3.32 11.21
SVM+SGD 0.20 1.00

Concepts

DT 1.13 1.88
RF 2.38 7.67

SVM 0.31 2.21
SVM+SGD 0.05 0.20

Keywords
+

Concepts

DT 4.00 8.34
RF 13.53 50.38

SVM 3.95 12.84
SVM+SGD 0.26 1.06

the classifiers were the implementations of the following algorithms provided by
[104]:

• Decision Trees (DT).

• Support Vector Machine (SVM).

• Random Forest (RF).

• Support Vector Machine + Stochastic Gradient Descent (SVM+SGD).

Computational Time Evaluation We evaluated the efficiency of the pro-
posed approach in terms of the size of the features vectors used and the time required
to perform both the training and the test for a given classifier.

Table 4.3 summarizes the basic statistics with respect to the different feature sets.
The first column indicates the name of the feature set, the second column shows
its size, while the other two columns report the average and the standard deviation
of the number of non-zero elements. The vector sizes for the combination concepts
and keywords is greater than all the others. However, the average number of its
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Table 4.5: Performance measures for micro-learning video classification over general
categories.

Feature Set Algorithm Precision Recall F-Measure

TF-IDF
(baseline)

DT 0.55 0.48 0.48
RF 0.60 0.58 0.57

SVM 0.71 0.70 0.69
SVM+SGD 0.62 0.62 0.61

Keywords

DT 0.47 0.35 0.33
RF 0.49 0.43 0.41

SVM 0.67 0.65 0.65
SVM+SGD 0.66 0.66 0.65

Concepts

DT 0.66 0.44 0.45
RF 0.66 0.52 0.53

SVM 0.63 0.62 0.61
SVM+SGD 0.64 0.63 0.62

Keywords
+

Concepts

DT 0.64 0.46 0.47
RF 0.63 0.55 0.55

SVM 0.70 0.69 0.69
SVM+SGD 0.69 0.68 0.67

non-zero elements is smaller than that of the TF-IDF. Hence, high-level features
can be more discriminative. Table 4.4 reports the total time required for a given
algorithm with a given features set to perform the training and the test phases over
a single fold. In the results, SVM+SGD algorithm provided the best computational
time, especially in case of concepts with no large vector size. The computational
time mostly depends on the particular classifier and the number of features. For
example, the computational time for SVM+SGD classifier using concepts as features
takes 0.05 seconds due to the lower time required by SVM+SGD and the lower size
of the concepts feature set.

Precision-Recall Analysis We evaluated the performances of all the clas-
sifiers trained on TF-IDF, keywords, concepts, and keywords plus concepts using
precision, recall and F-measure. The results in Table 4.5 indicate that using key-
words outperforms TF-IDF only with the SGD approach. Using concepts generally
gives better results than using keywords, and as with the use of keywords, they
outperform TF-IDF in case of SGD algorithm. With concepts, we obtain higher
precision and lower recall. For SVM+SGD, keywords plus concepts outperform
TF-IDF.

Table 4.6 shows the results of the classifiers on specific categories. In this case,
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Table 4.6: Performance measures for micro-learning video classification over specific
categories.

Feature Set Algorithm Precision Recall F-Measure

TF-IDF
(baseline)

DT 0.52 0.46 0.46
RF 0.59 0.58 0.56

SVM 0.73 0.71 0.70
SVM+SGD 0.69 0.58 0.61

Keywords

DT 0.48 0.34 0.34
RF 0.49 0.43 0.42

SVM 0.67 0.62 0.61
SVM+SGD 0.70 0.66 0.66

Concepts

DT 0.52 0.39 0.40
RF 0.53 0.48 0.47

SVM 0.59 0.57 0.56
SVM+SGD 0.58 0.57 0.56

Keywords
+

Concepts

DT 0.52 0.41 0.41
RF 0.54 0.51 0.50

SVM 0.69 0.66 0.65
SVM+SGD 0.69 0.66 0.66

SGD classifier trained using keywords continues to outperform TF-IDF, while its
performance decreases if trained on concepts. When combining keywords and con-
cepts, the overall performance improves and, in case of SVM+SGD, can be consid-
ered better than TF-IDF with an improvement up to 5%. The worst case shows a
maximum loss of 6% when RF is adopted. As far as the specific categories classifi-
cation is concerned, it is worth noticing that they are not equally distributed as the
general categories (as clearly shown in Figures 4.7 and 4.8) and this high variance
negatively affects the classification using high-level features (keywords, concepts and
their combination), especially those with a low number of features for the training.

Overall Evaluation In most cases, our approach can produce good perfor-
mance, regardless the increasing algorithm complexity in terms of video size or
transcript size. In fact, the first one influences only the time required to extract
transcripts from videos. No assumptions can be done on transcript sizes in rela-
tion to video sizes since the number of words included into a transcript depends on
the amount of content orally provided by the teacher during the video lesson. The
second one has an impact on feature extraction. Training and test are not directly
influenced by the transcript size because the size of each feature vector depends
on the size of the word dictionary used to map features. Moreover, the number of
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relevant features extracted from a long transcript can be less than those extracted
from a short one due to repetitions and stop words.

Considering the trade-off between effectiveness in terms of precision, recall, F-
measure and efficiency in terms of computational time, the combinations achiev-
ing best results include SVM or SVM+SGD as algorithm and TF-IDF or Key-
words+Concepts as features. However, SVM+SGD algorithm is generally over ten
times faster than SVM. With SVM+SGD, our approach using Keywords+Concepts
outperforms that using TF-IDF in terms of precision, recall and F-measure. The
combination using SVM+SGD and Keywords+Concepts achieves performance com-
parable with that using SVM and TF-IDF in terms of effectiveness, but strongly
better in efficiency. The experimental results demonstrate that Keywords+Concepts
combined with SVM+SGD can scale well, maintaining good performances in almost
all cases.

4.3.5 Practical Implications

The promising experimental results inspire several practical applications of our ap-
proach worthy of future study to develop cognitive-driven Learning Analytics tools
within a broad domain of educational research. This section presents a set of relevant
examples.

One of the primary application domains of Learning Analytics and Data Min-
ing techniques is the recommendation of learning materials to students. Semantic
techniques can lead to the evolution from a TF-IDF-based to a concept-based repre-
sentation of items and user profiles. In this context, content-based recommendation
techniques can combine our classification approach with students data in order to
build tailored student’s profiles from their set of watched videos, by looking for most
similar resources to the ones that a student has previously used. Using deep seman-
tic content analytics, students can gain improvements in learning because they can
be directly driven to resources that best fit their interests, reducing the time required
for retrieval.

Since Learning Analytics makes use of different Data Mining and Machine Learn-
ing techniques for analysis of educational content, our approach has a potential for
automating repetitive and time-consuming tasks usually performed by educational
researchers and practitioners. These include automation of micro-learning classifi-
cation processes, tagging generation and organization of learning resources. MOOC
platforms usually contain a large amount of videos which need to be organized based
on their content for being provided to students. Content managers need to know the
concepts behind videos which should be accurately allocated into a taxonomy for
a fast and qualitative organization. With our approach, micro-learning videos can
be automatically placed into a predefined taxonomy, increasing the quality of their
arrangement into MOOC platforms while reducing the effort required to content
managers.

Another primary challenge of working with large amounts of video content is in-
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dexing and retrieval. The increasing development of advanced multimedia applica-
tions requires new technologies for organizing and retrieving from content databases
of digital videos. To this aim, video content must be described and adequately coded.
Our approach can be easily extended to index and retrieval, allowing semantic an-
notation and querying in video databases. In this way, learners can be supported
during the search of the most appropriate content fitting their requirements. Even
more, our automated pipeline facilitates the development of video-to-video search
tools, making a step forward to mitigate the well-known semantic gap problem.

Since the majority of learning forms involve use and creation of videos, several
analytics techniques have been applied to investigate them. In an E-Learning plat-
form, the success of Learning Analytics tools requires both a simple user interface
to directly interact with users and algorithms supporting them for achieving and
managing resources they are interested in. Our contribution provides a back-end
powered by Cognitive Computing and Big Data for several Learning Analytics tool
interfaces which require to work with micro-learning videos.

4.4 Sentiment Scores Prediction of Learners’ Re-

views

4.4.1 Background

Sentiment Analysis in E-Learning Systems

E-Learning domain has recently gained the attention of Sentiment Analysis in order
to get knowledge from new dynamics that E-Learning platforms allow to. By lever-
aging students’ emotions, it might be possible contributing to increase the students’
motivation and improve learning processes. More specifically, the study of senti-
ments in a E-Learning platform can contribute to learning and teaching evaluation,
investigate how technology can influence students’ learning process, evaluate the use
of E-Learning tools, and improve learning content recommendations [105].

The measurement of sentiments and emotions in such platforms should be as
less invasive as possible for not disturbing the learning process and not influenc-
ing the overall opinion. Adoption of textual reviews left by students’ for analyzing
sentiments and emotions is one of the less invasive techniques, because data col-
lection and analysis are completely transparent for students. In literature, various
scenarios where Sentiment Analysis was used to study learning aspects using textual
reviews can be found. For instance, there are works that embrace the use of Sen-
timent Analysis to mine students’ interactions in collaborative tools, guaranteeing
students’ communication privacy in their opinions [106]. Another relevant area that
exploited Sentiment Analysis was the teachers’ assessment. For example, the authors
in [76] adopted a Support Vector Machine to evaluate the teachers’ performance us-
ing 1, 040 comments of systems engineering students as a dataset. The evaluation
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of sentiments in the teaching-learning process was also object of study in [107]. Its
authors adopted comments posted by both students and teachers. Similarly, the au-
thors in [108] studied text sentiment to build an adaptive learning environment with
improved recommendations. For example, they described how to choose a learning
activity for a student based on his/her goals and emotional profile.

Deep Learning for Sentiment Analysis

Machine Learning has been extensively adopted for Sentiment Analysis tasks, us-
ing different types of algorithm and fitting various types of features. For exam-
ple, authors in [109] used Maximum Entropy (ME) and Naive Bayes (NB) algo-
rithms, adopting syntactical and semantic patterns extracted from words on Twit-
ter. Their method relies on the concept of contextual semantic i.e., considering word
co-occurrences in order to extract the meaning of words [110]. In the evaluation on
nine Twitter datasets they obtained better performance when the Machine Learn-
ing algorithms were trained with their method both at tweet and entity level. More
recently, authors in [111] applied NB, ME, SGD, and SVM algorithms to classify
movies reviews in a binary classification problem (i.e., positive or negative evaluation
of reviews). They showed that the use of a n-gram model to represent reviews with
the above algorithms obtains higher levels of accuracy when the value n was small.
Moreover, they showed that combining uni-gram, bi-gram, and tri-gram features
enabled to enhance the accuracy of the method against the use of a single repre-
sentation at once. Machine Learning methods rely on lexical syntactical features
representations which are derived from text, not considering semantic relationships
that can occur between words. Hence, in spite of feature engineering advancements,
there has been a growth of techniques to infer semantics as Deep Learning that has
emerged as an effective paradigm to automatically learn continuously information
from text.

Sentiment Analysis domain also experienced the influence of the wide spread of
Deep Learning approaches. For example, in [19] a CNN composed by two layers was
designed to capture features from character to sentence level. An ensemble Deep
Learning method was proposed by [112], where various sentiment classifiers trained
on different sets of features were combined. They performed experiments on six dif-
ferent datasets coming from Twitter and movies reviews. With their experiments,
they improved the state-of-art against Deep Learning baselines. Another approach
to combine various classifiers with Deep Learning ones was also proposed by authors
in [113], where a SVM classifier was mounted on top of a 7-layer CNN in order to
complement the characteristics of each other and obtain a more advanced classi-
fier. With their variation they were able to obtain more than 3% of improvement
compared to a classic Deep Learning model. To learn continuous representations of
words for Sentiment Analysis a combination of CNN with a LSTM was exploited
by authors in [114]. They were able to assign fixed-length vectors to sentences of
varying lengths, showing how Deep Learning approaches outperform common Ma-
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chine Learning algorithms. Although the use of Deep Learning models have showed
amazing improvements in many domains, they have not been deeply studied for
applications in E-Learning, which can have benefits for exploring users’ opinions.

Word Embeddings for Sentiment Analysis

Word embeddings have been successfully used in various domains, ranging from be-
havioural targeting [115] to Sentiment Analysis. Within the latter, they have been
widely employed for improving accuracy of baselines methods not using word em-
beddings. As traditional word embeddings methods do not usually take into account
words distributions for a specific task, resulting representations might lose impor-
tant information for a given task. In the context of Sentiment Analysis, authors
in [116] incorporated prior knowledge at both word and document level with the
aim to investigate how contextual sentiment was influenced by each word. On the
same direction, other researchers [117] employed sentiment of text for the generation
of words embeddings. In particular, they joined context semantics and sentiment
characteristics, so that in the word embeddings model neighboring words have both
a similar meaning and sentiment. The rationale behind that depends on the fact
that many words with a similar context are usually mapped on similar vector rep-
resentations even if they have an opposite sentiment polarity (e.g., bad and good).
Similarly, authors in [118] augmented sentiment information into semantic word
representations and extended Continuous Skip-gram model (Skip-gram), coming up
with two sentiment Word Embedding models. The learned sentiment word em-
beddings were able to correctly represent sentiment and semantics. Furthermore,
authors in [119] presented a model that uses a mix of unsupervised and supervised
techniques to learn word vector representations, including semantic term-document
features. The model showed performances higher than several Machine Learning
methods adopted for sentiment detection. Focusing on Twitter sentiment classifi-
cation, authors in [120] trained sentiment-sensitive word embeddings through the
adoption of three neural networks designed to detect the sentiment polarity of texts.
Their method encoded sentiment information in the continuous representation of
words. Experiments on a benchmark Twitter classification dataset in SemEval 2013
showed that competitors were outperformed. Last but not least, authors in [121] de-
scribed a procedure with word embeddings for the estimation of levels of negativity
in a sample of 56,000 plenary speeches from the Austrian parliament. They found
out that the different levels of negativity shown by speakers in different roles from
government or opposition parties agree with expected patterns indicated by common
sense hypotheses. Their results showed that the word embeddings approach offers
a lot of potential for Sentiment Analysis and automated text analysis in the social
sciences.

Several challenges have been created to solve Sentiment Analysis polarity detec-
tion task and several resulting winning systems employed word embeddings within
their core. For example, the Semantic Sentiment Analysis challenge [122, 123, 124,
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125], held within the ESWC conference, reached its fifth edition11[126]. The 2018
edition included a polarity detection task where participants were asked to train their
systems by using a combination of word embeddings already generated by the orga-
nizers. The aim was to both validate the quality of their systems (precision/recall
analysis) and detect which combination of embeddings worked better. SemEval is
a workshop on semantic evaluation that takes place each year and includes a set
of tasks in NLP and Semantic Web (e.g., Sentiment Analysis polarity detection).
One participant of the SemEval-2018 edition targeted the task of irony detection in
Twitter [127]. It employed a simple neural network architecture of Multilayer Per-
ceptron with various types of input features, including lexical, syntactic, semantic
and polarity features. The proposed system used 300-dimensional pre-trained word
embeddings from GloVe [23] to compute a tweet embedding as the average of the
embeddings of words in the tweet. By applying latent semantic indexing and extract-
ing tweet representation through the Brown clustering algorithm, it achieved high
performance in both subtasks of binary and multi-class irony detection in tweets. It
ranked third using the accuracy metric and fifth using the F-measure. Kaggle12 is
the world’s largest community of data scientists and offers Machine Learning com-
petitions, a public data platform, and a cloud-based workbench for data science.
It hosts several challenges, and some were related to Sentiment Analysis. For in-
stance, the Sentiment Analysis on Movie Reviews challenge13 asked participants to
label the movie reviews collected in the Rotten Tomatoes dataset [128] on a scale of
five values: negative, somewhat negative, neutral, somewhat positive, positive. One
recent challenge, namely Bag of Words Meets Bags of Popcorn14, looked for Deep
Learning models combined with word embeddings for polarity detection of movie
reviews collected by authors in [119].

4.4.2 Problem Statement

The Sentiment Analysis problem we targeted within the E-Learning domain aims
at automatically predicting the positiveness students’ opinions about courses. The
problem is defined as follows: given a set of students’ reviews R = {r1, . . . , rn},
each one labelled with a score S = {s1, . . . , sn} we want to compute an assignment
γ : R′ → S, where R′ is a set of reviews that have not been labelled. The objective
is to build γ by exploring Deep Learning methodologies in order to support the
development of E-Learning Analytics tools for students of online platforms. Reviews
are first mapped through the use of state-of-the-art word embeddings. Then a Deep
Learning model has been trained by feeding the word embeddings representations
and measuring the MAE and MSE measures. The metrics we have analyzed measure
the effectiveness of the employed word embeddings representations of reviews and

11http://www.maurodragoni.com/research/opinionmining/events/challenge-2018/
12https://www.kaggle.com/
13https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
14https://www.kaggle.com/c/word2vec-nlp-tutorial

http://www.maurodragoni.com/research/opinionmining/events/challenge-2018/
https://www.kaggle.com/
https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
https://www.kaggle.com/c/word2vec-nlp-tutorial
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how well the Deep Learning model assigns scores to them.

4.4.3 Methodology

This section describes as a guide the designing of sentiment prediction models for
educational reviews, and presents practical information on how to implement such
systems. The main components of the proposed solution (Figure 4.9) and the ben-
efits of the designing choices for each of these components will be described. This
helps readers have a broader view of difficulties and solutions behind sentiment
prediction models, and make appropriate decisions during their design.

Review Vectorization

Review Splitting

Word Embedding Modelling

Sentiment Model Training and Prediction

Word2Vec GloVe

FastText Intel

Dcreation Dtrain Dtest

D’train D’test

Word Embeddings E Deep Neural Network Model

Reviews

D

Rating score

Figure 4.9: The base components of our sentiment prediction model.

Review Splitting

The review splitting step serves to define the various input dataset splits while
developing the sentiment prediction model. Firstly, we consider the input dataset
as a set D of N reviews organized as follows:
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D = {(text1, score1), ..., (textN , scoreN)} (4.1)

where texti is a textual review and scorei is an integer rating belonging to the set
C = {score1, ..., scoreM}.
During this step, we thus need to split input data D in three subsets, each for a
specific phase of the development:

1. Dcreation: the sample of data used to create word embeddings.

2. Dtrain: the sample of data used to fit the model (i.e., weights and biases).

3. Dtest: the sample of data used as the gold standard to evaluate the model.

In order to do this, we set up two split ratios and we assign the text-score pairs in
D to the different subsets Dcreation, Dtrain, Dtest according to them:

1. screation ∈ [0, 1]: the percentage of reviews for each class c ∈ C that are
randomly chosen from the set D to create word embeddings, yielding Dcreation.

2. straining ∈ [0, 1]: the percentage of reviews for each class c ∈ C that are
randomly chosen from D \Dcreation to train the model, yielding Dtrain.

The remaining reviews represent Dtest. The overall procedure ensures that the sub-
sets are disjoint and their union covers the entire dataset D.

Word Embedding Modelling

The state-of-the-art method to model a word with a vector is using word embeddings;
it is common to see word embeddings that are 256-dimensional, 512-dimensional, or
1,024-dimensional when dealing with very large vocabularies. There are two ways
to generate and leverage word embeddings:

1. Learn word embeddings jointly with the same context we are interested in by
starting with random word vectors and, then, learning word vectors along the
process, iteratively.

2. Load into the sentiment prediction model word embeddings pre-computed us-
ing a different Machine Learning task than the one we are interested in. If the
amount of training data in Dtrain is small, this is the common solution.

To the best of our knowledge, no word embeddings database specifically targets
the E-Learning context. Therefore, this step goes through the first most general so-
lution of learning word embeddings from scratch, while we also use Word Embedding
pre-computed on other contexts for comparison along the chapter.
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In order to generate word embeddings from scratch, the subset of pre-processed
reviews Dcreation was employed. We concatenated them into a large corpus and this
corpus was fed into a given Word Embedding generation algorithm selected among
the following ones: Word2Vec, GloVe, FastText, or Intel. Each of them outputs a set
of feature vectors E for words in that corpus. The feature values are non-negative
real numbers. For each distinct word w in the vocabulary in Dcreation, there exists a
corresponding feature vector e ∈ E which represents the Word Embedding for that
word. All the feature vectors share the same size. The size of the resulting word
embeddings and of the window where word embeddings generator algorithms look
at contextual words can be arbitrarily selected.

Review Vectorization

The review vectorization is the process of transforming each review into a numeric
sequence. This can be done in multiple ways (e.g., segment text into words and
transform each word into a vector, segment text into characters and transform each
character into a vector, extract n-grams of words or characters, and transform each
n-gram into a vector). The different units into which the text is broken (words,
characters, or n-grams) are called tokens, and breaking text into such tokens is called
tokenization. The process consists of applying some tokenization schemes and then
associating numeric vectors with the generated tokens. These vectors, packed into
sequences, are needed for manipulating text during sentiment model training and
inference.

In order to be treated by machines, we need to turn the datasets Dtrain and Dtest

into a set of integer-encoded pre-processed reviews defined as follows:

D′train = {(text′1, score1), ..., (text′K , scoreK)}∀(texti, scorei) ∈ Dtrain (4.2)

D′test = {(text′1, score1), ..., (text′J , scoreJ)}∀(texti, scorei) ∈ Dtest (4.3)

where each pair (text′i, scorei) includes an integer encoding of the text comment
texti and the original rating scorei from Dtrain and Dtest, respectively.

The process for generating D′train and D′test works as follows. Each word has a
unique associated integer value chosen from a range going from 0 to |V | − 1, where
V is the vocabulary of words in D. For each input review (texti, scorei), we build
an integer-encoded vector text′i from texti, where an integer value at position j in
text′i represents the mapped value for word w for that position in texti. The sets
D′train and D′test are thus vectorized.
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Sentiment Model Definition

This step is necessary for defining the architecture of the deep neural network which
takes pairs of integer-encoded texts and sentiment scores, maps such texts into word
embeddings, and tries to predict the sentiment score from them.

The proposed architecture tailored for sentiment score prediction is shown in
Fig. 4.10. Given that our training process requires running the network on a rather
large corpus, our design choices are mainly driven by the computational efficiency of
the network. Hence, differently from [129], which presents an architecture with two
Bidirectional LSTM layers, we adopt a single Bidirectional LSTM layer architecture.
Moreover, we configure the last layer to return a single continuous value, i.e., the
predicted sentiment score. Therefore, our network is composed by an Embedding
layer followed by a Bidirectional LSTM layer, a Neural Attention mechanism, and
a Dense layer. Each layer works as follows:

1. Embedding Layer takes a two-dimensional tensor of shape (N,M) as input,
where N represents the number of integer-encoded text comment samples,
while M the maximum sequence length of such samples. Each entry is a
sequence of integers passed by the Input Layer. The output of the Embedding

Embedding Layer Input size:     300
Output size:  300

Gaussian Noise Layer Input size:     300
Output size:  300

Dropout Layer Input size:     300
Output size:  300

Bidirectional LSTM Layer Input size:     300
Output size:  128

Dropout Layer Input size:     128
Output size:  128

Attention Layer Input size:     128
Output size:  128

Dropout Layer Input size:     128
Output size:  128

Dense Layer Input size:     128
Output size:  1

Figure 4.10: The proposed Deep Learning model for sentiment score regression
designed to leverage 300-dimensional input text sequences.
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layer is a two-dimensional vector with one embedding for each word w in the
input sequence of words of each text comment t. Before receiving data, the
Embedding Layer loads the pre-trained word embeddings computed during
the previous step as weights. Such weights are frozen, so that the pre-trained
parts are not updated during training and testing to avoid forgetting what
they already know.

2. Bidirectional LSTM Layer is an extension of the traditional LSTM that
generally improves model performance on sequence classification problems. It
trains two LSTM instead of just one: the first is trained on the input sequence
as it is and the second on a reversed copy of the input sequence. The forward
and backward outputs are then concatenated before being passed on to the
next layer, and this is the method often used in studies of bidirectional LSTM.
Through this layer, the model is able to analyze a reviews as a whole, binding
first and last words coming up with a more precise score. Moreover, exploiting
the bidirectional version of a LSTM, the model is able to get patterns that
depend on the learners’ writing style.

3. Attention Layer enables the network referring back to the input sequence,
instead of forcing it to encode all the information forward into one fixed-length
vector. It takes n arguments y1, ..., yn and a context c. It returns a vector z
which is supposed to be the summary of the yi, focusing on information linked
to the context c. More specifically, in our model it returns a weighted arith-
metic mean of the yi, and the weights are chosen according to the relevance
of each yi given the context c. This step can improve performance, detecting
which words more influence the sentiment assignments.

4. Dense Layer is a regular densely-connected layer that implements a function
output = activation(dot(input, kernel)+bias) where activation is the element-
wise activation function, while kernel and bias are a matrix of weights and a
bias vector created by the layer, respectively. The layer uses a linear activation
a(x) = x and provides a single output unit representing the sentiment score.

To mitigate the overfitting, the network augments the cost function within layers
with l2-norm regularization terms for the parameters of the network. It also uses
Gaussian Noise and Dropout layers to prevent feature co-adaptation.

Sentiment Model Training and Prediction

The fresh instance of the sentiment model takes a set of neural word embeddings E
together with a set of pre-processed reviews D′train, as input. With these embeddings
and reviews, the component trains the deep neural network. As an objective, the
network measures the MSE (Mean Squared Error) of the predicted sentiment score
against the gold standard value for each input sequence. Parameters are optimized
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using RMSProp (Root Mean Square Propagation) [130] with learning rate = 0.001.
The network was configured for training on batches of size 128 along 20 epochs,
shuffling batches between consecutive epochs. The trained deep neural network
takes a set of unseen reviews D′test and returns the sentiment score score′ predicted
for that text comment text′, as output.

4.4.4 Results and Discussion

Baselines

We experimented and compared our Deep Learning approach with the following
common Machine Learning algorithms:

• SVM.

• RFs. We use Random Forests with 10 trees with depth 20.

• FNN. We used a common Feed-forward Neural Network (FF) with 10 hidden
layers, as described in Section 2.3.

We exploited the regression algorithm implementations available within the
scikit-learn library. To feed data into these baseline models, we compute the average
of word embeddings for each review. More specifically, given a review r with terms
{t0, ..., tn−1}, we took the associated word embeddings {w0, ..., wn−1} and computed
their average w, which is used to represent the review text. In order to evaluate the
performance of our model, we measured the MSE (Mean Squared Error) and the
MAE (Mean Absolute Error) scores.

Deep Neural Network Model Regressor Performance

Figure 4.11 reports the MAE of regressors used in our experiments. First of all, our
results confirm that Neural Networks, both using a single Feed-forward layer and us-
ing our model, perform better than common Machine Learning algorithms, showing
a lower error. Comparing the Feed-forward baseline with our Deep Neural Network
model, there is a little error difference. It is possible to note that the combination
FF + FastText obtains similar performances of both DNNR + GloVe and DNNR +
FastText. The best performance was obtained by DNNR + Word2Vec. Similar con-
siderations also apply when analyzing the MSE. In fact the DNNR model gets best
performance as well. In contrast with the MAE, no baseline obtains performances
similar to our model.

Contextual Word Embeddings Performance

This further experiment aims to show how the context-trained word embeddings
we generated have advantage over reference generic-trained word embeddings, when
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Figure 4.11: Mean Absolute Error (MAE) of Experimented Regressors.
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Figure 4.12: Mean Square Error (MSE) of Experimented Regressors.
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they are fed into our deep neural network as frozen weights of the Embedding Layer.
In order to evaluate the effectiveness of our approach, we performed experiments us-
ing embeddings of size 300 trained on COCO’s online course reviews. We compared
them against the following reference generic-trained word embeddings of size 300
commonly adopted in literature:

• The Word2Vec15 word embeddings trained on a part of the Google News
dataset including 100 billion words with a vocabulary of 3 million words.

• The GloVe16 word embeddings trained on a Wikipedia dataset including one
billion words with a vocabulary of 400 thousand words.

• The FastText17 word embeddings trained on a Wikipedia dataset including
four billion words with a vocabulary of 1 million thousand words.

Context-trained Intel word embeddings are compared with generic Word2Vec
word embeddings because i) there are not public generic Intel word embeddings,
and ii) the Intel algorithm is an evolution of Word2Vec algorithm.

15https://code.google.com/archive/p/word2vec/
16https://nlp.stanford.edu/projects/glove/
17https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.vec
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Figure 4.13: Comparison between Contextual word embeddings and Generic word
embeddings considering the Mean Absolute Error (MAE).
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Figure 4.14: Comparison between contextual word embeddings and generic word
embeddings considering the Mean Square Error (MSE).

Figure 4.13 shows that there is not a relevant difference between context-trained
word and generic-trained embeddings when the MAE is used for the comparison.
Nevertheless, it is worth underling how the type of embeddings enables to obtain
better results in the E-Learning domain. Context-trained Word2Vec embeddings
show the lowest values of MAE compared to other embeddings types. In contrast,
when the MSE is considered, context-trained embeddings perform better, as shown
in Figure 4.14. In this case, context-trained embeddings have low values of MSE in
almost all cases except for the GloVe word embeddings. The best performance was
obtained by context-trained Word2Vec embeddings, proving that i) Word2Vec is
the best algorithm to learn word representations from our dataset, and ii) context-
trained word embeddings are able to capture specific patterns of the E-Learning
domain. This makes possible to adapt our Deep Learning model on the E-Learning
domain and improve the results in sentiment score prediction.



Chapter 5

Scholarly Domain

5.1 Open Issues

Knowledge graphs are large networks of entities and relationships, usually expressed
as RDF triples, relevant to a specific domain or an organization [131]. Many state-
of-the-art projects such as DBPedia [132], Google Knowledge Graph, BabelNet, and
YAGO build knowledge graphs by harvesting entities and relations from textual
resources, such as Wikipedia pages. The creation of such knowledge graphs is a
complex process that typically requires to extract and integrate various information
from structured and unstructured sources.

Scientific knowledge graphs focus on the scholarly domain and typically contain
metadata describing research publications such as authors, venues, organizations,
research topics, and citations. Good examples are Open Academic Graph1, Schol-
arlydata.org [133], and OpenCitations [134]. These resources provide substantial
benefits to researchers, companies, and policy makers by powering several data-
driven services for navigating, analyzing, and making sense of research dynamics.
One of their main limitations is that the content of scientific papers is represented by
unstructured texts (title, abstract, sometimes the full text) or in the best scenario
as list of terms from a vocabulary (e.g., MeSh, ACM, PhySH, CSO). Therefore, a
significant open challenge in this field regards the generation of Scientific knowledge
graphs that contain also an explicit representation of the knowledge presented in
scientific publications [135], and potentially describe entities such as approaches,
claims, applications, data, and so on. The resulting knowledge graph would be able
to support a new generation of content-aware services for exploring the research
environment at a much more granular level.

Most of the relevant information for populating such a knowledge graph might be
derived from the text of research publications. In the last year, we saw the emergence
of several excellent NLP for entity linking and relationship extraction [136, 135, 137,
138, 139]. However, integrating the outputs of these tools in a coherent knowledge

1https://www.openacademic.ai/oag/

https://www.openacademic.ai/oag/
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graph is still an open challenge.
In this chapter, we present an approach that uses a set of NLP and Machine

Learning methods for extracting entities and relationships from research publica-
tions, and then integrates them in a knowledge graph. Within our work, we refer to
an entity as a linguistic expression that refers to an object (e.g., topics, tools names,
a well-know algorithm, etc.). We define a relation between two entities when they
are syntactically or semantically connected. As an example, if a tool T adopts an
algorithm A, we may build the relationship (T , adopt, A).

The main contributions of the research presented in this chapter are: i) an
approach that combines different tools for extracting entities and relations from
research publications ii) an approach for integrating these entities and relationships,
iii) a qualitative analysis of a generated scientific knowledge graph in the field of
Semantic Web, and iv) an evaluation in terms of precision, recall, and f-measure of
generated triples that compose the scientific knowledge graph.

5.2 Background

Many information extraction approaches for harvesting entities and relationships
from textual resources can be found in literature.

First, entities in textual resources have been detected by applying Part-Of-
Speech (PoS) tags. An example is constituted by [140], where authors provided
a graph based approach for Word Sense Disambiguation (WSD) and Entity Linking
(EL) named Babelfly. Later, other approaches started to exploit various resources
(e.g., context information and existing knowledge graphs) for developing ensemble
methodologies [138]. Following this idea, we exploited an ensemble of tools to mine
scientific publications and get information out of them. Then, we designed and
implemented a software pipeline for the purpose of creating a scientific knowledge
graph that organizes entities and their relations.

An important task for modeling data regards the discovering of relations that
connect two entities. This task has been already addressed in literature in order to
connect data coming from pieces of text. For example, authors in [137] developed
a machine reader called FRED2 which exploits Boxer [141] and links elements to
various ontologies in order to represent the content of a text in a RDF representation.
Among its features FRED extracts relations between frames, events, concepts and
entities. One more project that enables the extraction of RDF triples from text
is [142], where a framework called PIKES has been designed to exploit the frame
analysis to detect entities and their relations. Although these works model text
knowledge into a machine readable format, they have been thought for extracting
general information which makes difficult the use of the generated graphs for specific
domain applications. Moreover, they only consider a single text at a time and do not
consider the source of text they parse. In contrast with them, our approach aims

2http://wit.istc.cnr.it/stlab-tools/fred/

http://wit.istc.cnr.it/stlab-tools/fred/
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at parsing specific type of textual data and, moreover, at combining information
from various textual resources. We decided to rely on open domain information
extraction tool results refined by considering the domain of data. In addition, we
combined entities and relations coming from different scientific papers instead of
considering single results of our texts at a time. With our approach the resulting
knowledge graph represents the overall knowledge presented in the input scientific
publications.

Focusing more on the Scholarly Domain, extraction of relations from scientific pa-
pers has recently raised interest within the SemEval 2018 Task 7 Semantic Relation
Extraction and Classification in Scientific Papers challenge [143], where participants
had to face the problem of detecting and classifying domain-specific semantic rela-
tions. An attempt to build knowledge graphs from scholarly data was performed
by [139], as an evolution of their work at SemEval 2018 Task 7. Authors proposed
both a Deep Learning approach to extract entities and relations, and then they built
a knowledge graph on a dataset of 110, 000 papers. Our work finds inspiration from
it, but we used different strategies to address open issues for combining entities and
relations. For example, for solving ambiguity issues that regard the various rep-
resentations entities can have, authors of [139] considered clusters of co-referenced
entities to come up with a representative entity in the cluster. On the contrary, we
adopted textual and statistics similarity to solve it. Furthermore, they only used
a set of predefined relations that might be too generic for the purpose of yielding
insights from the research landscape.

5.3 Problem Statement

Given a large collection of research papers, we want to generate a large-scale knowl-
edge base, that will include all relevant entities in a certain domain and their re-
lationships. More in detail, given a set of scientific documents D = {d1, . . . , dn},
we build a model γ : D → T , where T is a set of triples (also referred as relation-
ships) (s, p, o) where s and o belong to a set of entities E and p belongs to a set of
relations labels L. Each triple needs also to be associated with the set of papers it
was extracted from, allowing to assess how supported is the relevant claim in the
original collection of documents. The resulting knowledge graph can be employed
for different problems of new research fields (e.g., detection of research communities,
their dynamics and trends, forecasting of research dynamics using sentiment analy-
sis, measuring fairness of open access datasets, etc.), and, in general, as a support
resource for scientists in conducting scientific research.
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Figure 5.1: Workflow of our approach for building a scientific knowledge graph from
scientific textual resources.

5.4 Methodology

In this section, we describe the approach that we applied to produce a scientific
knowledge graph of research entities. The workflow of our pipeline is shown in
Figure 5.1. In short, our framework includes the following steps:

1. Extraction of entities and triples, which exploits an ensemble of several
NLP and Machine Learning tools to extract triples from text.

2. Entity refining, in which the resulting entities are merged and cleaned up.

3. Triple refining, in which the triples extracted by the different tools are
merged together and the relations are mapped to a common vocabulary.

4. Triple selection, in which we select the set of ”trusted” triples that will be
included in the output by first creating a smaller knowledge graph composed
by triples associated with a good number of papers and then enriching this
set with other semantically consistent triples. In the following subsection we
will describe the architecture in more details and discuss the specific NLP and
Machine Learning tools that we used in the implementation of our prototype.
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5.4.1 Extraction of Entities and Relations

For extracting entities and relations, we exploited the following methods:

• The extractor framework [139] designed by Luan Yi et al. that we modified and
embedded within our pipeline. It is based on Deep Learning models and pro-
vides modules for detecting entities and relations from scientific literature. It
detects six types of entities (Task, Method, Metric, Material, Other-Scientific-
Term, and Generic) and seven types of relations among a list of predefined
choices (Compare, Part-of, Conjunction, Evaluate-for, Feature-of, Used-for,
Hyponym-Of ). For the purpose of this work, we discarded all the triples with
relation Conjunction, since they were too generic. In particular, the extractor
framework uses feed-forward neural networks over span representations of the
input texts to compute two scores v1 and v2. The score v1 is computed on
single spans and measures how likely a span may be associated to an entity
type. The second score v2 is a pairwise score on a pair of span representa-
tions and measures how likely spans are involved in a relation. Therefore, for
a given pair of span representations, let’s say (t1, t2), the scores vt11 , vt21 , and

v
(t1,t2)
2 are computed. If both vt11 and vt21 meet a threshold tentity, and v

(t1,t2)
2

meets a threshold trelation than the span representations t1 and t2 are labelled
as entities, and their pair as relationship (t1, t2). The type of entity where the
value v1 is the highest is associated to the entity itself. Similarly, a pair (t1, t2)
is associated to the type of relation r where the pair has the highest value
of v2, yielding the triple (t1, r, t2). We refer to this framework as Extractor
Framework.

• The CSO Classifier [144] 3, a tool for automatically classifying research pa-
pers according to the Computer Science Ontology (CSO)4 [101], which is a
comprehensive automatically generated ontology of research areas in the field
of Computer Science. It identifies topics by means of two different compo-
nents, the syntactic module and the semantic module. Then it combines their
outputs and enhances the resulting set by including all relevant super-topics.
The syntactic module removes English stop words and collects unigrams, bi-
grams, and trigrams. Then, for each n-gram, it computes the Levenshtein
similarity with the labels of the topics in CSO. Finally, it returns all research
topics whose labels have a similarity score equal to or higher than a thresh-
old to one of the n-grams. The semantic module uses part-of-speech tagging
to identify candidate terms composed of a proper combination of nouns and
adjectives and maps them to the ontology topics by using a Word2Vec model.
Then, the module computes a relevance score for each topic in the ontology by
considering the number of times the topic was identified within the retrieved
words.

3https://github.com/angelosalatino/cso-classifier
4http://cso.kmi.open.ac.uk

https://github.com/angelosalatino/cso-classifier
http://cso.kmi.open.ac.uk
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• OpenIE [145] provided by the Stanford Core NLP suite. It detects general en-
tities and relations among them. Relations are detected by analyzing clauses
(i.e., groups of words that contain at least a subject and a verb) which are
built by exploring the parse tree of the input text. In the first stage, the
methodology produces clauses from long sentences which stand on their own
syntactically and semantically. For doing so, it uses a multinomial logistic re-
gression classifier to recursively explore the dependency tree of sentences from
governor to dependant nodes. Then, it applies logical inferences to capture
natural logic within clauses by using semantics dictating contexts. Doing so,
OpenIE is able to replace lexical items with something more generic or more
specific. Once a set of short entailed clauses is produced, it segments them
into its output triples. In our approach we keep triples where entities match
those found by the Extractor Framework and the CSO Classifier, so that we
caught only those triples that refer to entities of the target domain.

• The Stanford Core NLP PoS tagger 5 which extracts predicates between the
entities identified by the Extractor Framework and the CSO Classifier. More
specifically, for each sentence si it detects all verbs V = {v0, . . . , vk} between
each pair of entities (em, en) and generates triples in the form<em, v, en>where
v ∈ V .

We processed each sentence from all the abstracts and used the tools and methods
above to assign to each sentence si a list of entities Ei and a list of triples Ri.

First, we run the extractor framework to extract both entities Ei and triples Ri.
Secondly, we used the CSO Classifier to extract all Computer Science topics, further
expanding Ei. Thirdly, we processed each sentence si with OpenIE, and retrieved all
the triples composed by subject, verb, and object in which both subject and object
matched the entities resulting from the previous steps. Finally, for each sentence
si we took all the verbs within two entities through the PoS Tagger, yielding Ri

thoroughly expanded.

5.4.2 Entities Manager

Different entities in Ei may have a wrong representation due to errors in the ex-
traction process. For example, two different entities may actually refer to the same
concept with alternative forms, or may represent too generic concepts that do not
carry meaningful information. In this section, we briefly describe which steps we
have performed by the Entities Refiner and Entities Mapper modules in order to
address these issues.

5https://nlp.stanford.edu/software/tagger.shtml

https://nlp.stanford.edu/software/tagger.shtml
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Entities Refiner Module

Many of the entities resulting from previous steps can be noisy, ambiguous, and too
generic. The goal of this module is to preprocess the entities, merging alternative
labels, discarding ambiguous and generic entities, and splitting the ones that include
compound expressions.

Cleaning up entities. First, we removed punctuation (e.g., dots and apostrophes)
and stop-words (e.g., pronouns) from entities. We also removed some words that
might be mixed up (e.g., it might be the pronoun it or the acronym of information
technology) by using a blacklist.

Splitting entities. Some entities actually contained multiple compound expres-
sions, e.g., Machine Learning and Data Mining. Therefore, we split entities that
contain the conjunction and. Referring to our example, we obtained the two entities
Machine Learning and Data Mining.

Handling Acronyms. Acronyms are usually defined, appearing the first time near
their extended form (e.g., Web Ontology Language (OWL)) and then by themselves
in the rest of the abstract (e.g., CSO). In order to map acronyms with their extended
form in a specific abstract we use a regular expression. We then substituted every
acronym (e.g., OWL) in the abstract with their extended form (e.g., Web Ontology
Language). Since acronyms can be ambiguous, we perform this operation only on
entities from the same abstract.

Detection of Generic Entities. Entities might be too generic for the purpose to
describe the knowledge of a domain (e.g., content, time, study, article, input, and so
on.) We discard these kinds of entities by applying a frequency-based filter which
compares the frequency of the entities in three set of documents:

• the set of publications of the target domain.

• a set of the same size covering Computer Science domain, but not the target
domain.

• a set of the same size containing papers from various domains, but not about
the target domain nor the Computer Science.

For each entity e, we computed the number of times it appeared in the above
datasets, so that we had three different counts c

′
e, c

′′
e , c

′′′
e . We normalized the counts

by dividing them with the number of words of the set where they were computed.

Then we computed the ratios r
′
e = c

′
e

c′′e
and r

′′
e = c

′
e

c′′′e
. If the ratio r

′
e met a threshold

t
′
e = 2, and the ratio r

′′
e met a threshold t

′′
e = 10 the entity e was included in the

graph. Thresholds were empirically defined by manually evaluating which entities
were saved/discarded. In addition, we automatically preserved all entities within a
whitelist composed by CSO topics and all the paper keywords in the initial dataset.
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Entities Merger Module

We merge entities with the same meaning by using both a lemmatizer and the CSO
ontology. Singular and plural forms are combined by using the Lemmatizer available
in the SpaCy6 library. Then we exploited the alternative labels described by CSO
to merge entities that refer to the same research topic (e.g., “ontology alignement”
and “ontology matching”). More specifically, given an entity e ∈ E that is known
by CSO, let A = {e0, ..., ek−1, e} be the set of alternatives of e in CSO. The module
first found the longest label elongest ∈ A, then each instance e ∈ E ∩A is substituted
by elongest.

5.4.3 Relations Manager

This step aims at (i) finding the best relation predicate for each pair of entities ei, ej
where a relation exists (each element in R), and (ii) mapping all the relations within
a table we have defined.

Best Relation Finder Module

Here, the set of triples R presents three different types of triples: those extracted
by the Extractor Framework, let us say REF , those coming from OpenIE, let us
say ROIE, and those detected with the PoS tagger, called RPoS. We performed the
following operations on these sets:

• On the set of triples in REF we acted as follows. Given a pair of entities
(ep, eq) in REF , we merged into a list Lr all relations’ labels ri such that
(ep, ri, eq) ∈ REF . Then we chose the most frequent relation rmost frequent ∈ Lr,
and built a single triple (ep, rmost frequent, eq). Triples so built formed the set
TEF . Clearly, the size of the set TEF is lower than the size of the set REF .

• On the set ROIE we performed a deeper merging operation. Similarly to the
work performed on REF , given a pair of entities (ep, eq) in ROIE, we first
merged into a list Lr all relations’ labels ri such that (ep, ri, eq) ∈ ROIE. In
ROIE all triples have a verb as relation predicate. Hence, we assigned each ri to
its word embedding wi from the word embeddings built on the MAG dataset,
yielding the list Lw. With the word embeddings in Lw an averaged word
embedding wavg was built. Then, the relation ri with the word embedding wi

nearest to wavg according to the cosine similarity was chosen as final relation
for the pair (ep, eq), yielding the triple (ep, wi, eq). The same procedure was
also applied on RPoS. The execution of this procedure on ROIE and RPoS

yielded the sets TOIE and TPoS, respectively.

6https://spacy.io

https://spacy.io
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• Finally, for the sets TEF , TOIE, and TPoS, we saved for each triple (ep, ri, eq)
the number of papers where the pair of entities (ep, eq) appeared. We refer to
this number as the support of triples.

Mapper Module

In order to reduce the number of relations available in the output, we designed a
mapping M to assign to similar predicate a single label (for example, the list of verbs
uses, adopts, employs, and so on, were mapped to the label uses). The mapping was
created by first clustering all the relations in TOIE and TPoS according to their word
embeddings. We used a hierarchical clustering algorithm provided by the SciKit-
learn library7 which uses 1− cosine similarity as distance. The resulting dendrogram
was cut by an empirically determined threshold of Silhoutte-width = 0.65.

Finally, we manually revised resulting clusters and defined a mapping M , which
map each predicate to a specific label. Relations of all triples from the union of TEF ,
TOIE, and TPoS were mapped by using M .

5.4.4 Triples Selection

In this section the method we employed to choose only certain triples is presented.
We also define what we mean with the words valid and consistent associated to our
triples in order to build the scientific knowledge graph.

Valid Triples

For the purpose of including meaningful triples within our knowledge graph, we first
define a smaller knowledge graph composed of “valid” triples. These can be defined
in different way according to the performance of the tools in the first step and the
number of papers supporting a certain triples.

In the current prototype we define as valid the following triples:

• All triples extracted directly from a specific sentence. Therefore, we consider
valid all the triples obtained by the Extractor Framework (TEF ) and the Ope-
nIE tool (TOIE).

• All triples associated with at least 10 papers (indicating a fair consensus).
Therefore, we consider valid the triples that were detected by the PoS tagger
associated with at least 10 papers. We refer to this set as T ′PoS such that
T ′PoS ⊆ TPoS.

The union of TTF , TOIE, and T ′PoS composed the set of all valid triples Tvalid.

7https://scikit-learn.org

https://scikit-learn.org
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Consistent Triples

The set of triples not in Tvalid, that we label Tinvalid, may still include several good
triples that were not associated to sizable number of papers. We thus use the triples
in Tvalid as examples to learn which triples are consistent with the valid ones and
could still be included in the final outcome. Specifically, we trained a classifier
γ : P → L where P is a set of pair of entities in Tinvalid and L is the set of relations
used in M (e.g., “uses”, “provides”, “improves”), with the aim of comparing the
actual relation with the one returned by the classifier. The intuition is that a triple
consistent with Tvalid would have its relation correctly guessed by the classifier. In
order to do so, we performed the following steps:

1. We generated word embeddings of size 300 by processing with the Word2Vec
algorithm [22, 16] all the input abstracts. For multi-word entities we replaced
white spaces with underscore characters within our abstracts texts (e.g., the
entity semantic web becomes semantic web).

2. We trained a Multi-Perceptron Classifier (MLP) to return the relation between
a couple of entities. We used the concatenation of the embeddings of subject
and object entities as input and the relation as output.

3. The validation step was performed by applying the classifier on all the triples
(ep, r, eq) in Tinvalid and comparing the actual relation r with the relation re-
turned by the classifier r′. If r = r′ then the triple (ep, r, eq) was considered
valid and added to Tvalid. Otherwise we computed the cosine similarity cos sim
and the Wu-Palmer 8 similarity between the embedding of r and r′. If the av-
erage between cos sim and wup sim was higher than a threshold (t = 0.5
in the prototype) then the triple (ep, r, eq) was considered valid and added to
Tvalid.

5.4.5 Knowledge Graph Enhancement

In order to augment the extent of the information we also added to the resulting
knowledge graph all the additional triples that could be inferred by exploiting the
hierarchical relations in CSO. More precisely, given a triple (e1, r, e2), if in CSO the
entity e3 is superTopicOf of the entity e1 and there is no triple involving e3 and e2, we
also infer the triple (e3, r, e2). For instance, given the triple (“NLP systems”, “use”,
“DBpedia”) if “Semantic Web Technologies” is superTopicOf “DBpedia”, we can
infer the triple (“NLP systems”, “use”, “Semantic Web Technologies”). This last
step was performed by the CSO Triples Integrator module in the pipeline. Finally,
the triples are converted to RDF and returned.

8http://www.nltk.org/howto/wordnet.html

http://www.nltk.org/howto/wordnet.html
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Table 5.1: Examples of triples that our pipeline detects.

Subject Entity Relation Object Entity

semantic web technologies supports contextual information
semantic relationship defines ontologies

structural index uses structural graph information
thesaurus hyponymy-of/is knowledge organization system

web page classification uses text of web page
question answering systems uses semantic relation interpreter

5.5 Results and Discussion

This section details the scientific knowledge graph we have produced and shows how
we have performed its validation.

5.5.1 The Semantic Knowledge Graph

Here we report the result of our framework, focusing on the field of Semantic Web
domain. We used an input dataset composed by 26, 827 abstracts of scientific pub-
lications about this domain that was retrieved by selecting publications from the
Microsoft Academic Graph dataset9. It is a knowledge graph related to the schol-
arly domain that describes more than 200 million scientific publications through
metadata such as title, abstract texts, authors, venue, field of study and so on. For
our purpose we considered only abstracts that were classified under Semantic Web
by the CSO Classifier [144]. This same dataset has also been used for exploring the
relationship between Academia and Industry by Angioni et al. [146].

A few examples of retrieved triples can be seen in Table 5.1.

The resulting knowledge graph includes 109, 105 triples (87, 030 from the Extrac-
tor Framework (TEF ), 8, 060 from OpenIE (TOIE), and 14, 015 from the PoS tagger
method and classifier (T ′PoS + Cons. Triples).

However, the raw number of triples extracted by each method can be misleading.
Indeed, not all triples are equal. Some are supported by a large number of papers,
suggesting a large consensus of the scientific community and more in general a claim
that can easily be trusted, while some others appear in one or very few papers.

Figures 5.2 reports the distribution of the support of the triples produced by
TEF , TOIE and T ′PoS + Cons. Triples.

While TEF produces the most sizable part of those triples, most of them has
a very low support. In fact, 80, 030 of them are supported by a single paper and

9https://www.microsoft.com/en-us/research/project/microsoft-academic-graph

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph
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Figure 5.2: Comparison of the distribution of the support of the three methods.

862 by only three papers. They may thus contain claims that did not reach yet a
consensus in the community. For all the other support values, the set T ′PoS + Cons.
Triples has a higher number of triples than TEF and TOIE and, hence, it is possible
to assume that T ′PoS triples may be more in accordance within the community of
Semantic Web. For instance, if we take in consideration only the triples whose
support is equal or greater than 5, only 393 triples are provided by the set TEF , 45
by TOIE and, 1, 268 by T ′PoS + Cons. Triples. It is also worth to note that when the
support is very high (e.g., equal or greater than 50) there are not triples provided by
the set TOIE, and few triples provided by TEF . This still stresses the fact that those
triples might not express valuable knowledge or have consensus within the Semantic
Web community.

5.5.2 Gold Standard Creation

We first used several different approaches to generate triples from the 26, 827 ab-
stracts described in the previous section. Specifically, we applied on this dataset:
1) TEF (i.e.,the Extractor Framework), 2) TOIE (i.e., OpenIE), 3) T ′PoS (considering
only the triples with support ≥ 10), and T ′PoS + Cons. Triples.

The resulting set of 109, 105 triples would be unfeasible to manually annotate,
since it is very large and too sparse in term of expertise. We thus focused only on
818 triples which contain (as subject or object) at least one of the 24 sub-topics of
Semantic Web and at least another topic in the CSO ontology. This set contains
401 triples from TEF , 102 from TOIE, 60 triples from T ′PoS and 110 relevant Cons.
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Figure 5.3: Distribution of triples within the gold standard.

Triples. In order to measure the recall, we also added 212 triples that were discarded
by the framework pipeline. The reader notices that the total number of triples (818)
is slightly less than the sum of various sets (401+102+60+110+212) because some
triples have been derived by more than one tool. The triples distribution of the gold
standard can be observed in Figure 5.3.

We recruited five researchers in the field of Semantic Web and asked them to
annotate each triple either as true or false. The averaged agreement between experts
was 0.747 ± 0.036, which indicates a high inter-rater agreement. We then created
the gold standard using the majority rule approach. Specifically, if a triple was
considered relevant by at least three annotators, it was labeled as true, otherwise as
false. The purpose of this gold standard is twofold. First, it allows us to evaluate
the proposed pipeline to extract triples from scholarly data and, second, it provides
a resource which will facilitate further evaluations.

5.5.3 Precision, Recall, F-measure Analysis

For evaluating our methodology, we performed a precision, recall, F-measure analysis
considering various combinations of relations sources.

We tested eight alternative approaches:

• The Extractor Framework from Luan Yi et al. [139] (EF) described in sec-
tion 5.4.1.

• OpenIE, from Angeli et al. [145] (OpenIE) described in section 5.4.1.

• The Stanford Core NLP PoS tagger described in section 5.4.1, after merging
the relevant triples as described in section 4.3.1. (T ′PoS). We considered only
the triples with support ≥ 10.

• The previous approach enriched by consistent triples as described in section
4.4.2 (T ′PoS + Cons. Triples).
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• The combination of EF and OpenIE (EF + OpenIE).

• The combination of EF and T ′PoS + Cons. Triples (EF + T ′PoS + Cons.
Triples).

• The combination of OpenIE and T ′PoS + Cons. Triples (OpenIE + T ′PoS +
Cons. Triples).

• The final framework that integrates all the previous methods (OpenIE + EF
+ T ′PoS + Cons. Triples).

Table 5.2 reports precision, recall, and F-measure of all the methods.

EF obtains an high level of precision (84.3%), but a recall of only 54.4%. OpenIE
and T ′PoS shows a slightly lower level of precision and an even lower recall. T ′PoS +
Cons. Triples obtains the best precision of all the methods (84.7%), highlighting
the advantages of using a classifier for selecting consistent triples. Overall, all these
basic methods produce triples with good precision, but suffers in term of recall.

Combining them together generally raises the recall without paying too much in
term of precision. EF + OpenIE yields a F-measure of 72.8% with a recall of 65.1%
and EF + T ′PoS + Cons. Triples a F-measure of 77.1% with a recall of 71.6%. The
final version of our framework which combines all the previous methods, obtains the
best recall (80.2%) and F-measure (81.2%) and yields also a fairly good precision
(78.7%). This seems to confirm the hypothesis that an hybrid framework combining
supervised and unsupervised methods would produce the most comprehensive set
of triples and the best performance overall.

Table 5.2: Precision, Recall, and F-measure of each method adopted to extract
triples. To note that the last row identified the triples extracted using the full
pipeline.

Triples identified by Precision Recall F-measure

EF 0.8429 0.5443 0.6615
OpenIE 0.7843 0.1288 0.2213
T ′PoS 0.8000 0.0773 0.1410

T ′PoS + Cons. Triples 0.8471 0.2319 0.3641
EF + OpenIE 0.8279 0.6506 0.7286

EF + T ′PoS + Cons. Triples 0.8349 0.7166 0.7712
OpenIE + T ′PoS + Cons. Triples 0.8145 0.3253 0.4649

OpenIE + EF + T ′PoS + Cons. Triples 0.7871 0.8019 0.8117



5.5. RESULTS AND DISCUSSION 95

5.5.4 Examples and considerations about the Scientific
Knowledge Graph

In this section, we show some sample of the triples extracted for the Semantic Web
Knowledge Graph and discuss benefits and limitations of our output.

Table 5.3 shows a selection of the triples about the research topic ontology align-
ment, ranked by support. It is easy to see that many of these triples define the
fundamental characteristics of ontology alignment. The topic is contextualized (via
“skos:broader” relations) within the areas of semantic web technologies and infor-
mation integration. Ontology alignment is defined as an entity that uses ontologies,
selects semantic correspondences, and supports semantic interoperability.

Several other triples add further details, such as that ontology alignment finds se-
mantically related entities, adopts semantic similarity measures, and limits the need
for human intervention. Naturally, the representation also suffers from some issues
that we plan to address in future work. For instance, the triples <ontology align-
ment, selects, mapping> and <ontology alignment, supports, semantic relations>
appear too ambiguous. This may be either a limitation of our vocabulary of rela-
tions or an issue in the methodology used for merging together the triples from the
PoS tagger. Similarly in <ontology alignment, produces, semantic web application>
the predicate does not appear to be correct, maybe “support” would be a better
choice in this case. We thus plan to work further on our approach for merging triples
and select the best predicate between two entities.

The triple <ontology alignment, produces, semantic web application > shows
another typical issue. In the knowledge graph we have both distributed and hetero-
geneous ontology and heterogeneous ontology but no link between the two. In the
future we need to be able to detect that distributed and heterogeneous ontology is
actually a sub-concept of heterogeneous ontology.

Figure 5.4 shows a graphical representation of the research topic ontology evalua-
tion. It is interesting to notice how this representation is also fairly interpretable by
human users. Some examples about the information that can be derived includes:

• ontology evaluation uses natural language techniques. It suggests that there
might be tools or methodologies that exploit textual resources written in nat-
ural language that have been involved in ontologies evaluation.

• ontology evaluation is hyponym of the entity ontology construction indicating
that a specialized task within ontology construction involves the evaluation of
the produced ontologies.

• ontology evaluation is hyponym of instance data evaluation which shows in
which more general task the ontology evaluation falls.

Finally, it is also interesting to consider an entity that is not so much represented
in the input dataset. Figure 5.5 shows the subgraph of the entity supervised machine
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Table 5.3: Examples of triples from the Semantic Web Knowledge Graph.

Subject Entity Relation Object Entity Support

ontology alignment uses ontologies 194
ontology alignment skos:broader semantic web technologies 65
ontology alignment selects semantic correspondence 45
ontology alignment supports semantic interoperability 34
ontology alignment maintains heterogeneous ontology 25
ontology alignment selects mapping 21
ontology alignment selects semantically related entity 19
ontology alignment supports semantic relation 17
ontology alignment produces semantic web application 14
ontology alignment combines concept similarity 13
ontology alignment supports semantic heterogeneity problem 13
ontology alignment limits human intervention 12
ontology alignment executes semantic similarity measures 12
ontology alignment produces ontology mapping method 11
ontology alignment provides distributed and heterogeneous ontology 10
ontology alignment skos:broader information integration 10
ontology alignment uses mapping system 10
ontology alignment provides matching technique 10
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Figure 5.4: The subgraph of the entity ”ontology evaluation” with related relation-
ships in our Scientific Knowledge Graph within the Semantic Web domain.

learning. This representation is useful to highlight which topics and kind of resources
are employed by supervised machine learning within the Semantic Web domain. As
an example, it is easy to see that this entity uses both structured data model and
rich semantics, and how these two entities are related as well. In the example, only
two types of relations appear (i.e., uses and includes). They seem too generic, in
fact, it is not clear how supervised machine learning adopts the other linked entities.
This can indicate that our taxonomy of predicates may be too general and we may
have to adopt a more fine grained representation in future work.

Overall, the knowledge graph seems to contain triples of good quality that well
represent the main characteristics of research entities within the context of the input
dataset. We thus believe that this version may already be used for enhancing the
representation of research items and supporting users in understanding and navi-
gating research outcomes.

Although the good results we obtained within this research work, there are open
issues that need to be still addressed and solved. One of these regards entities that
are not present in CSO (although they might be related to the computer science
domain, they might be written with different terms thus not matching those present
in CSO) and, therefore, they are not topics, leaving entities with different forms
within our triples. This can raise ambiguity issues within the knowledge graph,
not allowing detailed analysis of the research landscape of the produced knowledge
graph. Further improvements by considering semantic similarity between entities
need to be developed for the sake of intelligibility of the graph information.
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Figure 5.5: The subgraph of the entity ”supervised Machine Learning” with related
relationships in the produced Scientific Knowledge Graph within the Semantic Web
domain.

One more direction we are interested to explore regards the possibility to have
more relations between a pair of entities. Our current scientific knowledge graph
allows only one relation from each embedded tool, thus it may have limitations
in the exploration of the research landscape. Having more than one relation can
suggest different applications or uses of entities, increasing the probability of finding
unconsidered issues and solutions within research areas.

Specifically on the pipeline, we would like to add new features by including
trending developments such as various kind of embeddings (e.g., embeddings built
on graphs) to better capture the knowledge of scientific literature and allow further
analysis on data. Moreover, we would like to make the pipeline more efficient since
during various tests we noticed that there are bottlenecks that could make difficult, if
not impractical, the parsing of big datasets. First, the Extractor Framework requires
a lot of hard disk space. This entails that data must be sampled to be processed.
Second, the current pipeline only adopts the Stanford Core NLP server with just
one thread, asking for a long time to mine textual resources sentence-by-sentence,
thus limiting the adoption of the whole pipeline on big datasets. However, this is
not a big issue since it would be possible to run the Stanford Core NLP server in
multi-thread mode, so speeding up the extraction process. Finally, we intend to test
several kinds of word and graph embeddings on this task.



Chapter 6

Patterns on Graphs

6.1 Open Issues

Imagine describing a road map with words alone. The task would be difficult and
unclear to most people. Networks provide a far better representation of any data
representing interrelationships. However, because the size of networks (for exam-
ple, in social science) can extend to thousands, millions, or even billions of nodes,
networks themselves need to be abstracted for the sake of intelligibility and insight.

A frequent way to reduce the size of the problem is to discover similar components
and give them a common name. Linguists do this when they categorize parts of
speech (noun, verb, adverb etc). Biologists do this when they group animals into
species and families. In networks, scientists do this by finding connected labeled
sub-components that are isomorphic in label and topology. Formally, this entails
finding common subgraphs or motifs that occur with a certain frequency.

Much research has proposed algorithms that aim at finding frequent motifs [147,
148, 149, 150, 151]. The motivation is usually to gain insights about metabolic
and protein-protein interactions, ecological food-webs, social networks, collaboration
networks, information networks of interlinked documents and products [152, 153,
154, 155, 156, 157, 158, 159, 160].

Most of this work does not distinguish between motifs that overlap and motifs
that do not. However, this distinction can be critical for understandability. For
example, households are a convenient abstraction in social graphs because they are
disjoint whereas friendship motifs do not tend to be. For networks whose motifs are
not naturally disjoint, identifying disjoint motifs may help to understand network
structure (e.g., cliques in friendship networks). A recent research work that explored
disjoint motifs is [161], which introduced algorithms to find edge-disjoint motifs in
unlabeled networks. Similarly, the work presented in this chapter focuses on node-
disjoint motifs which share neither nodes nor edges in labeled networks.

Once disjoint motifs of a certain size k have been identified, each such motif can
be collapsed into a supernode, which is a single node that inherits all the connections
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(a) (b)

Figure 6.1: Example of motifs collapsed into supernodes in a Protein-Protein Inter-
action network. (a) The original nodes of the network. (b) The new nodes of the
network after two motifs of size three have been collapsed.

and properties of nodes the compose the motif. This procedure can be recursively
performed in order to find motifs on graphs consisting of a combination of nodes
and super-nodes. Figure 6.1 shows an example where motifs have been collapsed
into supernodes.

This kind of approaches results particularly useful for biological networks which
usually describe how molecules interact to perform biological functions. These net-
works are represented by graphs where the nodes and the edges represent the inter-
acting molecules and the interactions between them respectively. Detecting motifs
has a great potential to help the study of the biological functions such as gene reg-
ulatory or protein-protein interactions served by these networks. Motifs are ever
more considered the building blocks of networks. Hence, the scientific community
is continuously studying and providing novel tools combining knowledge from biol-
ogy and computer science background for helping biologists in analyzing biological
networks.

Thus, in this chapter a tool called Supernoder is presented. It finds disjoint
motifs on a base graph G1, reducing G1 to a new graph G2, and then recursively
repeats the procedure to find G3, G4, and so on. SuperNoder attempts to find the
most possible disjoint frequent motifs of a given size in a target network in each
stage of the process. We present several techniques to achieve this goal.

Orthogonally, the SuperNoder tool can take input nodes at different layers in
a label hierarchy. For example in phylogeny, there is a hierarchy of species, genus,
family, kingdom. Relationships that may be obscure at a low level may be clearer
at a high level (e.g., felines eat rodents).

This chapter makes three contributions:

• Efficient algorithms to find disjoint supernodes in labeled networks, including
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networks already containing supernodes, yielding a recursive algorithm.

• A tool incorporating these algorithms that is free to the community.

• Example applications to show the usefulness of the approach.

6.2 Background

In this section, we first provide theoretical definitions that will help the reader to
understand the work addressed within this chapter. Then, we briefly present the
literature about this topic. Labeled networks or graphs are formally characterized
by a triple G = (N,E,L) where N denotes a set of nodes, E denotes a set of edges
(pairs) e = (ni, nj) ∈ N , and L is a mapping from N to some set of labels. Edges
represent an application-dependent relationship. For instance, an edge may connect
two nodes representing people if the people are friends.

We say that a graph is undirected if every edge from n to n′ implies the existence
of an edge from n′ to n. Otherwise the graph is said to be directed. A subgraph is a
connected component GS = (NS, ES) such that NS ⊆ N and ES ⊆ E if there exists
a path from each ni ∈ NS to each nj ∈ NS. A k − subgraph is a subgraph with k
nodes.

Two subgraphs S1, S2 are isomorphic if (i) there exists a bijective function f :
NS1 → NS2 such that for each pair (ni, nj) ∈ ES1 ↔ (f(ni), f(nj)) ∈ ES2 and (ii)
for all k, the label of nk i.e., L(nk) is the same as L(f(nk)). To count the number
of occurrences of a given subgraph, three different measures can be used [162]. The
first measure, named F1, is the count of each subgraph regardless of whether it
overlaps with others. The second one, named F2, avoids overlaps of subgraphs if
they share at least an edge (or equivalently a connected pair of nodes). The last
one, named F3, requires that two subgraphs share no nodes. Therefore, F3 is the
most strict criterion of disjointness (and is the one used in this paper). We define
the frequency of a subgraph S1 in G as the number of occurrences of S1 in G. We
call subgraphs k −motifs if they have k nodes occur over a threshold t using the
F1 measure.

In literature, frequent (based on the possibly overlapping F1 measure) motifs
have been shown to give insights in regulatory [163], food-web [164, 165, 166], and
social science [167, 168] networks. Reduction methods aim at minimizing the loss
of information while maximizing the understandability, often establishing which
components are less interesting for the behavior of networks. Recent studies have
focused on finding high-order clusterings [169, 170]. However, most of this research
has focused on modeling graphs without considering node labels, despite the fact
that many networks have them. Moreover, they usually consider overlapping motifs,
therefore, a single node can belong to several patterns, making further analysis (and
understandability) difficult.
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An early compression graph method was proposed by [171] where the authors
show how finding substructures and merging them in vertexes for compressing data.
Our approach builds on theirs, but their approach does not find all substructures
that occur nor does it attempt to find the most highly repetitive subgraphs which
are the best candidates for capturing subgraph regularities.

Our work also draws inspiration from [161] where the authors propose two meth-
ods to find disjoint motifs under the F2 frequency measure (where two graphs are dis-
joint if they do not share a common edge). First, they propose a method to find mo-
tifs based on a small set of patterns, and then give methods to find non-overlapping
motifs solving the Maximum Independent Set (MIS) problem. They invented their
own method for finding frequent motifs and did not choose to compare their method
with state-of-the-art motif-finding techniques [172, 173, 174, 175, 176, 177]. By con-
trast, we have chosen to base our approach on the motif-finding algorithm of [172]
because of its simple implementation and promising results [178]. As in [161], the
second phase of our algorithm uses an overlap graph, and we have explored some
heuristics to deal with larger overlap graphs beyond what they used. While we do
contribute algorithms for finding disjoint motifs given a collection of already found
motifs, we do not advance the state-of-the-art in finding the motifs themselves. In-
stead, our work builds on top of an existing overlapping motif finding algorithm
which has been compared and studied many times in literature [178].

6.3 Problem Statement

The problem we have targeted in this work was the development of a tools which
takes a graph G as an input, detects a set of disjoint motifs M , and yields a new
graph G′ where disjoint motifs in M ′ ⊆ M are replaced by single nodes, called
supernodes, that inherit all properties of nodes of motifs. Our contribution is built
on top of the state-of-the-art motifs finder method.

More precisely, once the set of motifs M = {m0, ...,mn} of size k has been
found, our approach finds a subset M ′ ⊆ M of motifs such that the set of nodes
Nmi = {nmi,0, nmi,k−1} that composes a motif mi ∈ M ′ is shared with no other
motif mj ∈ M ′. To do this, our methodology adopts an overlap graph, let’s say
J = (NJ , EJ), where each motif mi ∈ M ′ is assigned to a node nJ

i ∈ NJ , and
each edge eJj ∈ EJ connects two nodes nJ

p and nJ
q if the motifs mp and mq share at

least one node. The idea behind the method is that if two nodes are not connected
in the overlap graph then the underlying motifs are disjoint. Subsequently, the
presented approach applies an heuristic (chosen between the five proposed ones)
for approximating a Maximum Independent Set yielding the set of nodes N ′J ⊆ NJ

where nodes have no connections. Finally, motifs which have been assigned to nodes
in N ′J are finally replaced by supernodes in G, yielding the graph G′.
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6.4 Data Description

For developing and testing our methodology we explore biological networks which
are widely used to describe and detect biological processes. We used three different
networks:

• A food-web subnetwork of Florida bay network1 [179] with 93 nodes and 960
edges.

• A Protein-Protein Interaction (PPI) network of yeast2 [180] with 2,361 nodes
and 7,182 edges.

• A PPI network of Arabidopsis3 [181] with 18,167 nodes and 10,928 edges.

Food-web network. The original nodes have labels that represent animals
or plants (e.g. predatory chanodichthys, dinoflagellates, coral bryaninops, etc.). We
have mapped the network using a taxonomy4, retrieving for each node genus, family,
order, class, phylum, and kingdom. From the original network we have removed
species that did not have higher phylogenetic categories.

Protein-Protein Interaction networks. In a Protein-Protein Interaction
(PPI) network, each node represents a different protein. For the higher-level cat-
egorization of PPI networks, we have employed the ontology annotations available
at this link5. First, we have retrieved the Gene Ontology (GO) term that belongs
to Biological Processes (BPs) and that has the lowest (i.e., most empirically based)
evidence code for each protein. Second, we have traversed the ontology go-basic6

starting from each GO term in our network to the GO term which represents all
Biological Processes. Since each GO term can have more than one parent, we have
chosen the GO term with the lowest (i.e., most conclusive) evidence code going up
in the hierarchy. More precisely, given a label of a node l, we retrieve a GO term g
with the lowest evidence code. Let {g1, g2, ..., gn} be the parents of g, then we choose
the gi with 1 ≤ i ≤ n with the lowest evidence code, building a hierarchy l, g, gi.
Then, we repeat the same operation as long as the GO term which represents all
Biological Processes (BPs) has not been yet reached. In doing so, we have built a
taxonomy that can enable the analysis of protein functions.

1https://snap.stanford.edu/data/Florida-bay.html
2http://vlado.fmf.uni-lj.si/pub/networks/data/bio/yeast/yeast.htm
3http://interactome.dfci.harvard.edu/A_thaliana/index.php?page=download
4ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/
5http://www.geneontology.org/page/download-annotations
6http://www.geneontology.org/page/download-ontology

https://snap.stanford.edu/data/Florida-bay.html
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/yeast/yeast.htm
http://interactome.dfci.harvard.edu/A_thaliana/index.php?page=download
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/
http://www.geneontology.org/page/download-annotations
http://www.geneontology.org/page/download-ontology
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6.5 Methodology

6.5.1 Overview of the Proposed Methodology

The methodology has been implemented into the SuperNoder tool whose pipeline
consists of the following steps:

1. Solicit a size s from the user corresponding to the number of nodes each motif
should have.

2. Solicit a threshold t from the user corresponding to the number of times that
a motif should be present to be considered.

3. Search for all possible motifs on the input network meeting threshold t, using
the F1 measure (i.e., allowing overlaps). Call that set M .

4. Search for the maximum number of non-overlapping motifs from M .

5. Collapse non-overlapping motifs into supernodes.

6. Repeat steps 2 through 5 until satisfied.

6.5.2 Input network and Motifs Finding

SuperNoder requires two series of data as an input:

• A list of node rows, where each row represents a node by means of a unique
ID and a label separated by a blank space.

• A list of edge rows, where each row consists of two node IDs separated by a
blank space.

SuperNoder uses the Randomized Enumeration algorithm [172] for the purpose
of motif finding. The result of the algorithm is a set of all possible undirected motifs
in the network, allowing overlaps.

6.5.3 Motifs Count and Thresholding

To count motifs, we implemented a function to compute isomorphisms between
subgraphs similar to the one of Cordella and colleagues [182]. First, the algorithm
takes the labels of subgraph nodes and counts how many nodes have the same label.
Second, for each label it computes the sum of in-degrees and the sum of out-degrees
(i.e., for each node label, it computes ln,i,o, where n is the number of nodes with
label l, i is the sum of in-degree of nodes with label l, and o is the sum of out-degree
of nodes with label l). Finally, it sorts these labels using the lexicographic order and
computes their hash. If the number of subgraphs having hash value h is greater than
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the user-given threshold t, then all such subgraphs are checked to see how many are
in fact isomorphic. If, after the check, the number is greater than t, then those
subgraphs pass the initial filter to be a motif and thus belong to the ”frequent motif
set”. Thus the frequent motif set may contain different topologies, e.g., at least t
stars of size s, at least t paths of length s, and so on.

6.5.4 Finding Disjoint Motifs

Our methods to find disjoint motifs, given the potentially overlapping frequent motif
set, uses the concept of an overlap graph. An overlap graph is a pair (M,E) where
M is the set of motifs and there is an edge between motif mp and motif mq if they
share at least one node in the original graph. (In the case of recursive reduction,
the original graph at reduction i is the one produced from the graph at reduction
i-1, containing both normal nodes and supernodes.)

We briefly present an overview of our heuristics for finding disjoint motifs here.
H1 (Greedy Elimination). This simple but effective heuristic finds disjoint motifs
by using a Maximal Independent Set technique. Given the frequent motif set M
and a user-given parameter n, randomly shuffle the potentially overlapping motif
instances from the frequent motif set M . For each motif instance m, if the motif
instance overlaps no other motif instances of M , then output it. Otherwise remove
it and all its edges from the overlap graph. Because this approach is naively greedy,
SuperNoder tries n (parameter given by the user) different random shufflings to try
to obtain the greatest number of disjoint motifs.
H2 (Ramsey) Heuristic-2 exploits both sampling and the Ramsey method whose
functions can be seen in [183]. Given the list of motif instances M and a number
k, the heuristic (i) takes disjoint subsets of size k from M and constructs the in-
duced subgraph of the overlap network from each subset. (ii) On each subgraph,
it performs the Ramsey algorithm obtaining a MISsubgraph. (iii) Then, it merges
all MISsubgraphs into a reduced list of motif instances which takes the role of M .
The algorithm repeats steps (i) through (iii) until there are no more overlaps and
outputs the resulting set of motifs.
H3 (Ranked Elimination). Heuristic-3 assigns to each (possibly overlapping)
motif instance m a degree equal to the sum of degrees of the nodes in m ignor-
ing the edges between nodes in m (i.e., the sum of the degrees of the nodes in
m pertaining to edges that connect to nodes outside m). The algorithm then or-
ders the motif instances in ascending order of degree so calculated, forming a list
called MotifDegree. For each node n in the original graph, find the first motif
instance in MotifDegree and discard all other motifs in MotifDegree contain-
ing n. This process yields a new list called PotentialSuperNodes. Then traverse
this PotentialSuperNodes list, preserving motif instances having no overlaps and
deleting motif instances that have higher degrees when there are overlaps.
H4 (Repeated Ranked Elimination). This approach is an improvement over
H3, because H3 misses some motif instances when one or more overlapping mo-
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tif instances are removed and the nodes of the removed motif instances then have
no chance to be included in any other motif instances. Given as input the list of
motif instances M found using the Randomized Enumeration method seen above,
build the MotifDegree list as in Heuristic-3. For each node n, the motif in-
stance m ∈ MotifDegree with the lowest degree that contains n is copied to a
list of potential supernodes, called PotentialSuperNodes. All the motif instances
in PotentialSuperNodes with no overlaps are considered valid. Then, for each pair
{m′,m′′} of overlapping motif instances in PotentialSupernodes, discard the motif
instance with the higher degree. Continue until there are no more motif instances.
Now consider all the nodes Norphan that are not in any disjoint motif instance found
so far and consider motif instances based on the F1 measure that apply to nodes
of Norphan. Repeat the above procedure to generate more disjoint motif instances.
Repeat until there are no more nodes in Norphan.
H5 (Sampled Ranked Elimination). This heuristic unifies sampling with the
overlap graph approach. After the sampling is done as for the Ramsey algorithm,
the heuristic constructs an overlap graph on the surviving motif instances. The
heuristic considers the motif instances in ascending order by degree in the overlap
graph. If a motif instance has no edges, then put it in the result. If a motif instance
m1 has an edge with another motif instance m2, then remove the motif instance
with the largest degree.

Table 6.1: Summary of the characteristics of the heuristics. The symbol V indicates
that the heuristic exploits that characteristic, - if not. H1 = Greedy Elimination. H2
= Ramsey. H3 = Ranked Elimination. H4 = Ranked Replacement. H5 = Sampled
Ranked Elimination.

Heuristic Overlap Order Random Sampling
ID Graph Ramsey by degree approach approach

H1 - - - V -
H2 V V - - V
H3 - - V V -
H4 - - V V -
H5 V - V V V

6.5.5 Network Reduction

After the non-overlapping motif instances have been found, each one is collapsed
into a supernode, preserving the external connections of the original nodes of motifs.
The label of each supernode is the concatenation of labels of its member nodes in
alphabetical order. The new network can be saved as an output using the same
format as the input network and the whole pipeline can be iterated on it.



6.6. AN USE CASE ON BIOLOGICAL GRAPHS 107

6.6 An Use Case on Biological Graphs

In the analysis of biological networks, interactions often occur between proteins of
the same class [184]. SuperNoder can find these relations when high level functional
classes are considered, highlighting frequent related processes and simplifying their
identification.

To show how SuperNoder may help to simplify networks, we focus on the yeast
network, and explain how higher levels of the Gene Ontology (GO) terms enable
the abstraction of protein functions allowing SuperNoder to reduce the network
complexity. The motivation is simple: at a lower level in the hierarchy of GO terms
there may be no motifs that occur more than t times for a moderately large t. At
higher levels, there might be. In the example, the yeast network has been mapped
onto five levels of the GO terms hierarchy. To be considered a motif, a subgraph
has to occur at least 50 times, i.e., with threshold t = 50.

Figure 6.2 shows a motif of size three in each row that is mapped on the base level
(gene labels), the fifth-level (L5) and the third-level (L3) hierarchy labels (i.e. in
ascending order of abstraction). More motifs appear at higher levels in the hierarchy
(i.e., first on L5 and then on L3 levels). In fact, with L5 labels the triples in row 2
and row 3 are isomorphic. When L3 labels are used, all triples are isomorphic, thus
becoming relevant motifs. Those triples are collapsed into supernodes thus forming
a new simplified network. Supernodes indicate proteins that belong to the same
class helping biologists with the analysis of basic interactions.

As a specific case study, focus on motifs composed of proteins (YNL306W,
YDR175C, YBR251W ) and (YGR156W, YKR002W, YLR115W ). Analyzing the
network on the base labels, there are not supernodes, since they do not show common
features in the labeled graph. Already at lower hierarchical levels (i.e., L5), the mo-
tifs GO terms are abstracted into functions, viz, macromolecule biosynthetic process
and cellular macromolecule metabolic process respectively. At hierarchical level L3,
the proteins in this example have the label GO:0071704 which indicates that their
proteins are related to organic substance metabolic process. At that level, we find

Figure 6.2: An example of four supernodes built using SuperNoder with motifs of
size three on the yeast network. From left to right, labels of original nodes, labels of
the fifth level hierarchy, labels of the third level hierarchy. On the third level, many
proteins share the same pattern and these patterns are often disjoint.
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out that organic substance metabolic process (GO:0071704) covers an important role
into the yeast network, and that is mainly composed of macromolecule biosynthetic
process (GO:0009059), cellular macromolecule metabolic process (GO:0044260) and
protein metabolic process (GO:0019538). This shows an example of how our tool can
help biologists understand the behavior of proteins (with frequent motifs) belonging
to the same class.

The higher the hierarchy levels, the larger the number of relevant motifs that
can be used to further reduce the current network (an example of this behavior can
be observed in Table 6.2). In addition, higher level labels enable higher thresholds,
sometimes leading to the discovery of very frequent motifs.

Table 6.2: An example of a hierarchical exploration of the yeast network. The
table reports the number of found motifs, the number of nodes and edges, when the
network is mapped to different levels of the GO terms hierarchy and then reduced.
At higher levels (L1 is higher level than L2 etc.) more motifs pass the threshold.

th Original L5 L4 L3 L2 L1

Motifs 25 0 290 292 319 377 389
Nodes 25 2,361 1,781 1,776 1,607 1,583 1,333
Edges 25 7182 5,234 5,305 5,018 5,020 5,322

Motifs 50 0 240 236 304 388 390
Nodes 50 2,361 1,841 1,889 1,585 1,361 1,581
Edges 50 7,182 5,339 5,429 5,029 5,347 4,990

For example, connections of proteins in Figure 6.3(a) do not show functionalities
but those become evident at higher hierarchical levels 6.3(b) and 6.3(c). For exam-
ple, the frequent relation between proteins which have GO:0044237, GO:0044237,
GO:0044237 as GO terms that are showed in Figure 6.3(c) are only detectable at
that level of the hierarchy. Finally, images 6.3(b) and 6.3(c) show that the reduction
at a high level of abstraction enables a better understandability of the network.

6.7 Results and Discussion

In this section, we report the time performance, the number of disjoint motifs and
the reduction ability of our heuristic algorithms. The time performance is based on
the wall clock time required for the execution of the heuristics on all relevant motifs.
The number of disjoint motifs is the number of motifs found by each algorithm. The
reduction ability is the extent of reduction of networks. All experiments have been
performed considering motifs with size = 3 and size = 5 (i.e., having three nodes in
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(a) (b) (c)

Figure 6.3: Figures show samples of the yeast network with 25 nodes mapped with
original and GO terms labels of our yeast GO hierarchy, and where supernodes have
been found by means of SuperNoder. (a) Original network with 25 nodes and 83
edges. (b) Network reduced on low level GO terms hierarchy (19 nodes and 67
edges). (c) Network reduced on high level GO terms hierarchy (11 nodes and 43
edges).

the original graph and three nodes or supernodes after each step of the recursion).
H1 has been performed with five shufflings. H2 and H5 adopted subsets of the
overlap graphs consisting of 1000 motif nodes. In our simulations, we chose different
thresholds in different networks, as shown in Tables 6.3 and 6.4. The reason is that
certain thresholds make no sense for certain networks. For example, a threshold of
100 for our food-web network is meaningless because no motifs occur that frequently.

Food-web network

Figure 6.4 reports the performance of the heuristics applied on the food-web network.
In this case, heuristics H1, H2 and H5 which exploit repetitive random approaches
(H1), sampled overlap graph (H2 and H5), and H4 show better performance than
others in finding disjoint motifs. Heuristics H3 shows a poor reduction factor on this
network. The reason is that there are many motifs with the same sums of degrees,
so degree-based heuristics do not work well. Heuristic H1 is the fastest. This holds

Table 6.3: Rows list the number of all motifs, the threshold applied in our ex-
periments and the number of motifs that meet that threshold when L3 labels are
considered and motifs have size 3.

Network N motifs threshold N repetitive motifs

Food-Web 20,283 5 5,085
Yeast 96,444 50 49,294

Arabidopsis 268,437 100 155,185
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Table 6.4: Rows list the number of all motifs, the threshold applied in our ex-
periments and the number of motifs that meet that threshold when L3 labels are
considered and motifs have size 5.

Network N motifs threshold N repetitive motifs

Food-Web 26,841 5 407
Yeast 188,733 50 11,550

Arabidopsis 425,895 100 14,474

regardless of motif size. In fact, overall, heuristic H1 is both fast and has a good
reduction factor.

Yeast network

Figure 6.5 shows the performance on the yeast network. In contrast to the food-web
network, heuristics H2 and H5 based on the sampled overlap graph do not obtain the
best reduction factor. In this case, heuristic H4 enjoys a greater reduction factor.
Although heuristics H2 and H5 can find a large number of disjoint motifs, they
require excessive time to find a solution, hence, their use on a network of this size
might be avoided. The heuristics H1 and H3 are still the fastest.

Arabidopsis network

Experimental results on arabidopsis networks are similar to those on the yeast net-
work and the same considerations hold. Note that the arabidopsis network is a

(a) (b)

Figure 6.4: SuperNoder heuristics performance on the food-web network considering
motifs of size 3 and 5 in terms of (a) the number of unique motifs found (b) the
running time.
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(a) (b)

Figure 6.5: SuperNoder heuristics performance on the yeast network considering
motifs of size 3 and 5 in terms of (a) the number of unique motifs found (b) the
running time.

Protein-Protein Interaction network like the yeast network but is very different in
term of size.

Observations from the Experiments

Heuristic H1 achieves the best time performance and finds a large number of disjoint
motifs though not always the maximum number. Heuristic H4 which is slower can
sometimes find more disjoint motifs so should be considered if time is available. The
size of motifs and the threshold also matter. Larger motifs entail the processing
of more data, but there are fewer repetitive motifs (i.e., motifs that exceed the
threshold) so the overall time is sometimes less.

(a) (b)

Figure 6.6: SuperNoder heuristics performance on the Arabidopsis network consid-
ering motifs of size 3 and 5 in terms of (a) the number of unique motifs found (b)
the running time.
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In summary, heuristic H1 shows good performance on all types of network since
its greedy approach is fast. The resulting reduction may not however be best.
Heuristics H2 and H5 which employ sampling are useful for those networks whose
overlap graphs are very large. The size of samples can be chosen according to the
available computational resources to balance the execution time and memory use.
Heuristic H2 should show better reduction performance than H5 when there are few
distinct motifs degree values. By contrast, H3 and H4 should be useful for all those
networks that have many distinct motifs degree values, because motifs having less
probability to overlap are detected faster.

(a) (b)

(c) (d)

Figure 6.7: Reduction performance on five iterations on the food-web network (a)
motifs of size 3 without threshold (b) motifs of size 3 with threshold (c) motifs of
size 5 without threshold (d) motifs of size 5 with threshold.

Reduction

Figures 6.7 and 6.8 show the extent of graph reduction on the food-web and yeast
networks respectively. Unsurprisingly, lowering the threshold generates more F1
motifs, increasing the number of F3 motifs and reducing the network size. In our
example networks, after a few iterations, the networks are no longer reduced. When
this plateau-ing happens depends entirely on the data. In addition, the threshold
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(a) (b)

(c) (d)

Figure 6.8: Reduction performance on five iterations on the yeast network (a) motifs
of size 3 without threshold (b) motifs of size 3 with threshold (c) motifs of size 5
without threshold (d) motifs of size 5 with threshold.

and the motif size both affect the reduction factor, because a small motif has a
higher probability of occurring more often (see Table 6.3 and Table 6.4). This is
well illustrated by our tests where motifs of size 3 show a greater reduction than
motifs of size 5. For an illustration of the extent of reduction, consider Figure 6.9
where (a) shows the original food web network, (b) after one iteration and (c) after
two iterations.

Tool description

Figure 6.10 shows the graphical interface of SuperNoder that users without pro-
gramming skills can adopt to analyze networks. On the left, users can use a panel
to create nodes, in the center there is one panel to create edges, and, on the right,
a list of parameters the user can set. With the first option users can choose the
size of motifs they are interested in. The minimum value is 3. The next option is
related to the heuristic that should be employed to find disjoint motifs. The user
can also choose the type of network: direct or undirect. The fourth parameter is the
threshold which represents the minimum value each motif should meet to be consid-
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(a) (b) (c)

Figure 6.9: Reduction in size of the food web network mapped on the species order
(e.g. kingfisher mapped on coraciiformes). (a) The original network. (b) The
network reduced after 1 iteration. (c) The network reduced after 2 iterations.

ered over-represented (it corresponds to the threshold t of the SuperNoder pipeline
algorithm). The last required parameter is the number of iterations. In addition,
if the user selects the H1 heuristic, he/she can set the number of repetitions to be
executed, specific for H1. If the user selects either the H2 or H5 heuristic, he/she
can also choose the size of samples. When the Submit network button is clicked, the
SuperNoder pipeline will be run and results will be printed and shown online (but
not saved anywhere).

The output consists of two sections (nodes and edges) for each chosen iteration
using the same input format. Supernodes are indicated by the tag #supernode.

The code has been developed in Python 3.6 using NetworkX library. SuperN-
oder functionalities operate on graphs using the standard NetworkX format. The
web interface is provided by a python server which runs on a Docker7 container.
SuperNoder is hosted on a GitHub8 page and distributed as a Docker file with the
source code freely available under GPLv3 License.

7https://www.docker.com/
8https://github.com/danilo-dessi/SuperNoder-v1.0

https://www.docker.com/
https://github.com/danilo-dessi/SuperNoder-v1.0
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Figure 6.10: SuperNoder web application.
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Chapter 7

Conclusions

The use of data in an ever increasing number of domains is becoming an essential
aspect for providing novel services to the modern society. In this thesis, the use of
data for extracting knowledge and providing services has been investigated.

For the healthcare domain, knowledge from medical transcripts has been involved
in a data analysis process to provide a content-based recommender system whose
goal was to support physicians in their job. This work addressed the challenge to
find out which types of information can be directly processed by machines on large
collections of medical reports, combining emergent Cognitive Computing systems in
order to return reliable recommendation results. We discussed about the quality of
the features for the representation of the medical reports content, underlying how
they can capture the semantics from unstructured texts. We also report results
about a Machine Learning methodology with two clustering approaches our recom-
mender system currently implements. We used them to handle various VSMs and
explained their advantages and uses based on the type of features. In future, novel
extraction methodologies to represent knowledge (e.g., word embeddings) can be
used on the healthcare domain. In addition, novel data may be useful in order to
face ever more difficult issues that can be raised within the healthcare domain.

Within our research work in the E-Learning domain, we presented COCO, a
complete and comprehensive online courses collection enriched with stakeholder in-
teractions crawled from Udemy. It presently refers to more than 43K online courses,
16K instructors and 2,5M learners who have provided 4,5M reviews. COCO pro-
vides data about courses, learners and instructors, including enrollments, reviews,
and wish-lists. Furthermore, we proposed possible use cases supporting online course
delivering. The experiments demonstrated that such use cases are challenging and
need novel research to manage online courses proliferation. Advanced semantic-
based techniques can extract insightful information to support stakeholders during
organization and delivery of contents. COCO is expected to support reproducible
evaluation in technology-enhanced learning approaches.

Subsequently, a novel framework for micro-learning video classification has been
presented. The approach extracts transcripts from videos using novel speech-to-
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text systems, exploits Cognitive Computing to move knowledge from texts to vector
representations, and applies advanced Machine Learning algorithms for classify-
ing contents. Moreover, it leverages Big Data technologies for fast computation.
The experimental results showed how our approach achieves good performance in
most cases in term of computational time and precision-recall analysis. Our feature
representation combines concepts and keywords extracted from cutting-edge Cog-
nitive Computing tools and exploits the semantic behind the text that traditional
approaches fail to capture. Considering the experimental results, we expect our
approach powered by Cognitive Computing can facilitate the development of Learn-
ing Analytics tools aimed at supporting content managers to arrange micro-learning
video collections. We also expect that it will improve how learners explore the online
platforms. Learning Analytics services powered by Cognitive Computing promise
to shape the future of higher education. Hence, our contribution tries to make a
jump-start towards this upcoming era of cognitive-driven education.

Finally, for the E-Learning domain, a Sentiment Analysis case of study has been
addressed by combining state-of-the-art Deep Learning methodologies and Word
Embedding text representations. We introduced and described a deep neural net-
work aimed to predict a sentiment score for text reviews posted by learners after
attending online courses. As most of the current approaches for Sentiment Analy-
sis are built on top of different Word Embedding representations, we showed how
some types of word embeddings can better represent the semantics behind the E-
Learning context and help supervised models to better predict a sentiment score.
Furthermore, considering that word embeddings tend to be sensitive to the context
where they are trained, and that the current publicly-available word embeddings
were trained on general-purpose resources, we proved that word embeddings gener-
ated from E-Learning resources enable to capture more peculiarities of the target
domain. What is still missing in this context is the analysis of sentiments by means
of ontological resources that can enrich the knowledge of embeddings. Moreover,
novel embeddings like BERT can play a relevant role due to their ability to infer
syntactical and semantics of words by considering their use in a target context.

Within the Scholarly domain we described a preliminary workflow for producing
a scientific knowledge graph from the text of research publications. We built a
Scientific knowledge graph derived from a set of 26k publications in the field of
the Semantic Web, with the aim to provide a resource that will help researchers
to better understand research dynamics. In particular, we focused on extraction
of entities and relations for detecting relationships. In our pipeline we faced with
issues related to both the extraction and managing of entities and relations in order
to model them in a format that can be easily understood. Moreover, we provided
an evaluation of our approach by building a gold standard that can be also used for
further studies. With our work on Scholarly domain we made a first step in modeling
the content of scientific publications for purpose of inclusion and integration within
actual academic knowledge graphs. Future work on this research line will include the
design of new modules to better capture insightful knowledge and the development of
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applications that adopt the knowledge graph for the purpose to explore the research
landscape.

Finally, the thesis presents SuperNoder, a novel tool which enables the simpli-
fication and compression of graphs based on high frequent motifs. By identifying
disjoint motifs, SuperNoder enhances understandability as the network is reduced.
Experiments on the biological domain are reported by describing and comparing
various algorithms on real networks, both to show the benefits of the approach and
to find high-performing algorithms. With the continuous generation of networks
within the biological domain, we would also like to adapt SuperNoder to specific
tasks, enhancing the detection of relevant motifs for specific biological functions.

In conclusion of this thesis, brief discussions about the research questions intro-
duced in the Chapter 1 are reported.
Q1. How to use existing Semantic Web technologies to retrieve useful information
in order to model contents of texts in machine readable formats?

In order to answer to this question, in the Ph.D. work tools like IBM Watson,
Framester, word embeddings generators, and others have been employed to prove
how semantics based technologies can be adopted to represent the knowledge for
specific domain applications. In almost all the cases these technologies have shown
improvements against the most used methodologies. In addition, they often have
proved to be state-of-the-art technologies that should be used to come up with better
results for future applications.

Q2. What are the Machine Learning algorithms more suitable to infer knowledge
from the modelled information?

Within the explored domains, many Machine Learning algorithms have been used
to address the tasks. For the healthcare domain clustering algorithms have shown
good performance in recognizing patterns within the VSMs used to model clinical
notes which were not previously labelled. In particular the combination between
hierarchical clustering and IBM Watson concepts resulted the best solution to find
clinical cases similar to a new one. Within the E-Learning domain, SVM-based
classifiers obtained the best results with IBM Watson concepts to assign videos to
the right class, outperforming the tf-idf approach. Moreover, Deep Learning models
have proved to be efficient and effective to infer sentiments within online reviews
for this domain, suggesting that Neural Network models can play an important role
to address domain specific tasks for MOOCs. The same applies to the scholarly
domain, where a Neural Network proved to enhance results for detecting relevant
relationships for the Semantic Web domain. Finally, approaches exploited within
biology result useful to get insightful knowledge out from biological graphs to detect
and study biological functions.

Q3. In literature many general purpose methods can be found to address text-
based applications. May these methods be used for specific domain applications?

Across all the experiments reported in the research work, it is clear that many
state-of-the-art methods can be applied to address specific tasks in the studied target
domains. Nevertheless, it is worth to note that domain experts might not be able to
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use ready-made applications for their tasks, and computer science expertise is needed
in order to make adjustments to tune the general purpose algorithms to specific and
domain-dependent tasks. From the experiments, it turns out that general algorithms
need case-by-case adjustments to be exploited for specific domain applications.

Q4. How different techniques and their combinations will impact the perfor-
mances of specific applications for a target domain?

In order to answer to this research question, results reported in this thesis are
often comparative results in order to detect which peculiarities really matter to
improve current state-of-the-art approaches for a given task. Each chapter of this
thesis ends with the illustration of the obtained results and discussions about them,
highlighting which approaches led to the best outcome.
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Albert-László Barabási. Predicting individual disease risk based on medical
history. In Proceedings of the 17th ACM conference on Information and knowl-
edge management, pages 769–778. ACM, 2008.

[66] Yin Zhang, Min Chen, Dijiang Huang, Di Wu, and Yong Li. idoctor: Person-
alized and professionalized medical recommendations based on hybrid matrix
factorization. Future Generation Computer Systems, 66:30–35, 2017.

[67] Mercato e-learning: trend e previsioni 2017-2021, 2017. Accessed: 2017-11-20.

[68] G2crowd grid for online course providers, 2017. Accessed: 2017-11-20.

[69] Ryan Shaun Baker and Paul Salvador Inventado. Educational data mining
and learning analytics. In Learning analytics, pages 61–75. Springer, 2014.

[70] Wanli Xing, Xin Chen, Jared Stein, and Michael Marcinkowski. Temporal
predication of dropouts in moocs: Reaching the low hanging fruit through
stacking generalization. Computers in Human Behavior, 58:119–129, 2016.

[71] Miri Barak, Abeer Watted, and Hossam Haick. Motivation to learn in massive
open online courses: Examining aspects of language and social engagement.
Computers & Education, 94:49–60, 2016.

[72] Carlos Delgado Kloos, Patrick Jermann, Mar Pérez-Sanagust́ın, Daniel T
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