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Abstract. We study smashing subcategories of a triangulated category with coproducts via silting
theory. Our main result states that for derived categories of dg modules over a non-positive differential
graded ring, every compactly generated localising subcategory is generated by a partial silting object.
In particular, every such smashing subcategory admits a silting t-structure.

1. Introduction

Smashing subcategories of a triangulated category T occur naturally as kernels of localisation func-
tors which preserve coproducts. These subcategories have proved to be useful as they often induce a
decomposition of T into smaller triangulated categories, yielding a so-called recollement of triangulated
categories in the sense of [9]. A typical example of a smashing subcategory is given by a localising
subcategory of T , i.e. a triangulated subcategory closed under coproducts, which is generated by a set
of compact objects from T . The claim that all smashing subcategories of a compactly generated trian-
gulated category are of this form is sometimes referred to as the Telescope conjecture, first stated for the
stable homotopy category in Algebraic Topology (see [11, 38]). Affirmative answers to the conjecture
were provided, for example, in [29] and [25] for derived module categories of commutative noetherian
rings and of hereditary rings, respectively. On the other hand, Keller provided an example of a smashing
subcategory in the derived category of modules over a (non-noetherian) commutative ring that does not
contain a single non-trivial compact object from the ambient derived category (see [19]). So, although
the Telescope conjecture does not hold in general, it is difficult to determine whether a given triangulated
category satisfies it.

In this article, we study smashing subcategories via silting theory. This approach is motivated by
some recent work indicating that localisations of categories and rings are intrinsically related to silting
objects (see [6, 27, 36, 37]). In particular, it was shown in [27] that universal localisations of rings in
the sense of [39] are always controlled by a (not necessarily finitely generated) partial silting module.
In other words, instead of localising our ring with respect to some set of small objects, we can equally
localise with respect to a single large object that is silting in a suitable way. The main theorem of this
article provides a triangulated analogue of this result, realising a localisation at a set of compact objects
as a localisation at a single large partial silting object.

Theorem Let T be a compactly generated triangulated category containing a compact silting object. Let
L be a localising subcategory of T generated by a set of compact objects of T . Then there is a partial
silting object T in T such that L is the smallest localising subcategory containing T .

Examples of triangulated categories fulfilling the assumptions of our theorem are derived categories
of differential graded modules over a non-positive differential graded ring and homotopy categories of
module spectra over a connective ring spectrum (see Remark 4.6). In order to prove the theorem, we
build on some recent work on (partial) silting objects in triangulated categories with coproducts (see
[36, 37]). We show that partial silting objects, suitably defined, give rise to smashing subcategories and
we study the torsion pairs associated with them. Moreover, for a large class of triangulated categories,
we provide a classification of partial silting objects in terms of certain TTF triples, which will be a crucial
step towards our main result. As a consequence, we further obtain that all smashing subcategories in the
theorem above admit nondegenerate t-structures, which indicates that we should not expect our theorem
to hold for arbitrary compactly generated triangulated categories (see e.g. Remark 3.6(2)).

The structure of the paper is as follows. In Section 2, we discuss some preliminaries on localising
subcategories and torsion pairs. Section 3 is devoted to the notion of (partial) silting objects and their
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interplay with smashing subcategories. In particular, Theorem 3.9 provides a classification of (partial)
silting objects in terms of their associated torsion pairs. In Section 4, we prove our main theorem.
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2. Preliminaries

By a subcategory of a given category, we always mean a full subcategory closed under isomorphisms.
Throughout, T will denote a triangulated category admitting arbitrary (set-indexed) coproducts. Given
a subcategory L of T and a set of integers I, we write L⊥I for the intersection

⋂
n∈I KerHomT (L,−[n]).

The symbols > n, < n, ≤ n or ≥ n will be used to describe the obvious corresponding sets of integers
and, if I = {0}, we simply write L⊥. If the subcategory L only consists of an object X, we write X⊥I

and X⊥. We denote by Add(X) the subcategory of T whose objects are summands of coproducts of
X. Given two subcategories A and B of T , we denote by A ∗ B the subcategory of T consisting of the
objects X in T for which there are objects A in A, B in B and a triangle

A −→ X −→ B −→ A[1].

2.1. Localising subcategories and torsion pairs.

Definition 2.1. Given a subcategory L of T we say that L is
• complete if it is closed under products;
• cocomplete if it is closed under coproducts;
• localising if it is a cocomplete triangulated subcategory;
• coreflective if its inclusion functor admits a right adjoint;
• smashing if it is a coreflective localising subcategory of T such that L⊥ is cocomplete.

Further, if L is a localising subcategory and S is a set of objects in T , we say that S generates L,
if Loc(S) = L, where Loc(S) denotes the smallest localising subcategory of T containing S. If all the
objects in S are compact in T , i.e. the functor HomT (S,−) commutes with coproducts for all S in S,
we say that the localising subcategory L is compactly generated.

Remark 2.2. More classically, a coreflective localising subcategory L of T is called smashing, if the right
adjoint to the inclusion functor preserves coproducts. However, having a right adjoint to the inclusion
that preserves coproducts is equivalent to having a right adjoint to the quotient functor from T to
T /L that preserves coproducts. Since the latter right adjoint identifies T /L with L⊥, we obtain our
alternative definition of a smashing subcategory (see, for example, [17, Definition 3.3.2]).

Definition 2.3. A pair of subcategories (V,W) of T is said to be a torsion pair if
(1) V and W are closed under summands;
(2) HomT (V,W ) = 0 for any V in V and W in W;
(3) V ∗W = T .

It is easy to show that (V,W) is a torsion pair if and only if V⊥ =W, ⊥W = V and axiom (3) in the
above definition holds. In particular, it follows that both classes V and W are closed under extensions.
Recall that a subcategory of T is called suspended if it is closed under extensions and positive shifts.

Definition 2.4. A torsion pair (V,W) is said to be
• a t-structure if V is suspended, a co-t-structure ifW is suspended, and a stable t-structure

if it is both a t-structure and a co-t-structure;
• left nondegenerate if

⋂
n∈Z V[n] = 0, right nondegenerate if

⋂
n∈ZW[n] = 0 and nonde-

generate if it is both left and right nondegenerate;
• generated by a set of objects S if W = S⊥.

If (V,W) is a t-structure, we say that V∩W[1] is its heart. If (V,W) is a co-t-structure, we say that V[1]∩
W is its coheart. A triple (U ,V,W) of subcategories of T is said to be a torsion-torsionfree triple
(or TTF triple) if (U ,V) and (V,W) are torsion pairs in T . We will say that a TTF triple (U ,V,W) is
suspended if the class V is suspended and it is called stable if V is a triangulated subcategory of T .
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Remark 2.5. Recall that a subcategory of T is called an aisle if it is suspended and coreflective. It was
shown in [22] that the assignment V 7→ (V,V⊥) yields a bijection between aisles and t-structures in T .

It is an interesting question whether one can generate torsion pairs from a set of objects S in T . We
consider the following two natural candidates

(US := ⊥(S⊥≤0),S⊥≤0) and (LS := ⊥(S⊥Z),S⊥Z).

If indeed they are torsion pairs, then (US ,S⊥≤0) is the t-structure generated by S and its positive shifts,
and US is the smallest aisle containing S. On the other hand, (LS ,S⊥Z) would be the stable t-structure
generated by all shifts of S, and LS would be the smallest coreflective localising subcategory containing
the set S. Note that, since S⊥Z is contained in S⊥≤0 , it follows that US is contained in LS . A natural
candidate for US is the smallest cocomplete suspended subcategory containing S, which we denote by
Susp(S). On the other hand, a natural candidate for LS is Loc(S), the smallest localising subcategory
of T containing S. Indeed, it is easy to show that Susp(S)⊥ = S⊥≤0 and that Loc(S)⊥ = S⊥Z and, thus,
we always have Susp(S) ⊆ US and Loc(S) ⊆ LS . In the following subsection, we introduce a large class
of triangulated categories, for which torsion pairs can be generated as suggested above.

2.2. Well generated triangulated categories. We will often consider triangulated categories that
have a nice set of generators.

Definition 2.6. [31, 23] Given a regular cardinal α and T a triangulated category, we say that
• an object X in T is α-small if given any map h : X −→

∐
λ∈Λ Yλ for some family of objects

(Yλ)λ∈Λ in T , the map h factors through a subcoproduct
∐
ω∈Ω Yω where Ω is a subset of Λ of

cardinality strictly less than α;
• T is α-well generated if it has set-indexed coproducts and it has a set of objects S such that

– S⊥Z = 0;
– for every set of maps (gλ : Xλ −→ Yλ)λ∈Λ in T , if HomT (S, gλ) is surjective for all λ in Λ

and all S in S, then HomT (S,
∐
λ∈Λ gλ) is surjective for all S in S;

– every object S in S is α-small.
• T is well generated if it is α-well generated for some regular cardinal α.

The following are examples of well generated triangulated categories.
• The derived category of a small differential graded category is ℵ0-well generated or, equivalently,

compactly generated ([20, Subsection 5.3]).
• The homotopy category of projective modules over a ring is ℵ1-well generated ([32, Theorem 1.1]).
• The derived category of a Grothendieck abelian category A is α-well generated, with α a regular

cardinal that depends on A ([30, Theorem 0.2]).
An advantage of working with well generated triangulated categories is the following.

Theorem 2.7. [12, Proposition 3.8][33, Theorem 2.3] If T is a well generated triangulated category and
S ⊂ T is a set of objects, then both (Loc(S),S⊥Z) and (Susp(S),S⊥≤0) are torsion pairs.

Corollary 2.8. Let T be a well generated triangulated category.
(1) If S is a set of objects in T with S⊥Z = 0, then we have Loc(S) = T .
(2) If L is a compactly generated localising subcategory of T , then L is smashing.

Proof. Statement (1) follows immediately from Theorem 2.7. For (2), it is enough to point out that the
localising subcategory L = Loc(S), where S is a set of compact objects in T , is coreflective by Theorem
2.7. It then follows from the definition of compact object that the subcategory L⊥ = S⊥Z is closed under
taking coproducts. �

We will make use of the following characterisation of smashing subcategories.

Proposition 2.9. [35, Propositions 4.2.4, 4.2.5 and 4.4.14] If T is well generated, then the assignment
L 7→ (L,L⊥, (L⊥)⊥) yields a bijection between smashing subcategories of T and stable TTF triples in T .
Moreover, such a TTF triple gives rise to a recollement as depicted below, where j! and i∗ denote the
inclusions of L and L⊥, respectively, into T .

L⊥ i∗ // T
j∗ //

i∗

{{

i!
bb L

j!

||

j∗

aa
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This assignment defines a further bijection between stable TTF triples in T and equivalence classes of
recollements of T .

For the precise definition of recollement, we refer to [9]. A further property of well generated triangu-
lated categories is related to a representability problem of cohomological functors, i.e. of functors that
send triangles to long exact sequences of abelian groups.

Definition 2.10. We say that our triangulated category T satisfies Brown representability if every
(contravariant) cohomological functor T op −→ Mod-Z sending coproducts to products is representable.
Dually, T satisfies dual Brown representability if it is complete and every (covariant) cohomological
functor T −→ Mod-Z sending products to products is representable.

Recall that triangulated categories with Brown representability are complete ([31, Proposition 8.4.6]).

Theorem 2.11. [31, Theorem 8.3.3 and Proposition 8.4.2] Any well generated triangulated category
satisfies Brown representability. Any compactly generated triangulated category satisfies, furthermore,
dual Brown representability.

3. Partial silting objects

We start by introducing (partial) silting objects in a triangulated category T with coproducts. We
will study the smashing subcategories associated with them. In a second subsection, we provide a
characterisation of (partial) silting objects in terms of certain TTF triples.

3.1. On the definition of (partial) silting objects.

Definition 3.1. An object T of T is said to be
(1) partial silting if
(PS1) T and its positive shifts generate a t-structure, i.e. (UT := ⊥(T⊥≤0), T⊥≤0) is a torsion pair;
(PS2) UT is contained in T⊥>0 ;
(PS3) T⊥>0 is cocomplete.

(2) silting if (T⊥>0 , T⊥≤0) is a t-structure in T .
Two partial silting objects T and T ′ are said to be equivalent if Add(T ) = Add(T ′).

Remark 3.2. If T is a well generated triangulated category, an object T is partial silting if and only if T
lies in T⊥>0 and T⊥>0 is cocomplete (see Theorem 2.7).

In [36], partial silting objects were defined as those T satisfying conditions (PS1) and (PS2). Inspired
by the definition of partial tilting modules proposed in [15, Definition 1.4], our definition of partial silting
objects includes the extra condition (PS3). This will allow us to prove that partial silting objects in
well generated triangulated categories generate smashing subcategories. Still, our partial silting objects
satisfy the properties proved in [36], among which we highlight the following.

Lemma 3.3. [36, Theorem 1(2)] If T is an object of T satisfying (PS1) and (PS2), then T⊥>0 = UT ∗T⊥Z .

It is a direct consequence of Lemma 3.3 that a partial silting object T in T is silting if and only if
T⊥Z = 0. The above notion of a silting object appeared already in [37] and [36]. Examples of silting
objects are silting complexes in the unbounded derived category of modules over a ring (see [6] and [41]).
Notice that also unbounded complexes can occur as silting objects according to our definition, see [2,
Example 7.9] and [3] for examples.

The following is an example of a partial silting object that is not silting (see also [26, Subsection 4.4]).

Example 3.4. Let A be a (unital) ring and T := K(Proj–A) be the homotopy category of projective
right A-modules. As an object in T , A is partial silting. Indeed, A obviously lies in the subcategory
A⊥>0 , which is cocomplete as it consists of the complexes in T with vanishing positive cohomologies.
Now the claim follows from Remark 3.2 since T is well generated.

As discussed above, A is silting in T if and only if A⊥Z = 0. However, if A is a finite dimensional
algebra (over a field) with infinite global dimension, then A⊥Z is non-trivial. In fact, in this situation
T is compactly generated and, moreover, the functor HomA(−, A) induces an anti-equivalence between
the subcategory of compact objects T c in T and the bounded derived category Db(A–mod) of finitely
generated left A-modules ([18, Theorems 2.4 and 3.2]). It then follows from [28, Theorem 2.1] (see also
[24, Proposition 1.7]) that the subcategory A⊥Z is compactly generated and that T c/Kb(proj–A), which
is anti-equivalent to Db(A–mod)/Kb(A–proj), embeds fully faithfully into the subcategory of compact
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objects of A⊥Z . Here, Kb(proj–A) and Kb(A–proj) denote the bounded homotopy categories of finitely
generated projective right, respectively left, A-modules. Finally, our assumptions on A guarantee that
there is a finite dimensional (even simple) left A-module M with infinite projective dimension. Then M
yields a non-zero object in Db(A–mod)/Kb(A–proj) and, thus, A⊥Z is non-trivial, as claimed.

The next proposition relates partial silting objects to smashing subcategories.

Proposition 3.5. Let T be an object in a well generated triangulated category T . Then the following
are equivalent.

(1) T is partial silting;
(2) Loc(T ) is smashing and T is silting in Loc(T );
(3) T⊥>0 is an aisle of T containing T .

Proof. If T is partial silting, then T⊥Z =
⋂
n∈Z T

⊥>0 [n] is cocomplete and it follows from Theorem
2.7 that Loc(T ) is smashing. Moreover, UT = Susp(T ) is contained in Loc(T ), and, therefore, T and
its positive shifts generate the t-structure (UT , T⊥≤0 ∩ Loc(T )) in Loc(T ). Since, by assumption, UT is
contained in T⊥>0∩Loc(T ) and T⊥>0∩Loc(T ) is cocomplete, it follows that T is partial silting in Loc(T ).
But T generates Loc(T ) showing, by Lemma 3.3, that T is silting in Loc(T ). Thus, we have (1)⇒(2).

Let us now prove (2)⇒(3). Consider the recollement induced by Loc(T ), as in Proposition 2.9. Since,
by assumption, we have UT = T⊥>0 ∩Loc(T ), and, by Lemma 3.3, we have T⊥>0 = UT ∗T⊥Z , we see that
T⊥>0 is precisely the aisle of the t-structure in T obtained by gluing the t-structures (T⊥Z , 0) in T⊥Z

and (T⊥>0 ∩ Loc(T ), T⊥≤0 ∩ Loc(T )) in Loc(T ) along this recollement (for details on gluing t-structures,
we refer to [9, Théorème 1.4.10]).

The implication (3)⇒(1) follows from Remark 3.2. �

Remark 3.6.
(1) Note that whenever an object T is silting in a smashing subcategory L of a well generated triangu-

lated category T , we have L = Loc(T ). Indeed, Loc(T ) is contained in L, hence (Loc(T ), T⊥Z∩L)
is a torsion pair in L. Since T is silting in L, using Lemma 3.3, we conclude that the right hand
side class of this torsion pair is trivial so that L = Loc(T ), as wanted.

(2) The t-structure associated with a silting object is always nondegenerate (see Definition 2.4).
This shows that not all triangulated categories with coproducts admit silting objects, and, in
particular, not all smashing subcategories of a given triangulated category T with coproducts
are of the form Loc(T ) for a partial silting object T in T . Take, for example, T to be the stable
category of not necessarily finitely generated modules over a representation-finite self-injective
and finite dimensional algebra. By [16], such an algebra is periodic and, thus, every object in T
is isomorphic to infinitely many of its positive (respectively, negative) shifts. As a consequence,
there are no nondegenerate t-structures in T .

3.2. Partial silting objects and TTF triples. In this subsection, we establish a bijection between
equivalence classes of partial silting objects and certain TTF triples in T . We will make use of the
following lemma.

Lemma 3.7. Let (U ,V,W) be a suspended TTF triple in T and let C = U [1] ∩ V be the coheart of the
co-t-structure (U ,V). Then the following are equivalent.

(1) C⊥Z = U⊥Z ;
(2) V = C⊥>0 ;
(3) the t-structure (V,W) is right nondegenerate.

Moreover, if V = S⊥ for a set of objects S in T , then there is an object X in C such that C = Add(X).

Proof. (1)⇒(2): It is clear that V ⊆ C⊥>0 . We prove the reverse inclusion. Let X be an object in C⊥>0

and consider the following truncation triangle of X with respect to the t-structure (V,W)

v(X) −→ X −→ w(X) −→ v(X)[1].

Since all non-negative shifts of C are contained in V, we have that w(X) lies in C⊥≤0 . On the other hand,
since both X and v(X) lie in C⊥>0 , so does w(X). Therefore, w(X) lies in C⊥Z which, by assumption,
equals U⊥Z . Therefore, w(X) is, in particular, an object of V, showing that w(X) = 0, as wanted.

(2)⇒(3): As above, we have that W ⊆ C⊥≤0 . Hence, the intersection
⋂
n∈ZW[n] is contained in C⊥Z

which, by assumption, is also contained in V. Therefore, this intersection consists only of the zero object
and the t-structure (V,W) is right nondegenerate.
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(3)⇒(1): We prove this statement along the lines of [7, Lemma 4.6]. Since C ⊆ U [1], it is clear that
U⊥Z ⊆ C⊥Z . For the reverse inclusion, let X be an object in C⊥Z and consider, for each k in Z, the
truncation triangle of X with respect to the t-structure (V[k],W[k])

vk(X)
ak // X // wk(X) // vk(X)[1] ,

where vk(X) lies in V[k] and wk(X) lies in W[k]. For each vk(X), consider a truncation triangle for the
co-t-structure (U [k + 1],V[k + 1])

UXk+1

αk // vk(X)
βk // V Xk+1

// UXk+1[1]

First, observe that, since both vk(X)[1] and V Xk+1 lie in V[k + 1], so does UXk+1[1]. Hence, we have that
UXk+1 lies in C[k], showing that akαk = 0, by our assumption on X. Thus, there is a map fk : V Xk+1 −→ X

such that fkβk = ak. However, fk must also factor through ak+1 : vk+1(X) −→ X, i.e. there is a map
gk : V Xk+1 −→ vk+1(X) such that ak+1gk = fk. In summary, we get ak+1gkβk = ak. Recall that, however,
ak+1 factors canonically through ak (since V is suspended) and, therefore, since ak is a right minimal
approximation, we conclude that βk is a split monomorphism. This shows that vk(X) lies in V[k + 1]
and, therefore, the canonical map vk+1(X) −→ vk(X) must be an isomorphism. This implies that also
the canonical map wk(X) −→ wk+1(X) is an isomorphism, for all k in Z. In particular, for any k, the
object wk(X) lies in

⋂
n∈ZW[n] = 0 and, thus, X lies in

⋂
k∈Z V[k] = U⊥Z .

To prove the final assertion, we now assume that V = S⊥ for a set of objects S in T . We claim that
C = Add(X), for some object X in C. Indeed, for each object S in S, consider a truncation triangle of
S[1] with respect to the co-t-structure (U ,V)

US // S[1]
hS // VS // US [1] .

Since S[1] and US [1] lie in U [1], so does VS and, therefore, VS lies in C. We consider the object X :=∐
S∈S VS and we show that Add(X) = C. It is clear that Add(X) ⊆ C. Now, for any object C in C, we

consider a right Add(X)-approximation f : X ′ −→ C and we complete it to a triangle

K // X ′
f // C

g // K[1] .

Given S in S, since hS is a left V-approximation and f is a right Add(X)-approximation, we have that
HomT (S[1], f) is surjective. Moreover, we have HomT (S[1], X ′[1]) = 0, and thus we conclude that
HomT (S[1],K[1]) = 0, proving that K lies in V. This shows that g = 0 and f splits, proving our
claim. �

We now prove that partial silting objects in sufficiently nice triangulated categories yield TTF triples.
Analogous results for silting complexes in derived categories of rings appeared in [5, Theorem 4.6].

Proposition 3.8. Let T be a well generated triangulated category satisfying dual Brown representability.
If T is a partial silting object in T , then (⊥(T⊥>0), T⊥>0 , (T⊥>0)⊥) is a suspended TTF triple.

Proof. By Proposition 3.5, there is a t-structure (T⊥>0 ,W) in T . By [10, Theorem 3.2.4] there is
a co-t-structure of the form (U , T⊥>0) provided that T⊥>0 is complete (which is obvious), the heart
of (T⊥>0 ,W) is an abelian category with enough projectives, and Loc(T⊥>0), the smallest localising
subcategory containing T⊥>0 , satisfies dual Brown representability.

Recall from [9] that the heart of any t-structure forms an abelian category. First, we check that the
heart H = T⊥>0 ∩W[1] of the t-structure (T⊥>0 ,W) has enough projective objects. Indeed, recall that
this t-structure is obtained in Proposition 3.5 by gluing the trivial t-structure (T⊥Z , 0) in T⊥Z with the
silting t-structure (T⊥>0 ∩ Loc(T ), T⊥≤0 ∩ Loc(T )) in Loc(T ). By [37, Proposition 4.6], the heart A of
the latter t-structure has enough projective objects. Since gluing t-structures induces a recollement of
hearts ([9, Section 1.4]), and since the heart of the t-structure (T⊥Z , 0) is trivial, we conclude that H ∼= A
is an abelian category with enough projectives.

Secondly, it suffices to observe that Loc(T⊥>0) = T . Indeed, note that both Loc(T ) and T⊥Z are
contained in Loc(T⊥>0) and, thus, so is T = Loc(T )∗T⊥Z (see Theorem 2.7). This finishes our proof. �

The following theorem establishes the bijection between partial silting objects and certain TTF triples.

Theorem 3.9. Let T be a well generated triangulated category satisfying dual Brown representability.
The assignment sending an object T to the triple (⊥(T⊥>0), T⊥>0 , (T⊥>0)⊥) yields a bijection between

6



• Equivalence classes of partial silting objects in T ;
• Suspended TTF triples (U ,V,W) in T such that (U ,V) is generated by a set of objects from T
and (V,W) is right nondegenerate.

Proof. By Proposition 3.8, the triple (⊥(T⊥>0), T⊥>0 , (T⊥>0)⊥) is a suspended TTF triple in T , and the
co-t-structure (U := ⊥(T⊥>0), T⊥>0) is generated by a set of objects, namely the negative shifts of T . It
remains to check that the t-structure (T⊥>0 ,W := (T⊥>0)⊥) is right nondegenerate to guarantee that
the assignment is well-defined. But from the proof of Proposition 3.8, we know that Loc(T⊥>0) = T ,
showing that

⋂
n∈ZW[n] = Loc(T⊥>0)⊥ = T ⊥ = 0, as wanted.

To prove that the assignment is injective, we observe that the coheart C = U [1]∩T⊥>0 coincides with
Add(T ). Indeed, it is clear that Add(T ) is contained in C. The reverse inclusion follows as in the proof
of the last statement of Lemma 3.7.

Finally, if (U ,V,W) is a TTF triple as in the statement above and C denotes the coheart of the co-t-
structure (U ,V), then it follows from Lemma 3.7 that V = C⊥>0 and, moreover, since (U ,V) is generated
by a set of objects, C = Add(X) for an object X in T . It remains to show that X is partial silting in T .
However, this is clear from Proposition 3.5 since X⊥>0 = V is an aisle in T containing X. �

Corollary 3.10. Let T be a well generated triangulated category satisfying dual Brown representability.
The assignment sending an object T to the triple (⊥(T⊥>0), T⊥>0 , (T⊥>0)⊥) yields a bijection between

• Equivalence classes of silting objects in T ;
• Suspended TTF triples (U ,V,W) in T such that (U ,V) is generated by a set of objects from T
and (V,W) is nondegenerate.

Proof. By Theorem 3.9, it is enough to check that a partial silting object T in T is silting if and only if⋂
n∈Z T

⊥>0 [n] = T⊥Z = 0. But this follows from Lemma 3.3, as discussed in the previous subsection. �

4. Compactly generated localising subcategories

We will prove that, for a large class of triangulated categories T , compactly generated localising
subcategories are generated by a partial silting object from T . In Subsection 4.1, we start with the
case of localising subcategories of derived module categories which are generated by 2-term complexes
of finitely generated projective modules. Here, we can use recent work from [27] to obtain the statement
claimed above. This subsection is meant to serve as a motivation for the general case, which will be
discussed afterwards. In fact, in order to prove our main theorem in Subsection 4.2, we will use different
techniques that mostly rely on the results of Section 3.

4.1. The case of 2-term complexes. In this section, R will be a (unital) ring and D(R) = D(Mod–R)
will denote the unbounded derived category of all right R-modules. Let Σ be a set of maps between
projective R-modules, which we sometimes view as a set of objects in D(R) with cohomologies concen-
trated in degrees −1 and 0. Moreover, let YΣ be the full subcategory of all R-modules X satisfying that
HomR(σ,X) is an isomorphism for all σ in Σ. First, we claim that the subcategory Loc(Σ)⊥ of D(R) is
cohomologically determined by YΣ (see [13, Proposition 3.3(3)] and [4, Lemma 4.2] for instances of this
result in a more restricted setting).

Proposition 4.1. With the notation above, we have that Loc(Σ)⊥ coincides with the subcategory of
complexes in D(R) whose cohomologies lie in YΣ.

Proof. The following argument is based on the proof of [4, Lemma 4.2]. Let σ be a map from Σ. Note
that an object Y lies in Loc(σ)⊥ if and only if, for all n ∈ Z, we have HomD(R)(σ, Y [n]) = 0. If we write
σ : P −→ Q as a map of projective R-modules, this translates to asking that σ induces an isomorphism
of the form

HomD(R)(Q,Y [n]) // HomD(R)(P, Y [n])

for all n ∈ Z. Since, for any projective R-module P and any Y in D(R), we have HomD(R)(P, Y ) ∼=
HomR(P,H0(Y )), it follows that Y lies in Loc(σ)⊥ if and only if Hn(Y ) lies in Yσ for all n ∈ Z. �

In general, the subcategory YΣ of Mod–R is not closed under coproducts and, hence, Loc(Σ) is not
a smashing subcategory of D(R). There are, however, two distinguished cases, in which the situation is
significantly better understood:
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(1) Suppose Σ is a set of maps between finitely generated projective R-modules, which, in particular,
implies that Loc(Σ) is a smashing subcategory of D(R). In this context, there is an associated
ring epimorphism R −→ RΣ, called the universal localisation of R at Σ (see [39, Chapter 4]),
and the category of modules over RΣ identifies via restriction with the full subcategory YΣ of
Mod–R. Note that, moreover, Loc(Σ)⊥ identifies with D(RΣ) if and only if TorRi (RΣ, RΣ) = 0
for all i > 0 (see, for example, [13, Proposition 3.6] and [34, Theorem 0.7]).

(2) For the second case, we are interested in complexes that arise from partial silting modules, as
introduced in [5]. Recall from [5, Lemma 4.8(3)] that an R-module is partial silting if and only
if it is the cokernel of a map σ between (not necessarily finitely generated) projective R-modules
such that σ lies in σ⊥>0 and the intersection of σ⊥>0 with the aisle D≤0 of the standard t-structure
is a cocomplete subcategory of D(R). In this context, there is an associated localisation of rings
R −→ Rσ, called the silting ring epimorphism with respect to σ (see [6]), and the category of
modules over Rσ identifies via restriction with the full subcategory Yσ of all R-modules X such
that HomR(σ,X) is an isomorphism. In particular, it then follows from Proposition 4.1 that
Loc(σ) is a smashing subcategory of D(R) and that σ is a partial silting object in the sense of
Definition 3.1. Indeed, for the latter claim, it suffices to check that the subcategory σ⊥>0 of
D(R) is cocomplete, which follows from the equality σ⊥>0 = (σ⊥>0 ∩ D≤0) ? Loc(σ)⊥. Finally,
we have again that Loc(σ)⊥ identifies with D(Rσ) if and only if TorRi (Rσ, Rσ) = 0 for all i > 0
(see [4, Lemma 4.6]).

With this in mind, the main result of this subsection comes as a direct consequence of the fact that
every universal localisation is a silting ring epimorphism (see [27, Theorem 6.7]).

Theorem 4.2. Let Σ be a set of maps between finitely generated projective R-modules. Then there is a
partial silting R-module with respect to a map σ such that Loc(Σ) = Loc(σ) in D(R).

4.2. The general case. In this subsection, T will denote again a triangulated category with coproducts
and we will focus on partial silting objects as defined in Definition 3.1. We begin by recalling a result,
which states that, for many triangulated categories, sets of compact objects give rise to suspended TTF
triples.

Proposition 4.3. Suppose that T satisfies Brown representability and let Σ be a set of compact objects
in T . Then there is a suspended TTF triple of the form (⊥(Σ⊥>0),Σ⊥>0 , (Σ⊥>0)⊥).

Proof. Since Σ is a set of compact objects, the subcategory Σ⊥>0 is cocomplete and it follows from
[1, Theorem 4.3] that the set of all negative shifts of objects from Σ generates a torsion pair, namely
(⊥(Σ⊥>0),Σ⊥>0). As T satisfies Brown representability, it follows from [10, Theorem 3.1.2] that we have
a TTF triple, as wanted. �

In view of Theorem 3.9, it is often enough to check that the t-structure (Σ⊥>0 , (Σ⊥>0)⊥) is right
nondegenerate to guarantee that a TTF triple as in Proposition 4.3 arises from a partial silting object
T in T . This, however, cannot always be the case. Take, for example, Σ to be the set of all compact
objects in a compactly generated triangulated category T . Then we have Σ⊥>0 = Σ⊥Z = 0 and, thus,
(Σ⊥>0)⊥ = T . The following proposition provides some sufficient conditions for Σ to induce a silting
TTF triple.

Proposition 4.4. Let Σ be a set of compact objects in a well generated triangulated category T satisfying
dual Brown representability. Assume that for any σ in Σ there is an integer nσ > 0 for which σ[nσ] lies
in Σ⊥>0 . Then there is a partial silting object T in T such that Σ⊥>0 = T⊥>0 . In particular, we have
that Loc(Σ) = Loc(T ).

Proof. We denote by (⊥(Σ⊥>0),Σ⊥>0 ,W) the suspended TTF triple obtained from Proposition 4.3. To
show that this TTF triple arises from a partial silting object T in T , following Theorem 3.9, we only need
to check that

⋂
n∈ZW[n] = 0. Note that for the latter it will be sufficient to check that Loc(Σ⊥>0) = T .

By our assumption on Σ, it is clear that Loc(Σ⊥>0) contains Loc(Σ). Since it also contains Σ⊥Z , and
since T = Loc(Σ) ∗ Σ⊥Z , it follows that Loc(Σ⊥>0) = T , as wanted. For the final assertion, note that,
since Σ⊥>0 = T⊥>0 , we also have

Σ⊥Z =
⋂
n∈Z

Σ⊥>0 [n] =
⋂
n∈Z

T⊥>0 [n] = T⊥Z .

This implies that Loc(Σ) = Loc(T ), as wanted. �
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To show that all compactly generated localising subcategories of a given triangulated category have
a partial silting generator, we should ask the underlying triangulated category to be large enough in a
suitable sense (compare with Remark 3.6). One way of guaranteeing this, is to ask for the existence of
a compact silting object.

Theorem 4.5. Let T be a compactly generated triangulated category containing a compact silting object
M . Let L be a compactly generated localising subcategory of T . Then there is a partial silting object T
in T such that L = Loc(T ). In particular, every compactly generated localising subcategory of T admits
a nondegenerate t-structure.

Proof. It follows from [28] (see also [1, Proposition 4.2]), that the subcategory T c of compact objects in
T coincides with the smallest thick subcategory containing M . Therefore, we can assume, without loss
of generality, that the localising subcategory L is generated by a set of compact objects Σ in T such that
every σ in Σ is a finite iterated extension of non-positive shifts of objects from add(M), where add(M)
denotes the subcategory of T whose objects are summands of finite direct sums of copies of M . Since
HomT (M,M [i]) = 0 for all i > 0, we have that for any σ in Σ there is an integer nσ > 0 for which σ[nσ]
lies in Σ⊥>0 . Hence, Proposition 4.4 completes the argument. Finally, the existence of a nondegenerate
t-structure in L is a consequence of Proposition 3.5. �

Remark 4.6. Note that if the triangulated category T from Theorem 4.5 is algebraic, i.e. T is triangle
equivalent to the stable category of a Frobenius exact category, then the existence of a compact silting
object precisely says that T is triangle equivalent to the derived category of differential graded modules
over a non-positive differential graded ring (see [21, Theorem 8.5] and [20]).

If the triangulated category T from Theorem 4.5 is topological, i.e. T is triangle equivalent to the
homotopy category of a spectral model category, then the existence of a compact silting object precisely
says that T is triangle equivalent to the homotopy category of module spectra over a connective ring
spectrum (see [40, Theorem 3.9.3] and [40, Lemma 3.5.2]). In particular, Theorem 4.5 applies to the
stable homotopy category, for which the underlying ring spectrum is the sphere spectrum (see also [40,
Example 2.3]).

The following example shows that possessing a nondegenerate t-structure does not imply that a given
smashing subcategory L is compactly generated. Nevertheless, it is not clear whether the existence of a
silting object in L guarantees compact generation.

Example 4.7. A typical example of a smashing subcategory that is not compactly generated can be
obtained by considering an idempotent maximal ideal I of a valuation domain R. Then Loc(I) inside
D(R) is known to be smashing but not compactly generated (see [8, Theorem 7.2]). Moreover, since
f : R −→ R/I is a homological ring epimorphism, the derived category D(R/I) identifies with the
subcategory Loc(I)⊥ of D(R) via the restriction functor f∗. Now, it is clear that the standard t-structure
in D(R) restricts to D(R/I) (by intersection) and that, moreover, the heart of the restriction, namely
Mod–R/I, identifies with a Serre subcategory of Mod–R. From [14, Lemma 3.3] it then follows that the
standard t-structure in D(R) is obtained by gluing t-structures along the recollement induced by Loc(I).
In particular, Loc(I) admits a nondegenerate t-structure.
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