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Abstract

Representing molecular systems above the microscale is a challenging task. The

widely-used atomistic methods are very accurate, but at the same time, very lim-

ited in terms of efficiency. In this thesis, I report different methodologies to rep-

resent adsorption and diffusion occurring in host-guest systems on larger scales,

through discrete models. First, I report a data-driven approach for the definition

of molecular states based on local atomistic patterns. Second, I propose another

method that makes use of the occupancies i.e. local amounts of guest species.

Molecular systems are mapped into lattice models equipped with coarse-grained

thermodynamics and a local operator, which represents the dynamics. These meth-

ods are validated in different ways on several molecular systems, and provide an

accurate reproduction of the reference atomistic properties. Moreover, they un-

veiled interesting physicochemical insights while being strikingly more efficient

than their atomistic counterpart.
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Preface

This thesis summarizes the developments and the results obtained by me and my

collaborators in the context of the main project of my PhD program. During

the last three years, I tried to contribute to the challenge of representing real-

world molecular systems via theoretical and computational tools. The path that

conducted to the results and the progress reported in this work was never straight.

Many of the approaches I explored are not present in this thesis, since they didn’t

lead to consistent or generally relevant results. The remaining ones were (from

slightly to radically) modified during the research process and eventually led to

something scientifically relevant.

The project on which I report in this thesis is far from being complete, and it led

to more questions rather than answers. However, I think that the works presented

here have a scientific value up to some extent. In some cases, such value was also

recognized by the community and it resulted in the publication of peer-reviewed

articles.

Apart from its scientific value, this path was particularly enriching for me both

from a professional and a personal point of view. At the time of this writing,

I find myself very different from three years ago. The transformation that this

experience induced in me was not painless, but eventually led to satisfaction and

a sense of personal growth.



Chapter 1

Introduction

1.1 The representation problem: keeping what

matters

“Everything should be made as simple as possible, but not simpler.”

– A. Einstein, 1950

Understanding and rationalizing the fundamental properties of a chosen system

is probably the main focus of any researcher in natural sciences. Specifically,

theoretical studies attempt to describe nature by using approaches from the formal

sciences such as mathematics and logic [1]. Formalizing real-world observations

through a set of abstract representations and laws is the main way to rationalize

the phenomena and properties of interest.

The discovery and validation of theoretical models is also accelerated by the ex-

tensive use of computer simulations of the phenomena of interest. Computational

results along with experimental observations provide a further reference that can

be used to test and improve theory and models. The reliability of computer simu-

lations strictly depends on which theoretical representation of the physical systems

10



1. Introduction 11

under study is chosen to be used.

However, finding the appropriate way to formalize real-world phenomena is not

straightforward and it is the subject of a considerable number of studies. In prin-

ciple, one could choose the most detailed and thus accurate formalization possible

as the most complete description available. Unfortunately, in many scenarios, this

may not be the optimal choice for different reasons: because such formalization is

simply not available in that specific context, or because it is practically impossible

to use it. The first case usually originates from the presence of a theoretical gap,

which hinders the modeler from applying the chosen theory to a specific problem.

The second case — the one that this thesis tries to cope with — is generally caused

by the overwhelming amount of information that the most complete description

would require. So, despite being available, the most complete representation may

carry too many details which might be unnecessary or redundant for the specific

problem we are facing. This is, for example, the case of large-scale phenomena,

which usually cannot be analysed starting from first principles, since that would

simply be an unfeasible task.

At this point, the need for a more effective and efficient representation becomes

evident. The shift from a high-detailed to a less-detailed description can be imag-

ined as an abstraction process. One could imagine reiterating such a representation

shift an arbitrarily large number of times, thus obtaining a set of different possible

descriptions of the same system.

We can metaphorically think about it as a set of different lenses, each one with

a specific resolution or magnification power. Imagine having to analyse a fruit,

say an apple. If we observe it through the highest resolution lens we have, we

will be able to see a large number of details and to fully characterize any portion

of it. This kind of representation turns out to be very useful if we are interested

in phenomena occurring in the microscale, such as biochemical reactions. But as

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
in host-guest systems
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1. Introduction 12

humans are limited, we can carry a limited amount of information in our memory

and our hardware, and we cannot even think of describing an entire apple by

tracking every single atom of it.

At the opposite side, we can use the lowest-resolution lens and see the apple as a

point. This kind of description may be useful to a process engineer who is interested

in predicting the apple flow in a packaging factory. This is a very lightweight

description which may seem to be the optimal choice in terms of memory, but might

be too abstract to be useful. At this resolution, an apple would be indistinguishable

from an orange and such classification error could be unacceptable for the kind of

analysis we want to perform.

This metaphor serves to make the reader aware of the representation problem

and of the many questions that arise from it. In my personal opinion, the most

important ones can be resumed as the following:

• which criteria should we use to define the derived representations? — How

do we construct different lenses?

• which representation should we use to cope with a specific problem? — How

do we choose the appropriate pair of lenses in a specific context?

Both of the questions are still open, in the sense that there is no general answer.

However, when defining the mapping from a given representation into another we

could follow some general indications, such as the fact that a derived representation

should be as consistent as possible with the original one. It is also desirable that

such mappings are as general as possible, i.e. we should be able to reduce to a

minimum the case-specific assumptions and decisions that could bias the definition

of the low-resolution representation.

Up to now, I implicitly suggested that the shift should be performed from a

high-detailed representation to a lower-detailed representation and not the oppo-

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
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1. Introduction 13

site. This is denoted as a bottom-up approach, while the opposite shift is called

top-down approach. The choice of following a bottom-up approach rather than a

top-down modelling is motivated by very simple and general arguments. In the

bottom-up approach, we use a set of pre-existing information which we assume to

be true, from which we carry out a selection of relevant features in order to obtain

a derived set of information. Practically, this can be pictured as an interpolation

problem, as we define the new set of information within the preexisting set that we

already possess. In the reverse approach, we would have to generate from scratch

a set of details we do not have. This is a way more difficult problem and it can be

imagined as an extrapolation process.

Furthermore, when defining the derived representations of the chosen system,

we expect to obtain a match between the physical properties at both levels of

description. In other words, we can measure the accuracy by comparing the prop-

erties of the derived representations with the reference ones. Choosing a top-down

approach means that we have to start from an abstract, low-detailed picture of

the system and use its properties as our reference. Conversely, when pursuing a

bottom-up approach we should start from a high-detailed reference representation

which is usually related with accurate and realistic properties. Thus, bottom-up

approaches should be preferred since they are based on more reliable reference

data as compared with the ones we would use for the top-down methods.

In the literature, bottom-up representation shifts are usually called coarse-

graining methods. From now on, I will use the abbreviation CG to indicate both

“coarse-graining” and “coarse-grained”.

In this thesis, I want to provide a set of methods to perform the CG modelling

of two phenomena typical of host-guest systems: adsorption and diffusion of the

guest species. The main idea is to ideally fill the gap between microscopic and

macroscopic descriptions of such phenomena, with a set of possible mesoscopic

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
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1. Introduction 14

representations. This is because the methodologies to represent such phenomena

in the microscale (lengths . 1 nm) and macroscale (lengths & 1 µm) are already

well-established and widely used. The most accurate methods to characterize

the dynamics of host-guest systems in the microscale include ab-initio molecular

dynamics (AIMD) and path integral molecular dynamics (PIMD), which allow

introducing quantum effects in atomistic simulations [2, 3]. If quantum effects can

be ignored, we can usually employ classical molecular dynamics (MD) methods [4].

The adsorption static properties are usually studied using grand-canonical Monte

Carlo methods (GCMC) [5]. Both MD and MC methods will be briefly introduced

in the following chapter. Despite the great accuracy related to such methods, they

are usually limited to the microscale, mainly because of the computational effort

required or because of numerical stability.

On the macroscale, the methods used to investigate such phenomena are usu-

ally variants of computational fluid dynamics (CFD) approaches [6]. CFD methods

attempt to numerically and iteratively solve the Navier-Stokes equations, which de-

scribe fluid flows under the assumption that the flowing substance can be described

as a continuum. Unfortunately, there is no general procedure to parameterize

CFD methods to represent host-guest systems. Usually, the parameters involved

are obtained by numerically fitting a certain number of macroscopic properties

of the systems under study, i.e. through a top-down approach. Such approaches

might be useful for practical uses, but they require to be applied very carefully as

they are not based on the underlying physics of the system but rather on some

property matching criteria. For this reason, macroscopic methods may reproduce

macroscopic properties correctly, but there is no guarantee that the real underly-

ing mechanisms will be physically meaningful. Recently, efforts have been made to

introduce bottom-up approaches or hybrid simulations where the CFD methods

are made consistent with atomistic MD simulations, but such strategies are still

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
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1. Introduction 15

in the early stages [7].

This motivates the idea of researching new representations that could ideally lie

between the microscopic and macroscopic methods, but with the condition that

they should be parameterized upon the microscopic results. In particular, this

thesis wants to demonstrate the possibility of defining discrete CG models of the

reference systems. This means that the set of possible CG states is countable. As

a consequence, if the CG dynamics are defined, they should be based on abrupt

changes from one state to the other.

We chose to use a discrete modelling approach for different reasons. In general,

discrete models require less computational effort if compared with the continuous

counterparts. Also, due to their simplicity, discrete models have known analytic

solutions more often. Conversely, continuous models usually require the use of

differential equations, which are analytically solvable in a narrower range of cases.

For this reason, many continuous models have to undergo discretization in order

to be simulated.

Despite these pros, discrete models often suffer from their limited resolution,

and may produce unrealistic results. For example, one of the first attempts to

reproduce a fluid through a cellular automaton (CA), was the HPP model [8].

Unfortunately, the model was unrealistically anisotropic in its behaviour due to

the insufficient degree of rotational symmetry. For this reason, the HPP model

was not able to reproduce the Navier-Stokes equations in the macroscopic limit

[9]. Despite such failures, there are many notable examples of successful discrete

representations of physical systems, such as the famous Ising model, originally

used to represent magnetic properties of matter [10]. Another important mention

has to be made to the Markov state modelling of molecular systems approaches

developed by Noe et al [11, 12]. Their methods are particularly suitable for the

representation of systems of biochemical importance, such as the study of protein

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
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folding and the analysis of metastable states. Such methods allow defining discrete

models of the reference systems by partitioning the configuration space in disjoint

states using general statistical assumptions, and the transitions from one state to

the other can be used to study or represent the molecular kinetics.

Strictly speaking, no discrete model of nature is completely realistic, since —

at least according to classical theories such as general relativity— space-time is

continuous. However, there are scenarios in which the discrete approach yields

a realistic approximation of the chosen problem. It is the case of systems char-

acterized by the fact that, under the time resolution we adopted to observe the

dynamical evolution, the transformation from one state to the other is practically

abrupt.

1.2 Coarse-graining strategies

This section aims to provide the reader with an overview of the main CG methods

that are currently employed in the scientific community. Usually, and within this

thesis as well, the CG of molecular systems involves the definition of a mapping

function which transforms the original atomic coordinates into states expressed

in terms of CG variables. In a certain sense, CG strategies share some common

features and can be ideally resumed in the scheme depicted in Fig1.1.

However, they might present some fundamental differences when applied in

practice. For this reason, CG methods can be grouped in several ways according

to the respective similarities and differences. For our purposes, it is useful to

introduce the distinction between topological and spatial approaches.

In the first case, atomic positions are grouped into beads and equipped with

a structure of connections that ends up with CG objects representing fine-grained

molecules at a coarser resolution — such objects are still “molecules”, in the sense

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
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1. Introduction 17

Figure 1.1: A general scheme representing the coarse-graining of a molecular system. The x-

axis represents the simulated time, while the y-axis represents the length scale. In the lower part,

the system is represented at atomistic resolution in the microscale, where each configuration is

represented by the atomic positions r, and the evolution is governed by the atomistic laws

of motion (dashed black arrows). A subset of configurations are mapped (green arrows) to a

mesoscopic coarse-grained representation n through the operator MCG. In the mesoscale, the

CG dynamics are represented by the application of a CG operator P̂CG.

that, at CG level, beads’ positions, orientations, and momenta are still defined,

and still represent the observables that undergo dynamical evolution [13–16]. CG

objects should be intended molecules in a broad sense, as they might also in-

clude artificial features such as virtual sites [17, 18]. Then, the fine-grained (FG)

force-field is mapped into an effective force-field; this can be performed according

to different methods such as force-matching and Boltzmann inversion techniques

[13, 14, 19–23]. At CG resolution, molecular objects will evolve through the same

evolution algorithm as the one used to simulate the system in the fine-grained scale,

usually a molecular dynamics algorithm which, in case, might include modifica-

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
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1. Introduction 18

tions, like handling friction and random forces as in the case of dissipative-particle

dynamics [24]. However, CG and FG evolution algorithms share the same nature.

In the case of spatial coarse-graining, the system is partitioned into a grid

of cells, which tessellate the entire simulation space; then the FG observables of

molecules (such as position and momenta), as they are extracted from some fine-

grained source of data (GCMC or MD simulation trajectories), are mapped to

a CG state that can represent different features associated to each cell [25–32].

A very common kind of CG state for spatial approaches is the local amount of

species i.e. the occupancy, but also other information can be considered such as

local charge, polarization, local mass distribution etc. Therefore, this strategy

leads to the definition of objects that are no longer “molecules”, but they rather

are “cells”, geometrical entities that are supposed to neither change their shape

nor their position in space during the time-evolution of the coarse-grained system;

in this case, at a coarse-grained level, it is the CG states that undergo dynamical

evolution. Finally, the CG representation is equipped with an evolution algorithm

that updates the CG states, thus mimicking as closely as possible the dynamical

evolution of the fine-grained counterpart. Usually, such algorithm is stochastic

and is based upon schemes that might not have anything in common with molec-

ular dynamics-based algorithms, but might rather resort to kinetic Monte Carlo

or cellular automata rules [33, 34]. Such rules can be conveniently parameter-

ized according to the state-change rates observed from the reference fine-grained

simulations.

The subdivision between spatial and topological approaches proposed in this

thesis is in analogy with the definitions of field-based and particle-based approaches

to mesoscopic representations, usually present in the soft matter literature.

The two approaches present profound differences, but they are conciliable. In

fact, examples of hybrid simulations, where molecular-based and spatially coarse-

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
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grained representations coexist in the same simulation environment, are present in

the recent literature[35–37]. For example, the definition of coarse-grained potential

may involve both molecular-like contributions (such as particle positions, bonds

between beads etc.), and field contributions, which depend on other coarse-grained

variables such as the local density of particles.

1.3 Outline of the thesis

The remaining part of this thesis is organized as follows. In the next chapter, I

will introduce the main background concepts that should provide the reader with

the basic tools to understand the core parts of this thesis. The third chapter

is dedicated to a preliminary work devoted to the automatic definition of CG

states through a data-based method. The fourth chapter is a re-adaptation of

a published work concerning the coarse-graining of host-guest systems where the

interacting pair approximation (IPA) is introduced [38]. The fifth chapter reports

another published article dedicated to the structural generalization of the IPA

approach, focused on the modelling of more complex host environments [39]. The

sixth chapter is an adaptation of another article, which was just accepted by the

editor at the time of this writing [40]. Such work completes the coarse-graining of

adsorption and diffusion in host-guest systems by providing a dynamical evolution

algorithm which can be used to represent mass-transfer mechanisms. Finally, in

the last chapter I will draw the conclusions concerning the work here presented,

and propose future perspectives.
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Chapter 2

Theoretical Background

2.1 Molecular representations

2.1.1 Classical atomistic representation

Molecular systems can be represented under different levels of detail. The choice

of a specific representation is usually arbitrary and depends on the type of systems

and phenomena investigated. We can introduce an example molecular system S,

which can be a single molecule, a full crystal or, more generally speaking, just a

bunch of atoms.

The most detailed and accurate way to represent and characterize S is by

introducing its wave function ΨS , which ideally contains all the information related

to its static and dynamical properties. Unfortunately, the closed form of Ψ is

known only for very simple systems under specific boundary conditions. Several

approximate methods for the estimation of ΨS exist, each one introducing specific

assumptions and with a limited range of applications. Furthermore, the use of such

methods is usually limited to small systems because of the large computational

effort required.
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However, this thesis focuses on the representation of phenomena occurring in

spatial and time scales which are usually larger and sufficiently separated from the

ones where quantum effects need to be simulated explicitly.

If such assumption holds, we can treat the systems as fully classical ones. In

this way, all quantum effects, such as the consequences of Heisenberg’s uncertainty

principle, can be ignored thus allowing us to uniquely define the positions rN and

the momenta pN of the N particles constituting the system. The use of the

superscript in rN and pN is a shortcut to indicate the position and momenta

vectors of all the N particles present in S.

Furthermore, we can restrict our representation to the atomic nuclei, ideally

intended as single particles.

Thus, treating our system as a mechanical one, the state of S can be completely

represented by the pair
(
rN ,pN

)
, that indicates a specific point ΓS =

(
rN ,pN

)
in

the system’s phase space {ΓS}, which is the space of all possible positions rN and

momenta pN of the system.

This kind of representation defines the microscopic state or microstate of the

system within the classical mechanics’ approximation. It is particularly important

since it constitutes the standard input for classical force-fields which are widely

used in computational simulations like classical molecular dynamics (MD) and

Monte Carlo (MC) methods, which will be explained more in detail in the following

section.

This atomistic, classical representation of S is also the starting point for the

development of all the derived representation that will be introduced in this thesis.

A sketch representing an example molecular system, under the lens of the different

representations used in this thesis, is shown in Fig. 2.1.
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Figure 2.1: Sketch of the same molecular system depicted according to the different kinds of

representations used in this thesis. Subfigure a represents the occupancy-based network of cells;

subfigure b shows the atomistic representation; subfigure c shows a decomposition in atom-centred

local environments, a typical input of machine-learning models.

2.1.2 Local occupancy-based representations

When considering host-guest systems, a possible approach for representing each

configuration is to consider the local amount of guest species, which we call occu-

pancy [38–41]. In order to do this, the reference system needs to be divided into a

set of non-overlapping subvolumes, which we will refer to as cells.

The division in cells can be performed in several ways and the choice is usually

made on the basis of the host’s structure. For example, an ordered porous material

can be conveniently divided partitioned according to a regular tiling in such a way

that every cell embeds a single pore or a group of pores (2× 2× 2, 3× 3× 3, etc.).

Disordered hosts generally require more complicated partitioning schemes. A

possible strategy could be to divide the space with clustering techniques applied

to the distribution of guest molecules in the space covered by the host. In this

way, it is possible to find potential centres for the cells, located where the guest

molecules tend to accumulate. Then, on the basis of the clusters’ centres, one can

construct a Voronoi tessellation to fill the entire simulation space with cells.
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In both cases, the reference molecular configuration is mapped to a set of Nc

distinct cells, which can be connected on the basis of the interaction network and

may represent the directions of particle motion.

After partitioning, the state of the system can be represented by a configuration

of occupancies which can be embedded in a vector n = (n1, n2, ..., nNc). The

components of such a vector represent the occupancies, which are equal to the

total number of guest species located inside of each cell. The occupancy value for

the i-th cell can be obtained using the following formula

ni =

Np∑

j=1

θi(rj), (2.1)

where rj is the position vector of the j-th particle and θi(rj) is a membership

function, which is equal to 1 if rj is included in the volume covered by the cell i,

and 0 otherwise.

This level of description is particularly convenient for the coarse-grained rep-

resentation of phenomena which depend on the distribution of guest molecules,

within the host environment. In fact, this is the starting point for the representa-

tion of adsorption and diffusion phenomena through lattice models.

2.1.3 Representations for machine learning

Mapping from atomistic representations to derived descriptions is generally a diffi-

cult task that requires some knowledge of the reference system and the phenomena

which are the object of study. Humans can be very accurate in understanding and

rationalising molecular structures but, even in the best scenarios, their capabilities

are limited and can be subject to biases and logical fallacies. To cope with this

kind of issues, it is necessary to develop strategies based on an agnostic perspec-

tive, which would be unbiased by definition; but with the capability of reproducing
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the chosen systems and properties with satisfactory accuracy.

In the last years, machine learning (ML) methods have explored several ways

of describing molecular structures for different purposes, such as classification,

potential models development, rationalization of structure-property relationships

etc [42]. Before being employed for solving specific tasks, ML methods require a

training set of molecular configurations {S}. This set is then used to tune the

parameters embedded in the chosen ML model.

To be used for the training, {S} has to be converted in a set of appropriate

inputs {x}. Such inputs can also contain the properties y related to the reference

structures, which have to be fed to the ML machinery if the goal is to learn the

relation between an input structure and the relative properties.

The choice of the kind of molecular inputs, usually called descriptors, that are

used to feed the ML model is particularly crucial and may dramatically affect the

performance. For certain tasks, local descriptors can be used instead of providing

the full reference structures. This is, for example, the case of learning a set of

properties that can be safely divided into local contributions or if the goal is to

define and compare local structural patterns. The decomposition of a reference

molecular system in local environments is depicted in Fig. 2.1.

In principle, atomic cartesian coordinates could be used as descriptors for the

ML model, but the downside is that physically indistinguishable configurations

could be misinterpreted as different ones. For example, if a molecular structure is

rigidly translated from the starting configuration, the atomistic coordinates would

change and the final structure would be considered different from the starting

one. There are three kinds of transformations with respect to which a good local

descriptor should be invariant to: translation, rotation and permutation of the

same-elements atoms. These transformations are depicted in Fig. 2.2 with an

example molecular system composed by two CO2 molecules.
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Figure 2.2: Transformations which should be encoded in an appropriate descriptor of a molec-

ular system: translation T̂ (subfigure a), rotation R̂ (subfigure b), permutation of the same

element-atoms (subfigure c).

Popular examples of local descriptors for machine learning are internal coordi-

nates such as distances and angles between atoms, which are naturally invariant to

translation and rotation. However, the choice of which internal coordinates should

be considered relevant depends on some prior understanding of the molecular sys-

tems and phenomena which have to be investigated.

Further general-purpose local descriptors have been introduced with the scope

to provide a more general and unbiased encoding of local atomic configurations. It

is the case of Behler-Parrinello’s symmetry functions and SOAP (smooth overlap

of atomic positions) descriptors [43, 44]. The latter kind of descriptor is the one

that was used in this thesis for the analysis of local CO2 adsorption patterns in

the ITQ-29 zeolite. Such descriptors do not require any detailed prior physico-

chemical knowledge of the molecular study, and require the tuning of only a few

general parameters (which elements should be analysed, the cutoff radius of each

descriptor, and the set of basis functions that should be used). SOAP and Sym-

metry functions are successfully employed for the statistical analysis of molecular

configurations through ML algorithms, but also as input set for ML potentials that

can be used for molecular simulations [45–47].
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2.2 Simulation methods

2.2.1 Statistical mechanics background

In this paragraph, I would like to provide the reader with a very brief and intuitive

picture of a few, but very relevant concepts from statistical mechanics, which are

crucial to understand the rest of this thesis. A complete and rigorous derivation

of the formalism introduced in this paragraph is beyond the scope of this thesis.

As shown in the previous section, a molecular system can be characterized by

different levels of description. From a macroscopic point of view, the state of a

system can be defined on the basis of some properties such as the volume V , the

temperature T , the amount N of substance, or of substances {Ni}, constituting the

system etc. For example, if a system is isolated with respect to its environment,

the most concise way to characterize its macroscopic state or macrostate is to

define the triplet (N, V,E), where E is the total energy.

In general, there can be many microstates associated to the same macrostate.

For non-trivial systems, enumeration and systematic study of all accessible mi-

crostates within the classical approximation is impossible, since the phase space

of a mechanical system is constituted by an infinite number of points Γ, each one

related to a specific microstate.

However, a detailed analysis of molecular systems can still be conducted by

introducing the concept of ensemble [48]. We first postulate that the average

properties of a system are equal to the properties in the thermodynamic limit —

i.e. in the limit for N → ∞. We also introduce the idea of ensemble S =

{S(N,V,E)}, which is a set of molecular systems S defined by the same macrostate

(N, V,E). This particular kind of ensemble is called microcanonical ensemble.

Practically, one could ideally imagine producing several replicas of S with the

same macrostate, but with different starting microstates. Allowing the different
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systems to evolve following the same classical mechanics’ laws, it is possible to

obtain a set of uncorrelated systems that can be imagined as independent walkers

in the phase space {ΓS}, each one drawing its own trajectory.

In the limit of infinite replicas, the phase space distribution of the walkers will

be equal to the probability distribution of the states in the phase space. In the

(N, V,E) case, the probability of finding the system in a specific state (rN ,pN) is

uniform over all the configurations which total energy belongs to an infinitesimally

narrow energy interval centered in E. The microcanonical probability density

function is defined as follows:

ρ(rN ,pN) =
1

N !h3NΩ(N,V,E)

, (2.2)

where Ω(N,V,E) is the microcanonical partition function, also called degeneracy,

which is equal to the number of states compatible with the triplet (N, V,E); h is

Planck’s constant, which represents the minimum amount of action possible; 1/N !

corrects over-counting configurations with indistinguishable particles. The parti-

tion function Ω(N,V,E) is related to the entropy S through the following equation:

S = kB ln Ω(N,V,E), (2.3)

where kb is the Boltzmann’s constant. Such equation is particularly important,

since it is related to the equilibrium state of the system. The entropy S is said to be

the characteristic state function of the microcanonical ensemble. Every ensemble

is related to its characteristic state function through equations similar to the one

shown in Eq. 2.3. Characteristic state functions are among the most difficult

quantities that one would want to estimate through molecular simulations. This

is because they are strictly connected to the knowledge of the partition functions,

which are related to volumes in phase space.

Since we assume the distribution in Eq. 2.2 to be uniform, we expect that, after

a sufficiently long time, the systems will visit every accessible microstate equally.
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This is called the ergodic hypothesis and it is crucial for justifying the consistency

of molecular simulations.

The main implication of ergodicity is the equivalence between ensemble (or

phase space) averages and time averages. For example, considering an observable

O, its ensemble average can be written as:

〈O〉 =

∫
O(rN ,pN)ρ(rN ,pN)drNdpN , (2.4)

which, considering a sufficiently long time window, is equal to the time average of

O

〈O〉 = lim
nt→∞

1

nt

nt∑

t=1

O(rNt ,p
N
t ), (2.5)

where we intend to average over a time series composed of nt microstates of the

system. For our purposes, we will assume the ergodic hypothesis to be true for all

the molecular systems we consider.

Ergodicity implicitly suggests two possible strategies for calculating the average

properties through molecular simulations:

• to generate a sufficient number of configurations directly from ρ(rN ,pN), to

compute the properties for each configuration and then, divide by the total

number of generated microstates;

• to let the system evolve iteratively from a starting configuration according

to its laws of motion, to compute the properties for each microstate visited

and then, divide by the total number of iterations.

In the microcanonical ensemble, the constraint of constant total energy E de-

fines a specific hypersurface in phase space. This means that the system can only

visit the microstates which are comprised within such surface.
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If the system is coupled with a thermostat at a constant temperature T , instead

of having its total energy fixed, all the states of the phase space become accessible.

This is due to the energy fluctuations of the system induced by the coupling with

the thermostat. In this case, the system’s macrostate will be defined by the triplet

(N, V, T ). The ensemble of systems having the same (N, V, T ) triplet is called

canonical ensemble. In this case, the probability density related to a particular

microstate reads

ρ(rN ,pN) =
e−βH(rN ,pN )

N !h3NZ(N,V,T )

, (2.6)

where H(rN ,pN) is the energy of the system, β is (kBT )−1. Z(N,V,T ) is the canon-

ical partition function, defined as

Z(N,V,T ) =
1

N !h3N

∫
e−βH(rN ,pN )drNdpN . (2.7)

The characteristic state function of the canonical ensemble is the Helmholtz free

energy A, which is related to the partition function through

A = −β−1 lnZ(N,V,T ). (2.8)

The canonical ensemble is particularly convenient for the simulation of thermally-

activated processes, such as the diffusion of guest species on solid surfaces. For this

reason, the canonical ensemble will be employed for the simulation and analysis of

pore-to-pore molecular jumps in microporous materials.

If the systems we consider are also allowed to exchange particles with a reser-

voir, the ensemble is called grand-canonical. In this case, the ensemble is defined

by the triplet (µ, V, T ), where µ is the chemical potential associated with the

species which compose the system. The probability distribution associated with

this ensemble reads

ρ(rN ,pN) =
e−β[H(rN ,pN )−µN]

N !h3NΞ(µ,V,T )

, (2.9)
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where Ξ(µ,V,T ) is the grand-canonical partition function which can be expressed as

a function of the canonical partition function Z(N,V,T ):

Ξ(µ,V,T ) =
∞∑

N=0

eβµNZ(N,V,T ). (2.10)

The grand-canonical partition function is related to the grand potential Φ through

Φ = −β−1 ln Ξ(µ,V,T ). (2.11)

In this thesis, the grand-canonical ensemble will be employed for the study of

static properties of host-guest systems, such as the distribution of guest molecules

in the host environment.

2.2.2 Monte Carlo

The term Monte Carlo (MC) is used to denote a family of methods that makes

extensive use of random numbers. The main idea behind MC methods is that it

is possible to randomly sample a volume in a given d-dimensional space in order

to obtain an estimate of an integral defined in such space.

MC techniques are particularly useful for the estimation of integral quantities

in spaces with high dimensionality. An example molecular system composed by

N = 1000 particles is related to a 6000-dimensional phase space — this is be-

cause we have to consider 3N position components + 3N velocity components —

and it would be impossible to evaluate any integral quantity with deterministic

quadrature- or grid-based techniques. Even if we just consider the configuration

space, i.e. the set of all possible particle positions, the dimensionality would still

be 3N .

To introduce the MC techniques, let us consider for the moment a 2-dimensional

problem. Fig. 2.3 shows an area V enclosed in a bigger orthogonal parallelogram
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Figure 2.3: Two different Monte Carlo strategies for the estimation of the area V enclosed in

an orthogonal parallelogram of area A = ab. Subfigure (I) represents the random uncorrelated

generation of points, while subfigure (II) represents a random walk method.

of area A = ab. The estimation of V through MC can be performed by generating

a set of random positions and checking if the point falls within V (subfigure I).

After a sufficient number of point generations we can estimate V by using the

ratio between the nV points falling in the chosen volume and the total number of

points Ntrials

V = lim
Ntrials→∞

nV ab

Ntrials

. (2.12)

Considering molecular systems, this is equivalent to generating random molecular

positions from scratch and then evaluating a certain set of properties for each

configuration.

Despite its simplicity, this method is not normally used for molecular systems

because it would easily lead to particle overlaps and it would be not very handy

if we required some spatial constraints to be fulfilled. An easy solution to these

practical problems is to start from a first configuration and then proceed iteratively

with the exploration of available space by applying random perturbations. This

concept is depicted in the subfigure II of Fig. 2.3 as a random trajectory. This

procedure generates a correlated motion since every new point depends on the

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
in host-guest systems

PhD Thesis in Chemical Sciences and Technologies



2. Theoretical Background 32

previous one. For this reason, this kind of method requires a sufficient number

of points such that correlations are amply lost during the random walk. Finally,

after a sufficient number of generations, we can employ Eq. 2.12 for the estimation

of V .

MC simulations of molecular systems involve the creation of a set of molecular

configurations {χ}. Assuming that such configurations are drawn from the correct

probability distribution of the chosen ensemble, the estimation of the average value

of a certain property O — already rigorously defined in Eq. 2.4 — through MC

simulations can be carried out through the following formula

〈O〉 = lim
Ntrials→∞

1

Ntrials

∑

{χ}
Oχ, (2.13)

which is conceptually analogous to Eq. 2.12.

In general, not all the configurations are equally important for the estimation

of the selected properties. The most relevant regions are the ones for which the

selected properties are close to the relative average values and for which the proba-

bility density values are relatively high [5]. This fact is naturally evident in Eq. 2.4.

A smart algorithm would mainly focus on such regions instead of exploring uni-

formly the whole configuration space. This is the core idea behind the so-called

importance sampling.

The most popular MC method for simulating molecular systems is the Met-

ropolis-Hastings algorithm. The idea is to perform a Markov chain walk in con-

figuration space through iterative stochastic perturbations applied to the starting

configuration. Possible perturbations are be atomic displacements, rigid rotations,

and — for grand-canonical ensemble simulations — insertion/deletion of molecules.

The generation of the configuration χ′ depends only on the previous configura-

tion χ, and is drawn from the conditional distribution that we indicate as g(χ′ | χ),

which represents the probability of proposing χ′ as the next state. The molecular
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configuration we generated from g(χ′ | χ) will then be accepted (meaning that χ′

becomes the new current configuration) or rejected (meaning that χ remains the

current configuration, and χ′ is discarded) on the basis of the acceptance proba-

bility, which depends on the difference in potential energy between χ′ and χ, if

g(χ′ | χ) is uniform.

According to the Metropolis-Hastings algorithm, χ′ will be accepted with the

following probability:

α(χ′ | χ) =





1, if ∆Vχ′,χ ≤ 0

e−β∆Vχ′,χ , otherwise. ,

(2.14)

where ∆Vχ′,χ is the difference in potential energy between the state χ′ and χ.

Resuming, the probability that this transition will effectively occur is P (χ′ | χ) =

g(χ′ | χ)·α(χ′ | χ). This evolution scheme leads the generated stochastic trajectory

to produce, after a sufficient number of iterations, the desired equilibrium distri-

bution since it satisfies the detailed balance condition. Such condition ensures that

the the Markov chain is stationary, with the correct equilibrium distribution as

its marginal probability distribution. Considering the example states introduced

before, such condition reads

ρχP (χ′ | χ) = ρχ′P (χ | χ′), (2.15)

with ρχ and ρχ′ being the equilibrium probabilities related to the two molecular

states. Using Eq. 2.15 and imposing the simmetry g(χ′ | χ) = g(χ | χ′), it is easy

to show that the Metropolis-Hastings rule satisfies the detailed balance condition.

2.2.3 Molecular dynamics

Unlike MC methods, molecular dynamics (MD) methods focus on the realistic

simulation of molecular systems’ time evolution. For this reason, MD methods are
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widely used to study dynamical properties such as diffusion, time correlations etc.

while sampling the correct static properties if the ergodic hypothesis holds. MD

simulations are performed by numerically integrating the laws of motion of the

chosen system.

In principle, the laws of motion of a mechanical system are described by New-

ton’s second law, which for a generic i-th particle reads

mir̈i = fi, (2.16)

where mi is the mass, the vector r̈i is the second-order time derivative of the

position i.e. the acceleration, fi = −∇iV is the force, and V is the potential

energy.

A more abstract and general formalism for the laws of motion is provided by

Hamilton’s equations. We introduce the Hamiltonian H, which corresponds to the

total energy of the system. For a closed system, H = K+V , with K being the total

kinetic energy and V the total potential energy. Within the classical mechanics

formalism, the kinetic energy of each particle is Ki = p2
i /2mi and the potential

energy V (rN) depends on the interparticle interactions. The relation between the

Hamiltonian and the position and momenta vectors is the following




dpi
dt

= −∂H
∂ri

dri
dt

= ∂H
∂pi
.

(2.17)

Unfortunately, there is no general analytic solution to the laws of motion of

a many-body system. For this reason, Hamilton’s or Newton’s equations should

be solved numerically by employing a finite time interval of ∆t. However, the

numerical integrator should fulfil some conditions in order to provide realistic

molecular trajectories:

• the integrator must be convergent, which means that in the limit of ∆t→ 0,

the algorithm should reproduce perfectly the Hamiltonian dynamics;
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• time reversibility or time-symmetry should be satisfied, which means that

by reversing all the velocity vectors we expect to obtain an identical but

reversed trajectory;

• the algorithm should be symplectic, which implies that phase space volume

is preserved — in agreement with Liouville’s theorem for classical mechanics

[48].

Verlet’s algorithm satisfies all such conditions and is widely used for its sim-

plicity and stability [49]. Basically, it makes use of the positions at time t − ∆t

and t, and of the acceleration at time t. The positions are updated through the

following equation

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) + ∆t2ai(t). (2.18)

Velocities are not explicitly used during the integration, but can be evaluated with

the finite different method, in its central version

vi(t) =
ri(t+ ∆t)− ri(t−∆t)

2∆t
. (2.19)

A more commonly used integrator, that can be thought as a variant of Verlet’s

algorithm is the so-called velocity Verlet. The main difference is that this algorithm

does not use any information coming from the t−∆t step, but it rather involves

the evaluation of the velocity at the half step t+ 1
2
∆t. In this case, each integration

step prescribes the following scheme:

1. half-step velocities are estimated using vi(t+ 1
2
∆t) = vi(t) + 1

2
ai(t)∆t;

2. atomic positions are updated with ri(t+ ∆t) = ri(t) + vi(t+ 1
2
∆t)∆t;

3. new forces and acceleration vectors are evaluated considering the new atomic

positions;
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4. new velocities are computed as vi(t+ ∆t) = vi(t) + ∆t
2

(ai(t) + ai(t+ ∆t)).

The aforementioned numerical integrators can be used for the simulation of

molecular systems within the microcanonical ensemble. Modifications of such

schemes can be performed to embed a thermostat in order to simulate the cho-

sen systems in the canonical ensemble. A variety of methods exist to control the

temperature, such as velocity-rescaling, Andersen thermostat, Nosé-Hoover ther-

mostat etc. Each method uses different approaches to control the temperature by

tuning the velocities of the particles, because the two quantities are related to each

other by the following equation

T (t) =

Np∑

i=1

miv
2
i (t)

3kBNp

, (2.20)

where T (t) is the instantaneous temperature.

In this thesis, the Nosé-Hoover thermostat was chosen to control the temper-

ature in the canonical MD simulations [50, 51]. In particular, this method is

completely deterministic and ensures that we sample the correct canonical fluc-

tuations once the system has reached the desired temperature. Basically, this

approach employs a modified version of Newton’s equation of motion (shown in

Eq. (2.16)) by subtracting a friction force which parameterized through the term

ζ. The modified Newton’s equation reads

mir̈i = fi − ζmivi. (2.21)

The dynamics of the friction term are defined by

ζ̇ =
1

Q

(
Np∑

i=1

p2
i

mi

− 3NpkBT

)
, (2.22)

where T is the desired temperature and Q is a factor introduced to speed-up or

slow-down the dynamics of the friction term. In other terms, by tuning Q one

can control how fast the system should converge, or equilibrate, to the desired

temperature.
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2.3 Materials studied in this thesis

This section aims to provide the reader with general information concerning the

host materials investigated in this thesis.

2.3.1 ITQ-29

The ITQ-29 framework is a famous, relatively simple zeolite [52]. Zeolites are

porous, silica-based crystalline materials. Generally speaking, they’re constituted

by corner-sharing silica tetrahedra, which can be isomorphically substituted by

heteroatoms such as Ge, P and Al [53]. Zeolites can also accommodate ions, such

as Ca and Na, which tend to localize in particular crystallographic positions of

the host framework. This class of materials includes a wide variety of frameworks,

which can be used for different scopes, such as gas separation, heterogeneous catal-

ysis, ion exchange etc [53]. Specifically, the ITQ-29 zeolite is a pure-silica zeolite

belonging to the Linde-type A (LTA) topology class. The ITQ-29 is constituted

by a lattice of cubic unit cells with lattice parameter a = 11.91 Å . The unit cell

and a 3× 3× 3 supercell arrangement of this zeolite are represented in Fig.2.4.

Each unit cell includes a cavity (also called pore, or cage), centered in the

middle of the cell, that can host certain guest chemical species, such as small

gas molecules. Each pore is connected to 6 neighbouring pores through narrow

openings, or windows, sitting on the faces of the unit cell cube.

Due to its relative simplicity, this material facilitates the modelling and the

computer simulations. At the same time, it represents an important example

of typical materials, which are used nowadays for gas-separation membranes. For

those reasons, this material was chosen as the hosting framework for the validation

of various coarse-graining techniques introduced in this thesis.

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
in host-guest systems

PhD Thesis in Chemical Sciences and Technologies



2. Theoretical Background 38

Figure 2.4: Atomistic representations of the ITQ-29 zeolite. Subfigure a illustrates the unit

cell in a ortographic projection, while the subfigure b depicts a 3×3×3 supercell in a perspective

projection. In both representations the Si atoms are represented by yellow spheres, while O

atoms are depicted as red spheres.

2.3.2 LTA-ZTC

Zeolite-templated-carbons (ZTCs) are a relatively new class of microporous ma-

terials, entirely made of carbon, synthesized using zeolites as sacrificial templates

[54]. The synthesis of such materials can be summarized in two steps: i) the in-

clusion and carbonization of a carbon precursor in the zeolitic framework; ii) the

removal of the zeolitic framework with a specific chemical treatment. Due to their

peculiar properties, ZTCs have been used in many applications such as hydrogen

storage, methane storage, CO2 capture, liquid-phase adsorption, catalysis and fuel

cells [54–56].

In the works presented in this thesis, we considered a carbon material that is

derived from the templating of the ITQ-29 (LTA) zeolite, which was introduced

in the previous paragraph. To our best knowledge, such a material has never

been synthesized. However, its structure was theorized by Braun et al. in a

recent work [57] and is currently available on materialscloud.org[58]. Atomistic
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Figure 2.5: Atomistic representations of the LTA-ZTC. Subfigure a illustrates the unit cell in

a ortographic projection, while the subfigure b depicts an overlap between 3 × 3 × 3 supercells

of LTA-ZTC and the precursor zeolite, in a perspective projection. In both representations, C

atoms are represented as grey spheres, Si atoms are represented by yellow spheres, and O atoms

are depicted as red spheres.

representations of the ZTC unit cell and a supercell arrangement (in comparison

with the zeolitic precursor), are illustrated in Fig.2.5.

This material presents an ordered porous structure, with the same connectiv-

ity as the LTA zeolite, and with pore centres shifted by 5.95 Å along the lattice

vectors, with respect to the precursor centres. Despite the similarities in terms

of pores arrangement and connectivity, this material presents profound differences

compared to the LTA. Except for the trivial differences in terms of chemical com-

position, this material presents larger pore volumes and larger openings between

neighbouring cages. Such structural features will play a critical role in the adsorp-

tion and diffusion of guest particles in this material, as will be shown in Chapter

6.
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2.3.3 Graphene and related materials

Graphene is a single-atom-thick layer of sp2 carbon, that can be obtained from

the exfoliation of graphite, a mineral that is entirely composed of two-dimensional

carbon layers. Because of its peculiar features, graphene has been proposed as a

competitive candidate for many applications, ranging from electronics to molec-

ular sensing [59]. Such properties include high in-plane electron mobility, high

thermal conductivity, and remarkable mechanical properties. Graphene can also

be modified with specific functional groups, or used as a building block for de-

rived materials. This material has also been applied to the adsorption of various

chemical species, such as organic and inorganic pollutants, resulting in competitive

performances if compared with other commercially available materials [60].

In this thesis, graphene is presented as a potential adsorbent for methane

molecules. The interaction of methane molecules with a single graphene sheet

is rather weak, resulting in poor sorptive properties. However, we also tested

a derived material, constituted by two parallel graphene layers, spaced with a

12 Å interlayer distance. Both the graphene unit cell and the derived material are

illustrated in Fig.2.6. The choice of this spacing is optimal for both the methane-

graphene and methane-methane interactions, resulting in better adsorption per-

formance if compared to a single graphene layer. This material was inspired by

layered materials with tunable interlayer distance, such as pillared graphene, a

material composed by parallel graphene layers held together by carbon nanotubes

[61].

For the purpose of this thesis, the study of methane adsorption in such materials

offers valid benchmarks for the occupancy-based coarse-graining method. This

is because such systems represent an example of adsorption on two-dimensional

surfaces. As will be shown in Chapter 5, this study constitutes a step towards

the generalization of our mapping scheme for the embedding of different kinds of
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Figure 2.6: Atomistic representations of graphene and a graphene-based material. Subfigure a

illustrates the unit cell in a ortographic projection, while the subfigure b depicts an hypothetical

material made of graphene sheets, stacked with a certain interlayer distance. Carbon atoms are

represented as grey spheres.

interactions and correlations in our lattice models.
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Chapter 3

Machine learning molecular

states: adsorption patterns of

CO2 in zeolites

3.1 Introduction

In this chapter, I report a method that can be used to define a set of discrete

states to represent a molecular system composed by a host material and guest

molecules. In this case, such roles are played by the ITQ-29 zeolite and CO2

molecules, respectively. The method relies on the statistics drawn from atomistic

MD simulations of the reference systems. The analysis of MD results is conducted

with an automatic, data-based method.

The mapping of a molecular system to a discrete representation usually involves

some decision-making regarding the definition of the coarse-grained states, or of the

variables that should be considered relevant to the scope. Such decision is usually

driven by the physicochemical understanding of the system and the phenomena

42
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involved in it. In general, the definition of coarse-grained variables depends on

which kind of phenomena is under study.

Recently, techniques have been introduced to perform such mapping under a

machine-learning approach. The idea is to encode the information contained in

the atomistic configurations in the most general and unbiased way possible [42].

Starting from some input, a machine-learning algorithm can learn how to divide

or classify the data in separate clusters. In this case, a discrete description of

molecular states is drawn by the statistical analysis of MD trajectories. The basic

assumption is that the most important configurations are the ones related to the

main basins in the free-energy landscape. Roughly speaking, the discrete states

will be defined on the basis of a few landmarks placed on the modes of the phase-

space probability distribution. The shape of such distribution strictly depends on

the choice of the kind of transformations applied to the reference configurations.

For this reason, it is useful to choose a sufficiently general and complete descriptor

to encode the information comprised in each molecular configuration.

In the following sections, I will introduce the main techniques employed in this

method; then, I will show the results drawn by this analysis in terms of molecular

patterns, static properties and network model construction; finally I will draw the

conclusions and the future perspectives of this method.

3.2 Smooth overlap of atomic positions

The so-called Smooth overlap of atomic position (SOAP) is a kind of descriptor,

which is based on an artificially-defined local atomic density [44, 46]. A detailed

explanation of SOAP technicalities is beyond the scope of this thesis. However,

in this section I will propose a concise description in order to provide the reader

with an intuitive picture.
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Every molecular configuration is split S in local environments x. Each local

environment is centered on a specific atom and covers the space within a certain

cutoff radius rc. For example, the environment xi is the one centered on the atom

i, which embeds a set of other atoms j ∈ xi that are comprised in a sphere of

radius rc. For each environment, the atomic density is defined ρ(r) by employing

a sum of Gaussian functions g centered on the interatomic distances rij:

ρxi(r) =
∑

j∈xi
g(r− rij)fc(rij), (3.1)

where fc(rij) is a cutoff function which is equal to 1 at rij = 0 and decreases to 0

at rc. Now, the SOAP representation can be imagined as a three-body correlation

function defined on the atomic Gaussian density, instead of being defined on the

original atomic positions. Taking any two points in the space covered by the

environment xi, we can define the three-body correlation function by making use

of the distance magnitudes r, r′ with respect to the center, and the angle ω between

the two points. The correlation function is also integrated with respect to all the

possible rotations R̂ to ensure the descriptor to be rotationally invariant.

Such correlation function is then encoded in terms of an expansion defined on an

orthogonal basis of n radial functions R1(r), R1(r), . . . , Rn(r) and l Legendre poly-

nomials P1(ω), P1(ω), . . . , Pl(ω). Finally, the SOAP descriptors are represented by

the power spectrum of such three-body correlation function projected on the radial

and Legendre polynomial expansion.

Practically, each SOAP descriptor is obtained as a vector with an arbitrarily

large number of components, which depends on the number of radial and angu-

lar functions used for the expansion. This easily yields vectors with thousands

of components which can be memory-consuming and computationally heavy for

training ML algorithms, if taken with the full components. For this reason, we used

a technique (which is explained in the following paragraph) to project the high-
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dimensional data set onto a 2-dimensional space in order to run a classification

algorithm.

3.3 Dimensionality reduction

There are several methods to map a set of points from a high-dimensional space

with a number of dimensions D to a low-dimensional one. In general, this kind

of mapping is lossy — it involves a significant loss of information — unless the

removed dimensions are really redundant. Again, the choice of the coordinate

system and positions in the low-dimensional space should be taken carefully.

At the moment, many of such methods focus on projecting the points in a low-

dimensional space, while optimally conserving the distance or similarity between

the points in the low-dimensional space [62]. In this case, we chose to use a

different approach focusing more on finding the principal directions that maximize

the variance in the original data set.

The principal component analysis (PCA) allows projecting an input data set

onto a new coordinate system the basis of which is built upon the directions that

maximise the variance on the input data (see Fig. 3.1 for a 2-d example).

The PCA transformation is linear i.e. it can be defined as a matrix T , which is

constructed with the eigenvectors of the data covariance matrix ΣX . In principle,

the full PCA transformation would yield a projection onto a space with the same

dimensionality as the input one, but one can choose to select only the first p < D

eigenvectors in the definition of T . Thus, if we multiply the original vectors by T

we obtain a dimensionality reduction. Not only is the PCA practically useful for

lowering the dimensionality, but also provides insights regarding which features

are the most distinctive among the data set.

In principle, if in the original data set two clusters can be separated by a
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Figure 3.1: PCA on an example data set. A reference cloud of points (subfigure a) is projected

onto a new coordinate system (subfigure b) defined on the basis of the two principal components,

PC1 (red line) and PC2 (blue line).

plane, the PCA transformation should keep such separation during the projection.

However, if the two clusters are separable only by employing a non-linear function,

the PCA transformation would fail to keep such separation in the lower dimensional

projection. To cope with this issue, more sophisticated techniques should be used

to introduce non-linearities, such as the kernel-PCA method [63].

3.4 Probabilistic analysis of molecular motifs

Once the set of points, each one representing a specific environment, is projected

onto a low-dimensional space it is possible to proceed with the automatic analysis

of local motifs or patterns. Our choice is to use the so-called probabilistic anal-

ysis of molecular motifs (PAMM) developed by Ceriotti et al. to automatically

discover recurrent local motifs in molecular configurations [64–66]. PAMM is an

unsupervised learning algorithm, which serves to separate the input configurations

in a bunch of clusters, each one representing a specific pattern.

The algorithm consists of the following main steps:

1. a subset of the reference data is selected with the farthest-point sampling
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algorithm in order to obtain a sparse grid;

2. the density on each grid point is estimated with a kernel density estimation

(KDE) using a gaussian kernel;

3. starting from each point of the grid, the modes of the local environment

probability distribution are found as local maxima using the quick-shift al-

gorithm;

4. a probabilistic model which assigns a point to a specific cluster is defined.

Such model can be used to analyse new molecular trajectories of analogous

systems.

The first step begins with the selection of a random point y1 ∈ {x}, then

from such point we select the next ones iteratively choosing the sample with the

maximal minimum distance to the points that had already been selected. Once a

grid of M ≤ N points have been constructed, a Voronoi tiling is constructed such

that each point of the grid is the center of a tile. Then, a local probability density

estimation is performed on the basis of the number of points of the data set falling

in each tile. Such estimation is performed with the KDE method with a gaussian

kernel

P (yi) ∝
N∑

j

K(| yi − xj |, σj), (3.2)

where K(| yi − xj |, σj) is a Gaussian function with standard deviation σj.

Once every point of the grid is assigned with its relative probability density

P (yi), the algorithm searches the modes of the probability distribution by looking

for the local maxima by employing the quick-shift algorithm: basically, starting

from each point we shift to the next point with the maximal probability within

a certain range and iterate until it’s no more possible to find a point with a
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higher probability value. With this criterion each point is assigned to the nearest

local maximum, and it is assumed that each mode of the distribution represents a

specific molecular pattern.

3.5 Results

3.5.1 Molecular patterns

We simulated the system composed by CO2 and ITQ-29 with canonical MD, at

different temperatures (100, 200, 300, 400 and 500 K) and CO2 concentration

regimes (1, 2, 3, 4 and 5 molecules per cavity), saving the molecular configurations

every 0.5 ps, until we obtained about 50000 snapshots. In such simulations, the

host material was represented by a 3 × 3 × 3 supercell. The simulations were

performed considering periodic boundary conditions (PBC) and the temperature

was controlled through a Nosé-Hoover thermostat. The whole system was modelled

with the force field parameterized for CO2/silicates systems developed by Cygan

et al.[67].

Once all the configurations were collected, each molecular snapshot was trans-

formed into a set of SOAP vectors, according to the following criteria:

• the O atoms belonging to each CO2 molecule are ignored, since they would

bring an almost-constant signal to the local density, which may obscure other

important correlations;

• each local environment we considered was centered on the C atoms, the local

density was built on the basis of the central carbon atom and the O atoms

belonging to the zeolite framework;

• each SOAP had a 4.0 Å cutoff in order to embed the first O coordination

shell around each C atom (see Fig.3.2).
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Figure 3.2: Pair correlation function centered in C atoms and correlating with zeolite O atoms

at 100 K. The first peak corresponds to the coordination shell analysed in this work.

All the SOAP vectors are then used to define a common PCA transformation.

Thus, we defined a projection gathering all the diversity captured during all the

molecular trajectories, in order project the single MD runs in the same map with

the same transformation.

The result of the PCA projection on the first two components is reported in

Fig.3.3. Among thousands of molecular environments considered, PAMM grouped

the data in two clusters, separated approximately along the first principal compo-

nent (PC1) direction. By analysing the molecular landmarks — the grid points

associated with the largest probability — we found that the first cluster is associ-

ated with CO2 molecules residing in the middle of the neighboring zeolitic cages.

Conversely, the second cluster is associated with the CO2 molecules coordinated

with 8 zeolitic O atoms, between two neighboring cages.

This suggests that PC1 is positively correlated with the density of O atoms

in each environment. This hypothesis is also supported by the presence of three

vertical branches of the distribution in the left part, which are related, from left

to right, with the coordination with one, two, and three O atoms. It is still not

clear what is the physical interpretation of the second principal component (PC2),
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Figure 3.3: Projection of the local environments (represented as grey transparent dots) onto

the first two principal components. The grid points defined by PAMM are colored according

to the cluster they belong to. The two landmark molecular environments are represented in

the circles with the C atoms in green and the zeolitic O atoms in white. The atoms ignored in

each environments are represented by dots. On the left part, the branches of the distribution

corresponding to different coordination states are highlighted by dashed lines.

since it could be correlated either with the distances from the central atom, or the

angular distribution of the O atoms, or both.

The second pattern is particularly important, since it highlights the tendency

of CO2 to sit between two neighboring cages, which hinders the other molecules

from jumping from one cage to the next. This is widely known as segregation

effect and was observed in several microporous materials [68, 69].

3.5.2 Static properties

Once a common transformation is defined and the molecular identity of the two

patterns found by PAMM was interpreted, we projected the data to discover the

differences in the distribution of molecular environments under different conditions.

Figure 3.4 shows a comparison of the environment probability distributions at

different temperatures. It is clear that, for low temperatures the second cluster is
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Figure 3.4: Local environment distributions as projected in the first two principal components,

at different temperatures. The probability density is represented as a color gradient on each point.

Red color corresponds to maximal density, while blue corresponds to the complete absence of

points.

more densely populated than the first one. Basically, CO2 molecules tend to sit

in the inter-cage site rather than to occupy positions which are more any farther

from the surface of the host material. As the temperature increases, the guest

molecules tend to sit less often in the inter-cage site because of the more flat free-

energy surface. This causes a progressive loss of density in the mode located on

the right side of the projections.

It is interesting to notice that by increasing the temperature we obtained a

narrower distribution, in contrast with the usual broadening effect on probability

distributions related to internal or cartesian coordinates. This is a consequence of

the particular mapping we chose for the analysis of the molecular environments.
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We also compared the distributions coming from simulations conducted at dif-

ferent CO2 loading. However, no significant change was observed within the range

of 1 to 5 CO2 molecules per cage. Further investigations are needed to explore a

broader range of concentrations in order to see if stronger guest-guest correlations

can modify the patterns of the distributions.

3.5.3 Backmapping and network model construction

The patterns we found can be interpreted as metastable states, based on the

possible molecular environments around each CO2 molecule in this system. Such

states can be used for different purposes, e.g. to classify host-guest systems on

the basis of local adsorption patterns. They can also be used for the construction

of coarse-grained stochastic discrete models of the reference systems. This can be

done in two main ways: by defining a random walk on pattern space — the one

defined by the SOAP-PCA system, or by backmapping the CO2 landmark positions

into real space and then connecting such positions to construct a network model

of the system.

In this work we started to explore the second approach. Starting from the

landmarks found by PAMM, we projected the CO2 positions into a single unit cell

of the host material. Since the SOAP representation is invariant to translations,

rotations and permutations, one expects to obtain an asymmetric unit of landmark

positions. This is because the same crystallographic positions would be mapped

into the same region of the SOAP-PCA space and would be associated to the same

cluster. In order to find all the possible landmark positions within the unit cell,

we applied the same symmetry operations of the host material space group.

If the landmarks sit perfectly on the Wyckoff positions, the network positions

are already defined without ambiguities. In our tests, the landmarks were always

displaced with respect to the Wyckoff positions and this yielded a set of ambigu-
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Figure 3.5: 3×3×3 Supercell of the landmark sites before applying the hierarchical clustering

procedure.

ous overlapping positions (see Fig.3.5). This is a consequence of the fluctuations

produced during the MD simulations. In order to obtain a set of non-overlapping

sites, we applied a hierarchical clustering algorithm to merge the site positions up

to a certain threshold. The closest sites are iteratively merged into new sites on the

basis of the mutual euclidean distance. The merging procedure is stopped when

the distance between different sites exceeds 3.3 Å i.e CO2 kinetic radius. This is

done in order to ensure that CO2 molecules are allowed to sit in neighboring sites

without overlapping.

Once the sites’ unit cell is refined, all we have to do is connect the different

sites in order to define the links in the network model. The criterion used to deter-

mine the connections is very simple. The algorithm starts proposing a small trial

distance dt (say ∼ 2 Å), it connects the sites if the mutual distance is lower than

dt and it checks if the network is connected — i.e. if it is possible to reach any site

from every other site with a finite number of steps. If the network is not connected,

then the algorithm proposes a larger distance. At each stage, the connectivity is

automatically checked by applying the depth-first search (DFS) algorithm to the
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Figure 3.6: Connecting the network sites on the basis of an increasing distance threshold dt.

current network. DFS is specifically designed to recursively search in every node of

a graph structure. Basically, starting from a root node the algorithm explores all

the neighbor nodes and recursively tagging the visited sites. If at a certain point

all the nodes become tagged, the network is considered connected. This procedure

is depicted in Fig.3.6. The final network model is represented in Fig.3.7. This

model can be used as a template for discrete diffusive models. By transforming

the molecular trajectories into time series according to the SOAP-PCA mapping,

one can compute the marginal probabilities of finding a guest molecule in one of

the two clusters and also the transition probability between the two states. Those

are the basic ingredients for the parameterization of the network model that can

be used to represent the adsorption and diffusive behaviour under a Markov chain

approach.

3.6 Conclusions and perspectives

The SOAP-PCA-PAMM protocol succeded in sorting out the local molecular en-

vironments encountered in the MD simulations and in determining the most rep-

resentative patterns. We decided to analyze only the adsorption patterns, thus
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Figure 3.7: Final network model of CO2 in the ITQ-29 zeolite, overlapped with the host

material structure (in grey). The sites are coloured according to the respective cluster id (blue

for cluster 1 and red for cluster 2).

ignoring the guest-guest correlations. For this reason, each SOAP vector was cen-

tered in each C atom and the environment density was constructed using only the

O atoms of the host — thus deliberately ignoring all the other species. The cutoff

of the SOAP descriptors was chosen to be 4 Å in order to embed all the informa-

tion contained in the first coordination shell. The application of PAMM resulted

in the separation of the reference data in two clusters: the first one representing

the guest molecules sitting in the middle part of each pore, and the second one

related to the guest molecules sitting between two neighboring pores.

This mapping can be used to compare the different local environment proba-

bility distributions of the same system under different thermodynamic conditions.

In our case, this kind of analysis was conducted comparing simulations at different

temperature and CO2 concentration values.

One can interpret and use the molecular patterns as discrete states to obtain

a coarse-grained representation of the reference system. This can be done in two

ways: by defining a stochastic walk in pattern space (i.e. among the landmarks
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in the SOAP-PCA projection), or by backmapping the landmark states in real

space. In this work, we constructed a simple network model through the latter

approach. However, the model we obtained should be used with caution since

the backmapping and the definition of the site-to-site links were determined with

arbitrary assumptions. For example, different sites are connected by following a

simple distance criterion rather than according to the transitions observed in the

reference simulations — in general, the two networks may not necessarily be equal.

However it is remarkable that with our method, the algorithm reproduced the

pore-pore connectivity correctly. This suggests that such network model could be

used to compare different host-guest systems on the basis of the connectivity (as

seen from the point of view of the local patterns).

Another issue that should be addressed is that the patterns found for this sys-

tem are rather trivial and the whole procedure seems to be over-complicated with

respect to the straightforward results. In fact, a simple algorithm based on count-

ing the number of neighboring O atoms could have yield the same results. Also,

the guest-guest correlations were completely ignored during the analysis, as they

might influence the resolution of host-guest pattern classification. However, this is

still an ongoing work and we will apply the same procedure to systems that may

exhibit a richer variety or simply more complicated patterns. For example, more

complex host materials such as hierarchical pore structures or disordered materials

will be object of investigation. Also, if more than one guest species is involved in

the same system, an analysis which comprises also the guest-guest patterns might

highlight cooperative states or scenarios characterized by competition for the same

set of adsorption sites within the host material.
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Chapter 4

Local free energy approximations

for the coarse-graining of

adsorption phenomena: the

interacting pair approximation

Adapted with permission from F. G. Pazzona, G. Pireddu, A. Gabrieli, A. M.

Pintus, and P. Demontis. Local free energies for the coarse-graining of adsorption

phenomena: The interacting pair approximation. J. Chem. Phys., 148:194108,

2018. “Copyright 2019, American Institute of Physics.”

4.1 Introduction

Despite the increasing availability of computing power, molecular simulations with

atomistic detail suffer from severe limitations in the length and time scales, even

when the interaction field is classical.

To reduce the number of degrees of freedom involved in a simulation, thus
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allowing simulations to be carried out over wider scales, is the scope of coarse-

graining techniques. In the coarse-graining of a molecular system, the original,

fine-grained (FG) interaction field is mapped into an effective field that depends

on a smaller number of variables, and the mapping is carried out in such a way that

some selected properties of the FG system and of the coarse-grained (CG) model

reasonably match. Since such properties are defined on a scale that is usually

larger than the one at which the FG system evolves, this comes at the cost of a

certain loss of information.

In the literature, the coarse-graining of molecular systems is approached in a

variety of ways. Many of such approaches are topological ; that is, each CG coordi-

nate groups together several atoms of the FG system, and interacts with the other

CG coordinates through effective fields that can be built from structure, [70–72] or

via a force-matching procedure [13, 14, 19, 20] (the two approaches leading to the

same results [73]), or through iterative Boltzmann inversion [21–23] or else through

Gaussian Approximation Potentials [74] and cluster expansion techniques, [75] just

to mention some—we do not mean to make an exhaustive list here. Besides topo-

logical strategies, a spatial coarse-graining approach also exists, which maps por-

tions of a continuous simulation space, as well as groups of FG discrete sites, into

a coarser lattice of cells. [25–32, 76] A cell state can be constructed out of what

it contains, which could be, very naturally for molecular systems, the number of

molecular centers-of-mass of each chemical species that occupy its physical space.

It is the application of the latter spatial approach to the coarse-graining of

adsorption phenomena at equilibrium that we intend to discuss in this work. By

keeping in mind the picture of small guest molecules adsorbed inside the pores of

some host material, we will identify each cell as a pore, and the state of each one

of them as the occupancy, which we define as the number of molecular centers-of-

mass it hosts—not to be confused with the loading, with which we will indicate the
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average pore occupancy. For simplicity, we will discuss the case of only one guest

chemical species in the system, but extension to multispecies models is straight-

forward.

Occupancy-based models of adsorption/diffusion, where a CG interaction field

is defined over local occupancies in the nearness of discrete locations rather than

on fine-grained atomistic configurations, are frequently encountered in the liter-

ature on host-guest systems. [77–84] According to how detailed should the CG

model be, these locations may represent adsorption sites, which usually can be

empty or occupied by one guest, or pores, which often can be occupied by more

than one guest. Depending on the affinity between the host material and the

guest species, adsorption sites may emerge naturally within the adsorption pores

as well-defined locations that bind the guest molecules more strongly than oth-

ers. This is the case for, e.g., benzene in silicalite [78], methane in the zeolite

ITQ-29 (a.k.a. ZK4) [85], and benzene in zeolite Na-Y, [79, 86, 87] just to men-

tion some. In such cases, a CG version of the grand canonical partition function

can be constructed by modeling the adsorption sites as mutually exclusive lattice

nodes equipped with a proper adsorption energy, while the guest-guest interactions

can be represented as pairwise-additive free energies (such assumption provides a

satisfactory approximation especially at low densities, where many-body contribu-

tions are proved to be relatively unimportant [20]), plus, if necessary to improve

the model quality, inclusion of next neighbor interaction terms. [80] Further addi-

tional interactions, expressed in the form of dependency on some collective (but

still local) variables, [88] may be also necessary. In any case, it is preferable to

work with local, rather than global interaction energies because, besides a number

of other general drawbacks, [89] the dependence of effective potentials on global

density imposes severe limitations to transferability, e.g., to inhomogeneous sys-

tems. [90]
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Identifying the pores of an ordered microporous material, rather than adsorp-

tion sites, as the elementary units of a discrete space domain represents an even

coarser description of adsorption. A pore is usually allowed to contain more than

one guest molecule, and this makes the resulting CG model a so-called ‘multipar-

ticle lattice-gas’. [34] When strong confinement holds and the density is not high,

the correlation between molecules located inside different pores is often found to

be weaker than inside the same pore. If that is the case, a CG interaction field

can be satisfactorily formulated as a function of individual, uncorrelated pore oc-

cupancies, at least at room temperature (depending on the system, this might

happen to be not true at lower temperatures). [41] Assuming such a strict locality

of interactions allows for a very simple and efficient description of both the ther-

modynamics and the kinetics of particle pore-to-pore jumps. [91, 92] If accounting

for pore-pore interactions becomes necessary, pairwise additivity can still be as-

sumed at low densities, so that we can factorize the resulting CG grand partition

function into elementary terms that, in principle, can be estimated out of a proper

statistical sampling of the FG system itself.

When dealing with the calculation of approximated partition functions in gen-

eral, [93] factorization is really a crucial point. Somewhat radical, oversimpli-

fying approximations usually lead to ‘friendly’ CG partition functions, made of

independent (or nearly independent) factors that often can be evaluated easily,

but often such approximations suffer from a narrow range of applicability. On

the other hand, more broadly acceptable approximations usually go along with

a much more difficult evaluation of the constituting factors of the CG partition

function—ironically, estimating them might end up requiring the use of further

approximations.

Therefore, a balance needs to be found between the accuracy of the approx-

imations on which the CG model is based and the actual computability of its
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parameters. In the present chapter, we discuss the formulation of a CG grand

partition function for host-guest systems in which effective interactions, which are

portrayed by both self- and pair-interaction terms, are defined over pore occupan-

cies. We propose a modification of an existing CG model [83] of interactions of

such kind, that significantly widens its applicability to a larger density range. In

our formulation, effective pair interactions are, although still local, related to the

occupancy correlations that can be observed between neighboring pores within a

given range of densities.

Our discussion will proceed as follows. First, in Sec. 4.2, we will briefly summa-

rize how the CG grand partition function is formulated, based on pore occupancies

rather than molecular positions. In Sec. 4.3, we will formulate a relation between

local CG interactions and occupancy distributions in the FG system, with mean-

field corrections taking into account the effect of the neighborhood of any single

pore and of any pore pair. In Sec. 4.4, we will compare our basic CG relations

to an earlier, simpler theory were the surroundings of a pore pair is not taken

account of in any way, and we will also show how, under less general circum-

stances, the parameterization we propose here reduces to the model we proposed

in a previous work. [41] In Secs. 4.5.1 and A.2, we will apply our method to the

coarse-graining of FG systems of two kinds: a lattice-gas where local free energies

can be computed exactly and a Lennard-Jones system of united-atom methane

molecules in the static field of zeolite ITQ-29. We will assess the validity of our

coarse-graining approach by comparing the adsorption isotherms and occupancy

distributions of the FG systems with their CG counterparts, and we will draw

conclusions in Sec. 4.6.
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4.2 Local, Coarse-grained interactions

Our general FG model of reference will be a system of small guest molecules

hosted inside an ordered microporous material, which is represented as a network,

L = {`1, . . . , `M}, of M pores with local connections, meaning that the molecules

inside a pore, e.g., pore i, interact with the inner surface of the pore itself, with the

molecules inside the same pore, and with the molecules hosted in the ν neighboring

pores. Interactions with pores located beyond the first neighborhood are neglected

(this is often a fair assumption, since in several microporous materials, like LTA-

and FAU-type zeolites, the pore size is approximately equal or larger than 12

Å, which in most cases is near the customary cutoff radius for Lennard-Jones

interactions). The system is assumed to be in contact with a thermal bath and

a reservoir of molecules, so that both the temperature, T (we will indicate with

β the ‘inverse temperature’, β = 1/kBT , where kB is the Boltzmann’s constant),

and the chemical potential, µ, are held fixed and uniform throughout the whole

system, while the energy and the total number of guest molecules are allowed to

vary.

For every possible configuration of guest molecules in the system, we can count

how many of them fall within each pore, and then measure a global occupancy

configuration, {n1, . . . , nM}, indicating that pore 1 contains n1 guests, pore 2

contains n2 of them, etc. We assume then that

(i) every single pore, say pore i, contributes to the free energy of the entire

system by an amount Hni and

(ii) the interaction between two neighboring pores, say i and j, contribute by an

additional amount Kni,nj .
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The quantities Qni and Zni,nj can be conveniently introduced:

Qni = exp
(
− βHni

)
, (4.1)

Zni,nj = exp
(
− βKni,nj

)
. (4.2)

H and Q are defined over properties of one single pore, and therefore, we will refer

to either of them as ‘self-interaction terms’. K and Z contain information about

pore pairs, and therefore, we will refer to either of them as ‘pair-interaction terms’.

The most detailed description of the structure of the CG system is provided by

the global occupancy distribution, [83] pµ(n1, . . . , nM), i.e., the probability of pore

1 having occupancy n1, pore 2 having occupancy n2, etc.,

pµ(n1, . . . , nM) =
1

ΞCG

M∏

i=1

eβµniQni

∏

j∈Li

√
Zni,nj , (4.3)

where Li is the list of the ν neighbors of pore i. In Eq. (4.3), the normalization

constant ΞCG is the CG grand partition function:

ΞCG =
∑

n1

· · ·
∑

nM

M∏

i=1

eβµniQni

∏

j∈Li

√
Zni,nj , (4.4)

where the square root is introduced to correct for counting the pair-interaction

terms twice. A simple Monte Carlo algorithm that samples the distribution in

Eq. (4.3) is provided in the supplementary material of our previous work [41].

In Eq. (4.4), Qni plays the role of the ‘effective partition function of a single

pore constrained to occupancy ni’. Zni,nj instead plays the role of the ‘contribution

to the configuration integral of a pore pair constrained to occupancies ni, nj, due

to the interaction of the ni molecules in pore i with the nj molecules in pore j’.

The scope of our coarse-graining approach here would be to formulate CG

interaction terms such that, once used in a CG (lattice) simulation, they allow

for the CG model to produce a global occupancy distribution, pµ(n1, . . . , nM), in

good agreement with its FG counterpart, Pµ(n1, . . . , nM) (throughout the whole

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
in host-guest systems

PhD Thesis in Chemical Sciences and Technologies



4. Local free energy approximations for the coarse-graining of adsorption
phenomena: the interacting pair approximation 64

paper, lowercase p’s will indicate CG probabilities, whereas capital P ’s will refer

to the FG system). We used ‘would be’ rather than ‘is’ because, in practice, the

M -variated histogram pµ(n1, . . . , nM) can be estimated for none but the smallest

systems. Therefore, we will seek agreement in terms of simpler (namely, uni- and

bi-variated) distributions. As long as the assumed locality of interactions holds,

we can reasonably expect that a good agreement in terms of local distributions

will entail agreement also on a larger scale.

One important aspect we would like to remark is that we want CG interactions

to be local ; therefore we require both Qni and Zni,nj not to depend on chemical

potential; i.e., we want the same set of self- and pair-interaction terms to be

portable within a whole range of densities, from infinite dilution to saturation.

Let us now discuss the meaning of the interaction terms Qni and Zni,nj on a

statistical-mechanical basis. Further details about the connection between FG and

CG partition function and occupancy distribution are provided in Appendix 4.7.

Qni is commonly seen as the canonical partition function of the pore i when it

contains exactly ni guest molecules; i.e., Qni = zni/Λ
3nini! where Λ is the De

Broglie thermal wavelength and zni is the following configuration integral:

zni =

∫

vi

dri1 · · ·
∫

vi

drinie
−βUi(ri1,...,rini ), (4.5)

where Ui denotes the potential energy experienced by the ni molecules hosted

inside pore i due to their interaction with the host material and with each other,

given that their coordinates inside the pore are {ri1, . . . , rini} and the coordinates

of each molecule are integrated over the volume ascribed to pore i. In other words,

the pore described by Qni is a small closed system. In principle, however, molecular

configurations inside neighboring pores are correlated. Therefore, assigning Qni a

fixed value, although being very convenient, might seem quite unnatural. The pair

term, Zni,nj , is thus introduced in order to account for such correlations.

The accepted meaning [83] of Zni,nj is that of the ratio between the configura-
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tion integral of two pores with occupancies ni, nj and the product of the individual

pore configuration integrals zni and znj ,

Zni,nj ∼
1

zniznj

∫

vi

dri1 · · ·
∫

vi

drini

∫

vj

drj1 · · ·
∫

vj

drjnj

× e−βUij(ri1,...,rini ,rj1,...,rjnj )
, (4.6)

where Uij is the potential energy experienced by the molecules inside pore i and

pore j due to the interaction with the host material and with each other, given that

the ni molecules in pore i are configured according to the coordinates {ri1, . . . , rini},
and that the nj molecules in pore j are configured according to the coordinates

{rj1, . . . , rjnj}. With the symbol ∼ in (4.6), we remark that we prefer to assume

a weaker relation than equality. This is because relation (4.6) refers to a system

made of two pores, i and j, occupied by ni and nj guest molecules, respectively,

as if it were ‘extracted’ from the system where it belongs and sampled separately

from it, whereas in general the surroundings of any pair of neighboring pores do

affect the correlations between them.

In a previous work, [41] we proposed an estimation of effective free energies

based on a very simple reductionistic model, in which the surroundings of a given

pore were taken account of, but, in order to derive an equation for the pair con-

tributions that could be solved straightforwardly, the neighbors’ occupancies were

all constrained to the same value. In Sec. 4.3, we will introduce a more accurate

model in which the constraint on the neighbors’ occupancies is relaxed, and mean-

field (occupancy dependent) correction terms are added to the free energy in the

attempt to overcome the limitations of relation (4.6).
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Figure 4.1: A sketch of the role played by each interaction term in the basic equations of our

coarse-graining strategy. In this graphic example, the reference FG system is a square lattice of

pores, in which each pore is connected to ν = 4 neighbors. The pores represented by yellow and

red (larger) circles are mean-field pores. White (smaller) circles represent non-mean-field pores.

In (a), we consider a single, n-occupied closed pore whose equilibrium properties are related to

the self-interaction term Hn. In (b) and (c), we consider the FG system as a whole, and from its

equilibrium properties, we derive the pair-interaction terms: in (b), the ν neighbors of a single,

n-occupied pore contribute to the CG potential, each one by adding a mean-field contribution

Kµ,n to the self-interaction Hn; in (c), the pores in a connected pair are assumed to interact

with each other through the non-mean-field pair term Kn1,n2
that adds to the self-terms Hn1

and Hn2
, and their interactions with the rest of the system are approximated by two mean-field

terms, Kµ,n1 and Kµ,n2 , each with multiplicity ν − 1.

4.3 Coarse-graining under the Interacting Pair

Approximation

Let us reformulate the problem in terms of simpler probability mass functions than

pµ(n1, . . . , nM). Temperature and volume will be assumed constant throughout the

entire discussion. For a given value of chemical potential, µ, we will consider the

following distributions:

poµ(n): probability of a pore to be occupied by n molecules, when interactions

with all the other pores are neglected;
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pµ(n): probability of a pore to be occupied by n molecules, with interactions

with every one of the ν pore neighbors represented as a mean-field, Kµ,n; and

pµ(n1, n2): probability of a pore pair, made of pores 1 and 2, to show the

occupancy pair n1, n2 with the effective interactions between the two pores given

by Kn1,n2 ; the interactions between pore 1 and every one of its remaining ν − 1

neighbors represented as a mean-field Kµ,n1 , and the interactions between pore 2

and every one of its remaining ν − 1 neighbors represented as a mean-field Kµ,n2 .

The distributions poµ(n), pµ(n), and pµ(n1, n2) are defined in terms of the po-

tential functions, which we call CG potentials, Ωo
µ(n), Ωµ(n), and Ωµ(n1, n2), re-

spectively, according to:

poµ(n) = (ζoµ)−1 exp{−βΩo
µ(n)}, (4.7)

pµ(n) = ζ−1
µ exp{−βΩµ(n)}, (4.8)

pµ(n1, n2) = ξ−1
µ exp{−βΩµ(n1, n2)}, (4.9)

where ζoµ, ζµ, and ξµ are normalization constants, and, following the Bethe-Peierls

mean-field approximation, [94, 95] the CG potentials are defined as follows:

Ωo
µ(n) =− µn+Hn, (4.10)

Ωµ(n) = Ωo
µ(n) + νKµ,n, (4.11)

Ωµ(n1, n2) = Ωo
µ(n1) + Ωo

µ(n2) +Kn1,n2

+ (ν − 1)(Kµ,n1 +Kµ,n2). (4.12)

Hn, the free energy of a closed n-occupied pore, and Kn1,n2 , the contribution to the

free energy provided by the interaction between the n1 molecules located in pore

1 and the n2 molecules located in pore 2, were already introduced in Eq. (4.2).
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By definition, Kn,0 = 0; i.e., there is no effective interaction energy between the

molecules inside a pore and an empty pore.

Mean-field terms like Kµ,n are used as corrections to the free energy. They can

be thought as Kµ,n ∼
∑

m pµ(m|n)Kn,m, with pµ(m|n) = pµ(n,m)/pµ(n), even

though, as we are going to show, there is no need to compute mean-field inter-

actions explicitly. In other words, when we consider a single pore in the system,

as in Eq. (4.11), Kµ,n accounts for the interaction between the n molecules inside

that pore and the molecules in its ν neighbors. The number of such surrounding

molecules, although it is related to µ, is not specified anywhere; therefore, such

ν neighbors can be thought as mean-field pores. When a pore pair of occupancy

(n1, n2) is considered instead, as we do in Eq. (4.12), we account for the rest of the

system in terms of 2(ν − 1) surrounding mean-field pores, ν − 1 of which interact

with cell 1 through the potential Kµ,n1 , while the other ν−1 ones interact with cell

2 through the potential Kµ,n2 . In order to obtain a solvable system of equations,

we assume mean-field neighbors to not interact with each other.

The crucial point in Eqs. (4.11) and (4.12) is that, although the mean-field

terms are µ-dependent, the pair interaction terms, Kn1,n2 , do not depend on µ.

In Fig. 4.1, we sketched the role of the interaction terms used in Eqs. (4.10)–

(4.12). The closed-pore equation, Eq. (4.10), does not contain any mean-field

term—in some sense, it is ‘exact,’ meaning that if we were able to estimate with

infinite accuracy the probability distribution poµ(·), e.g., by an infinitely long grand

canonical sampling [by the grand canonical Monte Carlo (GCMC) method [5]] of

a version of the FG system where only pore 1 can be occupied and all the pores in

the system stay empty, we could retrieve Hn from the difference Ωo
µ(n) − Ωo

µ(n′),

where n′ 6= n, knowing that H0 = 0. From Eq. (4.10), we have

Hn −Hn′ = µ(n− n′) + Ωo
µ(n)− Ωo

µ(n′),
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and by making use of Eqs. (4.1) and (4.7), we obtain the equivalent relation

Qn

Qn′
= e−βµ(n−n′) p

o
µ(n)

poµ(n′)
, (4.13)

which we can use to estimate Qn from the probability ratios poµ(n)/poµ(n′), knowing

that Q(0) = 1 can be used as starting point. Resorting to ratios like Qn/Qn′ rather

than calculating every Qn directly from poµ(n) = (ζoµ)−1eβµnQn [see Eqs. (4.1),

(4.7), and (4.10)], is motivated by the fact that we do not know in advance the

normalization constant ζoµ.

The ratio in Eq. (4.13) does not depend on the chemical potential, meaning

that, in principle, when carrying out the calculation of the R.H.S. of Eq. (4.13),

one should recover the same result independently of the value of µ at which the

probabilities were evaluated. In practice, however, numerical simulations are car-

ried out over a finite time. Therefore, when replacing poµ(n) and poµ(n′) with P o
µ(n)

and P o
µ(n′), i.e., the probabilities estimated from simulations of the FG system

(with all the pores kept empty except for one), the R.H.S. of Eq. (4.13) will return

a slightly different value for each µ, that is,

Qn

Qn′
≈ e−βµ(n−n′) P

o
µ(n)

P o
µ(n′)

. (4.14)

A proper combination of the ratios in Eq. (4.13) computed at different values of

µ is the strategy we (successfully) used in our previous work [41] to obtain very

reasonable results.

Once we computed the array of Q’s (or H’s) from GCMC on a single pore, we

can proceed to the evaluation of the pair-interaction parameters Kn1,n2 appearing

in Eq. (4.12). By knowledge of the difference in CG potential

Ωµ(n1, n2)− Ωµ(n′1, n
′
2) = − 1

β
ln
pµ(n1, n2)

pµ(n′1, n
′
2)
,

where n′1 and n′2 are chosen to be not simultaneously equal to n1 and n2, we obtain

an equation that relates them with Kn1,n2 −Kn′1,n
′
2
. First of all, we use Eq. (4.11)
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to eliminate the mean-field terms from Eq. (4.12), that then, through Eq. (4.10),

becomes

Ωµ(n1, n2) =
1

ν

[
Hn1 +Hn2 − µ(n1 + n2)

]

+

(
1− 1

ν

)[
Ωµ(n1) + Ωµ(n2)

]
+Kn1,n2 , (4.15)

from which we obtain the relation

Kn1,n2 −Kn′1,n
′
2

= Ωµ(n1, n2)− Ωµ(n′1, n
′
2)

+
1

ν

[
µ(n1 + n2 − n′1 − n′2) +Hn′1

+Hn′2
−Hn1 −Hn2

]

+

(
1− 1

ν

)[
Ωµ(n′1) + Ωµ(n′2)− Ωµ(n1)− Ωµ(n2)

]
. (4.16)

Knowing that Kn,0 = K0,n = 0 for any n, Eq. (4.16) can be used to calculate

the matrix elements Kn1,n2 . We can use Eqs. (4.1), (4.2), (4.8), and (4.9) to

re-formulate Eq. (4.16) as an equation for the ratio Zn1,n2/Zn′1,n′2 :

Zn1,n2

Zn′1,n′2
=

(
e−βµ(n1+n2−n′1−n′2)

Qn′1
Qn′2

Qn1
Qn2

) 1
ν

×
(
pµ(n′1)pµ(n′2)

pµ(n1)pµ(n2)

)1− 1
ν pµ(n1, n2)

pµ(n′1, n
′
2)
, (4.17)

which, while being completely equivalent to Eq. (4.16), shows very clearly the

connection with occupancy probabilities. In the R.H.S. of Eq. (4.17), the mean-

field interactions, appearing in Eqs. (4.11) and (4.12), are accounted for through

the 1/ν exponent on the first term (regarding the properties of a lone cell) and

through the ratio involving single-cell probabilities, raised to the power of 1−1/ν.

We can write down an equation by which the physical meaning of pair-interaction

terms will appear very intuitive. To do so, we first introduce the observed-to-

expected (o/e) ratio,

Cµ(n1, n2) =
pµ(n1, n2)

pµ(n1)pµ(n2)
, (4.18)
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whose deviation from unity is a measure of the correlations between the neighbor

pore occupancies n1, n2, and the ratio

Dµ(n) =
pµ(n)

poµ(n)
, (4.19)

which measures the amount by which the mean-field neighborhood of a single pore

causes its properties to deviate from the closed-pore case. Now, if we consider that

the guest-guest interaction between two pores with no guests inside is null (so that

Z0,0 = 1 ⇒ K0,0 = 0), then we can see that the pair terms have the following

meaning:

Kn1,n2 =− 1

β

[
lnCµ(n1, n2) +

1

ν
ln
[
Dµ(n1)Dµ(n2)

]

− lnCµ(0, 0)− 2

ν
ln
[
Dµ(0)

]]
, (4.20)

where the terms lnCµ(0, 0) and 2
ν

lnDµ(0) are related to the occupancy pair 0, 0,

taken as a reference state. All terms in the R.H.S. of Eq. (4.20) depend on µ, but

for each µ they change such as to return the same value. According to Eqs. (4.10)–

(4.12), for a given pair of neighboring occupancies n1, n2, the R.H.S. of Eq. (4.17)

must be the same at all chemical potentials. Therefore, one can formally remove

the dependence on µ from Eq. (4.20) by integrating it over a range that goes from

µi, corresponding to very low density, to µf , corresponding to very high density,

close to saturation. In this way, the terms related to the reference state, i.e. the

ones in which both the pores of the pair are empty, will appear as a single constant:

Kn1,n2 =− 1(
µf − µi

)
β

∫ µf

µi

dµ
[

lnCµ(n1, n2)

+
1

ν
ln
[
Dµ(n1)Dµ(n2)

]]
+ const. (4.21)

Although only formally, Eq. (4.21) provides us with the meaning of the CG pair

interaction terms, consistent with the assumptions made in Eqs. (4.11) and (4.12);

that is, except for a constant term, contributions to the pair free energy Kn1,n2
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come from the correlation between the neighbor occupancies n1 and n2 and from

the effect of the local surroundings on each of the two pores (divided by the pore

connectivity ν), at all the chemical potentials in the range µi < µ < µf .

Eqs. (4.17) and (4.21) cannot be used directly for the calculation of the pair-

interaction terms because they require knowledge of the coarse-grained pµ distribu-

tions, which are unknown. Therefore, we need a key assumption in order to convert

our mean-field formulation of this problem into an operative coarse-graining strat-

egy. Our proposal is to replace the unknown distribution pµ, with the distribution

obtained by numerical simulation of the FG system, Pµ. This amounts to saying

that at any µ in the range µi < µ < µf , the approximation

Pµ(n1, n2) ≈ pµ(n1, n2), (4.22)

holds for every occupancy pair n1, n2. We will refer to the approximation (4.22),

together with Eqs. (4.11) and (4.12), as Interacting Pair Approximation (IPA), to

emphasize that we considered the pair of pores as a physical region that is not

kept away from the rest of the system but rather interacts with its surroundings

through mean-field correction terms. As an immediate consequence of the fact

that relation (4.22) is an approximation, once we replaced the theoretical pµ with

the numerical distribution Pµ, we have that the R.H.S. of Eq. (4.17) becomes only

approximately equal to the ratio Zn1,n2/Zn′1,n′2 :

Zn1,n2

Zn′1,n′2
≈
(
e−βµ(n1+n2−n′1−n′2)

Qn′1
Qn′2

Qn1
Qn2

) 1
ν

×
(
Pµ(n′1)Pµ(n′2)

Pµ(n1)Pµ(n2)

)1− 1
ν Pµ(n1, n2)

Pµ(n′1, n
′
2)
. (4.23)

In other words, in practice, different chemical potentials will contribute differently

to the estimation of the ratio Zn1,n2/Zn′1,n′2 . Among all such contributions, we can

identify some values of µ that we want to contribute more than other ones, because

they correspond to situations in which the pore occupancies n1, n2, n′1, and n′2 are
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visited frequently enough for us to reckon that our estimation of the probabilities

pµ(n1), pµ(n2), pµ(n1, n2), pµ(n′1), pµ(n′2), and pµ(n′1, n
′
2) is accurate enough (e.g.,

if the probabilities are larger than some threshold). Conversely, we want µ values

at which those pore occupancies are sampled rarely to contribute less, since in

those cases our estimation of the probabilities is expected to be rather inaccurate.

Extreme situations, i.e., values of µ at which some or all of the occupancies n1, n2,

n′1, and n′2 are never sampled, should then give no contribution to Zn1,n2/Zn′1,n′2 .

This might cause some Zn1,n2 to remain unknown, [41] but this does not really

represent an issue, as long as the computable entries of the matrix Z ensure that

the probability distribution that can be obtained by simulation of the resulting

coarse-grained system and their FG counterparts reasonably match at all chemical

potentials. Further details are discussed in the supplementary material. In the

Appendices 4.8.1 and 4.8.2 we describe two possible routes for the estimation of

the interaction terms Qn and Zn1,n2 . In the first one, reported also in our previous

work, [41] and indicated here as ‘one-chemical-potential-at-a-time’ (OCT), in a

first stage, we make use of Eqs. (4.13) and (4.17) recursively for each chemical

potential, thus obtaining µ-dependent CG interactions, and in a second stage, we

remove the µ-dependency through a weighted average. In the second one, that we

indicate as ‘choose-the-best-ratio’ (CBR), we select the µ for which the R.H.S. of

Eq. (4.23) can be regarded as the best representative of the ratio Zn1,n2/Zn′1,n′2 ;

e.g., by using, as selection criterion, how large and how similar the probabilities

Pµ(n1, n2) and Pµ(n′1, n
′
2) are, and then, we use the ratios we selected to calculate

recursively the individual entries of the matrix Z. Essentially, the differences in the

interaction matrix Z obtained using either of the two methods are very small, while

a much more crucial role is played by the accuracy in the probability histograms

evaluation from GCMC, as we briefly discuss in Appendix 4.8.3.
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4.4 Comparison with previous models

It is worthwhile to compare our coarse-graining (IPA) approach with the more

drastic assumption in which a pair of neighboring pores is treated as if it was

uncorrelated with the rest of the FG system. [82–84] We will indicate the latter

assumption as Non-Interacting Pair Approximation (NIPA).

NIPA relies on relation (4.6) taken as if it were an equality. To compare IPA

and NIPA, we find it convenient to write the IPA equation for the pair interaction

terms, i.e., Eq. (4.17), as follows:

Zn1,n2

Zn′1,n′2
=

(
poµ(n′1)poµ(n′2)

poµ(n1)poµ(n2)

) 1
ν
(
pµ(n′1)pµ(n′2)

pµ(n1)pµ(n2)

)1− 1
ν

× pµ(n1, n2)

pµ(n′1, n
′
2)
, (4.24)

If relation (4.6) was an equality, we could drop the mean-field terms in Eq. (4.12),

thus obtaining the NIPA equation for the pair interactions:

Z∗n1,n2

Z∗n′1,n′2
=
poµ(n′1)poµ(n′2)

poµ(n1)poµ(n2)

p∗µ(n1, n2)

p∗µ(n′1, n
′
2)
, (4.25)

where p∗µ(n1, n2) is the probability of a pair of neighboring pores separated from

the rest of the system to show the occupancy pair n1, n2, given that the chemical

potential is µ. The first major problem with NIPA is that the adsorption isotherm

of a closed pair is, at high densities, different from the adsorption isotherm of the

FG system as a whole (as shown in the Supplementary Material for the case of the

Lennard-Jones system we will discuss in Sec. A.2). Therefore, in general, the NIPA

and IPA occupancy distributions are expected to be also different. Moreover, we

can see by comparing the NIPA Eq. (4.25) with the IPA Eq. (4.24) that, when

switching from NIPA to IPA, inclusion of the mean-field corrections causes the

single-pore NIPA term in the R.H.S. of Eq. (4.25),

poµ(n′1)poµ(n′2)

poµ(n1)poµ(n2)
,
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Figure 4.2: Structure of the lattice-gas we studied in this work to compare the IPA with the

NIPA coarse-graining approach. Sites, which can assume either state 0 (empty) or 1 (singly

occupied), are represented as small squares, which can be grouped into cells (gray shades).

A number is assigned to each site within every cell to distinguish from one another. Site-site

interactions are pairwise, and they take place between connected sites—connections are displayed

as lines, which are thin if the connected pair entirely belongs to one cell and thicker (and doubled)

if they connect two sites that belong to different cells.

to split into two factors, in the R.H.S. of Eq. (4.24),

(
poµ(n′1)poµ(n′2)

poµ(n1)poµ(n2)

) 1
ν
(
pµ(n′1)pµ(n′2)

pµ(n1)pµ(n2)

)1− 1
ν

,

that is, one independent-pore contribution, raised to the power of 1/ν, where a

single pore of occupancy n is taken as if it were a closed system, and one correlated-

pore contribution, raised to the power of 1− 1/ν (and therefore, more important

than the first one), which istead relates the properties of a single pore to its

surroundings in the FG system, via mean-field correction terms. Therefore, use

of the NIPA matrix Z∗ will in general ensure the correct coarse-graining of only

a special version of the FG system, in which only two pores are non-empty, but

not of the FG system as a whole. Since the correlations between any pore and its

surroundings becomes of crucial importance at high density, the IPA matrix Z is

expected to provide, in general, a more accurate CG representation.
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Before we proceed further with Sec. 4.5, it is worth mentioning the condi-

tions under which the IPA strategy described here reduces to the coarse-graining

strategy we proposed in a previous work, [41] where a CG equation for the ratio

Zn1,n2/Zn1−1,n2 was derived by constraining the occupancies in the neighborhood

of a given pore to the same value. By letting n′1 = n1 − 1 and n′2 = n2, we can

rewrite Eq. (4.17) as

Zn1,n2

Zn1−1,n2

=

(
e−βµ

Qn1−1

Qn1

) 1
ν
(

pµ(n2|n1)

pµ(n2|n1 − 1)

)1− 1
ν

, (4.26)

where pµ(n2|n1) is the conditional probability of a pore, belonging to a pair of

neighboring pores, to have occupancy n2, given that the other pore has occupancy

n1. We can see that the basic CG expression we proposed in our previous work is

retrieved when the last factor in the R.H.S. of Eq. (4.26) can be neglected (i.e. when

it is ∼ 1). This happens under the approximation pµ(n2|n1) ≈ pµ(n2|n1 ± 1), that

represents a less general case where the conditional distribution pµ(·|n1) does not

vary much when the neighbor occupancy n1 is slightly varied, thus implying weak

(even though still non-null) lateral correlations.

4.5 Simulations and discussion

In this section, we apply both the IPA and the NIPA approaches to a lattice-gas

system of interacting Boolean sites (Sec. 4.5.1) and to a Lennard-Jones system of

confined particles (Sec. A.2). All the simulations were carried out by standard

Metropolis GCMC. [5]

4.5.1 Lattice-gas with repulsive interactions

According to Eqs. (4.14), (4.23), and (4.25), the calculation of CG interaction

parameters via IPA and NIPA relies on the previous knowledge of probability
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histograms. However, histograms are calculated from the outcomes of numerical

simulations and are therefore unavoidably affected by accuracy issues. Extending

the simulation length leads to a gain in accuracy, but in the case of off-lattice

molecular simulation, this comes at a significant computational cost. Since we

reckoned it to be very important to first test the IPA, in comparison with the

NIPA, in an essentially inaccuracy-free environment, we did it on a computation-

ally cheaper simulation model, i.e., a FG Boolean lattice-gas. Due to the finiteness

(and discreteness) of their configuration space, simple Boolean interacting lattice-

gases are an invaluable tool for comparing different coarse-graining strategies, such

as IPA and NIPA.

The local contributions given by the Q array and the NIPA pair-interaction

matrix Z∗ can be (numerically) calculated exactly for a lattice-gas where cells are

composed of a small number of nmax mutually exclusive sites, since in that case

the integrals in Eqs. (4.5) and (4.6) reduce to summations over a large but finite

number of configurations. Therefore, since in this case the estimation of Q and

Z∗ (NIPA) does not require numerical simulations, the application of NIPA to

lattice-gases is totally unaffected by accuracy issues. In the IPA case, instead,

evaluation of the Z pair-interaction terms cannot be performed by direct sum-

mation of Boltzmann weights, and Eq. (4.23) must be used, which is based on

the knowledge of probability histograms numerically evaluated from simulations.

As a consequence, application of the IPA on lattice-gases is not totally free from

accuracy issues. Nevertheless, we reckon it to be very interesting to check whether

the IPA would provide better results than the NIPA, even though accuracy issues

affected the former more than the latter.

Our lattice-gas here is a square lattice of cells, each one made of nine sites

arranged as a square as well. Every site can be either empty (occupancy 0) or oc-

cupied by one particle (occupancy 1). Neighboring sites, say i and j, interact with
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each other (lateral interactions) repulsively, according to the interaction energy of

ε. With the aim of increasing the correlations, in some simulations we ‘extended’

the FG interactions by including an attractive interaction parameter, ψ, based on

the number of occupied neighbors around each site:

E(s) =
∑

〈i,j〉
sisj

[
ε+ ψ(Mi) + ψ(Mj)

]
, (4.27)

where the sum runs over all the pairs of neighboring sites, and si and sj are the

occupancies of sites i and j, according to the occupancy configuration s of the whole

FG lattice. Mi and Mj are defined as the total occupancy in the neighborhood of

site i (including the occupancy of j) and of site j (including the occupancy of i),

respectively, and

ψ(M) =





φ, M ≥M0

0, M < M0

, (4.28)

where φ < 0. The energy ψ(M) adds to the interaction between two neighboring

sites if the number of occupied neighbors of each of them becomes equal or larger

than some threshold value M0, which we set at M0 = 4.

In Fig. 4.2, the structure of a portion of the lattice is depicted. Interacting sites

are joined by lines that are either thin or thick in the case of intra-cell and inter-

cell connections, respectively. Intercell connections are represented in Fig. 4.2

as ‘double’ connections, but this does not imply that the interaction energy is

doubled. GCMC simulations of this FG system under different setups of the

interaction parameters were performed at several values of chemical potential,

chosen such as to ensure that the resolution was at least of two density points

between each interval (〈n〉, 〈n〉+ 1) in the average cell occupancy. In Fig. 4.3, we

show results for the following parameter settings: (a) ε = 4 kJ mol−1 and φ = 0, (b)

ε = 8 kJ mol−1 and φ = 0, and (c) ε = 4 kJ mol−1, φ = −1.6 kJ mol−1, and M0 = 4.

For every chemical potential, two simulations were performed. In the first one,
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Figure 4.3: Adsorption isotherms for the lattice-gas system under different interaction setups.

In (a) and (b), the site-site interaction is purely repulsive (it amounts to 5 and 8 kJ mol−1,

respectively). In (c), the lateral interaction is set at 5 kJ mol−1, but extended attractive inter-

actions are added. Results for the FG system are depicted as empty circles, whereas solid black

lines are used for IPA and dashed blue lines for NIPA results. For the sake of readability, we

reduced the density of points in the FG scatter plot to one-half of the actual dataset.

inter-cell interactions were neglected and the Q terms were evaluated from (4.14).

In the second simulation, we included inter-cell interactions and evaluated the Z

interaction terms through (4.23). Every simulation was carried out over a number

of steps that varied from N = 106 to 107 moves, equally (and randomly) distributed
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Figure 4.4: Adsorption isotherms and Kullback-Leibler divergence for a system of a Lennard-

Jones methane molecules (united atom approximation) under the static field of zeolite ITQ-29

at the temperatures 300, 400, and 500 K. In subfigures a1, a2, and a3, adsorption isotherms are

shown (empty circles: FG lattice system; black solid lines: IPA; blue dashed lines: NIPA). In

subfigures b1, b2, and b3, the Kullback-Leibler divergence for the occupancy distribution of one

single cell are shown [see Eq. (4.29)]. Subfigures c1, c2, and c3, refer instead to the occupancy

distribution one pair of neighboring cells [see Eq. (4.30)]. Black solid lines represent divergences

between FG and IPA systems, blue dashed lines represent divergence between FG and NIPA

systems.

among displacement, insertion, and deletion attempts. Simulations of both IPA

and NIPA CG systems were performed through GCMC as well but over a smaller

number of steps (N ∼ 105) due to the much faster convergence to equilibrium.

The results reported in this work are for lattice systems of 4 × 4 cells. Larger

systems were explored (6 × 6 and 8 × 8) for a smaller number of GCMC moves

and of chemical potential values, and they gave results that were indistinguishable

from the ones obtained for the 4× 4 cases.

For both the IPA and the NIPA coarse-graining, the results we reported were

obtained through the CBR approach described in Sec. 4.3. However, both OCT
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and CBR provided nearly the same results. Adsorption isotherms, i.e., plots of the

density (expressed as the average cell occupancy, 〈n〉, divided by the total number

of sites per cell, nmax) vs. the fugacity (here meant as f = f0e
βµ, where f0 = 1

bar), are reported in Fig. 4.3, and they show that the NIPA approach starts failing

at intermediate-high densities, where intercell correlations become important. On

the other hand, IPA provides isotherms (see Fig. 4.3) and occupancy distributions

(see supplementary material) in good agreement with the FG system at all den-

sities. In particular, in the example shown in Fig. 4.3(a), at high densities, pair

correlations are non-negligibly affected by the presence of the other neighbors of

both cells of the pair, and this causes the adsorption isotherm of the whole FG

system to exhibit curvature changes that are not well reproduced by NIPA. In

Fig. 4.3(b), a more repulsive site-site interaction enhances this phenomenon, and

the isotherm tends toward a step-like shape as repulsion is increased. In this case,

the more quantitative agreement provided by the IPA approach is even more ev-

ident. The isotherm in Fig. 4.3(c) is related to a more extreme case, where, due

to the increasingly important effect of the attractive contribution from ψ(M) to

the total energy, see Eqs. (A.2) and (4.28), site correlations extend to the second

neighborhood. One can immediately figure out that extended interactions may

cause cell pairs to be correlated very differently, depending on whether we con-

sider every pair as if it was part of a larger portion of the system (as in the IPA

approach), or as if it evolved on its own, detached from the rest of the system (as

is the NIPA approach). As a consequence of the balance between repulsive and

attractive interactions, a larger step appears in the isotherm at intermediate den-

sities, and as the density approaches the step (for 〈n〉/nmax between 0.4 and 0.5),

the NIPA method fails. On the contrary, IPA better preserves the shape of the

original system, indicating that also in this case the cell-cell correlations induced

by more complicated FG interactions are well represented through the inclusion
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of the mean-field terms in Eqs. (4.11) and (4.12).

We remark that in the calculations above, the NIPA interaction terms were

evaluated as exact sums rather than through simulations of a pair of cells, so

they are not affected by any accuracy issue, whereas the IPA interaction terms

were calculated straight from the distributions obtained from simulations of the

FG system—therefore, contrarily to the NIPA case, IPA parameters are supposed

to be not immune to noise and accuracy issues (related to the fact that low-

probability occupancies are unavoidably sampled less frequently, and then less

accurately, than the high-probability ones); despite everything, the IPA reveals

the most accurate of the two. However, as we will see in Sec. A.2, in systems

where the structure is determined by a much smoother potential energy function,

the difference between IPA and NIPA, although undeniably present, appears less

marked and starts becoming non-negligible at higher densities.

4.5.2 Lennard-Jones particles under the influence of an ex-

ternal field

Methane molecules, represented by the united atom approximation as Lennard-

Jones (LJ) spheres, confined in the all-silica zeolite ITQ-29 (formerly called ZK4)

have been widely used in the literature as a host-guest system to test statistical-

mechanical theories, adsorption-diffusion models, methods for the calculation of

free energy profiles, and coarse-graining approaches under various computational

environments (like kinetic Monte Carlo and Cellular Automata). [81–85, 96–102]

The ITQ-29 framework is particularly interesting because of its peculiar struc-

ture of relatively wide pores (when compared with methane size), called α-cages

(∼ 11.4 Å in diameter), arranged in a simple cubic network (ν = 6), and inter-

connected through narrower eight-ringed windows (∼ 4.5 Å in diameter), allowing

the passage of one methane molecule at a time. We modeled guest-guest and
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host-guest interactions according to the force fields used by Dubbeldam et al. [98]

with a cutoff of 12 Å, and since the zeolite flexibility does not affect significantly

the sorption properties of methane (although it would be not negligible for larger

molecules [103]), a pre-tabulation of the host-guest potential energy on a grid of

∼ 0.2 Å of spacing allowed for a significant reduction of the process time of the

simulations. [104] Our framework system consisted of a grid of 4 × 4 × 4 pores,

corresponding to 2 × 2 × 2 unit cells (the ITQ-29 unit cell we used consisted of

eight pores). GCMC simulations were carried out using the standard Metropolis

acceptance-rejection method for displacements, insertions, and deletions. [5] Such

MC moves were performed in equal proportions, within a total number of post-

equilibration steps that varied from ∼ 106Nuc to ∼ 108Nuc, with Nuc as the average

number of molecules per unit cell. The temperatures we investigated were 100,

200, 300, 400, and 500 K. The fugacities were chosen in such a way as to explore

loadings more or less uniformly (at least two points within each loading interval

from 〈n〉 to 〈n〉 + 1) from ∼ 0.1 up to ∼ 14.5 molecules per pore. In all cases,

methane molecules were not allowed to enter the sodalite cages nor the double six-

ringed cages. At 100 K, due to the very low acceptances at the highest loadings,

simulations were carried out up to ∼ 12 molecules per pore. Due to the very sim-

ple (cubic) topology of the pore network, and since methane-methane interactions

across non-first neighboring pores can be safely neglected, [41] the CH4/ITQ-29

system is especially suited for testing the IPA coarse-graining scheme as well.

In Fig. 4.4, we compare results for the temperatures 300, 400, and 500 K.

At such temperatures, the CBR approach provided slighlty better IPA represen-

tations, whereas slightly better NIPA results were obtained by using the OCT

protocol. Besides adsorption isotherms, we wanted to give the reader a quick idea

on how the use of IPA rather than NIPA affects the occupancy distributions of

the CG model, in comparison with the distributions that emerge from the GCMC
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Figure 4.5: Adsorption isotherms and Kullback-Leibler divergences for a system of a Lennard-

Jones methane molecules (united atom approximation) under the static field of zeolite ITQ-29

at the temperatures 100 and 200 K. The meaning of dots, line types, and line colors is the same

as in Fig. 4.4.
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simulations of the FG system. Since two kinds of histogram were constructed out

of GCMC simulations at every chemical potential (one univariate histogram for

the probability of any pore to have occupancy n and one bivariate histogram for

the probability of any pore pair to show the occupancy pair n1, n2), in order to

be able to visualize the results on a single figure per system, here we decided to

compare occupancy distributions through the Kullback-Leibler (KL) divergence,

that we used according to the symmetric definition given by Kullback and Leibler

in their original article. [105]

We will refer to ∆s as the KL divergence for the probability distribution of a

single pore and to ∆p as the KL divergence for the probability distribution of a

pore pair:

∆s =
∑

n

(
Pµ(n)− pcg

µ (n)
)

ln
Pµ(n)

pcg
µ (n)

, (4.29)

∆p =
∑

n1

∑

n2

(
Pµ(n1, n2)− pcg

µ (n1, n2)
)

ln
Pµ(n1, n2)

pcg
µ (n1, n2)

, (4.30)

where Pµ and pcg
µ refer respectively to the occupancy distribution of the FG system

and of one of two possible CG systems (IPA and NIPA). Based on the resulting

FG distributions, we set the maximum pore occupancy at nmax = 15. We included

more detailed comparisons of the occupancy distributions in the supplementary

material.

As we anticipated at the end of Sec. 4.5.1, the discrepancies between IPA

and NIPA are less evident here than in the case of lattice-gases with repulsive

interactions, due to the smoothness of the LJ potentials. Nevertheless, the IPA

approach shows to be the most accurate in all the cases reported, proving its ro-

bustness despite its simplicity. At low loadings, both approaches provide a reason-

able agreement between CG and FG systems, but at intermediate-high loadings,

non-negligible KL divergences between the NIPA and the FG distributions appear,

in correspondence with discrepancies in the adsorption isotherms (as expected),
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and they are much more pronounced than the ones we find for the IPA case. We

believe this is due to the presence of the mean-field terms in the basic equations

of the IPA approach, Eqs. (4.11) and (4.12), which satisfactorily accounts for the

effect of the whole neighborhood of each pore.

In Fig. 4.5, we report results at lower temperatures, namely, 200 and 100 K.

The IPA parameters that produced the CG plots in Fig. 4.5 were calculated by

the CBR method at 200 K, and by the OCT method at 100 K, whereas the NIPA

parameters were evaluated through the OCT method at both temperatues. Also

in these cases, the difference between the parameters obtained by the two methods

is not so much evident, and we made our choice based on slight discrepancies.

At these temperatures, correlations between neighboring pores become more

evident. Noticeably, at 200 K, while the IPA and NIPA isotherms are approxi-

mately in the same (good) agreement with the FG system, the occupancy distri-

butions are not, and the IPA results are closer to the FG distributions, especially

at low densities.

At the temperature of 100 K the NIPA approach fails to provide a reason-

able agreement even at low loadings, indicating that in this case the occupancy

of each pore is seriously affected by the occupancies in the whole neighborhood.

Including only one neighbor in the statistical description of CG interactions, as

NIPA prescribes, does not allow the CG model to reproduce, not even partially,

the correlations observed in the FG system. The FG occupancy distributions at

100 K become highly non-central for all but the lowest loadings (this can be seen

very clearly in Fig. S9 reported in the supplementary material), and we noticed

that, although still providing more satisfactory results than NIPA, the agreement

in the CG occupancy distributions as provided by the IPA approach becomes less

striking than at higher temperatures. In particular, bimodality, which we also ob-

served for the system at 200 K and which corresponds to states with two coexisting
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phases, [106–108] is not accurately reproduced. We believe this not to be an issue

of the mean-field corrections as they are formulated in Eqs. (4.11) and (4.12), but

rather a limitation of the pairwise nature of the CG potential model. Inclusion

of other correction terms that depend on collective, but still local, variables may

further improve the agreement in situations where correlations between every pore

and all its neighbors are very large. [88] This will be the subject of forthcoming

investigations.

As a further note, testing the IPA to the case of Lennard-Jones particles in

ITQ-29 was indeed very convenient because in this material the pore size and

structure make the six first neighbors of each pore all equivalent. Extension of

IPA to the case where each pore is surrounded by non-equivalent neighbors is the

scope of a future work.

4.6 Conclusions

We investigated the coarse-graining of host-guest systems of small molecules ad-

sorbed in a regular porous material, described in terms of occupancy distributions

rather than fine-grained configurations of molecular positions. In such a reduc-

tionistic representation, the interaction field is based on the free energy of every

single pore, defined as a function of its occupancy (i.e., the number of molecules

it hosts), plus effective contributions to the free energy coming from the interac-

tions between neighboring pore pairs. By means of a very simple system, i.e., a

lattice-gas where local free energies can be calculated exactly, we have shown that

the currently accepted approximation in which the pair interaction is assumed to

be the same whether the pore pair is kept within the full fine-grained system it

belongs or it is made independent of its surroundings [81–84] (we referred to it

as NIPA, non-interacting pair approximation) turns out to be inaccurate at high
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densities, where the interactions between every pore pair and its neighborhood

induce stronger correlations. In Lennard-Jones systems, where interactions are

much smoother than in lattice-gases, the inadequacy of the NIPA approach is

slightly less evident but, apart from the case of high temperatures (around room

temperature and above) and low sorbate density, still leads to non-negligible dis-

crepancies between the fine-grained system and its coarse-grained counterpart. We

improved the calculation of coarse-grained interactions by establishing a relation

between local occupancy distributions of the fine-grained systems and the prop-

erties of a coarse-grained, occupancy-based model that we called IPA (interacting

pair approximation), where the effect of the surroundings on both single pores and

pore pairs is taken account of via mean-field terms. As a result, the pore pair

interactions appear as if they were entirely related to the local pore-pore correla-

tions, and to the discrepancy between the properties of a closed single pore and

those of a pore which instead does interact with its neighbors. We remark that

although in the basic IPA equations mean-field corrections depend on chemical po-

tential (i.e., they are density-dependent), the resulting coarse-grained interactions

do not depend on it; i.e., their local nature is preserved. We presented results for

the coarse-graining of lattice-gases with repulsive interactions and for a host-guest

model of methane molecules (treated as Lennard-Jones spheres) confined in zeolite

ITQ-29. In every case we studied, the IPA approach provided noticeably better

results than NIPA. In the majority of cases, the agreement between the properties

of the coarse-grained systems obtained under the IPA approach and the properties

of the original, fine-grained system was excellent.
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4.7 Connection between fine-grained and coarse-

grained global occupancy distribution

In order to see how the model described by Eq. (4.3) relates to its FG counter-

part, we will take as an example the case of an off-lattice system of identical,

indistinguishable particles hosted in a microporous material consistent with the

description we provided at the beginning of Sec. 4.2, in the grand-canonical en-

semble. Let us first examine the FG probability, Pµ(rn1 , . . . , rnM ), that, given a

configuration of indistinguishable particles distributed in M identical pores accord-

ing to the occupancies n1, . . . , nM , the positions of the ni particles in the i-th pore

(with i = 1, . . . ,M indicating each pore) are described by the set of coordinates

rni = {ri1, . . . , rini}, where rik represents the coordinates of the k-th particle in

the i-th pore:

Pµ(rn1 , . . . , rnM ) =
1

ΞFG

M∏

i=1

eβµni

Λ3nini!
e−βU . (4.31)

In Eq. (4.31), U = U(r11, . . . , r1n1 , . . . , rM1, . . . , rMnM ) is the potential energy of

the whole FG configuration, including both mutual interactions and interactions

with the medium; Λ is the deBroglie wavelength; and the normalization constant,

ΞFG, is the grand partition function. Eq. (4.31) is the extension of the configuration

probability density in the Small System Grand Ensemble [see Soto-Campos et

al. [109], Eq. (2)] to the case of multiple (and identical) subvolumes in the grand-

canonical ensemble. The joint probability, Pµ(n1, . . . , nM), of pore 1 to contain n1

particles, pore 2 to contain n2 particles, and so on, is obtained by integrating the

coordinates of each particle over all the possible locations within the host pore:

Pµ(n1, . . . , nM) =
1

ΞFG

M∏

i=1

eβµni

Λ3nini!

∫

vi

drnie−βU , (4.32)

where
∫
vi

drni =
∫
vi

dri1 · · ·
∫
vi

drini , and
∏

i

∫
vi

drni =
∫
v1

drn1 · · ·
∫
vM

drnM , so that

in the R.H.S. of Eq. (4.32) the integrand function, e−βU , is subjected to
∑M

i=1 ni
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nested integrations.

The grand partition function then reads

ΞFG =
∑

n1

· · ·
∑

nM

M∏

i=1

eβµni

Λ3nini!

∫

vi

drnie−βU . (4.33)

In principle, the nested integrals in Eqs. (4.32) and (4.33) are not factorizable. The

key assumption that connects Eq. (4.32) to Eq. (4.3) is [83] to first (i) recognize

the following quantity

An1,...,nM
= − 1

β
ln

M∏

i=1

1

Λ3nini!

∫

vi

drnie−βU , (4.34)

as the contribution to the Helmholtz free energy coming from the occupancy con-

figuration n1, . . . , nM . Please note that An1,...,nM is assumed to not depend on the

chemical potential. Then, (ii) we assume to retain only the interaction energy

between the molecules in each pore, say pore i, and the molecules located in the

pores that belong to Li, i.e., the neighborhood of pore i we defined right after

Eq. (4.3), while we neglect the interactions between molecules farther away from

each other. Finally, (iii) we assume a “pore-pairwise” additivity of An1,...,nM , in

such a way that it can be expressed as

An1,...,nM
=

M∑

i=1

Hni +
1

2

∑

i

∑

j∈Li
Kni,nj , (4.35)

where, consistent with the definitions in Sec. 4.2, Hni is the contribution to the

free energy due to the momenta of the ni molecules located in pore i and to the

potential Ui(r
ni) = Ui(ri1, . . . , rini),

Hni
= − 1

β
ln

1

Λ3nini!

∫

vi

drnie−βUi(r
ni ), (4.36)

where Ui(r
ni) includes the interactions of each molecule with the host material

and the mutual interactions of the ni molecules with each other [see Eqs. (4.1)
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and (4.5)]. In Eq. (4.35), Kni,nj takes into account the correlation between the

neighboring pores i and j due to mutual interactions between the ni and the

nj guest particles [see Eq. (4.2)]. By using Eqs. (4.34) and (4.35) altogether in

Eqs. (4.32) and (4.33) one obtains, respectively, the CG distribution and partition

function in Eqs. (4.3) and (4.4). In other words, it is upon the three assumptions

we described here that that the mapping from the FG probability distribution

Pµ(n1, . . . , nM) to its CG counterpart pµ(n1, . . . , nM) relies.

4.8 Estimation of the interaction terms

We describe two possible routes for the estimation of the interaction terms Qn and

Zn1,n2 .

4.8.1 ‘One-chemical-potential-at-a-time’ (OCT)

In this strategy, first we obtain µ-dependent CG interactions, and then we remove

the µ-dependency through a weighted average.

In the first step, we make use of Eqs. (4.14) and (4.23) to estimate the interac-

tion parameters recursively for each chemical potential, with n′ = n + 1 in (4.14)

and with n′1 = n1 − 1 ∧ n′2 = n2 [contributing with a weight ∝ Pµ(n1 − 1, n2)] and

n′1 = n1 ∧ n′2 = n2 − 1 [contributing with a weight ∝ Pµ(n1, n2 − 1)] in (4.23). In

the second step, the chemical potential-dependence of the parameters Qn(µ) and

Zn1,n2(µ) resulting from the first step is removed by means of weighted averages

Qn =
∑

µ∈{µ}
ωn(µ)Qn(µ),

and

Zn1,n2 =
∑

µ∈{µ}
ωn1,n2(µ)Zn1,n2(µ),
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where the weights are set as proportional to the frequency with which each occu-

pancy (or occupancy pair) was sampled in the FG systems of reference: ωn(µ) =

P o
µ(n)/

∑
µ′∈{µ} P

o
µ′(n), and ωn1,n2(µ) = Pµ(n1, n2)/

∑
µ′∈{µ} Pµ′(n1, n2).

4.8.2 ‘Choose-the-best-ratio’ (CBR)

In this strategy, first we compute the µ-dependent ratios R∆
n (µ) [defined as the

R.H.S. of Eq. (4.14)] and R∆1,∆2
n1,n2

(µ) [defined as the R.H.S. of Eq. (4.23)], with

1 ≤ ∆ ≤ n, 1 ≤ ∆1 ≤ n1, 1 ≤ ∆2 ≤ n2, and ∆1 6= ∆2, and then (ii) we remove the

µ-dependence by simply selecting, for each doublet {n,∆} and for each quadruplet,

{n1,∆1, n2,∆2}, the one value, R∆
n , out of the candidates R∆

n (µ1), R∆
n (µ2), . . . , and

the one value, R∆1,∆2
n1,n2

, out of the candidates R∆1,∆2
n1,n2

(µ1), R∆1,∆2
n1,n2

(µ2), . . . , which we

find to be the most representative ones. Our selection criteria are the magnitude

of the probabilities involved (the higher, the better) and the difference between the

probabilities at the numerator and the ones at the denominator (the more similar

the probabilities, the more similar the accuracies). Finally, (iii) we apply the same

criteria to select the best R∆∗
n out of the set {R∆

n }∆=1,...,n, and the best R
∆∗1,∆

∗
2

n1,n2 out

of the set {R∆1,∆2
n1,n2

}∆1,∆2 , and calculate recursively the self-interaction terms as

Qn = R∆∗

n Qn−∆∗ , (4.37)

and the pair-interaction terms as

Zn1,n2 = R∆∗1,∆
∗
2

n1,n2
Zn1−∆∗1,n2−∆∗2

. (4.38)

4.8.3 Probability threshold

In general, one cannot expect the OCT and CBR approach to provide exactly coin-

cident parameter sets. In the simulations we performed, the two methods provided

nearly equal results. A much more important role than the choice of the OCT or
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CBR approach was played by the magnitude of the probabilities involved in (4.14)

and (4.23), which were estimated as histograms from GCMC simulations of the

FG system. We carried out the calculation of the ratios in (4.14) and (4.23) only

for those values of µ for which the probabilities involved were above some thresh-

old, that was set as tP
(1)
max,µ for (4.14) [where P

(1)
max,µ is the maximum probability

value observed in the histogram Pµ(·)], and tP
(2)
max,µ for (4.23) [where P

(2)
max,µ is the

maximum probability value observed in the bivariate histogram Pµ(·, ·)]. For each

FG system, the threshold t was treated as an adjustable parameter with optimal

values in the range 10−5 < t < 10−3.

Properly adjusting t led to significantly reducing the noise in the CG sim-

ulations produced by the inaccuracy that unavoidably affects the estimation of

probabilities of infrequent events. Moreover, one should notice that the approxi-

mation (4.23) is, in general, weaker than the approximation (4.14). The reason is

that, while approximation (4.14) relies on Eq. (4.13), which is exact [so that the

histogram P o
µ(·), as evaluated from GCMC, suffers only from the finite simulation

length], approximation (4.23) instead relies on Eq. (4.17), which in turn relies on

the approximation Pµ(n1, n2) ≈ pµ(n1, n2) rather than on some equality. That

represents an additional source of noise in the evaluation of the pair terms Zn1,n2

and makes the role of the threshold t even more important in the evaluation of

CG pair interactions.
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Chapter 5

Spatial Coarse-graining of

Methane Adsorption in Graphene

Materials

Reprinted (adapted) with permission from (G. Pireddu, F. G. Pazzona, A. M. Pin-

tus, A. Gabrieli, and P. Demontis. Spatial coarse-graining of methane adsorption

in graphene materials. J. Phys. Chem. C, 123(30):18355–18363, 2019). Copyright

(2019) American Chemical Society

5.1 Introduction

The representation of physicochemical phenomena involving molecular systems

in a variety of spatial and temporal scales has always been a challenging task.

Nowadays, atomistic computational methods such as ab-initio molecular dynamics,

offer a very detailed and accurate framework for the study of molecular systems. [2]

However, the simulation of relatively large environments requires a considerable

computational effort. Even with atomistic classical molecular dynamics (MD)

94
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and Monte Carlo (MC) methods, the simulation of systems at the meso- and

macroscopic scales remains unfeasible.

This makes the development of coarse-graining protocols an active line of re-

search. With a possible slight loss of accuracy, the production of less-detailed but

more computationally efficient models allows switching from a fine-grained (FG)

to a coarse-grained (CG) representation of the system under investigation. In

this line of work we think of such CG description in terms of occupancy-based

models of adsorption, where an effective interaction field is defined over the lo-

cal occupancy (that is the number of guest molecules’ centers) in the nearness

of discrete locations inside the adsorbent rather than on fine-grained atomistic

configurations.[20, 77, 80, 81, 84, 85, 87, 110]

Thus, the coarse-graining approach we follow is of a spatial rather than topo-

logical kind; that is, instead of building CG units out of groups of atoms through

mapping operators (which is, in a very few words, the spirit of topological coarse-

graining [13, 14, 19, 21, 72, 75]), we turn our attention to the partitioning of the

system domain in non-overlapping subvolumes and the association of proper CG

state variables to each of them.[25, 26, 28, 32, 38, 41, 78, 110–112] In general, the

idea of representing adsorption phenomena through a real-space lattice model is at

least one century-old [113], but methods are still under continuous development,

due to the lack of a sufficiently general and accurate protocol. [114–116]

Local occupancies are precisely the CG state variables we are focusing on here,

and we represent them as discrete stochastic variables. The subvolumes we consider

are of nanometer size and above, thus making the resulting CG model a mesoscopic

model, and we evaluate the matching between the CG and FG representation

in terms of statistical properties of occupancy distributions, while neglecting any

detail of the original system below that scale. Our study then is aimed to define, at

constant temperature, the effective interactions between neighboring subvolumes
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in terms of local occupancies only, within a wide overall density range. Our effort

points towards the development of a general procedure for performing a bottom-

up spatial CG of adsorption phenomena while guaranteeing a sufficiently accurate

representation of static properties.

In our previous paper [38] we worked on host-guest systems where the neighbors

of each adsorption unit (e.g., every α-cage of LTA-type zeolites) were all equivalent.

Here, we extend our reasoning to the case where each subvolume is surrounded

by neighborhoods of two kinds, by making reference to two systems that can be

partitioned into two-dimensional square lattices: united-atom methane adsorbed

(i) on a single graphene sheet, and (ii) between two graphene sheets. The latter

system is inspired by carbon-based adsorbent materials, which can exhibit inter-

esting properties for the adsorption of chemical species such as methane, which

were investigated both computationally [61, 117, 118] and experimentally. [55, 56]

In this work we will show how to use occupancy histograms to establish a cor-

respondence between the adsorption properties of the aforementioned fine-grained

molecular systems and the static equilibrium properties of a local-occupancy based

coarse-grained model. We will also show that in some cases (i.e., low temperature)

the coarse-grained occupancy correlations in space can be appreciably improved in

accuracy by pre-processing the occupancy histograms of the fine-grained systems

through a quantized gaussian distribution model.

5.2 Coarse-grained model

In Fig. 5.1 we report a picture of a portion of the simulation space of one of our

FG systems of interest: a graphene layer (the host) with united-atom methane

molecules adsorbed on it (the guests). As sketched in Fig. 5.1, the space is tes-

sellated with identical, non-overlapping square subvolumes, called cells, of edge
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Figure 5.1: Two projections of the same snapshot from the FG simulation of the methane

and single layer graphene system at 200 K. In both images the cell partitioning is represented

by solid black lines. The bottom image also shows the neighboring classes for the central cell:

blue arrows represent class I connections and red arrows represent class II connections.

length a. We say that two cells are neighbors of one another if they share either

one edge (class I neighbors, center-to-center distance is equal to a) or one corner

(class II neighbors, distance a
√

2). Therefore, each cell turns out to be connected

to νI = 4 cells of class I, and νII = 4 cells of class II. The total number of neighbors

is denoted as ν = νI + νII = 8. By setting a = rc, where rc is the cutoff radius

used for the potential energy evaluation in the FG simulations, we ensure that no

guest molecule in any cell will interact directly with any other molecule outside

the neighborhood of that cell. For any configuration of guest molecules in the

space domain, we can count how many of their centers-of-mass fall within every
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cell; if we label the cells as i = 1, . . . ,M , with M as the total number of cells,

the array of integer numbers that results from this counting operation is termed

the occupancy configuration of the system, and is denoted as n = {n1, . . . , nM}.
Effective interactions arise inside every cell and between neighboring cells, and

neighboring cells of every one class contribute differently to the total effective

interaction—this can be easily seen if we think of such interactions in terms of

average, effective interactions between the ni particles in cell i and the nj particles

in cell j: on average, the molecules in a cell will “feel” the molecules in the neigh-

borhood of one kind differently from how they “feel” those in the neighborhood

of another kind. We consider the system in the grand-canonical ensemble, which

is the most common statistical ensemble used to represent adsorption phenomena.

In this ensemble, the chemical potential, µ, of the guest species is held constant

(along with the temperature T ), while the overall density fluctuates around the

corresponding equilibrium value. Due to guest-guest and host-guest interactions

(defined on the molecular scale), any change in µ will cause the properties of the

distribution of occupancies in the system to change as well; our aim is to provide

our CG square cells with a set of effective, local occupancy-dependent interactions

such as to produce (approximately) the same change in the distribution properties.

We define Ω, the CG potential function of the system in the grand-canonical

ensemble, as a function of µ and of its occupancy configuration in the lattice:

Ωµ(n) =
∑

i

(Hni − µni) +
∑

〈ij〉
Kχij
ni,nj

, (5.1)

where 〈ij〉 denotes a summation over neighboring cells, and χ is the neighboring

class between cells i and j. In Eq. (6.1), Hni is the contribution to the total free

energy of the system provided by the ni guests that, according to the occupancy

configuration array n, are located in cell i, whereas Kχ
ni,nj

is the contribution
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provided by the effective interaction between the ni molecules in cell i and the nj

molecules in cell j, given that i and j are neighbors of class χ. The probability of

configuration n to occur, pµ(n), satisfies pµ(n) ∝ exp{−βΩµ(n)}, with β = 1/kBT ,

where kB is the Boltzmann constant. It is the scope of our research to find a set of

H’s and K’s [see Eq. (6.1)] such that the coarse-grained probability distribution

pµ(n) matches with the probability of configuration n estimated from classical

GCMC simulations of the FG system; a requirement that we want H’s and K’s

parameters to satisfy is locality, meaning that they would not depend on any global

variable other than temperature.

Being Hni and Kχ
ni,nj

meant as (local) free energies, the corresponding contri-

butions to the partition function of the system are given by

Qn = e−βHn , Zχ
n1,n2

= e−βK
χ
n1,n2 (5.2)

respectively. In order to obtain the Qn parameters, we first carry out GCMC

simulations of one single cell of the FG system at several values of µ; for each

one of them, we use the GCMC results to estimate the occupancy distribution

poµ(n), that is the probability that the cell we simulated contained exactly n guest

molecules. For such one-cell system the CG potential is then

Ωo
µ(n) = −µn+Hn (5.3)

and its relation with the equilibrium probability of a cell to have occupancy n is

poµ(n) ∝ eβµnQn. Therefore, for any two different occupancies n and n′ we can

write
Qn

Qn′
=

e−βµn poµ(n)

e−βµn′ poµ(n′)
, (5.4)

and use such relation to estimate the Q’s recursively, starting from H0 = 0 (or

equivalently Q0 = 1). As the accuracy of each bar of the poµ(n) histogram we

estimated from molecular GCMC would slightly vary from one chemical potential
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to the other, a weighting procedure such as the one described in our previous

work[38] can be used to obtain the µ-independent set of Q’s we are looking for.

In order to estimate the K’s, i.e. the pair-interaction terms, we need to em-

ploy a different model, where additional assumptions are introduced. As different

neighboring classes contribute differently to the total free energy of the system,

we associate each one of them, say class χ (where χ = I or II), with its own set of

probability distributions. Each element of such set is the bivariate occupancy dis-

tribution pχµ(n1, n2) computed at chemical potential µ. For any two specific values

of n1 and n2, it represents the probability that two neighboring cells of neighboring

class χ contain n1 and n2 guests, respectively, given that the chemical potential

is µ. We estimated the histograms pχµ(n1, n2) from GCMC simulations of a 4× 4-

sized FG system where we neglected all the guest-guest interactions apart from (i)

interactions between guests located in the same cell, and (ii) interactions between

guests located in neighboring cells of neighboring class χ, and then we establish a

proper connection between the bivariate occupancy histograms pχµ(n1, n2) and two

mean-field models within the interacting pair approximation (IPA), namely one

IPA model for neighborhood class I, and another one for neighborhood class II.

Every such χ-IPA dedicated model is made of one pair of explicit cells (“1” and

“2”, respectively with occupancy n1 and n2; we call these cells explicit because n1

and n2 are assigned well-defined integer values) that are class χ neighbors of one

another, plus 2νχ − 2 surrounding cells with unspecified occupancy—i.e., νχ − 1

mean-field cells interacting with cell 1, and νχ−1 more mean-field cells interacting

with cell 2. The structure of the χ-IPA models and their role in the coarse-graining

process is depicted in Fig. 5.2. The nature of such additional cells is mean-field in

the sense that any information about their state stays hidden inside the global vari-

able µ. We assume the guests in every such cell to interact only with the guests in

either one of the two explicit cells of the pair (namely, cell 1 or cell 2); the effective
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interaction between an explicit cell of occupancy n and any of its νχ − 1 mean-

field neighbors can be reasonably thought of as K
χ

µ,n ∼
∑

mK
χ
n,mp

χ
µ(n,m)/pχµ(n),

with m as a fictitious occupancy of the mean-field cell. Such contribution is a

µ-dependent mean-field term but, as we are about to show, mean-field terms will

cancel out in the final formula for the pair interactions.

Figure 5.2: CG workflow scheme for a square lattice with classes I and II, and νI = νII = 4.

On the left side: the closed single cell model, employed for the calculation of the Hn parameters.

In the middle: I-IPA and II-IPA models for the calculation of the pair interaction parameters

(I-IPA considers only neighbors of class I, while II-IPA considers only neighbors of class II). The

mean field cells are indicated with a color gradient according to the respective classes: blue for

class I and red for class II. On the right side: a portion of the resulting CG lattice model where

each cell is connected to neighbors of both class I and class II.

Given the above considerations, for each χ-IPA model the total CG potential

is

Ωχ
µ(n1, n2) =Ωo

µ(n1) + Ωo
µ(n2) +Kχ

n1,n2

+ (νχ − 1)(K
χ

µ,n1
+K

χ

µ,n2
), (5.5)
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where the Ωo
µ terms are defined according to Eq. 5.3, and K

χ

µ,n1
, K

χ

µ,n2
are mean-

field interaction terms. Now, there are two basic assumptions we rely upon in this

work: (i) the contribution from each class to the total free energy does not depend

on the contribution from any other class, and (ii) each χ-IPA model is a good

approximation of the reference system when only the interactions through the χ

class and the interactions inside every cell are active. The first assumption enables

us to write the CG potential for a single cell interacting with its νχ neighbors of

class χ as

Ωχ
µ(n) = Ωo

µ(n) + νχK
χ

µ,n, (5.6)

whereas the second assumption establishes the proportionality between exp [−βΩχ
µ(n1, n2)]

and the pχµ(n1, n2), i.e. the histogram we evaluated through GCMC simulations of

the FG system. If we consider another pair of occupancies (n′1, n
′
2) for two neigh-

boring cells of class χ, we can eliminate the mean-field terms from (5.5) and (5.6),

and obtain the following recurrence relation:

Zχ
n1,n2

Zχ
n′1,n

′
2

=

(
eβµn

′
1Qn′1

eβµn
′
2Qn′2

eβµn1Qn1 e
βµn2Qn2

) 1
νχ

×
(
pχµ(n′1) pχµ(n′2)

pχµ(n1) pχµ(n2)

)1− 1
νχ pχµ(n1, n2)

pχµ(n′1, n
′
2)
, (5.7)

which starts with Zχ
0,n = Zχ

n,0 = Zχ
0,0 = 1. Eq. (5.7) becomes operative once we

have knowledge of all the required probability histograms—which we gain from

simulations of the FG system with the proper interaction settings. Also in this

case, the weighting procedure described in our previous work[38] can be used to

obtain a µ-independent set of Z’s.

5.2.1 Data pre-processing at low T

.
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According to Eqs. (5.4) and (5.7), the estimation of CG parameters relies on

the occupancy histograms obtained from the GCMC simulation of the reference

(FG) system, under a variety of conditions (i.e. by excluding some or all the in-

teractions between molecules located in different cells). Now, GCMC simulations

are finite; therefore, at each chemical potential, histogram bars in the nearness

of the probability maximum will be better sampled than those far from it. At

low temperatures, the noise and the irregular shape in GCMC histograms might

partly compromise the accuracy of CG results in terms of occupancy correlations in

space. In such cases we found out very effective to process the GCMC histograms

before feeding them into the recurrence relations (5.4) and (5.7). The “processing”

consists in replacing the original GCMC bivariate occupancy histograms, pχµ(·, ·),
with new distributions, πχµ(·, ·), whose properties should approximate a number

of selected properties (namely, marginal means, marginal variances, and covari-

ance) of the original ones, but are “less noisy”. We define these new distributions

according to a bivariate quantized Gaussian distribution model:

πχµ(n1, n2) ∝ exp

[
− z

2(1− r2)

]
, (5.8)

where

z =
(n1 − a1)2

s2
1

+
(n2 − a2)2

s2
2

− 2r(n1 − a1)(n2 − a2)

s1s2

. (5.9)

In this model there are five parameters, namely a1, a2, s1, s2, and s12 (the pa-

rameter r is defined as r = s12/s1s2), but only three of them are independent,

because a1 = a2 and s1 = s2. This is due to the fact that the occupancies n1 and

n2 have the same nature (i.e. they are defined over two equivalent subvolumes), so

that the two marginal averages are the same, and also the two marginal variances

are the same. The distribution in (5.8) is a quantized Gaussian because variables

n1 and n2 are integer numbers (moreover, they are defined over a finite range of

non-negative values), this causing πχµ(·, ·) to bear little to no resemblance with
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a (continuous) normal distribution. Therefore, in general, there is no correspon-

dence neither between a1, a2 and the marginal means, nor between s2
1, s2

2 and the

marginal variances, nor between s12 and the covariance. a1, s1, and s12 are rather

free parameters that we direct-search optimize to produce πχµ(·, ·) histograms that

reasonably approximate the original distributions pχµ(·, ·), in terms of marginal

means, marginal variances, and covariance.

5.3 Results and discussion

We developed the present CG scheme considering two host-guest systems: united

atom methane adsorbed (i) on a single layer of graphene, and (ii) between two

graphene layers. In the latter system the interlayer spacing is 12 Å; results

from previous computational studies on similar systems showed that a distance

of 12 Å allows for an optimal methane uptake. [61] For both systems, we per-

formed the same partitioning, consisting in a single layer tiling of tetragonal cells

with a = 17.1 Å, and c = 12 Å (see Fig. 5.1). The cut-off of pair-wise interactions

was also set at 12 Å. Being all the cells on the same layer, we can actually see

this partitioning as a two-dimensional system of adjacent squares. Mapping such

systems to the lattice model leads to a topology analogous to the King’s graph,

which can be imagined as the overlap of a square lattice with another square lattice

rotated by a 45o with respect to the first one and stretched by a factor
√

2 (see

Fig. 5.2).

The host materials were represented as rigid structures, with each carbon atom

modeled as a Lennard-Jones particle,[119] (σCH4−C = 3.6135 Å, εCH4−C = 0.607867

kJ·mol−1) and each methane molecule as a single Lennard-Jones bead (σCH4−CH4
=

3.72 Å, εCH4−CH4
= 1.317834 kJ·mol−1).[120]

As we mentioned in the previous section, every system consisted of 4× 4 cells;
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in order to exclude any finite-size effect on histogram evaluations, we also simu-

lated a limited number of 6 × 6- and 5 × 5-sized versions of the same systems,

without observing any meaningful difference in terms of occupancy probability

distributions.

For both FG systems, classical GCMC simulations were performed in a variety

of different conditions in order to separate the cell-to-cell interactions, according

to the prescriptions we illustrated in the description of the model. We consid-

ered each system at three different temperatures (100, 200, and 300 K), and for

each temperature we conducted a fine scan of chemical potential (or, equivalently,

fugacity) values. More specifically, we investigated about 30 different chemical

potential values for each system at each temperature. Now, according to the

coarse-graining procedure we described in the previous section, the evaluation of

CG interaction parameters requires three separated FG simulations for each chem-

ical potential and temperature; from such three simulation we draw three different

occupancy histograms, therefore the total number of histograms for each system

at each temperature is about 90 (i.e. 60 bivariate plus 30 univariate histograms).

After calculating at each temperature the local free energy termsHn andKχ
n1,n2

,

both with and without resorting to the pre-processing of histograms, we simu-

lated the so obtained CG lattice models in the grand canonical ensemble with the

Metropolis-Hastings scheme. Since the number of degrees of freedom of occupancy-

based CG lattice models is dramatically reduced with respect to their atomistic

counterparts, the computational effort for CG simulations is also significantly less

than for FG simulations. Following Merrick et al.[121] we carried out a compar-

ision between the efficiency of FG and CG simulations in terms of the time they

required to reach equilibrium under the same conditions (i.e. same system, same

size, same chemical potential, and same temperature), and found that the speedup

for CG simulations is around 105—which is a mean value, i.e., on average, a CG
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Figure 5.3: Isotherms and reduced variance for methane on single layer graphene at temper-

atures 100, 200 and 300 K. Isotherms are shown in subfigures labeled with letter a, reduced

variances are shown in subfigures labeled with letter b. Blue empty circles represent the refer-

ence GCMC simulations with all classes active, solid black lines represent the CG simulations

with data-preprocessing (D-IPA), dashed red lines represent the CG simulations without data-

preprocessing.

simulation is faster than FG of a factor 105.

In this section we compare the static properties of the FG and the corresponding

CG systems in terms of adsorption isotherms, occupancy fluctuations, and occu-
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pancy covariances. Adsorption isotherms are reported as the loading (i.e. average

occupancy, 〈n〉) vs. fugacity f , whereas FG and CG fluctuations are compared in

terms of the reduced variance, σ2
n,Red = σ2

n/〈n〉, where σ2
n is the occupancy variance

for a single cell. [122, 123] Comparisons of spatial correlations (i.e., covariance) for

each neighboring class are carried out in terms of Pearson correlation coefficients,

which in the present case read ρI = σI12/σ
2
n and ρII = σII12/σ

2
n for class I and

class II respectively, where σχ12 is the occupancy covariance of the pair occupancy

distribution pχµ(·, ·) for class χ, and σ2
n is the marginal variance.

All results are reported in terms of fugacity, f , in units of bars, rather than

chemical potential, µ, where f = k∗BT exp(µ/RT ), with µ in units of kJ·mol−1,

R = 8.3144626 · 10−3 kJ·mol−1·K−1, and k∗B = 138.06488 bar·Å3·K−1.

5.3.1 Methane on single layer graphene.

Results of numerical simulations are shown in Fig. 5.3, where “Ref” denotes results

from GCMC simulations of the FG systems, while “IPA” means coarse-graining

without histogram pre-processing, and “D-IPA” indicates coarse-graining with his-

togram pre-processing. From one GCMC simulation of the FG system to the next,

the chemical potential (and, consequently, the fugacity) is changed by a small

amount until the completion of a single layer of adsorbed methane molecules.

Increasing the temperature in the FG system yields a smoothing and straight-

ening effect both on the isotherms and the occupancy fluctuations, this effect

being due to the decrease of correlations between the host material and the guest

molecules. Both the IPA and the D-IPA models perform with a comparable accu-

racy with respect to the FG results, which is always quantitative for the isotherms

and semi-quantitative for the fluctuations. More specifically, the original isotherms

are quantitatively matched at all three temperatures by both CG models, with the
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Figure 5.4: Class-wise Pearson correlation coefficients for methane on single layer graphene

at 100 K. Results for class I are shown in the subfigure labeled with letter a, results for class

II are shown in the subfigure labeled with letter b. Blue empty circles represent the refer-

ence GCMC simulations with all classes active, solid black lines represent the CG simulations

with data-preprocessing (D-IPA), dashed red lines represent the CG simulations without data-

preprocessing.

IPA case providing a nearly perfect match. The situation is the same for the re-
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Figure 5.5: Optimized parameters (from top to bottom: a, s1, and s12) of the quantized

gaussian distribution model [see Eqs. (5.8) and (5.9)] for methane on single-layer graphene at

T = 100 K. Blue and red color refer to bivariate occupancy histograms of neighborhood class I

and II, respectively.

duced variances and the covariances, except for the lowest temperature case (100
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K) at high loadings, where an increase of correlations between neighboring cells is

observed in the steep region of the isotherm (f = 2.72 · 10−4 bar), where we have

the filling of one methane layer upon the graphene sheet (Fig. 5.4). Such increase

in correlations causes GCMC histograms to assume a very “irregular” shape. Noise

becomes then a relevant issue during the histogram evaluation, and the recursive

nature of relations 5.4 and 5.7 for the calculation of the free-energy contributions

leads to propagation of error in the estimation of occupancy histograms. Under

such conditions, pre-processing the histograms proved then to be crucial, leading

the CG model back to quantitative matching. In Fig. 5.5 we report the optimal

values for parameters a, s1, and s12 to be used in the quantized gaussian distri-

bution model [Eqs. (5.8) and (5.9)] in order to fit the FG bivariate histograms

throughout the whole set of fugacities we considered.

5.3.2 Methane between two graphene layers.

In this case, GCMC simulations of the FG system were conducted within a fugacity

range which allows for the filling of a double layer of methane molecules in the

interlayer space (that amounts to 12 Å). The FG and CG results (adsorption

isotherms and reduced variances) for this system are shown in Fig. 5.6. The

accuracy scenario of the CG representations is comparable to the one obtained for

the previous system, with quantitative agreement attained in all but the lowest

temperature/high loading case.

A major difference between this and the single-layer case lies in the steepness

in the step in the adsorption isotherm, which for the double graphene layer case

at T = 100 K is observed at fugacity f = 4.15 · 10−5 bar, and is definitely abrupt:

a fugacity increase of about 10−6 bar causes the loading to sharply rise from 1.4 to

31 guest molecules per cell—correspondingly, the reduced variance shows a sharp
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Figure 5.6: Isotherms and reduced variance for methane between two graphene layers at tem-

peratures 100, 200 and 300 K. Isotherms are shown in subfigures labeled with letter a, reduced

variances are shown in subfigures labeled with letter b. Blue empty circles represent the refer-

ence GCMC simulations with all classes active, solid black lines represent the CG simulations

with data-preprocessing (D-IPA), dashed red lines represent the CG simulations without data-

preprocessing.

peak (see Fig. 5.6). A detailed molecular-level analysis of this transition falls

beyond the scope of this work and will be the subject of further investigations.

However, in Fig. 5.7 we compare two different molecular configurations of the FG
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Figure 5.7: Molecular configurations of the same portion of the FG double layer system at

T = 100 K. subfigures (a) and (b) represent two projections right before and after the adsorption

step. In (b), we indicate with d1 the methane interlayer distance, and with d2 the distance

between each methane layer and the nearest graphene sheet.

double layered system at T = 100 K, right before (f = 3.70 · 10−5 bar) and after

(f = 4.23 · 10−5 bar) the adsorption step. Before the adsorption step, the system

appears very diluted in methane and the guest molecules tend to fill uniformly two

distinct layers in the graphene-graphene space. We did not observe any pattern

in the position of methane molecules with respect to the carbon atoms in the

graphene sheets; this is in agreement with computational studies on Coronene–

CH4 interaction energies, [124] which show nearly the same adsorption energy for

all three kinds of methane-carbon adsorption sites. The position of such methane

layers with respect to the graphene sheets becomes very evident at higher fugacity

values, i.e. at higher methane concentrations. Under such conditions (i.e. after the

adsorption step) we report a value of d1 ∼ 4.08 Å for the distance between these

two methane layers, and of d2 ∼ 3.96 Å for the distance between each methane

layer and the nearest graphene sheet. The observed distances d1 and d2 are very

close to the optimal Lennard-Jones distances, dopt
1 = 21/6σCH4–CH4 = 4.18 Å, and
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dopt
2 = 21/6σCH4–C = 4.05 Å. Such optimal distance values support the observed

optimal methane uptake reported when the graphene-graphene spacing is about

12 Å, since the summation of the optimal distances is 12.28 Å. [61]

In this case, the pre-processing (D-IPA curves in Fig. 5.9) allowed for the

production of a set of CG interaction parameters that significantly improved the

agreement in terms of spatial correlations at high loadings. By looking at the

D-IPA curves in Fig. 5.9 for f > 4.15 · 10−5 bar, we can see that such improve-

ment comes along with an improvement in the single-cell reduced variance as well,

but also with a slight accuracy loss in the adsorption isotherm—which could be

made even slighter, but at the considerable cost of increasing the complexity of the

coarse-graining model, e.g. by including a further CG equation [besides Eqs. (5.3)

and (5.5)] describing three-term interactions. Therefore, we believe that the accu-

racy in the adsorption isotherm can be still considered very satisfactory, despite

the class-independence assumption we made in order to keep the CG model defi-

nition as simple as possible.
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Figure 5.8: Optimized parameters (from top to bottom: a, s1, and s12) of the quantized

gaussian distribution model [see Eqs. (5.8) and (5.9)] for methane on double-layer graphene at

T = 100 K. Blue and red color refer to bivariate occupancy histograms of neighborhood class I

and II, respectively.
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The histogram pre-processing [optimal values for parameters a, s1, and s12 to

be used in the quantized gaussian distribution model, Eqs. (5.8) and (5.9), are

shown in Fig. 5.5] improved the correlations in situations in which the original

pair-occupancy histograms obtained through GCMC were certainly affected by

non-negligible accuracy issues. In fact, at low temperature and high density (but

not close to the adsorption step) the occupancy fluctuations are low; correspond-

ingly, the occupancy distributions turn out to be sharply peaked. Now, the cell

occupancy varies within a relatively small range, which goes up to about 20 and 40

molecules per cell, respectively for the case of methane in a single graphene layer

and within a double graphene layer. As a consequence, occupancy histograms be-

ing sharply peaked imply good sampling of only a limited number of occupancy

pairs, namely, those that are very close to the average value. Any other occupancy

pair is sampled poorly. Eq. (5.5), i.e. the one that contains information about

class-wise occupancy correlations, is the CG equation that is most seriously af-

fected by such accuracy, and the diverging correlations shown in Figs. 5.4 and 5.9

are the end result. In the vicinity of the adsorption step the situation is even more

complicated: the variances are very high, but this does not necessarily imply that

the corresponding distributions are short and wide—more generally, the occupancy

distributions under such conditions are no longer unimodal, and can not be con-

sidered stable (i.e., very small changes in fugacity would cause large changes in the

shape of distributions). When facing such problems, the first solution that comes

to mind would be to carry out much longer simulations, in order to have signifi-

cantly more data to take into account while estimating the occupancy histograms.

However, we wanted to find out how much the CG model could be improved with

just the input data we had, without adding more data to the source set of his-

tograms; this is the reason why we preferred to manipulate that set by means of a

“histogram imitation technique”, rather than to perform longer GCMC runs. Of
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course replacing the original distributions with ”fake, but better-behaving ones”

means to coarse-grain a system that differs from the original one in some aspects.

Nevertheless, if the CG model we want to build from some FG reference system

aims to correctly imitate its occupancy correlations in space, such an operation

appears legitimate.

T= 100 K
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Figure 5.9: Class-wise Pearson correlation coefficients for methane and double layer graphene

at 100 K. Results for class I are shown in the subfigure labeled with letter a, results for class

II are shown in the subfigure labeled with letter b. Blue empty circles represent the refer-

ence GCMC simulations with all classes active, solid black lines represent the CG simulations

with data-preprocessing (D-IPA), dashed red lines represent the CG simulations without data-

preprocessing.

5.4 Conclusions

We performed the spatial coarse-graining of the static occupancy-related proper-

ties of two adsorption systems, namely one and two graphene sheets with methane

as the adsorbate, at various temperatures. In order to accomplish this task, we

extended the interacting-pair approximation (IPA) method[38], a local occupancy-

based spatial partitioning approach to the coarse-graining of host-guest systems,

to the case in which every subvolume of the partition is surrounded by neighboring
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subvolumes of two kinds. The resulting two different kinds of spatial correlations

were reproduced by local, class-wise mutual interaction parameters, defined on the

basis of pair-occupancy histograms evaluated from properly tailored fine-grained

GCMC simulations within a wide range of fugacity—namely, from zero-loading

to the complete filling of the graphene sheet(s) with adsorbate molecules. The

coarse-grained (CG) potentials we obtain are functions of the local occupancies

and are temperature-dependent, but do not depend on any other global variable

(such as, e.g., overall density, or fugacity, or chemical potential); this enables us

to use the same set of CG potentials at any fugacity value within the range of in-

terest. We evaluated the quality of coarse-graining in terms of agreement between

the properties of the local occupancy distributions of the coarse-grained (CG) sys-

tems, and the properties of the same distributions for the corresponding reference,

fine-grained (FG) systems. The results showed a very satisfactory agreement in al-

most all the scenarios we investigated. Only at low temperature (100 K) and high

density both systems required a pre-processing of the pair-occupancy histograms

over which the CG potentials are defined, in order to allow for the production

of realistic CG correlations despite the relatively poor accuracy with which they

were sampled, without resorting to longer sampling runs. This pre-processing pre-

scribed the replacement of the original GCMC histograms with quantized Gaussian

distributions with similar means, variances and covariance; the improvement we

obtained from it was especially relevant for the double-layer case at 100 K, where

the adsorption isotherm shows an abrupt and steep loading change at intermediate

loadings—a scenario where accuracy issues in the source GCMC histograms may

prevent the CG parameters from producing correct occupancy correlations at high

loading.
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Chapter 6

Scaling-up Simulations of

Diffusion in Microporous

Materials

Reprinted (adapted) with permission from (Giovanni Pireddu, Federico Giovanni

Pazzona, Pierfranco Demontis, and Magdalena A. Za luska-Kotur. Scaling-up sim-

ulations of diffusion in microporous materials. Journal of Chemical Theory and

Computation, (just accepted), 2019) Copyright (2019) American Chemical Society

6.1 Introduction

Computer simulations of physical systems have widely demonstrated their use-

fulness in understanding complex phenomena, by both offering a direct compari-

son with purely theoretical approaches, and being capable of providing insightful

predictions.[2, 5, 49]

Over the last three decades, multiscale modelling approaches have progressively

gained interest in several disciplines and for different applications.[125, 126] In
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particular, bottom-up protocols allow for representing the systems of interest in

increasingly large time- and length-scales, by progressively decreasing the level of

detail associated with each representation through coarse-graining methods.[13,

14, 19, 21, 25, 72, 75]

Coarse-graining methods can be categorized into “topological” and “spatial”.

In the topological case, atoms are grouped into coarser beads, equipped with an

effective force field, and let evolve in time through molecular dynamics (MD)-

based algorithms; therefore, in this case, observables like positions, orientations

and momenta are defined both in the finer and the coarser representations.

In the spatial case, the simulation space is partitioned into geometrically equiv-

alent domains, thus defining a lattice representation of the system; fine-grained

(FG) observables are mapped into the internal state of every lattice node; while

the FG force fields is based on atomic positions and molecular topologies, in the

coarse-grained (CG) picture effective interactions are based on internal states.

Whereas FG observables evolve through MD-based algorithms, the lattice internal

states of the CG representation evolve in time through specific (i.e., not general)

schemes such as kinetic Monte Carlo and Cellular Automata algorithms.[34, 127–

130]

Although well established protocols are currently available in the literature for

topological coarse-graining,[15, 24, 131] the same cannot be said for the spatial

approach, especially for what concerns the CG dynamics.

In this work, we focus on the mesoscopic representation of host-guest sys-

tems constituted by microporous materials and gas molecules. Nowadays, mi-

croporous materials are broadly employed in different scenarios and for differ-

ent scopes, such as gas storage, separation of mixtures, heterogeneous catalysis,

etc.[53, 132] Many of the processes involved in such applications strongly depend

on the adsorption and diffusion behaviour of the guest molecules in the porous
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environment.[133] Thus, a general and sufficiently accurate mesoscale modelling

framework for such phenomena could help to explain diffusive and sorptive proper-

ties and allow testing new systems in-silico, such as hypothetical sorbent materials

for various applications.[134]

Lattice models of host-guest systems have demonstrated the capability of rep-

resenting adsorption and diffusion phenomena with a considerably smaller compu-

tational effort compared to atomistic methods and yet allowing to reproduce the

properties of interest with satisfactory accuracy.[78, 110, 135–137]

In our case, we map the reference systems into pore-scale lattice models, in

which each node represents a pore or a cage of the host material and is equipped

with an occupancy state n indicating the number of guest molecules present in

such pore of the reference material.

Thermodynamics and mass-transfer dynamics in the CG representations are

both modelled to match with the results of FG atomistic simulations — grand-

canonical Monte Carlo (GCMC) to model the static properties, and MD simula-

tions to model the transition-rates associated with the inter-cage jumps performed

by the guest molecules. More specifically, our CG representation is defined on the

basis of statistical data obtained from GCMC and MD simulations. In particular,

in order to test the ability of our coarse-graining strategy to produce a reliable

mesoscale counterpart from a minimal FG dataset, GCMC and MD simulations

were intentionally run over small portions of the FG reference systems, and over

a relatively short time window.

To demonstrate the capabilities of our method, we chose to represent two inter-

esting systems constituted by two different host materials and involving methane

molecules as the guest species. The first material is the all-silica ITQ-29 zeolite,

which is a well-studied material for the modelling of cage-to-cage dynamics and

diffusion of small molecules in microporous materials.[82, 120] The second material
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is the LTA-zeolite-templated carbon (which we will refer to as ZTC), recently in-

troduced as hypothetically obtainable by carbon-templating the afore-mentioned

zeolite.[57]

Zeolite-templated carbons are a relatively new class of nanoporous carbon ma-

terials, which exhibit peculiar properties when employed as methane sorbents.[55,

56] Despite being related to its zeolite precursor and having the same topology

in terms of pore connectivity, the ZTC we consider is structurally different as it

presents larger free-volume in each pore and significantly larger openings between

neighboring cages. For this reason, it is particularly interesting to compare the

static and dynamic properties of the two systems.

The remainder of this work is organized as follows: in the section Methods, we

introduce our CG method and explain our experimental setup for the numerical

simulations; in the section Results and discussion, we show the numerical results

in terms of comparisons between the two systems in terms of both the static

and dynamical properties; finally, in the last section we draw our conclusions, by

highlighting the benefits and the limits of our method, and by proposing possible

applications.

6.2 Methods

Our method aims to provide a lower resolution description of host/guest systems

directly derived from atomistic data, and consists of three main steps.

First of all, we carry out a number of atomistic simulations (GCMC and MD) of

the systems of interest, from which we draw the statistics required by the method

itself, and we map the FG simulation space into the CG occupancy-based lattice

model. Since we treat the host material as a rigid framework, such mapping is

static—lattice cells do not change in shape, size, or position (Section 6.2.1).
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Secondly, we use static properties drawn from atomistic GCMC to define

occupancy-dependent effective interactions inside every cell and among neighbor-

ing cells of the lattice (Section 6.2.2). The methodology is described in detail in

our previous works.[38, 39]

Finally, we use mass transfer statistics obtained from MD to model the dy-

namical evolution of the CG lattice model as a Markov process based on a local

operator (Section 6.2.3), which we further refine in order to take into account

dynamical correlations and non-Markovian effects that are observed in MD simu-

lations (Section 6.2.4).

Before proceeding, it is useful to note that the terminology used to denote some

relevant physical quantities investigated in this work (namely, the diffusivities and

the reduced variance) is in agreement with a limited part of the scientific literature

of the field[138]. Other authors name the same physical quantities differently or use

similar names to denote different properties. For example, what here we indicate

as the center of mass diffusivity is elsewhere named as corrected diffusivity or

collective diffusivity by other authors[120, 139]. Furthermore, what we mean by

collective diffusivity is denoted as transport diffusivity in other works[139].

6.2.1 Coarse-grained structure

Our coarse-graining procedure begins with the structural definition of the lattice

models, which represent the reference host-guest systems. Fig. 6.1 depicts a repre-

sentation of the structural mapping of the molecular systems, from the atomistic

picture to the occupancy-based lattice model.

We ideally tessellate the host materials with identical, non-overlapping cubic

subvolumes called cells. In our picture of the systems, each cell embeds a single

pore of the reference host material. Since the ZTC and the ITQ-29 both present a

simple cubic pore connectivity, the reference structures are conveniently mapped
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Figure 6.1: Mapping of the methane/ITQ-29 system into its corresponding occupancy-based

lattice model. Methane molecules are represented as grey spheres, while framework atoms are

represented by red (O species) and yellow (Si species) spheres. The left subfigure shows a 2-

d projection of an exemplifying fine-grained system made of 3 × 3 × 3 zeolite cavities, which

can be straighforwardly partitioned into a 3 × 3 × 3 lattice of cells (right subfigure; periodic

boundary conditions are implied). Each cell of the lattice refers to a certain portion (i.e., a

cavity) of the fine-grained system and bears an internal state (occupancy) equal to the number

of guest molecules inside of that cavity: in the lattice representation (right subfigure), the integer

numbers represent cell occupancies. In blue/green color we show, as an example, the mapping

of one of such cavities into its lattice counterpart; the cavity chosen for this example is the

one in the middle of the 2-d projection (the mapping of the other cavities from fine-grained to

lattice representation follows the same reasoning). The blue color represents the space covered

by the cavity, whereas the green color indicates the mapping of the guest position inside of it

into a single-valued internal state, i.e. the cell occupancy. The links in the lattice model (black

straight lines in right subfigure) represent the connections between neighboring cavities of the

host material.

to cubic networks. Each i-th cell of the CG lattice is then associated with its

occupancy ni, which corresponds to the total number of molecules whose center

of mass falls within the i-th pore. In this fashion, the configuration of our lattice

models is completely defined as the occupancy configuration n = {n1, . . . , nM},
where M is the total number of cells.
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6.2.2 Thermodynamics

Following the Interacting-Pair-Approximation (IPA) approach,[38, 39] we associate

the occupancy configurations of the lattice models with a CG potential function

Ω, which in the grand-canonical ensemble reads

Ωµ(n) =
∑

i

(Hni − µni) +
∑

〈ij〉
Kni,nj , (6.1)

where µ is the chemical potential, Hni is the single-cell free-energy contribution

of a cell with occupancy ni, Kni,nj represents the free-energy contribution of the

mutual interactions between neighboring cells with occupancies ni and nj, and 〈ij〉
indicates a summation over nearest-neighboring cells.

More specifically, the self-interaction term Hni represents the contribution to

the free energy of the system provided by (i) the interactions among the ni guest

molecules located in the i-th cavity, and by (ii) the interaction between the same

ni molecules and the whole framework (which, we remark, is kept rigid in our sim-

ulations). The pair-interaction term Kni,nj represents the contribution to the free

energy of the system coming from the interactions between the ni guest molecules

located inside cavity i and the nj molecules located inside cavity j. For our pur-

poses, we will assume that such parameterization will suffice to adequately repre-

sent the effective interactions at a CG level of representation.

As shown in Eq. (6.1), except from µ, the CG potential function makes only use

of local, occupancy dependent free-energy contributions. The free-energy parame-

ters are related to the respective partition function contributions via the following

relations:

Qn = e−βHni , Zni,nj = e−βKni,nj . (6.2)

Such contributions can be conveniently computed using the following recur-
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rence relations
Qn

Qn′
=

e−βµn poµ(n)

e−βµn′ poµ(n′)
, (6.3)

Zn1,n2

Zn′1,n′2
=

(
eβµn

′
1Qn′1

eβµn
′
2Qn′2

eβµn1Qn1 e
βµn2Qn2

) 1
ν

×
(
pµ(n′1) pµ(n′2)

pµ(n1) pµ(n2)

)1− 1
ν pµ(n1, n2)

pµ(n′1, n
′
2)
, (6.4)

where poµ(n), pµ(n) and pµ(n1, n2) are respectively the univariate occupancy dis-

tribution for a single-cell closed system, the univariate occupancy distribution of

a single cell inside the reference system, and the bivariate occupancy distribution

of two connected cells inside the reference system. The symbol ν indicates the cell

connectivity, which is 6 for a 3D cubic network.

We obtained the local occupancy distributions from atomistic grand-canonical

Monte Carlo (GCMC) simulations of the reference system. Finally, the full set

of free-energy contributions can be obtained by solving the recurrence relations

in Eqs. (6.3) and (6.4), and using H0 = 0 kJ/mol and K0,n = 0 kJ/mol (for

every possible value of occupancy n) as starting points, since empty cells do not

contribute to the total free-energy of the system.

6.2.3 Elementary events for diffusion

We assume that gas diffusion in microporous materials can be treated as the com-

position of several elementary and strictly local events. An appropriate observation

time scale τ could allows to distinguish among single migration events occurring

during the dynamical evolution of the host-guest systems. The aim of our work is

to provide a stochastic modelling protocol to understand and represent such events,

which we identify as single molecule jumps between two connected pores. If the

separability between elementary events holds, we assume that local dynamics can
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be represented by a local operator W (m′ | m), which is applied to a single pair

of connected cells and represents the transition probability of the transformation

(m′ 7→ m) within the time interval τ , where m = (n1, n2) and m′ = (n′1, n
′
2) are

the pair occupancy configurations before and after the transition. For example,

W ((4, 6) | (5, 5)) represents the probability of a single molecule jump (from a cell

of occupancy 5 to a neighboring cell of occupancy 5) resulting in the transforma-

tion ((5, 5) 7→ (4, 6)). By following this approach, during each elementary event

the local total mass M12 = n1 + n2 is conserved.

We empirically determine the transition rate values W from atomistic Molec-

ular Dynamics (MD) simulations of the reference systems, during which we saved

the positional configuration of the diffusing molecules in the system (all coordi-

nates of methane molecules) every τ seconds, thus resulting in one trajectory of

positional configurations for every MD simulation.

Since the host framework is rigid, the cavity centers are known and fixed

throughout the whole FG trajectories. Thus, for every instance of each MD tra-

jectory, by following a nearest-cavity-center criterion we assign every methane

molecule to the cavity it currently belongs to, so that the occupancy of each cell

is simply defined as the total amount of guest molecules belonging to the corre-

sponding cavity.

All trajectories of positional configurations obtained for the reference system

are used to compute the time series of occupancy configurations; finally, the oc-

cupancies of each pair of connected pores between two consecutive occupancy

configurations, say (ni(t), nj(t)) and (ni(t+ τ), nj(t+ τ)), are compared, and if the

transformation from one occupancy pair to the other conserves mass [that is, if

ni(t) +nj(t) = ni(t+ τ) +nj(t+ τ)], they are cumulated into the respective entries

of W .

With this procedure, we obtain empirical values for each W (m′ |m), where we
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ignore more complicated, multi-cell mass transfer mechanisms which may occur

within the chosen time step, but still are much rarer than single jump events.

Since the migration of molecules from a pore to another is a thermally activated

process, a common way of modelling jump rates is by introducing a temperature-

dependent function of the free-energy barrier multiplied by a kinetic prefactor.

The first part is a static property, which accounts for the local free-energy change

associated to an inter-cell jump event, whereas the kinetic prefactor kM12 models

the jump attempts frequency, and is a function of local occupancies. We model the

prefactor as a function of the local occupancy summation M12, which is conserved

during each elementary event.

In general, k implicitly contains the Boltzmann factor related to the free-energy

barrier related to each transition. Thus, such function should also explicitly contain

the cell occupancies and the temperature. However, modelling k only on the basis

of the local summation of occupancies is particularly convenient for two reasons:

(i) a minimal amount of data is sufficient to fit k on the basis of the transitions

observed during MD trajectories; (ii) it facilitates fulfilling the detailed balance

condition (DB), since M12 is preserved during every transition. Furthermore, since

the systems under study were considered at constant temperature, the temperature

dependence of kM12 is kept implicit.

The functional form we propose for the jump rates is the following:

W (m′ |m) = kM12e
−β

2
[Ωµ(m′)−Ωµ(m)], (6.5)

with β = 1/kBT , where kB is the Boltzmann constant and T is the temperature.

The factor 1/2 in the exponent on the right hand side of Eq. 6.5 stems from the DB

condition imposed to a closed pair of cells transforming from occupancy pair m

to occupancy pair m′, i.e. pµ(m)W (m′|m) = pµ(m′)W (m|m′), where pµ(m) ∝
exp{−βΩµ(m)} and kM12 is symmetric with respect to the jump direction. By

following the definition of CG potential function given in Eq. 6.1, the potential
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function for a pair of connected cells, say cell 1 and cell 2, respectively occupied by

n1 and n2 guest molecules, reads Ωµ(n1, n2) = −µ(n1+n2)+Hn1 +Hn2 +Kn1,n2 . By

taking into account the fact that all the local transitions we consider do conserve

mass, and by omitting the interaction contributions with the environment around

the chosen pair of connected cells, the local change in free-energy due to the

transition m = (n1, n2) 7→m′ = (n′1, n
′
2) is

Ωµ(m′)− Ωµ(m) = Hn′1
+Hn′2

+Kn′1,n
′
2

(6.6)

− (Hn1 +Hn2 +Kn1,n2) .

Although the expression we proposed for the transition rates, W (m′ | m) (see

Eq. 6.5), stems from the DB condition imposed on a closed pair of neighboring

cells, the choice to not include the interactions with the neighbors around each pair

hinders our operator from strictly fulfilling the DB condition on the whole system;

however, this is consistent with our sampling scheme from the MD simulations,

since we sample the transitions on the basis of each pair configuration only. Of

course, if we wanted to ensure that DB is strictly obeyed, the jump rates W should

also include information about occupancies in all the cells in the neighborhood

around each pair; in other words, all such occupancies should appear as additional

arguments in the conditionality of W . However, this would cost us a much heavier

computational effort, that is required in order sufficiently robust statistics—this

is against the spirit of our work, since, as we mentioned in the Introduction, our

aim is to obtain reliable CG representations from relatively short and small-scale

atomistic simulations. We also remark that modelling the full system by sampling

a W based merely on local pair occupancy configurations is equivalent to implicitly

assume a mean-density around each pair, since the cells are embedded in the full

system. This method for the local dynamical evolution is analogue to a pair-

wise stochastic evolution rule in a block cellular automaton, where we identify

each block as a closed pair of connected cells.[130] We empirically found that our
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approximate model still yields a semi-quantitative matching of static properties in

terms of occupancy histograms between the CG and MD simulations.

6.2.4 Dynamical correlations

If correlations between any two consecutive pore-to-pore jumps in the reference

FG systems were negligible, then the reference systems could already be simu-

lated by directly using the W operators for the dynamical evolution of the lattice

models with a Markov chain scheme. However, in real systems dynamical time-

correlations, also called memory effects, may occur and significantly influence the

diffusivity [138]. In principle, a higher-order (or higher-memory) model of the

dynamics could be devised in such a way as to explicitly embed memory effects,

and thus yield a realistic representation of the diffusion behaviour; however, also

in this case, the amount of data that would be necessary for us to base such more

sophisticated kinetic model upon a reliable statistics would be enormous. There-

fore, in this work we preferred to embed the higher-order effects in the transition

rates W under the form of an overall scaling factor f .

Such approach is based on the analysis of the dynamics of guest molecules

only (the host material is kept rigid, therefore it does not undergo a dynamical

evolution). In this analysis, a very important role is played by the center of mass

(c.m.) of the guest species; from now on, reference to the guest species will be

implied every time we use the abbreviation “c.m.”.

We start from

the memory-expansion expression of the c.m. diffusivity Dc.m.[140]

Dc.m. =
1

2dNτ

(
CδR

0 + 2
∞∑

t=1

CδR
t

)
, (6.7)

where d is the dimensionality, τ is the chosen time interval, N is the total number
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of molecules. CδR
t is the c.m. displacement autocorrelation function which reads

CδR
t = 〈δR0 · δRt〉, (6.8)

where δRt =
∑N

i (rt − rt−1) is the summation of all molecular displacements be-

tween time t− 1 and time t.

In Eq. (6.7), CδR
0 is the autocorrelation function CδR

t calculated at t = 0, and

corresponds to the mean-squared displacement of the c.m. after one time interval

τ .

Considering a purely Markovian approximation and neglecting all the correla-

tion effects for t > 0 in Eq. (6.7) yields the dynamical mean-field (DMF) expression

of c.m. diffusivity[141], Do
c.m.:

Do
c.m. =

CδR
0

2dNτ
=

Wa2

2dNτ
, (6.9)

where W is the average jump probability and a is the lattice cell parameter. The

ratio between the infinite-memory diffusivity and the DMF diffusivity, Dc.m./D
o
c.m.,

can be taken as a measure of how memory effects influence the overall diffusion

process. If such a ratio is below 1, then the overall effect is a slowing down of

diffusion induced by negative correlations in displacements; if overall correlations

in displacements are positive, instead, then the ratio Dc.m./D
o
c.m. turns out to

be larger than 1, this resulting in an increase of diffusivity. By computing the

correction factor as f =
(
CδR

0 + 2
∑∞

t=1C
δR
t

)
/CδR

0 and by using Eqs. (6.7) and

(6.9), we obtain

Dc.m. = fDo
c.m. =

fWa2

2dNτ
. (6.10)

Our idea is then to correct the purely Markovian jump rates according to W
corr

=

fW , and then to use such corrected jump rates W
corr

in the numerical CG simula-

tions, rather than W . In general, we expect f to be a function of the global density

〈n〉 and this would cause the evolution operator to depend on a global variable;

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
in host-guest systems

PhD Thesis in Chemical Sciences and Technologies



6. Scaling-up Simulations of Diffusion in Microporous Materials 129

however, since we want f to be local as well, we can circumvent this problem by

replacing the dependence on the global density 〈n〉 with a local density guess, i.e. a

guess of 〈n〉 on the basis of local occupancies. More specifically, our choice is to

use the average local pair occupancies M12 = (n1 +n2)/2 rather than 〈n〉 as input

for the function f . In this way, we easily correct our local operator by embedding

the overall effect of time-correlations and yet we keep locality and our approximate

DB condition, since the average local pair occupancy M12 is a conserved quantity

during each elementary transition. Despite its simplicity, this method allows one

to estimate the overall correlation effect directly from the analysis of the original

MD trajectories, without having to perform further simulations of the reference

system [142].

6.2.5 Numerical simulations

We performed the FG atomistic simulations by modelling all the atoms involved

as Lennard-Jones (LJ) particles. The whole methane molecule was represented by

a single LJ bead, following the widely accepted united-atom approximation [120].

The methane-carbon and methane-zeolite LJ interactions were parameterized ac-

cording to our previous works [38, 39].

In all the simulations, the host materials were represented as rigid frameworks.

The ZTC crystalline structure, in its unrelaxed version, was downloaded from

materialscloud.org[58], while the ITQ-29 structure was taken from RASPA2’s

repository on github.com[143]. A comparison of the pores of the two host mate-

rials is presented in Fig. 6.2.

The systems we considered were simulated at the same temperature, i.e. 300 K.

The reason for this choice is two-fold: we wanted to represent a realistic scenario

for room-temperature applications of such systems, and at the same time this

temperature was observed to yield a sufficient number of molecular inter-cage
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Figure 6.2: Atomistic representations of the cages corresponding to the ITQ-29 (subfigure (a))

and the ZTC (subfigure (b)) materials.

jumps in our simulations.

GCMC atomistic simulations were required for the calculation of the IPA pa-

rameters, and were performed using an in-house built code with the usual dis-

placement, insertion and deletion trial moves [5], whereas all MD simulations were

performed by using the open-source software LAMMPS.[144] We computed the

MD trajectories for several methane loading values (〈n〉 = 1,2,... up to 14 for

the ITQ-29, and 15 for the ZTC) in terms of average number of guest molecules

per pore, and considering a 3× 3× 3 cells of the host materials, where every cell

contains a single pore. Our choice for such maximal loading values is motivated by

that fact that, in the zeolite case, we did not observe any inter-cage jump 〈n〉 > 14,

whereas in the ZTC case, loading values above 〈n〉 = 15 resulted in the emergence

of new inter-cage adsorption sites, which would require a much more complicated

CG mapping. Also, since we wanted to highlight the comparison between the two

materials, we chose a similar range of conditions for the two systems. In both cases,

we obtained the methane trajectories by assuming periodic boundary conditions

(PBCs) within the NVT ensemble; temperature was kept approximatively con-

stant at 300 K through a Nosé-Hoover thermostat; every MD simulation started
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with a 0.5 ns-long equilibration stage; after equilibration, we sampled the dynam-

ics of the methane-zeolite system for 10 ns (while saving molecular configurations

every 1 ps), and the dynamics of the methane-ZTC system for 1 ns (while saving

configurations every 20 fs).

In order to prove the accuracy of our method and to study the collective dif-

fusivity in such two systems, we also performed numerical simulations of the CG

models. Such simulations were conducted by applying the previously parameter-

ized local operators to the lattice models of the reference systems and sequentially

updating the states of connected pairs of cells. The evolution algorithm of our lat-

tice models is designed as follows. Each simulation starts with initialization of the

starting lattice occupancy configuration n, then for each time-sweep the following

scheme is used:

(1) we randomly extract a pair of connected cells out of all the connected pairs

in the CG system (the same pair may be invoked more than once during the

same time-sweep);

(2) we generate all possible outcomes m′ and calculate the rate W corr(m′ |m);

(3) we randomly pick a new state m′ according to the probability distribution

W corr(· |m), and then update the local occupancies;

(4) if the number of pairs invoked during the current time-sweep turns out to be

equal to to the total number of connected pairs, then the current time-sweep

is concluded; otherwise, we return to step (1).

Thus, the dynamical evolution of the CG system is discrete, and the time

interval between one configuration and the configuration produced through one

time-sweep is homogeneous and assumed equal to the time step, τ , according to

which the conditional distribution W was computed from molecular-scale simula-

tions of the reference system.
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We remark that, according to the above scheme, every cell pair might happen

to be invoked zero, or one, or multiple times within the same iteration. Adjacent

or overlapping pairs can also be invoked at point (1): this implicitly allows the

CG model for multi-molecule and multi-cell mass transfer mechanisms, still under

a sequential Markovian approach.

We determined the behaviour of collective diffusivity as a function of the load-

ing empirically, by using the Boltzmann-Matano (BM) method. This method was

first introduced by Matano to study the interdiffusion of different metallic species

in the proximity of the intermetallic interface [145], but it was also successfully

applied to the study of collective diffusion of particles in lattice models [146, 147].

The BM analysis is conducted on the time-dependent profile of adsorbate density

along a chosen direction, obtained from the spread of a step-like initial profile.

The spread is numerically simulated according to the lattice CG dynamics. The

relation between density profile and collective diffusion coefficient is the following:

Dc(〈n〉) =
1

2t

(
∂ρ

∂x

)−1

ρ=〈n〉

∫ 〈n〉

0

(x− xM) dρ, (6.11)

where ρ is the density profile (which has to be intended as the local average occu-

pancy of the profile, thus ranging from 0 to the maximum occupancy nmax), t is

the time considered for the spread of the initial profile, x is the chosen direction

for the analysis and xM is the position of the Matano plane, which is chosen to

fulfil the condition
∫ nmax

0
(x − xM)dρ = 0. The choice of distinguishing ρ and 〈n〉

in Eq.6.11 is intentional, since 〈n〉 represents the loading, which is a global vari-

able; while ρ represents the local value of the density profile. Hence, we imply the

assumption that the profile ρ is sufficiently smooth and well-behaving such that it

can be used to estimate the loading dependence of collective diffusivity.

The simulations used for the Boltzmann-Matano analysis were conducted with

200 × 5 × 5 supercells of the reference materials. We found this supercell con-

figuration to be the optimal compromise in terms of computational effort and
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smoothness of density profiles. We also simulated 3 × 3 × 3 supercells of the ref-

erence materials in order to compare CG and FG relaxation behaviour in terms

of occupancy correlations, and their respective static properties in terms of local

occupancy histograms.

6.3 Results and discussion

6.3.1 Jump rates modelling

We started our CG procedure by calculating the local free-energy contributions in

terms of single-cell Hn and mutual interaction Kn1,n2 terms for the two systems,

within the IPA theoretical framework. The results of our free-energy parametriza-

tion for the two systems are shown in Fig. 6.3.

Our results show that the two systems exhibit a qualitatively similar behaviour

in terms of CG thermodynamics. The Hn parameters monotonically decrease

for the two systems with a progressive trend flattening at high densities. The

mutual interaction parameters show an attractive regime at moderate densities i.e.

n1×n2 ≤ 150 for the ITQ-29, and n1×n2 ≤ 250 for the ZTC system. Conversely,

for higher values of loading, both systems exhibit a positive and relatively fast-

growing mutual interaction contribution. Such effect reflects an overall repulsion

between methane-rich cavities of the host materials. Despite qualitative similarities

between the two systems, for the ZTC case we observe a deeper Hn contribution,

indicating that, for a given value of density, the number of favorable configurations

in the methane-ZTC system is larger than the ITQ-29 case. This is a direct

consequence of the larger free volume present in the ZTC material, and of the

weaker localization of the guest molecules. In fact, the presence of preferential

methane adsorption sites in the ITQ-29 is well known [148], while our results

yielded a more uniform distribution of methane positions within the ZTC. Also, we
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Figure 6.3: Free energy parameters in units of kJ/mol as obtained from the IPA CG of the

two systems. The parameters are obtained from the analysis of the occupancy histograms drawn

from the FG simulations of the reference systems which consisted of 3 × 3 × 3 supercells of the

host materials. Subfigure (a) is referred to the single cell contributions Hn, while subfigure (b)

shows the behaviour of mutual interaction parameters Kn1,n2 as a function of the product of two

local occupancies. The points represent the original data, the dashed lines represent the fitted

functions used for the CG simulations.

found weaker mutual interactions in the ZTC system as compared to the ITQ-29.

We believe that this is a consequence of the fact that, in ZTC, spatial correlations

between methane molecules localized in neighboring cages are relatively low, due

to the weaker confinement effect of the host material. We assessed the quality of

the free-energy parameters by comparing the reference FG occupancy histograms

with the ones obtained from CG simulations. We found a satisfactory agreement

for both systems; such results are shown in the Supporting Information document.

In Fig 6.4 we show the fitting of the kinetic prefactor kM12 (we remind that M12

is the sum of the occupancies of the two cells of the neighboring pair considered

during every inter-cell jump event) for the two systems we considered.

The behaviour of this quantity changes significantly from the zeolite to the

ZTC case. In the first case, we clearly distinguish two regimes: for M12 < 20, kM12
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Figure 6.4: Fitting of kM12 for the ITQ-29 (upper subfigure) and ZTC (lower subfigure) systems.

The y-axis represents the kinetic prefactor kM12
, while the x-axis represents the summation of

the local occupancies M12 = n1 + n2. Each point represents a transition observed during the

MD simulations, sized according to the probability of the starting configuration and coloured

according to the loading of the simulation where such transition occurred. The black solid lines

represent the models used in the CG simulations.

grows relatively fast, following an exponential trend; above M12 = 20, the prefactor

mildly decreases. Conversely, we found a simpler and more uniform behaviour in

the methane-ZTC system. In this case, kM12 seems to increase linearly respect to

the local occupancy. In order to perform our CG simulations, both data sets were

fitted to obtain the kM12 function for the two systems; the fitting models were

designed by prioritizing the most frequent events, for which we expect a better

accuracy in the determination of jump probabilities. Hence, we gave priority to

the transitions associated with a larger probability for the initial and the final

state. A more detailed description of the models and parameters used can be

found in the Supporting Information document.
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Figure 6.5: Normalized center-of-mass displacement autocorrelation as a function of time, from

the MD reference simulations. The upper subfigure is referred to the ITQ-29 system, while the

lower subfigure is referred to the ZTC system. The colour represents the loading associated to

each MD simulation.

6.3.2 Dynamical correlations

We used the MD trajectories in order to calculate the displacement autocorrelation

function CδR
t = 〈δR0 · δRt〉 we previously introduced in the Methods section. For

this calculation we only considered the displacements involving inter-cage jumps, in

order to filter-out all the intra-cage dynamical effects. The results of this analysis

are shown in Fig. 6.5.

For each system, the total number of steps was chosen in such a way as to guar-

antee a sufficient convergence of the autocorrelation function (Eq. 6.8) to zero. For

the zeolite system, we found that the displacement autocorrelation mostly vanishes

after 4 simulation steps, which corresponds to 4 ps, thus indicating that for val-
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ues of time interval τ larger than 4 ps, memory effects would not be observed

at all. The results also show that memory effects show up mostly as negative

correlations between consecutive displacements; this indicates the importance of

the backscattering effect, which is a well-known phenomenon occurring during

diffusion through micropores, and takes place every time a molecule fails to ther-

malize after an inter-cage jump. [96, 120]; the depth and persistence of such effects

change with the global density of guest molecules. In fact, we observe that larger

backscattering occurs for relatively high gas densities values. This suggests that

memory effects depend on the correlations between sorbate molecules. A similar

effect is also observed for the ZTC system, for which we obtained a negative corre-

lation effect that vanishes above 0.4 ps; in this case, memory effects tend to decay

faster as compared to the ITQ-29 system, indicating a more efficient thermaliza-

tion. However, considering that for this system we chose a time step equal to 0.02

ps (much shorter than the methane-zeolite case), memory effects vanish after 20

consecutive steps; therefore, under the viewpoint of iterations in the CG model,

the backscattering effect is more persistent within the ZTC host.

We used the c.m. displacement autocorrelation functions to calculate the cor-

relation factor for every loading; results are shown in Fig. 6.6 for both systems.

In general, we found dynamical correlations to slow down the diffusion process

in both systems we considered. However, we also found significant differences be-

tween the two systems in terms of the behaviour of correlation factors as functions

of the loading: for the zeolite system, we observe a sigmoid-like decay for f , while

for the carbon material we obtained a simple linear decay. Such differences are

due to the presence of different microscopic mechanisms contributing to the decay

memory effects and to thermalization; resolving such mechanism would require de-

tailed molecular-level investigations of dynamical correlations, which goes beyond

the scope of this work (where we are focusing more on the coarse-graining than on
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Figure 6.6: Correlation factor f〈n〉 as a function of the loading. The upper subfigure is referred

to the ITQ-29 system, while the lower subfigure is referred to the ZTC system. The results from

the MD simulations are represented by red circles, while our fit is represented by a solid black

line.

the molecular-level analysis of the reference FG systems) and will be the object

of further contributions. For our purposes, the correlation factor is as a measure

of the non-Markovianity of the diffusion process; in fact, f is equal to 1 only if

the diffusion is Markovian, which means that memory effects are lost between each

time step. We observed such condition in the ITQ-29 system at moderate densities

(〈n〉 ≤ 7), and in the ZTC system at 〈n〉 = 1. Our results suggest that for the

systems we considered, a purely jump rates-based modelling of diffusion (i.e., if we

kept f = 1 under all circumstances) would be accurate only for very low sorbate

densities; for higher densities, ignoring the dynamical correlations would result in

overestimating the jump rates and, consequently, the diffusivity as well.

6.3.3 Diffusivity

We calculated the collective diffusivity as a function of loading, through the

Boltzmann-Matano analysis of CG simulations. For both systems, we simulated
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Figure 6.7: Density profiles obtained from the Boltzmann-Matano simulations of the two

systems. The upper subfigure is referred to the ITQ-29 system, while the lower subfigure is

referred to the ZTC system. The x axis is expressed as number of simulated cavities along x-

direction; a is the lattice parameter which is equal to 11.9 Åfor the two materials. The results are

obtained with 200×5×5 CG supercells of the host materials. For simplicity, the plots show only

a half of the actual extension of the systems along the x-axis. The ITQ-29 profile was obtained

by simulating the dynamics for 7 ns, while in the ZTC case we simulated the system for 0.6 ns.

In both cases, the density profiles were averaged over 100 replicas of the sytems.

the relaxation of the density profiles, according to the procedure described in the

Methods section. In Fig. 6.7, we show a comparison of the density profiles for the

two systems.

For the ITQ-29 system, we observed a first slow decay before a fast step-wise

decay of the profile occurring at 〈n〉 < 8. This is the consequence of dramatic

differences between diffusivities at low and high densities. The sudden decay of

the profile is particularly tricky for the numerical BM analysis, because of the

lack of points for the lowest densities, an issue that leads to instabilities during

the numerical calculation of the diffusion coefficient. For this reason, we split the

profile relaxation experiment into three separate simulations,each starting with its

own initial configurations. This procedure is explained in detail in the Supporting
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Figure 6.8: Center-of-mass diffusivity Dcm (blue points) and collective diffusivity Dc (red

points) as a function of the loading for both systems. The upper subfigure shows the results for

the ITQ-29 system and the lower subfigure is related to the ZTC system. The smooth lines serve

only to help the visualization of the results.

Information document. Conversely, the BM profile for the ZTC system is more

smooth and qualitatively closer to the shape of the error function, which is related

to a concentration-independent diffusion coefficient.[146]

Our intuitive arguments are confirmed by the trends of collective diffusion

coefficients we obtained from numerical calculation. In order to calculate the

diffusivity values for all loadings, we numerically solved Eq.(6.11) by using the

density profiles. The behaviours of the c.m. diffusivity Dcm and the collective

diffusivity Dc with respect to the loading are shown , for both systems in Fig. 6.8.

The c.m. diffusivity Dcm was calculated from the c.m. mean-squared displace-

ment, which we obtained from the MD trajectories. Collective diffusivities were

computed, instead, straight from the BM density profiles obtained from CG simu-

lations. For the ITQ-29 system, we observed a large increase in collective diffusivity

for 〈n〉 > 7, with a maximum at 〈n〉 = 11 for which we report Dc = 3.8 × 10−8

m2/s; this corresponds to an increase by a factor of about 103 with respect to the
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lowest Dc we measured (the lowest Dc was observed at the lowest density investi-

gated, 〈n〉 = 1). Concerning the behaviour of Dcm, we found similar results to the

ones obtained by Dubbeldam et al., with minor differences due to the slightly dif-

ferent parameterization of the thermostat used in the NVT simulations.[120, 149]

In our case, we observed a maximum of Dcm = 2.2 × 10−9 m2/s for 〈n〉 = 10,

which is about 102 times higher respect to the lowest value reported at 〈n〉 = 1.

Results for the ZTC system show milder variations of diffusivities with respect to

the loading (we report an increase of collective diffusivity up to 1.2 × 10−7 m2/s

at 〈n〉 = 13), but larger collective diffusivities for the whole loading range. This

difference with respect to the methane-zeolite case is mainly due to the larger free

volume of the material and, in particular, to the larger windows connecting adja-

cent cages. Conversely, we obtained a roughly linear decay of the c.m. diffusivity

with respect to the loading. In fact, at 〈n〉 = 16 it reaches about half of the initial

value; we found this behaviour to be surprisingly similar to the one reported by

Beerdsen et al. for the LTL channel-like zeolite,[149, 150] despite ZTC and LTL

being very different both in chemical composition and in framework topology, thus

suggesting that the diffusive behaviour of methane in ZTC is closer to the diffusion

in tube-like structures rather than in cage-like structures like ITQ-29.

The consistency of our diffusivity calculations was validated by comparing the

reduced variance σ2
N/〈N〉 (which is the reciprocal of the thermodynamic factor

[138, 139]) as computed from the ratio Dcm/Dc, with the same quantity as ob-

tained through GCMC simulations of the FG reference systems. The results of

this comparisons are shown in Fig. 6.9. We found a satisfactory agreement be-

tween the different data sets for both systems, especially at mid-high values of

density. The FG/CG data sets for ZTC exhibit a better overlap compared to the

results obtained for the ITQ-29 case. We remark that for the latter system we

had a drastically lower number of observed transition in the MD simulations as
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Figure 6.9: Comparison between the reduced variance of the total number of particles and

the ratio Dcm/Dc for the two systems. The top subfigure represents the results for the ITQ-29

system, while the bottom subfigure shows the results for the ZTC system. The atomistic GCMC

results are shown in blue, while the ratio between diffusivities is shown in black. The center-of-

mass diffusivity Dcm is computed from the MD trajectories, while the Dc values are obtained

via BM analysis.

compared to the ZTC case. Hence, we believe that better results could be achieved

by longer MD simulations of the reference zeolite system, which would yield more

accurate and more robust statistics.

6.3.4 Decay of occupancy correlations

Since our model makes use of local densities only, and since we assume peri-

odic boundary conditions, the sorbate center-of-mass can not be tracked without

introducing ambiguities. For this reason, occupancy autocorrelations should be

considered as best candidates for measuring the memory decay in CG simula-

tions, rather than correlations in center-of-mass displacements; to this aim we

computed the occupancy fluctuations autocorrelation function Cδn
t = 〈δnt · δn0〉,

where δn = n− 〈n〉.[151] Fig. 6.10 clearly shows that occupancy autocorrelations
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Figure 6.10: Normalized occupancy fluctuations autocorrelation functions as a function of time

for the two systems at three different loadings: 1, 7, 14. The upper subfigure is referred to the

ITQ-29 system, while the lower is referred to the ZTC system. The empty circles represent the

results from MD simulations and the solid lines represent the results of CG simulations.

vanish more rapidly in the methane-ZTC system, mainly because of the faster

mass-exchange dynamics, and that for both systems faster relaxations occur at

higher density values.

This trend is more evident for the ITQ-29 system, for which we found large

differences in Dc between low and high-density regimes—in fact, we observed a

direct correlation between the relaxation efficiency and Dc. This general trend is

also reproduced by the CG simulations. However, there are evident differences in

the agreement between MD and CG results in the two systems: for the ITQ-29, we

obtain a semiquantitative agreement between MD and CG relaxation behaviours,

especially for lower loading values, while results for the ZTC system exhibit larger

discrepancies. We believe that the poorer agreement between the CG and MD
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data is due to the more markedly non-Markovian nature of mass exchange pro-

cesses in the carbon material, in relation with the time scale (τ) we chose for

such system. In fact, for a purely Markovian process the autocorrelations are ex-

pected to decay according to an exponential behaviour;[152] in the present cases,

instead, MD results suggest the presence of more complicated relaxation mecha-

nisms, which cause deviations from simple exponential decays. Considering that

our model is designed as a first-order Markov chain, our best expectation is the

obtainment of an exponential approximation of the reference data. Higher order

or multi-time scale transition rate models could allow for the modelling of more

complex dynamics and then for a more quantitative matching of occupancy au-

tocorrelation decays; however, as we mentioned while describing the modelling

of the transition function W , in that case we would have to face the problem of

obtaining statistically meaningful data, necessary to implementing a multivariate

transition function, from short atomistic simulations. This will be the object of

further contributions.

6.3.5 Computational speedup

Simulating the reference systems with our CG models required a considerable less

effort in terms of computational resources. We quantified the efficiency gain in

terms of the speedup, S, defined according to Merrick et al.[121]:

S =
tMD

tCG
, (6.12)

where tMD and tCG indicate the time, in units of seconds, required to per-

form the same simulation with the MD and CG representations, respectively. To

measure the speedups, we simulated 50 ps of the dynamical evolution of cubic

supercells with different sizes (from 3× 3× 3 to 6× 6× 6) of the reference systems
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Figure 6.11: Speedup values for both the ITQ-29 and ZTC systems, calculated for different

supercell sizes (from 3 × 3 × 3 to 6 × 6 × 6) and loading conditions (〈n〉 = 1, 7, 15). M is the

total number of cells considered in each system.

at different densities (〈n〉 = 1, 7, 15). We performed our tests on a single CPU

core. The results of the speedup calculations are reported in Fig. 6.11.

The results show that the improvement related to the ITQ-29 system is much

larger compared to the one related to the ZTC system, this being due to the

different time scales (τ) we considered for the transitions in the two systems: every

CG iteration for the zeolite corresponds to 1 ps of dynamics, while for the carbon

material one CG iteration corresponds to 20 fs. The consequence is that for the

zeolite, only 50 iterations are required to cover the dynamics of the speedup tests;

while for the ZTC we need to simulate the system for 2500 iterations. We also

observe that the speedup is loading dependent, due to the fact that the number of

degrees of freedom (DoFs) of our CG representations does not depend on the total

number of molecules, but only on the number of simulated cavities of the host

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
in host-guest systems

PhD Thesis in Chemical Sciences and Technologies



6. Scaling-up Simulations of Diffusion in Microporous Materials 146

materials. Conversely, the computational effort of MD simulations is proportional

to the loading, since the number of DoFs is proportional to the total number of

guest molecules. Overall, the speedup showed similar trends as a function of the

total number of simulated cavities, for both systems. In fact, S raises while the

number of cells increases up to 64 or 125, after which S remains constant for bigger

systems.

6.4 Conclusions

In this work, we demonstrated a successful way to map atomistic simulations of

host-guest systems to occupancy-based lattice models. We focused on the problem

of gas molecules confined in microporous materials. In particular, we chose to study

methane gas in two different environments: the widely studied pure-silica ITQ-29

zeolite and the LTA-ZTC, a hypothetical carbon material introduced by Braun et

al. obtained by the simulated carbon templating of the LTA-zeolite [57].

Our method makes use of statistical data of reference systems as drawn from the

results of atomistic simulations: GCMC for static properties and MD for dynamical

properties. Our lattice models are equipped with a CG potential function, repre-

senting the free-energy of the system, which depends only on local occupancies.

The diffusion dynamics is thought of as a composition of several local elementary

inter-cage jump events. In our CG representations, we represented such events

by employing a strictly local operator, which represents the transition probability

associated with each mass-preserving migration event. We modelled the local op-

erator by taking into account the local change in free-energy associated with each

transition and a purely kinetic part, which is related to the frequency of migration

attempts, and we also proposed a simple way to correct the jump rates for the

backscattering contribution on the basis of the displacements autocorrelations ob-
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served in the MD simulations; by this way, we allowed for CG models to take into

account the non-Markovian memory effects observed in the reference FG systems,

which may significantly influence the diffusion in such environments.

We assessed the accuracy of our method by comparing the CG and atomistic

results from different perspectives: (i) by comparing static properties in terms of

occupancy histograms; (ii) by comparing dynamical properties in terms of the ratio

between the diffusion coefficients Dcm and Dc, and in terms of the reduced variance

σ2
N/〈N〉 calculated from GCMC simulations; (iii) by comparing the relaxation be-

haviours in terms of the decay of autocorrelation of occupancy fluctuations. The

results showed a very satisfactory agreement between atomistic and CG results,

except for the occupancy relaxation behaviour in strongly non-Markovian scenar-

ios. More sophisticated models would be able to represent such phenomena with

better accuracy and will be the object of further contributions; however, we re-

mark that the (very satisfactory) accuracy of the CG model proposed in this work

was achieved from small-scale and relatively short atomistic simulations—in fact,

obtaining reliable CG representations from short-scale atomistic simulations was

the very purpose of our investigation.

Our results showed significant dissimilarities in the properties of the two FG

systems we considered, due to the different structure and chemical composition

of the two materials. In general, the larger free-volume of the ZTC material

led to a weaker localization of the guest molecules resulting in faster inter-cage

jump dynamics, more efficient collective diffusion, and weaker inter-cage spatial

correlations. The diffusivity behaviour with respect to the loading showed the

presence of a strong cage effect in the ITQ-29 material, this resulting in a large

peak in diffusivity for 〈n〉 = 10, 11, thus confirming the results shown in previous

studies.[120] Conversely, the methane-ZTC system exhibited a mild increase in

collective diffusivity and a weak decrease in Dcm, thus resulting in the absence
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of any cage effect and suggesting that this system behaves more as a channel-like

material.

Finally, the use of our CG lattice models resulted in a strikingly high com-

putational speedup comparing with the computing time required by the original

MD simulations, which allowed for simulating several nanoseconds of dynamics,

for very large systems constituted by thousands of the reference materials’ unit

cells, within a few minutes on a general-purpose computer.

In conclusion, we believe with this work to have established a theoretical frame-

work for the representation of adsorption and diffusion in the mesoscale, starting

from the atomistic representation of the reference systems. Our approach can be

used to test the mesoscale behaviour of hypothetical systems in possible applica-

tions such as gas storage, separation of gas mixtures and sensors design for gaseous

species.
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Chapter 7

Conclusions and future

perspectives

7.1 An a posteriori overview

The mesoscopic representation of molecular systems and related physical phenom-

ena still remains a challenging task. In this thesis, I proposed some strategies

developed by myself together with my collaborators to cope with the problem

of representing adsorption and diffusion through coarse-grained discrete models.

This turned out to be a great challenge, especially when trying to define a versa-

tile and consistent methodology that could be successfully applied to a variety of

systems and conditions. However, I think that some progress has been made in

the development of mesoscopic models of host-guest molecular systems. This is

demonstrated by the encouraging results shown in this thesis.

At first, in the third chapter of this thesis, I described a method based on

machine-learning techniques which can be used to define a set of molecular states

based on recurrent local atomistic patterns. Such method yielded promising results

when applied to the problem of adsorption patterns for CO2 in the ITQ-29 zeolite.
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This methodology is still in its early stages and it needs to be tested on more

complicated systems, in the effort to uncover the presence of metastable states

which would be hardly found either by visual inspection of the MD trajectories, or

through a classical kind of descriptor (such as interatomic distances, coordination

number etc.).

In the fourth chapter, I introduced the interacting pair approximation (IPA)

theoretical framework, as a re-adaptation of an already published article [38]. This

framework lays the foundations of the parameterization of occupancy-based models

such as the ones used in this thesis. In particular, it deals with the representation

of reference static properties —such as the occupancy histograms— through a

set of coarse-grained free-energy parameters, based on and consistently with the

results of fine-grained GCMC simulations of the chosen systems.

The fifth chapter was devoted to proposing a generalization of the IPA frame-

work, which allows for a larger variety of host-guest systems to be represented at a

coarse-grained level [39]. In particular, I showed a possible use of IPA for obtaining

a coarse-grained, lattice-based representation of two systems (based on methane

and graphene layers), characterized by the presence of two different classes of

neighbouring nodes, each of which associated to different sets of mutual interac-

tion parameters and different spatial correlations.

The sixth chapter was focused on a possible approach for obtaining lattice

models of two host-guest systems, while equipping them with a coarse-grained

representation of the mass-exchange dynamics [40]. This was possible because

of the definition of a local evolution operator which was parameterized via free-

energy contributions obtained through IPA, along with transition rates calculated

from MD simulations of the reference systems. In such work, we also presented a

simple yet effective way to incorporate non-Markovian effects that may influence

diffusion, into the local evolution operator.
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Despite all the efforts, the need for a general framework for mapping atomistic

host-guest systems into mesoscopic representations has not vanished yet. In partic-

ular, the methodologies introduced in this work, although successful, are based on

specific sets of assumptions. An ideal protocol would allow for applying the same

scheme to the widest possible scenarios. Nevertheless, many interesting questions

and possible directions for future research emerged.

7.2 Future perspectives

The future perspectives that arise from the methodologies introduced in this thesis

can be grouped into two main categories: refinements and improvements of the

mapping methodologies, and possible interesting applications of the coarse-grained

representations.

First, the machine-learning approach for the definition of molecular states needs

to be tested on more complex scenarios such as mixtures of guest species, complex

host materials etc. Such a framework would certainly turn out very useful for

comparing different host-guest systems in terms of their local patterns, as well

as for deriving coarse-grained models as simplified representations of self-diffusion

and/or molecular kinetics in pattern space or in real space.

The occupancy-based modelling framework has to be consolidated in two fronts:

first, the IPA methodology should be generalized to the modelling of highly-

correlated systems; secondly, the definition of local operators should also be gen-

eralized to a wide variety of possible mass-exchange mechanisms. A systematic

study of the coarse-grained, IPA-obtained interaction parameters could be carried

out in order to reveal the dependence on the temperature; such study would be

particularly helpful in clarifying whether, and to which extent, effective interaction

parameters at different temperatures can be obtained through interpolation. The
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problem of mass-exchange phenomena decomposition into elemetary events should

be addressed in a general manner; within this context, an efficient classification

scheme would be extremely helpful in rationalizing the transition classes observed

in FG simulations. Also, different strategies could be developed for including the

non-Markovian effects in all the cases in which their contribution to transport and

relaxation processes cannot be neglected. In particular, for the latter property, we

should be able to define a higher-order (i.e. higher-memory) local operator, that

would embed the effects of dynamical correlations more accurately. The whole

methodology could also be extended to cover (i) an accurate representation of

different guest mixtures within the same host environment, in order to allow for

simulating phenomena such as separation, interdiffusion etc.; (ii) as well as non-

equilibrium phenomena, even within a local-equilibrium assumption, which would

allow simulating at a coarse-grained level the behaviour of systems in the presence

of macroscopic gradients of temperature, pressure etc.

Concerning the possible applications of our methodology, I would highlight

the possibility of representing the behaviour of density profiles in equilibrium and

non-equilibrium scenarios, for systems of technological interest. This means also

representing separation processes involving host-guest systems such as the pres-

sure swing adsorption (PSA), which is a widely used technology. Novel materials

could be tested through the multi-scale approach described in this thesis in view

of a possible utilization in PSA processes; but also for other scopes like gas sens-

ing, heterogeneous catalysis etc. The development of hybrid simulation schemes

where this coarse-graining approach is combined with other simulation methods is

another very attractive line of research. For example, a permeation process could

be represented through molecular dynamics in the region of space located around

the interface between the membrane and the gas, whereas a coarse-grained meso-

scopic description could be adopted in the representation of the bulk of the host
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material. A similar approach can be used to represent catalysis, where the reactive

centers would be represented by a reactive MD or QM/MM, while the rest of the

environment would be represented at CG resolution.
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Appendix A

Supplementary material for

Chapter 4

A.1 Occupancy distributions for the lattice-gas

system

We provide simulation data on the occupancy distributions of the lattice-gas sys-

tem presented in the fourth chapter, where each cell can contain up to nmax = 9

particles. In each figure, the following probability distributions are shown for four

selected fugacity values: p(n) (subfigure a), that indicates the probability for a

single cell to host n particles, and p(n,m) (subfigures b-e), the joint probability of

a pair of neighboring cells to have occupancies n,m. For each of the selected fugac-

ities, the latter probability, p(n,m), is shown in the form of four stacked plots, in

every one of which n is kept fixed at a value close to the occupancy at which p(n)

reaches its maximum. For example, in Fig. A.1-a the maximum in the single-cell

histogram p(·) at fugacity f1 = 2.49·103 bar (black color), is reached for occupancy

n = 1; the three most probable occupancies that are closest to n = 1 are n = 0,
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Figure A.1: Selected (a) single-pore and (b-e) pore-pair occupancy distributions, along with

(f) the adsorption isotherm and (g) a plot of the extended density vs. the fugacity, for a version

of the lattice-gas system in which only plain lateral repulsions are present, and are set to the

value of 5 kJ mol−1.
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Figure A.2: Selected (a) single-pore and (b-e) pore-pair occupancy distributions, along with

(f) the adsorption isotherm and (g) a plot of the extended density vs. the fugacity, for a version

of the lattice-gas system in which only plain lateral repulsions are present, and are set to the

value of 8 kJ mol−1.

n = 2, and n = 3, therefore Fig. A.1-b we show, beside the histogram of p(1, ·),
also the histograms of p(0, ·), p(2, ·), and p(3, ·). As the histogram of p(·) was in
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Figure A.3: Selected (a) single-pore and (b-e) pore-pair occupancy distributions, along with

(f) the adsorption isotherm and (g) a plot of the extended density vs. the fugacity, for a version

of the lattice-gas system in which lateral repulsions are set to the value of 5 kJ mol−1, and

extended interactions are added according to parameter values φ = −1.6 kJ mol−1 and M0 = 4.

black color, also the stacked histograms p(0, ·), p(1, ·), p(2, ·), and p(3, ·) are drawn

in black. Analogously, since the maximum of p(·) at f2 = 5.04 · 104 bar (red color)

is reached at n = 3, and the other three most probable occupancies are n = 1,

n = 2, and n = 4, the stacked histograms in Fig. A.1-c (also in red color) refer to

p(1, ·), p(2, ·), p(3, ·), and p(4, ·). Obviously, the units for the stacked histograms

are arbitrary (a.u.), with the lowest reported value of each histogram defining an

invisible baseline of zero probability that applies only for that histogram. Both

for the single-cell and the cell-pair probabilities, dots represent values estimated

from the fine-grained (FG) simulation. Solid and dashed lines refer instead to

the coarse-grained (CG) system, respectively simulated through the parameters

obtained by the IPA and the NIPA approaches.

For every system we considered, the subfigure f reports the adsorption isotherm

(reported also in the fourth chapter), i.e. the plot of the cell density, expressed as

the average occupancy divided by the maximum occupancy, 〈n〉/nmax, whereas in
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subfigure g we report the ‘extended density’, that we defined as the average of

the product of the cell occupancy, n, times the sum of the occupancy in its whole

neighborhood, M , divided by νnmax, ν being the number of neighbors of each cell

(for the lattice-gases we considered, ν = 4). The extended density, 〈nM〉/(νnmax),

gives us information on the correlation between the density in a single cell and

the density in its whole neighborhood. We chosen to show it because, since the

extended density was not matched directly in our coarse-graining, it is a property

where FG and the CG system might, in principle, show some dissimilarities. In

density and extended density plots, empty circles are used to represent data from

the FG system, whereas solid black lines and dashed blue lines are used respec-

tively for IPA and NIPA results.

In all the lattice-gas setups, the temperature was set to the indicative value of

T = 200 K.

In Fig. A.1 we report data for the lattice-gas system in which the repulsion

parameter is set to ε = 5 kJ mol−1, and in Fig. A.2, we set the lateral repulsion

to ε = 8 kJ mol−1. In such cases, the lattice-gas Hamiltonian is simply

E(s) = ε
∑

〈i,j〉
sisj, (A.1)

where the sum runs over all the pairs of neighboring sites, and si and sj are the

occupancies of sites i and j (each of them being either 0 if empty or 1 if occupied),

according to the occupancy configuration s of the whole FG lattice.

In Fig. A.3 we set it back to ε = 5 kJ mol−1, but we added a non-zero next-

neighborhood attractive contribution (extended interactions) with parameters φ =
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−1.6 kJ mol−1 and M0 = 4 In this case, the lattice-gas Hamiltonian is

E(s) =
∑

〈i,j〉
sisj

[
ε+ ψ(Mi) + ψ(Mj)

]
, ψ(M) = φ

∑

m≥M0

δM,m, (A.2)

where Mi and Mj are defined as the total occupancy in the neighborhood, respec-

tively, of site i, including the occupancy of j, and of site j, including the occupancy

of i (see the fourth chapter for further details).

In all our lattice-gas simulations, the IPA approach provided a better match

with the FG properties than the NIPA (nearly equal match at the lowest densi-

ties, where cell-cell correlations are relatively weak). In particular, the presence

of extended interactions causes strong intercell correlations to emerge, in the orig-

inal FG system (see Fig. A.3). This is particularly evident at intermediate-high

densities, i.e. in the nearness of the step in the adsorption isotherm. Under such

conditions, the NIPA approach fails, whereas the IPA coarse-graining still holds.

The case of fugacity f3 = 5.58 · 105 bar (blue histogram in Fig. A.3-a) is especially

interesting, since the system is approaching the step in the adsorption isotherm,

and the resulting intercell correlations are very strong. Even the IPA approach

encounters some difficulty in matching the probability distributions with the same

excellent accuracy it granted in other conditions. Nevertheless, the CG-IPA pro-

vides an agreement with FG that is far more satisfactory than the CG-NIPA.

A.2 Lennard-Jones system

A.2.1 Coarse-graining of a lone pair of pores under the

NIPA

We provide adsorption isotherms for the ‘lone-pair-of-pores’ version of the Lennard-

Jones system of methane molecules (united atom approximation) under the static

field of the zeolite ITQ-29 framework, where the configurations of methane molecules
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in only two neighboring pores are sampled, through standard Metropolis grand-

canonical Monte Carlo (GCMC), while the rest of the system is being kept empty.

Under such conditions, the non-interacting pair approximation (NIPA) applies [see

Eq. (21) in the fourth chapter]. Adsorption isotherms for the lone pair are reported

as empty circles in Fig. A.4, at the temperatures of 100, 200, 300, 400, and 500

K. The corresponding adsorption isotherms for the whole system are reported as

well (small red dots), in order to highlight the different adsorption properties that

emerge as an effect of considering a pair of neighboring pores as it were separated

from the rest of the system. We estimated the effective interaction parameters for

the coarse-grained (CG) version of the lone pore pair system under the NIPA, and

used them to calculate adsorption isotherms (solid blue lines). The agreement is

very good, because the NIPA refers precisely to a lone pair of pores. However, once

used for CG simulations of the whole system, where pore pairs interact with their

surroundings, the NIPA parameters provide a less accurate representation than

the ones calculated under the interacting pair approximation (IPA) described in

the fourth chapter.

A.2.2 Coarse-graining of the full LJ systems

We provide the same kind of data we provided in Section A.1, but here referred

to the coarse-graining of the Lennard-Jones system, as a whole.

A.3 Estimation of the interaction terms — Miss-

ing entries in the CG interaction matrix

As we mentioned in the fourth chapter, depending on the features of the systems

under study, it is possible that some neighboring occupancy pairs are never sampled
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Figure A.4: Adsorption isotherms at various temperatures for a version of the Lennard-

Jones system we considered in the fourth chapter, in which the adsorption of methane molecules

inside of only two neighboring ITQ-29 pores is simulated through GCMC. Data from fine-grained

simulations (empty circles) are shown together with data from the coarse-grained version of the

same system (solid blue lines), in which we used the effective interaction parameters calculated

under the NIPA. Adsorption isotherms for the full (fine-grained) system are reported as well

(small red dots).

at any of the chemical potentials at which the GCMC simulations are performed,

causing some entries in the interaction matrix Kn1,n2 (or, equivalently, Zn1,n2) to be

missing. However, this does not really constitute a problem, since the CG system

will simply not sample the occupancy pairs that neither were not sampled in the
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Figure A.5: Selected (a) single-pore and (b-e) pore-pair occupancy distributions, along with

(f) the adsorption isotherm and (g) a plot of the extended density vs. the fugacity, for the

Lennard-Jones (united-atom-CH4)/(static-ITQ-29) system at the temperature of 500 K.
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Figure A.6: Selected (a) single-pore and (b-e) pore-pair occupancy distributions, along with

(f) the adsorption isotherm and (g) a plot of the extended density vs. the fugacity, for the

Lennard-Jones (united-atom-CH4)/(static-ITQ-29) system at the temperature of 400 K.

original FG system. [41] The only thing that matters is that enough interaction

terms could be evaluated, so that the CG system can correctly sample the same

occupancy configurations that were sampled in the original system, saturating

correctly, rather than, e.g., remaining stuck at some intermediate density because
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Figure A.7: Selected (a) single-pore and (b-e) pore-pair occupancy distributions, along with

(f) the adsorption isotherm and (g) a plot of the extended density vs. the fugacity, for the

Lennard-Jones (united-atom-CH4)/(static-ITQ-29) system at the temperature of 300 K.
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Figure A.8: Selected (a) single-pore and (b-e) pore-pair occupancy distributions, along with

(f) the adsorption isotherm and (g) a plot of the extended density vs. the fugacity, for the

Lennard-Jones (united-atom-CH4)/(static-ITQ-29) system at the temperature of 200 K.

of the lack of pair terms at high occupancies. This depends on how accurately

the occupancy distributions in the FG system are determined. In earlier works,

the NIPA approach was used along with expanded ensemble methods (EEM), [81–

84, 153–159] which in this case would essentially prescribe, during the simulation
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Figure A.9: Selected (a) single-pore and (b-e) pore-pair occupancy distributions, along with

(f) the adsorption isotherm and (g) a plot of the extended density vs. the fugacity, for the

Lennard-Jones (united-atom-CH4)/(static-ITQ-29) system at the temperature of 100 K.

of the pair as separated from the rest of the system, to assign each pore a different

(fictitious) chemical potential, and to find conditions allowing the sampling of all

possible pair occupancies, including those that would actually never be sampled by

the original FG system, in which the chemical potential is homogeneous. In all the

cases we investigated, we found that the NIPA pair-interaction terms, calculated

by recursively solving for Z∗n1,n2
in Eq. (21) in the fourth chapter (with the same

procedure we adopted in our previous work about this subject [41]), gave a perfect

agreement between isotherms and occupancy distributions of the NIPA system

itself, thus basically confirming that, for our purpose of producing the CG version

of some FG system at thermodynamic equilibrium, the lack of sampling of pair

occupancies that are never sampled in the original system does not affect the

quality of the agreement between CG and FG occupancy distributions.
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Appendix B

Supplementary material for

Chapter 6

B.1 Sensitivity tests

Our coarse-graining method makes an extensive use of models fitted to data ob-

tained from small-scale molecular simulations; we performed several qualitative

sensitivity tests to check how the CG collective diffusivity changes in response to

perturbations applied to such models. More specifically, we carried out Boltzmann-

Matano CG simulations with modified versions of the transition rates; in each

modification, one of the following functions was altered: (i) the single-cell free-

energy H, (ii) the mutual interactions free-energy K, (iii) the kinetic prefactor k,

and (iv) the dynamical correlation factor f . Each function alteration consisted

in a transformation of the kind φ∗(x) = φ(x)(1 + ∆), where ∆ represents a per-

centage change ranging from −8% to +8%. This analysis helped us to clarify the

importance of interaction energies, frequency of jump attempts, and dynamical

correlations in determining the diffusive properties.

Here, for the sake of simplicity, each BM simulation of the ITQ-29/methane
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Figure B.1: Sensitivity tests for the ITQ-29/methane system. In each subfigure, the x-axis

represents the loading, while the y-axis is the collective diffusivity as obtained through the

Boltzmann-Matano simulations of the CG systems with the perturbed models. Each subfigure

corresponds to the perturbations of each set of parameters: (a) perturbations of the single cell

free-energy contributions Hn; (b) perturbations of the mutual interactions free-energy contribu-

tions Kn1,n2 ; (c) perturbations of the kinetic prefactor kM12 ; (d) perturbations of the dynamical

correlation factor f〈n〉.

CG system was conducted as a single run with nmax = 15 rather than splitting it

into three separate runs (which is what we did in order to obtain the results shown

in Section 6.3.3) — this is the reason why, at low methane densities, diffusivity

slightly differs from the original results.

The results of the sensitivity analysis are presented in Fig.B.1 and Fig.B.2.

Overall, the effects of perturbations have a common consequence: the variation in
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Figure B.2: Sensitivity tests for the ZTC/methane system. In each subfigure, the x-axis

represents the loading, while the y-axis is the collective diffusivity as obtained through the

Boltzmann-Matano simulations of the CG systems with the perturbed models. Each subfigure

corresponds to the perturbations of each set of parameters: (a) perturbations of the single cell

free-energy contributions Hn; (b) perturbations of the mutual interactions free-energy contribu-

tions Kn1,n2 ; (c) perturbations of the kinetic prefactor kM12 ; (d) perturbations of the dynamical

correlation factor f〈n〉.

collective diffusivity is directly proportional to the variation applied to each model.

However, such variations differ remarkably both in magnitude and physical mean-

ing.

Concerning how a change in the free-energy parameters affects the diffusion

profile, the variation induced by perturbing the pair-interaction matrix Kn1,n2
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(Figs. B.1b and B.2b) is almost negligble if we compare it to the variation induced

by perturbations in the single-cell contributions Hn (Figs. B.1a and B.2a); this

comes as a direct consequence of the difference in magnitude between the two sets

of parameters. Moreover, negative perturbations (underestimation) reflect in a

lower diffusivity; this is because the free-energy contributions have a more attrac-

tive character — another consequence of this is that, during BM simulations, the

desity profile spreads more slowly: attractiveness lowers the effect of concentration

gradients as a driving force for collective diffusion. Conversely, positive perturba-

tions (overestimation) in free-energy induce a more repulsive behaviour: as guest

molecules tend to separate from each other, diffusivity increases.

The changes in diffusivity induced by modifications to kM12 and f〈n〉, instead,

are comparable in magnitude. This is because k and f play similar roles in mod-

elling the transition rates. Overestimation (positive perturbations) of kM12 implies

a larger frequency of jumps attempts, and therefore results in a higher diffusivity;

overestimation of f〈n〉 implies underestimation of non-Markovian backscattering

effects, which also contributes to raising the diffusivity.

B.2 Fitted models for the coarse-grained simu-

lations

In this section, we report the fitted models we adopted in our coarse-grained

(CG) representations. We introduced such models to represent the local free-

energy parameters Hn and Kn1,n2 , the kinetic prefactors kM12 , and the dynamical

correlations correction factors f〈n〉.
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B.2.1 ITQ-29

Hn = a1n+ b1n
2, (B.1)

with optimal parameter values a1 = −26.5 kJ/mol and b1 = 0.96 kJ/mol.

Kn1,n2 = n1n2

[
a2 + (n1n2)3b2

]
, (B.2)

with optimal parameter values a2 = −0.06 kJ/mol and b2 = 2.4× 10−8 kJ/mol.

kM12 =
[ a3

eb3M12
+

c3

ed3M12

]−1

+ e3, (B.3)

with optimal parameter values a3 = 1.915, b3 = −0.071, c3 = 1.603 × 106, d3 =

0.600 and e3 = 2.5× 10−5.

f〈n〉 =
a4

1 + eb4(〈n〉+c4)
+ 1, (B.4)

with optimal parameter values a4 = −0.56, b4 = −1.4 and c4 = 9.7. In numerical

simulations, the density 〈n〉 was estimated based on local pair occupancies as

M12/2.

B.2.2 ZTC

Hn = a1n+ b1n
3, (B.5)

with optimal parameter values a1 = −24.4 kJ/mol and b1 = 0.018 kJ/mol.

Kn1,n2 = n1n2

[
a2 + (n1n2)3b2

]
, (B.6)

Giovanni Pireddu - Discrete coarse-grained modelling of adsorption and diffusion
in host-guest systems

PhD Thesis in Chemical Sciences and Technologies



B. Supplementary material for Chapter 6 169

with optimal parameter values a2 = −0.006 kJ/mol and b2 = 6.0× 10−10 kJ/mol.

kM12 = a3M12 + b3, (B.7)

with optimal parameter values a3 = 5.0× 10−4 and b3 = 5.0× 10−4.

f〈n〉 = a4〈n〉+ b4, (B.8)

with optimal parameter values a4 = −0.057 and b4 = 0.994. In numerical simula-

tions the density 〈n〉 was estimated based on the local pair occupancies as M12/2.

B.3 Static properties

In this section, some selected static properties computed from molecular dynamics

(MD) are put in comparison with their CG counterparts, for both methane/ITQ-29

and methane/ZTC systems at 300 K and at different loading conditions, i.e. 〈n〉 =

4, 7, 10, representing low-, mid-, and high-density regimes. The selected properties

are the following:

• P (n), the probability of observing n particles in a single cell of the system;

• P (n1 +n2), the probability of observing a summation of occupancies n1 +n2

within a pair of connected cells;

• P (n1 × n2), the probability of observing a product of occupancies n1 × n2

within a pair of connected cells.

The last two distributions are meant to ease the comparison between CG and MD

data sets for the bivariate distributions P (n1, n2) which, in principle, would require

a comparison between different surfaces in a 3D space.
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Figure B.3: Single-cell occupancy probability, P (n), at different loadings (〈n〉 = 4, 7, 10), for

the ITQ-29 system. Results from CG (MD) simulations are indicated as empty circles (solid

lines).
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Figure B.4: Neighboring occupancies summation probability, P (n1 +n2), at different loadings

(〈n〉 = 4, 7, 10), for the ITQ-29 system. Results from CG (MD) simulations are indicated as

empty circles (solid lines).
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Figure B.5: Neighboring occupancies product probability, P (n1 × n2), at different loadings

(〈n〉 = 4, 7, 10), for the ITQ-29 system. Results from CG (MD) simulations are indicated as

empty circles (solid lines).
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Figure B.6: Single-cell occupancy probability, P (n), at different loadings (〈n〉 = 4, 7, 10), for

the ZTC system. Results from CG (MD) simulations are indicated as empty circles (solid lines).
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Figure B.7: Neighboring occupancies summation probability, P (n1 +n2), at different loadings

(〈n〉 = 4, 7, 10), for the ZTC system. Results from CG (MD) simulations are indicated as empty

circles (solid lines).
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Figure B.8: Neighboring occupancies product probability, P (n1 × n2), at different loadings

(〈n〉 = 4, 7, 10), for the ZTC system. Results from CG (MD) simulations are indicated as empty

circles (solid lines).
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Figure B.9: Density profiles from three different BM simulations of the ITQ-29 system: nmax =

15 is shown in red, nmax = 8 is shown in green, nmax = 6 is shown in blue.

B.4 Boltzmann-Matano simulations of the ITQ-

29 system

The large changes in collective diffusivity between low- and high-density regimes

for this system caused the density profile to steeply decrease at ρ ≤ 8. This resulted

in instabilities during the numerical integration and differentiation of the density

profiles. For this reason, we carried out the Boltzmann-Matano (BM) simulations

of the ITQ-29 system in three different versions, each one with a different value

for the maximum occupancy nmax. The density profiles we obtained are shown in

Fig.B.9.

We empirically found that setting nmax to 15, 8 and 6 was a good compromise

between stability and computational effort. The collective diffusivity (Dc) values

for the ITQ-29 system were drawn from the different profiles in order to maximize

the stability:

• the nmax = 15 profile was used to calculate Dc for 〈n〉 ≥ 8;

• the nmax = 8 profile was used to calculate Dc for 〈n〉 = 7,6;
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• the nmax = 6 profile was used to calculate Dc for 〈n〉 ≤ 6.

Since at low density the diffusivity is significantly lower than in high-density

scenarios, the simulations with nmax = 6 and nmax = 8 required a larger number

of simulated iterations (5 times respect to the nmax = 15) to reach the profiles

shown in Fig. B.9.
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